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Preface 

Testing software is a very important and challenging activity. This is a book for 
people who test software during its development. Our focus is on object-oriented 
and component-based software, but you can apply many of the techniques 
discussed in this book regardless of the development paradigm. We assume our 
reader is familiar with testing procedural software— that is, software written in the 
procedural paradigm using languages such as C, Ada, Fortran, or COBOL. We also 
assume our reader is familiar and somewhat experienced in developing software 
using object-oriented and component-based technologies. Our focus is on 
describing what to test in object-oriented development efforts as well as on 
describing techniques for how to test object-oriented software, and how testing 
software built with these newer technologies differs from testing procedural 
software. 

What is software testing? To us, testing is the evaluation of the work products 
created during a software development effort. This is more general than just 
checking part or all of a software system to see if it meets its specifications. 
Testing software is a difficult process, in general, and sufficient resources are 
seldom available for testing. From our standpoint, testing is done throughout a 
development effort and is not just an activity tacked on at the end of a development 
phase to see how well the developers did. We see testing as part of the process that 
puts quality into a software system. As a result, we address the testing of all 
development products (models) even before any code is written. 

We do not necessarily believe that you will apply everything we describe in this 
book. There are seldom enough resources available to a development effort to do 
all the levels and kinds of testing we would like. We hope you will find a number 
of approaches and techniques that will prove useful to and affordable for your 
project. 

In this book we describe a set of testing techniques. All of the techniques we 
describe have been applied in practice. Many of these techniques have been used in 
a wide variety of industries and on projects of vastly different sizes. In Chapter 3, 
we will consider the impact of some of these variables on the types of testing that 
are routinely performed. 

To describe these techniques, we rely in many cases on one or more examples to 
illustrate their application. We hope from these examples and from our 
explanations that you can apply the same techniques to your project software in a 
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straightforward manner. The complete code for these examples, test code, and 
other resources can be obtained from 
http://cseng.aw.com/book/0.3828.0201325640.00.html. 

In order to make this book as useful as possible, we will provide two major 
organizational threads. The physical layout of the book will follow the usual 
sequence of events as they happen on a project. Model testing will be addressed 
earlier than component or code testing, for example. We will also include a set of 
questions that a tester might ask when he or she is faced with specific testing tasks 
on a project. This testing FAQ will be tied into the main body of the text with 
citations. 

We have included alternative techniques and ways of adapting techniques for 
varying the amount of testing. Testing life-critical or mission-critical software 
requires more effort than testing an arcade game. The summary sections of each 
chapter should make these choices clear. 

This book is the result of many years of research, teaching, and consulting both in 
the university and in companies. We would like to thank the sponsors of our 
research, including COMSOFT, IBM, and AT&T for their support of our academic 
research. Thanks to the students who assisted in the research and those who sat 
through many hours of class and provided valuable feedback on early versions of 
the text. The consultants working for Korson-McGregor, formerly Software 
Architects, made many suggestions and worked with early versions of the 
techniques while still satisfying client needs. The employees of numerous 
consulting clients helped us perfect the techniques by providing real problems to 
be solved and valuable feedback. A special thanks to Melissa L. Russ (formerly 
Major) who helped teach several tutorials and made her usual insightful comments 
to improve the material. 

Most of all, we wish to thank our families for enduring our mental and physical 
absences and for the necessary time to produce this work: Gayle and Mary Frances 
McGregor; Susan, Aaron, Perry, and Nolan Sykes. 

JDM 

DAS 
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Chapter 1. Introduction 

Testing software well has always been challenging, but the process is fairly well 
understood. Some combination of unit testing, integration testing, system testing, 
regression testing, and acceptance testing will help to deliver usable systems. 

We wanted to write this book because most people seem to believe that testing 
object-oriented software is not much different from testing procedural software. 
While many of the general approaches and techniques for testing are the same or 
can be adapted from traditional testing approaches and techniques, our experience 
and our research has demonstrated that some things are different and present new 
challenges. At the same time, well-designed object-oriented software developed as 
part of an incremental process provides opportunities for improvements over 
traditional testing processes. 

Object-oriented programming language features of inheritance and polymorphism 
present new technical challenges to testers. We describe solutions for many of 
these challenges. In this book, we describe processes and techniques for testing 
object-oriented software effectively during all phases of a development effort. Our 
approach to testing software is quite comprehensive and one that we believe 
software development organizations should undertake. At the same time, we 
realize that resources available for testing are limited and that there are many 
effective ways to develop software, so we think it is reasonable to pick and choose 
among the techniques we present in this book. 

The adoption of object-oriented technologies brings changes not only in the 
programming languages we use but in most aspects of software development. 

We use incremental development processes, refocus and use new notations for 
analysis and design, and utilize new programming language features. The changes 
promise to make software more maintainable, reusable, flexible, and so on. We 
have written this book because changes in the way we develop software produces 
changes in the way we test software, from both managerial and technical 
perspectives. The following changes provide opportunities for improving the 
testing process: 

• We have an opportunity to change attitudes toward testing. In many 
environments, managers and developers view testing as a necessary evil. 
Testing that needs to be done by the developers themselves interrupts code 
production. Reviews, code inspections, and writing unit test drivers take 
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time and money. Testing processes imposed on the developers for the most 
part just get in the way of coding. However, if we can make everyone 
appreciate that testing contributes to developing the right software from the 
start, and that it can actually be used to measure progress and keep 
development on track, then we can build even better software. 

• We have an opportunity to change where testing fits into a development 
process. Almost everyone recognizes that the sooner problems are found, the 
cheaper they are to fix. Unit testing and integration testing uncover 
problems, but don't usually start until coding has started. System testing is 
typically done near the end of a development effort or perhaps at certain 
planned milestones. System testing is treated as a way to see how well the 
developers did in meeting requirements. Of course, this is a wrong approach. 
Decisions about how much testing is adequate, when it should be performed, 
and who should do it should be made only in the context of a well-
considered testing strategy that works with the project's software 
development process. We will show how testing activities can begin early. 
We will show how testing and development activities can be intertwined and 
how each can contribute to a successful outcome of the other. 

• We have an opportunity to use new technology to do the testing. Just as 
object-oriented technologies have benefits for production software, they also 
can realize benefits in test software. We will show how you can test object-
oriented analysis and design models, and how you can use object-oriented 
programming techniques to develop unit test drivers and reduce the coding 
necessary to test software components. 

Who Should Read This Book? 

We have written this book for 

• Programmers who already work in testing software, but want to know more 
about testing object-oriented software. 

• Managers who are responsible for software development and who would 
like to know how and where testing fits into a plan. 

• Developers who are responsible for testing the software they produce and 
who should take testing issues into consideration during the analysis, design, 
and coding activities. 

With such a wide audience, we struggled with the level of detail we needed to 
include about object-oriented development and testing— the basic concepts 
associated with software testing, object-oriented programming, and the Unified 
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Modeling Language (UML) to express analysis and design results. We decided to 
provide brief overviews of these topic areas— what we consider the minimum a 
reader needs to know to make sense of what we have to say. When we need to 
resort to code, we use C++ and Java. The approaches and techniques we present 
apply to all object-oriented programs, not just to those written in C++ and Java. 

We have assumed the following software-development scenario, which we 
consider to be ideal: 

• The process must be incremental, with iterations that occur within each 
increment. 

• The models expressed in UML must be available. 
• The software design must be in accordance with good design principles with 

respect to the use of inheritance, data hiding, abstraction, low coupling, and 
high cohesion. 

However, we realize that most organizations have their own processes and 
notations. Consequently, our focus is primarily on principles and techniques. 

What Software Testing Is— and Isn't 

Informally, software testing (or just "testing" in the context of this book) is the 
process of uncovering evidence of defects in software systems. A defect can be 
introduced during any phase of development or maintenance and results from one 
or more "bugs"— mistakes, misunderstandings, omissions, or even misguided 
intent on the part of the developers. Testing comprises the efforts to find defects. 
Testing does not include efforts associated with tracking down bugs and fixing 
them. In other words, testing does not include the debugging or repair of bugs.[1] 

[1] We recognize that some people who test software are also 
responsible for debugging that software. This is particularly true 
during unit testing and integration testing. However, we 
distinguish between the two activities. Testing is the process of 
finding failures. Debugging is the process of tracking down the 
source of failures— bugs— and making repairs. There can be 
overlap in the sense that testing can sometimes be structured 
to help locate bugs. However, testing and debugging are two 
separate activities. 

Testing is important because it substantially contributes to ensuring that a software 
application does everything it is supposed to do. Some testing efforts extend the 
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focus to ensure an application does nothing more than it is supposed to do.[2] In any 
case, testing makes a significant contribution to guarding users against software 
failures that can result in a loss of time, property, customers, or life. 

[2] Certainly this is important in systems in which 
"enhancements" threaten life or property. However, testing for 
additional functionality is hard to do without reading code, which 
few testers ever do. Without reading code, a tester has to 
anticipate mistakes and enhancements that a developer might 
make and then develop tests to detect them. Consider, for 
example, the challenge of detecting Easter eggs hidden in 
software. 

What is software? We define software as the instruction codes and data necessary 
to accomplish some task on a computer. We also include all representations of 
those instructions and data. In particular, representations include not only program 
source code and data files, but models created during analysis and design activities. 
Software can and should be tested in all its representations. Just as architects and 
builders can examine blueprints for a new building to spot problems even before 
ground is broken, so we can examine analysis and design models for software 
before the first line of program source code is written. We will show how you can 
test these models using a form of "execution." 

Testing helps ensure that a product meets requirements, but testing is not quality 
assurance. Some people mistakenly equate testing and quality assurance. In many 
organizations, QA is typically responsible for developing test plans and performing 
system testing. QA might monitor testing during development and keep statistics. 
Testing is a necessary but insufficient part of any quality assurance process. 
Quality assurance addresses activities designed to prevent defects as well as to 
remove those defects that do creep into the product. A project's quality assurance 
group sets standards that project members should follow in order to build better 
software. This includes defining the types of documents that should be created to 
capture design decisions, the processes that guide project activities, and the 
measures that quantify the results of decisions. 

No amount of testing will improve the quality of a computer program. Testing 
helps in identifying failures so that developers can find bugs and remove them. The 
more testing we do of a system, the more convinced we might be of its correctness. 
Yet testing cannot in general prove a system works 100% correctly. Thus, testing's 
primary contribution to quality is to identify problems that we wish we could have 
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prevented in the first place. The mission of QA is to prevent problems in the first 
place. That requires processes beyond testing. 

Testing can contribute to improved quality by helping to identify problems early in 
the development process. Fortunately, you can do some testing quite early in the 
development process— even before code is written. We describe useful techniques 
in this book, but these techniques require that testers work more closely with 
developers and that developers work more closely with testers. 

What Is Different about Testing Object-Oriented Software? 

Object-oriented programming features in programming languages obviously 
impact some aspects of testing. Features such as class inheritance and interfaces 
support polymorphism in which code manipulates objects without their exact class 
being known. Testers must ensure the code works no matter what the exact class of 
such objects might be. Language features that support and enforce data hiding can 
complicate testing because operations must sometimes be added to a class interface 
just to support testing. On the other hand, the availability of these features can 
contribute to better and reusable testing software. 

Not only do changes in programming languages affect testing, but so do changes in 
the development process and changes in the focus of analysis and design. Many 
object-oriented software-testing activities have counterparts in traditional 
processes. We still have a use for unit testing although the meaning of unit has 
changed. We still do integration testing to make sure various subsystems can work 
correctly in concert. We still need system testing to verify that software meets 
requirements. We still do regression testing to make sure the latest round of 
changes to the software hasn't adversely affected what it could do before. 

The differences between "old" and "new" ways of developing and testing software 
are much deeper than a focus on objects instead of on functions that transform 
inputs to outputs. The most significant difference is in the way object-oriented 
software is designed as a set of objects that essentially model a problem and then 
collaborate to effect a solution. Underlying this approach is the concept that while 
a solution to a problem might need to change over time, the structure and 
components of the problem itself do not change as much or as frequently. 
Consequently, a program whose design is structured from the problem (and not on 
an immediately required solution) will be more adaptable to changes later. A 
programmer familiar with the problem and its components can recognize them in 
the software, thereby making the program more maintainable. Furthermore, 
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because components are derived from the problem, they can often be reused in the 
development of other programs to solve similar or related problems, thereby 
improving the reusability of software components. 

A big benefit of this approach to design is that analysis models map 
straightforwardly to design models that, in turn, map to code. Thus, we can start 
testing during analysis and refine the tests done in analysis to tests for design. Tests 
for design, in turn, can be refined to tests of implementation. This means that a 
testing process can be interwoven with the development process. We see three 
significant advantages to testing analysis and design models: 

1. Test cases can be identified earlier in the process, even as requirements are 
being determined. Early testing helps analysts and designers to better 
understand and express requirements and to ensure that specified 
requirements are "testable." 

2. Bugs can be detected early in the development process, saving time, money, 
and effort. It is widely acknowledged that the sooner problems are detected, 
the easier and cheaper they are to fix. 

3. Test cases can be reviewed for correctness early in a project. The correctness 
of test cases— in particular, system test cases— is always an issue. If test 
cases are identified early and applied to models early in a project, then any 
misunderstandings of requirements on the part of the testers can be corrected 
early. In other words, model testing helps to ensure that testers and 
developers have a consistent understanding of system requirements. 

Although testing models is very beneficial, it is important to not let testing them 
become the sole focus of testing efforts. Code testing is still an important part of 
the process. 

Another difference between traditional projects and projects using object-oriented 
technologies concerns objectives for software. Consider, for example, that an 
important new goal in many companies is to produce reusable software, extensible 
designs, or even object-oriented frameworks that represent reusable designs. 
Testing can (and should) be done to uncover failures in meeting these objectives. 
Traditional testing approaches and techniques do not address such objectives. 

Overview of Our Testing Approach 

Our goal is to test software as thoroughly as possible, while recognizing that time 
and money constraints are real concerns. Our approach to testing object-oriented 
software is based on academic research as well as experience we have gained in 
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working with clients in a variety of industries, such as telecommunications and 
finance. 

Under our approach, testing is not an afterthought. Testing is a process separate 
from the development process, but intimately related to it. We have a motto: Test 
early. Test often. Test enough. We favor the following iterative development 
process: 

Analyze a little. 
Design a little. 
Code a little. 
Test what you can. 

Testing what you can includes both what you can do technically and what you can 
do under time and resource constraints. A surprising amount of beneficial testing 
can be done within an iteration. Regular testing can detect failures early and save 
reworking in subsequent iterations. System testing and acceptance testing follow 
the last iteration. However, if you can develop a software system incrementally, 
then you can perform system testing at the end of each increment. 

What kinds of testing do we promote for object-oriented software? 

• Model testing 
• Class testing, which replaces unit testing 
• Interaction testing, which replaces integration testing 
• System (and subsystem) testing 
• Acceptance testing 
• Deployment/self-testing 

Each of these is covered in this book. Our testing process will define testing 
activities for every development activity. 

We do not believe that you will— or even should— apply everything we describe in 
this book. There are seldom enough resources available to a development effort to 
do all the levels and kinds of testing we describe. We hope you will find a number 
of approaches and techniques that will prove applicable, useful, and affordable for 
your project. 

We now provide a rationale for our motto of, "Test early. Test often. Test enough." 

Test Early 
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Instead of engaging system testers toward the end of a project, start them testing at 
reasonable points during the analysis and design phases of a project. Testing 
analysis and design models not only can help to uncover problems early in the 
development process (where they are fixed more easily and more cheaply), but it 
can also help to scope the size of the effort needed to perform adequate system 
testing by determining what needs to be tested. 

Testing early and often implies that the representations of the software are abstract 
or incomplete. 

Test Often 

We firmly believe that an iterative, incremental— sometimes also referred to as 
iterative enhancement— development process is best suited to the vast majority of 
projects. As iterations are completed on analysis, design, and implementation 
phases, the products should be tested. After completion of the first increment, some 
testing takes the form of regression testing. 

Test Enough 

Complete testing of every aspect of a software system is infeasible. Resources 
spent on testing should be directed where they provide the best payback. We favor 
techniques that are based on risk analysis, the reuse of test cases, and the statistical 
sampling of inputs for test cases. 

The Testing Perspective 

Good testers— people who are responsible for testing software— need a special set 
of skills. In many ways, being a good tester is harder than being a good developer 
because testing requires not only a very good understanding of the development 
process and its products, but it also demands an ability to anticipate likely faults 
and errors. As a simple example, consider how a developer might need to find an 
algorithm to bounce an image around in a rectangular area of a computer screen. A 
tester must be able to anticipate likely errors and faults a developer might make 
and then develop effective ways to detect failures resulting from likely bugs. For 
example, a tester might want to test that the image hitting exactly in the corner of 
the rectangle doesn't move completely out of it. The tester has a tough job. 

A tester must approach software with an attitude that questions everything about 
that software. We refer to that approach as the testing perspective. It is the subject 
of Chapter 2. To be effective, a tester must adopt that perspective. The techniques 
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and processes described in this book have been developed and are presented from 
the testing perspective. 

Organization of This Book 

This book contains eleven chapters. The first three chapters are concerned 
primarily with testing concepts and the testing process. Chapters 4 through 10 
detail techniques for various kinds of testing that can be done. Chapter 11 is a 
summary. Each chapter ends with a summary and a set of exercises. You are 
encouraged to read through the exercises and work on the ones that interest you or 
are relevant to your job as a tester. For most of the exercises, there are no correct 
answers, although for most of them some answers are better than others. We hope 
the exercises will be useful in helping you apply our techniques to your own 
project. 

Chapter 1 (this chapter) provides an introduction to this book. We have presented 
an overview of testing concepts, a synopsis of how testing object-oriented software 
is different from testing other kinds of software, and a brief overview of our 
approach. 

Chapter 2 describes the testing perspective. We adopt that perspective to address 
various aspects of the testing process, to review various products of the 
development process, and to examine the basic concepts of object-orientation. 

Chapter 3 describes the testing process and how it relates to the development 
process. We view testing as being separate from development because in a sense 
they have competing goals. However, the two processes are intertwined. 

Chapter 4 describes how to test models. A key element of successful development 
is to test early and test often. We favor testing analysis and design models since 
they are representations of the software. While this testing adds to the total project 
effort, the work done in the testing of models can be reused, refined, and extended 
to test code when it is developed. 

Chapter 5 discusses testing classes that have fairly simple interfaces and 
implementations. Its primary focus is on the basic elements of testing classes. 
Class testing in an object-oriented context corresponds roughly to unit testing in a 
traditional context. The chapter's major emphasis is on identifying what must be 
tested in a class and how to test it. We present some ways to implement test 
drivers. 
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Chapter 6 expands the techniques developed in Chapter 5 to test classes whose 
specification and/or implementation requires interactions with other classes and/or 
objects. (This corresponds roughly to traditional integration testing in an object-
oriented context.) Testing such classes can be quite challenging, especially in the 
presence of dynamic binding. We present techniques for managing the large 
number of test cases that could be developed. 

Chapter 7 describes ways of testing classes in an inheritance hierarchy. The focus 
of our techniques is to reuse test driver code and reuse test cases to the extent 
possible. We provide an algorithm for determining the minimum amount of testing 
needed for subclasses that have already been tested. We also describe techniques 
for testing abstract classes. 

Chapter 8 discusses testing concurrency. Concurrency is being used in the 
implementation of more and more systems through the use of threads and/or 
distributed computing. 

Chapter 9 discusses the testing of systems. Testing a system developed using an 
object-oriented programming language is for the most part the same as testing a 
system developed using any other paradigm because system testing is normally 
based on a system's specification rather than its implementation. However, we have 
some advice and approaches in terms of adequacy. 

Chapter 10 discusses various topics regarding testing components, frameworks, 
and product lines. 

Chapter 11 briefly reviews the major points in earlier chapters and addresses the 
question, "Where do we go from here?" 

Conventions Used in This Book 

Technical terms appearing for the first time are in boldface. 

The source code examples in this book are presented using a code font. This 
font is also used for source code fragments that appear within running text. Most of 
the code in this book is expressed using C++. The techniques we describe are in no 
way limited to C++. We have chosen C++ because it is used widely and in some 
ways presents the most challenges for testers. From time to time, we will present 
tips on testing features specific to Java. 

Class names appear in running text in a sans serif font. 
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Occasionally you will find a block of text set off in a box. These boxes are 
intended to add detail to or ancillary information about the subject under 
discussion. There are different types of these blocks, each of which is described 
here. 

Tip 

A tip is a piece of advice that we want to pass along that will make testing 
easier or more effective. Sometimes a tip is directed at testing C++ or Java 
code. Sometimes a tip is a general technique that we consider to be useful.  

 

 

Do the same questions come up over and over again? 

Yes, they do. In these boxes we will answer frequently asked questions. 

 
Related Topics 

Sometimes more detail about a concept is discussed in a sidebar like this. 
Some-times we'll use a sidebar like this to discuss something off the main 
topic, but it is relevant to the discussion and is something we think you 
should know about. 
 
 

A Continuing Example— Brickles 

We will use an example throughout the book to illustrate various testing 
approaches and techniques. This will allow us to focus on the testing techniques 
rather than taking space to set up a variety of examples. In this section we will 
introduce the game of Brickles, an interactive computer game. This game is very 
similar to Breakout, one of the first commercial video games and a popular game 
played on Apple II computers. 
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This example has its origins in a course we developed to teach object-oriented 
design concepts and C++ programming. Our goal was to find an application whose 
design was simple enough to understand and complete in a week of training, while 
at the same time it was both conducive to enhancements and interesting to 
programmers whose backgrounds range over a variety of application domains and 
environments. Our goal for this example, both in that course and in this book, is 
solely to illustrate concepts about the design and testing of object-oriented 
programs. 

Basic Brickles Components 

Brickles is an arcade game whose starting configuration is shown in Figure 1.1. 
The play field is rectangular, bounded by two walls, a ceiling, and a floor. The play 
field contains an array of bricks referred to as the "brick pile." A player's objective 
is to break all the bricks in the brick pile by hitting each brick with a puck that can 
be struck by a paddle under the player's control. When the puck hits a brick, the 
brick breaks. A puck bounces off walls, the ceiling, bricks (as they break), and the 
paddle. At the start of play, a player is given three pucks with which to destroy the 
bricks. A player wins a game when all bricks have been broken. A player loses if 
the supply of pucks is exhausted before all of the bricks are broken. 

Figure 1.1. The Brickles start-up configuration 

 

When play starts, a puck placed in the center of the play field begins to move in a 
downward direction. The paddle is controlled by the player with a mouse attached 
to the computer. The player must move the paddle so that the puck hits the paddle 
and not the floor. When the puck hits the paddle, it bounces upward. Whenever the 
puck hits a brick, the brick is destroyed. If the puck misses the paddle and hits the 
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floor, it is removed from play and one of the remaining pucks is put into play. If all 
pucks are lost to the floor, play ends and the player loses. 

Brickles Physics 

As the puck moves through the play field, it encounters various components of the 
play field. The interactions between them are as follows (see also Figure 1.2, 
Figure 1.3, and Figure 1.4). 

Figure 1.2. Interactions between puck and boundaries 

 

Figure 1.3. Puck interactions with bricks 
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Figure 1.4. Puck interactions with the paddle 

 

Ceiling and walls The puck bounces off the ceiling and walls in accordance with 
the laws of physics, neglecting friction and gravity— that is, the angle of reflection 
equals the angle of incidence. 

Floor The floor absorbs pucks. A puck that hits the floor does not rebound, but is 
removed from play. 

Bricks The puck bounces off a brick such that the angle of reflection equals the 
angle of incidence. Upon being struck, a brick is destroyed. Note that bricks can be 
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hit by a puck from above as well as from below. They also have sufficient 
thickness that they can be hit from the side. For the sake of simplicity, it is 
acceptable to assume that bricks are treated as though they have no thickness. 
Thus, it is only the vertical component of the puck's direction that is changed when 
the puck hits the brick. 

Paddle The player uses a paddle to control the direction of the puck. The puck 
bounces off the paddle based on both the direction of the puck as it hits the paddle 
and the part of the paddle that's hit. Divide the paddle into thirds and define the 
near third as being the left third of the paddle if the puck is coming in from the 
left, and the right third if the puck is coming in from the right. Define the far third 
similarly, and the middle third as the remaining third. The rules of reflection are as 
follows: 

• If the puck hits the paddle on its near third, then the puck returns in the exact 
opposite direction from which it came. 

• If the puck hits the paddle on the middle third, then the angle of reflection is 
a little steeper than the angle of incidence. The puck's movement is 
constrained such that it must never be completely vertical.  

• If the puck hits the paddle on the far third, then the angle of reflection is a 
little shallower than the angle of incidence. The puck's movement is 
constrained such that it must never be completely horizontal.  

Puck The player is given a fixed number of pucks at the beginning of the game, 
but only one is in play at any given time. Once one puck hits the floor, the next is 
brought into play (assuming another is available). The puck has a current direction 
and speed and moves according to an automatic timer. Collisions may change the 
direction of the puck, but not the speed. 

Game Environment 

The first implementation of Brickles runs as an application within a Microsoft 
Windows environment and behaves as follows: 

• The game shall start when the program is launched. 
• A player can "exit" the game at any time before it is won or lost. 
• A player can "pause" the game at any time until play ends. 
• A player can "resume" a paused game. 
• A congratulatory message shall be displayed in the case of a player winning 

the game. Similarly, a consolation message shall be displayed in the case of 
a player losing the game. 
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Exercises 

 

1-1. Consider an application that will be used to schedule conference rooms in an 
office. The application has a graphical user interface that allows a user to indicate a 
date, a time of day, and a duration (in fifteen-minute increments). It then shows a 
list of conference rooms available at that time and allows a room to be reserved. 
The system also allows a user to cancel a room reservation. The project is to be 
developed incrementally— that is, in increasing amounts of functionality. Consider 
the following two plans. Which is more likely to succeed? What testing can be 
done at the end of each increment? 

Plan A Plan B 
Increment 1: Develop user interface 

Increment 2: Develop data storage 
subsystem 

Increment 3: Develop application 
subsystem (reservation handling) 

Increment 1: Develop capability to enter date, 
time, and duration, and show room availability 

Increment 2: Develop capability to reserve a 
room 

Increment 3: Develop capability to cancel a 
reservation 

1-2. Make a list of the features in the object-oriented programming language(s) 
your company is using that have no counterparts in a language used previously. 
Next to each feature, jot down how you might approach testing software that's 
using your specific language. 

1-3. If you are currently working on a project, identify increments or major 
milestones. Some of them might be informal. Think about the testing activities that 
you can do during each increment and what you can test at the end of each. 
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Chapter 2. The Testing Perspective 

• Want to explore the testing role? See Testing Perspective 
• Don't understand object concepts? See Object-Oriented Concepts 
• Need an overview of UML models? See Development Products 

 

Testing Perspective 

The testing perspective is a way of looking at any development product and 
questioning its validity. The person examining work products from this perspective 
utilizes a thorough investigation of the software and all its representations to 
identify faults. The search for faults is guided by both systematic thinking and 
intuitive insights. It is a perspective that makes reviews and inspections just as 
powerful a tool as execution-based testing. A review will almost never find 
something that is missing— that is, a review typically only seeks to validate what 
exists and does not systematically search to determine if all things that should be in 
the software actually are in it. The testing perspective requires that a piece of 
software demonstrate that it not only performs according to its specification, but 
performs only to that specification. Thus, a product is tested to determine that it 
will do what it is supposed to do, and it is also tested to ensure that it does not do 
what it is not supposed to do. 

Inspections, Reviews, and Test Executions 

Software testing is typically accomplished by a combination of 
inspections, reviews, and test executions. The purpose of these activities is 
to observe failures. 

An inspection is an examination of software based on a checklist of 
typical problems. Most items on a checklist are based on programming 
language semantics and/or coding conventions— for example, ensuring 
that each program variable is initialized before its first use and that 
pointers or references have been set to reasonable values before they are 
used. Modern compilers for object-oriented programming languages can 
detect many of the problems called out on traditional inspection checklists. 

A review is an examination of software with the purpose of finding errors 
and faults even before the software is executed. Reviews are made in the 
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context of the system being developed and have a deeper interest in the 
software than do inspections. A review delves into the meaning of each 
part of a program and whether it is appropriate for meeting some or all of 
the application's requirements. A review is intended to uncover errors such 
as missed or misunderstood requirements or faults in a program's logic. 
Some reviews examine programming details such as whether variable 
names are well chosen and whether algorithms are as efficient as they 
could be. 

Test execution is testing software in the context of a running program. 
Through executing the software, a tester tries to determine whether it has 
the required behavior by giving the program some input and verifying that 
the resulting output is correct. Among the challenges to testers are 
identifying suitable inputs, determining correct outputs, and determining 
how to observe the outputs. 

Testing using program execution (versus inspection and review) is the 
primary focus of this book, although we extend the idea of execution to 
include not only execution of the software under testing, but a special kind 
of review that uses the symbolic execution of nonexecutable 
representations of the system. Recall how we defined software as code and 
all its representations. 

The testing perspective may be adopted by the same person who developed a 
product undergoing testing or by another person who brings an independent view 
of the specification and the product. Anyone assigned to test specific work 
products and every person assigned to a project at one time or another should adopt 
the testing perspective. We will refer to anyone who adopts this perspective by the 
title tester. A developer testing his or her own work is a tester, and so is the person 
who applies the testing perspective full time. 

The testing perspective is as follows: 

Skeptical: Wants proof of quality. 

Objective: Makes no assumptions. 

Thorough: Doesn't miss important areas. 

Systematic: Searches are reproducible. 
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In this chapter we discuss aspects of object-oriented technologies using this testing 
perspective. First, we will review central concepts of object-oriented programming. 
What features of these concepts affect the testing of software that was developed 
using them? We will also delineate some assumptions we make in regard to using 
object-oriented technologies properly. Then we will look at various products of the 
development process and discuss the potential causes of failures in the software 
they represent. 

 

Object-Oriented Concepts 

Object-oriented programming is centered around six basic concepts: 

1. object 
2. message 
3. interface 
4. class 
5. inheritance 
6. polymorphism 

People seem to have attached a wide range of meanings to these concepts, most of 
which are quite serviceable. We define some of these concepts perhaps a little 
more tightly than most people do because precision facilitates a better 
understanding of testing the concepts and eliminates some potential confusion 
about what needs to be tested. For example, while a distinction between operations 
and methods (or member functions) is not significant for most programmers, the 
distinction is significant to testers because the approach to testing an operation, 
which is part of a class specification and a way to manipulate an object, is 
somewhat different from testing a method, which is a piece of code that 
implements an operation. The distinction helps to differentiate the concerns of 
specification-based testing from the concerns of implementation-based testing. 

We will review each of the basic object-oriented programming concepts and offer 
observations about them from a testing perspective. While we know that object-
oriented programming languages support a variety of object-oriented programming 
models, we use the concepts as they are formulated for languages such as C++ and 
Java. Some of the variations between languages will affect the types of faults that 
are possible and the kinds of testing that are required. We try to note such 
differences throughout this book. 
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Object 

An object is an operational entity that encapsulates both specific data values and 
the code that manipulates those values. For example, the data about a specific bank 
account and the operations needed to manipulate that data form an object. Objects 
are the basic computational entities in an object-oriented program, which we 
characterize as a community of objects that collaborate to solve some problem. As 
a program executes, objects are created, modified, accessed, and/or destroyed as a 
result of collaborations. Within the context of a good object-oriented design, an 
object in a program is a representation of some specific entity in the problem or in 
its solution. The objects within the program have relationships that reflect the 
relationships of their counterparts in the problem domain. Within the context of 
Brickles, many objects can be identified, including a paddle, pucks, a brick pile 
containing bricks, the play field, the play field boundaries (walls, ceiling, and 
floor), and even a player. A puck object will encapsulate a variety of attributes, 
such as its size, shape, location on a play field (if it is in play), and current velocity. 
It also supports operations for movement and for the puck's disappearance after it 
hits the floor. In the program that implements Brickles, we would expect to find an 
object for each of the pucks— for example, at the start of a Brickles match, we see 
the puck in play and any that are in reserve. When in play, a puck object will 
collaborate with other objects— the play field, paddle, and brick pile— to 
implement Brickles physics, which are described in the game description (see page 
11). 

Objects are the direct target of the testing process during software development. 
Whether an object behaves according to its specification and whether it interacts 
appropriately with collaborating objects in an executing program are the two major 
focuses of testing object-oriented software. 

An object can be characterized by its life cycle. The life cycle for an object begins 
when it is created, proceeds through a series of states, and ends when the object is 
destroyed. 

Definitional versus Operational Semantics of Objects 

There is a bit of confusion among many of our clients and students with 
respect to the distinction between those aspects of object-oriented 
programming that are concerned with the definition of classes and 
interface and those that are concerned with the use of objects. We refer to 
these as the definitional and operational aspects of object-oriented 
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programming. 

Definitional: The class definition provides what might, at first glance 
appear to be the extreme point on the definitional end of the continuum; 
however, in some languages such as CLOS, the structure and content of 
this definition is defined by a metaclass. The metaclass approach may 
theoretically extend the continuum indefinitely in the definitional direction 
since it is possible to have a metaclass for any class, including 
metaclasses. The dynamic dimension represents the possibility in some 
languages, such as Java, to define classes during program execution. 

Operational: The operational end of this continuum corresponds to the 
concept that an object is the basis of the actions taken in the system. An 
object provides the mechanisms needed to receive messages, dispatch 
methods, and return results. It also associates instance attributes with 
methods. This information may be on the static end of that dimension (as 
in a C++ object), or it may be more dynamic in the case of a CLOS object 
that contains arbitrary slots. 

 

 

 

We make the following observations about objects from a testing perspective. 

• An object encapsulates. This makes the complete definition of the object 
easy to identify, easy to pass around in the system, and easy to manipulate. 
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• An object hides information. This sometimes makes changes to the object 
hard to observe, thereby making the checking of test results difficult. 

• An object has a state that persists for the life of the object. This state can 
become inconsistent and can be the source of incorrect behavior. 

• An object has a lifetime. The object can be examined at various points in 
that lifetime to determine whether it is in the appropriate state based on its 
lifetime. Construction of an object too late or destruction of it too early is a 
common source of failures. 

In Chapter 6 we will describe a variety of techniques for testing the interactions 
among objects. We will address other aspects of testing objects in Chapter 5 and 
Chapter 7. 

Message 

A message[1] is a request that an operation be performed by some object. In 
addition to the name of an operation, a message can include values— actual 
parameters— that will be used to perform that operation. A receiver can return a 
value to the sender. 

[1] In C++ terminology, a message is referred to as a member 
function call. Java programmers and Smalltalk programmers 
refer to messages as method invocations. We will use these 
terms in discussions of C++ and Java code, but we will use the 
more generic term message in language-independent 
discussions. Keep in mind that a member function call is distinct 
from a member function. A method invocation is distinct from a 
method. 

An object-oriented program is a community of objects that collaborate to solve a 
problem. This collaboration is achieved by sending messages to one another. We 
call the object originating a message the sender and the object receiving the 
message the receiver. Some messages result in some form of reply such as a 
return value or an exception being sent from the receiver to the sender. 

The execution of an object-oriented program typically begins with the instantiation 
of some objects, and then a message being sent to one of the objects. The receiver 
of that message will send messages to other objects— or possibly even to itself— to 
perform computations. In some event-driven environments, the environment will 
repeatedly send messages and wait for replies in response to external events such 
as mouse clicks and key presses. 
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We make the following observations about messages from a testing perspective. 

• A message has a sender. The sender determines when to send the message 
and may make an incorrect decision. 

• A message has a receiver. The receiver may not be ready for the specific 
message that it receives. The receiver may not take the correct action when 
receiving an unexpected message. 

• A message may include actual parameters. These parameters will be used 
and/or updated by the receiver while processing the message. Objects passed 
as parameters must be in correct states before (and after) the message is 
processed, and they must implement the interfaces expected by the receiver. 

These issues are the primary focus of interaction testing in Chapter 6. 

Interface 

An interface is an aggregation of behavioral declarations. Behaviors are grouped 
together because they define actions related by a single concept. For example, an 
interface might describe a set of behaviors related to being a moving object (see 
Figure 2.1). 

Figure 2.1. A Java declaration for a Movable interface 

 

An interface is a building block for specifications. A specification defines the total 
set of public behaviors for a class (we will define this next). Java contains a 
syntactic construct interface that provides this capability and does not allow 
the declaration of any state variables. You can produce the same result in C++ by 
declaring an abstract base class with only public, pure virtual methods. 

We make the following observations about interfaces from a testing perspective. 

• An interface encapsulates operation specifications. These specifications 
incrementally build the specifications of larger groupings such as classes. If 
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the interface contains behaviors that do not belong with the other behaviors, 
then implementations of the interface will have unsatisfactory designs. 

• An interface has relationships with other interfaces and classes. An interface 
may be specified as the parameter type for a behavior to allow any 
implementer of that interface to be passed as a parameter. 

We will use the term interface to describe a set of behavior declarations whether 
or not you use the interface syntax. 

Class 

A class is a set of objects that share a common conceptual basis. Many people 
characterize a class as a template— a "cookie cutter"— for creating objects. While 
we understand that characterization makes apparent the role of classes in writing 
object-oriented programs, we prefer to think of a class as a set. The class definition 
then is actually a definition of what members of the set look like. This is also better 
than definitions that define a class as a type since some object-oriented languages 
don't use the concept of a type. 

Objects form the basic elements for executing object-oriented programs, while 
classes are the basic elements for defining object-oriented programs. Any concept 
to be represented in a program must be done by first defining a class and then 
creating objects defined by that class. The process of creating the objects is 
referred to as instantiation and the result is referred to as an instance. We will use 
instance and object interchangeably. 

The conceptual basis common to all the objects in a class is expressed in terms of 
two parts: 

• A class specification is the declaration of what each of the objects in the 
class can do. 

• A class implementation is the definition of how each of the objects in the 
class do what they can do. 

Consider a C++ definition for a class PuckSupply from Brickles. Figure 2.2 
shows a C++ header file and Figure 2.3 shows a source file for such a class. The 
use of a header file and one or more source files is a typical way to structure a C++ 
class definition.[2] In the context of C++, a header file contains the class 
specification as a set of operations declared in the public area of a class 
declaration. Unfortunately, as part of the implementation, the private (and 
protected) data attributes, must also be defined in the header file. 
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[2] Java prescribes that specification and implementation 
physically be in the same file. Nonetheless, there is a logical 
separation between what an object does and how it does it. 

Figure 2.2. A C++ header file for the class PuckSupply 

 

Figure 2.3. A C++ source file for the class PuckSupply 

 



 36

To create or manipulate an object from another class, a segment of code only needs 
access to the specification for the class of that object. In C++, this is typically 
accomplished by using an include directive naming the header file for the 
object's class: 

#include "PuckSupply.h" 

This, of course, gives access to all the information needed to compile the code, but 
it provides more information than is necessary to design the interactions between 
classes. In Chapter 4 we will discuss problems that can arise from designers having 
a view into possible implementations of a class and how to detect these problems 
during reviews. 

Classes as Objects 

Object-oriented programming languages typically support, either explicitly 
or implicitly within the semantics of the language, the notion that a class is 
itself an object, and as such can have operations and attributes defined for 
it. In both C++ and Java, operations and data values associated with a class 
are identified syntactically by the keyword static. We will refer to such 
operations as static operations. The presence of public static operations in 
a class specification implies that the class itself is an object that can be 
messaged. From a testing perspective, we must treat such a class as an 
object and create a test suite for the class as well as its instances. From a 
testing perspective, we should always be skeptical of nonconstant, static 
data associated with a class because such data can affect the behavior of 
instances. 

