
ptg

ptg

Adobe® Flex® 4.5 Fundamentals

Training from the Source

Michael Labriola
Jeff Tapper
Matthew Boles
Foreword by Adam Lehman, Adobe Flash Builder Product Manager

ptg

Adobe® Flex® 4.5 Fundamentals: Training from the Source
Michael Labriola/Jeff Tapper/Matthew Boles

 This Adobe Press book is published by Peachpit.
For information on Adobe Press books, contact:
Peachpit
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

For the latest on Adobe Press books, go to www.adobepress.com
To report errors, please send a note to errata@peachpit.com
Copyright © 2012 by Michael Labriola and Jeffrey Tapper

Adobe Press Editor: Victor Gavenda
Project Editor: Nancy Peterson
Development Editor: Robyn G. Thomas
Technical Editor: Steve Lund
Production Coordinator: Becky Winter
Copy Editor: Jessica Grogan
Compositor: Danielle Foster
Indexer: Emily Glossbrenner
Cover Design: Peachpit Press

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For infor-
mation on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of the book, neither the authors, Adobe Systems, Inc., nor the publisher shall have any lia-
bility to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Flash, ColdFusion, and Adobe are registered trademarks of Adobe Systems, Inc. Flex is a trademark of Adobe
Systems, Inc.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations
appear as requested by the owner of the trademark. All other product names and services identified throughout this
book are used in editorial fashion only and for the benefit of such companies with no intention of infringement of
the trademark. No such use, or the use of any trade name, is intended to convey endorsement or other affiliation
with this book.

Printed and bound in the United States of America
ISBN 13: 978-0-321-77712-6
ISBN 10: 0-321-77712-3
9 8 7 6 5 4 3 2 1

www.adobepress.com

ptg

To my wife, Laura, and my daughter, Lilia;
you make life much less quiet, but so much more worthwhile.

—Michael Labriola

My efforts on this book are dedicated to my wife, Lisa, and children,
Kaliope and Kagan. Without you to inspire me, this just wouldn’t be possible.

—Jeff Tapper

To Sandra, my wife, who has made the last 25 years together a joy.
And to Scrappy, my furry fishing buddy.

—Matthew Boles

ptg

Bios
Michael Labriola is a Founding Partner and Senior Consultant at Digital Primates. He has
been developing Internet applications since 1995 and has been working with Flex since its 1.0
beta program. Michael is a Flex SDK contributor, architect of both the open source FlexUnit
and Spoon Framework projects, and international speaker on Flex and AIR topics who has
consulted for many of the world’s most recognized brands.

Jeff Tapper is a Founding Partner and Senior Consultant at Digital Primates, a company that
provides expert guidance on rich Internet application development and empowers clients
through mentoring. He has been developing Internet-based applications since 1995 for a
myriad of clients, including Major League Baseball, ESPN, Morgan Stanley, Conde Nast, IBM,
Dow Jones, American Express, Verizon, and many others. He has been developing Flex appli-
cations since the earliest days of Flex 1. As an instructor, Jeff is certified to teach all of Adobe’s
courses on Flex, AIR, Flash, and ColdFusion development. He is also a frequent speaker at
Adobe Development Conferences and user groups.

Matthew Boles is a Technical Training Specialist for the Adobe Enterprise Training group,
and has been developing and teaching courses on Flex since the 1.0 release. Matthew has a
diverse background in web development, computer networking, and teaching. He is coauthor
of previous versions of this book, as well as a contributing author of the Adobe authorized
Flex courseware.

ptg

Acknowledgments
Thanks to Robyn, Steve, Jeff, and Matt for their work and dedication to this book. Thanks to
my clients and colleagues for the motivation to keep learning new technologies. Thanks to my
family for the unwavering support and love. Most importantly, thanks to those who inspire
me every day with their words, caring, and wisdom; I promise to always keep trying.

—Michael Labriola

I would like to thank Mike, Matt, Steve, and Robyn for all their hard work, which has helped
shape this book. Thanks to Chris Gieger for providing some design love for our application—
Chris, sorry we couldn’t fully implement your excellent design. Special thanks go to the team
at Adobe who has made this all possible. Thanks to the editorial staff at Adobe Press, who was
faced with the Herculean task of making our writing intelligible.

—Jeff Tapper

Thanks to Jeff, Mike, and Robyn for making this the easiest book revision I’ve ever worked on!
—Matthew Boles

ptg

Contents

Foreword x

Introduction xii

Lesson 1 Understanding Rich Internet Applications 3
The Evolution of Computer Applications . 4
The Break from Page-Based Architecture . 6
The Advantages of Rich Internet Applications 7
RIA Technologies . 8
What You Have Learned . .15

Lesson 2 Getting Started 17
Getting Started with Flex Application Development 18
Creating a Project and an MXML Application 18
Understanding the Flash Builder Workbench 24
Running Your Application .28
Exploring the Flash Builder Debugger .34
Getting Ready for the Next Lessons .41
What You Have Learned . .43

Lesson 3 Laying Out the Interface 45
Learning About Layouts .46
Laying Out the E-Commerce Application . .50
Working with Constraint-Based Layouts .58
Working with View States .63
Refactoring . .71
What You Have Learned . .76

Lesson 4 Using Simple Controls 79
Introducing Simple Controls . .80
Displaying Images .81
Building a Detail View . .85

ptg

viiTraining from the Source

Using Data Binding to Link a Data Structure to a Simple Control 88
Using a Form Layout Container to Lay Out Simple Controls 89
What You Have Learned . .92

Lesson 5 Handling Events 95
Understanding Event Handling . .96
Handling System Events . 107
What You Have Learned . . 111

Lesson 6 Using Remote XML Data 113
Using Embedded XML . . 114
Using XML Loaded at Runtime . 119
Retrieving XML Data via HTTPService . 124
Searching XML with E4X . 127
Using Dynamic XML Data . 133
Using the XMLListCollection in a Flex Control 137
What You Have Learned . . 139

Lesson 7 Creating Classes 141
Building a Custom ActionScript Class . 142
Building a Value Object . 143
Building a Method to Create an Object . 150
Building Shopping Cart Classes . . 154
Manipulating Shopping Cart Data . 159
What You Have Learned . . 167

Lesson 8 Using Data Binding and Collections 169
Examining Data Binding . 170
Being the Compiler . 176
Understanding Bindable Implications . . 183
Using ArrayCollections . 184
Refactoring ShoppingCartItem . 204
What You Have Learned . . 205

Lesson 9 Breaking the Application into Components 207
Introducing MXML Components . 208
Splitting Off the ShoppingView Component 213
Breaking Out a ProductItem Component . 221
Creating Components to Manage Loading the Data 230
What You Have Learned . . 238

ptg

viii Contents

Lesson 10 Using DataGroups and Lists 241
Using Lists . 242
Using DataGroups . 245
Virtualization with Lists . 255
Displaying Grocery Products Based on Category Selection 257
What You Have Learned . . 259

Lesson 11 Creating and Dispatching Events 261
Understanding the Benefits of Loose Coupling 262
Dispatching Events . . 263
Declaring Events for a Component . . 267
Identifying the Need for Custom Event Classes 269
Building and Using the UserAcknowledgeEvent 270
Understanding Event Flow and Event Bubbling 274
Creating and Using the ProductEvent Class 280
What You Have Learned . . 289

Lesson 12 Using the Flex DataGrid 291
Introducing DataGrids and Item Renderers 292
Displaying the ShoppingCart with a DataGrid 292
What You Have Learned . . 309

Lesson 13 Using Drag and Drop 311
Introducing the Drag and Drop Manager . 312
Enhanced Dragging and Dropping Between Two Lists 313
Standard Dragging and Dropping Between a

DataGrid and a List . 315
Using a Non-Drag-Enabled Component in a

Drag-and-Drop Operation . 321
Dragging a Grocery Item to the Shopping Cart 326
What You Have Learned . . 331

Lesson 14 Implementing the Checkout Process 333
Introducing Navigation with States . 334
Introducing Two-Way Bindings . 334
Creating the OrderInfo valueObject . 335
Creating CheckoutView . 337
Creating CreditCardInfo . . 345
Creating Review . 350
Completing the Order . 355
What You Have Learned . . 358

ptg

ixTraining from the Source

Lesson 15 Using Formatters and Validators 361
Introducing Formatters and Validators . 362
Using Formatter Classes . 364
Examining a Second Locale . 368
Using Validator Classes . 369
What You Have Learned . . 372

Lesson 16 Customizing a Flex Application with Styles 375
Applying a Design with Styles and Skins . 376
Cleaning Up the Appearance . 376
Applying Styles . 377
Changing CSS at Runtime . 395
What You Have Learned . . 397

Lesson 17 Customizing a Flex Application with Skins 399
Understanding the Role of Skins in a Spark Component 400
Understanding the Relationship between Skins and States 404
Creating a Skin for the Application . . 413
What You Have Learned . . 417

Lesson 18 Creating Custom ActionScript Components 419
Introducing Components with ActionScript 3 .0 420
Building Components Can Be Complex . . 420
Understanding Flex Components . 421
Why Make Components? . 422
Defining a Component . 424
Creating the Visuals . 432
Adding Functionality to the Component . 439
Creating a Renderer for the Skin . 450
What You Have Learned . . 452

Appendix Setup Instructions 455
Software Installation . . 455
Importing Projects . 458

Index 462

ptg

Foreword
Over a decade ago, Adobe (then Macromedia) coined the term rich Internet application,
or RIA, to describe the future of browser-based applications. This new breed of application
supplemented existing server-based applications with an enhanced client-side user experience.
As Internet users became increasingly sophisticated, demand for improved user experiences
grew. At the center of this paradigm shift was Adobe Flex, a simple and light-weight frame-
work for developing applications.

Once a novelty, Internet usage on phones and tablets has exploded. Users can now access the
Internet more from mobile devices than from personal computers. As such, user demand for
browser-based applications is shifting to applications installed on devices. Yet again, the Flex
framework can be found leading the charge. With the release of the Flex 4.5 SDK, Flex applica-
tions can now be deployed as native applications to Android, Apple iOS, and Blackberry devices.
With this book, you hold in your hands all the knowledge and best practices necessary to deliver
killer applications for not just one of the leading mobile platforms…but all of them!

Adobe Flex is composed of a number of elements. It uses a declarative markup language called
MXML to help structure your application and ActionScript, a highly productive scripting
language, to glue all the pieces together. The framework also has built-in support for CSS and
a simple but comprehensive skinning model. These complimentary languages will probably
look familiar to those with HTML and JavaScript experience. In addition to the languages
that power Flex, the framework provides layout containers, form controls, validators, effects,
state management frameworks, a multipurpose animation library, and much more to help you
rapidly build the next generation of web applications.

Of course, what good is a slick interface if you can’t connect it to live data and services?
Fortunately, Flex offers a multitude of ways to connect to nearly any backend service, whether
it is raw XML over HTTP, SOAP web services, or the blazingly fast remoting protocol called
Action Message Format (AMF). If you’re looking for an enterprise-grade data management
solution to share data with multiple users simultaneously, Flex offers tight integration with the
Adobe Digital Enterprise Platform and Adobe LiveCycle DataServices.

ptg

xiTraining from the Source

Most of the improvements in Flex 4.5 are focused around mobile and device development.
Rather than introducing a separate mobile version of Flex, we upgraded the existing frame-
work for mobile development. You can now use the same tools and languages to build a Flex
mobile application that you do to build a Flex application for the browser of the desktop.
Built on the foundation of Spark, the next generation component model introduced in Flex 4,
Flex 4.5 continues to add new components and capabilities. The Flex compiler has also under-
gone numerous improvements to ensure applications run faster with even less memory.

Flex is open source and free. Outside this book, you don’t have to purchase anything else to
develop rich Internet applications for the browser, desktop, or mobile devices. You can just
open your favorite text editor, write some code, and compile your application at the com-
mand line. But if you’re like me, you’ll probably want some better tooling support. This book
uses Adobe Flash Builder 4.5, the premiere IDE for Flex and ActionScript development. Flash
Builder 4.5’s rock-solid code editor and intuitive features, like Quick Assist, will make you
fall in love with ActionScript coding. If that isn’t enough, Flash Builder 4.5 supports the new
mobile workflow, from the creation of a new mobile project to debugging your application
live on a connected device. Additionally, there is a large and vast ecosystem of third-party
tools, libraries, and extensions (some written by your authors!) to enhance productivity and
aid in the development of your applications.

There is a wealth of reference information on Flex freely available on the Internet, but to build
the next killer app, you need to know how to put all the pieces together. Adobe Flex 4.5: Training
from the Source draws from the expertise of its authors to present lessons that not only introduce
you to the Flex framework but also teach you the best practices you need to be successful.

Times are changing. Whether its browser, desktop, or mobile devices, the Flex SDK and
Adobe Flash Builder provides the tools you need to build a better Internet. The next fabulous
app is just a few clicks away.

Adam Lehman
Senior Product Manager
Adobe Systems, Inc.

ptg

Introduction
Macromedia introduced Flex in 2004 so that developers could write web applications for the
nearly ubiquitous Flash platform. These applications benefited from the improved design,
usability, and portability that Flex made possible, dramatically changing the user experience.
These features are a cornerstone of Web 2.0, a new generation of Internet applications focused
on creativity and collaboration.

Since the introduction of Flex, Macromedia—and now Adobe—has released versions 1.5, 2, 3,
4, and 4.5 of Flex. With each subsequent version, creating rich, compelling, intuitive applica-
tions has gotten easier, and the bar has been raised on users’ expectations of web applications.
Countless organizations have discovered the benefits of Flex and have built and deployed
applications that run on the Flash platform.

But Flex 1 and 1.5 were most definitely not mass-market products. The pricing, lack of IDE,
limited deployment options, and other factors meant that those early versions of Flex were tar-
geted specifically for large and complex applications as well as for sophisticated developers and
development. However, with the new releases of the Flex product line, all this has changed.

Flex 2 was released in 2006 and made Flex development a possibility for many more people,
as it included a free software development kit (SDK). With the open sourcing of Flex 3, and
the announcement of free versions of Flash Builder for students, Flex development is within
the grasp of any developer with enough foresight to reach for it. The release of Flex 4 made it
even easier to build rich, efficient, cutting-edge applications, and streamlined the workflow
between designer and developer, greatly easing the process of bringing intuitive, compel-
ling designs to even more Flex applications. In this latest release, Flex 4.5, Adobe has further
extended the reach of Flex, making it possible to deploy applications not only to browsers and
desktops, but to phones, tablets, televisions, and other connected devices.

Getting started with Flex is easy. Flex itself is composed of two languages: MXML, an XML-
based markup language, and ActionScript, the language of Flash Player. MXML tags are easy
to learn (especially when Flash Builder writes them for you). ActionScript has a steeper learn-
ing curve, but developers with prior programming and scripting experience will pick it up
easily. Still, there’s more to Flex development than MXML and ActionScript.

ptg

xiiiTraining from the Source

To be a successful Flex developer, you’ll need to understand a number of concepts, including
the following:

•	 How Flex applications should be built (and how they should not)

•	 What the relationships between MXML and ActionScript are, and when to use each

•	 How to load data into a Flex application

•	 How to use the Flex components, and how to write your own

•	 What the performance implications are of the code you write

•	 Which practices you should employ to write code that is scalable, manageable,
and reusable

Developing these skills is where this book comes in. As the authors, we have distilled our
hard-earned Flex expertise into a series of lessons that will jump-start your own Flex develop-
ment. Starting with the basics, and then incrementally introducing additional functionality
and know-how, the author team guides your journey into the exciting world of RIAs, ensuring
success every step of the way.

Flex is powerful, highly capable, fun, and incredibly addictive. And Adobe Flex 4.5:
Training from the Source is the ideal tour guide on your journey to the next generation
of application development.

Adobe Flex 4.5: Training from the Source is an update to the popular Adobe Flex 4: Training
from the Source. It is our sincere intention that readers of the earlier book, as well those who
are first exploring Flex with this book, will find this content compelling. Since the release of
our previous book, the Flex SDK has been improved, with features that include:

•	 Support for internationalization of Flex applications

•	 Additional components, such as the DataGrid, added to the Spark component set

•	 Support for deploying applications to desktops, browsers, phones, tablets, and other
connected devices

•	 And much more

It’s an incredible time to be an RIA developer, and we hope that this book provides you with
all the tools you need to get started with Flex.

ptg

xiv Introduction

Prerequisites
To make the most of this book, you should at the very least understand web terminology. This
book isn’t designed to teach you anything more than Flex, so the better your understanding
of the World Wide Web, the better off you’ll be. This book is written assuming that you’re
comfortable working with programming languages and that you’re working with a server-
side language such as Java, .NET, PHP, or ColdFusion. Although knowledge of server-side
technologies is not required to succeed with this book, we invoke many comparisons and
analogies to server-side web programming. This book is not intended as an introduction to
programming or as an introduction to object-oriented programming (OOP). Experience with
OOP is not required, although if you have no programming experience at all, you might find
the materials too advanced.

Outline
As you’ll soon discover, this book mirrors real-world practices as much as possible. Where
certain sections of the book depart from what would be considered a real-world practice,
every attempt has been made to inform you. The exercises are designed to get you using the
tools and the interface quickly so that you can begin to work on projects of your own with as
smooth a transition as possible.

This curriculum should take approximately 28–35 hours to complete and includes the
following lessons:

Lesson 1: Understanding Rich Internet Applications

Lesson 2: Getting Started

Lesson 3: Laying Out the Interface

Lesson 4: Using Simple Controls

Lesson 5: Handling Events

Lesson 6: Using Remote XML Data

Lesson 7: Creating Classes

Lesson 8: Using Data Binding and Collections

Lesson 9: Breaking the Application into Components

ptg

xvTraining from the Source

Lesson 10: Using DataGroups and Lists

Lesson 11: Creating and Dispatching Events

Lesson 12: Using the Flex DataGrid

Lesson 13: Using Drag and Drop

Lesson 14: Implementing the Checkout Process

Lesson 15: Using Formatters and Validators

Lesson 16: Customizing a Flex Application with Styles

Lesson 17: Customizing a Flex Application with Skins

Lesson 18: Creating Custom ActionScript Components

Who Is This Book For?
All the content of this book should work well for users of Flash Builder on any of its supported
platforms. The earlier “Prerequisites” section details what a reader should know prior to read-
ing this, in order to get the most out of this book.

The Project Application
Adobe Flex 4.5: Training from the Source includes many comprehensive tutorials designed to
show you how to create a complete application using Flex. The application that you’ll create is
an online grocery store that displays data and images and takes a user through the checkout
process, ending just before the data would be submitted to a server.

By the end of the book, you’ll have built the entire application using Flex. You’ll begin by learn-
ing the fundamentals of Flex and understanding how you can use Flash Builder in developing
the application. In the early lessons, you’ll use Design mode to begin laying out the application,
but as you progress through the book and become more comfortable with the languages used
by Flex, you’ll spend more and more time working in Source mode, which gives you the full
freedom and flexibility of directly working with code. By the end of the book, you should be
fully comfortable working with the Flex languages and may even be able to work without Flash
Builder by using the open source Flex SDK and its command-line compiler.

ptg

xvi Introduction

Errata
Although we have made every effort to create a flawless application and book, occasionally we
or our readers find problems. The errata for the book will be posted at www.flexgrocer.com.

Standard Elements in the Book
Each lesson in this book begins by outlining the major focus of the lesson at hand and intro-
ducing new features. Learning objectives and the approximate time needed to complete all the
exercises are also listed at the beginning of each lesson. The projects are divided into exercises
that demonstrate the importance of each skill. Every lesson builds on the concepts and tech-
niques learned in the previous lessons.

The following are some consistent elements and styles you’ll encounter throughout the book:

Tip: An alternative way to perform a task or a suggestion to consider when applying the skills

you are learning .

NoTe: Additional background information to expand your knowledge, or advanced techniques

you can explore to further develop your skills .

cauTioN! Information warning you of a situation you might encounter that could cause errors,

problems, or unexpected results .

Boldface text: Words that appear in boldface are terms that you must type while working
through the steps in the lessons.

Boldface code: Lines of code that appear in boldface within code blocks help you easily iden-
tify changes in the block to be made in a specific exercise step.

<mx:HorizontalList dataProvider=”{dp}”
 labelFunction=”multiDisplay”
 columnWidth=”130”
 width=”850”/>

Code in text: Code or keywords appear slightly different from the rest of the text so you can
identify them easily.

www.flexgrocer.com

ptg

xviiTraining from the Source

Code block: To help you easily identify ActionScript, XML, and HTML code within the book,
the code has been styled in a special font that’s different from the rest of the text. Single lines
of ActionScript code that are longer than the margins of the page are wrapped to the next line.
They are designated by an arrow at the beginning of the continuation of a broken line and are
indented under the line from which they continue. For example:

public function Product (_catID:Number, _prodName:String,
➥ _unitID:Number,_cost:Number, _listPrice:Number,
➥ _description:String,_isOrganic:Boolean,_isLowFat:Boolean,
➥ _imageName:String)

Italicized text: Italics are used to show emphasis or to introduce new vocabulary.

Italics are also used for placeholders, which indicate that a name or entry may change depend-
ing on your situation. For example, in the path driveroot:/flex4tfs/flexgrocer, you would
substitute the actual name of your root drive for the placeholder.

Menu commands and keyboard shortcuts: There are often multiple ways to perform the
same task in Flash Builder. The different options will be pointed out in each lesson. Menu
commands are shown with angle brackets between the menu names and commands:
Menu > Command > Subcommand. Keyboard shortcuts are shown with a plus sign between
the names of keys to indicate that you should press the keys simultaneously; for example,
Shift+Tab means that you should press the Shift and Tab keys at the same time.

CD-ROM: The CD-ROM included with this book includes all the media files, starting files,
and completed projects for each lesson in the book. These files are located in the start and
complete directories. Lesson 1, “Understanding Rich Internet Applications,” does not include
exercises. If you need to return to the original source material at any point, you can restore
the FlexGrocer project. Some lessons include an intermediate directory that contains files in
various stages of development in the lesson. Other lessons may include an independent direc-
tory that is used for small projects intended to illustrate a specific point or exercise without
impacting the FlexGrocer project directly.

Anytime you want to reference one of the files being built in a lesson to verify that you are cor-
rectly executing the steps in the exercises, you will find the files organized on the CD-ROM
under the corresponding lesson. For example, the files for Lesson 4 are located on the
CD-ROM in the Lesson04 folder, in a project named FlexGrocer.fxp.

ptg

xviii Introduction

The directory structure of the lessons you’ll be working with is as follows:

Directory structure

Adobe Training from the Source
The Adobe Training from the Source and Adobe Advanced Training from the Source series are
developed in association with Adobe and reviewed by the product support teams. Ideal for
active learners, the books in the Training from the Source series offer hands-on instruction
designed to provide you with a solid grounding in the program’s fundamentals. If you learn
best by doing, this is the series for you. Each Training from the Source title contains hours of
instruction on Adobe software products. They are designed to teach the techniques that you
need to create sophisticated professional-level projects. Each book includes a CD-ROM that
contains all the files used in the lessons, completed projects for comparison, and more.

What You Will Learn
You will develop the skills you need to create and maintain your own Flex applications as you
work through these lessons.

By the end of the book, you will be able to:
•	 Use Flash Builder to build Flex applications.

•	 Understand MXML, ActionScript 3.0, and the interactions of the two.

•	 Work with complex sets of data.

ptg

xixTraining from the Source

•	 Load data using XML.

•	 Handle events to allow interactivity in an application.

•	 Create your own event classes.

•	 Create your own components, either in MXML or ActionScript 3.0.

•	 Apply styles and skins to customize the look and feel of an application.

•	 And much more.

Minimum System Requirements
Windows
•	 2 GHz or faster processor

•	 1 GB of RAM (2 GB recommended)

•	 Microsoft Windows XP with Service Pack 3, Windows Vista Ultimate or Enterprise (32
or 64 bit running in 32-bit mode), Windows Server 2008 (32 bit), or Windows 7 (32 or 64
bit running in 32-bit mode)

•	 1 GB of available hard-disk space

•	 Java Virtual Machine (32 bit): IBM JRE 1.6, or Sun JRE 1.6

•	 1024x768 display (1280x800 recommended) with 16-bit video card

•	 Flash Player 10.2 or later

Macintosh
•	 Intel processor based Mac

•	 OS X 10.6 (Snow Leopard)

•	 1 GB of RAM (2 GB recommended)

•	 1.5 GB of available hard-disk space

•	 Java Virtual Machine (32 bit): JRE 1.6

•	 1024x768 display (1280x800 recommended) with 16-bit video card

•	 Flash Player 10.2 or later

The Flex line of products is extremely exciting, and we’re waiting to be amazed by what you
will do with it. With a strong foundation in Flex, you can expand your set of skills quickly.

ptg

xx Introduction

Flex is not difficult to use for anyone with programming experience. With a little bit of initia-
tive and effort, you can fly through the following lessons and be building your own custom
applications and sites in no time.

Additional Resources
Flex Community Help
Flex Community Help brings together active Flex users, Adobe product team members,
authors, and experts to give you the most useful, relevant, and up-to-date information about
Flex. Whether you’re looking for a code sample, an answer to a problem or question about the
software, or want to share a useful tip or recipe, you’ll benefit from Community Help. Search
results will show you not only content from Adobe, but also from the community.

With Adobe Community Help you can:

•	 Fine-tune your search results with filters that let you narrow your results to just
Adobe content, community content, just the ActionScript Language Reference, or
even code samples.

•	 Download core Adobe Help and ActionScript Language Reference content for offline
viewing via the new Community Help AIR application.

•	 See what the community thinks is the best, most valuable content via ratings and
comments.

•	 Share your expertise with others and find out what experts have to say about using your
favorite Adobe products.

If you have installed Flash Builder 4.5 or any Adobe CS5 product, then you already have the
Community Help application. This companion application lets you search and browse Adobe
and community content, plus you can comment and rate any article just like you would in the
browser. However, you can also download Adobe Help and reference content for use offline.
You can also subscribe to new content updates (which can be downloaded automatically) so
that you’ll always have the most up-to-date content for your Adobe product at all times. You
can download the application from http://www.adobe.com/support/chc/index.html.

http://www.adobe.com/support/chc/index.html

ptg

xxiTraining from the Source

Community Participation
Adobe content is updated based on community feedback and contributions: You can contrib-
ute content to Community Help in several ways: add comments to content or forums, includ-
ing links to web content; publish your own content via the Community Publishing System; or
contribute Cookbook Recipes. Find out how to contribute at
www.adobe.com/community/publishing/download.html.

Community Moderation and Rewards
More than 150 community experts moderate comments and reward other users for helpful
contributions. Contributors get points: 5 points for small stuff like finding typos or awkward
wording, up to 200 points for more significant contributions like long tutorials, examples,
cookbook recipes, or Developer Center articles. A user’s cumulative points are posted to
their Adobe profile page and top contributors are called out on leader boards on the Help and
Support pages, Cookbooks, and Forums. Find out more at
www.adobe.com/community/publishing/community_help.html.

Frequently Asked Questions
You might find the following resources helpful for providing additional instruction:

For answers to frequently asked questions about Community Help see
http://community.adobe.com/help/profile/faq.html.

Adobe Flex and Flash Builder Help and Support www.adobe.com/support/flex/ is where
you can find and browse Help and Support content on adobe.com.

Adobe TV http://tv.adobe.com is an online video resource for expert instruction and inspira-
tion about Adobe products, including a How To channel to get you started with your product.

Adobe Developer Connection www.adobe.com/devnet is your source for technical articles,
code samples, and how-to videos that cover Adobe developer products and technologies.

Cookbooks http://cookbooks.adobe.com/home is where you can find and share code recipes
for Flex, ActionScript, AIR, and other developer products.

Resources for educators www.adobe.com/education includes three free curriculums that use
an integrated approach to teaching Adobe software and can be used to prepare for the Adobe
Certified Associate exams.

www.adobe.com/community/publishing/download.html
www.adobe.com/community/publishing/community_help.html
www.adobe.com/support/flex/
www.adobe.com/devnet
www.adobe.com/education
http://community.adobe.com/help/profile/faq.html
http://tv.adobe.com
http://cookbooks.adobe.com/home

ptg

xxii Introduction

Also check out these useful links:

Adobe Forums http://forums.adobe.com lets you tap into peer-to-peer discussions, questions,
and answers on Adobe products.

Adobe Marketplace & Exchange www.adobe.com/cfusion/exchange is a central resource for
finding tools, services, extensions, code samples, and more to supplement and extend your
Adobe products.

Adobe Flex product home page www.adobe.com/products/flex is the official home page from
Adobe for Flex related products.

Adobe Labs http://labs.adobe.com gives you access to early builds of cutting-edge technology,
as well as forums where you can interact with both the Adobe development teams building
that technology and other like-minded members of the community.

Adobe Certification
The Adobe Certified program is designed to help Adobe customers and trainers improve and
promote their product-proficiency skills. There are four levels of certification:

•	 Adobe Certified Associate (ACA)

•	 Adobe Certified Expert (ACE)

•	 Adobe Certified Instructor (ACI)

•	 Adobe Authorized Training Center (AATC)

The Adobe Certified Associate (ACA) credential certifies that individuals have the entry-level
skills to plan, design, build, and maintain effective communications using different forms of
digital media.

The Adobe Certified Expert (ACE) program is a way for expert users to upgrade their creden-
tials. You can use Adobe certification as a catalyst for getting a raise, finding a job, or promot-
ing your expertise.

If you are an ACE-level instructor, the Adobe Certified Instructor (ACI) program takes your
skills to the next level and gives you access to a wide range of Adobe resources.

Adobe Authorized Training Centers offer instructor-led courses and training on Adobe
products, employing only Adobe Certified Instructors. A directory of AATCs is available at
http://partners.adobe.com.

For information on the Adobe Certified program, visit
www.adobe.com/support/certification/main.html.

www.adobe.com/cfusion/exchange
www.adobe.com/products/flex
www.adobe.com/support/certification/main.html
http://forums.adobe.com
http://labs.adobe.com
http://partners.adobe.com

ptg

This page intentionally left blank

ptg

Le
ss

o
n

 1 What You Will Learn
In this lesson, you will:

•	 Explore	alternatives	to	page-based	architecture

•	 See	the	benefits	of	rich	Internet	applications	(RIAs)

•	 Compare	RIA	technologies

Approximate Time
This	lesson	takes	approximately	30	minutes	to	complete.

ptg

3

Lesson 1

Understanding Rich
Internet Applications
Computers have played a role in business environments for more than five decades.
Throughout that time, the roles of client and server have constantly evolved. As businesses
and their employees have become more comfortable delegating responsibilities to comput-
ers, the look, feel, and architecture of computerized business applications have changed to
meet their demands. Today businesses are asking for even faster, lighter, and richer Internet
applications. In this lesson, you will learn about this evolutionary environment and understand
the business requirements that push developers to build rich Internet applications (RIAs).

You will use Flex to build the FlexGrocer application seen here.

ptg

4 Lesson 1: Understanding Rich Internet Applications

The Evolution of Computer Applications

	

In	the	earliest	days	of	computerized	business	applications,	all	the	processing	took	place	on	
mainframes,	with	the	client	having	no	role	other	than	displaying	information	from	the	server	
and	accepting	user	input.	This	setup	was	largely	dictated	by	the	high	cost	of	processing	power.	
Spreading	powerful	clients	throughout	the	enterprise	was	simply	not	affordable,	so	all	pro-
cessing	was	consolidated	and	“dumb	terminals”	provided	the	user	interaction.

As	memory	and	processing	power	became	cheaper,	dumb	terminals	were	replaced	by	micro-
computers	(or	personal	computers).	With	the	added	power,	more	desktop	applications,	such	
as	word	processors	and	spreadsheets,	could	run	as	stand-alone	applications,	so	no	server	was	
necessary.	One	challenge	faced	by	organizations	with	microcomputers	was	a	lack	of	central-
ized	data.	While	the	mainframe	era	had	everything	centralized,	the	age	of	microcomputer-
distributed	data	made	it	more	difficult	to	centralize	business	rules	and	synchronize	data	across	
the	enterprise.

To	help	resolve	this	issue,	several	vendors	released	platforms	that	sought	to	combine	the	
strengths	of	the	microcomputer	with	those	of	the	mainframe,	which	led	to	the	birth	of	client/
server	systems.	These	platforms	afforded	end	users	the	power	and	ease	of	microcomputers	while	
allowing	business	logic	and	data	to	be	stored	in,	and	accessed	from,	a	centralized	location.	The	
new	challenge	introduced	with	client/server	systems	was	distribution.	Anytime	changes	needed	
to	be	made	to	client	applications,	IT	departments	had	to	manually	reinstall	or	upgrade	the	
software	on	every	single	desktop	computer	that	ran	the	software.	Large	companies	found	they	
needed	a	full-time	IT	staff whose	primary	responsibility	was	keeping	the	software	on	the	end	
users’	desktops	current.

With	the	explosive	growth	of	the	Internet	in	the	1990s,	a	new	model	for	business	applications	
became	available.	In	this	model,	a	web	browser	acted	as	a	thin	client	whose	primary	job	was	
to	render	HTML	(Hypertext	Markup	Language)	and	to	send	requests	back	to	an	application	
server	that	dynamically	composed	and	delivered	pages	to	the	client.	This	is	often	referred	to	
as	a	“page-based	architecture.”	This	model	successfully	solved	the	distribution	problem	of	the	
client/server	days;	the	specific	page	of	the	application	was	downloaded	from	the	server	each	
time	an	end	user	needed	it,	so	updates	could	be	made	in	a	single	centralized	place	and	auto-
matically	distributed	to	the	entire	user	base.	This	model	was	and	continues	to	be	successful	for	
many	applications;	however,	it	also	creates	significant	drawbacks	and	limitations.	In	reality,	
these	early	Internet	applications	bore	a	great	resemblance	to	mainframe	applications,	in	that	
all	the	processing	was	centralized	at	the	server,	and	the	client	only	rendered	data	and	captured	
user	feedback.	The	biggest	problems	with	this	model	surrounded	the	user	interface	(UI).	
Many	of	the	conveniences	that	end	users	gained	in	the	client/server	era	were	lost,	and	the	
UI	was	limited	by	the	capabilities	of	HTML.	For	example,	desktop	software	as	well	as	client/

ptg

5The Evolution of Computer Applications

server	applications	frequently	allows	drag-and-drop.	However,	HTML	applications	almost	
never	do;	they	are	prevented	by	the	complexities	of—and	a	lack	of	cross-browser	support	
for—the	DHTML	(Dynamic	HTML)	elements	that	are	required	to	implement	drag-and-drop	
in	a	pure	HTML/DHTML	solution.

In	most	cases,	the	overall	sophistication	of	the	client-side	solutions	that	could	be	built	and	
delivered	was	greatly	reduced.	Although	the	web	has	offered	great	improvements	in	the	ease	
and	speed	of	deploying	applications,	the	capabilities	of	web-based	business	applications	took	
a	big	step	backward	because	browser-based	applications	had	to	adapt	to	the	limitations	of	the	
web	architecture:	HTML	and	the	stateless	nature	of	Hypertext	Transport	Protocol	(HTTP).

Today,	the	demands	on	Internet-based	applications	continue	to	grow	and	are	often	quite	differ-
ent	from	the	demands	of	their	mid-1990s	counterparts.	End	users	and	businesses	are	demand-
ing	more	from	their	investments	in	Internet	technology.	Many	companies	are	looking	toward	
richer	models	for	Internet	applications—models	that	combine	the	media-rich	power	of	the	
traditional	desktop	with	the	ease	of	deployment	and	content-rich	nature	of	web	applications.

As	Internet	applications	begin	to	be	used	for	core	business	functions,	the	maintainability	
of those	applications	becomes	more	crucial.	The	maintainability	of	an	application	is	directly	
related	to	the	application’s	architecture.	Sadly,	many	web	applications	were	built	with	little	
thought	about	the	principles	of	application	architecture	and	are	therefore	difficult	to	maintain	
and	extend.	Today,	it	is	easier	to	build	a	solid	architecture	for	an	application	by	providing	a	
clean	separation	between	the	business,	data	access,	and	presentation	areas.	With	the	introduc-
tion	of	elements	such	as	web	services,	the	concept	of	a	service-oriented	architecture	(SOA)	
has	become	more	feasible	for	web-based	applications.

Rich	Internet	applications	are	the	next	step	in	this	ongoing	evolution.	They	exist	to	meld	the	
usability	and	functionality	of	the	client/server	era	with	the	ease	of	distribution	provided	by	
the	Internet	era.	To	meet	the	demands	of	businesses,	RIAs	should	be	able	to	do	the	following:

•	 Provide	an	efficient,	high-performance	way	to	execute	code,	content,	and	communica-
tions.	In	the	next	section	of	this	lesson,	you’ll	explore	the	limitations	of	the	standard	
HTML-based	applications	and	learn	that	traditional	page-based	architectures	have	a	
number	of	performance-related	challenges.

•	 Provide	powerful	and	extensible	object	models	to	facilitate	interactivity.	Web	browsers	
have	progressed	in	recent	years	in	their	capability	to	support	interactivity	through	the	
Document	Object	Model	(DOM)	via	JavaScript	and	DHTML	(including	HTML	5),	but	
they	still	lack	standardized	cross-platform	and	cross-browser	support.	Although	there	
are	drafts	of	standards	that	may	address	these	limitations	in	the	future,	building	RIAs	
with	these	tools	today	so	that	they	work	on	a	variety	of	browsers	and	operating	systems	
involves	creating	multiple	versions	of	the	same	application.

ptg

6 Lesson 1: Understanding Rich Internet Applications

•	 Enable	using	server-side	objects	via	Web	Services	or	similar	technologies.	The	promise	
of	RIAs	includes	the	capability	to	cleanly	separate	presentation	logic	and	user	interfaces	
from	the	application	logic	housed	on	the	server.

•	 Allow	for	deployment	to	a	variety	of	devices.	Applications	are	no	longer	used	just	
from computers,	they	are	also	accessed	from	phones,	televisions,	tablets,	and	other		
connected	devices.		

•	 Enable	use	of	Internet	applications	when	offline.	As	devices	continue	to	grow	in	popularity,	
one	of	the	serious	limitations	of	Internet	applications	is	the	requirement	that	the	machine	
running	the	application	remains	connected	to	the	Internet.	Although	users	can	be	online	
the	vast	majority	of	the	time,	business	travelers	know	there	are	times	when	an	Internet	
connection	is	not	possible.	A	successful	RIA	should	enable	users	to	be	productive	with	or	
without	an	active	connection.

The Break from Page-Based Architecture
For	experienced	web	developers,	one	of	the	biggest	challenges	in	building	RIAs	is	breaking	
away	from	a	page-based	architecture.	Traditional	web	applications	are	centered	on	the	concept	
of	a	web	page.	Regardless	of	which	server-side	technologies	(if	any)	are	used,	the	flow	goes	
something	like	this:

1. The	user	opens	a	browser	and	requests	a	page	from	a	web	server.

2. The	web	server	receives	the	request.

3. The	web	server	hands	the	request	to	an	application	server	to	dynamically	assemble	the	
web	page,	or	it	retrieves	a	static	page	from	the	file	system.

4. The	web	server	sends	the	page	(dynamic	or	static)	back	to	the	browser.

5. The	browser	draws	the	page	in	place	of	whatever	was	previously	displayed.

Even	when	most	of	the	content	of	the	previous	page	is	identical	to	the	new	page,	the	entire	
new	page	needs	to	be	sent	to	the	browser	and	rendered.	This	is	one	of	the	inefficiencies	of	
traditional	web	applications:	Each	user	interaction	requires	a	new	page	to	be	loaded	in	the	
browser.	One	of	the	key	goals	of	RIAs	is	to	reduce	the	amount	of	extra	data	transmitted	with	
each	request.	Rather	than	download	an	entire	page,	why	not	download	only	the	data	that	has	
changed	and	update	the	page	the	user	is	viewing?	This	is	the	way	standard	desktop	and	client/
server	applications	work.

ptg

7The Advantages of Rich Internet Applications

Although	this	goal	seems	simple	and	is	readily	accepted	by	developers	taking	their	first	plunge	
into	RIA	development,	web	developers	often	bring	a	page-based	mindset	to	RIAs	and	struggle	
to	understand	how	to	face	the	challenges	from	the	page-based	world,	such	as	“maintain-
ing	state.”	For	example,	after	users	log	in,	how	do	you	know	who	they	are	and	what	they	are	
allowed	to	do	as	they	navigate	around	the	application?

Maintaining	state	was	a	challenge	introduced	by	web-based	applications.	HTTP	was	designed	
as	a	stateless	protocol:	Each	request	to	the	server	was	an	atomic	unit	that	knew	nothing	
about	previous	requests.	This	stateless	nature	allowed	for	greater	efficiency	and	redundancy	
because	a	connection	did	not	need	to	be	held	open	between	browser	and	server.	Each	new	
page	request	lasted	only	as	long	as	the	server	spent	retrieving	and	sending	the	page,	allowing	a	
single	server	to	handle	a	much	larger	number	of	simultaneous	requests.

But	the	stateless	nature	of	the	web	added	challenges	for	application	developers.	Usually,	
applications	need	to	remember	information	about	the	user:	login	permissions,	items	added	
to	a	shopping	cart,	and	so	on.	Without	the	capability	to	remember	this	data	from	one	request	
to	the	next,	true	application	development	would	not	be	possible.	To	help	solve	this	problem,	a	
series	of	solutions	were	implemented	revolving	around	a	unique	token	being	sent	back	to	the	
server	with	each	request	(often	as	cookies,	which	are	small	text	files	containing	application-
specific	identifiers	for	an	individual	user)	and	having	the	server	store	the	user’s	information.

Unlike	traditional	web	applications,	RIAs	can	bypass	many	of	these	problems.	Because	the	
application	remains	in	client	RAM	the	entire	time	it’s	used	(instead	of	being	loaded	and	
unloaded	like	a	page-based	model),	variables	can	be	set	once	and	accessed	throughout	the	
application’s	life	cycle.

A	different	approach	to	handling	state	is	just	one	of	many	places	in	which	building	applications	
requires	a	slightly	different	mindset	than	web	application	development.	In	reality,	web-based	
RIAs	bear	more	resemblance	to	client/server	applications	than	they	do	to	web	applications.

The Advantages of Rich Internet Applications
Unlike	the	dot-com	boom	days	of	the	mid-	to	late	1990s,	businesses	are	no	longer	investing	
in	Internet	technologies	simply	because	they	are	“cool.”	To	succeed,	a	new	technology	must	
demonstrate	real	return	on	investment	and	truly	add	value.	RIAs	achieve	this	on	several	levels:	
They	can	reduce	development	costs	and	add	value	throughout	an	organization.

ptg

8 Lesson 1: Understanding Rich Internet Applications

Business Managers
RIAs	make	it	easier	for	end	users	to	work	with	the	software,	which	leads	to	an	increase	in	the	
number	of	successful	transactions.	This	increase	can	be	quantified:	Businesses	can	measure	
things	like	the	productivity	of	employees	using	intranet	applications	or	the	percentage	of	
online	shoppers	who	complete	a	purchase.	More	productive	employees,	making	fewer	mis-
takes,	can	drastically	reduce	labor	costs;	and	growing	online	sales	can	increase	revenue	and	
decrease	opportunities	lost	to	competitors.

IT Organizations
Breaking	away	from	page-based	architectures	reduces	the	load	on	web	servers	and	reduces	
overall	network	traffic.	Rather	than	entire	pages	being	transmitted	over	and	over	again,	an	
entire	application	is	downloaded	once;	then,	the	only	communication	back	and	forth	with	
the	server	is	the	data	to	be	presented	on	the	page.	Easing	the	server	load	and	network	traffic	
can	noticeably	reduce	infrastructure	costs.	RIAs	that	are	developed	using	sound	architectural	
principles	and	best	practices	can	also	greatly	increase	the	maintainability	of	an	application	as	
well	as	greatly	reduce	the	development	time	to	build	the	application.

End Users
A	well-designed	RIA	greatly	reduces	users’	frustration	levels	because	they	no	longer	need	to	
navigate	several	pages	to	find	what	they	need,	nor	do	they	have	to	wait	for	a	new	page	to	load	
before	continuing	to	be	productive.	Additionally,	the	time	users	spend	learning	how	to	use	an	
application	can	be	greatly	reduced.	As	the	success	of	devices	such	as	Apple’s	iPhone	and	Google’s	
Android-based	phones	clearly	demonstrates,	a	rich	user	experience	matters,	and	people	are		
willing	to	pay	for	it.	End	user	experiences	are	one	of	the	greatest	benefits	of	RIAs.	Today,	there	
are	a	number	of	excellent	applications	that	would	not	be	possible	without	the	concepts	of	an	
RIA,	such	as	the	MLB.TV	Media	Player	for	Major	League	Baseball,	which	delivers	real-time	
and	on-demand	games	with	statistics	and	commentary,	or	the	FedEx	Custom	Critical	shipment	
tracking	dashboard	that	tracks	high-value	shipments	as	they	move	toward	delivery.	These	appli-
cations	provide	excellent	examples	of	the	ease	of	use	an	RIA	can	offer	an	end	user.

RIA Technologies
Today,	developers	have	several	technology	choices	when	they	start	building	RIAs.	Among	
the	more	popular	technologies	are	those	based	on	HTML,	such	as	AJAX	(Asynchronous	
JavaScript	and	XML)	and	HTML	5,	and	those	based	on	plug-ins.	Plug-in-based	options	

ptg

9RIA Technologies

execute	code	written	in	languages	such	as	MXML/ActionScript	or	XAML/.NET	in	a	virtual	
machine	(Flash	Player	and	Silverlight,	respectively);	these	are	installed	inside	the	web	browser.

The	current	RIA	landscape	offers	four	platforms:	HTML5/AJAX,	Java,	Microsoft	Silverlight,	and	
Adobe	Flash	Platform.	Each	has	distinct	advantages	and	disadvantages	when	applied	to	an	RIA.	
As	with	many	things	in	life,	the	key	is	discovering	the	right	tool	for	your	circumstance.

HTML 5 and Asynchronous JavaScript and XML (AJAX)
One	of	the	easier	technologies	to	understand	(but	not	necessarily	to	implement)	is	AJAX.	It	
is	based	on	tools	already	familiar	to	web	developers:	HTML,	DHTML,	and	JavaScript.	The	
fundamental	idea	behind	AJAX	is	to	use	JavaScript	to	update	the	page	without	reloading	it.	
A	JavaScript	program	running	in	the	browser	can	insert	new	data	into	the	page	or	change	
its	structure	by	manipulating	the	HTML	DOM	without	reloading	a	new	page.	Updates	may	
involve	new	data	loaded	from	the	server	in	the	background	(using	XML	or	other	formats)	or	
responses	to	user	interaction,	such	as	a	mouse	click	or	hover.

Early	web	applications	used	Java	applets	for	remote	communication.	As	browser	technologies	
developed,	other	means,	such	as	IFrames	(floating	frames	of	HTML	content	that	can	speak	
to	each	other	and	to	servers),	replaced	the	applets.	In	recent	years,	XMLHttpRequest	was	
introduced	into	JavaScript,	facilitating	data	transfers	without	the	need	for	a	new	page	request,	
applet,	or	IFrame.

In	addition	to	the	benefit	of	using	familiar	elements,	AJAX	requires	no	external	plug-in.	It	
works	purely	on	the	browser’s	capability	to	use	JavaScript	and	DHTML.	However,	the	reliance	
on	JavaScript	poses	one	of	the	liabilities	of	AJAX:	It	fails	to	work	if	the	user	disables	JavaScript	
in	the	browser.	Another	issue	with	AJAX	is	that	it	has	varying	levels	of	support	for	DHTML	
and	JavaScript	in	different	browsers	on	different	platforms.	When	the	target	audience	can	be	
controlled	(say,	for	intranet	applications),	AJAX	can	be	written	to	support	a	single	browser	
on	a	particular	platform.	Many	businesses	today	standardize	their	browsers	and	operating	
systems	to	help	solve	this	problem.	However,	when	the	audiences	are	opened	up	(such	as	
those	for	extranet	and	Internet	applications),	AJAX	applications	need	to	be	tested,	and	often	
modified,	to	ensure	that	they	run	identically	in	all	browsers	and	on	all	operating	systems.	
As	the	number	of	browsers	available	for	each	operating	system	continues	to	increase,	this	
becomes	increasingly	challenging.	Combine	that	with	the	requirement	many	businesses	have	
to	support	older,	outdated	versions	of	browsers,	and	ensuring	that	the	code	runs	identically	in	
all	browsers	often	becomes	the	largest	segment	of	application	development.

Finally,	HTML	and	JavaScript	were	not	created	with	applications	in	mind.	This	means	that,	as	a	
project	grows	in	scale,	the	combination	of	code	organization	and	maintenance	can	be	challenging.

ptg

10 Lesson 1: Understanding Rich Internet Applications

AJAX	is	not	likely	to	go	away	anytime	soon,	and	each	day	more	high-profile	AJAX	applica-
tions	(such	as	Google	Maps)	are	launched	to	great	acclaim.	In	fact,	for	certain	classes	of	appli-
cations,	usually	smaller	widgets	and	components,	AJAX	is	clearly	a	better	solution	than	any	of	
its	competitors	due	to	its	small	size	and	relatively	independent	deployment	model.

It	should	be	noted	that	AJAX	is	not	a	programming	model	in	and	of	itself.	It	is	really	a	collec-
tion	of	JavaScript	libraries.	Some	of	these	libraries	include	reusable	components	designed	to	
make	common	tasks	easier.	Because	AJAX	lacks	a	centralized	vendor,	integrating	these		
libraries	introduces	dependencies	on	third	parties,	which	assumes	a	certain	amount	of	risk.

The	latest	version	of	the	HTML	specification—HTML5—has	added	a	number	of	new	features,	
making	it	more	competitive	with	other	RIA	technologies.	It	now	includes	support	for	vector-
based	drawing	and	animations,	video	playback,	and	lots	of	other	new	features	that	were	previ-
ously	possible	only	with	a	browser	plug-in.

Unfortunately,	HTML	is	still	a	draft	proposal.	The	current	HTML	5	specification	available	from	
www.w3.org/TR/html5	warns	that	the	specification	is	still	being	formed,	and	is	not	currently	
stable.	When	it	is	eventually	finalized,	it	will	aim	to	reduce	some	of	the	complexity	and	certainly	
the disadvantages	of	working	in	this	environment.	However,	at	this	time	we	must	take	a	wait-
and-see	approach	to	identifying	how	organizations	producing	browsers	adopt	and	implement	
this	technology.	Decision	makers	should	remember	that	the	previous	four	versions	of	HTML	
were	implemented	very	differently	by	the	various	browser	makers,	and	should	wonder	if	there	
is reason	to	believe	the	fifth	version	will	be	any	different.

Java Virtual Machine
Java—and	the	languages	and	frameworks	built	on	Java—are	the	de	facto	standard	for	most	
enterprise	server	applications.	However,	Java	has	had	a	traditionally	difficult	time	on	the	client	
for	many	reasons,	including	download	size	and	perceived	and	real	difficulties	maintaining	and	
updating	the	Java	runtime.

Although	there	are	certainly	some	success	stories	of	Java	client-side	code,	such	as	the	Eclipse	
project	(the	development	environment	that	Flash	Builder	itself	uses),	Java	is	still	struggling	to	
gain	market	share	in	the	RIA	space.

The	current	offering	from	the	Java	community	in	the	RIA	space	is	called	JavaFX,	a	software	plat-
form	designed	to	run	across	many	JavaFX-enabled	devices.	While	JavaFX	has	been	embraced	
strongly	by	some	of	the	Java	community,	it	has	so	far	received	a	lukewarm	welcome	by	those	not	
already	committed	to	Java	as	their	end-to-end	solution.	The	2.0	release	for	JavaFX	is	scheduled	
for	the	second	half	of	2011;	perhaps	with	that	release	the	promise	of	JavaFX	will	be	fulfilled.

www.w3.org/TR/html5

ptg

11RIA Technologies

Microsoft Silverlight
As	of	the	time	of	writing,	Silverlight	4.0	is	the	currently	released	version	of	the	Microsoft	solu-
tion	for	building	RIAs.	It	is	a	comprehensive	offering	whose	many	pieces	include:

•	 Silverlight—A	web-based	application	framework	that	provides	application	functionality,	
written	in	a	subset	of	.NET.

•	 XAML—Extensible	Application	Markup	Language.	The	XML-based	language	in	which	
you	declare	user	interfaces,	XAML	is	somewhat	analogous	to	Flex’s	MXML	language,	
which	you	will	learn	about	shortly.

•	 Microsoft Expression Studio—A	professional	design	tool	intended	to	build	Windows	
client	applications	as	well	as	web	applications	targeted	for	the	Silverlight	player.	The	suite	
specifically	includes:

•	 Expression	Web—A	visual	HTML	editor.

•	 Expression	Blend—A	visual	application	that	builds	and	edits	applications	for	WPF	
(Windows	Presentation	Foundation)	and	Silverlight	applications.

•	 Expression	Designer—A	graphics	editor.

•	 Expression	Encoder—A	video	encoder.

With	these	tools,	Microsoft	is	promoting	a	workflow	in	which	designers	create	compel-
ling	user	interfaces	with	Expression	(using	WPF	or	Silverlight),	and	then	developers	
implement	the	business	and	data	access	logic.

As	of	the	time	of	writing,	Silverlight	plug-ins	exists	for	most	browsers	on	Windows	and	a	
few	browsers	on	Mac	OS	X.	A	Linux	and	FreeBSD	implementation	written	by	Novell,	named	
Moonlight,	brings	this	content	to	those	operating	systems.	The	current	stable	release	of	
Moonlight	is	2.3,	which	supports	Silverlight	2.0	applications.	There	was	a	recent	release	of	a	
preview	for	Moonlight	4.0,	which	targets	support	for	Silverlight	4.0	applications.

Silverlight	is	beginning	to	offer	a	compelling	platform,	especially	for	.NET	developers	who	can	
use	tools	such	as	Microsoft	Visual	Studio	and	leverage	existing	knowledge	to	quickly	create	
new	applications.	The	only	limitation	that	Microsoft	seems	to	have	at	this	moment	is	the	dis-
tribution	of	the	Silverlight	runtime,	which	is	still	limited	even	on	Windows,	let	alone	Mac	and	
Linux.	According	to	riastats.com,	27	percent	of	all	browsers	do	not	have	a	Silverlight	player	
installed,	and	nearly	three-quarters	of	all	machines	running	Linux	do	not	have	Silverlight.

Silverlight	is	absolutely	worth	watching	over	the	coming	years.

ptg

12 Lesson 1: Understanding Rich Internet Applications

Adobe Flash Platform
One	of	the	leading	competitors	in	the	RIA	space	is	the	Adobe	Flash	Platform.	The	platform	
is	composed	of	a	number	of	tools	and	technologies	designed	to	provide	rich	and	compelling	
user	experiences	while	maximizing	developer	productivity	and	designer	involvement.

While	many	pieces	of	the	Flash	Platform	can	be	included	as	needed	for	different	types	of	
applications,	the	following	sections	include	the	ones	most	relevant	to	this	book.

Adobe Flash Player and AIR
Originally	written	as	a	plug-in	to	run	animations,	Flash	Player	has	evolved	significantly	over	the	
years,	with	each	new	version	adding	capabilities	while	still	maintaining	a	very	small	footprint.	
Over	the	past	decade,	Flash	Player	has	gained	near	ubiquity,	with	some	version	of	it	installed	
on	more	than	99	percent	of	all	desktops.	Since	2002,	Macromedia	(now	part	of	Adobe)	began	
focusing	on	Flash	as	more	than	an	animation	tool.	With	the	Flash	6	release,	Macromedia	began	
providing	more	capabilities	for	building	applications.	It	found	that	the	ubiquity	of	the	player,	
combined	with	the	power	of	the	scripting	language	(ActionScript),	enabled	developers	to	build	
full	browser-based	applications	and	get	around	the	limitations	of	HTML.

By	targeting	Flash	Player,	developers	could	also	break	away	from	browser	and	platform	
incompatibilities.	One	of	the	many	nice	features	of	Flash	Player	was	that	content	and	applica-
tions	developed	for	any	particular	version	of	Flash	Player	would	usually	run	on	any	platform/
browser	that	supported	that	version.	With	very	few	exceptions,	that	remains	true	today.

AIR	(Adobe	Integrated	Runtime)	continues	the	tradition	of	Flash	Player,	but	removes	depen-
dency	on	the	browser.	AIR	allows	content	written	for	Flash	Player,	in	addition	to	HTML	and	
JavaScript,	to	run	as	a	desktop	application,	effectively	eliminating	the	need	for	ActionScript	
developers	to	learn	additional	languages	should	they	wish	to	deploy	their	applications	as	more	
traditional	applications	or	to	non-desktop	devices.	Current	versions	of	the	AIR	runtime	are	
available	for	Windows,	MacOS,	Linux,	and	the	Android	Operating	Systems.	Support	for	other	
Mobile	operating	systems	such	as	iOS,	BlackBerry	and	Windows	Phone	7	has	been	publicly	
discussed	as	a	near	future	possibility.

Flash Professional
An	industry-leading	tool	for	creating	engaging	experiences,	Flash	is	familiar	to	most	design-
ers	worldwide.	It	provides	a	rich	environment	to	create	graphic	assets	as	well	as	animations	
and	motion.

Flash	Professional	can	be	used	alone	to	create	RIAs;	however,	the	environment	is	intended	
for	designers	creating	interactive	content	and	may	seem	unfamiliar	to	developers	who	wish	
to	build	RIAs	using	a	more	traditional	development	methodology.	Originally,	this	kept	many	

ptg

13RIA Technologies

serious	developers	from	successfully	building	applications	on	the	Flash	Platform,	leading	to	
the	introduction	of	the	Flex	framework.

Flex
Sensing	the	need	for	RIA	tools	that	were	more	developer-friendly,	Macromedia	created	a	
language	and	a	compiler	that	enabled	developers	to	work	with	other,	familiar	languages	from	
which	the	compiler	could	create	applications	to	run	in	Flash	Player.	In	2004,	Macromedia	
released	Flex	1.0	(followed	by	Flex	1.5	in	2005).	Adobe	continued	this	cycle,	releasing	Flex	2.0,	
Flex	3.0,	Flex	4,	and	Flex	4.5	in	2006,	2008,	2010,	and	2011,	respectively.	Functionally,	Flex	
applications	are	similar	to	AJAX	applications,	in	that	both	are	capable	of	dynamic	updates	to	
the	user	interface	and	both	include	the	ability	to	send	and	load	data	in	the	background.

Flex	goes	further	by	providing	a	richer	set	of	controls	and	data	visualization	components	
along	with	the	next	generation	of	developer	tools	and	services	to	enable	developers	every-
where	to	build	and	deploy	RIAs	on	the	Flash	Platform.

Flex	builds	on	several	key	technologies	and	introduces	several	new	pieces:

•	 ActionScript 3.0—A	powerful	object-oriented	programming	language	that	advances	
the	capabilities	of	the	Flash	Platform.	ActionScript	3.0	is	designed	to	create	a	language	
ideally	suited	for	building	RIAs	rapidly.	Although	earlier	versions	of	ActionScript	offered	
the	power	and	flexibility	required	for	creating	engaging	online	experiences,	ActionScript	
3.0	advances	the	language,	improving	performance	and	ease	of	development	to	facili-
tate	even	the	most	complex	applications	with	large	datasets	and	fully	object-oriented,	
reusable code.

•	 MXML—A	declarative	XML	syntax	that	allows	for	the	simplified	creation	and	mainte-
nance	of	user	interfaces.	MXML	provides	an	easy	way	to	visualize	and	implement	the	
hierarchical	nature	of	a	complex	UI	without	the	need	to	directly	write	and	maintain	
ActionScript	code.	MXML	is	automatically	compiled	to	ActionScript	during	the	process	
of	building	a	Flex	application.

•	 Flash Player 10.x—Building	on	the	success	of	Flash	Player	9,	this	next	generation	of	Flash	
Player	focuses	on	improving	script	execution	and	driving	Flash	Player	to	additional	smaller	
devices.	To	facilitate	this	improvement,	FP10	introduces	optimizations	to	the	ActionScript	
Virtual	Machine	(AVM),	known	as	AVM2,	a	virtual	machine	that	understands	how	to	
execute	ActionScript	3.0	code	regardless	of	the	device	displaying	the	content	(for	example,	
a	mobile	phone,	a	TV,	or	a	desktop	computer).	Major	improvements	in	runtime-error	
reporting,	speed,	memory	footprints,	and	improved	use	of	hardware	acceleration	are	
allowing	developers	for	this	platform	to	target	a	variety	of	devices	well	beyond	the	desktop/
web	browser.	Unlike	applications	built	with	JavaScript,	Flash	Player	is	capable	of	using	a	

ptg

14 Lesson 1: Understanding Rich Internet Applications

just-in-time	(JIT)	compilation	process	that	enables	the	code	to	run	faster	and	consume	
less	memory,	like	a	native	application	installed	on	your	computer.	More	recent	releases	of	
the	Flash	Player	have	included	support	for	high	definition	video,	improved	hardware	(and	
GPU)	acceleration,	multi-monitor	full	screen	support,	and	more.

•	 Flex SDK—Using	the	foundation	provided	by	FP10	and	ActionScript	3.0,	the	Flex	
framework	adds	an	extensive	class	library	to	enable	developers	to	easily	use	the	best	
practices	for	building	successful	RIAs.	Developers	can	get	access	to	the	Flex	framework	
through	Flash	Builder	or	the	free	Flex	SDK,	which	includes	a	command-line	compiler	
and	debugger,	enabling	developers	to	use	any	editor	they	prefer	and	still	be	able	to	access	
the	compiler	or	debugger	directly.

•	 Flash Builder 4.5—Flash	Builder	4.5	is	the	second	release	of	the	rebranded	IDE	(inte-
grated	development	environment)	built	on	the	success	of	Flex	Builder	2	and	3.	Providing	
developers	with	an	environment	specifically	designed	for	building	RIAs,	Flash	Builder 4.5	
takes	the	IDE	to	the	next	level.	Built	on	top	of	the	industry-standard	open	source	Eclipse	
project,	Flash	Builder	4.5	provides	an	excellent	coding	and	debugging	environment	and	
promotes	best	practices	in	coding	and	application	development.	Drawing	on	the	ben-
efits	of	the	Eclipse	platform,	it	provides	a	rich	set	of	extensibility	capabilities,	so	cus-
tomizations	can	easily	be	written	to	extend	the	IDE	to	meet	specific	developers’	needs	
or	preferences.	Additions	to	Flash	Builder	4.5	include	custom	code	templates,	support	
for	development	of	mobile	and	multi-screen	applications,	improved	designer/developer	
workflow,	and	much	more.

Flash Catalyst
There	is	also	a	new	version	of	Flash	Catalyst—a	tool	focused	on	designers	creating	RIAs.	Flash	
Catalyst	allows	designers	to	build	applications	by	selecting	portions	of	preexisting	artwork	
created	in	Adobe	Photoshop,	Illustrator,	or	Fireworks	and	then	indicating	how	that	artwork	
relates	to	the	application	(scrollbar,	button,	and	so	on).

Using	this	tool,	a	designer	can	create	pixel-perfect	application	shells	complete	with	behaviors,	
transitions,	and	even	data	placeholders	that	are	ready	for	integration	and	implementation	
by	a	developer	using	Flash	Builder	4.5.	The	combination	of	these	tools	represents	a	powerful	
cross-platform	designer-developer	workflow	built	on	the	industry-standard	graphics	editing	
capabilities	offered	by	the	Adobe	Creative	Suite.

The	latest	version	of	Flash	Catalyst	allows	for	custom,	skinnable	components,	the	ability	for	
developers	to	“protect”	code,	so	design	changes	don’t	accidently	break	functionality,	and	
much more.

ptg

15What You Have Learned

Flash Platform Server Technologies
Although	beyond	the	scope	of	this	book,	the	Flash	Platform	extends	further	to	the	server,	
providing	services	and	functionality	that	RIAs	can	consume.	Available	servers	and	services	
range	from	workflow	engines	to	data	persistence	and	from	messaging	to	video	publishing	
and delivery.

Although	you	don’t	need	any	of	these	components	to	build	rich	experiences	and	applications,	
they	do	provide	amazing	capabilities	that	can	extend	your	applications’	reach	and	use.

What You Have Learned
In this lesson, you have:

•	 Explored	the	evolution	of	computer	applications	(pages	4–6)

•	 Explored	alternatives	to	page-based	architecture	(pages	6–7)

•	 Explored	the	benefits	of	RIAs	(pages	7–8)

•	 Compared	RIA	technologies	(pages	8–15)

ptg

Le
ss

o
n

 2 What You Will Learn
In this lesson, you will:

•	 Create	a	Flash	Builder	project

•	 Understand	the	parts	of	the	Flash	Builder	workbench:	editors,	views,	
and perspectives

•	 Create,	save,	and	run	application	files

•	 Use	some	of	the	features	in	Flash	Builder	that	make	application	development	
faster	and	easier,	such	as	code	hinting	and	local	history

•	 Work	in	both	Source	view	and	Design	view

•	 Use	various	views,	such	as	the	Package	Explorer

Approximate Time
This	lesson	takes	approximately	1	hour	and	30	minutes	to	complete.

ptg

17

Lesson 2

Getting Started
You’re ready to start your adventure of learning Adobe Flex, so the first thing to do is become
familiar with the environment in which you will be developing your applications. This environ-
ment is Adobe Flash Builder, which is based on the Eclipse platform. The Eclipse platform is an
open source integrated development environment (IDE) that can be extended. Flash Builder
has extended and customized Eclipse for building Flex applications.

In this lesson, you’ll become familiar with Flash Builder by building the main application files
of the FlexGrocer application that you’ll be working on throughout this book. While working
on the FlexGrocer application, you’ll learn about the Flash Builder interface and how to create,
run, and save application files. You’ll also discover some of the many features Flash Builder
offers to make application development easier.

Creating a new project in Flash Builder

ptg

18 Lesson 2: Getting Started

Getting Started with Flex Application Development
Before	you	can	build	a	building,	you	must	lay	the	foundation.	This	lesson	is	the	foundation	
for	further	Flex	development.	You	will	finish	this	lesson	knowing	how	to	manipulate	Flash	
Builder	in	ways	that	make	the	process	of	Flex	development	easier	and	faster.	Along	the	way,	
you	will	create	the	main	application	file	that	defines	the	FlexGrocer	application.

Part	of	the	study	of	any	new	body	of	knowledge	is	learning	a	basic	vocabulary,	and	in	this	lesson	
you	will	learn	the	basic	vocabulary	of	both	Flex	development	and	Flash	Builder.	You’ll	under-
stand	terms	such	as	view,	perspective,	and	editor	in	relationship	to	the	Flash	Builder	workbench.	
Also,	you’ll	understand	the	terms	describing	the	processes	that	transform	the	text	you	enter	in	
Flash	Builder	into	the	type	of	file	you	can	view	with	your	browser	using	Flash	Player.

Creating a Project and an MXML Application
In	this	first	exercise,	you	will	create	a	Flex	application.	To	do	so,	you	must	first	create	a	project	
in	Flash	Builder.	A	project	is	nothing	more	than	a	collection	of	files	and	folders	that	help	
you	organize	your	work.	All	the	files	you	create	for	the	FlexGrocer	application	will	be	in	this	
project.	You’ll	also	see	that	you	have	two	choices	when	working	with	an	application	file:	You	
can	work	in	either	Source	view	or	Design	view.	In	most	cases,	the	view	you	choose	will	be	a	
personal	preference,	but	at	times	some	functionality	will	be	available	in	only	one	view.

Also	in	this	exercise,	you	will	run	the	Flex	application.	You’ll	discover	how	the	code	you	write	
is	turned	into	a	SWF	file	that	is	viewed	in	a	browser.

1 Start	Flash	Builder:	On	Windows	choose	Start	>	Programs	>	Adobe	>	Adobe	Flash	
Builder	4.5;	on	Mac	OS	open	the	Flash	Builder	application	from	the	Adobe	Flash	Builder	
4.5	folder	in	your	Applications	directory.

This	is	most	likely	the	way	you	will	start	Flash	Builder.	You	may	have	already	installed	
Eclipse	on	your	computer	and	added	the	Flex	functionality	using	the	plug-in	configura-
tion.	In	that	case,	you	need	to	open	Eclipse	as	you	have	before,	and	switch	to	the	Flash	
perspective.

2 Choose	File	>	New	>	Flex	Project.	For	the	Project	name,	enter	FlexGrocer.	Deselect	the	
“Use	default	location”	check	box,	and	for	the	Folder	location	enter	driveroot:/flex4tfs/
FlexGrocer.	

ptg

19Creating a Project and an MXML Application

Note: Driveroot is a placeholder for the name of the root drive of the operating system you are

using, either Windows or Mac. Replace driveroot with the appropriate path. Also, note that the

directory name is case sensitive.

The	project	name	should	reflect	the	files	contained	in	the	project.	As	you	continue	your	
work	with	Flash	Builder,	you’ll	soon	have	many	projects,	and	the	project	names	will	help	
remind	you	which	files	are	in	each	project.

Do	not	accept	the	default	location	entry.	The	default	uses	your	Documents	directory	and	
places	files	very	deep	in	the	directory	structure.	For	simplicity’s	sake	in	this	project,	you	
are	putting	your	work	files	right	on	the	root	drive.

Flash	Builder	lets	you	choose	whether	to	use	the	most	recent	compiler	(the	default	
choice)	or	one	from	a	previous	version,	by	selecting	the	appropriate	“Flex	SDK	version”	
radio	button.	For	this	application,	you	should	use	the	Flex	4.5	SDK	and	compiler.

3 Click	Next.

ptg

20 Lesson 2: Getting Started

4 Leave	the	Server	technology	set	to	None/Other	and	the	output	folder	for	the	compiled	
Flex	application	as	bin-debug.	At	this	time,	there	is	no	need	to	change	this	default.	
Click Next.

5 Across	the	top	of	the	dialog	box,	there	are	three	radio	buttons	next	to	a	label	named	
Component	set.	Choose	the	“Spark	only”	option.

Flash	Builder	4.5	allows	you	to	work	with	either	an	older	style	set	of	components	named	
mx,	the	newer	style	components	named	spark,	or	a	hybrid	of	the	two.	In	this	book,	you	
will	work	with	the	latest	components	from	the	spark	set	only.	The	mx	components	are	
described	thoroughly	in	a	variety	of	materials	including	the	“Flex	3	Training	from	the	
Source”	series.

ptg

21Creating a Project and an MXML Application

6 Ensure	that	FlexGrocer.mxml	is	set	as	the	main	application	filename.

By	default,	Flash	Builder	gives	the	main	application	file	the	same	name	as	your	project	
name.	Flash	Builder	automatically	creates	the	main	application	file	for	you	and	includes	
the	basic	structure	of	a	Flex	application	file.

Note: MXML is a case-sensitive language. Be sure to follow the case of the filenames in tags

shown in this book.

7 Click	Finish	and	see	the	project	and	application	file	you	created.

Here	you	see	your	first	Flex	application.	Currently	the	application	is	displayed	in	Source	
view.	In	later	lessons,	you	will	also	look	at	this	application	in	Design	view.

ptg

22 Lesson 2: Getting Started

Editor

Package
Explorer

Source and
Design Buttons

Run Button

Open Perspective
Button

Problems View

The	default	application	file	contains	some	basic	elements.	The	first	line	of	code

<?xml version=”1.0” encoding=”utf-8”?>

is	an	XML	document-type	declaration.	Because	MXML	is	an	XML	standard	language,	the	
document	declaration	should	be	included	in	the	code.

Starting	with	the	second	line	of	code,

<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 minWidth=”955” minHeight=”600”>

you	will	see	definitions	for	a	Flex	main	application	and	their	associated	namespaces.	A	mini-
mum	height	and	width	for	the	application	are	also	defined.	The	<s:Application>	tag	repre-
sents	the	outside	container,	the	holder	of	all	the	content	in	the	Flex	application.	You	can	have	
only	one	<s:Application>	tag	per	Flex	application.

ptg

23Creating a Project and an MXML Application

Inside	the	<s:Application>	tag	are	two	attribute/value	pairs	that	refer	to	URLs,	such	as	
xmlns:fx=”http://ns.adobe.com/mxml/2009”.	These	declarations	are	XML	namespaces:	They	
say	where	the	definitions	for	the	classes	you	will	use	in	your	application	are	and	how	you	refer	
to	those	classes.	In	Flex	4.5	applications,	it	is	common	to	have	the	two	namespaces	provided,	
as	you	are	likely	to	reference	three	particular	libraries	of	classes:	Flex	language	tags,	repre-
sented	by	the	fx	namespace	and	Flex	Spark	components,	represented	by	the	s	namespace.	

The	Flex	language	tags	represent	elements	that	are	needed	for	Flex	4.5	applications,	but	these	
elements	are	not	actually	classes	within	the	Flex	4.5	SDK.	You	will	find	the	<fx:Declarations>	
tag	one	of	the	more	frequently	encountered	language	tags.	Declarations	will	be	explained	in	
more	detail	when	events	are	discussed.	The	Spark	classes	represent	the	set	of	components,	
Buttons,	Checkboxes,	and	so	on	used	in	Flex	4.5.

Note: In XML nomenclature, the part of the attribute between the colon (:) and the equal sign

(=) is known as the prefix, and the quoted string after the equal sign is known as the Universal

Resource Identifier (URI). so, given xmlns:s=”library://ns.adobe.com/flex/spark”, s is the

prefix, and library://ns.adobe.com/flex/spark is a URI.

In	a	configuration	file	called	flex-config.xml,	an	association	is	made	between	these	URIs	and	
an	associated	manifest	file.	Each	manifest	file	contains	a	delineation	of	all	the	legal	tags	that	
can	be	used	with	that	particular	prefix	and	of	the	location	of	the	class	to	which	each	tag	will	
refer.	In	a	standard	installation	of	Flash	Builder	on	a	PC,	the	manifest	files	are	located	in	
installationdirectory/Adobe/Adobe	Flash	Builder	4.5/sdks/4.5.0/frameworks.	On	a	Mac,	the	
manifest	files	are	found	at	installationdirectory/Adobe	Flash	Builder	4.5/sdks/4.5.0/frame-
works.	The	fx	namespace	is	pointing	to	the	mxml-2009-manifest.xml,	the	s	namespace	points	
to	the	spark-manifest.xml,	and	the	mx	namespace	points	at	the	mx-manifest.xml.

Note: If you look in the manifest file for the fx namespace (mxml-2009-manifest.xml),

you’ll notice the conspicuous absence of Declarations as one of the listed classes. In fact

fx:Declarations is not a reference to a class, so much as it is a compiler directive, instructing

the compiler how to associate metadata with the Actionscript class created from the MXML. It’s

more important to note that the other two manifest files do indeed contain references to all the

classes you’ll make use of when using their namespaces.

ptg

24 Lesson 2: Getting Started

Part	of	the	spark-manifest.xml	file	is	shown	here.

Finally,	a	minimum	height	and	width	are	defined	for	the	application.	By	specifying	these,	
Flash	Player	will	know	whether	the	browser	that	the	application	is	running	in	is	large	enough	
to	fit	the	application.	If	the	browser	is	not	large	enough,	scroll	bars	need	to	be	added	to	allow	
the	user	to	access	the	rest	of	the	application.

Understanding the Flash Builder Workbench
Before	you	do	any	more	work	on	your	application	file,	you	need	to	become	more	familiar	with	
the	Flash	Builder	workbench,	which	is	everything	you	see	in	Flash	Builder.	In	this	exercise	
you’ll	learn	what	views,	editors,	and	perspectives	mean	in	the	workbench.

1 Close	the	current	editor	by	clicking	the	X	on	the	right	side	of	the	FlexGrocer.mxml	editor	
tab.	All	editors	have	a	tab	at	the	top	left	of	the	editor	area.

Whenever	you	open	a	file,	it	is	opened	in	the	workbench	in	what	is	called	an	editor.	You	
just	closed	the	editor	containing	the	FlexGrocer.mxml	file.	You	can	have	many	editors	
open	at	once	in	the	workbench,	and	each	will	contain	a	file	with	code	in	it.

2 Open	the	editor	containing	the	FlexGrocer.mxml	file	from	the	Package	Explorer	by	
double-clicking	the	filename.

You	can	also	open	the	file	by	right-clicking	the	filename	and	choosing	Open.

ptg

25Understanding the Flash Builder Workbench

3 Make	the	editor	expand	in	width	and	height	by	double-clicking	the	editor	tab.

Sometimes	you’ll	want	to	see	as	much	of	your	code	as	possible,	especially	because	Flash	
Builder	does	not	wrap	text.	Simply	double-clicking,	the	editor	tab	expands	(maximizes)	
the	editor	in	both	width	and	height,	showing	as	much	code	as	possible.

4 Restore	the	editor	to	its	previous	size	by	double-clicking	the	tab	again.

As	you	see,	you	can	easily	switch	between	expanded	and	non-expanded	editors.

5 Click	the	Design	view	button	in	the	editor	to	view	the	application	in	Design	view.	Your	
application	now	looks	more	like	it	will	look	to	an	end	user.

The	workbench	looks	radically	different	in	Design	view,	which	allows	you	to	drag	user	
interface	controls	into	the	application.	You	will	also	be	able	to	set	property	values	in	
Design	view.	

6 Return	to	Source	view	by	clicking	the	Source	view	button	in	the	editor.

Most	frequently,	you	will	be	using	Source	view	in	this	book,	but	some	tasks	are	better	
performed	in	Design	view.

7 Close	the	Package	Explorer	by	clicking	the	X	on	the	Package	Explorer	tab.	Just	like	editors,	
views	have	tabs	at	their	top	left.

In	Flash	Builder,	the	sections	displaying	content	are	called	views.

8 Reopen	the	Package	Explorer	by	choosing	Window	>	Show	View	>	Package	Explorer.

After	you	close	a	view,	you	can	reopen	it	from	the	Window	menu.	There	are	many	views;	in	
fact,	if	you	choose	Window	>	Show	View	>	Other,	you’ll	see	a	window	listing	all	the	views.

ptg

26 Lesson 2: Getting Started

9 Click	the	Open	Perspective	button	just	above	the	top	right	of	the	editor,	and	choose	the	
Flash	Debug	perspective.

A	perspective	is	nothing	more	than	a	layout	of	views	that	you	want	to	use	repeatedly.	Flash	
Builder	comes	with	built-in	Flash	and	Flash	Debug	perspectives.	You	can	adjust	the	lay-
out	of	views	in	Flash	Builder	in	any	way	that	works	best	for	you,	and	save	it	as	a	perspec-
tive	by	choosing	Window	>	Save	Perspective	As.	Once	it’s	saved,	you	can	switch	to	that	
perspective	from	the	Open	Perspective	menu	at	any	time.

10 Return	to	the	Flash	perspective	by	clicking	the	Flash	perspective	button.

As	you	can	see,	it’s	easy	to	switch	between	perspectives.	Later	in	the	lesson,	you’ll	use	the	
Debug	perspective	and	discover	its	many	helpful	options.

ptg

27Understanding the Flash Builder Workbench

11 If	they	are	not	showing,	turn	on	code	line	numbers	by	choosing	Window	>	Preferences	
(Flash	Builder	>	Preferences	on	Mac).	In	the	dialog	box,	click	the	disclosure	triangles	
to	the	right	of	General	and	then	click	Editors	to	expand	the	menus.	Finally,	click	Text	
Editors	and	select	the	check	box	for	“Show	line	numbers.”

Line	numbers	are	useful	because	Flash	Builder	reports	errors	using	line	numbers.

 tip: You can also turn on line numbers by right-clicking in the marker bar of the editor and

choosing show Line numbers. The marker bar is the area just to the left of where the code is

displayed in the editor.

ptg

28 Lesson 2: Getting Started

Running Your Application
In	the	first	exercise,	you	created	your	project	and	an	application	page.	Before	you	had	a	chance	
to	run	the	application,	you	took	a	tour	of	the	Flash	Builder	workbench.	You	will	now	get	back	
to	your	application.	You	will	run	it,	add	code	to	it,	and	learn	the	basics	of	file	manipulation.

1 Open	the	Project	menu.	Be	sure	the	Build	Automatically	option	has	a	checkmark	in	
front of	it.

When	Build	Automatically	is	selected,	Flex	continuously	checks	for	saved	files,	compiles	
them	upon	saving,	and	prepares	them	to	run.	Even	before	you	run	your	application,		
syntax	errors	are	flagged,	which	does	not	occur	if	Build	Automatically	is	not	selected.

 tip: As your applications grow more complex, you might find that having the Build

Automatically setting selected takes too much time, in which case you should deselect the

setting. The build will happen only when you run your application or you specifically choose

Build Project from the menu.

2 Run	your	application	by	clicking	the	Run	button.	You	will	not	see	anything	in	the	browser	
window	when	it	opens.

You	have	now	run	your	first	Flex	application,	and	it	wasn’t	that	interesting.	In	this	case,	
the	skeleton	application	contained	no	tags	to	display	anything	in	the	browser.	But	you	
did	see	the	application	run,	and	you	saw	the	default	browser	open	and	display	the	results,	
uninteresting	as	it	was.

ptg

29Running Your Application

Note: What exactly happened when you clicked the Run button? A number of processes

occurred. First, the MXML tags in the application file were translated to Actionscript.

Actionscript was then used to generate a sWF file, which is the format Flash Player understands.

The sWF file was then sent to Flash Player in the browser.

Client with Flash Player FlexGrocer.swf

MXML

ActionScript

SWF

3 Close	the	browser	and	return	to	Flash	Builder.

4 Add	an	<s:Label>	tag	by	placing	the	cursor	after	the	closing	</fx:Declarations>	tag;	
press	Enter/Return;	enter	the	less-than	sign	(<).	You	will	see	a	long	list	of	tags.	Press	the	
letter	L	(upper-	or	lowercase)	and	select	the	Label	tag	by	highlighting	it	and	pressing	
Enter	or	by	double-clicking	it.

This	is	an	example	of	code	hinting,	which	is	a	very	helpful	feature	of	Flash	Builder	of	
which	you	should	take	advantage.

5 Press	the	spacebar,	and	you’ll	see	a	list	of	options,	including	properties	and	methods,	
which	you	can	use	with	the	<s:Label>	tag.	Press	the	letter	t	and	then	the	letter	e;	then	
select	the	text	property.

ptg

30 Lesson 2: Getting Started

Code	hinting	shows	only	the	elements	that	relate	to	the	selected	tag.	So,	seeing	the	text	
element	appear	in	this	list	indicates	that	it	is	a	valid	attribute	for	this	tag.	Not	only	can	you	
select	tags	via	code	hinting,	but	you	can	also	choose	attributes	that	belong	to	those	tags.

Note: In these two instances of code hinting, both the desired options happen to be at the

top of the list. If the options were not at the top, you would select the desired option either by

pressing the Down Arrow key and then pressing enter or by double-clicking the selection.

6 Enter	My First Flex Application	for	the	value	of	the	text	property.	Be	sure	that	the	text	is	
in	the	quotes	supplied	by	code	hinting.

Given	that	MXML	is	an	XML	language,	it	is	required	to	follow	all	XML	rules	and	stan-
dards.	Proper	XML	formatting	dictates	that	the	value	of	any	attribute	be	placed	in	quotes.

7 End	the	tag	with	a	slash	(/)	and	a	greater-than	sign	(>).

Check	to	be	sure	that	your	code	appears	as	follows:
<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 minWidth=”955” minHeight=”600”>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
 <s:Label text=”My First Flex Application”/>
</s:Application>

ptg

31Running Your Application

Note: The code in this example places the minWidth and minHeight attribute/value pairs of

the Application tag on a separate indented line. The entire Application tag could have been on

one line; whether or not to add line breaks to code is a matter of personal preference. some

developers like the look of placing each attribute/value pair on a separate indented line.

Proper	XML	syntax	gives	you	two	ways	to	terminate	a	tag.	You	just	used	one	of	them—	
to	place	a	slash	at	the	end	of	the	tag,	which	is	called	a	self-closing	tag.	The	other	option	
is to	use	the	slash	in	front	of	the	tag	name,	which	is	completely	typed	out	again,	as	follows:
<s:Label text=”My First Flex Application”>
</s:Label>

You	usually	use	the	self-closing	tag,	unless	there	is	a	reason	to	place	something	
inside	a	tag	block.	For	example,	if	you	want	to	place	the	<s:Label/>	tag	inside	the	
<s:Application>	tag	block,	you	have	to	terminate	the	</s:Application>	tag	on	a	separate	
line.

8 Save	the	file	and	run	it.	The	text	“My	First	Flex	Application”	appears	in	your	browser.

Finally,	you	get	to	see	something	displayed	in	your	new	Flex	application.

The	<s:Application>	tag	comes	with	a	default	background	color	of	white	(#FFFFFF).	You	will	
learn	more	about	adjusting	styles	in	Lesson	16,	“Customizing	a	Flex	Application	with	Styles.”

9 Change	the	value	of	the	text	property	from	“My	First	Flex	Application”	to	New Text.	
Save	the	file	and	run	it.

The	next	step	shows	another	helpful	feature	of	Flash	Builder,	but	to	see	this	feature	you	
must	have	at	least	two	saved	versions	of	the	file,	which	is	why	you	changed	the	text	and	
saved	another	version	of	the	file.

10 Right-click	in	the	editor,	and	from	the	contextual	menu	choose	Replace	With	>	Local	History.

A	large	dialog	box	appears.

11 Compare	the	current	version	of	your	file,	which	is	located	on	the	left	side	of	the	dialog	
box,	to	the	older	version	on	the	right.	Select	the	first	item	in	the	list.	A	history	of	the	last	
50	versions	of	your	file	is	kept	at	the	top	of	the	dialog	box.	Click	Replace	to	bring	back	
your	original	text,	which	reads	“My	First	Flex	Application”.

ptg

32 Lesson 2: Getting Started

You	will	find	this	feature	very	helpful	when	you	want	to	roll	back	to	a	previous	version	
of code.

 tip: You can alter the settings for Local History by choosing Window > Preferences. Then from

the dialog box, choose General > Workspace and click Local History.

12 Purposefully	introduce	an	error	into	the	page	by	removing	the	ending	l	from	Label,	
changing	the	<s:Label>	tag	to	<s:Labe>,	and	save	the	file.	This	will	cause	an	error,	
because	the	compiler	can	find	the	Label	class	in	the	s	namespace,	but	not	a	Labe	class.

After	you	save	the	file,	the	compiler	checks	your	code.	The	error	is	found	and	reported	in	
two	ways.	First,	a	small	white	X	in	a	red	circle	will	appear	next	to	the	line	of	code	in	which	
the	coding	mistake	is	located.	Also,	a	description	of	the	error	appears	in	the	Problems	view.

 tip: You can place the pointer over the Red circle by the line number to see the complete

description. You can also double-click the error listed in the Problems view, and the pointer will

then appear at the appropriate line of code in the editor.

ptg

33Running Your Application

13 Run	the	application.	You’ll	see	the	following	warning,	telling	you	there	are	errors	in	your	
project	and	prompting	you	to	confirm	that	the	launch	should	continue.	In	this	case,	
click Cancel.

Because	of	the	compile-time	error,	Flash	Builder	will	not	be	able	to	compile	the	applica-
tion	with	the	latest	change.	If	you	click	Proceed	in	this	dialog	box,	Flash	Builder	will	run	
the	last	successfully	compiled	version	of	your	application.

14 Correct	the	error,	save	the	file,	and	run	it	to	be	sure	that	everything	is	again	working	
properly.	Close	the	file.

ptg

34 Lesson 2: Getting Started

Exploring the Flash Builder Debugger
As	you	build	applications,	things	will	sometimes	not	work	properly	or	will	perhaps	throw	
errors.	To	help	you	understand	what	is	causing	these	problems,	Flash	Builder	has	an	interac-
tive	debugger.	The	debugger	lets	you	set	breakpoints	in	the	code	and	inspect	various	property	
and	variable	values	at	the	point	where	the	execution	of	the	code	stops.	You	can	also	use	the	
debugger	to	step	through	the	code,	so	you	can	see	how	those	values	change	over	time.

 importaNt: If you haven’t done so already, please follow the instruction in the appendix on

Installing Lesson Files.

1 From	the	main	menu	of	Flash	Builder,	choose	File	>	Import	>	Flash	Builder	>	Flash	Builder	
Project.	This	project	file	contains	a	small	application	with	a	button,	a	label,	and	ActionScript	
code	that	will	add	two	numbers	and	display	the	results.	Flash	Builder	has	the	ability	to	
import	pre-existing	projects	packaged	in	the	FXP	format	as	a	stand-alone	file.

2 In	the	Import	Flash	Builder	Project	dialog	box	that	opens,	click	the	first	Browse	button	
on	the	right	of	the	screen.	Navigate	to	the	flex4tfs/Lesson02/independent	directory,	and	
select	the	DebugTest.fxp	file.	Set	the	location	for	“Extract	new	project(s)	to”	as	driveroot:\
flex4tfs\DebugTest.

ptg

35Exploring the Flash Builder Debugger

If	the	DebugTest	directory	does	not	exist	(and	it	probably	doesn’t,	unless	you	have	done	
these	steps	before),	it	will	be	created	for	you.	If	it	does	exist,	and	you	want	to	replace	the	
previous	version,	be	sure	to	select	the	“Overwrite	existing	project”	radio	button	in	the	
“Import	method”	section	of	the	dialog	box.	If	you	are	overwriting	an	existing	version,	you	
will	be	prompted	to	confirm	that	the	previous	version	is	to	be	replaced.	At	this	prompt,	
you	will	need	to	click	OK	to	continue.

3 Click	Finish.

4 In	Flash	Builder,	notice	that	a	new	DebugTest	project	has	been	created.	Expand	the	src	
and	default	package	nodes	to	find	the	DebugTest.mxml	file.	Open	DebugTest.mxml	by	
double-clicking	it.

5 Run	the	application	and	click	the	Click	Me	button.	You	should	see	a	line	of	text	appear	
next	to	the	button,	reading	“2	+	4	=	6”.

When	you	clicked	the	button,	the	event	handler	defined	on	line	26	was	executed,	calling	
the	button_clickHandler()	method.	This	method	defines	two	integer	variables	(numTwo	
and	numFour)	and	passes	them	to	a	function	that	adds	the	integers	together	and	then	
displays	the	results	in	a	label.	The	ActionScript	syntax,	event	handlers,	and	datatyping	
variables	will	all	be	covered	in	detail	in	the	next	few	chapters.

6 In	Source	view,	double-click	the	line	number	24	to	set	a	breakpoint	on	that	line.	You	need	
to	double-click	the	number	itself,	not	merely	that	line	of	code.	When	the	breakpoint	is	
set,	you	should	see	a	blue	circle	appear	to	the	left	of	that	line	number.

ptg

36 Lesson 2: Getting Started

Flash	Builder	may	move	your	break	point	to	line	26.	Flash	Builder	will	always	look	for	the	
next	executable	line	of	code.	In	this	case,	that	is	line	26	where	the	click	occurs.

When	the	application	runs	in	Debug	view,	and	a	user	clicks	the	button,	the	application	will	
stop	executing	at	the	line	with	the	breakpoint.	You	will	be	able	to	debug	from	that	point	in	
the	application.	You	can	set	breakpoints	at	any	line	of	executable	code	in	an	application,	
such	as	an	event	handler	in	MXML,	or	a	line	of	ActionScript	in	the	Script	block.

7 Launch	the	application	in	Debug	view,	by	clicking	the	button	that	looks	like	a	bug	
(located	to	the	right	of	the	Run	application	button).

8 When	the	browser	launches	the	application,	click	the	button	labeled	Click	Me.	This	
time	the	application	runs	until	it	reaches	the	breakpoint,	then	control	is	passed	from	the	
browser	to	Flash	Builder.	If	Flash	Builder	is	in	the	Flash	perspective,	you	will	be	asked	if	
you	want	to	switch	to	the	Debug	perspective.	Select	the	Remember	My	Decision	check	
box,	then	click	Yes.

As	you	learned	earlier	in	this	chapter,	Eclipse	(and	therefore	Flash	Builder)	uses	perspec-
tives	to	group	together	sets	of	views.	By	default,	the	Debug	perspective	adds	four	views	
above	the	code.	To	the	left	is	the	Debug	view,	which	shows	where	the	application	encoun-
tered	the	breakpoint.	This	view	also	has	buttons	to	continue	running	the	application,	to	
stop	debugging,	and	to	step	into	the	code,	step	over	a	line	in	the	code,	or	return	to	the	
place	that	called	the	current	function.

To	the	right	of	the	Debug	perspective	are	three	tabbed	views.	The	Variables	view	shows	
the	current	state	of	the	variables,	the	Breakpoints	view	shows	all	the	breakpoints,	and	the	
Expressions	view	shows	any	watch	expressions	you	have	added.	You	will	explore	these	
views	and	buttons	in	the	next	few	steps.

ptg

37Exploring the Flash Builder Debugger

9 In	the	Debug	view,	click	the	Step	Into	button,	which	will	move	control	to	the		
button_clickHandler()	method.

The	Debug	view	is	showing	you	that	you’re	looking	at	the	button_clickHandler()	
method.	The	Variables	view	will	still	show	this	event,	as	it	did	initially,	but	three	new	
items	are	visible	there	as	well,	representing	the	three	variables	defined	locally	to	the	func-
tion.	Since	you	have	not	yet	executed	the	line	of	code	that	instantiates	and	sets	the	values	
of	those	variables,	they	currently	have	a	value	of	undefined.

10 Click	the	Step	Over	button	and	notice	that	control	is	moved	to	the	next	line	of	executable	
ActionScript.	Control	stops	immediately	before	this	line	executes.	Click	Step	Over	again	
to	execute	the	code	on	the	line	that	instantiates	a	variable	named	numTwo	and	assigns	it	a	
value	of	2.

Now	that	the	numTwo	variable	has	a	value,	you	can	see	the	value	in	the	Variables	view.

ptg

38 Lesson 2: Getting Started

11 In	the	Variables	view,	click	the	value	numTwo,	and	change	it	from	2	to	3.

The	Variables	view	lets	you	change	the	values	of	variables	and	see	what	effect	the	change	
has	on	the	application.	Changing	this	value	won’t	change	the	underlying	code	that	set	the	
value,	but	it	will	let	you	see	what	happens	if	the	value	is	different.

12 In	the	Debug	view,	click	the	Resume	button	to	allow	the	application	to	continue	executing.

This	time,	the	label	reads	“3	+	4	=	7”,	as	we	changed	the	value	of	the	numTwo	variable		
from	2	to	3.

ptg

39Exploring the Flash Builder Debugger

13 In	the	Debug	view,	click	the	Terminate	button	(red	square)	to	stop	this	debugging	session.	
Double-click	the	line	number	14	to	set	a	breakpoint	there.

You	now	have	breakpoints	set	at	lines	14	and	24.

	
14 Click	the	Breakpoints	tab	to	see	that	view	and	notice	that	you	now	have	breakpoints	set	

on	lines	14	and	24.	You	can	turn	on	or	off breakpoints	by	clicking	the	check	boxes	next	
to	each	breakpoint.	At	this	point,	we	no	longer	want	to	use	the	breakpoint	at	line	24,	so	
deselect	its	check	box.

Deselecting	the	check	box	leaves	the	breakpoint	in	place	but	instructs	Flash	Builder	to	
ignore	it	for	now.	You’ll	notice	that	the	icon	on	that	line	of	the	code	has	changed	from	a	
blue	circle	to	a	white	circle.	If	you	want	to	completely	remove	a	breakpoint,	you	can	either	
double-click	its	line	number	again,	or	right-click	the	breakpoint	in	the	Breakpoints	view	
and	choose	Remove.

15 Run	the	application	in	Debug	view	again,	and	click	the	Click	Me	button	when	the	appli-
cation	starts.

Notice	that	this	time,	the	execution	stops	at	the	breakpoint	on	line	14,	and	that	the	numTwo	
and	numFour	variables	are	already	populated.

ptg

40 Lesson 2: Getting Started

16 Click	the	Step	Into	button	to	step	into	the	addInts()	function.

Notice	that	the	Debug	view	shows	a	click	on	the	button	called	the	button_clickHandler(),	
which	in	turn	has	now	called	addInts().	Also	notice	that	the	Variables	view	is	showing	another	
set	of	variables	instead	of	numTwo	and	numFour,	which	were	variables	local	to	the	button_
clickHandler()	method.	It	is	now	showing	value1	and	value2,	the	arguments	to	the	method.

17 Click	the	Step	Over	button	two	times.

As	it	did	the	previous	times	you	used	Step	Over,	the	debugger	executes	the	next	line,	this	
time	populating	the	sumInts	variable	with	the	value	6.

18 Click	the	Step	Return	button.	Then	click	the	Step	Over	button.

Notice	that	control	returns	to	the	button_clickHandler()	method,	and	that	the	sumInts	vari-
able	is	now	properly	populated	with	the	value	6,	as	it	was	computed	in	the	addInts()	method.

Congratulations!	You	know	how	to	use	the	debugger.	This	will	be	extremely	useful	as	you	
work	through	the	exercises	in	this	book	and	as	you	develop	real-world	Flex	applications.	

There’s	one	more	interesting	feature	available	with	breakpoints	in	Flash	Builder:	conditional	
breakpoints.	You	can	enable	conditional	breakpoints	by	right-clicking	a	breakpoint	(either	
next	to	the	line	numbers,	or	in	the	Breakpoints	view),	and	choosing	Breakpoint	Properties.	
From	the	Breakpoint	Properties	view,	you	can	enable	or	disable	breakpoints.	You	can	also	set	
conditions.	For	example,	you	can	set	a	breakpoint	to	fire	only	if	a	variable	has	a	certain	value,	
or	when	a	potential	breakpoint	is	encountered	a	certain	number	of	times.	While	this	feature	
may	not	be	terribly	useful	as	you	first	start	your	explorations	in	Flex,	you’ll	find	it	invaluable	
as	you	build	more	complex	applications.

ptg

41Getting Ready for the Next Lessons

Note: Teaching object-oriented programming is not the focus of this book, but to be an

effective Flex developer you must have at least a basic understanding of object-oriented

terminology and concepts. For instance, the tags you’ve seen—such as <s:Application>,

<s:Label>, and <s:Text>—actually refer to classes. The Adobe Flex 4.5 MXML and ActionScript

Language Reference (sometimes referred to as AsDoc) is the document that lists these classes,

their properties, their methods, and much more.

Getting Ready for the Next Lessons
As	you	go	forward	though	the	rest	of	the	book,	you’ll	need	certain	files,	such	as	graphics,	to	
complete	the	rest	of	the	application.	In	the	same	way	you	imported	a	project	from	an	FXP	file	
to	learn	about	debugging,	you’ll	also	import	an	FXP	file	that	will	be	the	basis	for	the	applica-
tion	you	work	on	throughout	this	book.

When	you	import	a	project	into	Flash	Builder,	the	IDE	makes	a	determination	if	you	already	
have	a	project	with	the	same	unique	identifier	(UUID).	If	you	do,	it	will	allow	you	to	over-
write	the	existing	project	with	the	newly	imported	one.	If	not,	and	you	already	have	a	project	
of	the	same	name	as	the	one	you	are	importing,	it	will	ask	you	to	rename	the	newly	imported	
project.	To	avoid	any	confusion,	you’re	going	to	completely	delete	the	project	you	had	created	
previously	in	this	lesson,	and	then	import	a	nearly	identical	project,	which	includes	some	
graphics	that	will	be	used	throughout	the	rest	of	the	book.

1 In	the	Package	Explorer,	right-click	the	FlexGrocer	project,	and	choose	Delete.

ptg

42 Lesson 2: Getting Started

2 A	dialog	box	will	appear	asking	if	you	want	to	delete	only	the	Flash	Builder	project,	
or	also	the	files	for	the	project	from	the	file	system.	Select	the	radio	button	to	also	
delete contents.

The	project	and	related	files	will	be	removed	from	the	file	system.

3 From	the	main	menu	of	Flash	Builder,	choose	File	>	Import	>	Flash	Builder	Project.	

4 In	the	Import	Flash	Builder	Project	dialog	box,	click	the	first	Browse	button	on	the	right	
of	the	screen.	Navigate	to	flex4tfs/Lesson02/complete	and	select	the	FlexGrocer.fxp	file.	
Set	your	project	directory	as	the	location	for	“Extract	new	project	to”.

ptg

43What You Have Learned

5 Click	Finish.

You	are	now	ready	to	continue	through	the	rest	of	the	book.	If	you	care	to	verify	that	the	proj-
ect	imported	properly,	look	in	the	Project	Explorer	and	confirm	that	there	is	now	an	assets	
directory	in	your	project.

What You Have Learned
In this lesson, you have:

•	 Created	a	project	to	organize	your	application	files	(pages	18–24)

•	 Toured	the	pieces	of	the	Flash	Builder	workbench	(views,	editors,	and	perspectives)	used	
to	create	application	files	(pages	24–28)

•	 Run	and	modified	application	files	while	using	code	hinting	and	local	history	to	produce	
the	code	for	those	files	(pages	28–33)

•	 Learned	about	debugging	an	application	with	the	Flash	Builder	debugger	(pages	34–41)

•	 Prepared	for	the	next	lessons	(pages	41–43)

ptg

Le
ss

o
n

 3 What You Will Learn
In this lesson, you will:

•	 Use	containers

•	 Lay	out	an	application	in	Source	view

•	 Work	with	constraint-based	layouts

•	 Work	with	view	states

•	 Control	view	states

•	 Lay	out	an	application	in	Design	view

•	 Refactor	code	as	needed

Approximate Time
This	lesson	takes	approximately	1	hour	and	30	minutes	to	complete.

ptg

45

Lesson 3

Laying Out the Interface
Every application needs a user interface, and one of the strengths of Adobe Flash Builder is
that it enables developers to lay out their application’s interface with ease. In this lesson, you
will learn about containers and layout objects in Flex, what differentiates them, and how to
use them when laying out your applications. Finally, you will use view states to make the
applications dynamically change to react to users’ actions.

The user interface for the e-commerce application

ptg

46 Lesson 3: Laying Out the Interface

Learning About Layouts
Almost	all	positioning	of	components	in	Flex	is	done	using	containers	and	layout objects.

Working	with	a	kitchen	analogy	for	the	moment,	you	can	think	of	the	container	as	a	food	
processor	without	a	blade.	There	are	different	food	processors	with	different	features	on	the	
market,	and	you	need	to	choose	one	that	works	best	for	your	application.

You	can	think	of	layout	objects	as	blades	that	can	be	inserted	into	a	food	processor	to	slice,	
dice,	and	chop.	Neither	the	processor	nor	the	blade	is	useful	without	the	other,	but	when	
they’re	assembled,	they’re	a	powerful	tool.	The	same	is	true	of	containers	and	layout	objects.

Understanding Containers
On	a	technical	level,	containers	are	simply	a	special	type	of	component	that	contains	and	
groups	other	items.	These	items	are	collectively	referred	to	as	children	or,	more	specifically,	
as	layout	elements	(which	is	just	a	broad	term	for	components	such	as	Buttons,	Checkboxes,	
and	the	like)	and	graphical	elements	(such	as	squares,	circles,	and	so	on).	Although	containers	
know	how	to	group	and	keep	these	items	together,	they	do	not	know	the	position	or	order	of	
those	items	on	the	screen.	When	you	select	a	container	type	to	use,	you	will	do	so	based	on	a	
number	of	criteria;	however,	the	most	fundamental	is	its	ability	to	be	skinned.

Skinning	is	the	process	of	defining	the	visual	appearance	of	a	component.	In	terms	of	a	
container,	you	can	think	of	the	visual	appearance	as	including	things	such	as	backgrounds,	
borders,	drop	shadows,	and	so	on.	Some	containers	in	Flex	can	be	skinned,	meaning	you	can	
define	how	they	appear	on	the	screen.	Other	containers	exist	only	to	ensure	that	their	children	
are	grouped;	they	do	not	have	a	visual	display	of	their	own.

Container Types

Container Description

Group The simplest type of container in Flex. A Group can be used to contain children,
but it does not have any visual appearance of its own.

skinnableContainer A container with all the same functionality as the Group, but also the ability to
define its visual appearance on the screen.

BorderContainer A type of skinnableContainer that can be used to quickly surround children of a
container with a border.

Panel A type of skinnableContainer, surrounded by a border, that can have a header
and a control area called a control bar.

Application A type of skinnableContainer that is used as the root of your Flex application.
Like the Panel, it can also have a control bar.

ptg

47Learning About Layouts

There	are	several	more	Flex	containers,	including	DataGroup	and	SkinnableDataContainer,	
in	addition	to	several	specialized	containers,	such	as	Form,	which	will	be	used	in	the	coming	
lessons.	However,	those	containers	follow	a	slightly	different	layout	metaphor,	so	they	will	be	
introduced	a	bit	later	when	their	specific	use	can	be	explained	more	clearly.

Understanding Layout Objects
Layout	objects	work	with	containers	(and	other	types	of	objects,	as	you	will	learn	in	later	
lessons)	to	determine	how	the	grouped	items	of	a	container	should	appear	on	the	screen.	
Flex	provides	a	number	of	layout	objects	by	default	and	allows	you	to	create	your	own	layout	
objects	for	complete	customization.

Layout Object Types

Layout Object Description

BasicLayout BasicLayout allows for absolute positioning. When using BasicLayout, you must
note the specific x and y positions of each layout element.

HorizontalLayout HorizontalLayout arranges children in a row, with each child positioned to the
right of the previous one.

VerticalLayout VerticalLayout arranges children in a column, with each child positioned below
the previous one.

ConstraintLayout ConstraintLayout arranges children based on defined columns
(ConstraintColumn) and rows (ConstraintRows).

FormLayout FormLayout is the default layout for Flex Forms and is composed of child
FormItemLayout instances.

TileLayout TileLayout arranges children in new rows and columns as necessary. You can
specify whether items proceed horizontally or vertically before beginning a row
or column.

ptg

48 Lesson 3: Laying Out the Interface

Combining Containers and Layout Objects
Once	you	have	chosen	a	container	and	a	layout	object,	you	assemble	them	in	MXML	to	
produce	the	desired	effect.	Look	at	the	following	examples	of	setting	a	layout	object	using	the	
layout	property	to	control	the	positioning	of	the	buttons.

<s:Group>
	 <s:layout>
	 	 <s:HorizontalLayout/>
	 </s:layout>

	 <s:Button	label=”1”/>
	 <s:Button	label=”2”/>
	 <s:Button	label=”3”/>
</s:Group>

<s:Group>
	 <s:layout>
	 	 <s:VerticalLayout/>
	 </s:layout>

	 <s:Button	label=”1”/>
	 <s:Button	label=”2”/>
	 <s:Button	label=”3"/>
</s:Group>

If	you	do	not	specify	a	layout	object,	BasicLayout	is	used,	meaning	you	must	specify	x	and	y
positions	for	each	button	or	they	will	all	default	to	appear	at	the	origin	coordinates	(0,0).

Scrolling Content
You	will	occasionally	find	a	situation	in	an	application	in	which	it	is	desirable	to	scroll	the	
contents	of	a	group.	In	previous	versions	of	Flex,	every	container	had	this	functionality	by	
default.	While	extremely	convenient	for	the	developer,	it	also	meant	that	every	container	
was	burdened	with	this	extra	code	even	though	it	was	hidden	the	vast	majority	of	times.	In	
the	latest	versions	of	Flex,	you	need	to	specifically	indicate	when	an	area	is	scrollable.	This	is	
accomplished	via	a	special	tag	named	Scroller	that	wraps	your	Group	tag.

ptg

49Learning About Layouts

<s:Scroller	height=”65”>
	 <s:Group>
	 	 <s:layout>
	 	 	 <s:VerticalLayout/>
	 </s:layout>

	 	 <s:Button	label=”1”/>
	 	 <s:Button	label=”2”/>
	 	 <s:Button	label=”3”/>
	 </s:Group>
</s:Scroller>

Just	wrapping	the	Group	in	a	Scroller	will	not	necessarily	make	a	scroll	bar	appear.	The	
Scroller	will	add	scroll	bars	(vertical,	horizontal,	or	both)	as	needed	when	there	is	not	enough	
room	to	display	the	Group	at	full	size.	In	the	previous	example,	the	height	of	the	Scroller	is	
specifically	set	to	65	pixels	to	ensure	that	a	vertical	scroll	bar	appears.	If	you	do	not	set	specific	
width	and	heights,	then	Flex	will	always	try	to	fit	the	whole	Group	on	the	screen	first	and	will	
resort	to	scrolling	only	if	that	is	not	possible.

Decoding MXML Tags
Before	you	begin	the	exercise	in	the	next	section,	there	is	an	important	concept	to	learn.	It	is	
the	difference	between	class	instances	and	properties	in	MXML.	If	you	look	at	the	code	snippet	
from	the	previous	section,	you	will	see	a	Flex	button	defined	in	MXML.	Right	now	the	label	
property	of	that	Button	is	defined	as	an	attribute	of	the	Button’s	XML	tag:

<s:Button	label=”3”/>

However,	in	MXML,	you	are	also	allowed	to	define	this	same	property	using	child	tags.	In	that	
case,	the	code	would	appear	as	follows:

<s:Button>
	 <s:label>3</s:label>
</s:Button>

These	two	ways	of	defining	the	classes	will	yield	identical	results	on	the	screen.	After	you	have	
used	Flex	for	a	while,	it	will	become	a	natural	part	of	your	development	process	to	choose	the	
correct	syntax	in	a	given	situation;	however,	it	can	be	very	confusing	when	you	are	new	to	
the language.

ptg

50 Lesson 3: Laying Out the Interface

Now,	how	do	you	know,	regardless	of	the	definition	style,	which	is	a	property	and	which	is	a	
class?	The	key	to	decoding	this	logic	is	to	watch	the	case	of	the	first	letter	after	the	namespace	
(after	s:	in	this	example).	When	the	first	letter	is	uppercase,	such	as	the	B	in	Button,	the	code	
is	referring	to	a	new	instance	of	a	class.	When	the	first	letter	is	lowercase,	such	as	the	l	in	label,	
you	are	setting	a	property	of	an	instance	of	a	class.