Class Specification 

A specification for a class describes what the class represents and what an instance 
of the class can do. A class specification includes a specification for each of the 
operations that can be performed by each of its instances. An operation is an 
action that can be applied to an object to obtain a certain effect. Operations fall into 
two categories: 

• Accessor (or inspector) operations provide information about an object—
for example, the value of some attribute or general state information. This 
kind of operation does not change the object on which the operation is being 
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requested. In C++, accessor operations can and should be declared as 
const. 

• Modifier (or mutator) operations change the state of an object by setting 
one or more attributes to have new values. 

We make this classification because testing accessors is different from testing 
modifiers. Within a class specification, some operations might both provide 
information and change it.[3] Some modifier operations might not make changes 
under all circumstances. In either case, we classify these operations as modifier 
operations. 

[3] It is good object-oriented design practice for an operation to 
be one or the other, but not both. 

There are two kinds of operations that deserve special attention: 

• A constructor is a class object operation used to create a new object, 
including the initialization of the new instance when it comes into existence. 

• A destructor is an instance object operation used to perform any processing 
needed just prior to the end of an object's lifetime. 

Constructors and destructors are different from accessors and modifiers in that they 
are invoked implicitly as a result of the birth and death of objects. Some of these 
objects are visible in the program and some are not. The statement 

 

 

in which a, b, c, and x are all objects from the same class, invokes the constructor 
of that class at least twice to create objects that hold intermediate results and die by 
the end of the statement, as follows: 
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A class represents a concept, either in the problem being solved by a software 
application or in the solution to that problem. We expect a description of what a 
class represents to be a part of a class specification. Consider, for example, that the 
class PuckSupply declared in Figure 2.2 probably does not have much meaning 
without an explanation that it represents the collection of pucks that a player has at 
the start of a Brickles match. As the player loses pucks to the floor during play, the 
program will replace it with another puck from a puck supply until that supply is 
exhausted, at which time the match ends with a loss for the player. 

We also expect some meaning and constraints to be associated with each of the 
operations defined in a class specification— for example, do the operations 
size() and get() for the class PuckSupply have any inherent meaning to 
you? Consequently, each operation should have a specification that describes what 
it does. A specification for PuckSupply is given in Figure 2.4. 

Figure 2.4. A specification for the PuckSupply class based on 
contracts 

 

• The size() operation can be applied at any time (no preconditions) and 
returns the number of pucks in the receiver. 

• The get() operation can only be applied if at least one puck is left in the 
receiver— that is, size() > 0. The result of the operation is to return a 
puck and to reduce the number of pucks by one. 
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Well-specified operation semantics are critical to both development and testing 
efforts and definitely worth the time and effort needed to express them well. You 
can use any form of notation to specify the semantics provided it is well-
understood by all who must use it. We will specify semantics at several different 
points: 

• Preconditions for an operation prescribe conditions that must hold before 
the operation can be performed. Preconditions are usually stated in terms of 
attributes of the object containing the operation and/or attributes of any 
actual parameters included in the message requesting that the operation be 
performed. 

• Postconditions for an operation prescribe conditions that must hold after the 
operation is performed. Postconditions are usually stated in terms of (1) the 
attributes of the object containing the operation; (2) the attributes of any 
actual parameters included in the message that is requesting that the 
operation be performed; (3) in terms of the value of any reply; and/or (4) in 
terms of the exceptions that might be raised. 

• Invariants prescribe conditions that must always hold within the lifetime of 
the object. A class invariant describes a set of operating boundaries for an 
instance of a class. It is also possible to define interface invariants as well as 
operational invariants for segments of code. A class invariant can be treated 
as an implied postcondition for each operation. They must hold whenever an 
operation completes, although a method for an operation is allowed to 
violate invariants during its execution. Invariants are usually stated in terms 
of the attributes or states of an object. 

The aggregate of the specifications of all of the operations in a class provides part 
of the description of the behavior of its instances. Behavior can be difficult to infer 
from operation specifications alone, so behavior is typically designed and 
represented at a higher form of abstraction using states and transitions (See State 
Diagrams on page 49). Behavior is characterized by defining a set of states for an 
instance and then describing how various operations effect transitions from state to 
state. The states associated with a puck supply in Brickles define whether it is 
empty or not empty. Being empty is determined by the size attribute of a puck 
supply. If the size is zero, then it is empty, otherwise it is not empty. You can 
remove a puck from a supply only if that supply is not empty— that is, if its size is 
not zero. 

When you write a specification for an operation, you can use one of two basic 
approaches to define the interface between the receiver and the sender. Each 
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approach has a set of rules about how to define the constraints and responsibilities 
of the sender and the receiver when an operation is to be performed. A contract 
approach is embedded in the specification in Figure 2.4. A defensive 
programming approach underlies the specification in Figure 2.5. The contract 
approach emphasizes preconditions, but has simpler postconditions, while the 
defensive programming approach is just the reverse. 

Figure 2.5. A specification for the class PuckSupply based on 
defensive programming 

 

Under the contract approach, which is a design technique developed by Bertrand 
Meyer [Meye94], an interface is defined in terms of the obligations of the sender 
and the receiver involved in an interaction. An operation is defined in terms of the 
obligations of each party. Typically, these are set forth in preconditions and 
postconditions for an operation and a set of invariant conditions that must hold 
across all operations, thereby acting as postconditions required of all operations. 
The preconditions prescribe the obligation of the sender— that is, before the sender 
can make a request for a receiver to perform an operation, the sender must ensure 
that all preconditions are met. If preconditions have been met, then the receiver is 
obligated to meet the requirements set forth in the postconditions as well as those 
in any class invariant. Under the contract approach, care must be taken in the 
design of a class interface to ensure that preconditions are sufficient to allow a 
receiver to meet postconditions (if not, you should add additional preconditions) 
and to ensure that a sender can determine whether all preconditions are met before 
sending a message. Typically, a set of accessor methods allow for checking 
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specified conditions. Furthermore, care must be taken to ensure that postconditions 
address all possible outcomes of an operation, assuming preconditions are met. 

Under the defensive programming approach, an interface is defined primarily in 
terms of the receiver, and any assumptions it makes on its own state and the values 
of any inputs (arguments or global data values) at the time of the request. Under 
this approach, an operation typically returns some indication concerning the status 
of the result of the request— success or failure for a particular reason, such as a bad 
input value. This indication is traditionally in the form of a return code that 
associates a value with each possible outcome. However, a receiver can provide to 
a sender an object that encapsulates the status of the request. Furthermore, 
exceptions are being used more frequently because many object-oriented 
programming languages now support them. Some operations are defined so that no 
status is returned in case of failure, but instead, execution is terminated when a 
request cannot be met. Certainly this action cannot be tolerated in most software 
systems. 

The primary goal of defensive programming is to identify "garbage in" and hence 
eliminate "garbage out." A member function checks for improper values coming in 
and then reports the status of processing the request to a sender. The approach 
tends to increase the complexity of software because each sender must follow a 
request for an operation with code to check the processing status and then, for each 
possible outcome, provide code to take an appropriate recovery action. The 
approach tends to increase both the size of code and to increase execution time 
because inputs are checked on every call, even though the sender may have already 
checked them.[4] 

[4] It is curious that code we have seen that was written using a 
defensive programming approach rarely checks to ensure the 
receiver actually performed the requested operation— that is, 
the mistrust is only on the part of a receiver. Perhaps this 
practice arises from the fact that the code for the receiver has 
usually been tested and is considered trustworthy enough to 
work correctly. Misuse can come only on the sender's side; we'll 
address this in Chapter 5. 

The contract and defensive programming approaches represent two opposite views 
of software specification. As the name implies, defensive programming reflects a 
lack of trust of a sender on the part of a receiver. By contrast, a contract reflects a 
mutual responsibility shared by both a sender and a receiver. A receiver processes 
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a request based on inputs believed to meet stated preconditions. A sender assumes 
that conditions have been met after the request has been processed. It is not 
uncommon for the approaches to be mixed in specifying the operations within a 
single class because they each have advantages and disadvantages. 

Interface design based on contracts eliminates the need for a receiver to verify 
preconditions on each call. [5] It makes for better software engineering and better 
program (and programmer) efficiency. However, it introduces one important 
question: "In the context of an executing program, how are contracts enforced?" 
Clearly, the contract places obligations on both sender and receiver. Nonetheless, 
can a receiver truly trust every sender to meet preconditions? The consequences of 
"garbage in" can be disastrous. A program's execution in the presence of a sender's 
failure to meet a precondition would most likely result in data corruption that 
would in turn have serious consequences! It is critical that all interactions under 
contracts be tested to ensure compliance with a contract. 

[5] It is still useful for debugging to include code to check 
preconditions. This code can be "removed" from the executable 
after a system is debugged, but before the final testing. Eiffel 
[Meye00] has language-level support for contract checking and 
compiler switches to enable and disable the checking. 

From a testing perspective, the approach used in an interface determines the types 
of testing that need to be done. The contract approach simplifies class testing, but 
complicates interaction testing because we must ensure that any sender meets 
preconditions. The defensive programming approach complicates class testing 
(because test cases must address all possible outcomes) and interaction testing 
(because we must ensure all possible outcomes are produced and that they are 
properly handled by a sender). 

Tip 

Review pre- and postconditions and invariants for testability during 
design. Are the constraints clearly stated? Does the specification include 
means by which to check preconditions? 

 

Class Implementation 
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A class implementation describes how an object represents its attributes and carries 
out operations. It comprises several components: 

• A set of data values stored in data members, which are sometimes referred 
to as instance variables or variables. The data values store some or all of 
the values associated with the attributes of an object. There is not necessarily 
a one-to-one mapping of attributes to data values. Some attributes can be 
derived from others— for example, the direction a puck is moving in the 
horizontal direction can be deduced from its velocity. Some redundant 
representation of derivable attributes is sometimes desirable in order to 
improve the performance of member functions with respect to time. In some 
cases, an attribute identified for an object might not be represented at all 
because the attribute is not needed in an application. By removing the 
attribute, we can reduce the memory space needed to hold such an object. 

• A set of methods, referred to as member functions in C++ or methods in 
Java, constitutes code that will be used to implement an algorithm that 
accomplishes one operation declared in the public or private class 
specification. The code typically uses or sets an object's variables. It 
processes any actual parameter values, checks for exceptional conditions, 
and computes a return value if one is specified for the operation. 

• A set of constructors to initialize a new instance (at the start of its lifetime). 
A constructor is really an operation on a class object. 

• A destructor that handles any processing associated with the destruction of 
an instance (when it reaches the end of its lifetime). 

• A set of private operations in a private interface.[6] Private operations 
provide support for the implementation of public operations. 

[6] For simplicity, we will generally use the term private to 
refer to any aspect of a class that is not public. C++ 
supports private and protected components of a class and 
Java supports even more levels of access to components. 

Class testing is an important aspect of the total testing process because classes 
define the building blocks for object-oriented programs. Since a class is an 
abstraction of the commonalities among its instances, the class testing process 
must ensure that a representative sample of members of the class are selected for 
testing. 

By viewing classes from a testing perspective, we can identify the following 
potential causes of failures within their design and implementation. 
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• A class specification contains operations to construct instances. These 
operations may not properly initialize the attributes of new instances. 

• A class relies on collaboration with other classes to define its behaviors and 
attributes. For example, an instance variable might be an instance of another 
class or a method might send a message to a parameter (which is an instance 
of another class), to do some part of its computation. These other classes 
may be implemented incorrectly and contribute to the failure of the class 
using them in a definition. 

Subsystems and Classes 

A class is a very interesting concept in terms of systems and subsystems. 
In many ways, a system or a subsystem can be specified as a class— one 
associated with a complex behavior, but a class nonetheless— that has 
states and transitions and an interface. Much of the focus of this book is on 
class testing. Many of the techniques we discuss could be scaled up to 
system and subsystem testing if the system is indeed specified as a class. 
Note, however, that the complexity of such a class far exceeds that of a 
class such as Point. This is an indication of some of the issues we must 
address with respect to class testing. 

• A class's implementation "satisfies" its specification, but that is no guarantee 
that the specification is correct. The implementation may violate a higher 
requirement, such as accepted design criteria, or it may simply incorrectly 
model the underlying concept. 

• The implementation might not support all required operations or may 
incorrectly perform operations. 

• A class specifies preconditions to each operation. The class might not 
provide a way for that precondition to be checked by a sender before sending 
a message. 

The design approach used, contract or defensive, gives rise to different sets of 
potential problems. Under a contract approach, we only need to test situations in 
which the preconditions are satisfied. Under a defensive programming approach, 
we must test every possible input to determine that the outcome is handled 
properly. 

Inheritance 



 45

Inheritance is a relationship between classes that allows the definition of a new 
class based on the definition of an existing class.[7] This dependency of one class 
on another allows the reuse of both the specification and the implementation of the 
preexisting class. An important advantage of this approach is that the preexisting 
class does not have to be modified or made aware in any way of the new class. The 
new class is referred to as a subclass or (in C++) a derived class. If a class inherits 
from another, the other class is referred to as its superclass or (in C++) base class. 
The set of classes that inherit either directly or indirectly from a given class form 
an inheritance hierarchy. Within that hierarchy, we can refer to the root, which is 
the class from which all others inherit directly or indirectly. Each class in a 
hierarchy, except the root, has one or more ancestors, the class(es) from which it 
inherits directly or indirectly. Each class in a hierarchy has zero or more 
descendents, which are the classes that inherit from it directly or indirectly. 

[7] In a programming language that supports multiple 
inheritance, a new class can be defined in terms of one or 
more existing classes. C++ supports multiple inheritance, but 
most other object-oriented programming languages do not. 
Most designers tend to avoid the use of multiple inheritance 
because of its complexity. Sometimes multiple inheritance is 
very useful, especially in modeling similarities between two 
subclasses at the same level in an inheritance hierarchy. We 
will focus primarily on single inheritance, but we will address 
multiple inheritance in important areas of testing. 

Good object-oriented design requires that inheritance be used only to implement an 
is a (or is a kind of) relationship. The best use of inheritance is with respect to 
specifications and not implementation. This requirement becomes evident in the 
context of inclusion polymorphism (see page 34). 

Viewed from the testing perspective, inheritance does the following: 

• Provides a mechanism by which bugs can be propagated from a class to its 
descendents. Testing a class as it is developed eliminates faults early before 
they are passed on to other classes. 

• Provides a mechanism by which we can reuse test cases. Because a subclass 
inherits part of its specification and implementation from its superclass, we 
can potentially reuse test cases for the superclass in testing the subclass. 

• Models an is a kind of relationship. Use of inheritance solely for code reuse 
will probably lead to maintenance difficulties. This is chiefly a design 
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quality issue, but we argue that it is such a common mistake in object-
oriented development that testers can make a significant contribution to a 
project's success by checking that inheritance is used properly. Besides, 
proper use of inheritance in design leads to benefits in execution testing of 
classes (see Chapter 7). 

Polymorphism 

Polymorphism is the ability to treat an object as belonging to more than one type. 
The typing system in a programming language can be defined to support a number 
of different type-conformance policies. An exact match policy may be the safest 
policy, but a polymorphic typing system supports designs that are flexible and easy 
to maintain. 

Substitution Principle 

Inheritance should be used only to model the is a (or is a kind of ) 
relationship. That is, if D is a subclass of C, then it should be understood 
that D is a kind of C. Based on the substitution principle [LiWi94], an 
instance of a subclass D can be used whenever an instance of the class C is 
expected. In other words, if a program is designed to work with an 
instance of the class C in some context, then an instance of the class D 
could be substituted in that same context and the program still could work. 
In order for that to happen, the behavior associated with D must somehow 
conform to that which is associated with C. 

One way to enforce "substitutability" is to constrain behavior changes 
from class to subclass. The behavior associated with a class can be defined 
in terms of the observable states of an instance and the semantics 
associated with the various operations defined for an instance of that class. 
The behavior associated with a subclass can be defined in terms of 
incremental changes to the observable states and operations defined by its 
base class. 

Under the substitution principle, only the following changes are allowed in 
defining the behavior associated with a new subclass: 

• The preconditions for each operation must be the same or weaker—
that is, less constraining from the perspective of a client. 

• The postconditions for each operation must be the same or 
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stronger— that is, must do at least as much as defined by the 
superclass. 

• The class invariant must be the same or stronger— that is, add more 
constraints. 

These constraints on behavior changes must be enforced by the 
developers. Viewed from the perspective of observable states, we can 
show that 

• The observable states and all transitions between them associated 
with the base class must be preserved by the subclass. 

• The subclass may add transitions between these states. 
• The subclass may add observable states as long as each is either 

concurrent or a substate of an existing state. 

Inclusion Polymorphism 

Inclusion polymorphism is the occurrence of different forms in the same class. 
Object-oriented programming language support for inclusion polymorphism[8] 
gives programmers the ability to substitute an object whose specification matches 
another object's specification for the latter object in a request for an operation. In 
other words, a sender in an object-oriented program can use an object as a 
parameter based on its implementation of an interface rather than its full class. 

[8] Some people refer to this support as dynamic binding. 
Dynamic binding is an association at runtime between the 
operation specified in a message and a method to process the 
requested operation. However, dynamic binding is the 
mechanism by which inclusion polymorphism is implemented 
by runtime environments. In C++, dynamic binding must be 
requested by the keyword virtual in a member function 
declaration. 

In C++, inclusion polymorphism arises from the inheritance relationship. A 
derived class inherits the public interface of its base class[9] and thus instances of 
the derived class can respond to the same messages as the base class.[10] A sender 
can manipulate an instance of either class with a value that is either a reference or a 
pointer whose target type is the base class. A member function call can be made 
through that value. 
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[9] We assume public inheritance is used. We believe 
protected and private inheritance should be used only under 
rare circumstances. 

[10] Instances of the derived class can potentially respond to 
additional messages because the derived class defines 
additional operations in its public interface. 

In Java, inclusion polymorphism is supported both through inheritance between 
classes and an implementation relationship between interfaces and classes. A 
sender can manipulate objects with a reference declared for either a class or an 
interface. If a reference is associated with a class, then the reference can be bound 
to an instance of that class or any of its descendents. If a reference is associated 
with an interface, then the reference can be bound to an instance of any class that is 
declared to implement that interface. 

Our definition of a class as a set of objects that share a common conceptual basis 
(see page 22) is influenced primarily by the association of inheritance and 
inclusion polymorphism. The class at the root of a hierarchy establishes a common 
conceptual basis for all objects in the set. A descendent of that root class refines 
the behavior established by that root class and any of its other ancestors. The 
objects in the descendent class are still contained in the set that is the root class. 
Thus, a descendent class defines a subset of each of the sets that are its ancestors. 
Suppose that the Brickles specification is extended to incorporate additional kinds 
of bricks— say, some that are hard and have to be hit twice with a puck before they 
disappear, and some that break with a considerable force that increases the speed 
of any puck that hits it. The HardBrick and PowerBrick classes could each be 
defined as a subclass of Brick. The relationship between the sets are illustrated in 
Figure 2.6. Note how in a polymorphic sense, the class Brick contains 24 
elements— 10 "plain" bricks, 8 hard bricks, and 6 power bricks. Hard bricks and 
power bricks have special properties, but they also respond to the same messages 
as "plain" bricks, although probably in different ways. 

Figure 2.6. A set diagram for a Brick inheritance hierarchy 
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Sets representing classes can be considered from two perspectives: 

1. From a class's perspective, each set contains all instances. Conceptually, the 
size of the set could be infinite, as is the case with bricks since, in theory, we 
can create bricks for any number of Brickles matches or even for any other 
arcade games because the Brick class is not necessarily tied to Brickles. 
Infinite sets are most easily represented using Venn diagrams. 

2. From an executing program's perspective, each set is drawn with one 
element per instance in existence. The sets in Figure 2.6 are drawn from this 
perspective. 

Both perspectives are useful during testing. When a class is to be tested outside the 
context of any application program (see Chapter 5 and Chapter 6), we will test it 
by selecting arbitrary instances using the first perspective. When the use of a class 
is to be tested in the context of an executing application program or in the context 
of object persistence, then we can utilize the second perspective to ensure that the 
size of the set is correct and that elements correspond to appropriate objects in the 
problem or in its solution. 

Inclusion polymorphism provides a powerful capability. You can perform all 
design and programming to interfaces, without regard to the exact class of the 
object that is sent a message to perform an operation. Inclusion polymorphism 
takes design and programming to a higher level of abstraction. In fact, it is useful 
to define classes for which no instances exist, but for which its subclasses do have 
instances. An abstract class is a class whose purpose is primarily to define an 
interface that is supported by all of its descendents.[11] In terms of the example 
extending the kinds of bricks in Brickles, an alternate formulation is to define an 
abstract class called Brick and define three subclasses for it: PlainBrick, 
HardBrick, and PowerBrick (see Figure 2.7). 

[11] An abstract class might also define portions of the 
implementation for its descendents. Both C++ and Java provide 
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syntax for the definition of abstract classes and ensure that 
instances of them cannot be created in a running program. 

Figure 2.7. A set diagram for a Brick class inheritance hierarchy 

 

Among the abstract classes that we used in the design of Brickles are the 
following: 

• Sprite to represent the things that can appear on a play field. 
• MovableSprite, which is a subclass of Sprite, to represent sprites that 

can move in a play field. 
• StationarySprite, which is a subclass of Sprite, to represent sprites 

that cannot move in a play field. 

Puck and Paddle are concrete subclasses of MovableSprite, while Brick 
is a subclass of StationarySprite. The use of abstractions allows 
polymorphism to be exploited during design. For example, we can design at the 
level of a play field containing sprites without detailed knowledge of all the 
various kinds of sprites. We can design at the level of movable sprites moving in a 
play field and colliding with other sprites— both movable and stationary. If the 
game specification were extended to incorporate hard bricks and power bricks, 
most parts of the program would not need to be changed because, after all, hard 
bricks and power bricks are just stationary sprites. The parts of the program that 
are affected should be limited to those that construct the actual instances of the 
classes. 

Subclassing and Subtyping 

Consider a design solution that involves inclusion polymorphism. In the 
diagram below, classes C and D inherit from class B. Instances of class A 
think they are sending messages to an instance of class B (the type of 
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formal parameter B). The polymorphic attribute of the typing system 
allows instances of C and D in place of the instance of B. Each class has a 
different implementation of the doIt() method. 

 

 

 

Designing software well, within the context of inheritance and inclusion 
polymorphism, requires a disciplined use of inheritance (and interfaces in 
Java). It is important that behavior is preserved as classes are added to 
extend a class hierarchy. If, for example, bricks can move, then they are 
not really classifiable as stationary sprites. Good design requires that each 
subclass be a subtype— that is, the specification for the subclass must 
fully meet all specifications of its direct ancestor. This is an enforceable 
design requirement when the following rules are applied with respect to 
pre- and postconditions for each inherited operation: 

• The tryIt() method of A is written to satisfy the preconditions of 
the doIt() operation of B before it calls doIt(). If an instance 
of C or D is to be substituted, the preconditions for C::doIt() or 
D::doIt() must not add any new conditions to those for 
B::doIt() or we would have to modify A to accommodate C and 
D. 

• The tryIt() method of A is written to satisfy the preconditions of 
the doIt() operation of B before it calls doIt(). If an instance 
of C or D is to be substituted, the preconditions for C::doIt() or 
D::doIt() must not add any new conditions to those for 
B::doIt() or we would have to modify A to accommodate C and 
D. 

• The invariant defined for B must still be true in instances of C and 
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D. Additional invariants may be added. 

These requirements are easy to understand in the context of a software 
contract (see page 27). Preconditions set forth the obligations of any 
sender and the postconditions and class invariants set forth the obligations 
of a receiver in any interaction. The requirement for same or weaker (less 
strict) preconditions means that in meeting its obligations in terms of the 
contract for A, a sender still meets its obligations for B, which is not as 
constraining. The requirement for the same or stronger (more strict) 
postconditions and invariants means that a receiver still can meet a 
sender's expectations in terms of the contract for A, even though that 
receiver might do more than the sender expects. 

A polymorphic reference hides the actual class of a referent. All referents are 
manipulated through their common interface. C++ and Java provide support for 
determining the actual class of a referent at runtime. Good object-oriented design 
requires that such runtime type inspections should be held to a minimum, primarily 
because they create a maintenance point since the extension of a class hierarchy 
introduces more types to be inspected. However, situations arise in which such 
inspections can be justified. 

The following are the functions of inclusion polymorphism viewed from a testing 
perspective: 

• Inclusion polymorphism allows systems to be extended incrementally by 
adding classes rather than modifying existing ones. Unanticipated 
interactions can occur in the extensions. 

• Inclusion polymorphism allows any operation to have one or more 
parameters of a polymorphic reference. This increases the number of 
possible kinds of actual parameters that should be tested. 

• Inclusion polymorphism allows an operation to specify replies that are 
polymorphic references. The actual class of the referent could be incorrect or 
unanticipated by the sender. 

This dynamic nature of object-oriented languages places more importance on 
testing a representative sample of runtime configurations. Static analyses can 
provide the potential interactions that might occur, but only the runtime 
configuration can illustrate what actually happens. In Chapter 6 we consider a 
statistical technique that assists in determining which configurations will expose 
the most faults for the least cost of resources. 
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Parametric Polymorphism 

Parametric polymorphism is the capability to define a type in terms of one or 
more parameters. 

Templates in C++ provide a compile-time ability to instantiate a "new" class. It is 
new in the sense that an actual parameter is provided for the formal parameter in 
the definition. Instances of the new class can then also be created. This capability 
has been used extensively in the C++ Standard Template Library. The interface of 
a simple list class template is shown in Figure 2.8. 

Figure 2.8. A C++ List class template 

 

From a testing perspective, parametric polymorphism supports a different type of 
relationship from inheritance. If the template works for one instantiation, there is 
no guarantee it will work for another because the template code might assume the 
correct implementations of operations such as making (deep) copies and 
destructors. This should be checked during inspection. It is possible to write 
templated drivers for testing many parts of templates. 

Abstraction 

We have referred to the concept of abstraction throughout this chapter. 
Abstraction is the process of removing detail from a representation. 
Abstraction allows us to look at a problem or its solution in various levels 
of detail, thereby letting us leave out any considerations that are irrelevant 
to the current level of interest. Object-oriented technologies make 
extensive use of abstraction— for example, the root class in an inheritance 
hierarchy models a concept more abstract than its descendents. In the next 
section we will see a number of system models that are developed in order 
of increasing detail.MORE TO COME We need to talk about abstraction 
and testing at various levels at some point. This chapter? 

Viewed from the testing perspective, layers of abstraction in the 
development products are paralleled by layers of test analysis. That is, by 
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beginning with the highest levels of abstraction, we can provide a more 
thorough examination of the development product and, therefore, a more 
effective and accurate set of tests. 
 
 

Development Products 

Good documentation is critical for successful development and successful testing. 

A development process will generate a collection of work products that represent 
the system under development and/or the requirements for it. The form and content 
of those products will be determined by many factors, including the corporate 
policies, the skills and expertise of developers, and the schedule constraints. These 
products are written in a variety of notations. In this book we use the Unified 
Modeling Language (UML) [RJB98] as the conceptual modeling language and 
C++ as the programming language. 

The end products of any software development effort are code and the 
documentation for that code, including user manuals and maintenance 
documentation. Other development work products are typically produced, 
including analysis and design models, architectural models, and requirements that 
influence the quality of the system being produced. These products have a lifetime 
longer than the current project and may be reused on other development efforts. 

In this section, we describe a set of products that we think are essential to the 
successful development of object-oriented software. We use the UML in our 
examples.[12] Your products might be written in another notation, but the models 
should in some way capture the same information that we describe in this section. 
Since these products are models that represent the software, we will discuss them 
from a testing perspective. 

[12] UML Distilled: A Brief Guide to the Standard Object 
Modeling Language [FoSb99] provides a good, concise 
overview of UML. 

In UML, a model is a collection of diagrams. Each model captures the system at a 
specific level of abstraction. We present these models because in Chapter 4, we 
will talk about how to conduct a "system" test with models rather than code. The 
kinds of UML diagrams we use for system modeling are listed in Figure 2.9. 
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Figure 2.9. UML diagrams used in this book 

 

Analysis Models 

Analysis comprises the activities in a software development process whose 
purpose is to define the problem to be solved and to determine requirements for a 
solution to that problem. In our development process, two levels of analysis—
domain and application— are performed: 

• Domain analysis focuses on an understanding of the problem domain— that 
is, the general area of interest (or universe of discourse) in which the 
problem of immediate interest lies. With respect to Brickles, domain analysis 
might focus on the domain of arcade games, which would include games 
that have similar components such as Asteroids or PacMan, or of computer 
games, which would include card games or board games such as Solitaire or 
Monopoly. Domain analysis is concerned primarily with abstract concepts. 
In the domain of arcade games, abstractions include players, sprites, and 
play fields. 

Domain analysis is particularly useful if similar problems in the same 
domain are to be solved in the future or if the requirements are not well 
defined. The products of the one domain analysis provide a starting point for 
the analysis of each particular application. 

• Application analysis focuses on a specific problem and the requirements for 
a solution. With respect to Brickles, application analysis focuses on the game 
itself. Application analysis is concerned primarily with concrete concepts. In 
Brickles, these include pucks, a paddle, and bricks. 
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Commonalities among concrete classes might be reflected by the use of interfaces 
or abstract classes, such as Brick in Figure 2.7. These commonalities might be 
identified as abstractions during domain analysis or might be synthesized based on 
the features common to two or more concrete classes identified during application 
analysis. 

In terms of testing the representations of software generated during analysis, we do 
not need to distinguish between the products of domain analysis and application 
analysis. The difference will be reflected by the scope of the model (domain 
models are very broad) and by the level of completeness at which testing is 
performed (domain analysis models contain less detail). 

Object-oriented analysis centers on what the system does from the perspective of 
the kinds of objects involved and how the objects are related to one another. 
Analysis encompasses classifying objects in the problem, including the 
identification of relevant attributes and operations, the identification of 
relationships between classes and instances of various classes, and the 
characterization of the behavior of the various kinds of objects. These are 
represented in a model comprising different kinds of diagrams. 

 

Do products of analysis represent software if the 
focus of analysis is the problem (or problem domain) 
and requirements for a solution, but not an actual 
solution? 

Yes. The design of an object-oriented program should 
construct a representation of the problem by creating 
appropriate objects to represent entities in the 
problem, and then establishing appropriate 
relationships among those objects to reflect the 
relationships between objects in the problem. A 
solution is effected by empowering the software 
objects to collaborate toward a solution. Since a good 
solution is based on problem structure and that 
structure is reflected in analysis models, then analysis 
models are representations of the software. 
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An analysis model represents a system from the perspective of what it is supposed 
to do. The purpose of an analysis model is to provide developers, their clients, and 
other stakeholders with an understanding of the problem and the requirements for a 
solution. Typically, analysis efforts will produce a restatement of the requirements 
specification written first, from a development perspective as opposed to a 
marketing perspective and second, from a model of the problem to be solved 
described in terms of objects. A variety of diagrams is used to present the system 
from different views. Viewed from the testing perspective, the various diagrams 
that comprise the representation might contain incorrect information or might not 
represent the same information consistently in all diagrams; or, the model might 
not completely capture all of the necessary information. In Chapter 4 we will 
address testing these representations. We now describe some of these diagrams, 
which will serve as the basis for both development and testing. 

Use Case Diagram 

In object-oriented development, requirements are captured quite effectively by a 
collection of use cases and supporting diagrams. The description of Brickles in 
Chapter 1 expresses the components and rules of the game in natural language and 
pictures. This description is a reasonably good definition of the required software, 
although it leaves some requirements open for interpretation such as the size of the 
play field, the tone of a consolation message, whether a player can "exit" if the 
game is paused, the size and speed of a puck, and how sensitive paddle movement 
is to mouse movement. 

A use case describes a use of the system by an actor to perform some task. Actors 
really represent the various roles users[13] play with respect to the system— that is, 
one person can use a system in several different roles. There is one actor in 
Brickles as it was described in Chapter 1— namely, the player, who is involved in 
the actual play of the game. We could postulate another actor for Brickles who is 
responsible for establishing some parameters for the game as it is installed on 
different computers— for example, the speed of the puck; the size of the initial 
puck supply; and the colors of the bricks, puck, paddle, and play field. The 
specification does not identify such an actor, but a good analyst would consider the 
need for an administrative user of the system. Of course, the person who installs 
Brickles on a system can also be a player. (See [FoSb99] or [JCJO92] for a 
discussion of use cases.) 

[13] An actor does not have to be a person. It could be, for 
example, another software system. 
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Use cases can be expressed in various levels of abstraction. Consider, for example, 
some high-level uses of Brickles by a player shown in Figure 2.10. 

Figure 2.10. Domain-level use cases for arcade games 

 

None of these use cases states how a player starts, pauses, resumes, or stops a 
match. In fact, none of them even mention Brickles explicitly. They can apply to 
many arcade games. They all have the same actor (a player) and are concerned 
with manipulating a match, which is an object (or class) we identified to represent 
an arcade game for which play is in progress.[14] As such, we might consider them 
domain-level use cases. These domain-level use cases can be refined for Brickles 
as shown in Figure 2.11. 

[14] In common usage, the term game is used both to denote an 
activity governed by certain rules, such as football, and a single 
instance of such activity as in, "We won the first game of the 
new season." In our analysis, we make a distinction between 
these two ideas and represent the former concept by a class 
Game and the latter by a class Match. One could argue against 
this by treating the class Game itself as an object and letting 
each instance be what we have termed a match. 

Figure 2.11. Application-level use cases for Brickles 
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Use cases do not necessarily capture every requirement. The use cases are usually 
accompanied by additional text or diagrams that capture details (such as 
performance requirements) that are not immediately obvious to users and 
interfacing requirements for subsystems that are hidden from the user. 

Use cases are organized hierarchically using two relationships: uses and extends. 
You can refine some use cases into a set of more specific use cases. The first four 
use cases in Figure 2.11 are extended from the use cases in Figure 2.10. This 
structure helps to organize what can be a large number of cases. Locating a specific 
use case is accomplished by finding the high-level use case that covers the 
conceptual area of the specific case. The high-level use case then points to 
successively more specialized cases. 

Behavior common between two use cases can be grouped into a single "functional" 
use case. Each of the original use cases now has a uses relation with the common 
use case. In Brickles, the use cases of Breaking a Brick and Hitting a 
Wall would each have a uses relation with the Move Paddle use case. This 
simplifies maintenance by encapsulating details of common behavior. 

Use cases do not represent software. They represent requirements that software 
must meet. Consequently, you cannot test use cases; however, you can review 
them. Requirements play an important role in testing because they serve as the 
source of test cases— in particular, system requirements give rise to test cases for 
system testing. In Chapter 4 we will show how to start with use cases to test the 
analysis and design models that represent the system. The test cases identified for 
testing models can be refined for execution-based testing of a running system, as 
we describe in Chapter 8. 
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You can define one or more scenarios within the context of a use case. A scenario 
shows a particular application or instantiation of a use case. For example, the 
Move Paddle use case can give rise to scenarios: 

• Move the paddle left so that a collision with the puck, which is moving from 
left to right, involves the middle third of the paddle. 

• Move the paddle left so that a collision with the puck, which is moving from 
left to right, involves the far third of the paddle. 

• Move the paddle left so that a collision with the puck, which is moving from 
left to right, involves the near third of the paddle. 

These scenarios involve objects that have values for relevant attributes, such as 
defining which third of the paddle hits a puck [see Brickles Physics on page 11] 
and which general direction the puck is moving. By contrast, use cases involve 
objects without regard for values of attributes. 

Use cases are typically expressed using natural language, but use case diagrams 
can be used to depict all of a system's uses graphically. The diagram for the use 
cases in Figure 2.11 is shown in Figure 2.12. 

Figure 2.12. Use cases for Brickles 

 

Class Diagrams 

A class diagram presents a static view of a set of classes and the relationships 
between the classes. The diagram can show operations and attributes for each class 
as well as constraints on relationships between objects. Figure 2.13 illustrates an 
analysis model for Brickles using UML. 

Figure 2.13. An application analysis class diagram for Brickles 
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You might expect to see a Mouse class in the diagram. We chose to omit it 
because the mouse is the mechanism by which a paddle can be moved. However, 
you could use any input pointing device, or even the arrow keys on a keyboard. We 
chose to make those considerations in design. 

Within this design, Sprite, MovableSprite, and StationarySprite are 
abstract classes indicated in the diagram by italicized names. A sprite is a graphical 
component of an arcade game.[15] A movable sprite is a sprite that can move around 
in a play field while a stationary sprite cannot move. A movable sprite can interact 
with other sprites— for example, in Brickles a paddle hits a puck or a puck hits 
some bricks. These abstract classes originated from a domain analysis of arcade 
games and were incorporated into this model. When we started, we considered a 
possibility of implementing similar arcade games, so we took the time to identify 
abstractions. Even if we had not started with domain analysis, we likely would 
have noticed similar operations and attributes associated with pucks and paddles 
and bricks and ended up introducing these abstract classes anyway, even though 
we may not have used the term sprite, which is widely used by game 
implementers. 
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[15] The name dates to the Atari era of video games. 

In practice, class diagrams can become quite large. Groups of classes can be 
represented as packages. Java has a direct package syntax while C++ uses a 
namespace syntax. Some people use UML package diagrams to identify 
packages and the dependencies among them. In Figure 2.14, the Brickles package 
diagram contains three packages. The domain classes are in the game.domain 
package so that they can easily be reused with another game in the future. The 
dashed arrow indicates that the Brickles specific-classes are dependent on the 
domain classes. The domain classes are also dependent on the container classes 
grouped into game.containers. 

Figure 2.14. Brickles package diagram 

 

Diagrams such as class diagrams that describe classes, their features, and 
relationships play a central role in modeling. They reflect the structure of software 
and are a central focus of model testing (see Chapter 4). Testing associations can 
be challenging, especially in the presence of polymorphism, as in the association in 
Figure 2.13 between PlayField and Sprite or MovableSprite and 
Sprite. The most challenging aspects of associations are the topic of Chapter 6. 

UML Class Diagrams— Elementary Components 

A class box has three divisions. A specific diagram may not use all three if 
the resulting diagram is more clear. Abstract classes and operations are 
denoted by italics. 
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The connections between class boxes are relationships. There are three 
basic relationships, each represented by a different end on the line. 

Concept  Symbol  
Association— peer-to-peer visibility   
Aggregation— one is a part of the other   
Inheritance— one definition used as the basis 
for the other.  

 

Numbers, letters, and symbols indicate the number of instances of each 
class that will be involved in the relationship. The previous association 
states that one instance of the class on the left end is related to one or more 
instances of the class on the right end. The visibility of attributes is 
indicated by a prefix: 

Prefix Visibility  
+  public—  Visible to all associated objects 
#  protected—  visible only to methods in classes related by 

inheritance 
-  private—  Visible only within the current class  

State Diagrams 

A state diagram describes the behavior of the objects in a class in terms of its 
observable states and how an object changes states as a result of events that affect 
the object. Two sample diagrams are shown in Figure 2.19. A state is a particular 
configuration of the values of data attributes. What is observable about the state is 
a difference in behavior from one state to another. That is, if the same message is 
sent to the object twice, it may behave differently depending on the state of the 
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object when the message is received. A transition, or change, from one state to 
another is triggered by an event, which is typically a message arrival. A guard is a 
condition that must hold before the transition can be made. Guards are useful for 
representing transitions to various states based on a single event. An action 
specifies processing to be done while a transition is in progress. Each state may 
specify an activity to perform while an object is in that state. 

Figure 2.19. A state diagram for the class Timer 

 

A Puck instance is either in play or not in play. If an instance is in play, then it is 
either moving or not moving. The observable state In Play of a puck has 
substates of Moving and Not Moving. In Play is a superstate; Moving and 
Not Moving are its substates. A substate inherits all the transitions entering and 
leaving its superstate. 

A concurrent state diagram can show groups of states that reflect the behavior of 
an object from the perspective of two or more independent ways. We will discuss 
the concurrent states in the Java implementation of Brickles later. Such diagrams 
can be treated from a testing perspective as a nonconcurrent state diagram by first 
defining states that are defined from all the combinations of the states from the 
various concurrent parts, and then defining the appropriate transitions. 

Class Specifications 
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Class diagrams define classes and show attributes and operations associated with 
their instances. State diagrams illustrate the behavior of an instance of a class. 
However, neither diagram details the semantics associated with each operation. We 
use the Object Constraint Language (OCL) [WK99] for such specifications. OCL 
constraints are expressed in the context of a class diagram. Constraints involve 
attributes, operations, and associations that are defined in the diagram. 

As illustrated in the example shown in Figure 2.15, OCL expresses semantics of 
operations in terms of preconditions and post conditions. Invariant conditions can 
be prescribed for a class or interface and must hold at the time any operation is 
requested both in a message and upon the completion of the processing of the 
requested operation. (A method for an operation is allowed to temporarily violate 
an invariant during execution.) OCL conditions are Boolean-valued expressions 
and are tied to a class diagram. The constraints in Figure 2.15 use the size 
attribute of a puck supply and the zero-to-three navigable association of pucks 
shown in the design class diagram (see Figure 2.18). The pucks-> symbol in the 
constraint for the get() operation means to follow the pucks link to the set of 
associated objects. The use of the size attribute in a constraint in no way requires 
the implementation of the class to use a variable named size. It just means that 
the implementation will in some way need to represent that attribute, either as a 
variable or as an algorithm that computes the value based on other attributes. 
Specifications for operations should rarely ever prescribe an implementation. The 
syntax of OCL is too detailed for a summary box (see [WK99] for the language 
details). 

Figure 2.15. OCL for the operations of PuckSupply 
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Figure 2.18. A design class diagram for Brickles 

 

State Diagrams— A UML Summary 

In a state diagram, a state is represented by an oval and a transition as an 
arc from one state to another. Each arc has a label with three parts, each of 
which is optional: 
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event [guard] / action 
Concept  Symbol  

State— configuration of data values  

 
Transition— permitted next state   
Substate/superstate  

 
Concurrent states  

  

You might prefer a more informal notation, such as the one in Figure 2.5. Some 
sort of good specification for each operation is needed for testing. If the developers 
have not generated such specifications, then we think testers should take the task 
upon themselves. It is virtually impossible to test code whose purpose is vague or 
ambiguous. It is virtually impossible to use code whose purpose is vague or 
ambiguous. Thus, not only will the existence of such specifications make testing 
easier, but their existence will improve the quality of the software and perhaps 
even promote the subsequent reuse of classes. 

Sequence Diagrams 

An algorithm can be described as an interaction among objects. A sequence 
diagram captures the messaging between objects, object creation, and replies from 
messages.[16] In analysis, sequence diagrams illustrate process in the domain— how 
common tasks are usually carried out through the interaction of various objects in a 
scenario. A sample sequence diagram is shown in Figure 2.16. Within a sequence 
diagram, an object is represented by a box and its lifeline is represented by a 
dashed line that extends downward. The passing of time is reflected down the 
page. Objects drawn at the top of the diagram exist at the start of processing. 
Objects drawn farther down are created at that point. A message is represented by 
an arrow with a filled-in arrowhead. A reply value is represented by an arrow with 
an open arrowhead. A widening of a lifeline reflects an activation in which one of 
the object's operations is involved in the current sequence. 

[16] UML defines collaboration diagrams, which convey similar 
information but emphasize structure of associations over 
sequence. We use sequence diagrams in this book, but 
collaboration diagrams are useful, especially when you want to 
show the relationships among objects explicitly. 
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Figure 2.16. A sequence diagram for Brickles 

 

A sequence diagram may be created at any level of abstraction. A scenario for a 
use case can be represented by a sequence diagram. The algorithm for a single 
method in a class may also be represented using this notation. Figure 2.16 shows a 
sequence diagram for winning a match in Brickles. 

Sequence diagrams can also represent concurrency. An asynchronous message is 
indicated by a half arrowhead ( ). Asynchronous messages can be used to create 
a new object, create a new thread, or communicate with a running thread. 

Tip 

Define accessor operations that provide the observable state of a receiver. 

The OCL specification in Figure 2.15 conveys the same state information 
as the diagram for PuckSupply below. The OCL specification is more 
complete, but the state diagram is easier to understand for most people. 

Some of the preconditions for operators are implicit in the state diagram, 
while state definitions are implicit in the OCL specification. For example, 
within the context of the state diagram, the get() operation is permitted 
only when a puck supply object is in a Not Empty state since no 
transition from the Empty state is labeled with a get() event. This 
precondition is expressed in the OCL specification as a constraint on the 
count attribute associated with a PuckSupply, with no mention of a 
Not Empty state. 
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We prefer to design classes so that states are represented explicitly in a 
class's interface. This makes the specification more intuitive, thereby 
making the checking of preconditions by senders a little easier and more 
reliable, thus making testing a little easier. For PuckSupply, we would 
add the Boolean-valued query operation isEmpty() to the interface and 
express preconditions in terms of this state-querying operation. A revised 
OCL specification for PuckSupply is 

 

Of course, the state diagram must be updated to reflect the new operation. 

Accessor operations that return state information make testing a little 
easier (see Chapter 5) and can also make checking preconditions possible. 
The inclusion of such operations in a class interface is an example of 
designing for testing. 

 
Sequence Diagrams in Testing 

Sequence diagrams and collaboration diagrams are useful in analysis and 
especially in design. We use them quite extensively in testing models to 
capture results of test case "execution." The diagram reflects the objects 
and their states for a test case input and shows the sequence of messages 
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that produce a correct output. 

Activity Diagrams 

Sequence diagrams capture single traces through a set of object interactions. It is 
difficult if not impossible to represent iteration and concurrency. The activity 
diagram provides a more comprehensive representation that uses a combination of 
flowchart and petri net notations. The activity diagram in Figure 2.17 is from the 
move() method in Puck. 

Figure 2.17. Activity diagram for the move() method in Puck 

 

Activity Diagrams— A UML Summary 

In an activity diagram, the vertical lines form swim lanes. Each lane is the 
space for the object named at the top of the lane. In this case, each object 
is anonymous as indicated by the colon in front of the class name. The 
horizontal bar is a synchronization point at which two threads must meet. 
The signal throw and catch boxes show try and catch exceptions. The 
diamond box is a decision in the code. 
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Concept  Symbol  

Decision box  

 
Processing   
Synchronization point   
Termination of thread   
Signal throw   
Signal catch   
Initiation of thread  

  

Design Models 

A design model represents how the software meets requirements. A major strength 
of the object-oriented development paradigm is that design models are refinements 
and extensions of the analysis models. That is good news from a testing 
perspective because it means that we can reuse and extend test cases developed for 
analysis models. Many of the same kinds of diagrams are used in design, but with 
an emphasis on the solution rather than the problem. Consequently, the diagrams 
reflect solution-level objects as well as problem-level objects. Since the notation is 
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the same as we have already described, we will focus on the meaning of the design 
information represented. 

Class Diagrams 

Class diagrams are used in design to depict the kinds of objects that will be created 
by the software. Each class has a name, attributes, and operations as well as 
relationships with other classes shown on a diagram. In a design-class diagram, we 
expect to see most of the classes and relationships in the analysis class diagram as 
well as classes whose instances will help solve the problem. Some analysis classes 
will disappear because they have no role in a solution. Others will most likely have 
additional attributes and relationships introduced for them with solution-level 
classes and objects. The crux of good object-oriented design is reflected in a class 
diagram that maintains most of the structure of the problem (as reflected in the 
analysis class diagram), and then augments the software versions of the objects in 
the problem to collaborate to bring about a solution. 

A class diagram for the design of Brickles is shown in Figure 2.18. Note the 
introduction of implementation-level classes such as Mouse, which represents a 
mouse attached to the computer, and Hint, which represents an object needed to 
track events during an execution that results in a need to repair the contents of the 
screen. This diagram also shows some of the classes in the Microsoft Foundation 
Classes (MFC) [MFC], such as CMainFrame, CView, and CDocument, which 
invoke Brickles in a Windows environment as set forth in the requirements. The 
open arrowheads on some of the associations indicate navigability— that is, the 
directions in which associations are actually to be implemented. An association can 
be bidirectional or unidirectional. Arrows indicate which objects know about a 
certain relationship. We seldom indicate navigability in an analysis class diagram, 
but find them most useful in design class diagrams. In sequence diagrams, 
messaging between objects can occur only in the direction of a navigable 
association. 

State Diagrams 

The state diagrams used in design are the same as those in analysis. The major 
difference would be state diagrams for new classes in the design class diagram and, 
potentially, new substates that might aid implementation. Design diagrams might 
also incorporate more actions associated with transitions and more activities 
associated with states. In Brickles, some mechanism is needed to control the 
movement of the puck and the paddle. We chose to use timer events provided by 
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Windows with MFC to make the execution independent of the processor speed. 
Consequently, we introduced a design class, Timer (see Figure 2.18), which 
processes timer events and manipulates appropriate sprites in a match. A state 
diagram for the class Timer is shown in Figure 2.19. A timer maintains a list of 
observers— that is, the objects interested in being notified each time a timer event 
arrives. When a timer is enabled, it notifies each of its attached observers that a 
timer event has occurred with a notify() message. TimerObserver is an 
abstract class (see Figure 2.18) that represents observers. Inclusion polymorphism 
allows an instance of any subclass of TimerObserver to be attached and, hence, 
notified. This part of the implementation is based on the Observer design pattern 
[GHJV94]. 

From a testing perspective, we will want to ensure the test cases for a class that 
adequately tests transitions between states and provides for the proper processing 
of messages within each state. We might also want to check that the Observer 
pattern is correctly incorporated into the design of Timer and TimerObserver. 
It might even be possible to reuse some test cases and test drivers that were 
developed for testing other classes whose design is based on the same pattern. 

Sequence Diagrams 

Sequence diagrams are used in design to describe algorithms— that is, what objects 
are involved in the processing of some aspect of the solution and how those objects 
interact to affect that processing. The main distinction from their use in analysis is 
the presence of solution-level objects in the design diagrams. A sequence diagram 
for the start-up processing associated with Brickles is shown in Figure 2.20. This 
represents an algorithm for creating the objects needed to get a match underway. 
From a testing perspective, possible errors include violation of contracts, failure to 
create objects of the correct class, and sending of messages for which no 
navigability is indicated between sender and receiver on the class diagram. 

Figure 2.20. A sequence diagram for the start-up of a Brickles match 
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Source Code 

Source code and source code documentation are the final representations of the 
software. A translator (a compiler or interpreter) makes source code executable. 

The source code is expected to be an accurate translation of the detailed design 
models into a programming language, although we certainly must test for that. For 
object-oriented systems, the code contains class definitions and a segment that 
creates instances of some class(es) and gets processing started— for example, the 
main() function in C++ or a static method main() in Java. Each class uses 
instances of other classes to provide parts of its implementation. These instances, 
along with the parameters to messages, make up most of the relationships among 
objects. 

Testing actual code has been the principal concern of most traditional testing 
efforts and is the focus of most chapters in this book. Source code can be tested as 
it is developed, component by component, or as a completed product at the end of 
development. The major issues to be addressed are: 

• Who tests. Testing can be done by developers, who adopt a testing 
perspective toward their own code. Each test suite must be reviewed by 
someone for completeness and adequacy. 
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• What is tested. Each class can be tested separately before it is used in parts 
of a system. However, some classes are so complex in their implementations 
that constructing test drivers for testing them outside the system context is 
very expensive. 

• When testing is done. Testing can be done at many times during 
development. Earlier is usually better, but testing in the presence of 
changing specifications could prove inefficient and even demoralizing. Early 
testing could increase the amount of regression testing needed, which 
consumes resources. In Chapter 4 we consider how to test analysis and 
design models before code is available. 

• How testing is done. In Chapter 1, we reviewed function-based and 
specification-based testing. Both approaches need to be applied to test well.  

• How much testing is done. Exhaustive testing of each software component 
and of a whole system is seldom practical or possible. Conditions of 
adequate testing must be determined and then applied. Adequacy is often 
based on code coverage or specification coverage. 

 

Does programming language affect testing? 

The programming language used for implementation 
will impact testing. Some languages will enable 
certain kinds of errors and eliminate other kinds. For 
example, C++ is strongly typed and can reduce the 
number of interface errors that might occur since a 
C++ compiler will ensure type conformity between 
actual and formal parameters. Java has strong typing, 
but is more dynamic than C++ so compilers are less 
effective at catching problems involving reflective 
code, for example. Smalltalk is not strongly typed, so 
more effort will be needed to ensure that a design and 
an implementation do not harbor interface errors—
namely, the wrong types of actual parameters. On the 
other hand, C++— in the tradition of C— harbors the 
potential for a program to contain errors involving 
pointers— for example, dangling references and 
garbage. Languages such as Smalltalk and Java, 
which use garbage collection, eliminate these pointer 
errors. 

C++ supports friends that allow data hiding to be 
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circumvented by certain parts of a program. 
Executable test code could be declared a friend of a 
class under test, thereby allowing the test code to 
access the implementation and potentially make the 
test code shorter, although this can create a problem 
because testing becomes tightly coupled with the 
implementation. 

Java supports interfaces. Do they need to be tested? 
Assuming a class implements an interface, then 
testing should be done to adequately ensure that the 
full semantics of each of the interface's operations are 
supported by the class. Testers will have to know 
whether the interface requires exact semantics or 
whether a class can meet its obligations if it weakens 
preconditions and/or strengthens postconditions. 
Remember, class invariants are implied pre- and 
postconditions (see Subclassing and Subtyping, on 
page 37). 

 

These will be addressed in detail in association with planning for testing in Chapter 
3. 

 

We note that some CASE tools—for example, Rational 
Rose—can generate code from design models. What is 
the impact on testing? 

Assuming the code-generation facilities of the tool 
work correctly, we see two major impacts: 

1. Most testing is required within the context of 
the design model. 

2. Applying an implementation-based approach, 
perhaps in connection with determining the 
adequacy of testing, requires that a tester 
understand the structure of the code produced. 
Code-profiling tools can help, but someone still 
must be able to read the generated code. 
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If programmers are allowed to manually change 
generated source code, then testing— and 
maintenance— becomes harder. 

 
 

Summary 

We have reviewed the basic concepts of object-oriented programming. We have 
examined some of the kinds of documentation that is produced during development 
and that plays a role in testing. We have considered these things from a testing 
perspective— that is, in terms of what failures would likely result from the use of 
various object-oriented programming concepts. 

In the next chapter we will examine the testing process. 

 
 

Exercises 

 

2-1. Identify some object-oriented software that you can use to try the various 
techniques and issues we have discussed. Ideally the software will comprise a 
complete application, but you could select a few classes that work together. Collect 
analysis and design documents that relate to the software. If specifications exist for 
each class, then make sure they are well written— that is, that they contain 
complete and unambiguous descriptions of every operation. If specifications do not 
already exist, create them. We recommend using OCL (see [WK99] for a 
description). 

2-2. Review the various diagrams in this chapter for Brickles and make sure you 
understand them. 
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2-3. Think about how you would approach testing the class PuckSupply as 
specified in this chapter. Does testing this class depend on the correctness of the 
class Puck? Would Puck have to be tested first? 
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Chapter 3. Planning for Testing 

• Want to plan a test process that complements your development 
process? See A Testing Process. 

• Want to analyze the risks associated with verifying the required 
functionality? See Risk Analysis-A Tool for Testing. 

• Need to develop test plans for the different levels and types of testing 
required for the comprehensive test process? See Planning Activities. 

Testing requires considerable resources. Effective utilization of those resources 
requires good planning and good management. In this chapter we will focus on the 
technical aspects of planning and scheduling testing activities. We will look at 
determining what must be done on a technical level, who can do it, and when it 
should be done. We will suggest ways of constructing estimates, but we will not 
consider scheduling details. 

Planning at the technical level is guided by templates that are "instantiated" as 
needed by developers. We will describe a hierarchy of test plans and relate them to 
standard templates using the IEEE test plan standard as an example. We will also 
discuss the incorporation of risk analysis into the test planning process. 

Our basic testing process can be summed up as follows: Test early, test often, test 
enough. We will define a more detailed process in which there is a testing step for 
each development step. (Analyze. Test. Design. Test. Code. Test.) We will also 
explain a generic set of steps in which we define the basic tasks that are carried out 
at each of these development steps. We will also discuss testing from a 
management/allocation of resources perspective, describe the different dimensions 
of testing, and relate how we balance the trade-offs along these dimensions. 

 

A Development Process Overview 

A process is a continuous series of activities that convey you to an end. Most 
software engineering textbooks and software developers list four main activities in 
a software development process (subsequent to the completion of systems 
engineering and prior to the first deployment): 

• analysis—  which focuses on understanding the problem and defining the 
requirements for the software portions of a system 

• design—  which focuses on solving the problem in software 
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• implementation—  which focuses on translating the design into executable 
code 

• testing—  which focuses on ensuring that inputs produce the desired results 
as specified by the requirements 

Maintenance begins after deployment with a focus on bug repairs and 
enhancements. Maintenance usually involves further analysis, design, 
implementation, and testing. Among the testing activities during maintenance is 
regression testing, which ensures that successful test results after changes are the 
same as those before changes. 

These activities can be refined into more specific tasks. Analysis sometimes is 
decomposed into domain analysis, whose focus is in understanding the problem in 
a more general context, and application analysis, whose focus is in understanding 
the specific problem to be solved in design. Design encompasses architectural 
design, subsystem and package design, class design, and algorithm design. 
Implementation includes class implementation and integration. Testing includes 
checking the basic units, integrated units, subsystems, and systems. 

Many software development projects follow an evolutionary process model— an 
incremental model, a spiral model, or concurrent engineering. We will focus on an 
incremental process model.  

Under an incremental development process, a system is developed as a sequence of 
increments. An increment is a deliverable, including models, documentation, and 
code, which provides some of the functionality required for the system. The 
products developed in one increment feed into the development of the next 
increment. Successive increments add (and sometimes change) system 
functionality. The final increment delivers a deployable system that meets all 
requirements. Increments can be developed in sequence or one or more can be 
developed concurrently. 

To build each increment, developers analyze, design, code, and test as needed. 
They typically have to perform these activities repeatedly in building an increment 
because they find errors in previous work. As development progresses, they gain 
new insights into the problem and the solution. We prefer to acknowledge this 
iterative aspect of incremental development and make it part of the process. We 
refer to this as an incremental, iterative process. In planning each increment, we 
include explicit steps for repeating various activities. Among these are steps for 
systematically reviewing current models, identifying errors based on experiences 
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in later tasks, and modifying the models (or code) that have already been 
produced— not just those that will be produced in the future. Figure 3.1 illustrates 
the process when the increments are planned sequentially. 

Figure 3.1. A simplified sequential, incremental, iterative development 
process 

 

Object-oriented development is particularly well suited to evolutionary 
development because object-oriented analysis, design, and implementation entail 
the successive refinement of a single model. This is the case both within an 
increment and among increments. In object-oriented analysis, we understand a 
problem by modeling it in terms of objects and classes of objects, their 
relationships and responsibilities. In object-oriented design, we solve the problem 
by manipulating those same objects and relationships identified in analysis and 
introducing solution-specific classes, objects, relationships, and responsibilities. 
Implementation is straightforward from a well-specified set of design products. 
Thus, the entire development process involves a refinement of a model. Design 
products are primarily an extension of analysis products and implementation 
products are coded expressions of design products. The products of one increment 
are extended and refined in the next increment. This is also a strength of the 
paradigm with respect to testing because we can utilize refinements of the same 
test cases in testing refined models. 

The incremental development of products requires the incremental testing of those 
products. Products can change from increment to increment in both planned and 
unplanned ways. Test suites must change in concert. Regression tests must be run 
between increments and within iterations to ensure that changes do not adversely 
affect correctly working code. A process in which work on one increment overlaps 
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work on another adds to the complexity of development and testing. Coordination 
is required to sequence the development of interacting increments so that objects 
that are associated with, but assigned to different increments, can be tested in a 
timely fashion. 

The development of Brickles followed a plan based on an incremental, iterative 
development process. Our initial plan is outlined in Figure 3.2. When we started, 
we understood the requirements quite well, but we had no experience developing 
applications with the Microsoft Foundation Classes (MFC), nor did we have any 
experience developing arcade games. We recognized those as the biggest risks to 
success and planned to address those issues first. We also planned to test as much 
as we could as work progressed, which means we tested products within and/or at 
the end of each iteration. This is not shown in the figure. 

Figure 3.2. Outline of our incremental, iterative development plan for 
Brickles. 

 

There were significantly more informal iterations than those listed in Figure 3.2. 
This was particularly true during design, where we found that a number of 
decisions about scope and behavior had not been made during analysis. 
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A Testing Process Overview 

Testing is usually listed last as an activity in virtually every software development 
process after implementation. This activity refers to the type of testing that 
attempts to determine whether the product as a whole functions as it should. From 
our view, testing is a type points during development, not just at the end and not 
just to code. We define a process separate from, but intimately related to, the 
development process because the goal of testing is really different from the goal of 
development. Consequently, we prefer to consider development and testing as two 
separate, but intimately connected, processes. 

Development and testing processes are distinct primarily because they have 
different goals and different measures of success. Development strives to build a 
product that meets a need. Testing strives to answer questions about the product, 
including whether the product meets the need that it is intended to meet. Consider, 
for example, the number of defects identified after testing some developed 
software. The lower the defect rate (ratio of test cases that fail to the total number 
used), the more successful the development is considered to be. On the other hand, 
the higher the defect rate, the more successful the testing is considered to be. 

The roles of developing and testing functionality are assigned to different people, 
thereby reinforcing the idea that the processes are distinct. Using different people 
for development and testing activities is particularly productive from a system test 
perspective. The testers write test cases independently from those who will develop 
the code to ensure that the resulting system does what the requirements actually 
intend rather than what the developers interpreted the requirements to mean. 

The same is true at all levels of testing. In most shops developers are responsible 
for some testing— such as, what has been traditionally called unit and integration 
testing. However, to be successful, any person who takes on the role of both 
developer and tester must ensure that the proper goal is pursued with equal vigor. 
To achieve this, we use buddy testing in which one developer is assigned to unit 
test the code of another developer. In this way, at least a developer is responsible 
for one goal and one set of functionality, and the other is responsible for another 
goal and another set of functionality. 

Even though the two processes are distinct, they are intimately related. Their 
activities even overlap when test cases have to be designed, coded, and executed. 
Together they encompass the activities necessary to produce a useful product. 
Defects can be introduced during each phase of the development process. 
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Consequently, each development activity has an associated testing activity. The 
relationship between the two processes is such that when something is developed, 
it is tested using products of the testing process to determine that it appropriately 
meets a set of requirements. 

The testing and development processes are in a feedback loop (see Figure 3.3). The 
testing process feeds identified failures back into the development process.[1] 
Failure reports provide a set of symptoms that a developer uses to identify the 
exact location of a fault or error. The development process feeds new and revised 
designs and implementations into the testing process. Testing of development 
products will help identify defective test cases when testers determine that 
"failures" result from problems with test cases themselves or the drivers that 
execute them, and not the software under test.[2] 

[1] The purpose of testing is to identify failures and not to identify 
the error or the fault that gave rise to a failure. The developers 
are responsible for finding the source of a failure. 

[2] An interesting aspect of test case development is determining 
who checks the test cases. Most cases are reviewed, but most 
processes involve very little formal testing of test cases. 

Figure 3.3. The testing and development processes form a feedback 
loop 

 

In the context of this feedback loop, the form and content of development products 
affect the testing process. When developers select methods and tools, they establish 
constraints on the testing process. Consider, for example, how the degree of 
formality of class specifications affects the ease with which test cases can be 
identified for testing a class. The testing perspective must be considered, preferably 
by the presence of professional testers, when development methods and tools are 
selected. 

Testability 
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One of the pieces of information that is fed back to the developers is an 
evaluation of how amenable the software is to being tested. Testability is 
related to how easily you can evaluate the results of the tests. In Chapter 7 
we will show how our testing architecture, PACT, improves testability by 
overcoming information hiding. Testability is also an appropriate context 
to examine the question about when to test. As layers of software are 
added on top of layers, the visibility to the stored values becomes more 
cloudy. The lower the level at which a piece is tested, the more easily 
visible are its internals for the verification of test results and, by definition, 
the more testable it is. 

The form and quality of a requirements specification also affects the process. 
Product requirements comprise the source of test cases in system and acceptance 
testing. System testers should participate in the gathering and validation of the 
requirements in order to have a sufficient understanding of them to assess risks and 
testability. 

Test Cases and Test Suites 

The basic component of testing is a test case. In its most general form, a 
test case is a pair (input, expected result), in which input is a description 
of an input to the software under test and expected result is a description of 
the output that the software should exhibit for the associated input. Inputs 
and expected results are not necessarily simple data values, such as strings 
or integer values, but they can be arbitrarily complex. Inputs often 
incorporate system state information as well as user commands and data 
values to be processed. Expected result includes not only perceivable 
things, such as printed reports, audible sounds, or changes in a display 
screen, but changes to the software system itself— for example, an update 
to a database or a change in a system state that affects processing of 
subsequent inputs. A test case execution is a running of the software that 
provides the inputs specified in the test case and observes the results and 
compares them to those specified by the test case. If the actual result varies 
from the expected result, then a failure has been detected and we say the 
software under test "fails the test case." If the actual result is the expected 
result for a test case, then we say the software "passes the test case." 

Test cases are organized into a test suite. Most test suites have some sort 
of organization based on the kinds of test cases. For example, a test suite 
might have one part containing test cases that are concerned with testing 
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system capacities and another part containing test cases concerned with 
testing typical uses of the system well within any specified capacities. If 
software passes all the test cases in a test suite, then we say that the 
software "passes the test suite." 

One of the greatest challenges in testing is developing and organizing a 
test suite. The main issues in test suite development are correctness, 
observability of results, and adequacy. 

The STEP testing technique developed by William Hetzel [Hetz84] provides a 
three-step approach for each type of testing performed on a project. 

1. Analysis—  The product to be tested is examined to identify any special 
features that must receive particular attention and to determine the test cases 
that should be constructed. We will present a number of analysis techniques. 
Some can be automated, such as branch testing, but many require the tester 
to manually determine what to test. 

2. Construction—  In this phase the artifacts that are needed for testing are 
created. The test cases identified during analysis are translated into 
programming languages and scripting languages, or they are entered in a 
tool-specific language. There is also often the need for data sets, which may 
require an extensive effort to build a sufficiently large set. 

3. Execution and Evaluation—  This is the most visible and often the only 
recognized part of the test effort; however, it is also typically the quickest 
part of the test effort. The test cases that were identified during analysis and 
then constructed are executed. The results are examined to determine 
whether the software passed the test suite or failed it. Often many of these 
activities can be automated. This is particularly useful in an iterative 
environment since the same tests will be applied repeatedly over time. 

Test suites are maintained. As requirements change, so must the test suite. You 
must correct test cases that are found to be in error. As problems are found by 
users, test cases will be added to catch those problems in future releases before 
deployment. 

A testing process is iterative and incremental and must be planned in connection 
with the planning of its associated development. 
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What do testers want developers to specify about the 
system? 

The template for the use case that we have presented 
provides most of the information that a person needs 
to develop system-level tests. In particular the pre- 
and postconditions are important in terms of 
sequencing tests and communicating information 
about hidden dependencies. A structured use case 
model can assist the person writing the tests with 
information about the possible reuse of test scripts 
and data. A series of state models related to 
subsystems and the system itself also helps 
communicate information about sequencing of actions 
and expected responses. 

 

 

When are testers needed on a project? 

The culture in some companies specifies that testing 
personnel are not assigned to a project until it is well 
underway. The linkages described here between the 
development and testing processes are evidence that 
early project decisions require input from personnel 
who are knowledgeable about testing. This may be 
one of the testers who is assigned to the project very 
early, or a developer with testing experience. 

 
 

Risk Analysis— A Tool for Testing 

Risk analysis is a part of planning any development effort. It also can be critical in 
determining what to test in development and how much. In this section we will 
describe some basic concepts in risk analysis. Then we will apply those concepts to 
testing. We will also compare using risk-based testing to basing test case selection 
on the functionality's frequency of use. 

Risks 
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In general, a risk is anything that threatens the successful achievement of a 
project's goals. Specifically, a risk is an event that has some probability of 
happening and, if it occurs, there will be some loss. The loss may be down time, 
financial loss, or even injury depending on the type of system. Every project has a 
set of risks; some risks are rated "higher" than others. This ordering takes into 
account both the likelihood the loss will occur and how serious the loss will be in 
terms of its impact. In the context of risk-based testing, a fundamental principle is 
to test most heavily those portions of the system that pose the highest risk to the 
project to ensure that the most harmful faults are identified. 

Risks are divided into three general types: project, business, and technical risks. 

Project risks include managerial and environmental risks (such as an insufficient 
supply of qualified personnel) that cannot directly be affected by the testing 
process. 

Business risks are associated with domain-related concepts. For example, changes 
in IRS reporting regulations would be a risk to the stability of the requirements for 
an accounting system because the system's functionality must be altered to comply 
with new regulations. This type of risk is related to the functionality of the program 
and therefore to system-level testing. When a system under test addresses a volatile 
domain, the system test suite should investigate the extensibility and modifiability 
attributes of the system's architecture. 

Technical risks include some implementation concepts. For example, the quality 
of code generated by the compiler or the stability of software components is a 
technical risk. This type of risk is related to the implementation of the program and 
hence is associated primarily with testing at the code level. 

Risk Analysis 

Risk analysis is a procedure for identifying risks and for identifying ways to 
prevent potential problems from becoming real. The output of risk analysis is a list 
of identified risks in the order of the level of risk that can be used to allocate 
limited resources and to prioritize decisions. The definition of risk varies from one 
project to another and even over time within the same project because priorities 
and development strategies change. Typical risks on object-oriented projects are 
specific and unique to the architectural features, the areas of complex interactions 
among objects, the complex behaviors associated with a class specification, and the 
changing or evolving project requirements. A class being developed for inclusion 
in a library needs much more testing than one that's being developed for use in a 
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prototype. Other definitions of risk might be the complexity of the class as 
measured by the size of its specification, or the number of relationships it has with 
other classes. 

Sources of Risk 

For system testing, the various uses of the system are prioritized based on the 
importance to the user and the proper operation of the system. Risk may also be 
evaluated based on the complexities of the concepts that must be implemented in 
different subsystems, the volatility of the requirements in a particular subsystem, or 
the maturity of domain knowledge within a particular subsystem. 

Risks are also associated with the programming language and development tools 
that are being used to implement the software. Programming languages permit 
certain classes of errors and inhibit others— for example, the strong typing in C++ 
and Java ensures that every message sent (member function called) in a program 
execution can be understood by its receiver. By contrast, the lack of strong typing 
in Smalltalk means "message not understood" exceptions can occur during 
program execution. Strong typing can make identifying test cases much easier 
because some kinds of inputs are eliminated as possibilities by the programming 
language itself. 

Conducting the Analysis 

Our approach to risk analysis identifies the risk that each use case poses to the 
successful completion of the project. Other definitions are possible for risk, but this 
definition fits our purpose of planning a testing effort. 

The risk analysis technique includes three tasks: 

1. Identify the risk(s) each use case poses to the development effort. 
2. Quantify the risk. 
3. Produce a ranked list of use cases. 

The use case writer can assign a risk rating to an individual use case by considering 
how the risks identified at the project level apply to the specific use case. For 
example, those requirements that are rated most likely to change are high risks; 
those requirements that are outside the expertise of the development team are even 
higher risks; and those requirements that rely on new technology such as hardware 
being developed in parallel to the software are high risks as well. In fact it is 
usually harder to find low-risk use cases than high-risk ones. 



 90

The exact set of values used in the ranking scale can vary from one project to 
another. It should have sufficient levels to separate the use cases into reasonably 
sized groupings, but it should not have so many categories so that some categories 
have no members. We usually start with three rankings: low, medium, high. In a 
project with 100 use cases, this might result in approximately 40 in the high 
category. This is probably more than we have time to give special attention. 
Adding a very high category and reclassifying the uses might result in 25 high and 
15 very high cases. Those fifteen will receive the most intense examination. 

The assigned risks result in an ordering of the use cases. The ordering is used for a 
couple of project activities. First, managers can use it to assign use cases to 
increments (not our problem!). Second, the ordering can be used to determine the 
amount of testing applied to each item. Risk-based testing is used when the risks 
are very high, such as in life-critical systems. In our examples in the text, we will 
consider both risk-based and use profile approaches to test case selection. 

Let us consider a couple of examples. First, we will apply risk analysis to the 
Brickles game. Since this is a very simple system, we will then present a more 
illustrative example. 

For a game such as Brickles, the biggest risks are things that affect the player's 
satisfaction. In Figure 3.4, the analysis information for the two basic use cases is 
summarized. The "winning the game" use case is rated as more critical than the 
"losing the game" use case. Imagine winning the game but the software refuses to 
acknowledge it! The frequency of winning is rated as lower than the frequency of 
losing. There are n! sequences in which the bricks can be broken, in which n is the 
number of bricks in the pile. There are many more sequences when the variability 
of wall and ceiling bounces are included. There are (n-1)+(n-2)+…+2+1 ways to 
lose the game with a given puck, but there are many more possibilities when 
misses are considered. There are many more ways to lose than ways to win. Since 
winning and losing are accomplished by the same code, there is the same amount 
of risk in implementing each use case so the risk is rated the same. If we combine 
the frequency and criticality values using the scheme shown in Technique 
Summary-Creating Test Cases from Use Cases, on page 127, the two uses are both 
rated as medium. The program should be tested with roughly the same number of 
winning results as losing. 

Figure 3.4. Two Brickles use cases 
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Consider another example for an application in which personnel records are being 
modified, saved, and possibly deleted. The use cases are summarized in Figure 3.5. 
The use cases address a record update that changes an employee's name, thereby 
committing that update and deleting a record. An analysis of the use cases 
identifies domain objects of name, personnel, and security. 

Figure 3.5. Three use cases for a personnel management system 

 

The risk information indicates that deleting a record is a high risk. Being able to 
save is highly critical. The usual approach is to schedule high-risk uses for early 
delivery because then those uses can take longer than estimated without delaying 
the completion of the project. The criticality and frequency of uses are combined to 
determine which should be tested more heavily. Obviously we would want to test 
most of the uses that are the most critical and frequent. But sometimes a critical 
operation is not very frequent in comparison to other uses. For example, logging on 
to your Internet Service Provider is critical, but it is only done once per session 
whereas you might check e-mail many times during a single login. So the values of 
the frequency and criticality attributes are combined to determine the relative 
amount of testing. 

The technique for combining these values varies from one project to another, but 
there are a couple of general strategies. A conservative strategy combines the two 
values by selecting the higher of the two values. For example, the "Modify name" 
use case would have a combined value of medium using a conservative strategy. 
Likewise, an averaging strategy would choose a value between the two values. In 
this case there is none unless we invent a new category such as medium high. This 
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should only be done if there is a large number of cases being categorized in one 
cell and there is a need for better discrimination. 

By applying the selected strategy, you can make an ordered list of uses. For the 
three uses noted, using a conservative strategy, the list in order of increasing rank 
is Edit name, Delete record, and Save record. Thus, Save record would be tested 
more heavily than Delete record, which in turn would be tested more heavily than 
Edit name. Exactly how many test cases would be used will be discussed later as 
we consider techniques for selecting test cases. 

 

A Testing Process 

Given an incremental, iterative development process model, we can now sketch out 
a process for testing. We will defer many of the details to later chapters because 
basically all the information in this book belongs in the process. First, we will 
outline a series of issues that must be addressed to give a basic shape to the test 
process. Then we will consider how each development product is tested. 

Planning Issues 

Testing is traditionally incorporated into a development process at the point where 
executable code is available. Common practice is to perform a unit test on 
individual modules as they are developed, an integration test on subsystems as they 
are assembled from units and/or other subsystems, and a system test as the system 
becomes available. If an iterative, incremental process is used, then, at a minimum, 
system testing is performed after each increment is completed. Class testing and 
interaction testing are performed during or after each iteration for an increment. 
Regression testing is performed on any software whose implementation changed 
but whose specification did not. If both have changed, the test suites are revised 
and then reapplied. 

In our approach, testing is conducted even before code is written. Models, being 
representations of the system just as code is a representation of the system, can be 
tested. In particular, design models lend themselves to testing by a form of 
execution that we describe in Chapter 4. Using analysis models, we can test a 
system in the sense of validation testing, thus ensuring that the right system is 
being specified. This last type of testing does not change much from traditional 
approaches, and so it is only a peripheral focus to this book. 
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Dimensions of Software Testing 

Testing embraces many activities that must be performed. All these activities 
comprise testing. With respect to these activities, we identify five dimensions of 
testing that describe the answers to the following five questions[3]: 

[3] A sixth dimension concerning where testing will be performed 
is important from an organizational perspective, but it is not of 
concern to us in the context of this book. 

1. Who performs the testing? Will the software's developers test it, will there 
be an independent group of people to test the software, or will there be some 
combination of the two? 

2. Which pieces will be tested? Will every component of the software be tested 
or just the ones associated with higher risks? 

3. When will testing be performed? Will testing be an ongoing process, an 
activity done at special milestones, or an activity performed at the end of 
development? 

4. How will testing be performed? Will the testing be based solely on what the 
software is supposed to do or based also on how it is implemented? 

5. How much testing is adequate? How will it be decided that enough testing 
has been done or where limited resources are best allocated for testing? 

These are dimensions in the sense that each one represents an important 
consideration over a continuum of possible levels of effort or approaches, but each 
is independent of all the others. Each dimension must be considered when 
designing a testing effort, and a decision must be made about where on a 
continuum the project wishes to place itself. A decision made for one dimension 
will have no impact on decisions made for any of the other dimensions. All 
decisions together will determine the resources needed, the methods used, and the 
quality of the results of the total testing effort. 

We will now take a look at each of these dimensions in more detail. These 
dimensions will also be considered in various discussions throughout the book. We 
represent each dimension with a continuum. A continuum is a sequence of 
possible levels for which it is difficult to delineate where one level ends and a 
subsequent one begins. In the physical world, the visible spectrum of light is a 
continuum, ranging from red to indigo. Orange is in the spectrum, but there is no 
widespread agreement exactly where orange begins and ends. That does not, 
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however, prevent us from using orange or discussing its merits for athletic-team 
colors. 