If	you	consider	a	slightly	larger	example	from	the	previous	code:

<s:Group>
	 <s:layout>
	 	 <s:VerticalLayout/>
	 </s:layout>

	 <s:Button	label=”1”/>
	 <s:Button	label=”2”/>
	 <s:Button>
	 	 <s:label>3</s:label>
	 </s:Button>
</s:Group>

The	G	in	the	<s:Group>	tag	is	uppercase,	so	it	refers	to	an	instance	of	a	Flex	class	named	
Group.	The	l	in	the	<s:layout>	tag	is	lowercase,	so	it	is	a	property	of	the	Group.	The	V	in	the	
<s:VerticalLayout>	tag	is	uppercase,	so	it	is	referring	to	a	new	instance	of	a	Flex	class	named	
VerticalLayout.

If	you	were	to	translate	the	code	into	words,	it	would	read	as	follows:	Create	an	instance	
of	the	Group	class.	Set	the	layout	property	of	that	Group	instance	to	a	new	instance	of	the	
VerticalLayout	class.	Add	three	Buttons	to	that	Group	with	the	labels	1,	2,	and	3,	respectively.

Make	sure	this	section	makes	complete	sense	before	continuing	in	the	book.	If	you	ensure	you	
understand	these	points,	the	rest	of	this	lesson	will	be	smooth	sailing.	If	you	are	unsure,	the	
remainder	can	be	a	very	disheartening	experience.

Laying Out the E-Commerce Application
The	e-commerce	application	of	FlexGrocer	is	the	means	through	which	customers	shop	for	
groceries.	The	top	region	of	the	application’s	user	interface	displays	the	store	logo	as	well	as	
navigation	links	that	appear	throughout	the	application.	Below	that	is	a	series	of	clickable	
icons	that	users	can	use	to	browse	the	various	categories	of	groceries	(dairy,	meat,	fruit,	and	so	
on).	Below	the	icons	is	an	area	for	displaying	products.

ptg

51Laying Out the E-Commerce Application

In	this	lesson,	you	will	use	both	Design	view	and	Source	view	to	begin	laying	out	the	applica-
tion.	Design	view	is	a	powerful	feature	of	Flash	Builder	but	can	be	a	very	frustrating	experi-
ence,	especially	when	you	are	new	to	it.	It	is	often	very	difficult	to	get	objects	to	align	correctly	
or	to	be	placed	inside	the	intended	container	on	the	screen.	Therefore,	you’ll	also	see	a	code	
sample	for	everything	you	do	in	Design	view.	If	your	interface	does	not	look	like	the	one	
in	the	book	as	you	proceed,	feel	free	to	switch	to	Source	view	and	make	the	changes	before	
switching	back	to	Design	view.

Starting Your Layout in Source View
The	first	steps	of	laying	out	your	new	application	will	be	done	in	Source	view	as	you	define	the	
area	of	your	application	that	will	hold	the	logo	and	some	navigation	elements.

1 Open	the	FlexGrocer.mxml	file	that	you	created	in	the	previous	lesson.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson03/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Ensure	that	Flash	Builder	is	in	Source	view.

To	switch	between	Design	view	and	Source	view	in	Flash	Builder,	click	the	buttons	in	the	
title	bar	near	the	top	of	the	window.

3 Find	and	delete	the	Label	tag	with	the	text	“My	First	Flex	Application”	that	you	added	in	
the	last	lesson.

4 Insert	a	new	controlBarLayout	tag	pair	in	place	of	the	Label	tag	you	just	removed.
<s:controlBarLayout>
</s:controlBarLayout>

This	tag	starts	with	a	lowercase	letter,	indicating	that	it	is	a	property	of	the	Application	object.

A	control bar	is	a	section	of	a	container	that	is	visually	distinctive.	In	this	application,	
you are	going	to	use	the	control	bar	to	hold	a	logo	and	some	buttons	for	navigation.

5 Immediately	inside	the	controlBarLayout	tag	pair,	place	a	self-closing	<s:BasicLayout>	tag.
<s:controlBarLayout>
	 <s:BasicLayout/>
</s:controlBarLayout>

Remember,	a	self-closing	tag	simply	means	that	instead	of	having	an	open	tag	and	a	close	
tag	like	the	controlBarLayout,	you	have	just	a	single	tag	that	ends	in	a	forward	slash	and	a	
greater	than	sign	(/>).

ptg

52 Lesson 3: Laying Out the Interface

Adding	the	<s:BasicLayout/>	tag	tells	the	Application	that	you	want	to	use	absolute	posi-
tioning	inside	the	control	bar	for	this	application.	In	other	words,	you	will	take	responsi-
bility	for	positioning	the	x-	and	y-coordinates	of	the	items	inside	it.

6 Directly	below	the	controlBarLayout	tag	pair,	add	a	new	tag	pair	named	
<s:controlBarContent>.

Inside	this	tag,	you	will	define	which	items	should	appear	in	the	control	bar.

7 Add	a	Button	tag	inside	the	controlBarContent	tag	pair	and	set	its	label	property	to	
Flex Grocer.
<s:Button	label=”Flex	Grocer”/>

Setting	the	label	property	of	this	Button	will	make	it	display	“Flex	Grocer”	on	the	screen.	
Because	you	added	this	Button	inside	the	controlBarContent	tag	pair,	the	Button	will	
appear	in	the	control	bar	area	of	the	application.

Ensure	that	your	code	looks	like	the	following	sample	before	continuing:
<?xml	version=”1.0”	encoding=”utf-8”?>
<s:Application	xmlns:fx=”http://ns.adobe.com/mxml/2009”
	 	 xmlns:s=”library://ns.adobe.com/flex/spark”
	 	 minWidth=”955”	minHeight=”600”>
	 <fx:Declarations>
	 	 <!--	Place	non-visual	elements	(e.g.,	services,	value	objects)	here	-->
	 </fx:Declarations>

	 <s:controlBarLayout>
	 	 <s:BasicLayout/>
	 </s:controlBarLayout>

	 <s:controlBarContent>
	 	 <s:Button	label=”Flex	Grocer”/>
	 </s:controlBarContent>

</s:Application>

8 After	verifying	that	your	code	looks	like	the	example,	save	the	FlexGrocer.mxml	file	and	
make	sure	you	do	not	have	any	errors	in	the	Problems	view.

9 Choose	FlexGrocer	from	the	Run	menu	to	execute	your	application	in	the	web	browser.

ptg

53Laying Out the E-Commerce Application

When	your	application	launches,	you	should	see	a	gray	block	near	the	top	of	the	screen.	This	
is	the	control	bar.	Inside	that	control	bar	you	should	see	a	single	button	with	the	words	“Flex	
Grocer”.	While	the	application	may	not	do	much	yet,	you	have	actually	defined	several	prop-
erties,	used	a	layout	object,	and	added	a	child	object	to	a	container.	It	will	get	easier	and	faster	
from	here.	When	you	are	finished	admiring	your	work,	close	the	web	browser	and	get	ready	to	
learn	about	Design	view.

Continuing Your Layout in Design View
You	have	already	defined	a	portion	of	your	application	layout	using	MXML,	but	you	will	now	
use	Design	view	to	add	several	more	elements	and	to	define	their	properties.

1 Switch	Flash	Builder	to	Design	view.

To	switch	between	Design	view	and	Source	view	in	Flash	Builder,	click	the	buttons	in	the	
title	bar	at	the	top	of	the	window.	You	will	see	a	visual	representation	of	your	work	so	far.

2 Start	by	clicking	anywhere	in	the	large	white	background	area	of	the	screen.

The	Properties	panel	on	the	right	side	of	the	screen	should	change	so	that	s:Application is	
the	heading.	This	is	where	you	will	set	all	component	properties	while	in	Design	view.

Note: If the Properties panel is not currently visible on your screen, choose Window >

Perspective > Reset Perspective (or Window > Reset Perspective on Macos). This will reset your

Design view options to the default settings and display the Properties panel.

ptg

54 Lesson 3: Laying Out the Interface

3 Click	the	Flex	Grocer	Button	instance	that	you	positioned	in	the	previous	exercise.

When	you	click	the	Button,	the	Properties	panel	on	the	right	side	of	the	screen	will	change	
to	read	s:Button,	indicating	that	the	Button	you	just	selected	is	now	being	configured.

4 Toward	the	bottom	of	the	Properties	view,	expand	the	Size	and	Position	category	by	
clicking	the	triangle	next	to	the	word	Size	(you	may	need	to	scroll	down	depending	on	
your	screen	resolution).	There	are	text	boxes	for	Width,	Height,	X,	and	Y.	Use	the	X	and	Y	
fields	to	set	the	x-coordinate	to	5	and	the	y-coordinate	to	5.

When	you	change	the	y-coordinate,	the	control	bar	will	grow	to	accommodate	the	posi-
tion	of	the	Button.	Later	in	the	book,	you	will	apply	styles	to	set	the	company	logo	colors	
and	size.	For	now,	you	are	just	placing	the	Button	in	the	appropriate	position.	This	is	an	
example	of	using	absolute-coordinates	positioning.

5 Find	the	Components	view;	by	default	this	will	be	in	the	lower-left	corner	of	your	screen.	
Open	the	Controls	folder	by	clicking	the	triangle	next	to	the	word	Controls,	and	drag	a	
Button	control	to	the	control	bar	so	the	Button	control	is	positioned	near	the	right	edge	
of	the	control	bar.	In	the	Properties	view,	give	the	Button	control	the	ID	btnCartView	
and	the	label	View Cart.

ptg

55Laying Out the E-Commerce Application

 tip: A blue bar will appear, indicating where other components exist horizontally or vertically

from your position. This line will aid you in quickly lining up multiple components.

Don’t	worry	about	the	exact	x	and	y	placement.	Later	in	this	lesson,	you	will	learn	how	
to	use	a	constraint-based	layout	to	position	the	button	so	that	its	right	edge	is	always	10	
pixels	from	the	right	edge	of	the	Application	object.

6 Drag	a	second	Button	control	to	the	control	bar,	just	to	the	left	of	the	first	Button	control.	In	
the	Properties	view,	give	the	new	Button	control	the	ID	btnCheckout	and	the	label	Checkout.

FlexGrocer	users	will	click	this	button	to	indicate	that	they	are	finished	shopping	and	
want	to	complete	the	purchase	of	the	selected	products.	Again,	the	exact	placement	will	
happen	later	in	this	lesson,	when	you	learn	about	constraint-based	layout.

7 Drag	a	Label	control	from	the	Controls	folder	and	place	it	near	the	bottom-right	edge	
of the	screen.	Double-click	the	Label	and	set	the	text	property	to	(c) 2011,	FlexGrocer.

Much	like	the	Button	controls	you	just	added,	you	needn’t	worry	about	the	exact	place-
ment	of	the	Label	control	because	it	will	be	handled	later	with	constraints.

8 In	the	Components	panel,	collapse	the	Controls	folder	and	expand	the	Layout	folder.

9 Drag	a	Group	container	from	the	Layout	folder	of	the	Components	view	and	place	it	in	
the	large	white	area	below	the	control	bar.	Use	the	Properties	panel	to	set	the	ID	of	the	
Group	to	bodyGroup.	Then	set	both	the	height	and	width	properties	to	100% and	the		
x-	and	y-coordinates	to	0.

10 With	the	bodyGroup	still	selected,	scroll	to	the	bottom	of	the	Properties	panel.	You	will	
see	a	Layout	drop-down	menu.	Choose	spark.layouts.HorizontalLayout,	indicating	that	
you	would	like	this	Group	to	arrange	its	children	horizontally.

This	Group	will	hold	the	product	details	and	shopping	cart	for	the	application.	
Remember	that	a	Group	with	a	HorizontalLayout	displays	its	children	horizontally.	
You will	have	products	shown	on	the	left	and	the	shopping	cart	displayed	on	the	right.

ptg

56 Lesson 3: Laying Out the Interface

11 Drag	another	Group	container	from	the	Layout	folder	of	the	Components	view	and	drop	
it	inside	the	existing	Group	that	you	named	bodyGroup.	In	the	Properties	view,	give	this	
new	Group	the	ID	products	and	then	assign	a	height	of	150	and	width	of	100%.

12 At	the	bottom	of	the	Properties	panel,	assign	the	new	Group	a	spark.layouts.VerticalLayout,	
indicating	that	you	would	like	this	Group	to	arrange	its	children	vertically.

This	vertical	group	will	hold	the	details	for	a	product.

13 Before	continuing,	switch	to	Source	view	and	ensure	that	your	code	matches	the	fol-
lowing	code.	If	any	tags	are	different	or	missing,	fix	them	before	continuing.	It	is	okay	if	
your	code	has	slightly	different	values	for	the	x	and	y	properties	of	the	Checkout	Button,	
View Cart	Button,	and	Label,	as	you	have	not	set	those	yet.
<?xml	version=”1.0”	encoding=”utf-8”?>
<s:Application	xmlns:fx=”http://ns.adobe.com/mxml/2009”	
	 	 	 	 	 	 xmlns:s=”library://ns.adobe.com/flex/spark”	
	 	 	 	 	 	 minWidth=”955”	minHeight=”600”>
	 <fx:Declarations>
	 	 <!--	Place	non-visual	elements	(e.g.,	services,	value	objects)	here	-->
	 </fx:Declarations>
	
	 <s:controlBarLayout>
	 	 <s:BasicLayout	/>
	 </s:controlBarLayout>
	
	 <s:controlBarContent>
	 	 <s:Button	label=”Flex	Grocer”	x=”5”	y=”5”	/>
	 	 <s:Button	id=”btnCartView”	x=”463”	y=”10”	label=”View	Cart”/>
	 	 <s:Button	id=”btnCheckout”	x=”541”	y=”10”	label=”Checkout”/>
	 </s:controlBarContent>
	
	 <s:Label	x=”500”	y=”546”	text=”(c)	2011,	FlexGrocer”/>
	 <s:Group	id=”bodyGroup”	x=”0”	y=”0”	width=”100%”	height=”100%”>
	 	 <s:layout>
	 	 	 <s:HorizontalLayout/>
	 	 </s:layout>
	 	 <s:Group	id=”products”	width=”100%”	height=”150”>
	 	 	 <s:layout>
	 	 	 	 <s:VerticalLayout/>
	 	 	 </s:layout>
	 	 </s:Group>
	 </s:Group>
	
</s:Application>	

ptg

57Laying Out the E-Commerce Application

Defining the Product Section
Once	you	verify	that	your	source	code	matches	the	example	code,	switch	back	to	Design	view,	
where	you	will	continue	defining	the	product	section.	Now,	you	will	begin	defining	the	con-
trols	that	will	eventually	represent	all	the	products	in	your	online	grocery	store.

 tip: sometimes when switching between source and Design views, you can lose track of the

Flash Builder Properties panel in Design view. If this panel ever goes missing, simply choose

Windows > Properties (Window > show View > Properties on Mac os) to bring it back.

1 Drag	a	Label	control	from	the	Controls	folder	of	the	Components	view	to	the	vertical	
Group	to	which	you	assigned	the	ID	of	products	in	the	previous	exercise.	When	look-
ing	at	Design	view,	this	vertical	group	will	have	a	faint	border	starting	directly	below	the	
control	bar	and	continuing	down	for	150	pixels,	where	it	crosses	the	screen.	You	can	drop	
the	Label	anywhere	in	this	area.

2 Set	the	ID	of	the	Label	control	to	prodName	and	the	Text	property	to	Milk.

3 Drag	a	second	Label	control	below	the	first	one.	Give	the	second	one	the	ID	price	and	set	
$1.99	as	the	Text.

Because	these	new	Label	controls	are	children	of	the	Group	container,	and	the	Group	has	
a	VerticalLayout	object,	the	product	name	appears	above	the	price	of	the	product.

 tip: If you open outline view by clicking the outline tab (this is adjacent to the Components

tab you have been using so far), you can see the hierarchy of your application. The root is the

Application tag, which contains a Label (copyright) and a Group named bodyGroup as children

along with controlBarContent and a controlBarLayout as properties. You can also see the

various children of the controlBarContent and the bodyGroup. If you expand the Group named

products, you will see the two labels you just added. This is a useful view if you want to make a

change to a component. But, it can be difficult to select just the products Group in Design view.

Click outline view to easily select the products Group.

4 Add	a	Button	control	below	the	two	Label	controls,	with	an	ID	of	add	and	the	label	
Add To Cart.

For	each	product,	you	want	the	name	of	the	product	and	its	price	to	be	displayed.	The	
add	Button	gives	users	the	ability	to	add	a	product	to	their	shopping	cart.	Because	the	two	
Label	controls	and	the	Button	control	are	in	a	group	with	a	vertical	layout,	they	appear	
one	above	the	other.	You’ll	add	functionality	for	the	Button	control	in	a	later	lesson.

5 Save	the	file	and	click	Run.

ptg

58 Lesson 3: Laying Out the Interface

You	can	clearly	see	the	difference	between	elements	in	the	control	bar	section	and	those	in	
the body.

Working with Constraint-Based Layouts
Flex	supports	constraint-based	layouts	that	let	you	arrange	elements	of	the	user	interface	with	
the	freedom	and	pixel-point	accuracy	of	absolute	positioning	while	being	able	to	set	con-
straints	to	stretch	or	move	the	components	when	the	user	resizes	the	window.	This	method	of	
controlling	the	size	and	position	of	components	is	different	from	laying	out	nested	containers	
(like	the	Group	containers	in	the	previous	exercise).

In	constraint-based	layouts,	all	the	controls	are	positioned	in	relation	to	the	edges	of	a	par-
ent	container,	which	has	been	set	with	a	BasicLayout	to	allow	absolute	positioning.	With	
the	exception	of	some	specialized	containers	such	as	Form	(which	you	will	use	in	subse-
quent	lessons),	you	can	use	the	BasicLayout	on	any	Group	or	SkinnableContainer,	including	
Application	and	Panel.

Containers	using	a	BasicLayout	object	require	that	elements	be	positioned	to	absolute	coor-
dinates;	however,	layout	constraints	allow	users	to	dynamically	adjust	the	layout	based	on	

ptg

59Working with Constraint-Based Layouts

the	window	size	of	their	browsers.	For	example,	if	you	want	a	label	to	always	appear	in	the	
bottom-right	corner	of	an	application	regardless	of	the	browser	size,	you	can	anchor	the	con-
trol	to	the	right	edge	of	the	parent	container.	The	control’s	position	is	then	always	maintained	
relative	to	the	right	edge	of	the	parent	container.

In	Flex,	this	is	accomplished	via	layout	anchors.	They	are	used	to	specify	how	a	control	should	
appear	relative	to	the	edge	of	the	parent	container.	To	ensure	that	a	control	is	a	certain	dis-
tance	from	the	bottom	and	right	edges,	you	will	select	the	check	boxes	below	and	to	the	right	
of	the	control	in	the	Constraints	area	in	the	Layout	section	of	the	Properties	view,	and	use	
the	text	boxes	to	specify	the	number	of	pixels	away	from	the	edge	of	the	container	where	you	
want	the	control	constrained.

Flex	allows	constraints	from	the	top,	vertical	center,	bottom,	left,	horizontal	center,	or	right	of	
a	container.

 tip: All constraints are set relative to the edges of the container, as long as the container

uses absolute positioning (BasicLayout). Constraints cannot be set relative to other controls

or containers.

1 Open	the	FlexGrocer.mxml	file	that	you	used	in	the	previous	exercise.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	functioning	
properly,	you	can	import	the	FlexGrocer-PreConstraints.fxp	project	from	the	Lesson03/
intermediate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	
project	should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Ensure	that	you	are	in	Design	view,	then	find	and	select	the	Checkout	Button.	Toward	the	
bottom	of	the	Properties	view,	in	the	Constraints	area	of	the	Size	and	Position	section,	
add	a	constraint	so	the	right	edge	of	the	Button	is	10 pixels	away	from	the	right	edge	of	
the	container.	Make	sure	that	the	Y	position	of	this	control	is	set	to	10 pixels.

ptg

60 Lesson 3: Laying Out the Interface

To	set	a	constraint	from	the	right	edge,	click	the	rightmost	check	box	above	the	button	icon	
in	the	Constraints	area.	In	the	text	box	that	appears,	enter	the	number	of	pixels	away	from	
the	edge	you	want	the	button	to	be.	If	the	label	seems	to	disappear	from	the	screen,	check	
the	scroll	bars	on	the	bottom	of	Design	view.	By	default,	Design	view	shows	you	just	a	por-
tion	of	the	application,	and	you	may	need	to	scroll	occasionally	to	find	what	you	need.

3 Find	and	select	the	View	Cart	Button.	Add	a	constraint	so	that	the	right	edge	of	the	but-
ton	is	90	pixels	from	the	right	edge	of	the	container.	Make	sure	that	the	Y	position	of	this	
control	is	set	to	10	pixels.

You	now	have	it	set	so	that,	regardless	of	the	width	of	the	browser,	the	two	navigation	but-
tons	are	always	anchored	relative	to	the	top-right	edge	of	the	container.

4 Find	and	select	the	Label	control	(outline	view	may	be	very	helpful	if	you	have	trouble	
selecting	this	otherwise)	with	the	copyright	notice.	Constrain	this	Label	so	that	it	is	10	
pixels	above	the	bottom	and	10	pixels	away	from	the	right	edge	of	its	container.	Click	the	
check	box	in	the	top-right	corner	of	the	Constraints	area,	and	enter	10	in	the	text	box	
that	appears.	Also,	click	the	bottom	check	box	and	enter	10	in	the	text	box	that	appears.

Because	the	copyright	label	is	below	other	containers,	it	is	probably	easiest	to	select	it	
using	the	Outline	view.	These	settings	ensure	that,	regardless	of	the	width	of	the	Label	
control,	its	bottom-right	edge	will	always	be	10	pixels	above	and	10	pixels	to	the	left	of	the	
bottom-right	corner	of	the	application.

If	you	switch	to	Source	view,	the	entire	file	should	look	similar	to	the	following:
<?xml	version=”1.0”	encoding=”utf-8”?>
<s:Application	xmlns:fx=”http://ns.adobe.com/mxml/2009”	
	 	 	 	 xmlns:s=”library://ns.adobe.com/flex/spark”	
	 	 	 	 minWidth=”955”	minHeight=”600”>
	 <fx:Declarations>
	 	 <!--	Place	non-visual	elements	(e.g.,	services,	value	objects)	here	-->
	 </fx:Declarations>
	
	 <s:controlBarLayout>
	 	 <s:BasicLayout	/>
	 </s:controlBarLayout>
	
	 <s:controlBarContent>
	 	 <s:Button	label=”Flex	Grocer”	x=”5”	y=”5”	/>
	 	 <s:Button	id=”btnCartView”	y=”10”	right=”90”	label=”View	Cart”/>
	 	 <s:Button	id=”btnCheckout”	y=”10”	right=”10”	label=”Checkout”/>
	 </s:controlBarContent>
	
	 <s:Label	right=”10”	bottom=”10”	text=”(c)	2011,	FlexGrocer”/>
	 <s:Group	id=”bodyGroup”	x=”0”	y=”0”	width=”100%”	height=”100%”>

ptg

61Working with Constraint-Based Layouts

	 	 <s:layout>
	 	 	 <s:HorizontalLayout/>
	 	 </s:layout>
	 	 <s:Group	id=”products”	width=”100%”	height=”150”>
	 	 	 <s:layout>
	 	 	 	 <s:VerticalLayout/>
	 	 	 </s:layout>
	 	 	 <s:Label	id=”prodName”	text=”Milk”/>
	 	 	 <s:Label	id=”price”	text=”$1.99”/>
	 	 	 <s:Button	id=”add”	label=”Add	To	Cart”/>
	 	 </s:Group>
	 </s:Group>
	
</s:Application>

Your	code	may	differ	slightly,	depending	on	the	order	in	which	you	added	the	items	and	set	
properties.	Don’t	worry;	the	order	isn’t	particularly	important	in	this	case.	Every	container	
and	control	that	you	added	in	Design	view	is	represented	by	a	tag	in	Source	view.	When	you	
add	elements	inside	a	container,	they	appear	as	child	tags	to	the	container’s	tag.	Also	note	
that	the	layout	constraints	are	set	as	attributes	of	the	related	component.

5 Switch	back	to	Design	view	and	insert	a	second	Group	container	in	the	bodyGroup	con-
tainer,	to	the	right	of	the	products	(the	bodyGroup	is	the	first	container	you	added	whose	
width	and	height	are	set	to	100%).	Set	the	ID	of	the	new	Group	to	cartGroup,	clear	the	
Width	property	so	it	is	blank,	and	set	the	Height	to	100%. Remember,	you	can	always	
choose	the	bodyGroup	from	the	Outline	view	if	you	have	difficulty	finding	it.

If	you	accidentally	place	the	new	Group	in	the	wrong	container,	the	easiest	fix	is	to	switch	
to	Source	view	and	move	the	tags	yourself.	The	code	in	Source	view	for	this	area	should	
look	like	this:
<s:Group	id=”bodyGroup”	x=”0”	y=”0”	width=”100%”	height=”100%”>
	 <s:layout>
	 	 <s:HorizontalLayout/>
	 </s:layout>
	 <s:Group	id=”products”	width=”100%”	height=”150”>
	 	 <s:layout>
	 	 	 <s:VerticalLayout/>
	 	 </s:layout>
	 	 <s:Label	id=”prodName”	text=”Milk”/>
	 	 <s:Label	id=”price”	text=”$1.99”/>
	 	 <s:Button	id=”add”	label=”Add	To	Cart”/>
	 </s:Group>
	 <s:Group	id=”cartGroup”	height=”100%”>
	 </s:Group>
</s:Group>	

ptg

62 Lesson 3: Laying Out the Interface

6 In	Design	view,	set	the	layout	of	the	cartGroup	container	to	VerticalLayout.

If	you	can’t	find	the	cartGroup,	remember	to	choose	it	from	the	Outline	view	and	scroll	
in	the	Design	view	window	until	you	see	the	highlighted	container.

7 Add	a	Label	control	in	the	cartGroup	container	with	the	text	property	set	to	Your Cart
Total: $0.

To	the	right	of	the	products,	there	will	always	be	a	summary	of	the	shopping	cart,	indicat-
ing	whether	there	are	items	in	the	cart	and	what	the	current	subtotal	is.

Note: At this point you have set the products container to take 100% of the space, but then

you added the cartGroup to its right and added a Label. Isn’t that a problem, as you are now

using more than 100%? Flex enables you to assign more than 100% total width or height for a

container. Flex containers take this into account and divide the space proportionally based on

the requested percentages. Because more space was requested than is available, each request

receives a relative portion based on the available space. If any elements were assigned a fixed

width (that is, a number of pixels instead of a percentage), the fixed size requests are subtracted

from the available space before any relative size requests are allocated.

8 From	the	Controls	folder	of	the	Components	view,	drag	a	Button	control	below	the		
newest	Label	control	and	set	the	label	property	of	the	Button	to	View Cart.

This	Button	shows	users	the	full	contents	of	their	shopping	cart.

If	you	accidentally	place	any	components	in	the	wrong	container,	switch	to	Source	view	
and	move	the	tags	yourself.	The	code	in	Source	view	for	this	area	should	look	like	this:
<s:Group	id=”bodyGroup”	x=”0”	y=”0”	width=”100%”	height=”100%”>
	 <s:layout>
	 	 <s:HorizontalLayout/>
	 </s:layout>
	 <s:Group	id=”products”	width=”100%”	height=”150”>
	 	 <s:layout>
	 	 	 <s:VerticalLayout/>
	 	 </s:layout>
	 	 <s:Label	id=”prodName”	text=”Milk”/>
	 	 <s:Label	id=”price”	text=”$1.99”/>
	 	 <s:Button	id=”add”	label=”Add	To	Cart”/>
	 </s:Group>
	 <s:Group	id=”cartGroup”	height=”100%”>
	 	 <s:layout>
	 	 	 <s:VerticalLayout/>
	 	 </s:layout>
	 	 <s:Label	text=”Your	Cart	Total	$0”/>
	 	 <s:Button	height=”17”	label=”View	Cart”/>
	 </s:Group>
</s:Group>	

ptg

63Working with View States

9 In	Outline	view,	choose	the	Application.	In	the	Properties	panel,	remove	the	Min	width	
and	Min	height	values	of	955	and	600.

As	the	application	runs,	you	can	resize	the	browser	and	see	that	the	buttons	and	bottom	
text	are	always	properly	constrained.	A	minimum	width	and	height	would	prevent	resiz-
ing	from	occurring	on	smaller	screens.

10 Save	the	file	and	click	Run.

Working with View States
You	can	use	Flash	Builder	to	create	applications	that	change	their	appearance	based	on	the	
task	the	user	is	performing.	For	example,	the	e-commerce	application	starts	by	showing	users	
the	various	products	they	can	buy.	When	they	start	adding	items	to	the	cart,	you	want	to	add	
something	to	the	view,	such	as	the	total	cost,	so	users	can	get	a	feel	for	what	is	currently	in	the	
cart.	Finally,	users	need	a	way	to	view	and	manage	the	full	contents	of	the	shopping	cart.

Creating View States
In	Flex,	you	can	add	this	kind	of	interactivity	with	view	states.	A	view state	is	one	of	several	
views	that	you	define	for	an	application	or	a	custom	component.	Every	MXML	page	has	at	least	
one	state,	referred	to	as	the	default state,	which	is	represented	by	the	default	layout	of	the	file.

Additional	states	are	represented	in	the	MXML	as	modified	versions	of	the	base	view	state	or	
of	other	states.

1 Open	the	FlexGrocer.mxml	file	that	you	used	in	the	previous	exercise.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer-PreStates.fxp	project	from	the	Lesson03/
intermediate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	
project	should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

ptg

64 Lesson 3: Laying Out the Interface

2 Ensure	you	are	in	Design	view.	If	it	is	not	already	open,	open	the	States	view	in	Flash	Builder.

If	you	don’t	currently	see	the	States	view	when	you	look	at	Flash	Builder	in	Design	view,	
you	can	add	it	to	the	view	by	choosing	Window	>	States	(Windows	>	Show	View	>	States	
on	Mac	OS).	Notice	that	there	is	already	one	state	created	to	represent	the	default	layout	
of	the	application.

3 Create	a	new	state	named	cartView,	which	is	a	duplicate	of	<State1>.

You	can	create	a	state	by	clicking	the	New	State	icon	 	at	the	top	of	the	States	view	or	
by	right-clicking	in	the	view	and	selecting	the	New	option.	The	cartView	state	will	show	
users	the	details	of	all	the	items	they	have	added	to	their	cart.	Leave	the	default	options,	
and	click	OK.

4 With	the	new	cartView	state	selected,	click	the	products	container	and	set	its	height	
and width	to	0,	then	choose	the	cartGroup	container	and	set	its	height	and	width	values	
to	100%.

In	the	cartView	state,	the	shopping	cart	will	entirely	replace	the	products	in	the	center	
of	the	screen.	Therefore,	you	will	resize	the	products	container	to	take	up	no	space	and	
resize	the	cartGroup	container	to	take	up	all	the	available	space.

At	this	point,	the	controls	on	your	screen	will	be	quite	a	mess.	You	will	likely	see	an	ugly	
combination	of	all	the	controls	in	the	system	on	top	of	each	other.	This	is	a	very	impor-
tant	lesson.	In	Flex,	the	width	and	height	properties	are	used	to	compute	the	location	of	
items	on	the	screen.	In	this	case,	you	told	Flex	that	the	products	container	will	not	take	
any	space,	so	Flex	responded	by	moving	the	cartGroup	container	left	to	take	the	newly	
available	space.	However,	not	allocating	space	to	an	item	on	the	screen	does	not	ensure	
that	it	is	invisible.

ptg

65Working with View States

5 Select	the	products	container	and	change	its	visible	property	to	false.	You	can	do	this	
by	clicking	the	CategoryView	of	the	Properties	panel,	finding	the	visible	property,	and	
changing	its	value	to	false.

 tip: It has been said several times so far in this lesson, but it is so important it is worth repeating:

Use the outline view to find containers when they are difficult to locate on the screen.

6 Ensure	that	the	cartView	state	is	still	selected	in	States	view	and	then	drag	a	DataGrid	
control	from	the	Controls	folder	of	the	Components	view	and	drop	it	below	the	View	
Cart	button.	Set	the	ID	of	the	DataGrid	control	to	dgCart,	and	set	the	DataGrid	control’s	
width	to	100%.

In	a	later	lesson,	the	DataGrid	control	will	be	used	to	show	the	user	the	full	contents	of	
the	cart.

Make	sure	you	are	adding	the	DataGrid	control	to	the	cartGroup	container.	Your	applica-
tion	and	code	will	look	a	bit	different	if	you	accidentally	add	the	DataGrid	control	before	
the	cartGroup	container.

ptg

66 Lesson 3: Laying Out the Interface

If	you	look	at	the	file	in	Source	view,	you	should	see	that	the	DataGrid	has	been	added	to	
the	following	code:
<?xml	version=”1.0”	encoding=”utf-8”?>
<s:Application	xmlns:fx=”http://ns.adobe.com/mxml/2009”
	 	 	 	 xmlns:s=”library://ns.adobe.com/flex/spark”>
	 <s:states>
	 	 <s:State	name=”State1”/>
	 	 <s:State	name=”cartView”/>
	 </s:states>
	 <fx:Declarations>
	 	 <!--	Place	non-visual	elements	(e.g.,	services,	value	objects)	here	-->
	 </fx:Declarations>
	
	 <s:controlBarLayout>
	 	 <s:BasicLayout	/>
	 </s:controlBarLayout>
	
	 <s:controlBarContent>
	 	 <s:Button	label=”Flex	Grocer”	x=”5”	y=”5”	/>
	 	 <s:Button	id=”btnCartView”	y=”10”	right=”90”	label=”View	Cart”/>
	 	 <s:Button	id=”btnCheckout”	y=”10”	right=”10”	label=”Checkout”/>
	 </s:controlBarContent>
	
	 <s:Label	right=”10”	bottom=”10”	text=”(c)	2011,	FlexGrocer”/>
	 <s:Group	id=”bodyGroup”	x=”0”	y=”0”	width=”100%”	height=”100%”>
	 	 <s:layout>
	 	 	 <s:HorizontalLayout/>
	 	 </s:layout>
	 	 <s:Group	id=”products”	width=”100%”	height=”150”
	 	 	 	 	 visible.cartView=”false”	width.cartView=”0”	height.cartView=”0”>
	 	 	 <s:layout>
	 	 	 	 <s:VerticalLayout/>
	 	 	 </s:layout>
	 	 	 <s:Label	id=”prodName”	text=”Milk”/>
	 	 	 <s:Label	id=”price”	text=”$1.99”/>
	 	 	 <s:Button	id=”add”	label=”Add	To	Cart”/>
	 	 </s:Group>
	 	 <s:Group	id=”cartGroup”	height=”100%”
	 	 	 	 	 width.cartView=”100%”>
	 	 	 <s:layout>
	 	 	 	 <s:VerticalLayout/>
	 	 	 </s:layout>
	 	 	 <s:Label	text=”Your	Cart	Total	$0”/>
	 	 	 <s:Button	height=”17”	label=”View	Cart”/>

ptg

67Working with View States

	 	 	 <s:DataGrid	includeIn=”cartView”	requestedRowCount=”4”>
	 	 	 	 <s:columns>
	 	 	 	 	 <s:ArrayList>
	 	 	 	 	 	 <s:GridColumn	dataField=”dataField1”	
	 	 	 	 	 	 	 	 	 headerText=”Column	1”></s:GridColumn>
	 	 	 	 	 	 <s:GridColumn	dataField=”dataField2”	
	 	 	 	 	 	 	 	 	 	 headerText=”Column	2”></s:GridColumn>
	 	 	 	 	 	 <s:GridColumn	dataField=”dataField3”
	 	 	 	 	 	 	 	 	 	 headerText=”Column	3”></s:GridColumn>
	 	 	 	 	 </s:ArrayList>
	 	 	 	 </s:columns>
	 	 	 	 <s:typicalItem>
	 	 	 	 	 <fx:Object	dataField1=”Sample	Data”	
	 	 	 	 	 	 	 	 dataField2=”Sample	Data”
	 	 	 	 	 	 	 	 dataField3=”Sample	Data”></fx:Object>
	 	 	 	 </s:typicalItem>
	 	 	 	 <s:ArrayList>
	 	 	 	 	 <fx:Object	dataField1=”data1”	
	 	 	 	 	 	 	 	 dataField2=”data1”	
	 	 	 	 	 	 	 	 dataField3=”data1”></fx:Object>
	 	 	 	 	 <fx:Object	dataField1=”data2”	
	 	 	 	 	 	 	 	 dataField2=”data2”	
	 	 	 	 	 	 	 	 dataField3=”data2”></fx:Object>
	 	 	 	 	 <fx:Object	dataField1=”data3”	
	 	 	 	 	 	 	 	 dataField2=”data3”	
	 	 	 	 	 	 	 	 dataField3=”data3”></fx:Object>
	 	 	 	 	 <fx:Object	dataField1=”data4”	
	 	 	 	 	 	 	 	 dataField2=”data4”	
	 	 	 	 	 	 	 	 dataField3=”data4”></fx:Object>
	 	 	 	 </s:ArrayList>
	 	 	 </s:DataGrid>
	 	 </s:Group>
	 </s:Group>
	
</s:Application>

7 Save	the	file.

Note	some	of	the	new	syntax	added	during	this	operation.	First,	in	the	DataGrid	class,	you	
will	see	the	includeIn	property,	indicating	that	this	control	should	appear	on	the	screen	
only	when	in	the	cartView	state.	Second,	the	products	container	still	has	a	width	of	100%	
and	height	of	150;	however,	it	also	has	width.cartView=”0”	and	height.cartView=”0”.	This	
syntax	instructs	Flex	to	set	those	properties	in	the	corresponding	states.

Testing	the	file	now	shouldn’t	show	any	differences	because	you	haven’t	added	any	ability	for	the	
user	to	toggle	between	the	states.	In	the	next	exercise,	you	will	add	that	navigational	ability.

ptg

68 Lesson 3: Laying Out the Interface

Controlling View States
Each	MXML	component	has	a	property	called	currentState.	You	can	use	this	property	to	
control	which	state	of	the	application	is	shown	to	a	user	at	any	given	time.

1 Open	the	FlexGrocer.mxml	file	that	you	used	in	the	previous	exercise.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer-PreControl.fxp	project	from	the	Lesson03/
intermediate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	
project	should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Switch	to	Design	view	and,	if	it	is	not	already	open,	open	the	States	view	in	Flash	Builder	
and	select	State1	to	set	the	current	state.

You	will	add	functionality	to	the	default	view	state	so	that	users	can	navigate	to	the	other	
states	of	the	application.

3 Switch	the	Properties	view	to	the	Standard	View	mode,	and	choose	the	View	Cart	Button	
control	from	the	cartGroup	container.	In	the	Properties	view,	set	the	On	click:	property	
to	this.currentState=’cartView’.

Events	such	as	the	Button’s	click	will	be	explored	in	detail	in	Lesson	5,	“Handling	
Events.”	The	important	thing	to	understand	now	is	that	when	the	user	clicks	the	link,	the	
view	will	change	to	the	cartView	state.

cautioN! The state name is case sensitive and must exactly match the name as you typed it in

the previous exercise. You should use single quotes around the state name when entering it in

Design view; otherwise, Flash Builder will create escape code (") for the double quotes,

and your code will be confusing to read.

4 Choose	the	View	Cart	Button	control	from	the	control	bar.	In	the	Properties	view,	also	
set	the	On	click:	property	to	this.currentState=’cartView’.	You	now	have	two	ways	to	
enter	the	cartView	state.

5 Switch	to	the	cartView	state.	Add	a	new	Button	control	below	the	DataGrid	control	with	
the	label	set	to	Continue Shopping	and	the	click	property	set	to	this.currentState=’’.	
Note	this	is	a	single	open	and	single	close	quote,	as	opposed	to	one	double	quote.

Setting	currentState	to	an	empty	string	resets	the	application	to	its	default	state.

6 Delete	the	View	Cart	Button	that	is	inside	the	cartGroup	from	the	cartView	state.

When	the	user	is	viewing	the	cart,	there	is	no	need	for	a	View	Cart	Button.	You	can	delete	
the	Button	by	selecting	it	in	Design	view	and	pressing	Delete.

ptg

69Working with View States

The	completed	application	as	shown	in	Source	view	should	read	as	follows:
<?xml	version=”1.0”	encoding=”utf-8”?>
<s:Application	xmlns:fx=”http://ns.adobe.com/mxml/2009”
	 	 	 	 xmlns:s=”library://ns.adobe.com/flex/spark”>
	 <s:states>
	 	 <s:State	name=”State1”/>
	 	 <s:State	name=”cartView”/>
	 </s:states>
	 <fx:Declarations>
	 	 <!--	Place	non-visual	elements	(e.g.,	services,	value	objects)	here	-->
	 </fx:Declarations>
	
	 <s:controlBarLayout>
	 	 <s:BasicLayout	/>
	 </s:controlBarLayout>
	
	 <s:controlBarContent>
	 	 <s:Button	label=”Flex	Grocer”	x=”5”	y=”5”	/>
	 	 <s:Button	id=”btnCartView”	y=”10”	right=”90”	label=”View	Cart”
	 	 	 	 	 click.State1=”this.currentState=’cartView’”/>
	 	 <s:Button	id=”btnCheckout”	y=”10”	right=”10”	label=”Checkout”/>
	 </s:controlBarContent>
	
	 <s:Label	right=”10”	bottom=”10”	text=”(c)	2011,	FlexGrocer”/>
	 <s:Group	id=”bodyGroup”	x=”0”	y=”0”	width=”100%”	height=”100%”>
	 	 <s:layout>
	 	 	 <s:HorizontalLayout/>
	 	 </s:layout>
	 	 <s:Group	id=”products”	width=”100%”	height=”150”
	 	 	 	 	 visible.cartView=”false”	width.cartView=”0”	height.cartView=”0”>
	 	 	 <s:layout>
	 	 	 	 <s:VerticalLayout/>
	 	 	 </s:layout>
	 	 	 <s:Label	id=”prodName”	text=”Milk”/>
	 	 	 <s:Label	id=”price”	text=”$1.99”/>
	 	 	 <s:Button	id=”add”	label=”Add	To	Cart”/>
	 	 </s:Group>
	 	 <s:Group	id=”cartGroup”	height=”100%”
	 	 	 	 	 width.cartView=”100%”>
	 	 	 <s:layout>
	 	 	 	 <s:VerticalLayout/>
	 	 	 </s:layout>
	 	 	 <s:Label	text=”Your	Cart	Total	$0”/>
	 	 	 <s:Button	includeIn=”State1”	height=”17”	label=”View	Cart”
	 	 	 	 	 	 click=”this.currentState=’cartView’”/>
	 	 	 <s:DataGrid	includeIn=”cartView”	requestedRowCount=”4”>
	 	 	 	 <s:columns>
	 	 	 	 	 <s:ArrayList>

ptg

70 Lesson 3: Laying Out the Interface

	 	 	 	 	 	 <s:GridColumn	dataField=”dataField1”	
	 	 	 	 	 	 	 	 	 headerText=”Column	1”></s:GridColumn>
	 	 	 	 	 	 <s:GridColumn	dataField=”dataField2”	
	 	 	 	 	 	 	 	 	 headerText=”Column	2”></s:GridColumn>
	 	 	 	 	 	 <s:GridColumn	dataField=”dataField3”
	 	 	 	 	 	 	 	 	 headerText=”Column	3”></s:GridColumn>
	 	 	 	 	 </s:ArrayList>
	 	 	 	 </s:columns>
	 	 	 	 <s:typicalItem>
	 	 	 	 	 <fx:Object	dataField1=”Sample	Data”	
	 	 	 	 	 	 	 	 dataField2=”Sample	Data”
	 	 	 	 	 	 	 	 dataField3=”Sample	Data”></fx:Object>
	 	 	 	 </s:typicalItem>
	 	 	 	 <s:ArrayList>
	 	 	 	 	 <fx:Object	dataField1=”data1”	
	 	 	 	 	 	 	 	 dataField2=”data1”	
	 	 	 	 	 	 	 	 dataField3=”data1”></fx:Object>
	 	 	 	 	 <fx:Object	dataField1=”data2”	
	 	 	 	 	 	 	 	 dataField2=”data2”	
	 	 	 	 	 	 	 	 dataField3=”data2”></fx:Object>
	 	 	 	 	 <fx:Object	dataField1=”data3”	
	 	 	 	 	 	 	 	 dataField2=”data3”	
	 	 	 	 	 	 	 	 dataField3=”data3”></fx:Object>
	 	 	 	 	 <fx:Object	dataField1=”data4”	
	 	 	 	 	 	 	 	 dataField2=”data4”	
	 	 	 	 	 	 	 	 dataField3=”data4”></fx:Object>
	 	 	 	 </s:ArrayList>
	 	 	 </s:DataGrid>
	 	 	 <s:Button	includeIn=”cartView”	label=”Continue	Shopping”
	 	 	 	 	 	 click=”this.currentState=’’”/>
	 	 </s:Group>
	 </s:Group>
	
</s:Application>	

7 Save	and	test	the	application.	You	can	now	navigate	between	the	states	by	clicking	the	
buttons	to	which	you	added	code.

ptg

71Refactoring

Refactoring
Refactoring	is	one	of	the	least	understood	and	most	useful	tools	in	a	developer’s	arsenal.	It	is	
particularly	relevant	for	a	Flex	and	ActionScript	developer,	because	dynamic	interfaces	are	
often	recombined	with	code	during	the	prototype	and	development	stages	of	a	project.

Refactoring	is	simply	the	process	of	reorganizing	your	code	in	a	way	that	is	better	suited	
to	a	long-term	goal	without	changing	the	way	it	functions.	Long-term	goals	might	include	
increasing	the	maintainability	of	the	software,	modifying	the	architecture	to	make	additional	
development	steps	easier,	or	simply	changing	the	location	and	structure	of	the	project	to	make	
it	more	understandable	to	a	new	developer.	However,	one	thing	is	always	true:	At	the	end	of	a	
successful	refactoring	session,	the	changes	will	be	imperceptible	to	an	individual	running	the	
application	who	does	not	look	at	the	source	code.	The	application	functions	the	same	way.

Many	developers	find	this	notion	and	this	process	frustrating.	Why	would	you	want	to	spend	
time	changing	code	you	have	already	written	if	it	makes	no	noticeable	change	in	the	applica-
tion’s	execution?	The	answers	are	varied,	but	here	are	a	few	important	ones.

•	 Learning:	Learning	a	new	language	and	continuing	to	use	it	is	an	ongoing	experience.	
You	will	be	learning	new	things	and	techniques	every	day.	That	often	leads	to	the	realiza-
tion	that	the	code	you	wrote	days,	weeks,	or	months	ago	may	be	inefficient,	or	even	inef-
fective	in	certain	circumstances.	Keeping	a	keen	eye	on	what	you	have	written	in	the	past	
and	being	willing	to	revisit	it	often	provides	a	more	cohesive	code	base	and	tighter,	more	
maintainable	code.

•	 Duplication	and	redundancy:	As	you	are	developing,	it	is	extremely	common	to	need	
the	same	functionality	in	multiple	places	in	your	application.	Usually	due	to	time	con-
straints,	this	code	stays	forever	duplicated.	One	of	the	many	problems	with	this	is	that	
later,	when	that	code	needs	to	change,	you	have	to	be	sure	to	hunt	down	and	fix	all	the	
places	it	is	used.	A	willingness	to	avoid	duplication	and	move	shared	code	into	new	places	
as	you	continue	developing	can	not	only	eliminate	large	headaches	down	the	road,	but	
can	also	makes	your	day-to-day	development	more	efficient	and	faster.

•	 The	big	picture:	Often	it	is	difficult,	if	not	impossible,	to	know	how	all	the	pieces	in	a	
system	will	fit	together	when	you	begin	writing	code.	If	these	pieces	written	early	in	the	
process	are	set	in	stone,	you	will	end	up	bending	or	breaking	code	down	the	line	when	
you	try	to	integrate.	If	you	are	comfortable	with	the	idea	of	refactoring	your	code	as	
needed	throughout	the	process,	you	can	hone	your	vision	of	the	system	as	you	progress,	
ending	up	with	objects	and	structures	that	work	more	cohesively	when	they’re	finished.

ptg

72 Lesson 3: Laying Out the Interface

We	have	a	couple	of	reasons	for	addressing	refactoring	here.	First,	many	new	developers	to	the	
Flex	and	ActionScript	world	attempt	to	apply	a	rigid	approach	to	their	development	that	does	
not	include	refactoring.	Over	the	course	of	time,	we	have	noticed	that	these	developers,	above	
all	others,	struggle	against	the	language	instead	of	learning	to	use	it	as	a	tool.	We	simply	want	
you	to	avoid	that	pain.

Second,	throughout	this	book	you	are	going	to	be	learning.	In	fact,	quite	often	you	are	going	
to	learn	multiple	techniques	for	accomplishing	the	same	goal.	It	is	not	always	feasible	to	intro-
duce	the	one	“right”	way	to	do	something	from	the	beginning	because	these	concepts	tend	to	
build	upon	each	other.	So,	once	you	have	learned	enough	to	approach	writing	something	in	a	
new	way,	you	will	end	up	refactoring	it.	This	provides	two	benefits:	the	ability	to	understand	
multiple	ways	to	accomplish	a	goal	(and	hopefully	the	reasons	why	you	would	or	would	not	
use	one	or	the	other)	and	the	ability	to	hone	the	code	base	into	a	final	application	with	valid	
examples	for	reference.

That	said,	you	are	going	to	refactor	the	application	you	have	built	to	date,	to	make	it	easier	to	
maintain	as	you	continue	through	this	book.

Using Composed Containers
As	you	learned	in	this	lesson,	most	containers	in	Flex	accept	a	layout	object	that	dic-
tates	the	orientation	of	their	children.	This	layout	object	is	generally	specified	by	adding	a	
LayoutObject	to	a	Group	using	the	layout	property,	as	the	following	example	shows:

<s:Group>
	 <s:layout>
	 	 <s:HorizontalLayout/>
	 </s:layout>

	 <s:Button	label="1"/>
	 <s:Button	label="2"/>
	 <s:Button	label="3"/>
</s:Group>

While	this	provides	the	utmost	flexibility,	it	does	require	a	little	extra	typing	each	time	you	create	
a	new	Group.	In	a	small	application	this	is	not	a	very	big	issue;	however,	in	a	large	application,	
adding	layout	objects	to	tens	of	thousands	of	Groups	can	become	tedious.	To	solve	this	problem,	
Flex	allows	you	to	create	new	components	composed	of	existing	components	and	properties.	
You	can	then	use	these	new	constructs	as	shortcuts	to	desired	functionality.

The	Flex	framework	has	prebuilt	a	few	of	these	shortcuts	in	the	form	of	two	containers	called	
VGroup	and	HGroup.	In	the	following	chart,	the	horizontal	columns	are	functionally	equivalent.

ptg

73Refactoring

Alternative Shortcuts

Using layout Property Composed Version

<s:Group>	 	 	 	 	 <s:HGroup>	
<s:layout>	 <s:Button	label=”1”/>	

	 	 <s:HorizontalLayout/>	 	 <s:Button	label=”2”/>
</s:layout>	 	 	 	 <s:Button	label=”3”/>	
	 	 	 	 	 	 	 </s:HGroup>	

	
<s:Button	label=”1”/>	
<s:Button	label=”2”/>	
<s:Button	label=”3”/>	

</s:Group>

<s:Group>	 	 	 	 	 <s:VGroup>	
</s:layout>	 <s:Button	label=”1”/>	

	 	 <s:VerticalLayout/>	 <s:Button	label=”2”/>	
</s:layout>	 <s:Button	label=”3”/>	
	 	 	 	 	 	 	 </s:VGroup>	

	
<s:Button	label=”1”/>	
<s:Button	label=”2”/>	
<s:Button	label=”3”/>	

</s:Group>

If	you	were	to	examine	the	VGroup	and	HGroup	source	code,	you	would	find	that	they	are	
little	more	than	the	Group	you	have	already	learned	to	use	with	the	layout	property	preset	for	
your	use.	In	Lessons	9,	“Breaking	the	Application	into	Components,”	and	Lesson	18,	“Creating	
Custom	ActionScript	Components,”	you	will	learn	to	create	your	own	components	wherever	
you	see	a	similar	opportunity	to	reuse	code.

Refactoring Your Application
In	this	section,	you	will	convert	all	the	Groups	with	HorizontalLayouts	to	HGroups,	and	
Groups	with	VerticalLayouts	to	VGroups.	The	goal	of	this	exercise	is	to	successfully	change	
the	internal	structure	of	the	application	without	changing	its	functionality.

1 Open	the	FlexGrocer.mxml	file	that	you	used	in	the	previous	exercise.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	functioning	
properly,	you	can	import	the	FlexGrocer-PreRefactor.fxp	project	from	the	Lesson03/
intermediate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	
project	should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

ptg

74 Lesson 3: Laying Out the Interface

2 Switch	to	Source	view.

3 Find	the	group	named	bodyGroup	and	change	it	to	an	HGroup.	Be	sure	to	also	change	
the	closing	tag	for	this	group.

4 Eliminate	the	tag	for	the	layout	property	and	the	HorizontalLayout	object	from	within	
the	bodyGroup.

5 Find	the	products	group	and	change	it	to	a	VGroup.	Be	sure	to	change	the	closing	tag	as	well.

6 Eliminate	the	tag	for	the	layout	property	and	the	VerticalLayout	object	from	within	the	
products	group.

7 Repeat	this	process	for	the	cartGroup.

When	you	are	finished	refactoring	the	application,	your	code	should	appear	as	follows:
<?xml	version=”1.0”	encoding=”utf-8”?>
<s:Application	xmlns:fx=”http://ns.adobe.com/mxml/2009”
	 	 	 	 xmlns:s=”library://ns.adobe.com/flex/spark”>
	 <s:states>
	 	 <s:State	name=”State1”/>
	 	 <s:State	name=”cartView”/>
	 </s:states>
	 <fx:Declarations>
	 	 <!--	Place	non-visual	elements	(e.g.,	services,	value	objects)	here	-->
	 </fx:Declarations>
	
	 <s:controlBarLayout>
	 	 <s:BasicLayout	/>
	 </s:controlBarLayout>
	
	 <s:controlBarContent>
	 	 <s:Button	label=”Flex	Grocer”	x=”5”	y=”5”	/>
	 	 <s:Button	id=”btnCartView”	y=”10”	right=”90”	label=”View	Cart”
	 	 	 	 	 click.State1=”this.currentState=’cartView’”/>
	 	 <s:Button	id=”btnCheckout”	y=”10”	right=”10”	label=”Checkout”/>
	 </s:controlBarContent>
	
	 <s:Label	right=”10”	bottom=”10”	text=”(c)	2011,	FlexGrocer”/>
	 <s:HGroup	id=”bodyGroup”	x=”0”	y=”0”	width=”100%”	height=”100%”>
	 	 <s:VGroup	id=”products”	width=”100%”	height=”150”
	 	 	 	 	 visible.cartView=”false”	width.cartView=”0”	height.cartView=”0”>
	 	 	 <s:Label	id=”prodName”	text=”Milk”/>
	 	 	 <s:Label	id=”price”	text=”$1.99”/>
	 	 	 <s:Button	id=”add”	label=”Add	To	Cart”/>
	 	 </s:VGroup>
	 	 <s:VGroup	id=”cartGroup”	height=”100%”

ptg

75Refactoring

	 	 	 	 	 width.cartView=”100%”>
	 	 	 <s:Label	text=”Your	Cart	Total	$0”/>
	 	 	 <s:Button	includeIn=”State1”	height=”17”	label=”View	Cart”
	 	 	 	 	 	 click=”this.currentState=’cartView’”/>
	 	 	 <s:DataGrid	includeIn=”cartView”	requestedRowCount=”4”>
	 	 	 	 <s:columns>
	 	 	 	 	 <s:ArrayList>
	 	 	 	 	 	 <s:GridColumn	dataField=”dataField1”	
	 	 	 	 	 	 	 	 	 headerText=”Column	1”></s:GridColumn>
	 	 	 	 	 	 <s:GridColumn	dataField=”dataField2”	
	 	 	 	 	 	 	 	 	 headerText=”Column	2”></s:GridColumn>
	 	 	 	 	 	 <s:GridColumn	dataField=”dataField3”
	 	 	 	 	 	 	 	 	 headerText=”Column	3”></s:GridColumn>
	 	 	 	 	 </s:ArrayList>
	 	 	 	 </s:columns>
	 	 	 	 <s:typicalItem>
	 	 	 	 	 <fx:Object	dataField1=”Sample	Data”	
	 	 	 	 	 	 	 	 dataField2=”Sample	Data”
	 	 	 	 	 	 	 	 dataField3=”Sample	Data”></fx:Object>
	 	 	 	 </s:typicalItem>
	 	 	 	 <s:ArrayList>
	 	 	 	 	 <fx:Object	dataField1=”data1”	
	 	 	 	 	 	 	 	 dataField2=”data1”	
	 	 	 	 	 	 	 	 dataField3=”data1”></fx:Object>
	 	 	 	 	 <fx:Object	dataField1=”data2”	
	 	 	 	 	 	 	 	 dataField2=”data2”	
	 	 	 	 	 	 	 	 dataField3=”data2”></fx:Object>
	 	 	 	 	 <fx:Object	dataField1=”data3”	
	 	 	 	 	 	 	 	 dataField2=”data3”	
	 	 	 	 	 	 	 	 dataField3=”data3”></fx:Object>
	 	 	 	 	 <fx:Object	dataField1=”data4”	
	 	 	 	 	 	 	 	 dataField2=”data4”	
	 	 	 	 	 	 	 	 dataField3=”data4”></fx:Object>
	 	 	 	 </s:ArrayList>
	 	 	 </s:DataGrid>
	 	 	 <s:Button	includeIn=”cartView”	label=”Continue	Shopping”
	 	 	 	 	 click=”this.currentState”/>
	 	 </s:VGroup>
	 </s:HGroup>
	
</s:Application>	

8 Save	the	file	and	click	Run.

You	should	have	the	same	functionality	with	the	View	Cart	Button	as	before	and	see	
absolutely	no	change	in	functionality,	yet	have	slightly	more	maintainable	code.

ptg

76 Lesson 3: Laying Out the Interface

What You Have Learned
In this lesson, you have:

•	 Used	containers	and	layout	objects	(pages	33–50)

•	 Begun	an	application	layout	in	Source	view	(pages	51–53)

•	 Laid	out	an	application	in	Design	view	(pages	53–58)

•	 Worked	with	constraint-based	layouts	(pages	58–63)

•	 Worked	with	view	states	(pages	63–67)

•	 Controlled	view	states	(pages	68–70)

•	 Refactored	your	application	(pages	71–75)

ptg

This page intentionally left blank

ptg

Le
ss

o
n

 4 What You Will Learn
In this lesson, you will:

•	 Define	the	user	interface	(UI)	for	the	e-commerce	FlexGrocer	application	

•	 Use	simple	controls	such	as	the	Image	control,	text	controls,	and	
CheckBox control

•	 Define	the	UI	for	the	checkout	screens

•	 Use	the	Form	container	to	lay	out	simple	controls

•	 Use	data	binding	to	connect	controls	to	a	data	model

Approximate Time
This	lesson	takes	approximately	45	minutes	to	complete.

ptg

79

Lesson 4

Using Simple Controls
In this lesson, you will add user interface elements to enable the customer to find more details
about the grocery items and begin the checkout process. An important part of any appli-
cation is the user interface, and Adobe Flex contains elements such as buttons, text fields,
and radio buttons that make building interfaces easier. Simple controls can display text and
images and also gather information from users. You can tie simple controls to an underlying
data structure, and they will reflect changes in that data structure in real time through data
binding. You’re ready to start learning about the APIs (application programming interfaces) of
specific controls, which are available in both MXML and ActionScript. The APIs are fully docu-
mented in the ActionScript Language Reference, often referred to as ASDoc, which is available
at http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html.

The Flex framework has many tools that make laying out simple controls easier. All controls
are placed within containers (see Lesson 3, “Laying Out the Interface”). In this lesson, you’ll
become familiar with simple controls by building the basic user interface of the application
that you will develop throughout this book. You’ll also learn about timesaving functionality
built into the framework, such as data binding and capabilities of the Form layout container.

FlexGrocer with Image and text controls bound to a data structure

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

ptg

80 Lesson 4: Using Simple Controls

Introducing Simple Controls
Simple	controls	are	provided	as	part	of	the	Flex	framework	and	help	make	rich	Internet	appli-
cation	development	easy.	Using	controls,	you	can	define	the	look	and	feel	of	your	buttons,	
text,	combo	boxes,	and	much	more.	Later	in	this	book,	you’ll	learn	how	to	customize	controls	
to	create	your	own	unique	look	and	feel.	Controls	provide	a	standards-based	methodology	
that	makes	learning	how	to	use	them	easy.	Controls	are	the	foundation	of	any	RIA.

The	Flex	SDK	includes	an	extensive	class	library	for	both	simple	and	complex	controls.	All	
these	classes	can	be	instantiated	via	an	MXML	tag	or	as	a	standard	ActionScript	class,	and	
their	APIs	are	accessible	in	both	MXML	and	ActionScript.	The	class	hierarchy	comprises	
nonvisual	classes	as	well,	such	as	those	that	define	the	event	model,	and	it	includes	the	display	
attributes	that	all	simple	controls	share.

You	place	the	visual	components	of	your	Flex	application	inside	containers,	which	establish	
the	size	and	positioning	of	text,	controls,	images,	and	other	media	elements	(you	learned	
about	containers	in	the	previous	lesson).	All	simple	controls	have	events	that	can	be	used	to	
respond	to	user	actions,	such	as	clicking	a	button,	or	system	events,	such	as	another	compo-
nent	being	drawn	(events	will	be	covered	in	detail	in	the	next	lesson).	You	will	learn	in	later	
lessons	how	to	build	your	own	events.	Fundamentally,	events	are	used	to	build	easily	main-
tainable	applications	that	reduce	the	risk	that	a	change	to	one	portion	of	the	application	will	
force	a	change	in	another.	This	is	often	referred	to	as	building	a	“loosely	coupled”	application.

Most	applications	need	to	display	some	sort	of	text,	whether	it	be	static	or	dynamically	driven	
from	an	outside	source	like	an	XML	file	or	a	database.	Flex	has	a	number	of	text	controls	that	
can	be	used	to	display	editable	or	noneditable	text:

•	 Label:	You	have	already	used	the	Label	control	to	display	text.	The	Label	control	cannot	
be	edited	by	an	end	user;	if	you	need	that	functionality,	you	can	use	a	TextInput	control.	

•	 TextInput:	The	TextInput	control	is	used	for	data	input.	It	is	limited	to	a	single	line	of	text.	

•	 RichText:	The	RichText	control	is	used	to	display	multiple	lines	of	text,	but	is	not	editable	
and	does	not	display	scroll	bars	if	the	text	exceeds	the	available	screen	space.	

•	 TextArea:	The	TextArea	component	is	useful	for	displaying	multiple	lines	of	text,	
either editable	or	noneditable,	with	scroll	bars	if	the	available	text	exceeds	the	available	
screen	space.	

All	text	controls	support	HTML	1.0	and	a	variety	of	text	and	font	styles.

ptg

81Displaying Images

Note: All four text controls mentioned here support Adobe’s Flash Text engine and some of

the controls (RichText and RicheditableText) support even more advanced layout using the Text

Layout Framework (TLF). While you will not be using TLF as part of the application in this book,

many new and interesting features are available with TLF. You can learn about TLF on Adobe’s

open source site: http://opensource.adobe.com/wiki/display/tlf/Text+Layout+Framework.

To	populate	text	fields	at	runtime,	you	must	assign	an	ID	to	the	control.	Once	you	have	done	
that,	you	can	access	the	control’s	properties;	for	example,	all	the	text	controls	previously	men-
tioned	have	a	text	property.	This	property	enables	you	to	populate	the	control	with	plain	text	
using	either	an	ActionScript	function	or	inline	data	binding.	The	following	code	demonstrates	
assigning	an	ID	to	the	label,	which	enables	you	to	reference	the	Label	control	in	ActionScript:

<s:Label id=”myLabel”/>

You	can	populate	any	text	control	at	runtime	using	data	binding,	which	is	denoted	by	curly	
bracket	syntax	in	MXML.	The	following	code	will	cause	the	yourLabel	control	to	display	the	
same	text	as	the	myLabel	control	in	the	previous	example:

<s:Label id="yourLabel" text="{myLabel.text}"/>

Also,	you	can	use	data	binding	to	bind	a	simple	control	to	underlying	data	structures.	For	
example,	if	you	have	XML	data,	which	might	come	from	a	server-side	dataset,	you	can	use	
data	binding	to	connect	a	simple	control	to	the	data	structure.	When	the	underlying	data	
changes,	the	controls	are	automatically	updated	to	reflect	the	new	data.	This	provides	a	power-
ful	tool	for	the	application	developer.

The	Flex	framework	also	provides	a	powerful	container	for	building	the	forms	that	we	will	cover	
in	this	lesson.	The	Form	container	allows	developers	to	create	efficient,	good-looking	forms	with	
minimal	effort.	Flex	handles	the	heading,	spacing,	and	arrangement	of	form	items	automatically.

Displaying Images
In	this	exercise,	you	will	display	images	of	grocery	products.	To	do	this,	you	must	use	the	Image	
control	to	load	images	dynamically.	The	Image	control	can	load	JPG,	GIF,	SWF,	and	PNG	files	
at	runtime.	If	you	are	developing	an	offline	application	that	will	not	access	the	Internet,	you	can	
use	the	@Embed	directive	to	include	the	Image	control	in	the	completed	SWF	file.

1 Open	the	FlexGrocer.mxml	file	that	you	created	in	the	previous	lesson.

If	you	didn’t	complete	the	previous	lesson,	you	can	import	the	Lesson04/start	files.	Please	
refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	skip	a	
lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

http://opensource.adobe.com/wiki/display/tlf/Text+Layout+Framework

ptg

82 Lesson 4: Using Simple Controls

2 Switch	Flash	Builder	to	Design	view	by	clicking	the	Design	View	button.

3 Be	sure	that	the	Components	view	is	open.	If	it’s	not,	choose	Window	>	Components.

4 Select	the	Image	control	from	the	Controls	folder	and	drag	the	control	between	the	Milk	
and	1.99	Label	controls	you	already	added.

When	you	drag	the	Image	control	from	the	Components	view	to	the	container,	Flash	
Builder	automatically	adds	the	MXML	to	place	the	Image	control	on	the	screen	and	posi-
tions	it	where	you	drop	it.

5 Be	sure	that	the	Flex	Properties	view	is	open.	If	it’s	not,	choose	Window	>	Properties.

ptg

83Displaying Images

The	Flex	Properties	view	shows	important	attributes	of	the	selected	component—	
in	this	case,	the	Image	control.	You	can	see	the	Source	property,	which	specifies	the	
path to	the	Image	file.	The	ID	of	the	Image	control	references	the	instance	created	from	
the	<s:Image>	tag	or	Image	class	in	ActionScript.

6 Click	the	Source	folder	icon	and	navigate	to	the	assets	directory.	Select	the	dairy_milk.jpg	
image	and	click	Open.	

The	image	you	selected	is	displayed	in	Design	view.	The	source	property	is	also	added	to	
the	MXML	tag.

7 Click	the	Scale	Mode	drop-down	menu	and	change	the	value	to	letterbox.

In	an	ideal	world,	all	the	images	that	you	use	in	the	application	would	be	a	perfect	size,	but	
this	is	not	always	the	case.	Flex	can	scale	the	images	in	two	ways.	You	can	choose	letterbox	
to	keep	the	aspect	ratio	of	the	original	images	correct	even	as	their	size	is	adjusted,	or	you	
can	choose	stretch	to	distort	the	images	to	make	them	fit	into	any	given	width	and	height.

ptg

84 Lesson 4: Using Simple Controls

8 Switch	back	to	Source	view	and	notice	that	Flash	Builder	has	added	an	<s:Image>	tag	as	
well	as	the	attributes	you	specified	in	the	Flex	Properties	window.

Note: letterbox is the default selection if you don’t choose a scale Mode. so, if you didn’t

explicitly choose it from the drop-down list and instead left it as the default, you may not see it

in your code. Feel free to add it or just understand that difference going forward.

As	you	can	see,	it	is	easy	to	switch	between	Source	view	and	Design	view,	and	each	one	
has	its	advantages.	Notice	as	you	switch	back	to	Source	view	that	the	Image	tag	you	were	
working	on	is	now	highlighted.	

9 In	the	<s:Image>	tag	that	you	added,	insert	an	@Embed	directive	to	the	Image	control.
<s:Image includeIn=”State1” scaleMode=”letterbox”
➥ source=”@Embed(‘assets/dairy_milk.jpg’)”/>

The	@Embed	directive	causes	the	compiler	to	transcode	and	include	the	JPG	in	the	SWF	
file	at	compile	time.	This	technique	has	a	couple	advantages	over	the	default	of	loading	
the	image	at	runtime.	First,	the	image	is	loaded	at	the	start	of	the	application,	so	the	user	
doesn’t	have	to	wait	for	the	image	to	load	before	displaying	when	it	is	needed.	Also,	this	
technique	can	be	useful	if	you	are	building	offline	applications	that	do	not	need	to	access	
the	Internet	because	the	appropriate	images	are	included	in	the	SWF	file	and	will	be	
correctly	displayed	when	needed.	Remember,	though,	that	using	this	technique	greatly	
increases	the	size	of	your	SWF	file.

10 Save,	compile,	and	run	the	application.

You	should	see	that	the	Image	and	Label	controls	and	button	fit	neatly	into	the	layout	container.

ptg

85Building a Detail View

Building a Detail View
In	this	exercise,	you	will	use	a	rollover	event	to	display	a	detailed	state	of	the	application.	You	
will	explore	different	simple	controls	to	display	text	and	review	how	application	states	work.

1 Be	sure	that	you	are	still	in	Source	view	in	Flash	Builder.	Near	the	top	of	the	file,	locate	
the	<s:states>	block,	which	contains	definitions	for	the	State1	and	cartView	states.	Add	a	
new	state	definition	named	expanded.
<s:State name=”expanded”/>

You	will	define	this	third	state	for	the	application	to	show	details	of	a	product.

2 Switch	to	Design	view,	set	the	state	selector	to	expanded,	and	drag	a	VGroup	from	the	
Layout	folder	of	the	Components	view	into	the	application.	(To	position	this	correctly,	
you	should	drag	the	VGroup	into	the	gray	area	below	the	existing	white	background.)	In	
the	Properties	view,	verify	that	the	In	state’s	value	is	expanded,	the	X	value	is	200,	and	the	
Width	value	is	100	percent.	Remove	the	Y	and	Height	values	so	that	the	fields	are	blank.

This	new	VGroup	needs	to	be	a	child	of	the	main	application.	Sometimes,	positioning	
items	correctly	can	be	difficult	in	Design	view,	so	switch	to	Source	view	and	ensure	the	
VGroup	is	positioned	correctly.	It	should	be	just	above	the	closing	</s:Application>	tag,	
so	the	end	of	the	file	reads	like	this:
 </s:VGroup>
 </s:HGroup>
 <s:VGroup includeIn=”expanded” width=”100%” x=”200”>
 </s:VGroup>

</s:Application>

3 Switch	back	to	Design	view.	Ensure	that	the	expanded	state	is	selected	in	the	States	view.	
Drag	an	instance	of	the	RichText	control	from	the	Controls	folder	of	the	Components	
view	into	the	new	VGroup	you	created	in	the	previous	step.

ptg

86 Lesson 4: Using Simple Controls

The	RichText	control	enables	you	to	display	multiple	lines	of	text,	which	you	will	need	
when	you	display	the	product	description	that	will	ultimately	come	from	an	XML	file.	
You	will	use	data	binding	in	the	next	section	to	make	this	RichText	control	functional.	
For	now,	you	are	just	setting	up	the	layout.	

4 Drag	an	instance	of	the	Label	control	from	the	Components	view	to	the	bottom	part	of	the	
VGroup	container	you	created.	Populate	the	text	property	with	the	words	Certified Organic.

Later	on,	you	will	modify	the	visible	property	of	this	component	so	the	contents	of	the	
text	property	are	displayed	only	when	a	grocery	item	is	certified	organic.

5 Drag	another	instance	of	the	Label	control	from	the	Components	view	to	the	bottom	part	
of	the	VGroup	container	you	created.	Populate	the	text	property	with	the	words	Low Fat.

Later,	you	will	set	the	visible	property	of	this	label	to	true	if	the	grocery	item	is	low	fat,	
or	false	if	it	is	not.

6 Switch	back	to	Source	view.	Notice	that	Flash	Builder	has	added	the	RichText	and	the	two	
Label	controls	you	added	in	Design	view.

Note	that	all	the	code	created	in	Design	view	is	displayed	in	Source	view.

7 Locate	the	<s:RichText>	tag	in	the	expanded	state	and	set	the	width	property	to	50%.
<s:RichText text=”RichText” width=”50%”/>

ptg

87Building a Detail View

8 Find	the	<s:Image>	tag	that	is	displaying	the	milk	image.	Add	a	mouseOver	event	to	the	tag	
that	will	change	the	currentState	to	expanded.	Remove	the	includeIn	attribute.
<s:Image scaleMode=”letterbox”
 source=”@Embed(‘assets/dairy_milk.jpg’)”
 mouseOver=”this.currentState=’expanded’”/>

mouseOver	simply	means	that	when	the	user	rolls	the	mouse	anywhere	over	the	dairy_
milk.jpg	Image	tag,	the	ActionScript	will	execute.	In	this	ActionScript,	you	are referring	
to	the	expanded	state,	which	you	created	earlier	in	this	lesson.		

If	you	had	left	the	includeIn	attribute	in	the	image	tag,	the	milk	image	would	appear	
only	in	the	initial	state	of	State1.	Therefore,	when	you	mouse	over	the	image	and	switch	
it	to	the	expanded	state,	the	milk	bottle	image	will	disappear.	By	removing	the	includeIn	
attribute,	you	are	instructing	the	application	to	allow	this	image	to	be	used	in	all	states.

9 In	the	same	<s:Image>	tag,	add	a	mouseOut	event	that	will	change	the	currentState	back	
to	the	initial	State1	state.	
<s:Image scaleMode=”letterbox”
 source=”@Embed(‘assets/dairy_milk.jpg’)”
 mouseOver=”this.currentState=’expanded’”
 mouseOut=”this.currentState=’State1’”/>

When	the	user	moves	the	mouse	away	from	the	dairy_milk.jpg	image,	the	detailed	state	
no	longer	displays,	and	by	default	the	application	displays	only	the	images	and	labels	for	
the	control,	which	is	expressed	with	an	empty	string.

10 Save	and	run	the	application.

When	you	roll	the	cursor	over	the	milk	bottle	image,	you	see	the	RichText	and	Label	controls	
you	created	in	the	expanded	state.

ptg

88 Lesson 4: Using Simple Controls

Using Data Binding to Link a Data Structure to a Simple Control
Data	binding	enables	you	to	connect	controls,	such	as	the	text	controls	that	you	have	already	
worked	with,	to	an	underlying	data	structure.	Data	binding	is	incredibly	powerful	because	if	
the	underlying	data	changes,	the	control	reflects	the	changes.	For	example,	suppose	you	create	
a	text	control	that	displays	the	latest	sports	scores;	also	suppose	it	is	connected	to	a	data	struc-
ture	in	Flex.	When	a	score	changes	in	that	data	structure,	the	control	that	the	end	user	views	
reflects	the	change.	In	this	exercise,	you	will	connect	a	basic	data	structure	in	an	<fx:Model>	
tag	to	simple	UI	controls	to	display	the	name,	image,	and	price	for	each	grocery	item.	Later	in	
the	book,	you	will	learn	more	about	data	models,	the	effective	use	of	a	model-view-controller	
architecture	on	the	client,	and	how	to	connect	these	data	structures	with	server-side	data.

1 Be	sure	that	FlexGrocer.mxml	is	open,	and	add	an	<fx:Model>	tag	after	the	comment	in	
the	<fx:Declarations>	tag	pair	at	the	top	of	the	page.

The	<fx:Model>	tag	allows	you	to	build	a	client-side	data	model.	This	tag	converts	an	
XML	data	structure	into	a	format	that	Flex	can	use.

2 Directly	below	the	opening	<fx:Model>	tag	and	before	the	closing	<fx:Model>	tag,	add	the	
following	XML	data	structure.	Your	<fx:Model>	tag	should	look	as	shown:
<fx:Model>
 <groceries>
 <catName>Dairy</catName>
 <prodName>Milk</prodName>
 <imageName>assets/dairy_milk.jpg</imageName>
 <cost>1.20</cost>
 <listPrice>1.99</listPrice>
 <isOrganic>true</isOrganic>
 <isLowFat>true</isLowFat>
 <description>Direct from California where cows are happiest!</description>
 </groceries>
</fx:Model>

You	have	defined	a	very	simple	data	structure	inline	inside	an	<fx:Model>	tag.

3 Assign	the	<fx:Model>	tag	an	ID	of	groceryInventory.	The	first	line	of	your	<fx:Model>	
tag	should	look	as	shown:
<fx:Model id=”groceryInventory”>

By	assigning	an	ID	to	the	<fx:Model>	tag,	you	can	reference	the	data	with	dot	syntax.	For	
example,	to	access	the	list	price	of	the	item,	you	could	use	groceryInventory.listPrice.	
In	this	case,	that	would	resolve	to	1.99.

ptg

89Using a Form Layout Container to Lay Out Simple Controls

4 Switch	Flash	Builder	to	Design	view.

You	can	set	up	bindings	between	elements	just	as	easily	in	Design	view	as	you	can	in	
Source	view.

5 Select	the	RichText	control	in	the	expanded	state	and	be	sure	that	the	Flex	Properties	
view	is	open.	Modify	the	text	property	to	{groceryInventory.description}.

Data	binding	is	indicated	by	the	curly	brackets	{}.	Whenever	the	curly	brackets	are	used,	
you	use	ActionScript	instead	of	simple	strings.	Effective	use	of	data	binding	will	become	
increasingly	important	as	you	begin	to	work	with	server-side	data.

6 Save	and	run	the	application.

You	should	see	the	description	you	entered	in	the	data	model	when	you	roll	the	cursor	over	
the	grocery	item.

Using a Form Layout Container to Lay Out Simple Controls
Forms	are	important	in	most	applications	that	collect	information	from	users.	You	will	be	
using	the	Form	container	to	enable	shoppers	to	check	out	their	products	from	the	grocery	
store.	The	Form	container	in	Flex	will	handle	the	layout	of	the	controls	in	this	form,	automat-
ing	much	of	the	routine	work.	With	a	Form	container,	you	can	designate	fields	as	required	
or	optional,	handle	error	messages,	and	perform	data	checking	and	validation	to	be	sure	the	
administrator	follows	designated	guidelines.	A	Form	container	uses	three	tags:	an	<s:Form>	
tag,	an	<s:FormHeading>	tag,	and	an	<s:FormItem>	tag	for	each	item	on	the	form.	To	start,	the	
checkout	form	will	be	built	into	a	separate	application,	but	later	in	the	book,	it	will	be	moved	
into	the	main	application	as	a	custom	component.

ptg

90 Lesson 4: Using Simple Controls

1 Create	a	new	MXML	application	in	your	current	project	by	choosing	File	>	New	
>	MXML	Application.	Name	the	application	Checkout,	and	choose	spark.layouts.
BasicLayout	as	the	Layout	for	the	new	application.	Then	click	Finish.

2 Switch	to	Design	view,	and	drag	a	Form	from	the	Layout	folder	of	the	Components	view	
to	the	top	left	of	the	window.	A	dialog	box	will	appear	asking	for	the	Width	and	Height	of	
the	form.	Leave	the	default	values	and	click	OK.

ptg

91Using a Form Layout Container to Lay Out Simple Controls

3 Drag	a	FormHeading	component	from	the	Layout	folder	in	the	Components	view	into	
the	newly	created	form.	Double-click	the	FormHeading,	and	change	it	to	Customer	
Information.

A	FormHeading	is	just	a	specialized	label	for	Forms.

4 Drag	a	TextInput	control	from	the	Controls	folder	of	the	Components	view	and	drop	it	
just	below	the	FormHeading.	The	TextInput	and	a	label	to	the	right	of	the	TextInput	both	
appear.	Double-click	the	label	and	change	it	to	Customer Name.

When	adding	controls	to	a	form	in	Design	view,	Flash	Builder	automatically	surrounds	
the	control	in	a	FormItem,	which	is	why	a	label	is	appearing	to	the	left	of	the	control.	If	
you	switch	to	Source	view,	you	can	see	the	FormItem	surrounding	the	TextInput.	Back	in	
Design	view,	notice	how	the	left	edge	of	the	text	input’s	label	is	aligned	with	the	left	edge	
of	the	FormHeading.	As	noted	earlier,	this	is	a	feature	of	the	Form	and	FormHeading	
classes,	and	it	allows	these	items	to	always	maintain	the	left	alignment,	regardless	of	the	
size	of	the	FormItem	labels.

5 Drag	four	more	TextInputs	to	the	form	from	the	Components	view.	Change	the	labels	of	
these	to	Address,	City,	State,	and	Zip.	Drag	a	button	below	the	last	TextInput,	and	set	its	
label	to	be	an	empty	string	(simply	remove	the	default	text).	Click	the	button	and	change	
the	button’s	text	to	Continue.	

ptg

92 Lesson 4: Using Simple Controls

Due	to	the	Form	layout,	selecting	a	discrete	control	such	as	the	Button	can	be	difficult.	In	
this	case,	it	is	easiest	if	you	attempt	to	click	the	very	left	side	of	the	button.	Remember,	if	you	
can’t	accomplish	the	desired	effect	in	Design	view,	you	can	always	do	so	in	Source	view.

Each	control	is	surrounded	in	its	own	FormItem	and	has	its	own	label.	Since	you	don’t	
need	a	label	next	to	the	Continue	button,	you	simply	clear	the	text	from	the	label	on	that	
form	item.

6 Save	and	run	the	application.

What You Have Learned
In this lesson, you have:

•	 Learned	how	to	load	images	at	runtime	with	the	Image	control	(pages	81–84)

•	 Learned	how	to	display	blocks	of	text	(pages	85–87)

•	 Learned	how	to	link	simple	controls	to	an	underlying	data	structure	with	data	binding	
(pages	88–89)

•	 Learned	how	to	build	user	forms	with	a	minimum	of	effort	using	the	Form	container	
(pages	89–92)

ptg

This page intentionally left blank

ptg

Le
ss

o
n

 5 What You Will Learn
In this lesson, you will:

•	 Learn	about	Flex’s	event-based	programming	model

•	 Pass	data	to	an	event	handler	using	MXML

•	 Learn	a	bit	about	UI	object	creation	order

•	 Handle	both	user	and	system	events	with	ActionScript	functions

•	 Understand	the	event	object	and	its	properties

Approximate Time
This	lesson	takes	approximately	1	hour	to	complete.

ptg

95

Lesson 5

Handling Events
An important part of building a rich Internet application (RIA) is building an effective client-
side architecture. When you use Flash Builder as an authoring tool, you have the ability to
follow object-oriented best practices and an event-based programming model that allows for
loosely coupled applications. This type of development is very different for web application
developers, because it does not follow a page-based, flow-driven model. Ultimately, using this
client-side, event-based architecture can result in better-performing applications that contain
more reusable code and consume less network traffic because page refreshes are no longer
needed. During this lesson, you’ll become familiar with an event-based programming model
and learn how events are used throughout Flex.

Events are added to the FlexGrocer application
to allow the user to interact with the application.

ptg

96 Lesson 5: Handling Events

Understanding Event Handling
Flex	uses	an	event-based,	or	event-driven,	programming	model:	Events	determine	the	flow	
of	the	application.	For	example,	a	user	clicking	the	mouse	button	or	a	server	returning	data	
determines	what	should	happen	next.

These	events	come	in	two	types:	user	events	and	system	events.	User	events	are	just	what	you’d	
most	likely	guess—a	user	clicking	a	mouse	or	pressing	a	key.	System	events	include	the	appli-
cation	being	instantiated,	an	invisible	component	becoming	visible,	and	many	others.	The	
Flex	developer	handles	these	events	by	writing	code	for	what	happens	next.

Tip: Many server-side developers are accustomed to a flow-driven programming model, in

which the developer determines the flow of the application rather than having to react to

events generated by the user or system; recognizing and understanding that difference is

crucial to success with Flex.

For	the	moment,	we	are	going	to	personify	Flex’s	event-based	model	to	make	its	operation	
clear.	Pretend	that	you	and	a	friend	are	standing	on	opposite	sides	of	a	parking	lot.	Your	friend	
is	going	to	act	as	an	event dispatcher,	an	object	that	notifies	others	when	something	occurs.

While	you’re	in	the	parking	lot,	your	friend	may	shout	a	variety	of	things.	He	may	exclaim,	
“Car	arriving!”	“Car	departing!”	or	“Car	parking!”	Perhaps	he	periodically	decides	to	simply	
yell,	“Nothing	has	changed!”	In	all	cases,	he	is	shouting	the	information,	and	anyone	close	
can	hear	it.	He	has	no	real	control	over	who	hears	it,	and	certainly	no	control	over	what	a	
person	who	overhears	these	messages	might	do	in	response.	His	only	job	in	this	scenario	is	to	
announce	information,	which	is	precisely	the	job	of	an	event	dispatcher.

Now,	on	the	other	side	of	the	parking	lot,	you	hear	these	various	messages	being	announced.	
You	may	choose	to	react	to	all,	some,	or	none	of	them.	When	you	hear	that	a	car	is	parking,	
for	example,	you	may	wish	to	go	and	greet	the	new	arrival.	However,	you	may	blatantly	ignore	
your	friend	announcing	that	nothing	has	changed	or	that	a	car	is	departing.

In	this	case,	you	are	an	event listener.	While	you	can	hear	all	the	information	being	broadcast,	
you	decide	which	messages	are	important	and	how	you	react	to	them.	Just	as	hearing	some-
thing	is	different	from	actually	listening	to	it	in	the	real	world,	the	same	difference	exists	in	
event-driven	programming.	Code	that	listens	to	and	reacts	to	a	given	event	is	called	an	event	
listener	or	an	event handler.

Now,	as	a	last	step	in	this	example,	imagine	that	another	individual	arrives	at	the	parking	lot.	
He	can	also	hear	your	friend	shouting.	He	may	choose	to	listen	and	react	to	the	same	mes-

ptg

97Understanding Event Handling

sages	as	you,	or	different	ones	altogether.	Perhaps	when	he	hears	that	a	car	is	departing,	he	
walks	up	to	the	car	and	asks	for	payment	for	parking,	while	ignoring	the	other	messages.

This	is	the	wonderful	part	about	event-based	programming.	Many	people	can	hear	a	message,	
and	each	can	decide	whether	to	react	to	it.	If	they	do	choose	to	react,	they	can	do	so	in	differ-
ent	ways.	And,	the	person	doing	the	shouting	doesn’t	need	to	know	what	might	happen	as	a	
result;	his	only	job	is	to	keep	shouting.

Bringing	this	back	to	Flex,	we	might	say	that	an	object	such	as	a	Button	instance	dispatches	a	
click	event.	What	we	mean	is	that	the	Button	shouts	for	all	to	hear	that	it	has	just	been	clicked.	
Every	other	object	in	the	system	can	choose	to	listen	to	that	event	and	to	handle	it	(react).	In	
Flex,	if	we	don’t	choose	to	listen	to	an	event	on	an	object,	then	we	implicitly	ignore	it.

Keeping	that	in	mind,	the	following	general	steps	occur	when	a	user	event	occurs	and	a	devel-
oper	then	wants	something	to	happen:

1. The	user	interacts	with	the	application.

2. The	object	on	which	the	user	interacts	dispatches	an	event	(for	example,	when	a	button	
has	been	clicked).

3. Another	object	is	listening	for	that	event	and	reacts	when	the	event	occurs.

4. Code	inside	the	listening	object	is	executed.

Analyzing a Simple Example
Let’s	examine	a	concrete	example:	A	user	clicks	a	button	and	text	appears	in	a	label.	The	fol-
lowing	code	makes	this	happen.

<s:Label id=”myL”/>

<s:Button id=”myButton”
 label=”Click Me”
 click=”myL.text=’Button Clicked’”/>

A	button	appears	with	a	“Click	Me”	label.	When	the	user	clicks	the	button,	the	click	event	is	
dispatched.	In	this	case	the	ActionScript	code	myL.text=’Button	Clicked’	is	executed.	The	
text	property	of	the	label	is	assigned	the	Button	Clicked	string	value.

NoTe: There are nested quotes in this example. The double quotes surround the code for the

click event, and the nested single quotes delineate the string. This can become difficult to

read and, as you will see in the next section, is not the ideal way to write code.

ptg

98 Lesson 5: Handling Events

Until	now,	when	you’ve	assigned	values	to	an	attribute	in	MXML,	you’ve	supplied	one	of	two	
types:	scalar	values	or	bindings.	Scalar values	are	simple	data	types	like	String,	Number,	or	
Boolean	values.	You’ve	used	these	when	setting	x	and	y	values,	widths,	and	label	text	values.	
You	have	also	used	bindings	for	properties.	This	was	done	whenever	you	used	braces	({})	
in	a	value.	Remember	from	the	last	lesson	that	the	braces	let	you	enter	ActionScript	for	the	
property	value.

When	supplying	a	value	to	an	MXML	attribute	that	represents	an	event	(that	is,	the	click	
event	in	the	previous	code),	the	Flex	compiler	is	smart	enough	to	implicitly	understand	that	
the	string	inside	the	quotes	is	ActionScript.	That’s	why	you	can	enter	ActionScript	directly	for	
the	click	event,	click=”myL.text=’Button Clicked’”,	without	using	the	braces	you	used	in	
the	previous	lesson.

Just	as	code	hinting	assisted	you	when	you	were	entering	property	names,	so	code	hinting	will	
assist	with	event	names.	In	the	following	figure,	you	see	the	clear	and	click	events	displayed	
with	the	lightning	bolt	icon	in	front	of	them,	which	designates	events.

Handling the Event with an ActionScript Function
The	code	in	the	last	example	successfully	sets	the	text	of	the	Label	object	when	the	Button	
is	clicked.	However,	a	problem	with	this	approach	soon	develops	when	you	want	to	execute	
more	than	one	line	of	ActionScript	when	the	event	occurs.	To	do	this,	you	could	place	many	
separate	chunks	of	code	inside	the	quotes	for	the	click	event,	each	separated	by	a	semicolon.	
Although	this	works,	it’s	messy	and	far	from	a	best	practice.	Also,	you	may	want	the	same	
lines	of	code	to	be	executed	when	several	different	events	occur.	In	the	approach	shown	ear-
lier,	you	would	have	to	copy	and	paste	the	same	code	into	several	places.	That	can	become	a	
nightmare	if	you	ever	need	to	edit	that	code,	as	you	now	need	to	find	and	edit	each	copy.

ptg

99Understanding Event Handling

A	better	approach	is	to	handle	the	event	in	an	ActionScript	function.	The	function	will	be	
built	in	an	<fx:Script>	block	that	simply	tells	the	Flex	compiler	that	the	code	in	the	Script	
block	is	ActionScript.	So	instead	of	placing	the	actual	ActionScript	to	be	executed	as	a	value	
for	the	click	event,	you	will	call	a	function.	Following	is	a	refactoring	of	the	earlier	code,	
using	the	best	practice	of	placing	the	code	to	be	executed	in	a	function.

<fx:Script>
 <![CDATA[
 private function clickHandler():void {
 myL.text=”Button Clicked”;
 }
]]>
</fx:Script>

<s:Label id=”myL”/>

<s:Button id=”myButton”
 label=”Click Me”
 click=”clickHandler()”/>

NoTe: The <![CDATA[]]> block inside the script block marks the section as character data.

This tells the compiler that the data in the block is character data, not well-formed XML, and

that it should not show XML errors for this block.

Now	when	the	Button	is	clicked,	the	function	clickHandler()	is	called,	and	the	string	is	writ-
ten	to	the	label.	In	this	case,	because	no	quotes	were	nested,	you	can	use	double	quotes	around	
the	string	in	the	function.

The	function	has	a	return	type	of	void.	This	means	that	the	function	will	not	return	a	value.	
It	is	a	best	practice	to	always	specify	the	return	type	of	functions	you	build,	even	if	you	use	
void	to	indicate	that	no	data	will	be	returned.	The	compiler	will	give	you	a	warning	if	you	do	
not	specify	a	return	type	on	a	function.	It	is	best	to	heed	those	warnings,	as	specifying	types	
enables	the	compiler	to	ensure	that	you	don’t	make	simple	typos,	like	assigning	a	variable	that	
is	supposed	to	contain	a	Button	to	something	that	is	supposed	to	contain	a	Number.

Passing Data When Calling the Event Handler Function
You	may	wish	to	pass	data	when	calling	the	function.	This	works	in	ActionScript	just	as	you’d	
expect.	You	place	the	data	to	pass	inside	the	parentheses	following	the	function	name,	and	
then	modify	the	event	handler	to	accept	the	parameter.	Just	as	you	will	always	specify	a	return	
type	on	your	function,	so	will	you	need	to	specify	the	type	for	any	parameter	that	the	function	
will	accept.

ptg

100 Lesson 5: Handling Events

In	the	following	code	example,	the	string	to	be	displayed	in	the	label	is	passed	to	the	
clickHandler()	when	the	button	is	clicked.

<fx:Script>
 <![CDATA[
 private function clickHandler(toDisplay:String):void {
 myL.text=toDisplay;
 }
]]>
</fx:Script>

<s:Label id=”myL”/>

<s:Button id=”myButton”
 label=”Click Me”
 click=”clickHandler(‘Value Passed’)”/>

In	this	case,	when	the	Button	is	clicked,	the	string	Value	Passed	is	sent	to	the	event	handler	
function.	The	function	accepts	the	parameter	in	the	toDisplay	variable,	which	has	a	data	type	of	
String.	The	value	stored	in	the	toDisplay	variable	is	then	displayed	in	the	label’s	text	property.

Using Data from the Event Object
So	far	you’ve	examined	a	few	different	ways	of	handling	events	but,	before	you	try	it	yourself,	
there	is	one	last	item	to	understand,	the	event object.	When	personifying	the	event	model,	we	
discussed	it	in	terms	of	a	message	being	shouted.	In	reality,	when	an	event	is	dispatched,	it	is	
more	than	just	a	message;	it’s	an	entire	object.	This	object,	referred	to	as	the	event	object,	can	
have	many	different	properties.

The	most	basic	event	in	the	Flex	world	is	the	aptly	named	Event	class.	This	is	an	ActionScript	
class	that	defines	only	the	most	basic	properties	needed	to	be	an	event.	The	most	important	
among	these	properties	are	type,	which	is	a	String	containing	the	name	of	the	event	(the	mes-
sage	being	shouted)—for	example,	click	or	creationComplete—and	the	target,	which	is	the	
component	dispatching	the	event	(your	friend	shouting).

NoTe: Target may seem like an odd name for this property. It might be more aptly named

source, as it refers to the object that broadcasts the event. This property name will make a little

more sense once you finish Lesson 11, “Creating event Classes,” and learn about event flow.

In	practice,	subclasses	of	Event	are	used	much	more	often	than	the	Event	class.	Imagine	a	
situation	in	which	you	drag	an	item	from	one	place	on	the	screen	to	another.	Knowing	that	an	
item	was	dragged,	and	to	where	it	was	dragged,	are	both	important,	but	you	would	likely	want	

ptg

101Understanding Event Handling

some	additional	information	as	well:	what	item	was	being	dragged,	for	example,	and	what	
the	x	and	y	positions	of	the	mouse	were	when	the	item	was	dropped.	To	provide	this	more	
specific	information,	Event	subclasses	and	additional	properties	are	added,	meaning	you	will	
often	interact	with	event	types	such	as	DragEvents	or	ResultEvents.	The	following	figure	from	
the	documentation	shows	how	many	other	event	classes	are	based	on,	or	subclassed	from,	the	
generic	Event	object.

Examine	the	following	code	that	sends	an	event	object,	in	this	case	a	MouseEvent	object,	to	
the	event	handler.

<fx:Script>
 <![CDATA[
 private function clickHandler(event:MouseEvent):void {
 trace(event.type);
 }
]]>
</fx:Script>

<s:Label id=”myL”/>

<s:Button id=”myButton”
 label=”Click Me”
 click=”clickHandler(event)”/>

In	the	code,	an	event	is	passed	to	the	event	handler,	and	the	word	click	will	be	displayed	in	the	
Console	view	when	the	application	is	debugged.	You	are	now	going	to	refactor	the	FlexGrocer	
application	to	use	a	function	for	the	View	Cart	buttons.

1 Open	the	FlexGrocer.mxml	file	that	you	created	in	the	previous	lesson.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson05/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

ptg

102 Lesson 5: Handling Events

2 Directly	below	the	closing	</fx:Declarations>	tag,	insert	a	new	<fx:Script>	tag	pair.	
When	you	do	so,	Flash	Builder	will	automatically	insert	a	CDATA	(character	data)	block	
for	you.	Your	code	should	look	like	the	following:
<fx:Script>
 <![CDATA[

]]>
</fx:Script>

MXML	files	are	XML	files.	Some	of	the	characters	you	are	about	to	use	when	writing	
ActionScript	code	are	not	allowed	inside	XML	directly.	The	CDATA	block	instructs	XML	
parsers	to	treat	the	data	inside	it	differently,	allowing	these	characters.	Throughout	this	
book	you	will	be	asked	to	add	functions	and	variables	inside	the	Script	tag.	You	should	
always	add	these	inside	the	CDATA	block.

3 Inside	the	Script	block	(remember	that	also	means	inside	the	CDATA	block),	add	a	new	
private	function	named	handleViewCartClick().	This	function	will	accept	a	single	argu-
ment	named	event	of	type	MouseEvent	and	return	nothing	(have	a	return	type	of	void).
private function handleViewCartClick(event:MouseEvent):void {
}

As	you	can	see,	the	first	word	in	this	function	declaration	is	private.	This	is	the	function’s	
scope.	Here	you	are	indicating	that	a	function	is	accessible	only	from	inside	this	object.	
You	are	specifying	that	a	single	argument	will	be	passed	to	this	function	and	that	argu-
ment	will	be	of	type	MouseEvent.

NoTe: You will deal more with the scope of functions later in this book. However, there isn’t

enough room in this book to cover both object-oriented programming and Flex, so if you are

uncomfortable with this or any other object-oriented concepts, please review any number of

excellent books on that topic, or read the extensive entries on Wikipedia.

4 Inside	the	handleViewCartClick()	function,	add	the	word	test.
private function handleViewCartClick(event:MouseEvent):void {
	 test
}

If	you	pause	for	just	a	moment,	you	will	see	an	orange	circle	with	a	question	mark	 ?
appear	on	the	left	border	of	your	editing	window	near	the	line	numbers.	This	is	an	indica-
tion	that	Flash	Builder	does	not	understand	the	line	of	code	you	just	entered	and	that	it	
may	be	in	error.	

ptg

103Understanding Event Handling

Flash	Builder	provides	this	feedback	continually	during	development	to	save	you	time.	
Depending	on	how	quickly	you	type,	this	orange	circle	may	appear	while	you	are	entering	
a	line	of	code;	however,	it	should	disappear	when	the	line	is	complete.

If	you	hover	over	this	circle	with	your	mouse,	Flash	Builder	will	provide	you	more	infor-
mation	that	can	be	very	useful	while	you	are	learning	Flex.

5 Delete	the	word	test	from	inside	the	handleViewCartClick()	function	and	add	
ActionScript	code	to	change	the	currentState	property	to	cartView.
private function handleViewCartClick(event:MouseEvent):void {
	 this.currentState=”cartView”;
}

6 Find	the	Button	with	the	id	of	btnCartView	inside	the	controlBarContent.	Currently	
that	Button	sets	the	currentState	directly.	Instead,	change	this	tag	so	it	now	calls	the	
handleViewCartClick()	function	and	passes	the	event	object.
<s:Button id=”btnCartView” label=”View Cart” right=”90” y=”10”
 click.State1=”handleViewCartClick(event)”/>

7 Find	the	Button	inside	the	cartGroup	with	the	label	View	Cart	that	currently	
sets	the	currentState	to	cartView	directly.	Change	this	tag	so	it	now	calls	the	
handleViewCartClick()	function	and	passes	the	event	object.
<s:Button label=”View Cart” click=”handleViewCartClick(event)”
 includeIn=”State1”/>

8 Save	the	file	and	click	Run.

As	with	all	refactoring,	the	application	should	behave	the	same	as	it	did	previously	with	
both	View	Cart	buttons	taking	the	application	to	the	cartView	state.

ptg

104 Lesson 5: Handling Events

Inspecting the Event Object
In	this	section,	you	will	use	the	debugger	to	examine	MouseEvent	properties.	Learning	to	use	
the	event	object	and	its	properties	is	one	key	to	writing	reusable	code	in	Flex.

1 Add	a	breakpoint	on	the	closing	parenthesis	of	the	handleViewCartClick()	function	by	
double-clicking	in	the	marker	bar	just	to	the	left	of	the	code	and	line	numbers.	A	small	
blue	dot	will	appear	in	the	marker	bar	indicating	where	the	program	execution	will	halt.	
You	will	be	able	to	examine	values	at	this	point.

The	debugger	is	immensely	helpful	in	understanding	what	is	happening	in	Flex.	Use	it	
often	to	get	a	sense	of	what’s	going	on	“under	the	hood”	of	the	application.

Tip: event handlers should be named consistently. For instance, in this lesson you’ve

seen a click event on two View Cart buttons handled by an event handler named

handleViewCartClick(). There is no “right” way to name event handlers, but you may wish

to pick a naming convention and stick with it. The most important point is to make them as

descriptive as possible.

2 In	the	Flash	Builder	interface,	click	the	down	arrow	next	to	the	Debug	button	and	choose	
FlexGrocer.

Tip: If you have multiple application files, such as FlexGrocer and Checkout, you can choose

the specific one you wish to run by clicking the down arrow next to the Run or Debug buttons

instead of the button itself.

ptg

105Understanding Event Handling

3 In	the	browser,	click	either	of	the	buttons	labeled	View	Cart.	In	Flash	Builder,	you	may	
be	prompted	to	use	the	Debug	perspective.	This	dialog	box	will	only	appear	if	you	did	
not	select	the	Remember Your Decision check	box	earlier.	If	prompted,	select	the	Debug	
perspective	now.

Clicking	Yes	will	switch	your	Flash	Builder	view	to	the	Debug	perspective,	which	is	opti-
mized	with	the	views	needed	to	debug	an	application.

4 Double-click	the	tab	of	the	Variables	view.	This	will	cause	the	Variables	view	to	maximize	
and	take	up	the	full	screen.

The	Variables	view	can	provide	an	immense	amount	of	information.	A	full-screen	view	
will	make	navigating	that	information	easier.

You	will	see	two	variables	displayed,	this	and	event,	as	shown	here:

Right	now,	the	this	variable	represents	the	entire	application.	When	you	learn	about	cre-
ating	your	own	components	in	future	lessons,	you	will	learn	that	this	always	represents	a	
context	that	can	change.	If	you	click	the	arrow	in	front	of	the	variable,	you	will	see	many	
properties	and	associated	values.	The	event	variable	represents	the	event	variable	local	
to	the	function	where	the	breakpoint	was	placed.	The	letter	L	in	a	circle	in	front	of	event	
indicates	it	is	a	local	variable.

5 Click	the	outline	of	the	arrow	to	the	left	of	the	event	variable	and	then	the	arrow	to	the	
left	of	the	[inherited]	set	of	properties.	Locate	the	target	property.	Notice	that	you	
clicked	a	button	to	get	here	and	that	the	target	of	this	event	is	the	Button	component	that	
broadcasts	the	event.	Also	notice	the	type	property	has	the	value	click.

ptg

106 Lesson 5: Handling Events

From	the	earlier	discussion,	neither	of	those	property	values	should	be	a	surprise.	In	
this	case,	the	values	listed	in	the	[inherited]	section	are	those	available	to	every	event	
because	they	come	from	the	superclass.	The	properties	listed	outside	that	section	are	the	
specific	properties	available	on	the	MouseEvent.	Note	that	some	of	these	properties,	such	
as	altKey	or	localX,	wouldn’t	make	sense	to	have	on	every	event	in	the	system,	but	they	
are	welcome	properties	on	a	MouseEvent.

6 Click	the	arrow	to	the	left	of	the	target,	then	click	the	arrow	to	the	left	of	the	[inherited]	
set	of	properties.	Locate	the	id	property.

This	property	will	depend	on	which	View	Cart	button	you	clicked.	If	you	clicked	the	
button	in	the	control	bar,	then	the	property’s	value	is	btnCartView,	which	is	what	you	
assigned	in	the	code.	If	you	chose	the	View	Cart	button	in	the	shopping	cart	area,	then	
you	will	see	an	assigned	id	such	as	_FlexGrocer_Button5.	If	you	wish,	repeat	the	steps	
to	view	the	id	values	for	the	other	Button.	All	UI	objects	in	Flex	have	an	id.	If	you	don’t	
assign	one,	then	Flex	will.

7 Double-click	the	Variables	tab	again	to	restore	it.	Click	the	red	box	on	either	the	Debug	
or	Console	view	to	terminate	the	debugging	session.

Don’t	forget	to	terminate	debugging	sessions.	It	is	possible	to	have	one	debugging	session	
running	alongside	another	in	certain	browsers.	You	might	want	to	do	this	in	special	cases,	
but	not	normally.

8 Return	to	the	Development	perspective	by	clicking	the	chevron	(>>)	in	the	top	right	of	
your	screen	and	then	choosing	Flash.

ptg

107Handling System Events

Tip: If you place the cursor to the left of the open Perspective icon, the sideways arrow will

appear. You can drag to the left to increase the space allotted for perspectives. You will be able

to see both the Debug and Flash perspectives and will be able to click their tabs to switch

between them.

9 Remove	the	breakpoint	on	the	closing	parenthesis	of	the	handleViewCartClick()	func-
tion	by	double-clicking	the	blue	dot	in	the	marker	bar	just	to	the	left	of	the	code	and	
line numbers.

Handling System Events
As	mentioned	earlier,	there	are	two	types	of	events	you	handle	in	Flex.	First,	there	are	user	
events,	like	the	MouseEvent	that	you	handled	in	the	previous	section.	Second,	there	are	sys-
tem	events	that	are	dispatched	by	the	Flex	framework	in	response	to	a	change	in	an	internal	
condition.	In	this	section,	you	will	see	one	of	the	most	common	system	events	related	to	
startup	and	understand	a	bit	about	its	use.

Understanding the creationComplete Event
The	creationComplete	event	is	one	of	many	useful	events	dispatched	by	Flex	components.	
This	event	is	dispatched	when	a	component	has	been	instantiated	and	knows	both	its	size	
and	position	in	the	application.	The	creationComplete	event	of	a	parent	component	is	always	
dispatched	after	all	its	children	have	dispatched	their	creationComplete	events.	In	other	
words,	if	you	have	a	Group	with	several	Buttons	inside	it,	each	of	the	Buttons	will	dispatch	its	
creationComplete	event	before	the	Group	dispatches	its	own	creationComplete	event.

Let’s	examine	the	following	code	snippet:

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 creationComplete=”addToTextArea(‘Application creationComplete’)”>

 <fx:Declarations>
 </fx:Declarations>

 <s:layout>
 <s:VerticalLayout/>
 </s:layout>

ptg

108 Lesson 5: Handling Events

 <fx:Script>
 <![CDATA[
 private function addToTextArea(eventText:String):void {
 var existingText:String = reportEvents.text;
 reportEvents.text = existingText + eventText + “\n”;
 }
]]>
 </fx:Script>

 <s:TextArea id=”reportEvents” width=”200” height=”100”/>

 <s:HGroup creationComplete=”addToTextArea(‘HGroup creationComplete’)”>
 <s:Label creationComplete=”addToTextArea(‘Label creationComplete’)”/>
 <s:Button
 creationComplete=”addToTextArea(‘Button creationComplete’)”/>
 </s:HGroup>
</s:Application>

First,	look	at	the	event	handler	named	addToTextArea.	This	event	handler	simply	accepts	
a	parameter	named	eventText	and	places	it	in	a	TextArea,	followed	by	a	return	so	the	text	
doesn’t	all	run	together.	In	each	component,	which	includes	Application,	HGroup,	Label,	and	
Button,	a	creationComplete	event	is	handled.	When	each	component	finishes	its	completion	
process,	the	event	is	dispatched	and	the	corresponding	string	is	sent	to	the	event	handler	for	
display	in	the	TextArea.

Flex	begins	creating	components	from	the	outside,	working	its	way	in.	However,	creationComplete	
means	a	component	has	been	instantiated	and	knows	both	its	size	and	position.	In	Flex,	the	size	of	
a	component	(such	as	the	HGroup)	is	often	dictated	by	the	collective	size	of	its	children.	Therefore,	
the	Label	and	Button	must	be	finished	(and	must	have	dispatched	their	creationComplete	events)	
before	the	HGroup	can	be	considered	complete	and	can	dispatch	its	own	event.

When	all	the	Application’s	children	are	created,	the	Application	dispatches	its	
creationComplete	event.

The	results	displayed	in	the	TextArea	appear	as	shown	here:

Armed	with	this	knowledge,	you	can	probably	understand	why	the	creationComplete	event	of	
the	Application	object	is	often	used	for	doing	work	such	as	modifying	or	retrieving	data.

ptg

109Handling System Events

Modifying Data on Creation Complete
Currently	your	FlexGrocer	project	uses	data	binding	to	populate	a	RichText	control	with	data	
from	an	XML	model.	Your	code	looks	like	this:

...
<fx:Model id=”groceryInventory”>
 <groceries>
 <catName>Dairy</catName>
 <prodName>Milk</prodName>
 <imageName>assets/dairy_milk.jpg</imageName>
 <cost>1.20</cost>
 <listPrice>1.99</listPrice>
 <isOrganic>true</isOrganic>
 <isLowFat>true</isLowFat>
 <description>Direct from California where cows are happiest!</description>
 </groceries>
</fx:Model>
...
<s:RichText text=”{groceryInventory.description}” width=”50%”/>
...