Just as there is no color that is better than another, so there is no "best" choice on 
each dimension. However, certain colors are more appropriate in certain situations 
and certain choices on a testing dimension are better than others in a given 
situation. In this chapter, our focus is on describing the five dimensions. We will 
address implications of each dimension on total testing efforts in the next chapters 
when we discuss individual techniques. Along the way, we hope to give you some 
view of how various combinations of positions relate to levels of quality in the 
software product. 

Who Performs Testing? 

A project includes both developer and tester roles. Developer is a role 
characterized by performing activities that generate a product— for example, 
analysis, design, programming, debugging, or documenting. Tester is a role 
characterized by performing activities to detect failures in a product. This includes 
selecting tests for a specific purpose, constructing the tests, and executing and 
evaluating the results. A given project member could assume both roles of 
developer and tester. Giving programmers responsibility for unit testing their own 
code is a common practice, although we strongly recommend a buddy testing 
scheme. System testing is commonly assigned to independent testers— people 
assuming the role of tester, but not of developer. 

Figure 3.6 illustrates a continuum ranging from the situation in which the 
developers are responsible for all testing to the situation in which the independent 
tester is responsible for all testing. In the latter case, each end of the continuum is 
not encountered in practice as often as the middle. In particular, it is typical only in 
small projects for developers to have responsibility for the final system testing of 
the implementation against the system requirements. Projects that involve life-
critical functionality are typically the ones in which each component is unit tested 
by an independent tester. Some government regulations make this the expected 
choice. In between these two extremes are two popular choices. In one case, 
developers are totally responsible for class testing, but pairs of developers 
exchange code and test each other's code, hence the previously mentioned buddy 
testing. In the other case, an independent tester is given responsibility for 
specifying test cases while the developer is responsible for the construction and 
execution of the tests. 
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Figure 3.6. Continuum for assignments of roles in class testing 

 

In this book, we discuss testing processes and techniques and usually do not 
identify just who is performing them. That decision must be based on the effective 
use of resources at various points along the whole effort. The decision also is 
influenced by government and industry regulations. Actual test plans for a project 
should call out who is responsible for various testing activities to be performed. 
There are many ways to assign roles to project team members, and we have not yet 
discovered a "best" way. 

Which Pieces Are Tested? 

Which parts of a system should be tested? Options vary from testing nothing to 
testing every single component (or line of code) that goes into the final software 
product. The continuum is represented in Figure 3.7. 

Figure 3.7. Continuum for which parts of the software to test 

 

A software system comprises many components. In object-oriented programming, 
the most basic component is a class. At one end of this continuum is the position 
"we will test every class that is included in this system." At the other end is the 
position "we will not test any piece." Faults are found as a result of random 
operation of the system or through providing "evaluation copies" on the Web and 
letting users report errors. 

The middle ground is to have a systematic approach, perhaps statistical methods, 
for selecting a subset of the total set of components to be tested. The classes being 
reused from other projects or taken from class libraries may not need to be tested. 
Some of the classes will not be easy to test individually because testing them 
requires complex drivers to provide input or examine output. The drivers 
themselves will require considerable effort to write and might need considerable 
testing and debugging. Part of choosing where to be on this continuum is based on 
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balancing the yield (defects found per hour of effort) of testing with the effort 
needed to build the test infrastructure. 

If testing all classes is not feasible, what strategy can you use to select the test 
cases to develop? One strategy is to generate test cases at random. Of course, this 
is not a very good strategy since it might not test commonly used functions of the 
software. Another strategy might focus on probable uses of the system, thereby 
putting primary emphasis on tests that use the more common inputs to the 
software. Still another strategy might emphasize pathological cases— obscure uses 
of the system— under the (probably incorrect) assumption that if the developers 
paid attention to more obscure or obtuse requirements, then they must have 
understood all the requirements.[4] 

[4] Testing solely using pathological cases is not a good 
strategy. 

When Is Testing Performed? 

Components can be tested as they are developed, or testing can be delayed until all 
components are integrated into a single executable, as shown in Figure 3.8. The 
further into development we wait, the more disruptive it will be to make changes 
based on test results. 

Figure 3.8. Continuum for when software can be tested 

 

When should testing be done? Sometimes testing is done only at the end of the 
development process— that is, system testing and/or acceptance testing is the only 
formal testing done on software. This approach might work well when there are 
relatively few developers working from a well-understood set of requirements, but 
it is wishful thinking for most development efforts. It is widely recognized that the 
sooner a problem can be identified, the easier and cheaper it is to fix. Therefore, at 
the other end of the continuum is the decision to test every day. Between the 
extremes is testing each software component as it is produced. This will slow down 
the early progress of a development effort; however, it can pay off by greatly 
reducing the problems encountered later in a project as these pieces are composed 
into the larger system. 
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Also between the extremes is testing at the end of each increment. Rather than 
assembling individually tested pieces into the deliverable for the increment, this 
approach takes untested pieces, integrates them, and then tests the complete set of 
code as a monolithic whole. This is intended to reduce the cost of testing each 
individual piece as it is written. Success depends upon how complex each piece is 
and how experienced the development staff is. In very simple functionality, there 
may be sufficiently few defects that can be found by testing from the "outside." For 
more complex functionality, the defects may be buried so deeply in the code that it 
may be difficult to validate specific attribute values from outside the assembled 
increment. This approach is useful for components for which implementing a test 
driver is a significant effort. 

One important issue in testing development products is the level of detail each 
represents. Consider, for example, an analysis model that is under refinement. 
What are the inputs to such a model? In other words, how detailed can we be in 
defining a test case for something that itself is not very well defined? We will 
address this issue in Chapter 4. The goal of this process is to provide feedback that 
can assist developers in making correct decisions. 

How Is Testing Performed? 

How will testing be performed? The basic approaches to testing software are based 
on the specification and the implementation, Figure 3.9. 

Figure 3.9. Continuum for how software is tested 

 

The specification for a software entity states what that entity is supposed to do—
that is, it describes the valid set of inputs to the entities, including the constraints 
on how multiple inputs might be related to one another, and what outputs 
correspond to the various inputs. The implementation for a software entity is an 
expression of an algorithm that produces the outputs for various inputs so that the 
specifications are obeyed. In short, a specification tells what a software entity does 
and an implementation tells how that software entity does what it does. 
Exhaustively covering specification information assures us that the software does 
what it is supposed to do. Exhaustively covering implementation information 
assures us that the software does not do anything that it is not supposed to do. 
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Specifications play a significant role in testing. We will need to have a 
specification written for many components of the software to be developed and 
tested, including specifications for systems, subsystems, and classes. It seems 
reasonable that we can generate test cases for a component based solely on its 
specification. However, for some components, implementation-based testing will 
be important to make certain the test suite is as thorough as it can be. For high-risk 
components, for example, we will want to make certain every bit of the code has 
been executed. 

Besides testing individual components, we will also want to test the interactions 
between various components. This is traditionally referred to as integration 
testing, which occurs when components are integrated to create larger systems. 
The purpose of integration testing is to detect faults that arise because of interface 
errors or invalid assumptions about interfaces. Integration testing is particularly 
important in object-oriented systems because of the presence of inclusion 
polymorphism (see page 32), which is implemented using dynamic binding. 

In an iterative, incremental process, integration testing will occur on a continuing 
basis. It will start with primitive objects being aggregated into more complex 
objects and move to complex objects that represent subsystems that are being 
integrated. In Chapter 6 we will provide some techniques for building effective test 
cases for interactions. 

Adequacy of Test Cases 

From practical and economic perspectives, testing software completely is 
usually just not possible. A reasonable goal for testing is to develop 
enough test cases to ensure that the software exhibits no failures in typical 
uses or in life-critical situations. This captures the idea of adequacy of 
testing a software product. Test it enough to be reasonably sure the 
software works as it is supposed to. 

Adequacy can be measured based on the concept of coverage. Coverage 
can be measured in at least two ways. One way is in terms of how many of 
the requirements called out in the specification are tested. Of course, some 
requirements will require many test cases. Another way is in terms of how 
much of the software itself was executed as a result of running the test 
suite. A test suite might be adequate if some proportion of the lines of 
source code— or possible execution paths through the source code— was 
executed at least one time during test suite execution. These measures 
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reflect two basic approaches to testing. One is based on what the software 
is supposed to do. The other is based on how the software actually works. 
Both approaches must be adopted to perform adequate testing. 

In functional testing, which is also referred to as specification-based or 
black box testing, test cases are constructed based solely on the software's 
specification and not on how the software is implemented. This approach 
is useful for all levels of testing because it has the advantage that test cases 
can be developed even before coding begins. However, the effectiveness 
of functional testing depends greatly on the quality of the specification and 
the ability of the test suite developers to interpret it correctly. 

In structural testing, which is also referred to as implementation-based 
or white box testing, test cases are constructed based on the code that 
implements the software. The output of each test case must be determined 
by the software's specification, but the inputs can be determined from 
analyzing the code itself to determine various values that cause various 
execution paths to be taken. The main advantage of this approach is 
improved coverage. The main disadvantage is that if the programmer did 
not implement the full specification, then that part of the functionality will 
not be tested. 

To adequately test software, some combination of both approaches is 
usually most effective. Function-based is the stronger approach, but 
structural testing improves confidence in case the software does not do 
something it should not do. 

How Much Testing Is Adequate? 

This question is impossible to answer in general and it is not an easy question to 
answer even for a specific piece of software.[5] There are many aspects to consider 
when addressing this question. The expected lifetime of the software is one 
consideration. Applications that will transform data from an old application to a 
new one seldom require extensive testing. Another consideration is whether the 
application containing the software is life-critical, which obviously requires very 
extensive testing. Note this is a decision about how thoroughly to test an individual 
piece chosen for testing. 

[5] Do not confuse this with the earlier continuum in which we 
considered which pieces to test. 
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One ad hoc view of adequacy is that testing continues as long as the costs of 
uncovering faults are balanced by the increased quality of the product. Another 
view considers the prevailing standards within the domain in which the software 
application is situated. Testing is designed to conform to those standards— for 
example, there are obvious differences in quality standards between drug 
manufacturing and furniture manufacturing. 

The differing levels of adequate testing can be viewed on a continuum, shown in 
Figure 3.10, from no testing at all, to minimal coverage in which we select a few 
tests to perform, and on to exhaustive testing in which every possible test case is 
run. Companies— and sometimes even individual projects— set testing policies 
based on a position along the continuum where they are comfortable. 

Figure 3.10. Continuum for how much testing can be done 

 

The amount of testing required should be determined relative to the long-term and 
short-term goals of the project, and relative to the software being developed. We 
frequently speak of "coverage" with respect to adequacy. Coverage is a measure of 
how completely a test suite exercises the capabilities of a piece of software. 
Different measures are used by different people— for example, one measure might 
be based on whether every line of code is executed at least once when a test suite is 
run while another measure might be based on the number of requirements that are 
checked by the test suite. Consequently, coverage is expressed in phrases such as 
"75% of the code was executed by this test suite," or "One test case was 
constructed from each specified requirement." 

We believe test coverage measures should be formulated primarily in terms of 
requirements and can vary depending on the priorities and objectives of the project. 
If, for example, requirements are specified by use cases, coverage will be measured 
by how many of the use cases are used and how many scenarios are created for 
each use case. Coverage measured in terms of implementation is useful in 
measuring the completeness of the specification-based test suite. If some code is 
not executed, then testers should work with developers to determine what test cases 
are missing or whether the software implements unspecified functionality. 

We apply risk analysis in the testing process to determine the level of detail and 
amount of time to dedicate to testing a component— for example, more time will 
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be spent testing classes that are identified as reusable assets than those that are 
intended for use in a prototype. A reasonable scale of increasing risk for 
components is as follows: 

• Prototype components 
• Production components 
• Library components 
• Framework components 

The result of recognizing differing levels of risk is the acceptance of differing 
levels of adequate test coverage. We will present testing algorithms that guide the 
testing of specific products. These algorithms will include what we term a rheostat 
effect, which produces differing levels of test coverage from the same algorithm. 
For example, in Orthogonal Array Testing on page 228 we will talk about testing 
different numbers of combinations of attribute values. 

 

Roles in the Testing Process 

We have identified several important roles related to testing in a project. Each role 
is essential to the success of the testing aspect of the project. The test plan should 
schedule the testing responsibilities of each of these roles. 

The people in each of these roles must plan the amount of time and effort that they 
will expend in testing. They must schedule their time relative to testing and any 
other obligations they must meet. The development schedule will drive much of 
the test scheduling. In this environment, testing will often be shortchanged if there 
is not a clear specification of levels of adequate test coverage and a commitment to 
quality. Our experience shows that the more active the integration test and system 
test people are in the total project the more likely it is that testing will be given 
appropriate resources. 

We now describe each of the roles. One or more people can assume each role. One 
person can assume multiple roles, but you must be careful to keep the roles 
separate. 

Class Tester 

A class tester has the responsibility to test individual classes as they are produced. 
Part of the planning process is to coordinate the efforts of all of these individuals. 
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The development community, through the project test plan, must agree on who will 
assume this role, the levels of coverage that will be considered adequate, and how 
these tests will be scheduled. Scheduling is particularly important given the 
relatively large number of artifacts to be tested and the need for a quick 
turnaround. If this role is taken by developers, as is often the case, then specific 
amounts of time must be allocated to the activity. This seems like an obvious 
statement, but many managers simply ignore this step when scheduling. 

Integration Tester 

An integration tester is responsible for testing a set of objects that are being 
brought together from different development sources, such as two development 
teams. They have the responsibility to test sufficient functionality to be certain that 
the various components from different development teams and/or outside vendors 
will work together correctly. This role is particularly important in a project that is 
using large frameworks that are still immature. People in this role should have both 
developer and testing skills. 

System Tester 

A system tester has domain knowledge and is responsible for independently 
verifying that the completed application satisfies the system requirements. System 
testers represent a user's perspective on the project. This is a valuable perspective 
to have even in the early planning phases of the project. One or more system 
testers should participate in use case modeling efforts and begin test case 
identification and construction during requirements definition. 

Test Manager 

A test manager is responsible for managing the test process. This may be a part-
time role for one manager, or a role for a number of people who are dedicated to 
managing just the testing portion of the process. The role of the test manager is 
similar to that of any manager. The person is responsible for requesting, 
coordinating, and making effective use of the resources allocated to testing. Often 
this person will be assigned "matrix" authority over a set of developers. That is, the 
developers will report to the development manager and to the test manager as well. 
Developers in this role will assist in the construction of a test infrastructure. 

 

A Detailed Set of Test Activities 
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Figure 3.11 provides a synopsis of the test activities for each of the phases we have 
defined for our development process. These will be elaborated as we discuss the 
techniques in later chapters. 

Figure 3.11. Synopsis of testing activities 
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Planning Activities 

Now we want to discuss the process of planning for testing. We will present a set 
of planning documents that are useful in organizing information such as specific 
test cases. We will relate these documents to how and when testing activities are 
scheduled. 

These planning documents are working documents. After each increment, and 
sometimes after a specific iteration, these documents are reviewed and revised. 
Risks are updated as are priorities and schedules. 

Scheduling Testing Activities 

Class tests are scheduled at the discretion of a developer as they become useful or 
necessary. A class test is useful during coding when the developer wishes to 
identify missing features or verify the correctness of part of an implementation. A 
class test becomes necessary when a component is to be added to the code base. 
The class may not be completely developed, but the behaviors that it does provide 
should be complete and correct. 
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Integration tests are typically scheduled at specific intervals, usually at the end of 
major iterations that signal the completion of an increment and/or just prior to 
releases. Alternatively, integration may be an ongoing, highly iterative process that 
occurs each evening. Integration test cycles can also be scheduled to coincide with 
deliveries from major outside vendors, such as a new version of a base framework. 

System tests will be performed on major deliverables at specified intervals 
throughout the project. This schedule is usually specified in the project plan since 
there is often a need to coordinate with a separate organization that may be 
providing testing services to numerous projects simultaneously. 

Estimation 

Part of scheduling is estimating the resources— cost, time, and personnel— that will 
be needed to support the plans being made. This is not easy and we have no magic 
formulas. In this section we will discuss the factors— levels of coverage, domain 
type, equipment required, organization model, and testing effort— that should be 
considered. 

Levels of Coverage 

The more comprehensive the level of coverage, the more resources that will be 
required. Estimates of the amount of code written to support testing vary. Beizer 
estimates from 2% to 80% of the application size [Beiz90]. Other estimates are 
even higher. We have had success in considering each system use case as a unit 
measure. By estimating the amount of effort for one use case (perhaps through a 
prototyping effort), you can construct the estimate for the complete system. Some 
use cases are much broader in scope or more abstract in level. Choose a set of use 
cases that are at approximately the same level of detail in the model and use those 
for estimating. If two use cases extend another more general case, then use either 
the two specific or the one more general use case, but not both. 

Domain Type 

Often more technically oriented software embodies much of its complexity in the 
programming logic, while the program inputs are fairly simple. On the other hand, 
systems that are data intensive often have relatively simple logic, but the test cases 
require large amounts of effort to construct. The amount of effort required to 
construct a complete test case including complete inputs and correct outputs can 
vary considerably. A simple program that queries a large database requires much 
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time to build the data set and much time to verify that the answer produced is 
correct. 

Equipment Required 

System testing should be conducted in an environment as close as possible to the 
deployment environment. Even some aspects of class testing may require either 
special hardware environments or a hardware simulator. The cost of installing and 
maintaining the equipment or constructing the simulator must be included in any 
estimate. 

Organization Model 

We have discussed a couple of schemes that are commonly used to staff the testing 
process. Our experience has shown that the more independent the testers are from 
the development organization, the more thorough the tests are. However, this 
independence requires a longer learning curve and thus more expense. Common 
estimates are that one independent tester can only handle the output of two to three 
developers. 

Conversely, tying the testers to the development organization (or using personnel 
from the development team to test) reduces the time required to learn the system. 
Specifications are seldom completely written down or up-to-date. If a tester is a 
person who also participates in discussions about the solution, then that tester can 
understand the implicit assumptions in a specification more completely. However, 
it may be more difficult for testers to be as rigorous or objective if they become too 
closely tied to the development effort. 

Consider using a buddy approach to class testing. It provides much of the 
objectivity that makes testing most effective. Rather than have developers test their 
own classes, form buddy groups. Two developers swap code with each other and 
test. The advantage is more thorough testing. Since the tester is another developer 
who is also developing closely related code, this person can be productive much 
more quickly than a person from the independent test team who must first learn 
about the context. 

Testing Effort Estimate 

Estimation techniques almost always rely on historical data to make projections. 
We will not take the space here to discuss these techniques. Figure 3.12 provides a 
very simple form to use in accounting for all of the hours required for the various 
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testing activities. As we proceed through the book, we will provide more detailed 
guidance for completing the various sections of the form. 

Figure 3.12. A testing effort estimation form 

 

For now we can summarize much of this by using historical data to determine the 
cost of producing a single class. From the list in Figure 3.12 we can identify the 
classes that will have to be constructed: 

• Construct one PACT[6] class per class in the application that will be tested in 
isolation. 

[6] PACT is Parallel Architecture for Component Testing. 
We will discuss this in Chapter 7. 

• Construct one PAST[7] class per use case. 

[7] PAST is Parallel Architecture for System Testing. This 
will be discussed in Chapter 9. 

• Estimate the number of classes needed for the infrastructure. 

The total number of classes times the effort per class gives the effort for all testing 
classes. Planning is addressed in Planning Effort on page 105. 

A Process for Testing Brickles 

In this section we will illustrate the following five dimensions by applying each of 
them to our case study. 

1. Who performs the testing? The testing duties will be divided between the 
two authors. Sykes is doing most of the implementation, so he will do the 
class and integration testing. McGregor wrote the use cases and constructed 
much of the high-level design. He will create test cases from the use cases 
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and execute these when the system's implementation is available. Sykes will 
moderate the model testing. 

2. Which pieces will be tested? The basic primitive classes will be tested. 
Higher-level classes that are composed from the primitive ones have so 
many interrelationships that they will be tested as a cluster. The final system 
will be tested as a completed application. 

3. When will testing be performed? The class testing will be performed 
repeatedly during the development iterations. The cluster tests of the high-
level classes will also be repeated during iterations, but these tests will not 
start until the second increment after the primitive classes have been 
completed in the first increment. System testing will be initiated after an 
initial version of the system becomes available at the end of the first 
increment. 

4. How will testing be performed? Test cases will be constructed as methods in 
a class. There will be one test class for each production class. Use case 
testing will be conducted by a person using the system rather than by using 
any automation. This will require the game to be played many times. 

5. How much testing is adequate for an individual piece? The classes will be 
tested to the level that every public method has been invoked at least once. 
We will not attempt to test every possible combination of values for the 
parameters. The test cases derived from the use cases will cover all possible 
final results. 

Document Templates 

We will discuss a project test plan, a component test plan, an integration test plan, 
a use case test plan, and a system test plan. The relationships among these plans are 
illustrated in Figure 3.13. Each arrow in the figure indicates that the pointed-to 
document is included by the reference in the document that originates the arrow. 

Figure 3.13. Relationships among test plans 
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We will present these in template format. This is a useful approach for several 
reasons. Except for the system test plan, there will be multiple instances of these 
documents. A template ensures consistency of form and content among these 
independent, but related, documents. The more of the document that can be 
incorporated into the template, the less effort a developer will need to expend in 
producing the multiple instances. The template approach will also simplify the 
inspection process since each document will follow the same style, this specific 
content can be located quickly. 

The IEEE test plan outline in Figure 3.14 lists the basic sections for a test plan 
regardless of level. We want to address those that are most important in an 
incremental, iterative object-oriented software development environment. In the 
following test plans we will not name the sections exactly according to the outline, 
but we will include the basic required information. The following test plan items 
are particularly important: 

• Features Not Tested—  For class-level testing. This section reports the results 
of the HIT analysis (see Chapter 7). This information includes features that 
have already been tested and that do not need to be retested, and features that 
are not scheduled for development until later iterations or a later increment. 

• Test-Suspension Criteria and Resumption Requirements—  Testing is 
suspended when the yield reaches an unacceptable level, that is, when the 
number of faults being found per hour of effort drops below the criteria set 
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in this section, and then no further testing is conducted. This section is 
particularly important for a project using iterative development. We usually 
define one set of criteria for early iterations and a second set for the later 
iterations. For an iterative project, the resumption criteria is simply the 
progression in the development cycle back to the test point. 

• Risks and Contingencies—  A risk, in this context, identifies potential 
problems with conducting the tests. These include possible errors about 
correct answers in large data sets and the possibility that different platforms 
will produce different results, but that only some will be tested. 

Figure 3.14. The IEEE 829 Standard Test Plan outline 

 

Project Test Plan 

The purpose of this document is to summarize the testing strategy that is to be 
employed for the project. It should define the steps in the development process at 
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which testing will occur, the frequency with which the testing should occur, and 
who is responsible for the activity. 

The project test plan may be an independent document or it may be included in 
either the overall project plan or the project's quality assurance plan. Because its 
format is so variable and its content quite flexible, we will only provide a couple of 
tables below that summarize the information usually included. 

The table in Figure 3.15 summarizes the activities that are required, the frequency 
with which each activity will be employed, and the entity that is responsible for 
this phase of testing. More specific information about each of these is included in 
the detailed plan for that level. 

Figure 3.15. Project test plan template— Part 1 

 

A second table, in Figure 3.16, associates each of the phases with a specific 
strategy for that phase. We will describe several testing strategies in the 
appropriate chapters and you can pick your favorite. This table also records project 
standards for adequate testing for each risk level within the three phases. 

Figure 3.16. Project test plan template— Part 2 
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Component Test Plan 

The purpose of a component test plan is to define the overall strategy and specific 
test cases that will be used to test a certain component. One test plan will be 
completed on each component that is sufficiently significant to require isolated 
testing. We present here a template that we have used successfully. Two types of 
guiding information are included in the template: project criteria and project 
procedures. These are included to serve as handy reminders and to avoid the need 
to produce a component test plan that summarizes all of the component-testing 
information for the project. Project criteria are standards that have been agreed 
upon as to how thoroughly each component will be tested. For example, project 
criteria might call for 100% of the postconditions on modifier methods to be tested. 
These criteria should be providing more detail on the coverage criteria defined in 
the project test plan. Project procedures identify techniques that have been agreed 
upon as the best way to handle a particular task. For example, constructing a PACT 
class (see Chapter 7) for each component that will be tested is a project procedure. 
These procedures will provide the details of the test strategies that were identified 
in the project test plan. 

We will give a brief comment on each section of the template. Figure 3.17 shows 
the template. We will not comment on sections that simply record information such 
as the name of the component. Italicized portions will represent actual entries in 
the template. 

Figure 3.17. A component test plan template 
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Objectives for the Class. The developer will replace this paragraph with a 
prioritized list of objectives for the component. For example, this component is an 
element of the basic framework for the application and is intended as a high-level 
abstraction from which the more specific variants are derived. 

Guided Inspection Requirements. Project Criteria: 100% of the products 
associated with critical components will be inspected. 75% of the products 
associated with noncritical components will be inspected. Library components will 
be subject to additional quality checks. Project Procedure: Risk analysis is used to 
prioritize the portions of the class with respect to inspections and testing. 

Building and Retaining Test Suites. The developer will replace this paragraph 
with information about 
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• the results of applying HIT and details of the use of the PACT process for 
creating test driver classes (see Chapter 7). 

• the scheduled deadline for the delivery of test cases. 
• the specification of the test driver. 
• the relative number of test cases in each category and the priorities among 

the three. 

Functional Test Cases. The developer will replace this paragraph with 
information about 

• the test cases developed from the specification. 
• the class invariant method. 
• how many different "types" of objects are being tested. The types are based 

on the initial state of the object. 

Structural Test Cases. The developer will replace this paragraph with information 
about 

• the test cases developed for code coverage and about the code-review 
process. 

• how to use the required test-coverage tool.  

State-Based Test Cases. The developer will replace this paragraph with 
information about the state representation for the class. Refer to the state diagram 
if available. 

Interaction Test Cases. The developer will replace this paragraph with 
information about which messages will be tested based on the OATS selection 
process (see Chapter 6). 

Use Case Test Plan 

The purpose of this plan is to describe the system-level tests to be derived from a 
single use case. These plans are incorporated by reference into both the integration 
and system test plans. Figures 3.18, 3.19, and 3.20 show portions of the use case 
test plan template. Other parts will be shown in Chapter 9. 

Figure 3.18. Use case test plan template— Part 1 
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Figure 3.19. Use case test plan template— Part 2 
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Figure 3.20. Use case test plan template— Part 3 
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The test plans can be constructed in a modular fashion following the same pattern 
as the dependencies between the "partial" use cases. Use case models can be 
structured in the same way class diagrams are. The includes and extends relations 
provide the means for decomposing the use cases into "partial" use cases as 
described in Chapter 2. The partial use cases are combined using the relationships 
to form what we refer to as "end-toed" use cases. 

We identify three levels of use cases: high-level, end-to-end system, and functional 
sub-use cases. The high-level use cases are abstract use cases that are the basis for 
being extended to end-to-end use cases. The functional sub-use cases are 
aggregated into end-to-end system-level use cases. We have built actual test 
scripts, in the scripting language of test tools, that use the 
generalization/specialization relationship between the high-level and end-to-end 
use cases. These test scripts also aggregate fragments of test scripts from the 
functional sub-use cases. By having these three levels, our projects are more 
manageable and our test scripts are more modular. 

The project for which this was the template also identified two different "types" of 
use cases: functionality and report use cases. Functionality use cases modified the 
data maintained by the system in some way. Report use cases accessed information 
in the system, summarized it, and formatted it for presentation to the user. These 
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differences led to different numbers of tests for security and persistence. You may 
identify other groupings of the use cases that are useful to your project. 

Integration Test Plan 

The integration test plan is particularly important in an iterative development 
environment. Specific sets of functionality will be delivered before others. Out of 
these increments the full system slowly emerges. One implication from this style of 
development is that the integration test plan changes character over the life of the 
project more than the component or the system test plans. The components that are 
integrated in early increments may not directly support any end-user functionality 
and hence none of the use cases can be used to provide test cases. At this stage the 
best source is the component test plans for the aggregated components. These are 
used to complete the component test plan for the component that integrates these 
objects. After a number of increments have been delivered, the functionality of the 
integrated software begins to correspond to system-level behavior. At that time the 
best source of test cases is the use case test plans. 

In both cases, the test cases are selected based on the degree to which the test case 
requires behavior across all of the parts that are being integrated. Small, localized 
behavior should have already been tested. This means that the tests should be more 
complex and more comprehensive than the typical component tests. In a properly 
integrated object-oriented system, there will be certain objects that span a number 
of other objects in the build. Choosing tests from the test plans for those 
components will often be sufficient for good integration test cases. 

Because of this dependence on other test cases, we do not provide a separate 
template for the integration test plan. Its format will follow that of the system test 
plan in that it will be a mapping of which individual test plans are combined to 
form the integration test plan for a specific increment. 

System Test Plan 

The system test plan is a document that summarizes the individual use case test 
plans and provides information on additional types of testing that will be 
conducted at the system level. In each of the techniques chapters, we will describe 
life-cycle testing as one technique that can be applied at the system level and also 
at the individual component level. 

For our purposes here, we will provide a chart, see Figure 3.21, that maps the use-
case test plans to specific system tests. Most of the information required by the 
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IEEE test plan format will have already been provided by the individual use case 
test plans. 

Figure 3.21. System test plan 

 

Iteration in Planning 

The iterations in the development process affect how planning is carried out. 
Changes in product or increment requirements at least require that test plans be 
reviewed. In many cases they will also need to be modified. We keep traceability 
matrices to assist with this iterative modification. 

If the development organization receives requirements in a traditional form, we 
build a requirements-to-use-case mapping matrix. This is often just a spreadsheet 
with requirement IDs in the vertical axis and use case IDs on the horizontal axis. 
An entry in a cell indicates that the use case provides functionality related to or 
constrained by the requirement. 

We also maintain a second matrix in which we relate each use case to a set of 
packages of classes. An entry in a cell indicates that the package provides classes 
that are used to realize the use case. When a use case is changed, the owners of 
packages are informed. They check the functionality they are providing and make 
the necessary changes to their code. This triggers changes in several levels of test 
cases and perhaps test plans as well.  

Planning Effort 

The effort expended in planning depends on a few things: 

• the amount of reuse that exists among the templates 
• the effort required to complete each plan from the template 
• the effort to modify an existing plan 

Each of these values will require the establishment of a baseline on which to base 
estimates. 

Test Metrics 
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Test metrics include measures that provide information for evaluating the 
effectiveness of individual testing techniques and the complete testing process. 
Metrics are also used to provide planning information such as estimates of the 
effort required for testing. To create these final measures we need measures of 
coverage and complexity to form the basis of effectiveness and efficiency metrics. 

Coverage is a testing term that indicates which items have been touched by test 
cases. We will discuss a number of different coverage measures during the 
presentation of the testing techniques discussed in the book. Examples include the 
following: 

• Code coverage—  which lines of code have been executed. 
• Postcondition coverage—  which method postconditions have been reached. 
• Model-element coverage—  which classes and relationships in a model have 

been used in test cases. 

Coverage metrics are stated in terms of the product being tested rather than the 
process we are using to test it. This gives us a basis by which we can describe how 
"thoroughly" a product has been tested. For example, consider the situation in 
which one developer uses every logical clause from every postcondition as a 
source for test cases, while a second developer only uses the "sunny-day" clauses[8] 
from the postconditions as the source for tests. The second developer is not testing 
as thoroughly as the first as evidenced by what fraction of the postcondition 
clauses are being covered. 

[8] A sunny-day clause is an expected result, ignoring error 
conditions that might throw an exception or return an error 
code. 

Coverage can be combined with complexity to give an accurate basis for 
estimating the effort needed to test a product. That is, as the software becomes 
more complex, it will be much more difficult to achieve a specified level of 
coverage. Several measures of complexity are available: 

• number and complexity of methods in the class 
• number of lines of code 
• amount of dynamic binding 

By collecting performance data over time, a project or company can develop a 
baseline from which projections can be made for planning a new project. 
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The testing process is effective if it is finding faults. It is efficient if it is finding 
them with as few resources as possible. We will discuss a couple of measures that 
give information about both of these. The number of defects/developer-hour 
metric determines the yield of the process while the developer hours/number of 
defects metric provides a measure of the cost of the process. These numbers are 
dependent on the tools that are used to construct tests as well as the levels of 
coverage sought, so each company will need to baseline their process and collect 
actual performance data before using these numbers for planning purposes. 

The effectiveness of the testing process is evaluated by collecting data over the 
complete development life cycle. Consider a fault that is injected into an 
application during design. The sooner that defect is detected, the more effective is 
the testing process. The efficiency of the testing process is measured by 
considering the intervals between the development phase in which the defect is 
injected and the phase in which it is detected for all defects. The perfectly effective 
testing process finds every defect in the same development phase in which it was 
injected. If defects injected at design time are not being detected until code testing, 
the testing technique used during the design of the system should be modified to 
search specifically for the types of faults that are not being detected in a timely 
manner. 

 

Summary 

In the competitive world in which complex software sells for $99.95 and 
companies pay a bounty to any employee finding a new software engineer, 
planning is an essential activity. The challenge is to balance time spent planning 
and documenting the plan, with the time available to produce software. 

We have shown a series of templates that reduce the time required to complete the 
planning process. These documents are hierarchical where possible to further 
reduce the volume of documentation required to do an adequate job. The planning 
process will be a success if the developers who drive the process see benefit from 
it. It will be perfunctory at best if the attitude becomes one of "just get it done." 

 
 

Exercises 
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3-1. Identify the documents and models that are available for a system you want to 
test. For those pieces that are missing, determine how you might provide the 
required information. 

3-2. Prioritize the objectives for your project and product. 

3-3. Continue the development of your test plan by building a chart that lists all of 
the "products" that will be available for testing. A second column could be used to 
list the testing techniques that will be applied to test the product. It will be left 
blank for now. Is your project iterative? Is it incremental? If it is iterative, there 
should be a column that summarizes the results of applying each technique during 
each iteration. If it is incremental, there should be a separate table for each 
increment of the system since they will be developed independently. 

3-4. What risk level would you assign to the Sprite, PuckSupply, Puck, and 
Velocity classes for Brickles? 
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Chapter 4. Testing Analysis and Design Models 

• Want to learn how to inspect the semantics of UML models? See The 
Basics of Guided Inspection. 

• Need to set up an inspection session? See Organization of the Guided 
Inspection Activity. 

• Need a technique for testing a model for extensibility? See Testing 
Models for Additional Qualities. 

Developers model the software they are constructing because it assists in 
understanding the problem they are solving and because it helps manage the 
complexity of the system being developed. The models of analysis and design 
information will eventually be used to guide the implementation activities of the 
project. If the models are of high quality, they make a valuable contribution to the 
project, but if they contain faults, they are equally detrimental. In this chapter we 
present guided inspection, an enhanced inspection technique for verifying the 
models as they are created and for validating the completed models against project 
requirements. The principal shortcoming of standard review techniques is that they 
focus primarily on what is there (in the model) rather than what should be there. 
Reviews do not provide a means for systematically searching for omissions from 
products. Even Fagan inspections [Faga86], which use checklists to make the 
process more detailed, do not provide a means for determining what is missing 
from a model. 

Guided inspection applies the testing perspective very early in the development 
process. Traditionally, testing has begun at the unit implementation level and has 
continued as code segments are integrated into larger pieces until the entire system 
is available to be tested. In this chapter, we will begin "system testing" when the 
"system" is still represented only as analysis or design information. A new version 
of the traditional "V" testing model, shown in Figure 4.1, relates the repeated 
applications of guided inspections to the various levels of testing. 

Figure 4.1. The new V model 
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Guided inspection requires valuable resources, and the time and attention of 
project personnel. So is it worthwhile? Studies have reported widely varying 
savings ratios for finding and repairing faults early in the development process as 
opposed to during the compilation or system test phases. For example, repairing a 
fault found at system test time may cost as much as one hundred times the cost of 
repairing the same fault during analysis. So even a moderate effort at testing the 
models can result in big savings. 

 

An Overview 

Let's look at a quick example of using the guided inspection technique. To set the 
stage, we are in the initial stages of developing Brickles. The team has produced 
the design-level class diagram shown in Figure 2.18 and other diagrams such as the 
state diagram shown in Figure 2.19 and the sequence diagram shown in Figure 
2.20. We are about to begin coding but want to validate the design model before 
spending extensive time coding the wrong definitions. 

We begin by assigning the inspection team. The team includes the two of us who 
developed the model, a system tester from our company and our company's process 
person who will be the moderator. The tester will develop a set of test cases from 
the use case diagram. We developers will show how the classes in the design 
model handle each test case. The moderator will define the inspection boundaries, 
schedule the guided inspection session, distribute materials, keep the session 
moving forward, and then complete the final report. 

In preparation for the session, the moderator defines the boundaries of the 
inspection by identifying the scope and depth of the information to be inspected. 
The scope is defined by a set of use cases. In our case, the scope covers all the use 
cases and thus the complete application. The depth is defined by identifying levels 
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of containment in the composition hierarchies. In the case of Brickles, we will not 
inspect the objects that are aggregated within the BricklesView object. We will 
focus instead on those that represent the state of the match at any given time in a 
BricklesDoc object. 

The tester writes test cases using the use cases found in Figure 2.11. We will focus 
on one test case, shown in Figure 4.2. Before the meeting, the developers complete 
the Design Model checklist shown in Figure 4.3. This exercise is completed 
individually by each developer. It requires that the developer compare the class 
diagram from the analysis model, shown in Figure 2.13, with the class diagram in 
the design model. Finally, the moderator sends out notice of the meeting along 
with either paper copies of the model or a URL to the Web version. 

Figure 4.2. Test case #1 
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Figure 4.3. Example design phase checklist 

 

The test report from the guided inspection section notes the problems found during 
the symbolic execution of the test cases. With regards to the test case being 
considered here, the design is considered to have failed the test. The test report 
would reflect that it was not possible to determine how to complete the symbolic 
execution at this point in the algorithm. We do not want to confuse testing and 
debugging, but since we know exactly where execution terminated, it should be 
reported. The test report also includes the sequence diagram used to record the test 
execution, as shown in Figure 4.4. 
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Figure 4.4. Partial sequence diagram for test case #1 

 

A Portion of a Session Transcript 

Melissa (moderator): OK, let's get started. Everyone has had a chance to 
look at the model and Dave and John have completed the checklists. Let 
me remind everyone that we are focusing on the locally designed classes 
and will ignore the standard user-interface classes such as menus. So let's 
begin with the first test case, Jason. 

Jason (tester): Here is the first case [he hands out the first test case]. With 
John's help, I've laid out the beginnings of a sequence diagram for this test 
case based on the test case preconditions [see Figure 4.4]. So, the player 
selects Quit from the menu and…  

John (developer): My :BricklesView would receive the Quit message. And 
my object would send the Quit message to Dave's aBricklesDoc. [He 
draws these onto the sequence diagram.] 

Dave (developer): When :BricklesDoc gets the Quit message it will send 
the Stop message to aTimer. [He begins to draw this on the sequence 
diagram.] 

Jason: Wait a minute! As I read the class diagram there is no association 
between those two classes. 
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Dave: John, where is that Stop message supposed to go? I thought you said 
you were going to implement that method. 

John: [Busy shuffling between the sequence diagram and the class diagram 
with a confused look on his face.] Defect! 

Melissa: Sounds like we are ready for the next test case. 
 
 

Place in the Development Process 

The last activity in each phase in the development process should be a verification 
that the work produced in the phase possesses the qualities we desire. That work is 
in the form of either a UML model or code in a programming language. (See A 
Development Process Overview on page 66.) The process is structured so that each 
development phase moves the product a step toward the final system, which results 
in a sequence of models in which the model produced in one development phase is 
more specific and more complete than the model from the previous phase. For 
example, during the application analysis phase, a model is created by filtering the 
information in the domain analysis model and the requirements model to eliminate 
information that is not specifically relevant to the application under development. 
Two of the differences between the succeeding models are the scope of the content 
and the level of abstraction. The requirements model filters the domain model so 
that any information not required for the immediate application is not included in 
the application analysis model. As the information in each succeeding model level 
becomes more specific, the inspection of each model can also become more 
specific and narrowly focused. This sequence of models described in Figure 4.5—
actually it is just one model that is being transformed incrementally— provides an 
opportunity to establish a "chain of quality" in which each model is verified before 
moving to the next phase. 

Figure 4.5. Models and phases 
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The Basics of Guided Inspection 

The guided inspection technique provides a means of objectively and 
systematically searching a work product for faults by using explicit test cases. This 
testing perspective means that reviews are treated as a test session. The basic 
testing steps are as follows: 

1. Define the test space. 
2. Select values from the test space using a specific strategy. 
3. Apply the test values to the product being tested. 
4. Evaluate the results and the percentage of the model covered by the tests 

(based on some criteria). 

These steps are specialized to the following steps (we will elaborate on each of 
these in this chapter): 

1. Specify the scope and depth of the inspection. The scope will be defined by 
describing a body of material or a specific set of use cases. For small 
projects, the scope may always be the entire model. The depth will be 
defined by describing the level of detail to be covered. It may also be 
defined by specifying the levels in aggregation hierarchies on certain UML 
diagrams in the model under test (MUT). 

2. Identify the basis from which the MUT was created. The basis for all but the 
initial model is the set of models from the previous development phase. For 
example, the application analysis model is based on the domain analysis 
model and the use case model. Initial models are based on the knowledge in 
the heads of select groups of people. 

3. Develop test cases for each of the evaluation criteria to be applied using the 
contents of the basis model as input (see Selecting Test Cases for the 
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Inspection on page 123). The scenarios from the use case model are a good 
starting point for test cases for many models. 

4. Establish criteria for measuring test coverage. For example, a class diagram 
might be well covered if every class is touched by some test case. 

5. Perform the static analysis using the appropriate checklist. The MUT is 
compared to the basis model to determine consistency between the two 
diagrams. 

6. "Execute" the test cases. We will describe the actual test session in detail 
later in this chapter. 

7. Evaluate the effectiveness of the tests using the coverage measurement. 
Calculate the coverage percentage. For example, If 12 of the classes from a 
class diagram containing 18 classes have been "touched" by the test cases, 
the test coverage is 75%. The testing of analysis or design models is so high-
level that 100% coverage is necessary to achieve good results. 

8. If the coverage is insufficient, expand the test suite and apply the additional 
tests, otherwise terminate the testing. Usually the additional test cases cannot 
be written during the inspection session. The testers identify where the 
coverage is lacking and work with a developer to identify potential test cases 
that would touch the uncovered model elements. The tester then creates the 
full test cases and another inspection session is held. 

Coverage in Models 

In the UML models we use, the model elements are the usual object-
oriented concepts: classes, relationships, objects, and messages. A test 
case "covers" one of these elements if it uses that element as part of a test 
case. Of course, a single test case using a particular element probably does 
not exhaust all possible values of the attributes of that element. For 
example, using an object from a class to receive a single message does not 
test the other methods in the same class. 

As we move deeper into the development life cycle, the detail of the model 
increases and the detail at which coverage matters increases as well. For a 
domain analysis model, simply creating a single object from a class will be 
sufficient to consider that we have covered the class. Coverage for this 
level of model can be stated as a percentage of classes and relationships 
covered. At the design level, we would typically like to use every method 
in an interface before saying that a class is covered. Coverage for this level 
is more likely to be stated by counting all of the methods in the model 



 132

rather than all of the classes. 

The more abstract the classes, the higher the level of coverage that should 
be required. To omit a single abstract class from the coverage in testing 
overlooks the defects that could potentially be found in all of the concrete 
classes that eventually are derived from the abstract class. When testing at 
a concrete-class level, omitting a class during testing only overlooks the 
defects in that one class. 

The higher the level of abstraction of the model, the higher the level of 
coverage that is required. 

Reviews usually involve a discussion of the role of each piece of a model from a 
high level. The relationships between pieces are also explained in terms of the 
specified interfaces at the formal parameter level. The test cases created using this 
technique allow these same pieces and relationships to be examined at a much 
more concrete level that assigns specific values to the attributes of the objects. The 
test cases should be written at a level that is sufficiently specific to support tracing 
exact paths of execution through the logic of the algorithms, but not so specific that 
the code must be written first. 

 

Should test cases be available to developers prior to 
the inspection session? 

There has to be a balance between allowing 
developers to program to the tests and having the 
developers duplicate the effort of the testers by 
coming up with their own use scenarios. If the testers 
were going to develop all possible scenarios then 
giving those to the developers and sampling from 
them for model testing would be acceptable. Since the 
testers usually only create a small percentage of the 
possible scenarios, it is doubtful that they are 
duplicating the work of the developers who 
independently will (we hope) identify other scenarios. 
So, our general approach is to not let the developers 
have the scenarios prior to the inspection session. 
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Many object-oriented software development methods discuss using one or more 
diagrams within a model to evaluate the other diagrams. For example, a sequence 
diagram traces a path through the class diagram in which the messaging arrows in 
the sequence diagram are supposed to correspond to associations found in the class 
diagram. However, these development methods do not ensure a systematic 
coverage of the model. One step in guided inspection checks the internal 
consistency and completeness of the diagrams using the diagrams created during 
test execution. 

 

Should testers only use test cases for the current 
increment in an inspection session? 

No. Running a test scenario from a previous 
increment as a regression check on the model is a 
useful idea. The regression scenarios should be 
chosen to include those that failed in the previous 
increment and those that cover areas most likely to 
have been changed to incorporate the functionality of 
the current increment. 

 

Evaluation Criteria 

We are essentially trying to answer three questions as we inspect the MUT: 

• Is the model correct? 
• Is the model a complete representation of the information? 
• Is the model internally consistent and consistent with its basis model? 

Correctness is a measure of the accuracy of the model. At the analysis level, it is 
the accuracy of the problem description. At the design level, it is how accurately 
the model represents the solution to the problem. At both levels, the model must 
also accurately use the notation. The degree of accuracy is judged with respect to a 
standard that is assumed to be infallible (referred to as "the oracle"), although it 
seldom is. The oracle often is a human expert whose personal knowledge is 
considered sufficient to be used as a standard. The human expert determines the 
expected results for each test case. 
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Testing determines that a model is correct with respect to a test case if the result of 
the execution is the result that was expected. (It is very important that each test 
case have an expected result explicitly stated before the test case writer becomes 
biased by the results of the inspection.) The model is correct with respect to a set of 
test cases if every test case produces the expected result. 

In the real world, we must assume that the oracle can be incorrect on occasion. We 
often separate the domain experts on a project into two teams who represent 
different perspectives or approaches within the company. One team constructs the 
model and at the same time, the second team develops the test cases. This check 
and balance doesn't guarantee correct evaluations, but it does raise the probability. 
The same is true for every test case. Any of them could specify an incorrect, 
expected result. The testers and developers must work together to determine when 
this is the case. 

Completeness is a measure of the inclusiveness of the model. Are any necessary, 
or at least useful, elements missing from the model? Testing determines whether 
there are test cases that pose scenarios that the elements in the model cannot 
represent. In an iterative incremental process, completeness is considered relative 
to how mature the current increment is expected to be. This criteria becomes more 
rigorous as the increment matures over successive iterations. 

One factor directly affecting the effectiveness of the completeness criteria is the 
quality of the test coverage. The model is judged complete if the results of 
executing the test cases can be adequately represented using only the contents of 
the model. For example, a sequence diagram might be constructed to represent a 
scenario. All of the objects needed for the sequence diagram must come from 
classes in the class diagram or it will be judged incomplete. However, if only a few 
test cases are run, the fact that some classes are missing may escape detection. For 
the early models, this inspection is sufficiently high level that a coverage of 100% 
of all use cases is necessary. 

Consistency is a measure of whether there are contradictions within the model or 
between the current model and the model upon which it is based. Testing identifies 
inconsistencies by finding different representations within the model for similar 
test cases. Inconsistencies may also be identified during the execution of a test case 
when the current MUT is compared to its basis model or when two diagrams in the 
same model are compared. In an incremental approach, consistency is  judged 
locally until the current increment is integrated with the larger system. The 
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integration process must ensure that the new piece does not introduce 
inconsistencies into the integrated model.  

Consistency checking can determine whether there are any contradictions or 
conflicts present either internal to a single diagram or between two diagrams. For 
example, a sequence diagram might require a relationship between two classes 
while the class diagram shows none. Inconsistencies will often initially appear as 
incorrect results in the context of one of the two diagrams and correct results in the 
other. Inconsistencies are identified by careful examination of the diagrams in a 
model during the simulated execution. 

Additional qualities— defines a number of system attributes that the development 
team might wish to verify. For example, architectural models usually have 
performance goals to meet. The guided inspection test cases can be used as the 
scenarios for testing performance. Structural models used to compute performance 
can be applied to these scenarios, which are selected based on the use profile to 
estimate total performance and to identify potential bottlenecks. 

If the architecture has an objective of facilitating change, test cases based on the 
change cases should be used to evaluate the degree of success in achieving this 
objective (see Testing Models for Additional Qualities on page 151). 

 

Organization of the Guided Inspection Activity 

Basic Roles 

In the guided inspection activity there are three key roles that must be assumed by 
the available personnel. 

1. Domain expert—  The people in this role are the source of truth (or at least 
expected results). They define the expected system response for a specific 
input scenario. In many domains, the experienced developers are experts in 
their domain. They can provide a first line of validation. However, an 
additional, outside source of expertise is usually essential to the inspection 
process. 

2. Tester—  The people in this role conduct the analysis necessary to select 
effective test cases. Testers are often the creators of the basis model. When 
the scope of the inspection is at a system-wide level, the test case writers are 
often the system test team. They construct the input scenario specialized 
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from the preconditions of a use case, the test actions as taken from the 
scenario, alternate paths, or exceptions sections of the use case, and the 
expected result as defined by the domain expert. 

3. Developer—  The creators of the MUT perform the role of "developer." 
They provide information that is not captured in the model. Except for those 
projects that generate code directly from a model, most developers leave 
many details out of the models, thus the necessary information is only 
available from the developers. The development staff walks the inspectors 
through the model, tracing actions on diagrams, showing the relationships 
between diagrams, and providing the actual system response at a level 
appropriate to the current maturity of the development. 

Individual Inspection 

Guided inspection begins with a desk check like traditional inspection techniques. 
Each tester completes a checklist specific to the type of model being inspected. 
Certain incompleteness and inconsistency faults can easily be found during this 
task. This also turns out to be the easiest task to automate. A number of tools offer 
some limited amount of static checks, which are basically syntactic. We have had 
success in expanding that capability with the scripting languages in some of the 
design environments. We won't name names since the landscape changes almost 
daily, but check out this feature as part of your next tool purchase evaluation. 

 

Preparing for the Inspection 

Specifying the Inspection 

When a guided inspection is planned, the scope and depth of the material to be 
inspected should be specified. The earliest models, such as requirements and 
domain models, may be inspected in their entirety at a single session. Later models 
will usually be too large to allow this. In Realistic Models (below), we talk about 
ways of creating modular diagrams that can be grouped into different-sized pieces. 
Having modular models facilitates limiting an inspection to the work of a single 
group or even to a specific class hierarchy. 

The scope of an inspection is defined by specifying a set of use cases, a set of 
packages, or abstract classes/interfaces. The scope determines starting points for 
scenarios, but other classes are pulled into scope as they are needed to support the 
scenarios. 
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The depth of the inspection is defined by specifying layers in aggregation 
hierarchies under which messages are not sent. The bottom layer classes simply 
return values with no indication of how the value was computed. 

Realistic Models 

It is usually not possible, or desirable to capture all of the details of an industrial-
strength program in a few comprehensive diagrams in a single model. There will 
need to be multiple class diagrams, state diagrams, and, of course, multitudes of 
sequence diagrams. In preparation for the guided inspection, the developers should 
organize the model to facilitate the review by creating additional diagrams that link 
existing ones or by revising diagrams to conform to the scope of the inspection. 

One basic technique that makes the model more understandable is to layer the 
diagrams. This results in more individual diagrams, but each diagram is 
sufficiently modular to fit within the scope of a specific inspection. The diagrams 
are easier to create because they follow a pattern. 

Figure 4.6 illustrates one type of layering for class diagrams in which classes are 
grouped into packages and those packages may be enclosed in another package. 
Additionally, we often show all of the specializations from an abstract class as one 
diagram (see Figure 4.7) and all of the aggregation relationships for a class in 
another diagram. 

Figure 4.6. Class diagram layered into packages 
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Figure 4.7. Separating relationships 

 

Figure 4.8 shows a technique for linking class diagrams. The work of one team 
uses the work of other teams. This can be shown by placing a class box from the 
other team on the edge of the team's diagram and showing the relationships 
between the classes. An inspection would be limited to the classes in the team's 
diagram. Messages to objects from the "boundary classes" would not be traced 
further. The return value, if any, would simply be noted. 

Figure 4.8. Links between class diagrams 
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Figure 4.9 illustrates a layering for sequence diagrams. At one level, the diagram 
terminates at an interface or abstract class. A sequence diagram is then constructed 
for each class that implements the interface or specializes the abstract class. 

Figure 4.9. Sequence diagram per interface implementation 

 

Selecting Test Cases for the Inspection 

There are usually many possible test cases that can be developed from any specific 
use case. Traditional testing techniques use techniques such as equivalence classes 
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and logical paths through the program as ways to select effective test cases. Test 
cases can be selected to ensure that specific types of coverage are achieved or to 
find specific types of defects. We use Orthogonal Defect Classification to help 
select test cases that are most likely to identify defects by covering the different 
categories of system actions that trigger defects. We use a use profile to select test 
cases that give confidence in the reliability of the product by identifying which 
parts of the program are used the most. 

Orthogonal Defect Classification as a Test Case Selector 

Orthogonal Defect Classification (ODC) [Chill92] is a scheme developed at IBM 
based on an analysis of a large amount of data. The activities that caused a defect 
to be detected are classified as "triggers." These are divided into groups based on 
when the triggers occurred, such as during reviews and inspections. Figure 4.10 is 
a list of attributes that trigger defects during reviews and inspections. The guided 
inspection technique uses several of these triggers as a guide to selecting test cases. 
We will delineate several of these triggers as we proceed, but we will address a 
few of these now. 

1. Design conformance is addressed by comparing the basis model to the MUT 
as well as comparing the MUT to the requirements. This comparison is a 
direct result of the test case execution. 

2. Concurrency is a trigger that will be visible in the design model and 
scenarios can be generated that explicitly explore thread interactions. The 
UML activity diagram will be the primary source for symbolic execution. 

3. Lateral compatibility is activated by the trace of scenarios between objects 
on sequence diagrams. 

Figure 4.10. ODC review and inspection triggers 
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By structuring the guided inspection process so that as many of these triggers as 
possible are encountered, you ensure that the tests that guide the inspection are 
more likely to "trigger" as many failures as possible. 

Use Profiles as a Test Case Selector 

A use profile (see Use Profiles on page 130) for a system is an ordering of the 
individual use cases based on a combination of the frequency and criticality values 
for the individual use cases. The traditional operational profile used for procedural 
systems is based strictly on frequency-of-use information. Combining the 
frequency and criticality ratings to order the use cases provides a more meaningful 
criteria for ensuring quality. For example, we might paint a logo in the lower right-
hand corner of each window. This would be a relatively frequent event, but should 
it fail, the system will still be able to provide important functionality to the user. 
Likewise, attaching to the local database server would happen very seldom but the 
success of that operation is critical to the success of numerous other functions. The 
number of test cases per use case is adjusted based on the position of the use case 
in the ranking. 

Risk as a Test Case Selector 

Some testing methods use risk as the basis for determining how much to test. This 
is useful during development when we are actively searching for defects. It is not 
appropriate after development when we are trying to achieve some measure of 
reliability. At that time, the use profile technique supports testing the application in 
the way that it will be used. 

Our use case template captures the information needed for each of the techniques 
so that they can be used throughout the complete life cycle. We use the 
frequency/criticality information instead of the risk information for guided 
inspection because we are trying to capture the same perspective as the testing of 
the system after development. For situations in which the inspection is only 
covering a portion of the design, using the risk information may be equally 
relevant. 

Technique Summary— Creating Test Cases from Use Cases 

A test case consists of a set of preconditions, a stimulus (inputs), and the 
expected response. A use case contains a series of scenarios: the normal 
case, extensions, and exceptional cases. Each scenario includes the action 
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taken by an actor and the required response from the system that 
corresponds to the basic parts of a test case. To construct a test case from 
the scenario, each part of the scenario is made more specific by giving 
exact values to all attributes and objects. This requires coordination 
between the use case diagram and the other diagrams. The "things" 
mentioned in the scenario should translate into some object or objects 
from the class diagram. Each of these objects should be in specific states 
defined in the state diagrams for those classes. The actions in the use case 
will correspond to messages to the objects. 

Each scenario can result in multiple test cases by selecting different values 
(that is, states) for the objects used in the use case. The expected result part 
of the test case is derived from the scenario portion of the use case and the 
specific values provided in the input scenario. The following is a use case 
scenario and the corresponding test case. 

• Subsystem use case: A movablePiece receives a tick() message. 
It must then check to determine whether it collided with a 
stationaryPiece. 

• Test precondition: The puck is located within less than a tick of a 
brick and is headed for that brick. 

• Test case: Input— The puck receives a tick message. 
• Expected result: The puck has changed direction and the brick has 

changed its state from active to kaput, indicating that it has broken, 
and disappears. 

Creating Test Cases 

Test cases for a guided inspection are scenarios that should be represented in the 
MUT. Before the requirements model is verified, the scenarios come from a team 
of domain experts who are not producing the requirements. Later, we will see how 
this is done. For now we will focus on test cases that are based on the system 
requirements. 

The use case template that we use (see an abbreviated version in Figure 4.11) has 
three sources of scenarios. The Use Scenario is the "sunny-day" scenario that is 
most often the path taken. The Alternative Paths section may list several scenarios 
that differ from the use scenario in a variety of ways, but still represent valid 
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executions. The Exceptional Paths section provides scenarios that result in error 
conditions. 

Figure 4.11. An example of a use case 

 

Completing Checklists 

Prior to the interactive inspection session, the inspectors examine the models for 
certain syntactic information that can be evaluated just from the information 
contained in the model. This portion of the technique is not concerned with the 
content but only the form of the model. Figure 4.12 shows the checklist used 
during the design phase. The checklist is divided into two parts. One part addresses 
comparisons between the analysis model and the MUT. For example, the checklist 
reminds the inspector to check whether classes that have been deleted should have 
been deleted because of the differences between analysis and design information. 
The second part covers issues within the MUT. The checklist guides the inspector 
to consider whether the use of syntax correctly captures the information. For 
example, it guides the inspector to consider the navigability of the associations and 
whether they are correctly represented. 

Figure 4.12. Design phase checklist 
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The Interactive Inspection Session 

The testing portion of the guided inspection session is organized in one of two 
ways depending upon whether the model has been automated or not. If a prototype 
or other working model has been created, the session does not vary much from a 
typical code-testing session. The test cases provided by the testers are 
implemented, usually in some scripting language, and executed using the 
simulation facilities of the prototype of the model.  These test cases must be more 
rigorously specified than the test cases that will be used in an interactive session 



 145

with symbolic execution. The results of the execution are evaluated and the team 
determines whether the model passed the test or not. 

If the model has not been prototyped, the testing session is an interactive session 
involving testers and developers. The developers cooperate to perform a symbolic 
execution that simulates the processing that will occur when actual code is 
available. That is, they walk the testers through the scenarios provided by the test 
cases. 

The following additional roles are assigned to individuals in an interactive testing 
session. A person may take on the following roles simultaneously. 

• Moderator—  The moderator controls the session and advances the execution 
through the scenario. The session is not intended to debug, which the 
developers will want to do, nor to expand the requirements, which the 
domain experts will want to do. The moderator keeps the session moving 
over the intended material. 

• Recorder—  This person, usually a tester, makes annotations on the reference 
models as the team agrees that a fault has been found. The recorder makes 
certain that these faults are taken into consideration in the latter parts of the 
scenario so that time is not wasted on redundant identification of the same 
fault. The recorder also maintains a list of issues that are not resolved during 
the testing session. These may not be faults. Information may need to come 
from a team in another part of the project or a team member who is absent 
during the inspection. 

• Drawer—  This person constructs a sequence diagram as a scenario is 
executed. A drawer concentrates on capturing all of the appropriate details 
such as returns from messages and state changes. The drawer may also 
annotate the sequence diagram with information between the message arrow 
and the return arrow. 

Use Profiles 

One technique for allocating testing resources determines which parts of 
the application will be utilized the most and then tests those parts the most. 
The principle here is "test the most used, most critical parts of the program 
over a wider range of inputs than the lesser used, least critical portions to 
ensure the greatest user satisfaction." A use profile is a ranking of the use 
cases based on the combined frequency/criticality values. This can be 
viewed as a double sort of the use cases based on the number of times that 
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an end-user function (interface method) is used, or is anticipated to be 
used, in the actual operation of the program and the criticality of each of 
these uses. The criticality is a value assigned by the domain experts and 
recorded in each use case. The frequency information can be obtained in a 
couple of ways. 

First, data can be collected from actual use perhaps during usability testing 
or during the actual operation if we will be testing a future version of the 
product. This results in a raw count profile. The count for each behavior is 
divided by the total number of invocations to produce a percentage. A 
second approach is to reason about the meanings and responsibilities of 
the system interface and then estimate the relative number of times each 
method will be used. The result is an ordering of the end-user methods 
rather than a precise frequency count. The estimated number of 
invocations for each behavior is divided by the total number of invocations 
to provide a percentage. The percentage computed for each use determines 
the percentage of the test suite that should be devoted to that use. 

As an example, the Exit function for Brickles will be successfully 
completed exactly once per invocation of the program but the NewGame 
method may be used numerous times. It is conceivable that the Help 
function might not be used at all during a use of the system. This results in 
a profile that indicates an ordering of NewGame, Exit, and Help. We 
can assign weights that reflect the relative frequency that we expect. If on 
average we would estimate that a player would play 10 games prior to 
EXITing the system, the weights would be 10, 1, 1. The NewGame 
function should be exercised in 82.5% (10 out of 12) of the test cases 
while the Help function and Exit should each constitute 8.5%. 

The guided inspection session can easily slip into an interactive design session. 
The participants, particularly the developers, will typically want to change the 
model during the testing session as problems are encountered. Resist this urge. 
This is the classic confusion between testing and debugging and diverts attention 
from other defects that are found. The recorder captures the faults found by the 
inspection so that they can be addressed later. This keeps attention focused on the 
search for faults and prevents a "rush to judgment" about the precise cause of the 
defect. If a significant number of problems are found, end the session and let the 
developers work on the model.  
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Testing Specific Types of Models 

The basic guided inspection technique does not change from one development 
phase to another, but some characteristics of the model content and some aspects 
of the team do change. 

• The level of detail in the model becomes greater as development proceeds. 
• The amount of information also increases as development proceeds. 
• The exact interpretation of the evaluation criteria can be made more specific 

for a specific model.  
• The membership of the inspection team changes for different models. 

We will now discuss models at several points in the life cycle. 

Requirements Model 

The requirements for an application are summarized by creating a model of the 
uses of the system. The UML construct used for this model is the use case 
developed by Jacobson [JCJO92], which is discussed in Chapter 2. Figure 4.13 is 
an abbreviated version of the text format used for a use case. Figure 4.14 shows the 
UML use case diagram for the Brickles example, and Figure 4.16 through Figure 
4.21 show the use-case text descriptions. The use case diagram captures 
relationships between the use cases. Individual use cases are broken into "sub-use 
cases" using the uses and extends relationships. Later, in Chapter 9, we will use 
these relationships to structure the system test cases. The text descriptions capture 
the majority of the information for each use case. While the relationships are used 
to structure tests, the text descriptions are used to provide most of the information 
for a test case. 

Figure 4.13. An example of a use case 
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Figure 4.14. Brickles use case model 

 

Figure 4.15. Criteria for requirements inspection 

 

Figure 4.16. An example of use case #1 
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Acceptance testing often finds faults that result from problems with the 
requirements. The typical problems include missing requirements (an incomplete 
requirements model), requirements that contradict each other (an inconsistent 
model), and scenarios in which the system does not behave as the client intended 
(an incorrect model). Many of these problems can be identified much earlier than 
the acceptance test phase using guided inspection. 

The criteria for evaluating the models is interpreted specifically for the 
requirements model in Figure 4.15. Completeness is a typical requirements 
problem for which the iterative, incremental process model is a partial solution. 
Guided inspection can offer further help by requiring a detailed examination by an 
independent group of domain experts and product definition people. This 
examination will identify many missing requirements much earlier than the typical 
process. 

The detailed examination will also search for correctness faults. The act of writing 
the test cases for the guided inspection will identify many requirements that are not 
sufficiently precise to allow a test case to be written. Running the test cases will 
provide an opportunity for the independent group to identify discrepancies between 
the expected results in the test cases and the actual content of the requirements 
model. 

The larger the system, the more problem there is with the consistency of the 
requirements. In addition to contradictions, there is often the need to identify 
places where one use case supersedes another. For example, one use case calls for 
an action to happen at least within ten seconds while another expects the same 
action to occur within seven seconds. The use of the end-to-end scenarios that trace 
a complete action will help locate these inconsistencies. 
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One feature of the requirements model that affects how the inspection is organized 
is that there is no UML model on which the requirements are based. So 
comparisons to the basis model refer to documents produced by marketing, system 
engineering, or client organizations. Since this is a notorious source of defects, we 
will expend extra effort in verifying the requirements model. 

The roles for this inspection are assigned as shown in Figure 4.22. You will want 
to adapt these to your situation. The domain expert provides the "correct" answers 
for test cases. In this case that means agreeing or disagreeing that a use case 
adequately represents the required functionality. Using the system testers in the 
tester role provides the system testers with an early look at the source of 
information for the system test cases and an opportunity to have input into 
improving the use cases. We also use a second group of domain experts and 
product definition people to work with the system testers. This provides a source of 
scenarios that is independent of the people who wrote the requirements. Some 
organizations will have the use cases written by developers rather than a separate 
organization of system engineers, and these developers will be the ones to execute 
test cases. 

Figure 4.17. An example of use case #2 

 

Figure 4.18. An example of use case #6 
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Figure 4.19. An example of use case #4 

 

Figure 4.20. An example of use case #5 

 

Figure 4.21. An example of use case #6 
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Figure 4.22. Roles in requirements inspection 

 

Tip 

When dividing the domain experts into two groups, don't divide based on 
ideology. That just precipitates theoretical debates. Divide the experts so 
that each team has representation from as many "camps" as possible. 

 

The basic outline of "testing" the requirements model is given in the following list 
along with an example using Brickles. The example is given in italics. 

1. Develop the ranking of use cases by computing the combined frequency and 
criticality information for the use cases. Figure 4.23 gives the ranking for 
Brickles. 

Figure 4.23. Brickles use cases 
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2. Determine the total number of test cases that can be constructed given the 
amount of resources available. It should be possible to estimate this number 
from historical data. We will assume we have time for 15 test cases. 

3. Ration the tests based on the ranking. Note how in Figure 4.23 only 14 of the 
15 are assigned since it is impossible to evenly split the number of tests. The 
15th test would be allocated to the category showing the most failures in the 
initial round of testing. 

4. Write scenarios based only on the knowledge of those in the domain expert's 
role. The number of scenarios is determined by the values computed in Step 
3. The player starts the game, moves the paddle, and has broken several 
bricks by the time he loses the puck. The system responds by providing a new 
puck. 

5. In a meeting of the producers of the requirements and the test scenario 
writers, the writer presents each scenario and the requirements modelers 
identify the use case that contains the test scenario as either a main scenario, 
extension, exception, or alternative path that represents the scenario. If no 
match is found, it is listed as an incompleteness defect. If the scenario could 
be represented by two or more use cases (on the same level of abstraction), 
an inconsistency defect has occurred. In both of these cases, the first 
question asked is whether there is an incorrectness defect in the statement of 
a use case that, if corrected, would handle the scenario accurately. In the 
scenario provided in Step 4 there is no mention of the limited number of 
pucks. The system may not be able to provide a puck if the supply is 
exhausted. The requirement should be explicit about a fixed number of 
pucks. 

Much of this effort will be reused in the testing of other models. Both the ranking 
of use cases and construction of test cases will produce reusable assets. The 
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requirements model will serve as the basis for testing several other models, and 
therefore, these test cases can be reused. 

Analysis Models 

We will be concerned with two types of analysis models: domain analysis and 
application analysis models. The two types model existing knowledge. One models 
the knowledge in a domain while the other models knowledge about the product. 

Domain Analysis Model 

The domain analysis model represents information about a domain of knowledge 
that pertains to the application about to be constructed. As such, it is derived from 
the literature and knowledge about the domain as opposed to another UML model. 
Although many projects are satisfied with creating a domain model that is only a 
simple class diagram, most domains encompass standard algorithms and many 
refer to states that are characteristic of the concepts being represented. Figure 4.24 
shows the interpretation of the evaluation criteria for a domain model.  

Figure 4.24. Criteria for domain model inspection 

 

The domain model is a representation of the knowledge in a domain as seen 
through the eyes of a set of domain experts. As is to be expected, there can be 
differences of opinion between experts. For this reason, we have found it useful to 
divide the available set of experts into two groups. One group, the larger, creates 
the domain model while the second group serves as the testers of that model. In 
Figure 4.25, group one is referred to as the developers and group two is referred to 
as both testers and domain experts. This check and balance between the groups 
provides a thorough examination of the model.  

Figure 4.25. Roles in domain model inspection 
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Figure 4.26 relates portions of the class diagram from the domain models for 
Brickles to its application analysis model. Note that there are two domains 
represented, Interactive Graphics and Games. The test cases for this model will 
come from the second group of domain experts. They consider how these concepts 
are used in the typical applications in which they have had experience. The test 
cases will be written by a team composed of a system tester who knows how to 
write test cases, and the second group of domain experts. A test case only states 
details down to the level of the domain concepts. Any actions are domain 
algorithms. 

Figure 4.26. Mapping domain models onto application analysis 
models 

 

A test case for the Interactive Graphics domain model would look like the 
following: 

Assume that a canvas has been created and asked to display a shape. 
How will the canvas know where to locate the shape? It is expected 
that a mouseEvent would provide the coordinates to which a 
system user points. 
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Application Analysis Model 

There will usually be multiple domain models for a large project. All of these 
contribute to the single application analysis model. Some parts of each domain 
model will be thrown away because they are outside the scope of this particular 
project. Some pieces of domain models will be merged to provide a single element 
in the application model. This makes judging completeness during the inspection 
more difficult since there is not a direct mapping from one model to another. 
Criteria and roles are shown in Figures 4.27 and 4.28. 

Figure 4.27. Criteria for application analysis model inspection 

 

Figure 4.28. Roles in application analysis model inspection 

 

An analysis model can be too complete. That is, it can contain design information 
that the project team has erroneously made part of the requirements. This leads to 
an overly constrained design that may not be as flexible as possible. As the 
inspection team measures the test coverage of the model, they examine pieces that 
are not covered to determine whether they should be removed from the model. 

Figure 2.13 shows the class diagram for the application analysis model for Brickles 

A test case for the application analysis model would look like the following: 

Assume that a match has been started and the playfield has been 
constructed. How will a paddle prevent a puck from striking the floor 
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boundary? It is expected that the paddle will move into the trajectory 
of the puck and collide with it. The collision will cause the puck to 
change direction by reflecting off the middle third of the paddle at the 
same angle from the point of impact. 

Design Models 

There are three levels of design in an object-oriented project: architectural, 
mechanistic, and detailed. We will focus on two basic design models that 
encompass those three levels: the architectural design model and the detailed class 
design model. The architectural model provides the basic structure of the 
application by defining how a set of interfaces are related. It also specifies the 
exact content of each interface. The detailed class model provides the precise 
semantics of each class and identifies the architectural interface to which the class 
corresponds. 

Architectural Model 

The architectural model is the skeleton of the entire application. It is arguably the 
most important model for the application so we will go into a fair amount of detail 
in this section. This is the model in which the nonfunctional requirements are 
blended with the functional requirements. This provides the opportunity to use the 
scenarios as a basis for modeling performance and other important architectural 
constraints. 

An architectural design test case would look like the following: 

Assume that the BricklesDoc and BricklesView objects have 
been constructed. A tick message is sent to every MovablePiece. 
How does the BricklesView receive the information necessary to 
update the bitmaps on the screen? It is expected that the 
BricklesDoc object will calculate the new position of each bitmap 
before it notifies the BricklesView that a change has occurred. 
The BricklesView object will call methods on the 
BricklesDoc object to obtain all of the information that it needs to 
update the display. 

We will use the architecture of our game framework to illustrate the variety of 
techniques considered in this section. We first implemented the framework in C++ 
using the Microsoft Foundation Classes (MFC), which imposes an architecture 
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known as Document/View and is a variant of the canonical Model/View/Controller 
(MVC) architecture [Gold89]. The framework was then implemented in Java using 
the java.awt package, which supports a slightly different form of MVC. In each of 
these efforts the user interface classes present the state of the game to the user. To 
achieve this, the user interface has to maintain some state itself. A typical fault for 
these systems would be for the state in the user interface to be different from the 
state maintained in the classes implementing the model. 

A software architecture is the basic structure that defines the system in terms of 
computational components and interactions among those components [ShGa96]. 
We will use the terms component and connector to describe the pieces of an 
architecture. In the UML notation, components of the architecture are represented 
as classes with interfaces. If the connectors between components do not have any 
explicit behavior, they can be represented by simple relationships between classes. 
If the connectors do have state and/or meaningful behavior then they are 
represented by objects. 

Representations for Architectures 

There are three types of information that are widely used to represent an 
architecture: relationships, states, and algorithms. The basic UML modeling 
language has the advantage that it can be used for all three design models as well 
as the analysis models. Using the same notation for all three levels of models 
eliminates the need to learn multiple notations. Notations such as the UML are 
sufficiently simple in that no special tools are required, although for large models, 
tool support quickly becomes a necessity. Tools such as Rational Rose perform a 
variety of consistency checks on the static-relationship model. With this type of 
representation, the test cases are manually executed using the technique discussed 
previously. However, UML does not have specific syntax for describing 
architectures so the concept/token mapping between the architecture and UML 
symbols is ad hoc. 

Tools such as ObjectTime [Selic94] and BetterState [BetterState00] provide 
facilities for "animating" design diagrams and provide automatic checking of some 
aspects of the model. In particular, they support a simulation mechanism that can 
be used to execute scenarios. The diagrams are annotated with detailed scenario 
information as well as special simulation information. The developer can "play" 
scenarios and watch for a variety of faults to be revealed. This approach makes the 
creation of new scenarios (and test cases) easier by providing a generalized 
template. One advantage of this approach is the combination of easy model 
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creation with powerful simulation facilities. Usually however, these tools have a 
limited set of diagram types. BetterState, for example, focuses on building a state 
model as the specification for the system. This leaves incomplete those static 
portions of the system that do not affect the state. The obvious benefit is that the 
scenarios are executed automatically. This makes it easier to run a wide range of 
scenarios at the price of more time needed to create the model initially. This 
approach is best suited to small, reactive systems or those systems whose 
requirements change very little during development. 

Often these tools will assist in finding some types of faults as the model is entered 
into the tool. Consistency checks will prevent certain types of connections from 
being established. Scenarios are represented in some appropriate format such as a 
sequential file of input values that are read at appropriate times. The actions of the 
simulation are often represented by events. Event handlers can be used to "catch" 
and "generate" events at a high level without the need to write detailed algorithms. 
This level of execution is sufficient for verifying that required interfaces are 
provided. It obviously is not sufficient for determining whether the functionality is 
correctly implemented. 

Finally, architectural description languages provide the capability to represent a 
system at a high level of abstraction. Languages such as Rapide [Luckham95], 
which has developed at Stanford University, allow the modelers to be as specific as 
they would like to be. The flow of computation is modeled by events that flow 
between components. One advantage of this approach is the control that this 
approach provides to the modeler. The language is sufficiently descriptive to 
support any level of detail that the modeler wishes to use, unlike the tools 
previously discussed, which have a fixed level of representation. The disadvantage 
is that these models are programs with all of the problems associated with that 
level of detail. 

When the model and test cases are represented in a programming language, the test 
execution can be performed automatically. The representation language may be a 
general purpose programming language used to implement a high-level prototype 
or a special purpose architectural description language such as Rapide, which is 
used to build a standard model. The level of detail represented in the prototype will 
determine how specific the testing can be. 

Testing the Architecture 
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The Software Architecture Testing (SAT) [McGr96] technique is a special type of 
guided inspection that requires the following usual steps in testing any product: (1) 
test cases are constructed; (2) the tests are conducted on the product; and (3) the 
results of the test are evaluated for correctness. This technique is a "testing" 
technique because there are very specific test cases, and there is the concept of an 
execution even if the execution is sometimes manual. The team that is assigned to 
drive this activity is divided as shown in Figure 4.29. We will provide additional 
detail on each of the steps. 

Figure 4.29. Roles in the architectural design model inspection 

 

Constructing Test Cases 

Test cases for the architecture are constructed from the use cases as described 
previously. Each use case describes a family of scenarios that specifies the 
different types of results that can occur during a specific use of the system. The test 
cases for the architecture are defined at a higher level than the more detailed design 
models. The results are used to evaluate the criteria shown in Figure 4.30. 

Figure 4.30. Criteria for the architectural design model inspection 

 

The test cases are essentially defined at a level that exercises the interfaces 
between subsystems. For example, for the game framework, the essential interface 
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is between a model and a view. The model is divided among the Puck, Paddle, 
and BrickPile classes. The view is concentrated in the BricklesView class. 

The Model/View architecture calls for most of the interaction to be from the view 
but with the model notifying the view when a change has occurred to the model. 
Since Brickles requires animation, we modified the architecture so that when the 
BricklesView object is created it is sent a series of messages that provide it 
with handles to the pieces of the model.  

The basic architectural model is given in Figure 4.31. With the analysis out of the 
way, the test cases can be selected. The two basic operations are (1) setup of the 
system and (2) repainting the screen after a move has occurred. Unlike many 
systems built on Model/View, there is no need to consider the ability to add 
additional views. We could define a test case for each operation; however, a single 
grand tour[1] case can be defined in this case. Usually grand tours are too large and 
give little information if they fail, but in this case the second operation cannot be 
realized without the first so it is a natural conjunction. 

[1] A grand tour is a test case that combines a number of 
separate test cases into one run. 

Figure 4.31. An architectural model for Brickles 

 

Test Execution 

The tests are executed as described for each specific type of representation. We 
have used the UML notation so this will be an interactive session. 
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We execute the test case by constructing a message-sequence diagram. The 
diagram reflects preconditions for a test case. The BricklesView object is 
created followed by a BricklesGame object. As the BricklesGame object is 
created, it creates a PlayField object that in turn creates Puck, Paddle, and 
BrickPile objects. The messages across the architectural boundaries are shown 
in bold italics in Figure 4.32. 