Flex	knows	to	automatically	populate	the	RichText	control	with	the	data	retrieved	from	
the	description	property	of	the	groceryInventory	object.	In	this	section,	you	will	use	the	
creationComplete	event	to	make	a	small	modification	to	the	description	in	ActionScript	and	
see	that	the	RichText	control	displays	the	modified	data.

1 Open	the	FlexGrocer.mxml	file	that	you	modified	in	the	previous	section.

If	you	didn’t	complete	the	previous	section,	you	can	import	FlexGrocer-
PreCreationComplete.fxp	project	from	the	Lesson05/intermediate	folder.	Please	refer	to	
the	appendix	for	complete	instructions	on	importing	a	project	should	you	skip	a	lesson	or	
if	you	have	a	code	issue	you	cannot	resolve.

2 Inside	the	Script	block,	just	below	the	existing	handleViewCartClick()	function,	add	a	
new	private	function	named	handleCreationComplete().	The	function	will	accept	a	single	
argument,	named	event	of	type	FlexEvent,	and	return	void.
private function handleCreationComplete(event:FlexEvent):void {
}

While	you	are	typing	FlexEvent,	Flash	Builder	will	try	to	provide	possible	choices	as	you	
type.	If	you	choose	one	of	the	items	on	the	pop-up	menu	(or	use	the	arrow	keys	and	press	
Enter	on	the	correct	option),	Flash	Builder	will	complete	the	name	for	you	and	perform	
one	other	very	important	step,	importing	the	class.

ptg

110 Lesson 5: Handling Events

3 If	you	choose	one	of	the	options	on	the	pop-up	menu,	Flash	Builder	adds	an	import	line	
to	the	top	of	your	Script	block.	This	line	is	an	import	statement	that	lets	Flash	Builder	
know	where	the	class	you	are	referencing	resides.	You	can	think	of	import	statements	as	
more	or	less	the	ActionScript	equivalent	of	the	namespaces	you	used	in	MXML:
import mx.events.FlexEvent;

If	you	do	not	have	this	line	in	your	file,	you	have	two	options:	You	can	place	your	cur-
sor	right	after	the	closing	t	in	FlexEvent and	press	Ctrl+Spacebar.	This	will	cause	Flash	
Builder	to	open	the	code-completion	pop-up	again.	If	there	is	only	one	matching	option,	
Flash	Builder	automatically	selects	it	and	adds	the	import	for	you.	Alternatively,	you	can	
just	type	the	import	statement	just	inside	the	Script	tag	(remember	that	also	means	inside	
the	CDATA	block).

4 Inside	this	function,	you	will	assign	the	string	“Cheese	from	America’s	Dairyland”	to	the	
description	property	of	the	groceryInventory	object.
private function handleCreationComplete(event:FlexEvent):void {
	 groceryInventory.description	=	“Cheese	from	America’s	Dairyland”;
}

This	statement	will	replace	the	original	text	of	the	description	property	with	your	new	
text	as	soon	as	the	Application	dispatches	its	creationComplete	event.

5 Inside	the	Application	tag,	you	will	instruct	Flex	to	call	the	handleCreationComplete()	
function	when	the	creationComplete	event	occurs,	passing	it	the	event	object.	Your	code	
should	read	like	this:
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 creationComplete=”handleCreationComplete(event)”>

ptg

111What You Have Learned

6 Save	and	run	the	application.

When	you	move	your	mouse	over	the	bottle	of	milk,	you	should	see	the	new	description	
appear.

In	this	simple	example,	you	have	handled	the	creationComplete	event	to	modify	data	and	
allowed	data	binding	to	provide	the	changed	data	to	the	RichText	control	for	display.

What You Have Learned
In this lesson, you have:

•	 Gained	an	understanding	of	event	handling	in	Flex	(pages	96–99)

•	 Learned	to	pass	arguments	to	an	event	handler	(pages	99–100)

•	 Refactored	the	application	to	use	an	ActionScript	event	handler	(pages	101–103)

•	 Handled	a	creationComplete	event	(pages	109–111)

ptg

Le
ss

o
n

 6 What You Will Learn
In this lesson, you will:

•	 Externalize	your	data

•	 Distinguish	embedded	and	loaded	data

•	 Create	an	HTTPService	object	that	returns	data	as	Objects

•	 Understand	security	issues	involved	with	retrieving	data	into	Flash	Player

•	 Search	XML	with	E4X	expressions

•	 Create	an	HTTPService	object	that	returns	data	as	XML

•	 Build	an	XMLListCollection	from	your	dynamic	XML

•	 Display	your	data	in	a	List

Approximate Time
This	lesson	takes	approximately	1	hour	and	30	minutes	to	complete.

ptg

113

Lesson 6

Using Remote XML Data
In this lesson, you will begin to connect the FlexGrocer application to XML data.

First, you will use a local XML file that you will embed in your application. This will demon-
strate one technique used to move your XML data into a separate file. Then you will use the
HTTPService class to load remote XML data into the Application. In this context, the word
remote means that the data is remote to the application: in other words, not embedded. The
data can exist on a remote server or in external files on the same server, but in either case the
data is transmitted through HTTP.

You will work with this XML data in several formats, including functionality from the
ECMAScript for XML (E4X) implementation that allows you to use XML as a native data type in
ActionScript (it’s built into Flash Player just like Number, Date, or String).

Controls can be populated with this data to easily display complex datasets and enable the
user to navigate the data quickly. Examples of these controls include List, ComboBox, and Tree.
You will be using the List control in this lesson.

You will use XML Data to populate the application with live data.

ptg

114 Lesson 6: Using Remote XML Data

Using Embedded XML
In	this	task,	you	will	make	two	major	changes:	externalizing	your	data	(defining	it	somewhere	
external	to	your	Application	class)	and	treating	it	as	XML	at	runtime.

Currently	the	XML	for	your	Milk	product	is	hard-coded	directly	into	the	Application	class	in	
an	<fx:Model>	tag.	Hard-coding	XML	is	extremely	convenient	when	you’re	prototyping	new	
code,	but	it	clutters	up	your	application	and	can	make	it	difficult	to	see	the	important	code	as	
new	and	different	types	of	data	are	needed.

Externalizing the Model
Your	first	task	is	to	externalize	the	data	in	your	application	and	reference	it	by	filename.

1 Open	the	FlexGrocer.mxml	file.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson06/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Make	sure	Flash	Builder	is	in	Source	view.

To	switch	between	Design	view	and	Source	view	in	Flash	Builder,	click	the	buttons	in	the	
menu	bar	near	the	top	of	the	window.

3 Expand	the	FlexGrocer	project	and	the	src	folder	inside	the	Package	Explorer.	Right-click	
the	assets	folder	and	choose	New	>	File.

ptg

115Using Embedded XML

Note: If you are using a Mac, please excuse our PC-centric use of the term right-click and use

Control-click instead.

4 Enter	inventory.xml	in	the	File	name	field.	Click	Finish.

You	will	move	the	XML	specified	in	your	Application	file	to	the	external	file	you	just	cre-
ated	(inventory.xml)	to	declutter	your	Application	code.

5 Click	the	Source	tab	on	the	bottom	of	the	inventory.xml	file.

When	the	new	inventory	file	opens	in	Flash	Builder,	it	will	open	by	default	in	a	type	of	
design	view	for	XML.	Going	to	Source	view	here	will	allow	you	to	interact	with	the	XML	
directly	as	text.

ptg

116 Lesson 6: Using Remote XML Data

6 On	the	first	line	of	the	new	file,	you	need	to	add	an	XML	document	type	declaration	that	
specifies	that	this	file	is	a	version	1.0	XML	document	encoded	with	utf-8.
<?xml version=”1.0” encoding=”utf-8”?>

This	is	the	same	declaration	used	at	the	top	of	each	of	your	MXML	files.	If	you	don’t	want	
to	type	it,	you	can	copy	it	from	the	first	line	of	the	FlexGrocer.mxml	file.

7 Copy	the	groceries	XML	node	from	within	the	Model	tag	of	your	application.	This	is	the	XML	
that	starts	with	<groceries>	and	ends	with	</groceries>,	including	both	of	those	tags.

8 Paste	that	XML	node	into	the	inventory.xml	file	directly	below	the	document	type	decla-
ration.	Your	inventory.xml	file	should	look	like	this:
<?xml version=”1.0” encoding=”utf-8”?>
<groceries>
 <catName>Dairy</catName>
 <prodName>Milk</prodName>
 <imageName>assets/dairy_milk.jpg</imageName>
 <cost>1.20</cost>
 <listPrice>1.99</listPrice>
 <isOrganic>true</isOrganic>
 <isLowFat>true</isLowFat>
 <description>Direct from California where cows are happiest!</description>
</groceries>

9 Save	the	inventory.xml	file.	You	will	now	use	this	external	file	in	place	of	the	hard-coded	
XML	in	the	application.

10 Switch	back	to	your	FlexGrocer.mxml	file	and	delete	the	groceries	XML	from	inside	the	
Model.	The	tag	should	now	be	empty.
<fx:Model id=”groceryInventory”>
</fx:Model>

11 Inside	the	Model	tag,	add	a	source	attribute	and	set	it	to	assets/inventory.xml.
<fx:Model id=”groceryInventory” source=”assets/inventory.xml”>
</fx:Model>

Specifying	the	source	here	tells	the	Model	tag	to	use	your	external	file	as	its	model.

12 Finally,	change	the	Model	tag	to	be	self-closing.	You	now	want	the	content	in	the	source	
file,	not	content	inside	the	Model	tag,	to	be	used	for	the	inventory	data.
<fx:Model id=”groceryInventory” source=”assets/inventory.xml”/>

13 Save	and	run	your	application.

The	product	description	and	information	should	work	just	as	they	did	before;	however,	
the data	is	now	coming	from	the	inventory.xml	file.

ptg

117Using Embedded XML

Choosing Between Objects and XML
When	working	in	Flex	with	XML	data,	you	have	two	choices:	Work	directly	with	the	XML	
or convert	the	XML	to	an	object,	then	use	that	object	instead	of	the	XML.

The	Model	tag	you’ve	been	working	with	so	far	does	the	latter.	It	is	using	the	XML	you	
typed into	the	inventory.xml	file	as	a	template,	from	which	it	creates	a	series	of	generic	
objects.	In	this	exercise	you’ll	see	this	structure	in	the	debugger	and	then	change	the	code	
to use	XML directly.

1 Open	the	FlexGrocer.mxml	file.

Alternatively,	if	you	didn’t	complete	the	previous	exercise	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer-PreXMLTag.fxp	project	from	the	Lesson06/
intermediate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	
project	should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Add	a	breakpoint	inside	the	handleCreationComplete()	method	by	double-clicking	in	the	
marker	bar	just	to	the	left	of	the	code	and	line	numbers.	A	small	blue	dot	will	appear	in	
the	marker	bar	indicating	where	the	program	execution	will	halt.

3 Debug	the	FlexGrocer	application.

In	Flash	Builder,	you	may	be	prompted	to	use	the	Debug	perspective.	This	dialog	box	
will	only	appear	if	you	did	not	select	the	Remember	Your	Decision	check	box	earlier.	If	
prompted,	select	the	Debug	perspective	now.	Click	Yes.	Flash	Builder	will	stop	on	the	line	
where	you	set	a	breakpoint.

4 Select	groceryInventory	and	then	right-click	it.	Choose	Create	Watch	Expression.

ptg

118 Lesson 6: Using Remote XML Data

Flash	Builder	will	add	groceryInventory	to	the	Expressions	view.	If	you	can’t	find	the	
Expressions	view,	go	to	Window	>	Expressions.

5 Expand	the	groceryInventory	object	by	clicking	the	triangle	to	the	left	of	it	in	the	
Expressions	view.	Note	that	the	item	type	is	mx.utils.ObjectProxy.

ObjectProxy	instances	are	a	special	type	of	wrapper	for	Objects.	They	effectively	enable	
Objects	to	dispatch	events,	which	is	important	for	data	binding,	as	you	will	learn	in	
future lessons.

The	Model	tag	converted	your	XML	to	Objects.	This	is	actually	its	intended	purpose,	to	pro-
vide	the	developer	with	a	quick	way	to	define	potentially	hierarchical	objects	using	XML.	
As	mentioned	previously,	this	is	one	of	two	ways	that	you	can	choose	to	deal	with	XML	in	
Flex.	The	other	is	to	leave	it	as	XML	and	manipulate	it	directly.	You	will	do	that	next.

6 Click	the	red	square	to	terminate	this	debugging	session.

7 Change	the	<fx:Model/>	tag	to	an	<fx:XML/>	tag.
<fx:XML id=”groceryInventory” source=”assets/inventory.xml”/>

ptg

119Using XML Loaded at Runtime

8 Debug	the	FlexGrocer	application	again.

Flash	Builder	will	stop	on	the	line	where	you	set	a	breakpoint.

9 The	watch	expression	you	set	for	groceryInventory	is	still	active.	So,	if	you	expand	
the	view	of	this	object	in	the	Expressions	view,	you	will	see	that	it	is	no	longer	an	
ObjectProxy,	but	now	XML.

10 Click	the	Resume	button	(the	green	Play	icon	to	the	left	of	the	red	Terminate	button),	
and your	application	will	continue	to	run	in	the	web	browser.

11 In	your	web	browser,	move	your	mouse	pointer	over	the	milk	image,	and	you	will	see	that	
the	description	appears	as	it	did	before.

The	description	still	displays	thanks	to	a	feature	of	Flash	Player	called	ECMAScript	for	
XML	(E4X).	It	allows	you	to	access	data	inside	XML	in	much	the	same	way	you	access	
other	objects,	greatly	simplifying	the	task	of	using	XML	and	making	your	existing	code	
able	to	use	either	objects	or	XML.

12 Terminate	your	debugging	session	by	clicking	the	red	Terminate	button.	Remove	your	
breakpoint	before	continuing.

Your	application	is	now	using	XML	directly	instead	of	Objects	for	this	data.	The	decision	to	
use	one	or	the	other	inside	Flex	is	a	recurring	theme,	as	you	will	see	in	the	following	exercises.

Using XML Loaded at Runtime
In	the	previous	exercise,	you	used	an	external	XML	file	both	as	an	Object	and	as	XML	to	pro-
vide	data	for	your	application.	However,	in	both	cases,	the	data	was	embedded	in	the	applica-
tion.	In	other	words,	the	data	in	your	external	inventory.xml	file	became	part	of	the	final	SWF	
file	produced	by	Flash	Builder.

If	the	data	in	your	inventory.xml	file	changes,	you	will	need	Flash	Builder	to	recompile	
your	FlexGrocer	application	before	the	changes	become	available	to	someone	running	the	

ptg

120 Lesson 6: Using Remote XML Data

application.	This	is	fine	for	demo	software	and	potentially	even	certain	pieces	of	data	that	do	
not	change	very	often	(for	example,	the	states	in	the	United	States).	However,	it	is	not	practical	
for most	cases.

In	this	section	you’ll	learn	to	load	data	from	an	external	source	using	the	HTTPService	so	that	
your	data	can	change	independent	of	your	application.

Simply	stated,	the	HTTPService	component	allows	your	application	to	use	data	it	retrieves	
at	a	given	URL.	By	default,	the	data	will	be	returned	in	an	Object	format	(as	it	was	when	you	
embedded	your	file	with	the	Model	tag).	You	can	choose	the	format	in	which	you	wish	to	use	
the	data	(for	example,	Object,	XML,	or	text).	In	this	section	you‘ll	use	the	returned	data	in	
both	the	Object	and	XML	formats.

The	general	steps	for	using	HTTPService	follow:

1. Create	an	HTTPService	object.

2. Invoke	the	send()	method	of	the	object.

3. Use	the	returned	data.

Creating an HTTPService Object
You	create	the	HTTPService	object	in	the	same	way	as	other	objects	in	MXML.	When	you	
create	the	object,	you	need	to	specify	the	URL	that	the	service	should	access,	and	potentially	
specify	a	method	that	should	be	called	when	a	result	is	retrieved.	This	is	accomplished	using	
the	result	event,	which	is	broadcast	when	data	is	successfully	returned	by	the	HTTPService	
object.	An	example	of	using	the	HTTPService	object	is	shown	here:

<s:HTTPService id=”unitData”
 url=”http://www.flexgrocer.com/units.xml”
 result=”resultHandler(event) “/>

 tip: The url property can be an HTTP URL, or even a file URL that points to a file on the file system.

Invoking the send() Method
When	you	wish	to	retrieve	data	from	a	given	URL,	you	must	send	a	request	for	that	data.	
The	HTTPService	object	contains	a	method	to	send	this	request,	named	send().	When	you	
create	the	HTTPService	and	specify	the	URL,	the	HTTPService	is	ready	to	retrieve	your	data;	
however,	it	will	not	begin	this	process	until	you	invoke	the	send()	method.	In	many	cases,	you	
will	want	to	retrieve	data	at	application	startup.	In	this	lesson,	you’ll	use	the	creationComplete	
event	of	the	Application	tag	to	retrieve	remote	data.

ptg

121Using XML Loaded at Runtime

Accessing the Returned Data
Data	retrieved	from	the	HTTPService	can	be	accessed	in	two	ways.

lastResult
The	first	is	to	access	the	data	directly	via	the	lastResult	property	of	the	named	HTTPService	
object.	To	get	to	the	data,	build	an	expression	with	the	following	elements:

•	 The	instance	name	of	the	HTTPService

•	 The	lastResult	property

•	 The	dot	path	into	the	data	you	are	trying	to	access

For	example,	in	the	next	exercise	you	have	an	HTTPService	defined	as

<s:HTTPService id=”unitRPC”
 url=”http://www.flexgrocer.com/units.xml”/>

and	it	will	retrieve	the	following	XML:

<?xml version=”1.0” encoding=”utf-8” ?>
<allUnits>
 <unit>
 <unitName>Bunch</unitName>
 <unitID>4</unitID>
 </unit>
 <unit>
 <unitName>Dozen</unitName>
 <unitID>2</unitID>
 </unit>
 <unit>
 <unitName>Each</unitName>
 <unitID>1</unitID>
 </unit>
 <unit>
 <unitName>Pound</unitName>
 <unitID>3</unitID>
 </unit>
</allUnits>

By	default,	it	will	turn	that	XML	into	a	series	of	objects.	So,	to	access	the	unit	node	data	via	
the	lastResult	property,	you	would	use	the	following	code:

unitRPC.lastResult.allUnits.unit

This	is	the	instance	name	of	the	HTTPService	(unitRPC),	followed	by	the	lastResult	property,	
followed	by	the	path	to	the	piece	of	data	you	care	about	(unit).

ptg

122 Lesson 6: Using Remote XML Data

This	method	of	accessing	the	returned	data	is	a	useful	learning	tool,	so	you	will	see	another	
example	later	in	this	lesson,	but	in	real	applications	you	will	rarely	use	this	method	because	
it can	be	clumsy	and	confusing.	In	practice,	you	will	access	the	data	via	an	event	object	inside	
an event	handler.

result
If	you’re	using	an	HTTPService	defined	as	follows,

<s:HTTPService id=”unitRPC”
 url=”http://www.flexgrocer.com/units.xml”
 result=”unitRPCResult(event)”/>

then	the	unitRPCResult()	handler	will	be	called	when	the	XML	is	successfully	retrieved.	The	
proper	method	signature	for	this	result	handler	is

private function unitRPCResult(event:ResultEvent):void{
}

You	can	access	the	unit	node	data	in	the	body	of	the	function	by	specifying

event.result.allUnits.unit

The	returned	data	is	available	in	the	result	property	of	the	event.

To	reiterate,	the	two	ways	of	accessing	data	returned	from	this	HTTPService	are		
unitRPC.lastResult,	which	can	be	used	anywhere	in	the	application,	or	event.result,		
which	can	be	used	only	inside	the	event	handler.

Being Aware of Security Issues
The	Internet	is	not	a	secure	place.	It‘s	full	of	people	“borrowing”	information	and	attempting	
to	access	content	they	have	no	right	to	view.	As	Flash	Player	and	your	application	must	live	in	
this	world,	many	security	restrictions	are	placed	on	what	Flash	Player	is	allowed	to	do	on	your	
system	and	how	it	is	allowed	to	access	data.	The	restriction	that	we	are	most	concerned	with	
in	this	section	pertains	to	loading	data	from	a	remote	server.

Flash	Player	uses	a	concept	called	sandboxes	at	the	core	of	its	security	model.	You	can	visual-
ize	this	as	a	literal	sandbox.	All	the	children	sitting	in	a	single	sandbox	are	allowed	to	interact	
and	play	with	each	other’s	toys.	However,	when	a	child	from	another	sandbox	wanders	over	to	
play	or	retrieve	a	toy,	he	is	met	with	scrutiny	and	distrust.

ptg

123Using XML Loaded at Runtime

Internally,	Flash	Player	keeps	all	the	content	from	different	domains	(mysite.com	versus	
yoursite.com)	in	different	sandboxes.	As	part	of	the	security	measures	imposed	on	these	sand-
boxes,	content	loaded	from	one	domain	is	not	allowed	to	interact	with	content	loaded	from	
another	domain.

Following	this	logic,	if	your	application	is	at	http://www.yoursite.com/yourApp.swf	and	it	
attempts	to	load	an	XML	file	at	http://www.flexgrocer.com/units.xml,	it	will	be	denied	and	a	
security	error	will	occur	as	these	two	items	exist	in	different	security	sandboxes.

The	Flash	Player	security	model	requires	the	owner	of	flexgrocer.com	to	allow	you	access	to	
that	data,	or	you	will	be	denied	by	default.	The	owner	of	that	domain	can	allow	such	access	by	
creating	a	cross-domain policy file.	This	file,	named	crossdomain.xml,	specifies	which	domains	
have	access	to	resources	from	Flash	Player.	The	file	is	placed	on	the	root	of	the	web	server	that	
contains	the	data	to	be	accessed.	Here	is	an	example	of	a	cross-domain	policy	file	that	would	
enable	your	application	on	www.yoursite.com	to	access	the	units.xml	file	on	flexgrocer.com.	
The	file	would	reside	in	the	web	server	root	of	flexgrocer.com:

<cross-domain-policy>
 <allow-access-from domain=”www.yoursite.com”/>
</cross-domain-policy>

You	can	also	use	wildcards	in	a	cross-domain	policy	file.	This	example	allows	anyone	to	
access data:

<cross-domain-policy>
 <allow-access-from domain=”*”/>
</cross-domain-policy>

 tip: Browse the URL www.flexgrocer.com/crossdomain.xml to see the cross-domain file that

allows you to retrieve data for this book. Also check www.cnn.com/crossdomain.xml to see who

Cnn allows to syndicate their content using Flash Player.

More	information	about	the	sandbox	restrictions	of	Flash	Player	is	available	in	the	tech	
note on	the	Adobe	site	at	www.adobe.com/cfusion/knowledgebase/index.cfm?id=tn_14213,	
along	with	a	complete	description	of	the	cross-domain	policy	file,	which	can	be	found	at	
www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html.

Before	deploying	a	cross-domain	security	file	like	this	on	a	server,	make	sure	you	understand	
all	the	ramifications.

http://www.yoursite.com/yourApp.swf
http://www.flexgrocer.com/units.xml
www.yoursite.com
www.flexgrocer.com/crossdomain.xml
www.cnn.com/crossdomain.xml
www.adobe.com/cfusion/knowledgebase/index.cfm?id=tn_14213
www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html

ptg

124 Lesson 6: Using Remote XML Data

Retrieving XML Data via HTTPService
In	this	exercise,	you	will	use	an	HTTPService	object	to	retrieve	data	that	contains	the	categories	
for	grocery	items—such	as	Dairy	or	Meat.	You	will	also	use	the	debugger	to	make	sure	that	the	
data	is	returned	correctly	and	will	verify	that	you	can	see	the	data	in	the	event	object.

1 Open	a	web	browser	and	go	to	the	following	URL:

http://www.flexgrocer.com/category.xml.

Notice	the	structure	of	the	XML.	This	is	the	data	you	will	retrieve	using	the	HTTPService.
<?xml version=”1.0” encoding=”utf-8” ?>
<catalog>
 <category>
 <name>Dairy</name>
 <categoryID>4</categoryID>
 </category>
 <category>
 <name>Deli</name>
 <categoryID>5</categoryID>
 </category>
 <category>
 <name>Fruit</name>
 <categoryID>3</categoryID>
 </category>
 <category>
 <name>Meat</name>
 <categoryID>1</categoryID>
 </category>
 <category>
 <name>Seafood</name>
 <categoryID>6</categoryID>
 </category>
 <category>
 <name>Vegetables</name>
 <categoryID>2</categoryID>
 </category>
</catalog>

2 Open	the	FlexGrocer.mxml	file.

Alternatively,	if	you	didn’t	complete	the	previous	exercise	or	your	code	is	not	functioning	
properly,	you	can	import	the	FlexGrocer-PreHTTPService.fxp	project	from	the	Lesson06/
intermediate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	
project	should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

http://www.flexgrocer.com/category.xml

ptg

125Retrieving XML Data via HTTPService

3 Inside	the	<fx:Declarations>	block,	directly	below	the	<fx:XML.../>	tag,		
add	an	<s:HTTPService>	tag.	Give	it	an	id	of	categoryService,	and	specify		
http://www.flexgrocer.com/category.xml	as	the	url	property.	Specify	a	result	handler	
named	handleCategoryResult	and	be	sure	to	pass	the	event	object,	as	follows:
<s:HTTPService id=”categoryService”
 url=”http://www.flexgrocer.com/category.xml”
 result=”handleCategoryResult(event)”/>

You	are	specifying	the	URL	of	the	HTTPService	to	point	to	the	XML	you	exam-
ined	in	step	1.	In	the	next	step,	you	will	write	an	event	handler	with	the	name	
handleCategoryResult(),	which	will	be	called	when	the	data	has	been	retrieved.

4 In	the	Script	block	below	the	existing	functions,	add	a	new	private	function	with	the	
name	handleCategoryResult()	that	returns	void.	The	method	will	accept	a	parameter	
named	event,	typed	as	a	ResultEvent.	At	this	point	the	function	is	empty.
private function handleCategoryResult(event:ResultEvent):void{
}

If	you	chose	ResultEvent	in	the	pop-up	list	when	you	were	typing,	or	if	you	pressed	
Enter	when	the	ResultEvent	was	selected,	then	Flash	Builder	automatically	added	an	
import statement	for	you	near	the	beginning	of	the	Script	block.	If	you	do	not	see		
import	mx.rpc.events.ResultEvent;	near	the	beginning	of	your	Script	block,	then	you	
must	add	it	manually	now.	Learning	to	use	the	code	completion	features	of	Flash	Builder	
as	soon	as	possible	will	save	you	hours	in	the	course	of	this	book	and	thousands	of	hours	
in	your	lifetime	as	a	Flex	developer.

5 Find	the	handleCreationComplete()	method	you	wrote	in	Lesson	5,	“Handling	Events.”	
This	method	is	called	when	the	creationComplete	event	of	the	application	is	dispatched.	
Presently	this	method	changes	some	data	in	the	groceryInventory	object.	Delete	the	
line that	reads
groceryInventory.description = “Cheese from America’s Dairyland”;

from	inside	your	method.	You	will	now	replace	this	with	code	to	request	data.

6 Call	the	send()	method	of	the	categoryService	object	inside	the	
handleCreationComplete()	method.	Your	method	should	read	as	follows:
private function handleCreationComplete(event:FlexEvent):void {
 categoryService.send();
}

The	categoryService	object	is	the	HTTPService	that	you	defined	in	your	declarations.	
Invoking	its	send()	method	asks	Flash	Player	to	go	out	on	the	network	and	request	the	
data	found	at	http://www.flexgrocer.com/category.xml.

http://www.flexgrocer.com/category.xml

ptg

126 Lesson 6: Using Remote XML Data

Note: This is one of the most misunderstood aspects of programming in Flex. Data retrieval is

asynchronous. Just because you called the send() method does not mean that your XML data

is ready to use. The act of calling send() starts the process of getting that data. However, just as

your web browser takes a moment to load a page, so this data will not be available and ready to

use until the result event occurs.

7 Add	a	breakpoint	on	the	closing	bracket	of	the	handleCategoryResult()	method	by	double-
clicking	in	the	marker	bar	just	to	the	left	of	the	code	and	line	numbers.	A	small	blue	dot	will	
appear	in	the	marker	bar	indicating	the	spot	where	program	execution	will	halt.

Placing	a	breakpoint	here	gives	you	the	chance	to	examine	the	data	returned	by	the	
HTTPService.

8 Debug	the	application.	Return	to	Flash	Builder	and	make	sure	you	are	in	the	Debugging	
perspective.	Double-click	the	Variables	view	tab.	Drill	down	to	the	returned	data	by	
clicking	the	plus	sign	in	front	of	event	>	result	>	catalog	>	category.	Here	you	see	the	six	
category	values	in	brackets	[0],	[1],	[2],	[3],	[4],	and	[5]	when	you	expand	them.

If	you	dig	far	enough	into	the	structure,	you	will	eventually	see	categories	such	as	Fruit,	
Meat,	and	Dairy.

9 Double-click	the	Variables	view	tab	to	return	it	to	its	normal	size.	Terminate	the	debug-
ging	session	by	clicking	the	red	Terminate	button	in	the	Debug	or	Console	view.	Finally,	
return	to	the	Development	perspective.

You	have	now	used	an	HTTPService	object	to	retrieve	data,	and	you	used	debugging	tech-
niques	to	confirm	that	it	has	been	returned	to	the	application.	Soon,	you’ll	put	the	data	to	use.

ptg

127Searching XML with E4X

Searching XML with E4X
In	this	section,	you	will	gain	some	understanding	of	working	with	XML	in	Flex.	ActionScript	
3.0	contains	native	XML	support	in	the	form	of	ECMAScript	for	XML	(E4X).	This	ECMA	
standard	is	designed	to	give	ActionScript	programmers	access	to	XML	in	a	straightforward	
way.	E4X	uses	standard	ActionScript	syntax	with	which	you	should	already	be	familiar,	plus	
some	new	functionality	specific	to	E4X.

cautioN! The XML class in Actionscript 3.0 is not the same as the XML class in Actionscript 2.0.

That class has been renamed “XMLDocument” so that it does not conflict with the XML class

now part of e4X. The old XML document class in Actionscript is not covered in this book. You

shouldn’t need to use that class except when working with legacy projects.

In	this	task	and	through	the	rest	of	this	lesson,	you	will	use	E4X	functionality.	The	new	E4X	
specification	defines	a	set	of	classes	and	functionality	for	XML	data.	These	classes	and	func-
tionality	are	known	collectively	as	E4X.

First,	for	a	very	basic,	very	quick	review	of	XML	terminology,	examine	the	XML	object	as	it	
would	be	defined	in	ActionScript:

private var groceryXML:XML = new XML();
groceryXML=
<catalog>
 <category name=”vegetables”>
 <product name=”lettuce” cost=”1.95”>
 <unit>bag</unit>
 <desc>Cleaned and bagged</desc>
 </product>
 <product name=”carrots” cost=”2.95”>
 <unit>pound</unit>
 <desc>Baby carrots, cleaned and peeled</desc>
 </product>
 </category>
 <category name=”fruit”>
 <product name=”apples” cost=”1.95”>
 <unit>each</unit>
 <desc>Sweet Fuji</desc>
 </product>
 <berries>
 <product name=”raspberries” cost=”3.95”>
 <unit>pint</unit>
 <desc>Firm and fresh</desc>
 </product>

ptg

128 Lesson 6: Using Remote XML Data

 <product name=”strawberries” cost=”2.95”>
 <unit>pint</unit>
 <desc>Deep red and juicy</desc>
 </product>
 </berries>
 </category>
</catalog>;

The	following	statements	describe	the	XML	object,	with	the	XML	terminology	italicized:

•	 The	root node	is	catalog.

•	 There	are	two	category	nodes,	or	elements;	for	our	purposes	these	will	be	synonyms.

•	 The	product	node	has	two	child	nodes	(children),	called	unit	and	desc.

•	 The	product	node	has	two	attributes,	name	and	cost.

Note: If you scrutinize the XML in more detail, you will also see a <berries> node with both

berry-related products nested inside. This is done intentionally to show the power of the e4X

operators in the examples to follow.

One	last	concept	that	you	must	understand	before	continuing	is	the	difference	between	XML	
and	an	XMLList.	Put	simply,	valid	XML	always	has	a	single	root	node.	An	XMLList	is	a	list	of	
valid	XML	nodes	without	its	own	root	node.	For	example:

<root>
 <node1/>
 <node2>
 <childNode/>
 </node2>
 <node3/>
</root>

represents	valid	XML.	Further,	each	of	the	nodes	is	a	valid	piece	of	XML	in	and	of	itself.	
Conversely,	the	following	structure:

<node1/>
<node2>
 <childNode/>
</node2>
<node3/>

does	not	have	a	single	root	node	and	is	not	valid	XML.	It	is	however,	a	list	of	valid	XML	
nodes,	and	we	refer	to	this	construct	as	an	XMLList.	This	XMLList	has	a	length	of	3	as	there	
are	three	nodes	immediately	inside	it.	Finally,	if	we	were	to	examine	the	following	XML:

<node1/>

ptg

129Searching XML with E4X

We	could	say	this	is	valid	XML,	as	it	has	a	single	root	node,	and	it	is	a	valid	XMLList	of	
length 1.	All	the	E4X	operators	you	are	about	to	learn	return	XMLLists	as	their	output	type.

Now	that	you	understand	the	basic	XML	terminology,	you	can	start	using	some	of	the	powerful	
E4X	operators.	A	small	application	has	been	written	for	you	to	test	some	of	these	operators.

1 Import	the	E4XDemo.fxp	project	from	Lesson06/independent	folder	into	Flash	Builder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project.

A	new	project	will	appear	in	Flash	Builder.

2 Inside	the	new	project,	open	the	E4XDemo.mxml	file.

3 Run	the	E4XDemo	application.

On	the	top	left	you	see	the	XML	shown	earlier	in	this	lesson.	This	application	allows	you	
to	search	that	XML	by	entering	an	E4X	expression	into	the	text	input	on	the	bottom	left	
and	clicking	the	Apply	e4x	Expression	button.	The	right	side	will	display	the	resulting	
XMLList	from	that	operation	in	two	forms,	as	a	tree	of	data	on	the	top	and	as	a	formatted	
string	on	the	bottom.

4 Click	the	Apply	e4x	Expression	button	to	apply	the	default	expression	category.product.

Note: In e4X expressions, the root node (in this case catalog) is part of the document and not

used in statements.

ptg

130 Lesson 6: Using Remote XML Data

This	expression	uses	the	dot	(.)	operator.	This	is	one	way	to	access	data	in	the	XML	docu-
ment.	The	dot	operator	behaves	much	like	the	dot	in	object.property	notation	with	
which	you	are	familiar.	You	use	the	dot	operator	to	navigate	to	child	nodes.	The	expres-
sion	yields	the	following	results:
<product name=”lettuce” cost=”1.95”>
 <unit>bag</unit>
 <desc>Cleaned and bagged</desc>
</product>
<product name=”carrots” cost=”2.95”>
 <unit>pound</unit>
 <desc>Baby carrots, cleaned and peeled</desc>
</product>
<product name=”apples” cost=”1.95”>
 <unit>each</unit>
 <desc>Sweet Fuji</desc>
</product>

In	this	case,	the	expression	category.product	indicates	that	you	want	all	product	nodes	
that	are	directly	under	category	nodes.	What	was	returned	is	an	XMLList.	Notice	that	the	
products	that	are	children	of	the	berries	node	did	not	appear.

ptg

131Searching XML with E4X

5 Now	enter	the	expression	category.product.unit	and	click	the	button	to	apply	it.

Here	the	dot	operator	again	navigates	the	XML	and	returns	the	unit	node	for	the	three	
products	retrieved	in	step	4.
<unit>bag</unit>
<unit>pound</unit>
<unit>each</unit>

6 Enter	category.product[1]	and	apply	the	expression.	This	demonstrates	that	you	can	apply	
array	notation	in	E4X.	Here	you	get	the	second	product	because	the	list	is	zero	indexed.
<product name=”carrots” cost=”2.95”>
 <unit>pound</unit>
 <desc>Baby carrots, cleaned and peeled</desc>
</product>

This	again	shows	that	E4X	lets	you	use	familiar	notation	to	work	with	XML.	In	previous	
versions	of	ActionScript,	you	had	to	use	specific	methods	to	access	data	in	XML.

7 Enter	category.product.(unit==”bag”)	and	apply	the	expression.	This	limits	the	
returned	products	to	those	whose	unit	node	is	bag.	You’ve	limited	the	data	returned	by	
putting	a	filter	in	the	expression.	
<product name=”lettuce” cost=”1.95”>
 <unit>bag</unit>
 <desc>Cleaned and bagged</desc>
</product>

The	parentheses	implement	what	is	referred	to	as	predicate filtering.	

8 Enter	category.product.(@cost==”1.95”)	and	apply	the	expression.	Two	product	nodes	
are	returned.
<product name=”lettuce” cost=”1.95”>
 <unit>bag</unit>
 <desc>Cleaned and bagged</desc>
</product>
<product name=”apples” cost=”1.95”>
 <unit>each</unit>
 <desc>Sweet Fuji</desc>
</product>

You	have	now	performed	predicate	filtering	on	an	attribute—hence	the	use	of	the	attri-
bute	operator	(@)	in	the	parentheses	(@cost==”1.95”).	Also	notice	that	if	multiple	nodes	
match	the	filter,	you	simply	get	multiple	nodes	returned—in	this	case	both	the	lettuce	and	
apples	products.

ptg

132 Lesson 6: Using Remote XML Data

9 Enter	category.product.(@cost==”1.95”).(unit==”each”)	and	apply	the	expression.	
This	expression	demonstrates	that	you	can	apply	predicate	filtering	multiple	times.	This	
results	in	only	one	product	being	returned.
<product name=”apples” cost=”1.95”>
 <unit>each</unit>
 <desc>Sweet Fuji</desc>
</product>

10 Finally,	to	see	the	berry	products	get	involved,	enter	category..product	as	the	expression.	
You	see	that	all	products	are	returned,	regardless	of	where	they	are	in	the	XML.
<product name=”lettuce” cost=”1.95”>
 <unit>bag</unit>
 <desc>Cleaned and bagged</desc>
</product>
<product name=”carrots” cost=”2.95”>
 <unit>pound</unit>
 <desc>Baby carrots, cleaned and peeled</desc>
</product>
<product name=”apples” cost=”1.95”>
 <unit>each</unit>
 <desc>Sweet Fuji</desc>
</product>
<product name=”raspberries” cost=”3.95”>
 <unit>pint</unit>
 <desc>Firm and fresh</desc>
</product>
<product name=”strawberries” cost=”2.95”>
 <unit>pint</unit>
 <desc>Deep red and juicy</desc>
</product>

This	is	an	example	of	the	very	powerful	descendant operator,	represented	by	two	dots	(..).	
This	operator	navigates	to	the	descendant	nodes	of	an	XML	object,	no	matter	how	com-
plex	the	XML’s	structure,	and	retrieves	the	matching	nodes.	In	this	case	the	descendant	
operator	searched	through	the	entire	XML	object	and	returned	all	the	product	nodes.

11 Enter	category..product.(@cost>2)	and	apply	the	expression.	This	combines	two	opera-
tors	and	returns	three	products.
<product name=”carrots” cost=”2.95”>
 <unit>pound</unit>
 <desc>Baby carrots, cleaned and peeled</desc>
</product>
<product name=”raspberries” cost=”3.95”>
 <unit>pint</unit>
 <desc>Firm and fresh</desc>

ptg

133Using Dynamic XML Data

</product>
<product name=”strawberries” cost=”2.95”>
 <unit>pint</unit>
 <desc>Deep red and juicy</desc>
</product>

Here	both	predicate	filtering	and	the	descendant	accessor	are	in	use.	E4X	searched	all	the	
XML,	regardless	of	position,	and	found	three	matches.

12 Close	the	E4XDemo	project	by	right-clicking	the	project	name	and	choosing	Close	Project.

You	have	now	seen	a	slice	of	the	very	powerful	E4X	implementation	in	ActionScript	3.0.	For	
more	information,	see	“Working	with	XML”	in	the	Programming ActionScript 3.0	documenta-
tion	that	comes	with	Flex.

You	can	now	return	to	the	FlexGrocer	project	and	begin	working	with	dynamic	XML.

Using Dynamic XML Data
As	a	Flex	developer,	you’ll	have	the	opportunity	to	work	with	both	XML	and	Objects.	Over	
time	you’ll	decide	which	works	better	for	your	project	in	a	specific	situation.	Starting	with	the	
next	lesson	and	through	the	remainder	of	the	book	you	will	convert	your	XML	to	strongly	
typed	objects,	that	is,	objects	with	properties	and	methods	defined	well	before	the	application	
executes.	For	the	remainder	of	this	lesson,	however,	you	are	going	to	work	strictly	with	XML	
to	display	a	list	of	categories.

While	the	techniques	in	this	book	are	often	presented	in	an	improving	fashion,	meaning	that	
those	later	in	the	book	are	often	more-functional	refactorings	of	earlier	work,	that	is	not	the	
case	with	XML	and	Objects.	These	are	simply	two	different	techniques,	each	with	advantages	
and	disadvantages,	that	can	be	used	to	solve	a	problem.

As	you	saw	in	the	previous	exercise,	XML	is	a	quick	and	flexible	way	to	present	data.	E4X	
expressions	allow	it	to	be	searched	and	manipulated	extremely	quickly,	and	this	makes	it	
very powerful.

However,	as	you	will	no	doubt	discover,	an	application	can	fail	due	to	a	simple	typographical	
error,	something	that	typed	objects	can	resolve	at	the	expense	of	flexibility.

Currently	the	HTTPService	tag	in	your	FlexGrocer	application	is	defaulting	to	returning	
dynamic	Objects	instead	of	XML	when	retrieving	data.	You	are	going	to	modify	this	property	
as	well	as	store	the	returned	data	in	an	XMLListCollection	for	future	use.

ptg

134 Lesson 6: Using Remote XML Data

You	will	be	working	with	the	data	retrieved	from	http://www.flexgrocer.com/category.xml.	
The	structure	of	that	XML	file	is	listed	here	for	your	reference	in	this	exercise.

<?xml version=”1.0” encoding=”utf-8” ?>
<catalog>
 <category>
 <name>Dairy</name>
 <categoryID>4</categoryID>
 </category>
 <category>
 <name>Deli</name>
 <categoryID>5</categoryID>
 </category>
 <category>
 <name>Fruit</name>
 <categoryID>3</categoryID>
 </category>
 <category>
 <name>Meat</name>
 <categoryID>1</categoryID>
 </category>
 <category>
 <name>Seafood</name>
 <categoryID>6</categoryID>
 </category>
 <category>
 <name>Vegetables</name>
 <categoryID>2</categoryID>
 </category>
</catalog>

1 Open	the	FlexGrocer.mxml	file.

Alternatively,	if	you	didn’t	complete	the	previous	exercise	or	your	code	is	not	functioning	
properly,	you	can	import	the	FlexGrocer-PreXMLCollection.fxp	project	from	the	Lesson06/
intermediate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	
project	should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Inside	the	<fx:Declarations>	block,	find	the	<s:HTTPService>	tag.	Add	a	new	property	to	
this	tag	named	resultFormat	and	specify	the	value	as	e4x.
<s:HTTPService id=”categoryService”
 url=”http://www.flexgrocer.com/category.xml”
 resultFormat=”e4x”
 result=”handleCategoryResult(event)”/>

The	resultFormat	property	tells	the	HTTPService	how	it	should	provide	any	data	
retrieved	from	this	request.	By	default	it	returns	data	as	dynamic	Objects	wrapped	in	

http://www.flexgrocer.com/category.xml

ptg

135Using Dynamic XML Data

ObjectProxy	instances.	Changing	this	format	to	e4x	instead	provides	you	with	XML	that	
you	can	manipulate	using	E4X	operators.

3 Make	sure	that	you	have	a	breakpoint	set	on	the	closing	bracket	of	the	
handleCategoryResult()	method.

4 Debug	the	application.	Return	to	Flash	Builder	and	make	sure	you	are	in	the	Debugging	
perspective.	Double-click	the	Variables	view	tab.	Drill	down	to	the	returned	data	by	click-
ing	the	plus	sign	in	front	of	event	>	result	>	catalog.	Here	you	see	the	six	category	values	
all	represented	as	XML.	Expanding	any	of	these	nodes	will	provide	you	with	more	detail.

5 Double-click	the	Variables	view	tab	to	return	it	to	its	normal	size.	Terminate	the	debug-
ging	session	by	clicking	the	red	Terminate	button	in	the	Debug	or	Console	view.	Finally,	
return	to	the	Development	perspective.

6 Near	the	top	of	your	Script	block,	just	under	the	import	statements,	add	a	new	private	
variable	named	categories	of	type	XMLListCollection.	If	you	used	code	completion,	
Flash	Builder	has	already	imported	the	XMLListCollection	for	you.	If	you	did	not,	then	
add	an	import	for	mx.collections.XMLListCollection	before	continuing.

XMLListCollection	is	a	special	class	that	holds	and	organizes	XMLLists.	It	allows	for	
those	XMLLists	to	be	sorted	and	filtered.	You’ll	learn	about	collections	in	the	next	lesson.

7 Directly	above	the	variable	you	just	created,	you	are	going	to	add	a	metadata	tag	to	indi-
cate	that	the	variable	is	bindable.	Type	[Bindable]	directly	above	the	variable	definition.
[Bindable]
private var categories:XMLListCollection;

ptg

136 Lesson 6: Using Remote XML Data

The	Bindable	metadata	tag	tells	Flex	to	watch	this	particular	collection	for	changes.	In	the	
event	of	a	change,	the	Flex	framework	should	notify	everyone	using	this	data	so	they	can	
update	and	refresh	their	display.	You‘ll	continue	to	learn	about	this	powerful	feature	as	
you	progress	through	the	book.

8 Inside	the	handleCategoryResult()	method,	you	need	to	instantiate	a	new	
XMLListCollection	and	assign	it	to	the	categories	variable	you	just	created.
private function handleCategoryResult(event:ResultEvent):void {
	 categories	=	new	XMLListCollection();
}

After	this	line	of	code	executes,	the	categories	variable	will	contain	a	new	
XMLListCollection.	However,	that	collection	does	not	yet	contain	your	data.

9 Pass	the	E4X	expression	event.result.category	into	the	constructor	of	the	
XMLListCollection.
private function handleCategoryResult(event:ResultEvent):void {
 categories = new XMLListCollection(event.result.category);
}

This	expression	will	return	all	the	categories	immediately	inside	the	XML	returned	from	
the	HTTPService	call.	By	passing	this	to	an	XMLListCollection	constructor,	you	are	pro-
viding	a	way	to	further	manage	this	data	at	runtime.

10 Make	sure	you	have	a	breakpoint	set	on	the	closing	bracket	of	the	
handleCategoryResult()	method.

11 Debug	the	application.	Return	to	Flash	Builder	and	make	sure	you	are	in	the	Debugging	
perspective.

12 Select	the	word	categories	and	then	right-click	it.	Choose	Create	Watch	Expression.

Flash	Builder	will	add	categories	to	the	Expressions	view.	If	you	cannot	find	the	
Expressions	view,	go	to	Window	>	Expressions.

13 Expand	the	categories	object	by	clicking	the	triangle	to	the	left	of	it	in	the	Expressions	view.

ptg

137Using the XMLListCollection in a Flex Control

The	Expressions	view	says	that	the	type	of	item	is	an	mx.collections.XMLListCollection.	
Inside	the	XMLListCollection,	you’ll	find	items	denoted	by	array	syntax.	Expanding	these	
items	will	reveal	each	of	your	categories.

14 Remove	all	the	items	from	the	Expressions	view	by	clicking	the	Remove	All	Expressions	
button	(the	double	X)	to	the	right	of	the	word	Expressions.

tip: At any time, you may remove all the items from the expressions view by clicking the

double X or just a single item by highlighting it and clicking the X.

15 Terminate	your	debugging	session	by	clicking	the	red	Terminate	button	and	remove	your	
breakpoint	before	continuing.

Using the XMLListCollection in a Flex Control
Your	application	now	retrieves	data	from	an	HTTPService	and	stores	it	as	an	
XMLListCollection.	However,	presently	the	only	way	to	ensure	that	the	application	is	working	
is	to	use	the	debugger.	In	this	exercise	you	will	display	the	category	data	in	a	horizontal	list	
across	the	top	of	the	application.

1 Open	the	FlexGrocer.mxml	file.

Alternatively,	if	you	didn’t	complete	the	previous	exercise	or	your	code	is	not	functioning	
properly,	you	can	import	the	FlexGrocer-PreList.fxp	project	from	the	Lesson06/interme-
diate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	
should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Add	an	<s:List>	control	inside	the	controlBarContent	section	of	your	Application.	You	
can	add	this	immediately	after	the	existing	Buttons.
<s:controlBarContent>
 <s:Button id=”btnCheckout” label=”Checkout” right=”10” y=”10”/>
 <s:Button id=”btnCartView” label=”View Cart” right=”90” y=”10” click.
State1=”handleViewCartClick(event)”/>
 <s:Button label=”Flex Grocer” x=”5” y=”5”/>
	 <s:List>
	 </s:List>
</s:controlBarContent>

3 Specify	that	the	List	will	remain	200	pixels	from	the	left	side	of	the	controlBar	and	will	
have	a	height	of	40	pixels.
<s:List left=”200”	height=”40”>
</s:List>

ptg

138 Lesson 6: Using Remote XML Data

4 Specify	that	the	List	will	use	a	HorizontalLayout.
<s:List left=”200” height=”40”>
 <s:layout>
	 	 <s:HorizontalLayout/>
	 </s:layout>
</s:List>

Previously	you	used	horizontal	and	vertical	layouts	for	groups,	but	List	classes	can	also	
use	these	same	layout	objects	to	determine	how	their	children	should	be	arranged.

5 Now	indicate	that	the	dataProvider	property	of	the	List	instance	should	be	bound	to	the	
categories	variable	you	defined	and	populated	earlier.
<s:List left=”200” height=”40” dataProvider=”{categories}”>
 <s:layout>
 <s:HorizontalLayout/>
 </s:layout>
</s:List>

This	syntax	tells	the	Flex	framework	that,	in	the	event	the	categories	property	changes,	
the	list	will	need	to	be	provided	with	the	new	value	so	that	it	can	react.	You	will	work	
extensively	with	List	and	dataProvider	in	future	lessons.

6 Save	and	run	the	application.

Your	new	list	runs	across	the	top	of	the	page,	with	the	elements	arranged	horizontally.	
Unfortunately,	instead	of	displaying	category	names,	you	are	now	displaying	the	XML	
associated	with	the	category.	Notice	that	the	data	you	really	want	displayed	is	in	the	
<name/>	node	of	the	category	XML.

7 Return	to	the	FlexGrocer	application	and	add	a	new	property	to	your	List	called	
labelField.	Set	this	property	equal	to	name.
<s:List left=”200” height=”40” dataProvider=”{categories}” labelField=”name”>
 <s:layout>
 <s:HorizontalLayout/>
 </s:layout>
</s:List>

ptg

139What You Have Learned

The	labelField	property	tells	the	list	which	field	(property)	inside	your	data	to	use	as	the	
label	for	the	list	item.

8 Save	and	run	the	application.

You	now	have	a	much	more	reasonable-looking	list	of	category	names	that	you	will	continue	
to	use	in	the	next	lessons.

What You Have Learned
In this lesson, you have:

•	 Externalized	your	data	as	an	XML	file	(pages	114–116)

•	 Used	the	external	data	first	as	an	object	and	then	as	XML	(pages	117–119)

•	 Used	XML	loaded	at	runtime	(pages	119–123)

•	 Loaded	remote	XML	data	(pages	124–126)

•	 Learned	about	security	sandboxes	with	remote	data	(pages	122–126)

•	 Explored	E4X	operators	(pages	127–133)

•	 Used	an	XMLListCollection	with	your	XML	data	(pages	134–137)

•	 Displayed	your	remote	data	in	a	Flex	List	(pages	137–139)

ptg

Le
ss

o
n

 7 What You Will Learn
In this lesson, you will:

•	 Create	an	ActionScript	class	to	use	as	a	value	object

•	 Create	ActionScript	classes	for	a	shopping	cart

•	 Add	functionality	to	the	ShoppingCart	and	ShoppingCartItem	classes

Approximate Time
This	lesson	takes	approximately	1	hour	and	30	minutes	to	complete.

ptg

141

Lesson 7

Creating Classes
Objects are the core of any object-oriented language. So far you have used classes provided
for you by Adobe; however, to accomplish anything of even marginal complexity in Flex, you
need to be comfortable creating your own. Objects are the realization of classes. Another way
to state this is that a class is a blueprint for an object that will be created. In this lesson, you will
first create several classes and then use them throughout the application.

The finished Product data structure built in ActionScript 3.0 and integrated into the application

ptg

142 Lesson 7: Creating Classes

Building a Custom ActionScript Class
As	mentioned	at	the	end	of	Lesson	2,	“Getting	Started,”	this	book	does	not	aspire	to	teach	
object-oriented	programming	(OOP),	but	every	Flex	developer	needs	at	least	a	working	
knowledge	of	OOP	terminology.	So	if	you’re	not	familiar	with	terms	like	class,	object,	property,	
and	method,	now	is	a	good	time	to	take	advantage	of	the	hundreds,	if	not	thousands,	of	OOP	
introductions	around	the	web	and	in	books.

You	have	already	been	building	custom	ActionScript	classes	in	this	book	but	may	not	have	
been	aware	of	it	because	Flex	initially	hides	this	fact	from	you.	When	you	build	an	applica-
tion	in	MXML,	you’re	actually	creating	a	new	ActionScript	class.	Your	MXML	is	combined	
with	the	ActionScript	in	the	Script	block,	and	a	pure	ActionScript	class	is	created,	which	is	
then	compiled	into	a	SWF	file	for	Flash	Player.	In	the	previous	exercise,	when	you	compiled	
FlexGrocer.mxml,	a	file	named	FlexGrocer-generated.as	was	created	behind	the	scenes	that	
contained	the	following	code:

public class FlexGrocer extends spark.components.Application

You	extended	the	Application	class	when	you	built	FlexGrocer.mxml	and	Checkout.mxml.	
The	same	is	true	for	every	application	you	create	using	Flex.

Tip: If you wish to see the Actionscript created, you can add a compiler argument in Flash

Builder. navigate to Project > Properties > Flex Compiler > Additional compiler arguments,

and add -keep-generated-actionscript to the end of the existing arguments. A folder named

bin-debug/generated will be created automatically in your project, and many Actionscript files

will be placed there. Your application files will be in the form name-generated.as. Don’t forget

to remove the compiler argument when you’ve finished exploring.

In	the	first	exercise	of	this	lesson,	you	will	build	a	class	directly	in	ActionScript,	without	rely-
ing	on	Flex	to	convert	MXML	into	ActionScript.	Ultimately,	this	will	give	you	much	more	
granular	control	over	your	final	code	and	encourage	code	reuse.

ptg

143Building a Value Object

Building a Value Object
Value objects,	also	called	data	transfer	objects	(DTOs),	or	just	transfer	objects,	are	objects	
intended	to	hold	data.	Unlike	other	objects	you’ve	used	so	far,	such	as	Labels	and	DataGrids,	
value	objects	are	free	from	any	logic	other	than	storing	and	retrieving	their	data.	These	objects	
are	implemented	as	ActionScript	classes.

The	name	data transfer object	comes	from	the	fact	that	DTOs	are	often	used	for	data	trans-
fer	to	the	back	end	(server)	of	an	application,	often	for	permanent	storage	in	a	database.	In	
this	lesson,	you	will	build	a	value	object	for	a	grocery	product,	along	with	objects	for	both	a	
ShoppingCart	and	a	ShoppingCartItem.

Before	you	get	started,	you	need	to	understand	the	basics	of	building	an	ActionScript	class.	
A very	simple	class	is	shown	here,	and	labeled	for	discussion:

A
B
C

D

E

On	line	A,	the	package	represents	the	path	where	the	class	is	stored.	In	this	example,	you	know	
the	file	is	stored	in	a	valueObjects.grocery	package.	On	your	hard	drive,	this	means	that	the	
ActionScript	file	is	stored	in	the	valueObjects/grocery	directory	under	your	project.

On	line	B,	the	class	is	named	Fruit.	This	is	the	name	used	to	represent	the	class	throughout	an	
application	(much	like	DataGrid	or	Label),	and	it	must	correspond	to	the	name	of	the	file.	The	
Fruit	class	will	be	stored	in	a	Fruit.as	file	on	your	drive.

On	line	C,	the	properties	of	the	class	are	declared.	This	particular	class	has	only	a	single	public	
property,	named	productName,	of	type	String.	Multiple	properties	may	be	declared	for	any	class.

Line	D	contains	the	constructor	of	the	class.	The	constructor	is	called	when	a	new	object	is	
instantiated	from	the	class.	The	name	of	the	constructor	function	must	match	the	name	of	the	
class,	which	must	match	the	name	of	the	file.	This	function	must	be	public,	and	it	cannot	have	
a	return	type	listed.

In	line	E,	the	methods	of	the	class	are	defined.	This	particular	class	has	only	a	single	method	
named	toString(),	but	multiple	methods	may	be	declared.

ptg

144 Lesson 7: Creating Classes

NoTe: The terms method and function will often be used synonymously throughout the book.

A function is a block of code that needs to be executed at some point in your application.

A method is a function that belongs to a particular class, like the Fruit class here. In Flex it’s

possible to create functions and methods; however, every function you create in this book can

also appropriately be called a method.

Throughout	the	FlexGrocer	application,	you	will	need	to	display	and	manage	typed	data	and	
send	this	data	to	different	objects	in	the	application.	In	this	exercise,	you’ll	build	a	value	object	
to	hold	information	about	a	grocery	product.

1 Open	the	FlexGrocer.mxml	file	that	you	used	in	the	previous	exercise.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson07/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Create	a	new	ActionScript	class	file	by	choosing	File	>	New	>	ActionScript	class.	

3 Set	the	Package	to	valueObjects	and	the	class	Name	to	Product.	Leave	all	other	fields	
with	the	defaults.	Click Finish	to	create	the	file.

ptg

145Building a Value Object

First,	this	process	created	a	package	named	valueObjects	that	you	can	now	see	in	your	
Package	Explorer.	Next,	it	created	a	file	named	Product.as	on	your	behalf.	Finally,	it	
populated	that	file	with	the	required	code	for	an	ActionScript	class.

Within	the	code,	the	words	package	and	class	are	both	keywords	used	in	defining	this	
class.	Remember	that	this	class	will	be	a	blueprint	for	many	objects	that	you	will	use	later	
to	describe	each	grocery	product.

4 In	the	Product.as	file	you	need	to	add	a	[Bindable]	metadata	tag	on	the	line	between	the	
package	definition	and	the	class	statement.
package valueObjects {
	 [Bindable]
 public class Product {
 public function Product() {
 }
 }
}

The	[Bindable]	metadata	tag,	when	specified	before	the	line	with	the	class	keyword,	means	
that	every	property	in	this	class	can	be	used	in	data	binding	(that	is,	it	can	be	monitored	for	
updates	by	various	Flex	controls).	Instead	of	specifying	the	whole	class	as	[Bindable],	you	can	
specify	individual	properties	by	locating	the	[Bindable]	metadata	tag	over	each	property.	For	
this	application,	you	want	every	property	in	this	class	to	be	bindable.

ptg

146 Lesson 7: Creating Classes

5 Inside	the	Product	class	definition,	add	a	public	property	with	the	name	catID	and	the	
type	Number.
package valueObjects {
 [Bindable]
 public class Product {
 public var catID:Number;

	 	 public	function	Product()	{
 }
 }
}

All	properties	of	a	class	must	be	specified	inside	the	class	definition	in	ActionScript.

NoTe: If you were to type only catID, without anything else, you would see a question mark

appear in an orange circle, indicating that it’s not clear what you intended. Whenever you see

that question mark in an orange circle ? , you can press Control-1 on that line of code, which

will launch the quick fix tool, offering potential solutions. on this line of code, clicking Control-1

will offer you the option to create an instance variable from that line of code.

Choosing the option will add private var before the catID, and a datatype of Object. In this

case, we want catID to be public, and datatyped as a Number, so it is less work to type it as

originally intended, rather than use the quick fix feature.

6 Create	additional	public	properties	with	the	names	prodName	(String),	unitID	(Number),	
cost	(Number),	listPrice	(Number),	description	(String),	isOrganic	(Boolean),	
isLowFat	(Boolean),	and	imageName	(String).	Your	class	should	appear	as	follows:
package valueObjects {
 [Bindable]
 public class Product {
	 	 public	var	catID:Number;
	 	 public	var	prodName:String;
	 	 public	var	unitID:Number;
	 	 public	var	cost:Number;
	 	 public	var	listPrice:Number;
	 	 public	var	description:String;
	 	 public	var	isOrganic:Boolean;
	 	 public	var	isLowFat:Boolean;

ptg

147Building a Value Object

	 	 public	var	imageName:String;

 public function Product() {
 }
 }
}

You	are	creating	a	data	structure	to	store	inventory	information	for	the	grocery	store.	
You have	now	created	all	the	properties	that	will	be	used	in	the	class.

When	you	created	this	class,	Flash	Builder	created	a	default	constructor	on	your	behalf.

7 Edit	this	constructor	to	specify	the	parameters	that	need	to	be	provided	when	a	new	
instance	of	the	Product	class	is	created.	These	parameters	will	match	the	names	and	types	
of	the	properties	you	defined	in	the	last	step.
public function Product(catID:Number,	prodName:String,	unitID:Number,		
➥ cost:Number,	listPrice:Number,	description:String,	isOrganic:Boolean,		
➥ isLowFat:Boolean,	imageName:String) {
}

The	constructor	function	is	called	when	an	object	is	created	from	a	class.	You	create	an	
object	from	a	class	by	using	the	new	keyword	and	passing	the	class	arguments.	In	this	case	
the	parameter	names	match	the	property	names	of	the	class.	This	was	done	to	keep	things	
clear,	but	is	not	necessary.

NoTe: Two words are often used in discussions of methods: parameter and argument. They are

often used interchangeably, but technically, functions are defined with parameters, and the

values you pass are called arguments. so a function is defined to accept two parameters, but

when you call it, you pass two arguments.

8 Inside	the	constructor,	set	each	property	of	your	object	to	the	corresponding	constructor	
parameter.	When	you	are	referring	to	the	property	of	the	class,	you	use	the	this	keyword	
to	avoid	name collision	(when	the	same	name	can	refer	to	two	separate	variables).
\public function Product(catID:Number, prodName:String, unitID:Number,
➥ cost:Number, listPrice:Number, description:String, isOrganic:Boolean,
➥ isLowFat:Boolean, imageName:String) {
	 this.catID	=	catID;
	 this.prodName	=	prodName;
	 this.unitID	=	unitID;
	 this.cost	=	cost;
	 this.listPrice	=	listPrice;
	 this.description	=	description;
	 this.isOrganic	=	isOrganic;
	 this.isLowFat	=	isLowFat;
	 this.imageName	=	imageName;
}

ptg

148 Lesson 7: Creating Classes

This	code	will	set	each	property	of	the	object	to	the	corresponding	argument	passed	to	
the	constructor.	The	first	line	of	the	constructor	reads:	“Set	the	catID	property	of	this	
object	to	the	value	that	was	passed	to	the	catID	parameter	of	the	constructor.”

Tip: You could name the constructor parameters differently from the properties (for example,

categoryID instead of catID). In that case, each property listed to the left of the equals sign

could have done without the this. prefix (for example, catID = categoryID;). The prefix is

added when you wish to be specific when referencing a property. The this prefix refers to the

class itself and is implicit when there is no possibility of name collision.

9 Create	a	new	method	directly	below	the	constructor	function	with	the	name	toString()	
and	the	return	type	String.	It	will	return	the	string	[Product]	and	the	name	of	the	prod-
uct.	Your	class	should	read	as	follows:
package valueObjects {
 [Bindable]
 public class Product {
 public var catID:Number;
 public var prodName:String;
 public var unitID:Number;
 public var cost:Number;
 public var listPrice:Number;
 public var description:String;
 public var isOrganic:Boolean;
 public var isLowFat:Boolean;
 public var imageName:String;

 public function Product(catID:Number, prodName:String,
 unitID:Number, cost:Number, listPrice:Number,
 description:String, isOrganic:Boolean, isLowFat:Boolean,
 imageName:String) {
 this.catID = catID;
 this.prodName = prodName;
 this.unitID = unitID;
 this.cost = cost;
 this.listPrice = listPrice;
 this.description = description;
 this.isOrganic = isOrganic;
 this.isLowFat = isLowFat;
 this.imageName = imageName;
 }

	 	 public	function	toString():String	{
	 	 	 return	“[Product]”	+	this.prodName;
 }
 }
}

ptg

149Building a Value Object

toString()	is	a	special	method	of	objects	in	ActionScript.	Whenever	you	use	an	instance	of	
your	Product	in	a	place	where	Flex	needs	to	display	a	String,	this	method	will	be	automati-
cally	invoked	by	Flash	Player.	A	good	example	of	this	concept	is	the	trace()	method,	which	
can	be	used	to	output	data	to	the	console.	Running	the	code	trace	(someProduct)	would	
call	the	toString()	method	of	that	Product	instance	and	output	the	string	it	returns	to	the	
Console	view.	This	can	be	very	useful	for	debugging	and	displaying	data	structures.

10 Return	to	the	FlexGrocer.mxml	file	and	locate	the	Script	block	at	the	top	of	the	page.	
Inside	the	Script	block,	declare	a	private	variable	named	theProduct	typed	as	a	Product.	
Add	a	[Bindable]	metadata	tag	above	this	single	property.
[Bindable]
private var theProduct:Product;

If	you	used	code	completion,	Flash	Builder	imported	the	Product	class	for	you.	If	you	did	
not,	then	add	import	valueObjects.Product;	before	continuing.

All	MXML	files	ultimately	compile	to	an	ActionScript	class.	You	must	follow	the	same	
conventions	when	creating	an	MXML	class	as	when	creating	an	ActionScript	class.	For	
example,	you	must	import	any	classes	that	are	not	native	to	the	ActionScript	language,	
such	as	the	Product	class	you	have	built,	and	you	must	declare	any	properties	that	you	
will	use	in	your	MXML	class.

11 Within	the	handleCreationComplete()	method,	but	above	the	categoryService.send();	
statement,	create	a	new	instance	of	the	Product	class	and	assign	it	to	the	theProduct	
property.	When	creating	the	new	Product,	you	will	need	to	pass	a	value	for	each	con-
structor	argument.	For	these	arguments	you	will	use	the	data	from	the	<fx:XML>	tag	
named	groceryInventory.	Type	the	code	as	follows:
theProduct = new Product(groceryInventory.catID,
➥ groceryInventory.prodName, groceryInventory.unitID,
➥ groceryInventory.cost, groceryInventory.listPrice,
➥ groceryInventory.description, groceryInventory.isOrganic,
➥ groceryInventory.isLowFat, groceryInventory.imageName);

Here	you	are	instantiating	a	new	object	of	that	Product	class	you	built.	You	are	passing	
the	data	from	the	<fx:XML>	tag	as	constructor	arguments.	If	you	were	to	review	the	XML	
in	the	groceryInventory	variable,	you	would	note	that	it	doesn’t	presently	have	a	node	
for	catID	and	unitID.	However,	in	this	context,	Flash	Player	will	just	interpret	them	as	0	
(zero)	for	the	Product	value	object.	These	values	will	be	used	extensively	when	you	begin	
loading	more	complicated	data	from	the	server.

ptg

150 Lesson 7: Creating Classes

NoTe: When you’re accessing properties from the groceryInventory XML, Flash Builder cannot

help you with code completion or even compile-time checking. The nodes inside the XML

aren’t checked; this is why Flash Builder does not complain when you type groceryInventory.

catID even though it is not present in the XML. This means it is extremely easy to make a typo

that can be difficult to debug. For now check your code carefully, but as you continue to use

strongly typed objects, you will see how Flash Builder can help and why typed objects can

make debugging easier.

12 On	the	next	line,	add	a	trace()	statement	and	trace	the	property	theProduct	out	to	the	
console.	This	statement	will	automatically	execute	the	toString()	method	of	your	object	
and	output	the	results.	Your	finished	method	should	look	like	the	following:
private function handleCreationComplete(event:FlexEvent):void {
 theProduct = new Product(groceryInventory.catID,
 ➥ groceryInventory.prodName, groceryInventory.unitID,
 ➥ groceryInventory.cost, groceryInventory.listPrice,
 ➥ groceryInventory.description, groceryInventory.isOrganic,
 ➥ groceryInventory.isLowFat, groceryInventory.imageName);

	 trace(theProduct);
 categoryService.send();
}

13 Save	and	debug	the	application.

You should	see	[Product]Milk	in	the	Console	view,	which	indicates	that	you	have	created	a	
Product	value	object	successfully.

Building a Method to Create an Object
As	you	just	did	in	the	previous	exercise,	you	can	instantiate	an	instance	of	the	Product	class	by	
passing	values	as	arguments	to	the	constructor.	In	this	exercise,	you’ll	build	a	method	that	will	
accept	any	type	of	object	that	contains	all	the	properties	and	values	needed	for	a	product,	and	
return	an	instance	of	the	Product	class	populated	with	this	data.	This	type	of	method	is	often	
referred	to	as	a	factory	method,	as	its	job	is	creating	other	objects.

Note	that	for	this	method	to	function	correctly,	the	object	passed	to	the	method	must	contain	
property	names	that	correspond	exactly	to	the	names	you	will	hard-code	into	this	method.

ptg

151Building a Method to Create an Object

1 Be	sure	the	Product	class	in	the	valueObjects	package	is	open.	Locate	the	toString()	
method.	Immediately	after	this	method,	add	the	skeleton	of	a	new	public	static	method	
called	buildProduct().	Be	sure	that	the	return	type	of	the	method	is	set	to	Product,	and	
that	it	accepts	a	parameter	named	o	typed	as	Object,	as	shown:
public static function buildProduct(o:Object):Product {
}

A	static	method	is	a	method	that	belongs	to	a	class,	not	to	an	instance.	The	methods	
you’ve	worked	with	so	far	are	called	instance	methods;	they	can	be	used	only	with	instan-
tiated	objects.

Consider	for	a	moment	your	toString()	method.	That	method	uses	productName	to	
display	the	name	of	the	product	represented	by	that	object.	If	you	have	n	product	objects	
(where	n	is	any	number	of	product	objects),	each	should	display	a	different	name	when	
the	toString()	method	is	called.	Since	this	method	uses	data	from	the	object,	it	is	logical	
that	the	object	must	exist	before	the	method	can	be	called.

Conversely,	you	may	have	a	method	that	doesn’t	need	(or	care	about)	any	of	the	data	
inside	a	specific	instance.	In	fact,	it	could	just	be	a	utility	method	that	does	work	inde-
pendent	of	any	particular	instance.	This	is	called	a	static	method.

Static	methods	are	often	used	for	utilities	such	as	the	buildProduct()	method.	You	will	be	
able	to	call	this	method	without	creating	an	instance	of	the	Product	first.	Used	appropri-
ately,	static	methods	can	increase	the	legibility	and	usefulness	of	your	objects.	To	refer-
ence	a	static	method	with	the	name	buildSomething()	from	the	Product	class,	you	would	
use	the	code	Product.buildSomething(),	which	uses	the	class	name	before	the	method,	as	
opposed	to	the	instance.

2 Inside	the	buildProduct()	method,	create	a	new	local	variable	named	p	of	type	Product.
var p:Product;

3 Below	the	local	variable	declaration,	instantiate	an	instance	of	the	Product	class	assign-
ing	it	to	p	using	the	new	keyword.	Pass	the	catID,	prodName,	unitID,	cost,	listPrice,	
description,	isOrganic,	isLowFat,	and	imageName	properties	of	the	object	o	as	arguments	
to	the	constructor.	The	isOrganic	and	isLowFat	variables	will	be	compared	against	the	
String	‘true’	before	being	passed	as	the	following	code	demonstrates:
p = new Product(o.catID, o.prodName, o.unitID, o.cost,
➥ o.listPrice, o.description, (o.isOrganic == ‘true’),
➥ (o.isLowFat == ‘true’), o.imageName);

Remember	that	the	data	used	here	is	retrieved	from	the	<fx:XML>	tag.	When	data	is	
retrieved	this	way,	all	the	data	is	XML:	The	true	and	false	values	for	these	fields	are	
just	treated	as	a	type	of	String.	Comparing	isOrganic	and	isLowFat	to	the	String	‘true’	

ptg

152 Lesson 7: Creating Classes

will	return	a	Boolean	value,	either	a	true	of	a	false.	In	this	way,	you	are	converting	the	
value contained	in	the	XML	to	the	Boolean	value	that	the	newly	created	object	is	expect-
ing	for	these	properties.	This	allows	you	to	take	a	string	value	from	the	XML,	and	convert	
it	to	a Boolean.

4 Return	the	object	you	just	created	by	using	the	return	keyword	with	the	name	of	the	
object,	p.	Your	final	buildProduct()	method	should	appear	as	follows:
public static function buildProduct(o:Object):Product {
 var p:Product;

 p = new Product(o.catID, o.prodName, o.unitID, o.cost,
 ➥ o.listPrice, o.description, (o.isOrganic == ‘true’),
 ➥ (o.isLowFat == ‘true’), o.imageName);
 return	p;
}

This	method	will	create	and	return	a	new	Product	value	object	and	populate	it	with	data	
from	the	object	passed	as	an	argument.

5 Save	the	Product.as	file.

The	class	file	is	saved	with	the	new	method.	No	errors	should	appear	in	the	Problems	view.

6 Return	to	FlexGrocer.mxml.	In	the	handleCreationComplete()	method,	remove	the	
code	that	builds	theProduct	and	replace	it	with	code	that	uses	the	static	method	to	build	
theProduct.	Remember	to	remove	the	new	keyword.
theProduct = Product.buildProduct(groceryInventory);

This	code	calls	the	static	method	that	builds	an	instance	of	the	Product	class,	which	
returns	a	strongly	typed	Product	value	object	from	any	type	of	object	that	has	corre-
spondingly	named	properties.

7 Locate	the	VGroup	container,	which,	in	the	expanded	state,	displays	the	product	descrip-
tion	(whether	the	product	is	organic,	and	whether	it	is	low	fat).	Change	the	text	property	
of	the	<s:RichText>	tag	to	reference	the	description	property	of	the	theProduct	object	
you	created	in	the	handleCreationComplete()	method.	Also,	add	a	visible	property	to	
both	labels,	and	bind	each	to	the	appropriate	theProduct	object	properties,	as	shown	in	
the	following	code.

Tip: Remember, because Product is now an imported class, you can get code hinting for both

the class name and its properties. When you are in the braces creating the binding, press Ctrl-

spacebar to get help for inserting the Product instance, theProduct. Then, after you enter the

period, you will get the properties listed.

ptg

153Building a Method to Create an Object

<s:VGroup includeIn=”expanded” width=”100%” x=”200”>
 <s:RichText text=”{theProduct.description}” width=”50%”/>
 <s:Label text=”Certified Organic”
 visible=”{theProduct.isOrganic}”/>
 <s:Label text=”Low Fat”
 visible=”{theProduct.isLowFat}”/>
</s:VGroup>

You	are	now	referencing	the	value	object	you	created.	You	also	just	gained	one	more	ben-
efit:	Flash	Builder	is	now	helping	you	debug.	If	you	were	to	make	a	typo—for	example,	
if	you	were	to	type	theProduct.isLowerFat—Flash	Builder	would	alert	you	to	the	error	
when	you	saved.	Now	that	Flash	Builder	knows	the	types	of	the	objects	you	are	using,	
it	can	verify	that	you	are	accessing	properties	that	exist.	What	might	have	taken	you	a	
few	minutes	to	reread,	check,	and	perhaps	even	debug,	Flash	Builder	found	in	moments.	
Over	the	course	of	a	project,	that	becomes	days	and	weeks	of	time.

8 Save	and	debug	the	application.

You	should	see	that	the	trace()	method	performs	just	as	before,	and	the	correct	data	
should	still	appear	when	you	roll	over	the	image.

ptg

154 Lesson 7: Creating Classes

Building Shopping Cart Classes
In	this	exercise,	you’ll	build	a	new	class	called	ShoppingCartItem.	This	class	will	contain	an	item	
added	to	a	shopping	cart	that	you	will	also	build	shortly.	The	new	class	will	keep	track	of a	prod-
uct	added	and	its	quantity.	You	will	also	build	a	method	that	calculates	the	subtotal	for	that	item.

You	will	then	build	the	skeleton	for	a	ShoppingCart	class	that	will	handle	all	the	logic	for	the	
shopping	cart,	including	adding	items	to	the	cart.

1 Create	a	new	ActionScript	class	file	by	choosing	File	>	New	>	ActionScript	class.	Set	the	
Package	to	cart,	which	automatically	adds	this	class	to	a	folder	named	cart	inside	your	
project.	Enter	ShoppingCartItem	as	the	Name	and	leave	all	other	fields	with	default	
values.

In	this	class,	you	will	calculate	the	quantity	of	each	unique	item	as	well	as	the	subtotal.

2 Within	the	class	definition,	define	a	public	property	with	the	name	product	and	the	type	
Product,	as	shown:
package cart {
 import valueObjects.Product;
 public class ShoppingCartItem {
	 	 public	var	product:Product;

 public function ShoppingCartItem() {
 }
 }
}

ptg

155Building Shopping Cart Classes

The	product	is	the	most	important	piece	of	data	in	the	ShoppingCartItem.	If	you	used	
code	completion,	Flash	Builder	imported	the	Product	class	for	you.	If	you	did	not,	then	
add	import	valueObjects.Product;	before	continuing.

3 Define	a	public	property	with	the	name	quantity	of	the	type	uint,	as	shown:
package cart {
 public class ShoppingCartItem {
 public var product:Product;
	 	 public	var	quantity:uint;

 public function ShoppingCartItem() {
 }
 }
}

The	data	type	uint	means	unsigned integer,	which	is	a	nonfractional,	non-negative	num-
ber	(0,	1,	2,	3,	…).	The	quantity	of	an	item	added	to	the	shopping	cart	will	be	either	zero	
or	a	positive	number,	so	uint	is	the	perfect	data	type.

4 Define	a	public	property	with	the	name	subtotal	and	the	data	type	Number,	as	shown:
package cart {
 public class ShoppingCartItem {
 public var product:Product;
 public var quantity:uint;
	 	 public	var	subtotal:Number;

 public function ShoppingCartItem() {
 }
 }
}

Each	time	a	user	adds	an	item	to	the	shopping	cart,	you’ll	want	the	subtotal	for	that	item	
to	be	updated.	In	this	case,	you	are	using	Number	as	the	data	type.	As	the	product’s	price	
is	not	likely	to	be	an	integer,	the	Number	class	allows	for	fractional	numbers.	Eventually,	
you	will	display	this	data	in	a	visual	control.

5 Edit	the	signature	of	the	constructor	of	this	class	and	specify	the	parameters	that	will	be	
passed	to	this	function.	These	parameters	will	include	product	typed	as	a	Product	and	
quantity	typed	as	a	uint.	You	will	provide	a	default	value	of	1	for	the	quantity.	If	the	
developer	calling	this	method	does	not	provide	a	quantity,	you	will	assume	1.
public function ShoppingCartItem(product:Product,	quantity:uint=1) {
}

Remember	that	a	constructor	function	must	be	public	and	that	it	never	specifies	a	
return type.

ptg

156 Lesson 7: Creating Classes

6 In	the	constructor,	assign	the	object’s	properties	to	the	values	passed	into	the	construc-
tor’s	parameters.	The	names	used	are	the	same,	so	prefix	the	properties	on	the	left	side	of	
the	equal	sign	with	this.
public function ShoppingCartItem(product:Product,	quantity:uint=1){
	 this.product	=	product;
	 this.quantity	=	quantity;
}

Remember	that	the	constructor	is	called	every	time	an	object	is	created	from	a	class.	
The	constructor	will	set	the	properties	that	are	passed	in—in	this	case,	an	instance	of	the	
Product	class,	and	the	quantity,	which	is	set	to	1	as	a	default.	This	object	will	be	used	only	
when	an	item	is	added	to	the	shopping	cart,	so	a	default	quantity	of	1	seems	reasonable.

7 Create	a	public	method	with	the	name	calculateSubtotal()	that	will	calculate	the	subto-
tal	of	each	item	by	multiplying	the	listPrice	of	the	product	by	the	quantity,	as	follows:
public function calculateSubtotal():void{
 this.subtotal = product.listPrice * quantity;
}

When	the	user	adds	items	to	the	shopping	cart,	you	need	to	perform	calculations	so	that	
the	subtotal	can	be	updated.	Eventually,	you	also	need	to	check	whether	the	item	has	
already	been	added	to	the	cart;	if	so,	you	will	update	the	quantity.	You’ll	learn	how	to	do	
this	in	the	next	lesson.

8 Call	the	calculateSubtotal()	method	on	the	last	line	of	the	constructor.	This	will	ensure	
that	the	subtotal	is	correct	as	soon	as	the	object	is	created.
public function ShoppingCartItem(product:Product, quantity:uint=1) {
 this.product = product;
 this.quantity = quantity;
	 calculateSubtotal();
}

9 Create	a	public	method	with	the	name	toString()	that	will	return	a	nicely	for-
matted	string	with	the	product’s	name	and	quantity.	The	returned	string	will	read	
[ShoppingCartItem],	followed	by	a	space,	the	product’s	name,	a	colon,	and	finally	the	
quantity	of	that	product	in	this	ShoppingCartItem.
public function toString():String {
 return “[ShoppingCartItem] “ + product.prodName + “:” + quantity;
}

As	you	learned	previously,	toString()	methods	are	automatically	called	when	Flash	
Player	needs	to	represent	this	object	as	a	String,	such	as	when	you	use	it	in	a	trace()	
statement.	This	will	provide	you	a	lot	of	valuable	debugging	information.

ptg

157Building Shopping Cart Classes

10 Choose	File	>	New	>	ActionScript	class	to	create	another	new	class.	Set	the	package	to	
cart.	Name	the	class	ShoppingCart	and	leave	all	other	fields	with	default	values.

Your	new	class	will	be	the	actual	shopping	cart,	filled	with	ShoppingCartItem	objects.	
This	class	will	handle	the	manipulation	of	the	data	in	the	shopping	cart.	You	have	already	
created	the	visual	look	and	feel	of	the	shopping	cart,	and	you	will	place	all	your	business	
logic	in	this	new	class.	This	business	logic	includes	work	that	must	occur	when	adding	an	
item	to	the	cart,	deleting	an	item	from	the	cart,	updating	an	item	in	the	cart,	and	so	on.

11 Create	the	skeleton	of	a	public	addItem()	method,	which	returns	void.	The	method	will	
accept	a	parameter	named	item,	of	type	ShoppingCartItem.	In	the	method,	add	a	trace	
statement	that	will	trace	the	item	added	to	the	cart.
package cart {
 public class ShoppingCart {

 public function ShoppingCart() {
 }

	 	 public	function	addItem(item:ShoppingCartItem):void	{
	 	 	 trace(item);
 }
 }
}

This	is	the	method	in	which	you	will	add	a	new	item	to	the	shopping	cart.	You’ll	add	
more	business	logic	to	this	method	later.	For	now,	you’ll	just	trace	the	item	added	to	the	
cart.	Remember	that	the	toString()	method	you	wrote	earlier	is	called	automatically	
whenever	an	instance	of	the	ShoppingCartItem	class	is	traced.

12 Open	FlexGrocer.mxml	in	Flash	Builder	and	locate	the	Script	block.	Add	an	import	for	
the	ShoppingCartItem	and	ShoppingCart	classes	from	the	cart	folder,	as	shown:
import cart.ShoppingCartItem;
import cart.ShoppingCart;

To	use	a	class	in	a	different	package,	your	application	needs	an	import	statement	that	
references	the	location	or	package	in	which	the	class	is	located.

13 After	all	the	import	statements,	instantiate	a	public	instance	of	the	ShoppingCart	class,	
name	the	instance	shoppingCart,	and	add	a	[Bindable]	metadata	tag,	as	follows:
[Bindable]
public var shoppingCart:ShoppingCart = new ShoppingCart();

Pay	attention	to	the	differences	in	case	here.	Variables,	such	as	shoppingCart,	usually	start	
with	a	lowercase	letter.	Classes,	such	as	ShoppingCart,	start	with	an	uppercase	letter.

ptg

158 Lesson 7: Creating Classes

When	the	user	clicks	the	Add	To	Cart	button,	you	want	to	call	the	addItem()	method	of	
the	ShoppingCart	class	you	just	created.	You	will	pass	the	addItem()	method	an	instance	
of	the	ShoppingCartItem	class.	By	instantiating	the	class	here,	you	ensure	that	you	have	
access	to	it	throughout	the	application.

14 Locate	the	handleViewCartClick()	method	in	the	<fx:Script>	block.	Immediately	after	
this	method,	add	a	new	private	function	with	the	name	addToCart()	that	returns	void.	
Have	the	method	accept	a	parameter	named	product	typed	as	Product,	as	shown:
private function addToCart(product:Product):void {
}

This	method	will	be	called	when	the	user	clicks	the	Add	To	Cart	button,	and	you	will	pass	
an	instance	of	the	Product	value	object.	As	you	do	not	intend	anyone	to	call	this	method	
from	outside	this	MXML	class,	you	can	use	the	private	identifier.	Using	the	keyword	
private	here	prevents	others	from	calling	this	method	unexpectedly.

15 Inside	the	addToCart()	method,	create	a	new	instance	of	the	ShoppingCartItem	class	with	
the	name	sci	and	pass	the	product	parameter	as	an	argument	to	the	constructor.
private function addToCart(product:Product):void {
	 var	sci:ShoppingCartItem	=	new	ShoppingCartItem(product);
}

Notice	that	you	passed	the	product	but	you	did	not	pass	the	second	parameter	of	the	con-
structor	(quantity).	This	is	okay,	as	you	provided	a	default	value	for	the	quantity	when	
creating	this	class.

16 On	the	next	line	of	the	addToCart()	method,	call	the	addItem()	method	of	the	
shoppingCart	instance	of	the	ShoppingCart	class.	Be	sure	to	pass	the	sci	object	you	just	cre-
ated	to	the	method,	as	follows:
private function addToCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
	 shoppingCart.addItem(sci);
}

This	code	will	call	the	addItem()	method	of	the	ShoppingCart	class	you	built	earlier.	In	the	
next	sections,	you’ll	learn	how	to	loop	through	the	data	structure	to	see	whether	the	item	is	
added.	For	now,	this	method	simply	traces	the	name	of	the	product	added	to the	cart.

17 Find	the	Add	To	Cart	button	and	add	a	handler	for	the	click	event	that	calls	the	
addToCart()	method,	passing	an	instance	of	theProduct.
<s:Button label=”Add To Cart” id=”add”
	 click=”addToCart(theProduct)”/>

Remember,	the	addToCart()	method	creates	an	instance	of	the	ShoppingCartItem	class	
and	then	passes	that	object	to	the	shopping	cart.

ptg

159Manipulating Shopping Cart Data

18 Save	and	debug	the	application.

Each	time	you	click	the	Add	To	Cart	button,	you	should	see	[ShoppingCartItem] Milk:1	
appear	in	the	Console	view.

Manipulating Shopping Cart Data
The	next	several	exercises	all	deal	with	manipulating	data	in	the	shopping	cart.	You	will	work	
extensively	with	the	Array	class.	In	Lesson	8,	“Using	Data	Binding	and	Collections,”	you’ll	
add	even	more	functionality	to	this	class	and	allow	it	to	work	with	Flex	controls	to	update	the	
display dynamically.

Adding Items to the Cart
In	this	exercise	you’ll	write	the	code	to	add	items	to	the	shopping	cart.

1 Open	the	ShoppingCart.as	file	from	the	cart	package	that	you	used	in	the	previous	exercise.

Alternatively,	if	you	didn’t	complete	the	previous	exercise	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer-PreCartData.fxp	project	from	the	Lesson07/
intermediate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	
project	should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 On	the	line	after	the	class	definition,	define	a	public	property	with	the	name	items,	
typed	as	an	Array	and	set	equal	to	a	new	Array	instance.
package cart {
 public class ShoppingCart {
	 	 public	var	items:Array	=	new	Array();

This	instantiates	an	Array	object	and	assigns	it	to	the	items	property.	You	will	use	this	
Array	to	track	all	the	objects	in	the	shopping	cart.

3 Define	a	public	property	with	the	name	total,	typed	as	a	Number.	It	will	hold	the	total	
price	of	the	items	in	this	class.	When	the	class	is	first	instantiated,	there	won’t	be	any	
items,	so	set	the	value	to	0	as	shown:
public var total:Number=0;

Anytime	a	user	adds	an	item	to	the	cart,	you	will	update	this	property	with	the	price	of	
the	item.	This	will	enable	you	to	track	the	total	cost	of	the	end	user’s	order.

ptg

160 Lesson 7: Creating Classes

4 Locate	the	addItem()	method	of	the	ShoppingCart	class	and	remove	the	trace	statement.	
Use	the	push()	method	of	the	Array	class	to	add	ShoppingCartItem	to	the	items	array.	
The	push()	method	of	the	Array	adds	an	element	to	the	end	of	the	array,	after	any	exist-
ing	items.
public function addItem(item:ShoppingCartItem):void {
	 items.push(item);
}

In	the	previous	exercise,	you	built	a	ShoppingCartItem	class	to	hold	data	associated	with	
items	in	a	shopping	cart.	This	class	has	properties	to	hold	the	product	(an	instance	of	the	
Product	class),	the	quantity	(an	unsigned	integer),	and	the	subtotal	(a	number	derived	by	
multiplying	the	quantity	by	the	price).	When	the	user	clicks	the	Add	To	Cart	button,	you	
pass	a	ShoppingCartItem	to	this	method	and	place	it	in	the	Array	using	addItem().

5 Create	a	public	method	with	the	name	toString()	that	will	return	a	nicely	format-
ted	string	representing	the	items	in	the	shopping	cart.	The	returned	string	will	be	
[ShoppingCart,	followed	by	a	space,	a	dollar	sign,	the	closing	right	bracket,	another	space	
and	the	items	array	as	shown:
public function toString():String {
 return “[ShoppingCart $” + total + “] “ + items;
}

As	you	learned	previously,	toString()	methods	are	called	automatically	when	Flash	
Player	needs	to	represent	this	object	as	a	String,	such	as	when	you	use	it	in	a	trace()	
statement.	You	added	toString()	methods	to	several	of	your	objects	already.	When	
this	statement	executes,	it	is	going	to	display	[ShoppingCart	$0]	and	then	the	array.	The	
Array	also	has	a	toString()	method,	so	when	you	trace	this	array,	it	will	actually	call	the	
toString()	method	on	each	item	in	the	array.

6 Switch	back	to	FlexGrocer.mxml	and	locate	the	addToCart()	method.	To	the	last	line	of	
this	method	add	a	trace()	statement	that	traces	the	shoppingCart.
private function addToCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.addItem(sci);
	 trace(shoppingCart);
}

Each	time	you	click	the	Add	To	Cart	button,	the	entire	shopping	cart	will	be	traced	to	the	
Console	view.

7 Save	and	debug	the	application.

ptg

161Manipulating Shopping Cart Data

Each	time	you	click	the	Add	To	Cart	button,	you	will	see	another	line	appear	in	the	Console	
view.	For	example,	clicking	it	three	times	will	yield:

[ShoppingCart $0] [ShoppingCartItem] Milk:1
[ShoppingCart $0] [ShoppingCartItem] Milk:1,[ShoppingCartItem] Milk:1
[ShoppingCart $0] [ShoppingCartItem] Milk:1,
[ShoppingCartItem] Milk:1,[ShoppingCartItem] Milk:1

The	number	of	items	grows	each	time	another	Milk	product	is	added	to	the	cart.	However,	
this	uncovers	an	error	in	your	ShoppingCart.	If	you	add	Milk	a	second	time,	you	likely	mean	
to	increase	the	quantity	by	1,	not	actually	add	a	new	item.	You	will	address	this	over	the	next	
few	exercises.

Adding an Item or Updating the Quantity
The	code	you	are	about	to	write	conditionally	places	a	new	item,	or	updates	an	existing	item,	
in	the	shopping	cart.	It	is	not	difficult	line	by	line,	but	the	logic	involved	can	seem	complex	at	
first.	To	be	sure	you	understand	the	big	picture	before	you	try	to	implement	the	details,	let’s	
walk	through	the	logic	required	for	the	implementation.

1. The	user	clicks	a	button	to	add	an	item	to	the	shopping	cart.

2. The	addItem()	method	is	called.

3. The	cart	is	checked	to	see	if	the	item	already	exists.

•	 If	the	item	does	not	exist,	it	is	added.

•	 If	the	item	does	exist,	you	find	and	update	the	existing	item.

4. The	cart’s	total	is	updated.

Conditionally Adding a ShoppingCartItem
A	key	point	in	the	logic	of	this	exercise	is	determining	whether	a	newly	added	ShoppingCartItem	
is	already	in	the	existing	array	of	ShoppingCartItems.	In	this	section,	you	will	simply	loop	through	
the	array	looking	for	the	correct	item.	In	the	next	lesson,	you’ll	learn	to	use	collections	and	cursors	
to	make	this	faster	and	more	elegant.

Finding an Item in the Cart
The	desired	behavior	is	to	have	only	new	items	added	to	the	cart.	If	an	item	is	clicked	more	
than	once,	it	should	update	the	quantity	of	the	item.	You	will	need	to	write	a	method	that	can	
check	whether	an	existing	product	is	in	the	cart	already.

ptg

162 Lesson 7: Creating Classes

1 In	the	ShoppingCart.as	file,	add	a	new	private	function	named	getItemInCart().	This	
method	will	accept	a	single	parameter	named	item	of	type	ShoppingCartItem.	The	
method	will	return	a	ShoppingCartItem.
private function getItemInCart(item:ShoppingCartItem):ShoppingCartItem {
}

This	method	will	accept	a	ShoppingCartItem	and	then	look	through	all	existing	items	to	
see	if	the	represented	product	already	exists	in	the	cart.

2 On	the	first	line	of	the	getItemInCart()	function,	declare	a	new	local	variable	named	
existingItem	of	type	ShoppingCartItem.
private function getItemInCart(item:ShoppingCartItem):ShoppingCartItem {
	 var	existingItem:ShoppingCartItem;
}

3 Directly	below	that	variable	declaration,	create	a	for	loop.	Loops	are	blocks	of	code	that	
are	executed	repeatedly	using	a	series	of	values.	In	this	loop,	declare	a	variable	i	of	type	
uint	and	loop	from	0	to	less	than	the	length	of	the	items	array.	In	ActionScript,	this	loop	
appears	like	the	following	code:
private function getItemInCart(item:ShoppingCartItem):ShoppingCartItem {
 var existingItem:ShoppingCartItem;

	 for	(var	i:uint=0;	i<items.length;	i++)	{
	 }
}

The	code	inside	this	for	loop	will	be	executed	for	each	item	in	the	array,	allowing	you	to	
inspect	each	value	for	a	matching	product.	The	loop	will	continue	to	execute	as	long	as	
i	(the	iterant)	is	less	than	the	length	of	the	items	array.	Each	time	the	loop	executes,	the	
iterant	is	increased	by	1	(++	is	shorthand	for	increment).

4 Inside	the	for	loop,	assign	the	local	existingItem	variable	to	the	next	item	in	the	array.	In	
ActionScript,	the	basic	array	contains	data	of	an	unknown	type.	This	means	that	you	will	
need	to	give	the	compiler	a	hint	about	the	type	of	data	in	the	array	by	casting	it.
private function getItemInCart(item:ShoppingCartItem):ShoppingCartItem {
 var existingItem:ShoppingCartItem;

 for (var i:uint=0; i<items.length; i++) {
	 	 existingItem	=	items[i]	as	ShoppingCartItem;
 }
}

ptg

163Manipulating Shopping Cart Data

5 Still	inside	the	loop,	check	whether	existingItem.product	is	equal	to	item.product.	If	they	
are	equal,	return	the	existingItem	variable.	Finally,	return	null	at	the	end	of	the	method.
private function getItemInCart(item:ShoppingCartItem):ShoppingCartItem {
 var existingItem:ShoppingCartItem;

 for (var i:int=0; i<items.length; i++) {
 existingItem = items[i] as ShoppingCartItem;

	 	 if	(existingItem.product	==	item.product)	{
	 	 	 return	existingItem;
	 	 }
 }

	 return	null;
}

This	code	will	now	loop	through	the	existing	items	and	look	for	a	matching	product.	If	one	is	
found,	the	code	returns	it.	If	a	matching	product	is	not	found,	null	is	returned.

Checking for an Item’s Existence
While	the	getItemInCart()	method	allows	you	to	find	a	given	item	in	the	cart,	it	would	be	
nice	to	have	a	method	that	simply	indicates	whether	or	not	the	item	is	there;	in	other	words,	a	
method	that	returns	a	Boolean	value	indicating	the	item’s	existence.

1 Create	a	new	private	function	named	isItemInCart()	that	will	return	a	Boolean.	The	
method	will	accept	a	parameter	named	item	of	type	ShoppingCartItem.	Within	the	
method,	create	a	new	variable	local	to	the	method	with	the	name	sci,	which	will	hold	a	
matched	ShoppingCartItem,	returned	by	the	getItemInCart()	method.
private function isItemInCart(item:ShoppingCartItem):Boolean {
 var sci:ShoppingCartItem = getItemInCart(item);
}

The	getItemInCart()	method	returns	an	item	if	it	is	found;	else	it	will	return	null.

2 Add	a	return	statement	that	returns	the	Boolean	expression	(sci != null).	Your	com-
pleted	method	should	look	as	follows:
private function isItemInCart(item:ShoppingCartItem):Boolean {
 var sci:ShoppingCartItem = getItemInCart(item);

	 return	(sci	!=	null);
}

The	expression	(sci != null)	will	evaluate	to	either	true	or	false;	therefore,	the	
isItemInCart()	method	will	now	return	true	if	the	added	item	is	in	the	cart	and	false	if	the	
added	item	is	not	found	in	the	cart.

ptg

164 Lesson 7: Creating Classes

Updating the Quantity of an Item Already in the Cart
The	previous	methods	will	help	you	to	determine	whether	an	item	is	in	the	cart.	However,	
if that	item	is	already	in	the	cart,	it	shouldn’t	be	added	to	the	cart	again.	Rather,	the	item’s	
quantity	should	be	updated.

1 Create	a	skeleton	for	a	new	private	updateItem()	method,	returning	void.	Have	it	accept	
a	parameter	named	item,	typed	as	ShoppingCartItem.	On	the	first	line	of	the	method,	
define	a	local	variable	with	the	name	existingItem,	typed	as	a	ShoppingCartItem.	Set	that	
local	variable	equal	to	the	result	of	the	getItemInCart()	method,	passing	the	item.
private function updateItem(item:ShoppingCartItem):void {
 var existingItem:ShoppingCartItem = getItemInCart(item);
}

2 Still	in	the	updateItem()	method,	update	the	quantity	property	of	the	existingItem	
object	to	its	current	value	plus	the	value	located	in	the	item property.
existingItem.quantity += item.quantity;

Remember,	whenever	the	Add	To	Cart	button	is	clicked,	a	new	item	is	added	to	the	cart	
with	the	quantity	value	set	to	1.

3 Still	in	the	updateItem()	method	and	immediately	after	you	set	the	quantity,	call	the	
calculateSubtotal()	method	of	the	existingItem	ShoppingCartItem	instance.	The	final	
updateItem()	method	should	look	like	this:
private function updateItem(item:ShoppingCartItem):void {
 var existingItem:ShoppingCartItem = getItemInCart(item);
 existingItem.quantity += item.quantity;
	 existingItem.calculateSubtotal();
}

When	you	first	created	the	ShoppingCartItem	class,	you	added	a	method	with	the	name	
calculateSubtotal(),	which	updated	a	subtotal	property	with	the	listPrice	of	each	
product	multiplied	by	the	quantity	of	each	product.	Anytime	you	update	the	quantity,	
you	need	to	recalculate	that	subtotal	value.

4 Directly	after	the	updateItem()	method,	create	a	skeleton	for	a	private	calculateTotal()	
method,	with	a	return	type	void.	In	the	method,	create	a	local	variable	named	newTotal	
of	type	Number	and	set	it	to	an	initial	value	of	0.	Create	a	second	local	variable	named	
existingItem	of	type	ShoppingCartItem.
private function calculateTotal():void{
 var newTotal:Number = 0;
 var existingItem:ShoppingCartItem;
}

ptg

165Manipulating Shopping Cart Data

In	this	method,	you	will	loop	over	the	entire	shopping	cart	and	eventually	update	the	
total	property	of	the	ShoppingCart	with	the	total	of	the	user’s	items.

5 Still	in	the	calculateTotal()	method,	create	a	skeleton	of	a	for	loop	that	will	loop	
through	the	items	array.	Use	the	variable	i	as	the	iterant	for	the	loop,	with	a	data	type	
uint.	Use	the	length	property	of	items	as	the	terminating	condition,	and	use	the	++	
operator	to	increment	the	iterant.
for (var i:uint=0; i<items.length; i++) {
}

Like	the	loop	you	wrote	before,	this	enables	you	to	loop	through	the	entire	shopping	cart.	
The	loop	will	continue	to	execute	as	long	as	i	(the	iterant)	is	less	than	the	length	of	the	array.	
Each	time	the	loop	executes,	the	iterant	is	increased	by	1	(++	is	shorthand	for	this	increase).

6 Inside	the	loop,	set	the	existingItem	variable	equal	to	items[i]	cast	as	a	
ShoppingCartItem.	Update	the	newTotal	variable	with	the	subtotal	of	each	existing	item	
stored	in	the	items	array.	Be	sure	to	use	the	+=	operator	so	it	will	add	the	new	value	to	the	
existing	one.	Your	calculateTotal()	method	should	appear	as	follows:
private function calculateTotal():void{
 var newTotal:Number = 0;
 var existingItem:ShoppingCartItem;

 for (var i:uint=0; i<items.length; i++) {
	 	 existingItem	=	items[i]	as	ShoppingCartItem;
	 	 newTotal	+=	existingItem.subtotal;
 }
}

This	loops	through	the	entire	shopping	cart	and	updates	the	newTotal	variable	by		
adding the	subtotal	(price * quantity)	of	each	item	in	the	cart	to	the	current	newTotal.	
Now	anytime	you	need	to	calculate	the	total	price	of	all	the	items,	you	can	simply	call	
this method.

7 As	the	final	step	of	your	calculateTotal()	method,	assign	the	value	in	the	newTotal	vari-
able	to	the	total	property	of	the	ShoppingCart	instance.
private function calculateTotal():void{
 var newTotal:Number = 0;
 var existingItem:ShoppingCartItem;

 for (var i:uint=0; i<items.length; i++) {
 existingItem = items[i] as ShoppingCartItem;
 newTotal += existingItem.subtotal;
 }

	 this.total	=	newTotal;
}

ptg

166 Lesson 7: Creating Classes

Tip: In the next lesson, you will tell the display to update each time the total property

changes. By performing the calculation using the local newTotal property and then assigning

it to the total at the end of the method, you will cause the display to update only once. Had

you used the total property throughout, Flex would have tried to update the display once for

every item in the array.

Checking Conditions in the addItem() Method
You	now	have	all	the	building	blocks	to	finish	your	addItem()	method	and	ensure	that	the	
total	remains	consistent	as	items	are	added	or	updated.

1 Find	the	addItem()	method.	On	the	first	line	add	an	if-else	statement.	Use	the	
isItemInCart()	method	to	check	whether	the	item	is	currently	in	the	cart.
public function addItem(item:ShoppingCartItem):void {
 if	(isItemInCart(item))	{
	 }	else	{
 }

 items.push(item);
}

2 From	within	the	if	block,	call	the	updateItem()	method,	passing	the	item.	Move	the	code	
that	pushes	the	new	item	into	the	items	array	into	the	else	block.
public function addItem(item:ShoppingCartItem):void {
 if (isItemInCart(item)) {
	 	 updateItem(item);
	 }	else	{
	 	 items.push(item);
 }
}

When	the	addItem()	is	called,	it	will	check	to	see	whether	the	item	is	already	in	the	cart.	
If	it	is,	then	the	existing	item	will	be	updated.	Else,	the	new	item	will	be	added.

3 Finally,	call	the	calculateTotal()	method	to	recalculate	the	shopping	cart’s	total	after	any	
add	or	update	occurs.
public function addItem(item:ShoppingCartItem):void {
 if (isItemInCart(item)) {
 updateItem(item);
 } else {
 items.push(item);
 }

	 calculateTotal();
}

ptg

167What You Have Learned

4 Save	and	debug	the	application.

Each	time	you	click	the	Add	To	Cart	button,	you	will	see	another	line	appear	in	the	
Console	view.	For	example,	clicking	it	three	times	will	yield:
[ShoppingCart $1.99] [ShoppingCartItem] Milk:1
[ShoppingCart $3.98] [ShoppingCartItem] Milk:2
[ShoppingCart $5.97] [ShoppingCartItem] Milk:3

Instead	of	adding	a	new	item	each	time,	the	cart	now	updates	the	quantity	of	the	item	
(as	indicated	by	the	last	number).	Also,	note	that	the	total	in	the	shopping	cart	changes	
as	you	modify	the	cart.	You	will	add	more	functionality,	including	the	ability	to	remove	
items,	in	the	next	lesson.

What You Have Learned
In this lesson, you have:

•	 Created	a	Product	class	(pages	142–150)

•	 Created	a	static	factory	to	build	Product	instances	(pages	150–152)

•	 Populated	a	Product	instance	with	data	(pages	152–153)

•	 Created	a	ShoppingCartItem	class	(pages	154–156)

•	 Created	a	ShoppingCart	class	(pages	157–159)

•	 Manipulated	shopping	cart	data	(pages	159–161)

•	 Used	an	ActionScript	loop	to	move	through	an	array	(pages	162–163)

•	 Added	and	updated	items	in	the	ShoppingCart	(pages	164–167)

ptg

Le
ss

o
n

 8 What You Will Learn
In this lesson, you will:

•	 Learn	how	data	binding	works

•	 Replicate	binding	with	event	listeners

•	 Populate	an	ArrayCollection	for	binding

•	 Use	an	IViewCursor	to	locate,	retrieve,	and	remove	data	in	an	ArrayCollection

•	 Hide	internal	functionality	using	implicit	getters	and	setters

Approximate Time
This	lesson	takes	approximately	2	hours	to	complete.

ptg

169

Lesson 8

Using Data Binding
and Collections
In the last lesson, you created a ShoppingCart class to hold items for purchase in your applica-
tion. In this lesson, you’ll continue building the ShoppingCart, as you enable it to work with a
visual interface and learn to use the advanced features of the collection classes to manipulate
and display up-to-date information to the user automatically.

The key to all these tasks resides in the Flex concept of data binding. So, you will start this
lesson by learning how this important concept works, which will allow you to successfully
apply it and determine when and where to use it appropriately.

The FlexGrocer application with a visual shopping cart

ptg

170 Lesson 8: Using Data Binding and Collections

Examining Data Binding
Data	binding	is	one	of	the	key	concepts	that	defines	Flex.	In	fact	it	inspires	a	motto	used	in	
our	daily	consulting:	In Flex, the goal is to change the model (the data) and let the view (the
components) follow.	In	other	words,	you	should	try	to	avoid	directly	manipulating	the	compo-
nents	that	make	up	the	visual	display	at	runtime	and,	instead,	let	those	components	react	to	
changes	you	make	to	the	data.	This	is	the	essence	of	data	binding.

In	Lesson	4,	“Using	Simple	Controls,”	you	started	using	data	binding	as	a	method	of	updating	
the	view	automatically	when	the	underlying	data	changed.	Although	you	have	used	it	periodi-
cally,	you	are	now	going	to	visit	this	concept	in	earnest.

Note: Flex 4.x also offers something called two-way binding. This is particularly useful with

data input forms where you may want the data you type to update a variable. It will be

addressed in Lesson 14, “Implementing the Checkout Process.”

Breaking a Simple Example
You	will	start	by	examining	a	simple	example	where	data	binding	works	to	manipulate	the	
view.	You’ll	then	begin	breaking	it	to	see	exactly	when	and	where	data	binding	ceases	to	work.

1 Import	the	DataBindingLab.fxp	from	the	Lesson08/independent	folder	into	Flash	
Builder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project.

2 Open	the	DataBindingLab.mxml	file	and	run	it.

This	is	an	extremely	simple	application	designed	to	illustrate	two	use	cases	for	data	bind-
ing.	Note	that	on	startup	the	Simple	Example	shows	the	word	red	and	the	Value	Object	
Example	shows	John	Doe between	the	title	and	the	buttons.

3 Click	the	Change	Color,	Change	Whole	Person,	and	Change	Last	Name	buttons.

ptg

171Examining Data Binding

Not	surprisingly,	both	examples	change;	let’s	examine	why.

4 Close	your	web	browser	and	return	to	Flash	Builder.	Find	the	lines	of	code	that	display	
the	Simple	Example	and	identify	the	property	bound	to	the	colorName	Label.
<s:BorderContainer width=”200” height=”130”>
 <s:layout>
 <s:VerticalLayout paddingTop=”10” paddingLeft=”5”/>
 </s:layout>
 <s:Label text=”Simple Example” fontSize=”18”/>
 <s:Label id=”colorName” text=”{someColor}”/>
 <s:Button label="Change Color" click="handleChangeColor(event)"/>
</s:BorderContainer>

Note	that	the	text	property	of	the	colorName	Label	references	the	someColor	property	
surrounded	by	curly	brackets	(braces)	{}.	You	should	read	this	line	of	code	as,	“The	text	
property	of	the	colorName	Label	is	bound	to	someColor.”	In	this	case,	the	braces	{}	are	
your	way	of	telling	Flex	it	should	watch	the	someColor	property	for	changes.	If	a	change	
occurs,	it	should	update	the	colorName	Label	with	the	new	value.

5 Hold	down	the	Control	key	(Command	on	the	Mac)	and	click	the	word	someColor.

This	is	a	shortcut	called	go to definition	in	Flash	Builder.	It	will	move	the	cursor	and	focus	to	
the	location	where	that	particular	property	is	defined,	even	if	it	is	in	another	class.