Figure 4.32. Test case execution 

 

Verification of Results 

Usually for architectures, this step is fairly simple, even though for the detailed 
functionality of the final application it can be very difficult. When the output from 
the test is in the form of diagrams, the resulting diagrams must be verified after 
each test execution by domain experts. When the output is the result of an 
execution, the test results can be verified by having those domain experts construct 
event sequences that would be produced by an architecture that performs correctly. 
The interpretation of the evaluation criteria is given in Figure 4.29. 

An Additional Example 

The architecture of Brickles is obviously very simple so let's consider the typical 
three-layer architecture. Although the diagram in Figure 4.33 is greatly simplified, 
we can consider the types of test cases that would be effective. The client is 
intended to interact with a user, do computations needed to format presentations, 
and interact with the business model residing on the application server. The 
application server is intended to be the primary computational engine, and it also 
handles interactions with the client and database components. Finally, the database 
component provides persistence for the business objects from the application 
server. 

Figure 4.33. Three-tiered architecture 
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The most important scenarios for this type of architecture include multiple 
client/single server and multiple client/multiple server scenarios. The discussion in 
the next section provides a technique for structuring these tests so that they are 
repeatable and representative. Useful coverage of this architecture includes 
exercising various combinations of threads. Since these systems are usually 
distributed, we will defer further discussion until Chapter 8. 

Evaluating Performance and Scalability 

The architecture of a system should be evaluated beyond correctness, 
completeness, and consistency. Most architectures will have a specified set of 
quality attributes and these should also be evaluated. A system that presents 
animation, as does Brickles, must meet performance goals. The scenarios used as 
test cases for the basic inspection can also be used to analyze the expected 
performance for the architecture. The SAAM [Kazman94] approach uses a free-
form analysis technique for analyzing performance. Software Architecture Testing 
(SAT) [McGr96] uses the testing perspective to ensure that the important features 
of the architecture are investigated. 

The test cases are symbolically executed and the message-sequence diagrams can 
be analyzed from a performance perspective. For the analysis, each connection 
between components in the architecture is assigned a "cost" that reflects the type of 
communication used by the connection. The number of messages in each scenario 
gives an indication of the relative performance although by itself the technique 
gives an order of magnitude to quantified value rather than a specific quantity. A 
more exact value can be computed by the following string: 

time to compute = n1c1 + n2c2 +... + nmcm 
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in which the c's are the connection types and the subscripts represent the number of 
each connection type in the scenario. If a use profile (see Use Profiles on page 130) 
is used to select a representative set of test cases, an accurate approximation to a 
typical user session can be computed. Worst and best case approximations can also 
be constructed. 

Design alternatives can be evaluated by comparing the message sequence diagrams 
and the relative quantities of messages. By using the same set of test cases, 
selected based on the use profile, a fair and realistic comparison can be made as to 
how the system will perform if constructed using each alternative. 

The performance of distributed systems can also be analyzed in this manner by 
annotating those messages that will be interprocess and interprocessor. The test 
case approach using a use profile produces a representative performance measure. 

The sequence diagrams can also be used to evaluate the scalability of the 
architecture. The following use profile indicates several types of users and 
different frequencies of operations in each: 

userType = p1s1, p2s2, ..., pnsn 
useProfile = q1ut1, q2ut2, ..., qmutm 

in which the p's and q's are the probability that a particular scenario and user type, 
respectively, will be selected. 

A scalability test case is a hypothetical mix of actors that is different from the 
current use profile, that is, a set of values for the q's in the useProfile equation. 
Usually, the different types of users will remain constant, but the relative number 
changes. The computation given previously is used for each scenario and for each 
user type. Then the number of each user type is used to aggregate further. The 
resulting values can identify the intensity of use for specific messages. 

Detailed Class Design Model 

The detailed class design model populates the architectural model with classes that 
will implement the interfaces defined in the architecture. This model typically 
includes a set of class diagrams, the OCL pre- and postconditions for every method 
of every class, activity diagrams of significant algorithms, and state diagrams for 
each class. The detailed design model for Brickles is shown in Figure 2.18, and 
additional detail is shown in Figure 2.15 for one specific class. 
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The model evaluation criteria are specialized in Figure 4.34. The focus is on 
compliance with the architecture. This reinforces the idea that the architecture is 
the keystone of the product. This is also the place where components will be reused 
and inserted into the system. The specification of the component should be 
included in the execution trace to ensure there is no need for an adapter between 
the component and the application. 

Figure 4.34. Criteria for the class design model inspection 

 

The roles are assigned in Figure 4.35. Notice that the architects have a role in 
testing the class diagram. The architects' responsibility to a project is to "enforce" 
the architecture. That is, the architect makes certain that developers do not violate 
the constraints imposed by the architecture. By selecting test cases and evaluating 
the results, the architects can gain detailed knowledge about the developers' 
implementation. 

Figure 4.35. Roles in class design model inspection 

 

A detailed class design test case would look like this: 

Assume that a puck is moving to the left and up, but will hit the left 
wall before hitting a brick. How will the puck's direction and speed be 
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changed when it hits the wall? It is expected that when the puck is 
found against the left wall, the wall will create a Collision object 
that will be passed to the puck. The puck will modify its velocity and 
begin to move to the right and up. It will be moving at the same speed. 

The test cases at this level are very much like the final system test cases. There is 
so much detail available at this level that the testers have to be careful to record all 
the model elements that are touched by test cases. Figure 4.34 shows the diagram 
elements that must be coordinated during the guided inspection session. As the test 
progresses, the executors select methods that will be invoked, the state model of 
the receiver is checked to be certain that the target object can receive the message. 
The messages are then added to the sequence diagram and the state models are 
updated to reflect changes in state. When a state in a diagram is shaded, there is 
additional detail to the state but that information is not needed to evaluate the 
current test. Sequence diagrams will also have "dead-end" objects in which the 
testers will not attempt to examine the logic beyond that object. 

Figure 4.36. A test environment 

 

This is the last step prior to implementation and code-based testing. Developers 
doing buddy testing of each other's code will benefit from coming back to the test 
cases created at this level of testing and translating these into class-level code tests. 
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Testing Again 

We are assuming that you are using an iterative development process as we do. 
That means that these tests must be repeatable. We have tried to accomplish this by 
writing down formal test cases as opposed to simply thinking up scenarios during 
the inspection session. 

On the second and succeeding iterations, we usually choose to reapply all those 
tests that were failed the last time and some of those that were passed. Tests may 
be added to cover the new features added. If any problems were discovered after 
the inspection was conducted, tests should be added to check for that problem as 
well. 

Tip 

Use guided inspection to transfer knowledge about the model under test. 
On a recent project, when the developer responsible for a specific piece of 
the design was leaving, we used a series of inspection sessions to bring 
other developers up to speed on their individual piece. A presentation by 
the developer, as opposed to an inspection, would have addressed the 
design in the way he knew it best, not in the way the other developers 
were viewing it. 

Testing Models for Additional Qualities 

Increasingly, projects are chartered to achieve more aggressive objectives such as 
the development of extensible designs, the design of reusable frameworks, or 
highly portable systems. The products of the analysis and design phases of these 
projects are most critical for achieving these types of objectives. In particular, the 
architecture is key to the success. Guided inspection can be used to ask metalevel 
questions about the system. In this mode, the test scenarios are developer actions 
on the system and not user actions. Instead of asking how the objects in the system 
would interact, the question is, "How must the classes of the system be changed to 
provide the newly required behavior?" 

The changes to the design or the revisions needed to produce a framework from an 
existing application can be captured as change cases [EcDe96]. A change case is a 
use case that is not a requirement of the system, but it is an anticipated change to 
the system. Guided inspection applies correctness, completeness, and consistency 
criteria to the current analysis and design models with the change cases as the 
source of test scenarios. 
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For example, if the project is to build a framework upon which future development 
will be based, it is not sufficient to test against the current uses for the system. 
Consider the change case shown in Figure 4.37. Test cases can give insight into the 
effort required to extend the framework by testing how complete the existing 
model is relative to the new requirements. The second change case, as shown in 
Figure 4.38, could be used to test the architecture. It would be used to determine 
how completely the existing architecture covers the new requirement. 

Figure 4.37. A change case for Brickles 

 

Figure 4.38. A second change case 

 

The technique for testing these objectives can be viewed as a series of steps. Each 
of the steps is described and accompanied by an example. 

• Explicitly state the objective that the change case will address. 

The design will be easily extensible to accommodate new games. 
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• Construct a "change case" including a specific scenario that illustrates the 
objective. 

The framework is to be used to implement pinball games that are user 
configurable. The obstacles to be available include posts, flippers, and 
bumpers. 

• Create test cases by sampling from the range permitted by the change case. 

A pinball game is to be created. Figure 4.39 illustrates two new states that 
might be added to the Brickles state machine. 

Figure 4.39. A state diagram for a pinball game 

 

• Enumerate the work needed to achieve the objective by specifying the 
differences in state and behavior required for the new objective. This can be 
accomplished by identifying the new subclasses that must be defined. 

The StationarySprite class will be subclassed to provide the new 
obstacles. A Ball class will extend MovableSprite and 
CollideWithBall methods would be required for all sprites. Attributes 
will be added to give a specific point value to each obstacle. The PinBall 
subclass of ArcadeGame would add a Score attribute. 

• Evaluate the current design relative to the design required to achieve the 
objective. Answer the following questions: "Are there fundamental concepts 
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missing that would have to be added?" and "Are there contradictions 
between what exists and what would be added?" 

The necessary base classes and methods are present. The needed attributes 
can be added without conflict with existing attributes. However, the 
Sprite class must be modified. 

• Repeat with additional test scenarios until all proposed changes are 
examined. 

The output of this process is a set of potential changes needed to achieve the 
desired system quality, such as extensibility. The inspection searches for missing 
concepts and contradictions between what exists in the model currently and what 
would need to be added to the model in order to achieve the new objective. This 
technique can provide early feedback to the development team about fundamental 
weaknesses in the design. 

 

Summary 

The techniques presented in this chapter are sometimes people intensive and 
scenarios should be systematically selected for maximum effectiveness. In 
particular choosing use cases that are less well understood or that represent high-
risk situations is recommended. This maximizes the likelihood of finding errors 
and omissions that will have maximum impact on the quality of the system. 

Figure 4.40 illustrates much of what we want you to get out of this chapter. The 
UML diagrams have been developed so that they are mutually supportive. The test 
cases developed in this chapter provide guidance for making a systematic search of 
the models for potential defects. 

Figure 4.40. Consistency between diagrams (SD = sequence diagram) 
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Why is this technique in a book on testing? First, it uses a testing perspective to 
focus the examination of the models. Second, much of this testing uses a system-
wide scope and thus it is a natural role for the system testers. They can participate 
in the development process from the earliest phases if they have responsibility for 
developing test cases from the use cases. In this chapter, we have presented an 
approach that will identify defects early in the development process and will 
support the early involvement of the test community, and the class integration and 
system testers in the development project. 

The checklist in Figure 4.41 summarizes the tasks described in this chapter. 

Figure 4.41. A guided inspection process checklist 
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Model-Testing Checklist 

The steps in this checklist are intended to ensure that all of the required activities in 
the guided inspection process are completed. A detailed process is defined in the 
addendum to this chapter. 

 

Exercises 

 

4-1. Using the use cases of your project as a starting point, you add the Frequency 
and Criticality fields to them. Perform the risk analysis for the use cases and fill in 
that field for each use case. Develop an ordering of uses that reflects how intensely 
each should be tested. Write test cases for the use cases in the model. Write one 
test case for the least important use case. Write additional test cases for each of the 
use cases. 

4-2. Conduct a guided inspection session for the initial analysis model for your 
project. Generate a report that lists the discrepancies between the models. 

4-3. Develop three scenarios from the use cases given in this chapter. Then, using 
the models given in Chapter 2 and Chapter 4, identify examples of incompleteness, 
inconsistency, and incorrectness. 

4-4. Select the phase in your software development process in which, in your 
estimation, more defects are created than any other. Design a guided inspection 
checklist that will lead developers to finding the types of defects created in that 
phase. 

 

Addendum: A Process Definition for Guided Inspection 



 173

Goal: To identify defects in artifacts created during the analysis and 
design phases of software construction. 

Steps in the Process 

1. Define the scope and depth of the guided inspection. 
2. Identify the basis model(s) from which the material being inspected was 

created. 
3. Assemble the guided inspection team. 
4. Define a sampling plan and coverage criteria. 
5. Create test cases from the bases. 
6. Apply the tests to the material.  
7. Gather and analyze test results. 
8. Report and feedback. 

Detailed Step Descriptions 

1. Define the scope and depth of the guided inspection. 

Inputs: 

The project's position in the life cycle. 

The materials produced by the project (UML models, plans, use 
cases). 

Outputs: 

A specific set of diagrams and documents that will be the basis 
for the evaluation. 

Method: 

Define the scope of the guided inspection to be the set of 
deliverables from a phase of the development process. Use the 
development process information to identify the deliverables 
that will be produced by the phase of interest. 

Example: 
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The project has just completed the domain analysis phase. The 
development process defines the deliverable from this phase as 
a UML model containing domain level use cases, static 
information such as class diagrams, and dynamic information 
such as sequence and state diagrams. The guided inspection 
will evaluate this model. 

2. Identify the basis model(s) from which the material being inspected was 
created. 

Inputs: 

The scope of the guided inspection. 

The project's position in the life cycle. 

Outputs: 

The material from which the test cases will be constructed (the 
model under test— MUT). 

Method: 

Review the development process description to determine the 
inputs to the current phase. The basis model(s) should be listed 
as inputs to the current phase. 

Example: 

The inputs to the domain analysis phase is the "knowledge of 
experts familiar with the domain." These mental models are the 
basis models for this guided inspection. 

3. Assemble the guided inspection team. 

Inputs: 

The scope of the guided inspection. 

Available personnel. 

Outputs: 
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A set of participants and their roles. 

Method: 

Assign persons to fill one of three categories of roles: 
Administrative, Participant in creating the model to be tested, 
Objective observer of the model to be tested. Choose the 
objective observers from the customers of the model to be 
tested and the participants during the creation of the basis 
model. 

Example: 

Since the model to be tested is a domain analysis model and the 
basis model is the mental models of the domain experts, the 
objective observers can be selected from other domain experts 
and/or from application analysts. The creation participants are 
members of the domain modeling team. The administrative 
personnel can perhaps come from other interested parties or an 
office that provides support for the conduct of guided 
inspections. 

4. Define a sampling plan and coverage criteria. 

Input: 

The project's quality plan. 

Outputs: 

A plan for how test cases will be selected. 

A description of what parts of the MUT will be covered. 

Method: 

Identify important elements of this MUT. Estimate the effort 
required to involve all of these in the guided inspection. If there 
are too many to cover, use information such as the RISK 
section of the use cases or the judgment of experts to prioritize 
the elements. 
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Example: 

In a domain model there are static and dynamic models as well 
as use cases. At least one test case should be created for each 
use case. There should be sufficient test cases to take every 
"major" entity through all of its visible states. 

5. Create test cases from the bases. 

Inputs: 

The sampling plan. 

MUT. 

Output: 

A set of test cases. 

Method: 

Obtain a scenario from the basis model. Determine the 
preconditions and inputs that are required to place the system in 
the correct state and to begin the test. Present the scenario to the 
"oracle" to determine the results expected from the test 
scenario. Complete a test case description for each test case. 

Example: 

A different domain expert than the one who supported the 
model creation would be asked to supply scenarios that 
correspond to uses of the system. The experts also provide what 
they would consider an acceptable response. 

6. Apply the tests to the material.  

Inputs: 

Set of test cases. 

MUT 
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Output: 

Set of test results. 

Method: 

Apply the test cases to the MUT using the most specific 
technique available. For UML models in a static environment, 
such as Rational Rose, an interactive simulation session in 
which the Creators play the roles of the model elements is the 
best approach. If the MUT is represented by an executable 
prototype then the test cases are mapped onto this system and 
executed. 

Example: 

The domain analysis model is a static UML model. A 
simulation session is conducted with the Observers feeding test 
cases to the Creators. The Creators provide details of how the 
test scenario would be processed through the model. Sequence 
diagrams document the execution of each test case. Use agreed-
upon symbols or colors to mark each element that is touched by 
a test case. 

7. Gather and analyze test results. 

Inputs: 

Test results in the form of sequence diagrams and pass/fail 
decisions. The marked-up model. 

Outputs: 

Statistics on percentage pass/fail. 

Categorization of the results. 

Defect catalogs and defect reports. 

A judgment of the quality of the MUT and the tests. 

Method: 
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Begin by counting the number of test cases that passed and how 
many have failed. Compare this ratio to other guided 
inspections that have been conducted in the organization. 
Compute the percentage of each type of element that has been 
used in executing the test cases. Use the marked-up model as 
the source of this data. Update the defect inventory with 
information about the failures from this test session. Categorize 
the failed test cases. This can often be combined with the 
previous two tasks by marking paper copies of the model. 
Follow the sequence diagram for each failed test case and mark 
each message, class, and attribute touched by a failed test case. 

Example: 

For the domain analysis model we should be able to report that 
every use case was the source of at least one test case, and that 
every class in the class diagram was used at least once. 
Typically, on the first pass, some significant states will be 
missed. This should be noted in the coverage analysis. 

8. Report and feedback. 

Inputs: 

Test results. 

Coverage information. 

Outputs: 

Information on what new tests should be created. 

Test report. 

Method: 

Follow the standard format for a test report in your organization 
to document the test results and the analyses of those results. If 
the stated coverage goals are met then the process is complete. 
If not, use that report to return to Step 5 and proceed through 
the steps to improve the coverage level. 
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Example: 

For the domain analysis tests, some elements were found to be 
missing from the model. The failing tests might be executed 
again after the model has been modified. 

Roles in the Process 

Administrator 

The administrative tasks include running the guided inspection 
sessions, collecting and disseminating the results, and aggregating 
metrics to measure the quality of the review. In our example, the 
administrative work could be done by personnel from a central office. 

Creator 

The persons who created the MUT. Depending on the form that the 
model takes, these people may "execute" the symbolic model on the 
test cases or they may assist in translating the test cases into a form 
that can be executed with whatever representation of the model is 
available. In our example the modelers who created the domain model 
would be the "creators." 

Observer 

Persons in this role create the test cases that are used in the guided 
inspection. In our example they would be domain experts and 
preferably experts who were not the source of the information that 
was used to create the model initially. 
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Chapter 5. Class Testing Basics 

• Want to know what to consider when testing a class? See Class Testing. 
• Want to know how to identify test cases for testing a class? See 

Constructing Test Cases. 
• Want to know a good way to implement a test driver for a class? See 

Constructing a Test Driver. 

In this chapter we describe how to test a single class. The techniques we describe 
in this chapter will be applied in later chapters when we discuss testing object 
interactions and testing classes in an inheritance hierarchy. For this discussion, we 
assume the code for a class has been written and needs to be tested. Our primary 
focus is on classes whose instances do not collaborate extensively with any other 
instance. We will use the Velocity and PuckSupply classes from Brickles to 
illustrate. We will address the testing of more complex classes in the next two 
chapters. 

 

Class Testing 

The fundamental unit of an object-oriented program is a class. Class testing 
comprises those activities associated with verifying that the implementation of a 
class corresponds exactly with the specification for that class. If an implementation 
is correct, then each of the class's instances should behave properly. 

Class testing is roughly analogous to unit testing in traditional testing processes 
and has many of the same problems that must be addressed (see sidebar). Class 
testing must also address some aspects of integration testing since each object 
defines a level of scope in which many methods interact around a set of instance 
attributes. Some of the most critical issues will be discussed in the context of 
concurrent issues in Chapter 8. The focus of this chapter is execution-based testing 
of classes. Our primary objective is to describe basic elements and strategies of 
testing classes, and we will focus on relatively simple classes. The testing of more 
complex classes will be addressed in the next two chapters. 

We assume that a class to be tested has a complete and correct specification, and 
that it has been tested within the context of the models.[1] We assume the 
specification is expressed in a specification language such as the Object Constraint 
Language (OCL) [WK99] or a natural language, and/or as a state transition 
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diagram. If more than one form of specification is used for a class, we assume all 
forms are consistent and that information may be taken from whichever form is 
most useful as the basis for developing test cases for the class. We prefer to use the 
most formal specification for generating test cases. 

[1] Consistency is primarily a design consideration. When class 
testing is underway, design for the class should be finished— at 
least as far as the current development iteration is concerned. 

Ways to Test a Class 

The code for a class can be tested effectively by review or by executing test cases. 
Review is a viable alternative to execution-based testing in some cases, but has two 
disadvantages over execution-based testing: 

• Reviews are subject to human error. 
• Reviews require considerably more effort with respect to regression testing, 

often requiring almost as many resources as the original testing. 

While execution-based testing overcomes these disadvantages, considerable effort 
can be required for the identification of test cases and the development of test 
drivers. In some cases, the effort needed to construct a test driver for a class can 
exceed the effort of developing that class by several orders of magnitude. In that 
case, the costs and benefits of testing the class "outside" the system in which it will 
be used should be evaluated. This situation is not peculiar to object-oriented 
programming. The same situation arises in traditional procedural development with 
respect to many of the subprograms invoked at upper levels in a structure chart. 

Traditional Unit Testing 

The purpose of unit testing is to ensure that each unit meets its 
specification. If each unit meets its specification, then any bugs that appear 
when units are integrated together are more likely caused by incorrect 
interfacing of units than by incorrect implementations of the units. 
Debugging efforts can then be concentrated on the interfaces, not on the 
units themselves. 

Unit testing is done as units are developed. In the procedural paradigm, a 
unit is a procedure (or function) or sometimes a group of procedures that 
implement an abstract data type. Units are typically tested by a 
combination of code inspections and execution testing, with most 
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emphasis being placed on the latter. A simple unit test plan can be 
developed that identifies the test cases needed, and then a test driver can 
be constructed in a straightforward manner. 

This all sounds good in theory, but in practice a number of stumbling 
blocks can arise. Typically, only the simplest of units— those that appear 
as terminal nodes in a structure chart— can be tested without significant 
effort. Test cases for such units tend to be easy to identify, and test drivers 
tend to be easy to construct if parameters do not have much structure to 
them. 

Even units that have parameters with significant structure can sometimes 
be unit tested without significant effort if the driver can initialize the actual 
parameters with a relatively few assignment or read operations. Note, 
however, that this increases the amount of coupling between the unit and 
its test driver, which can increase maintenance costs if the structure 
changes over time. 

While units at the lower levels in a structure chart can be unit tested in a 
straightforward way, at some point— perhaps two or three levels from the 
bottom— the interactions between units become so interwoven that unit 
testing becomes impractical. The effort required to produce a test driver 
can be greater than testing the unit in the context of testing a larger 
assembly. In some cases, the code for a test driver can be significantly 
larger than the code in the unit under test. This introduces an issue of unit 
testing the test driver itself. 

Once we have identified executable test cases for a class, we must implement a test 
driver to run each of the test cases and report the results of each test case run. The 
test driver creates one or more instances of a class to run a test case. It is important 
to keep in mind that classes are tested by creating instances and testing the 
behavior of those instances (see Definitional versus Operational Semantics of 
Objects on page 19). The test driver can take a number of forms that we will 
describe later in this chapter. We favor the form of a separate "tester" class over the 
others because it offers a convenient organization for managing drivers and 
inheritance, and can be used to capture commonality among them. More benefits 
arise in testing class hierarchies, as we show in Chapter 7. 

Dimensions of Class Testing 
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For each class, we must decide whether to test it independently as a unit or in some 
way as a component of a larger part of the system. We base that decision on the 
following factors: 

• The role of the class in the system, especially the degree of risk associated 
with it. 

• The complexity of the class measured in terms of the number of states, 
operations, and associations with other classes. 

• The amount of effort associated with developing a test driver for the class. 

If a class is to be part of a class library, extensive class testing is appropriate even 
though the cost of developing a test driver might be high because its correct 
operation is essential. In the context of Brickles, we associate high risk with some 
of the most basic classes, such as Velocity and PuckSupply. If they are not 
implemented correctly, the game program will not work. Writing code to test these 
classes is straightforward because in the system design, they do not have to 
collaborate with other Brickles classes. We associate high risk with other classes, 
such as Puck, but we recognize these might not be easy to write a test driver for. 
They have associations in the design with many other classes, primarily because 
much of Puck's behavior is graphical. Puck associates with PlayField and any 
of the kinds of sprites in a playfield. We can foresee a significant effort in writing a 
test driver for Puck because all test cases will require an instance of a 
PlayField and some that are used for testing collision processing will require 
instances of Brick, BrickPile, and Paddle. Testing Puck, therefore, 
relies on an assumption that all these other classes work correctly. (We will 
examine this further in Chapter 6.) We might decide to test some or all of Puck in 
the context of cluster testing since we need instances of other classes to build 
environments around pucks suitable for testing them. 

Let us now consider the five dimensions of testing in the context of testing a class. 

Who 

Classes are usually tested by its developer, just as subprograms traditionally are 
unit tested by their developer. Having a class developer also play the role of a class 
tester minimizes the number of people that have to understand a class's 
specification. It also facilitates implementation-based testing since the tester is 
intimately familiar with the code. Finally, the test driver can be used by the 
developer to debug the code as it is written.[2] 
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[2] A goal of testing is to find bugs, not to fix bugs. However, a 
useful component of class testing is in helping to isolate errors 
in the code. 

The main disadvantage of test drivers and code being developed by the same 
person is that any misunderstandings of the specifications by the developer will be 
propagated to the test suite and test drivers. These potential problems are headed 
off by formal reviews of the code, and/or by requiring a test plan to be written by 
another class developer, and by allowing the code to be reviewed independently. 

It is not unusual for independent testers to discover problems with the 
specifications for a class, so time should be allowed during testing to resolve them. 

What 

We primarily want to ensure that the code for a class exactly meets the 
requirements set forth in its specification. The amount of attention given to testing 
a class to ensure it does nothing more than what it is specified for depends on the 
risk associated with the class supplying extra behaviors. Incomplete coverage of 
code after a wide range of test cases have been run against the class could be an 
indication that the class contains extra, undocumented behaviors. Or it could 
merely suggest that the implementation must be tested using more test cases. 

When 

A test plan— or at least some form of identification of test cases— should be 
developed soon after a class is fully specified and ready for coding. This is 
particularly true when a class's developer is also responsible for its testing because 
early identification of test cases will help a developer to understand the 
specification and, as we mentioned, get feedback from an independent review. 
Take care when a class's developer is also responsible for its testing. A class 
developer who identifies incorrect or insufficient test cases will produce an 
implementation that passes all test cases, but that causes significant problems when 
the class is integrated into a larger part of a system. 

Class testing can be done at various points in its development. In an incremental, 
iterative development process, the specification and/or the implementation for a 
class might need to be changed over the course of a project. Class testing should be 
performed prior to the use of the class in other portions of the software. Regression 
class testing should be performed whenever the implementation for a class has 
changed. If the changes resulted from the discovery of bugs in the code for the 
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class, then a review of the test plan must be performed and test cases must be 
added or changed to detect those bugs during future testing. 

How 

Classes are usually tested by developing a test driver that creates instances of the 
class and sets up a suitable environment around those instances to run a test case. 
The driver sends one or more messages to an instance as specified by a test case, 
then checks the outcome of those messages based on a reply value, changes to the 
instance, and/or one or more of the parameters to the message. The test driver 
usually has responsibility for deleting any instances it creates if the language, such 
as C++, has programmer-managed storage allocation. 

If a class has static data members and/or operations, then testing of those is 
required. These data members and methods belong to the class itself rather than to 
each instance of the class. The class can be treated as an object— for example, in 
Java an instance of the class Class— and tested according to what we describe in 
this chapter. 

If the behavior of the instances of a class is based on the values of class-level 
attributes, then test cases for testing these class-level attributes must be considered 
as an extension of the state of the instances. 

How Much 

Adequacy can be measured in terms of how much of the specification and how 
much of the implementation has been tested. For class testing, we usually want to 
consider both. We want to test operations and state transitions in all sorts of 
combinations. Recall that objects maintain state and typically that state affects the 
meaning of operations. However, you need to consider whether exhaustive testing 
is feasible or even necessary. If not, then selective pair-wise combinations can be 
effective, especially when done in conjunction with risk analysis so that the most 
important test cases can be used and less important test cases can be sampled. 

 
 

Constructing Test Cases 
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Let us investigate how to identify and construct test cases for a class. First, we will 
look at how to identify test cases from a class specification expressed in OCL. 
Then we will look at test case construction from a state transition diagram. 

Test cases are usually identified from the class specification, which can be 
expressed in a variety of ways. These include OCL, natural language, and/or state 
transition diagrams. Test cases can be identified from a class implementation, but 
using only that approach will propagate errors the class developer has made in 
interpreting the specification during implementation to the test software. We prefer 
to develop test cases initially from the specification and then augment them with 
additional cases as needed to test boundaries introduced by the implementation. If 
a specification does not exist for a class to be tested, then we "reverse engineer" 
one and have it reviewed by the developers before we start testing. 

Most of the examples in this chapter will be based on testing the Velocity and 
PuckSupply classes from Brickles. A puck supply is a collection of pucks that 
have not yet been put into play. A velocity represents the movement of a movable 
sprite on a playfield based on attributes of a speed (expressed in playfield units per 
unit time) and a direction (expressed as an angle in degrees, with 0 designating 
east or right, 90 designating north or up, and so on) (see Figure 5.1). The speed 
attribute is broken into two components: speedx— speed in the x direction (left-
right)— and speedy— speed in the y direction (up-down). While the speed attribute 
is always a non-negative value, the components of a velocity's speed can be 
negative. The value of speedx is negative if a velocity's direction is heading left. 
The value of speedy is negative if the direction is down. Speed and Direction are 
abstract types ultimately defined as integer values. 

Figure 5.1. A velocity is a vector characterized by a speed and a 
direction Θ  

 

A class model for Velocity is shown in Figure 5.2. Its OCL specification is 
shown in Figure 5.3. The invariant for the class constrains the value for direction 
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and speed as well as the relationships between the values of those attributes, 
including the speedx, and speedy components. Because these attributes are integer-
valued, the invariant relaxes the ideal relationship described by the Pythagorean 
theorem. 

Figure 5.2. The Velocity class as specified in the UML model 

 

Figure 5.3. OCL specification for the Velocity class 
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The design of Velocity includes the setSpeed() and setDirection() 
modifiers to improve runtime efficiency by eliminating the need to create a new 
instance every time one or both attribute values change. 

Test Case Construction from Pre- and Postconditions 

The general idea for identifying test cases from preconditions and postconditions 
for an operation is to identify requirements for test cases for all possible 
combinations of situations in which a precondition can hold and postconditions can 
be achieved. Then create test cases to address these requirements. From the 
requirements, create test cases with specific input values, including typical values 
and boundary values, and determine the correct outputs. Finally, add test cases to 
address what happens when a precondition is violated (see sidebar). 

To identify general test case requirements from pre- and postconditions, we can 
analyze each of the logical connectives in an OCL condition and list the test cases 
that result from the structure of that condition. Figure 5.4 and Figure 5.5 list the 
requirements for test cases that result from various forms of logical expressions in 
preconditions and postconditions, respectively. Figure 5.4 identifies additional test 
cases that result from an implicit use of defensive programming. Notice the 
significant increase in the number of test case requirements over the contract 
approach. 

Figure 5.4. Contribution to the test suite by preconditions 
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Figure 5.5. Contribution to the test suite by postconditions 
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Use these two figures to find requirements for the minimum number of test cases[3] 
needed to test an operation specified using all combinations of preconditions and 
postconditions. Follow these steps: 

[3] Minimum because they typically do not account for cases in 
equivalence classes of values. 

1. Identify a list of precondition contributions specified in the entry in Figure 
5.4 that matches the form of the precondition. 

2. Identify a list of postcondition contributions specified in the entry in Figure 
5.5 that matches the form of the postcondition. 

3. Form test case requirements by making all possible combinations of entries 
from the contributions lists. One way is to substitute each input constraint 
from the first list for each occurrence of Pre in the second list. 

4. Eliminate any conditions generated by the table that are not meaningful. For 
example, a precondition of, say, (color = red) or (color = blue) will generate 
a test case in which (color = red) and (color = blue), which cannot 
satisfied.[4] 

[4] It could be argued that a more accurate precondition is 
(color = red) xor (color = blue), which states that one or 
the other, but not both, must be true. In this case, a tester 
might suggest such a change to the developers to 
improve the specification. 
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Test Cases for Failed Preconditions 

Our discussion of class specification in Chapter 2 described defensive 
programming and contracts. Under defensive programming, a class 
implementation includes code in each method to verify the associated 
precondition holds. Under the contract approach, no such code is included 
because any client requesting an operation is assumed to have ensured that 
the precondition holds for that request. 

In many cases, the defensive programming approach is implicit in a 
specification— that is, the class specification is written using the same 
preconditions, postconditions, and invariants as would be used for a 
contract approach. There is an understanding that each violated 
precondition results in some standard action, such as abnormally 
terminating program execution, throwing a standard exception, or 
displaying a message in an error log. 

Testers must be aware of any implicit handling of violated conditions. If 
implicit handling is part of a class specification, testers should generate 
test cases to verify the correct processing of that implicit part of the 
specifications. In testing Velocity::setDirection(), for 
example, we would need to add additional test cases for the operation to 
cover the possibilities that a direction is negative or greater than 359. If the 
designers take a contract programming perspective on a class, the 
implementers still might include code for debugging purposes to perform 
runtime checking of preconditions and/or postconditions. If test cases are 
needed to check this debugging code, take care to identify such test cases 
in the test driver so that they can be disabled when the debugging code is 
disabled. 

If a precondition or a postcondition has a more complex form than is shown in the 
table— for example, involving three disjuncts— then the processes described in 
Steps 1 and 2 will have to be applied recursively— that is, broken into smaller 
pieces with the rules applied to the pieces, and then applied together as the pieces 
are recombined with operators. Fortunately, widely accepted object-oriented 
design principles keep most preconditions and postconditions simple. 

Figure 5.6 and Figure 5.7 show examples of how to use these tables for two of the 
operations in the Velocity class. 
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Figure 5.6. Identifying test cases for Velocity::setDirection() 

 

Figure 5.7. Identifying test cases for Velocity::reverseX() 
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Test Case Construction from State Transition Diagrams 

State transition diagrams show the behavior associated with instances of a class 
graphically. These diagrams can supplement written specifications or comprise the 
entire specification. A state transition diagram for the PuckSupply class is given 
in Figure 5.8. A puck supply holds the pucks that have not yet been put into play 
during a Brickles match. OCL for the class is also shown in the figure so you can 
compare the forms of specification. 
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Figure 5.8. The PuckSupply class's state transition diagram and OCL 
specification 

 

Describing Test Cases 

While it is easy to define a test case as a pair (input, output), it is not so 
easy to describe in a succinct way what input and output are for a specific 
test case. An input involves an object under test (OUT) in a given state 
with values specified for all attributes; for zero or more objects in 
specified states that are in associations with the OUT (perhaps helping to 
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define that object's state); for a sequence of one or more messages (or 
other events) to be sent to the OUT; and for zero or more objects (and 
values) that serve as parameters to messages. An output involves the 
resulting state of the OUT, the resulting state of any objects in association 
with the OUT, a result returned from the last message sent as input, and 
the resulting state of any objects passed as parameters to messages. Note 
that the class of an OUT can be one of the objects associated with it. 

We use a text-based notation for describing test cases. We use a table 
having a column for inputs and one for outputs. Each column is 
subdivided as shown. The text in each column except for Events is an 
adaptation of OCL. The Events column uses programming language 
notation. Events include messages and object creation. 

Input  Output  

State  Events  State  
Exceptions 

Thrown  
none  OUT = new Velocity;  OUT.speed = 0 

and OUT.direction 
= 0 and 
OUT.speedX = 0 
and OUT.speedY 
= 0  

none  

OUT:Velocity 
[speed=100, 
direction=90] 

OUT.setDirection(45) OUT.speed=1000, 
OUT.direction=45, 
OUT.speedX=707, 
OUT.speedY=707 

none  

The first test case listed is for the default constructor. The second is for 
setDirection(). By convention, we use the name OUT to refer to 
the object under test. The notation OUT:Velocity[speed=100, 
direction=90] denotes that OUT is an instance of Velocity with 
attribute values as specified in the brackets. If attribute values are 
unspecified, then they are irrelevant for the test case. 

We can generate code for a test case in a straightforward way. For each 
test case, write code to achieve the input state, then write code to generate 
the events, and then write code to check the result. 
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We can use the same general approach to generating test cases that we described 
for using pre- and postconditions. Each transition on the diagram represents a 
requirement for one or more test cases. The diagram in Figure 5.8 has six 
transitions between states, one transition representing construction, and two 
representing destruction— nine transitions total. [5] Thus, we have nine requirements 
for test cases. We satisfy these requirements by selecting representative values and 
boundary values on each side of a transition. If a transition is guarded, then you 
should select boundary values for the guard condition, too. 

[5] A transition on the superstate PuckSupply distributes to 
each of the two substates, yielding two transitions. 

Boundary values for states are determined based on the range of attribute values 
associated with a state. Each state is defined in terms of attribute values. In 
PuckSupply, the Empty state is associated with a size attribute value of zero. 
The Not Empty state is associated with a nonzero size attribute value. We want to 
be sure to include a test case to check that a PuckSupply instance does not 
behave as though it is empty when its size is one. 

For most of us, generating test cases from state transition diagrams is more 
intuitive than generating them from pre- and postconditions. The behavior 
associated with a class is more evident from the diagrams, and it is easy to identify 
the requirements for test cases since they come directly from the transitions. 
However, we must be careful to understand completely the way states are defined 
in terms of attribute values, and how events affect specific values within a given 
state. Consider, for example, the Not Empty state in PuckSupply. From the 
diagram alone, we are left to guess that each time a puck is removed, the size 
decreases by one. This is explicit in the OCL specification. At the extreme, 
consider Velocity, which has only one state and twelve transitions. It is 
difficult to identify all test cases from that simple diagram alone. When testing 
based on state transition diagrams, make sure you investigate the boundaries and 
results of each transition as you generate test cases. 

Adequacy of Test Suites for a Class 

Ideally, we could exhaustively test every class, that is, test with all possible values 
to ensure each class meets its specification. In practice, exhaustive testing is either 
impossible or requires considerable effort. Nonetheless, it is wise to exhaustively 
test certain classes. Consider, for example, the Velocity class in Brickles. If it 
does not operate correctly, the system has no chance of operating correctly. The 
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benefits of exhaustive testing in this case outweigh the cost of writing a test driver 
to run more test cases. 

Exhaustive testing is usually infeasible or impractical under time and resource 
constraints, so we need to test a class enough. Without exhaustive testing, we 
cannot be sure every aspect of a class meets its specification, but we can apply 
some measure of adequacy to give us a high level of confidence in the quality of 
the test suite. Three commonly used measures of adequacy are state-based 
coverage, constraint-based coverage, and code-based coverage. Meeting these 
measures minimally will result in different test suites. Using all three measures for 
a test suite will improve the level of confidence in testing adequately. 

State-Based Coverage 

State-based coverage is based on how many of the transitions in a state transition 
diagram are covered by the test suite. If one or more transitions is not covered, then 
the class has not been tested adequately and more test cases should be generated to 
cover those transitions. If test cases are generated from a state transition diagram as 
we described, then the test cases achieve this measure. If test cases were generated 
from pre- and postconditions, then analyzing the test cases in terms of which 
transitions they cover is quite useful for finding missed test cases. 

Boundary Conditions 

In testing a component, it is often the case that a small change in input 
value results in a significant change in the response of the software. The 
input value at which a large change occurs is referred to as a boundary. 
Boundaries must be identified when test cases are identified. Test cases 
must be generated to check input values close to each boundary. The 
response of the system to inputs occurring between two adjacent 
boundaries is generally equivalent. A relatively small number of test case 
inputs can be taken from that set for adequate testing, but a test case must 
be generated for each side of and (possibly) for each boundary. 

Some boundaries are easy to identify from a state transition diagram from 
the guards placed on state transitions— a test case for the true condition 
and one for the false condition. Other boundaries are not so obvious from a 
state transition diagram because they do not effect a state change, but do 
affect a response. Consider, for example, a method to compute a Julian 
date. Clearly, the value associated with March 1 depends on whether the 
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year is a leap year. 

Some boundaries can only be identified from code itself because they are 
derived from an algorithm used to implement a specification and not from 
the specification itself. A standard example is a function to sort an array of 
integer values in nondecreasing (ascending) order. With respect to the size 
of an array to be sorted, boundary conditions are as follows: 

• an array containing no elements 
• an array containing exactly one element 
• an array containing exactly two elements— the smallest array that 

can actually be sorted 
• an array of a large number of elements 

With respect to the ordering of elements in an array to be sorted, they can 
be arranged as follows: 

• in a random order 
• as the same value 
• in a sorted order 
• in reverse of their sorted order 

Finally, we can consider the aspect of the actual values in an array to be 
sorted, which can be unique, the same, or partly unique and partly the 
same. 

The values can range from the smallest boundary value to the largest. 
These three aspects generate a fairly large number of test cases. 

Even if all transitions are covered once, adequate testing is doubtful because states 
usually embrace a range of values for various object attributes. We need to test 
values over those ranges. Testing is needed for typical values and boundary values. 

We must also be concerned about how operations interact with respect to 
transitions. If there are two transitions T1 and T2 into a state and one transition T3 
out of a state, then the test cases for T3 might pass when the input state is set up 
using T1, but not when T2 is used. We can address this problem using a measure of 
adequacy based on coverage of all pairs of transitions in the state transition 
diagram. In our example, we would test the combinations of T1-T3 and T2-T3. 

Constraint-Based Coverage 
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Parallel to adequacy based on state transitions, we can express adequacy in terms 
of how many pairs of pre- and postconditions have been covered. If for example, 
the preconditions for an operation are pre1 or pre2 and the postconditions are post1 
or post2, then we make sure the test suite contains cases for all the valid 
combinations— pre1=true, pre2=false, post1=true, post2=false; pre1=false, 
pre2=true, post1=true, post2=false, and so on. 

Recall the steps we described earlier for finding test case requirements when 
generating test cases from pre- and postconditions. If one test case is generated to 
satisfy each requirement, then the test suite meets this measure of adequacy. 

In a way similar to what we described for using pair-wise sequences of transitions 
in state-based coverage, we can use sequences of operations based on analysis of 
preconditions and postconditions. For each operation op that is not an accessor, 
identify the operators op1, op2, and so on, for which the preconditions are met 
when the postconditions for op hold. Then execute the test cases for op-op1, op-
op2, and so on. 

Code-Based Coverage 

A third measure of adequacy can be based on how much of the code that 
implements the class is executed across all test cases in the suite. It is a good idea 
to determine that every line of (or path through) the code implementing a class was 
executed at least once when all test cases have completed execution. Tools for 
making such measurements are available commercially. If certain lines of code (or 
paths) have not been reached, then the test suite needs to be expanded with test 
cases that do reach those lines (paths)— or the code needs to be corrected to 
remove unreachable lines. 

Even with full code coverage, the test suite for a class might not be adequate 
because it might not exercise interactions between methods as we described in 
state-based and constraint-based coverage. Use of one of those other metrics to 
determine adequacy is important. However, measuring in terms of code coverage is 
also important (see sidebar). One implementation-level technique for determining 
the adequacy of a test suite is measuring code coverage for sequences of 
operations. If all statements (paths) are not executed, generate more test cases to 
reach them. 

A Need for Implementation-Based Testing 
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In testing a function to sort an array (see Boundary Conditions on page 
180), we might want to use a sampling of test cases in order to reduce the 
testing effort. (Pair-wise sampling is discussed in the next chapter.) The 
following test case inputs provide a good cross section of the possibilities: 

• an array of zero elements 
• an array of exactly one element 
• an array containing exactly two elements that are out of order 
• an array of 100 elements that contain 100 different values, some 

negative and some positive, arranged in a random order 
• an array of 101 elements that all contain the same value 
• an array of 50 elements that contain values that are already sorted 
• an array of 72 elements that contain values that are in exactly the 

reverse of their sorted order 

The choices of sizes 101, 100, 50, and 72 are arbitrary. An array of any 
reasonable size would seem to suffice. We decided to use different sizes 
just to get a better sampling. Some inputs are ordered randomly, already 
ordered, and reverse ordered. These cases seem to cover the specification 
reasonably well. If the function can pass these test cases, then we can be 
reasonably confident that it can sort any array. Of course, exhaustive 
testing would make us more confident. 

However, we cannot ever be fully confident a component meets its 
specification based purely on test cases derived from a specification. 
Consider a scenario in which this sort function has been implemented so 
that all arrays of a size under 1024 are sorted using a bubble-sort 
algorithm, and all larger arrays are sorted using a quicksort algorithm. 
Then, by using these test cases, the code for this function would not be 
tested adequately. A size of 1024 comprises a boundary imposed by the 
implementation that is not identifiable from the specification. Thus, more 
test cases that use arrays containing 1024 and more elements are needed. 

 
 

Constructing a Test Driver 

A test driver is a program that runs test cases and collects the results. We describe 
three general approaches to writing test drivers. There are probably others and 
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certainly there are many variations on what we present. We recommend one 
approach over the others and will develop it in detail. [6] 

[6] If the behavior of the class calls for program termination as a 
postcondition— for example, when an implementation based on 
a defensive programming approach uses the assert() library 
function to check preconditions— then multiple test drivers 
might be needed or the test driver needs to support some way 
of running individual test cases. 

Consider three ways to implement a test driver for the Velocity class. We will 
use C++ to illustrate the structure of the test driver design. 

1. Implement a function main() that can be compiled conditionally (with 
#define TEST) when compiling the member function definitions (in the 
Velocity.cpp file) and then executed (see Figure 5.9). 

Figure 5.9. A conditionally compiled test driver for the Velocity 
class embedded in the source file 

 

2. Implement a static member function within the class that can be invoked 
to execute and collect the results for each of the test cases (see Figure 
5.10).[7] 
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[7] In Java, this could be a class method named main(), 
thereby making execution of the test driver as simple as 
running a class file on the Java virtual machine. 

Figure 5.10. A test driver embedded as a class operation for 
Velocity 

 

3. Implement a separate class whose responsibility is to execute and collect the 
results for each test case (see Figure 5.11). A main() function instantiates 
this class and sends it a message to run all test cases. Note: in Java, main() 
can be a static method of the VelocityTester class. 

Figure 5.11. A test driver for the Velocity class implemented as 
a separate "tester" class 
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All three designs are equivalent with respect to their support for running the same 
test cases and reporting the results. Some of the strengths and weaknesses of each 
are summarized in Figure 5.12. 

Figure 5.12. Strengths and weaknesses of the test driver designs 

 

The second and third designs are attractive because they can be implemented using 
standard features of most object-oriented programming languages. We prefer the 
third design.[8] Although it separates test code from production code, the 
relationship between a class and a driver for testing it is easy to remember— each 
class C has a tester class called CTester. The use of a separate class is not 
necessarily a disadvantage. The proximity of a driver's code to the code for a class 
it tests is advantageous if the code for both is being developed by the same person. 
Otherwise it is a disadvantage. This tester class design allows some flexibility 
since in most programming languages two classes can be defined in the same file 
or in different files. 

[8] It has even more strengths in association with testing 
inheritance hierarchies, as we will describe in Chapter 7. 

We will concentrate on the tester class design, although most aspects of 
development of such a driver can be adapted in a straightforward manner to the 
other designs. 

Test Driver Requirements 
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Before looking at tester classes in more detail, consider the requirements for a test 
driver for execution-based testing of a class. 

The main purpose of a test driver is to run executable test cases and to report the 
results of running them. A test driver should have a relatively simple design 
because we seldom have time or resources to do execution-based testing of driver 
software. We rely primarily on code reviews to check driver code. In support of 
reviews and to facilitate maintenance, we should be able to readily trace the testing 
requirements in a test plan to the code in a driver. A test driver must be easy to 
maintain and adapt in response to changes in the incremental specification for the 
class it tests. Ideally, we should be able to reuse code from the test drivers for 
existing classes in creating new drivers. 

Figure 5.13 shows a model for a class Tester that satisfies these requirements. The 
public interface provides operations to run various test suites— or all of them. The 
test cases are organized into suites based on their origin— functional if they were 
identified from the specification, structural if they were identified from the code, 
and interaction if they test the correct operation of sequences of events on an 
object, such as pairs of input/output transitions. We identify these categories to 
facilitate maintenance of tests. The lines between these categories are sometimes 
hard to draw, but the general criterion for putting a test case in a category concerns 
how the test case was initially identified and what impact changes to a class have 
on a test case. Interaction test cases are usually generated to augment other test 
cases to achieve some level of coverage. Implementation-based test cases are 
generated to test some behavior of the code that arises from the implementation 
rather than the specification. If the implementation for a class changes, but not the 
specification, then we should be able to update the driver code just by modifying 
code to run implementation-based test cases. We refer to the set of test cases in a 
particular category as a test suite for that category. Thus, we identify a functional 
(specification-based) test suite, a structural (implementation-based) test suite, 
and an interaction test suite. 

Figure 5.13. A class model for requirements of a Tester class 
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The tally operations on a tester can be used to check how many test cases have 
passed so far. A driver keeps a log of test case execution and the results in a file 
whose name is specified at the time it is instantiated. The protected 
logTestCaseStart(), logTestCaseResult(), and logComment() 
operations place information in the log file. The protected 
runBaselineSuite() operation verifies the correctness of methods in the 
class under test (CUT) that are used by the test driver in checking the results of test 
cases. Accessor and modifier methods are usually tested as part of the baseline test 
suite for a class. The CUTinvariantHolds() operation evaluates the invariant 
of the CUT using the state of the current object under test (OUT). 

The Tester class is abstract. Code for the class can provide default 
implementations for operations common to all (concrete) testers. These include 
operations for logging test case results and performing other functions common to 
all class test drivers, such as measuring heap allocation and providing support for 
timing execution of individual test cases. The methods to run the test suites and to 
check a class invariant must be implemented for each specific CUT. 

We now look at the typical design for a concrete Tester class. A design for 
VelocityTester is shown in Figure 5.14. The figure shows a little more detail 
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about the Tester class than is shown in Figure 5.13, including some operations 
to manipulate an OUT and some factory methods for creating instances of the 
CUT. We will describe these in the next section. A concrete Tester class is 
responsible primarily for implementing methods for test cases and running them as 
part of a suite. 

Figure 5.14. Class model for a VelocityTester class 

 

Tester Class Design 

Since the Tester class provides operations to help report test case results, the 
primary responsibility of a concrete Tester class, such as VelocityTester, 
is to run test cases and report results. The main components of the class interface 
are operations to set up test cases, to analyze the results of test cases, to execute 
test cases, and to create instances of the CUT to be used in running test cases. Our 
design has proven both flexible and maintainable. It has proven quite useful when 
instances of a class are needed to test another class, as we will show in the next 
chapter. 
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Within a concrete tester class, we define one method for each of the test cases. We 
refer to these as test case methods. These provide traceability to the test plan—
one method per test case or group of closely related test cases. The purpose of a 
test case method is to execute a test case by creating the input state, generating a 
sequence of events, and checking the output state. 

Test Case Methods 

In a Tester class, each test case is represented by a single method. The name of 
the method should reflect the test case in some way. For small numbers of test 
cases, we can sequentially number the test cases identified in the test plan and 
name the operations runTestCase01(), runTestCase02(), and so on. 
Sequential numbering is simple, but can result in problems if test cases in a plan 
are ordered in some way and test cases are inserted or deleted. Usually a naming 
convention can be developed based on the derivation of the test cases (see sidebar). 

The responsibility of a test case method is to construct the input state for a test 
case— for example, by instantiating an OUT and any objects to be passed as 
parameters, and then by generating the events specified by the test case. A test case 
method reports the status of the result— pass, fail, or TBD[9] to indicate some action 
is needed to determine the result. A test case method verifies that the CUT's 
invariant holds for the OUT. 

[9] To be determined. Some results require human reaction, 
such as verifying generation of a sound or a change in what is 
displayed on a monitor screen. For example, testing an 
overloaded stream insertion operator for a class in C++ might 
require a tester to open a file and verify that the data is printed 
correctly. For such test cases, we like to include directions as 
comments in the log. 

In our code, a test case method has a general structure shown in pseudocode in 
Figure 5.15. 

Figure 5.15. Pseudocode for a typical test case method 
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Tip 

Implement a test script method for each test case when creating a Tester 
class for classes in which there are many interaction test cases. A test 
script method is responsible for creating the OUT for use by a test case 
method, invoking the test case method, and then checking postconditions 
and the class invariant. It also reports the results. The test case method 
handles only the event sequence on the OUT. An interaction test case can 
then be coded as a single test script method that invokes a sequence of test 
case methods and then checks and reports the results. 

 

OUT Factory Methods 

Classes are tested by creating instances and checking their behaviors against a set 
of test cases. We have referred to an instance to which a test case is being applied 
as the object under test (OUT). The main requirement with respect to the OUT is 
that attributes be specified for the inputs to the test case so that preconditions 
associated with a test case to be applied are met. The Tester class includes 
setOUT() and getOUT() operations that are used by test case methods to 
access the current OUT (see Figure 5.14). A disposeOUT() is available to end 
an association of the OUT with its current instance. 

Naming Test Cases 

Naming test cases well is an interesting problem. We would like the names 
to somehow reflect what is being tested. In an environment in which 
paragraph numbers are associated with each piece of a specification, the 
name of a test case can include some encoded reference to that paragraph 
that gives rise to the test case. This is desirable because it gives traceability 
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to the test case and is commonly used to name system test cases. However, 
paragraph numbers are not associated with OCL specifications or state 
transition diagrams, which are used to specify classes. 

For naming specification-based test cases, a naming scheme can be based 
on an operation name and pre- and postcondition numbering. Assume an 
operation is specified with the following pre- and postconditions: 

 

 

Based on a goal of testing each combination of precondition and 
postcondition, then the combinations in the following table are possible: 

    Test Case Name  

F  T  T  F  op1F2T1T2F  
T  F  T  F  op1T2F1T2F  
T  T  T  F  op1T2T1T2F  
F  T  F  T  op1F2T1F2T  
T  F  F  T  op1T2F1F2T  
T  T  F  T  op1T2T1F2T  
F  T  T  T  op1F2T1T2T  
T  F  T  T  op1T2F1T2T  
T  T  T  T  op1T2T1T2T  

The test case name is derived by numbering the disjuncts in the 
precondition and the postcondition, and incorporating those numbers in the 
name followed immediately by a "T" or an "F" to indicate the truth value 
associated with that test case. If several equivalence classes, as determined 
by boundary values, exist for a particular test case, then a suffix can be 
added to the namefor example, op1F2T1T2Fa, op1F2T1T2Fb, and so on. 
An explanation of these test cases should be included in documentation for 
the code or the test plan. 

This scheme works for naming test cases that address a single operation. 
Test cases involving interactions can be named based on concatenating 
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names for each of the operations in a sequence comprising an interaction. 
Checking Postconditions and Invariants 

Postconditions and invariants can be checked in a straightforward manner, 
assuming the CUT defines public operations for accessing state and/or 
attribute values. 

We have identified two general approaches to writing code to check 
postconditions and invariants. One is to write code to compute attribute 
values in the tester code when they are needed. The other is to use a 
database of some form— including as a file or array in memory— from 
which values can be retrieved when needed. Consider checking the values 
of speedX and speedY attributes in the invariant for Velocity. The 
condition involves sines and cosines of angles. We can compute these 
values as test cases execute using the sin() and cos() functions in a 
standard library, assuming we are using reliable functions. Alternatively, 
we can precompute values of the attribute for various values of direction 
and speed used in test cases, and then retrieve that information when it is 
needed. We have used spreadsheet programs to perform such 
computations. 

A tricky part of checking postconditions is in coding expressions that use 
@pre, meaning the value at the start of the method execution. The method 
must store such values in a local "temp" whose value is used once the test 
case output is available for checking. Use the factory method in the 
Tester class that corresponds to a copy constructor to facilitate @pre 
checking. For example, in checking the postcondition for 
setDirection(Direction dir), use 

Velocity *OUTatPre = newCUT( *getOUT() ); // 
remember state 
... 
if ( OUT.getSpeed() == OUTatPre.getSpeed() && 
  OUT.getDirection() == dir ) ... 

If postconditions relate to the state of the OUT, then invoke operations to 
check the state. If no such operations are defined by the CUT, then define 
them in the tester class as protected member functions. Note well: If the 
test case method is relying on operations defined in the CUT, then make 



 212

sure tests for those operations are included in the baseline suite. 

OCL allows state names to be used as Boolean-valued attributes in 
specifications [WK99]. A class need not define an operation to explicitly 
return the state of an instance. We believe classes should always include 
some way of observing the current state of an object based on state names, 
not just ranges of attribute values— for example, in the PuckSupply 
class we defined the isEmpty() operation. If the CUT does not 
completely support in its interface the operations needed to test 
postconditions and invariants in terms of states, approach the developers to 
add them to the CUT rather than coding methods in the Tester class. 
After all, a client (in this case the Tester class) should be able to observe 
all the behavior of an object if that behavior is referenced by the 
specification. Certainly a class must have in its public interface all the 
operations necessary for a client to check the preconditions for any public 
operation. 

A tester interface includes a set of operations to construct instances of the CUT. 
These operations include newCUT(Object), which is a factory method used to 
create an instance of the CUT that is a copy of the object passed as its argument— a 
factory method resembling a copy constructor in C++. A concrete Tester class 
should implement a factory method corresponding to each constructor defined in 
the CUT. Test case methods use these factory methods to create an OUT instead of 
constructors for the CUT. Test case methods use getOUT() to access a current 
OUT. In the case of VelocityTester, we define operation newCUT() to 
create an instance of Velocity constructed with the default constructor and 
setOUT() to make that instance the current OUT. We also define the 
newCUT(s: Speed, d: Direction) operation to create a new instance 
using the Velocity::Velocity(s: Speed, d: Direction) 
constructor. The test case methods must use these factory methods to create new 
instances of the CUT for reasons that will be apparent when we look at testing 
class hierarchies in Chapter 7.[10] 

[10] Here is a preview. For any subclass (of the CUT) designed 
in accordance with the substitution principle, test cases for the 
CUT still apply to that subclass. We will create a tester for the 
subclass that is a subclass of the tester for the CUT. Since the 
test case methods in the tester for CUT rely on factory 
methods, we can just override those same methods in the 
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subclass's tester to create instances of the subclass. As we 
mentioned at the start of the book, object-oriented technologies 
improve testing as well as development. 

It is not uncommon for a Tester class to define additional factory methods for 
the convenience of test cases that need to create an OUT in some specific state. For 
example, the PuckSupplyTester class might provide a 
newPuckSupplyOfOne() operation to construct a PuckSupply instance 
containing a single puck. Such factory methods should be public since they are 
very useful when instances of the CUT are needed to test another class. The test 
case methods for the other class can use an instance of this Tester class as a 
helper to create the instances in the necessary states. In implementing such 
methods, however, take care to use the other factory methods in the Tester and 
not the constructors for the CUT. 

Objects under test should be allocated from the heap because the use of a single 
object shared by all test cases will not work in the general case. It is also easier to 
understand test driver code that is written so that each test case method creates its 
own OUT and then disposes it. Sharing such objects between test case methods 
increases coupling. Keep test driver code as simple as possible, even at the expense 
of some time and/or space inefficiency. One of the most frustrating aspects of 
developing test drivers is testing and debugging them. The more straightforward 
the code, the better the driver. 

In using a language such as C++ in which a programmer must manage the heap, 
make each test case method responsible for deleting objects it allocates. The 
disposeOUT() method can delete the current OUT. 

Baseline Testing 

Test case methods contain code to establish an OUT, which might require a series 
of modification requests to be sent to an instance of the CUT. Test case methods 
use accessor operations in the process of checking postconditions. If the 
constructors, modifier methods, and accessor methods for the CUT are incorrect, 
then the results reported by a tester are unreliable. The first thing a tester must do is 
check that such constructors and methods are themselves correct by executing test 
cases for them. We call this set of test cases a baseline test suite.[11] 

[11] Thorough testing of the most basic operations needed to 
check test results is critical. We once worked on a compiler for 
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which the programs in the test suite always checked for failure 
of each test case— that is, of the form set up test case input; 
execute test case input; if (some condition not true) then report 
failure. A compiler could pass the executable test suite if it 
generated code so that all conditions evaluate to true so that no 
failure would be reported. This is clearly a weakness of the 
testing approach. We needed a baseline test suite that checked 
for correct evaluation of conditional expressions in if 
statements. 

A baseline test suite is a set of test cases that tests the operations of the CUT that 
are needed for the other test cases to verify their outcomes. This suite includes 
testing constructors and accessors. Most likely, all the test cases in the baseline test 
suite will be replicated in the functional test suite. 

We have identified two basic approaches to baseline testing, one that's 
specification-based and one that's implementation-based: 

1. Check that all the constructors and accessors are self-consistent. Create a test 
case for each constructor and verify that all attributes are correct by invoking 
accessors. 

2. Check that all the constructors and accessors use the variables in an object 
correctly. This requires a tester to know how attributes are implemented in a 
CUT. Its implementation relies on visibility features of programming 
languages that allow a tester class to have access to the implementation of 
the class it tests. These features include friends in C++ and package 
visibility in Java. 

Base your approach on how closely you want to couple the code for a tester to the 
code for the class it tests. We have found the second approach to produce more 
reliable results, although it requires more programming effort and tightly couples 
the code between the two classes— for example, in C++ the CUT must declare its 
Tester class a friend. The second approach usually requires fewer test cases in 
the baseline suite than does the first approach. 

Assertion Checking in a Class Under Test 

While the primary mechanism for execution-based testing is implementing 
a test driver, bugs can also be found by inserting assertion checks in code 
for a class as it is developed. This can include assertions to check 
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preconditions, postconditions, and invariants. An implementer can identify 
an implementation-oriented set of invariants in addition to the invariants 
specified for a class. Consider, for example, the Sprite class in Brickles. 
For efficiency reasons, each instance maintains in its local state both the 
bounding rectangle (as a corner point, a width, and a height) and the points 
that form the upper left and lower right points of the bounding rectangle. 
This redundancy is a potential source of bugs because the values can 
become inconsistent. This design introduces an implementation-level class 
invariant constraining the point at the lower right corner of the bounding 
rectangle to be the lower right point stored in an instance. A 
SpriteTester class cannot contain code to check such 
implementation-level invariants unless it has access to the implementation 
of Sprite. To facilitate testing, an implementer should include an 
assertion to check this implementation-level class invariant in every 
member function that modifies the bounding rectangle of an instance. This 
facilitates debugging and testing without increasing the coupling between 
a tester class and its CUT. 

Tip 

Implement a protected method in a Tester class to check postcondition 
clauses. The same postcondition often appears in the specification of more 
than one operation defined for a class. Invoke these protected methods 
rather than coding the same postcondition checks in each test case method. 

Similarly, define a factory method to return an OUT in a state required for 
a test case. It is not uncommon for a number of test cases to specify the 
same preconditions for an OUT and to have a convenient method to create 
an instance and reduce the amount of code in a test driver. 

If test script methods are being used to facilitate interaction testing in a 
class, write each test case method so that it verifies the input state for the 
test case before generating events on the OUT. Since tester classes are 
seldom formally tested themselves (by Tester classes), a little defensive 
programming can help in debugging them. 

 

Running Test Suites 
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The abstract Tester class includes in its protocol some operations to run all test 
cases or selected suites. These methods for these operations are straightforward to 
implement. Each calls a sequence of test case methods. Take care to ensure that the 
baseline test suite is executed before any of these other suites are executed. A 
possible design calls for executing the baseline test suite when a concrete tester 
class is instantiated— that is, as part of its initialization. 

If the CUT contains static member functions and/or data members, then the 
Tester class should to incorporate code that ensures that code has already been 
tested and works correctly or at least warns that the class itself might need testing 
before its instances can be tested. This is not critical since the goal of testing a 
class is to uncover bugs, not diagnose the source of those bugs. However, such a 
reminder can serve to ensure that a test driver is written for those static members. 

 

Is it possible to design a class to make testing easier? 

Yes. Ensure that the public interface includes 
operations that enable all conditions within 
preconditions, postconditions, and class invariants to 
be checked by clients. Furthermore, enable the current 
observable state to be observed without a client 
having to determine that state based on current 
attribute values. If a class is not designed with such 
methods, approach the class designer about adding 
them to the interface. 

Providing a public operation in a class to check the 
class invariant is useful to a Tester class and to 
developers for debugging. Be wary, however, of 
relying on that code to check postconditions in test 
case methods. We prefer to code up an independent 
CUTinvariantHolds() method in each Tester 
class we implement. 

 

Tip 

Be sure to rerun all test cases after debugging code is removed from the 
code for a class. Sometimes developers add code to help in debugging a 
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class— for example, assertion checks and statements that write trace 
information to streams. In many shops, debugging code is removed before 
software is deployed. (To support this, for example, C++'s assert() 
macro (library header file assert.h) checks assertions only if NDEBUG is 
not defined.) Under some circumstances, code that includes debugging 
information can have behaviors different from the same code without the 
debugging support. Consequently, take care to run test cases in both 
debugging and nondebugging modes. 

 

Reporting Test Results 

A test case method determines the success of a test case. In our design, test case 
methods report results to the tester instance itself, which tallies test suite run 
statistics. It is useful for each test case method to identify itself as part of its report. 
A string denoting the script name or purpose is useful.  

Keep in mind that the purpose of testing is not to debug a class, but to see if it 
meets its specification. Since a class's tester is usually its developer, writing code 
in a driver that attempts to diagnose problems with the CUT is very appealing. 
Extensive effort put into diagnostic code is almost always misplaced. Symbolic 
debuggers and other tools  are better for such activities. Such debugging can, of 
course, be done in the context of the test driver. 

Example of Test Driver Code 

We illustrate the design of a Tester class by showing the representative parts[12] 
of VelocityTester written in C++ and in Java. Features and restrictions in the 
two languages result in different designs. A test plan for Velocity is shown in 
Figure 5.16. A set of test case descriptions is shown in Figure 5.17. Some test cases 
are determined by combinations of values for attributes over a range of values. 

[12] The code is quite lengthy. The sections omitted follow the 
pattern set forth by the code shown in the example. 

Figure 5.16. A component test plan for the Velocity class 
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Figure 5.17. Test case descriptions for some of the Velocity 
operations 
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C++ code for the Tester and VelocityTester is shown first, followed by 
the Java code. First, we will make some observations about the code. 

• In the C++ version, we have used a template parameterized by the CUT to 
generate the Tester abstract class. By using a template, we can produce a 
class at the root of the tester hierarchy for each CUT. Consequently, for 
example, operations such as getOUT() return a pointer to an instance of 
the CUT and not a pointer of type void * or of a pointer to some abstract 
Object class. 
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In the Java version, we defined Tester as an abstract class and used 
Object to represent the class of the OUT. This requires each test case 
method to dynamically cast a reference to the OUT to a reference to the 
CUT. 

• The Tester class in both implementations have the same functionality. 
This includes code to tally and report test results to a log file. This design 
could be enhanced significantly to maintain a database of test results and do 
more elaborate reporting. 

• Notice how the factory methods in VelocityTester return an instance 
of the Velocity class. A tester should always declare such factory 
methods to return a pointer or a reference to the CUT. 

• The baseline test suite implemented in TestVelocity is minimal. It 
merely checks that the attribute values returned by accessors are correct for a 
single object. More extensive testing of accessors is part of the functional 
test suite. 

• The CUTInvariantHolds() method in VelocityTester relies on 
the math library functions sin() and cos(). We trust those functions to 
return the correct value. In the C++ version, we use the arc cosine of -1 to 
compute a value for PI. Java provides Math.PI to use. 

• To save space, we have not included all test case methods. The test case 
method tc_Velocity() tests the default constructor. The 
tcs_VelocitySpeedDirection() and tcs_setDirection() 
methods run the sets of test cases described in Figure 5.17 for the nondefault 
constructor and setDirection() operation. 

C++ code for the Tester class. This code was compiled using Metrowerks 
CodeWarrior Pro 5. 

#include <fstream> 
#include <iomanip> 
#include <ctime> 
using namespace std; 
 
enum TestResult {Fail, TBD, Pass}; 
 
template<class CUT> 
class Tester { 
public: 
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 Tester<CUT>(string CUTname, string logFileName) 
  : _CUTname(CUTname), _logStream(logFileName.c_str()), 
    _OUTPtr(0), _passTally(0), _failTally(0), 
_TBDTally(0) { 
    time_t systime = time(0); 
    _logStream << ctime(&systime) << endl; 
 } 
 
 virtual ~Tester<CUT>() { // Summarize results in log 
   _logStream << endl << "Summary of results:" << endl 
              << '\t' << totalTally() << " test cases 
run" << endl 
              << fixed << showpoint << setprecision(2) 
              << '\t' << setw(7) << "Pass:" << setw(5) 
              <<passTally() << endl 
              << '\t' << setw(7) << "Fail:" << setw(5) 
              << failTally() << endl 
              << '\t' << setw(7) << "TBD :" << setw(5) 
              <<  TBDTally() << endl; 
   _logStream.close(); 
 } 
 
 virtual void runAllSuites() { 
   runFunctionalSuite(); 
   runStructuralSuite(); 
   runInteractionSuite(); 
 } 
 
 virtual void runFunctionalSuite() = 0; 
 virtual void runStructuralSuite() = 0; 
 virtual void runInteractionSuite() = 0; 
 
 int passTally() const { return _passTally; } 
 int failTally() const { return _failTally; } 
 int TBDTally() const  { return _TBDTally; } 
 int totalTally() const { 
   return _passTally + _failTally + _TBDTally; 
 } 
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 virtual CUT *getOUT() { return _OUTPtr; } // Current 
OUT 
 virtual void disposeOUT() { // Finish use of current 
OUT 
   if ( ! _OUTPtr ) { 
     delete _OUTPtr; 
     _OUTPtr = 0; 
   } 
 } 
 virtual CUT *newCUT(const CUT &object) = 0; 
 
protected: 
 virtual bool runBaselineSuite() = 0; 
 virtual bool CUTinvariantHolds() = 0; 
 
 void setOUT(CUT *outPtr) { _OUTPtr = outPtr; } 
         // used by factory methods 
 
 void logTestCaseStart(string testID) { 
   _logStream << "Start test case " << testID << endl; 
 } 
 
 void logSubTestCaseStart(int caseNumber) { 
   _logStream << "Start sub test case " << caseNumber 
<< endl; 
 } 
 
 void logTestCaseResult(TestResult result) { 
   _logStream << "RESULT: "; 
   switch ( result ) { 
   case Fail:  ++ _failTally; 
               _logStream << "FAIL"; 
               break; 
   case TBD:   ++ _TBDTally; 
               _logStream << "To be determined"; 
               break; 
   case Pass:  ++ _passTally; 
               _logStream << "Pass"; 
               break; 
   default: 



 223

               _logStream << "BAD result (" << 
int(result) << ')' 
                          << endl; 
   } 
   _logStream << endl; 
 } 
 
 void logComment(string comment) { 
   _logStream << "\t* " << comment << endl; 
 } 
 
 TestResult passOrFail(bool condition) { 
   // Utility for a result that cannot be TBD. 
   // This checks the invariant, too. 
   if ( condition && CUTinvariantHolds() ) 
     return Pass; 
   else 
     return Fail; 
 } 
 
private: 
 string _CUTname;  // name of the class under test 
 ofstream _logStream;// log stream 
 CUT *_OUTPtr;    // pointer to current object under 
test 
 int _passTally;    // number of test cases passing so 
far 
 int _failTally;    // number of test cases failing so 
far 
 int _TBDTally;    // number of test cases 
provisionally 
                     // passing so far 
}; 

C++ code for the VelocityTester class. 

// VelocityTester.h 
#include "Tester.h" 
#include "Velocity.h" 
 
class VelocityTester : public Tester<Velocity> { 
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public: 
 VelocityTester(string logFileName) 
   : Tester<Velocity>("Velocity", logFileName) { 
   runBaselineSuite(); 
  } 
 
 virtual void runFunctionalSuite() { 
   tc_Velocity(); 
   tcs_VelocitySpeedDirection(); 
   tcs_setDirection(); 
 } 
 virtual void runStructuralSuite() { } 
 virtual void runInteractionSuite() { } 
 
 virtual Velocity *newCUT() { return new Velocity(); } 
 virtual Velocity *newCUT(const Velocity &v) { 
   return new Velocity(v); 
 } 
 virtual Velocity *newCUT(const Speed speed, const 
Direction dir) 
 { 
   return new Velocity(speed, dir); 
 } 
 
protected: 
 virtual bool runBaselineSuite() { 
   // Verify that the accessor operations are 
consistent 
   logComment("Running baseline test suite."); 
   Velocity v(1000, 321); 
   if ( v.getSpeed() == 1000 && v.getDirection() == 321 
&& 
          v.getSpeedX() == 777 && v.getSpeedY() == -629 
) { 
     logComment("Baseline suite passed"); 
     return true; 
   } 
   else { 
     logComment("Baseline suite FAILED"); 
     return false; 
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   } 
 } 
 
 virtual bool CUTinvariantHolds() { 
   const Velocity &OUT = *getOUT(); 
   const Direction direction = OUT.getDirection(); 
   const Speed speed = OUT.getSpeed(); 
   const Speed speedX = OUT.getSpeedX(); 
   const Speed speedY = OUT.getSpeedY(); 
   static const double PI = 3.14159265; 
   const double radians = 2.0 * PI * direction / 360.0; 
 
   bool result = 
     0 <= direction && direction < 360 && speed >= 0 && 
     speedX == int(cos(radians) * double(speed)) && 
     speedY == int(sin(radians) * double(speed)) && 
     (speedX*speedX + speedY*speedY) <= speed*speed; 
   if ( ! result ) { 
     logComment("Invariant does not hold"); 
   } 
   return result; 
  } 
 
 void tc_Velocity() {  // test default constructor 
   logTestCaseStart("Velocity()"); 
   setOUT(newCUT()); 
   Velocity &OUT = *getOUT(); 
 
   logTestCaseResult(passOrFail(OUT.getSpeed() == 0 && 
                     OUT.getDirection() == 0)); 
   disposeOUT(); 
 } 
 
 void tcs_VelocitySpeedDirection() { 
   // test Velocity(Speed, Direction) 
   //This  runs 360 test cases 
   logTestCaseStart("Velocity(Speed, Direction)"); 
   const Speed fixedSpeed = 1000; 
 
   for ( Direction dir = 0 ; dir < 360 ; ++dir ) { 
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     logSubTestCaseStart(dir); 
 
     setOUT(newCUT(fixedSpeed, dir)); 
     Velocity &OUT = *getOUT(); 
 
     logTestCaseResult(passOrFail(OUT.getDirection() == 
dir && 
                       OUT.getSpeed() == fixedSpeed)); 
     disposeOUT(); 
   } 
 } 
 
 void tcs_setDirection() { 
   logTestCaseStart("setDirection"); 
   const Speed fixedSpeed = 1000; 
 
   setOUT(newCUT(fixedSpeed, 359)); // any dir value != 
0 
   Velocity &OUT = *getOUT(); 
 
   for ( Direction dir = 0 ; dir < 360 ; ++dir ) { 
     logSubTestCaseStart(dir); 
 
     OUT.setDirection(dir); 
 
     logTestCaseResult(passOrFail(OUT.getDirection() == 
dir && 
                       OUT.getSpeed() == fixedSpeed)); 
   } 
   disposeOUT(); 
 } 
}; 

The main program creates an instance of the Tester class and runs all the suites. 
Results are logged to the VelocityTestResults.txt file. 

#include <iostream> 
using namespace std; //introduces namespace std 
#include "VelocityTester.h" 
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int main ( void ) 
{ 
 VelocityTester vt("VelocityTestResults.txt"); 
 
 vt.runAllSuites(); 
 return 0; 
} 

Java code for the Tester class. We define a TestResult class to represent 
three possible outcomes of a test case. 

import java.io.*; 
import java.util.*; 
 
/** 
 A class that defines three possible test case 
outcomes: 
   Fail - failure 
   TBD  - unknown ("To be determined"), usually because 
          result requires further analysis or 
observation 
   Pass - success 
 @see Tester 
*/ 
public class TestResult { 
 public TestResult(String value) { _value = value; } 
 public String toString() { return _value; } 
 
 private String _value; 
 
 static public final TestResult Fail = new 
TestResult("Fail"); 
 static public final TestResult TBD  = new 
TestResult("TBD"); 
 static public final TestResult Pass = new 
TestResult("Pass"); 
} 
 
/** 
 An abstract class that represents a class tester. The 
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 responsibilities of a tester for a class C include: 
   1. running test suites, 
   2. creating instances of the class it tests 
   3. logging test results 
*/ 
abstract class Tester { 
 /** 
   Constructs a new instance. 
 