6 Remove	the	[Bindable]	metadata	tag	from	above	the	someColor	property.

7 Save	the	file.

ptg

172 Lesson 8: Using Data Binding and Collections

You	will	now	see	a	warning	symbol	appear	to	the	left	of	the	line	of	code	where	the	
someColor	property	was	being	used.	If	you	check	your	Problems	view,	you	will	also	see	a	
warning	that	says,	Data binding will not be able to detect assignments to “someColor”.

The	Flex	compiler	is	once	again	trying	to	provide	you	with	some	valuable	debugging	
information.	It	is	letting	you	know	that	you	have	asked	it	(by	using	the	braces)	to	watch	the	
property	someColor;	however,	it	is	not	capable	of	doing	so,	as	someColor	is	not	bindable.

8 Debug	the	application.

Note	that	the	word	red	appears	on	the	screen	at	start-up.	At	this	point	it	appears	as	
though	everything	is	still	working	correctly	without	the	[Bindable]	tag.

9 Click	the	Change	Color	button.

Regardless	of	how	many	times	you	click,	the	word	red	never	changes	to	blue	as	it	did	
previously.

10 Leave	the	application	running,	but	switch	back	to	Flash	Builder.	Set	a	breakpoint	on	the	
closing	brace	of	the	handleChangeColor()	method.	This	method	is	responsible	for	chang-
ing	the	someColor	property	from	red	to	blue.

Remember,	you	can	set	or	remove	a	breakpoint	by	double-clicking	in	the	area	to	the	left	
of	the	line	numbers.	You	can	do	this	before	you	debug	the	application	or,	as	you	are	doing	
presently,	while	the	application	is	running.

11 Return	to	the	web	browser	and	click	the	Change	Color	button.	Flash	Builder	will	stop	at	
the	breakpoint.	Return	to	the	Flash	Builder	Debug	perspective.

12 Select	someColor,	right-click,	and	choose	Create	Watch	Expression	from	the	pop-up	menu.

Even	though	the	word	red	will	continue	to	appear	on	the	screen,	the	actual	value	of	the	
someColor	property	is	blue.

ptg

173Examining Data Binding

tip: At any time you may remove all the items from the expressions panel by clicking the

double X or remove just a single item by highlighting it and clicking the X.

The	[Bindable]	metadata	tag	that	you	place	above	a	property	like	someColor	allows	Flex	
to	watch	that	property	for	changes	and	react	to	that	change	by	updating	the	view	(visual	
components).	Without	the	[Bindable]	metadata	tag,	the	property	will	still	change	when	
you	assign	it	a	new	value;	however,	the	view	will	not	know	to	refresh.

13 Terminate	the	debug	session.

Intentionally,	you	have	now	made	the	most	common	error	that	new	Flex	developers	experi-
ence.	Without	the	[Bindable]	metadata	tag,	the	word	red	still	appears	on	start-up,	but	the	
Label	fails	to	update	later	in	the	process.	It	is	this	behavior	that	the	Flex	compiler	is	attempting	
to	bring	to	your	attention	via	the	warning:	Data binding will not be able to detect assignments
to “someColor”.	Many	developers	ignore	this	warning	and	believe	their	application	will	work	
because	the	data	appears	correctly	on	start-up;	unfortunately,	however,	the	view	will	never	
update	when	the	data	changes.

Breaking a More Complicated Example
Having	successfully	broken	a	simple	example,	you	are	ready	to	break	something	more	com-
plicated.	Previously	you	were	working	with	the	someColor	property	of	the	DataBindingLab	
application,	which	is	a	simple	String	type.	When	you	use	more	complicated	objects,	data	bind-
ing	also	becomes	more	complicated.

1 Make	sure	the	DataBindingLab.mxml	file	is	open,	and	examine	the	declaration	of	the	
somePerson	property.
[Bindable]
private var somePerson:Person = new Person(“John”, “Doe”);

At	start-up	the	somePerson	property	is	set	to	a	new	Person	object,	with	the	initial	argu-
ments	John	and	Doe	passed	to	the	constructor.	As	you	want	Flex	to	notice	changes	to	this	
Person	instance,	the	[Bindable]	metadata	tag	is	also	present	above	the	declaration.

2 Hold	down	the	Control	(Command)	key	and	click	the	class	name	Person.

You	are	again	using	the	“go	to	definition”	shortcut	in	Flash	Builder.	This	time	the	defini-
tion	you	clicked	was	not	a	property,	but	rather	a	class,	so	Flash	Builder	opens	the	Person	
class	for	you.

ptg

174 Lesson 8: Using Data Binding and Collections

package valueObjects {
 [Bindable]
 public class Person {
 public var firstName:String;
 public var lastName:String;

 public function Person(firstName:String=”” , lastName:String=””) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
 }
}

Note	that	the	Person	class	is	a	simple	value	object,	much	like	the	Product	value	object	
you	built	in	previous	lessons.	The	Person	class	defines	two	properties,	firstName	and	
lastName,	both	of	which	are	strings	and	defined	as	public.

The	entire	class	is	marked	[Bindable],	meaning	that	both	firstName	and	lastName	can	
be	watched	by	Flex	for	changes.	As	a	reminder,	marking	the	whole	class	[Bindable]	is	
equivalent	to	marking	each	individual	property	with	its	own	metadata	tag.

Unlike	the	previous	example	with	the	someColor	property,	you	have	two	[Bindable]	
metadata	tags	in	this	example.	One	tag	is	used	in	the	DataBindingLab.mxml	file,	where	
the	somePerson	property	is	defined,	and	another	is	used	on	the	top	of	the	Person	class.	
Each	serves	a	different	purpose.

3 Remove	the	[Bindable]	metadata	tag	from	the	top	of	the	Person	class	definition.

4 Save	the	file.

ptg

175Examining Data Binding

If	you	look	at	the	DataBindingLab.mxml	class,	you	will	see	warning	symbols	appear	
to	the	left	of	the	line	of	code	where	the	somePerson	property	is	used.	If	you	check	your	
Problems	view,	you	will	see	two	additional	warnings:	Data binding will not be able to
detect assignments to “firstName” and Data binding will not be able to detect assignments
to “lastName”.

The	Flex	compiler	is	once	again	trying	to	provide	you	with	some	valuable	debugging	
information.	It	is	letting	you	know	that	you	have	asked	it	(by	using	the	braces)	to	watch	
the	properties	firstName	and	lastName.	However,	it	is	not	capable	of	doing	so,	as	neither	
is	marked	as	bindable.

5 Debug	the	application	and	again	click	the	Change	Whole	Person	button.

You	may	be	surprised	by	the	initial	result.	When	you	click	the	Change	Whole	Person		
button,	the	person	information	does	indeed	change.

6 Click	the	Change	Last	Name	button.

Regardless	of	how	many	times	you	click,	the	word	Smith	never	changes	to	Black	as	it	did	
previously.	So,	by	removing	the	[Bindable]	tag	from	the	Person	class,	you	broke	one	of	
the	two	cases	being	demonstrated	for	the	complex	object.

7 Terminate	the	debug	session	and	return	to	Flash	Builder.

8 Examine	the	method	that	is	executed	when	you	click	the	Change	Last	Name	button.	It	is	
called	handleChangePersonName().
private function handleChangePersonName(event:MouseEvent):void {
 somePerson.lastName = “Black”;
}

When	you	executed	this	method,	it	changed	the	lastName	property	inside	the	Person	object.

9 Now,	examine	the	method	that	is	executed	when	you	click	the	Change	Whole	Person		
button.	It	is	called	handleChangePerson().
private function handleChangePerson(event:MouseEvent):void {
 somePerson = new Person(“Joe”, “Smith”);
}

When	you	execute	this	method,	it	assigns	a	brand-new	Person	to	the	somePerson	property.

You	can	think	of	these	two	cases	in	the	following	way:	In	one	case,	you’re	swapping	the	
entire	Person	object	out	for	a	new	Person.	When	you	do	that,	you	expect	Flex	to	respond	
by	showing	you	the	new	Person	on	the	screen.

In	the	second	example,	you	are	not	changing	the	whole	Person,	but	rather	changing	
something	about	the	Person.	In	this	case,	you’re	changing	the	Person’s	last	name,	though	

ptg

176 Lesson 8: Using Data Binding and Collections

the	person	remains	the	same.	When	you	change	something	inside	the	Person	object		
(like	the	last	name),	you	also	expect	Flex	to	respond	by	updating	the	view.

These	two	use	cases	need	two	separate	[Bindable]	metadata	tags,	one	to	indicate	that	you	
want	Flex	to	watch	for	the	Person	to	change,	and	one	to	indicate	that	you	want	Flex	to	
watch	whether	the	properties	of	the	existing	Person	change.

10 Finish	breaking	this	example	by	removing	the	[Bindable]	metadata	tag	from	above	the	
somePerson	property,	and	save	the	file.

In	the	DataBindingLab.mxml	class,	you	will	see	additional	warning	symbols	to	the	left	of	
the	line	of	code	where	the	somePerson	property	is	used.	If	you	check	your	Problems	view,	
you’ll	also	see	two	additional	warnings,	both	saying,	Data binding will not be able to detect
assignments to “somePerson”. Flex	is	letting	you	know	that	this	class	is	broken.

11 Run	the	application	and	click	buttons	at	will.

While	the	properties	behind	the	scenes	are	changing	values,	the	visible	Flex	components	are	
unaware	that	these	changes	are	occurring	and	cannot	update.

Being the Compiler
As	much	fun	as	it	was	to	spend	a	bit	of	time	intentionally	breaking	code,	it’s	time	to	be	
constructive	again.	You	are	going	to	fix	the	someColor	property	to	ensure	data	binding	works	
again.	Although	you	could	do	this	by	simply	adding	back	the	[Bindable]	metadata	tag	above	
the	property,	it	will	be	significantly	more	interesting	and	informative	to	use	this	opportunity	
to	gain	an	understanding	of	what	the	[Bindable]	tag	does	on	your	behalf.

[Bindable]	and	the	braces	({})	are	among	the	many	examples	of	code	generation	in	Flex.	
Back	in	Lesson	7,	you	learned	about	a	compiler	option	(-keep-generated-actionscript)	that	
allowed	you	to	see	the	ActionScript	classes	that	the	Flex	compiler	created	from	the	MXML	
files	you	wrote.

ptg

177Being the Compiler

The	Flex	compiler	takes	the	MXML,	along	with	any	ActionScript	code	in	the	Script	block,	and	
creates	completed	ActionScript	classes.	This	is	an	example	of	code	generation,	in	that	Flex	
generates	ActionScript	code	based	on	the	MXML	you	wrote.	Any	single	line	of	MXML	may	
very	well	become	multiple	lines	of	ActionScript	code.

[Bindable]	and	the	braces	({})	work	in	a	very	similar	way.	When	Flex	is	compiling	your	code	
and	sees	a	[Bindable]	tag,	it	realizes	that	you	intend	Flex	to	watch	that	property	for	changes.	
It	takes	this	opportunity	to	create	some	new	code	to	make	that	possible.	Similarly,	when	the	
compiler	encounters	the	braces,	it	writes	code	to	update	your	control	when	the	data	changes.	
In	this	exercise,	you’ll	manually	replicate	some	of	that	same	code	to	gain	an	understanding	of	
the	binding	mechanism.

Implicit Getters and Setters
The	first	concept	employed	by	the	Flex	compiler	during	code	generation	is	called	an	implicit
getter and setter.	Implicit	getters	and	setters	are	a	way	to	create	a	pair	of	functions	that	act	like	
a	property.	You	have	already	created	many	properties	inside	Flex	classes:

public var someColor:String;

You	access	this	property	in	your	code	by	simple	assignments	or	reads:

someColor = “blue”;
trace(someColor);

Implicit	getters	and	setters	allow	you	this	same	freedom	of	simply	setting	and	reading	values,	
but	with	the	option	of	doing	extra	work	when	the	property	changes	(for	example,	recalculat-
ing	a	subtotal	when	a	quantity	changes).	Using	an	implicit	getter	and	setter,	this	same	code	
can	be	written	in	the	following	way:

private var _someColor:String;
private function get someColor():String {
 return _someColor;
}

private function set someColor(value:String):void {
 _someColor = value;
 //do some extra interesting stuff
}

Did	you	notice	the	underscore	added	to	the	beginning	of	the	variable?	You	would	continue	to	
access	this	property	in	your	code	by	simple	assignments	or	reads:

someColor = “blue”;
trace(someColor);

ptg

178 Lesson 8: Using Data Binding and Collections

	The	opportunity	to	do	that	other stuff is	one	key	to	making	data	binding	work	in	Flex.	Whenever	
you	mark	a	variable	[Bindable],	either	on	its	own	or	as	part	of	a	whole	class	of	bindable	proper-
ties,	Flex	changes	that	variable	to	a	property	defined	as	an	implicit	getter	and	setter.

1 Open	the	DataBindingLab.mxml	file	and	find	the	declaration	of	the	someColor	property.	
Change	the	property	name	to	prefix	it	with	an	underscore	as	follows:
private var _someColor:String = “red”;

In	Flex,	the	underscore	in	front	of	a	variable	is	often	used	to	indicate	that	a	private	vari-
able	will	have	an	implicit	getter	and	setter	that	should	be	used	to	access	this	data.

2 Create	a	private	getter	function	that	will	return	the	_someColor	variable	named	someColor.	
Its	return	type	will	be	String.	A	getter	is	created	just	like	a	function;	however,	the	word	
get	appears	between	the	keyword	function	and	the	name	of	the	function.	A	getter	cannot	
accept	any	parameters.
private function get someColor():String {
 return _someColor;
}

3 Create	a	private	setter	function	that	will	accept	a	single	parameter	named	value	of	type	
String.	It	will	return	void.	When	called,	this	method	will	set	the	_someColor	variable	to	the	
value	parameter.	A	setter	is	created	just	like	a	normal	function;	however,	the	word	set	appears	
between	the	keyword	function	and	the	name	of	the	function.	A	setter	always	accepts	a	single	
parameter	and	returns	nothing.	By	convention	this	parameter	is	named	value.
private function set someColor(value:String):void {
 _someColor = value;
}

4 Save	the	file.

You	should	not	see	any	errors	in	your	Problems	view,	although	you	will	continue	to	receive	
the	data	binding	warnings	for	the	moment.	Note	that	you	didn’t	change	any	of	the	code	that	
accessed	the	someColor	property.	This	code	will	still	continue	to	function	as	it	did	before.

Event Dispatching and Listening
Data	binding	is	just	event	dispatching	and	listening.	In	fact,	armed	with	the	knowledge	
learned	in	this	lesson	and	in	Lesson	5,	“Handling	Events,”	you	already	have	almost	enough	
information	to	replicate	data	binding	on	your	own.

What	follows	is	a	brief	introduction	to	dispatching	events	in	ActionScript.	You	will	learn	this	
in	much	greater	detail	in	Lesson	11,	“Creating	and	Dispatching	Events.”

ptg

179Being the Compiler

Listening to an Event
So	far	you	have	listened	for	events	dispatched	by	Flex	components	using	MXML.	You’ve	done	
this	by	specifying	the	name	of	a	function	that	is	called	when	the	event	occurs	and	then	gener-
ally	passing	the	event	object.	Listening	to	an	event	from	ActionScript	is	a	similar	process,	as	
illustrated	by	the	following	MXML	example:

<s:Button label=”A Perfect Button” id=”someButton”
 click=”doSomethingPlease(event)”/>

is	written	in	ActionScript	as:

someButton.addEventListener(“click”, doSomethingPlease);

You	are	simply	calling	a	method	named	addEventListener()	on	the	someButton	instance.	You	
are	passing	two	arguments,	the	name	of	the	event	that	is	important	to	you	(click),	and	the	
name	of	the	function	you	would	like	to	call	if	that	event	occurs	(doSomethingPlease).

Therefore,	the	general	form	of	addEventListener()	is:

objectThatDispatchesEvent.addEventListener(eventName, functionToCall);

Dispatching an Event
So	far,	you’ve	relied	on	Flex	controls	to	dispatch	all	events;	however,	it	is	quite	easy	to	dispatch	
your	own	events	as	well.	Here	is	an	example	of	dispatching	an	event	from	ActionScript:

var event:Event = new Event(“myEvent”);
this.dispatchEvent(event);

First,	you	create	a	new	Event	object	with	the	name	myEvent.	Then	you	simply	call	a	method	
named	dispatchEvent()	on	an	object,	passing	myEvent	as	an	argument.	Often	you	will	see	this	
combined	into	a	single	statement.

Therefore	the	general	form	of	dispatchEvent()	is:

objectThatDispatchesEvent.dispatchEvent(new Event(eventName));

Data Binding as Events
In	this	section,	you	will	fill	in	the	missing	pieces	to	make	the	someColor	property	work	as	it	
did	before	you	began	breaking	it	earlier	in	this	lesson.

1 For	the	last	line	of	the	setter	function	for	the	someColor	property,	you	will	now	dispatch	a	
new	Event	called	someColorChanged.
private function set someColor(value:String):void {
 _someColor = value;
 this.dispatchEvent(new Event(“someColorChanged”));
}

ptg

180 Lesson 8: Using Data Binding and Collections

Now	each	time	that	the	someColor	property	is	set,	you	will	call	the	dispatchEvent()	
method	of	the	Application	object	(this	refers	to	the	Application,	because	the	code	is	
located	in	the	Application	Script	block	and	runs	in	the	Application	context).	Anyone	
listening	for	a	someColorChanged	event	will	be	notified	when	it	is	dispatched.

2 Find	the	handleCreationComplete()	method	of	the	DataBindingLab.mxml	class.	Here	
you	will	add	an	event	listener	to	the	Application	for	the	someColorChanged	event.	When	
that	event	occurs,	you	will	call	a	function	named	handleSomeColorChanged().
private function handleCreationComplete(event:FlexEvent):void {
 this.addEventListener(“someColorChanged”, handleSomeColorChanged);
}

When	the	someColor	setter	dispatches	its	event,	the	handleSomeColorChanged()	handler	
will	be	called.	Notice	the	orange	circle	with	a	question	mark	on	the	left	margin,	as	Flash	
Builder	knows	that	handleSomeColorChanged	is	not	yet	a	function	in	your	class.

3 Press	Control	+	1	(Open	Apple	+	1	on	Mac)	to	launch	the	Quick	Fix	menu	and	choose	
Generate event handler.

Choosing	this	option	instructs	Flash	Builder	to	create	a	new	event	handler	method	
named	handleSomeColorChanged.	This	new	method	will	appear	below	the	existing	
handleChangePersonName()	method.	The	method	will	accept	a	single	parameter	named	
event	of	type	Event	and	return	nothing	(void).	
private function handleSomeColorChanged(event:Event):void {
 // TODO Auto-generated method stub
}

tip: When Quick Fix is first used, Flash Builder surrounds the method name in your event

handler as well as the method name in the new function with a rectangle and highlighting.

If you begin typing at that moment, Flash Builder will allow you to change the name of the

event handler in all places it is being used.

ptg

181Being the Compiler

4 Inside	the	handleSomeColorChanged()	method,	replace	the	auto-generated	comment	
with ActionScript	code	to	set	the	text	property	of	the	colorName	Label	equal	to	the	
value of	someColor.
private function handleSomeColorChanged(event:Event):void {
 colorName.text = someColor;
}

5 Find	the	colorName	Label	and	remove	the	code	that	sets	the	text	property.
<s:Label id=”colorName”/>

You	no	longer	need	this	code,	as	you	are	doing	the	work	that	the	[Bindable]	tag	and	the	
braces	normally	do	on	your	behalf.

6 Directly	below	the	addEventListener()	call	inside	the	handleCreationComplete()	
method,	set	the	value	of	the	colorName.text	property	to	someColor.
private function handleCreationComplete(event:FlexEvent):void {
 this.addEventListener(“someColorChanged”, handleSomeColorChanged);
 colorName.text = someColor;
}

Just	as	Flex	set	the	initial	value	of	your	color	regardless	of	any	data	binding	later	in	the	
process,	so	you	will	set	up	your	initial	value	here.

7 Run	the	application.

You	will	now	be	able	to	click	the	Change	Color	button	again	and	see	it	change	from	red	to	blue.

Using Auto-Generation with Flash Builder
So	far	in	this	lesson,	you	have	learned	about	creating	a	getter	and	a	setter	and	manually	dis-
patching	events.	After	you	understand	these	concepts,	you	can	apply	shortcuts.	In	this	section,	
you	will	accomplish	the	same	goal,	but	allow	Flash	Builder	to	perform	the	balance	of	the	work	
on	your	behalf.

1 Open	the	DataBindingLab.mxml	file	and	find	the	declaration	of	the	somePerson	property.	
Right-click	the	property	and	from	the	menu	choose	Source	>	Generate	Getter/Setter.

ptg

182 Lesson 8: Using Data Binding and Collections

2 In	the	Generate	Getter	and	Setter	dialog	box,	select	the	Make	bindable	option	and	the	
Dispatch	custom	event	option.	Ensure	your	dialog	box	looks	like	the	following	image	
and click	OK.

ptg

183Understanding Bindable Implications

Flash	Builder	renames	the	somePerson	property	for	you,	creates	the	getter	and	setter,	and	dispatches	
an	event	when	the	value	of	person	changes,	much	like	you	did	manually	in	the	last	exercise.	It	also	
adds	some	logic	to	make	sure	that	the	value	of	person	actually	changes	before	dispatching	the	event	
and	adds	a	special	Bindable	tag	above	the	getter.	This	special	tag	allows	this	property	to	be	used	
with	the	curly	brackets.	This	is	a	very	helpful	shortcut	to	use	during	development.

private var _somePerson:Person = new Person(“John”, “Doe”);
[Bindable(event=”somePersonChange”)]
public function get somePerson():Person {
 return _somePerson;
}
public function set somePerson(value:Person):void {
 if(_somePerson !== value) {
 _somePerson = value;
 dispatchEvent(new Event(“somePersonChange”));
 }
}

Understanding Bindable Implications
In	the	previous	exercise	you	replicated	a	fair	amount	of	the	code	that	Flex	writes	each	time	
you	use	braces	and	bindable	metadata.	The	most	important	things	to	understand	regarding	
this	process	are:

•	 Flex	writes	code	on	your	behalf	when	you	use	these	constructs.

•	 Data	binding	is	just	event	dispatching	and	listening	hidden	behind	the	scenes.

•	 In	order	for	data	binding	to	work	properly,	objects	must	be	able	to	dispatch	events	when	
something	changes.

The	last	point	has	many	implications.	By	default,	not	all	classes	in	Flex	can	dispatch	events.	
For	example,	the	Product	value	object	you	created	in	Lesson	7	cannot	dispatch	events	on	its	
own.	Classes	that	can	dispatch	events	are	called	event dispatchers.	In	Flex	all	user	interface	
components	are	a	type	of	event	dispatcher.

Fortunately,	for	classes	like	Product,	when	Flex	sees	the	[Bindable]	metadata	tag,	it	changes	
your	class	during	compilation	to	be	an	event	dispatcher	as	well	as	generating	all	the	code	we	
discussed	in	this	lesson.

It	is	important	to	remember	that	Flex	does	that	work	while	it	compiles	your	source	code.	
However,	this	demonstrates	an	important	prerequisite:	Flex	can	do	this	work	on	the	classes	
you	write	only	where	the	source	is	present	in	your	project.	It	cannot	change	classes	that	are	
already	compiled	and	no	longer	exist	as	source.	An	important	example	of	this	is	the	Array.	

ptg

184 Lesson 8: Using Data Binding and Collections

The	source	code	for	the	Array	is	not	in	your	project;	it	exists	inside	Flash	Player	itself.	That	
means	that	Flex	has	no	capability	of	changing	the	code	in	the	Array	to	dispatch	events	or	add	
any	of	the	code	we	have	discussed.	Therefore	arrays	cannot	be	used	in	data	binding	directly,	as	
they	cannot	dispatch	events	that	cause	the	user	interface	to	update.	In	the	next	sections,	you’ll	
learn	how	Flex	deals	with	these	limitations	through	a	technique	called	proxying.

Using ArrayCollections
In	Lesson	7,	you	worked	with	ActionScript	Array	instances	to	store	and	retrieve	shopping	cart	
data.	Throughout	the	book	you	have	worked	with	various	types	of	Array,	XML,	and	Object	
instances.	All	three	of	these	classes	are	built	into	the	Flash	Player	itself;	that	is,	you	won’t	find	
an	ActionScript	class	file	that	describes	their	behavior.	They	simply	exist	as	part	of	the	toolbox	
you	have	available	when	writing	ActionScript	code.

They	form	part	of	a	fundamental	set	of	types	available	to	you	in	Flex	that	includes	other	
common	types	such	as	Number,	String,	int,	uint,	and	Boolean.	However,	unlike	those	simple	
types,	Arrays,	Objects,	and	XML	are	complex,	meaning	that	they	don’t	store	simple	values	like	
a	Number,	but	rather	store	more	complex	data	and	often	have	methods	(such	as	the	push()	
method	of	the	Array)	that	can	be	called	on	the	type.

In	the	previous	exercise,	you	learned	that	Flex	enables	data	binding	on	complex	objects	by	
manipulating	the	source	code	during	compilation	to	allow	objects	to	dispatch	events.	With	
these	built-in	types,	such	manipulation	is	not	possible,	and	so	another	strategy	must	be	used	
to	allow	their	use	in	data	binding.	This	strategy	is	called	proxying.	In	Lesson	6,	“Using	Remote	
XML	Data,”	you	used	two	such	proxies:	an	XMLListCollection,	which	was	used	so	that	your	
categories	List	would	update	when	new	data	arrived	from	the	server,	and	an	ObjectProxy,	
which	you	observed	when	examining	data	retrieved	from	your	HTTPService.

When	used	with	data	binding,	a	proxy’s	job	is	to	act	as	a	go-between	for	components	you	
wish	to	be	updated	when	a	change	occurs	and	a	type,	such	as	the	Array,	that	does	not	have	the	
proper	logic	to	facilitate	such	an	interchange.

List
Array Collection or

Array List
Array

Put	simply,	an	ObjectProxy	is	a	proxy	for	an	Object,	an	XMLListCollection	is	a	proxy	for	an	
XMLList,	and	an	ArrayCollection	is	a	proxy	for	an	Array.	This	arrangement	allows	the	use	of	
these	complex	types	with	data	binding.

ptg

185Using ArrayCollections

In	reality,	the	Array	is	fortunate	to	have	two	distinct	proxies	available,	the	ArrayList	and	the	
ArrayCollection.	In	this	section,	you’ll	learn	about	the	ArrayCollection,	as	it	not	only	provides	
the	benefit	of	data	binding	but	also	has	a	rich	set	of	additional	features	for	sorting,	filtering,	
and	finding	data	quickly.	

In	the	remainder	of	the	book,	you’ll	use	ArrayList,	as	it	is	a	simple	and	lightweight	choice	
when	you	only	need	proxying	capabilities.

Populating an ArrayCollection
In	this	exercise,	you	will	create	an	ArrayCollection	of	Product	objects,	using	a	remote	XML	
file	for	their	source.	This	ArrayCollection	of	Product	objects	will	represent	the	list	of	available	
products	in	your	FlexGrocer	store.	You’ll	continue	to	use	and	manipulate	this	list	through	the	
remainder	of	the	book.

1 Open	a	web	browser	and	go	to	the	following	URL:

http://www.flexgrocer.com/categorizedProducts.xml.

Notice	the	structure	of	the	XML.
<?xml version=”1.0” encoding=”utf-8” ?>
<catalog>
 <category name=”Meat” catName=”Meat” catID=”1”>
 <product name=”Buffalo”
 prodName=”Buffalo”
 prodID=”7”
 unitName=”Pound”
 cost=”4”
 listPrice=”6.5”
 imageName=”meat_buffalo.jpg”
 description=”Delicious, low fat Buffalo sirloin. Better
 tasting than beef, and better for you too.”
 isOrganic=”No”
 isLowFat=”Yes”
 unitID=”3”
 catName=”Meat”
 catID=”1”/>
 <product name=”T Bone Steak” .../>
 <product name=”Whole Chicken” .../>
 </category>

 ...

</catalog>

http://www.flexgrocer.com/categorizedProducts.xml

ptg

186 Lesson 8: Using Data Binding and Collections

Unlike	the	previous	product	data	you	used,	the	product	nodes	are	listed	beneath	cat-
egory	nodes.	Also,	the	critical	information	about	the	products	is	not	described	in	nodes,	
but	rather	as	attributes	of	the	product	node.	You	will	need	to	use	E4X	operators	to	
retrieve this	data.

Table 8.1 Data Nodes and Attributes

Data as Nodes Data as Attributes

<product> <product prodname=”Milk”/>
 <prodName>Milk</prodName>
</product>

Finally,	note	that	in	our	older	XML,	the	values	of	the	isOrganic	and	isLowFat	nodes	are	
represented	by	the	words	true	or	false.	In	this	version,	the	words	No	or	Yes	have	been	
substituted.	This	is	typical	of	the	real-world	frustration	of	loading	remote	data	from	dif-
ferent	sources.	You’ll	learn	how	to	deal	with	this	change	shortly.

2 Open	the	FlexGrocer.mxml	file	that	you	used	in	Lesson	7.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson08/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
ever	skip	a	lesson	or	if	you	ever	have	a	code	issue	you	cannot	resolve.

3 Inside	FlexGrocer.mxml,	below	the	HTTPService	named	categoryService,	but	still	inside	
the	Declarations	block,	add	an	HTTPService	tag,	with	an	id	of	productService.	Set	the	
url	attribute	of	this	tag	to	http://www.flexgrocer.com/categorizedProducts.xml.
<s:HTTPService id=”productService”
 url=”http://www.flexgrocer.com/categorizedProducts.xml”/>

4 Your	new	HTTPService	should	return	its	results	as	XML,	so	set	the	resultFormat	to	e4x.	
Also,	specify	that	you	will	handle	the	result	event	of	HTTPService	with	a	new	function	
named	handleProductResult(),	and	pass	the	event	object	when	it	is	called.
<s:HTTPService id=”productService”
 url=”http://www.flexgrocer.com/categorizedProducts.xml”
 resultFormat=”e4x”
 result=”handleProductResult(event)”/>

http://www.flexgrocer.com/categorizedProducts.xml

ptg

187Using ArrayCollections

5 Ensure	the	cursor	is	over	the	word	handleProductResult	and	press	Control+1.	Choose	
Generate	event	handler.

This	will	create	a	new	protected	function	directly	below	the	handleCategoryResult()	
function	named	handleProductResult().	The	function	will	accept	a	single	parameter	
named	event	of	type	ResultEvent,	returning	void.
private function handleProductResult(event:ResultEvent):void {
 // TODO Auto-generated method stub
}

You	will	use	this	function	to	turn	the	data	from	the	HTTPService	into	a	series	of	
Product objects.

6 Find	the	handleCreationComplete()	method	and	delete	the	lines	that	build	a	new	product	
from	groceryInventory	and	the	line	that	traces	the	theProduct	variable.

7 Still	inside	the	handleCreationComplete()	method,	add	a	call	to	productService.send()	
to	retrieve	your	data	from	the	server.
private function handleCreationComplete(event:FlexEvent):void {
 categoryService.send();
 productService.send();
}

Remember,	simply	creating	the	HTTPService	tag	does	nothing	to	retrieve	your	data.	You	
must	call	the	send()	method	to	issue	the	request	for	the	categorizedProducts.xml	file.

8 Save	your	application	and	set	a	breakpoint	on	the	closing	bracket	of	your	new	
handleProductResult()	function.

Remember	you	can	set	a	breakpoint	by	double-clicking	in	the	marker	bar	just	to	the	left	
of	the	code	and	line	numbers.	A	small	blue	dot	will	appear	in	the	marker	bar,	indicating	
where	the	program	execution	will	halt.

tip: Always make sure you save the application before attempting to set breakpoints. setting

breakpoints can be confusing and sometimes frustrating when the application is not yet saved.

9 Debug	your	application.

When	you	reach	your	breakpoint,	return	to	Flash	Builder	and	ensure	you	are	in	the	
Debug	perspective.

10 Double-click	the	Variables	view.	Expand	the	event	object	and	the	result	property.	
Further	expand	the	<catalog>	node	beneath	the	result	to	ensure	you	are	retrieving	
the correct	data.

ptg

188 Lesson 8: Using Data Binding and Collections

You	should	see	category	nodes	and,	if	you	expand	further,	product	nodes.	Each	product	node	
will	have	a	variety	of	attributes	corresponding	to	the	properties	of	your	Product	object.

11 Terminate	your	debugging	session	and	return	to	the	Flash	perspective.

12 Open	your	Product	value	object	class.

Previously,	you	created	a	static	buildProduct()	method	that	could	build	a	Product	from	
a	generic	object.	Now	you	will	create	a	new	method	that	will	create	a	Product	from	the	
attributes	of	XML.

13 Below	the	buildProduct()	method,	create	a	new	public	static	method	named	
buildProductFromAttributes().	This	method	will	accept	a	single	parameter	named		
data	of	type	XML.	It	will	return	a	Product	instance.
public static function buildProductFromAttributes(data:XML):Product {
}

14 Immediately	inside	the	method,	create	a	local	variable	named	p	of	type	Product.
public static function buildProductFromAttributes(data:XML):Product {
 var p:Product;
}

This	variable	will	refer	to	your	new	Product	instance.	Next	you	will	deal	with	the	minor	
difference	in	the	way	the	isLowFat	and	isOrganic	nodes	are	handled	in	this	XML	file.

15 Now,	create	another	local	variable	named	isOrganic	of	type	Boolean.	Set	it	equal	to	an	
expression	that	checks	whether	data@isOrganic	is	equal	to	Yes.
var isOrganic:Boolean = (data.@isOrganic == “Yes”);

This	expression	will	check	the	attribute	isOrganic	against	the	String	Yes.	If	they	match,	
the	variable	isOrganic	will	be	true.

ptg

189Using ArrayCollections

16 Create	a	new	local	variable	named	isLowFat	of	type	Boolean.	Set	it	equal	to	an	expression	
that	checks	whether	data@isLowFat	is	equal	to	Yes.
var isLowFat:Boolean = (data.@isLowFat == “Yes”);

17 Instantiate	a	new	Product	instance,	passing	the	attributes	from	the	data	XML	as	the	argu-
ments	of	the	Product	constructor.	In	the	case	of	the	isOrganic	and	isLowFat	nodes,	pass	
the	local	Boolean	variables	instead.	Finally	return	p,	your	new	Product	instance.	Your	
code	should	read	as	follows:
public static function buildProductFromAttributes(data:XML):Product {
 var p:Product;

 var isOrganic:Boolean = (data.@isOrganic == “Yes”);
 var isLowFat:Boolean = (data.@isLowFat == “Yes”);

 p = new Product(data.@catID,
 data.@prodName,
 data.@unitID,
 data.@cost,
 data.@listPrice,
 data.@description,
 isOrganic,
 isLowFat,
 data.@imageName);

 return p;
}

You	now	have	three	ways	to	create	a	new	Product.	You	can	call	the	constructor	directly.	
You	can	call	buildProduct()	and	pass	an	object	or	XML	structure	using	nodes	for	the	
property	names,	or	you	can	call	buildProductFromAttributes()	and	pass	it	an	XML	
structure	with	the	properties	as	attributes.	You	will	use	the	latter	method	shortly	to	make	
constructing	your	ArrayCollection	much	easier.

18 Return	to	the	FlexGrocer.mxml	file.

19 Find	the	<fx:XML/>	tag	with	an	id	of	groceryInventory	and	delete	it.

As	your	data	is	now	going	to	come	directly	from	the	server	at	runtime,	you’ll	no	longer	
need	the	local	XML	file.

20 Directly	below	the	categories	XMLListCollection	in	your	Script	block,	add	a	new	bind-
able	private	variable	named	groceryInventory	of	type	ArrayCollection.

If	you	used	code	completion,	the	ArrayCollection	will	be	imported	for	you.	Otherwise,	
be sure	to	import	mx.collections.ArrayCollection.

ptg

190 Lesson 8: Using Data Binding and Collections

21 Return	to	your	handleProductResult()	method.	Delete	the	auto-generated	comment	and	
create	a	new	local	variable	named	products	of	type	Array.	Set	this	variable	equal	to	a	new	
Array	instance.
private function handleProductResult(event:ResultEvent):void {
 var products:Array = new Array();
}

22 Below	the	products	array,	create	another	local	variable	named	resultData	of	type	
XMLList.	Set	this	variable	to	the	E4X	expression	event.result..product	as	follows:
private function handleProductResult(event:ResultEvent):void {
 var products:Array = new Array();
 var resultData:XMLList = event.result..product;
}

This	E4X	expression	is	referred	to	as	a	descendant search.	As	you	learned	in	Lesson	6,	you	
are	indicating	that	you	want	all	<product>	nodes	from	the	XML	returned	from	the	server,	
regardless	of	whether	they	are	under	other	nodes	(such	as	the	category	node	in	this	case).

23 Insert	a	for	each..in	loop	to	move	through	each	piece	of	XML	in	the	resultData	XMLList.
for each (var p:XML in resultData) {
}

The	for each..in	loop	is	similar	to	the	for	loop	that	you	used	previously.	However,	
instead	of	a	counter	that	moves	from	one	number	to	the	next	over	iterations,	the	for
each..in	loop	understands	items	in	a	set	and	how	to	loop	over	them.	In	this	case,	the	
value	of	p	will	change	at	each	loop	to	become	the	next	product	node	in	your	XMLList.

24 Inside	the	for each..in	loop,	create	a	new	local	variable	named	product	of	type	Product.	
Assign	this	variable	to	the	result	of	the	static	method	buildProductFromAttributes()	on	
the	Product	class,	passing	it	the	variable	p.
for each (var p:XML in resultData) {
 var product:Product = Product.buildProductFromAttributes(p);
}

This	uses	the	new	method	you	just	created	to	build	a	typed	Product	object	from	the	attri-
butes	of	the	XML	node	p.

25 Still	inside	the	for each..in	loop,	use	the	push()	method	of	the	products	array	to	add	
the	newly	created	Product	instance	to	the	end	of	the	products	array.
for each (var p:XML in resultData) {
 var product:Product = Product.buildProductFromAttributes(p);
 products.push(product);
}

When	your	for	each..in	loop	finishes	executing,	you	will	have	an	Array	of	Product	
objects	that	reflects	the	same	data	in	your	XMLList	of	product	nodes.

ptg

191Using ArrayCollections

26 Just	below	and	outside	the	for	each..in	loop,	instantiate	a	new	ArrayCollection,	
passing	the	products	array	as	the	constructor	parameter.	Assign	the	result	to	the	
groceryInventory	property.
groceryInventory = new ArrayCollection(products);

In	this	example,	you	are	passing	the	Array	instance	that	the	ArrayCollection	will	proxy	to	
its	constructor.	Later	in	this	lesson	you	will	learn	other	ways	to	accomplish	this	same	goal.

Your	completed	method	should	read	as	follows:
private function handleProductResult(event:ResultEvent):void {
 var products:Array = new Array();
 var resultData:XMLList = event.result..product;

 for each (var p:XML in resultData) {
 var product:Product = Product.buildProductFromAttributes(p);
 products.push(product);
 }

 groceryInventory = new ArrayCollection(products);
}

This	method	will	handle	the	result	event	from	the	HTTPService,	and	parse	the	
returned	XML,	turning	it	into	Product	value	objects.	Those	objects	are	then	added	to	
an ArrayCollection,	where	they	can	be	used	to	update	the	user	interface.

27 Save	your	application	and	debug	it.	When	you	encounter	the	breakpoint,	switch	to	the	
Flash	Debug	perspective.

28 Add	the	groceryInventory	property	to	your	Expressions	panel	by	highlighting	it,	right-
clicking,	and	choosing	Create	Watch	Expression.	Expand	the	groceryInventory	variable	
in	the	Expressions	view,	and	you	should	see	a	list	of	Product	objects.

29 Terminate	your	debugging	session	and	return	to	Flash	Builder.	Remove	your	breakpoints.

ptg

192 Lesson 8: Using Data Binding and Collections

Using Data from an ArrayCollection
In	the	previous	exercise,	you	populated	an	ArrayCollection	from	XML	data	converted	to	
objects.	In	this	exercise,	you’ll	use	that	data	to	populate	the	components	in	your	view.

Data	from	an	ArrayCollection	can	be	accessed	in	several	ways,	as	you	will	learn	through	the	
remainder	of	this	lesson.	Two	of	the	most	popular	are	via	Array	notation	and	via	a	special	
method	of	the	ArrayCollection	called	getItemAt().

The	following	statements	will	return	the	same	data:

myArrayCollection[0];
myArrayCollection.getItemAt(0);

While	these	two	statements	are	functionally	equivalent,	the	call	to	getItemAt()	has	two	dis-
tinct	advantages.	First,	it	is	faster	at	runtime	than	the	Array	syntax,	which	exists	primarily	as	a	
convenience	to	developers.	Second,	you	can	use	getItemAt()	with	data	binding	to	update	your	
components	at	runtime.

1 Open	the	FlexGrocer.mxml	file	that	you	used	in	the	previous	exercise.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	functioning	
properly,	you	can	import	the	FlexGrocer-PreGetItem.fxp	project	from	the	Lesson08/
intermediate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	
project	should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Find	the	Button	instance	with	the	label	AddToCart.	Presently,	when	that	Button	is	clicked,	
you	call	the	addToCart()	method,	passing	it	theProduct.	Change	the	click	handler	to	instead	
pass	the	data	retrieved	from	calling	the	getItemAt()	method	of	the	groceryInventory	col-
lection,	passing	it	a	0.	You	will	need	to	cast	this	data	as	a	Product	instance.
<s:Button label=”Add To Cart” id=”add”
 click=”addToCart(groceryInventory.getItemAt(0) as Product)”/>

Your	application	would	be	very	boring	if	it	displayed	only	one	product,	so	we’ll	be	adding	
multiple	products	in	the	near	future.	While	this	bit	of	code	is	certainly	uglier	than	the	code	
that	was	here	before,	it	prepares	your	code	for	the	important	change	from	static	to	dynamic.

3 Find	the	RichText	instance	that	uses	the	description	property	of	the	theProduct	prop-
erty.	Change	the	text	property	to	use	the	description	property	of	the	groceryItem	col-
lection’s	first	item	(index	0).
<s:RichText
 text=”{(groceryInventory.getItemAt(0) as Product).description}”
 width=”50%”/>

ptg

193Using ArrayCollections

This	code,	while	still	ugly,	illustrates	an	important	point.	If	the	data	inside	the	first	
position	of	the	ArrayCollection	were	to	change,	this	RichText	instance’s	text	property	
would	update	automatically.	You	will	see	that	happen	as	you	evolve	the	application	in	the	
upcoming	lessons.

4 Update	the	Certified Organic	and	Low Fat	Label	instances	in	the	same	way,	using	the	
getItemAt()	method.
<s:VGroup includeIn=”expanded” width=”100%” x=”200”>
 <s:RichText
 text=”{(groceryInventory.getItemAt(0) as Product).description}”
 width=”50%”/>
 <s:Label text=”Certified Organic”
 visible=”{(groceryInventory.getItemAt(0) as Product).isOrganic}”/>
 <s:Label text=”Low Fat”
 visible=”{(groceryInventory.getItemAt(0) as Product).isLowFat}”/>
</s:VGroup>

5 Remove	the	theProduct	variable	declaration	and	the	[Bindable]	tag	above	it.

These	are	no	longer	needed	because	you	are	now	referencing	the	collection	directly.

6 Save	and	run	your	application.

If	all	the	instances	were	changed	correctly,	the	application	should	execute	as	before;	however,	
when	you	hover	over	the	bottle	of	milk,	you	should	now	receive	the	description	and	informa-
tion	for	the	first	item	in	the	groceryInventory	collection,	which	happens	to	be	Buffalo.	You	
will	continue	to	see	the	Milk	bottle	and	the	word	Milk,	as	those	are	hard-coded	in	your	appli-
cation	and	will	be	changed	in	the	next	lesson.

ptg

194 Lesson 8: Using Data Binding and Collections

Sorting Items in an ArrayCollection
In	this	lesson	so	far,	you	have	used	the	ArrayCollection	to	allow	you	to	make	Array	
instances	bindable.	That	is	one	of	its	most	important	uses;	however,	collections	such	as	the	
ArrayCollection	and	XMLListCollection	can	do	much	more.	In	this	exercise	you’ll	replace	
the Array	inside	your	ShoppingCart	class	with	an	ArrayCollection.

You	will	also	use	the	sorting	feature	provided	by	the	ArrayCollection	to	keep	the	items	in	your	
shopping	cart	in	order	at	all	times.

To	sort	an	ArrayCollection,	you’ll	use	both	the	Sort	and	SortField	classes.	The	following	steps	
outline	the	process	of	sorting	an	ArrayCollection.	You	will	implement	these	steps	with	more	
detail	later	in	the	task:

1. Create	a	new	Sort	object.

2. Create	one	or	more	SortField	objects.

3. Assign	the	fields	property	of	the	Sort	object	an	array	of	SortField	objects	(created	in	step	2).

4. Assign	the	Sort	object	to	the	sort	property	for	the	ArrayCollection.

5. Apply	the	sort	by	calling	the	refresh()	method	of	the	ArrayCollection.

Here	is	sample	code	that	performs	the	steps	to	sort	the	items	in	an	ArrayCollection.

var prodSort:Sort = new Sort();
var sortField:SortField = new SortField(“someField”);
prodSort.fields=new Array(sortField);
myArrayCollection.sort = prodSort;
myArrayCollection.refresh();

In	the	sample	code,	a	SortField	object	was	created	to	sort	on	the	someField	property	of	the	
objects	in	the	collection.	The	constructor	for	the	SortField	object	can	take	multiple	arguments;	
however,	only	the	first	is	required:	the	property	name	used	while	sorting.	In	this	example	the	
sort	will	use	the	someField	property.	Three	other	optional	constructor	parameters	are	available:

•	 Case	sensitivity	(false	by	default)

•	 Ascending	versus	descending	(ascending	by	default)

•	 Numeric	versus	alphabetic	(by	default,	Flex	tries	to	guess	if	the	data	is	numeric	or	alphabetic)

A	single	Sort	object	can	have	several	sort	fields	(for	example,	you	could	sort	first	by	category,	
then	by	price),	which	is	why	the	fields	property	of	the	Sort	class	requires	that	an	array	of	
SortField	instances	to	be	specified.	Even	for	a	single-field	sort,	you	create	an	array	with	only	
one	SortField	within	it,	as	shown	in	the	example.

ptg

195Using ArrayCollections

tip: When specifying multiple sortFields, the order in the array is the order in which the sort

fields would be applied. If you sort by category and then price, your code would look like this:

var prodSort:Sort = new Sort();
var sortField1:SortField = new SortField(“category”);
var sortField2:SortField = new SortField(“listPrice”);
prodSort.fields=new Array(sortField1, sortField2);

1 Open	the	ShoppingCart.as	file	that	you	built	in	the	previous	lesson.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing properly,	you	can	import	the	FlexGrocer-PreSort.fxp	project	from	the	Lesson08/
intermediate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	
project	should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Find	the	items	array.	Add	a	[Bindable]	tag	above	this	property	and	change	the	property’s	
type	to	an	ArrayCollection,	assigning	it	to	a	new	instance	of	the	ArrayCollection	without	
any	constructor	arguments.
[Bindable]
public var items:ArrayCollection = new ArrayCollection();

If	you	used	code	completion,	the	ArrayCollection	will	be	imported	for	you.	Otherwise,	
be	sure	to	import	mx.collections.ArrayCollection.	As	you	learned	previously,	
ArrayCollections	proxy	an	Array.	When	you	create	a	new	ArrayCollection	without	
specifying	the	Array	instance	to	proxy,	Flex	creates	a	new	Array	on	your	behalf.	In	other	
words,	these	two	lines	are	equivalent:
new ArrayCollection();
new ArrayCollection(new Array());

3 Find	the	total	property	and	add	a	[Bindable]	tag	above	it.
[Bindable]
public var total:Number = 0;

You	are	allowing	the	view	to	watch	this	property	and	update	if	it	changes.

4 In	the	constructor	for	the	ShoppingCart	class,	create	a	new	local	variable	named	prodSort	
of	type	Sort.	Set	it	equal	to	a	new	instance	of	the	Sort	class.
public function ShoppingCart() {
 var prodSort:Sort = new Sort();
}

If	you	used	code	completion,	the	Sort	class	will	be	imported	for	you.	Otherwise,	be	sure	
to	import	spark.collections.Sort.	The	Sort	class	is	used	to	define	the	order	in	which	an	
ArrayCollection	will	keep	its	children.

ptg

196 Lesson 8: Using Data Binding and Collections

There	is	also	an	mx.collections.Sort	class.	The	difference	is	that	the	spark.collections.Sort	
class	contains	additional	logic	for	sorting	characters	from	multiple	international	locales.	
You	should	favor	using	the	spark.collections	classes	when	you	have	the	choice.

5 After	the	prodSort	variable,	create	another	new	local	variable	named	sortField	of	type	
SortField.	Set	it	equal	to	a	new	instance	of	the	SortField	class.	Pass	the	string	product	to	
the	SortField	constructor.
public function ShoppingCart() {
 var prodSort:Sort = new Sort();
 var sortField:SortField = new SortField(“product”);
}

If	you	used	code	completion,	the	SortField	class	will	be	imported	for	you.	Otherwise,	
be sure	to	import	spark.collections.SortField.	The	SortField	class	is	used	to	define	
various	fields	within	your	data	structure	that	the	Sort	class	will	use	when	ordering.

6 After	the	sortField	variable,	you	will	set	the	fields	property	of	the	prodSort	instance	to	
an	Array	containing	the	sortField.
public function ShoppingCart() {
 var prodSort:Sort = new Sort();
 var sortField:SortField = new SortField(“product”);
 prodSort.fields = [sortField];
}

The	square	brackets	in	ActionScript	are	a	shortcut	to	creating	an	Array	instance.	Here	
you	are	creating	an	array	with	one	element:	the	sortField.	The	fields	property	accepts	
an	array	of	SortField	instances,	so	you	may	sort	by	multiple	properties	of	the	object.

Note: When specifying multiple sortFields, the order of fields in the array is the order in which

the sort fields are applied.

7 Set	the	sort	property	of	the	items	ArrayCollection	to	the	prodSort	instance.	Then	call	the	
refresh()	method	of	the	items	ArrayCollection.	Your	constructor	should	look	like	the	
following	code:
public function ShoppingCart() {
 var prodSort:Sort = new Sort();
 var sortField:SortField = new SortField(“product”);
 prodSort.fields = [sortField];

 items.sort = prodSort;
 items.refresh();
}

ptg

197Using ArrayCollections

The	sort	property	of	the	ArrayCollection	references	a	Sort	object	that	knows	how	to	
sort	the	collection.	After	applying	a	new	sort	to	a	collection,	you	must	call	the	refresh()	
method	to	allow	the	sort	to	reorder	its	children	and	set	up	its	internal	state.

8 Find	the	addItem()	method.	Currently,	when	a	new	item	is	added	to	the	cart,	it	is	pushed	
onto	the	items	array.	However,	items	is	now	an	ArrayCollection.	Change	the	push()	
method	of	the	Array	to	the	addItem()	method	of	the	ArrayCollection	instead.
public function addItem(item:ShoppingCartItem):void {
 if (isItemInCart(item)) {
 updateItem(item);
 } else {
 items.addItem(item);
 }

 calculateTotal();
}

The	addItem()	method	will	add	the	item	to	the	collection	and	ensure	that	it	stays	
properly sorted.

9 Switch	to	the	ShoppingCartItem	class.	Add	a	[Bindable]	metadata	tag	above	the	class	
definition	for	the	ShoppingCartItem.
[Bindable]
public class ShoppingCartItem {
 public var product:Product;
 public var quantity:uint;
 public var subtotal:Number;

You	want	all	the	properties	of	the	ShoppingCartItem	to	participate	in	data	binding.

10 Switch	to	the	FlexGrocer.mxml	file	and	locate	the	VGroup	named	cartGroup.

11 Just	above	the	Label	with	the	text	Your Cart Total: $,	add	a	new	<s:List/>	tag,	with	an		
id	of	cartList.	Bind	the	dataProvider	property	of	the	List	to	the	shoppingCart.items		
ArrayCollection.	Finally,	specify	that	this	List	will	appear	in	State1	using	only	the	
includeIn attribute.
<s:List id=”cartList”
 dataProvider=”{shoppingCart.items}” includeIn=”State1”/>

This	list	will	visually	display	the	items	in	your	ShoppingCart	and	update	automatically	
thanks	to	data	binding.

12 Save	and	run	your	application.	As	you	click	the	AddToCart	button	repeatedly,	Buffalo	
should	initially	appear	and	subsequently	increment	its	item	count.

ptg

198 Lesson 8: Using Data Binding and Collections

Refactoring to Search with a Cursor
One	of	the	features	added	to	your	shopping	cart	was	the	ability	to	determine	whether	a	newly	
selected	ShoppingCartItem	already	existed	in	the	cart.	Presently	you	are	looping	through	
items	and	doing	a	comparison	to	see	whether	that	is	the	case.

In	this	exercise	you’re	going	to	refactor	the	code	responsible	for	that	operation	in	the	
ShoppingCart	to	use	a	concept	called	a	cursor.	A	cursor	is	a	position	indicator	within	the	col-
lection	class	that	allows	direct	access	to	any	particular	item	in	the	collection,	allowing	for	the	
easy	manipulation	of	items.	Once	you	have	a	cursor	created	in	a	collection,	you	can:

•	 Move	the	cursor	backward	and	forward

•	 Find	specific	items	with	the	cursor

•	 Retrieve	the	item	at	the	cursor	location

•	 Add	and	remove	items	at	the	cursor	position

All	this	functionality	is	available	natively	to	the	ArrayCollection	class,	meaning	you	do	not	
need	to	write	verbose	loops	to	achieve	any	of	these	goals.

Note: Cursors are not unique to ArrayCollections; they are available to several classes. For

more information, read about the IViewCursor interface. For more information about interfaces

in general, please refer to the “About Interfaces” section of the “Creating and extending Flex

Components” documentation.

The	general	steps	to	using	a	cursor	in	a	collection	class	are:

1. Create	a	cursor	for	the	collection	using	the	createCursor()	method.

2. Make	sure	the	collection	is	sorted.

ptg

199Using ArrayCollections

3. Use	the	findFirst(),	findAny(),	moveNext(), movePrevious(),	and	seek()	methods	to	
move	the	cursor	and	find	items	within	the	collection.

Now	you	will	use	the	cursor	while	refactoring	the	ShoppingCart	class.

1 Open	the	ShoppingCart.as	class.

2 Find	the	getItemInCart()	method	and	delete	the	for	loop.
private function getItemInCart(item:ShoppingCartItem):ShoppingCartItem {
 var existingItem:ShoppingCartItem;

 return null;
}

Going	forward,	you	will	use	cursors	to	accomplish	the	same	task.

3 Below	the	existingItem	variable,	create	a	new	local	variable	named	cursor	of	type	
IViewCursor.	Set	this	variable	equal	to	the	result	of	calling	the	createCursor()	method	on	
the	items	ArrayCollection.
private function getItemInCart(item:ShoppingCartItem):ShoppingCartItem {
 var existingItem:ShoppingCartItem;
 var cursor:IViewCursor = items.createCursor();

 return null;
}

If	you	used	code	completion,	the	IViewCursor	interface	will	be	imported	for	you.	
Otherwise,	be	sure	to	import	import mx.collections.IViewCursor.	The	I	that	prefaces	
the	IViewCursor	name	indicates	that	it	is	an	interface.	The	createCursor()	method	is	not	
unlike	the	buildProduct()	method	you	created	earlier.	It	creates	a	new	cursor,	sets	some	
initial	values,	and	returns	it	for	your	use.

Note: Put simply, an interface is a contract between two objects. While you don’t need to

thoroughly understand interfaces to complete this section, you will need to understand the

concept to use Flex effectively. There are many object-oriented references available online with

great explanations and examples of interfaces.

4 After	the	call	to	createCursor(),	pass	the	item	parameter	to	the	cursor’s	findFirst()	
method,	and	store	the	results	in	a	Boolean	variable	named	found.
var found:Boolean = cursor.findFirst(item);

In	this	step,	you	are	using	the	findFirst()	method	of	the	cursor	to	search	through	the	
collection	of	ShoppingCartItems	looking	for	a	match.	The	findFirst()	method	expects	
an	object	as	its	argument.	Flex	uses	the	properties	and	values	within	that	object	to	look	

ptg

200 Lesson 8: Using Data Binding and Collections

for	a	matching	item.	For	example,	the	following	code	would	search	through	a	fictional	
collection	of	Flower	objects	looking	at	name	properties.
var o:Object = new Object();
o.name = “Rose”;
cursor.findFirst(o);

In	this	case,	Flex	notes	a	property	called	name	in	the	object,	and	Rose	as	the	value	of	
that	property.	It	then	searches	the	collection	for	Rose.	However,	there’s	one	very	impor-
tant	point:	You	can	search	a	collection	only	by	the	fields	in	your	sort	criteria.	In	your	
ShoppingCart,	you	created	a	sort	based	on	the	product	field.	So,	even	if	you	passed	an	
object	with	hundreds	of	properties,	Flex	will	compare	only	items	in	the	product	field.

If	the	findFirst()	finds	a	match,	the	method	will	return	a	value	of	true,	and	the	cursor	will	
be	positioned	at	the	matching	record.	If	no	match	is	found,	a	value	of	false	will	be	returned.

tip: In addition to findFirst(), the cursor also has the findAny() and findLast() methods.

Any of these three could be used in the code because your logic prevents more than one

shoppingCartItem for each Product.

5 After	the	call	to	findFirst(),	create	an	if	statement	that	checks	the	found	variable.	If	it	
is	true,	assign	the	cursor’s	current	property	to	the	existingItem	variable,	casting	it	as	a	
ShoppingCartItem.
if (found){
 existingItem = cursor.current as ShoppingCartItem;
}

If	findFirst()	is	successful,	the	current	property	of	the	cursor	is	a	reference	to	the	object	
at	the	present	position	of	the	cursor,	which	will	be	the	ShoppingCartItem	you	just	found.	
If	the	operation	is	not	a	success,	this	property	is	indeterminate	and	cannot	be	used safely.

6 Finally,	change	the	return	statement	to	return	the	existingItem.	Your	final	method	
should	look	like	this:
private function getItemInCart(item:ShoppingCartItem):ShoppingCartItem {
 var existingItem:ShoppingCartItem;
 var cursor:IViewCursor = items.createCursor();

 var found:Boolean = cursor.findFirst(item);

 if (found){
 existingItem = cursor.current as ShoppingCartItem;
 }

 return existingItem;
}

ptg

201Using ArrayCollections

Once	a	collection	is	sorted,	the	cursor’s	find	methods	are	much	faster,	especially	on	large	col-
lections,	than	looping	through	the	collection	manually.

Removing Items with a Cursor
Your	ShoppingCart	is	still	missing	one	key	feature,	the	ability	to	remove	an	item.	You	will	add	
that	ability	now	using	cursor	logic.

1 Open	the	ShoppingCart.as	class.

2 Add	a	new	public	method	just	below	addItem(),	called	removeItem().	The	method	will	
accept	a	single	parameter	named	item	of	type	ShoppingCartItem.

3 Create	a	new	local	variable	within	the	removeItem()	method	named	cursor	of	type	
IViewCursor,	and	assign	the	result	of	calling	the	createCursor()	method	on	the	items	
collection	to	it.
public function removeItem(item:ShoppingCartItem):void {
 var cursor:IViewCursor = items.createCursor();
}

4 Create	an	if	statement	that	evaluates	whether	a	call	to	cursor.findFirst()	passing	item	
returns	true.
public function removeItem(item:ShoppingCartItem):void {
 var cursor:IViewCursor = items.createCursor();

 if (cursor.findFirst(item)) {
 }
}

5 Inside	the	if	block,	call	the	cursor.remove()	method.

This	method	removes	the	item	at	the	cursor’s	current	position.

6 Finally,	call	the	calculateTotal()	to	re-total	the	cart	after	an	item	is	removed.	Your	final	
method	should	look	like	this:
public function removeItem(item:ShoppingCartItem):void {
 var cursor:IViewCursor = items.createCursor();

 if (cursor.findFirst(item)) {
 cursor.remove();
 }

 calculateTotal();
}

ptg

202 Lesson 8: Using Data Binding and Collections

7 Open	FlexGrocer.mxml	and	find	the	Button	with	the	label	Add To Cart.

You	will	now	add	a	Remove	button.

8 Directly	below	this	Button,	add	a	new	Button	with	the	id	of	remove.	Set	the	label	to	
Remove From Cart.

Similar	to	what	you	did	for	the	Add	button,	you	will	call	a	method	when	this	button	is	
clicked,	passing	it	the	current	item.

9 On	the	click	event	of	this	Remove	button,	call	a	new	method	named	removeFromCart().	
Pass	this	new	method	the	first	(index	0)	item	from	the	groceryInventory	collection,	cast	
as	a	Product.
<s:Button label=”Remove From Cart” id=”remove”
 click=”removeFromCart(groceryInventory.getItemAt(0) as Product)”/>

10 Create	a	new	private	function	named	removeFromCart()	directly	below	the	addToCart()	
method	in	your	Script	block.	The	method	will	accept	a	single	parameter	named	product	
of	type	Product.

11 Inside	this	method,	create	a	new	local	variable	named	sci	of	type	ShoppingCartItem	
and set	it	equal	to	a	new	instance	of	a	ShoppingCartItem,	passing	product	as	the		
constructor	argument.

12 As	the	last	line	of	this	method,	call	the	removeItem()	method	of	the	shoppingCart	
instance	and	pass	it	sci	as	an	argument.
private function removeFromCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.removeItem(sci);
}

13 Save	and	run	your	application.	You	now	have	the	ability	to	add	and	remove	items	from	
the	ShoppingCart	with	very	little	additional	work,	thanks	to	the	cursor.

Filtering Items in an ArrayCollection
Collections	provide	one	more	crucial	piece	of	functionality:	filtering.	Filtering	provides	a	way	for	
you	to	reduce	the	number	of	visible	items	in	an	ArrayCollection	based	on	the	results	of	a	function.

Remember	that	an	ArrayCollection	is	just	a	proxy	to	an	Array.	You	already	know	that	this	
proxy	layer	is	useful	in	data	binding,	but	it	has	other	uses,	namely,	lying	to	you.

Each	time	you	want	a	piece	of	data	from	the	Array,	you	ask	the	ArrayCollection,	which	
retrieves	it	for	you.	If	you	want	to	know	how	many	items	are	in	the	Array,	you	ask	the	
ArrayCollection,	and	it	provides	a	length.	However,	what	if	the	ArrayCollection	is	dishonest?	

ptg

203Using ArrayCollections

What	if	it	reports	fewer	items	in	the	Array	than	there	really	are?	What	if	you	ask	for	the	item	
at	position	3,	and	it	returns	the	one	at	position	5	of	the	Array?

This	seems	extremely	negative	on	the	surface,	but	you	have	already	used	this	lying	behavior	
with	success.	When	you	sorted	your	ArrayCollection,	the	actual	items	in	the	Array	(the	data	
the	ArrayCollection	is	proxying)	remained	unchanged.	Instead,	when	you	asked	for	the	item	
at	index	number	2,	the	ArrayCollection	simply	returned	what	would	be	at	index	2	if	the	Array	
were	sorted	in	the	way	you	requested.

Filtering	is	another	very	convenient	way	to	lie.	To	filter	an	ArrayCollection	you	will	need	to	
implement	these	steps:

1. Create	a	new	function	that	accepts	a	single	parameter	named	item.	This	parameter	will	
be	the	same	type	of	whatever	items	are	in	your	collection	(for	example,	Products),	or	it	
can	be	generically	of	type	Object.	The	function	will	return	a	Boolean,	indicating	whether	
the	item	should	be	included	in	the	ArrayCollection’s	data.

2. Assign	this	function	to	the	filterFunction	property	of	the	ArrayCollection.

3. Apply	the	function	by	calling	the	refresh()	method	of	the	ArrayCollection.

Here	is	sample	code	that	performs	the	steps	to	filter	the	items	in	an	ArrayCollection.
protected function filterOrganic(item:Product):Boolean {
 var includeMe:Boolean = item.isOrganic;
 return includeMe;
}

myArrayCollection.filterFunction = filterOrganic;
myArrayCollection.refresh();

In	the	sample	code,	once	refresh()	is	called,	the	ArrayCollection	automatically	passes	each	
item	in	the	Array	to	the	filterOrganic()	method.	If	this	method	returns	a	true	(if	the	item	is	
organic	in	this	example),	the	ArrayCollection	will	continue	to	retrieve	that	item	when	asked.	
If	the	filterOrganic()	method	returns	false,	the	ArrayCollection	will	decrement	its	length	
property	by	1	and	pretend	that	item	never	existed.

In	all	cases,	the	real	data	in	the	Array	remains	unchanged.	This	may	seem	overly	complex,	
but	it	allows	for	a	tremendous	amount	of	functionality.	Because	the	data	in	the	Array	remains	
unchanged,	you	can	simultaneously	see	the	data	sorted	or	filtered	in	multiple	ways,	all	using	
the	same	source	Array.	You	will	use	this	functionality	in	the	coming	lessons	to	filter	your	
products	by	the	category	selected	in	the	application	control	bar.

ptg

204 Lesson 8: Using Data Binding and Collections

Refactoring ShoppingCartItem
With	the	new	information	learned	in	this	lesson,	one	more	piece	of	refactoring	should	occur.	
Right	now,	each	time	you	change	the	quantity	of	a	ShoppingCartItem,	you	also	manually	call	
calculateSubtotal().

private function updateItem(item:ShoppingCartItem):void {
 var existingItem:ShoppingCartItem = getItemInCart(item);
 existingItem.quantity += item.quantity;
 existingItem.calculateSubtotal();
}

In	object-oriented	programming,	you	strive	to	hide	the	internal	workings	of	objects	from	
the end	user.	Here,	the	internal	workings	are	painfully	obvious.	Using	the	implicit	getter	and	
setter	logic	learned	in	this	lesson,	you	can	correct	this	issue.

1 Open	the	ShoppingCart.as	class.

2 Find	the	updateItem()	method	and	remove	the	call	to	calculateSubtotal()	on	the	
existingItem.

The	ShoppingCart	will	no	longer	be	responsible	for	executing	this	internal	logic	of	the	
ShoppingCartItem	class.

3 Open	the	ShoppingCartItem.as	class.

4 Click	the	public	variable	named	quantity and	press	Control	+	1.	Choose	to	Create	getter	
and	setter	for	‘quantity’.	Leave	all	options	at	default.

The	quantity	variable	will	be	renamed	to	_quantity	and	a	getter	and	setter	will	be	created:
private var _quantity:uint;
public function get quantity():uint {
 return _quantity;
}
public function set quantity(value:uint):void {
 _quantity = value;
}

5 Inside	the	setter,	after	the	_quantity	variable	is	set,	call	the	calculateSubtotal()	method.
public function set quantity(value:uint):void {
 _quantity = value;
 calculateSubtotal();
}

Now,	anytime	someone	sets	the	quantity,	the	ShoppingCartItem	will	automatically		
recalculate	its	subtotal.

ptg

205What You Have Learned

6 As	the	last	step,	and	to	reinforce	this	point	of	encapsulating	(hiding)	internals,	change	the	
calculateSubtotal()	method	from	public	to	private.
private function calculateSubtotal():void {
 this.subtotal = product.listPrice * quantity
}

Now	code	outside	this	class	will	be	unable	to	call	this	method	directly.

7 Save	and	run	your	code.

As	with	any	refactoring,	the	code	execution	should	be	identical,	with	the	ability	to	add,	
update,	and	delete	shopping	cart	items.

What You Have Learned
In this lesson, you have:

•	 Learned	how	data	binding	works	and	common	mistakes	that	cause	it	to	cease	to	function	
(pages	170–176)

•	 Replicated	data	binding	with	event	listeners	(pages	176–184)

•	 Programmatically	added	items	to	an	ArrayCollection	built	from	remote	XML	data	
(pages 184–191)

•	 Used	the	getItemAt()	method	of	the	ArrayCollection	to	retrieve	data	(pages	192–193)

•	 Sorted	an	ArrayCollection	(pages	194–198)

•	 Used	a	cursor	to	find	and	remove	data	(pages	198–202)

•	 Refactored	ShoppingCartItem	(pages	204–205)

ptg

Le
ss

o
n

 9 What You Will Learn
In this lesson, you will:

•	 Understand	the	need	for	components	and	how	they	can	fit	into	an	application	
architecture

•	 Understand	the	Flex	class	hierarchy

•	 Build	both	visual	and	non-visual	components

•	 Instantiate	and	use	custom	components

•	 Create	properties	and	methods	in	custom	components

Approximate Time
This	lesson	takes	approximately	2	hours	to	complete.

ptg

207

Lesson 9

Breaking the
Application into
Components
You have used many components while building the application to its current state. Every time
you use an MXML tag, you are using a component. In fact, Flex is considered to be a compo-
nent-based development model. In this lesson, you’ll learn how to create your own components.
The custom components you build will either extend functionality of the components that the
Flex SDK provides or group functionality of several of those components together.

Up to this point, you did not have a way to divide your application into different files. If you
continued this way, the application file would get longer and longer and become more dif-
ficult to build, debug, and maintain. It would also be very difficult for a team to work on one
large application page. Components let you divide the application into modules, which you
can develop and maintain separately. With careful planning, these components can become a
reusable suite of application functionality.

A simple component

ptg

208 Lesson 9: Breaking the Application into Components

You	will	learn	two	things	in	this	lesson.	The	first	is	how	to	build	components.	You’ll	learn	the	
syntax	and	rules	for	creating	and	using	custom	components.	Second,	you	will	learn	why	you’d	
want	to	do	this	and	how	components	can	affect	your	overall	application	architecture.	The	
“Introducing	MXML	Components”	section	provides	an	overview	of	how	to	build	compo-
nents.	In	the	tasks	throughout	this	lesson,	you’ll	reinforce	your	component-building	skills	and	
continue	to	learn	more	and	more	details	about	building	custom	components.	You’ll	start	with	
a	theoretical	discussion	of	why	you	would	want	to	use	components.	The	rest	of	the	lesson	will	
use	an	architectural	approach	to	implementing	components.

Introducing MXML Components
All	Flex	components	and	all	the	components	you	will	build	are	ActionScript	classes.	The	base	
class	for	the	visual	components	you’ve	been	using	and	the	MXML	components	you’ll	build	in	
this	lesson	is	UIComponent.	In	a	hierarchy	of	components,	UIComponent	is	at	the	top,	and	
all	the	other	components	inherit	from	it.

These	classes	fall	into	general	groupings	based	on	their	functionality,	such	as	component,	
manager,	and	data	service	classes.	In	fact,	UIComponent	has	itself	inherited	from	a	set	of	
classes	that	provide	functionality,	such	as	event	dispatching,	interactivity,	containment	of	
other	objects,	and	so	on.

Note: You can examine a complete description of the class hierarchy in the Flex Actionscript

and MXML API reference, referred to as AsDoc.

ptg

209Introducing MXML Components

Understanding the Basics of How to Create a Custom Component
When	you	build	your	own	component,	you	basically	want	to	do	one	of	two	things:	add	func-
tionality	to	a	predefined	component,	or	group	numerous	components	together.

The	basic	steps	to	build	a	component	are	as	follows:

1. Create	a	new	file	with	the	filename	you	want	for	your	component.	(You	don’t	need	to	
actually	do	this;	just	follow	along	with	the	logic.)	Because	you’re	building	a	class,	the	
name	should	start	with	an	uppercase	letter.	Also,	remember	that	these	names	will	be	
case sensitive,	like	Flex	in	general.

2. Make	the	first	line	of	code	the	XML	document-type	definition	you	have	been	using	for	
the	main	application	files.
<?xml version=”1.0” encoding=”utf-8”?>

3. As	the	first	MXML	tag,	insert	the	root	tag	of	your	component,	which	will	reflect	what	you	
want	to	do	in	the	component.	If	it	is	a	container,	you	most	likely	want	to	group	several	
components’	functionality	into	one	easier-to-use	component.	If	it’s	not	a	container,	you	
most	likely	want	to	extend	the	functionality	of	a	predefined	component	or	further	extend	
the	functionality	of	a	custom	component.	Either	way,	you	will	need	to	define	in	your	root	
tag	the	namespaces	that	will	be	used	in	your	component.
<s:Group xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>
</s:Group>

ptg

210 Lesson 9: Breaking the Application into Components

4. In	the	body	of	the	component,	add	the	functionality	needed.	This	will	vary	depending	on	
what	functionality	you	want	the	component	to	provide.

5. In	the	root	tag	of	the	file	that	will	instantiate	the	component,	add	an	XML	namespace	
so	you	can	access	the	component.	It’s	considered	a	best	practice	to	group	components	in	
subdirectories	according	to	their	purpose.	For	instance,	you	will	create	a	directory	called	
views.	Later	in	this	lesson,	you	will	add	a	namespace,	using	the	word	views	as	the	prefix,	
to	have	access	to	all	the	custom	components	in	the	views	directory.	The	statement	will	
appear	as	follows:
xmlns:views=”views.*”

6. Instantiate	the	component	as	you	would	a	predefined	component.	For	instance,	if	you	
created	a	file	component	called	UserForm.mxml,	you	would	instantiate	that	component	
using	the	namespace	just	created,	as	follows:
<views:UserForm/>

Creating a Custom Component Step by Step
Now	that	you	know	the	general	approach	to	building	a	component,	here	is	a	simple	example	
of	adding	functionality	to	a	predefined	component.	Assume	that	you	want	to	build	a	List	that	
will	automatically	display	three	grocery	categories.	Your	component	will	use	<s:List>	as	its	
root	tag.	Until	now,	all	the	MXML	pages	you’ve	built	use	the	<s:Application>	tag	as	the	root	
tag.	Components	cannot	use	the	<s:Application>	tag	as	the	root	tag	because	it	can	be	used	
only	once	per	application.	Here	are	six	steps	for	creating	a	simple	component.	Of	course,	
using	Flash	Builder	further	simplifies	the	process	by	presenting	a	dialog	to	help	you	build	a	
template	of	your	component.

1. Create	a	file	named	MyList.mxml.	(You	don’t	need	to	actually	do	this;	just	follow	along	
with	the	logic.)

2. The	first	line	of	the	component	will	be	the	standard	XML	document	declaration.
<?xml version=”1.0” encoding=”utf-8”?>

3. Because	you	are	extending	the	functionality	of	the	<s:List>,	you	will	use	it	as	the	root	
tag.	Your	skeleton	component	will	appear	as	follows:
<?xml version=”1.0” encoding=”utf-8”?>
<s:List xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>
 <s:layout>
 <s:VerticalLayout/>
 </s:layout>
</s:List>

ptg

211Introducing MXML Components

4. The	functionality	to	add	to	the	body	of	the	component	is	to	display	three	<s:String>	
tags	in	the	<s:List>.	You	know	you	use	the	<s:dataProvider>	tag	to	supply	data	to	an	
<s:List>,	so	here	is	the	finished	component:
<?xml version=”1.0” encoding=”utf-8”?>
<s:List xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>
 <s:layout>
 <s:VerticalLayout/>
 </s:layout>
 <s:dataProvider>
 <s:ArrayCollection>
 <fx:String>Dairy</fx:String>
 <fx:String>Produce</fx:String>
 <fx:String>Bakery</fx:String>
 </s:ArrayCollection>
 </s:dataProvider>

</s:List>

5. Assume	that	a	file	named	CompTest.mxml	is	created	at	the	root	of	the	project.	Also,	
the	component	is	created	in	a	directory	called	myComps.	Use	the	word	custom	as	the	
prefix	for	the	components	in	this	folder.	Therefore,	the	XML	namespace	to	add	to	the	
<s:Application>	tag	is	xmlns:custom=”myComps.*”.

6. Finally,	instantiate	the	component	in	the	main	application	file.
<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:custom=”myComps.*”>

 <custom:MyList/>

</s:Application>

Note: You will see shortly that Flash Builder makes this process of creating the skeleton of the

component even easier.

The	CompTest.mxml	output	would	appear	as	shown	here.

ptg

212 Lesson 9: Breaking the Application into Components

Using Custom Components in the Application Architecture
You	now	know	the	basic	mechanics	of	creating	custom	components.	So	now	what?	How	does	
this	affect	what	I	have	been	doing?	Why	should	I	use	them?	How	do	I	use	them?

The	advantages	of	components	mentioned	in	the	opening	pages	of	this	lesson	should	now	
be clearer:

•	 Components	make	applications	easier	to	build,	debug,	and	maintain.

•	 Components	ease	team	development.

•	 With	planning,	components	can	lead	to	a	suite	of	reusable	code.

To	facilitate	using	components	as	reusable	code,	you	should	make	them	independent	of	other	
code	whenever	possible.	The	components	should	operate	as	independent	pieces	of	applica-
tion	logic,	with	a	clear	definition	of	what	data	must	be	passed	into	them	and	what	data	will	
be	returned	from	them.	The	object-oriented	programming	term	loosely coupled	is	used	to	
describe	this	type	of	architecture.

Suppose	you	have	a	component	that	uses	an	<s:List>	to	display	some	information.	You	later	
learn	of	a	new	component	that	offers	a	better	way	to	display	that	data.	If	the	custom	compo-
nent	is	built	correctly,	you	should	be	able	to	switch	the	display	component	and	not	need	to	
make	any	other	changes.	You	change	the	inner	workings	of	the	custom	component,	but	the	
data	going	into	the	component	and	what	comes	out	will	not	change,	so	no	changes	to	the	rest	
of	the	application	are	needed.

Now,	you	need	to	think	about	how	components	fit	into	the	application	architecture.	Although	
this	book	is	not	meant	to	be	a	discourse	on	Flex	application	architectures,	it	would	be	negligent	
not	to	show	how	components	can	fit	into	the	bigger	picture.	In	the	application	you’re	building	in	
this	book,	you	will	implement	a	primitive	form	of	model-view-controller	(MVC)	architecture.

MVC	is	a	design	pattern	or	software	architecture	that	separates	the	application’s	data,	user	
interface,	and	control	logic	into	three	distinct	groupings.	The	goal	is	to	implement	the	logic	
so	changes	can	be	made	to	one	portion	of	the	application	with	minimal	impact	to	the	others.	
Here	are	some	short	definitions	of	the	key	terms:

•	 Model:	The	data	the	application	uses.	The	model	manages	the	data	elements,	responds	to	
queries	about	its	state,	and	manages	instructions	to	change	the	data.

•	 View:	The	user	interface.	The	view	is	responsible	for	presenting	model	data	to	the	user	
and	gathering	information	from	the	user.

•	 Controller:	What	responds	to	events—typically	user	events,	but	also	system	events.	The	
controller	interprets	the	events	and	invokes	changes	on	the	model	and	view.

ptg

213Splitting Off the ShoppingView Component

Here	is	the	general	flow	of	the	MVC	architecture:

1. The	user	interacts	with	the	user	interface	(a	view):	for	example,	by	clicking	a	button	to	
add	an	item	to	a	shopping	cart.

2. The	controller	handles	the	input	event.

3. The	controller	accesses	the	model,	maybe	by	retrieving	or	altering	data,	and	gives	the	data	
to	the	view.

4. The	view	then	uses	the	model	data	for	appropriate	presentation	to	the	user.

Consider	the	application	you	are	building.	Eventually	your	FlexGrocer.mxml	main	application	
page	will	be	part	of	the	controller.	There	will	be	views	that	do	the	following:

•	 Display	the	different	grocery	item	categories

•	 Display	the	items	in	the	shopping	cart

•	 Display	a	detailed	view	of	a	particular	grocery	item

•	 Display	all	the	grocery	items	in	a	particular	category

Each	of	these	views	will	require	some	logic	for	interactivity.	In	a	strict	MVC	architecture	this	
code	is	usually	located	in	a	separate	class	or	classes.	In	this	book,	the	code	will	exist	alongside	
the	views	as	our	desire	is	to	teach	Flex,	not	strict	MVC	architecture.	The	model	is	provided	by	
the	data	loaded	via	HTTPService	classes,	which	will	soon	be	moved	to	their	own	classes.

Now	the	stage	is	set,	and	you’re	ready	to	get	started	building	components	and	enhancing	the	
architecture	and	functionality	of	the	applications	you	are	building.

Splitting Off the ShoppingView Component
This	first	exercise	will	improve	the	overall	architecture	of	the	application,	but	it	will	not	add	
any	functionality	from	the	user’s	point	of	view.	In	fact	if	everything	is	done	properly,	you’ll	
want	the	application	to	appear	exactly	as	it	did	before	you	started.	You	will	pull	the	applica-
tion’s	visual	elements	into	a	component,	a	view	in	terms	of	MVC	architecture.	FlexGrocer.
mxml	will	begin	to	transform	into	the	controller.

1 Right-click	the	src	folder	in	the	FlexGrocer	project	that	you	used	in	Lesson	8,	“Using	
Data	Bindings	and	Collections,”	and	create	a	package	named	views.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson09/start	folder.	

ptg

214 Lesson 9: Breaking the Application into Components

Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.	

It	is	a	best	practice	to	organize	your	components.	In	this	case,	the	views	folder	will	con-
tain	the	views	for	your	applications.

2 Right-click	the	views	folder	and	then	choose	New	>	MXML	Component.	In	the	New	
MXML	Component	dialog	box,	set	the	name	as	ShoppingView,	the	base	component	as	
a	Group,	and	the	layout	as	Horizontal.	Remove	any	width	and	height	values,	and	then	
click Finish.

In	this	case,	you	are	using	an	<s:Group>	as	your	root	tag	and	are	applying	a	
HorizontalLayout	to	it,	which	means	the	children	you	insert	in	this	component	will	be	
aligned	horizontally	beside	each	other.

3 Insert	an	<fx:Script>	block	just	after	the	closing	</s:layout>	tag.

You	will	have	an	<fx:Script>	block	in	this	component.	Some	of	the	code	you	will	copy	
from	the	FlexGrocer.mxml	file,	and	other	code	you	will	write	new.

4 From	the	FlexGrocer.mxml	file,	copy	the	bindable	properties	named	groceryInventory	
and	shoppingCart	and	paste	them	inside	the	Script	block	in	the	ShoppingView	compo-
nent.	Change	the	scope	of	groceryInventory	from	a	private	variable	to	a	public	variable.

ptg

215Splitting Off the ShoppingView Component

[Bindable]
public var shoppingCart:ShoppingCart = new ShoppingCart();

[Bindable]
public var groceryInventory:ArrayCollection;

5 Add	the	imports	for	the	ArrayCollection	and	ShoppingCart	classes.	The	easiest	way	
to	do	this	is	to	put	your	cursor	at	the	end	of	the	class	name	(for	instance,	after	the	
final	t	of	cart),	and	press	Ctrl+Spacebar.	You	won’t	be	prompted	as	to	which	class	
you	want	imported	while	importing	the	ArrayCollection	class,	but	you	will	for	the	
ShoppingCart	class.	This	is	because	the	only	class	that	matches	ArrayCollection	is	the	
ArrayCollection	class,	but	Flash	Builder	will	ask	if	you	mean	to	use	the	ShoppingCart	or	
ShoppingCartItem	class,	both	of	which	start	with	ShoppingCart.

Pressing	Ctrl+Spacebar	will	force	Flash	Builder	to	use	its	code-completion	feature,	which	
in	this	case	will	automatically	import	the	classes	for	you.
<fx:Script>
 <![CDATA[
 import cart.ShoppingCart;

 import mx.collections.ArrayCollection;
 [Bindable]
 public var shoppingCart:ShoppingCart = new
 ➥ ShoppingCart();

 [Bindable]
 public var groceryInventory:ArrayCollection;

]]>
</fx:Script>

When	you	copied	these	variables	into	the	component,	they	became	properties	of	the	com-
ponent.	Simply	by	using	the	var	statement	and	defining	the	variables	to	be	public,	you	are	
creating	these	as	public	properties	of	the	components	that	can	have	data	passed	into	them.

This	is	no	small	matter.	The	basic	building	blocks	of	object-oriented	programming	are	
objects,	properties,	and	methods.	So	knowing	how	to	create	properties	is	a	very	impor-
tant	piece	of	information.

Later	in	this	lesson,	you	will	add	functions	to	a	component.	Just	as	variables	in	a	class	are	
properties,	so	functions	in	the	class	are	the	methods	of	your	components.

ptg

216 Lesson 9: Breaking the Application into Components

6 From	the	FlexGrocer	application,	cut	the	HGroup	with	the	id	of	bodyGroup	and	all	
of	its	contents	and	paste	it	into	your	ShoppingView	component,	after	the	end	of	the	
<fx:Declarations>	tag	pair.	In	ShoppingView,	remove	the	opening	and	closing	HGroup	
tags,	but	leave	the	contents	of	this	tag	pair	in	place.	You	will	no	longer	need	the	HGroup	
in	place,	as	your	ShoppingView	component	is	set	to	have	a	HorizontalLayout.

7 From	the	FlexGrocer	application,	cut	the	VGroup	set	to	be	included	in	the	expanded	
state	(this	VGroup	holds	a	RichText	and	two	Labels)	and	paste	it	into	your	ShoppingView	
component	just	above	the	VGroup	with	the	id	of	cartGroup.	Your	resulting	code	should	
look	like	the	following:
 <s:VGroup id=”products” width=”100%” height=”150”
 visible.cartView="false" width.cartView="0" height.cartView="0">
 <s:Label id="prodName" text="Milk"/>
 <s:Image scaleMode="letterbox"
 source="@Embed('assets/dairy_milk.jpg')"
 mouseOver="this.currentState='expanded'"
 mouseOut="this.currentState='State1'"/>
 <s:Label id="price" text="$1.99"/>
 <s:Button id="add" label="Add To Cart" click=
 "addToCart(groceryInventory.getItemAt(0) as Product)"/>
 <s:Button id="remove" label="Remove From Cart" click=
 "removeFromCart(groceryInventory.getItemAt(0) as Product)"/>
 </s:VGroup>

 <s:VGroup includeIn="expanded" x="200" width="100%">
 <s:RichText text="{(groceryInventory.getItemAt(0) as
 Product).description}" width="50%"/>
 <s:Label text="Certified Organic" visible="{(groceryInventory.getItemAt
 	 (0) as Product).isOrganic}"/>
 <s:Label text="Low Fat" visible="{(groceryInventory.getItemAt(0) as
 Product).isLowFat}"/>
 </s:VGroup>

 <s:VGroup id="cartGroup" height="100%"
 width.cartView="100%">
 <s:List id="cartList"
 dataProvider="{shoppingCart.items}" includeIn="State1"/>
 <s:Label text="Your Cart Total $0"/>
 <s:Button includeIn="State1" height="17" label="View Cart"
 click="handleViewCartClick(event)"/>
 <s:DataGrid includeIn="cartView" requestedRowCount="4">
 <s:columns>
 <s:ArrayList>
 <s:GridColumn dataField="dataField1"

ptg

217Splitting Off the ShoppingView Component

 headerText="Column 1"></s:GridColumn>
 <s:GridColumn dataField="dataField2"
 headerText="Column 2"></s:GridColumn>
 <s:GridColumn dataField="dataField3"
 headerText="Column 3"></s:GridColumn>
 </s:ArrayList>
 </s:columns>
 <s:typicalItem>
 <fx:Object dataField1="Sample Data"
 dataField2="Sample Data"
 dataField3="Sample Data"></fx:Object>
 </s:typicalItem>
 <s:ArrayList>
 <fx:Object dataField1="data1"
 dataField2="data1"
 dataField3="data1"></fx:Object>
 <fx:Object dataField1="data2"
 dataField2="data2"
 dataField3="data2"></fx:Object>
 <fx:Object dataField1="data3"
 dataField2="data3"
 dataField3="data3"></fx:Object>
 <fx:Object dataField1="data4"
 dataField2="data4"
 dataField3="data4"></fx:Object>
 </s:ArrayList>
 </s:DataGrid>
 <s:Button includeIn="cartView" label="Continue Shopping"
 click="this.currentState=''"/>
 </s:VGroup>

8 Cut	the	states	block	from	the	main	application,	and	paste	it	in	the	component,	between	
the	closing	<fx:Script>	tag	and	the	starting	<fx:Declarations>	tag.
<s:states>
 <s:State name=”State1”/>
 <s:State name=”cartView”/>
 <s:State name=”expanded”/>
</s:states>

The	reality	is	that	the	order	of	where	you	place	the	states	tag	is	unimportant,	as	long	as	
you	do	not	place	it	as	the	child	of	something	other	than	the	root	node.

9 Cut	the	addToCart()	and	removeFromCart()	methods	from	the	main	application,	
and paste	them	into	your	component	in	the	<fx:Script>	block.	Use	the	code-	
completion	feature	to	import	the	Product	and	ShoppingCartItem	classes.	Remove	
the trace	(shoppingCart);	statement	from	your	addToCart()	method.	It	is	no	
longer needed.

ptg

218 Lesson 9: Breaking the Application into Components

private function addToCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.addItem(sci);
}
private function removeFromCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.removeItem(sci);
}

At	this	point,	the	full	Script	block	should	read	as:
<fx:Script>
 <![CDATA[
 import cart.ShoppingCart;
 import cart.ShoppingCartItem;

 import mx.collections.ArrayCollection;

 import valueObjects.Product;
 [Bindable]
 public var shoppingCart:ShoppingCart = new ShoppingCart();
 [Bindable]
 public var groceryInventory:ArrayCollection;

 private function addToCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.addItem(sci);
 }

 private function removeFromCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.removeItem(sci);
 }

]]>
</fx:Script>

These	methods	are	called	from	some	of	the	MXML	tags	you	moved	into	the	
ShoppingView	class,	so	they	need	to	be	moved	into	that	component.	

10 Copy	the	handleViewCartClick()	method	from	the	main	application,	and	paste	it	into	
your	component’s	<fx:Script>	block.	
private function handleViewCartClick(event:MouseEvent):void {
 this.currentState = “cartView”;
}

At	this	point,	the	full	Script	block	should	read	as	follows:
<fx:Script>
 <![CDATA[

ptg

219Splitting Off the ShoppingView Component

 import cart.ShoppingCart;
 import cart.ShoppingCartItem;

 import mx.collections.ArrayCollection;

 import valueObjects.Product;
 [Bindable]
 public var shoppingCart:ShoppingCart = new ShoppingCart();
 [Bindable]
 public var groceryInventory:ArrayCollection;

 private function handleViewCartClick(event:MouseEvent):void {
 this.currentState = “cartView”;
 }

 private function addToCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.addItem(sci);
 }

 private function removeFromCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.removeItem(sci);
 }

]]>
</fx:Script>

These	methods	are	called	from	some	of	the	MXML	tags	you	moved	into	the	
ShoppingView	class,	so	they	need	to	be	moved	into	that	component.	

11 Save	the	file.

You	have	created	your	first	MXML	component.	Now	that	the	component	is	built,	you	will	
instantiate	the	new	component	from	the	main	application.

12 Return	to	the	FlexGrocer.mxml	file	and	find	the	Label	that	shows	the	copyright	mark.	Just	
after	that	tag,	type	in	<Shopp	and	choose	views:ShoppingView	from	the	code-hinting	menu.

ptg

220 Lesson 9: Breaking the Application into Components

13 Give	the	new	tag	an	id	of	bodyGroup,	and	make	it	a	self-closing	tag.	Add	a	width	and	a	
height	of	100%	to	the	tag.
<views:ShoppingView id=”bodyGroup” width=”100%” height=”100%” />

The	code-hinting	feature	automatically	added	the	namespace	that	references	the	views	
directory	to	your	main	application	tag.	The	Application	tag	should	now	read	like	this:
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s="library://ns.adobe.com/flex/spark"
 creationComplete="handleCreationComplete(event)" xmlns:views="views.*">

14 Change	the	handler	on	the	btnCartView	button	from	being	defined	as	click.
State1=”handleViewCartClick(event)”	to	click=”handleViewCartClick(event)”

The	state	definitions	have	all	been	moved	to	the	ShoppingView	class,	so	the	main	applica-
tion	no	longer	has	any	states	other	than	the	base	state.	For	this	reason,	the	click	event	
handler	should	be	defined	without	the	explicit	reference	to	State1.
<s:Button id=”btnCartView” y=”10” right=”90” label=”View Cart”
 click=”handleViewCartClick(event)”/>

15 Still	in	FlexGrocer.mxml,	change	the	handleViewCartClick()	method	so	it	changes	the	
state	of	bodyGroup	instead	of	the	state	of	the	main	application.
private function handleViewCartClick(event:MouseEvent):void {
 bodyGroup.currentState = “cartView”;
}

As	mentioned	in	the	previous	step,	the	main	application	no	longer	has	states.	When	the	
user	clicks	the	View	Cart	button	in	the	control	bar,	you	need	to	change	the	state	of	the	
ShoppingView	in	order	to	show	the	cart.

16 Save	the	main	application.	It	should	now	compile	with	no	errors.	However,	you	have	not	
yet	passed	the	data	needed	to	render	the	products	in	the	shopping	view,	so	if	you	run	
the	application,	it	will	not	show	any	products	yet.	To	solve	this	problem,	in	the	instantia-
tion	of	the	ShoppingView	component,	add	an	attribute	that	binds	the	groceryInventory	
property	from	the	FlexGrocer	application	into	the	groceryInventory	property	of	the	
ShoppingView	component.
<views:ShoppingView id=”bodyGroup”
 width=”100%” height=”100%”
 groceryInventory=”{groceryInventory}” />

Now	the	ShoppingView	should	have	the	data	it	needs	to	render	products	as	it	did	before.

17 Run	the	FlexGrocer.mxml	file.	You	see	that	creating	the	component	has	not	changed	the	
functionality.	It	still	renders	a	product	that	can	be	added	and	removed	from	the	cart.

ptg

221Breaking Out a ProductItem Component

The	purpose	of	this	first	exercise	was	not	to	add	functionality	to	the	application	but	to	refactor	
it.	As	the	functionality	of	the	application	continues	to	grow,	the	main	application	page	would	
have	become	much	too	long	and	complex.	Using	components	gives	you	the	chance	to	break	it	
up	into	manageable	modules.

Breaking Out a ProductItem Component
Right	now,	the	application	continues	to	behave	as	it	did	at	the	end	of	the	previous	lesson;	it	
shows	a	single	product	and	allows	you	to	add	or	remove	that	product	from	the	cart.	However,	
if	you	wanted	to	show	more	than	one	item	at	a	time,	you	would	need	to	copy	and	paste	a	large	
block	of	code	multiple	times.	Instead,	you	will	split	the	elements	specific	to	viewing	a	prod-
uct	into	a	separate	class,	and	you	can	then	create	several	instances	of	this	one	class	to	show	
multiple	products.	The	new	component	you	will	create	is	more	than	just	a	simple	view	onto	
the	data.	It	is	intended	as	a	reusable	component	that	can	be	used	anytime	you	need	to	display	
product	information	for	this	application.	So	instead	of	creating	it	in	the	views	directory,	you’ll	
create	a	new	components	directory	to	hold	this	and	other	reusable	components.

1 Right-click	the	src	directory,	and	choose	New	Package.	Name	the	new	package	components.

2 Right-click	the	newly	created	components	package.	Choose	New	>	MXML	Component.	
The	name	should	be	ProductItem,	and	the	base	component	should	be	Group	with	a	
Horizontal	layout.	Remove	the	width	and	height	values,	and	then	click	Finish.

ptg

222 Lesson 9: Breaking the Application into Components

3 Add	an	<fx:Script>	tag	pair	just	after	the	layout	declaration.

Much	as	with	the	last	component,	the	Script	block	will	be	used	to	add	properties	and	
methods	for	your	new	component.

4 Add	a	bindable	public	property	named	product,	with	a	data	type	of	the	Product	class,	
to	the	Script	block.	Use	code-completion	to	import	the	Product	class,	or	manually	add	
an	import	statement	for	valueObjects.Product.	Add	another	public	variable,	called	
shoppingCart,	with	a	data	type	of	ShoppingCart.

This	will	allow	you	to	pass	a	specific	product	to	each	instance	of	this	component,	and	
pass	a	reference	to	the	shoppingCart	to	each	instance	as	well.	Remember	to	either	use	the	
code-completion	functionality	when	specifying	the	ShoppingCart	class,	or	to	manually	
add	an	import	for	cart.ShoppingCart.
import cart.ShoppingCart;
import valueObjects.Product;

[Bindable]
public var product:Product;

public var shoppingCart:ShoppingCart;

5 Cut	the	addToCart()	and	removeFromCart()	methods	from	the	ShoppingView	compo-
nent,	and	paste	them	into	the	Script	block	of	the	ProductItem	component.	You	will	need	
to	make	sure	the	ShoppingCartItem	class	is	imported	as	well.
import cart.ShoppingCart;
import cart.ShoppingCartItem;

import valueObjects.Product;

[Bindable]
public var product:Product;

public var shoppingCart:ShoppingCart;

private function addToCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.addItem(sci);
}

private function removeFromCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.removeItem(sci);
}

ptg

223Breaking Out a ProductItem Component

6 In	ShoppingView.mxml,	cut	the	VGroup	with	the	id	of	products,	and	the	one	that	follows	
it,	which	is	included	in	the	expanded	state,	and	paste	them	after	the	<fx:Declarations>	
section	of	ProductItem.
<?xml version=”1.0” encoding=”utf-8”?>
<s:Group xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>
 <s:layout>
 <s:HorizontalLayout/>
 </s:layout>
 <fx:Script>
 <![CDATA[
 import cart.ShoppingCart;
 import cart.ShoppingCartItem;

 import valueObjects.Product;
 [Bindable]
 public var product:Product;

 public var shoppingCart:ShoppingCart;

 private function addToCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.addItem(sci);
 }

 private function removeFromCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.removeItem(sci);
 }
]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:VGroup id="products" width="100%" height="150"
 visible.cartView="false" width.cartView="0" height.cartView="0">
 <s:Label id="prodName" text="Milk"/>
 <s:Image scaleMode="letterbox"
 source="@Embed('assets/dairy_milk.jpg')"
 mouseOver="this.currentState='expanded'"
 mouseOut="this.currentState='State1'"/>
 <s:Label id="price" text="$1.99"/>
 <s:Button id="add" label="Add To Cart" click="addToCart(
 groceryInventory.getItemAt(0) as Product)"/>
 <s:Button id="remove" label="Remove From Cart" click=
 "removeFromCart(groceryInventory.getItemAt(0) as Product)"/>

ptg

224 Lesson 9: Breaking the Application into Components

 </s:VGroup>

 <s:VGroup includeIn="expanded" x="200" width="100%">
 <s:RichText text="{(groceryInventory.getItemAt(0) as
 Product).description}" width="50%"/>
 <s:Label text="Certified Organic" visible=
 "{(groceryInventory.getItemAt(0) as Product).isOrganic}"/>
 <s:Label text="Low Fat" visible=
 "{(groceryInventory.getItemAt(0) as Product).isLowFat}"/>
 </s:VGroup>
</s:Group>

7 Copy	the	states	block	from	ShoppingView.mxml,	and	paste	it	into	ProductItem.mxml	just	
after	the	layout	tag	pair.	In	ShoppingView,	remove	the	state	definition	for	expanded.	In	
ProductItem,	remove	the	state	definition	for	cartView.

Your	ShoppingView	states	block	should	read	like	this:
<s:states>
 <s:State name=”State1”/>
 <s:State name=”cartView”/>
</s:states>

Your	ProductItem	states	block	should	read	like	this:
<s:states>
 <s:State name=”State1”/>
 <s:State name=”expanded”/>
</s:states>

Now	both	components	have	a	base	state	(State1),	and	each	has	another	state	specific	for	it.	
ShoppingView	has	the	cartView	state,	which	it	can	use	to	show	the	details	of	a	shopping	
cart,	and	ProductItem	has	an	expanded	state,	which	shows	expanded	product	details.

8 As	ProductItem	no	longer	has	a	cartView	state,	you	need	to	remove	the	attributes	of	the	
first	VGroup	that	explicitly	set	width,	height,	and	visible	properties	for	the	cartView	
state.	While	removing	the	attributes,	also	remove	the	normal	width	and	height	attributes	
as	well,	as	those	will	no	longer	be	needed,	either.
<fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
</fx:Declarations>
 <s:VGroup id=”products”>
 <s:Label id=”prodName” text=”Milk”/>
 <s:Image scaleMode=”letterbox”
 source=”@Embed(‘assets/dairy_milk.jpg’)”
 mouseOver=”this.currentState=’expanded’”
 mouseOut=”this.currentState=’State1’”/>…

ptg

225Breaking Out a ProductItem Component

9 Change	the	reference	for	the	image	source	from	the	current	embedded	image	“@
Embed(‘assets/dairy_milk.jpg’)”	and	instead	dynamically	load	the	image	from	the	
assets	directory,	using	the	image	name	of	the	product.
 <s:Image scaleMode=”letterbox”
 source=”assets/{product.imageName}”
 mouseOver=”this.currentState=’expanded’”
 mouseOut=”this.currentState=’State1’”/>

Your	component	can	now	show	the	appropriate	image	for	any	product	passed	to	it,	rather	
than	always	showing	milk.

10 In	the	Label	just	before	the	image,	change	the	text=”Milk”	to	text=”{product.prodName}”	
to	dynamically	display	the	product	name.
 <s:Label id=”prodName” text=”{product.prodName}”/>

Your	component	can	now	show	the	correct	name	for	whichever	product	it	has.

11 In	the	Label	just	after	the	image,	change	the	text=”$1.99”	to	text=”${product.
listPrice}”	to	dynamically	display	the	product	price.
 <s:Label id=”price” text=”${product.listPrice}”/>

Your	component	can	now	show	the	correct	price	for	whichever	product	it	has.

12 In	the	click	handlers	for	both	the	Add	To	Cart	and	Remove	From	Cart	buttons,	change	
the	argument	passed	to	the	function	from groceryInventory.getItemAt(0)	as	Product	
to	product.
<s:Button label=”Add To Cart” id=”add”
 click=”addToCart(product)”/>
<s:Button label=”Remove From Cart” id=”remove”
 click=”removeFromCart(product)”/>

Since	your	component	is	no	longer	dealing	with	the	entire	groceryInventory	collection,	
but	instead	with	an	individual	product,	the	reference	to	the	product	for	this	compo-
nent	is	now	greatly	simplified.	When	you	create	an	instance	of	this	component	from	the	
ShoppingView	component,	you	will	pass	just	one	specific	product	to	each	instance.

13 For	the	RichText	control	and	two	labels	in	the	VGroup	shown	in	the	expanded	view,	
change	the	reference	in	the	binding	from	groceryInventory.getItemAt(0)	as	Product	to	
just	product.
 <s:VGroup includeIn=”expanded” x=”200” width=”100%”>
 <s:RichText text=”{product.description}” width=”50%”/>
 <s:Label text=”Certified Organic” visible=”{product.isOrganic}”/>
 <s:Label text=”Low Fat” visible=”{product.isLowFat}”/>
 </s:VGroup>

ptg

226 Lesson 9: Breaking the Application into Components

Your	final	code	for	the	ProductItem	component	should	read	like	this:
<?xml version=”1.0” encoding=”utf-8”?>
<s:Group xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>
 <s:layout>
 <s:HorizontalLayout/>
 </s:layout>

 <s:states>
 <s:State name=”State1”/>
 <s:State name=”expanded”/>
 </s:states>

 <fx:Script>
 <![CDATA[
 import cart.ShoppingCart;
 import cart.ShoppingCartItem;

 import valueObjects.Product;
 [Bindable]
 public var product:Product;

 public var shoppingCart:ShoppingCart;

 private function addToCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.addItem(sci);
 }

 private function removeFromCart(product:Product):void {
 var sci:ShoppingCartItem = new ShoppingCartItem(product);
 shoppingCart.removeItem(sci);
 }
]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:VGroup id="products">
 <s:Label id="prodName" text="{product.prodName}"/>
 <s:Image scaleMode="letterbox"
 source="assets/{product.imageName}"
 mouseOver="this.currentState='expanded'"
 mouseOut="this.currentState='State1'"/>

ptg

227Breaking Out a ProductItem Component

 <s:Label id="price" text="${product.listPrice}"/>
 <s:Button id="add" label="Add To Cart" click="addToCart(product)"/>
 <s:Button id="remove" label="Remove From Cart" click=
 "removeFromCart(product)"/>
 </s:VGroup>

 <s:VGroup includeIn="expanded" x="200" width="100%">
 <s:RichText text="{product.description}" width="50%"/>
 <s:Label text="Certified Organic" visible="{product.isOrganic}"/>
 <s:Label text="Low Fat" visible="{product.isLowFat}"/>
 </s:VGroup>
</s:Group>

Next,	you	will	need	to	create	one	or	more	instances	of	this	component	from	the	
ShoppingView.

14 Switch	back	to	ShoppingView.mxml.	After	the	<fx:Declaration>	tag	pair,	but	before	the	
cartGroup	VGroup,	create	a	new	VGroup	with	a	width	and	a	height	of	100%.	Inside	this	
group,	create	an	instance	of	ProductItem.	If	you	begin	typing	it	and	use	code-completion,	
as	you	did	when	you	created	the	instance	of	ShoppingView	in	the	previous	lesson,	the	
import	statement	for	the	components	package	will	be	automatically	added.

15 Give	the	new	ProductItem	instance	an	id=”product1”,	specify	a	width	and	a	height	of	100%,	
bind	a	reference	of	the	local	shoppingCart	into	the	shoppingCart	property	of	the	new	com-
ponent,	and	bind	groceryInventory.getItemAt(0)	as	Product	to	its	product	property.
<s:VGroup width=”100%” height=”100%”>
 <components:ProductItem id=”product1”
 width=”100%” height=”100%”
 shoppingCart=”{shoppingCart}”
 product=”{groceryInventory.getItemAt(0) as Product}”/>
</s:VGroup>

ptg

228 Lesson 9: Breaking the Application into Components

16 Save	all	the	files	and	run	the	application.

Your	application	is	now	displaying	the	first	item	from	the	groceryInventory,	which	is	buf-
falo	meat,	rather	than	the	milk	you	have	been	used	to	seeing	in	the	application	thus	far.	
But	wait,	there’s	more.	Since	you	now	have	a	component	that	can	easily	show	individual	
products,	you	can	show	several	at	once.

17 Switch	back	to	ShoppingView.mxml.	Copy	the	tag	that	creates	an	instance	of	
ProductItem,	and	paste	it	twice	more,	just	below	the	current	one.	Change	the	id	of	the	
new	ones	to	be	product2	and	product3.	Also	change	the	binding	to	the	product	property	
to	use	item	1	and	item	2,	while	the	original	is	getting	item	0.
 <s:VGroup width=”100%” height=”100%”>
 <components:ProductItem id=”product1”
 width=”100%” height=”100%”
 shoppingCart=”{shoppingCart}”
 product=”{groceryInventory.getItemAt(0) as Product}”/>
 <components:ProductItem id=”product2”
 width=”100%” height=”100%”
 shoppingCart=”{shoppingCart}”
 product=”{groceryInventory.getItemAt(1) as Product}”/>
 <components:ProductItem id=”product3”
 width=”100%” height=”100%”
 shoppingCart=”{shoppingCart}”
 product=”{groceryInventory.getItemAt(2) as Product}”/>

 </s:VGroup>

Now,	as	you	save	and	run	the	application,	you	should	see	several	products	shown.	

Note: In the next lesson, you will learn how to use a DataGroup to create one ProductItem for

each Product in the groceryInventory collection.

ptg

229Breaking Out a ProductItem Component

One	bug	still	needs	to	be	fixed.	If	you	click	the	View	Cart	button,	the	products	are	still	
being	shown,	rather	than	being	hidden.	You	will	fix	that	in	the	next	step.

ptg

230 Lesson 9: Breaking the Application into Components

18 In	the	VGroup	that	contains	the	ProductItems,	specify	values	for	the	width	and	the	
height	of	the	cartView	state	to	be	0,	and	the	visible	property	to	be	false.
<s:VGroup width=”100%” height=”100%”
 width.cartView=”0” height.cartView=”0”
 visible.cartView=”false”>

The	application	should	now	be	able	to	switch	between	the	various	states	of	the	ProductItem	
and	ShoppingView	components	correctly,	while	now	displaying	three	products	instead	of	
just one.

Creating Components to Manage Loading the Data
In	the	first	exercise,	you	refactored	part	of	the	application	without	adding	any	functionality.	
In	the	second	exercise,	you	added	functionality	(showing	multiple	products)	while	building	
another	component.	This	exercise	is	akin	to	the	first,	in	which	you	are	refactoring	the	applica-
tion	without	adding	any	visible	functionality	for	the	user.

Right	now,	the	main	application	file	is	a	bit	cluttered	by	the	instantiation	and	event	handlers	
for	the	two	HTTPServices.	In	this	exercise,	you’re	going	to	create	ActionScript	classes	for	
these	services,	which	will	contain	the	HTTPService	components	as	well	as	result	and	fault	
event	handlers	and	will	expose	the	data	loaded	through	public	bindable	properties.	The	new	
class	will	provide	certain	types	of	data	to	all	the	applications	when	they	need	it.	This	data	
manager	component	will	be	different	from	other	components	you’ve	built	in	this	lesson	in	
that	it	will	not	have	any	representation	that	a	user	will	see.	Such	a	component	is	referred	to	as	
a	non-visual	component.

1 Create	a	new	services	package	in	the	FlexGrocer	project.

Alternatively,	if	you	didn’t	complete	the	previous	exercise	or	your	code	is	not	functioning	
properly,	you	can	import	the	FlexGrocer-PreData.fxp	project	from	the	Lesson09/interme-
diate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	
should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.	

Because	the	new	components	are	neither	a	value	object	nor	a	view,	a	new	package	is	
needed	to	continue	organizing	your	components	by	function.	

2 Right-click	the	services	folder	and	then	choose	New	ActionScript	Class.	In	the	New	
ActionScript	Class	dialog	box,	set	the	name	as	CategoryService and	set	the	superclass	as	
a	mx.rpc.http.mxml.HTTPService;	leave	the	rest	of	the	defaults,	then	click	Finish.

ptg

231Creating Components to Manage Loading the Data

As	you	want	a	class	that	provides	all	the	functionality	of	HTTPService,	but	has	some	addi-
tional	methods	and	properties,	HTTPService	is	the	most	logical	choice	for	a	base	class.

3 After	the	line	declaring	public	class	CategoryService	but	before	the	constructor,	add	a	
bindable	public	variable	categories:XMLListCollection.
 import mx.collections.XMLListCollection;
 import mx.rpc.http.mxml.HTTPService;

 public class CategoryService extends HTTPService {
 [Bindable]
 public var categories:XMLListCollection;

 public function CategoryService(rootURL:String=null,
destination:String=null)

This	categories	property	will	determine	how	other	classes	interact	with	the	data	loaded	
by	the	service.	Don’t	forget	to	use	the	code-hinting	feature,	or	to	manually	import	the	
XMLListCollection	class.

ptg

232 Lesson 9: Breaking the Application into Components

4 In	the	constructor,	after	the	call	to	super(),	set	the	resultFormat	property	of	your	class	
equal	to	e4x	and	the	url	property	to	http://www.flexgrocer.com/category.xml.
public function CategoryService(rootURL:String=null, destination:String=null)
{
 super(rootURL, destination);
 this.resultFormat=”e4x”;
 this.url=”http://www.flexgrocer.com/category.xml”;
}

Take	a	look	at	the	constructor	here.	The	first	line	inside	the	function	definition	(which	was	
automatically	added	by	the	new-class	wizard),	passes	the	rootURL	and	destination	argu-
ments	to	the	constructor	of	the	superclass.	This	way,	it	is	not	necessary	to	duplicate	the	logic	
found	in	the	superclass’s	constructor.	The	two	lines	you	added	are	setting	the	resultFormat	
and	url	properties	of	the	HTTPService	class,	as	you	learned	in	previous	lessons.

5 Open	FlexGrocer.mxml,	cut	the	handleCategoryResult()	method,	and	paste	it	into	the	
new	CategoryService	class,	after	the	constructor.
private function handleCategoryResult(event:ResultEvent):void {
 categories = new XMLListCollection(event.result.category);
}

As	with	each	new	class	you	introduce,	make	sure	the	other	classes	you	are	using	get	
imported.	In	CategoryService,	you	need	to	ensure	that	the	ResultEvent	class	gets	
imported,	either	by	typing	in	the	import	statement	for	mx.rpc.events.ResultEvent	man-
ually,	or	by	using	the	code-completion	feature.	This	method	will	populate	the	categories	
property	with	the	results	from	the	service	call.

6 In	the	constructor,	add	an	event	listener	for	the	result	event.	Set	handleCategoryResult	
as	the	handler	for	that	event.
addEventListener(ResultEvent.RESULT, handleCategoryResult);

The	addEventListener()	method	allows	you	to	specify	an	event	to	listen	for	(in	this	case	
it’s	the	event	result	and	a	method	that	will	be	used	as	the	event	handler).

7 Save	CategoryService.	

Your	service	class	is	now	complete.	All	that	remains	is	to	use	it	in	the	application.		
The	completed	CategoryService	class	should	read	like	this:
package services {
 import mx.collections.XMLListCollection;
 import mx.rpc.events.ResultEvent;
 import mx.rpc.http.mxml.HTTPService;

 public class CategoryService extends HTTPService {

http://www.flexgrocer.com/category.xml

ptg

233Creating Components to Manage Loading the Data

 [Bindable]
 public var categories:XMLListCollection;

 public function CategoryService(rootURL:String=null, destination:
 ➥ String=null)
 {
 super(rootURL, destination);
 this.resultFormat = “e4x”;
 this.url = “http://www.flexgrocer.com/category.xml”;
 addEventListener(ResultEvent.RESULT, handleCategoryResult);
 }

 private function handleCategoryResult(event:ResultEvent):void {
 categories = new XMLListCollection(event.result.category);
 }
 }
}

8 Switch	to	the	FlexGrocer.mxml	file.	In	the	<fx:Declarations>	block	of	FlexGrocer.mxml,	
delete	the	<s:HTTPService>	tag	with	the	id	of	categoryService.

9 In	its	place,	create	an	instance	of	the	CategoryService	class.	Give	this	new	instance	an	id	
of	categoryService.

As	with	the	previous	components	you	instantiate,	if	you	use	the	code-hinting	features,	the	
namespace	will	be	automatically	added	for	you.
<services:CategoryService id=”categoryService”/>

You	now	have	your	new	component	being	used	in	place	of	(and	in	fact	with	the	same	id	as)	
the	previous	HTTPService.	Since	the	id	is	the	same,	the	existing	call	to	categoryService.
send()	in	the	handleCreationComplete()	method	does	not	need	to	change.

10 Remove	the	bindable	private	categories	property.	

You	will	no	longer	need	this,	as	the	categories	are	now	available	from	the	categoryService	
instance	directly.

ptg

234 Lesson 9: Breaking the Application into Components

11 Find	the	List	class	created	inside	the	controlBarContent.	Change	the	dataProvider	from	
categories	to	categoryService.categories.
<s:List left=”200” height=”40” dataProvider=”{categoryService.categories}”
 labelField=”name”>
 <s:layout>
 <s:HorizontalLayout/>
 </s:layout>
</s:List>

The	FlexGrocer	application	is	now	using	your	new	CategoryService	class,	instead	of	hav-
ing	the	service	properties	and	handlers	all	coded	into	the	main	application.

12 Save	all	your	files	and	run	the	FlexGrocer	application.	It	should	now	behave	as	it	always	
did,	with	the	categories	loaded	into	the	horizontal	list.

Next,	you	will	create	a	service	class	similar	to	CategoryService	to	load	and	manage	the	
products,	and	you’ll	remove	that	logic	from	the	main	application.

13 Close	all	your	open	files.	Right-click	the	services	folder	and	then	choose	New	
ActionScript	Class.	In	the	New	ActionScript	Class	dialog	box,	set	the	Name	as	
ProductService and	set	the	Superclass	as	mx.rpc.http.mxml.HTTPService;	leave	the	rest	
of	the	defaults,	then	click	Finish.

14 After	the	line	declaring	public	class	ProductService	but	before	the	constructor,	add	a	
bindable	public	variable	products:ArrayCollection.
[Bindable]
public var products:ArrayCollection;

This	products	property	will	determine	how	other	classes	interact	with	the	data	loaded	by	
the	service.	Don’t	forget	to	use	the	code-completion	feature,	or	to	manually	import	the	
ArrayCollection	class.

ptg

235Creating Components to Manage Loading the Data

15 In	the	constructor,	after	the	call	to	super(),	set	the	resultFormat	property	of	your	class	equal	
to	e4x	and	the	url	property	to	http://www.flexgrocer.com/categorizedProducts.xml.
public function ProductService(rootURL:String=null, destination:String=null)
{
 super(rootURL, destination);
 this.resultFormat=”e4x”;
 this.url=”http://www.flexgrocer.com/categorizedProducts.xml”;
}

The	constructor	is	just	like	the	one	for	the	CategoryService,	with	a	different	url	property.

16 Open	FlexGrocer.mxml,	cut	the	handleProductResult()	method,	and	paste	it	into	the	
new	ProductService	class,	after	the	constructor.	Change	the	final	line	so	that	it	populates	
the	products	property	rather	than	the	groceryInventory	property.	Change	the	local	
products	variable	to	be	productsArray.
private function handleProductResult(event:ResultEvent):void {
 var productsArray:Array = new Array();
 var resultData:XMLList = event.result..product;

 for each (var p:XML in resultData) {
 var product:Product = Product.buildProductFromAttributes(p);
 productsArray.push(product);
 }

 products = new ArrayCollection(productsArray);
}

As	with	each	new	class	you	introduce,	make	sure	you	import	the	newly	referenced	classes	
(ResultEvent	and	Product),	either	by	typing	in	the	import,	or	by	using	the	code-comple-
tion	feature.	This	method	will	parse	the	results	of	the	service	call	into	Product	instances	
and	populate	the	products	property	with	them.

17 In	the	constructor,	add	an	event	listener	for	the	result	event.	Set	handleProductResult()	
method	as	the	handler	for	that	event.
addEventListener(ResultEvent.RESULT, handleProductResult);

Just	as	with	the	CategoryService	class,	you	will	want	to	listen	for	the	result	event,	and	pass	
the	results	on	to	a	handler	method.	The	final	ProductService	class	should	read	like	this:
package services {
 import mx.collections.ArrayCollection;
 import mx.rpc.events.ResultEvent;
 import mx.rpc.http.mxml.HTTPService;

 import valueObjects.Product;

 public class ProductService extends HTTPService {

http://www.flexgrocer.com/categorizedProducts.xml

ptg

236 Lesson 9: Breaking the Application into Components

 [Bindable]
 public var products:ArrayCollection;
 public function ProductService(rootURL:String=null,
 ➥ destination:String=null){
 super(rootURL, destination);
 addEventListener(ResultEvent.RESULT,
 ➥ handleProductResult);
 this.resultFormat="e4x";
 this.url="http://www.flexgrocer.com/categorizedProducts.xml";
 }
 private function handleProductResult(
 ➥ event:ResultEvent):void {
 var productsArray:Array = new Array();
 var resultData:XMLList =
 ➥ event.result..product;

 for each (var p:XML in resultData) {
 var product:Product =
 ➥ Product.buildProductFromAttributes(p);
 productsArray.push(product);
 }

 products = new ArrayCollection(productArray);
 }
 }
}

18 Save	ProductService.	Switch	to	the	FlexGrocer.mxml	file.

Your	service	class	is	now	complete.	All	that	remains	is	to	use	it	in	the	application.

In	the	<fx:Declarations>	block	of	FlexGrocer.mxml,	delete	the	<s:HTTPService>	tag	with	
the	id	of	productService.	In	its	place,	create	an	instance	of	the	ProductService	class.	Give	
this	new	instance	an	id	of	productService.	

As	with	the	previous	components	you	instantiate,	if	you	use	the	code-hinting	feature,	the	
namespace	will	be	automatically	added	for	you.
<services:ProductService id=”productService”/>

Since	the	id	is	the	same,	the	existing	call	to	productService.send()	in	the	
handleCreationComplete()	method	does	not	need	to	change.

19 Remove	the	bindable	private	groceryInventory	property	and	the	Bindable	public	
shoppingCart	property.	

You	will	no	longer	need	these,	as	the	products	are	now	available	from	the	productService	
instance’s	products	property	and	the	ShoppingCart	is	now	defined	in	the	ShoppingView.

ptg

237Creating Components to Manage Loading the Data

20 With	the	exception	of	mx.events.FlexEvent	you	can	now	remove	all	the	imports	from	
this	file.	They	are	no	longer	needed	as	the	functionality	has	been	moved	to	components.

21 Find	the	instance	of	the	ShoppingView	class	within	FlexGrocer.mxml.	Change	groceryIn
ventory=”{groceryInventory}”	to	be	groceryInventory=”{productService.products}”.
<views:ShoppingView id=”bodyGroup”
 width=”100%” height=”100%”
 groceryInventory=”{productService.products}” />

Your	refactoring	of	the	FlexGrocer	application	into	components	is	now	complete.	

22 Save	all	your	files	and	run	the	FlexGrocer	application.	It	should	now	behave	as	it	always	
did,	but	now	in	an	easier-to-maintain	fashion.	

Your	refactored	FlexGrocer	file	should	now	read	like	this:
<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 creationComplete="handleCreationComplete(event)"
 xmlns:views="views.*" xmlns:services="services.*">

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 <services:CategoryService id="categoryService"/>

 <services:ProductService id="productService"/>
 </fx:Declarations>

 <fx:Script>
 <![CDATA[
 import mx.events.FlexEvent;

 private function handleViewCartClick(event:MouseEvent):void {
 bodyGroup.currentState="cartView";
 }

 private function handleCreationComplete(event:FlexEvent):void {
 categoryService.send();
 productService.send();
 }

]]>
 </fx:Script>

 <s:controlBarLayout>
 <s:BasicLayout />

ptg

238 Lesson 9: Breaking the Application into Components

 </s:controlBarLayout>

 <s:controlBarContent>
 <s:Button label="Flex Grocer" x="5" y="5" />
 <s:Button id="btnCartView" y="10" right="90" label="View Cart"
 click="handleViewCartClick(event)"/>
 <s:Button id="btnCheckout" y="10" right="10" label="Checkout"/>
 <s:List left="200" height="40" dataProvider=
 "{categoryService.categories}" labelField="name">
 <s:layout>
 <s:HorizontalLayout/>
 </s:layout>
 </s:List>
 </s:controlBarContent>

 <s:Label right="10" bottom="10" text="(c) 2011, FlexGrocer"/>

 <views:ShoppingView id="bodyGroup"
 width="100%" height="100%"
 groceryInventory="{productService.products}"/>
</s:Application>

What You Have Learned
In this lesson, you have:

•	 Gained	a	theoretical	understanding	of	why	components	should	be	used	and	how	they	fit	
into	a	simple	implementation	of	MVC	architecture	(pages	208–213)

•	 Built	a	component	that	moved	the	visual	elements	from	a	main	application	page	to	
the	component	and	then	instantiated	the	component	in	the	main	application	page	
(pages 213–230)

•	 Created	non-visual	components	that	provide	category	and	product	information	to	the	
applications	(pages	230–238)

ptg

This page intentionally left blank

ptg

Le
ss

o
n

 1
0 What You Will Learn

In this lesson, you will:

•	 Populate	a	List	control	with	a	dataset

•	 Populate	a	DataGroup	with	a	dataset	and	display	the	information	using	a	renderer

•	 Create	an	MXML	component	to	be	used	as	a	renderer

•	 Use	the	Generate	Getter/Setter	wizard

•	 Learn	about	virtualization

•	 Respond	to	a	user’s	selection	from	a	list

Approximate Time
This	lesson	takes	approximately	2	hours	to	complete.

ptg

241

Lesson 10

Using DataGroups
and Lists
In this lesson, you’ll develop your skill in working with datasets. A dataset is really nothing but
several data elements consolidated in a single object, like an Array, XMLList, ArrayCollection,
or XMLListCollection. Up to this point, you’ve learned a few ways to display, manipulate, or
loop over these datasets. In this chapter, you’ll learn about Flex components that automati-
cally create a visual element for each item in a dataset.

Datasets used with horizontally arranged List to display categories
and with a DataGroup to display grocery items

ptg

242 Lesson 10: Using DataGroups and Lists

In	this	lesson,	you’ll	learn	about	Lists	and	DataGroups.	Both	List	and	DataGroup	instances	
can	create	a	visual	element	for	each	item	in	its	dataset	(which	is	set	to	the	DataGroup’s	
dataProvider	property).	What	is	shown	for	each	element	will	depend	on	the	itemRenderer	
being	used.	You’ll	learn	about	itemRenderers	in	this	lesson	as	well.

The	List	class,	much	like	the	DataGroup	class,	has	a	dataset	in	its	dataProvider	and	will	visu-
ally	represent	each	item	using	its	itemRenderer.	Lists	add	another	piece	of	functionality,	in	
that	they	manage	the	user’s	selection	of	items	from	the	list	and	provide	an	API	for	determin-
ing	which	item(s)	if	any,	are	selected.

In	the	course	of	this	lesson,	you’ll	rework	the	ShoppingView	component.	Instead	of	having	a	
hard-coded	set	of	ProductItems	as	children,	the	component	uses	a	DataGroup	to	dynamically	
create	one	ProductItem	for	each	element	in	the	groceryInventory	ArrayCollection.	In	this	
process,	you’ll	rework	the	ProductItem	class	to	be	an	itemRenderer.	You’ll	also	finish	build-
ing	out	the	functionality	of	the	List	displaying	categories	at	the	top	of	the	application	and	will	
learn	how	to	make	the	ShoppingView	change	the	contents	of	its	groceryInventory	property	
when	the	user	selects	one	of	the	categories.

Using Lists
In	the	application,	you	have	already	used	two	List	instances,	one	with	a	horizontal	layout	to	
display	the	categories	across	the	top	of	the	application,	and	the	other	to	display	the	items	in	
the	shopping	cart.	From	your	use	of	these	two	Lists,	you	know	that	the	List	class	is	provided	
with	a	dataset	via	dataProvider	property	(one	list	is	using	a	XMLListCollection,	and	the	other	
an	ArrayCollection),	and	the	list	will	display	one	item	for	each	element	in	its	dataProvider.

In	Lesson	6,	“Using	Remote	XML	Data,”	you	used	a	list	to	display	the	categories	in	the	control	
bar.	In	that	list,	you	specified	a	labelField	to	indicate	which	property	the	list	should	display.	
Using	the	labelField	property	is	a	very	effective	way	of	specifying	which	property	of	an	object	
will	be	shown	for	each	item	of	the	list;	however,	it	is	limited	in	that	it	can	display	only	text.	If	you	
want	to	format	the	data,	or	concatenate	multiple	properties,	you’ll	need	to	use	a	labelFunction.

Using a labelFunction with a List
A	labelFunction	is	a	function	that	is	used	to	determine	the	text	to	be	rendered	for	each	item	
in	a	List.	This	is	done	with	the	labelFunction	property.	The	function	will	accept	an	Object	as	a	
parameter	(if	you	are	using	strongly	typed	objects,	you	can	specify	the	actual	data	type	instead	
of	the	generic).	This	parameter	represents	the	data	to	be	shown	for	each	item	displayed	by	the	
List.	The	following	code	shows	an	example	of	a	labelFunction,	which	displays	the	category	of	
an	item	with	its	name	and	cost.

ptg

243Using Lists

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 creationComplete=”generateCollection()”>

 <fx:Script>
 <![CDATA[
 import mx.collections.ArrayCollection;

 [Bindable]
 private var dp:ArrayCollection;

 private function generateCollection():void{
 var arrayData:Array = new Array();
 var o1:Object = new Object();
 o1.name = “banana”;
 o1.category=”fruit”;
 o1.cost=.99;
 arrayData.push(o1);
 var o2:Object = new Object();
 o2.name = “bread”;
 o2.category=”bakery”;
 o2.cost=1.99;
 arrayData.push(o2);
 var o3:Object = new Object();
 o3.name = “orange”;
 o3.category=”fruit”;
 o3.cost=.52;
 arrayData.push(o3);
 var o4:Object = new Object();
 o4.name = “donut”;
 o4.category=”bakery”;
 o4.cost=.33;
 arrayData.push(o4);
 var o5:Object = new Object();
 o5.name = “apple”;
 o5.category=”fruit”;
 o5.cost=1.05;
 arrayData.push(o5);
 dp = new ArrayCollection(arrayData);
 }

 private function multiDisplay(item:Object):String{
 return item.category+”: “+item.name+” $”+item.cost;
 }
]]>
 </fx:Script>

 <s:List dataProvider=”{dp}”
 labelFunction=”multiDisplay”
 />

</s:Application>

ptg

244 Lesson 10: Using DataGroups and Lists

If	you	saved	and	ran	this	application,	it	would	appear	like	this:

Each	object	from	the	dp	ArrayCollection	is	passed	into	the	labelFunction()	before	it	is	ren-
dered,	and	whatever	value	is	returned	from	that	function	is	what	will	be	shown.	In	this	case,	
you	are	displaying	the	category	name,	the	item’s	name,	and	then	its	cost.

Note: Although the multiDisplay function accepts parameters

 private function multiDisplay(item:Object):String

you only pass a reference to the function to the List’s labelFunction property.

 labelFunction=”multiDisplay”

Flex will automatically call the function with the correct arguments as it renders each

item from the dataProvider.

In	this	next	exercise,	you’ll	use	a	labelFunction	to	format	the	data	rendered	in	the	shopping	
cart	list.

1 Open	the	ShoppingView	class.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson10/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Create	a	private	function	named	renderProductName(),	which	accepts	a	ShoppingCartItem	
as	a	parameter	and	returns	a	String.
private function renderProductName(item:ShoppingCartItem):String {

}

3 As	the	first	line	of	the	function,	create	a	local	variable,	data	typed	as	a	Product,	which	
is	equal	to	the	product	property	of	the	parameter	to	the	function.	Then,	construct	and	
return	a	string	that	concatenates	parentheses	around	the	item.quantity,	followed	by	
product.prodName,	a	dollar	sign,	and	then	the	item’s	subtotal.
private function renderProductName(item:ShoppingCartItem):String {
 var product:Product = item.product;
 return ‘(‘ + item.quantity + ‘) ‘ + product.prodName + ‘ $’ + item.subtotal;
}

ptg

245Using DataGroups

4 Find	the	list	in	the	cartGroup,	and	instruct	it	to	use	the	renderProductName	labelFunction.
<s:List id=”cartList”
 dataProvider=”{shoppingCart.items}”
 includeIn=”State1”
 labelFunction=”renderProductName”/>

5 Save	and	run	the	application.	Notice	how	the	items	are	formatted	in	the	cart	as	you	add	
products.

Using DataGroups
In	previous	lessons,	you	learned	that	the	Flex	4.x	framework	includes	a	container	class	named	
Group,	which	can	be	used	to	contain	any	arbitrary	visual	elements	as	children	and	to	which	a	
layout	can	be	applied.	A	DataGroup	follows	the	same	concept,	but	rather	than	requiring	the	
number	of	children	to	be	explicitly	defined,	it	allows	you	to	pass	a	dataset,	and	it	will	automat-
ically	create	one	visual	child	for	each	item	in	the	dataset.	Take	a	look	at	this	simple	example:

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>
 <s:DataGroup itemRenderer=”spark.skins.spark.DefaultItemRenderer”>
 <s:dataProvider>
 <s:ArrayList>
 <fx:String>Jeff Tapper</fx:String>
 <fx:String>Mike Labriola</fx:String>
 <fx:String>Matt Boles</fx:String>
 <fx:String>Steve Lund</fx:String>
 </s:ArrayList>
 </s:dataProvider>
 <s:layout>
 <s:VerticalLayout/>
 </s:layout>
 </s:DataGroup>
</s:Application>

ptg

246 Lesson 10: Using DataGroups and Lists

Here,	you	have	a	simple	Flex	application	with	only	one	child,	a	DataGroup	container.	
The DataGroup	is	instructed	to	use	a	class	called	DefaultItemRenderer	to	render	each	item.	
You’ll	examine	the	DefaultItemRenderer	and	alternatives	to	it	shortly.	

After	the	items	are	rendered,	a	dataset	is	assigned	to	the	DataGroup’s	dataProvider	property.	
In	this	case,	the	dataset	is	an	ArrayList.	In	Lesson	8,	“Using	Data	Binding	and	Collections,”	
you	learned	that	ArrayCollections	not	only	provide	the	benefit	of	data	binding	but	also	
have a rich	set	of	additional	features	for	sorting,	filtering,	and	finding	data	quickly.	An	
ArrayList	is	like	an	ArrayCollection	in	that	it	proxies	an	Array	to	provide	data	binding.		
Unlike	the	ArrayCollection,	the	ArrayList	does	not	provide	the	additional	functionality	of	
sorting,	filtering,	or	searching	for	items.	This	is	why	the	ArrayList	can	be	thought	of	as	a	
lighter-weight	version	of	the	ArrayCollection	class,	concerned	only	with	providing	bindability	
to	an	underlying	Array.

The	DataGroup	has	its	layout	set	to	be	vertical.	When	this	runs,	four	instances	of	the	
DefaultItemRenderer	will	be	created,	one	for	each	item	in	the	ArrayList.	The	renderer	will	use	
a	Label	component	to	show	each	item.

Implementing an itemRenderer
As	you	saw	in	the	previous	example,	you	tell	the	DataGroup	how	to	display	the	elements	from	
its	dataProvider	by	specifying	a	class	to	be	used	as	its	itemRenderer.	In	the	last	example,	the	
DefaultItemRenderer	class	was	utilized,	which	simply	uses	a	label	to	display	each	element.	
You can	easily	create	your	own	itemRenderer	as	well.

When	you	create	your	own	itemRenderers,	your	new	class	can	either	implement	the	
IDataRenderer	interface,	or	you	can	subclass	a	class	that	already	implements	that	interface,	
such	as	the	DataRenderer	class.	The	IDataRenderer	interface	simply	dictates	that	the	imple-
menting	classes	have	get	and	set	functions	for	the	data	property,	which	is	data-typed	generi-
cally	as	an	Object.	The	way	the	itemRenderer	generally	works	is	that	one	instance	of	the	
renderer	will	be	created	for	each	element	in	the	dataProvider	(this	isn’t	entirely	true,	but	the	
nuances	of	this	function	will	be	revealed	later	in	this	lesson,	when	you	learn	about	virtualiza-
tion),	and	the	data	property	of	the	itemRenderer	will	be	set	with	the	data	for	that	element	in	
the	dataProvider.

ptg

247Using DataGroups

In	this	exercise,	you’ll	create	an	itemRenderer	that	implements	the	IDataRenderer	interface	
and	displays	the	element	in	a	TextInput	instead	of	a	Label.

1 Import	the	DataGroup.fxp	from	the	Lesson10/independent	directory	into	Flash	Builder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project.

In	the	DataGroup.mxml	file	in	the	default	package	of	the	src	directory,	you’ll	find	the	
code	base	shown	in	the	previous	section.

2 Right-click	the	src	folder	of	the	DataGroup	project,	and	choose	New	MXML	Component.	
Leave	the	package	blank.	Specify	the	name	as	TextInputDataRenderer,	and	set	it	to	be	
based	on	spark.components.TextInput.	Click	Finish.

This	will	create	an	MXML	file	with	the	following	contents:
<?xml version=”1.0” encoding=”utf-8”?>
<s:TextInput xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
</s:TextInput>

ptg

248 Lesson 10: Using DataGroups and Lists

3 Add	an	attribute	to	the	<s:TextInput	tag>,	setting	an	implements	attribute	equal	to	the	
value	mx.core.IDataRenderer.
<?xml version=”1.0” encoding=”utf-8”?>
<s:TextInput xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 implements=”mx.core.IDataRenderer”>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
</s:TextInput>

4 Add	a	new	<fx:Script>	block	and	a	private	variable,	called	data,	with	a	data	type	of	Object.
<fx:Script>
 <![CDATA[
 private var data:Object;
]]>
</fx:Script>

5 Select	the	data	element,	right-click	it,	and	choose	Source	>	Generate	Getter/Setter.

ptg

249Using DataGroups

6 In	the	Generate	Getter	and	Setter	dialog	box,	select	the	Make	bindable	check	box	and	the	
Dispatch	custom	event	check	box.	When	your	dialog	box	looks	like	the	following	image,	
click	OK.

This	wizard	will	create	the	public	get	and	set	functions	for	the	data	property	and	rename	
the	private	data	to	_data.	The	resulting	code	will	look	like	this:
private var _data:Object;

[Bindable(event=”dataChange”)]
public function get data():Object
{
 return _data;
}

public function set data(value:Object):void
{
 if(_data !== value)
 {
 _data = value;
 dispatchEvent(new Event(“dataChange”));
 }
}

As	you	learned	in	Lesson	8,	code	constructed	in	this	way	indicates	that	any	elements	
bound	to	this	class’s	data	property	will	be	updated	automatically	when	this	class	dis-
patches	an	event	named	dataChanged.

ptg

250 Lesson 10: Using DataGroups and Lists

7 In	the	root	tag,	bind	the	text	property	to	the	toString()	method	of	the	data	property.

Your	renderer	is	now	complete.	All	that	remains	is	to	tell	the	DataGroup	to	use	it.	
The complete	code	for	the	renderer	should	look	like	this:
<?xml version=”1.0” encoding=”utf-8”?>
<s:TextInput xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 implements=”mx.core.IDataRenderer”
 text=”{data.toString()}”>
 <fx:Script>
 <![CDATA[
 private var _data:Object;

 [Bindable(event=”dataChange”)]
 public function get data():Object
 {
 return _data;
 }

 public function set data(value:Object):void
 {
 if(_data !== value)
 {
 _data = value;
 dispatchEvent(new Event(“dataChange”));
 }
 }

]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
</s:TextInput>

8 Switch	back	to	DataGroup.mxml.	Change	the	itemRenderer	of	the	DataGroup	to	use	
your	newly	created	TextInputDataRenderer	instead.
<s:DataGroup itemRenderer=”TextInputDataRenderer”>

9 Save	and	run	the	application.	Notice	that	this	time,	the	elements	are	rendered	as	
TextInputs,	rather	than	as	Labels.

ptg

251Using DataGroups

An	alternative	to	implementing	the	IDataRenderer	class	yourself	is	to	use	a	base	class,	such	as	
the	DataRenderer	class,	that	already	implements	this	class.	You’ll	do	this	in	the	next	exercise	
as	you	change	ProductItem	to	be	a	DataRenderer.

ImportaNt! For the remainder of this lesson, you’ll not be able to add or remove products

from your shopping cart. That is a consequence of the major refactor you are about to perform.

However, you’ll make it work again in the next lesson.

Using a DataGroup in the ShoppingView
In	this	exercise,	you’ll	switch	the	VGroup	that	has	the	ProductItem	instances	to	be	a	
DataGroup	that	uses	ProductItem	as	a	DataRenderer.

1 Open	the	ProductItem.mxml	from	the	FlexGrocer	project	file	that	you	used	earlier	in	
this lesson.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer-PreDataRenderer.fxp	project	from	the	
Lesson10/intermediate	folder.	Please	refer	to	the	appendix	for	complete	instruc-
tions	on	importing	a	project	should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	
cannot resolve.

2 In	ProductItem.mxml,	change	the	opening	and	closing	tags	from	Group	to	DataRenderer.	
Add	a	width=”100%”	attribute	to	the	tag.

As	mentioned	earlier,	the	DataRenderer	class	is	a	subclass	of	Group	that	implements	the	
IDataRenderer	interface.
<s:DataRenderer xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 width=”100%”>
...
</s:DataRenderer>

3 In	the	Script	block,	override	the	data	setter	and	set	the	class’s	product	property	to	the	
value	passed	to	the	function.	You’ll	need	to	cast	the	value	as	a	Product.
override public function set data(value:Object):void{
 this.product = value as Product;
}

Overriding	means	that	you	are	changing	the	behavior	of	the	set	data	method	in	the	
DataRenderer	class	and	replacing	it	with	your	own	behavior	in	this	class.	If	you	are		
unfamiliar	with	the	concept	of	overriding	a	method,	please	refer	to	the	many	great	
articles	on	object	oriented	programming	on	Wikipedia.

ptg

252 Lesson 10: Using DataGroups and Lists

With	this	small	change,	your	ProductItem	class	can	now	function	as	a	DataRenderer.	
Each	time	the	data	property	is	set,	it	is	in	turn	passed	to	the	product	property,	which	
is	already	bound	to	the	controls.	Next	you’ll	change	the	ShoppingView	class	to	use	a	
DataGroup	with	your	new	renderer.

4 Open	ShoppingView.mxml.	Find	the	VGroup	that	contains	the	three	ProductItem	
instances.	Change	the	opening	and	closing	VGroup	tags	to	be	DataGroup	tags	instead.	
Remove	the	three	ProductItem	instances	that	are	the	children.	
<s:DataGroup width=”100%” height=”100%”
 width.cartView=”0” height.cartView=”0”
 visible.cartView=”false”>
</s:DataGroup>

Next,	you’ll	need	to	specify	the	dataProvider	and	itemRenderer.

5 Add	an	itemRenderer	attribute	to	the	opening	DataGroup	tag,	which	specifies	
components.ProductItem	as	the	itemRenderer.
<s:DataGroup width=”100%” height=”100%”
 width.cartView=”0” height.cartView=”0”
 visible.cartView=”false”
 itemRenderer=”components.ProductItem”>
</s:DataGroup>

6 Add	a	dataProvider	attribute	to	the	DataGroup,	which	is	bound	to	the	groceryInventory
property.
<s:DataGroup x=”0” y=”0” width=”100%” height=”100%”
 width.cartView=”0” height.cartView=”0”
 visible.cartView=”false”
 itemRenderer=”components.ProductItem”
 dataProvider=”{groceryInventory}”>
</s:DataGroup>

If	you	save	the	files	and	run	the	application,	you’ll	see	the	products	are	all	rendered	on	
top	of	each	other,	with	the	text	being	unreadable.	This	is	happening	because	you	haven’t	
specified	a	layout	object	for	the	DataGroup	to	use.

ptg

253Using DataGroups

7 As	a	child	tag	to	the	DataGroup,	specify	a	VerticalLayout	instance	as	the	value	of	the	
layout	property.
<s:DataGroup x=”0” y=”0” width=”100%” height=”100%”
 width.cartView=”0” height.cartView=”0”
 visible.cartView=”false”
 itemRenderer=”components.ProductItem”
 dataProvider=”{groceryInventory}”>
 <s:layout><s:VerticalLayout/></s:layout>
</s:DataGroup>

Now	as	you	save	and	run	the	application,	the	products	render	properly.

Note: The “add to cart” functionality no longer works when you have completed these steps.

This is expected. In the next lesson, you’ll use events to fix this problem.

Understanding Virtualization

	

Each	visual	object	takes	processor	time	to	create	and	RAM	to	store.	It	is	inherently	ineffi-
cient	to	create	and	store	visual	objects	that	are	not	displayed	to	the	user.	Virtualization	solves	
this	problem	by	creating	visual	objects	only	for	the	elements	that	will	be	seen.	In	situations	
in	which	the	user	needs	to	scroll	to	see	more	elements,	the	objects	are	not	created	initially.	
Instead,	as	the	user	scrolls,	the	objects	that	are	scrolled	off the	screen	are	recycled	and	reset	to	
display	the	new	elements	that	are	being	scrolled	on-screen.	

ptg

254 Lesson 10: Using DataGroups and Lists

With	virtualization,	if	a	dataset	of	1000	items	is	set	in	a	DataGroup	that	has	room	to	show	10	
renderers,	the	application	will	need	to	create	only	10	instances	of	the	renderers	rather	than	
1000,	greatly	reducing	the	impact	on	the	processor	and	RAM.

To	enable	virtualization	for	a	DataGroup,	you	set	the	useVirtualLayout	property	of	the	
Layout	class	to	true	(it	is	false	by	default).

<s:layout>
 <s:VerticalLayout useVirtualLayout=”true”/>
</s:layout>

As	you	know,	the	layout	objects	are	used	by	many	Flex	components,	not	just	DataGroups.	
However,	not	all	these	support	virtualization.	If	you	try	to	specify	a	layout	to	use	virtualiza-
tion	in	a	component	that	does	not	support	virtualization,	the	component	will	simply	ignore	
that	attribute	of	the	layout	object.	In	other	words,	even	if	you	tell	the	layout	of	a	Group	to	
use	a	virtual	layout,	it	will	still	create	all	its	children,	visible	or	not,	because	Groups	don’t	
support virtualization.

Implementing Virtualization
In	this	exercise,	you’ll	take	an	existing	application	that	has	25	items	in	a	dataProvider	
of	a	DataGroup,	but	has	room	to	show	only	four	items	at	a	time,	and	instruct	it	to	use	
virtualization.	

1 Import	the	Virtualization.fxp	from	the	Lesson10/independent	directory.

In	the	VirtualizedVGroup.mxml	file	in	the	default	package	of	the	src	directory,	you’ll	find	
an	application	that	contains	a	DataGroup	with	25	items	in	its	dataProvider	and	that	uses	
a	variation	on	the	TextInputRenderer	you	created	earlier	in	this	lesson.

2 Run	the	Virtualization	application	in	Debug	mode.	Notice	in	the	Console	that	there	are	
25	trace	statements,	one	from	the	creationComplete	event	of	each	of	the	itemRenderers.

ptg

255Virtualization with Lists

As	you	scroll	through	the	items,	you’ll	find	you	can	never	see	more	than	five	items	
at	any	one	time	(and	most	times	only	four	items	are	visible	at	a	time).	However,	
as	you	can	clearly	see	in	the	Console,	there	are	far	more	than	five	instances	of	the	
TextInputDataRenderer	created.

3 Find	the	instantiation	of	the	VerticalLayout,	and	add	the	attribute	
useVirtualLayout=”true”.	Save	and	debug	the	application	again.	Notice	this	time	there	
are	only	five	trace	statements	of	the	TextInputDataRenderer	instantiated.

Now	you	can	see	the	real	power	of	virtualization.	Rather	than	having	to	create	an	instance	of	
the	renderer	for	each	item	in	the	dataProvider,	which	would	be	25	total	renderers,	only	5	are	
created,	as	that	is	the	most	that	can	be	seen	in	the	control	at	any	one	time.	There	is	no	need	
to	create	and	keep	an	additional	20	items	in	memory;	instead,	the	same	five	renderers	will	be	
used	to	render	whichever	items	need	to	be	seen	at	any	given	time.

Virtualization with Lists
With	the	List	class,	virtualization	is	enabled	automatically,	so	you	do	not	need	to	explicitly	tell	
the	layout	class	to	use	useVirtualLayout.	That	much	is	assumed.	In	addition	to	virtualization,	
Lists	also	add	selectability.	Selectability	is	the	idea	that	the	user	will	be	presented	with	sev-
eral	items	and	be	allowed	to	choose	one	or	more	of	them.	Lists	provide	a	series	of	properties,	
methods,	and	events	surrounding	the	ideas	of	selectability.	For	instance,	the	selectedIndex	and	
selectedItem	properties	allow	you	to	specify	or	retrieve	what	is	currently	selected	in	the	list.

In	this	exercise,	you’ll	build	a	renderer	to	display	the	various	categories	shown	in	the	top	navi-
gation	of	the	application	and	specify	the	list	displaying	the	categories	to	use	that	new renderer.

ptg

256 Lesson 10: Using DataGroups and Lists

1 Open	the	FlexGrocer	project.

2 Right-click	the	components	folder,	and	create	a	new	MXML	component	named	
NavigationItem.	Specify	the	layout	to	be	VerticalLayout,	and	the	base	class	to	be		
spark.components.supportClasses.ItemRenderer.	Remove	the	height	and	width	values.

ItemRenderer	is	a	subclass	of	DataRenderer,	which	additionally	implements	the	methods	
specified	by	the	itemRenderer	interface.	These	include	properties	and	methods	related	to	
displaying	which	items	are	and	are	not	selected	in	a	list.

3 Add	an	Image	tag,	specify	a	height	of	31	and	a	width	of	93.	Set	the	source	of	the	image	to	
be	assets/nav_{data.name.toLowerCase()}.jpg.
<s:Image
 source=”assets/nav_{data.name.toLowerCase()}.jpg”
 height=”31” width=”93”/>

If	you	look	in	the	assets	directory,	you’ll	find	six	files,	with	names	such	as	nav_dairy.jpg,	
nav_deli.jpg,	and	so	on.	You	may	notice	that	the	six	names	are	very	similar	to	the	names	
of	the	categories	from	the	category.xml	file,	with	the	difference	that	the	names	of	the	cat-
egories	in	the	XML	start	with	an	uppercase	letter,	and	in	the	filenames	the	categories	start	
with	a	lowercase	letter.	To	compensate	for	the	difference	of	the	upper-	to	lowercase	letters,	
invoking	the	String	class’s	toLowerCase()	method	forces	the	name	to	be	all	lowercase,	so	
it	can	match	the	case	of	the	file	names.	After	the	toLowerCase()	method,	the	category	that	
has	a	name	of	Dairy	is	lowercased	and	is	concatenated	into	nav_dairy.jpg.

4 After	the	Image,	add	a	Label	whose	text	is	bound	to	the	name	property	of	the	data	object.
<s:Label text=”{data.name}”/>

In	addition	to	the	image,	the	desire	is	to	show	the	category	name	below	the	image.

5 Find	the	VerticalLayout	instantiation,	and	add	a	horizontalAlign=”center”	attribute.
<s:layout>
 <s:VerticalLayout horizontalAlign=”center”/>
</s:layout>

Specifying	a	horizontalAlign	of	center	will	align	the	image	and	label	horizontally	to	
each	other.	You	now	have	a	functioning	renderer	that	you	can	use	in	a	List	class	to	display	
the	various	categories.

6 Switch	back	to	FlexGrocer.mxml.

The	List	displaying	the	categories	is	instantiated	in	the	main	application,	FlexGrocer.mxml.

ptg

257Displaying Grocery Products Based on Category Selection

7 Remove	the	labelField	attribute	from	the	instantiation	of	the	List	in	the	controlBarContent.		
Replace	that	attribute	with	the	itemRenderer	for	this	List	to	be	your	newly	created	
NavigationItem	class.	Change	the	height	property	of	the	List	to	52	to	compensate	for	
the larger	size	of	the	image	and	text.
<s:List left=”200” height=”52”
 dataProvider=”{categoryService.categories}”
 itemRenderer=”components.NavigationItem”>
 <s:layout>
 <s:HorizontalLayout/>
 </s:layout>
</s:List>

8 Save	and	run	the	application.	It	should	now	render	the	images	and	labels	appropriately.

Displaying Grocery Products Based on Category Selection
You	just	passed	a	dataset	to	a	List	control	and	had	an	item	display	for	each	object	in	the	
dataset.	At	some	point	you’ll	also	want	to	filter	the	collection	of	products	to	show	only	the	
products	matching	the	selected	category.	

Displaying Grocery Items Based on Category
The	first	step	will	be	to	create	a	filter	function	in the	ProductService	class,	which	will	accept	a	
category	id	and	filter	the	collection	to	show	only	the	matching	products.

1 Open	the	ProductService	class	you	created	in	Lesson	9,	“Breaking	the	Application	into	
Components.”

2 Create	a	private	variable	named	selectedCategory,	with	a	data	type	of	Number,	and	a	
default	value	of	1.
private var selectedCategory:Number=1;

3 Create	a	private	function	named	filterForCategory()	that	accepts	a	Product	as	an	argu-
ment	and	returns	a	Boolean.	In	the	body	of	the	function,	return	a	Boolean	indicating	
whether	the	catID	of	the	argument	matches	the	selectedCategory	property.
private function filterForCategory(item:Product):Boolean{
 return item.catID == selectedCategory;
}

ptg

258 Lesson 10: Using DataGroups and Lists

4 In	the	handleProductResult()	method,	after	the	products	ArrayCollection	is	
instantiated,	specify	a	filterFunction()	of	the	products	property	to	use	your	new	
filerForCategory()	method.	Next	refresh	the	products	collection.
products.filterFunction = filterForCategory;
products.refresh();

Now,	when	the	collection	is	created,	the	filterForCategory()	method	is	specified	as	its	
filter	function,	and	the	collection	is	refreshed,	so	the	filter	function	will	rerun.

5 Lastly,	create	a	public	function	named	filterCollection()	that	accepts	a	numeric	argu-
ment,	named	id.	Inside	the	function	set	the	id	as	the	value	of	the	selectedCategory	
property,	and	then	refresh	the	collection.
public function filterCollection(id:Number):void{
 selectedCategory = id;
 products.refresh();
}

You	now	have	everything	you	need	in	place	to	filter	the	collection	to	a	specific	category.	
All that	remains	is	to	call	the	filterCollection()	method	whenever	the	category	changes.

Adding a Change Handler to the Category List
When	the	user	selects	an	item	from	a	list,	a	change	event	is	broadcast,	indicating	that	the	
selected	item	in	the	list	is	no	longer	the	same.	In	this	exercise,	you’ll	handle	the	change	event,	
and	pass	the	id	of	the	selected	category	to	the	ProductService	to	filter	the	collection	so that	
only	matching	products	are	shown.

1 Open	FlexGrocer.mxml.

2 Find	the	List	class	in	the	controlBarContent.	Add	a	change	handler	to	the	List.	Allow	
code	completion	to	generate	a	change	handler	for	you.

ptg

259What You Have Learned

This	will	create	a	method	named	list1_changeHandler()	for	you,	which	accepts	an	argu-
ment	named	event,	of	type	IndexChangeEvent.	This	method	will	automatically	be	set	as	
the	change	handler	for	your	list.
protected function list1_changeHandler(event:IndexChangeEvent):void
{
 // TODO Auto-generated method stub
}

3 Replace	the	// TODO	auto-generated	method	stub	of	the	list1_changeHandler()	with	a	
call	to	the	filterCollection()	method	of	the	productService,	passing	in	the	id	of	the	
selected	item	from	the	list	(event.target.selectedItem.categoryID).
protected function list1_changeHandler(event:IndexChangeEvent):void
{
 productService.filterCollection(event.target.selectedItem.categoryID);
}

4 Save	and	run	the	application.

Now,	as	you	select	products	from	the	top	category	list,	the	products	displayed	in	
ShoppingView	are	updated	accordingly.

What You Have Learned
In this lesson, you have:

•	 Populated	a	List	control	with	a	dataset	(pages	242–245)

•	 Used	a	DataGroup	with	a	dataset	to	display	information	with	an	itemRenderer	
(pages 245–246)

•	 Created	an	itemRenderer	(pages	246–253)

•	 Learned	about	virtualization	(pages	253–257)

•	 Responded	to	a	user’s	choice	from	a	list	(pages	257–259)

ptg

LE
SS

O
N

 1
1 What You Will Learn

In this lesson, you will:

•	 Understand	the	benefits	of	loosely	coupled	architecture

•	 Dispatch	events

•	 Declare	events	for	a	component

•	 Identify	the	need	for	your	own	event	classes

•	 Create	event	subclasses

•	 Create	and	use	a	UserAcknowledgeEvent	class

•	 Create	and	use	a	ProductEvent	class

•	 Use	event	bubbling

•	 Use	ProductEvent	to	add	and	remove	a	product

•	 Use	the	CollectionEvent	to	update	the	shopping	cart	total

Approximate Time
This	lesson	takes	approximately	2	hours	to	complete.

ptg

261

LESSON 11

Creating and
Dispatching Events
In previous lessons, you worked with events from built-in objects, such as the clicking of a
Button or the changing of a List. You may remember that different events all descend from the
same Event class but can have more specific information, such as the Mouse position in the
MouseEvent. As you get deeper into application development, you will often need to dispatch
events that contain your own information. In this lesson, you’ll learn how to create an event
object, set the metadata for the object, and dispatch it.

This lesson presents an overview of how to dispatch events within your application, and how
to create new Event classes by creating a subclass of Event.

The shopping cart allows you to add and remove items.

ptg

262 LESSON 11: Creating and Dispatching Events

Understanding the Benefits of Loose Coupling
At	the	end	of	Lesson	10,	“Using	DataGroups	and	Lists,”	you	were	left	without	a	way	to	add	or	
remove	items	from	the	ShoppingCart.	With	your	newly	refactored	application,	the	buttons	for	
adding	and	removing	are	now	inside	the	ProductItem	class;	however,	the	ShoppingCart	for	
the	whole	application	is	defined	within	the	ShoppingView	class.	This	means	that	you	can	no	
longer	directly	call	the	addItem()	and	removeItem()	methods	of	the	ShoppingCart	instance.

Technically,	it	would	be	possible	to	make	the	shoppingCart	property	public	and	still	access	the	
ShoppingCart	instance	from	the	ProductItem	through	an	expression	like	this:

this.parent.parent.shoppingCart

However,	such	an	expression	can	be	very	problematic	for	maintaining	and	debugging	the	
application.	During	development,	refactoring	components	is	often	desirable	and	sometimes	
essential.	If	you	decide	that	the	DataGroup	should	be	inside	another	component,	perhaps	one	
responsible	for	all	product	display	functions,	the	expression	above	may	need	to	change	as	well.

Over	the	course	of	application	development,	one	of	two	things	tends	to	happen	when	using	
these	types	of	expressions.	Either	you	devote	an	increasing	amount	of	time	to	maintaining	
the	expressions	as	the	application	changes,	which	slows	down	progress	and	makes	your	day-
to-day	work	increasingly	frustrating.	Or,	worse	yet,	you	stop	refactoring	your	components	
even	when	it	makes	sense	to	do	so.	Maintaining	the	expressions	becomes	such	a	frustrating	
experience	that	you	simply	decide	you’ll	never	change	a	specific	area	of	code	again.	During	
active	development	this	often	leads	to	workarounds	and	suboptimal	code,	and	can	ultimately	
increase	development	time	and	the	number	of	bugs.

Both	of	these	ends	have	a	common	starting	point.	An	expression	like	the	one	above	caused	
ProductItem	to	have	a	dependency	on	ShoppingView.	This	means	that	anytime	ShoppingView	
changes,	you	need	to	also	remember	to	change	ProductItem	manually.	Creating	these	types	
of	interdependencies	among	objects	in	your	application	is	called	tight coupling,	or	making	a	
tightly coupled	application.	In	tightly	coupled	applications,	objects	often	directly	modify	or	
access	each	other’s	properties,	creating	maintenance	difficulties.	While	there	will	always	be	
some	dependency	between	objects	in	an	application,	you	need	to	strive	to	ensure	that	those	
dependencies	are	appropriate.

It	can	be	both	amusing	and	useful	to	think	of	objects	using	real-world	analogs.	In	the	real	world,	
most	objects	are	loosely coupled,	which	makes	tightly	coupled	examples	hyperbolic	and	fun.

Consider	a	satellite	navigation	system	that	provides	directions	while	you	drive	a	car.	You	and	the	
navigation	system	exist	in	a	loosely	coupled	way.	When	the	navigation	system	is	on,	it	provides	

ptg

263Dispatching Events

events	indicating	whether	you	should	turn	or	proceed	straight.	You	interpret	those	events	and,	
ideally,	make	a	decision	that	it	is	safe	to	turn	or	that	you	want	to	proceed	in	a	different	direction.	
Ultimately,	you	decide	whether	to	engage	your	muscles	and	turn	the	steering	wheel.

In	a	very	tightly	coupled	version	of	this	same	architecture,	the	navigation	system	would	
take	control	of	your	body,	forcing	your	muscles	to	move	as	needed	to	direct	you	to	the	new	
location.	As	every	person	is	a	bit	different,	the	navigation	system	would	have	the	ability	to	
calibrate	the	amount	of	force	required	per	muscle	for	each	individual	person.	Perhaps	it	would	
even	need	to	know	your	diet	or	exercise	schedule	to	monitor	changes	in	your	musculature	to	
ensure	consistent	results.

The	point	is	simply	that	the	tightly	coupled	architecture	often	involves	objects	having	too	
much	information	and	interacting	directly	with	the	internals	of	other	objects.	Further,	once	
you	make	that	first	concession	to	make	something	tightly	coupled,	you	may	start	down	a	path	
of	making	more	and	more	concessions	to	make	your	application	work.	A	loosely	coupled	
architecture	strives	to	use	the	ideas	of	notification	and	interfaces	to	allow	objects	to	manage	
themselves	more	successfully.

In	application	development,	maintaining	only	appropriate	coupling	can	lead	to	better	code	
reuse,	easier	refactoring,	and	the	ability	to	debug	an	application	in	parts	as	opposed	to	en	masse.

Dispatching Events
To	broadcast	an	event	from	a	component,	you	need	to	use	the	dispatchEvent()	method.	
This	method	is	defined	in	the	flash.events.EventDispatcher	class.	Some	objects	in	Flex	(for	
example,	the	UIComponent),	descend	directly	from	EventDispatcher	and	can	dispatch	events	
without	any	further	work.

The	following	is	the	inheritance	hierarchy	of	the	UIComponent	class:

mx.core.UIComponent extends
mx.core.FlexSprite extends
flash.display.Sprite extends
flash.display.DisplayObjectContainer extends
flash.display.InteractiveObject extends
flash.display.DisplayObject extends
flash.events.EventDispatcher

The	dispatchEvent()	method	takes	a	single	argument,	which	is	an	event	object	to	be	dispatched.	
When	an	event	is	dispatched,	anything	listening	for	that	event	is	notified,	and	any	event	listeners	
(handlers)	are	executed.	This	offers	a	way	to	create	a	loosely	coupled	architecture.

ptg

264 LESSON 11: Creating and Dispatching Events

1 Import	the	EventLab.fxp	from	the	Lesson11/independent	folder	into	Flash	Builder.	Please	
refer	to	the	appendix	for	complete	instructions	on	importing	a	project.

2 Open	and	run	EventLab.mxml.

The	application	displays	a	simple	warning	dialog	box	with	an	image,	text,	and	Ok	and	
Cancel	buttons.	You	will	use	this	dialog	box	throughout	this	lesson,	adding	events	and	
eventually	making	the	Ok	and	Cancel	buttons	function	properly.

The	EventLab	application	contains	two	custom	components:	WarningDialog.mxml	and	
OkayCancelGroup.mxml.	These	custom	components	are	nested	inside	the	Application,	
as the	following	diagram	demonstrates:

Text

OkayCancelGroup

WarningDialog

Image

Application

The	WarningDialog	is	directly	inside	the	Application.	It	contains	an	image,	text	about	the	
warning,	and	a	custom	component	named	OkayCancelGroup.	The	Ok	and	Cancel	but-
tons	are	so	often	reused	together	in	an	application	that	they	have	been	put	into	a	custom	
component	for	this	lab.

ptg

265Dispatching Events

3 Close	your	browser	and	open	the	OkayCancelGroup.mxml	class	from	the	components	
package.

4 Find	the	MXML	tag	for	the	Ok	button.	Inside	that	tag,	begin	typing	the	word	click.	After	
the	third	letter,	Flash	Builder	will	understand	that	you	intend	to	handle	the	click	event.	
Press	Enter,	and	Flash	Builder	will	complete	the	word	click	and	add	the	equal	sign	and	
quotes.	Flash	Builder	will	now	prompt	you	to	Generate	Click	Handler.	Either	click	the	
option	with	your	mouse	or	press	Enter.

Flash	Builder	will	generate	the	<fx:Script>	block	along	with	a	new	function	named	
ok_clickHandler(),	which	accepts	a	MouseEvent.

5 Repeat	step	4	for	the	Cancel	button.	When	complete,	the	relevant	portion	of	your	
OkayCancelGroup	should	read	as	follows:
<fx:Script>
 <![CDATA[
 protected function ok_clickHandler(event:MouseEvent):void
 {
 // TODO Auto-generated method stub
 }

 protected function cancel_clickHandler(event:MouseEvent):void
 {
 // TODO Auto-generated method stub
 }

]]>
</fx:Script>

<s:Button id=”ok” label=”Ok” click=”ok_clickHandler(event)”/>
<s:Button id=”cancel” label=”Cancel” click=”cancel_clickHandler(event)”/>

ptg

266 LESSON 11: Creating and Dispatching Events

Flex	is	a	general-purpose	component	framework,	so	it	dispatches	general-purpose	events.	For	
example,	buttons	in	Flex	dispatch	a	click	event	when	they	are	clicked.	That	is	a	wonderful	
starting	point,	but	the	concept	of	a	click	doesn’t	mean	much	in	the	context	of	your	application.

Ultimately,	when	a	button	is	clicked,	it	is	likely	to	mean	something	specific.	In	this	
component,	when	the	Cancel	button	is	clicked,	it	means	the	user	wants	to	cancel	the	
operation.	When	the	Ok	button	is	clicked,	it	means	the	user	acknowledges	the	issue	and	
wants to	proceed.

Therefore,	for	the	purposes	of	writing	code	that	is	much	more	legible,	maintainable,	and	
easier	to	debug,	you	often	handle	events	like	the	click	event	inside	a	component,	and	
then	immediately	dispatch	a	new,	more	specific	event	that	makes	sense	within	the	context	
of	the	application.

Inside	the	ok_clickHandler()	method,	delete	the	//TODO	comment	and	create	a	new	
instance	of	the	Event	object,	with	the	type	userAccept.
var e:Event = new Event(“userAccept”);

This	creates	the	new	instance	of	the	Event	object,	which	will	be	dispatched	to	notify	the	
remainder	of	the	application	of	the	user’s	choice.

6 Just	after	creating	the	event	object,	dispatch	it.
this.dispatchEvent(e);

This	dispatches	the	event	so	that	any	listening	components	can	respond	as	needed.

7 Repeat	these	steps	in	the	cancel_clickHandler()	method,	dispatching	an	event	with	the	
type	userCancel.
var e:Event = new Event(“userCancel”);
this.dispatchEvent(e);

8 Save	your	component	and	open	WarningDialog.mxml	from	the	components	package.

9 Find	the	instance	of	the	OkayCancelGroup	component.	Inside	this	tag,	inform	Flex	that	
you	wish	to	handle	the	userAccept	event	with	a	method	named	handleAccept(),	passing	
the	event	object	to	that	method.
<components:OkayCancelGroup id=”okCancelGroup”
 left=”219” bottom=”22” userAccept=”handleAccept(event)”/>

Note	that	you	will	not	get	the	convenient	code	hinting,	and	Flash	Builder	will	not	be	able	
to	generate	an	event	handler	for	you	at	this	time.	In	fact,	if	you	save	this	file	presently,	you	
will	see	an	error	in	the	Problems	view.	That	is	all	right	for	now.	You	will	examine	these	
issues	soon	and	fix	them	in	the	next	exercise.

ptg

267Declaring Events for a Component

10 Add	a	new	method	named	handleAccept()	to	the	Script	block	of	WarningDialog.mxml.	
The	method	will	accept	a	single	parameter	named	event	of	type	Event.
private function handleAccept(event:Event):void {

}

Tip: You may notice that when you’re asked to create a function in this book, it’s usually

private. However, when Flex creates functions for you, they are usually protected. Both private

and protected functions can be accessed by code within a given class, but not by other types

of objects in the system. However, when dealing with inheritance, protected functions can be

used by subclasses of your objects, whereas private functions cannot. As Flash Builder doesn’t

know how your functions will be used, it simply defaults to a more permissive setting.

11 Save	WarningDialog.mxml.	Look	at	the	Problems	view	and	notice	the	error.

The	Problems	view	is	now	showing	an	error:	Cannot	resolve	attribute	‘userAccept’	for	
component	type	components.OkayCancelGroup.

While	you	are	dispatching	an	event	in	your	OkayCancelGroup	named	userAccept,	the	Flex	
compiler,	as	of	yet,	is	unaware	of	it.

For	the	compiler	to	know	what	userAccept	means,	you	need	to	perform	one	additional	step,	
adding	metadata	to	the	component	that	specifically	declares	any	events	the	component	will	
dispatch.	This	will	also	enable	code-completion	and	handler	generation	in	Flash	Builder.

Declaring Events for a Component
Every	component	must	explicitly	declare	the	events	it	can	dispatch.	Components	that	are	sub-
classes	of	other	components	can	also	dispatch	any	events	that	their	superclasses	have	declared.	
In	Flex,	events	are	declared	with	metadata	tags.	This	is	done	with	the	[Event]	metadata,	which	
is	used	to	declare	events	publicly	so	that	the	MXML	compiler	can	verify	that	the	user	did	not	
simply	make	a	typo.	In	MXML,	an	event	declaration	looks	like	this:

<fx:Metadata>
 [Event(name=”userAccept” ,type=”flash.events.Event”)]
</fx:Metadata>

The	<fx:Metadata>	tag	declares	that	the	child	elements	are	all	metadata.	Next,	any	metadata	
is	declared.	Notice	that	the	tags	are	enclosed	within	square	brackets.	Details	for	these	tags	are	
defined	within	parentheses.	In	this	example,	you	can	see	a	userAccept	event	declared.	This	
event	will	be	an	instance	of	the	flash.events.Event	class.	In	this	exercise,	you	will	fix	the	error	
from	the	previous	exercise	by	declaring	a	custom	event	for	the	OkayCancelGroup	component.

ptg

268 LESSON 11: Creating and Dispatching Events

1 Open	OkayCancelGroup.mxml	from	your	components	package.

2 Before	the	<fx:Script>	block,	add	a	metadata	block	to	declare	the	userAccept	event.
<fx:Metadata>
 [Event(name=”userAccept”,type=”flash.events.Event”)]
</fx:Metadata>

If	the	type	is	omitted,	Flash	Builder	will	assume	it	is	an	instance	of	the	flash.events.Event	
class.	While	in	this	case	it	might	save	you	a	few	keystrokes,	it	is	usually	best	to	declare	the	
type	each	time	you	create	a	new	Event	declaration	to	ensure	completeness	and	provide	
additional	documentation.

3 Directly	below	the	first	Event	declaration,	but	inside	the	same	metadata	tag,	add	a	second	
Event	declaration	for	the	userCancel	event.
<fx:Metadata>
 [Event(name=”userAccept”,type=”flash.events.Event”)]
	 [Event(name=”userCancel”,type=”flash.events.Event”)]
</fx:Metadata>

Save	OkayCancelGroup.mxml.	The	errors	should	now	be	gone,	as	Flash	Builder	under-
stands	that	this	component	will	be	dispatching	the	named	events.

4 Return	to	the	WarningDialog.mxml	file	and	find	the	OkayCancelGroup	tag	again.

5 You	will	now	handle	the	userCancel	event.	Begin	typing	userCancel.	You	will	see	that	
Flash	Builder	now	also	understands	that	this	component	dispatches	the	userAccept	and	
userCancel	events	and	offers	code	hinting.	Choose	the	userCancel	event	and	then	choose	
Generate	UserCancel	Handler.

ptg

269Identifying the Need for Custom Event Classes

Flash	Builder	will	add	a	method	named	okCancelGroup_userCancelHandler()	to	your	
component.	The	method	will	accept	a	parameter	of	type	Event	automatically	because,	
due to	your	metadata	declaration,	Flash	Builder	knows	what	type	of	event	to	expect.

6 Add	a	trace	statement	to	the	handleAccept()	method	that	traces	the	words	
WarningDialog: Accept	to	the	console.

7 Add	a	trace	statement	to	the	okCancelGroup_userCancelHandler()	method	that	traces	
the	words	WarningDialog: Cancel	to	the	console.	Your	code	should	read	as	follows:
private function handleAccept(event:Event):void {
	 trace(“WarningDialog:	Accept”);
}

protected function okCancelGroup_userCancelHandler(event:Event):void {
	 trace(“WarningDialog:	Cancel”);
}

8 Debug	your	application.	When	you	click	the	Ok	or	Cancel	buttons,	you	should	see	the	
corresponding	text	traced	out	to	the	Console	view.

9 Terminate	your	debugging	session	and	return	to	Flash	Builder.

You	now	have	a	simple	reusable	component,	capable	of	communicating	with	other	areas	of	the	
application	in	a	loosely	coupled	manner.

Identifying the Need for Custom Event Classes
In	the	previous	exercise,	events	notified	other	parts	of	the	application	about	a	user	action.	In	
addition	to	notifications,	you	sometimes	need	to	pass	data	with	events.	The	flash.events.Event	
class	supports	only	the	properties	needed	for	the	most	basic	style	of	event,	but	you	are	always	
free	to	subclass	events	to	make	more	specific	types.

Passing	data	with	events	is	a	common	practice	in	Flex	and	can	be	extremely	beneficial.	In	this	
example,	you	will	record	a	timestamp	each	time	a	user	clicks	Ok	or	Cancel.	This	timestamp	
may	be	used	to	log	data	later,	but	it’s	very	important	that	you	record	the	exact	time	when	the	
user	clicks	the	button.	To	do	that,	you	are	going	to	create	your	own	event	class	that	will	con-
tain	this	time	information.

ptg

270 LESSON 11: Creating and Dispatching Events

Earlier	in	this	lesson	and	others,	you	used	the	dispatchEvent()	method	to	broadcast	an	event	from	
a	component.	The	dispatchEvent()	method	accepts	an	instance	of	the	flash.events.Event	class	as	
its	only	parameter.	Therefore,	any	events	you	wish	to	dispatch	must	be	subclasses	of	this	Event.

You	can	add	any	methods	or	properties	to	your	event,	but	you	are	required	to	override	one	
method	each	time	you	create	a	new	Event.	This	method,	named	clone(),	is	responsible	for	
creating	a	new	event	based	on	the	properties	of	your	original	event.	In	other	words,	it	creates	
an	identical	clone	of	it.

This	method	is	used	by	the	Flex	framework	in	a	number	of	places,	including	event	bubbling,	
a concept	you	will	understand	before	the	end	of	this	lesson.

Building and Using the UserAcknowledgeEvent
You	are	about	to	create	an	event	subclass.	This	event	will	have	an	additional	timestamp		
property,	allowing	your	application	to	note	the	exact	time	when	the	button	was	clicked.

1 Right-click	the	src	folder	of	the	EventLab	project	and	create	a	new	ActionScript	class.	
Specify	events	as	the	Package	name	and	UserAcknowledgeEvent	as	the	Name	of	the	
class.	Set	the	Superclass	to	flash.events.Event.

ptg

271Building and Using the UserAcknowledgeEvent

Filling	out	the	dialog	box	automatically	creates	the	skeleton	of	the	class	seen	here:
package events {
 import flash.events.Event;
 public class UserAcknowledgeEvent extends Event {
 public function UserAcknowledgeEvent(type:String,
 ➥ bubbles:Boolean=false, cancelable:Boolean=false) {
 super(type, bubbles, cancelable);
 }
 }
}

2 Inside	the	class	definition,	create	a	public	property	named	timestamp	to	hold	a	Date	instance.
public var timestamp:Date;

ActionScript	doesn’t	have	a	time	data	type.	However,	the	Date	object	can	store	both	date	
and	time	information.

3 Change	the	constructor	to	accept	only	two	parameters:	type,	which	is	a	String,	and	
timestamp,	which	is	a	Date.	In	the	constructor,	pass	type	to	the	superclass	and	store	the	
timestamp	in	the	instance	variable	you	created	in	step	2.
public function UserAcknowledgeEvent(type:String,	timestamp:Date)	{
	 super(type);
	 this.timestamp	=	timestamp;
}

Like	all	constructors	in	ActionScript	3.0,	this	one	is	public.	The	two	arguments	will	be	
used	to	populate	the	event.	The	timestamp	property	will	be	used	to	hold	the	time	when	
the	event	occurred.	The	type	property	defines	the	type	of	action	that	occurred	to	trig-
ger	this	event	(for	example	userAccept	or	userCancel).	Events	often	accept	two	other	
optional	parameters,	which	you	just	deleted.	We	will	explore	one	of	those	optional	
parameters	later	in	this	lesson.

4 Override	the	clone()	method.	In	this	method,	you	will	return	a	new	instance	of	the	
UserAcknowledge	event	with	the	same	values.
override public function clone():Event {
 return new UserAcknowledgeEvent(type, timestamp);
}

When	you	override	a	method	in	ActionScript	3.0,	the	method	must	be	defined	with	
exactly	the	same	parameters	and	return	type	of	the	superclass	and	must	include	the	
override	keyword.	Therefore,	the	clone()	method	needs	to	be	defined	as	public,	it	must	
take	no	parameters,	and	it	must	return	an	instance	of	the	Event	class.	Your	new	event	is	a	
subclass	of	the	Event	class	and	can	therefore	be	returned	by	this	method.

ptg

272 LESSON 11: Creating and Dispatching Events

The	complete	UserAcknowledge	class	should	look	like	the	following	code	block:
package events {
 import flash.events.Event;

 public class UserAcknowledgeEvent extends Event {
 public var timestamp:Date;
 public function UserAcknowledgeEvent(type:String, timestamp:Date) {
 super(type);
 this.timestamp = timestamp;
 }

 override public function clone():Event {
 return new UserAcknowledgeEvent(type, timestamp);
 }
 }
}

5 Open	the	OkayCancelGroup.mxml	file	from	your	components	package.

6 Inside	the	<fx:Script>	block,	find	the	ok_clickHandler().	Currently	the	method		
dispatches	an	instance	of	the	Event	class.	Change	this	method	to	instantiate	a	new	
instance	of	the	UserAcknowledgeEvent	class.	Pass	userAccept	as	the	first	parameter		
and	a	new	instance	of	the	Date	object	as	the	second.	Then	dispatch	this	new	event.
protected function ok_clickHandler(event:MouseEvent):void {
 var	e:UserAcknowledgeEvent	=	
	 ➥ new	UserAcknowledgeEvent("userAccept",	new	Date());
	 this.dispatchEvent(e);
}

Each	time	you	create	a	new	Date	object,	it	defaults	to	the	current	Date	and	Time.	If	you	
used	the	code-completion	feature,	an	import	for	UserAcknowledgeEvent	was	added	to	
your	class	automatically;	otherwise,	you	will	need	to	manually	add	the	import.
import events.UserAcknowlegdeEvent;

7 Repeat	this	process	for	cancel_clickHandler().	Instantiate	a	new	instance	of	the	
UserAcknowledgeEvent	class,	passing	userCancel	as	the	first	parameter	and	a	new	
instance	of	the	Date	object	as	the	second.	Then	dispatch	this	new	event.
protected function cancel_clickHandler(event:MouseEvent):void {
 var	e:UserAcknowledgeEvent	=		
	 ➥ new	UserAcknowledgeEvent("userCancel",	new	Date());
	 this.dispatchEvent(e);
}

ptg

273Building and Using the UserAcknowledgeEvent

You	are	now	dispatching	a	UserAcknowledgeEvent	each	time	a	button	is	clicked,	how-
ever, the	metadata	for	this	class	still	indicates	that	you	are	dispatching	generic	Flash	
events.	Change	the	metadata	to	indicate	that	each	of	these	events	will	now	dispatch	an	
events.UserAcknowledgeEvent	instance.
<fx:Metadata>
	 [Event(name=”userAccept”	,type=”events.UserAcknowledgeEvent”)]
	 [Event(name=”userCancel”	,type=”events.UserAcknowledgeEvent”)]
</fx:Metadata>

Your	OkayCancelGroup	is	now	broadcasting	UserAcknowledgeEvent	instances	in	all	
cases.	All	your	code	will	work	properly	at	this	point,	and	you	can	run	it	now	to	verify.

While	event	times	are	being	stored,	you	will	need	to	update	your	WarningDialog.mxml	
file	to	output	this	new	information.

8 Open	the	WarningDialog.mxml	file	from	your	components	package.

9 Find	the	handleAccept()	method	and	change	the	type	of	the	event	parameter	to		
events.UserAcknowledgeEvent.
private function handleAccept(event:UserAcknowledgeEvent):void {
 trace(“WarningDialog: Accept”)
}

If	you	used	the	code-completion	feature,	an	import	for	UserAcknowledgeEvent	was	
added	to	your	class	automatically;	otherwise,	you	will	need	to	manually	add	the	import.

Previously	this	method	accepted	an	instance	of	the	Event	class.	Remember	that	your	
UserAcknowledgeEvent	is	a	type	of	Event,	so	this	code	will	still	work	properly.	However,	
Flex	knows	that	the	timestamp	property	does	not	exist	in	the	Event	class.	So,	to	use	your	
new	timestamp,	this	method	must	be	updated	to	the	appropriate	type.

10 Update	the	trace	statement	by	adding	a	space	after	the	word	Accept	and	before	the	quota-
tion	mark.	Then	concatenate	the	event.timestamp	to	the	end	of	the	output.
private function handleAccept(event:UserAcknowledgeEvent):void {
 trace(“WarningDialog:	Accept	“	+	event.timestamp);
}

11 Repeat	this	process	for	cancel,	changing	the	event	to	type	UserAcknowledgeEvent,	adding	
a	space	after	the	word	Cancel and	then	concatenating	the	event.timestamp	to	the	end	of	
the	output.
protected function okCancelGroup_userCancelHandler(event:UserAcknowledgeEvent):
➥ void {
 trace(“WarningDialog:	Cancel	“	+	event.timestamp);
}

ptg

274 LESSON 11: Creating and Dispatching Events

12 Save	and	debug	the	application.	It	should	now	output	the	trace	statements	along	with	the	
time	of	each	click.
WarningDialog: Accept Wed Jul 28 15:59:26 GMT-0600 2010
WarningDialog: Cancel Wed Jul 28 15:59:26 GMT-0600 2010

13 Terminate	the	debugging	session.

Understanding Event Flow and Event Bubbling
There	are	two	broad	categories	of	classes	you	have	worked	with	so	far	in	Flex:	classes	that	
inherit	from	DisplayObject	and	classes	that	do	not.	All	the	Flex	UI	components	such	as	Lists,	
Buttons,	and	Labels	are	DisplayObjects.	The	value	objects	you	created,	as	well	as	classes	like	
HTTPService,	which	do	not	have	a	visual	display,	are	not	DisplayObjects.

A	lot	of	work	is	done	in	Flex	to	classes	that	appear	on	the	screen.	The	Flash	Player	and	Flex	
framework	need	to	size	and	position	them	on	the	screen,	ensure	that	they	are	created	at	the	
correct	time,	and	eventually	draw	them	on	your	monitor.	Therefore	Flash	Player	maintains	
a	list,	called	the	display list,	of	every	visual	component	currently	available	to	the	user.	So	
far,	every	time	you	have	created	a	visual	component,	it	has	been	added	to	the	display	list.	
In Lesson	14,	“Implementing	Navigation,”	you	will	learn	to	have	a	little	more	control	over	
when	this	occurs.

As	a	mental	model,	the	display	list	can	be	thought	of	as	a	hierarchy,	or	tree.	Each	time	
something	is	added	to	the	list,	it	is	added	relative	to	its	parent.	So,	a	partial	display	list	for	
the EventLab	application	looks	like	this:

Application

WarningDialog

LabelBitmapImage OkayCancelGroup

Button Button

ptg

275Understanding Event Flow and Event Bubbling

This	is	only	a	partial	list,	as	in	reality	things	like	Buttons	are	actually	further	composed	of	
a	label	and	a	background,	and	so	on.	Only	visual	elements	are	added	to	the	display	list,	so	
objects	without	a	display,	like	the	HTTPService,	will	not	appear	on	this	list.	This	is	important,	
because	once	something	is	on	the	display	list,	Flash	Player	provides	additional	functionality	
when	dispatching	events.

If	the	event	target	(the	object	dispatching	the	event)	is	not	a	visual	element,	Flash	Player	
simply	dispatches	the	event	object	directly	to	the	designated	target.	For	example,	Flash	Player	
dispatches	the	result	event	directly	to	an	HTTPService	component.

However,	if	the	target	is	a	visual	element	on	the	display	list,	Flash	Player	dispatches	the	event,	
and	it	travels	from	the	outermost	container	(the	Application	container	in	our	simplified	exam-
ple),	down	through	the	target	component,	and	optionally	back	up	to	the	Application	container.

Event flow	is	a	description	of	how	that	event	object	travels	through	an	application.	As	you		
have	seen	by	now,	Flex	applications	are	structured	in	a	parent-child	hierarchy,	with	the	
Application	container	being	the	top-level	parent.	Earlier	in	this	lesson,	you	also	saw	that		
flash.events.EventDispatcher	is	the	superclass	for	all	components	in	Flex.	This	means	that	all	
visual	objects	in	Flex	can	use	events	and	participate	in	the	event	flow;	they	can	all	listen	for	an	
event	with	the	addEventListener()	method	and	dispatch	their	own	events.

During	this	trip	from	the	Application	to	the	component	that	was	responsible	for	the	event	
(known	as	the	target	of	the	event)	and	optionally	back	to	the	Application,	other	components	
within	the	event’s	path	may	listen	for	and	act	on	the	event.	In	fact,	components	can	decide	if	
they	want	to	listen	on	the	way	to	the	object	or	on	the	way	back	to	the	Application.

The	event	flow	is	conceptually	divided	into	three	parts:

•	 The	capture phase	comprises	all	the	components	on	the	trip	from	the	base	application	
to	the	parent	of	the	event’s	target.	In	other	words,	everything	from	the	application	to	the	
target,	not	including	the	target	itself.

•	 The	target phase	occurs	when	the	event	reaches	the	target.

•	 The	bubbling phase	comprises	all	the	components	encountered	on	the	return	trip	from	
the	target	back	to	the	root	application.

The	following	image	describes	a	branch	of	an	application	in	which	a	Button	is	contained	
within	a	Group,	which	is	contained	by	a	Panel,	which	sits	in	the	root	Application.	For	the	
context	of	this	example,	other	elements	in	the	application	are	moot.

ptg

276 LESSON 11: Creating and Dispatching Events

If	a	user	clicks	the	Button,	Flash	Player	dispatches	an	event	object	into	the	event	flow.	The	
object’s	journey	starts	at	the	Application,	moves	down	to	the	Panel,	moves	to	the	Group,	and	
finally	gets	to	the	Button.	The	event	object	then	“bubbles”	back	up	to	Application,	moving	
again	through	the	Group	and	Panel	on	its	way	up.

In	this	example,	the	capture	phase	includes	the	Application,	Panel,	and	Group	during	the	ini-
tial	downward	journey.	The	target	phase	comprises	the	time	spent	at	the	Button.	The	bubbling	
phase	comprises	the	Group,	Panel,	and	Application	containers	as	they	are	encountered	during	
the	return	trip.

All	instances	of	the	Event	class	have	a	bubbles	property	that	indicates	whether	that	event	
object	will	participate	in	the	bubbling	phase	of	the	event	flow.	If	this	property	is	set	to	true,	
the	event	makes	a	round-trip;	otherwise	it	ends	when	the	target	phase	is	complete.

All	this	means	that	an	event	can	occur	in	a	child	component	and	be	heard	in	a	parent.	
Consider	this	simple	example:

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”

ptg

277Understanding Event Flow and Event Bubbling

 click=”showAlert(event)”>
 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;
 private function showAlert(event:Event):void {
 var msg:String = event.target.toString() +" clicked";
 Alert.show(msg);
 }
]]>
 </fx:Script>
 <s:Panel id="panel"
 click="showAlert(event)" >
 <s:Group id="group"
 click="showAlert(event)" >
 <s:Button id="button"
 click="showAlert(event)"/>
 </s:Group>
 </s:Panel>
</s:Application>

In	this	case,	there	is	a	Button	control	inside	a	Group,	inside	a	Panel,	inside	an	Application.	
When	the	button	is	clicked,	the	click	event	of	the	Button	control	is	heard	from	the	event	
handler	of	the	Button,	Group,	Panel,	and	Application,	and	therefore	four	Alert	boxes	pop	up,	
all	saying	the	following:

TestApp.ApplicationSkin2._ApplicationSkin_Group1.contentGroup.panel.PanelSkin6.
➥ _PanelSkin_Group1.contents.contentGroup.group.button clicked

This	string	represents	the	entire	path	the	event	traveled	in	its	journey	to	dispatch.	The	click	
event	of	the	Button	control	can	be	captured	at	the	Button	control	itself	or	in	any	of	the	par-
ent	containers	of	the	Button	instance.	This	happens	because	click	is	a	bubbling	event.	The	
bubbles	property	of	the	Event	class	is	Boolean,	which	indicates	whether	an	event	should	
bubble.	By	default,	bubbles	is	set	to	false	on	newly	created	events	(although	it	is	preset	to	
true	for	some	built-in	events,	such	as	click;	you	can	check	the	API	docs	to	find	this	informa-
tion	as	it	pertains	to	any	event).	When	you	create	event	instances	or	event	subclass	instances,	
you	can	decide	whether	you	want	to	enable	bubbling	for	the	event.	If	you	leave	the	bubbling	to	
the	default	false	value,	the	event	can	be	captured	only	at	the	source	of	the	event	(the	Button	
control	in	the	preceding	example).	However,	if	bubbling	is	set	to	true,	the	event	can	be	cap-
tured	by	a	parent	of	the	dispatching	component	(such	as	the	Group,	Panel,	and	Application).

Currently,	the	OkayCancelGroup	class	dispatches	an	event,	and	that	event	is	being	used	by	
the	WarningDialog.	Next	you	will	make	that	event	bubble	so	that	it	can	be	handled	in	the	
Application	itself.

ptg

278 LESSON 11: Creating and Dispatching Events

1 Open	UserAcknowledgeEvent.as	from	the	events	package.

2 Locate	the	constructor	and	the	call	to	the	superclass.
public function UserAcknowledgeEvent(type:String, timestamp:Date) {
 super(type);
 this.timestamp = timestamp;
}

The	flash.events.Event	constructor	can	accept	up	to	three	arguments.	The	first	is	the	type,	
which	you	are	passing	presently.	The	second	is	a	Boolean	flag	indicating	whether	the	
event	should	bubble,	and	the	third	is	a	Boolean	indicating	whether	the	event	is	cancelable	
(whether	another	object	can	cancel	the	event).

3 Pass	true	to	the	bubbles	argument	of	the	superclass.
public function UserAcknowledgeEvent(type:String, timestamp:Date) {
 super(type, true);
 this.timestamp = timestamp;
}

This	event	will	now	make	the	return	trip	(bubble)	from	the	OkayCancelGroup	all	the	way	
back	up	to	the	Application.

4 Open	WarningDialog.mxml.

The	event	is	now	going	to	pass	through	this	class	on	the	way	back	to	the	Application.	
Therefore,	if	you	choose,	you	can	act	on	the	event	here	as	well.

5 Add	an	<fx:Metadata>	tag	and	the	appropriate	event	metadata	to	the	WarningDialog	
indicating	that	this	object	will	also	dispatch	a	userAccept	and	userCancel	event,	both	of	
type	events.UserAcknowledgeEvent.
<?xml version=”1.0” encoding=”utf-8”?>
 <s:Panel xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 width=”400” height=”225”
 xmlns:components=”components.*”
 title=”Warning: Something to be warned about!”>

	 <fx:Metadata>
	 	 [Event(name=”userAccept”,type=”events.UserAcknowledgeEvent”)]
	 	 [Event(name=”userCancel”,type=”events.UserAcknowledgeEvent”)]
	 </fx:Metadata>

 <fx:Script>
 ...
 </fx:Script>
 ...
</s:Panel>

ptg

279Understanding Event Flow and Event Bubbling

Feel	free	to	copy	the	entire	metadata	block	from	the	OkayCancelGroup	if	you	wish	to	
save	a	few	keystrokes.

6 Open	EventLab.mxml.

You	can	now	listen	for	either	of	these	events	on	the	WarningDialog	as	well	as	the	
OkayCancelGroup,	as	they	will	bubble	up	the	display	list.

7 Inside	the	WarningDialog	tag,	begin	typing	userAccept	and	userCancel.	If	the	metadata	
in	step	5	was	added	correctly,	Flash	Builder	will	offer	you	code	completion	and	the	ability	
to	generate	an	event	handler.	Accept	this	offer,	creating	an	event	handler	for	both	events.
<components:WarningDialog id=”warningDialog”
 horizontalCenter=”0” verticalCenter=”0”
	 userAccept=”warningDialog_userAcceptHandler(event)”
	 userCancel=”warningDialog_userCancelHandler(event)”/>

8 Inside	the	warningDialog_userAcceptHandler(),	add	a	trace	statement	to	output	the	class	
name,	the	event,	and	the	timestamp	as	follows:
protected function warningDialog_userAcceptHandler(event:UserAcknowledgeEvent):
➥ void {
	 trace(“EventLab:	Accept	“	+	event.timestamp);
}

9 Inside	the	warningDialog_userCancelHandler(),	also	add	a	trace	statement	to	output	the	
class	name,	the	event,	and	the	timestamp	as	follows:
protected function warningDialog_userCancelHandler(event:UserAcknowledgeEvent):
➥ void {
	 trace(“EventLab:	Cancel	“	+	event.timestamp);
}

10 Debug	the	EventLab	application	and	click	both	the	Ok	and	Cancel	buttons.
WarningDialog: Accept Sun Feb 7 13:42:37 GMT-0600 2010
EventLab: Accept Sun Feb 7 13:42:37 GMT-0600 2010
WarningDialog: Cancel Sun Feb 7 13:42:37 GMT-0600 2010
EventLab: Cancel Sun Feb 7 13:42:37 GMT-0600 2010

Notice	that	the	trace	statement	first	occurs	in	the	WarningDialog	where	the	event	is	
received,	followed	by	the	EventLab.	You	have	created	a	bubbling	event	and	handled	it	
in	the	application.	You	are	now	ready	to	fix	the	product	addition	and	removal	in	the	
FlexGrocer	application.

11 Terminate	the	debugging	session	and	close	the	EventLab	project.

You will	now	move	back	to	the	FlexGrocer	application	and	apply	this	procedure	there.

ptg

280 LESSON 11: Creating and Dispatching Events

Creating and Using the ProductEvent Class
In	this	next	exercise,	you’ll	create	an	event	subclass	called	ProductEvent.	ProductEvent	will	
add	a	single	property	to	the	Event	class	named	product,	which	will	hold	an	instance	of	your	
Product	value	object.	You	will	then	refactor	the	ProductItem	based	on	your	new	knowledge	of	
events	to	reduce	some	application	coupling	and	restore	functionality.

1 Open	the	FlexGrocer	project.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson11/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Right-click	the	src	folder	and	create	a	new	ActionScript	class.	Set	the	Package	of	the	new	
class	to	events.	Name	the	new	class	ProductEvent,	and	set	flash.events.Event	as	the	
superclass.

The	skeleton	for	your	new	class	should	look	like	this:
package events {
 import flash.events.Event;
 public class ProductEvent extends Event {
 public function ProductEvent(type:String, bubbles:Boolean=false,
 ➥ cancelable:Boolean=false) {
 super(type, bubbles, cancelable);
 }
 }
}

3 Create	a	new	public	property	for	your	class,	named	product,	with	a	data	type	Product.

If	you	use	code	hinting	and	choose	the	Product	class	from	the	list,	the	import	statement	
for	valueObjects.Product	will	be	added	automatically;	if	not,	you	will	need	to	manually	
import	the	class.

4 Modify	the	constructor	for	your	class	so	that	it	takes	two	arguments.	The	first	argu-
ment	will	remain	the	type,	which	is	a	String.	The	second	argument	is	an	instance	of	the	
Product	class.
public function ProductEvent(type:String, product:Product) {
}

ptg

281Creating and Using the ProductEvent Class

5 Inside	the	constructor,	pass	the	type	to	the	superclass,	along	with	a	true	for	the	value	
of	the	bubbles	parameter.	Set	your	local	product	instance	variable	equal	to	the	product	
argument	of	the	constructor.
public function ProductEvent(type:String, product:Product) {
	 super(type,	true);
	 this.product	=	product;
}

6 Override	the	clone()	method.	This	method	will	return	a	new	instance	of	the	
ProductEvent	class	with	the	same	type	and	product.
override public function clone():Event{
 return new ProductEvent(type, product);
}

7 Save	the	ProductEvent	class.	The	class	should	currently	look	like	this:
package events {
 import flash.events.Event;
 import valueObjects.Product;
 public class ProductEvent extends Event {
 public var product:Product;

 public function ProductEvent(type:String, product:Product) {
 super(type, true);
 this.product = product;
 }

 override public function clone():Event {
 return new ProductEvent(type, product);
 }
 }
}

8 Open	ProductItem.mxml	from	your	components	package.

9 Remove	the	public	variable	named	shoppingCart.

You	are	no	longer	going	to	attempt	to	add	and	remove	items	from	the	shopping	cart	
directly.	Instead	you	will	use	events	to	inform	other	components	of	the	user’s	actions.

10 Find	the	addToCart()	method.	Delete	all	the	existing	contents	of	this	method.

11 Inside	the	addToCart()	method,	declare	a	new	local	variable	named	event	of	type	
ProductEvent,	and	set	it	equal	to	a	new	instance	of	the	ProductEvent	event	class.	For	
the	type	parameter	of	the	ProductEvent	constructor,	pass	the	string	addProduct.	Then	
pass	the	product	argument	of	this	method	as	the	second	constructor	parameter.	Finally,	
dispatch	the	event.

ptg

282 LESSON 11: Creating and Dispatching Events

private function addToCart(product:Product):void {
 var	event:ProductEvent	=	new	ProductEvent(“addProduct”,	product);
	 dispatchEvent(event);
}

If	you	use	code-completion,	events.ProductEvent	will	be	imported	for	you.	If	not,	be	sure	
to	import	it	manually.

12 Repeat	this	process	for	the	removeFromCart()	method,	passing	the	string	removeProduct	
to	the	ProductEvent	type	parameter.
private	function	removeFromCart(product:Product):void	{
	 var	event:ProductEvent	=	new	ProductEvent(“removeProduct”,	product);
	 dispatchEvent(event);
}

13 Add	an	<fx:Metadata>	tag	to	this	class.	Inside	it,	declare	that	ProductItem.mxml	will	
dispatch	two	events	named	addProduct	and	removeProduct.	Indicate	that	both	events	will	
be	of	type	events.ProductEvent.
<fx:Metadata>
 [Event(name=”addProduct”,type=”events.ProductEvent”)]
 [Event(name=”removeProduct”,type=”events.ProductEvent”)]
</fx:Metadata>

14 Save	this	class	and	ensure	there	are	no	problems	in	the	Problems	view.

You	are	now	dispatching	a	bubbling	event	from	the	ProductItem	when	the	Add	To	Cart	or	
Remove	From	Cart	buttons	are	clicked.

Creating a ProductList Component
As	you	learned	in	previous	lessons,	you	create	a	custom	component	in	Flex	whenever	you	
need	to	compose	new	functionality.	Previously,	you	created	a	DataGroup	that	displayed	prod-
ucts	on	the	screen.	While	you	still	want	to	use	that	DataGroup,	you	now	need	a	DataGroup	
that	will	dispatch	addProduct	and	removeProduct	events.	Anytime	you	make	a	compo-
nent’s	job	more	specific,	you	are	talking	about	subclassing.	In	this	exercise	you	will	subclass	
DataGroup	to	make	a	ProductList.	ProductList	is	a	DataGroup	with	the	extra	event	metadata	
needed	by	Flex.

1 Right-click	the	components	package	and	choose	New	>	MXML	Component.		
Ensure	the	package	is	set	to	the	word	components	and	set	the	Name	to	ProductList.		
Set	the	layout	to	spark.layouts.VerticalLayout	and	the	“Based	on”	field	to		
spark.components.DataGroup,	and	clear	the	Width	and	Height	fields.	Click	Finish.

ptg

283Creating and Using the ProductEvent Class

2 Set	the	itemRenderer	property	on	the	DataGroup	node	to	components.ProductItem.
<?xml version=”1.0” encoding=”utf-8”?>
<s:DataGroup xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 itemRenderer=”components.ProductItem”>
 <s:layout>
 <s:VerticalLayout/>
 </s:layout>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here-->
 </fx:Declarations>
</s:DataGroup>

The	DataGroup	in	your	ShoppingView	uses	components.ProductItem	as	an		
itemRenderer.	This	new	ProductList	is	intended	to	replace	that	DataGroup	with		
equivalent	functionality	plus	events.

3 Add	an	<fx:Metadata>	tag	to	this	class.	Inside	it,	declare	that	ProductItem.mxml	will	dis-
patch	two	events,	named	addProduct	and	removeProduct.	Indicate	that	both	events	will be	
of	type	events.ProductEvent.
<fx:Metadata>
 [Event(name=”addProduct”,type=”events.ProductEvent”)]
 [Event(name=”removeProduct”,type=”events.ProductEvent”)]
</fx:Metadata>

ptg

284 LESSON 11: Creating and Dispatching Events

This	DataGroup	is	going	to	use	the	components.ProductItem	renderer.	As	you	
declared	earlier,	that	itemRenderer	will	dispatch	two	bubbling	events:	addProduct	and	
removeProduct.	As	you	saw	in	the	EventLab,	when	an	event	bubbles,	you	can	listen	for	the	
event	on	any	of	the	parent	instances.	In	this	case,	you	will	listen	for	the	addProduct	and	
removeProduct	events	on	the	ProductList.

4 Save	the	ProductList	class.	It	should	read	as	follows:
<?xml version=”1.0” encoding=”utf-8”?>
<s:DataGroup xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 itemRenderer=”components.ProductItem”>
 <s:layout>
 <s:VerticalLayout/>
 </s:layout>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here-->
 </fx:Declarations>
 <fx:Metadata>
 [Event(name="addProduct",type="events.ProductEvent")]
 [Event(name="removeProduct",type="events.ProductEvent")]
 </fx:Metadata>
</s:DataGroup>

Using the ProductList Component
You	will	now	replace	the	DataGroup	in	your	ShoppingView	with	your	new	ProductList	
component.

1 Open	the	ShoppingView.mxml	file	and	locate	the	DataGroup	on	approximately	line	40.

2 Directly	below	the	DataGroup,	add	a	ProductList	component.

If	you	used	code-completion,	Flash	Builder	automatically	added	a	component	name	
space	on	your	behalf.	If	you	did	not,	you	will	need	to	add	this	namespace	manually.
<components:ProductList/>

3 Many	of	the	properties	on	the	DataGroup	will	be	the	same	on	your	new	ProductList.	
Copy	the	width,	height,	and	visible	properties	(for	both	the	normal	and	cartView	state)	
to	your	ProductList	tag.
<components:ProductList width=”100%”	height=”100%”
	 width.cartView=”0”	height.cartView=”0”
	 visible.cartView=”false”/>

4 Finally,	move	the	dataProvider	property	to	the	new	ProductList	and	delete	the	
DataGroup.	Your	new	ProductList	tag	should	look	like	the	following	code:

ptg

285Creating and Using the ProductEvent Class

<components:ProductList width=”100%” height=”100%”
 width.cartView=”0” height.cartView=”0”
 visible.cartView=”false”
 dataProvider=”{groceryInventory}”/>

5 Save	this	file	and	run	the	application.	You	shouldn’t	receive	any	errors,	and	the	Products	
should	display	as	before.

Using ProductEvent to Add and Remove a Product
An	instance	of	the	ProductEvent	class	is	bubbling	up	the	display	list	each	time	the	AddToCart	
button	is	clicked.	You	are	now	going	to	listen	to	that	event	and	use	it	to	actually	add	the		
product	to	the	cart.

1 Open	ShoppingView.mxml	from	the	views	package.

2 Inside	the	Script	block,	add	a	new	private	method	named	addProductHandler().	
This function	will	accept	a	single	parameter	named	event	of	type	ProductEvent	
and return	void.

Tip: In this case you are writing the event handlers manually. When Flash Builder automatically

creates an event handler on your behalf, it normally names it to correspond to the control that

is using the event (so, something like productlist1_addProductHandler() if the ProductList

were using it). That is fine in most cases, but this particular handler is going to be used by

multiple controls, so you are naming it manually.

3 Still	inside	the	Script	block,	add	another	new	private	method	named	
removeProductHandler().	This	function	will	also	accept	a	single	parameter	named	event	
of	type	ProductEvent	and	return	void.
private	function	addProductHandler(event:ProductEvent):void	{
}

private	function	removeProductHandler(event:ProductEvent):void	{
}

If	you	did	not	use	code-completion,	add	the	import	for	events.ProductEvent	at	this	time.	
Again,	you	are	making	these	methods	private,	as	they	are	not	needed	outside	this	class.

4 Inside	the	addProductHandler()	method,	create	a	new	local	variable	named	sci	of	type	
ShoppingCartItem.	Set	this	variable	equal	to	a	new	instance	of	the	ShoppingCartItem	
class,	passing	the	product	property	of	your	event	object	to	its	constructor.
var sci:ShoppingCartItem = new ShoppingCartItem(event.product);

ptg

286 LESSON 11: Creating and Dispatching Events

You	already	did	the	hard	work	by	ensuring	the	event	would	have	a	reference	to	the	clicked	
product	available.	Now	you	simply	need	to	use	it.

5 Still	inside	the	addProductHandler()	method,	add	the	ShoppingCartItem	instance	to	the	
shopping	cart	using	the	addItem()	method	of	the	shoppingCart	reference.	Your	code	
should	look	like	this:
private function addProductHandler(event:ProductEvent):void {
	 var	sci:ShoppingCartItem	=	new	ShoppingCartItem(event.product);
	 shoppingCart.addItem(sci);
}

6 Duplicate	this	concept	inside	the	removeProductHandler()	method.	Create	a	new	local	
variable	named	sci	of	type	ShoppingCartItem	and	assign	it	a	new	ShoppingCartItem	
instance	with	event.product	passed	to	its	constructor.	However,	in	this	case,	call	the	
removeItem()	method	of	the	shoppingCart,	passing	the	local	sci	variable.
private function removeProductHandler(event:ProductEvent):void {
	 var	sci:ShoppingCartItem	=	new	ShoppingCartItem(event.product);
	 shoppingCart.removeItem(sci);
}

You	now	have	two	event	handlers	ready	to	add	or	remove	products	from	the	cart.	You	
will	now	simply	indicate	that	these	two	handlers	should	be	used	by	your	ProductList	for	
this	purpose.

7 Find	the	ProductList	tag	and	indicate	that	you	will	handle	the	ProductList’s	addProduct	
event	with	the	addProductHandler()	method,	passing	the	event	object.
<components:ProductList x=”0” y=”0” width=”100%” height=”100%”
 width.cartView=”0” height.cartView=”0”
 visible.cartView=”false”
 dataProvider=”{groceryInventory}”
 addProduct=”addProductHandler(event)”/>

8 Next,	indicate	that	you	will	handle	the	ProductList’s	removeProduct	event	with	the	
removeProductHandler()	method,	passing	the	event	object.
<components:ProductList x=”0” y=”0” width=”100%” height=”100%”
 width.cartView=”0” height.cartView=”0”
 visible.cartView=”false”
 dataProvider=”{groceryInventory}”
 addProduct=”addProductHandler(event)”
 removeProduct=”removeProductHandler(event)”/>

9 Save	this	class	and	run	the	FlexGrocer	application.

You	should	be	able	to	add	and	remove	products	again	using	the	buttons,	but	this	action	is	now	
performed	with	events	across	components	in	a	loosely	coupled	way.

ptg

287Creating and Using the ProductEvent Class

Handling the Collection Change Event
As	you	already	know,	many	Flex	components	and	classes,	some	visual	and	some	non-visual,	
dispatch	events	that	can	be	used	in	your	application.	In	this	exercise,	you	will	perform	a	
minor	refactoring	of	the	ShoppingCart	class	and	use	one	of	these	events	to	ensure	that	the	
total	of	your	ShoppingCart	class	always	remains	correct	as	you	add	and	remove	items.

1 Open	ShoppingView.mxml	from	the	views	package.

2 Find	the	Label	tag	that	displays	the	text	Your	Cart	Total:	$0.

You	will	now	change	this	Label	to	reflect	the	cart’s	actual	total.

3 Change	the	Label	to	append	the	total	property	of	the	ShoppingCart	instance,	named	
shoppingCart,	directly	after	the	currency	symbol.	Surround	the	expression	that	retrieves	
the	total	in	curly	brackets,	indicating	that	it	should	be	refreshed	if	the	total	changes.	Your	
code	should	look	like	this:
<s:Label text=”Your Cart Total: ${shoppingCart.total}”/>

Flex	will	concatenate	the	initial	portion	of	that	string	and	the	total	property	each	time	a	
change	in	the	total	is	noted.	However,	there	is	still	one	bug	in	our	ShoppingCart	class	that	
needs	to	be	fixed.

In	Lesson	8,	“Using	DataBinding	and	Collections,”	you	added	an	implicit	getter	and	set-
ter	to	the	ShoppingCartItem.	Each	time	the	ShoppingCartItem’s	quantity	changes,	you	
update	the	subtotal	for	that	particular	item.	Unfortunately,	the	ShoppingCart	itself	also	
has	a	total	property.	Right	now,	even	though	the	subtotal	for	each	item	adjusts	correctly,	
the	ShoppingCart’s	overall	total	is	not	aware	of	that	change	and	will	therefore	not	rerun	
the	calculateTotal()	method.	Effectively,	this	means	that	if	you	update	quantities	of	
given	items	through	a	method	other	than	add	or	remove,	the	ShoppingCart	total	will	not	
track correctly.

4 Open	the	ShoppingCart	class	from	the	cart	package.

5 As	the	last	item	in	the	class,	add	a	new	private	method	named	handleItemsChanged().	
This	method	will	accept	a	single	parameter	named	event	of	type	CollectionEvent.

If	you	used	code-completion,	CollectionEvent	will	be	imported	for	you.	If	not,	import	
mx.events.CollectionEvent	now.	CollectionEvent	is	a	special	type	of	event	broadcast	from	
collections	such	as	the	ArrayCollection.	It	indicates	that	one	of	the	items	in	the	collection	
has	changed.

6 Inside	the	handleItemsChanged()	method,	call	the	calculateTotal()	method	of	this	object.
private function handleItemsChanged(event:CollectionEvent):void {
	 calculateTotal();
}

ptg

288 LESSON 11: Creating and Dispatching Events

Every	time	the	items	in	the	ShoppingCart	change,	you	will	respond	by	recalculating	the	
total	for	the	cart.	In	this	way	you	can	keep	track	of	the	changes	to	the	total	correctly.

7 Find	the	constructor	for	the	ShoppingCart	class.	As	the	last	line	of	the		
constructor,	you’ll	add	an	event	listener	to	the	items	ArrayCollection	for	the	
CollectionEvent.COLLECTION_CHANGE	event	type.	When	this	event	occurs	you	want		
the	handleItemsChanged	method	called.
items.addEventListener(CollectionEvent.COLLECTION_CHANGE, handleItemsChanged);

If	you	use	code-completion,	Flash	Builder	will	write	much	of	this	line	on	your	behalf.	
This	is	simply	the	ActionScript	equivalent	of	adding	an	event	listener	in	MXML	and	pass-
ing	the	event	object.

The	first	parameter	of	the	addEventListener()	call	is	always	a	String	specifying	the	type	
of	event.	Unfortunately,	in	ActionScript,	unlike	in	MXML,	Flash	Builder	doesn’t	look	at	
the	event	metadata	and	fill	in	String	on	our	behalf.	It	is	therefore	a	common	convention	
to	create	constants	in	the	system,	which	are	just	strings	with	the	name	of	the	event	preset	
on	your	behalf.	This	simply	prevents	you	from	making	a	typo	by	ensuring	that	the	event	
type	you	want	to	listen	for	does	in	fact	exist.

Last	thing	to	note:	When	you	add	an	event	listener	in	ActionScript,	the	second	argument	
is	a	function	reference.	So,	you	don’t	type	handleItemsChanged(event)	as	you	would	in	
MXML,	but	rather	just	handleItemsChanged.

Tip: If you want to see how the constant works for yourself, hold down the Ctrl (Command) key

and click COLLECTION_CHANGE. Flash Builder will take you to the CollectionEvent class, and

you will see a constant. This line of code works the same whether you use the constant or type

the string collectionChange.

8 Find	the	addItem()	method	and	remove	the	call	to	calculateTotal().

Any	change	to	the	items	ArrayCollection	will	now	inform	the	ShoppingCart	to	recalcu-
late	itself.	You	no	longer	need	to	call	this	explicitly	when	adding	or	removing	an	item.

9 Find	the	removeItem()	method	and	also	remove	the	call	to	calculateTotal().

10 Save	this	class	and	run	the	FlexGrocer	application.

You	can	now	add	and	remove	items	from	the	cart.	As	these	items	change,	the	total	updates	
automatically	as	it	responds	to	a	notification	from	the	items	ArrayCollection.

ptg

289What You Have Learned

What You Have Learned
In this lesson, you have:

•	 Learned	the	benefits	of	loosely	coupled	architecture	(pages	262–263)

•	 Dispatched	events	(pages	263–267)

•	 Declared	events	for	a	component	(pages	267–269)

•	 Identified	the	need	for	your	own	event	classes	(pages	269–270)

•	 Created	and	used	an	event	subclass	(pages	270–274)

•	 Learned	about	event	bubbling	(pages	274–279)

•	 Created	the	ProductEvent	class	(pages	280–284)

•	 Used	ProductEvent	to	add	and	remove	a	product	from	the	cart	(pages	284–286)

•	 Used	CollectionEvent	to	update	the	cart	total	(pages	287–288)

ptg

Le
ss

o
n

 1
2 What You Will Learn

In this lesson, you will:

•	 Define	the	viewable	columns	of	a	DataGrid	through	GridColumn

•	 Use	a	labelFunction	and	an	itemRenderer	to	display	GridColumn	information

•	 Create	an	MXML	component	to	be	used	as	an	item	renderer

•	 Create	an	inline	custom	item	editor	for	a	GridColumn

•	 Raise	events	from	inside	an	item	renderer

Approximate Time
This	lesson	takes	approximately	1	hour	to	complete.

ptg

291

Lesson 12

Using the Flex DataGrid
In Lesson 10, “Using DataGroups and Lists,” you worked with datasets and some controls that
can be used to show data. In this lesson, you will build on that set of base controls and be
introduced to the primary MXML component used to display and manipulate large datasets.

In this lesson, you will learn how to use the DataGrid component to display a dataset in an
interactive way using rows and columns. Aside from using the DataGrid in its simplest form,
you’ll learn how to override the default behavior of a particular column in the DataGrid by
implementing a custom item renderer; do a custom sort of the data in a column; and change
the editing controls that manage the underlying data.

The shopping cart displayed in a DataGrid

ptg

292 Lesson 12: Using the Flex DataGrid

Introducing DataGrids and Item Renderers
Using	a	DataGrid	as	a	way	to	display	the	data	of	your	application	enables	your	users	to	inter-
act	with	the	data	in	a	large	variety	of	ways.	At	the	simplest	level,	the	DataGrid	organizes	the	
data	in	a	column-by-row	format	and	presents	this	to	the	user.	From	there,	the	DataGrid	can	
be	configured	to	allow	you	to	modify	the	data	it	contains.

In	this	lesson,	you	will	make	modifications	to	FlexGrocer,	in	which	the	DataGrid	will	give	you	
a	view	of	the	cart	and	the	ability	to	update	and	remove	items	from	the	cart.

Tip: Although the DataGrid does provide the most versatile manner of interacting with the

data of your application, it also comes with additional overhead (performance and size). It is

wise to consider what you expect the user to do with the data or controls before you automati-

cally choose to use a DataGrid.

Displaying the ShoppingCart with a DataGrid
When	you	finished	Lesson	11,	“Creating	and	Dispatching	Events,”	you	had	the	contents	of	
your	cart	displayed	in	a	List	control	with	the	ability	to	remove	the	current	item	you	were	
viewing	via	a	Remove	from	Cart	button.	You	will	now	use	a	DataGrid	to	display	the	contents	
of	the	cart.	The	DataGrid	control	supports	the	syntax	that	allows	you	to	specify	the	columns	
explicitly	through	the	GridColumn:

<s:DataGrid … >
 <s:columns>
 <s:ArrayList>
 <s:GridColumn dataField=”” …/>
 <s:GridColumn …/>
 <s:GridColumn …/>
 </s:ArrayList>
 </s:columns>
</s:DataGrid>

The	dataField	is	used	to	map	a	property	in	the	dataset	to	a	given	column.	The	order	in	which	
the	GridColumns	are	listed	is	the	order	in	which	you	will	see	the	columns	from	left	to	right	in	
the	DataGrid.	Unlike	earlier	versions	of	Flex,	the	spark	DataGrid	requires	that	you	declare	a	
GridColumn	instance	for	every	column	you	want	to	show.	If	the	DataGrid	is	declared	without	
any	columns,	no	data	will	be	rendered.	Each	GridColumn	supports	a	large	number	of	attri-
butes	that	affect	the	DataGrid’s	rendering	and	interaction	with	the	given	column.

ptg

293Displaying the ShoppingCart with a DataGrid

1 Locate	the	components	package	that	you	used	in	the	previous	exercise.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson12/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Right-click	the	components	package	and	choose	New	>	MXML	Component.	In	the	dia-
log	box,	specify	the	Name	as	CartGrid.

3 For	the	“Based	on”	value,	click	the	Browse	button.	In	the	dialog	box,	begin	to	type	
DataGrid	until	you	see	DataGrid – spark.components displayed.	Choose	the	DataGrid	
entry,	click	OK,	remove	the	height	and	width,	and	then	click	Finish.

4 In	the	newly	created	component’s	<s:DataGrid>	tag,	add	the	editable	property	and	
assign	it	the	value	true.

You	are	specifying	editable	as	true	because	you	will	allow	one	of	the	columns	to	be	
changed	by	the	user.	If	it	is	set	to	false,	the	whole	DataGrid	becomes	read-only.
<s:DataGrid xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 editable=”true”>

5 After	the	<fx:Declarations>	tag	set,	define	an	<s:columns>	tag	set.

You	will	be	adding	GridColumn	objects	in	the	next	steps,	and	they	need	to	be	nested	in	
the	columns	tag	set.

ptg

294 Lesson 12: Using the Flex DataGrid

6 In	the	<s:columns>	tag	set,	define	an	<s:ArrayList>	to	contain	the	ArrayList	of	col-
umns.	Inside	the	ArrayList,	you	can	begin	to	define	the	columns	for	the	grid	by	adding	
a	<s:GridColumn>	for	the	product	name.	Set	the	headerText	to	Product, dataField	to	
product,	and	editable	to	false.
<s:columns>
 <s:ArrayList>
	 	 <s:GridColumn	headerText=”Product”	dataField=”product”	editable=”false”/>
	 </s:ArrayList>
</s:columns>

The	headerText	attribute	specifies	the	text	of	the	GridColumn	header.	If	you	don’t	specify	
this,	it	will	take	the	value	of	the	dataField	attribute.

Because	the	editable	attribute	is	set	to	true	on	the	<s:DataGrid>	tag,	you	need	to	set	it	to	
false	for	each	column	you	don’t	want	the	user	to	be	capable	of	changing.

7 Define	an	<s:GridColumn>	for	displaying	the	quantity,	and	place	it	after	the	product	
<s:GridColumn>.	Set	headerText	to	Quantity	and	dataField	to	quantity.
<s:ArrayList>
 <s:GridColumn headerText="Product" dataField="product" editable="false"/>
 <s:GridColumn	headerText=”Quantity”	dataField=”quantity”	/>
</s:ArrayList>

You	are	not	explicitly	setting	the	editable	property	of	the	quantity	GridColumn	to	false,	
as	this	column	will	be	used	to	allow	users	to	change	the	quantity	of	a	specific	product	
they	want	to	buy.

8 Define	an	<s:GridColumn>	for	displaying	subtotals	for	each	item	and	place	it	after	the	
quantity	column.	Set	headerText	to	Amount,	dataField	to	subtotal,	and	editable	to	
false.
<s:GridColumn headerText=”Amount” dataField=”subtotal” editable=”false”/>

9 As	a	final	column,	define	an	<s:GridColumn>	for	displaying	a	Remove	button.	At	this	
point,	only	set	editable	to	false.
<s:GridColumn editable=”false” />

Later	you	will	add	functionality	so	a	button	will	remove	the	item	in	a	particular	
DataGrid row.

There	is	no	dataField,	as	you	are	not	expecting	the	grid	to	render	any	property	from	
the	dataset	in	this	column.	Instead,	you’ll	later	add	a	remove	button	in	this	column.	Of	
course,	editable	is	false,	as	there	is	no	data	to	be	edited	here.

ptg

295Displaying the ShoppingCart with a DataGrid

10 At	this	point,	your	component	should	appear	as	shown	here:
<?xml version=”1.0” encoding=”utf-8”?>
<s:DataGrid xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 editable=”true”>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
 <s:columns>
 <s:ArrayList>
 <s:GridColumn headerText="Product" dataField="product"
 editable="false"/>
 <s:GridColumn headerText="Quantity" dataField="quantity" />
 <s:GridColumn headerText="Amount" dataField="subtotal"
 editable="false"/>
 <s:GridColumn editable="false"/>
 </s:ArrayList>
 </s:columns>
</s:DataGrid>

11 Save	CartGrid.mxml.

Using the CartGrid Component
You’ve	created	the	basic	component	that	uses	a	DataGrid	to	display	data	in	the	shopping	cart	
data	structure.	Now	you	will	replace	the	placeholder	DataGrid	that	was	inserted	earlier	with	
the	newly	created	component.

1 Open	ShoppingView.mxml	from	the	views	package.

2 Locate	the	<s:DataGrid>	block	near	the	bottom	of	the	file	and	remove	it.

3 In	the	same	location,	add	the	<components:CartGrid>	component.	Set	the	id	to	dgCart,	
the	includeIn	to	cartView,	and	the	width	and	height	to	100%.

4 In	the	CartGrid,	bind	the	dataProvider	to	shoppingCart.items.
<components:CartGrid id=”dgCart”
 includeIn=”cartView”
 width=”100%” height=”100%”
 dataProvider=”{shoppingCart.items}”	/>

5 Run	the	FlexGrocer.mxml.	Add	products	to	the	shopping	cart,	and	then	click	the	View	
Cart	button.

You	should	see	the	DataGrid	with	some	data	in	it.	At	this	point	the	information	is	not	for-
matted	correctly,	but	you	see	that	the	component	is	being	used	and	data	is	being	passed	to	
CartGrid.	Note	the	Product	column	is	showing	up	as	text	in	the	DataGrid,	even	though	it	is	a	

ptg

296 Lesson 12: Using the Flex DataGrid

complex	attribute	in	the	dataset.	This	is	because	there	is	a	toString()	function	declared	on	the	
Product	value	object.	If	this	weren’t	defined,	you	would	see	[Object Product].	You	will	look	at	
how	to	better	display	a	complex	object	later.	For	now,	this	is	what	you	should	see:

In	this	case,	the	DataGrid	is	set	to	occupy	100%	of	the	available	width.	If	you	wanted	the	
DataGrid	to	size	itself	to	be	large	enough	to	fit	the	items	placed	in	it,	you	could	specify	a		
typicalItem	for	the	dataGrid.	A	typicalItem	is	an	object	that	will	be	used	to	size	the	dataGrid	
and	its	columns.	Frequently,	these	are	used	to	specify	the	largest	possible	size	a	value	might	
have	for	a	DataGrid	column,	so	that	Flex	can	ensure	that	the	column	is	sized	appropriately	
to	fit	that	item.	Typical	items	can	be	provided	through	the	typicalItem	property	of	the	
DataGrid,	with	this	syntax:

<s:DataGrid ... >

 <s:typicalItem>
 <fx:Object product=”This is a long product name”
 quantity=”100”
 subtotal=”$99.99”/>
 </s:typicalItem>
 <s:columns>
 <s:ArrayList>
 <s:GridColumn headerText=”Product” dataField=”product”
 editable="false"/>
 <s:GridColumn headerText="Quantity" dataField="quantity" />
 <s:GridColumn headerText="Amount" dataField="subtotal"
 editable="false"/>
 <s:GridColumn editable="false" />
 </s:ArrayList>
 </s:columns>
</s:DataGrid>

Adding Inline Editing Control for GridColumn
Item	editors	and	item	renderers	can	be	applied	inline,	as	child	tags	of	a	GridColumn,	or	they	
can	be	written	into	a	separate	class,	like	the	item	renderers	you	saw	in	Lesson	10.	In	this	first	
exercise,	you	will	write	an	inline	item	renderer.

ptg

297Displaying the ShoppingCart with a DataGrid

In	a	DataGrid,	you	can	specify	that	a	column	of	the	data	shown	can	be	changed	by	the	user	when	
focus	is	brought	to	the	cell.	This	is	done	by	setting	the	editable	attribute	to	true.	The	default	edit-
ing	control	for	the	column	is	a	text	field.	It	is	possible	to	specify	which	editor	to	use	when	manag-
ing	the	data	via	the	itemEditor	attribute.	By	default,	an	editable	column	will	use	a	TextInput	as	
its	item	editor,	however,	you	can	create	your	own	classes	that	implement	the	IGridItemRenderer	
interface,	or	extend	the	GridItemEditor	base	class	to	create	any	Item	editor	that	you	require.

To	apply	an	item	editor	inline,	you	will	create	a	child	tag	of	the	editable	GridColumn	instance	
to	address	the	columns	itemEditor	property,	and	create	a	new	component	inside	of	that.	To	
define	a	new	component,	you	need	to	insert	an	<fx:Component>	tag,	and	inside	of	that	define	
your	new	item	editor.

The	syntax	looks	like	this:

<s:DataGrid id=”dg”
 dataProvider=”{myDP}”
 editable=”true”>
 <s:columns>
 <s:ArrayList>
 <s:GridColumn headerText=”Quantity”
 dataField=”quantity”>
 <s:itemEditor>
 <fx:Component>
 <s:GridItemEditor >
 <s:NumericStepper
 minimum=”1”
 maximum=”5” />
 </s:GridItemEditor>
 </fx:Component>
 </s:itemEditor>
 </s:GridColumn>
 </s:ArrayList>
 </s:columns>
</s:DataGrid>

What	this	does	is	define	an	inner	class	or	a	class-within-a-class,	which	behaves	as	if	every-
thing	inside	the	<fx:Component>	tag	were	defined	in	a	different	class	file.	This	inner	class	can	
contain	any	elements	that	an	MXML	class	might	contain,	such	as	script,	components,	and	so	
on.	Keep	in	mind	that	within	this	inner	class,	the	keyword	this	now	refers	to	is	the	inner	class,	
not	to	the	class	defined	as	the	root	of	that	file.	If	you	need	to	reference	elements	from	the	par-
ent	class	while	in	the	inner	class,	you	can	use	the	keyword	outerDocument.

When	a	user	double-clicks	a	cell	in	an	editable	column,	the	itemRenderer	is	replaced	with	
an	itemEditor.	The	value	from	the	dataField	for	that	column	is	passed	to	the	setter	for	the	
itemEditor’s	value	property.	When	the	user	is	finished	editing	the	data	and	clicks	away	from	

ptg

298 Lesson 12: Using the Flex DataGrid

the	cell,	the	DataGrid	will	read	from	the	getter	for	the	itemEditor’s	value	property	and	set	that	
value	back	into	the	underlying	data.

As	you	create	your	own	itemEditors,	you	will	want	to	provide	your	own	getter	and	setter	for	
the	value	property.

1 Open	the	CartGrid.mxml	file	that	you	created	in	a	previous	exercise.

2 In	the	<s:GridColumn>	tag	that	maps	to	the	quantity,	change	the	self-closing	tag	to	a	tag	
pair.	Add	a	child	tag	that	addresses	the	itemEditor	property.
<s:GridColumn headerText=”Quantity” dataField=”quantity”>
 <s:itemEditor>
	 </s:itemEditor>
</s:GridColumn>

Next,	you	will	create	the	inner	class	that	has	the	specifics	for	your	itemEditor.

3 Inside	the	itemEditor	tag	pair,	add	an	<fx:Component>	tag	pair.	As	a	child	to	the	
<fx:Component>	tag,	create	an	instance	of	the	GridItemEditor	class.
<s:GridColumn headerText=”Quantity” dataField=”quantity”>
 <s:itemEditor>
	 	 <fx:Component>
	 	 	 <s:GridItemEditor	>

	 	 	 </s:GridItemEditor>
	 	 </fx:Component>
 </s:itemEditor>
</s:GridColumn>

GridItemEdtior	is	now	the	super	class	for	your	new	inner	class.

4 Add	a	NumericStepper	as	a	child	to	the	GridItemEditor.	Give	the	NumericStepper	an	
instance	name	of	qty.
<s:GridColumn headerText=”Quantity” dataField=”quantity”>
 <s:itemEditor>
 <fx:Component>
 <s:GridItemEditor >
	 	 	 	 <s:NumericStepper	id=”qty”	/>
 </s:GridItemEditor>
 </fx:Component>
 </s:itemEditor>
</s:GridColumn>

Now	your	grid	can	display	a	NumericStepper	as	the	editor.	But,	if	you	try	to	edit	the	value,	
the	NumericStepper	won’t	show	the	correct	value,	nor	will	the	proper	data	be	stored	back	in	
the	dataProvider	when	you	are	finished	editing.	You	will	fix	this	in	the	next	step.

ptg

299Displaying the ShoppingCart with a DataGrid

5 After	the	opening	GridItemEditor	tag,	but	before	the	NumericStepper,	add	an	
<fx:Script>	block.	In	the	block,	override	the	get	value	method	and	return	qty.value.	
Also	override	the	set	value	method	and	set	the	incoming	parameter	as	the	value	of	qty.
value.	You	will	need	to	cast	the	incoming	parameter	to	an	integer.
<fx:Script>
<![CDATA[
 override public function get value():Object{
 return qty.value;
 }

 override public function set value(newValue:Object):void{
 qty.value = int(newValue) ;
 }
]]>
</fx:Script>

6 Save	CartGrid.mxml.	Run	the	FlexGrocer	application,	add	the	Buffalo	product	to	the	
shopping	cart,	and	click	View	Cart.

When	you	double-click	in	the	Quantity	column,	you	will	notice	that	it	doesn’t	open	as	a	free-
form	text	field,	but	rather	as	a	NumericStepper	control.

Creating an Item Renderer for Displaying the Product
The	default	behavior	of	the	DataGrid	is	to	convert	every	value	of	the	dataset	to	a	string	and	
then	display	it.	However,	when	you	are	dealing	with	a	complex	object	that	is	stored	in	the	
dataset,	another	alternative	is	to	create	a	custom	item	renderer	that	shows	more	information	
about	the	column.	In	this	case,	you’re	going	to	create	a	simple	item	renderer	that	shows	the	
product’s	name	and	image.

When	working	with	item	renderers,	you’ll	find	that	there	is	an	implicit	public	variable	avail-
able	to	you	in	the	item	renderer	called	data,	which	represents	the	data	of	the	row	itself.	You	
can	use	data	to	bind	your	controls	without	having	to	worry	about	which	column	you	are	
working	with.	When	the	DataGrid	creates	a	column	that	has	a	custom	item	renderer	associ-
ated	with	it,	it	creates	a	single	instance	of	the	cell	renderer	per	row,	so	you	don’t	have	to	worry	
about	which	row	of	data	you	are	working	with	in	a	renderer.

ptg

300 Lesson 12: Using the Flex DataGrid

ItemRenderers	for	a	GridColumn	also	have	a	public	method	called	prepare.	This	method	is	
called	after	the	data	has	been	set	for	the	cell,	but	before	the	cell	is	rendered.	Rather	than	use	
data	binding	to	populate	the	controls,	it	can	be	more	efficient	to	populate	the	controls	in	the	
prepare	method.

1 Right-click	the	components	package	and	choose	New	>	Item	Renderer.	In	the	New		
Item	Renderer	dialog	box,	verify	the	Package	is	set	to	components,	then	set	the		
Name	to	ProductName,	and	choose	Item Renderer	for	Spark DataGrid (MXML)		
as	the	Template.

This	MXML	file	will	define	the	layout	of	a	given	cell	in	the	DataGrid.	You	are	creating	it	
in	a	separate	file	so	that,	if	needed,	it	can	be	used	on	multiple	DataGrid	columns	and/or	
multiple	DataGrids.

2 Examine	the	code	that	was	created	for	you:
<?xml version=”1.0” encoding=”utf-8”?>
<s:GridItemRenderer xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s="library://ns.adobe.com/flex/spark"
 clipAndEnableScrolling="true">

 <fx:Script>
 <![CDATA[
 override public function prepare(
 ➥ hasBeenRecycled:Boolean):void {
 lblData.text = data[column.dataField]
 }

ptg

301Displaying the ShoppingCart with a DataGrid

]]>
 </fx:Script>

 <s:Label id="lblData" top="9" left="7"/>

</s:GridItemRenderer>

Notice	that	there	is	a	root	node	of	GridItemRenderer,	which	has	its	clipAndEnableScrolling		
property	set	to	true.	This	ensures	that	none	of	the	contents	of	the	item	renderer	extend	
past	the	boundaries	of	the	renderer.	Also	notice	that	the	Script	block	contains	an	override	
of	the	prepare	method.	In	this	method,	the	text	property	of	the	label	is	set	to	show	the	
value	evaluated	from	the	column.dataField	of	the	data.

3 Add	a	VerticalLayout	as	the	value	for	the	layout	property	of	the	GridItemRenderer.
<?xml version=”1.0” encoding=”utf-8”?>
<s:GridItemRenderer xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 clipAndEnableScrolling=”true”>
 <s:layout>
	 	 <s:VerticalLayout	/>
</s:layout>

In	this	renderer,	you	will	have	two	children	(an	image	and	a	label)	that	you	want	to	lay	
out vertically.

4 Place	an	<s:Image>	tag	after	the	end	of	the	Script	block.	Give	the	Image	an	id	of	
prodImage,	and	a	width	of	100.

This	image	will	be	used	to	show	a	thumbnail	of	the	product.

5 Remove	the	code	inside	the	prepare	method.	In	its	place,	check	if	the	data	property	has	a	
value.	If	it	does,	create	a	local	variable	named	prod,	with	a	data	type	of	Product	that	gets	
its	value	from	data.product.	Assign	lblData.text	to	show	prod.prodName,	and	assign	the	
source	of	prodImage	to	be	“assets/”	concatenated	with	prod.imageName.	If	data	has	no	
value,	set	the	text	of	lblData	to	an	empty	string,	and	the	source	of	prodImage	to	null.
override public function prepare(hasBeenRecycled:Boolean):void {
 if(data){
 var prod:Product = data.product as Product;
 lblData.text = prod.prodName;
 prodImage.source = “assets/”+prod.imageName;
 } else {
 lblData.text = “”;
 prodImage.source = null;
 }
}

ptg

302 Lesson 12: Using the Flex DataGrid

If	you	use	code-completion,	valueObjects.Product	will	be	imported	for	you.	If	not,	be	
sure	to	import	it	manually.

Tip: The image location used is relative to the location from which the main application was

loaded, not the location of the file that contains the <s:Image> tag.

This	will	now	populate	both	the	label	and	the	image	with	the	proper	elements	from	the	
provided	data.

6 Save	the	ProductName.mxml	file.

You	cannot	test	this	component	at	this	time	because	it	is	not	yet	assigned	to	the	DataGrid.

7 Open	the	CartGrid.mxml	you	created	in	the	previous	exercise.	Add	a	variableRowHeight	
attribute	to	the	root	node,	with	the	value	true.

It	is	necessary	for	you	to	set	the	variableRowHeight	to	true	so	that	Flex	resizes	the	row’s	
height	to	accommodate	the	thumbnail	image.

Tip: This attribute can be used to allow for exploding details inside a DataGrid row. In this case,

you can have summary data in a cell that expands to show details if you click an icon or button.

8 Update	the	<s:GridColumn>	with	a	dataField	of	product	with	a	new	attribute,	
itemRenderer,	set	to	components.ProductName.
<s:GridColumn headerText=”Product”
	 dataField=”product”	
	 editable=”false”
	 itemRenderer=”components.ProductName”	/>

You	need	to	use	the	fully	qualified	class	name	to	set	your	item	renderer	for	a	
GridColumn.

9 Save	CartGrid.mxml.	Run	the	FlexGrocer	application,	add	a	product	to	the	shopping	cart,	
and	click	View	Cart.

ptg

303Displaying the ShoppingCart with a DataGrid

Creating an Inline MXML Item Renderer for Displaying a Remove Button
In	the	same	way	that	you	created	an	itemEditor	inline,	you	can	also	create	itemRenderers	
inline	as	well.	From	a	compiler	perspective,	creating	an	inline	item	renderer	is	the	equivalent	
of	building	it	in	an	external	file	(it	actually	compiles	the	code	of	the	inline	item	renderer	as	a	
separate	file	internally).	Inside	the	<s:itemRenderer>	tag,	you	will	place	an	<fx:Component>	
tag	that	defines	the	boundaries	of	the	inline	item	renderer	file	from	the	rest	of	the	page.	Thus,	
the	inside	of	the	<fx:Component>	tag	will	have	its	own	scope	for	which	you	will	need	to	do	
imports,	function	declarations,	and	the	like.

Tip: Although building inline item renderers will be very efficient from a coding perspective,

you won’t be able to reuse the item renderers for other DataGrids. Good candidates for inline

renderers or editors are those that are specific to one DataGrid only, such as action item controls.

In	this	exercise	you	will	add	a	Remove	button	to	each	row.

1 Open	the	CartGrid.mxml	you	created	in	the	previous	exercise.

2 Locate	the	fourth	<s:GridColumn>	and	change	it	to	a	GridColumn	tag	pair	by	removing	
the	“/>”	at	the	end	of	the	tag	and	adding	just	the	“>”	back	on.
<s:GridColumn editable=”false”>
</s:GridColumn>

This	is	the	placeholder	column	in	the	DataGrid.	You’ll	use	<s:GridColumn>	tag	pair	
because	the	item	renderer	definition	will	be	placed	inside	it.	You	do	not	need	to	specify	
dataField,	because	there	is	no	data	you	are	mapping	directly	to.

3 Place	an	<s:itemRenderer>	tag	set	and	an	<fx:Component>	tag	set	inside	the	
<s:GridColumn>	tag.
<s:GridColumn editable=”false”>
	 <s:itemRenderer>
	 	 <fx:Component>
	 	 </fx:Component>
	 </s:itemRenderer>
</s:GridColumn>

4 Place	an	<s:GridItemRenderer>	tag	inside	the	<fx:Component>	tags	to	provide	a	container	
for	the	Remove	button.	
<s:itemRenderer>
 <fx:Component>
 <s:GridItemRenderer>
	 	 </s:GridItemRenderer>
 </fx:Component>
</s:itemRenderer>

ptg

304 Lesson 12: Using the Flex DataGrid

5 Place	an	<s:Button>	tag	as	a	child	of	GridItemRenderer.	Set	the	label	to	Remove	and	set	
the	click	event	to	call	a	removeItem()	function	that	you	will	create	in	the	next	exercise.	
Pass	data	as	ShoppingCartItem	as	the	parameter	to	the	method.	An	import	statement	for	
valueObjects.ShoppingCartItem	should	be	added	automatically	to	the	inline	component.	If	
not,	add	an	<fx:Script>	block	inside	the	<s:GridItemRenderer>	tag,	and	include	the	import	
statement.	Specify	a	horizontalCenter	and	verticalCenter	attribute	with	values	of	0.
<s:GridItemRenderer>
 <fx:Script>
	 	 <![CDATA[
	 	 	 import	cart.ShoppingCartItem;
]]>
	 </fx:Script>
 <s:Button	label=”Remove”	
	 	 click=”removeItem(data	as	ShoppingCartItem)”	
	 	 horizontalCenter=”0”	verticalCenter=”0”	/>
</s:GridItemRenderer>

You	need	to	add	the	appropriate	import	statement,	because	the	import	statements	made	at	the	
top	of	the	file	are	in	a	scope	different	from	the	inline	item	renderer.	The	horizontalCenter	and	
verticalCenter	attributes	will	keep	the	Button	centered	in	the	cell.

Reusing the ProductEvent Class
At	this	point	there	is	no	removeItem()	method	in	your	renderer.	When	you	create	this	method	
you	will	reuse	code	created	in	the	previous	lesson.	In	Lesson	11,	you	created	an	event	subclass	
to	hold	a	Product	value	object.	Now	you	will	reuse	that	event	subclass	to	dispatch	the	Product	
object	you	want	removed	from	the	shopping	cart.

1 Inside	the	<fx:Script>	block,	which	is	inside	the	GridItemRenderer	you	created	in	the	
last	section,	create	a	private	function	named	removeItem()	that	returns	void	and	that	
accepts	one	parameter,	named	item,	of	type	ShoppingCartItem.
private function removeItem(item:ShoppingCartItem):void {
}

2 Inside	the	removeItem()	method,	declare	a	new	local	variable	named	prodEvent	of	type	
ProductEvent,	and	assign	it	a	new	instance	of	the	ProductEvent	event	class.	For	the	type	
parameter	of	the	ProductEvent	constructor,	pass	the	event	name	removeProduct.	Then	pass	
the	item.product	value	as	the	second	constructor	parameter.	Finally,	dispatch	the	event.
private function removeItem(item:ShoppingCartItem):void{
 var prodEvent:ProductEvent = new ProductEvent(
 ➥ "removeProduct",item.product);
 dispatchEvent(prodEvent);
}

ptg

305Displaying the ShoppingCart with a DataGrid

If	you	use	code-completion,	events.ProductEvent	will	be	imported	for	you.	If	not,	be	
sure	to	import	it	manually.	This	event	will	now	be	dispatched	from	the	itemRenderer	and	
will	bubble	up	toward	ShoppingView.

3 Outside	the	GridItemRenderer,	just	after	the	opening	DataGrid	tag,	add	an	
<fx:MetaData>	tag.	Inside	it,	declare	that	CartGrid.mxml	will	dispatch	an	event	named	
removeProduct.	Indicate	that	the	event	will	be	of	type	events.ProductEvent.	
<fx:Metadata>
 [Event(name=”removeProduct”,type=”events.ProductEvent”)]
</fx:Metadata>

You	are	now	dispatching	the	Product	object	you	wish	to	be	removed	from	the	shopping	
cart.	Of	course,	to	actually	have	it	removed	you	must	handle	the	dispatched	event,	which	
you	will	now	do	in	the	next	steps.

4 Save	the	file.

5 Open	ShoppingView.mxml.	Locate	the	instantiation	of	CartGrid	you	coded	earlier	in	
this lesson.

6 Place	your	cursor	in	the	tag	and	press	Ctrl-Spacebar	to	bring	up	code	completion.	Select	
the	removeProduct	event	that	you	just	created	in	CartGrid.	For	the	event	handler	call	
the	previously	created	removeProductHandler()	method	and	pass	the	event	object	as	
a parameter.
<components:CartGrid id=”dgCart”
 includeIn=”cartView”
 width=”100%” height=”100%”
 dataProvider=”{shoppingCart.items}”
 removeProduct=”removeProductHandler(event)”/>

The	extended	event	is	handled	in	the	CartGrid	component.	The	removeProductHandler()	
method	you	built	in	the	previous	lesson	performs	the	removal	of	the	product	from	the	cart.

7 Run	FlexGrocer	and	add	items	to	the	cart.	Click	the	View	Cart	button	and	confirm	that	
you	can	remove	items	from	the	cart	using	the	Remove	button.

Creating a labelFunction to Display the Subtotal
You	need	to	create	a	labelFunction	to	display	the	subtotal	in	the	third	column	of	the	
DataGrid.	Recall	that	in	Lesson	10	you	created	a	labelFunction	to	display	the	product	
name	in	a	List	component.	The	method	signature	for	a	labelFunction	on	a	DataGrid	is	
labelFunctionName(item:Object,	dataField:GridColumn).

ptg

306 Lesson 12: Using the Flex DataGrid

1 In	CartGrid.mxml,	create	a	new	<fx:Script>	block.

2 Inside	the	<fx:Script>	block,	add	a	private	function	named	renderPriceLabel	with	the	
arguments	item	typed	as	a	ShoppingCartItem	and	column	with	the	datatype	GridColumn.	
The	function	itself	will	return	a	String.
private function renderPriceLabel(item:ShoppingCartItem,
➥ column:GridColumn):String{
}

If	you	use	code-completion,	cart.ShoppingCartItem	will	be	imported	for	you.	If	not,	be	
sure	to	import	it	manually.	

Because	the	DataGrid	has	multiple	columns	that	can	each	have	its	own	labelFunction,	
as	well	as	share	the	same	labelFunction,	the	second	argument	is	used	to	distinguish	
between	which	GridColumn	is	using	the	labelFunction.	If	you	know	that	your	function	
will	be	used	on	just	one	column,	you	can	ignore	the	second	argument	in	your	code.

3 As	the	first	line	of	code	in	the	renderPriceLabel()	function,	create	a	variable	local	to	the	
function	named	subtotal	with	the	datatype	Number,	and	assign	it	the	particular	column’s	
dataField	value	from	the	item.
var subtotal:Number = item[column.dataField];

If	you	were	not	creating	this	function	for	use	by	multiple	columns,	you	could	have	
assigned	the	variable	simply	as	item.subtotal.	This	would	have	assigned	the	correct	
value.	But,	since	you	want	the	function	to	be	reusable,	you	use	the	column	name	to	
retrieve	the	correct	data,	hence	item[column.dataField].

4 As	the	last	line	of	code	in	the	function,	return	the	subtotal	of	the	item	formatted	with	a	$.

For	now,	you	want	to	put	a	simple	mask	on	the	price	to	represent	the	number	as	a	dollar	
figure.	The	signature	and	functionality	of	the	labelFunction	is	the	same	on	the	DataGrid	
as	it	is	on	the	List.
private function renderPriceLabel(item:ShoppingCartItem,
➥ column:GridColumn):String{
 var subtotal:Number = item[column.dataField];
 return "$" + String(subtotal);
}

5 Update	the	<s:GridColumn>	with	a	dataField	of	subtotal	with	a	new	attribute	of	
labelFunction	set	to	renderPriceLabel.
<s:GridColumn dataField=”subtotal” headerText=”Amount”
 labelFunction=”renderPriceLabel” editable=”false”/>

This	will	have	the	subtotal	column	use	renderPriceLabel	on	each	of	the	rows	in	the	
DataGrid.

ptg

307Displaying the ShoppingCart with a DataGrid

6 Check	the	code	for	the	component	you	have	built.

The	final	code	for	the	CartGrid.mxml	should	look	like	the	following:
<?xml version=”1.0” encoding=”utf-8”?>
<s:DataGrid xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 editable=”true”
 variableRowHeight=”true”>
 <fx:Metadata>
 [Event(name=”removeProduct”,type=”events.ProductEvent”)]
 </fx:Metadata>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
 <fx:Script>
 <![CDATA[
 import cart.ShoppingCartItem;
 private function renderPriceLabel(
 ➥ item:ShoppingCartItem, column:GridColumn):String{
 var subtotal:Number = item[column.dataField];
 return “$” + String(subtotal);
 }
]]>
 </fx:Script>

 <s:columns>
 <s:ArrayList>
 <s:GridColumn headerText=”Product”
 dataField=”product”
 editable=”false”
 itemRenderer=”components.ProductName”/>
 <s:GridColumn headerText=”Quantity” dataField=”quantity”>
 <s:itemEditor>
 <fx:Component>
 <s:GridItemEditor >
 <fx:Script>
 <![CDATA[
 override public function get value():Object{
 return qty.value;
 }

 override public function set value(newValue:Object):
 ➥ void{
 qty.value = int(newValue) ;
 }
]]>
 </fx:Script>
 <s:NumericStepper id=”qty” />

ptg

308 Lesson 12: Using the Flex DataGrid

 </s:GridItemEditor>
 </fx:Component>
 </s:itemEditor>
 </s:GridColumn>
 <s:GridColumn headerText=”Amount”
 dataField=”subtotal”
 editable=”false”
 labelFunction=”renderPriceLabel”/>
 <s:GridColumn editable=”false”>
 <s:itemRenderer>
 <fx:Component>
 <s:GridItemRenderer>
 <fx:Script>
 <![CDATA[
 import cart.ShoppingCartItem;

 import events.ProductEvent;

 private function removeItem(
 ➥ item:ShoppingCartItem):void(
 var prodEvent:ProductEvent = new ProductEvent(
 ➥ "removeProduct", item.product);
 dispatchEvent(prodEvent);
 }
]]>
 </fx:Script>
 <s:Button label="Remove"
 click="removeItem(data as ShoppingCartItem)"
 horizontalCenter="0" verticalCenter="0" />
 </s:GridItemRenderer>
 </fx:Component>
 </s:itemRenderer>
 </s:GridColumn>
 </s:ArrayList>
 </s:columns>
</s:DataGrid>

7 Save	CartGrid.mxml.	Run	the	FlexGrocer.mxml	application,	add	the	Buffalo	product	
to	the	shopping	cart,	and	click	View	Cart.	Notice	both	the	formatting	on	the	Amount	
column	and	the	Remove	button	in	the	shopping	cart.

ptg

309What You Have Learned

What You Have Learned
In this lesson, you have:

•	 Displayed	a	dataset	via	a	DataGrid	(pages	292–293)

•	 Defined	the	viewable	columns	of	a	DataGrid	through	GridColumn	(pages	293–296)

•	 Created	an	itemEditor	to	allow	users	to	change	data	in	a	DataGrid	(pages	296–299)

•	 Created	an	MXML	component	to	be	used	as	an	item	renderer	(pages	299–303)

•	 Created	an	inline	custom	item	renderer	for	a	GridColumn	(pages	304–305)

•	 Displayed	information	from	a	GridColumn	using	a	labelFunction	and	an	item	renderer	
(pages	303–308)

•	 Learned	how	to	raise	events	from	inside	an	item	(pages	305–306)

ptg

Le
ss

o
n

 1
3 What You Will Learn

In this lesson, you will:

•	 Learn	the	terminology	associated	with	drag-and-drop	operations	in	Flex

•	 Understand	that	the	list-based	components	in	Flex	have	enhanced		
drag-and-drop	support	built	in

•	 Implement	drag	and	drop	on	drag-enabled	components

•	 Use	various	drag	events

•	 Implement	various	methods	of	the	DragSource	and	DragManager	classes	to	
implement	drag	and	drop	on	non-drag-enabled	components

•	 Use	formats	to	allow	the	dropping	of	drag	proxy	objects

Approximate Time
This	lesson	takes	approximately	1	hour	and	30	minutes	to	complete.

ptg

311

Lesson 13

Using Drag and Drop
Drag and drop is a common user interface technique in desktop applications. It was not
so, however, in web applications until the rich Internet applications (RIAs) came along.
Flex and Flash Player permit you as a web developer to use drag and drop just as a desktop
developer does.

To implement drag and drop in a Flex application, you use the Drag and Drop Manager and
the tools it provides. The Drag and Drop Manager enables you to write a Flex application in
which users can select an object and then drag it to, and drop it on, a second object. All Flex
components support drag-and-drop operations, and a subset has additional drag-and-drop
functionality in which implementation requires little more than adding a single property.

In this lesson, you will implement drag and drop in your e-commerce application so a user
can click a product and drag it to the shopping cart.

Dragging a grocery item to the shopping cart

ptg

312 Lesson 13: Using Drag and Drop

Introducing the Drag and Drop Manager
The	first	step	in	understanding	the	Drag	and	Drop	Manager	is	to	learn	the	terminology		
surrounding	it.	The	terminology	is	summarized	in	the	following	table.

Drag and Drop Manager Terminology

Term Definition

Drag initiator Component or item from which a component is being dragged.

Drag source Data being dragged.

Format Property of the Dragsource that provides a description of the format of the data
being dragged.

Drag proxy Image displayed during the dragging process.

Drop target Component that the drag proxy is over.

The	following	figure	gives	you	a	visual	representation	of	the	terminology:

There	are	three	phases	to	a	drag-and-drop	operation:

1. Initiating:	A	user	clicks	a	Flex	component	or	an	item	in	a	Flex	component	and	then	
begins	to	move	the	component	or	item	while	holding	down	the	mouse.	The	component	
or	item	is	the	drag	initiator.

2. Dragging:	While	holding	down	the	mouse	button,	the	user	moves	the	mouse	around	
the	screen.	Flex	displays	an	image	called	a	drag	proxy,	and	the	associated	non-visual	
object	called	the	drag	source	holds	the	data	associated	with	the	component	or	item	
being dragged.

3. Dropping:	When	the	user	moves	the	pointer	over	another	component	that	will	allow	it,	
the	item	can	be	dropped	on	a	drop	target.	The	data	is	then	inserted	into	the	new	compo-
nent	in	some	way.

ptg

313Enhanced Dragging and Dropping Between Two Lists

Flex	components	fall	into	two	groups	when	it	comes	to	drag-and-drop	support:	those	with	
enhanced	drag-and-drop	functionality	and	those	without.	In	the	current	release	of	Flex,	the	
only	component	with	this	enhanced	functionality	is	the	List	control.	You	can	expect	that	to	
change	in	future	minor	and	major	releases.

What	this	means	to	you	as	a	developer	is	that	your	life	will	be	a	little	bit	easier	when	imple-
menting	drag	and	drop	with	those	controls	that	have	enhanced	support.	In	fact,	in	many	
cases	implementing	might	require	no	more	than	setting	a	single	property	value	for	each	of	the	
controls	involved	in	the	drag-and-drop	operation.

Enhanced Dragging and Dropping Between Two Lists
Your	first	foray	into	implementing	drag-and-drop	operations	in	Flex	will	be	between	two	
List instances.	Because	they	are	list-based	components	and	have	enhanced	drag-and-drop	
support,	you	will	need	to	write	very	little	code.

Two	properties	are	important	in	this	first	phase:	dragEnabled	and	dropEnabled.	Here	are	
their descriptions:

•	 dragEnabled:	Assigned	a	Boolean	value	to	specify	whether	the	control	is	allowed	to	
act as a	drag	initiator	(defaults	to	false).	When	it’s	true,	the	user	can	drag	items	from	
the component.

•	 dropEnabled:	Assigned	a	Boolean	value	to	specify	whether	the	control	is	allowed	to	act	as	
a	drop	target	(defaults	to	false).	When	it’s	true,	the	user	can	drop	items	onto	the	control	
using	the	default	drop	behavior.

To	enable	dragging	and	dropping,	simply	set	the	dragEnabled	property	in	the	component	
from	which	you	are	dragging	to	true	and	set	the	dropEnabled	property	in	the	component	on	
which	you	are	dropping	to	true.

Now	you	will	put	your	drag-and-drop	knowledge	to	use	by	implementing	drag	and	drop	from	
one	List	to	another	List.

1 Import	the	DragDropStart.fxp	from	the	Lesson13/independent	folder	into	Flash	Builder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project.

2 Open	the	Task1_List_to_List.mxml	file.

You	will	use	this	project	instead	of	the	FlexGrocer	one	because	some	of	the	work	in	this	
lesson	will	not	be	directly	involved	with	the	FlexGrocer	site.

ptg

314 Lesson 13: Using Drag and Drop

3 Examine	the	code	in	the	Task1_List_to_List.mxml	file	and	then	run	it.

Note	that	the	existing	code	does	not	use	any	concepts	you	have	not	already	learned	in	
this	book.	The	file	uses	an	HTTPService	remote	procedure	call	(RPC)	to	retrieve	grocery	
info.	The	file	then	uses	a	result	handler	to	place	the	data	into	an	ArrayCollection,	which	
is	then	used	as	a	dataProvider	in	a	List.	When	you	run	the	application,	you	see	you	have	
a	List	populated	with	grocery	product	information	and	another	List	below	it.	When	you	
try	to	drag	and	drop	between	the	List	instances,	you’ll	see	that	this	functionality	is	not	
yet working.

4 In	the	first	List,	set	the	dragEnabled	property	to	true.	Run	the	application;	you	can	click	
one	of	the	rows	in	the	List	and	drag	the	drag	proxy	around	the	screen.

Setting	this	property	did	two	obvious	things:	It	enabled	dragging	and	created	the	drag	
proxy,	the	image	attached	to	the	pointer	when	dragging.	Another	non-visual	event	
occurred	at	the	same	time:	A	DragSource	object	was	created	to	hold	the	data.	

A	DragSource	is	just	an	object	that	holds	the	data	being	dragged	and	associates	it	
with	a	String	called	a	format.	By	default,	the	data	is	associated	with	a	format	named	
itemsByIndex,	as	the	following	figure	from	the	debugger	shows:

5 In	the	second	List,	set	the	dropEnabled	property	to	true.	Your	Lists	should	appear	as	follows:
	 <s:List	id=”initiatorList”	
	 	 dataProvider=”{products}”
	 	 labelField=”name”
	 	 dragEnabled=”true”/>

	 <s:List	id=”targetList”
	 	 	 labelField=”listPrice”
	 	 	 dropEnabled=”true”/>

ptg

315Standard Dragging and Dropping Between a DataGrid and a List

You’ve	done	two	basic	steps	so	far	to	enable	drag-and-drop	for	the	application:

•	 Added	the	dragEnabled	property	to	the	drag	initiator

•	 Added	the	dropEnabled	property	to	the	drop	target

Now	you’re	ready	to	test.

6 Run	the	application	and	drag	from	the	first	List	and	drop	onto	the	second.

When	you	drag	an	item	from	the	first	List	to	the	second,	you	are	not	dragging	the	name	
of	the	food.	You	are	dragging	the	data	associated	with	that	product.	So,	even	though	
the	listPrice	property	was	not	displayed	in	the	first	List,	it	is	available	when	you	drop	
it	in	the	second.	This	shows	you	that	all	the	data	for	the	object	being	dragged	is	in	the	
DragSource,	not	just	the	properties	that	happen	to	be	displayed.

Standard Dragging and Dropping Between a
DataGrid and a List
In	the	description	of	the	dropEnabled	property,	the	following	sentence	was	used:	“When	it’s	
true,	the	user	can	drop	items	onto	the	control	using	the	default	drop	behavior.”	So	what	is	this	
“default	drop	behavior”?	Basically	it	means	that	Flex	will	add	a	reference	to	the	item	in	the	
original	List	to	the	dataProvider	of	the	new	List.	In	other	words,	both	Lists	will	now	show	the	
same	items.	However,	you	might	want	a	different	outcome.	Perhaps	you	want	to	move,	instead	
of	copy,	the	items	between	Lists.	In	this	task	you’ll	drag	from	a	List	to	a	DataGrid	component.	
In	this	case,	the	Spark	DataGrid	does	not	support	“default	drop	behavior”	so	it	won’t	know	
how	to	handle	the	data	dragged	from	the	List	component.	

You’ll	use	the	events	broadcast	by	Flex	controls	to	handle	the	dropping	onto	the	DataGrid.	
Here’s	a	summary	of	the	events	for	both	the	drag	initiator	and	the	drop	target:

Drag Initiator Events

Drag Events Description

mouseDown and not drag events but used to start the drag-and-drop process when
mouseMove (Mouseevent class) not using dragEnabled components. The mouseDown event is

broadcast when the user selects a control with the mouse and
holds down the mouse button. The mouseMove event is broadcast
when the mouse moves.

dragComplete event Broadcast when a drag operation is completed, either when the
(Dragevent class) drag data drops onto a drop target or when the drag-and-drop

operation ends without performing a drop operation.

ptg

316 Lesson 13: Using Drag and Drop

Drop Target Events

Drag Events
(all events of the DragEvent class) Description

dragEnter Broadcast when a drag proxy moves over the target from
outside the target.

dragOver Broadcast as the user moves the pointer over the target, after
the dragEnter event.

dragDrop Broadcast when the mouse is released over the target.

dragExit Broadcast when the user drags outside the drop target, but
does not drop the data onto the target.

Now	it	is	time	to	get	to	work.

1 Examine	the	code	in	the	Task2_List_to_DG.mxml	file	and	then	run	it.	Try	to	drag	from	
the	List	to	the	DataGrid;	you’ll	see	that	you	can	drag	an	item	from	the	List	but	cannot	
drop	it	on	the	DataGrid	and	that	the	cursor	will	change	to	a	red	circle	with	an	X	indicat-
ing	you	are	not	allowed	to	drop	this	data	on	the	DataGrid.

Unlike	the	previous	lesson,	you	cannot	simply	add	the	dropEnabled	property	to	the	
DataGrid.	That	property	does	not	exist.	Instead	you	must	handle	some	of	the	events	
by yourself.

2 Begin	adding	a	dragEnter	event	listener	to	the	DataGrid,	and	select	Generate	DragEnter	
handler	to	have	Flash	Builder	create	the	event	handler	for	you.	The	generated	code	calls	
the	newly	created	event	handler	and	passes	the	event	object	as	a	parameter.
	 <s:DataGrid	id=”targetGrid”
	 	 	 	 width=”200”
	 	 	 	 dragEnter=”targetGrid_dragEnterHandler(event)”
	 	 	 	 dataProvider=”{targetListDP}”>
	 	 <s:columns>
	 	 	 <s:ArrayList>
	 	 	 	 <s:GridColumn	headerText=”Name”	

ptg

317Standard Dragging and Dropping Between a DataGrid and a List

	 	 	 	 	 	 	 dataField=”name”/>
	 	 	 	 <s:GridColumn	headerText=”Cost”	
	 	 	 	 	 	 	 dataField=”cost”/>
	 	 	 	 <s:GridColumn	headerText=”List	Price”	
	 	 	 	 	 	 	 dataField=”listPrice”/>
	 	 	 </s:ArrayList>
	 	 </s:columns>
	 </s:DataGrid>	

3 Check	that	the	event	handler	was	created	in	the	<fx:Script>	block.

Note	that	the	event	is	data	typed	as	DragEvent	and	the	function	will	not	return	any	data,	
so	the	data	type	is	void.

The	dragEnter	event	is	broadcast	when	you	drag	an	item	from	the	List	over	the	DataGrid.	
Since	a	user	could	drag	any	number	of	things	over	a	control	in	Flex,	the	dragEnter	han-
dler	offers	you	an	opportunity	to	inspect	the	data	being	dragged	and	determine	if	you	
want	to	allow	it	to	be	dropped	on	the	DataGrid.

4 Remove	the	TODO	comment	from	the	newly	created	event	handler.	As	the	first	line	of	
code	in	the	function,	create	a	new	local	variable	named	dragSource	of	type	DragSource	
and	set	it	equal	to	the	dragSource	property	of	the	event:
protected	function	targetGrid_dragEnterHandler(event:DragEvent):void	{
	 var	dragSource:DragSource	=	event.dragSource;
}

The	DragEvent	object	has	a	property	named	dragSource	that	is	an	instance	of	the	
DragSource	class.	This	property	contains	information	about	the	items	being	dragged.	
Remember	to	import	the	DragSource	class.

5 Just	below	this	line,	add	an	if	statement	that	checks	the	result	of	calling	the		
dragSource.hasFormat()	method	and	passing	it	the	itemsByIndex	String:
protected	function	targetGrid_dragEnterHandler(event:DragEvent):void	{
	 var	dragSource:DragSource	=	event.dragSource;

	 if	(dragSource.hasFormat(“itemsByIndex”))	{
	 }
}

The	hasFormat()	method	checks	to	see	if	that	data	being	dragged	has	a	certain	format.	
For	example,	here	you	are	checking	to	see	if	the	data	just	dragged	over	the	DataGrid	has	a	
format	named	itemsByIndex.	In	general,	formats	are	used	to	determine	if	an	application	
or	control	in	the	application	can	display	certain	data.	For	example,	the	DataGrid	is	good	
at	displaying	rows	of	data	whereas	an	image	control	is	useful	at	displaying	bitmap	data.	
So,	if	the	format	dragged	over	the	DataGrid	were	rows	of	data	then	you	might	tell	the	

ptg

318 Lesson 13: Using Drag and Drop

user	it	is	okay	to	drop	that	data	here.	However,	if	the	format	were	a	bitmap	or	a	PDF,	then	
you	might	not	want	to	let	the	user	drop	that	data	on	this	control.	In	all	cases,	the	control	
that	will	receive	the	data	gets	to	make	that	decision.

Note: Remember that the default format name associated with data in a List is always

itemsByIndex.

6 Inside	the	if	statement,	you	will	call	the	static	acceptDragDrop()method	of	the	
DragManager	class	and	pass	it	the	event.target	cast	as	a	IUIComponent:
protected	function	targetGrid_dragEnterHandler(event:DragEvent):void	{
	 var	dragSource:DragSource	=	event.dragSource;

	 if	(dragSource.hasFormat(“itemsByIndex”))	{
	 	 DragManager.acceptDragDrop(event.target	as	IUIComponent);
	 }
}

This	code	reads:	When	the	user	moves	a	dragged	item	over	the	DataGrid,	check	to	see	if	
it	contains	a	bunch	of	items	in	order	of	their	index.	If	it	does,	then	tell	the	DragManager	
that	this	component	(the	DataGrid	in	this	case)	is	willing	and	able	to	accept	these	items	
should	the	user	now	let	go	of	the	mouse	button.	

7 Save	and	run	the	application.

This	time	when	you	drag	items	from	the	List	to	the	Datagrid,	the	cursor	will	change	
from	a	red	circle	to	the	regular	cursor,	indicating	that	you	may	drop	these	items	on	the	
DataGrid.	If	you	drop	the	items	at	this	moment,	you’ll	notice	that	nothing	happens.	That	
will	be	handled	next.

8 Add	a	dragDrop	event	listener	to	the	DataGrid,	and	select	Generate	DragDrop	handler	to	
have	Flash	Builder	create	the	event	handler	for	you.	The	code	generated	calls	the	newly	
created	event	handler	and	passes	the	event	object	as	a	parameter.

The	dragDrop	event	is	broadcast	when	you	let	go	out	of	the	mouse	button	while	dragging	
an	item	from	the	List	over	the	DataGrid.	The	dragDrop	handler	allows	you	to	manipulate	
or	use	the	data	being	dragged	and	determine	what	to	do	with	it.

9 Check	that	the	targetList_dragDropHandler	event	handler	was	created	in	the	
<fx:Script>	block.	Inside	of	this	method,	add	a	local	variable	named	items	of	type	
Vector.<Object>:
var	items:Vector.<Object>;

This	syntax	may	seem	extremely	strange.	Vector	is	a	type	of	Object	you	have	not	yet	dealt	
with	in	ActionScript.	Put	simply,	Vectors	are	typed	arrays.	Meaning	that	they	are	arrays	

ptg

319Standard Dragging and Dropping Between a DataGrid and a List

that	can	contain	only	one	type	of	Object	at	a	time.	Normal	ActionScript	arrays	can		
contain	anything,	meaning	that	this	is	completely	valid:
	 var	ar:Array	=	new	Array();
	 ar[0]	=	1;
	 ar[1]	=	“Hello”;
	 ar[2]	=	new	Button();

Vectors	are	different.	When	you	create	a	Vector,	you	explain	what	type	of	Object	will	be	
contained	within	the	Vector.	Trying	to	insert	any	other	type	of	Object	throws	an	error.	
This	allows	the	Vector	to	be	much	quicker	and	more	efficient	than	the	standard	Array.	
When	defining	a	Vector,	you	use	the	following	syntax:
var	name:Vector.<Type>;

For	example:
var	myVector:Vector.<int>;
var	yourVar:Vector.<Button>;

The	enhanced	drag	and	drop	API	uses	Vectors	to	represent	all	dragged	rows,	therefore	
you	will	need	to	use	Vectors	to	access	this	data.

10 On	the	next	line,	in	the	method,	create	a	new	local	variable	named	dragSource	of	type	
DragSource	and	set	it	equal	to	the	dragSource	property	of	the	event:
protected	function	targetGrid_dragDropHandler(event:DragEvent):void	{
	 var	items:Vector.<Object>;
	 var	dragSource:DragSource	=	event.dragSource;
}

11 Call	the	dataForFormat()	method	on	the	dragSource	and	pass	it	itemsByIndex.	This	
method	returns	the	data	associated	with	the	itemsByIndex	format.	Because	you	are	using	
the	enhanced	List	drag	and	drop	support,	the	data	will	be	a	Vector	containing	objects,	so	
cast	the	result	as	a	Vector.<Object>	and	assign	it	to	the	items	variable:
protected	function	targetGrid_dragDropHandler(event:DragEvent):void	{
	 var	items:Vector.<Object>;
	 var	dragSource:DragSource	=	event.dragSource;

	 items	=	dragSource.dataForFormat(“itemsByIndex”)	as	Vector.<Object>;
}

12 Set	a	breakpoint	at	the	closing	brace	of	the	targetList_dragDropHandler(event:DragDropEvent)		
function.	You	do	this	by	double-clicking	in	the	marker	bar	just	to	the	left	of	the	line	
numbers	in	the	editor.	You	will	see	a	small	blue	dot	appear	to	indicate	that	the	breakpoint	
was	set.

ptg

320 Lesson 13: Using Drag and Drop

The	breakpoint	will	cause	Flash	Builder	to	halt	execution	at	the	marked	line	of	code,	and	
you’ll	be	able	to	check	values	of	variables.	Recall	that	you	first	learned	about	debugging	in	
Lesson	2,	“Getting	Started.”

13 Debug	the	application	and	drag	a	row	to	the	DataGrid.	When	you	drop	the	drag	proxy,	
the	process	flow	will	return	to	Flash	Builder.	Open	the	Flash	Debug	perspective.	Examine	
the	items	variable	value	in	the	Variables	view.	You	should	see	that	the	variable	contains	a	
Vector	containing	the	data	from	that	List.

The	following	figure	shows	the	row	of	data	being	dragged:

Notice	that	the	variable	contains	an	array	of	length	1,	which	means	you	have	only	1	index,	
which	is	0.	

tip: If you want to allow the user to drag multiple rows of data, set the List

allowMultipleSelection property equal to true.

14 Terminate	the	debugging	session	by	clicking	the	red	square	in	either	the	Debug	or	
Console	views.	Return	to	the	Flash	perspective	by	clicking	the	chevron	(>>)	in	the		
upper-right	corner	of	Flash	Builder	and	selecting	that	perspective.

Normally,	the	Flash	perspective	is	best	to	work	in	because	you	can	see	much	more	of	
your code.

ptg

321Using a Non-Drag-Enabled Component in a Drag-and-Drop Operation

15 As	the	next	line	in	the	function,	add	the	dragged	product	to	the	DataGrid	by	using	the	
addItem()	method	of	the	DataGrid’s	dataProvider.	Remember	that	the	items	variable	
contained	an	array	of	length	1,	so	use	items[0].name	to	reference	the	name.
targetListDP.addItem(items[0]);

This	is	a	case	in	which	viewing	how	the	data	is	stored	using	the	debugger	is	very	helpful	
in	retrieving	the	information.

16 Run	the	application	and	drag	from	the	List	to	the	DataGrid.	You	should	see	the	product	
being	placed	in	the	DataGrid.

Using a Non-Drag-Enabled Component in a
Drag-and-Drop Operation
So	far,	you	have	been	taking	advantage	of	some	of	the	enhanced	functionality	in	list-based	
components	with	regard	to	drag	and	drop.	Now	it’s	time	to	learn	how	to	start	drag	and	drop	
on	non-enhanced	components.	In	this	particular	task,	the	use	case	is	very	simple:	You	want	to	
drag	a	Label	control	to	a	DataGrid.	Because	the	Label	does	not	have	enhanced	drag-and-drop	
functionality,	there	is	more	of	a	burden	on	you	as	the	developer	to	implement	it.

Understanding	what	the	list-based	components	did	for	you	is	a	good	place	to	start	when	hav-
ing	to	write	all	the	implementation	yourself.	Here	is	a	list	of	mechanisms,	hidden	from	you	
when	using	the	list-based	components,	that	you’ll	need	to	use	when	implementing	drag	and	
drop	without	the	help	of	the	enhanced	components:

•	 Assign	the	data	to	the	DragSource	object.

•	 Check	to	see	whether	the	formats	allow	dropping	onto	the	drop	target.

•	 Use	the	data	in	the	drop	target	(although	in	the	second	exercise	you	did	some	of	
this manually).

•	 Permit	the	component	to	be	dragged.

•	 Accept	the	drop.

ptg

322 Lesson 13: Using Drag and Drop

Although	you	have	been	using	the	DragSource	class	up	to	now	in	this	lesson,	you’ll	need	to	
dig	deeper	into	the	class	when	implementing	all	the	functionality	yourself.	In	this	exercise,	
you’ll	use	the	following	methods	of	the	DragSource	class:

DragSource Class Methods

Method Description

addData(data:Object,format:String):void	 Adds data to the associated format in the
Dragsource object; the * denotes that the data can
be of any data type.

hasFormat(format:String):Boolean	 Returns true if the Datasource object contains a
matching format of the drop target; otherwise, it
returns false.

dataForFormat(format:String):Object Retrieves the data for the specified format added
by the addData() method. If there are multiple
items for the format it returns an Array of objects
containing the data in the requested format. If using
Flex’s List classes, even a single item is returned in a
one-item Array.

These	methods	allow	you	to	implement	the	first	three	hidden	mechanisms.	To	implement	the	
last	two,	you	need	to	use	methods	of	the	DragManager	class:

DragManager Class Methods

Method Description

doDrag(initiator:IUIComponent enables the initiator component to be initially	
➥ dragSource:DragSource, dragged; often used in an event handler for 	
➥ mouseEvent:MouseEvent):void	 mouseDown or mouseMove.

acceptDragDrop(target:Component):void	 Calls this method in your dragEnter handler;
often used in an if statement where the condition
uses the hasFormat() method.

tip: The doDrag() method has a number of optional parameters to control the look of the

drag proxy. You can find these parameters in the Class documentation for DragManager in the

Adobe Flex 4.5 Language Reference.

ptg

323Using a Non-Drag-Enabled Component in a Drag-and-Drop Operation

Now	you’re	ready	to	start	writing	code	for	this	exercise.

1 Examine	the	code	in	the	Task3_Label_to_DataGrid.mxml	file,	and	then	run	it.

It	is	essentially	the	same	as	the	end	of	Task	2,	however,	you’ll	see	you	have	a	Label	with	the	
text	“Drag	me”	in	it.	At	this	point,	the	drop	handling	functionality	you	wrote	in	the	previous	
lesson	is	still	in	place,	but	there	is	no	code	to	handle	the	drag	or	drop	for	the	Label.

2 Begin	adding	a	mouseDown	event	listener	to	the	Label,	and	select	Generate	MouseDown	
handler	to	have	Flash	Builder	create	the	event	handler	for	you.	The	generated	code	calls	
the	newly	created	event	handler	and	passes	the	event	object	as	a	parameter.

3 In	the	<fx:Script>	block,	find	the	newly	created	function	named		
initiatorLabel_mouseDownHandler().	As	the	first	line	of	the	function,	create	a	local		
variable	named	dragSource	and	assign	it	to	a	new	instance	of	the	DragSource	class.

This	creates	the	DragSource	object	that	will	contain	the	data	and	information	about	your	
drag	operation.

4 Next,	create	a	new	local	variable	named	product	of	type	Object	and	assign	it	to	a	new	
instance	of	Object.
var	product:Object	=	new	Object();

5 Assign	several	properties	of	the	product	object	to	initial	values,	including	name	to	
My Product,	cost	to	1.99,	and	listPrice	to	2.99:
protected	function	initiatorLabel_mouseDownHandler(event:MouseEvent):void	{
	 var	dragSource:DragSource	=	new	DragSource();

	 var	product:Object	=	new	Object();
	 product.name	=	“My	Product”;
	 product.cost	=	1.99;
	 product.listPrice	=	2.99;
}

6 Next,	in	the	function,	use	the	addData()	method	of	the	dragSource	object	to	add	the	
product	to	the	DragSource	instance.	Associate	it	with	a	format	name	singleProduct.
dragSource.addData(product,	“singleProduct”);

An	important	point	here	is	that	you	can	store	data	associated	with	multiple	formats,	
which	means	you	can	use	multiple	addData()	methods	on	the	same	DragSource	object.	
You	might	want	to	do	this	if	you	have	multiple	drop	targets	and	want	to	drop	different	
data	in	each	drop	target.	For	example,	maybe	you	have	the	same	data	as	text	or	as	a	PDF.	
The	different	drop	targets	would	use	different	arguments	in	the	dataForFormat()	method	
to	get	the	appropriate	data.

In	this	case,	you	are	associating	this	product	with	a	format	named	singleProduct.

ptg

324 Lesson 13: Using Drag and Drop

7 As	the	last	line	of	code	in	the	function,	permit	the	Label	to	be	dragged	by	calling	the	
static	doDrag()	method	of	the	DragManager	class.	You	pass	it	the	three	arguments	
initiator,	dragSource,	and	event.	The	initiator	will	be	the	event.target	(the	label)	cast	
as	an	IUIComponent,	and	the	other	two	arguments	should	be	obvious.	Check	to	make	
sure	your	completed	function	appears	as	shown	here:
protected	function	initiatorLabel_mouseDownHandler(event:MouseEvent):void	{
	 var	dragSource:DragSource	=	new	DragSource();

	 var	product:Object	=	new	Object();
	 product.name	=	“My	Product”;
	 product.cost	=	1.99;
	 product.listPrice	=	2.99;

	 dragSource.addData(product,	“singleProduct”);
	 DragManager.doDrag(event.target	as	IUIComponent,	dragSource,	event);
}}

Remember	that	a	static	method	is	one	you	can	invoke	directly	from	the	class	without	first	
instantiating	it.

8 Run	the	application	and	drag	the	Label.	Although	you	can	drag	it,	there	are	no	compo-
nents	registered	to	accept	data	of	type	singleProduct,	so	you	cannot	drop	it	anywhere.

You	can	now	code	the	DataGrid	to	accept	the	drop	of	the	Label	and	to	display	the	data	
passed	in	the	DragSource	in	the	DataGrid.

9 Find	the	targetGrid_dragEnterHandler().	Right	now	this	method	only	accepts	a	
drag if your	data	has	a	format	named	itemsByIndex.	Your	data	has	a	format	named	
singleProduct.	Change	this	function	to	accept	itemsByIndex	or	singleProduct	as	show	
in the	following	code:
protected	function	targetGrid_dragEnterHandler(event:DragEvent):void	{
	 var	dragSource:DragSource	=	event.dragSource;

	 if	(dragSource.hasFormat(“itemsByIndex”)	||	
	 ➥ dragSource.hasFormat(“singleProduct”))	{
	 	 DragManager.acceptDragDrop(event.target	as	IUIComponent);
	 }
}

This	function	will	now	allow	the	DataGrid	to	accept	data	in	either	format.	If	you	run	the	
application	now	and	drag	the	label	onto	the	Datagrid,	the	drag	will	be	accepted,	but	the	
code	will	crash	as	the	DataGrid	is	accepting	data	in	the	form	of	a	Vector	and	your	single-
Product	format	only	contains	one	product.	You	will	fix	that	next.

ptg

325Using a Non-Drag-Enabled Component in a Drag-and-Drop Operation

10 Find	the	targetGrid_dragDropHandler()	method.	Right	now	this	method	assumes	that	it	
will	always	receive	a	Vector	in	the	DragSource	object.	That	is	no	longer	a	valid	assump-
tion.	After	the	two	variable	declarations,	wrap	the	next	two	lines	of	code	in	an	if	state-
ment	that	checks	if	the	dragSource	has	a	format	named	itemsByIndex.
protected	function	targetGrid_dragDropHandler(event:DragEvent):void	{
	 var	items:Vector.<Object>;
	 var	dragSource:DragSource	=	event.dragSource;

	 if	(dragSource.hasFormat(“itemsByIndex”))	{
	 	 items	=	dragSource.dataForFormat(“itemsByIndex”)	as	Vector.<Object>;
	 	 targetListDP.addItem(items[0]);
	 }	
}

Now	this	code	checks	to	make	sure	there	is	a	format	named	itemsByIndex	before	it	
attempts	to	retrieve	that	data.

11 Next,	add	an	else-if	clause	to	the	same	block	that	checks	to	see	if	the	data	has	a	format	
named	singleProduct:
protected	function	targetGrid_dragDropHandler(event:DragEvent):void	{
	 var	items:Vector.<Object>;
	 var	dragSource:DragSource	=	event.dragSource;

	 if	(dragSource.hasFormat(“itemsByIndex”))	{
	 	 items	=	dragSource.dataForFormat(“itemsByIndex”)	as	Vector.<Object>;
	 	 targetListDP.addItem(items[0]);
	 }	else	if	(dragSource.hasFormat(“singleProduct”))	{
	 }
}

12 Finally,	inside	the	else	block,	call	the	targetListDP.addItem()	method	and	pass	it	the	
result	of	the	dragSource.dataFormat()	method	with	singleProduct	as	the	argument.
protected	function	targetGrid_dragDropHandler(event:DragEvent):void	{
	 var	items:Vector.<Object>;
	 var	dragSource:DragSource	=	event.dragSource;

	 if	(dragSource.hasFormat(“itemsByIndex”))	{
	 	 items	=	dragSource.dataForFormat(“itemsByIndex”)	as	Vector.<Object>;
	 	 targetListDP.addItem(items[0]);
	 }	else	if	(dragSource.hasFormat(“singleProduct”))	{
	 	 targetListDP.addItem(dragSource.dataForFormat(“singleProduct”));
	 }
}

At	this	point,	your	DataGrid	will	accept	a	drag	operation	with	data	formatted	as	either	
itemsByIndex	or	as	a	singleProduct	and	will	handle	those	two	situations	differently.

ptg

326 Lesson 13: Using Drag and Drop

13 Save	and	run	the	application.

You	should	now	be	able	to	drag	the	Label.	When	it	moves	over	the	DataGrid,	the	red	X	
disappears,	and	you	can	drop	the	drag	proxy.	You	can	also	continue	to	drag	items	from	
the	List	to	the	DataGrid.

Now	that	you	have	a	solid	background	in	drag	and	drop,	you	will	implement	drag-and-drop	
functionality	in	the	e-commerce	application	of	FlexGrocer.

Dragging a Grocery Item to the Shopping Cart
The	culmination	of	your	work	in	this	lesson	is	to	implement	dragging	a	grocery	item	into	the	
shopping	cart.	The	exercises	you	have	performed	so	far	in	this	lesson	have	prepared	you	well	
for	this	final	exercise.

In	these	steps,	you	will	enable	the	user	to	click	the	grocery	item,	drag	it	to	the	small	shopping	
cart,	and	then	drop	it	in.	The	grocery	item	is	displayed	in	a	VGroup	container,	and	the	shop-
ping	cart	is	a	List.	Because	the	VGroup	is	not	a	drag-and-drop-enhanced	component,	you	will	
have	to	pattern	your	code	here	after	what	you	just	wrote	in	the	section	“Using	a	Non-Drag-
Enabled	Component	in	a	Drag-and-Drop	Operation.”

1 Open	the	FlexGrocer	project	you	used	in	the	previous	lesson.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson13/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Open	ProductItem.mxml	from	the	components	package.

This	is	the	component	in	which	the	grocery	data	is	displayed;	so	this	is	where	you’ll	have	
to	permit	the	data	to	be	dragged.

ptg

327Dragging a Grocery Item to the Shopping Cart

tip: At first, you’ll drag all the data to the shopping cart and then write the code so that just

the image of the item acts as the drag proxy.

3 Locate	the	<s:VGroup>	just	below	the	<fx:Declarations>	tag	set.	In	that	container,	locate	
the	<s:Image>	tag	that	displays	the	product.	Add	an	id	property	to	the	Image	tag	and	
assign	it	the	value	img.	

You	will	be	referencing	this	image	several	times	and	need	to	give	it	an	instance	name.

4 Add	a	mouseDown	event	in	the	Image	tag	and	select	Generate	DragDrop	handler	to	have	
Flash	Builder	create	the	event	handler	for	you.	Note	that	the	event	object	was	automati-
cally	passed.
mouseDown=”img_mouseDownHandler(event)”

By	placing	the	mouseDown	event	on	the	Image,	you	will	enable	the	user	to	start	the	drag	
process	by	clicking	the	image.

5 Locate	the	newly	created	event	handler	in	the	<fx:Script>	block	and	remove	the	TODO	
comment.	
protected	function	img_mouseDownHandler(event:MouseEvent):void	{
}

This	function	has	two	main	purposes:	to	permit	the	component	to	be	dragged	and	to	
store	appropriate	data	into	the	object	being	dragged.

6 As	the	first	line	of	code	in	the	event	handler,	create	a	new	variable	local	to	the	func-
tion	named	dragSource	and	assign	it	a	new	DragSource	object.	Next,	use	the	addData()	
method	to	associate	the	newly	created	object	with	the	product	and	a	format	named	
singleProduct.
var	dragSource:DragSource=new	DragSource();
dragSource.addData(product,”singleProduct”);

If	you	used	code-completion,	DragSource	was	imported	for	you.	Otherwise,	import	
mx.core.DragSource	manually.	Remember	that	the	addData()	method’s	two	parameters	
assign	the	data	and	the	format	to	the	DragSource	object.	In	this	case	the	data	is	the	prod-
uct	being	displayed	in	the	VGroup,	and	the	format	is	a	description	of	the	format	of	the	
data	in	the	drag	source.

7 As	the	last	line	of	code	in	the	function,	permit	the	Image	to	be	dragged	by	calling	the	
static	doDrag()	method	of	the	DragManager	class.	Recall	that	you	must	pass	the	method	
three	parameters,	the	initiator,	the	DragSource	object,	and	the	event.	In	this	case,	the	ini-
tiator	is	event.currentTarget	as	IUIComponent.	The	DragSource	is	the	dragSource	object	
you	created.	Lastly,	the	event	is	the	event	parameter	passed	to	the	event	handler.
DragManager.doDrag(event.currentTarget	as	IUIComponent,	dragSource,	event);

ptg

328 Lesson 13: Using Drag and Drop

If	you	used	code-completion,	IUIComponent	and	DragManager	were	imported	for	
you. If	not,	import	mx.core.IUIComponent	and	mx.managers.DragManager	now.	
You had	to	cast	the	initiator	as	IUIComponent	because	event.currentTarget	is	typed	as	
an	Object	by	default,	which	is	not	a	visual	component	and	hence	cannot	be	dragged.

8 Run	the	FlexGrocer.mxml	application.	You	should	be	able	to	drag	the	grocery	item	data.

You’ll	see	the	drag	proxy	is	the	outline	of	the	Image,	or	a	rectangular	box.	Later	in	this	
task,	you	will	change	the	drag	proxy	to	the	image	of	the	grocery	item.

At	this	point	there	is	no	drop	target,	so	you	cannot	drop	the	data	anywhere.

9 Open	the	ShoppingView.mxml	from	the	views	package.

This	file	contains	the	List	that	is	the	shopping	cart	to	which	grocery	items	are	dragged.

10 Locate	the	List	with	the	id	of	cartList	and	add	a	dragEnter	event	to	the	List.	Select	
Generate	DragDrop	handler	to	have	Flash	Builder	create	the	event	handler	for	you.	
dragEnter=”cartList_dragEnterHandler(event)”

11 Locate	the	newly	generated	event	handler	and	remove	the	TODO	comment.	Add	a	new	
local	variable	named	dragSource	of	type	DragSource	and	assign	it	to	the	event.dragSource.
	 protected	function	cartList_dragEnterHandler(event:DragEvent):void	{
	 	 var	dragSource:DragSource	=	event.dragSource;
	 	 	
	 	 	 }

12 Next,	check	if	the	dragSource	has	a	format	of	singleProduct	using	the	dragSource’s	
hasFormat()	method.	If	it	does,	then	use	the	DragManager’s	acceptDragDrop()	method,	
passing	it	a	reference	to	the	event’s	target	cast	as	an	IUIComponent.	Your	method	should	
look	like	this:
protected	function	cartList_dragEnterHandler(event:DragEvent):void	{
	 var	dragSource:DragSource	=	event.dragSource;

	 if	(dragSource.hasFormat(“singleProduct”))	{
	 	 DragManager.acceptDragDrop(event.target	as	IUIComponent);
	 }
}

This	function	has	only	one	purpose:	to	check	whether	formats	enable	the	drag	initiator	to	
be	dropped.	The	if	statement	determines	whether	there	are	matching	formats;	then	the	
acceptDragDrop()	method	allows	the	actual	dropping	to	take	place.

13 Run	the	FlexGrocer.mxml	application.	You	should	be	able	to	drag	the	grocery	item		
data;	when	you	drag	the	pointer	over	the	shopping	cart	List,	you	should	see	the	red	X	
disappear,	and	you	can	drop	the	drag	proxy.

At	this	point,	nothing	happens	when	you	drop	the	drag	proxy.

ptg

329Dragging a Grocery Item to the Shopping Cart

14 In	ShoppingView.mxml,	locate	the	List	with	the	id	of	cartList	and	add	a	dragDrop	event	
to	the	List.	Select	Generate	DragDrop	handler	to	have	Flash	Builder	create	the	event		
handler	for	you.	
dragDrop=”cartList_dragDropHandler(event)”

15 Locate	the	newly	generated	event	handler	and	remove	the	TODO	comment.	
protected	function	cartList_dragDropHandler(event:DragEvent):void	{
}

16 As	the	first	line	of	code	in	the	function,	create	a	variable	local	to	the	function	named	
product,	typed	as	a	Product.	Assign	product	the	result	of	calling	the	dataForFormat()	
method	of	the	event.dragSource	object,	passing	singleProduct	as	the	argument.	You	will	
need	to	cast	the	result	as	a	Product.
var	product:Product	=	event.dragSource.dataForFormat(
➥ "singleProduct")	as	Product;

This	Product	object	is	needed	to	create	a	ShoppingCartItem	in	the	next	step	of	the	task.	
The	dataForFormat()	method	retrieves	data	based	on	the	singleProduct	format.	In	this	
case,	the	data	stored	in	the	DragSource	object	was	the	product	data	added	in	step	6	of	this	
task	using	the	addData()	method.

tip: You can open the file cart/shoppingCartItem.as and review that the constructor’s

parameters are a Product object and an optional quantity.

17 Next	in	the	function,	create	a	variable	local	to	the	function	named	shoppingCartItem,	
typed	as	a	ShoppingCartItem.	Assign	that	variable	equal	to	a	new	ShoppingCartItem.	
The arguments	of	the	ShoppingCartItem	constructor	should	be	the	Product	object		
created	in	the	last	step	and	the	number	1.
var	shoppingCartItem:ShoppingCartItem	=	new	ShoppingCartItem(product,1);

Here	is	a	quick	review	of	how	the	Product	object	got	in	the	DragSource:

•	 In	steps	4,	5	and	6	of	this	exercise,	you	passed	a	Product	object	to	the		
img_mouseDownHandler()	function.

•	 The	function	placed	the	Product	object	into	the	DragSource	object	using	the	addData()	
method	and	associated	it	with	the	singleProduct	format.

•	 In	the	event	handler	just	created,	you	retrieved	that	same	Product	object	and	will	now	
place	it	in	the	shopping	cart.

18 As	the	last	line	of	code	in	the	function,	invoke	the	addItem()	method	of	the	shoppingCart	
object	and	pass	the	shoppingCartItem	variable	as	a	parameter.	

ptg

330 Lesson 13: Using Drag and Drop

Check	to	be	sure	your	function	appears	as	shown	here:
protected	function	cartList_dragDropHandler(event:DragEvent,		
➥ format:String):void{
	 var	product:Product	=	event.dragSource.dataForFormat(format)	as	Product;
	 var	shoppingCartItem:ShoppingCartItem	=		
	 ➥ new	ShoppingCartItem(product,1);
	 shoppingCart.addItem(shoppingCartItem);
}

The	method	invocation	actually	places	the	ShoppingCartItem	object	in	the	shopping	cart.

19 Run	the	application.	You	can	now	drag	grocery	items	into	the	shopping	cart.

You’ll	see	that	the	drag-and-drop	operation	is	working,	but	the	drag	proxy	is	the	default	
proxy	for	the	Image.	In	the	next	step	you	add	code	so	the	drag	proxy	becomes	the	image	
of	the	grocery	item.

20 Return	to	ProductItem.mxml.	At	the	bottom	of	the	<fx:Script>	block,	locate	the	
img_mouseDownHandler()	function.	At	the	top	of	the	function	create	a	variable	local	
to	the function	named	proxy	of	type	Image.	Assign	the	newly	created	variable	a	new	
Image object.	As	the	next	line	of	code	in	the	function,	assign	proxy.source	the	value		
img.bitmapData.
	 var	proxy:Image	=	new	Image();
	 proxy.source	=	img.bitmapData;

Here	you	are	creating	a	new	image	to	act	as	the	proxy.	This	code	may	cause	you	to	have	
some	questions.

Your	first	question	might	be:	Why	not	just	use	the	existing	Image	object	as	the	proxy?	This	
is	because	by	default	the	drag-and-drop	operation	removes	the	drag	proxy	from	its	source.	
You	could	have	simply	used	the	existing	Image	as	the	drag	proxy,	but	after	dragging	and	
dropping,	the	image	would	no	longer	be	shown	with	the	other	grocery	item	data.

Second,	why	are	you	assigning	the	source	property	of	the	proxy	to	the	bitmapData	of	the	
images?	The	bitmapData	represents	the	raw	bitmap	data	needed	to	represent	this	image	
on	the	screen.	Rather	than	downloading	a	copy	or	retrieving	it	from	the	browser’s	cache,	
you	are	simply	indicating	that	the	new	image	should	use	the	same	chunk	of	memory	to	
display	this	image.

21 In	the	DragManager.doDrag()	method	invocation,	add	a	fourth	parameter	of	proxy.
DragManager.doDrag(event.currentTarget	as	IUIComponent,		
➥ dragSource,	event,	proxy);

This	fourth	parameter	represents	the	dragImage.	Instead	of	the	outline	of	the	Image	of	the	
grocery	item	data	being	the	drag	proxy,	you	have	now	specified	that	the	image	of	the	item	
should	be	displayed	when	dragging.

ptg

331What You Have Learned

22 Check	to	be	sure	that	your	img_mouseDownHandler()	function	appears	as	follows,	and	then	
save	and	run	the	application.	You	should	be	able	to	drag	the	image	of	the	grocery	item	
and	drop	it	in	the	cart.
protected	function	img_mouseDownHandler(event:MouseEvent):void	{
	 var	proxy:Image	=	new	Image();
	 proxy.source	=	img.bitmapData;

	 var	dragSource:DragSource	=	new	DragSource();
	 dragSource.addData(product,	“singleProduct”);

	 DragManager.doDrag(event.currentTarget	as	IUIComponent,		
	 ➥ dragSource,	event,	proxy);
}

What You Have Learned
In this lesson, you have:

•	 Learned	the	basics	about	the	Drag	and	Drop	Manager	(pages	312-313)

•	 Implemented	drag-and-drop	operations	using	the	default	drop	process	(pages	313–315)

•	 Implemented	drag-and-drop	using	a	customized	the	drop	process	to	use	the	data	stored	
in	the	DragSource	object	(pages	315–321)

•	 Implemented	drag-and-drop	operations	between	non-drag-enabled	components	and	
used	a	custom	dragImage	(pages	321–326)

•	 Implemented	drag-and-drop	operations	in	the	shopping	cart	(pages	326–331)

ptg

Le
ss

o
n

 1
4 What You Will Learn

In this lesson, you will:

•	 Use	states	as	the	basis	for	implementing	navigation

•	 Learn	about	two-way	binding

•	 Work	with	the	Form	class

Approximate Time
This	lesson	takes	approximately	1	hour	and	30	minutes	to	complete.

ptg

333

Lesson 14

Implementing the
Checkout Process
Imperative to any application is a navigation system. Users should be able to move easily
around in an application and locate the functionality they need. Some navigation will be
completely at the user’s discretion, such as clicking a button to move to the home page or the
checkout process. Other navigation can be tightly controlled by the developer—for example,
a checkout process in which users cannot proceed to the next screen until certain conditions
are met on an existing screen.

The checkout process will be controlled by states.

ptg

334 Lesson 14: Implementing the Checkout Process

Introducing Navigation with States
In	Lesson	3,	“Laying	Out	the	Interface,”	you	learned	how	you	can	use	states	to	change	the	
appearance	of	a	component	at	runtime.	In	this	lesson,	you’ll	take	the	same	states	idea,	but	
instead	of	just	changing	the	appearance,	you’ll	change	which	of	several	components	are	shown	
to	the	user,	so	that	they	can	see	only	one	child	at	a	time.	To	implement	this,	you’ll	use	a	con-
tainer	with	a	basic	layout	(so	the	children	can	all	be	positioned	at	the	0,	0	point),	and	use	the	
includeIn	property,	so	only	one	of	the	children	is	available	in	each	state.

Introducing Two-Way Bindings
In	Lesson	8,	“Using	Data	Binding	and	Collections,”	you	learned	about	data	binding,	which	
updates	the	view	components	when	data	changes.	Flex	4	introduces	a	second	type	of	data	
binding	called	two-way	binding.	Two-way	binding	is	most	effective	when	combined	with	
user input	forms.

In	this	type	of	data	binding,	view	components	are	updated	when	data	changes;	however,	the	
data	is	also	updated	when	the	component	changes.	You	can	think	of	regular	data	binding	as	
moving	in	one	direction:	When	the	data	changes,	the	view	changes.	You	can	think	of	two-way	
binding	as	bidirectional:	If	either	changes,	the	other	updates.

In	practice,	two-way	binding	is	extremely	easy	to	use.	There	is	simply	a	syntax	difference	
when	declaring	a	control	as	bound	to	data.

To	bind	a	TextInput	to	a	piece	of	data	using	traditional	data	binding,	your	code	would	look	
like	this:

<s:TextInput text=”{someData}”/>

To	use	two-way	binding,	you	simply	prepend	the	expression	with	the	@	symbol:

<s:TextInput text=”@{someData}”/>

Two-way	binding	does	have	one	limitation	at	this	time:	The	types	of	both	the	source	and	
destination	must	be	the	same.	With	traditional	data	binding,	you	can	bind	a	variable	declared	
as	a	Number	to	the	text	input	of	a	Label,	even	though	that	Label	is	expecting	a	String	instance.	
Traditional	data	binding	will	attempt	to	convert	the	Number	to	a	String	on	your	behalf.	Two-
way	data	binding	cannot	work	unless	both	the	source	and	destination	are	the	same.

ptg

335Creating the OrderInfo valueObject

Creating the OrderInfo valueObject
Throughout	this	chapter,	you’ll	be	building	the	checkout	process	for	the	FlexGrocer	applica-
tion.	In	this	process,	users	will	be	presented	with	a	series	of	components	to	allow	them	to	
enter	various	types	of	information	(shipping	info,	billing	info)	and	a	confirmation	screen.	
The	information	users	enter	will	be	stored	in	a	value	object.	Using	two-way	data	binding,	the	
value	object	can	be	populated	automatically	as	the	user	fills	out	the	form.	The	first	step	in	this	
process	is	to	create	the	OrderInfo	object.

1 Open	the	FlexGrocer.mxml	file	that	you	created	in	the	previous	lesson.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson14/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 In	the	declarations	section,	create	an	instance	of	the	ShoppingCart	class,	and	give	it	an	id	
of	shoppingCart.
<fx:Declarations>
<!-- Place non-visual elements (e.g., services, value objects) here -->
 <services:CategoryService id=”categoryService”/>
 <services:ProductService id=”productService”/>
 <cart:ShoppingCart id=”shoppingCart”/>
</fx:Declarations>

You’ll	need	access	to	the	same	shopping	cart	from	both	the	shopping	and	checkout	expe-
rience,	so	you’ll	create	it	here	in	the	main	application,	and	pass	it	into	the	places	where	it	
is	used.

3 Find	the	place	where	the	ShoppingView	is	instantiated;	populate	its	shoppingCart	prop-
erty	with	a	binding	to	the	shoppingCart	instance	you	created	in	the	previous	step.
<views:ShoppingView id=”bodyGroup”
 width=”100%” height=”100%”
 groceryInventory=”{productService.products}”
 shoppingCart=”{shoppingCart}” />

4 Open	ShoppingView.mxml.	Find	the	property	declaration	for	the	public	shoppingCart	
property.	Remove	the	equal	sign	and	everything	after	it,	so	the	property	is	declared,	but	
not	instantiated:
public var shoppingCart:ShoppingCart;

Since	the	cart	is	now	passed	in	from	the	main	application,	you	no	longer	want	to	create	
it here.

ptg

336 Lesson 14: Implementing the Checkout Process

5 Right-click	on	the	valueObjects	package,	and	choose	New	ActionScript	Class.	Leave	the	
package	as	valueObjects,	and	name	the	class	OrderInfo.	Leave	the	other	elements	with	
the	default	values,	and	click	Finish.

6 Decorate	the	class	with	the	Bindable	metadata.
package valueObjects {
	 [Bindable]
 public class OrderInfo {
 public function OrderInfo() {
 }
 }
}

7 Before	the	constructor,	define	public	properties	for	billingName,	billingAddress,	
billingCity,	billingState,	billingZip,	cardType,	cardNumber,	cardExpirationMonth,	
and	cardExpirationYear.	Define	all	nine	of	these	properties	to	use	a	String	as	a	data	type.
package valueObjects {
 [Bindable]
 public class OrderInfo {
 	 public	var	billingName:String;
	 	 public	var	billingAddress:String;
	 	 public	var	billingCity:String;
	 	 public	var	billingState:String;
	 	 public	var	billingZip:String;
	 	 public	var	cardType:String;
	 	 public	var	cardNumber:String;
	 	 public	var	cardExpirationMonth:String;
	 	 public	var	cardExpirationYear:String;
	 	
 public function OrderInfo() {
 }
 }
}

8 Save	and	close	the	OrderInfo.

This	completes	the	OrderInfo	class.	In	the	next	exercise,	you’ll	create	the	CheckoutView	
component,	which	will	use	an	instance	of	this	class.

ptg

337Creating CheckoutView

Creating CheckoutView
Next,	you’ll	create	the	CheckoutView	component,	which	contains	the	views	a	user	will	experi-
ence	in	the	checkout	process.	

1 Right-click	the	views	package	and	create	a	new	MXML	Component.	Leave	the	Package	
set	as	views,	give	the	component	a	Name	of	CheckoutView,	set	the	Layout	to	be		
spark.layouts.BasicLayout,	leave	the	Based	on	value	as	spark.components.Group,		
and	remove	the	values	from	the	Width	and	Height	fields.

2 After	the	end	of	the	layout	block,	create	a	states	block	to	hold	the	states.	You’ll	use	the	
<s:states>	tag	(with	a	lower	case	s	in	states),	as	you	are	addressing	the	states	property	
of this	new	component.
<s:layout>
 <s:BasicLayout/>
</s:layout>
<s:states>
	
</s:states>

3 Add	three	<s:State>	(capital	S)	instances	to	define	the	states	for	the	component.	The	first	
should	have	a	name	of	customerInfo,	the	second	billingInfo,	and	the	third	review.
<s:states>
	 <s:State	name=”customerInfo”/>
	 <s:State	name=”billingInfo”/>
	 <s:State	name=”review”/>
</s:states>

ptg

338 Lesson 14: Implementing the Checkout Process

Here	you	are	defining	the	three	states	of	this	component,	which	will	show	the	individual	
views	of	the	Checkout	process.

4 In	the	Declarations	block,	create	an	instance	of	the	valueObject	of	OrderInfo.	Give	the	
instance	an	id	of	orderInfo.
<fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 <valueObjects:OrderInfo id=”orderInfo”/>
</fx:Declarations>

You	now	have	an	instance	of	the	OrderInfo	class	that	can	be	populated	by	the	views	
to	which	it	is	passed.	Next	you’ll	add	a	few	methods	to	ease	the	process	of	navigating	
between	the	views.

5 Create	a	Script	block,	and	a	private	variable	named	currentView,	data	typed	as	an	int,	
with	a	default	value	of	0.
</s:states>
<fx:Script>
 <![CDATA[
 private var currentView:int=0;
]]>
</fx:Script>
<fx:Declarations>

This	will	be	used	to	keep	track	of	which	views	users	are	on,	so	when	they	click	a	next		
button,	you	know	what	view	to	show	them	next.

6 Create	a	private	method	named	setViewByIndex,	which	accepts	an	integer	as	a	parameter	
and	returns	void.	In	the	method,	create	a	switch	statement	that	will	set	the	currentState	
to	customerInfo	if	the	value	1	is	passed,	billingInfo	if	a	2	is	passed,	and	review	if	3	is	
passed	in.
private function setViewByIndex(index:int):void{
 switch(index){
 case 0:
 currentState=”customerInfo”;
 break;
 case 1:
 currentState=”billingInfo”;
 break;
 case 2:
 currentState=”review”;
 break;
 }
}

ptg

339Creating CheckoutView

7 Create	a	private	method	called	handleProceed	that	accepts	an	event	as	an	argument,	
and	returns	void.	In	this	method,	increment	the	value	of	currentView,	and	then	pass	
currentView	to	the	setViewByIndex	method.
private function handleProceed(event:Event):void {
 currentView++;
 setViewByIndex(currentView);
}

Now,	whenever	a	proceed	event	is	heard,	the	currentState	will	be	changed	to	the	next	
state	in	the	order.	Next,	you’ll	create	the	CustomerInfo	view,	and	set	it	to	be	shown	in	the	
proper	state.

8 Right-click	the	views	package	and	choose	new	MXML	Component.	Set	the	Package		
to	be	views.checkout,	set	the	Name	to	be	CustomerInfo,	set	the	Layout	to		
spark.layouts.VerticalLayout,	and	leave	the	Based	on	as	spark.components.Group.	
Remove	the	Width	and	Height	values.	Click	Finish.

9 Add	a	Label	after	the	closing	Declaration	tag.	Set	the	text	of	the	Label	to	be	Checkout
Page 1 of 3.

ptg

340 Lesson 14: Implementing the Checkout Process

10 Add	a	Script	block	after	the	declarations	but	before	the	Label.	Declare	a	public	bindable	
property	named	orderInfo	data	typed	as	valueObject	of	the	OrderInfo.
<fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
</fx:Declarations>
<fx:Script>
	 <![CDATA[
	 	 import	valueObjects.OrderInfo;
	 	 [Bindable]
	 	 public	var	orderInfo:OrderInfo;
]]>
</fx:Script>
<s:Label text=”Checkout Page 1 of 3”/>

11 Open	Checkout.mxml	from	the	default	package.	Copy	the	entire	form	from	the	compo-
nent.	Switch	back	to	CustomerInfo.mxml,	and	paste	the	form	after	the	Label	tag.	Remove	
the	x	and	y	values	from	the	<s:Form>	tag.
 <s:Label text=”Checkout Page 1 of 3”/>
	 <s:Form	>
	 	 <s:FormHeading	label=”Customer	Information”/>
	 	 <s:FormItem	label=”Customer	Name”>
	 	 	 <s:TextInput/>
	 	 </s:FormItem>
	 	 <s:FormItem	label=”Address”>
	 	 	 <s:TextInput/>
	 	 </s:FormItem>
	 	 <s:FormItem	label=”City”>
	 	 	 <s:TextInput/>
	 	 </s:FormItem>
	 	 <s:FormItem	label=”State”>
	 	 	 <s:TextInput/>
	 	 </s:FormItem>
	 	 <s:FormItem	label=”Zip”>
	 	 	 <s:TextInput/>
	 	 </s:FormItem>
	 	 <s:FormItem>
	 	 	 <s:Button	label=”Continue”/>
	 	 </s:FormItem>
 </s:Form>

12 Find	the	TextInput,	which	is	a	child	of	the	first	form	item	(which	has	a	label	Customer	
Name).	Set	the	text	property	of	this	TextInput	to	be	a	two-way	binding	to	the	
billingName	property	of	the	orderInfo	object.
<s:TextInput text=”@{orderInfo.billingName}”/>

ptg

341Creating CheckoutView

As	discussed	earlier	in	the	lesson,	this	syntax	will	create	a	two-way	binding,	so	the	control	
will	initially	be	populated	with	the	value	of	the	billingName	property	of	the	orderInfo	
object,	and	if	the	user	makes	a	change,	the	change	will	be	stored	automatically	back	in	the	
orderInfo	object.

13 Add	similar	two-way	bindings	for	the	text	inputs	in	the	Address,	City,	State,	and	Zip	
FormItems.	The	values	you’ll	bind	to	are	billingAddress,	billingCity,	billingState,	
and	billingZip.	
<s:Form >
 <s:FormHeading label=”Customer Information”/>
 <s:FormItem label=”Customer Name”>
 <s:TextInput text=”@{orderInfo.billingName}”/>
 </s:FormItem>
	 <s:FormItem	label=”Address”>
	 	 <s:TextInput	text=”@{orderInfo.billingAddress}”/>
	 </s:FormItem>
	 <s:FormItem	label=”City”>
	 	 <s:TextInput	text=”@{orderInfo.billingCity}”/>
	 </s:FormItem>
	 <s:FormItem	label=”State”>
	 	 <s:TextInput	text=”@{orderInfo.billingState}”/>
	 </s:FormItem>
	 <s:FormItem	label=”Zip”>
	 	 <s:TextInput	text=”@{orderInfo.billingZip}”/>
	 </s:FormItem>
 <s:FormItem>
 <s:Button label=”Continue”/>
 </s:FormItem>
</s:Form>

Now	your	whole	form	is	set	to	be	bound	to	the	billing	properties	of	orderInfo.

14 Add	a	click	hander	on	the	Continue	button,	which	calls	the	handleProceed	method	and	
passes	the	event	as	an	argument.	With	your	cursor	after	the	closing	parentheses,	which	
are	after	the	word	event,	press	Ctrl-1	and	choose	Generate	event	handler.

15 In	the	newly	created	event	handler,	dispatch	an	event	with	the	type	proceed.
protected function handleProceed(event:MouseEvent):void{
 dispatchEvent(new Event(“proceed”));
}

ptg

342 Lesson 14: Implementing the Checkout Process

16 As	a	final	step	for	this	component,	add	metadata	indicating	that	this	class	is	capable	of	
broadcasting	an	event	with	the	name	proceed	and	a	type	of	flash.events.Event.
<fx:Metadata>
 [Event(name=”proceed”, type=”flash.events.Event”)]
</fx:Metadata>

17 Save	your	file.	

This	completes	the	CustomerInfo	component.	The	complete	source	for	this	component	
should	appear	like	the	following	code.
<?xml version=”1.0” encoding=”utf-8”?>
<s:Group xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>
 <s:layout>
 <s:VerticalLayout/>
 </s:layout>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
 <fx:Metadata>
 [Event(name="proceed", type="flash.events.Event")]
 </fx:Metadata>
 <fx:Script>
 <![CDATA[
 import valueObjects.OrderInfo;
 [Bindable]
 public var orderInfo:OrderInfo;

 protected function handleProceed(event:MouseEvent):void{
 dispatchEvent(new Event("proceed"));
 }

]]>
 </fx:Script>
 <s:Label text="Checkout Page 1 of 3"/>
 <s:Form >
 <s:FormHeading label="Customer Information"/>
 <s:FormItem label="Customer Name">
 <s:TextInput text="@{orderInfo.billingName}"/>
 </s:FormItem>
 <s:FormItem label="Address">
 <s:TextInput text="@{orderInfo.billingAddress}"/>
 </s:FormItem>
 <s:FormItem label="City">
 <s:TextInput text="@{orderInfo.billingCity}"/>
 </s:FormItem>
 <s:FormItem label="State">
 <s:TextInput text="@{orderInfo.billingState}"/>

ptg

343Creating CheckoutView

 </s:FormItem>
 <s:FormItem label="Zip">
 <s:TextInput text="@{orderInfo.billingZip}"/>
 </s:FormItem>
 <s:FormItem>
 <s:Button label="Continue" click="handleProceed(event)"/>
 </s:FormItem>
 </s:Form>
</s:Group>

Next,	you’ll	instantiate	this	component	in	the	CheckoutView	component.	

18 Open	CheckoutView.mxml.	After	the	closing	Declarations	tag,	add	an	instance	of	the	
CustomerInfo	component.	Assign	a	width	and	height	of	100%,	bind	the	orderInfo	object	
to	the	orderInfo	property	of	the	component,	listen	for	the	proceed	event,	and	call	the	
handleProceed	method	you	wrote	in	a	previous	exercise.	Lastly,	set	this	component	to	be	
shown	only	in	the	customerInfo	state,	by	using	the	includeIn	attribute.	The	final	code	for	
CheckoutView	should	read	like	this:
<?xml version=”1.0” encoding=”utf-8”?>
<s:Group xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark” width=”400” height=”300” xmln
s:valueObjects=”valueObjects.*” xmlns:checkout=”views.checkout.*”>
 <s:layout>
 <s:BasicLayout/>
 </s:layout>
 <s:states>
 <s:State name=”customerInfo”/>
 <s:State name=”billingInfo”/>
 <s:State name=”review”/>
 </s:states>
 <fx:Script>
 <![CDATA[
 private var currentView:int=0;
 private function setViewByIndex(index:int):void{
 switch(index){
 case 0:
 currentState=”customerInfo”;
 break;
 case 1:
 currentState=”billingInfo”;
 break;
 case 2:
 currentState=”review”;
 break;
 }
 }
 private function handleProceed(event:Event):void {

ptg

344 Lesson 14: Implementing the Checkout Process

 currentView++;
 setViewByIndex(currentView);
 }
]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 <valueObjects:OrderInfo id=”orderInfo”/>
 </fx:Declarations>
	 <checkout:CustomerInfo	width=”100%”	height=”100%”
	 	 orderInfo=”{orderInfo}”	
	 	 proceed=”handleProceed(event)”	
	 	 includeIn=”customerInfo”/>
</s:Group>

19 Save	your	file.	CheckoutView	is	now	equipped	to	work	with	your	new	component.	
The next	step	is	to	instantiate	CheckoutView	in	the	main	application.

20 Open	FlexGrocer.mxml.	After	the	closing	declarations	tag,	add	two	states:	one	called	
shopping	and	the	other	called	checkout.
<s:states>
 <s:State name=”shopping”/>
 <s:State name=”checkout”/>
</s:states>

21 Just	after	the	bodyGroup	instance	of	the	ShoppingView	component,	create	an	instance	
of	your	CheckoutView	component.	Set	the	width	and	height	to	100%.	Set	the	includeIn	
attribute	to	only	show	this	component	in	the	checkout	state.	Set	the	includeIn	for	the	
ShoppingView	to	be	shopping.
<views:ShoppingView id=”bodyGroup”
 width=”100%” height=”100%”
 groceryInventory=”{productService.products}”
 shoppingCart=”{shoppingCart}”
 includeIn=”shopping”/>
<views:CheckoutView	width=”100%”	height=”100%”
	 includeIn=”checkout”/>

22 Create	a	new	method	called	startCheckout	that	accepts	a	MouseEvent	as	a	parameter	and	
returns	void.	The	body	of	the	function	should	set	the	currentState	to	checkout.	Call	this	
function	from	the	click	handler	of	btnCheckout.
protected function startCheckout(event:MouseEvent):void{
 this.currentState=”checkout”;
}
...
<s:Button id=”btnCheckout” y=”10” right=”10” label=”Checkout”
click=”startCheckout(event)”/>

ptg

345Creating CreditCardInfo

23 Save	and	run	the	application.	Now,	if	you	click	the	Checkout	button,	the	application	will	
change	states	to	show	the	CustomerInfo	component.

Now	your	shopping	application	allows	the	user	to	add	products	to	the	shopping	cart	and	to	
move	to	the	checkout	process.	

Creating CreditCardInfo
The	next	step	is	to	add	a	second	page	to	the	checkout	process,	which	will	allow	the	user	to	
enter	their	billing	info.

1 Right-click	the	checkout	package,	and	choose	new	MXML	Component.	Leave	the	
Package	as	views.checkout,	assign	a	name	of	CreditCardInfo,	set	the	Layout	to		
spark.layouts.VerticalLayout,	and	leave	the	Based	on	as	spark.components.Group.	
Remove	the	Width	and	Height	values.	Click	Finish.

2 Copy	the	Metadata	and	Script	block	from	the	CustomerInfo	component,	and	paste	them	
in	the	CreditCardInfo	component,	after	the	Declarations	block.
<fx:Metadata>
 [Event(name=”proceed”, type=”flash.events.Event”)]
</fx:Metadata>
<fx:Script>
 <![CDATA[
 import valueObjects.OrderInfo;
 [Bindable]
 public var orderInfo:OrderInfo;

 protected function handleProceed(event:MouseEvent):void{
 dispatchEvent(new Event(“proceed”));
 }

]]>
</fx:Script>

ptg

346 Lesson 14: Implementing the Checkout Process

Both	components	will	use	the	orderInfo	object,	and	both	will	broadcast	a	proceed	event	
to	indicate	the	user	has	finished	with	this	page.

3 After	the	closing	Script	tag,	add	a	label	with	its	text	property	set	to	“Checkout	Page	2	of	3”.
<s:Label text=”Checkout Page 2 of 3”/>

4 Add	a	Form	tag	after	the	label.	Add	a	FormHeading	that	reads	“Billing	Information”.	Add	
four	form	items.	Their	labels	should	be	Credit	Card	Type,	Card	Number,	and	Expiration.	
The	final	FormItem	should	have	no	label.
<s:Label text=”Checkout Page 2 of 3”/>
<s:Form>
	 <s:FormHeading	label=”Billing	Information”/>
	 <s:FormItem	label=”Credit	Card	Type”>
	 </s:FormItem>
	 <s:FormItem	label=”Card	Number”>
	 </s:FormItem>
	 <s:FormItem	label=”Expiration”>
	 </s:FormItem>
	 <s:FormItem>
	 </s:FormItem>
</s:Form>

5 In	the	first	FormItem,	create	a	DropDownList.	Use	two-way	binding	to	bind	the	
selectedItem	property	to	the	orderInfo’s	cardType	property.	Set	the	requireSelection	
property	to	true.	Add	a	child	tag	to	the	DropDownList	to	address	the	dataProvider	
property.	Inside	the	dataProvider,	create	an	ArrayList	that	contains	these	five	strings:	
American	Express,	Diners	Club,	Discover,	Mastercard,	and	Visa.
<s:FormItem label=”Credit Card Type”>
	 <s:DropDownList	selectedItem=”@{orderInfo.cardType}”	
requireSelection=”true”>
	 	 <s:dataProvider>
	 	 	 <s:ArrayList>
	 	 	 	 <fx:String>American	Express</fx:String>
	 	 	 	 <fx:String>Diners	Club</fx:String>
	 	 	 	 <fx:String>Discover</fx:String>
	 	 	 	 <fx:String>MasterCard</fx:String>
	 	 	 	 <fx:String>Visa</fx:String>
	 	 	 </s:ArrayList>
	 	 </s:dataProvider>
	 </s:DropDownList>
</s:FormItem>

6 In	the	second	FormItem	(the	one	with	the	Card	Number	label),	create	a	TextInput	whose	
text	property	has	a	two-way	binding	to	the	cardNumber	property	of	orderInfo:
<s:FormItem label=”Card Number”>
	 <s:TextInput	text=”@{orderInfo.cardNumber}”/>
</s:FormItem>

ptg

347Creating CreditCardInfo

7 The	third	FormItem	will	have	two	DropDownLists:	one	to	display	months,	and	
one	to	display	years.	To	allow	these	to	be	horizontally	next	to	each	other,	first	add	a	
HorizontalLayout	to	the	FormItem.
<s:FormItem label=”Expiration”>
 <s:layout>
	 	 <s:HorizontalLayout/>
 </s:layout>
</s:FormItem>

8 Next,	add	the	months	DropDownList.	Use	two-way	binding	to	bind	the	selectedItem	
property	to	the	cardExpirationMonth	property	of	orderInfo.	Set	requireSelection	to	
true.	For	a	dataProvider,	create	an	array	list	that	contains	strings	for	the	names	of	the	
twelve	months.
<s:DropDownList selectedItem=”@{orderInfo.cardExpirationMonth}”
 requireSelection=”true”>
 <s:dataProvider>
 <s:ArrayList>
 <fx:String>January</fx:String>
 <fx:String>February</fx:String>
 <fx:String>March</fx:String>
 <fx:String>April</fx:String>
 <fx:String>May</fx:String>
 <fx:String>June</fx:String>
 <fx:String>July</fx:String>
 <fx:String>August</fx:String>
 <fx:String>September</fx:String>
 <fx:String>October</fx:String>
 <fx:String>November</fx:String>
 <fx:String>December</fx:String>
 </s:ArrayList>
 </s:dataProvider>
</s:DropDownList>

9 Still	in	the	Expiration	FormItem,	add	a	second	DropDownList.	Use	two-way	binding	to	
bind	the	selectedItem	property	to	the	cardExpirationYear	property	of	orderInfo.	Set	
requireSelection	to	true.	For	a	dataProvider,	create	an	array	list	that	contains	strings	
with	the	years	2011	through	2016.
<s:DropDownList selectedItem=”@{orderInfo.cardExpirationYear}”
 requireSelection=”true”>
 <s:dataProvider>
 <s:ArrayList>
 <fx:String>2011</fx:String>
 <fx:String>2012</fx:String>
 <fx:String>2013</fx:String>
 <fx:String>2014</fx:String>

ptg

348 Lesson 14: Implementing the Checkout Process

 <fx:String>2015</fx:String>
 <fx:String>2016</fx:String>
 </s:ArrayList>
 </s:dataProvider>
</s:DropDownList>

10 In	the	final	FormItem,	add	a	button	with	the	label	Proceed,	and	a	clickHandler	that	calls	
the	handleProceed	method	and	passes	the	event	as	an	argument.	The	full	CreditCardInfo	
component	should	read	like	this:
<?xml version=”1.0” encoding=”utf-8”?>
<s:Group xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>
 <s:layout>
 <s:VerticalLayout/>
 </s:layout>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
 <fx:Metadata>
 [Event(name="proceed", type="flash.events.Event")]
 </fx:Metadata>
 <fx:Script>
 <![CDATA[
 import valueObjects.OrderInfo;
 [Bindable]
 public var orderInfo:OrderInfo;
 protected function handleProceed(event:MouseEvent):void{
 dispatchEvent(new Event("proceed"));
 }
]]>
 </fx:Script>
 <s:Label text="Checkout Page 2 of 3"/>
 <s:Form>
 <s:FormHeading label="Billing Information"/>
 <s:FormItem label="Credit Card Type">
 <s:DropDownList selectedItem="@{orderInfo.cardType}"
 requireSelection="true">
 <s:dataProvider>
 <s:ArrayList>
 <fx:String>American Express</fx:String>
 <fx:String>Diners Club</fx:String>
 <fx:String>Discover</fx:String>
 <fx:String>MasterCard</fx:String>
 <fx:String>Visa</fx:String>
 </s:ArrayList>
 </s:dataProvider>

ptg

349Creating CreditCardInfo

 </s:DropDownList>
 </s:FormItem>
 <s:FormItem label="Card Number">
 <s:TextInput text="@{orderInfo.cardNumber}"/>
 </s:FormItem>
 <s:FormItem label="Expiration">
 <s:layout>
 <s:HorizontalLayout/>
 </s:layout>
 <s:DropDownList selectedItem=
 "@{orderInfo.cardExpirationMonth}" requireSelection="true">
 <s:dataProvider>
 <s:ArrayList>
 <fx:String>January</fx:String>
 <fx:String>February</fx:String>
 <fx:String>March</fx:String>
 <fx:String>April</fx:String>
 <fx:String>May</fx:String>
 <fx:String>June</fx:String>
 <fx:String>July</fx:String>
 <fx:String>August</fx:String>
 <fx:String>September</fx:String>
 <fx:String>October</fx:String>
 <fx:String>November</fx:String>
 <fx:String>December</fx:String>
 </s:ArrayList>
 </s:dataProvider>
 </s:DropDownList>
 <s:DropDownList selectedItem="@{orderInfo.cardExpirationYear}"
 	 requireSelection="true">
 <s:dataProvider>
 <s:ArrayList>
 <fx:String>2011</fx:String>
 <fx:String>2012</fx:String>
 <fx:String>2013</fx:String>
 <fx:String>2014</fx:String>
 <fx:String>2015</fx:String>
 <fx:String>2016</fx:String>
 </s:ArrayList>
 </s:dataProvider>
 </s:DropDownList>
 </s:FormItem>
 <s:FormItem>
 <s:Button label="Proceed" click="handleProceed(event)"/>
 </s:FormItem>
 </s:Form>
</s:Group>

ptg

350 Lesson 14: Implementing the Checkout Process

11 Save	CreditCardInfo.	Open	CheckoutView	and	add	an	instance	of	CreditCardInfo	after	
the	instance	of	CustomerInfo.	Set	the	width	and	height	to	be	100%.	Bind	the	orderInfo	
property	to	the	orderInfo	instance.	Add	an	event	listener	for	the	proceed	event	that	
calls	the	handleProceed	method,	and	passes	the	event	object.	Set	the	includeIn	to	be	
billingInfo.	
<checkout:CreditCardInfo width=”100%” height=”100%”
 orderInfo=”{orderInfo}”
 proceed=”handleProceed(event)”
 includeIn=”billingInfo”/>

12 Save	the	files,	then	open	and	run	FlexGrocer.	Now	when	you	click	checkout,	you	should	
be	able	to	navigate	from	Page	1	to	Page	2	of	the	checkout	process.

Creating Review
There	is	just	one	page	left	to	create	for	the	checkout	process:	the	page	that	will	let	the	user	see	
their	information	and	choose	to	either	complete	the	order	or	go	back	and	make	changes.

1 Right-click	the	checkout	package,	and	choose	new	MXML	Component.	Leave	the	
Package	to	be	views.checkout,	assign	a	name	of	Review,	set	the	Layout	to	spark.layouts.
VerticalLayout,	and	leave	the	Based	on	as	spark.components.Group.	Remove	the	Width	
and	Height	values.	Click	Finish.

ptg

351Creating Review

2 Add	a	Script	block	with	a	public	bindable	property	called	orderInfo	of	type	OrderInfo
<fx:Script>
 <![CDATA[
 import valueObjects.OrderInfo;
 [Bindable]
 public var orderInfo:OrderInfo;
]]>
</fx:Script>

3 After	the	Script	block,	create	a	label	with	the	text	“Checkout	Page	3	of	3”.
<s:Label text=”Checkout Page 3 of 3”/>

4 Below	the	label,	add	an	HGroup	with	a	width	of	100%	and	a	height	of	90%
<s:Label text=”Checkout Page 3 of 3”/>
<s:HGroup	width=”100%”	height=”90%”>

</s:HGroup>

This	HGroup	will	show	the	customer	and	billing	information	on	the	left	and	the	shopping	
cart	on	the	right.

5 As	a	first	child	of	the	HGroup,	add	a	Form	that	contains	a	FormHeading	with	a	label	
Review	and	Checkout.	The	form	should	also	contain	four	FormItems,	with	the	labels	
Name,	Address,	and	Card	Type.	The	fourth	FormItem	should	have	no	label.
<s:HGroup width=”100%” height=”90%”>
	 <s:Form>
	 	 <s:FormHeading	label=”Review	and	Checkout”/>
	 	 <s:FormItem	label=”Name”>
	 	 </s:FormItem>
	 	 <s:FormItem	label=”Address”>
	 	 </s:FormItem>
	 	 <s:FormItem	label=”Card	Type”>
	 	 </s:FormItem>
	 	 <s:FormItem>
	 	 </s:FormItem>
	 </s:Form>
</s:HGroup>

6 In	the	first	FormItem,	add	a	Label,	whose	text	is	bound	to	the	billingName	property	of	
the	orderInfo	object.
<s:FormItem label=”Name”>
 <s:Label text=”{orderInfo.billingName}”/>
</s:FormItem>

You	don’t	need	a	two-way	binding	here,	because	the	user	is	not	able	to	edit	the	object.

ptg

352 Lesson 14: Implementing the Checkout Process

7 In	the	second	FormItem,	add	two	labels.	The	first	should	be	bound	to		
orderInfo.billingAddress.	The	second	will	concatenate	orderInfo.billingCity	with		
a	comma,	space,	orderInfo.billingState,	space,	and	then	orderInfo.billingZip.
<s:FormItem label=”Address”>
	 <s:Label	text=”{orderInfo.billingAddress}”/>
	 <s:Label	text=”{orderInfo.billingCity},	{orderInfo.billingState}		
	 	 {orderInfo.billingZip}”/>
</s:FormItem>

8 The	third	FormItem	will	have	a	label,	whose	text	is	showing	the	orderInfo.cardType.
<s:FormItem label=”Card Type”>
 <s:Label text=”{orderInfo.cardType}”/>
</s:FormItem>

9 The	final	FormItem	will	have	two	buttons.	The	first	should	have	a	label	of	“Complete	
Order”,	and	the	second	label	should	read	“Edit	Information”.	Add	click	handlers	for	both	
to	call	methods	you’ll	write	shortly	called	handleComplete	and	handleEdit.
<s:FormItem>
 <s:Button label="Complete Order" click="handleComplete(event)"/>
 <s:Button label="Edit Information" click="handleEdit(event)"/>
</s:FormItem>

If	you	prefer,	you	can	use	quick	assist	(Ctrl+1)	to	create	these	methods	for	you,	as	you	
have	done	in	previous	exercises.

Next,	you’ll	add	an	instance	of	CartGrid	to	show	the	user	the	items	in	their	shopping	
cart. But	first	you’ll	need	to	have	a	shopping	cart	property	that	will	contain	the	data	for	
their	cart.

10 In	the	Script	block,	just	below	the	orderInfo	property,	create	a	bindable	public	property	
named	shoppingCart	of	type	ShoppingCart.
import cart.ShoppingCart;
import valueObjects.OrderInfo;

[Bindable]
public var orderInfo:OrderInfo;

[Bindable]
public	var	shoppingCart:ShoppingCart;

Don’t	forget	to	ensure	that	cart.ShoppingCart	is	imported.

ptg

353Creating Review

11 After	the	closing	Form	tag,	add	a	VGroup	with	a	width	and	height	of	100%.	Inside	the	
VGroup,	add	an	instance	of	your	CartGrid	component.	Assign	the	CartGrid	a	width	and	
height	of	100%,	and	bind	the	shoppingCart	property	of	the	grid	to	the	shoppingCart	
property	of	the	Review	class.
<s:VGroup width=”100%” height=”100%”>
 <components:CartGrid width=”100%” height=”100%”
 dataProvider=”{shoppingCart.items}”/>
</s:VGroup>

12 Listen	for	a	removeProduct	event	from	the	cartGrid.	Add	an	event	handler	that	calls	a	
function	named	removeProductHandler	and	pass	it	the	event	object	as	an	argument.	
Use quick	assist	to	generate	the	function	for	you.
<s:VGroup width=”100%” height=”100%”>
 <components:CartGrid width=”100%” height=”100%”
 dataProvider=”{shoppingCart.items}”
 removeProduct=”removeProductHandler(event)”/>
</s:VGroup>

13 In	the	Script	block,	find	the	newly	generated	method.	In	the	method,	create	a	new	
instance	of	the	ShoppingCartItem	class,	passing	the	event.product	to	its	constructor.	
Then	call	the	removeItem	method	of	the	shoppingCart	and	pass	it	your	newly	created	
ShoppingCartItem.
protected function removeProductHandler(event:ProductEvent):void
{
	 var	sci:ShoppingCartItem	=	new	ShoppingCartItem(event.product);
	 shoppingCart.removeItem(sci);
}

Be	sure	you	add	an	import	for	the	ShoppingCartItem	class.

14 After	the	CartGrid,	add	a	Label,	whose	text	shows	“Total:”	followed	by	a	binding	to	the	
shoppingCart.total	property.
<s:VGroup width=”100%” height=”100%”>
 <components:CartGrid width=”100%” height=”100%”
 dataProvider=”{shoppingCart.items}”
 removeProduct=”removeProductHandler(event)”/>
 <s:Label text=”Total: {shoppingCart.total}”/>
</s:VGroup>

15 In	the	Script	block,	find	the	handleComplete	method.	Create	and	dispatch	a	new	Event	
with	the	type	completeOrder.	
protected function handleComplete(event:MouseEvent):void
{
 dispatchEvent(new	Event(‘completeOrder’));
}

ptg

354 Lesson 14: Implementing the Checkout Process

16 In	the	Script	block,	find	the	handleEdit	method.	Create	and	dispatch	a	new	Event	with	
the	type	editInformation.	
protected function handleEdit(event:MouseEvent):void
{
	 dispatchEvent(new	Event(‘editInformation’));
}

17 Create	a	Metadata	block	that	defines	the	completeOrder	and	editInformation	events.
<fx:Metadata>
 [Event(name=”editInformation”, type=”flash.events.Event”)]
 [Event(name=”completeOrder”, type=”flash.events.Event”)]
</fx:Metadata>

18 Save	and	close	Review.mxml.	This	completes	the	Review	component.	Next	you	need	to	
add	it	to	the	CheckoutView,	and	handle	its	events.

19 Open	CheckoutView.mxml.	In	the	Script	block,	add	a	public	bindable	property	called	
shoppingCart	of	type	ShoppingCart.	
[Bindable]
public var shoppingCart:ShoppingCart;

20 Create	an	instance	of	the	Review	component	below	the	CreditCardInfo	component.	
Set	the	width	and	height	to	be	100%.	Bind	the	orderInfo	attribute	to	the	orderInfo
valueObject.	Bind	the	shoppingCart	attribute	to	the	shoppingCart	valueObject.	Add	
event	handlers	for	the	editInformation	and	completeOrder	events,	and	use	quick	assist	to	
create	those	methods.	Lastly,	set	the	includeIn	attribute	to	be	review.
<checkout:Review width=”100%” height=”100%”
 orderInfo=”{orderInfo}”
 shoppingCart=”{shoppingCart}”
 editInformation=”handleEdit(event)”
 completeOrder=”handleComplete(event)”
 includeIn=”review”/>

21 In	the	Script	block,	find	the	handleEdit	method.	In	the	body	of	the	method,	set	the		
currentView	to	0,	and	call	setViewByIndex,	passing	in	the	currentView.
protected function handleEdit(event:Event):void
{
 currentView=0;
 setViewByIndex(currentView);
}

Earlier,	you	built	the	currentView	and	setViewByIndex	to	allow	for	easily	switching	
between	states.	By	telling	the	CheckoutView	component	to	go	to	view	0,	you	are	sending	
them	back	to	the	CustomerInfo	screen.

ptg

355Completing the Order

22 Open	FlexGrocer.mxml.	Find	the	instantiation	of	the	CheckoutView.	Bind	the	
shoppingCart	property	to	shoppingCart.
<views:CheckoutView width=”100%” height=”100%”
 includeIn=”checkout”
 shoppingCart=”{shoppingCart}”/>

Completing the Order
The	checkout	process	is	almost	complete.	You	still	need	an	OrderEvent	object	to	pass	the	
OrderInfo	back	to	the	main	application.	You’ll	create	that	in	this	next	exercise.	For	now,	if	you	
save	the	files	and	run	the	application,	you’ll	see	that	you	can	add	items	to	the	cart,	enter	your	
information,	step	through	to	the	confirmation	page,	and	go	back	to	edit	the	information.

1 Right-click	the	events	package	and	choose	new	ActionScript	Class.	Leave	the	Package	as	
events,	set	the	Name	to	be	OrderEvent,	and	add	flash.events.Event	as	the	Superclass.	
Click	Finish.

2 In	your	new	class,	add	a	public	property	named	order	of	type	OrderInfo.
public var order:OrderInfo;

Be	sure	to	import	the	valueObjects.OrderInfo	class.

ptg

356 Lesson 14: Implementing the Checkout Process

3 Modify	the	constructor,	so	that	an	order	object,	of	type	OrderInfo,	is	passed	as	the	second	
argument,	between	the	type	and	bubbles	parameters.	In	the	body	of	the	method,	set	
this.order	equal	to	the	order	parameter,	just	after	the	call	to	the	super	class.
public function OrderEvent(type:String, order:OrderInfo, bubbles:Boolean=false,
➥ cancelable:Boolean=false)
{
 super(type, bubbles, cancelable);
	 this.order	=	order;
}

4 Override	the	clone	method,	so	it	returns	a	new	instance	of	the	OrderEvent.	Your		
completed	class	should	look	like	this:
package events
{
 import flash.events.Event;

 import valueObjects.OrderInfo;

 public class OrderEvent extends Event
 {
 public var order:OrderInfo;
 public function OrderEvent(type:String, order:OrderInfo,
 ➥ bubbles:Boolean=false, cancelable:Boolean=false)
 {
 super(type, bubbles, cancelable);
 this.order = order;
 }
 public	override	function	clone():Event{
	 	 	 return	new	OrderEvent(type,	order,	bubbles,	cancelable);
 }
 }
}

5 Save	and	close	the	OrderEvent	class.

6 Open	CheckoutView.mxml.	Find	the	handleComplete	method.	In	this	method,	create	and	
dispatch	an	OrderEvent,	with	the	type	set	to	placeOrder,	and	using	the	orderInfo	object	
to	populate	its	order	property.
protected function handleComplete(event:Event):void
{
	 dispatchEvent(new	OrderEvent(‘placeOrder’,	orderInfo));	

}

Remember	that	you’ll	need	to	import	the	OrderEvent	class.

ptg

357Completing the Order

7 Still	in	the	handleComplete	method,	reset	the	checkout	process	by	setting	the	currentView	
to	0	and	passing	currentView	to	setViewByIndex.	The	final	step	of	the	method	is	to	clear	
out	the	orderInfo	property	by	setting	it	equal	to	a	new	OrderInfo()	instance:
protected function handleComplete(event:Event):void
{
 dispatchEvent(new OrderEvent(‘placeOrder’, orderInfo));

 currentView=0;
 setViewByIndex(currentView);

 orderInfo = new OrderInfo();
}

8 Add	a	Metadata	tag	block	and	declare	the	placeOrder	event.
<fx:Metadata>
 [Event(name=”placeOrder”,type=”events.OrderEvent”)]
</fx:Metadata>

9 Save	CheckoutView,	and	open	FlexGrocer.	Find	the	instantiation	of	the	CheckoutView,	
and	add	an	event	handler	for	the	placeOrder	event,	which	will	call	a	method	named	
handlePlaceOrder	and	pass	along	the	event	object.	Use	the	quick	assist	feature	to	have	
Flash	Builder	build	this	method	for	you.

10 Find	the	newly	created	handlePlaceOrder	method.	Inside	the	method,	reset	the	shopping	cart	
(by	instantiating	a	new	ShoppingCart	in	its	place)	and	set	the	currentState	to	shopping:
protected function handlePlaceOrder(event:OrderEvent):void
{
 shoppingCart = new ShoppingCart();

 this.currentState=”shopping”;
}

11 Find	the	button	with	the	Flex Grocer label,	and	add	a	click	handler,	which	calls	a	method	
named	returnToShopping.	Pass	an	event	object	to	the	method.	Use	code	assist	to	create	
this	method.

12 In	the	newly	created	returnToShopping	method,	set	the	currentState	to	shopping:
protected function returnToShopping(event:MouseEvent):void
{
 this.currentState=”shopping”;
}

13 Save	and	run	the	application.

The	only	remaining	problem	is	that	users	can	start	the	checkout	process	even	if	they	have	
no	items	in	their	cart.	Although	this	isn’t	really	a	problem,	it	can	lead	to	user	confusion.	

ptg

358 Lesson 14: Implementing the Checkout Process

In	the	final	step,	you’ll	dynamically	enable/disable	the	checkout	button,	based	on	the	
contents	of	the	cart.

14 Back	in	FlexGrocer.mxml,	find	the	btnCheckout	button	and	use	a	binding	expression	to	
enable	the	button	only	if	the	cart’s	total	isn’t	$0:
<s:Button id=”btnCheckout” y=”10” right=”10” label=”Checkout”
➥ click=”startCheckout(event)” enabled=”{shoppingCart.total	!=	0}”/>

15 Save	and	run	the	application.	This	time	it	should	be	clearer	to	users	that	the	checkout		
button	is	disabled	until	after	they	have	added	an	item	to	the	cart.

What You Have Learned
In this lesson, you have:

•	 Created	a	navigation	structure	to	the	application	using	states	(pages	337–345)	

•	 Used	two-way	binding	to	ease	the	process	of	sharing	and	editing	data	(pages	334–336)

•	 Implemented	a	full	checkout	process	(pages	346–358)

ptg

This page intentionally left blank

ptg

Le
ss

o
n

 1
5 What You Will Learn

In this lesson, you will:

•	 Use	a	formatter	and	remove	string	concatenation

•	 Use	a	validator	to	check	if	data	is	in	a	valid	format

•	 Learn	to	trigger	validation	in	ActionScript

Approximate Time
This	lesson	takes	approximately	1	hour	to	complete.

ptg

361

Lesson 15

Using Formatters and
Validators
Flex provides built-in formatters and validators that enable you to display and validate user-
supplied data such as dates, numbers, and currencies. Using the built-in data validators on the
client side, you can make your application perform better by reducing calls to the server for
validation. You can also save development time by using the built-in formatters to automate
the often repetitive process of formatting data.

Validating customer information

ptg

362 Lesson 15: Using Formatters and Validators

Introducing Formatters and Validators
Flex	formatters	convert	raw	data	into	a	customized	string	using	predefined	rules.	The	format-
ters	can	be	used	in	MXML	or	in	ActionScript	and	work	well	with	data	binding	to	simplify	the	
display	of	formatted	data.

Validators	are	used	to	ensure	that	data	meets	specific	criteria	before	the	application	attempts	
to	use	it.	This	can	be	particularly	important	if	you	expect	a	user	to	input	a	number	for	a	math-
ematical	operation	or	a	date	for	scheduling.	Like	formatters,	validators	can	be	used	in	MXML	
or	ActionScript.	They	provide	logical	feedback	on	data	input	(valid	or	invalid)	but	also	pro-
vide	visual	feedback	in	the	way	of	red	borders	and	error	messages	when	input	is	invalid.

Formatters
A	formatter	is	simply	an	ActionScript	class	that	implements	an	interface	called	IFormatter.	
Some	of	the	formatters	available	include:

•	 spark.formatters.NumberFormatter

•	 spark.formatters.CurrencyFormatter

•	 spark.formatters.DateTimeFormatter

•	 mx.formatters.CurrencyFormatter

•	 mx.formatters.DateFormatter

•	 mx.formatters.NumberFormatter

•	 mx.formatters.PhoneFormatter

•	 mx.formatters.ZipCodeFormatter

You	may	notice	that	there	are	formatters	(such	as	Number	and	Currency)	that	exist	in	both	
the	spark.formatter	package	and	the	mx.formatters	package.	The	formatters	in	the	spark.
formatters	package	are	newer	and	have	exciting	new	features	such	as	locale	awareness	(the	
ability	to	format	data	differently	depending	on	where	the	user	lives/works/uses	the	applica-
tion).	So, whenever	you	have	the	choice,	we	recommend	you	use	the	latest	and	greatest	from	
the	spark	package.

Formatters	manage	quite	a	bit	of	complexity	for	you,	but	they	are	exceedingly	simple	to	use.	
Here	is	a	CurrencyFormatter	defined	in	MXML:

<s:CurrencyFormatter id=”myFormatter”
 fractionalDigits=”2”/>

ptg

363Introducing Formatters and Validators

This	formatter	can	be	applied	either	in	ActionScript	or	in	MXML	with	data	binding,	using	the	
following	syntax:

trace(myFormatter.format(123.456789));
//outputs USD123.46 in the United States

<s:Label text=”{ myFormatter.format(someData) }”/>

In	the	latter	example,	each	time	someData	changes,	the	format()	method	will	be	called	and	the	
output	displayed	in	the	label.

Previously,	you	accomplished	something	similar	using	concatenation	of	strings.	You	wrote	
code	like	this:

<s:Label text=”Your Cart Total: ${shoppingCart.total}”/>

This	strategy	has	several	problems.	First,	it	becomes	complicated	to	control	variables	defining	
how	the	user	wants	to	see	this	currency	presented.	For	example,	if	you	are	creating	a	global-
ized	application,	you’ll	need	to	support	different	currency	symbols,	different	regional	uses	of	
commas	and	periods,	and	varying	degrees	of	precision.	Second,	this	code	assumes	that	the	
currency	symbol	will	always	appear	before	the	number.	This	is	certainly	not	the	case	in	many	
countries.	By	using	Flex	formatters,	these	and	other	issues	are	handled	for	you.

Validators
Flex	also	has	a	set	of	Validator	classes	that	you	can	use	to	check	whether	a	data	type	is	valid	
(for	example,	if	the	input	is	a	number)	and	to	ensure	that	the	input	has	been	formatted	cor-
rectly	(for	example,	if	a	date	is	entered	in	a	specific	format).	As	with	Formatter	classes,	you	
can	use	Validator	classes	either	as	MXML	tags	or	instantiate	them	in	ActionScript.	

Using	validators,	you	can	perform	a	lot	of	data	validation	in	the	client	application,	instead	of	
waiting	until	data	is	submitted	to	the	server.	Not	only	does	this	provide	a	more	responsive	
user	experience,	it	also	reduces	the	number	of	calls	between	the	client	and	the	server.	This	
yields	a	better-performing	application.	Client-side	validation	is	not	a	perfect	solution;	some	
types	of	data	validation	(such	as	security	issues)	are	still	best	performed	at	the	server.	But	
using	Validator	classes	at	the	client	reduces	server	calls	to	only	these	use	cases.

All	Flex	validators	implement	an	interface	named	IValidator.	Some	of	the	validators	available	
as	part	of	the	Flex	framework	include:

•	 spark.validators.NumberValidator

•	 spark.validators.CurrencyValidator

•	 mx.validators.CreditCardValidator

ptg

364 Lesson 15: Using Formatters and Validators

•	 mx.validators.DateValidator

•	 mx.validators.EmailValidator

•	 mx.validators.NumberValidator

•	 mx.validators.PhoneNumberValidator

•	 mx.validators.SocialSecurityValidator

•	 mx.validators.StringValidator

•	 mx.validators.ZipCodeValidator

Much	like	the	Formatter	classes,	the	Validator	classes	cover	a	large	number	of	use	cases	and	
conditions	that	you	might	not	consider	on	your	own.	They	are	also	split	into	two	packages:	
spark.validators	which	contain	the	latest	locale	aware	validators	and	the	older	mx.validators.	
Use	the	spark.validators	if	the	particular	item	you	need	exists	in	both	packages.

By	using	the	Flex	validators,	you	are	better	prepared	for	robust	applications	and	international-
ization	requirements.

Using Formatter Classes
In	this	exercise,	you’ll	apply	a	CurrencyFormatter	class	so	all	the	price	selections	are	displayed	
as	local	currency	in	the	FlexGrocer	application.	There	are	multiple	places	in	which	prices	are	
displayed	in	the	application,	including:

•	 The	list	of	grocery	products	displayed

•	 The	total	of	the	shopping	cart

•	 The	subtotal	and	list	prices	in	the	user’s	shopping	cart

•	 The	checkout	process

The	CurrencyFormatter	adjusts	the	decimal	rounding,	currency	symbol	type,	and	placement	
as	well	as	sets	the	thousands	separator	and	the	negative	sign.	

1 Open	FlexGrocer.mxml.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson15/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

ptg

365Using Formatter Classes

2 Within	the	<s:Application>	tag,	add	a	locale	attribute	and	set	the	value	to	en_US.
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:views=”views.*” xmlns:services=”services.*”
 xmlns:cart=”cart.*”
 creationComplete=”handleCreationComplete(event)”
 locale=”en_US”>

By	adding	this	attribute,	you	are	specifying	the	locale	of	your	application.	A	locale	is	a	
combination	of	a	language	and	country	code.	So,	in	this	case	you	are	indicating	that	this	
particular	application	will	be	in	English	as	spoken	in	the	United	States.	Had	you	specified	
en_GB,	the	application	would	use	English	as	spoken	in	Great	Britain.	Although	English	
is	spoken	in	both	countries	there	are	differences	in	spelling,	units	of	currency,	and	so	on.	
Later	in	this	lesson,	you’ll	specify	a	locale	of	fr_FR,	French	as	spoken	in	France	to	see	the	
differences	applied	to	your	application.

3 Open	ShoppingView.mxml	from	your	views	package.

4 Within	the	<fx:Declarations>	tags,	add	an	<s:CurrencyFormatter>	tag.	Assign	the	tag	an	
id	of	currency	and	add	the	useCurrencySymbol	attribute	with	a	value	of	true:
<fx:Declarations>
 <s:CurrencyFormatter id=”currency”
 useCurrencySymbol=”true”/>
</fx:Declarations>

Tip: There is an <mx:CurrencyFormatter/> and an <s:CurrencyFormatter/> in this lesson.

You are going to need to pay close attention to this difference to ensure the desired outcome.

The	fractional	digits,	grouping	separator,	currency	symbol,	and	many	more	proper-
ties	can	be	set	on	the	CurrencyFormatter;	we	have	left	these	at	their	defaults.	The	
CurrencyFormatter	receives	its	default	settings	from	user	locale	information.	You	also	
specified	userCurrencySymbol	of	true,	meaning	that	the	formatter	should	include	an	
appropriate	currency	symbol.	

NoTe: If you would like to learn more about resource bundles or the process of international-

izing an application, refer to “Localization” in the Adobe Flex 4.5 help documentation.

5 Locate	the	Label	control	that	displays	the	words	Your Cart Total	along	with	a	dollar	sign	
and	the	shopping	cart’s	total.	Inside	the	value	for	the	text	property,	replace	the	dollar	sign	
and	binding	expression	with	a	call	to	the	format()	method	of	the	currency	object,	and	
pass	shoppingCart.total	to	the	method,	as	follows:
<s:Label text=”Your Cart Total{ currency.format(shoppingCart.total) }”/>

ptg

366 Lesson 15: Using Formatters and Validators

The	format()	method	takes	the	value	and	applies	all	the	parameters	you	set	on	the	
<s:CurrencyFormatter>	tag.	In	this	case,	you	are	using	the	default	currency	symbol	
(a dollar	sign	for	the	en_US	locale	where	this	book	was	written)	and	the	default	precision,	
so	two	digits	to	the	right	of	the	decimal	separator	will	always	be	maintained.

6 Locate	the	renderProductName()	method.

Presently,	this	method	returns	a	string	created	by	concatenating	parentheses	around	the	
item’s	quantity	along	with	the	product	name,	a	dollar	sign,	and	the	item’s	subtotal.

7 Remove	the	$	from	the	string	and	pass	the	item.subtotal	to	the	currency.format()	
method	before	using	it	in	the	concatenation:
private function renderProductName(item:ShoppingCartItem):String {
 var product:Product = item.product;
 return ‘(‘ + item.quantity + ‘) ‘ + product.prodName + ‘ ‘ +
 ➥ currency.format(item.subtotal);
}

8 Save	the	ShoppingView	class	and	FlexGrocer	application.	Run	the	FlexGrocer	application.

Add	a	few	items	to	the	cart	and	you’ll	see	that	the	currency	formatter	is	now	adding	pre-
cision	and	limiting	the	number	of	decimal	places	to	2.	Several	other	places	in	the	applica-
tion	could	use	a	CurrencyFormatter.	You’ll	handle	those	next.

9 Open	CartGrid.mxml	from	the	components	package.

10 Within	the	<fx:Declarations>	tags,	add	an	<s:CurrencyFormatter>	tag.	Assign	the	tag	an	
id	of	currency	and	add	the	useCurrencySymbol	attribute	with	a	value	of	true:
 <fx:Declarations>
 <s:CurrencyFormatter id=”currency”
 useCurrencySymbol=”true”/>
 </fx:Declarations>

ptg

367Using Formatter Classes

11 Locate	the	function	named	renderPriceLabel().	Change	the	return	statement	of	the	
function	to	use	the	format()	method	of	the	currency	instance:
private function renderPriceLabel(item:ShoppingCartItem,
➥ column:DataGridColumn):String {
 var subtotal:Number = item[column.dataField];
 return currency.format(subtotal);
}

Previously,	you	had	to	cast	the	subtotal	as	a	String	before	concatenating	with	the	$.	This	
isn’t	necessary	when	using	formatters.	The	format()	method	accepts	an	Object	and	inter-
nally	converts	it	as	needed.

12 Open	Review.mxml	from	the	views/checkout	package.

13 Within	the	<fx:Declarations>	tags,	add	an	<s:CurrencyFormatter>	tag.	Assign	the	tag	an	
id	of	currency	and	add	the	useCurrencySymbol	attribute	with	a	value	of	true.

14 Still	inside	the	<fx:Declarations>	tags,	add	an	<s:DateTimeFormatter>	tag.	Assign	the	tag	
an	id	of	df:
<fx:Declarations>
 <s:CurrencyFormatter id=”currency”
 useCurrencySymbol=”true”/>
 <s:DateTimeFormatter id=”df”/>
</fx:Declarations>

15 Find	the	FormHeading	tag	for	the	Form	displaying	the	Review	and	Checkout	informa-
tion.	Add	a	new	FormItem	to	the	Form	immediately	after	the	heading	with	a	FormItem	
label	of	Order	Date:
<s:FormHeading label=”Review and Checkout”/>
 <s:FormItem label=”Order Date”>
 </s:FormItem>

16 Inside	the	<fx:Script>	block,	create	a	new	private	function	named	getDate().	This	
method	will	accept	no	arguments,	and	return	a	Date	object.

17 Inside	the	getDate()	method,	instantiate	and	return	a	new	Date	object:
private function getDate():Date {
 return new Date();
}

You’ll	use	this	method	to	add	the	current	date	to	the	review	page.	You	may	remember	
that,	in	ActionScript,	when	a	new	Date	object	is	created,	it	will	reflect	the	current	time.

ptg

368 Lesson 15: Using Formatters and Validators

18 Inside	the	Order	Date	form	item,	add	a	new	<s:Label/>	tag,	set	the	text	property	equal	
to	df.format(getDate()).
<s:FormHeading label=”Review and Checkout”/>
<s:FormItem label=”Order Date”>
 <s:Label text=”{df.format(getDate())}”/>
</s:FormItem>

Like	the	CurrencyFormatter,	the	DateTimeFormatter	has	a	format	method	used	to	
convert	data	into	a	String.	In	this	case,	you	are	using	the	default	format	specified	by	the	
user’s	locale.	You	are	passing	the	format()	method	the	date	returned	from	your	getDate()	
method.	By	using	the	date	object	and	the	formatter,	you	are	placing	an	indicator	of	the	
current	date	and	time	on	the	form.

19 Find	the	Label	instance	that	displays	the	user’s	total.	Pass	the	shopppingCart.total	to	
the format()	method	of	the	currency	instance	before	concatenating	it	and	assigning	it	
to the	text:
<s:Label text=”Total: { currency.format(shoppingCart.total) }”/>

20 Save	this	file.

21 Open	ProductItem.mxml	from	the	components	package.

22 Within	the	<fx:Declarations>	tags,	add	an	<s:CurrencyFormatter>	tag.	Assign	the	tag	an	
id	of	currency	and	add	the	useCurrencySymbol	attribute	with	a	value	of	true.

23 Find	the	Label	instance	that	displays	the	products	listPrice.	Pass	the	product.listPrice	
to	the	format()	method	of	the	currency	instance	before	assigning	it	to	the	text.
<s:Label id=”price” text=”{ currency.format(product.listPrice) }”/>

24 Save	this	file	and	run	the	application.	If	you	add	a	few	items	to	the	cart	and	proceed	
through	checkout,	you	should	see	formatted	currencies	and	dates	throughout.

Examining a Second Locale
In	this	exercise,	you’ll	apply	a	different	locale	to	the	Application	and	then	examine	the	results.

1 Open	FlexGrocer.mxml.

2 Change	the	locale	from	en_US	to	fr_FR	in	the	Application	tag:
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:views=”views.*” xmlns:services=”services.*”
 creationComplete=”handleCreationComplete(event)”
 locale=”fr_FR”>

ptg

369Using Validator Classes

3 Save	and	run	the	application.

Notice	that	the	dollar	signs	have	changed	to	euro	symbols	throughout	the	application.	
Further,	the	currency	symbol	now	resides	on	the	right	side	of	the	number.

4 Change	the	locale	back	to	en_US	and	save	the	application.

Using Validator Classes
In	this	exercise,	you’ll	use	a	ZipCodeValidator	class	to	check	whether	a	postal	code	is	a	valid	
U.S.	zip	code	or	Canadian	postal	code	along	with	a	StringValidator	to	ensure	during	the	
checkout	process	that	the	billing	name	is	at	least	two	characters	long.

1 Open	CustomerInfo.mxml	from	your	views/checkout	package.

2 Find	the	FormItem	with	the	label	Customer	Name	and	set	the	required	attribute	of	that	
FormItem	to	true.
<s:FormItem label=”Customer Name” required=”true”>
 <s:TextInput text=”@{orderInfo.billingName}”/>
</s:FormItem>

Setting	the	required	attribute	of	a	FormItem	tag	causes	Flex	to	place	an	asterisk	next	
to the	form	field	when	it	is	displayed.	This	is	purely	a	visual	property.	By	itself	it	does	
nothing	to	ensure	the	user	enters	data	into	this	field.

3 Inside	the	FormItem,	set	the	id	property	of	the	TextInput	to	billingName:
<s:FormItem label=”Customer Name” required=”true”>
 <s:TextInput id=”billingName” text=”@{orderInfo.billingName}”/>
</s:FormItem>

Shortly,	you’ll	need	to	refer	to	this	TextInput	by	the	id	to	validate	its	input.

4 Find	the	FormItem	with	the	label	Zip	and	set	the	required	attribute	of	that	FormItem	
to true:
<s:FormItem label=”Zip” required=”true”>

Remember,	this	is	purely	a	visual	detail.

5 Inside	the	FormItem,	set	the	id	property	of	the	TextInput	to	billingZip:
<s:FormItem label=”Zip” required=”true”>
 <s:TextInput id=”billingZip” text=”@{orderInfo.billingZip}”/>
</s:FormItem>

ptg

370 Lesson 15: Using Formatters and Validators

6 Inside	the	<fx:Declaration>	tag	pair,	add	an	<mx:ZipCodeValidator>	tag.	Bind	the	
source	property	of	the	ZipCodeValidator	to	the	billingZip	TextInput.	Still	in	the	
ZipCodeValdator,	specify	the	property	attribute	as	text	and	specify	the	required	attribute	
to	true:
<mx:ZipCodeValidator source=”{billingZip}”
 property=”text”
 required=”true”/>

The	<mx:ZipCodeValidator>	validates	that	a	string	has	the	correct	length	for	a	five-digit	zip	
code,	a	five-digit	+	four-digit	U.S.	zip	code,	or	a	Canadian	postal	code.	The	source	attribute	
indicates	the	control	containing	the	data	to	be	validated.	As	you’ll	see,	this	also	specifies	
where	any	error	messages	will	appear.	The	property	attribute	indicates	which	property	of	
the	control	you	wish	to	validate.	In	this	case	you	are	indicating	that	the	text	property	of	the	
billingZip	contains	the	data	for	validation.	Finally,	the	required	attribute	indicates	that	
this	field	must	be	supplied.	If	required	was	set	to	false,	a	blank	field	would	be	acceptable,	
but	if	the	user	entered	any	information,	it	must	conform	to	a	valid	zip	code.

If	you	used	code	completion	when	you	added	the	ZipCodeValidator,	the	mx	namespace	
was	added	for	you	at	the	top	of	this	file.	If	you	did	not,	be	sure	to	add	the	mx	namespace	
manually	(xmlns:mx=”library://ns.adobe.com/flex/mx”).

7 Still	inside	the	<fx:Declaration>	tag	pair,	add	an	<mx:StringValidator>	tag.	Bind	
the	source	property	of	the	StringValidator	to	the	billingName	TextInput.	Specify	the	
property	attribute	as	text,	the	required	attribute	as	true,	and	minLength	as	2.
<mx:StringValidator source=”{billingName}”
 property=”text”
 required=”true”
 minLength=”2”/>

The	<mx:StringValidator>	validates	that	a	string	falls	within	certain	size	parameters.	
Here	you	are	indicating	that	the	String	must	be	at	least	a	length	of	2	to	be	valid.

8 Save	and	compile	the	application.

Click	the	Checkout	button	and	enter	some	letters	for	the	zip	code	in	the	billing	information	
screen.	When	you	exit	the	field,	you	should	see	a	red	highlight	around	the	text	field.	When	
you	move	the	pointer	over	the	text	field,	you’ll	see	the	default	error	message	appear.

However,	even	if	you	leave	these	fields	in	error,	you	can	still	click	the	Proceed	button	to	
move	on	to	the	next	screen.	You’ll	correct	that	next.

9 Return	to	CustomerInfo.mxml.

You’ll	now	add	code	to	prevent	leaving	this	page	until	the	user	corrects	any	errors.

ptg

371Using Validator Classes

10 Inside	the	<fx:Declarations>	tag	pair,	wrap	the	two	validators	you	created	above	in	an	
<fx:Array>	tag	with	the	id	of	validators.
<fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 <fx:Array id=”validators”>
 <mx:ZipCodeValidator source=”{billingZip}”
 property=”text”
 required=”true”/>
 <mx:StringValidator source=”{billingName}”
 property=”text”
 required=”true”
 minLength=”2”/>
 </fx:Array>
</fx:Declarations>

This	code	creates	an	array	named	validators.	It	inserts	the	two	validator	instances	created	
into	that	array	so	that	they	can	be	referred	to	as	a	group.

11 Find	the	handleProceed()	method.

This	method	is	called	when	the	user	clicks	the	Proceed	button.	It	dispatches	an	event,	
which	changes	to	the	next	view	state.

12 Add	a	new	local	variable	named	errors	of	type	Array	on	the	first	line	of	this	method.	
Assign	it	to	the	result	of	calling	the	Validator.validateAll()	method,	passing	it	the	
validators	array	you	just	created.
var errors:Array = Validator.validateAll(validators);

If	you	used	code	completion,	mx.validators.Validator	will	be	imported	for	you.	If	not,	
import	it	now.	The	validateAll()	method	is	a	static	method	of	the	Validator	class.	It	is	
a	utility	method	that	accepts	an	array	of	validators,	like	the	one	you	created	in	step	10.	
It	runs	each	validator	and	aggregates	any	failures,	meaning	that	this	array	will	contain	
any	validation	errors	found	as	a	result	of	running	each	of	your	validators.	If	the	array	is	
empty,	there	were	no	validation	errors.

13 Just	below	the	errors	array	declaration,	create	an	if	statement	that	checks	if	the	length	
property	of	the	errors	array	is	0.
if (errors.length == 0) {
}

Effectively,	this	if	statement	checks	to	see	if	there	were	any	validation	errors.

ptg

372 Lesson 15: Using Formatters and Validators

14 Move	the	code	that	dispatches	the	proceed	event	inside	the	else	block.
if (errors.length == 0) {
 dispatchEvent(new Event(“proceed”));
}

If	there	are	no	errors,	the	user	will	be	allowed	to	continue.

15 Save	and	run	the	application.	Enter	invalid	data	in	the	Zip	field	and	attempt	to	proceed	to	
the	next	page.

You	now	have	a	form	capable	of	collecting	valid	data,	informing	users	when	that	data	is	
invalid,	and	preventing	users	from	proceeding	if	they	have	not	yet	corrected	the	invalid	data.

What You Have Learned
In this lesson, you have:

•	 Learned	how	to	apply	a	formatter	to	incoming	text	(pages	362–368)

•	 Learned	to	set	a	locale	for	an	application	(pages	368–369)

•	 Learned	how	to	apply	a	validator	to	outgoing	data	(pages	369–372)

•	 Learned	to	trigger	validation	from	ActionScript	(pages	371–372)

ptg

This page intentionally left blank

ptg

Le
ss

o
n

 1
6 What You Will Learn

In this lesson, you will:

•	 Learn	how	Flex	applications	are	styled

•	 Set	styles	via	tag	attributes

•	 Learn	about	inheritable	style	properties

•	 Set	styles	via	the	<fx:Style>	tag

•	 Set	styles	via	CSS	files

Approximate Time
This	lesson	takes	approximately	1	hour	to	complete.

ptg

375

Lesson 16

Customizing a Flex
Application with Styles
Out of the box, Flex provides a lot of functionality, but it has a rather generic look for an appli-
cation. In this lesson, you’ll explore how to apply basic customizations to a Flex application
using styles applied both inline and via CSS style sheets.

The FlexGrocer application with a new font and highlight colors

ptg

376 Lesson 16: Customizing a Flex Application with Styles

Applying a Design with Styles and Skins
You	can	use	one	of	two	approaches	to	apply	a	design	to	your	Flex	applications:	styles	or	skins.	
Styles	allow	you	to	modify	the	appearance	of	a	Flex	component	by	using	style	properties	to	set	
visual	elements	such	as	the	font	size	and	background	color.	In	this	lesson,	you’ll	explore	styles,	
learn	about	style	inheritance,	and	learn	about	several	ways	to	apply	styles	to	your	application.

Skins	allow	you	to	go	beyond	the	functionality	of	styles,	allowing	you	to	change	entire	visual	
elements	and	rearrange	those	elements	on	the	screen.

In	previous	versions	of	Flex,	styles	were	the	primary	way	applications	were	customized.	In	
Flex	4	and	later,	designs	for	truly	interesting	user	interfaces	are	a	combination	of	the	styling	
you’ll	learn	in	this	lesson	and	the	skinning	techniques	you’ll	learn	in	the	next.

Cleaning Up the Appearance
Styling	modifies	the	appearance	of	existing	elements	on	the	screen.	So,	before	you	begin	styl-
ing	the	application,	you’ll	make	a	few	minor	changes	to	the	ProductItem’s	appearance	to	make	
it	more	conducive	to	the	final	design.

1 Open	ProductItem.mxml	from	your	components	package.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson16/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Find	the	label	with	the	id	of	prodName	and	move	it	directly	below	the	<s:Image/>	tag	with	
the	id	of	img.

Presently	the	product	name	is	displayed	above	the	image,	but	it	will	be	moved	lower	for	a	
cleaner	appearance	once	styling	is	complete.

3 Wrap	the	add	and	remove	Button	instances	in	an	<HGroup>	tag	pair	with	its	width	property	
set	to	100%.
<s:HGroup width=”100%”>
	 <s:Button	id=”add”	label=”Add	To	Cart”	click=”addToCart(product)”/>
	 <s:Button	id=”remove”	label=”Remove	From	Cart”	click=”removeFromCart(
product)”/>
</s:HGroup>

As	opposed	to	being	stacked	vertically,	the	buttons	will	now	be	displayed	side	by	side,	
providing	more	screen	space	for	the	products.

ptg

377Applying Styles

4 Shorten	the	label	of	the	Add To Cart	button	to	Add.	Also	shorten	the	label	of	the	Remove
From Cart	button	to	Remove.	

As	these	items	are	now	side	by	side,	shorter	names	will	provide	a	cleaner	look.	Your	final	
code	should	look	like	this:
<s:VGroup	id=”products”>
	 <s:Image	id=”img”
	 	 scaleMode=”letterbox”	
	 	 source=”assets/{product.imageName}”
	 	 mouseOver=”this.currentState=’expanded’”
	 	 mouseOut=”this.currentState=’State1’”
	 	 mouseDown=”img_mouseDownHandler(event)”/>
	 <s:Label	id=”prodName”	text=”{product.prodName}”/>
	 <s:Label	id=”price”	text=”{	currency.format(product.listPrice)	}”/>
	 <s:HGroup	width=”100%”>
	 	 <s:Button	id=”add”	label=”Add”	click=”addToCart(product)”/>
	 	 <s:Button	id=”remove”	label=”Remove”	click=”removeFromCart(product)”/>
	 </s:HGroup>
</s:VGroup>

5 Save	the	file	and	run	the	FlexGrocer	application.	The	product	name	and	buttons	are	now	
moved	into	a	better	position	and	ready	for	styling.

Applying Styles
As	you	have	seen	so	far	in	your	explorations,	Flex	development	is	performed	using	a	number	
of	standards-based	languages,	such	as	MXML	(based	on	XML)	and	ActionScript	3.0	(based	
on	ECMAScript).	Styling	is	also	accomplished	in	a	standards-based	way	by	using	Cascading	
Style	Sheets	(CSS).	You	can	apply	a	style	by:	

•	 Setting	a	single	style	on	an	individual	component.

•	 Using	CSS	class	selectors	to	set	several	styles	together,	which	you	can	apply	to	multiple	
components.

•	 Using	a	type	selector	to	specify	that	all	components	of	a	particular	type	(such	as	Button)	
should	use	a	set	of	styles.

•	 Using	descendant	selection	to	indicate	that	components	matching	a	particular	hierarchy	
should	use	a	set	of	styles	(such	as	All	Buttons	in	VGroup	instances).

•	 Using	an	ID	selector	to	specify	that	a	component	with	a	particular	id	should	use	a	set	of	styles.

•	 Using	pseudo-selectors,	which	allow	you	to	style	a	particular	state	of	a	class	(such	as	the	
Up	state	of	a	Button).

ptg

378 Lesson 16: Customizing a Flex Application with Styles

In	the	next	several	exercises,	you’ll	have	a	chance	to	apply	styles	in	all	these	ways.

Regardless	of	which	way	you	apply	a	style,	you	need	to	know	the	style	property	that	will	affect	
the	changes	you	want.	The	ASDocs,	also	known	as	the	Adobe Flex 4.5 Language Reference	
(which	ships	with	Flash	Builder),	have	a	complete	list	of	all	styles	available	for	every	built-in	
component	in	Flex.

For	example,	here	are	some	common	styles	for	the	Label	component:

•	 color:	Color	of	text	in	the	component,	specified	as	a	hexadecimal	number.	

•	 fontFamily:	Name	of	the	font	to	use,	specified	as	a	string,	or	a	comma-separated	list	
of	font	names.	When	you	specify	a	list,	Flash	uses	the	first	font	found	in	the	list.	If	you	
specify	a	generic	font	name	(such	as	_sans),	it	will	be	converted	to	an	appropriate	device	
font.	The	default	value	is	Arial.

•	 fontSize:	Height	of	the	text,	specified	in	pixels.	Legal	values	range	from	1	to	720.	
The default	value	is	12.

•	 fontStyle:	String	indicating	whether	the	text	is	italicized.	Recognized	values	are	normal	
(the	default)	and	italic.	

•	 fontWeight:	String	indicating	whether	the	text	is	boldface.	Recognized	values	are	normal	
(the	default)	and	bold.	

•	 paddingLeft:	Number	of	pixels	between	the	container’s	left	border	and	the	left	edge	of	its	
content	area.	The	default	value	for	Text	controls	is	0,	but	different	defaults	apply	to	other	
components.

•	 paddingRight:	Number	of	pixels	between	the	container’s	right	border	and	the	right	edge	
of	its	content	area.	The	default	value	for	Text	controls	is	0,	but	different	defaults	apply	to	
other	components.

•	 textAlign:	String	indicating	the	alignment	of	text	within	its	container	or	control.	
Recognized	values	are	left,	right,	center,	justify,	start,	or	end.	Flex	4	text	controls	
support	bidirectional	languages	such	as	Arabic	and	Hebrew,	so	the	concepts	of	left	and	
right	can	sometimes	be	a	bit	confusing.	For	a	person	reading	left	to	right,	left	padding	is	
at	the	beginning	of	the	sentence.	For	a	person	reading	right	to	left,	right	padding	is	at	the	
beginning	of	the	sentence.	You	can	specify	start	or	end	for	padding,	and	Flex	will	apply	it	
to	the	left	or	right	depending	on	the	language.	The	default	value	is	start.

•	 textDecoration:	String	indicating	whether	the	text	is	underlined.	Recognized	values	are	
none	(the	default)	and	underline.

ptg

379Applying Styles

This	is	just	a	small	sampling	of	the	styles	available	for	text	manipulation	in	Flex.	Each	compo-
nent	has	its	own	list	of	style	properties,	such	as	the	selectionColor	or	rollOverColor	(used	in	
components	like	List	and	DataGrid),	which	accept	a	color	as	a	hexadecimal	value	to	indicate	
the	color	of	the	background	bar	around	an	item	when	you	either	hover	over	or	select	it.

You	can	find	a	complete	list	of	these	styles	in	the	ASDoc	Help	Files	for	each	class.

Setting Styles Inline with Tag Attributes
You	can	apply	styles	to	individual	instances	of	a	component	by	setting	the	tag	attribute	of	the	
component	with	the	name	of	the	style	property	and	the	value	you	want	to	set.	For	example,	
to give	a	label	a	larger	font	size,	specify	the	following:

<s:Label	text=”Only	a	Test”	fontSize=”40”/>

In	this	exercise,	you’ll	set	the	rollOverColor	and	selectionColor	for	a	DropDownList	control	
in	the	second	screen	of	the	Checkout	process	(CreditCardInfo.mxml).

1 Open	CreditCardInfo.mxml	from	your	/views/checkout	package	that	you	used	in	the	
previous	exercises.

2 Find	the	declaration	for	the	first	DropDownList	control	that	displays	credit	card	informa-
tion.	Add	a	tag	attribute	to	specify	the	rollOverColor	as	#AAAAAA.

ptg

380 Lesson 16: Customizing a Flex Application with Styles

<s:DropDownList	selectedItem=”@{orderInfo.cardType}”
	 	 requireSelection=”true”	
	 	 rollOverColor=”#AAAAAA”>
	 <s:dataProvider>
	 	 <s:ArrayList>
	 	 	 <fx:String>American	Express</fx:String>
	 	 	 <fx:String>Diners	Club</fx:String>
	 	 	 <fx:String>Discover</fx:String>
	 	 	 <fx:String>MasterCard</fx:String>
	 	 	 <fx:String>Visa</fx:String>
	 	 </s:ArrayList>
	 </s:dataProvider>
</s:DropDownList>

Letters	used	as	part	of	a	hexadecimal	number	(such	as	#AAAAAA)	are	not	case	sensitive;	
#aaaaaa	works	just	as	well.

3 Add	another	attribute	to	the	same	tag	to	specify	the	selectionColor	as	#EA800C.
<s:DropDownList	selectedItem=”@{orderInfo.cardType}”	
	 	 requireSelection=”true”	
	 	 rollOverColor=”#AAAAAA”
	 	 selectionColor=”#EA800C”>

You	are	now	telling	this	DropDownList	control	that	when	a	user	hovers	the	pointer	over	
one	of	the	items,	its	color	should	be	pale	gray	(#AAAAAA)	instead	of	pale	cyan	(#0EFFD6),	
which	is	the	default.

4 Save	CreditCardInfo.mxml.	Open	and	run	FlexGrocer.mxml.	Click	Checkout	in	the	
upper-right	corner.	In	the	Customer	Information	form,	fill	out	the	required	fields	and	
click	the	Continue	button.	Click	the	Credit	Card	Type	drop-down	list	and	notice	the	
color	of	selected	and	rolled-over	items.

You	can	easily	compare	this	with	the	default	look	of	the	DropDownList	control	because	
you	have	changed	only	one	of	the	three	controls	on	this	screen.	Open	either	of	the	other	
two	drop-down	lists	to	see	the	default	selectionColor	and	rollOverColor.

ptg

381Applying Styles

Tip: It is also possible to set styles on individual instances in Actionscript using the setStyle()

method. For example, the same style could have been applied with this code:

idOfControl.setStyle(“selectionColor”,0xEA800C);
idOfControl.setStyle(“rollOverColor”,0xAAAAAA);

NoTe: When using setStyle(), colors are prefixed with 0x, which is the eCMAscript standard

prefix for hexadecimal numbers. When applying a style in an attribute or <fx:Style> tag (as

you’ll soon see), you can use a pound sign (#) instead of 0x. When set through Actionscript,

numeric values (even those that are hexadecimal) do not have quotes around them.

Although setStyle() is useful for times when styles need to change at runtime, use it spar-

ingly. setStyle() causes many of the visible portions of an application to refresh, so it is a

processor-intensive operation.

Understanding Style Inheritance
As	you	look	at	the	ASDoc	for	various	components,	you	can	see	that	each	style	has	a	yes	or	no	
property	for	something	called	CSS	inheritance.

For	example,	in	this	figure	you	see	that	a	few	styles	of	the	DropDownList	control—	
selectionColor	and	rolloverColor—do	allow	CSS	inheritance,	whereas	cornerRadius	does	
not.	What	this	means	is	that	if	a	parent	container	of	a	DropDownList	control	has	a	value	for	
selectionColor	and	the	DropDownList	control	itself	does	not,	the	container’s	value	will	be	
used.	However,	because	cornerRadius	does	not	support	inheritance,	even	if	a	parent	container	
had	a	value	set	for	cornerRadius,	the	DropDownList	control	would	use	the	default	value	
because	it	does	not	inherit	this	value.

ptg

382 Lesson 16: Customizing a Flex Application with Styles

Setting Styles with the <fx:Style> Tag
Many	of	you	may	have	been	exposed	to	CSS	before	when	building	web	pages.	You	can	also	
use	many	of	the	same	CSS	styles	in	your	Flex	applications.	One	way	to	do	this	is	to	add	an	
<fx:Style>	tag	pair	to	the	Application	MXML	document;	you	can	write	standard	CSS	style	
declarations	between	the	open	and	close	tags.

Standard	CSS	tends	to	have	style	properties	whose	names	are	all	lowercase	and	uses	hyphens	
as	a	separator	between	words:

background-color	:	#FFFFFF;

In	the	previous	exercise,	you	used	multiword	styles	by	declaring	them	with	camel case	syntax;	
that	is,	the	style	declaration	started	with	a	lowercase	letter	and	each	subsequent	word	started	
with	an	uppercase	letter,	with	no	spaces	or	hyphens	used:

<s:DropDownList	rollOverColor=”#AAAAAA”/>

The	reason	for	the	difference	is	that	a	hyphen	is	not	a	valid	character	for	an	XML	attribute,	
and	MXML	tags	are	all	XML	tags.	To	work	around	this,	when	you	set	style	names	via	attri-
butes,	set	them	with	the	ActionScript	equivalent	of	the	style	name.	So,	for	example,	you	use	
backgroundColor	instead	of	background-color.	The	lowercase	hyphened	versions	of	style	
properties	are	available	only	for	properties	that	exist	within	traditional	CSS.	Any	styles	created	
specifically	for	Flex	(such	as	rollOverColor)	are	available	only	in	camel	case.	When	you	spec-
ify	a	style	within	an	<fx:Style>	tag,	you	can	use	either	syntax,	and	Flex	will	apply	it	properly.

<fx:Style>
.customDropDown{
	 selection-color:	#AAAAAA;
}
</fx:Style>

or

<fx:Style>
.customDropDown{
	 selectionColor:	#AAAAAA;
}
</fx:Style>

Flex	supports	several	ways	to	assign	multiple	styles	at	one	time	via	CSS.	These	include	class	
selectors,	type	(sometimes	called	element)	selectors,	descendant	selectors,	pseudo-selectors,	
and	ID	selectors.	

ptg

383Applying Styles

Class Selectors
A	class	selector	defines	a	set	of	style	properties	as	a	single	style	class,	which	can	then	be	
applied	to	one	or	more	components	through	the	use	of	the	component’s	styleName	property:

<fx:Style>
.customDropDown	{
	 rollOverColor:	#AAAAAA;
	 selectionColor:	#EA800C;
}
</fx:Style>
<s:DropDownList	styleName=”customDropDown”/>

Here,	the	DropDownList	control	is	using	the	customDropDown	style	class,	which	sets	both	the	
text	rollOverColor	and	the	selectionColor.	You	can	use	the	styleName	property	to	assign	
more	than	one	style	at	a	time	to	an	instance	by	separating	the	style	classes	with	a	space:

<fx:Style>
.customDropDown	{
	 rollOverColor:	#AAAAAA;
	 selectionColor:	#EA800C;
}

.blueStyle	{
	 color:	blue;
}
</fx:Style>
<s:DropDownList	styleName=”customDropDown blueStyle”/>

In	this	case,	the	DropDownList	control	is	using	the	customDropDown	style	class	and	the	
blueStyle	style	class,	which	sets	the	rollOverColor,	selectionColor,	and	color	of	the	text.

Type Selectors
A	type	selector	enables	you	to	specify	a	set	of	styles	that	will	be	applied	to	all	instances	of	a	
component	type.	In	HTML	applications,	you	can	do	this	to	define	the	look	of	an	<H1>	tag	for	
your	site.	The	same	basic	syntactic	structure	works	to	define	a	set	of	styles	to	be	applied	to	all	
instances	of	a	Flex	control	type.

Throughout	this	book	you	have	worked	with	namespaces.	Flex	uses	namespaces	as	a	
means	of	clarification.	This	clarification	allows	you	to	specify	the	type	of	label	you	want,	
as	in	<s:Label/>,	or	perhaps	which	custom	component	you	meant	when	indicating	
<views:ShoppingView/>.	In	ActionScript,	you	can	have	multiple	classes	with	the	same	name	
but	not	in	the	same	namespace.	So,	you	could	have	a	Test	class	in	your	views	package	and	
your	components	package,	but	you	could	not	have	two	Test	classes	in	the	views	package.	

ptg

384 Lesson 16: Customizing a Flex Application with Styles

Namespaces	allow	you	to	be	specific	about	the	component	you	intend	to	address	and	ensure	
that	the	Flex	compiler	doesn’t	need	to	guess	your	intent.

The	same	concept	is	used	when	styling	in	CSS:

<fx:Style>
	 @namespace	s	“library://ns.adobe.com/flex/spark”;

 s|DropDownList {
 selectionColor: #EA800C;
 cornerRadius:5;
 }
</fx:Style>

<s:DropDownList	id=”stateProvenceCombo”/>
<s:DropDownList	id=”countryCombo”/>

In	this	example,	the	cornerRadius	and	selectionColor	style	properties	are	being	applied	to	all	
DropDownList	control	instances	in	the	Spark	(s)	namespace.	

Tip: The terms type and class selector might seem counterintuitive if you haven’t previously

worked with Css. These terms come from Css standards, not from Adobe or Flex. The confusion

is that a type selector is what you would use to affect all instances of an Actionscript class; a

class selector has no relation to any Actionscript class, but instead defines a style class that can

be used on several elements.

In	this	exercise,	you’ll	build	a	class	selector	and	apply	it	to	an	<s:Form>	tag	in	CreditCardInfo.
mxml.	Not	only	will	this	showcase	using	a	class	selector,	but	you’ll	also	see	style	inheritance	in	
use	as	the	style	will	be	inherited	by	all	the	DropDownList	controls	in	that	form.

1 Open	FlexGrocer.mxml.

2 Just	after	the	closing	</fx:Script>	tag,	add	a	new	<fx:Style>	tag	pair.

When	you	add	this	tag,	Flash	Builder’s	code	completion	will	take	over	and	add	a	
namespace	for	every	namespace	presently	defined	in	the	application.	Your	Style	tag	
should	look	like	the	following:
<fx:Style>
	 @namespace	s	“library://ns.adobe.com/flex/spark”;
	 @namespace	views	“views.*”;
	 @namespace	services	“services.*”;
	 @namespace	cart	“cart.*”;

</fx:Style>

You	now	have	an	<fx:Style>	block,	in	which	you	can	create	type	or	class	selectors.

ptg

385Applying Styles

3 Inside	the	<fx:Style>	block,	create	a	class	selector	called	customDropDown	that	specifies	a	
selectionColor	of	#EA800C	and	a	rollOverColor	of	#AAAAAA.
<fx:Style>
	 @namespace	s	“library://ns.adobe.com/flex/spark”;
	 @namespace	views	“views.*”;
	 @namespace	services	“services.*”;
	 @namespace	cart	“cart.*”;
	 	
	 .customDropDown{
	 	 selectionColor:#EA800C;
	 	 rollOverColor:#AAAAAA;
	 }
</fx:Style>

As	with	traditional	CSS,	but	unlike	style	properties	set	as	attributes,	no	quotes	are	used	
around	the	values	of	the	style	properties.

4 Open	CreditCardInfo.mxml.

5 Remove	the	rollOverColor	and	selectionColor	attributes	of	the	DropDownList	control.	
Instead,	specify	a	styleName	of	customDropDown	as	an	attribute	on	that	ComboBox	control.
<s:DropDownList	selectedItem=”@{orderInfo.cardType}”	
	 requireSelection=”true”
	 styleName=”customDropDown”>

6 Save	both	CreditCardInfo.mxml	and	FlexGrocer.mxml,	and	then	run	the	application.	

The	DropDownList	instances	in	the	Checkout	section	should	behave	exactly	as	they	did	
before.	The	Credit	Card	Type	will	have	custom	colors,	whereas	the	other	two	show	the	
default	colors.

7 Cut	styleName=”customDropDown”	from	the	DropDownList	and	instead	paste	it	as	an	
attribute	of	the	<s:Form>	tag.
<s:Form	styleName=”customDropDown”>

Because	the	form	contains	three	DropDownList	controls,	applying	these	inheriting	styles	
to	the	form	will	affect	all	the	DropDownList	controls	within	the	form.

8 Save	and	run	the	application.

Verify	that	the	style	is	now	applied	to	all	three	DropDownList	controls	in	the	form.

ptg

386 Lesson 16: Customizing a Flex Application with Styles

Setting Styles with CSS Files
You	can	use	an	<fx:Style>	tag	to	either	define	a	block	of	styles	inline	on	the	MXML	docu-
ment,	as	you	did	in	the	previous	exercise,	or	use	its	source	attribute	to	specify	an	external	CSS	
file	to	be	compiled	into	the	application.	

<fx:Style	source=”path/to/file.css”/>

One	great	advantage	of	using	an	external	file	is	that	you	can	share	CSS	files	between	multiple	
Flex	applications,	or	even	between	Flex	and	HTML	applications.	This	is	possible	because	CSS	
parsers	in	both	Flex	and	HTML	are	smart	enough	to	ignore	any	declarations	they	don’t	under-
stand.	So	even	if	Flex	supports	only	a	subset	of	standard	CSS,	and	in	fact	creates	a	number	of	
its	own	custom	declarations,	neither	your	HTML	nor	your	Flex	applications	will	be	hurt	by	
declarations	they	cannot	understand.

In	this	exercise,	you’ll	create	a	CSS	file	and	begin	to	style	the	FlexGrocer	application.

1 Right-click	the	assets	package	of	the	Package	Explorer.	Choose	New	>	CSS	File.

ptg

387Applying Styles

2 Enter	defaultStore	as	the	name	in	the	New	File	dialog	box	and	click	Finish.

Flash	Builder	creates	a	new	CSS	File	with	the	Spark	namespace,	ready	for	your	customization.

3 Open	FlexGrocer.mxml,	find	your	<fx:Style>	tag,	and	cut	everything	between	the	open-
ing	and	closing	tags.	Paste	this	content	into	defaultStore.css.	Your	CSS	file	should	have	the	
following	information:
@namespace	s	“library://ns.adobe.com/flex/spark”;
@namespace	views	“views.*”;
@namespace	services	“services.*”;
@namespace	cart	“cart.*”;
	 	
.customDropDown{
	 selectionColor:#EA800C;
	 rollOverColor:#AAAAAA;
}

Save	this	file.	You	might	notice	that	the	Outline	view	of	Flash	Builder	understands	CSS	
files	as	well	as	MXML	and	ActionScript.	As	your	CSS	becomes	more	complicated,	the	
Outline	view	can	be	a	great	way	to	navigate	through	the	file.

ptg

388 Lesson 16: Customizing a Flex Application with Styles

As	a	best	practice,	all	styles	for	the	application	are	defined	in	a	single	style	sheet.	This	way,	
if	you	want	to	change	the	look	and	feel	of	the	application	at	a	later	time,	you	don’t	need	
to	dig	through	the	code	to	find	all	the	places	where	styles	were	applied;	instead,	you	can	
restyle	the	application	by	changing	only	one	file.

4 Return	to	FlexGrocer.mxml	and	find	the	<fx:Style>	tag	again.	Convert	the	style	tag	from	
a	tag	pair	to	a	single	self-closing	tag.	Add	a	source	attribute	to	the	tag	and	sets	its	value	to	
assets/defaultStore.css.
<fx:Style source=”assets/defaultStore.css”/>

FlexGrocer	will	now	use	the	external	CSS	file	found	in	the	assets	directory	for	its	style	
information.

5 Save	FlexGrocer.mxml	and	run	the	application.	

If	all	went	as	expected,	the	application	will	run	and	your	DropDownList	instances	will	
still	have	custom	coloring	in	the	CreditCardInfo	form.

Adding More Styling to the Application
You’ll	now	have	the	opportunity	to	work	with	some	of	the	other	CSS	selectors	to	apply	styles	
to	your	application	and	components.	

1 Open	the	defaultStore.css	file	you	worked	on	in	the	previous	exercise.

2 Just	above	the	selector	for	the	customDropDown,	you’ll	embed	a	font	for	your	FlexGrocer	
application	using	the	CSS	syntax.	Do	this	by	adding	the	following	code:
@font-face	{
	 src:	url(“assets/fonts/SaccoVanzetti.ttf”);
	 fontFamily:	SaccoVanzetti;
}

This	code	embeds	the	SaccoVanzetti	font	found	in	your	assets	folder.	It	associates	that	
font	with	the	fontFamily	SaccoVanzetti,	which	you’ll	use	to	refer	to	this	font	elsewhere.

Embedding	a	font	means	the	font	is	literally	included	in	your	application.	This	ensures	
that	a	user	will	be	able	to	display	the	font	exactly	as	you	intended	it	to	be	seen—but	it	
comes	with	a	price.	Just	like	embedding	images	or	other	assets,	each	time	you	embed	a	
font,	your	application	file	size	becomes	larger.

The	SaccoVanzetti	font	is	part	of	the	Open	Font	Library,	which	shares	fonts	under	
a Creative	Commons	License.	Find	more	information	about	this	font	at		
http://openfontlibrary.org/

http://openfontlibrary.org

ptg

389Applying Styles

Although	the	font	will	now	be	included	in	your	application,	you	have	not	specified	where	
to	use	it.	

3 Add	a	new	type	selector	for	the	Application	in	the	Spark	namespace	and	specify	that	the	
Application	class	use	the	SaccoVanzetti	font	family.
s|Application	{
	 fontFamily:	SaccoVanzetti;
}

This	small	bit	of	code	includes	several	important	concepts.	First,	you	are	indicating	that	
you	want	to	style	the	Application	class	in	the	Spark	namespace.	How	do	you	know	that?	
There	are	a	few	steps	to	unraveling	this	mystery.

First,	notice	that	in	your	CSS	file	that	there	is	a	declaration	on	top	for	the	Spark	
namespace.	This	line	says	you	are	going	to	use	the	letter	s	to	represent	the	namespace	
found	at	the	longer	URI:
@namespace	s	“library://ns.adobe.com/flex/spark”;

When	you	specify	s|Application	in	your	CSS	file,	you	are	clarifying	that	you	mean	the	
Application	class	found	in	the	namespace	is	represented	by	the	letter	s.

If	you	were	to	look	in	your	FlexGrocer	application	file,	you	would	see	a	similar	
namespace	declaration	in	the	root	tag:
xmlns:s=”library://ns.adobe.com/flex/spark”

The	difference	in	syntax	is	due	to	a	difference	in	language.	The	@namespace	declaration	is	
how	CSS	defines	namespaces.	The	xmlns	declaration	is	how	XML	defines	a	namespace.	
The	advantage	of	a	standards-based	language	like	Flex	is	a	common	set	of	ideas	and	
languages	that	can	be	used	between	the	web	and	your	applications.	The	disadvantage	of	
using	all	these	standards	is	that,	if	you	did	not	come	from	a	background	that	uses	all	these	
discrete	syntax	elements,	you	sometimes	need	to	learn	several	ways	to	say	the	same	thing	
at	the	same	time.

Ultimately,	both	namespaces	are	a	way	of	referring	to	the	same	set	of	components.	
Because	your	FlexGrocer	application	begins	with	an	<s:Application>	tag,	the	small	snip-
pet	of	code	that	you	added	to	your	CSS	file	effectively	indicates	that	you	want	to	use	this	
font	for	your	main	application.	

Further,	because	the	fontFamily	is	generally	an	inheriting	style,	by	setting	this	style	on	
your	main	application,	you	ensure	that	the	same	font	will	be	used	by	all	the	controls	in	
your	project.

ptg

390 Lesson 16: Customizing a Flex Application with Styles

NoTe: A note to readers with previous Flex experience: The newer text engine used in

spark components also uses a newer way to embed fonts. There is a check box in the Project

Properties>Flex Compiler options named ‘Use Flash Text engine in MX Components’. If you are

working with your older Flex project and integrating some newer spark controls, this check

box allows the older component to use the font you just embedded. The other option is to set

a flag in the @font-face block called embedAsCFF to false. That flag will force the font to be

embedded using the older method, which is natively compatible with MX components.

4 Ensure	your	CSS	file	looks	like	the	following	code,	and	then	save	and	run	the	application.
@namespace	s	“library://ns.adobe.com/flex/spark”;
@namespace	views	“views.*”;
@namespace	services	“services.*”;
@namespace	cart	“cart.*”;

@font-face	{
	 src:	url(“assets/fonts/SaccoVanzetti.ttf”);
	 fontFamily:	SaccoVanzetti;
}

s|Application	{
	 fontFamily:	SaccoVanzetti;
}

.customDropDown{
	 selectionColor:#EA800C;
	 rollOverColor:#AAAAAA;
}

You	should	now	see	the	SaccoVanzetti	font	applied	to	your	application.

Using a Descendant Selector
In	the	previous	exercise,	you	used	a	type	selector	to	indicate	that	the	entire	application	should	be	
styled	in	a	specific	way.	Using	selectors	will	inevitably	lead	to	conflicts	when	the	same	style	is	set	
two	different	ways;	for	example,	when	the	font’s	color	is	set	in	one	place	to	blue	and	in	another	
place	to	black.	In	such	a	conflict,	the	most	specific	style	wins.	In	other	words,	if	you	set	the	font’s	
color	to	blue	at	an	application	level	but	set	it	to	black	on	a	label	tag	directly,	the	color	for	that	
label	will	be	black	as	the	label’s	attribute	is	more	specific	than	the	application	setting.

Descendant	selectors	are	a	way	to	start	adding	specificity	to	your	styling	in	place	of	generali-
ties.	Using	descendant	selectors,	you	specify	the	containment	hierarchy	as	part	of	the	styling.	
This	means	you	can	indicate	that	all	classes	of	one	type	found	inside	all	classes	of	another	type	
should	take	on	a	specific	style.	The	general	syntax	for	a	descendant	selector	is	as	follows:

ptg

391Applying Styles

ns|Component1	ns|Component2	ns|Component3	{
	 color:	#FFFFFF;	
}

This	particular	style	will	only	apply	to	instances	of	Component3,	found	inside	Component2,	
found	inside	Component1.	You	can	nest	this	hierarchy	as	deeply	as	you	would	like	to	maintain.

Here	you’ll	choose	to	style	all	labels	inside	your	ProductList	component:

1 Open	the	defaultStore.css	file	you	worked	on	in	the	previous	exercise.

2 At	the	top	of	your	CSS	file	under	the	existing	namespaces,	add	a	new	one	called	
components	that	maps	to	the	components.*	path.
@namespace	components	“components.*”;

You’ll	use	this	namespace	to	apply	styles	specifically	to	classes	that	exist	inside	the		
components	package.

3 Just	above	the	selector	for	the	customDropDown,	add	the	following	code:
components|ProductList	s|Label	{
	 color:	#013FAC;	
}

In	this	case,	you’ll	set	the	color	style	on	all	labels	found	inside	the	ProductList.

4 Save	this	file	and	run	the	application.

Note	that	the	labels	for	any	of	your	products,	including	name	and	price,	are	now	blue.	Because	
this	application	of	styles	is	recursive,	even	the	Add	and	Remove	labels	in	the	buttons	inside	
the	ProductList	are	blue.	However,	the	description	of	the	product	is	contained	in	a	RichText	
tag,	so	it	remains	at	its	default	color,	along	with	the	button	for	viewing	the	cart	and	similar	
buttons	(since	they	were	not	inside	the	ProductList).

ptg

392 Lesson 16: Customizing a Flex Application with Styles

Using an ID Selector
So	far	you	have	applied	styles	to	a	specific	component	by	creating	a	class	selector	and	then	using	
the	styleName	property	on	an	MXML	tag	to	apply	that	style.	Using	an	ID	selector	is	another	
approach	that	can	be	used	when	you	wish	to	style	just	a	single	instance	of	a	component.	

Suppose	you	have	a	Label	with	an	id	of	myLabel.

<s:Label	id=”myLabel”	text=”Hello”/>

You	can	apply	a	style	to	that	instance	by	using	a	hash	mark	(#)	combined	with	the	id	of	the	field:

#myLabel	{
	 color:	#dfecdc;
}

This	code	will	apply	the	color	style	to	any	control	with	an	id	of	myLabel.

1 Open	the	FlexGrocer.mxml	file.

2 Find	the	List	instance	in	the	controlBarContent	that	displays	NavigationItems.

3 Add	an	id	property	to	this	List	instance	and	set	it	to	categoryList.	Your	List	tag	should	
look	like	the	following:
<s:List	id=”categoryList”	left=”200”	height=”52”	
	 	 dataProvider=”{categoryService.categories}”
	 	 itemRenderer=”components.NavigationItem”
	 	 change=”list1_changeHandler(event)”>
	 <s:layout>
	 	 <s:HorizontalLayout/>
	 </s:layout>
</s:List>

4 Open	the	defaultStore.css	file.

5 At	the	bottom	of	the	file,	add	the	following	ID	selector	for	categoryList:
#categoryList	{
	 rollOverColor:	#dfecdc;	
	 selectionColor:	#6aa95f;
	 borderVisible:	false;
}

You	are	specifying	new	colors	for	both	the	selected	and	rollover	colors	for	the	list,	as	well	
as	indicating	that	you	no	longer	want	to	see	any	borders	associated	with	this	list.

6 Save	this	file	and	run	the	application.

If	you	choose	an	item	from	the	List	in	the	control	bar,	you’ll	now	see	different	colors	when	
hovering	and	when	you	select	an	item.

ptg

393Applying Styles

Using Pseudo or State Selectors
There	is	one	remaining	way	to	style	components	in	Flex:	using	pseudo-selectors.	With	this	
approach,	you	style	a	view	state	of	a	component.	For	example,	your	main	application	has	two	
view	states	(shopping	and	checkout	and	a	Button	has	many	(up,	over,	down,	disabled,	and	so	
on).	Using	pseudo-selectors	combined	with	any	of	the	other	techniques	you	have	learned	so	
far,	you	can	style	specific	states	of	any	Flex	component.

The	general	form	to	apply	a	pseudo-selector	in	CSS	looks	like	this:

ns|Type:viewState	{
	 color:	#FFFFFF;	
}

or	this:

.class:viewState	{
	 color:	#FFFFFF;	
}

or	this:

#id:viewState	{
	 color:	#FFFFFF;	
}

This	code	will	apply	the	color	style	to	any	control	with	an	id	of	myLabel.

1 Open	the	defaultStore.css	file.

2 Just	under	the	s|Application	type	selector,	add	a	new	type	selector	for	the	application,	
but	specifically	for	the	shopping	state.	Set	the	backgroundColor	to	#FFFFFF	in	this	state.
s|Application:shopping	{
	 backgroundColor:#FFFFFF;
}

The	application	in	the	shopping	state	will	be	set	to	white.

3 Add	another	s|Application	type	selector	specifically	for	the	checkout	state.	Set	the		
backgroundColor	to	#BBC8B8	in	this	state.
s|Application:checkout	{
	 backgroundColor:#BBC8B8;
}

The	application	in	the	checkout	state	will	be	set	to	a	light	green.

ptg

394 Lesson 16: Customizing a Flex Application with Styles

4 Next,	below	that	customDropDown	declatation,	add	a	class	selector	named	cartButton	
specifically	for	the	over	state.	In	this	state,	set the	chromeColor	style	to	#F3FBF4.
.cartButton:over	{
	 chromeColor:	#F3FBF4;
}

5 Add	another	class	selector	for	cartButton	specifically	for	the	down	state.	In	this	state,	
set the	chromeColor	style	to	#C2CBE7.
.cartButton:down	{
	 chromeColor:	#C2CBE7;
}

You’ll	use	these	class	selectors	for	every	button	dealing	with	cart	navigation.

6 Open	the	FlexGrocer.mxml	file.

7 Find	the	Button	instance	named	btnCartView.	Add	a	styleName	property	to	the	Button	
indicating	it	should	use	cartButton	as	its	style.
<s:Button	id=”btnCartView”	y=”10”	right=”90”	label=”View	Cart”
	 styleName=”cartButton”
	 click=”handleViewCartClick(event)”/>

8 Open	the	ShoppingView.mxml	from	the	views	package.

9 Find	the	Button	instance	with	the	label	View Cart.	Add	a	styleName	property	to	the	
Button	indicating	it	should	use	cartButton	as	its	style.
<s:Button	includeIn=”State1”	
	 	 height=”17”	
	 	 label=”View	Cart”
	 	 styleName=”cartButton”
	 	 click=”handleViewCartClick(event)”/>

10 Find	the	Button	instance	with	the	label	Continue Shopping.	Add	a	styleName	property	to	
the	Button	indicating	it	should	use	cartButton	as	its	style.
<s:Button	includeIn=”cartView”	
	 	 label=”Continue	Shopping”
	 	 styleName=”cartButton”
	 	 click=”this.currentState=’’”/>

11 Save	any	open	files	and	run	the	application.

If	you	switch	between	the	checkout	view	and	shopping	view,	you	should	see	a	change	in	
background	color.	If	you	hover	over	either	of	the	View	Cart	buttons,	you	should	see	a	different	
hover	color	and	a	different	color	again	when	you	click	on	them.

ptg

395Changing CSS at Runtime

Changing CSS at Runtime
One	drawback	to	the	CSS	approach	shown	in	the	previous	section	is	that	the	CSS	files	are	
compiled	into	the	application.	This	means	that	any	changes	to	the	application’s	style	sheet	
require	that	the	application	be	recompiled.	A	better	approach	is	the	ability	to	load	CSS	at	
runtime.	You	do	not	need	to	follow	these	steps	at	this	time,	but	this	section	has	been	included	
for	future	reference.

Understanding the Benefits of Runtime CSS
There	are	a	number	of	benefits	to	being	able	to	change	CSS	at	runtime.	Chief	among	them	is	
more	rapid	maintenance:	A	designer	can	simply	deploy	a	new	version	of	the	CSS	to	the	web	
server,	eliminating	the	need	to	recompile	and	redeploy	the	application.	Another	benefit	is	a	
much	easier	approach	for	deploying	a	single	application	that	can	be	presented	with	multiple	
skins,	without	the	need	for	separately	deployed	applications	for	each	skin.	For	example,	if	Flex	
Grocer	wanted	to	partner	with	local	grocery	stores	and	allow	the	stores	to	brand	the	application	
as	their	own,	it	is	now	possible	to	have	a	single	deployed	version	of	the	application,	which	loads	
a	different	style	sheet	depending	on	the	domain	from	which	the	application	has	been	loaded.

Creating a SWF from a CSS File
Flash	Player	doesn’t	natively	have	the	ability	to	work	with	a	runtime-loaded	CSS	file	directly,	
so	Adobe	has	added	a	simple	mechanism	for	converting	an	existing	CSS	style	sheet	into	a	
SWF,	with	which	Flash	Player	can	easily	interact.	Using	the	SDK,	you	can	use	the	MXMLC	
compiler	to	compile	a	CSS	file	to	a	SWF,	or	it	can	be	done	even	more	easily	within	Flash	
Builder.	All	you	need	to	do	is	right-click	the	CSS	file	in	the	Package	Explorer	and	choose	the	
Compile	CSS	to	SWF	option,	as	seen	in	the	following	figure.

ptg

396 Lesson 16: Customizing a Flex Application with Styles

Once	the	CSS	has	been	compiled	into	a	SWF,	you	can	find	the	file	named	defaultStore.swf	in	
your	bin-debug/assets	folder.

Loading a CSS SWF with StyleManager
Working	with	a	CSS	file	compiled	into	a	SWF	is	trivial;	a	single	line	of	ActionScript	is	all	you	
need	to	load	and	use	that	file.	If	you	wanted	to	load	your	styles	at	runtime	from	the	applica-
tion,	you	would	execute	the	following	code	from	an	event	handler:

styleManager.loadStyleDeclarations(“assets/defaultStore.swf”);

This	instructs	StyleManager	(an	object	in	Flex	responsible	for	managing	all	of	the	application’s	
styles)	to	load	the	specified	file	and	use	any	styles	specified	within	it.

ptg

397What You Have Learned

If	you	need	to	unload	a	CSS	file	loaded	dynamically,	there	is	another	StyleManager	method,	
unloadStyleDeclaration,	that	you’ll	find	helpful:	

styleManager.unloadStyleDeclaration(“assets/defaultStore.swf”);

Overriding Styles with a Loaded CSS
It’s	possible	to	have	multiple	style	sheets	in	play.	These	can	be	a	combination	of	compiled	and	
dynamically	loaded	style	sheets.	The	fundamental	rule	to	remember	when	dealing	with	mul-
tiple	style	sheets	is	that	if	any	styles	are	defined	in	more	than	one	style	sheet,	the	one	loaded	
last	is	the	one	that	Flex	will	use.

For	example,	if	you	have	a	CSS	file	compiled	into	the	application	with	style	definitions	for	
s|Application,	.boldText,	and	.formHeading,	and	you	then	load	a	CSS	file	at	runtime	
that	also	has	a	definition	for	s|Application	and	.formHeading,	the	.boldText	style	from	the	
compiled	version	will	be	used,	as	well	as	the	s|Application	and	.formHeading	style	from	the	
loaded	style	sheet—whichever	is	defined	last	is	the	one	that	Flex	uses.

What You Have Learned
In this lesson, you have:

•	 Learned	how	Flex	applications	are	styled	(pages	376–379)

•	 Set	styles	via	tag	attributes	(pages	379–381)

•	 Learned	about	inheritable	style	properties	(page	381)

•	 Set	styles	via	the	<fx:Style>	tag	(pages	382–385)

•	 Set	styles	via	CSS	files	(pages	386–394)

•	 Learned	about	runtime	styling	(pages	395-397)

ptg

Le
ss

o
n

 1
7 What You Will Learn

In this lesson, you will:

•	 Learn	the	relationship	between	skins	and	components

•	 Learn	how	to	work	with	states	and	skins

•	 Create	Button	skins

•	 Create	a	skin	for	the	application’s	controlBar	region

Approximate Time
This	lesson	takes	approximately	2	hours	to	complete.

ptg

399

Lesson 17

Customizing a Flex
Application with Skins
In the previous lesson, you learned about using the style API to customize parts of an applica-
tion. You also learned that there are more customizations that you can make that are unavail-
able using the style API. In this lesson, you’ll learn how to quickly and easily adjust the skins of
a Spark component to completely change how that component looks.

The FlexGrocer.com application gets an extreme makeover through the use of a few simple skins.

ptg

400 Lesson 17: Customizing a Flex Application with Skins

Understanding the Role of Skins in a Spark Component
As	you	learned	in	Lesson	12,	“Using	the	Flex	DataGrid,”	Spark	components	are	built	by		
composition,	meaning	that	the	functionality	of	the	components	is	separated	from	the	look	
of the	component.	In	this	lesson,	you’ll	learn	how	to	adjust	the	look	of	the	components	
through	the use	of	skins.

In	this	exercise	you’ll	create	a	skin	for	the	FlexGrocer	button	on	the	homepage.	Up	to	this	
point,	this	button	has	simply	had	the	text	FlexGrocer	on	it.	You’ll	now	modify	the	skin	so	it	
will	display	the	FlexGrocer	logo	instead.

1 Open	your	FlexGrocer	project.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson17/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Right-click	the	FlexGrocer	project,	and	create	a	new	package	named	skins.

This	package	will	hold	all	the	skin	classes	you	create	for	the	application.

ptg

401Understanding the Role of Skins in a Spark Component

3 Right-click	the	skins	package,	and	choose	New	>	MXML	Skin.	Name	the	skin	
HomeButtonSkin,	set	the	Host	component	to	spark.components.Button,	choose		
to create	it	as	a	copy	of	spark.skins.spark.ButtonSkin,	and	then	click	Finish.

This	will	copy	the	native	Spark	ButtonSkin	class	and	save	it	in	your	skins	package	under	
the	name	HomeButtonSkin.	Skins	must	know	the	name	of	the	class	that	they	will	be	skin-
ning,	which	allows	the	compiler	to	verify	that	all	the	proper	pieces	(known	as	skin	parts)	
are	present	in	the	skin	class.	If	any	required	skin	parts	are	missing,	a	compile-time	error	
will	be	thrown.	If	you	have	any	questions	on	which	skin	parts	are	required	for	a	given	
component,	the	ActionScript	3.0	Language	references	has	a	section	for	each	component	
listing	the	skin	parts,	and	whether	or	not	they	are	required.

As	you	can	see	in	the	figure,	the	Button	has	no	required	skin	parts,	which	makes	skinning	
a	button	easy	to	do.

ptg

402 Lesson 17: Customizing a Flex Application with Skins

4 Remove	the	Script	block	from	the	component,	which	was	automatically	added	by	
the compiler.

The	Script	block	in	the	component	allows	for	programmatic	control	over	the	skinning,	
and	lets	you	set	some	aspects	of	the	skin	in	style	sheets.	Since	you	won’t	need	this	func-
tionality	for	this	skin,	it	is	safe	to	remove	the	whole	block.

Tip: The new MXML skin dialog box has a check box named Remove Actionscript styling Code.

When selected it effectively deletes the script block on your behalf.

5 Remove	all	the	code	between	the	end	of	the	states	block	and	the	closing	tag	for	this	skin.

The	resulting	code	for	the	skin	class	should	look	like	this	(comments	from	the	top	of	the	
class	have	been	intentionally	omitted):
<s:SparkButtonSkin xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:fb=”http://ns.adobe.com/flashbuilder/2009”
 minWidth=”21” minHeight=”21”
 alpha.disabled=”0.5”>

 <fx:Metadata>
 <![CDATA[
 /**
 * @copy spark.skins.spark.ApplicationSkin#hostComponent
 */
 [HostComponent(“spark.components.Button”)]
]]>
 </fx:Metadata>

 <!-- states -->
 <s:states>
 <s:State name=”up” />
 <s:State name=”over” />
 <s:State name=”down” />
 <s:State name=”disabled” />
 </s:states>

</s:SparkButtonSkin>

What	you	removed	were	the	various	elements	that	make	up	a	label:	the	shadow,	the	fill	
color,	a	lowlight	color,	a	highlight	color,	a	highlight	stroke,	the	border,	and	the	label.	For	the	
moment,	these	are	extraneous.	Later	in	this	lesson	you’ll	add	some	of	these	elements	back.

ptg

403Understanding the Role of Skins in a Spark Component

6 Between	the	end	of	the	states	block	and	the	closing	SparkButtonSkin	tag,	add	a	
BitmapImage	that	uses	an	Embed	directive	for	assets/FlexGrocerButton.png	as	its	source.	
Specify	a	horizontalCenter	of	0,	a	verticalCenter	of	1,	and	the	alpha	in	the	disabled	
state	as	.5.
<s:BitmapImage source=”@Embed(‘assets/FlexGrocerButton.png’)”
 horizontalCenter=”0” verticalCenter=”1” alpha.disabled=”.5”/>

You	have	now	given	this	skin	a	visual	look;	instead	of	looking	like	a	typical	Flex	Button,	
it will	instead	use	this	graphic	as	its	complete	look	and	feel.

7 Save	HomeButtonSkin.mxml.	Open	FlexGrocer.mxml	from	the	default	package.

8 Find	the	instantiation	of	the	button	labeled	Flex	Grocer	in	the	controlBarContent	node.	
Add	a	skinClass	attribute	with	a	value	of	skins.HomeButtonSkin.	
<s:Button label=”Flex Grocer” x=”5” y=”5”
 click=”returnToShopping(event)”
 skinClass=”skins.HomeButtonSkin”/>

This	code	instructs	this	particular	button	to	use	the	HomeButtonSkin	class	as	its	skin,	
instead	of	the	class	it	would	have	used	by	default.	If	you	save	and	run	the	application	
now,	you’ll	find	that	the	Flex	Grocer	button	you	have	seen	in	the	top-left	corner	has	been	
replaced	by	a	graphic,	which	still	responds	to	users’	clicks,	just	as	the	original	button	did.

9 Open	FlexGrocer.mxml.	Find	the	List	with	an	id	of	categoryList.	Remove	left=”200”	
and	replace	it	with	right=”171”.

As	the	FlexGrocer	button	is	now	much	larger	than	it	was,	the	List	component	doesn’t	fit	
properly	in	the	screen,	so	the	category	list	will	be	constrained	to	stay	171	pixels	from	the	
right	edge	of	the	screen.

ptg

404 Lesson 17: Customizing a Flex Application with Skins

10 To	prevent	the	category	list	from	overlapping	the	logo	if	the	browser	is	resized	too	small,	
set	minWidth=”1024”	in	the	top	Application	tag.
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 xmlns:views=”views.*” xmlns:services=”services.*” xmlns:cart=”cart.*”
 creationComplete=”handleCreationComplete(event)”
 locale=”en_US”
 minWidth=”1024”>

One	problem	still	persists	with	this	button.	It	does	not	currently	seem	like	a	button	because	
as	users	hover	their	mouse	over	it,	or	click	it,	it	doesn’t	change	its	appearance	at	all,	whereas	
all	the	other	buttons	in	Flex	do.	You’ll	correct	this	problem	in	the	next	exercise,	as	you	learn	
about	states	and	how	they	relate	to	skins.

Understanding the Relationship between Skins and States
Early	in	this	book,	you	learned	how	each	Flex	component	can	use	different	states	to	allow	for	
adjusting	and	controlling	how	a	component	looks	at	various	times	throughout	the	application.	
States	can	also	be	modified	in	the	component’s	skin	as	well.	

Drawing Programmatically in Flex
The	Flex	framework	offers	tools	for	drawing	programmatically:	the	AS3	Drawing	API	and	
FXG	Graphics.	In	both	cases,	you	can	use	code	that	instructs	Flash	Player	how	to	draw	
graphical	elements,	rather	than	simply	having	it	render	a	binary	graphical	file	(such	as	JPEG,	
GIF,	or	PNG).	The	benefit	of	using	a	programmatic	graphic	is	that	it	becomes	much	easier	to	
control	and	change	the	graphic	in	your	application	than	it	would	be	when	dealing	with	any	of	
the	binary	formats.	In	most	cases,	if	you	wanted	to	change	the	color	of	a	binary	graphic,	you	
would	open	that	file	in	a	graphics	editing	program,	such	as	Fireworks	or	Photoshop,	make	the	
changes,	and	resave	the	file.	When	using	programmatic	graphics,	you	can	simply	adjust	the	
properties	of	the	graphical	object	that	is	drawing	to	the	screen	without	having	to	be	familiar	
with	another	program.

The	AS3	Drawing	API	uses	the	graphics	property	that	is	native	to	all	instances	of	the	Sprite	
class	in	Flash	Player.	This	API	includes	methods	such	as	moveTo,	lineTo,	beginFill,	endFill,	
and	curveTo,	all	of	which	allow	developers	to	draw	vector	graphics	directly	on	a	visual	ele-
ment	in	Flash	Builder.

FXG,	on	the	other	hand,	allows	for	XML-based	syntax	to	define	graphics,	which	work	well	
directly	inside	MXML.	In	fact,	if	you	were	to	open	any	of	the	Spark	skin	classes	that	ship	with	
Flex	4,	you	would	find	that	all	the	borders	and	background	colors	drawn	in	any	of	the	Flex	

ptg

405Understanding the Relationship between Skins and States

components	are	done	with	a	series	of	FXG	declarations.	Even	better,	many	of	Adobe’s	other	
tools,	such	as	Photoshop,	Illustrator,	and	Flash	Catalyst,	export	their	graphics	as	FXG,	so	you	
can	use	them	directly	in	your	Flex	application.

The	reality	is	you	can	do	exactly	the	same	thing	with	both	FXG	and	the	Flash	Drawing	API.	
Consider	the	following,	which	draws	a	similar	red	box	with	a	blue	border	twice:	first	with	
FXG	and	then	with	the	AS3	Drawing	API:

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 creationComplete=”doDraw()”>
 <fx:Script>
 <![CDATA[
 private function doDraw():void{
 var g:Graphics = drawingGroup.graphics;
 g.lineStyle(10,0x0000ff,.5);
 g.beginFill(0xff0000);
 g.drawRect(0,0,200,200);
 g.endFill();
 }
]]>
 </fx:Script>
 <s:Group x=”100” y=”10”>
 <s:Rect width=”200” height=”200”>
 <s:fill>
 <s:SolidColor color=”0xFF0000” />
 </s:fill>
 <s:stroke>
 <s:SolidColorStroke weight=”10” color=”0x0000FF” alpha=”0.5” />
 </s:stroke>
 </s:Rect>
 </s:Group>
 <s:Group id=”drawingGroup” x=”100” y=”260”/>
</s:Application>

ptg

406 Lesson 17: Customizing a Flex Application with Skins

When	this	code	runs,	an	identical	box	will	be	drawn	twice,	once	using	the	Drawing	API’s	
drawRect()	method	and	setting	the	lineStyle	and	fill,	and	the	other	time,	using	the	FXG	
Rect	tag,	specifying	fill	and	stroke	as	properties.	The	real	benefit	for	Flex	skinning	in	using	
FXG	is	that	the	XML	markup	can	easily	honor	Flex	states,	so	it	would	become	trivial	to	
change	the	look	of	the	drawing	as	users	move	their	mouse	over	the	rectangle.	

<?xml version=”1.0” encoding=”utf-8”?>
<s:Application xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”
 creationComplete=”doDraw()”>
 <s:states>
 <s:State name=”normal”/>
 <s:State name=”over”/>
 </s:states>
 <fx:Script>
 <![CDATA[
 private function doDraw():void{
 var g:Graphics = drawingGroup.graphics;
 g.lineStyle(10,0x0000ff,.5);
 g.beginFill(0xff0000);
 g.drawRect(0,0,200,200);
 g.endFill();
 }
]]>
 </fx:Script>

 <s:Group x=”100” y=”10” mouseOver=”this.currentState=’over’”
 mouseOut=”this.currentState=’normal’”>

 <s:Rect width=”200” height=”200”>
 <s:fill>
 <s:SolidColor color=”0xFF0000” color.over=”0x00ff00” />
 </s:fill>
 <s:stroke>
 <s:SolidColorStroke weight=”10” color=”0x0000FF” alpha=”0.5”
 alpha.over=”1” />
 </s:stroke>
 </s:Rect>
 </s:Group>

 <s:Group id=”drawingGroup” x=”100” y=”260”/>

</s:Application>

ptg

407Understanding the Relationship between Skins and States

	
In	this	example,	two	states	are	defined:	a	normal	and	an	over	state.	The	state	is	switched	as	you	
move	the	mouse	over	or	off the	rectangle.	The	fill	and	stroke	of	the	rectangle	are	defined	to	
change	in	the	over	state.	This	is	how	Flex	achieves	the	different	looks	as	the	user	interacts	with	
the	components	in	an	application.	If	you	were	to	open	the	spark.skins.spark.ButtonSkin	class,	
you	would	see	a	series	of	rectangles	defined	that	have	fills	or	strokes,	which	change	based	on	
the	state	(up,	over,	down,	or	disabled).

For	full	details	on	the	FXG	specification,	please	see	http://opensource.adobe.com/wiki/
display/flexsdk/FXG+1.0+Specification.

Customizing Button States with Skins
In	this	next	exercise,	you’ll	continue	to	work	with	the	Skin	class	you	created	for	the	homepage	
button	in	the	previous	exercise	and	you’ll	adjust	how	it	looks	in	other	states,	such	as	when	the	
user	hovers	the	mouse	over	it	or	clicks	on	it.

1 Open	HomeButtonSkin.mxml,	which	you	created	in	the	previous	lesson.

2 Between	the	ending	states	tag	and	the	Bitmap	image	tag,	define	a	rectangle	(use	the	Spark	
Rect	class),	which	has	an	id	of	fill,	and	a	value	of	1	for	the	top,	bottom,	left,	and	right	
positioning.
<s:Rect id=”fill” left=”1” right=”1” top=”1” bottom=”1”>
</s:Rect>

This	block	defines	a	Rectangle	that	will	fill	the	component,	except	for	1	pixel	on	each	of	
the	four	sides.

http://opensource.adobe.com/wiki/display/flexsdk/FXG+1.0+Specification
http://opensource.adobe.com/wiki/display/flexsdk/FXG+1.0+Specification

ptg

408 Lesson 17: Customizing a Flex Application with Skins

3 Add	a	tag	pair	to	specify	the	fill	property	of	the	rectangle.
<s:Rect id=”fill” left=”1” right=”1” top=”1” bottom=”1”>
 <s:fill>
 </s:fill>
</s:Rect>

The	fill	property	of	the	FXG	shapes	can	accept	any	element	implementing	the	IFill	inter-
face	as	a	value.	Among	the	framework	classes	that	implement	this	interface	are	BitmapFill	
(which	uses	a	graphic	as	a	fill),	LinearGradient	(which	will	use	a	gradient	of	2	or	more	
colors	as	a	fill	along	an	axis),	RadialGradient	(which	will	use	2	or	more	colors	as	a	fill,	start-
ing	from	a	central	point	and	radiating	out	to	the	edges),	and	SolidColor	(which	specifies	a	
solid	color	to	use	as	a	fill).	In	the	image	here,	you	can	see	the	four	different	fills	native	to	the	
framework.	Of	course,	the	IFill	interface	is	a	relatively	simple	one,	so	you’re	free	to	build	
your	own	classes	that	implement	it	if	the	framework	classes	don’t	meet	your	needs.

BitmapFill

Radial Gradient

LinearGradient

SolidColor

4 Populate	the	fill	property	with	a	LinearGradient,	but	add	a	LinearGradient	tag	as	a	child	
of	the	fill	tag.	Specify	a	rotation	of	90	for	the	gradient.
<s:Rect id=”fill” left=”1” right=”1” top=”1” bottom=”1”>
 <s:fill>
 <s:LinearGradient rotation=”90”>
 </s:LinearGradient>
 </s:fill>
</s:Rect>

This	creates	an	instance	of	the	LinearGradient	class	and	instructs	the	gradient	to	rotate	90	
degrees	from	its	standard	top-to-bottom	approach,	so	the	gradient	will	appear	left	to	right.	
All	that	remains	is	to	instruct	the	gradient	about	the	elements	it	will	gradate	between.	

ptg

409Understanding the Relationship between Skins and States

5 Create	as	children	of	the	LinearGradient	tag	two	instances	of	the	GradientElement	class.	
Both	should	have	a	color	of	white	(0xffffff);	the	differences	will	be	the	colors	in	the	
various	states.	The	first	Gradient	should	have	an	over	color	of	white	and	a	down	color	of	
olive	green	(0xafbcac).	The	second	should	have	a	light	olive	green	(0xdfecdc)	as	both	the	
over	and	down	color.
<s:Rect id=”fill” left=”1” right=”1” top=”1” bottom=”1”>
 <s:fill>
 <s:LinearGradient rotation=”90”>
 <s:GradientEntry color=”0xffffff”
 color.over=”0xffffff”
 color.down=”0xafbcac”
 alpha=”1” />
 <s:GradientEntry color=”0xffffff”
 color.over=”0xdfecdc”
 color.down=”0xdfecdc”
 alpha=”1” />
 </s:LinearGradient>
 </s:fill>
</s:Rect>

The	ButtonSkin	is	told	by	the	Button	when	the	user	is	over	it,	or	when	the	user	presses	
down.	You	have	taken	advantage	of	that	information	by	altering	the	color	of	your	button’s	
fill	in	these	different	states.

6 Save	and	run	the	application.

Up

Over

Down

The	Flex	Grocer	button	now	visually	reacts	to	the	users’	gestures,	giving	them	a	much	
clearer	indication	that	they	can	interact	with	it.

Now	that	you	understand	how	to	create	a	custom	skin	for	a	spark	button,	you	are	going	to		
create	another	button	skin;	this	one	will	be	applied	to	all	the	other	buttons	in	the	application.

ptg

410 Lesson 17: Customizing a Flex Application with Skins

7 Right-click	the	skins	package	and	choose	New	>	MXML	Skin.

8 Name	the	skin	FlexGrocerButtonSkin,	specify	spark.components.Button	as	the	Host	
component,	and	create	it	as	a	copy	of	spark.skins.spark.ButtonSkin.

9 In	FlexGrocerButtonSkin.mxml,	scroll	down	to	the	<s:Rect>	tag	with	the	id	of	fill.	
Find	the	first	GradientEntry	in	the	LinearGradient.	Change	the	color	to	be	pale	green	
(0xf3fbf4),	the	over	color	to	be	a	light	olive	green	(0xdfecdc),	and	the	down	color	to	be	a	
darker	green	(0x6aa95f).	For	the	second	GradientEntry,	use	a	spring	green	as	the	color	
(0xd4f1d8)	and	a	light	olive	green	(0xdfecdc)	for	the	over	and	down	colors.	Leave	the	
default	alpha	of	.85	for	both.
 <s:Rect id=”fill” left=”1” right=”1” top=”1” bottom=”1” radiusX=”2”>
 <s:fill>
 <s:LinearGradient rotation=”90”>
 <s:GradientEntry color=”0xf3fbf4”
 color.over=”0xdfecdc”
 color.down=”0x6aa95f”
 alpha=”0.85” />
 <s:GradientEntry color=”0xd4f1d8”
 color.over=”0xdfecdc”
 color.down=”0xdfecdc”
 alpha=”0.85” />
 </s:LinearGradient>
 </s:fill>
 </s:Rect>

ptg

411Understanding the Relationship between Skins and States

This	will	allow	the	buttons	to	use	various	greens,	in	keeping	with	the	color	palette	of	
the application.

10 Delete	the	next	five	rectangles.

The	design	for	the	application’s	buttons	do	not	require	a	lowlight,	highlight,	or	
highlight stroke.

11 The	next	Rect	down	has	an	id	of	border.	Remove	the	child	tags	for	the	stroke	from	the	
Rect,	and	replace	them	with	an	instance	of	the	SolidColorStroke	class.	Specify	a	color	
of	the	SolidColorStroke	to	be	mint	green	(0x8eb394)	with	an	alpha	of	1	and	a	disabled	
alpha	of	.5.
 <s:Rect id=”border” left=”0” right=”0” top=”0” bottom=”0” width=”69”
 	 height=”20” radiusX=”2”>
 <s:stroke>
 <s:SolidColorStroke color=”0x8eb394” alpha=”1” alpha.disabled=”0.5”/>
 </s:stroke>
 </s:Rect>

Rather	than	using	the	complex	linear	gradient	native	to	the	ButtonSkin	class,	the	
FlexGrocerButtonSkin	simply	has	a	mint	green	border,	which	becomes	more	transparent	
when	disabled.

There	are	a	few	references	to	the	rectangles	you	removed	in	the	class’s	updateDisplayList()	
method	which	must	be	removed	or	you’ll	encounter	compile-time	errors.

12 Scroll	up	to	the	<fx:Script>	block	and	find	the	updateDisplayList()	method.

13 Remove	the	lines	that	set	the	radiusX	property	of	the	lowlight,	highlight,	highlightStroke,	
hldDownStroke1,	and	hldDownStroke2	rectangles.	The	revised	updateDisplayList()	
should	read	like	this:
override protected function updateDisplayList(unscaledWidth:Number,
unscaledHeight:Number) : void
{
 var cr:Number = getStyle(“cornerRadius”);

 if (cornerRadius != cr)
 {
 cornerRadius = cr;
 shadow.radiusX = cornerRadius;
 fill.radiusX = cornerRadius;
 border.radiusX = cornerRadius;
 }

 super.updateDisplayList(unscaledWidth, unscaledHeight);
}

ptg

412 Lesson 17: Customizing a Flex Application with Skins

As	those	rectangles	are	no	longer	in	existence,	you	need	to	remove	any	references	to	them	
in	the	code.

The	ButtonSkin	is	now	complete;	next	you’ll	apply	the	skin	to	all	Spark	Buttons	by	using	
the	CSS	file.

14 Save	and	close	FlexGrocerButtonSkin,	and	then	open	defaultStore.css	from	the	assets	
directory.

15 After	the	end	of	the	s|Application:checkout	style	declaration	but	before	the	start	of	the	
ProductList	Label	declaration,	add	a	new	Type	Selector	for	the	Spark	Button	class.
s|Application:checkout {
 backgroundColor:#BBC8B8;
}

s|Button {
}

components|ProductList s|Label {
 color: #013FAC;
}

16 Define	a	skin-class	style	property	for	the	Button	to	use	a	class	reference	to	the	newly	
created	skins.FlexGrocerButtonSkin.
s|Button{
 skin-class:ClassReference(‘skins.FlexGrocerButtonSkin’);
}

The	ClassReference	allows	the	CSS	file	to	provide	the	StyleManager	with	a	reference	to	
your	skin	class.	As	you	explore	further	in	Flex,	you’ll	find	the	ClassReference	syntax	is	
used	any	time	you	are	providing	an	ActionScript	class	as	a	value	for	a	style	property.

17 Still	in	the	Spark	Button	style	declaration,	specify	a	color	(meaning	font	color)	of	#1111b9	
and	a	corner-radius	of	5.
s|Button{
 skin-class:ClassReference(‘skins.FlexGrocerButtonSkin’);
 color:#1111b9;
 corner-radius:5;
}

ptg

413Creating a Skin for the Application

18 Save	the	CSS	file	and	run	the	application.	You	should	find	the	new	look	and	feel	in	use	
throughout	the	application	for	buttons	that	don’t	already	have	their	styles	set	more	explicitly.

Creating a Skin for the Application
As	you	might	imagine,	skins	don’t	apply	only	to	buttons;	larger,	more	complex	components	
have	skins	as	well.	As	mentioned	earlier	in	the	chapter,	each	Flex	component	has	its	look	
determined	by	the	skins	associated	with	it,	and	using	the	Spark	components,	you	can	easily	
customize	any	of	them.

In	this	exercise,	you’ll	create	a	skin	for	the	Application	component.

1 Open	FlexGrocer.mxml.	In	the	root	<s:Application>	tag,	add	a	skinClass	attribute.	If	
you	use	the	code-hinting	feature,	you’ll	find	Flash	Builder	presents	you	with	a	list	of	skins	
or	an	option	to	create	a	new	skin.	(If	you	don’t	see	the	code-hinting,	press	Ctrl-Spacebar	
while	your	cursor	is	between	the	open	and	closing	quotes	of	the	attribute.)	Choose	the	
Create	Skin	option.	

ptg

414 Lesson 17: Customizing a Flex Application with Skins

2 In	the	New	MXML	Skin	dialog	box,	specify	skins	as	the	package,	FlexGrocerApplicationSkin	
as	the	Name,	and	FlexGrocer	as	the	Host	component,	and	leave	the	other	choices	at	their	
default	values.	Click	Finish	and	save	FlexGrocer.mxml.

Just	like	the	other	skins	you	created	earlier	in	the	lesson,	this	skin	will	be	created	in	the	
skins	package,	and	you’ll	start	with	the	native	Spark	ApplicationSkin.	

3 In	the	new	FlexGrocerApplicationSkin	file,	find	the	Rect	just	below	the	comment	that	
reads	<!--	layer	0:	control	bar	highlight	-->.	Remove	the	LinearGradientStroke	
being	used	as	the	stroke	of	that	Rect,	and	remove	its	child	tags.	In	its	place	add	a	
SolidColorStroke	with	a	light	olive	green	color	(0xdfecdc).
<!-- layer 0: control bar highlight -->
<s:Rect left=”0” right=”0” top=”0” bottom=”1” >
 <s:stroke>
 <s:SolidColorStroke color=”0xdfecdc”/>
 </s:stroke>
</s:Rect>

For	this	application,	the	gradient	stroke	is	not	necessary;	instead,	a	simple	solid	color	
stroke	in	the	palette	of	the	application	will	work	fine.

ptg

415Creating a Skin for the Application

4 Find	the	next	Rect	in	the	file,	which	will	have	the	comment	<!--	layer	1:	control	bar	fill	-->	
just	above	it.	Change	the	top	attribute	from	1	to	32.
<s:Rect left=”1” right=”1” top=”32” bottom=”2” >
 <s:fill>
 <s:LinearGradient rotation=”90”>
 <s:GradientEntry color=”0xEDEDED” />
 <s:GradientEntry color=”0xCDCDCD” />
 </s:LinearGradient>
 </s:fill>
</s:Rect>

You’ll	soon	be	adding	a	different	rectangle	above	the	control	bar	area,	so	here	you	are	
going	to	limit	the	background	for	the	control	bar	area	to	start	32	pixels	from	the	top	of	
the	application.

5 Still	in	the	control	bar	fill	Rect,	remove	the	LinearGradient	(and	its	child	tags)	used	as	the	
fill,	and	replace	it	with	a	SolidColor	with	a	color	value	of	white	(0xffffff).
<!-- layer 1: control bar fill -->
<s:Rect left=”1” right=”1” top=”32” bottom=”2” >
 <s:fill>
 <s:SolidColor color=”0xffffff”/>
 </s:fill>
</s:Rect>

Again,	the	native	colors	and	gradients	used	as	a	background	for	the	control	bar	group	of	a	
Flex	application	do	not	match	the	palette	for	the	FlexGrocer	application.	Instead,	a	simple	
solid	white	background	will	work	better.

6 Find	the	next	Rect	down,	which	has	the	comment	<!--	layer	2:	control	bar	divider	line	-->	
above	it.	Change	the	color	of	the	SolidColor	fill	from	black	(0x000000)	to	light	olive	green	
(0xdfecdc).
<!-- layer 2: control bar divider line -->
<s:Rect left=”0” right=”0” bottom=”0” height=”1” alpha=”0.55”>
 <s:fill>
 <s:SolidColor color=”0xdfecdc” />
 </s:fill>
</s:Rect>

You	are	once	again	replacing	the	default	Flex	colors	with	those	matching	your	application.

7 After	the	end	of	the	control	bar	divider	line	Rect,	add	a	new	Rect,	with	x,	y,	left,	and	
right	attributes	set	to	0,	and	a	height	of	32.
<s:Rect x=”0” y=”0” left=”0” right=”0” height=”32”>
</s:Rect>

ptg

416 Lesson 17: Customizing a Flex Application with Skins

This	Rect	will	define	a	new	area	above	the	top	navigation,	which	will	house	the	
company’s motto.

8 Add	a	fill	property	to	the	rectangle.	Populate	the	fill	with	a	LinearGradient	rotated	90	
degrees.	Add	two	GradientEntries	to	the	LinearGradient.	The	first	GradientEntry	should	
have	a	Kelly	green	color	(0x439235)	with	an	alpha	of	1.	The	second	GradientEntry		
should	have	a	dark	Kelly	green	color	(0x2E6224)	with	an	alpha	of	1.
<s:Rect x=”0” y=”0” left=”0” right=”0” height=”32”>
 <s:fill>
 <s:LinearGradient rotation=”90”>
 <s:GradientEntry color=”0x439235” alpha=”1”/>
 <s:GradientEntry color=”0x2e6224” alpha=”1”/>
 </s:LinearGradient>
 </s:fill>
</s:Rect>

The	gradient	fill	in	this	rectangle	will	act	as	a	background	for	the	FlexGrocer	tag	line,	
which	will	appear	at	the	top	of	the	application.

9 Just	below	this	rectangle,	add	a	Label	with	the	text	The Freshest, Easiest Way to Buy
Groceries.	Set	the	top	and	right	attributes	to	10.	Specify	a	color	of	white	(0xffffff)	and	a	
20	point	fontSize:
<s:Label text=”The Freshest, Easiest Way to Buy Groceries”
 right=”10” top=”10”
 color=”0xffffff”
 fontSize=”20” />

This	label	will	be	positioned	in	the	top-right	corner,	on	top	of	the	gradient	green		
background	you	created.

10 Find	the	Group	under	the	comment	<!--	layer	3:	control	bar	-->.	Adjust	the	top		
attribute	to	a	value	of	32.
<s:Group id=”controlBarGroup“
 left=”0” right=”0”
 top=”32” bottom=”1”
 minWidth=”0” minHeight=”0”>

By	setting	the	top	value	to	32,	you	ensure	the	content	of	the	controlGroup	will	be	placed	
only	over	the	white	background,	not	over	the	green	gradient.

11 Save	FlexGrocerApplicationSkin.	Open	and	run	FlexGrocer.

ptg

417What You Have Learned

What You Have Learned
In this lesson, you have:

•	 Learned	about	skins	in	a	Spark	component	(pages	400–404)

•	 Learned	about	the	relationship	between	skins	and	components	(pages	404–407)

•	 Worked	with	states	and	skins	(pages	407–413)

•	 Skinned	the	FlexGrocer	application	(pages	413–416)

ptg

Le
ss

o
n

 1
8 What You Will Learn

In this lesson, you will:

•	 Refactor	code	into	an	ActionScript	component

•	 Create	your	own	skin

•	 Manage	skin	parts	and	component	life	cycles

•	 Learn	to	use	the	Scroller

Approximate Time
This	lesson	takes	approximately	2	hours	to	complete.

ptg

419

Lesson 18

Creating Custom
ActionScript
Components
In Lesson 9, “Breaking the Application into Components,” you learned how to build custom
components using MXML. There are times when you’ll need even more flexibility than MXML
can offer. For these occasions, you can create components directly in ActionScript 3.0.

In this lesson, you’ll create a new component called ShoppingList, which will be an extensive
refactoring of the existing List instance that shows your shopping cart items. It will include a
new skin and new functionality, and will allow you to make a single component out of several
separate pieces.

The FlexGrocer application with the new ShoppingList component

ptg

420 Lesson 18: Creating Custom ActionScript Components

Introducing Components with ActionScript 3.0
In	an	earlier	lesson,	you	learned	that	any	code	written	in	MXML	is	translated	into	ActionScript	
by	the	Flex	compiler	before	being	compiled	into	a	SWF	file.	In	reality,	every	Flex	component	is	
an	ActionScript	class,	regardless	of	whether	it’s	a	UI	control,	a	container,	or	some	other	type	of	
component.	Anything	you	might	create	in	MXML	can	also	be	created	in	ActionScript,	and	there	
are	things	you	can	do	with	ActionScript	that	are	not	available	purely	from	MXML.	

The	core	Flex	components	you	have	used	throughout	this	book—Label,	DataGrid,	and	
Button—are	written	in	ActionScript.	In	general,	components	that	are	written	for	a	single	proj-
ect	or	even	quick	prototypes	of	more	advanced	components	are	handled	in	MXML.	However,	
if	you	want	to	build	a	very	reusable	and	skinnable	component,	you’ll	eventually	need	to	
embrace	ActionScript	as	your	primary	method.

The	steps	you’ll	take	when	creating	an	ActionScript	3.0	component	are	similar	to	the	steps	for	
building	any	ActionScript	3.0	class.	First,	determine	what	(if	any)	superclass	your	new	class	
will	extend.	Then,	determine	what	properties	you	need	to	declare	for	your	class.	Next,	deter-
mine	any	new	methods	you	might	need	to	implement.	You’ll	also	need	to	declare	any	events	
your	component	will	dispatch.	

If	your	component	is	a	visual	class,	as	it	will	be	in	this	lesson,	you’ll	likely	need	to	consider	
how	your	class	will	interact	with	a	skin	to	allow	you	and	others	to	change	the	visual	appear-
ance	of	your	new	component.

Building Components Can Be Complex
A	word	of	warning:	This	lesson	is	the	culmination	of	much	of	what	you’ve	learned	in	this	book.	
Flex	is	intended	to	allow	you	to	build	applications	quickly	by	assembling	premade	components.	
Flex	can	look	easy,	but	it	does	so	only	because	a	component	developer	somewhere	embraced	the	
real	complexity	that	lies	just	beneath	the	surface	and	wrestled	it	into	submission.

When	you	develop	Flex	components,	you	become	that	individual,	meaning	that	it	is	your	job	
to	make	it	look	easy	to	the	outside	world	by	dealing	with	the	complexity	inside	this	little	black	
box	we	call	a	component.

To	create	a	well-developed	component,	you	must	balance	the	needs	of	your	component’s	end	
user	(sometimes	you,	sometimes	your	team	or	company,	or	at	the	most	extreme,	an	unknown	
audience	who	will	purchase	and	use	it),	with	an	understanding	of	Flash	Player	and	the	Flex	
framework.	While	this	lesson	will	not	be	able	to	provide	all	of	that	understanding,	it	will	
touch	on	several	areas	of	building	a	component.

ptg

421Understanding Flex Components

Understanding Flex Components
There	are	two	types	of	components	in	the	Flex	framework:	those	that	have	a	skinnable	display	
and	those	that	do	not.	Classes	such	as	Group,	DataGroup,	and	many	others	are	not	skinnable.	
That	means	you	cannot	apply	the	techniques	learned	in	the	previous	lesson	to	change	their	
appearance.	These	types	of	components	are	lighter	weight	and	generally	descend	from	a	class	
named	UIComponent.

UIComponent

GroupBaseTextBase

GroupLabel DataGroupRichText

UIComponent	is	the	base	class	for	components	in	Flex	and	defines	a	lot	of	the	functionality	
you	have	already	become	familiar	with,	such	as	automatic	sizing	and	properties	such	as	left,	
top,	right,	and	bottom.	Components	that	descend	from	UIComponent	directly	tend	to	be	
more	self-contained	with	regard	to	their	visual	experience.	In	other	words,	they	do	not	have	a	
separate	skin	class	that	controls	the	way	they	appear	on	the	screen.

Conversely,	components	may	descend	from	SkinnableComponent.	SkinnableComponent	also	
descends	from	UIComponent,	but	it	adds	a	key	piece	of	additional	functionality.	It	allows	for	
the	separation	of	all	functionality	related	to	the	way	the	component	appears	to	be	defined	in	a	
separate	class.	Put	simply,	components	that	in	some	way	descend	from	SkinnableComponent	
can	have	a	skin.

GroupBaseTextBase

GroupLabel DataGroupRichText

Button

Application

TextInput

Panel

UIComponent

SkinnableComponent

SkinnableContainer

ptg

422 Lesson 18: Creating Custom ActionScript Components

Why	does	this	all	matter?	It	changes	the	definition	of	the	word	component.	When	using	non-
skinnable	components	such	as	Label,	the	component	is	mostly	self-contained.	Any	intended	
visuals	of	the	component	must	be	contained	within	the	class.	

However,	exactly	the	opposite	is	true	of	skinnable	components.	When	creating	a	skinnable	
component,	nothing	about	the	way	the	component	appears	on	the	screen	is	defined	inside	
the	component	itself;	it	is	all	defined	in	the	skin.	You	can	think	of	a	skinnable	component	as	
consisting	of	two	halves	that	must	work	together	to	create	a	whole.

Effectively,	this	is	a	separation	of	form	and	function.	Skins	are	purely	visual;	they	contain	no	
logic	for	interactivity.	Skinnable	components	do	not	have	a	visual	representation	without	a	
skin;	they	are	purely	the	functional	aspects	of	a	class.	

Why Make Components?
Examining	this	image,	you’ll	see	your	current	shopping	cart	item	view	from	your	Flex	Grocer	
application.

ptg

423Why Make Components?

Right	now	this	image	does	not	represent	a	single	component	in	your	code:	It	is	three	separate	
components.	This	code	from	ShoppingView	shows	these	declarations:

<s:List id=”cartList”
 dataProvider=”{shoppingCart.items}”
 includeIn=”State1”
 labelFunction=”renderProductName”
 dragEnter=”cartList_dragEnterHandler(event)”
 dragDrop=”cartList_dragDropHandler(event)”/>
<s:Label text=”Your Cart Total { currency.format(shoppingCart.total) }”/>
<s:Button includeIn=”State1” height=”17”
 label=”View Cart”
 styleName=”cartButton”
 click=”handleViewCartClick(event)”/>

Ignoring	any	visual	changes	for	the	moment,	why	might	you	want	to	make	this	into	a	single	
component	as	opposed	to	leaving	it	as	is?	The	answer	to	that	question	comes	down	to	the	
interface,	encapsulation,	and	reuse.

To	provide	this	display	on	the	screen	correctly	right	now,	you	need	to	remember	to	do	
the following:

•	 Set	the	includeIn	property	correctly	on	a	couple	of	different	instances.	

•	 Pass	the	shopping	cart’s	items,	not	the	entire	shopping	cart,	to	the	List	instance.	

•	 Define	a	CurrencyFormatter	on	this	page.

•	 Pass	the	total	from	the	shopping	cart	into	the	format()	function	before	passing	it	to	
the Label’s	text	property.	

•	 Include	functions	to	handle	dragging	and	dropping.

While	all	those	things	are	fine	if	you	are	the	author	of	this	code	and	only	intend	to	duplicate	
this	block	once,	consider	it	from	another	perspective.	If	you	were	going	to	instruct	someone	
on	how	to	add	a	listing	of	their	shopping	cart	items	to	their	page,	would	you	want	to	explain	
each	of	those	things?	Suppose	this	component	needed	to	be	added	in	several	different	places	
in	the	application:	Would	copying	all	those	pieces	each	time	make	sense?	And	lastly,	in	the	
abstract,	all	this	code	is	currently	in	a	class	called	ShoppingView.	ShoppingView’s	main	job	is	
to	present	a	list	of	products	and	a	view	of	the	shopping	cart	to	the	user.	Does	code	that	under-
stands	how	drag	and	drop	works	inside	the	List	class	really	belong	in	ShoppingView?

ptg

424 Lesson 18: Creating Custom ActionScript Components

The	answer	is	no.	When	you	create	classes	in	an	object-oriented	language,	you	want	to	have	
a	clear	sense	of	what	the	resultant	object	will	do.	Ideally,	it	should	have	as	singular	a	purpose	
as	possible	to	keep	the	code	maintainable	and	understandable.	Right	now	ShoppingView	
does	a	variety	of	things	and,	from	an	object-oriented	perspective,	knows	too	much	about	the	
relationship	of	these	objects	to	allow	these	pieces	to	be	reusable.	To	solve	that	problem,	you’re	
going	to	take	this	one	function	that	displays	and	handles	the	items	in	a	user’s	shopping	cart	
and	refactor	it	into	a	new	object	with	this	purpose.	Along	the	way,	you’ll	gain	the	ability	to	
skin	this	object	and	simplify	its	use—all	because	you	have	made	the	commitment	to	create	a	
component	from	this	functionality.

Defining a Component
You	cannot	create	a	component	without	knowing	its	intended	purpose,	so	let’s	examine	the	
current	list	and	related	controls	alongside	a	new	intended	look	and	feel	for	this	component.	

Reexamining	the	code	for	the	current	implementation	will	give	you	an	initial	set	of	the	
requirements.	You	want	to	be	able	to	replace	this	code	and	the	associated	functions	in	the	
ShoppingView	with	one	component.	Therefore,	it	must	be	able	to	do	the	same	things.

<s:List id=”cartList”
 dataProvider=”{shoppingCart.items}”
 includeIn=”State1”
 labelFunction=”renderProductName”
 dragEnter=”cartList_dragEnterHandler(event)”
 dragDrop=”cartList_dragDropHandler(event)”/>
<s:Label text=”Your Cart Total { currency.format(shoppingCart.total) }”/>
<s:Button includeIn=”State1” height=”17”
 label=”View Cart”
 styleName=”cartButton”
 click=”handleViewCartClick(event)”/>

ptg

425Defining a Component

Looking	at	this	code,	you	should	be	able	to	gather	a	few	important	points.	The	component	
needs	to:

•	 Display	the	contents	of	the	shoppingCart’s	items	collection,	which	is	just	a	collection	of	
ShoppingCartItem	instances.	

•	 Accept	drag-and-drop	operations	as	a	way	of	adding	items.

•	 Display	the	shopping	cart’s	total.

•	 Format	the	shopping	cart’s	total.

•	 Facilitate	switching	to	the	cartView	state.

This	code	uses	generic	Flex	components:	List,	Label,	and	Button.	Generic	components	are	
fantastic	building	blocks,	but	they	force	your	application	code,	the	code	contained	within	files	
like	ShoppingView,	to	do	more	work.	

For	example,	you	simply	can’t	tell	a	generic	component	to	display	your	ShoppingCart	object.	
Instead,	any	person	using	this	code	has	to	provide	the	List	with	the	items	collection,	the	Label	
with	the	formatted	total,	and	so	on.

Generic	Flex	components	aren’t	designed	to	understand	concepts	specific	to	your	application.	
However,	when	you	create	your	own	custom	components,	you	can	tailor	them	to	understand	
the	objects	that	are	important	to	your	application	and	therefore	reduce	the	pain	in	using	them.

Defining the Interface
If	you	were	to	close	your	eyes	and	envision	the	perfect	interface	for	your	ShoppingList,	what	
might	that	be?	Perhaps	instead	of	passing	in	items	to	a	List	and	totals	to	a	Label,	you	would	
just	pass	the	entire	shoppingCart	and	the	component	would	know	what	to	do	with	it.	Perhaps	
instead	of	bothering	you	when	someone	dragged	something	onto	the	component	or	dropped	
it,	the	component	would	just	tell	you	that	there	is	a	new	product	to	add	to	the	cart.	This	is	an	
important	exercise.	When	creating	a	new	component	one	of	the	most	critical	things	to	get	
right	is	the	interface—in	other	words,	how	the	rest	of	the	world	will	use	your	component	in	
code.	Here	is	the	proposed	interface	for	the	new	ShoppingList	component:

<components:ShoppingList
 shoppingCart=”{shoppingCart}”
 addProduct=”addProductHandler(event)”
 viewCart=”currentState=’cartView’”/>

The	new	component	will	accept	a	ShoppingCart	instance	as	a	property.	It	will	let	you	know	
when	a	user	attempts	to	add	a	product	or	clicks	the	view	cart	button	via	events	that	are	easily	
handled.	It	will	hide	all	the	messy	details	internally,	making	it	much	easier	to	use—and	reuse.

ptg

426 Lesson 18: Creating Custom ActionScript Components

Choosing a Base Class
The	last	step	before	you	begin	creating	your	custom	component	is	to	choose	a	base	class.	That	
is	the	class	you’ll	extend	as	your	starting	point.	Choosing	the	base	class	for	your	new	compo-
nent	is	a	critical	decision	and	one	you	cannot	make	without	a	thorough	understanding	of	the	
problem,	so	let’s	start	there.	

Reexamining	the	image	from	earlier,	you’ll	see	your	current	shopping	cart	item	view	on	the	
left	and	the	proposed	shopping	cart	item	view	on	the	right.	They	look	quite	a	bit	different,	but	
there	are	functional	differences	as	well.

When	you	are	deciding	on	a	base	class,	you’re	trying	to	determine	if	there	is	another		
class that	already	does	most	of	the	needed	work	on	your	behalf.	For	instance,	earlier	you		
created ProductList.	You	did	so	by	extending	the	DataGroup	and	changing	a	few	things	to	
make	ProductList	a	viable	component	for	your	needs.	

In	this	case,	you	are	making	a	component	that	has	an	area	to	display	a	list	of	items.	It	also	has	
an	area	to	display	the	number	of	items	in	the	cart,	an	area	to	display	a	total,	and	a	View	Cart	
button.	Unlike	ProductList,	this	component	doesn’t	exactly	mirror	the	functionality	of	any	
one	Flex	component.	Instead,	it’s	a	composite	of	many	different	components	interacting	in	a	
specific	way.	

As	there	isn’t	a	component	in	Flex	that	provides	you	with	the	needed	functionality,	it	
will	be	up	to	you	to	build	it	all.	While	doing	so,	you	are	also	going	to	allow	for	others	in	
the	future	to	change	the	way	your	component	looks	via	skinning.	Therefore,	you’ll	use	
SkinnableComponent	as	your	base	class.	

ptg

427Defining a Component

Creating the Class
You’ll	begin	building	the	component	to	replace	the	shopping	cart	items	list	currently	in	
ShoppingView.	Start	by	creating	a	new	ActionScript	class.

1 Open	the	FlexGrocer	project	that	you	used	in	the	previous	lessons.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer.fxp	project	from	the	Lesson18/start	folder.	
Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	should	you	
skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Right-click	the	components	package	in	the	Package	Explorer.	Choose	New	>	
ActionScript Class.

3 Specify	ShoppingList	as	the	Name	of	the	new	class	and	SkinnableComponent	as	
the superclass.

4 Click	Finish.

Now	that	you	have	a	class,	you	need	to	define	the	interface	explained	earlier	in	code.	The	
steps	in	this	section	rely	heavily	on	Flash	Builder.	Learn	to	use	these	tools	well,	and	you’ll	
save	immense	amounts	of	time.

ptg

428 Lesson 18: Creating Custom ActionScript Components

5 Above	the	constructor	for	the	ShoppingList	class,	create	a	new	private	variable	named	
shoppingCart	of	type	ShoppingCart.
private var shoppingCart:ShoppingCart;

Be	sure	to	use	code	completion	when	typing	so	that	Flash	Builder	imports	cart.
ShoppingCart	on	your	behalf.

6 Right-click	shoppingCart	in	the	line	of	code	you	just	wrote.	From	the	pop-up	menu,	
choose	Source	>	Generate	Getter/Setter.

7 The	Generate	Getter/Setter	dialog	box	opens.	Ensure	your	options	look	the	same	as	those	
in	the	following	image:

This	dialog	box	will	generate	a	new	getter	and	setter	function	on	your	behalf,	saving	you	
typing	and	typos.

ptg

429Defining a Component

8 Click	OK.	You	should	now	have	a	getter	and	setter	function	for	a	shoppingCart	property,	
and	your	original	variable	will	be	renamed	with	an	underscore.
private var _shoppingCart:ShoppingCart;

public function get shoppingCart():ShoppingCart {
 return _shoppingCart;
}

public function set shoppingCart(value:ShoppingCart):void {
 _shoppingCart = value;
}

This	property	was	the	first	of	three	things	that	made	up	the	ShoppingList	interface.	
The remaining	two	are	both	events,	which	you’ll	add	next.

9 Move	to	just	above	the	ShoppingList	class	definition	and	add	event	metadata	for	an	event	
named	addProduct	that	will	dispatch	an	event	of	type	events.ProductEvent.
[Event(name=”addProduct”,type=”events.ProductEvent”)]

10 Add	another	piece	of	event	metadata	just	below	the	last	for	an	event	named	viewCart,	
which	will	dispatch	an	event	of	type	flash.events.Event.
[Event(name=”viewCart”,type=”flash.events.Event”)]

11 Manually	import	the	two	event	classes	at	the	top	of	your	file.
import events.ProductEvent;
import flash.events.Event;

12 Save	this	file.	

Your	public	interface	is	now	complete,	and	you	can	change	your	MXML	to	use	your	new	
component.

Using Your Custom Class
Although	your	new	component	does	not	yet	have	any	functionality	useful	to	the	user,	its	public	
interface	is	complete.	This	means	you	can	replace	your	existing	code	with	this	new	component.

This	is	a	great	way	to	check	your	design	and	ensure	you	met	all	the	requirements	before	
continuing	with	implementation.	If	your	component	can	be	dropped	into	the	place	where	it	is	
eventually	needed,	you	likely	have	the	basics	covered.

1 Open	the	ShoppingView	from	the	views	package.

2 Find	the	VGroup	named	cartGroup	that	contains	the	components	responsible	for	show-
ing	the	cart’s	contents	in	different	views.

ptg

430 Lesson 18: Creating Custom ActionScript Components

3 Delete	the	List	control,	the	Label	that	displays	the	cart	total,	and	the	Button	that	is	
responsible	for	switching	to	the	cartView	state.	Your	code	for	this	VGroup	should	
look like	this:
<s:VGroup id=”cartGroup” height=”100%”
 width.cartView=”100%”>
 <components:CartGrid id=”dgCart”
 includeIn=”cartView”
 width=”100%” height=”100%”
 dataProvider=”{shoppingCart.items}”
 removeProduct=”removeProductHandler(event)”
 />

 <s:Button includeIn=”cartView”
 label=”Continue Shopping”
 styleName=”cartButton”
 click=”this.currentState=’’”/>
</s:VGroup>

4 Next,	add	your	ShoppingList	component	just	above	the	dgCart	but	still	inside	cartGroup	
and	pass	it	a	reference	to	the	shoppingCart.	Previously,	the	List	was	only	included	in	
State1,	so	also	add	that	logic	to	this	tag.
<components:ShoppingList
 includeIn=”State1”
 shoppingCart=”{shoppingCart}”/>

5 Now	handle	the	addProduct	event	by	calling	the	addProductHandler	event	listener,	which	
is	already	defined	in	this	view.
<components:ShoppingList
 includeIn=”State1”
 shoppingCart=”{shoppingCart}”
 addProduct=”addProductHandler(event)” />

Technically	this	component	already	has	a	reference	to	the	shoppingCart,	which	means	
you	could	manually	add	a	new	product	anytime	you	wanted	without	dispatching	and	
handling	this	event.	However,	there	are	two	good	reasons	not	to	do	so.	First,	there	is	
already	logic	on	this	view	to	handle	the	Add	Product	button	click	from	the	ProductList.	
Reusing	this	logic	means	less	duplication,	but	more	importantly	it	means	if	this	logic	
needs	to	change,	it	changes	in	only	one	place.	

Further,	while	you	are	making	this	component	more	specific,	it	is	still	best	to	separate	
the	logic	that	your	application	performs	from	the	way	it	is	displayed.	This	component	is	
about	displaying	items	in	a	specific	way	and	interacting	with	the	user.	You	really	don’t	
want	it	to	also	have	the	responsibility	of	understanding	how	products	are	added	to	the	

ptg

431Defining a Component

cart	or	you’re	back	to	having	components	that	know	too	much—part	of	what	we’re		
correcting	by	moving	some	of	this	code	out	of	ShoppingView.

6 Handle	the	viewCart	event	by	setting	currentState	to	cartView.	The	final	tag	should	look	
like	this:
<components:ShoppingList
 includeIn=”State1”
 shoppingCart=”{shoppingCart}”
 addProduct=”addProductHandler(event)”
 viewCart=”currentState=’cartView’”/>

Your	new	component	is	now	taking	the	place	of	the	older	pieces,	but	there	is	now	extra-
neous	code	in	ShoppingView	that	can	be	eliminated—the	functionality	will	be	moved	
into	the	ShoppingList	component.

7 Delete	the	renderProductName(),	cartList_dragEnterHandler(),	and	cartList_
dragDropHandler()	methods	from	ShoppingView.	You	may	also	delete	the	following	
imports,	which	were	used	only	by	these	methods:
import mx.core.IUIComponent;
import mx.events.DragEvent;
import mx.managers.DragManager;
import mx.core.DragSource;

The	functionality	of	these	methods	belongs	to	the	ShoppingList	now	and	will	no	longer	
be	needed	in	ShoppingView.

8 Save	all	your	files.	You	shouldn’t	see	any	compilation	errors,	but	if	you	were	to	run	this	
code	now	you’d	receive	an	error	at	runtime.

You	presently	have	function	with	no	form.	You’ve	learned	that	components	based	on	
SkinnableControl	are	really	two	halves,	one	side	representing	the	function	and	the	other	
the form.	Flex	can’t	figure	out	what	you	want	displayed	on	the	screen.	You’ll	deal	with	that	
issue	next.

ptg

432 Lesson 18: Creating Custom ActionScript Components

Creating the Visuals
You	created	the	stub	for	your	new	custom	component	in	the	previous	section,	but	now	you	want	
to	define	its	visual	appearance	and	then	link	the	two	together.	Defining	the	requirements	for	
these	two	components	to	talk	and	establishing	the	visual	display	will	be	the	focus	of	this	section.

Specifying the Skin Requirements
Components	that	support	skinning	in	Flex	are	composed	of	two	pieces.	This	separation	
provides	enormous	capability	but	also	some	complexity.	The	two	halves	need	to	communicate	
and	they	need	to	set	requirements	for	each	other.	The	functional	side	of	the	component	in	
your	case	will	be	responsible	for	displaying	the	total.	Therefore,	it	needs	to	know	that	there	
will	be	a	label	created	by	the	visual	side	allowing	that	to	happen.

These	requirements	are	set	via	three	metadata	tags	that	collectively	help	tame	the	madness	of	
this	dynamic	component	model.	You	learned	about	these	tags	briefly	in	Lesson	17,	“Customizing	
a	Flex	Application	with	Skins”;	however,	you’ll	now	use	them	to	define	your	component.

The	first	metadata	tag	is	called	SkinPart.	The	SkinPart	metadata	is	responsible	for	defining	
what	pieces	are	required	of	the	skin	to	be	considered	legitimate.	Using	your	component	as	an	
example,	the	ShoppingList	will	need	to	indicate	that	it	needs	some	place	to	put	the	total,	the	
quantity,	and	the	items.	The	Flash	Builder	environment	will	not	allow	someone	to	assign	a	
skin	to	your	component	that	does	not	implement	all	these	required	parts.

The	SkinPart	metadata	is	used	inside	the	class	and	above	a	property.	In	this	example:

[SkinPart(required=”true”)]
public var myLabel:Label;

a	component	is	indicating	that	the	skin	must	have	a	Label	named	myLabel	to	be	considered	a	
valid	skin.	If	required	is	set	to	false,	it	is	optional	for	the	skin	to	implement.

The	next	piece	of	metadata	is	called	SkinState.	The	SkinState	metadata	tag	is	responsible	for	
indicating	what	states	are	required	of	the	skin.	The	simplest	example	of	this	is	the	normal	and	
disabled	state.	In	Flex	you	can	set	the	enabled	property	for	any	UIComponent	to	false.	Doing	
so	should	prevent	interaction	with	the	component	and	often	changes	the	component	visually	
to	ensure	the	user	perceives	the	reason	for	the	lack	of	interaction.

[SkinState(“normal”)]
[SkinState(“disabled”)]

When	this	metadata	is	added	above	the	class	declaration	for	a	component,	it	means	that	any	
skin	for	this	component	must	have	these	two	states	defined.	It	does	not	prescribe	what	the	

ptg

433Creating the Visuals

skin	does	during	a	state	change.	For	instance,	it	is	completely	your	choice	if	the	skin	blinks	or	
does	nothing	in	a	disabled	state,	but	it	must	be	able	to	handle	this	state	change	in	whatever	
way	you	see	fit.

The	final	piece	of	metadata	important	to	skinning	resides	in	the	skin	itself.	This	piece	of	meta-
data	is	called	HostComponent.

[HostComponent(“components.MyList”)]

The	HostComponent	tag	is	used	to	associate	a	skin	with	its	component.	In	other	words,	it	is	
used	to	indicate	which	halves	make	the	whole.	This	is	extremely	important	as	it	allows	Flash	
Builder	to	do	compile-time	checking	on	your	behalf.	If	you	create	a	new	skin	and	specify	that	
it	is	for	a	particular	component,	Flash	Builder	can	check	the	SkinState	and	SkinPart	metadata	
of	the	named	component	and	verify	that	your	skin	meets	those	requirements.	That	way,	you	
know	at	compile	time,	instead	of	runtime,	if	there	is	a	problem.

1 Open	the	ShoppingList.as	file	that	you	used	in	the	previous	exercise.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	functioning	
properly,	you	can	import	the	FlexGrocer-PreSkin.fxp	project	from	the	Lesson18/intermediate		
folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	project	
should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Directly	below	the	event	metadata	and	before	the	class	definition,	add	two	SkinState	
metadata	tags	defining	states	named	normal	and	disabled.
[SkinState(“normal”)]
[SkinState(“disabled”)]

You	are	specifying	that	anyone	making	a	skin	for	your	component	must	be	able	to	handle	
these	two	states,	or	it	is	not	to	be	considered	a	valid	skin.

3 Inside	the	class	definition,	just	below	the	variable	declaration	for	the	_shoppingCart	prop-
erty,	add	a	public	variable	named	totalLabel	of	type	Label.	Be	sure	to	use	code	comple-
tion,	but	also	be	sure	that	you	specify	spark.components.Label.

4 Directly	above	the	totalLabel	property,	add	the	SkinPart	metadata,	indicating	that	this	
particular	part	is	required.	Your	code	should	look	like	this:
[SkinPart(required=”true”)]
public var totalLabel:Label;

5 Add	a	new	required	SkinPart	for	dataGroup	of	type	DataGroup.
[SkinPart(required=”true”)]
public var dataGroup:DataGroup;

ptg

434 Lesson 18: Creating Custom ActionScript Components

6 Add	another	new	required	SkinPart	for	quantityLabel	of	type	Label.
[SkinPart(required=”true”)]
public var quantityLabel:Label;

7 Finally,	add	an	optional	SkinPart	for	viewCartBtn	of	type	Button.
[SkinPart(required=”false”)]
public var viewCartBtn:Button;

8 Save	this	class.	

It	should	compile	successfully	without	any	errors	or	warnings.

Creating the Skin
You	now	have	a	component	waiting	to	be	skinned.	It	has	the	required	skin	parts	and	the	skin	
states	defined.	In	this	section,	you’ll	create	a	skin	for	the	new	component	and	apply	it	so	that	
you	can	run	the	application	and	see	some	initial	results.

1 Right-click	the	skins	folder	and	choose	New	>	MXML	Skin	from	the	pop-up	menu.

2 Name	the	new	skin	ShoppingListSkin.	Click	Browse	next	to	the	Host	component	field	
and	select	your	ShoppingList	component.

ptg

435Creating the Visuals

3 Click	Finish	and	a	new	skin	is	created	for	you.
<?xml version=”1.0” encoding=”utf-8”?>
<s:Skin xmlns:fx=”http://ns.adobe.com/mxml/2009”
 xmlns:s=”library://ns.adobe.com/flex/spark”>
 <!-- host component -->
 <fx:Metadata>
 [HostComponent(“components.ShoppingList”)]
 </fx:Metadata>

 <!-- states -->
 <s:states>
 <s:State name=”normal” />
 <s:State name=”disabled” />
 </s:states>

 <!-- SkinParts
 name=dataGroup, type=spark.components.DataGroup, required=true
 name=totalLabel, type=spark.components.Label, required=true
 name=quantityLabel, type=spark.components.Label, required=true
 name=viewCartBtn, type=spark.components.Button, required=false
 -->
</s:Skin>

Note	that	the	HostComponent	metadata	was	entered	on	your	behalf,	the	required	skin	
states	were	created	based	on	the	SkinState	metadata	in	your	ShoppingList	class,	and	
Flash wrote	a	comment	in	the	code	reminding	you	of	the	SkinParts	you	must	have	to	
be considered	valid.

4 Just	below	the	comment	for	the	SkinParts,	add	an	<s:Image/>	tag	with	a	source	embed-
ding	the	receipt.png @Embed(‘assets/receipt.png’).
<s:Image source=”@Embed(‘assets/receipt.png’)”/>

This	will	load	the	background	image	for	your	new	component.	Here	is	a	quick	reminder	
of	the	skin	you	are	about	to	build.

ptg

436 Lesson 18: Creating Custom ActionScript Components

5 Below	the	Image,	add	an	<s:Label/>	tag	with	an	id	of	quantityLabel.	Set	the	left	prop-
erty	to	50	and	the	top	property	to	10.
<s:Label id=”quantityLabel” left=”50” top=”10”/>

Note	that	the	id	of	quantityLabel	is	being	used.	This	id	is	the	same	as	the	property	
marked	with	the	SkinPart	metadata	in	the	ShoppingList.	For	every	required	SkinPart	in	
the	ShoppingList,	you’ll	have	a	matching	component	here	with	that	id.

6 Below	the	quantityLabel,	add	a	tag	pair	for	<s:Scroller></s:Scroller>.	Set	the	left	
property	to	22,	the	top	property	to	30,	the	width	to	149,	and	the	height	to	115.	You’ll	also	
set	a	property	called	horizontalScrollPolicy	to	off.
<s:Scroller left=”22” top=”30” width=”149” height=”115”
horizontalScrollPolicy=”off”>
</s:Scroller>

In	Flex,	not	every	object	knows	how	to	scroll	its	own	content.	Instead,	you	wrap	these	
instances	inside	a	Scroller	to	handle	any	scrolling	needs.	In	this	case,	you	are	setting	the	
size	and	position	of	the	area	you	wish	to	scroll.	By	default,	the	Scroller	scrolls	horizontally	
and	vertically.	In	this	case,	you	only	want	vertical	scrolling	so	horizontalScrollPolicy	
has	been	turned	off.

7 Inside	the	<s:Scroller></s:Scroller>	tag	pair,	add	an	<s:DataGroup></s:DataGroup>	tag	
pair.	Set	the	id	of	this	DataGroup	to	dataGroup,	one	of	your	required	skin	parts.	Set	the	
itemRenderer	property	to	spark.skins.spark.DefaultItemRenderer.
<s:Scroller left=”22” top=”30” width=”149” height=”115”
horizontalScrollPolicy=”off”>
 <s:DataGroup id=”dataGroup”
 ➥ itemRenderer=”spark.skins.spark.DefaultItemRenderer”>
 </s:DataGroup>
</s:Scroller>

This	DataGroup	will	be	responsible	for	displaying	the	items	in	your	ShoppingCart.	
For	now,	you	are	using	the	DefaultItemRenderer,	which	displays	the	text	from	your	
toString()	method	of	your	ShoppingCartItem.	You’ll	customize	this	later.

ptg

437Creating the Visuals

8 Inside	the	<s:DataGroup></s:DataGroup>	tag	pair,	set	the	layout	property	to	an	instance	of	
the	VerticalLayout	class,	setting	the	gap	to	0.	Your	code	for	the	Scroller	should	look	like	this:
<s:Scroller left=”22” top=”30” width=”149” height=”115”
horizontalScrollPolicy=”off”>
 <s:DataGroup id=”dataGroup”
 itemRenderer=”spark.skins.spark.DefaultItemRenderer”>
 <s:layout>
 <s:VerticalLayout gap=”0”/>
 </s:layout>
 </s:DataGroup>
</s:Scroller>

9 Below	the	Scroller,	draw	a	simple	dividing	line	using	MXML.	Specify	an	<s:Line>	tag	pair	
with	an	id	of	divider.	Set	the	left	property	to	22,	the	right	property	to	10,	and	the	top	
to	155.	Inside	the	tag	pair,	set	the	stroke	property	to	an	instance	of	the	SolidColorStroke	
with	a	color	of	#545454	and	a	weight	of	1.
<s:Line id=”divider” left=”22” right=”10” top=”155”>
 <s:stroke>
 <s:SolidColorStroke color=”#545454” weight=”1”/>
 </s:stroke>
</s:Line>

This	code	does	nothing	more	than	draw	a	dividing	line	before	the	total.	You	only	have	
two	labels	and	a	button	left	until	your	skin	is	complete.

10 Add	an	<s:Label/>	below	the	line	with	the	text	set	to	Total:,	left	set	to	22,	top	to	162,	
color	to	#0000FF,	and	fontSize	to	11.
<s:Label text=”Total:” left=”22” top=”162” color=”#0000FF” fontSize=”11”/>

11 Add	another	<s:Label/>	with	the	id	set	to	totalLabel,	right	set	to	12,	top	to	162,	color	
to	#0000FF,	and	fontSize	to	11.
<s:Label id=”totalLabel” right=”12” top=”162” color=”#0000FF” fontSize=”11”/>

This	label	will	hold	the	actual	formatted	total	on	the	shopping	cart.

12 Finally,	add	an	<s:Button/>	with	the	id	set	to	viewCartBtn,	label	set	to	View Cart,	
horizontalCenter	to	12,	and	bottom	to	20.
<s:Button id=”viewCartBtn” label=”View Cart” horizontalCenter=”12” bottom=”20”/>

ptg

438 Lesson 18: Creating Custom ActionScript Components

This	completes	your	skin	for	the	moment.	The	code	you	added	should	look	like	the		
following	snippet:
<s:Image source=”@Embed(‘assets/receipt.png’)”/>
<s:Label id=”quantityLabel” left=”50” top=”10”/>

<s:Scroller left=”22” top=”30” width=”149” height=
 “115” horizontalScrollPolicy=”off”>
 <s:DataGroup id=”dataGroup”
 	 itemRenderer=”spark.skins.spark.DefaultItemRenderer”>
 <s:layout>
 <s:VerticalLayout gap=”0”/>
 </s:layout>
 </s:DataGroup>
</s:Scroller>

<s:Line id=”divider” left=”22” right=”10” top=”155”>
 <s:stroke>
 <s:SolidColorStroke color=”#545454” weight=”1”/>
 </s:stroke>
</s:Line>

<s:Label text=”Total:” left=”22” top=”162” color=”#0000FF” fontSize=”11”/>
<s:Label id=”totalLabel” right=”12” top=”162” color=”#0000FF” fontSize=”11”/>
<s:Button id=”viewCartBtn” label=”View Cart” horizontalCenter=”12” bottom=”20”/>

13 Open	ShoppingView.mxml	and	find	the	ShoppingList	tag.

14 Add	a	property	to	this	tag	named	skinClass	and	set	it	equal	to	skins.ShoppingListSkin.
<components:ShoppingList
 skinClass=”skins.ShoppingListSkin”
 includeIn=”State1”
 shoppingCart=”{shoppingCart}”
 addProduct=”addProductHandler(event)”
 viewCart=”currentState=’cartView’”/>

15 Save	all	your	open	files	and	ensure	you	do	not	have	any	errors	or	warnings.	Run	the	FlexGrocer	
application	and	you	should	see	the	beginnings	of	your	custom	component	displayed.

ptg

439Adding Functionality to the Component

Adding Functionality to the Component
You	created	the	stub	for	your	new	custom	component	and	defined	its	visual	appearance.	Now	
it	is	time	to	add	the	final	functionality	so	that	both	halves	of	the	component	work	together.	
This	is	also	the	time	when	you’ll	need	to	understand	just	a	bit	about	how	Flash	Player	works	
internally	as	well	as	how	to	manage	the	internally	asynchronous	nature	of	components.

Handling Asynchronous for All
Flash	Player	is	a	single-threaded	virtual	machine.	In	the	simplest	sense,	that	means	it	does	one	
thing	at	a	time	and	regardless	of	how	long	it	might	take,	it	will	never,	ever	interrupt	code	that	
is	running.	It	always	allows	one	task	to	finish	before	moving	on	to	something	else.

The	problem	with	this	philosophy	is	that	if	something	takes	a	long	time	to	do,	it	can	cause	
Flash	Player	to	stop	updating	the	screen	and	mouse	movements	at	a	reasonable	rate,	creating	a	
negative	user	experience.

To	combat	that	issue,	the	Flex	framework	is	event	based	and	has	an	asynchronous	component	
model.	This	means	that	certain	aspects	of	what	happens	inside	components	happen	at	prede-
termined	times	when	Flash	Player	is	most	optimally	able	to	deal	with	changes.	It	also	means	
that	as	a	developer,	you	cannot	make	assumptions	about	when	something	is	ready,	complete,	
or	otherwise	available.	

The	Flex	framework	has	prescribed	ways	to	deal	with	this	complexity.	As	a	developer,	if	you	
embrace	these	concepts,	things	will	go	your	way.	If	you	try	to	do	your	own	thing,	the	frame-
work	will	find	a	way	to	punish	you.	Things	may	work	seemingly	well	on	your	development	
machine	but	differently	in	production.	Components	may	work	in	one	circumstance	but	not	
another.	Because	all	these	issues	have	to	do	with	timing	that	can	change	from	machine	to	
machine,	it	is	imperative	that	you	follow	the	rules.

1 Open	the	ShoppingList.as	file	that	you	used	in	the	previous	exercise.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	functioning	
properly,	you	can	import	the	FlexGrocer-PreFunction.fxp	project	from	the	Lesson18/
intermediate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	
project	should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Just	below	the	private	_shoppingCart	property,	create	a	new	private	variable	named	
shoppingCartChanged	typed	as	a	Boolean.	Set	it	to	a	default	value	of	false.
private var shoppingCartChanged:Boolean = false;

ptg

440 Lesson 18: Creating Custom ActionScript Components

This	is	known	as	a	change flag	as	its	only	purpose	is	to	indicate	the	state	of	something.	
Internally	this	will	be	used	to	let	your	component	know	when	it	has	a	new	ShoppingCart	
that	must	be	displayed	to	the	user.

3 Create	two	more	private	variables	named	quantityChanged	and	totalChanged,	both	typed	
as	Boolean	and	with	default	values	of	false.
private var shoppingCartChanged:Boolean = false;
private var quantityChanged:Boolean = false;
private var totalChanged:Boolean = false;

These	other	change	flags	will	be	used	for	tracking	when	either	the	quantity	or	total	
need updating.

4 Inside	the	public	setter	for	the	shoppingCart	property,	immediately	after	_shoppingCart	is	
set	to	value,	set	the	shoppingCartChanged	flag	to	true.
public function set shoppingCart(value:ShoppingCart):void {
 _shoppingCart = value;
 shoppingCartChanged = true;
}

5 Call	the	invalidateProperties()	method	that	your	class	has	due	to	inheritance.
public function set shoppingCart(value:ShoppingCart):void {
 _shoppingCart = value;
 shoppingCartChanged = true;
 invalidateProperties();
}

Everything	that	descends	from	UIComponent	in	Flex	has	this	method	available.	This	is	one	
of	several	methods	designed	to	help	you	deal	with	the	asynchronous	way	Flex	creates	com-
ponents.	In	Flex,	skins	can	be	added	to	and	removed	from	components	at	runtime,	so	you	
cannot	assume	that	all	the	parts	of	the	skin	are	waiting	and	ready	for	your	commands.	

When	you	call	invalidateProperties(),	you	are	effectively	asking	the	Flex	framework	to	
schedule	a	call	to	another	special	method	named	commitProperties()	at	a	more	oppor-
tune	time.	Flex	manages	the	complexity	of	all	the	components	that	may	want	to	do	some	
work	at	any	given	time	and	calls	them	in	the	order	most	appropriate	for	performance.

6 Below	the	shoppingCart	property	setter,	override	a	protected	method	named	
commitProperties().	This	method	takes	no	arguments.	Immediately	inside	the	method,	
call	super.commitProperties();.
override protected function commitProperties():void {
 super.commitProperties();
}

ptg

441Adding Functionality to the Component

This	method	is	eventually	called	whenever	you	or	any	other	code	calls	
invalidateProperties().	Flex	calls	this	method	at	an	optimized	time	for	your	compo-
nent	to	do	the	work	it	needs.	In	addition	to	the	call	you	made	to	invalidateProperties(),	
other	parts	of	the	Flex	framework	also	call	this	method.	It	will	be	called	automatically	
whenever	a	new	skin	is	added	or	removed.

7 Below	the	call	to	super.commitProperties(),	write	an	if	statement	that	checks	if	your	
shoppingCartChanged	flag	is	true	and	if	the	dataGroup	has	already	been	created.
override protected function commitProperties():void {
 super.commitProperties();

 if (shoppingCartChanged && dataGroup) {
 }
}

The	code	inside	this	if	statement	will	now	only	execute	if	your	flag	is	true	and	if	Flex	has	
already	created	the	dataGroup.

8 Inside	the	if	statement,	set	the	shoppingCartChanged	flag	to	false.	Then	set	the	
dataProvider	of	the	dataGroup	to	shoppingCart.items.
override protected function commitProperties():void {
 super.commitProperties();

 if (shoppingCartChanged && dataGroup) {
 shoppingCartChanged = false;
 dataGroup.dataProvider = shoppingCart.items;
 }
}

All	this	code	is	mandatory.	If	you	tried	to	access	the	dataProvider	property	of	data-
Group	before	dataGroup	existed,	your	application	would	crash.	Memorize	this	pattern.	
Whenever	a	Flex	component	sets	a	property	from	outside	the	component	(like	your	
shoppingCart	property)	to	another	visual	child	component	(like	something	in	the	skin),	
the	commitProperties()	method	is	used	to	ensure	that	the	component	will	not	crash	due	
to	timing	issues.

9 Save	your	code	and	run	the	application.	Items	added	to	the	cart	via	the	Add	and	Remove	
buttons	of	the	Products	will	appear	in	the	cart	list.

This	is	a	great	first	step,	but	you	have	a	lot	more	work	to	do.

ptg

442 Lesson 18: Creating Custom ActionScript Components

10 Return	to	the	shoppingCart	setter.	After	the	shoppingCartChanged	flag	is	set	to	true	but	
before	invalidateProperties()	is	called,	you	need	to	write	an	if	statement	that	checks	if	
the	shopping	cart	just	passed	to	the	function	exists.
public function set shoppingCart(value:ShoppingCart):void {
 _shoppingCart = value;
 shoppingCartChanged = true;

 if (_shoppingCart) {
 }

 invalidateProperties();
}

It	is	always	possible	that	a	user	working	with	your	component	passed	in	a	null	value.	This	
check	makes	sure	your	code	won’t	break	when	it	tries	to	access	the	data.	When	develop-
ing	components	for	reuse,	you	must	code	defensively.

11 Inside	the	if	statement,	add	a	new	event	listener	to	the	items	property	of	the		
_shoppingCart.	You’ll	listen	for	a	CollectionEvent.COLLECTION_CHANGE	event	and	
call a method	name	handleItemChanged()	if	this	occurs.
public function set shoppingCart(value:ShoppingCart):void {
 _shoppingCart = value;
 shoppingCartChanged = true;

 if (_shoppingCart) {
 _shoppingCart.items.addEventListener(
 ➥ CollectionEvent.COLLECTION_CHANGE, handleItemChanged);
 }

 invalidateProperties();
}

This	is	the	same	code	you	wrote	inside	the	ShoppingCart	class	so	that	the	ShoppingCart	
would	monitor	changes	in	the	ShoppingCartItems.	This	will	serve	a	similar	purpose	here.

12 Create	a	new	private	method	named	handleItemChanged().	It	will	accept	one	param-
eter,	an	event	of	type	CollectionEvent,	and	return	nothing.	Inside	the	method,	set	
the	totalChanged	flag	to	true	and	the	quantityChanged	flag	to	true,	and	then	call	the	
invalidateProperties()	method.
private function handleItemChanged(event:CollectionEvent):void {
 totalChanged = true;
 quantityChanged = true;
 invalidateProperties();
}

ptg

443Adding Functionality to the Component

This	method	will	be	called	anytime	you	add,	remove,	or	update	any	of	the	
ShoppingCartItem	instances.	It	sets	these	two	changed	flags	to	true	and	asks	the	
Flex framework	to	call	commitProperties()	when	it	has	the	opportunity.	

Note: You never call commitProperties() yourself. You always call invalidateProperties()

and let Flex decide when to call commitProperties().

13 Create	a	new	private	variable	named	currency	of	type	spark.formatters.
CurrencyFormatter	near	the	top	of	this	class	just	between	the	totalChanged	flag	and	the	
totalLabel	SkinPart	declaration.
private var currency:CurrencyFormatter;

This	component	is	now	going	to	take	care	of	formatting	the	total	before	displaying	it	to	
the	user.

Note: You’ll see there are three possible CurrencyFormatters. The one in the flash.globalization

package is the low-level Flash Player version which provides much of the basic functionality.

As mentioned in the formatters and validators package, there is also one in the mx and spark

package. Always defer to the spark package if you are not sure.

14 Find	the	ShoppingList	class’s	constructor,	and	after	the	call	to	super()	assign	a	
new	CurrencyFormatter	class	instance	to	the	currency	property.	Then	set	the	
useCurrencySymbol	property	of	the	instance	to	true.	Finally,	call	the	addStyleClient()	
method	and	pass	the	currency	instance.
public function ShoppingList() {
 super();
 currency = new CurrencyFormatter();
 currency.useCurrencySymbol = true;
 this.addStyleClient(currency);
}

Previously	you	created	instances	of	the	CurrencyFormatter	through	MXML.	Here	you	are	
simply	generating	the	ActionScript	code	that	Flex	would	normally	write	on	your	behalf.	The	
last	line,	addStyleClient()	ensures	that	the	CurrencyFormatter	instance	receives	updates	
if	you	change	the	locale	style	in	the	application.	This	ensures	the	CurrencyFormatter	here	
shows	the	correct	currency	type	as	the	remainder	of	the	application.

tip: If any of these lines show an error in Flash Builder, you likely imported the wrong version

of CurrencyFormatter.

ptg

444 Lesson 18: Creating Custom ActionScript Components

15 Return	to	the	commitProperties()	method.	Below	your	other	if	statement,	add	a	new	if	
statement	that	checks	if	the	totalChanged	is	true	and	if	totalLabel	exists.	If	it	does,	set	
the	totalChanged	flag	to	false.
if (totalChanged && totalLabel) {
 totalChanged = false;
}

16 Still	inside	the	if	statement	but	just	below	the	code	that	sets	totalChanged	to	false,	
set	the	text	property	of	the	totalLabel	to	the	result	of	calling	the	currency.format()	
method,	passing	it	the	shoppingCart.total	as	an	argument.
if (totalChanged && totalLabel) {
 totalChanged = false;
 totalLabel.text = currency.format(shoppingCart.total);
}

Now	each	time	the	items	in	the	ShoppingCart	change,	the	shopping	cart’s	total	will	be	
reformatted	and	the	label	in	the	skin	will	be	updated.

17 Just	after	this	if	block,	add	one	final	if	statement.	Check	if	the	quantityChanged	flag	is	
true	and	if	the	quantityLabel	exists.	If	it	does,	set	the	quantityChanged	flag	to	false.
if (quantityChanged && quantityLabel) {
 quantityChanged = false;
}

18 Still	inside	the	if	statement	but	just	below	the	line	of	code	that	sets	quantityChanged	
to	false,	set	the	text	property	of	the	quantityLabel	to	the	result	of	concatenating	the	
String	“Shopping List (“ +	with	the	length	of	the	shopping	cart’s	items	collection	and	
a final “)”.
if (quantityChanged && quantityLabel) {
 quantityChanged = false;
 quantityLabel.text = “Shopping List (“ + shoppingCart.items.length + “)”;
}

Now	each	time	the	items	in	the	ShoppingCart	change,	the	shopping	cart’s	quantity	will	be	
reformatted	and	the	label	in	the	skin	will	be	updated.

19 Save	and	run	the	application.	You	can	now	add	items	to	the	shopping	cart	view	using	the	
Product	Add	and	Remove	buttons	and	see	the	DataGroup,	Quantity,	and	Total	update.

In	the	next	section,	you’ll	deal	with	drag	and	drop	as	well	as	the	View	Cart	button.

ptg

445Adding Functionality to the Component

Communicating with Events
Your	component	now	updates	and	reflects	data	changes	in	the	ShoppingCart	instance.	
However,	you	still	can’t	drag	an	item	into	the	new	ShoppingList,	and	you	can’t	click	the	
View Cart	button.	Those	are	your	next	tasks.

To	perform	them,	you	need	to	learn	about	another	method	available	for	override	in	
SkinnableComponent	descendants.	That	method	is	named	partAdded(),	and	there	is	a	cor-
responding	method	named	partRemoved().	The	partAdded()	method	will	be	called	each	time	
a	new	part	of	your	skin	is	created	and	ready	to	access.	The	partRemoved()	method	is	called	
when	that	skin	part	is	removed	and	no	longer	part	of	the	component.

1 Open	the	ShoppingList.as	file	that	you	used	in	the	previous	exercise.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	function-
ing	properly,	you	can	import	the	FlexGrocer-PreDrag.fxp	project	from	the	Lesson18/
intermediate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	
project	should	you	skip	a	lesson	or	if	you	have	a	code	issue	you	cannot	resolve.

2 Just	above	the	commitProperties()	method,	override	the	protected	method	named	
partAdded.	This	method	accepts	two	parameters:	the	first	is	called	partName	of	type	String	
and	the	second	is	called	instance	of	type	Object.	The	method	returns	void.	Immediately	
inside	the	method,	call	the	super.partAdded,	passing	along	the	required	arguments.
override protected function partAdded(partName:String, instance:Object):void {
 super.partAdded(partName, instance);
}

This	method	will	be	called	each	time	a	new	skin	part	is	built	and	ready	for	you	to	access.	
The	partName	will	be	the	name	of	the	skinPart	(dataGroup,	totalLabel,	and	so	on).	The	
instance	will	be	a	reference	to	the	newly	created	object.

3 Just	below	the	call	to	the	super	class,	create	an	if	statement	that	checks	if	the	instance	
was	dataGroup.	Then	create	an	else	block	that	checks	if	it	was	viewCartBtn.
if (instance === dataGroup) {
} else if (instance === viewCartBtn) {
}

You	might	have	noticed	the	three	equals	sign	in	this	code.	This	means	strict	equality.	
Normally	in	ActionScript	the	==	looks	for	equality	but	allows	the	two	items	being	com-
pared	to	have	different	types	so	long	as	they	evaluate	to	the	same	value.	Strict	equality	
indicates	the	value	and	type	must	match.

ptg

446 Lesson 18: Creating Custom ActionScript Components

4 Inside	the	if	statement	for	the	dataGroup,	add	an	event	listener	to	the	dataGroup	
instance	for	DragEvent.DRAG_ENTER	and	specify	handleDragEnter	as	the	listener.	
Add	a	second	event	listener	to	the	dataGroup	for	DragEvent.DRAG_DROP	and	specify	
handleDragDrop	as	the	listener	for	this	event.
if (instance === dataGroup) {
 dataGroup.addEventListener(DragEvent.DRAG_ENTER, handleDragEnter);
 dataGroup.addEventListener(DragEvent.DRAG_DROP, handleDragDrop);
} else if (instance === viewCartBtn) {
}

This	is	just	the	ActionScript	version	of	add	event	listeners	to	dragEnter	and	dragDrop	
in MXML.

tip: When the partAdded() method is called by the Flex framework, it passes the partName,

such as dataGroup, as well as an instance of type Object. Instead of adding your listener to

dataGroup directly, you could have used (instance as DataGroup).addEventListener().

Those two statements would yield identical results.

5 Create	a	new	private	function	named	handleDragEnter()	that	accepts	an	event	parameter	
of	type	DragEvent	and	returns	void.
private function handleDragEnter(event:DragEvent):void {
}

6 Inside	this	method	call	the	event.dragSource.hasFormat()	method	and	pass	it	the	string	
singleProduct.	If	this	method	returns	true,	call	DragManager.acceptDragDrop(),	passing	
it	the	event.target	typed	as	an	IUIComponent.
private function handleDragEnter(event:DragEvent):void {
 if(event.dragSource.hasFormat(“singleProduct”)){
 DragManager.acceptDragDrop(event.target as IUIComponent);
 }
}

This	method	should	look	familiar.	This	is	nearly	the	same	method	you	wrote	for	the	
dragEnter	handler	previously	in	ShoppingView.	Now	you	are	just	handling	everything	in	
ActionScript.

7 Create	a	new	private	function	named	handleDragDrop()	that	accepts	an	event	parameter	
of	type	DragEvent	and	returns	void.
private function handleDragDrop(event:DragEvent):void {
}

ptg

447Adding Functionality to the Component

8 Inside	this	method	create	a	new	local	variable	named	product	of	type	Product,	and	assign	
its	initial	value	to	the	result	of	the	event.dragSource.dataForFormat()	method,	passing	it	
the	string	singleProduct.	Cast	the	result	as	a	Product	object.
private function handleDragDrop(event:DragEvent):void {
 var product:Product =
 ➥ event.dragSource.dataForFormat("singleProduct") as Product;
}

This	method	should	also	look	familiar.	It	is	again	nearly	the	same	method	you	wrote	for	
the	dragDrop	handler	earlier	in	ShoppingView.	

9 Just	after	getting	the	Product	instance	from	the	drag	event,	create	a	new	local	vari-
able	named	prodEvent	of	type	ProductEvent.	Assign	its	value	to	a	new	instance	of	the	
ProductEvent,	passing	the	string	addProduct	to	the	first	parameter	and	the	Product	object	
to	the	second.
var prodEvent:ProductEvent = new ProductEvent(“addProduct”, product);

In	the	very	beginning	of	this	exercise,	you	told	the	Flex	compiler	you	would	dispatch	a	
product	event.	You	are	about	to	fulfill	that	promise.

10 As	the	last	line	of	this	method,	dispatch	the	prodEvent	event.
private function handleDragDrop(event:DragEvent):void {
 var product:Product =
 ➥ event.dragSource.dataForFormat("cartFormat") as Product;
 var prodEvent:ProductEvent = new ProductEvent("addProduct", product);
 dispatchEvent(prodEvent);
}

On	a	successful	drag-and-drop	operation,	your	code	now	dispatches	an	event	indicating	
that	the	product	should	be	added	to	the	cart.

11 Return	to	the	partAdded()	method.	In	the	else	clause	for	the	viewCartBtn	part,	add	
an	event	listener	to	the	viewCartBtn	instance	for	the	MouseEvent.CLICK	event,	passing	
handleViewCartClick	as	the	listener.	Here	is	the	final	partAdded()	method:
override protected function partAdded(partName:String, instance:Object):void {
 super.partAdded(partName, instance);

 if (instance === dataGroup) {
 dataGroup.addEventListener(DragEvent.DRAG_ENTER, handleDragEnter);
 dataGroup.addEventListener(DragEvent.DRAG_DROP, handleDragDrop);
 } else if (instance === viewCartBtn) {
 viewCartBtn.addEventListener(MouseEvent.CLICK, handleViewCartClick);
 }
}

ptg

448 Lesson 18: Creating Custom ActionScript Components

12 Create	a	new	private	function	named	handleViewCartClick()	that	accepts	an	event	
parameter	of	type	MouseEvent	and	returns	void.
private function handleViewCartClick(event:MouseEvent):void {
}

13 Inside	this	method	create	a	new	local	variable	named	viewEvent	of	type	Event.	Assign	it	to	a	
new	instance	of	the	Event	class,	passing	the	string	viewCart.	Finally,	dispatch	the	event.
private function handleViewCartClick(event:MouseEvent):void {
 var viewEvent:Event = new Event(“viewCart”);
 dispatchEvent(viewEvent);
}

This	will	dispatch	the	viewCart	event	that	you	defined	long	ago	at	the	beginning	of	this	
component.

14 Save	and	test	your	application.	You	should	now	be	able	to	add	items	to	the	shopping	list	
by	dragging	them,	and	the	View	Cart	button	should	switch	to	the	datagrid	version	of	
the view.

Cleaning Up After Yourself
Your	component	now	works	quite	well,	but	there	is	a	problem.	Skins	in	Flex	can	be	changed	at	
runtime.	You	are	adding	event	listeners	to	a	number	of	components	in	the	skin	but	not	clean-
ing	up	after	yourself.

The	same	is	true	of	the	data	passed	to	the	shoppingCart.	Right	now	you	add	an	event	listener;	
however,	if	someone	provided	a	new	ShoppingCart	instance,	you	would	be	listening	to	two	
collections	for	changes	instead	of	just	the	most	recent.

1 Open	the	ShoppingList.as	file	that	you	used	in	the	previous	exercise.

2 Copy	the	partAdded()	method	in	its	entirety.	Paste	it	just	below	the	existing	method.	
Change	the	name	of	the	function	to	partRemoved	and	change	the	call	to	the	super	class	to	
partRemoved	as	well.
override protected function partRemoved(partName:String, instance:Object):void
{
 super.partRemoved(partName, instance);

 if (instance === dataGroup) {
 dataGroup.addEventListener(DragEvent.DRAG_ENTER, handleDragEnter);
 dataGroup.addEventListener(DragEvent.DRAG_DROP, handleDragDrop);
 } else if (instance === viewCartBtn) {
 viewCartBtn.addEventListener(MouseEvent.CLICK, handleViewCartClick);
 }
}

ptg

449Adding Functionality to the Component

You	should	have	just	changed	partAdded	to	partRemoved	in	two	places.	If	you	changed	it	a	
different	number	of	times,	recheck	before	proceeding.

3 Inside	the	partRemoved()	method,	change	all	the	calls	to	addEventListener()	to	
removeEventListener().	Keep	the	parameters	the	same.
override protected function partRemoved(partName:String, instance:Object):void
{
 super.partRemoved(partName, instance);

 if (instance === dataGroup) {
 dataGroup.removeEventListener(DragEvent.DRAG_ENTER, handleDragEnter);
 dataGroup.removeEventListener(DragEvent.DRAG_DROP, handleDragDrop);
 } else if (instance === viewCartBtn) {
 viewCartBtn.removeEventListener(MouseEvent.CLICK, handleViewCartClick);
 }
}

You	should	have	just	changed	addEventListener	to	removeEventListener	in	three	places.	
If	you	changed	it	a	different	number	of	times,	recheck	before	proceeding.	Now	each	time	
a	part	is	removed,	it	removes	the	accompanying	event	listeners.

4 Find	the	shoppingCart	setter	function.

Currently	this	function	adds	an	event	listener	each	time	it	is	called.	You’ll	now	also	
remove	the	old	event	listener.

5 Copy	the	if	block	that	checks	if	the	_shoppingCart	property	exists	and	adds	an	event	
listener.	Paste	it	as	the	first	line	of	this	method.
public function set shoppingCart(value:ShoppingCart):void {
 if (_shoppingCart) {
 _shoppingCart.items.addEventListener(CollectionEvent.COLLECTION_CHANGE,
 ➥ handleItemChanged);
 }

 _shoppingCart = value;
 shoppingCartChanged = true;

 if (_shoppingCart) {
 _shoppingCart.items.addEventListener(CollectionEvent.COLLECTION_CHANGE,
 ➥ handleItemChanged);
 }

 invalidateProperties();
}

This	method	now	adds	two	event	listeners,	which	is	worse	than	before.

ptg

450 Lesson 18: Creating Custom ActionScript Components

6 Change	the	first	call	to	_shoppingCart.items.addEventListener()	to	
removeEventListener()	instead.
public function set shoppingCart(value:ShoppingCart):void {
 if (_shoppingCart) {
 _shoppingCart.items.removeEventListener(CollectionEvent.COLLECTION_CHANGE,
 ➥ handleItemChanged);
 }

 _shoppingCart = value;
 shoppingCartChanged = true;

 if (_shoppingCart) {
 _shoppingCart.items.addEventListener(CollectionEvent.COLLECTION_CHANGE,
 ➥ handleItemChanged);
 }

 invalidateProperties();
}

This	code	now	checks	to	see	if	there	was	already	a	shoppingCart	with	an	event	listener.	
If so,	it	removes	it	before	adding	a	listener	to	a	new	one.

7 Save	and	run	your	application.	Make	sure	it	performs	as	it	did	before.

The	ShoppingList	is	finished.	All	that	is	left	is	to	customize	the	way	the	DataGroup	instance	
in the	skin	displays	data.

Creating a Renderer for the Skin
The	last	step	to	finish	up	the	presentation	of	this	component	is	to	create	a	custom	renderer	
and	apply	it	to	the	DataGroup	that	the	ShoppingListSkin	will	use	to	render	its	data.	This	will	
complete	the	desired	look	of	the	component.

As	you	may	remember	from	Lesson	10,	“Using	DataGroups	and	Lists,”	extending	
DataRenderer	is	a	fast	and	easy	way	to	create	a	custom	renderer	for	a	DataGroup.

1 Open	the	FlexGrocer	project	that	you	used	in	the	previous	exercise.

Alternatively,	if	you	didn’t	complete	the	previous	lesson	or	your	code	is	not	functioning	
properly,	you	can	import	the	FlexGrocer-PreRenderer.fxp	project	from	the	Lesson18/
intermediate	folder.	Please	refer	to	the	appendix	for	complete	instructions	on	importing	a	
project	should	you	ever	skip	a	lesson	or	if	you	ever	have	a	code	issue	you	cannot	resolve.

ptg

451Creating a Renderer for the Skin

2 In	the	Package	Explorer,	right-click	the	components	package	and	choose	New	MXML	
Component.	Name	the	component	ShoppingListRenderer,	choose	BasicLayout	for	the	
Layout,	and	specify	DataRenderer	for	the	Based	on	value.	Set	the	Width	to	100%	and	
remove	the	value	for	the	Height.

3 Beneath	the	declarations	tag,	create	an	<fx:Script>	tag	pair.	Inside	the	Script	block,		
create	a	new	bindable	private	variable	named	item	of	type	ShoppingCartItem.
<fx:Script>
 <![CDATA[
 import cart.ShoppingCartItem;
 [Bindable]
 private var item:ShoppingCartItem;
]]>
</fx:Script>

4 Still	inside	the	Script	block,	override	the	public	setter	for	data.	Set	the	item	property	you	
just	created	to	the	value	typed	as	a	ShoppingCartItem.
override public function set data(value:Object):void{
 this.item = value as ShoppingCartItem;
}

5 Inside	the	declarations	block,	create	a	new	<s:CurrencyFormatter/>	tag	with	an	id	of	
currency	and	set	the	useCurrencySymbol	property	to	true.
<s:CurrencyFormatter id=”currency” useCurrencySymbol=”true”/>

ptg

452 Lesson 18: Creating Custom ActionScript Components

6 Below	the	Script	block	in	MXML,	create	a	new	<s:Image/>	tag.	Set	its	source	equal	to	
assets/{item.product.imageName}.	Then	set	its	width	to	25	and	height	to	25.
<s:Image source=”assets/{item.product.imageName}” width=”25” height=”25”/>

7 Below	the	image,	create	a	new	<s:Label/>	tag.	Set	its	left	to	30,	top	to	5,	right	to	30,	and	
text	to	{item.product.prodName}.
<s:Label left=”30” top=”5” right=”30” text=”{item.product.prodName}”/>

8 Below	the	label,	create	another	new	<s:Label/>	tag.	Set	its	right	to	1,	top	to	5,	and	text	
to	{currency.format(item.subtotal)}.
<s:Label right=”1” top=”5” text=”{currency.format(item.subtotal)}”/>

9 Open	the	ShoppingListSkin.mxml	file	from	the	skins	package.

10 Find	the	itemRenderer	of	the	DataGroup	tag,	which	is	currently	set	to	spark.skins.
spark.DefaultItemRenderer,	and	set	it	instead	to	components.ShoppingListRenderer.

11 Save	and	run	your	application.

You	should	now	have	a	completely	styled	custom	component.

What You Have Learned
In this lesson, you have:

•	 Learned	the	concepts	of	custom	ActionScript	components	(page	420)

•	 Performed	an	extensive	refactor	(pages	424–429)

•	 Created	an	ActionScript	skinnable	component	(pages	424–429,	439–450)

•	 Created	your	own	skin	(pages	434–438)

•	 Used	the	Scroller	class	(page	436–438)

•	 Learned	to	manage	skin	parts	and	life	cycle	(pages	445–452)

ptg

This page intentionally left blank

ptg

A
pp

en
d

ix This appendix contains the requirements and instructions for you to complete the
exercises in this book. It covers the following:

•	 Minimum system requirements
•	 Software installation
•	 Importing projects

Minimum System Requirements
General Requirements

You must have a recent version of one of the following browsers installed:

•	 Internet Explorer
•	 Mozilla Firefox
•	 Safari
•	 Opera
•	 Google Chrome

Windows

•	 2 GHz or faster processor
•	 1 GB of RAM (2 GB recommended)
•	 Microsoft Windows XP with Service Pack 3, Windows Vista Ultimate or

Enterprise (32 or 64 bit running in 32-bit mode), Windows Server 2008 (32 bit),
or Windows 7 (32 or 64 bit running in 32-bit mode)

•	 1 GB of available hard-disk space
•	 Java Virtual Machine (32 bit): IBM JRE 1.5, Sun JRE 1.5, IBM JRE 1.6, or Sun JRE 1.6
•	 1024x768 display (1280x800 recommended) with 16-bit video card
•	 Flash Player 10.2 or later

Macintosh

•	 Intel processor based Mac
•	 OS X 10.5.6 (Leopard) or 10.6 (Snow Leopard)
•	 1 GB of RAM (2 GB recommended)
•	 1 GB of available hard-disk space
•	 Java Virtual Machine (32 bit): JRE 1.5 or 1.6
•	 1024x768 display (1280x800 recommended) with 16-bit video card
•	 Flash Player 10.2 or later

Tip: To check your Flash player version, go to www.adobe.com, right-click the main ad

banner, and select About Flash player; or visit www.adobe.com/software/flash/about.

www.adobe.com
www.adobe.com/software/flash/about

ptg

455

Appendix

Setup Instructions
Be sure to complete the installation of all required files before working through the lessons
in the book.

Software Installation
There are three phases of the installation:

•	 Installing	Flash	Builder

•	 Installing	lesson	files

•	 Installing	Flash	Debug	Player	(if	a	problem	exists)

ptg

456 Appendix:	 Setup	Instructions

Installing Flash Builder
If you do not have Flash Builder 4.5 installed, step through the following installation directions:

1 Browse to http://www.adobe.com/go/try_flashbuilder and choose your platform.

2 Click Download now.

3 Install Flash Builder, accepting all the default options. The trial period on Flash Builder
4.5 is 60 days.

NoTe: if you happen to be:

• A student, faculty, or staff of eligible education institution

• A software developer who is currently unemployed then you are eligible for a free Flash

Builder license. Visit https://freeriatools.adobe.com/.

Installing Lesson Files
Once again, it’s important that all the required files are in place before working through the
lessons in the book.

From the CD included with your book, copy the flex4tfs directory to the root of your drive.

In this directory, there is a subdirectory named FlexGrocer, in which you will be doing most
of your work. Also included are directories for each lesson in the book with starting code and
completed code for the work you do in the lesson. Some lessons may also have an intermedi-
ate directory, which highlights major steps in the lesson, or an independent directory, which
holds projects that are unrelated to the main application but demonstrates an important
technique or concept.

http://www.adobe.com/go/try_flashbuilder
http://freeriatools.adobe.com/

ptg

457Software	Installation

Installing Flash Debug Player
At various times in the book, you’ll be using features of Flash Debug Player. If you receive a
notice saying you do not have Flash Debug Player installed, follow these steps to install it:

Windows
1 Locate the Flash Player (Player) install directory:

applicationInstallDirectory/Adobe/Adobe Flash Builder 4.5/player/win.

NoTe: in a default 32-bit installation, this directory in

Windows is C:\program Files\Adobe\Adobe Flash Builder 4.5\player\win.

2 To install Flash Debug Player for Internet Explorer, run the Install Flash Player 10.2
ActiveX.exe program. For other versions of web browsers, run the Install Flash Player
10.2 Plugin.exe program.

Macintosh
1 Locate the Flash Player (Player) install directory:

applicationInstallDirectory/Adobe/Adobe Flash Builder 4.5/player/mac/10.2.

NoTe: in a default installation, this directory would be

/Applications/Adobe/Adobe Flash Builder 4/player/mac/10.2.

2 To install Flash Debug Player, run Flash Player Plugin Debugger.dmg.

Tip: in rare instances, you might run the appropriate installer and still get the message that

you don’t have the debug version of the player. in this case, uninstall the version you currently

have by using the information you’ll find at

http://kb.adobe.com/selfservice/viewContent.do?externalid=tn_14157

and then follow the steps above to reinstall.

http://kb.adobe.com/selfservice/viewContent.do?externalid=tn_14157

ptg

458 Appendix:	 Setup	Instructions

Importing Projects
Anytime during the course of this book that your code is no longer working, or you simply
wish to jump ahead or revisit a lesson, you can import the appropriate FXP (Flex Project)
for that lesson.

The FXP format is an archive file that includes project information, files, and folders.
The project includes all assets and dependencies for your Flex project.

Each lesson of the book has start and complete files representing the code for that lesson at its
beginning and end if all steps are executed. The FXP files for the lessons have this format:

driveRoot/flex4TFS/LessonXX/start/FlexGrocer.fxp
driveRoot/flex4TFS/LessonXX/complete/FlexGrocer.fxp

Some lessons have intermediate files that represent major steps internal to the lesson.
Those follow this format:

driveRoot/flex4TFS/LessonXX/intermediate/FlexGrocer-NameOfStep.fxp

Finally, a few lessons have independent files that represent small applications intended to
demonstrate a singular concept but that are not directly related to the code in your FlexGrocer
project. Those follow this format:

driveRoot/flex4TFS/LessonXX/independent/projectName.fxp

NoTe: driveRoot represents your root drive—for instance, C:\ on Windows.

Importing Lesson Files
You import an FXP file by choosing File > Import Flash Builder Project.

When you attempt to import a project in Flash Builder, the IDE determines whether you
already have a project with the same Universally Unique Identifier (UUID). This will occur
if you have previously imported any lesson.

ptg

459Importing	Projects

When You Have an Existing Project
In this case, Flash Builder will allow you to overwrite the existing project with a fresh copy.
You simply need to choose the Overwrite existing project radio button and choose the
FlexGrocer project from the drop-down menu. Then click Finish.

This is the ideal way to import a new lesson as it simply overwrites the older code and leaves
you with a single FlexGrocer project.

ptg

460 Appendix:	 Setup	Instructions

When You Don’t Have an Existing Project
If you have never imported the FlexGrocer project before, the overwrite option will not
be available.

In this case, choose the Import new copy of project radio button and set the “Extract new
projects to input” field to driveRoot/flex4tfs/FlexGrocer. Then click Finish.

ptg

461Importing	Projects

When Flash Builder Prevents Overwriting an Existing Project
If you already have a project named FlexGrocer in your workspace, and Flash Builder does not
recognize this as the same project identifier, it will not allow you to overwrite that project. In this
case, simply right-click the FlexGrocer project and choose Delete from the Package Explorer.

A dialog box will appear and ask if you want to delete the Flash Builder project only or also
the files for the project from the file system. Choose the Also delete contents radio button and
click Yes.

After deleting these files, repeat these directions to import the needed project.

ptg

462

Index
@ (attribute) operator, 131

{} (braces), 81, 89, 98, 176–177

: (colon), 23

= (equal sign), 23

> (greater-than sign), 30

? (question mark), 146

“ (quotation marks), 68, 97

/ (slash), 30, 31

_ (underscore), 177

" (escape code), 68

.. (descendant) operator, 132

. (dot) operator, 130

A
AATC (Adobe Authorized Training

Center), xxii

absolute positioning, 58, 59

ACA (Adobe Certified Associate), xxii

acceptDragDrop() method, 322

ACE (Adobe Certified Expert), xxii

ACI (Adobe Certified Instructor), xxii

action item controls, 303

ActionScript

Array instances, 184–185

classes, 142, 143, 427–429

components (See ActionScript
components)

dispatching events in, 178–179

Drawing API, 404

event handling with, 98–99

and Flash Platform, 12, 13

for loops, 162

power of, 12

purpose of, 13

triggering validation from, 363

XML support, 127

ActionScript components, 419–452

adding functionality to, 439–450

choosing base class for, 426

complexity of building, 420

creating visuals for, 432–438

defining, 424–431

overview, 420–422

reasons for making, 422–424

specifying skin requirements for,
432–434

types of, 421

ActionScript Virtual Machine
(AVM), 13

addData() method, 322

addEventListener() method,
275

addInts() method, 40

addItem() method, 157, 158, 160,
166–167

Add To Cart button, 158, 161, 167

addToTextArea event handler,
108

Adobe

certification levels, xxii

Certified Associate exams, xxi

Community Help, xx–xxii

Creative Suite, 14

Developer Connection, xxi

Flash (See Flash)

Flex (See Flex)

Labs, xxii

Marketplace & Exchange, xxii

open source site, 81

TV, xxi

Adobe Advanced Training series,
xviii

Adobe Flex 4.5 MXML and
ActionScript Language
Reference (ASDoc), 41, 79,
208, 378

Adobe Integrated Runtime (AIR), 12

Adobe Training from the Source
series, xviii

AIR (Adobe Integrated Runtime), 12

AJAX (Asynchronous JavaScript
and XML), 8, 9–10

anchors, layout, 59

animation tools, 12

API (application programming
interface), 79

Application container, 46

application files. See also
applications

basic elements of, 22

comparing versions of, 31–32

creating, 21–22

naming, 21

organizing, 18–24

saving, 31

viewing, 18, 21–22

viewing errors in, 32–33

application programming interface
(API), 79

applications. See also application
files

building detail view of, 85–87

changing internal structure of,
73–75

controlling view states for,
68–70

customizing with skins, 399–417
(See also skins)

customizing with styles,
375–397 (See also styles)

debugging, 34–41

desktop, 4–5, 311

displaying images in, 81–84

displaying/managing data for,
144–150, 292

dividing into modules, 207

embedding fonts in, 388, 390

enterprise server, 10

evolution of, 3, 4–6

improving architecture of,
213–221

laying out interface for, 50–58

mainframe, 4

maintainability of, 5, 8

ptg

463Index

minimum height/width for, 24

refactoring, 71–75, 101–103

rich Internet (See RIAs)

running, 28–33

saving, 187

tightly coupled, 262

viewing hierarchy of, 57

web (See web applications)

Web 2.0, xii

working with view states for,
63–70

Application tag, 22–23, 31

architecture

client-side, 95

loosely coupled, 262–263

model-view-controller (MVC),
88, 212–213

page-based, 4, 6–7, 8

service-oriented, 5

arguments, 147

ArrayCollection, 184–203

and cursors, 198

and data binding, 184–185

filtering items in, 202–203

populating, 185–192

sorting items in, 194–198

using data from, 192–193

vs. ArrayList, 246

ArrayList, 185, 246

Array notation, 192

arrays. See also ArrayCollection

and data binding, 183–184

determining number of items in,
202–203

for shopping cart items,
159–167

sorting items in, 194–198

using items in, 192–193

AS3 Drawing API, 404

ASDoc (Adobe Flex 4.5 MXML
and ActionScript Language
Reference), 41, 79, 208, 378

aspect ratio, 83

asynchronous component model,
439

Asynchronous JavaScript and XML
(AJAX), 8, 9–10

attribute (@) operator, 131

attributes, 23, 30, 98

Auto-Generation, 181–183

AVM (ActionScript Virtual
Machine), 13

B
base class, 426

BasicLayout object, 47, 58, 90

[Bindable] metadata tag,
135–136, 145, 149, 157, 173,
176–177

bindings, 98. See also data binding

BitMapFill class, 408

boldface text/code, xvi

Boolean values, 151–152, 163

BorderContainer, 46

braces ({}), 81, 89, 98, 176–177

Breakpoint Properties view, 40

breakpoints

enabling conditional, 40

removing, 39, 107

setting, 34, 35, 104, 187

turning on/off, 39

Breakpoints view, 36

browsers, web, 4, 5

bubbling, event, 274–279

Build Automatically option, 28

buildProduct() method, 151,
152, 199

business applications

evolution of, 4–6

maintainability of, 5, 8

role of computers in, 3

button_clickHandler()
method, 35, 37

Button control, 57

buttons

creating skin for, 400–404

customizing for different states,
407–413

C
calculateSubtotal() method,

156, 204

calculateTotal() method,
164–165

camel case syntax, 382

capture phase, event flow, 275

CartGrid component, 295–296

Cascading Style Sheets. See CSS

case-sensitivity, 21, 50, 68

categories, filtering products by,
257–259

categories property, 231

CDATA (character data) blocks, 99,
102, 110

CD-ROM, xvii, xviii

centralized data processing, 4

change events, 258, 287–288, 442

change flags, 440

character data (CDATA) blocks, 99,
102, 110

Checkout application, 89–92

Checkout button, 56, 59, 345

checkout form, 89–92

checkout process, 335–358

adding billing info page to,
345–350

creating OrderEvent object for,
355–358

creating OrderInfo object for,
335–336

creating review page for,
350–355

creating user views for, 337–345

overview, 335

validating postal codes during,
369–372

CheckoutView component,
337–345

children, 46, 57, 128

child tags, 49

classes, 141–167. See also specific
classes

and ActionScript, 142, 143

basics of building, 143

as blueprint for objects, 141

categories of, 274

ptg

464 Index

classes (continued)

constructors of, 143

creating, 141, 154, 427–429

custom, 429–431

defining, 49–50, 143

naming, 143

properties of, 143, 147

reference document for, 41

vs. properties, 49–50

class hierarchy, 208–209

class instances, 49

class keyword, 145

class selectors, 382, 383, 384

clickHandler() function, 99, 100

client/server applications, 3, 4–5, 7

client-side architecture, 95

clone() method, 271

code blocks, xvii

code completion, 109, 110, 150

code hinting, 29, 30, 98

code line numbers, 27

ColdFusion, xiv

CollectionEvent class, 287–288

collections

examples of, 194

filtering items in, 202–203

sorting items in, 194–198

using cursors in, 198–199

colon (:), 23

color

background, 376, 382, 393,
394, 404

highlight, 375, 402

label, 391, 392, 393

logo, 54

rollover, 379–381, 382, 383

text, 378

colorName label, 171

columns

in DataGrid, 292, 294, 297, 299

in layout objects, 46

commitProperties() method,
440, 441, 443

Community Help application,
xx–xxii

compiler, 176–183

compiler arguments, 142

compile-time errors, 33, 150

components, 207–238. See also
specific components

ActionScript (See ActionScript
components)

advantages of, 212

applying styles to, 379–381

broadcasting events from, 263

changing look of, 400–404,
432–438

complexity of building, 420

creating, 105, 209–212, 230–238

creating directory of reusable,
221–230

declaring events for, 267–269

defining, 46, 424–431

drag-and-drop, 313

facilitating use of, 212

generic, 425

hierarchy of, 208–209

list-based, 321

to manage loading data, 230–238

and MVC architecture, 212–213

MXML, 208–213, 420

non-visual, 230–238

positioning, 46, 55

purpose of, 207

specifying skin requirements for,
432–434

types of, 421

visual, 213–230, 274

Components view, 54

composed containers, 72–73

computer applications. See
applications

conditional breakpoints, 40

configuration files, 23

constraint-based layouts, 55, 58–63

ConstraintLayout object, 47

constructors, 143, 147, 148,
155–156

containers

combining layout objects and, 48

composed, 72–73

finding, 65

positioning elements in, 58–59

purpose of, 46

size considerations, 62

types of, 46–47

control bars, 51, 53, 57

controllers, 212

controls

accessing properties for, 81

APIs for, 79

assigning IDs to, 81

positioning, 64

simple (See simple controls)

Cookbooks, xxi

cookies, 7

copyright label, 60

createCursor() method, 199

creationComplete event,
107–111

Creative Commons License, 388

CreditCartInfo component,
345–350

cross-domain policy files, 122

CSS (Cascading Style Sheets)

how namespaces are defined
by, 389

inheritance, 381

standards, 384

styling with, 377–378, 382

CSS files

creating SWF files from, 395–396

setting styles via, 386–394

sharing between applications,
386

curly brackets ({}). See braces

CurrencyFormatter class, 362–363,
364–368, 443

currentState property, 68

cursors

defined, 198

general steps for using, 198–199

refactoring to search with,
198–201

removing items with, 201–202

custom classes, 429–431

ptg

465Index

custom components. See also
components

advantages of, 212

example, 210–211

facilitating use of, 212

and MVC architecture, 212–213

steps for creating, 209–210

ways of using, 207, 282

custom event classes, 269–270

D
data. See also datasets

allowing users to interact with,
292

in ArrayCollections, 192–193

creating components to
manage loading, 230–238

debugging, 149

from event objects, 100–103

externalizing, 114–116

filtering, 202–203

manipulating shopping cart,
159–167

modifying, 109–111

nodes vs. attributes, 186

passing, when calling event
handler, 99–100

passing, with events, 269–270

retrieving, 108, 120, 126

security issues, 122–123

data binding, 169–205

and arrays, 183–184

binding simple controls using, 81

breaking complex, 173–176

breaking simple, 170–173

curly bracket syntax for, 81, 89
(See also braces)

as events, 179–181

and Flex formatters, 362, 363

implications of, 183–184

importance of, 170

linking data structure to simple
control using, 88–89

populating text controls using, 81

proxying strategy, 184–185

purpose of, 88

two-way, 334

dataChanged event, 249

dataForFormat() method, 322

DataGrid, 291–309

adding, 65–67

considerations, 292

default behavior of, 299

displaying shopping cart with,
292–308

dragging/dropping between
List and, 315–321

purpose of, 292

DataGroup, 245–255

creating custom renderer for,
450–452

creating ProductList from,
282–285

enabling virtualization for,
254–255

implementing itemRenderer,
246–251

purpose of, 242

simple example, 245–246

using in ShoppingView,
251–253

vs. Group class, 245

data models, 88

data nodes, 186

data persistence, 15

dataProvider property, 242

DataRenderer class, 251, 256, 450

datasets

defined, 241

populating List control with,
242–245

using DataGroup with, 245–246

virtualization of, 254

data structures, 81

data transfer objects (DTOs), 143

debugger, 34–41, 104

debugging. See also breakpoints;
errors

data binding, 171–172, 175

data structures, 149

example, 34–41

and Local History feature, 31–32

rolling back to previous
versions, 31–32

Debug perspective, 105

Debug view, 35, 38–39

Declarations tag, 29

DefaultItemRenderer class, 246

default state, 63

descendant (..) operator, 132

descendant selectors, 382,
390–391

Design button, 22

Design view, 25, 53–56

desktop applications, 4–5, 311

detail view, 85–87

DHTML (Dynamic HTML), 5, 9

dispatchEvent() method, 263,
270

dispatching events, 178–179, 183,
263–267

display list, 274

DisplayObjects, 274

Document Object Model (DOM), 5

doDrag() method, 322

DOM (Document Object Model), 5

dot-com boom, 7

dot operator, 130

double quotes (“), 97

Drag and Drop Manager, 311,
312–313

dragComplete event, 315

dragDrop event, 316

drag/drop operations, 311–331

between DataGrid and List,
315–321

and HTML, 4–5

phases, 312

in shopping cart, 326–331

terminology, 312

between two lists, 313–315

using non-drag-enabled
component in, 321–326

dragEnabled property, 313, 314,
315

dragEnter event, 316

DragEvents, 101

ptg

466 Index

dragExit event, 316

drag initiator, 312, 315

DragManager class methods, 322

dragOver event, 316

drag proxy, 312

drag source, 312

DragSource class, 312, 314, 315, 322

Drawing API, AS3, 404

drawRect() method, 406

dropEnabled property, 313, 315

drop target, 312, 316

DTOs (data transfer objects), 143

dumb terminals, 4

Dynamic HTML (DHTML), 5, 9

dynamic interfaces, 71

dynamic XML data, 133–137

E
E4X (ECMAScript for XML),

127–133

Eclipse platform, 14, 17, 36

Eclipse project, 10, 14

ECMAScript for XML (E4X),
127–133

ECMA standard, 127

e-commerce application. See also
FlexGrocer application

laying out, 50–58

using drag and drop in, 311–331

working with view states in,
63–70

editors

defined, 24

example, 22

expanding, 25

inline, 296–299

opening/closing, 24

showing code line numbers
in, 27

viewing errors in, 32–33

element selectors, 382

embedded fonts, 388, 390

embedded XML, 114–119

@Embed directive, 84

end users, 8

enterprise server applications, 10

equal sign (=), 23

error messages, 89

errors. See also debugging

and Build Automatically option,
28

how Flash Builder reports, 27

viewing, 32–33

escape code ("), 68

event-based programming model,
95, 96–97

event bubbling, 274–279

Event class, 100, 269–270

event dispatchers, 96. See also
dispatching events

event flow, 275

event handlers

defined, 96

naming, 104, 285

passing data when calling,
99–100

sending event objects to,
101–103

for system events, 107–111

event handling

with ActionScript, 98–99

example, 97–98

overview, 96–97

EventLab application, 274

event listeners, 96, 179, 275, 288

event objects. See also events

generic, 101

inspecting, 104–107

using data from, 100–103

events, 100–107. See also event
handling; event objects

communicating with, 445–448

data binding as, 179–181

declaring, 267–269

defined, 100

dispatching, 178–179, 183,
263–267

drag initiator, 315

drop target, 316

inspecting, 104–107

interpreting, 212

listening to, 96, 179

passing data with, 269–270

purpose of, 80

types of, 96, 107

using data from, 100–103

event subclasses, 270–274, 280

event targets, 275

eventText parameter, 108

event variable, 105

expressions

E4X, 129, 133

and loose coupling, 262

maintaining, 262

watch, 36, 117, 119, 136, 172, 191

Expressions panel, 173, 191

Expression Studio, 11

Expressions view, 36, 118, 137, 191

Extensible Application Markup
Language (XAML), 11

F
factory methods, 150

false/true values, 151–152, 163

FAQs (frequently asked questions),
xxi

FedEx shipment tracking
application, 8

fill property, 408

filterCollection() method,
258

filtering, 202–203

filterOrganic() method, 203

findAny() method, 200

findFirst() method, 199–200

findLast() method, 200

Flash Builder

adjusting layout of views in, 26

basic vocabulary for, 18

creating projects in, 18–24

debugger, 34–41

deleting projects in, 41–42

displaying code line numbers
in, 27

enabling conditional
breakpoints in, 40

help/support, xxi

ptg

467Index

importing projects into, 41

laying out interface in, 45

naming projects in, 18–19

and object-oriented best
practices, 95

purpose of, 14, 17

using Auto-Generation with,
181–183

versions, 14

viewing/correcting errors in,
32–33, 34–41

workbench, 24–27

Flash Catalyst, 14

Flash Debug perspective, 26

Flash Platform, 12–15

Flash Player

and AIR, 12

and application height/width, 24

compilation process, 14

evolution of, 12

how it works internally, 439

popularity of, 12

and runtime-loaded CSS files, 395

sandboxes, 122–123

as single-threaded virtual
machine, 439

versions, 13–14

Flash Professional, 12–13

Flash Text Engine, 81

Flex

application architecture,
212–213

application development, 18–24

applications (See applications)

basic vocabulary for, 18

Community Help, xx–xxii

compiler, 176–183

as component-based
development model, 207

components, 421–422

event-based programming
model, 95, 96–97

getting started with, xii–xiii,
17–43

home page, xxii

key technologies, 13–14

language tags, 23

and object-oriented
programming, 41

positioning of components in, 46

purpose of, xii, 13

resources, xx–xxii

Spark components, 23

versions, xii, 13

working with view states in,
63–70

FlexGrocer application

adding events to, 95

building checkout process for,
335–358

controlling view states for,
68–70

creating list of products for,
185–191

creating/organizing files for,
18–24

customizing with skins, 399–417
(See also skins)

customizing with styles,
375–397 (See also styles)

defining product section for,
57–58

displaying images in, 81–84

displaying/managing data for,
144–150

externalizing data in, 114–116

formatting currency for prices
in, 364–369

implementing checkout process
for, 333–358

implementing drag/drop in,
326–331

improving architecture for,
213–221

laying out interface for, 50–58

manipulating shopping cart
data for, 159–167

modifying, 30–33

overview, xv

Product data structure for, 141

providing product/category
information for, 230–238

refactoring, 73–75, 101–103

running, 28–29

validating postal codes for,
369–372

visual shopping cart for, 169
(See also shopping carts)

website for, xvi

working with view states for,
63–70

flexgrocer.com, xvi

Flex Properties view, 82–83

Flex SDK, xii, xiii, 14, 19, 23, 80

flow-driven programming model, 96

fonts, embedded, 388, 390

for loops, 162–163, 164–165

Formatter classes, 364–368

formatters

for displaying currency,
364–368, 443

examples of, 362–363

purpose of, 361, 363

Form container, 47, 81, 89–92

form fields, 89

FormHeading component, 91

FormItem component, 90

FormLayout object, 47

forms, 89, 91

Forums, Adobe, xxii

FreeBSD, 11

frequently asked questions (FAQs),
xxi

functions. See also specific functions

parameters vs. arguments for, 147

private vs. protected, 267

scope of, 102

vs. methods, 144

</fx:Declarations> tag, 29

FXG Graphics, 404–405

FXG specification, 407

<fx:Metadata> tag, 267–268

<fx:Model> tag, 88

fx namespace, 23

FXP files, 34, 41

<fx:Script> block, 99

<fx:Style> tag, 382–383

<fx:XML> tag, 149, 151

ptg

468 Index

G
Generate Getter/Setter dialog box,

182, 249, 428

getItemAt() method, 192–193

getItemInCart() method, 163

getters/setters, 177–178, 181–183,
249, 428

Google Maps, 10

“go to definition” shortcut, 171

graphical elements, 46, 404–405

graphics editing programs,
404–405

graphics property, 404–405

greater-than sign (>), 30

GridColumn class, 296–299

Group container, 46, 245

Group tag, 48–49

H
handleCreationComplete()

method, 109, 149, 152

handleViewCartClick()
method, 102, 103, 104

hasFormat() method, 322

HGroup container, 72–73

HorizontalLayout object, 47

HostComponent metadata, 433

HTML (Hypertext Markup
Language)

and drag/drop operations, 5

latest version of, 10

limitations of, 4–5, 10

as page-based architecture, 4

HTML 5 specification, 10

HTTP (Hypertext Transport
Protocol), 5, 7

HTTPServices

accessing data retrieved from,
121–122

creating, 120, 230–231

retrieving XML data via,
124–126

Hypertext Markup Language.
See HTML

Hypertext Transport Protocol
(HTTP), 5, 7

I
IDataRenderer interface, 246, 247

IDE (integrated development
environment), 14

ID selectors, 382, 392

IFill interface, 408

IFormatter interface, 362

IFrames, 9

Image control, 81–84

images

displaying, 81–84

editing, 404–405

loading at runtime, 81

loading at start of application, 84

scaling, 83

implicit getters/setters, 177–178,
181–183

importing

classes, 109–110, 215

projects, 41, 68

import statements, 110, 157, 304

includeIn property, 67, 87, 334

inheritable style properties, 381

inheritance

hierarchy, 263

and invalidateProperties()
method, 440

and protected functions, 267

style, 376, 381, 384

inline editors, 296–299

inline item renderers, 303–304

inline styles, 379–381

instance methods, 151

instances

Array, 184, 194

bindable, 194

DataGroup, 242

event, 276, 277

Label, 193

List, 242, 313

Object, 184

ObjectProxy, 118, 135

validator, 371

vs. properties, 49

XML, 184

integers, unsigned, 155

integrated development
environment (IDE), 14

interactivity, 5, 63

interfaces, 199. See also UI

Internet

applications (See web
applications)

dot-com boom, 7

explosive growth of, 4

security issues, 122–123

invalidateProperties()
method, 440

isItemInCart() method, 163

italics, xvii

itemEditor property, 297

item editors, 296–299

itemRenderer class, 246–251, 256

item renderers

for displaying products,
299–302

how they work, 246

implementing, 246–251

inline, 296–299, 303–304

items. See also products

adding to shopping cart,
159–161

displaying based on category,
257–258

dragging to shopping cart, 311,
326–331

finding in shopping cart,
161–163

updating quantity of, 161,
164–166

IT organizations, 8

IValidator interface, 363

IViewCursor interface, 198, 199

J
Java, xiv

Java applets, 9

JavaFX, 10

JavaScript, 5, 9

Java Virtual Machine, 10

just-in-time (JIT) compilation, 14

ptg

469Index

K
keyboard shortcuts, xvii

L
Label component, 378

Label controls, 57, 60, 80

labelFunction property

displaying subtotal with,
305–308

purpose of, 242

using with lists, 242–245

label property, 49

Label tag, 29

lastResult property, 121–122

layout anchors, 59

layout objects, 46, 47–48

layout property, 48

layouts, 45–63. See also containers

adding elements in Design view,
53–56

combining containers and, 48

constraint-based, 55, 58–63

for e-commerce application,
50–58

purpose of, 46

starting in Source view, 51–53

lessons

directory structure for, xviii

list of, xiv–xv

minimum system requirements,
xix

standard elements used in,
xvi–xvii

letterbox scale mode, 83, 84

Linear Gradient class, 408–409

line breaks, 31

Linux, 11

list-based components, 321

List controls. See also lists

displaying category data with,
137–139

dragging/dropping between,
313–315

dragging/dropping between
DataGrid and, 315–321

populating with dataset,
242–245

using labelFunction with,
242–245

lists. See also List controls

formatting data in, 244–245

responding to user’s choice
from, 257–259

virtualization with, 255–257

Local History feature, 31–32

loops, 162–163, 164–165

loosely coupled architecture,
262–263

M
Mac OS-based systems

manifest files for, 23

and Silverlight, 11

system requirements, xix

Macromedia, xii, 12, 13

mainframes, 4

Major League Baseball application, 8

manifest files, 23

menu commands, xvii

messaging, 15

metadata tags, 267

methods. See also specific methods

creating objects with, 150–153

defining, 143

DragManager class, 322

DragSource class, 322

factory, 150

instance, 151

overriding, 271

parameters vs. arguments for, 147

static, 151

vs. functions, 144

microcomputers, 4

Microsoft

Expression Studio, 11

Silverlight, 11

minHeight attribute, 31

minWidth attribute, 31

MLB.TV Media Player, 8

models, 212

model-view-controller (MVC)
architecture, 88, 212–213

Moonlight, 11

mouseDown event, 315

MouseEvent properties, 104–107

mouseMove event, 315

mouseOut event, 87

mouseOver event, 87

multiDisplay() function, 244

MVC (model-view-controller)
architecture, 88, 212–213

mx components, 20

mx.formatters package, 362

MXML

case-sensitivity of, 21

class instances vs. properties in,
49–50

compiling, 149

components, 208–213, 420
(See also components)

creating applications in, 18–24

creating classes in, 149

decoding tags in, 49–50

formatting rules/standards, 30

item renderers, 303–304

purpose of, 13

MXMLC compiler, 395

MXML Component dialog box, 214

mx.validators package, 363–364

N
name collision, 147, 148

@namespace declaration, 389

namespaces

fx namespace, 23

how CSS defines, 389

s namespace, 23

Spark, 23, 387, 389

styles and, 383–384

navigation system

importance of, 333

and loose coupling, 262–263

using states as basis for, 334,
337–345

nested quotes, 97, 99

ptg

470 Index

.NET, xiv, 11

new keyword, 151

New Package command, 221

New State icon, 64

newTotal variable, 164, 165

nodes, 128, 186

non-visual components, 230–238

O
object-oriented programming

(OOP), xiv, 41, 95, 102, 141, 215

ObjectProxy, 184

objects

building method to create,
150–153

classes as blueprint for, 141

converting XML to, 117–119, 133

data transfer, 143

event (See event objects)

OOP. See object-oriented
programming

Open Font Library, 388

Open Perspective button, 22, 26

Open Perspective icon, 107

open source site, 81

OrderEvent object, 355–358

OrderInfo object, 335–336, 355

Outline view, 57, 65

P
Package Explorer, 22, 25, 41, 145

package keyword, 145

packages, 143, 145, 221

page-based architecture, 4, 6–7, 8

Panel container, 46

parameters, 147

partAdded() method, 445–448

partRemoved() method, 445,
448–449

PC manifest files, 23

personal computers, 4

perspectives, 26, 36, 107

PHP, xiv

postal-code validator, 369–372

prefix, 23

prepare method, 300, 301

private functions, 267

private keyword, 158

Problems view, 22, 32

ProductEvent class, 280–286,
304–305

ProductItem components

breaking out, 221–230

cleaning up appearance of,
376–377

creating instances of, 228

productivity, 8

ProductList component

creating, 282–284, 426

styling labels in, 391

using, 284–285

product nodes, 186

products. See also items

adding/removing from
shopping cart, 284–286,
304–305

creating, 189

displaying names of, 148–149

filtering based on category,
257–259

keeping track of shopping cart,
154–159

product section, 57–58

programmatic graphics, 404–405

programming languages, xiv

Project menu, 28

projects. See also applications

creating, 18–24

deleting, 41–42

importing, 41, 68

naming, 18–19, 41

overwriting, 41

viewing, 21–22

viewing errors in, 32–33

properties. See also specific
properties

creating, 215

declaring, 143

vs. class instances, 49

Properties panel, 53, 57

protected functions, 267

proxies

array, 184–185

drag, 312

pseudo-selectors, 382, 393–394

public properties, 146–147

Q
question mark (?), 146

Quick Fix tool, 146, 180

quotation marks (“), 68, 97

R
RadialGradient class, 408

redundancy, 71

refactoring, 71–75

applications, 73–75, 101–103

benefits of, 71–72

defined, 71

to search with cursor, 198–201

ShoppingCart class, 287–288

ShoppingCartItem class,
204–205

remote XML data, 110–139

dynamic, 133–137

embedded XML, 114–116

searching with E4X, 127–133

security issues, 122–123

XMLListCollection, 137–139

XML loaded at runtime, 119–123

Remove button, 303–304

removeItem() method, 304

Reset Perspective command, 53

ResultEvents, 101

result handler, 122

Resume button, 38

return types, 99, 102

RIAs (rich Internet applications),
3–15

advantages of, 7–8

and drag/drop technique, 311

examples of excellent, 8

functions of, 5–6

goals of, 6–7

ptg

471Index

technology choices, 8–14

vs. traditional web applications,
6–7

RichEditableText control, 81

rich Internet applications. See RIAs

RichText control, 80, 81, 86, 109

rollover event, 85–87

root nodes, 128–129

Run button, 22, 28, 29

runtime

changing CSS at, 395–397

changing skins at, 448

loading images at, 81, 84

styling at, 395–397

XML loaded at, 119–123

S
sandboxes, 122–123

<s:Application> tag, 22–23, 31

satellite navigation system,
262–263

<s:BasicLayout/> tag, 52

scalar values, 98

Scale Mode menu, 83, 84

scope, 102

Script blocks, 99, 102

scroll bars, 24

Scroller tag, 48–49

scrolling content, 48–49

SDK (software development kit),
xii, xiii, 14, 19, 23, 80

searches

array, 246

with cursor, 198–201

descendant, 190

XML (with E4X), 127–133

security issues, 122–123

security sandboxes, 122–123

selectability, 255

selectedIndex property, 255

selectedItem property, 255

self-closing tags, 31, 51

send() method, 120, 126

servers, 4. See also client/server
applications

server-side languages, xiv

server-side objects, 6

server technologies, 15

service-oriented architecture
(SOA), 5

setStyle() method, 381

setters/getters, 177–178, 181–183,
249, 428

<s:FormHeading> tag, 89

<s:FormItem> tag, 89

<s:Form> tag, 89

shipment tracking application, 8

ShoppingCart class. See also
shopping carts

building, 154–159

refactoring, 287–288

replacing Array in, 194

ShoppingCartItem class, 154–159,
204–205

shopping carts

adding items to, 63, 159–161,
284–286

displaying with DataGrid, 291,
292–308

dragging items to, 311, 326–331

finding items in, 161–163

formatting list data for, 244–245

keeping track of items in,
154–159

manipulating data in, 157,
159–167

removing items from, 201–202,
284–286

updating quantity of items in,
164–166

updating totals in, 287–288

ShoppingList component, 425–452

adding functionality to, 439–450

checking functionality of,
429–431

choosing base class for, 426

creating class for, 427–429

creating custom renderer for,
450–452

creating skin for, 434–438

defining interface for, 425

specifying skin requirements for,
432–434

ShoppingView class, 251–253

Show Line Numbers command, 27

Show View command, 25

Silverlight, 11

simple controls, 79–92

linking data structure to, 88–89

overview, 80–81

purpose of, 80

tools for laying out, 79

using Form container to lay out,
89–92

ways of using, 79, 80

SkinnableComponent class,
421–422, 445

SkinnableContainer, 46

SkinnableDataContainer, 47

skinning, 46, 432

SkinPart metadata, 432

skin parts, 401, 434

skins, 399–417

changing at runtime, 448

creating, for Application
component, 413–416,
434–438

creating, for FlexGrocer button,
400–404

creating, for ShoppingList
component, 434–438

creating renderer for, 450–452

customizing button states with,
407–413

errors, 401

purpose of, 376

relationship between states and,
404–413

role of, in Spark components,
400–404

vs. styles, 376

SkinState metadata, 432–433

<s:Label> tag, 29

slash (/), 30, 31

<s:List> control, 137–138

s namespace, 23

SOA (service-oriented
architecture), 5

software development kit (SDK),
xii, xiii, 14, 19, 23, 80

ptg

472 Index

software upgrades, 4

SolidColor class, 408

someColor property, 171–172

SortField objects, 194–197

Source button, 22

Source view, 25, 51–53

Spark classes, 23

Spark components

and embedded fonts, 390

namespace for, 23, 387, 389

role of skins in, 400–404, 413

vs. MX components, 20

spark.formatters package, 362

Spark namespace, 23, 387, 389

spark.validators package, 363–364

<s:states> tag, 337

stateless protocols, 7

states

controlling, 68–70

creating, 64

creating navigation structure
using, 334, 337–345

maintaining, 7

naming, 68

relationship between skins and,
404–413

setting properties for, 67

state selectors, 393–394

static methods, 151

Step Into button, 37, 40

Step Over button, 37, 40

stretch scale mode, 83

style inheritance, 381

StyleManager, 396–397

styleName property, 383

style properties, 379, 381

styles, 375–397. See also skins

assigning multiple, 382, 397

complete list of, 378

CSS inheritance for, 381

overriding, 397

purpose of, 376

at runtime, 395–397

setting with CSS files, 386–394

setting with <fx:Style> tag,
382–383

setting with setStyle()
method, 381

setting with tag attributes,
379–381

vs. skins, 376

ways of applying, 377–378

subclasses, 270–274, 280

subtotals, 156, 204, 305–308

Support pages, xxi

SWF files, 29, 395–396

system events, 96, 107–111

system requirements, xix

T
tag attributes, setting styles via,

379–381

tags

choosing attributes for, 30

Form container, 89

selecting, 30

self-closing, 31, 51

target phase, event flow, 275

target property, 100, 105

targets, event, 275

text

controls, 80–81

displaying blocks of, 85–87

styles for manipulating, 378–379

TextArea component, 80, 108

TextInput control, 80, 91, 247

Text Layout Framework (TLF), 81

this keyword, 105, 147

tight coupling, 262

TileLayout object, 47

timestamp property, 270–274

timestamps, 269

TLF (Text Layout Framework), 81

toString() method, 148–149,
150, 151, 156, 160

total property, 165, 166

trace() method, 149, 150, 153, 156

training centers, Adobe, xxii

Training from the Source series, xviii

transfer objects, 143

true/false values, 151–152, 163

tutorials, xxi

two-way bindings, 334

type property, 100

type selectors, 382, 383–385

U
UI (user interface), 45–76

arranging elements in, 58

drag-and-drop technique,
311 (See also drag/drop
operations)

dynamic, 71

for e-commerce application, 45

HTML limitations, 4–5

laying out, 50–58

tools for creating, 11

UIComponent class, 208, 263, 421

underscore (_), 177

unique identifier (UUID), 41

unitRPCResult() handler, 122

Universal Resource Identifier (URI),
23

unsigned integers, 155

updateItem() method, 164

URI (Universal Resource Identifier),
23

URLs, 23, 120

UserAcknowledgeEvent class,
270–274

user events, 96, 97, 107

user frustration level, 8

user input forms, 334

user interface. See UI

users, collecting information from,
89

UUID (unique identifier), 41

ptg

473Index

V
Validator classes, 363, 364,

369–372

validators

for checking postal codes,
369–372

examples of, 363–364

purpose of, 361, 363

value objects, 143–150, 153

values

attribute, 98

Boolean, 151–152, 163

scalar, 98

setting/reading, 177

true/false, 151–152, 163

variables

controlling, 363

integer, 35

name collision among, 147

naming, 147

in RIAs, 7

showing current state of, 36

Variables view, 36, 37–38, 105

vector graphics, 404–405

VerticalLayout object, 47, 57

VGroup container, 72–73, 85

video publishing, 15

View Cart buttons, 101–103

views

adjusting layout of, 26

displaying list of, 25

grouping, 36

in MVC architecture, 212, 213
(See also specific views)

opening/closing, 25

view states, 63–70

controlling, 68–70

creating, 63–67

defined, 63

naming, 68

virtualization

implementing, 254–255

with List class, 255–257

power of, 255

purpose of, 253–254

visual components, 213–230, 274

void return type, 99, 102

W
WarningDialog application,

264–267

watch expressions, 36, 117, 119,
136, 172, 191

Web 2.0, xii

web applications. See also
applications

connectivity issues, 6

and drag/drop technique, 311

and event-based programming,
95

evolution of, 4–6

flow for traditional, 6–7

inefficiencies of, 6

maintaining state in, 7

web browsers, 4, 5

Web Services, 6

Window menu, 25

Windows-based systems

manifest files for, 23

and Silverlight, 11

system requirements, xix

Windows Presentation Foundation
(WPF), 11

workbench, 24–27

workflow engines, 15

World Wide Web, xiv. See also
Internet

WPF (Windows Presentation
Foundation), 11

X
XAML (Extensible Application

Markup Language), 11

XML

ActionScript support for, 127

and AJAX, 9

and code completion, 150

converting to objects, 117–119,
133

embedded, 114–119

and Flex, 13

formatting rules/standards, 30

loaded at runtime, 119–123

namespaces, 23

nomenclature, 23

terminating tags in, 31

vs. XMLList, 128

XML class, 127

XML data

accessing returned, 121–122

dynamic, 133–137

remote (See remote XML data)

retrieving via HTTPService,
124–126

security issues, 122–123

XMLDocument class, 127

XMLHttpRequest, 9

XMLList, 128

XMLListCollection, 133, 135,
137–139

Z
zip-code validator, 369–372

ZipCodeValidator class, 369–372

ptg

ptg

Adobe Flex 4.5 Fundamentals:
Training from the Source

The print version of this title comes with a disc
of lesson files. As an eBook reader, you have access to

these files by following the steps below:

1. On your PC or Mac, open a web browser and go to this URL:

http://www.peachpit.com/ebookfiles/0132788918

2. Download the ZIP file (or files) from the web site to your hard drive.

3. Unzip the files and follow the directions for use in the Read Me
included in the download.

Please note that many of our lesson materials can be very large, es-
pecially image and video files. You will be able to see the size of any
file for download once you reach the URL listed above.

If you are unable to locate the files for this title by following the steps
above, please email ask@peachpit.com and supply the URL from step
one. Our customer service representatives will assist you as soon as
possible.

WHERE ARE THE LESSON FILES?

Legal Notice: Peachpit Press makes no warranty or representation, either express or implied, with respect to
this software, its quality, performance, merchantability, or fitness for a particular purpose. In no event will
Peachpit Press, its distributors, or dealers be liable for direct, indirect, special, incidental or consequential dam-
ages arising out of the use or inability to use the software. The exclusion of implied warranties is not permitted
in some states. Therefore, the above exclusion may not apply to you. This warranty provides you with specific
legal rights. There may be other rights that you may have that vary from state to state.

The software and media files are copyrighted by the authors and Peachpit Press. You have the non-exclusive
right to use these programs and files. You may use them on one computer at a time. You may not distribute
the URL to third parties or redistribute the files over a network. You may transfer the files onto a single hard
disk so long as you can prove ownership of this eBook.

You may not reverse engineer, decompile, or disassemble the software or media files. You may not modify or
translate the software or media, or distribute copies of the software or media without the written consent of
Peachpit Press.

http://www.peachpit.com/ebookfiles/0132788918

ptg

You love our books and you
love to share them with your colleagues and
friends...why not earn some $$ doing it!

If you have a website, blog or even a Facebook page,
you can start earning money by putting a Peachpit
link on your page.

If a visitor clicks on that link and purchases something
on peachpit.com, you earn commissions* on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post an ad and
we’ll take care of the rest.

ApplY And get stArted!
It’s quick and easy to apply.
To learn more go to:
http://www.peachpit.com/affiliates/
*Valid for all books, eBooks and video sales at www.Peachpit.com

Join the
PeachPit
AffiliAte teAm!

	Contents
	Foreword
	Introduction
	Lesson 1 Understanding Rich Internet Applications
	The Evolution of Computer Applications
	The Break from Page-Based Architecture
	The Advantages of Rich Internet Applications
	RIA Technologies
	What You Have Learned

	Lesson 2 Getting Started
	Getting Started with Flex Application Development
	Creating a Project and an MXML Application
	Understanding the Flash Builder Workbench
	Running Your Application
	Exploring the Flash Builder Debugger
	Getting Ready for the Next Lessons
	What You Have Learned

	Lesson 3 Laying Out the Interface
	Learning About Layouts
	Laying Out the E-Commerce Application
	Working with Constraint-Based Layouts
	Working with View States
	Refactoring
	What You Have Learned

	Lesson 4 Using Simple Controls
	Introducing Simple Controls
	Displaying Images
	Building a Detail View
	Using Data Binding to Link a Data Structure to a Simple Control
	Using a Form Layout Container to Lay Out Simple Controls
	What You Have Learned

	Lesson 5 Handling Events
	Understanding Event Handling
	Handling System Events
	What You Have Learned

	Lesson 6 Using Remote XML Data
	Using Embedded XML
	Using XML Loaded at Runtime
	Retrieving XML Data via HTTPService
	Searching XML with E4X
	Using Dynamic XML Data
	Using the XMLListCollection in a Flex Control
	What You Have Learned

	Lesson 7 Creating Classes
	Building a Custom ActionScript Class
	Building a Value Object
	Building a Method to Create an Object
	Building Shopping Cart Classes
	Manipulating Shopping Cart Data
	What You Have Learned

	Lesson 8 Using Data Binding and Collections
	Examining Data Binding
	Being the Compiler
	Understanding Bindable Implications
	Using ArrayCollections
	Refactoring ShoppingCartItem
	What You Have Learned

	Lesson 9 Breaking the Application into Components
	Introducing MXML Components
	Splitting Off the ShoppingView Component
	Breaking Out a ProductItem Component
	Creating Components to Manage Loading the Data
	What You Have Learned

	Lesson 10 Using DataGroups and Lists
	Using Lists
	Using DataGroups
	Virtualization with Lists
	Displaying Grocery Products Based on Category Selection
	What You Have Learned

	Lesson 11 Creating and Dispatching Events
	Understanding the Benefits of Loose Coupling
	Dispatching Events
	Declaring Events for a Component
	Identifying the Need for Custom Event Classes
	Building and Using the UserAcknowledgeEvent
	Understanding Event Flow and Event Bubbling
	Creating and Using the ProductEvent Class
	What You Have Learned

	Lesson 12 Using the Flex DataGrid
	Introducing DataGrids and Item Renderers
	Displaying the ShoppingCart with a DataGrid
	What You Have Learned

	Lesson 13 Using Drag and Drop
	Introducing the Drag and Drop Manager
	Enhanced Dragging and Dropping Between Two Lists
	Standard Dragging and Dropping Between a DataGrid and a List
	Using a Non-Drag-Enabled Component in a Drag-and-Drop Operation
	Dragging a Grocery Item to the Shopping Cart
	What You Have Learned

	Lesson 14 Implementing the Checkout Process
	Introducing Navigation with States
	Introducing Two-Way Bindings
	Creating the OrderInfo valueObject
	Creating CheckoutView
	Creating CreditCardInfo
	Creating Review
	Completing the Order
	What You Have Learned

	Lesson 15 Using Formatters and Validators
	Introducing Formatters and Validators
	Using Formatter Classes
	Examining a Second Locale
	Using Validator Classes
	What You Have Learned

	Lesson 16 Customizing a Flex Application with Styles
	Applying a Design with Styles and Skins
	Cleaning Up the Appearance
	Applying Styles
	Changing CSS at Runtime
	What You Have Learned

	Lesson 17 Customizing a Flex Application with Skins
	Understanding the Role of Skins in a Spark Component
	Understanding the Relationship between Skins and States
	Creating a Skin for the Application
	What You Have Learned

	Lesson 18 Creating Custom ActionScript Components
	Introducing Components with ActionScript 3.0
	Building Components Can Be Complex
	Understanding Flex Components
	Why Make Components?
	Defining a Component
	Creating the Visuals
	Adding Functionality to the Component
	Creating a Renderer for the Skin
	What You Have Learned

	Appendix: Setup Instructions
	Software Installation
	Importing Projects
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Lesson Files and Media