   @param CUTname     the name of the class under test 
   @param logFileName the name of the file into which 
results 
                      are logged 
 */ 
 public Tester(String CUTname, String logFileName) { 
   _CUTname = CUTname; 
   try { 
     _log = new FileWriter(logFileName); 
   } 
   catch (IOException e) { 
     System.err.println("Could not open file " + 
logFileName); 
   } 
   _OUT = null; 
   _passTally = 0; 
   _failTally = 0; 
   _TBDTally = 0; 
   try { 
     String line = new Date().toString()+'\n'; 
     _log.write(line); 
   } 
   catch (IOException e) { 
     System.err.println("Error writing to log file"); 
     e.printStackTrace(); 
   } 
 } 
 
 public void dispose() { // Summarize results in log 
   try { 
     int total = totalTally(); 
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     _log.write("\n"); 
     _log.write("Summary of results:\n"); 
     _log.write("\t" + total + " test cases run\n"); 
     _log.write("\t" + "Pass:" + " " + passTally() + 
'\n'); 
     _log.write("\t" + "Fail:" + " " + failTally() + 
'\n'); 
     _log.write("\t" + "TBD :" + " " + TBDTally() + 
'\n'); 
     _log.close(); 
   } 
   catch (IOException e) { 
     System.err.println("Error writing to log file"); 
     e.printStackTrace(); 
   } 
 } 
 
 public abstract Object newCUT(Object object); //copy 
object 
 
 public void runAllSuites() { 
   runFunctionalSuite(); 
   runStructuralSuite(); 
   runInteractionSuite(); 
 } 
 
 public abstract void runFunctionalSuite(); 
 public abstract void runStructuralSuite(); 
 public abstract void runInteractionSuite(); 
 
 public int passTally() { return _passTally; } 
 public int failTally() { return _failTally; } 
 public int TBDTally()  { return _TBDTally; } 
 public int totalTally() { 
   return _passTally + _failTally + _TBDTally; 
 } 
 
 public Object getOUT() { return _OUT; } 
 public void disposeOUT() { _OUT = null; } 
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 protected abstract boolean runBaselineSuite(); 
 protected abstract boolean CUTinvariantHolds(); 
 
 protected void setOUT(Object outPtr) { _OUT = outPtr; 
} 
 
 protected void logTestCaseStart(String testID) { 
   try { 
     _log.write("Start test case " + testID + '\n'); 
     _log.flush(); 
   } 
   catch (IOException e) { 
     System.err.println("Error writing to log file"); 
     e.printStackTrace(); 
   } 
 } 
 
 protected void logSubTestCaseStart(int caseNumber) { 
   try { 
     _log.write("Start sub test case " + caseNumber + 
'\n'); 
     _log.flush(); 
   } 
   catch (IOException e) { 
     System.err.println("Error writing to log file"); 
     e.printStackTrace(); 
   } 
 } 
 
 protected void logTestCaseResult(TestResult result) { 
   if ( result == TestResult.Fail ) { 
     ++ _failTally; 
     try { 
       _log.write("\tOUT: " + getOUT().toString() + 
'\n'); 
     _log.flush(); 
     } 
     catch (IOException e) { 
       System.err.println("Error writing to log file"); 
       e.printStackTrace(); 
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     } 
   } 
   else if ( result == TestResult.TBD ) { 
     ++ _TBDTally; 
   } 
   else if ( result == TestResult.Pass ) { 
     ++ _passTally; 
   } 
   try { 
     _log.write("RESULT: " + result.toString() + '\n'); 
     _log.flush(); 
   } 
   catch (IOException e) { 
     System.err.println("Error writing to log file"); 
     e.printStackTrace(); 
   } 
 } 
 
 protected void logComment(String comment) { 
   try { 
     _log.write("\t* " + comment + '\n'); 
     _log.flush(); 
   } 
   catch (IOException e) { 
     System.err.println("Error writing to log file"); 
     e.printStackTrace(); 
   } 
 } 
 
 protected TestResult passOrFail(boolean condition) { 
   // Utility for a result that cannot be TBD. 
   // This checks the invariant, too. 
   if ( condition && CUTinvariantHolds() ) 
     return TestResult.Pass; 
   else 
     return TestResult.Fail; 
 } 
 
 private String _CUTname;  // name of the class under 
test 
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 private FileWriter _log;  // log stream 
 private Object _OUT;    // pointer to current object 
under test 
 private int _passTally;    // number of test cases 
passing so far 
 private int _failTally;    // number of test cases 
failing so far 
 private int _TBDTally;    // number of test cases 
provisionally 
                             // passing so far 
}; 

Java code for the VelocityTester class. 

//import java.util.*; 
import Tester; 
import Velocity; 
/** 
 A class to test class Velocity. 
*/ 
class VelocityTester extends Tester { 
 
 public static void main(String args[]) { 
   VelocityTester vt = new VelocityTester("VelTest--
Java.txt"); 
   vt.runAllSuites(); 
   vt.dispose(); 
 } 
 
 public VelocityTester(String logFileName) { 
   super("Velocity", logFileName); 
     runBaselineSuite(); 
  } 
 
 public void runFunctionalSuite() { 
   tc_Velocity(); 
   tcs_VelocitySpeedDirection(); 
   tcs_setDirection(); 
 } 
 
 public void runStructuralSuite() { } 
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 public void runInteractionSuite() { } 
 
 // Factory methods for creating an instance of CUT 
 public Object newCUT(Object object) { 
   Velocity v = (Velocity)object; 
   return new Velocity(v.getSpeed(), v.getDirection()); 
 } 
 public Velocity newCUT() { 
   return new Velocity(); 
 } 
 public Velocity newCUT(int speed, int dir) { 
   return new Velocity(speed, dir); 
 } 
 
 protected boolean runBaselineSuite() { 
   // Verify that the accessor operations are 
consistent 
   logComment("Running baseline test suite."); 
   Velocity v = new Velocity(1000, 321); 
   if ( v.getSpeed() == 1000 && v.getDirection() == 321 
&& 
          v.getSpeedX() == 777 && v.getSpeedY() == -629 
) { 
     logComment("Baseline suite passed"); 
     return true; 
   } 
   else { 
     logComment("Baseline suite FAILED"); 
     return false; 
   } 
 } 
 
 protected boolean CUTinvariantHolds() { 
   Velocity OUT = (Velocity)(getOUT()); 
 
   int direction = OUT.getDirection(); 
   int speed = OUT.getSpeed(); 
   int speedX = OUT.getSpeedX(); 
   int speedY = OUT.getSpeedY(); 
   final double radians = Math.toRadians(direction); 
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   if ( direction > 90 ) { 
     double dx = Math.cos(radians) * (double)(speed); 
     dx = Math.floor(dx); 
     int expectedSpeedX = (int)dx; 
     int expectedSpeedY = 
       (int)Math.floor(Math.sin(radians) * 
(double)(speed)); 
     boolean rest = 
       (speedX*speedX + speedY*speedY) <= speed*speed; 
     rest = rest; 
   } 
   boolean result = 
     0 <= direction && direction < 360 && speed >= 0 && 
     speedX == (int)(Math.cos(radians) * 
(double)(speed)) && 
     speedY == (int)(Math.sin(radians) * 
(double)(speed)) && 
     (speedX*speedX + speedY*speedY) <= speed*speed; 
   if ( ! result ) { 
     logComment("Invariant does not hold"); 
   } 
   return result; 
 } 
 
 protected void tc_setDirection001() { 
   logTestCaseStart("setDirection001"); 
 
   setOUT(newCUT(1000, 0)); 
   Velocity OUT = (Velocity)(getOUT()); 
 
   OUT.setDirection(01); 
 
   logTestCaseResult(passOrFail(OUT.getDirection() == 
01)); 
   disposeOUT(); 
 } 
 
 void tc_Velocity() {  // test default constructor 
   logTestCaseStart("Velocity()"); 
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   setOUT(newCUT()); 
   Velocity OUT = (Velocity)getOUT(); 
 
   logTestCaseResult(passOrFail(OUT.getSpeed() == 0 && 
                     OUT.getDirection() == 0)); 
   disposeOUT(); 
 } 
 
 void tcs_VelocitySpeedDirection() { 
   // test Velocity(Speed, Direction) 
   logTestCaseStart("Velocity(Speed, Direction)"); 
   final int speedValue[] = { 6, 12, 1000 }; 
 
   for ( int i = 0 ; i < 3 ; ++i ) { 
     int speed = speedValue[i]; 
     for ( int dir = 0 ; dir < 360 ; ++dir ) { 
       logSubTestCaseStart(dir); 
 
       setOUT(newCUT(speed, dir)); 
       Velocity OUT = (Velocity)getOUT(); 
 
       logTestCaseResult(passOrFail(OUT.getDirection() 
== dir && 
                         OUT.getSpeed() == speed)); 
       disposeOUT(); 
     } 
   } 
 } 
 
 void tcs_setDirection() { 
   logTestCaseStart("setDirection"); 
   final int fixedSpeed = 1000; 
 
   setOUT(newCUT(fixedSpeed, 359)); // any dir value != 
0 
   Velocity OUT = (Velocity)getOUT(); 
 
   for ( int dir = 0 ; dir < 360 ; ++dir ) { 
     logSubTestCaseStart(dir); 
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     OUT.setDirection(dir); 
 
     logTestCaseResult(passOrFail(OUT.getDirection() == 
dir && 
                       OUT.getSpeed() == fixedSpeed)); 
   } 
   disposeOUT(); 
 } 
}; 
 
 

Summary 

Class testing corresponds to unit testing in a traditional testing process. Execution-
based class testing requires the identification of test cases, the development of a 
test driver to apply the test cases against instances of the CUT, and the execution 
of the test driver. So far we have described testing of fairly simple classes— those 
whose instances do not interact significantly with other instances. 

Test cases are identified and generated from the class specification and 
implementation. We have shown how to identify test case requirements from 
preconditions and postconditions as well as from state transition diagrams. Adding 
interaction test cases improves code coverage. 

We have presented a design for a test driver based on the implementation of a 
tester class for each class to be tested. We have described in detail a design based 
on Tester classes that we have used successfully. Benefits of our design include 
a clean organization using an abstract Tester class to capture behavior and code 
common to all class test drivers, and support for different people working on 
testing and development. As we will show in Chapter 7, the use of tester classes 
provides an additional benefit in the context of testing classes related by 
inheritance. 

 

Exercises 
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5-1. Identify test requirements for the constructors and reverse() operators for the 
Velocity class (see Figure 5.3). Consider the difference in requirements 
between the contract and defensive programming approaches. Construct the test 
cases for the requirements you identify. 

5-2. Do the same for an elementary class that you have. 

5-3. Write a test driver to implement the test cases you constructed in either of the 
previous exercises. If you are implementing in C++ or Java, you can start with the 
Tester abstract classes described at the end of this chapter. 

5-4. Write a specification for an abstract Tester class that would be useful in your 
organization. 

5-5. Consider the dilemma of baseline testing. In a specification-based approach, 
the Tester class must make judgments based solely on the apparent consistency of 
all attributes of an object when it is in some given state. On the other hand, an 
implementation-based approach strongly couples the code between a Tester and 
its CUT so that a Tester's implementation cannot be completed until the CUT's 
code is mostly completed. Under what circumstances would you support testing 
based solely on specification? Under what circumstances would you insist on using 
both approaches? 
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Chapter 6. Testing Interactions 

• Want to understand different types of interactions? See Object 
Interactions. 

• Only have time to run some of the test cases you can think of? See 
Sampling Test Cases. 

• Want to reuse the design of your test software? See Test Patterns. 
• Need to know how tos test code that throws exceptions? See Testing 

Exceptions. 

An object-oriented program comprises a collection of objects that collaborate to 
solve some problem. The ways in which those objects collaborate determine what a 
program does and, consequently, the correctness of a program's execution. An 
instance of a trusted primitive class, for example, may contain no faults, but if the 
services of that instance are not used correctly by other program components, then 
the program contains faults. Thus, the correct collaboration— or interaction—of 
objects in a program is critical to the correctness of the program. 

Most classes have collaborators— that is, the methods in the class interact with 
instances of other classes. In Chapter 5, we addressed finding faults within the 
implementation of an individual class that had no such interactions. In Chapter 7, 
we address interactions between the definition of a subclass and the definition of 
its superclass. In this chapter we will expand our scope and address testing classes 
that do have interactions with other classes. The interactions being tested are 
between objects at runtime— for example, when one object is passed to another as 
a parameter or when an object maintains a reference to another object as part of its 
state. Interactions always involve unidirectional messaging. Some interactions 
involve bidirectional messaging between the objects. In this chapter we will 
assume that the interactions are sequential. In Chapter 8, we will consider more 
complex relationships such as concurrent interactions among distributed objects 
that use concurrent interactions. 

The focus of interaction testing is ensuring that messaging occurs correctly with 
objects whose classes have already been tested separately. Interaction testing can 
be performed with the interacting objects embedded in an application program or 
by interacting the objects in an environment provided by a separate test harness, 
such as a Tester class. We will examine both approaches in this chapter. 

First, we will present details about what object interactions are and how 
interactions are identified in a class interface. Then we will look at testing 
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interactions outside the context of a particular application program. Finally, we 
will consider some of the difficult issues that arise in testing interactions within the 
context of an application program and how these issues can be addressed. 

 
 

Object Interactions 

An object interaction is simply a request by one object (the sender) to another 
(the receiver) to perform one of the receiver's operations and all of the processing 
performed by the receiver to complete the request.[1] In most object-oriented 
languages, this covers the vast majority of activity in a program. It includes 
messages between an object and its components and between an object and other 
objects with which it is associated. We assume these other objects are instances of 
classes that have already been tested in isolation to the extent that the class's 
implementation is complete. 

[1] We assume a class interface is defined solely using 
operations and not data. If data is accessible by collaborators, 
then approach the testing of that access as if operations existed 
to set and get the value of the data. 

Since multiple object interactions can occur during the processing of any single 
method invocation on a receiving object, we want to consider the impact of these 
interactions both on the internal state of the receiving object and on those objects 
with which it has an association. These effects can range from "no change" to 
changes in certain attribute values in one or more of the objects involved to state 
changes in one or more of the objects, including the creation of new objects and 
the deletion of existing objects. 

Partial Class Testing 

In an iterative, incremental development approach, a class is often 
developed in stages. Only the functionality needed to satisfy the 
requirements of the current increment are specified and/or implemented. 
The relationships between classes often are such that it is not possible to 
sequence the development of a class so that all the classes it needs to 
interact with are totally developed and tested. Furthermore, a project's 
schedule is usually based on delivery of end-user functionality that 
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corresponds to portions of the functionality of individual domain classes, 
but seldom requires the complete functionality of any of them. Lower 
level— that is, more primitive implementation— classes are more likely to 
be completely developed at one time and tested as a complete unit. Other 
classes are therefore developed and tested incrementally. 

Classes are tested to the extent that they are developed. Evolve tester 
classes toward completeness just as the production software does. Identify 
the test cases you can and then implement a Tester class to implement 
those test cases. Keep a record, by test case naming conventions or other 
documentation, of the origin of each test case so that for the next round of 
testing you can identify the effect changes in specification and 
implementation of a class under test has on the test cases and its Tester 
class. 

Basing interaction testing solely on specifications of public operations is 
considerably more straightforward than basing it on implementations. We will 
limit interaction testing to just associated, peer-to-peer objects and take a public 
interface approach. This is reasonable because we assume the associated classes 
have already been adequately tested. However, this approach does not remove the 
obligation to look behind the specification to verify that a method completed all of 
the computation required. That means verifying the values of the receiver's internal 
state attributes, including any aggregated attributes— that is, attributes that are 
themselves objects. Our focus will be to select tests based on the specification of 
each operation in a class's public interface. 

Identifying Interactions 

Interactions are implied by a class specification in which references are made to 
other objects. In Chapter 5, we discussed the testing of primitive classes. A 
primitive class can be instantiated and the instance used without any need to 
create any other instance of any other class, including the primitive class itself. 
Such objects represent the simplest components of a system and certainly play an 
important role in any program execution. However, there are relatively few 
primitive classes in an object-oriented program that truly model the objects in a 
problem and all the relationships between those objects. Nonprimitive classes are 
common in and indeed essential to well-designed object-oriented programs. 

Nonprimitive classes support— or perhaps require— the use of other objects in 
some or all of their operations. Identify the classes of these other objects based on 
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association (including aggregation and composition) relationships in the class 
diagram. These associations translate into class interfaces and the way a class 
interacts with other classes[2] in one or more of the following ways: 

[2] The proper way to state this concept is that an instance of a 
nonprimitive class collaborates with one or more instances of 
other classes. Since the specification and implementation for a 
class determine the full behavior of any instance, we will use 
the more prevalent expression of this relationship in terms of 
classes. However, keep in mind that collaboration is an object 
relationship, not a class relationship. 

1. A public operation names one or more classes as the type of a formal 
parameter. The message establishes an association between the receiver and 
the parameter that allows the receiver to collaborate with that parameter 
object. The attach() and detach() operations in the Timer class 
shown in Figure 6.1 illustrate this kind of relationship. A Timer instance 
can receive a request to attach a TimerObserver instance. The 
notify() method in Timer will send a message to the attached 
TimerObserver instances to invoke a method— in this case, tick(). In this 
example, a receiver saves the association as part of its state and messages 
these other objects in subsequent operations. Another scenario is for the 
receiver to message the parameter, directly or indirectly, as part of the 
processing of a message. 

Figure 6.1. Parameter interaction 
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2. A public operation names one or more classes as the type of a return value. 
The position() operation of class Sprite shown in Figure 6.1 is an 
example of this type of interaction. The specifying class may be responsible 
for creating the returned object or may be passing back a modified 
parameter. In an environment such as C++ in which heap storage 
management is programmed explicitly, the specification should detail 
whether the receiver retains responsibility for any storage management of a 
returned object or delegates that to the sender. Tester class methods 
should observe such responsibilities. 

3. The method for a class creates an instance of another class as part of its 
implementation. In Figure 6.1, MovableSprite has a method to process a 
collision with another sprite. The code for this method needs to create some 
instances of CPoint and other classes to use as temporaries to determine 
what happens in a particular collision. Objects such as PlayField to 
which MovableSprite has a peer-to-peer relationship are not allowed to 
know about these other objects. Remember, we will not analyze any further 
down a composition hierarchy. However, when executing tests, there may be 
a failure in the instance of some class C within a subobject, such as a 
CPoint instance. Validating the results of the test will include checking the 
state of C. 
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4. The method for a class refers to a global instance of some class. Of course, 
good design principles reduce the use of globals to a minimum. If a class's 
implementation references some global object, treat it as an implicit 
parameter to the methods that reference it. 

These interactions can be implemented in a variety of ways in programming 
languages. Collaborators may be addressed directly— for example, using a variable 
name— or they may be addressed by a pointer or a reference. If a pointer or a 
reference is used, the dynamic type of the object may be different from the static 
type associated with the pointer or reference. In other words, pointers and 
references are polymorphic, thus they are bound to an instance of any number of 
classes. In the context of Figure 6.1, a C++ implementation for Timer most likely 
stores pointers to instances of any of the subclasses of TimerObserver. A Java 
implementation stores references to instances of any class that is a subclass of 
TimerObserver or implements a TimerObserver interface. Polymorphism 
increases the number of the kinds of objects that could interact with a class under 
test. 

The pre- and postconditions for operations in the public interface of a class 
typically refer to states and/or specific attribute values of any collaborating objects. 
We can categorize a nonprimitive class based on properties of interaction— that is, 
based on a degree of interaction with other instances. Some classes maintain 
associations with instances of other classes, but never actually interact with those 
instances. We refer to such a class as a collection class. We refer to a class with 
more extensive interactions as a collaborating class. A much smaller number of 
classes will "collect" other objects. Next, we will describe how to test these 
collection objects, and then we will discuss testing collaborating classes. 

Collection Classes 

Some classes use objects in their specifications, but never actually collaborate with 
any of them— that is, they never request any services from them. Instead, they do 
one or more of the following: 

• store references (or pointers) to these objects, typically representing one-to-
many relationships between objects in a program 

• create instances of these objects 
• delete instances of these objects 
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Collection classes can be identified by a specification that refers to other objects, 
but that does not refer to values computed based on the state or attribute value of 
those objects. Within the design of Brickles, the PuckSupply class (see Figure 
6.2) is a collection class. A PuckSupply object, as part of its construction, 
instantiates an appropriate number of Puck instances and returns a pointer to one 
of those instances upon request. A PuckSupply instance never uses operations 
associated with a Puck except for constructors. By contrast, for example, the 
Timer class stores references (pointers) to implementers of the 
TimerObserver interface, such as a Puck, when they are attached. A Timer 
sends a tick() request to each attached observer whenever a Timer event 
occurs during execution. 

Figure 6.2. The PuckSupply class 

 

Class libraries that accompany compilers and development environments usually 
include a set of container classes. C++ has the standard template library (STL) and 
Java has a set of collection classes. The classes in these libraries include lists, 
stacks, queues, and maps (dictionaries). These collection classes hold the objects 
they are handed and return them in specific orders or find them based on specific 
criteria. 
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Collaborating Classes 

Nonprimitive classes that are not collection classes are collaborating classes. Such 
classes use other objects in one or more of their operations and as part of their 
implementation. When a postcondition of an operation in a class's interface refers 
to the state of an instance of an object and/or specifies that some attribute of that 
object is used or modified, then that class is a collaborating class. 

The BrickPile class in Brickles (see Figure 6.3) is a collaborating class. This 
class models the rectangular arrangement of bricks in the game and is responsible 
for identifying, but not processing, any collisions between the puck in play and a 
brick. It serves as a container for bricks, but collaborates with a playfield, a hint (in 
which all changes to the brick pile are recorded so the image of the brick pile can 
be rendered efficiently on the display), and sprites— particularly a puck that moves 
into the brick pile. When a brick pile is constructed, it is positioned at a point in 
some playfield. The classes with which BrickPile collaborates are as follows: 

• PlayField. A brick pile occupies part of a play field. 
• Hint. A brick pile records broken bricks in a hint. 
• CPoint. A brick pile's location in a playfield is specified by a point that 

determines the upper left corner of the brick pile. 
• Brick. A brick pile creates bricks as part of its own construction and tracks 

which bricks are broken and which are unbroken. 
• MovableSprite. A brick pile recognizes collisions between its bricks and 

a puck, which is a kind of movable sprite. 

Figure 6.3. The BrickPile class header file 
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Testing basic interactions between two objects is only the beginning. The number 
of potential collaborations can become impossibly large quickly. Often the bugs 
that are most serious do not arise from the interaction of two objects, but from the 
interactions between a complete set of objects. A BrickPile object may work 
perfectly well when tested with a PlayField object, but failure can result when 
BrickPile interacts with Hint to record the breaking of a brick. The question 
that arises then is whether to test each interaction individually or as a group. 

Choosing the correct "chunk" size for testing depends on the following three 
factors: 
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1. We distinguish between those objects that have a composition relationship 
with an object under test and those that are merely associated with that 
object. During a class test, the interaction of the composing object with its 
composed attributes is tested. The interaction between an object and its 
associated objects are tested as successive layers of aggregation are 
integrated. 

2. The number of layers of aggregations created between interaction tests is 
closely related to the visibility of defects. If too large a chunk is chosen, 
there may be intermediate results that are incorrect, but they are never seen 
at the level of test-result verification. This may not be a problem for the 
chosen test parameters. However, a slight change in test parameters would 
result in a failure. More layers of aggregation introduces more possible test 
parameters. 

3. The more complex the objects, the fewer that should be integrated prior to a 
round of testing. This complexity is seen in the number of parameters for 
each method, the number of methods and the number of state attributes in 
each object. As with the layers of aggregations, trying to test a chunk that is 
too complex often results in defects that successfully hide from the tests. 

Specifying Interactions 

In the discussion in the next section on testing interactions, we will assume that 
operations defined by a class are specified by preconditions, postconditions, and 
class invariants. We will use the Object Constraint Language (OCL). From a 
testing perspective, it is important to know whether defensive design or design by 
contract has been used in creating the specification of the particular interface to be 
tested. These approaches change the way senders and receivers interact. We will 
make a simplifying assumption that for any given class, all of the operations in the 
interface have been specified using only one of these approaches. If a class you 
want to test mixes the approaches, then you can mix the techniques we describe in 
a straightforward way. 

Implications of Defensive and Contract Designs for Testing 

Defensive design assumes that little or no checking of parameter 
boundaries occurs prior to a message being sent. This reduces the number 
of clauses in preconditions, requires checks internally for violations of 
attribute constraints, and increases the number of clauses in 
postconditions. A larger number of postcondition clauses results from a 
larger number of exceptions that arise to identify the different constraint 
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violations. This translates into more interaction test cases oriented toward 
checking boundaries around inputs that produce exceptions. 

Design by contract assumes that appropriate preconditions are checked 
prior to a message being sent and that the message is not sent if any of the 
parameters are outside acceptable limits. This increases the number of 
clauses in preconditions, requires no checking internally for violations of 
attribute constraints, and reduces the number of clauses in the 
postcondition clause. This means more test cases are needed to try to get 
an object under test to send a message for which preconditions are 
violated. Alternatively, we use code reviews to prove to ourselves that 
preconditions indeed cannot be violated, thereby eliminating the need for 
more test cases at the cost of a manual review. 
 
 

Testing Object Interactions 

Testing Collection Classes 

Collection classes are tested using techniques for primitive classes (see Chapter 5). 
A test driver will create instances[3] that are passed as parameters in messages to a 
collection being tested. Test cases center primarily around ensuring that those 
instances are correctly incorporated into and removed from the collection. Some 
test cases address any limitations placed on the capacity of the collection. The 
precise class of each of the objects used in testing a collection class is insignificant 
in determining the correct operation of the collection class since there is no 
interaction between a collection instance and the objects in a collection. If forty or 
fifty items might be added to a collection during actual use, then generate test cases 
that add at least fifty items. If no estimate on a typical upper bound is possible, 
then test with a very large number of objects in the collection. 

[3] The factory methods for creating an object under test (see 
OUT Factory Methods on page 189.) are useful in creating 
instances used in interaction tests. 

The behavior of a collection object under circumstances in which it cannot allocate 
memory to add the new item to itself should be tested. Structures such as growable 
arrays often allocate the space for several items at one time. Tools are available to 
help the tester to limit the amount of memory available during the execution of test 
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cases that check the allocation of a larger-than-available block of memory. An 
object under test should return the appropriate exception to the requestor of the 
action. We will address this issue in the Testing Exceptions section on page 245. 

If the defensive design approach has been used, negative tests should be a part of 
the test suite. Some collections have a finite capacity specified, and all collections 
have some practical limit such as available memory that should be tested with tests 
that exceed the specified limits. If a collection class uses an array as its storage, 
then the usual test cases for filling the array and then attempting to add one more 
item should be included. The appropriate exception should be generated by the 
object under test and caught by the object that sent the message. If a contract 
approach has been used, such tests are meaningless. 

An important aspect of testing collection classes— and testing collaborator classes 
as well— is testing sequences of operations— that is, the way modifier operations 
on a single object interact with one another. The techniques associated with state-
based testing (see Chapter 5) can be applied to testing this aspect of collections. 

Testing Collaborator Classes 

The complexity of testing a collaborating class is greater than that of testing a 
collection class or a primitive class. Consider the class BrickPile in the 
Brickles application. A brick pile is an aggregation of bricks arranged in a 
rectangular fashion. The BrickPile class is similar to a collection class, but the 
BrickPile sends semantically meaningful messages to the individual 
Bricks— for example, to determine a brick's position on a playfield or to break a 
brick. It is impossible to test BrickPile without using instances of Brick. It 
will be hard to identify faults in BrickPile if certain types of faults exist in 
Brick. A brick pile is responsible for detecting collisions between the bricks it 
contains and movable sprites (namely pucks), but it is not responsible for 
processing those collisions. It is also responsible for recording hints associated 
with breaking bricks so that the screen can be updated efficiently by the Brickles 
view object.[4] 

[4] A hint is directed at the system components that draw the 
playfield, thus it provides information about the damaged parts 
of the playfield. 

In order to test class BrickPile, we must use one or more instances of each of 
these classes. In fact, an instance of BrickPile cannot be constructed without an 
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instance of a PlayField, a CPoint, and a Hint because these must be passed 
as parameters to a constructor (see Figure 6.3). Of course, it will need to use 
instances of Brick to create a brick pile. 

Hint, CPoint, and Brick are all primitive classes and can be tested using the 
techniques presented in Chapter 5. The CPoint class used in Brickles is one of 
the Microsoft Foundation Classes (MFC) and is consequently "trusted," meaning 
that we won't test it at all. PlayField and BrickPile are not primitive and 
must be tested in the context of their interactions with the code in other classes 
using techniques discussed in this chapter. 

Friend Functions 

Ordinarily, a class interface comprises all the operations— and, heaven 
forbid, data— declared public. However, when using a language such as 
C++ that also supports friend functions, which are nonmember functions 
that can access the hidden parts of a class, we include any such functions 
in the interface. For example, many classes have defined an associated 
insertion operator (operator<<) that allows an instance's state to be 
streamed, that is, written outside the current program to a file or some 
other sequential structure. Treat such functions as operations in the public 
interface for a class. This is also the perspective taken by a programmer 
using the class. 

The Interaction between Testing and Design Approach 

The differences between contract and defense design techniques (see Implications 
of Defensive and Contract Designs for Testing, on page 221) extend to testing. 
Contract design places more responsibility on the human designer than on error-
checking code. This reduces the amount of class-level testing since there are fewer 
paths due to a smaller amount of error-checking code. However, at the interaction 
level, there is more testing required for contract-designed code in order to be 
certain that the human designer has complied with the client side of the contract 
using precondition constraints. 

A focus of interaction testing for contract design is whether the preconditions of 
methods in a receiving object are being met by the sending object. It is not 
legitimate to build test cases that violate these preconditions. It is usually 
legitimate to set the receiving object into a certain state and then begin a scenario 
with the sending object, which requires the receiving object to be in another state. 
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The intention is to determine that the sending object checks the preconditions of 
the receiving object before sending the message inappropriately. The test should 
also check whether the sending object aborts correctly, probably by throwing an 
appropriate exception. 

For example, consider the following specification for the broken() method from 
BrickPile in which a brick pile interacts with Brick objects (see Figure 6.4). 
If a design by contract approach is being used, a test case in which brick_p is 0 
(null) is meaningless. A test case in which brick_p points to a specific brick 
instance should be used and the test case should clearly verify that the 
postcondition has been satisfied. 

Figure 6.4. An OCL specification for the BrickPile class 

 

In testing BrickPile, we need test cases that exercise interactions with a 
PlayField. In this context, there should be a test case in which PlayField is 
told to "break" a specific brick that is already broken. The test case is checking to 
be certain that PlayField is checking and will not send the broken() message 
to a BrickPile instance in violation of the precondition. 
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Sampling Test Cases 

Exhaustive testing— that is, running every possible test case covering every 
combination of values— is obviously a reliable testing approach. However, in 
many situations the number of test cases is too large to handle reasonably. If there 
are more possible test cases than there is time to construct and execute them, a 
systematic technique is needed for determining which ones to actually use. If we 
have a choice then we would prefer to select the ones that will find the faults in 
which we are most interested. If we have no prior information, then a random 
selection is probably as good as we can do. In this section we will consider the 
general concept of sampling, and then we will apply it to interaction testing. 

With any testing approach we are interested in ways that the level of coverage can 
be increased systematically. If a tester simply creates test cases without sufficient 
analysis, then creating more cases later often repeats some of the functionality 
already tested. With the techniques presented here, there is a well-defined set of 
cases and a well-defined technique for increasing coverage. 

There are a number of possibilities for determining which test cases to select. The 
technique we will discuss first uses a simple selection process based on a 
probability distribution. A probability distribution defines, for each data value in 
a population, a set of allowable values, and the probability that value will be 
selected. Under a uniform probability distribution, each value in the population 
is assigned the same selection probability. 

We define the population of interest to be all possible test cases that could be 
executed. This includes all preconditions and all possible combinations of input 
values. A sample is a subset of a population that has been selected based on some 
probability distribution. One approach is to base the probability distribution on the 
user profile. If the uses of the system are ranked by frequency, the ranks can be 
transformed into probabilities. The higher the frequency of use, the larger the 
probability of selection. But more about this later (see Use Profile on page 313). 

We can select a stratified sample in which tests are selected from a series of 
categories. A stratified sample is a set of samples in which each sample represents 
a specific subpopulation— for example, we might select test cases that we are 
certain exercise each component of the architecture. A population of tests is 
divided into subsets so that a subset contains all of the tests that exercise a specific 
component. Sampling occurs on each subset independent of the others. 
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An approach that works well is to use the actors from the use case model as the 
basis for stratifying the test cases. That is, we select a sample of test cases from the 
uses of each actor. Each actor uses some subset of the possible uses with some 
frequency (see Use Profiles, on page 130). Stratifying the test case samples by each 
actor provides an effective means of increasing the reliability of the system. 
Running the selected tests uses the system the way that it will be used in typical 
situations and finds those defects that are most likely to be found in typical use. 
Removing these defects produces the largest possible increases in reliability with 
the smallest effort. 

The sampling technique provides an algorithm for selecting a test suite from a set 
of possible test cases. This does not mandate how the population of test cases is 
determined in the first place. The test process is intended to define the population 
of tests in which we are interested— for example, functional test cases— and then to 
define a technique for selecting which of these test cases will be constructed and 
executed. 

A test suite for a component may be constructed using a combination of 
techniques. Consider the Velocity class we used in Chapter 5 in which we did 
an exhaustive test of direction values, but only a few speed values. We can reduce 
the number of tests by first using the specification as a source of test cases, and 
then applying a sampling technique to supplement those tests. 

The specification of Velocity includes a modifier operation called 
setDirection(const Direction &newDirection) whose 
precondition requires newDirection to be in the range 0 through 359, inclusive. 
The postcondition specifies that the receiver's direction has been modified to the 
value of newDirection. We first generate test data for this method using the 
specification as a basis. First, note that Direction is a typedef for int so we 
are selecting from the set of integers rather than a set of objects. Rather than 
sample for every test case (0 through 359), we first select values based on 
boundary values. So we can have three tests around the boundary of zero, perhaps -
1, 0, and 1. If this were a "design by contract" project, the -1 value would not be a 
legitimate test case. There should be a similar set of values around the other 
boundary, so perhaps 358, 359, and 360. Again, 360 is not legitimate in a contract 
context. There should be tests in the intervals between 1 and 358 and here is where 
sampling plays a useful role. The values in the two intervals could be sampled 
using something like int(random() * 360) and int(-1 * random() * 
360). The random() function generates a pseudo random value between 0.0 and 
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1.0 in accordance with a uniform distribution, so each value is within the interval 
and each value has an equal chance of being selected. 

The advantage of using the random value generator in the test case is that over 
iterations and reapplications of test cases, many values in the intervals will be 
tested rather than the same ones over time. The disadvantage is that now the test 
cases are not being reproduced since a different value is used every time. By 
having the test driver record the generated values as part of the test log, we can re-
create any failed test case. Any randomly chosen value that causes a failure is 
explicitly added to the test suite and is used to test the repaired software. After the 
fault has been repaired, those values can be used to validate the repair. The 
regression suite consists mainly of those tests that originally produced failures but 
were ultimately passed by the software. 

Now let us consider the interaction between two classes: Sprite and 
MoveableSprite in the collideInto() operation (see Figure 6.5). Both 
Sprite and MoveableSprite classes are abstract, so we have an opportunity 
to design tests that can be reused by their subclasses. The precondition places no 
restriction on the parameter so we need to find some other way to determine the 
population from which we will sample. There are three dimensions along which we 
can sample. 

Figure 6.5. Specification for operation collideInto() 

 

First, Sprite is the base class in a very large class family, which is a set of 
classes related by inheritance. An object from any one of the classes in the family 
can be substituted for the sprite parameter. Therefore, we should sample from 
this set for possible parameters. This is one of the problems we mentioned earlier 
about testing object-oriented systems. At some time in the future, a new member of 
the family can be created and passed to this routine without any recompilation of 
the MoveableSprite class. Traditional techniques for triggering regression 
tests do not work in this environment. They should be controlled in the 
configuration management tool or perhaps the development environment. Each 
new class definition stimulates a round of regression testing. Usually however only 
the overridden methods will need to be tested if most of the methods are inherited. 
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Tip 

Use the class diagram to identify the classes that should be involved in a 
regression test resulting from the creation of a new class. Examine the 
parent classes for this new class and identify interactions in which those 
classes participate. Execute the tests that interact those parents with other 
classes, but substitute the new class for the parent class in the test. 

 

The second dimension for sampling is to consider that each member of the family 
may have different states that can cause two objects from the same class to behave 
differently. Obviously the Puck and Wall classes probably have some interesting 
differences in their states. In the case of families of classes, the state machines are 
related along the lines of the inheritance hierarchy. Our experience and a number 
of published papers have shown that as we look down the inheritance hierarchy, 
there will be the same number of states or more states in the derived class as there 
are in the base class. We should cover the states defined for each class with special 
emphasis on the new states added at that level in the inheritance hierarchy. 

A third dimension relates to the class family associated with MoveableSprite. 
This is a subset of the Sprite family. Once these tests are designed, they can be 
applied to any of the classes in the family, assuming the substitution principle has 
been followed during design. 

Given these three dimensions, we have the possibility of a combinatorial explosion 
in the number of test configurations. In this scenario, a test case would have a 
member of the MoveableSprite family sending a message to a member of the 
Sprite family, which may be in any one of its states. 

Orthogonal Array Testing 

Orthogonal arrays provide a specific sampling technique that seeks to limit the 
explosion by defining pair-wise combinations of a set of interacting objects. Most 
of the faults resulting from interactions are due to two-way interactions. One 
specific technique for selecting a sample is orthogonal array testing system 
(OATS). An orthogonal array is an array of values in which each column 
represents a factor, which is a variable in an experiment. In our case it will 
represent a specific class family[5] in the software system. Each variable can take 
on a certain set of values called levels. In our testing work, each level will be a 
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specific class in the family. There will also be a parallel factor and set of levels that 
correspond to the states of these classes. The value entered into a particular cell in 
the array is an instance of the specific class or is a specific state of an object. 

[5] A class family is a class and all of the classes that inherit 
from that class. 

Figure 6.6. Explosion of test cases 

 

In an orthogonal array, the factors are combined pair-wise rather than representing 
all possible combinations of the levels for the factors. For example, suppose that 
we have three factors— say, A, B, and C— each with three levels— say, 1, 2, and 3. 
There are 27 possible combinations of these values— 3 for A times the 3 for B 
times the 3 for C. If pair-wise combinations are used instead— that is, if we 
consider only those combinations in which a given level appears exactly twice—
then there are only 9 combinations as shown in Figure 6.7. 

Figure 6.7. Pair-wise combinations of three factors that have three 
levels each 
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OATS uses a balanced design. Every level of a factor will appear exactly the same 
number of times as every other level of that factor. If we think of the rows of a 
table as test cases, then 18 of the possible 27 tests are not being conducted. This is 
a systematic way of reducing the number of test cases. If we later decide that 
additional tests should be run, we will know exactly which combinations have not 
been tested. This is also a logical way of doing the reduction. Most of the errors 
that are encountered are between pairs of objects rather than among several 
objects. In this way, we are testing those situations that are most likely to reveal 
faults. To demonstrate OATS, we will work through a general example and then a 
Brickles-specific example. The general example comprises interactions between 
senders in a class family A, receivers in a class family C, and parameters in a class 
family P (see Figure 6.8). Each class has a state transition diagram associated with 
it. The details are not important. The number of states that we are assuming each 
class has is shown in Figure 6.9. 

Figure 6.8. A general example of applying OATS 

 

Figure 6.9. The number of states associated with classes in the 
general OATS example 
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The major activity in this technique is to map the problem of testing the interaction 
of two inheritance hierarchies with respect to a parameter object. To identify test 
cases using orthogonal arrays, observe the following five steps: 

Step 1. Identify all factors. The sending hierarchy is one factor. The 
receiving hierarchy is a second factor. There is also a factor associated with 
each parameter position in the message. There is an additional factor 
associated with each class factor— namely, the states associated with 
instances of the class. This experiment (see Figure 6.8) has six factors: the 
class A hierarchy, the class P hierarchy, and the class C hierarchy and factors 
for the states associated with each class hierarchy. 

Step 2. Determine levels for each factor. The levels for each factor are 
determined by considering the set of possible values. 

• One factor has one level: the parameter class family only has one 
member: P. 

• Two factors have a maximum of two levels; the sending class family 
has two members: A and B; the maximum number of states for a class 
in the P family is two. 

• Three factors have a maximum of three levels: the receiving family 
has three members, and the maximum number of states for a class in 
the A family and in the C family is three. 

Step 3. Locate a standard orthogonal array that fits the problem. Given 
our need for six factors of, at most, three levels, we turn to the tables of pre-
computed arrays called standard arrays [Phadke89]. The notation 21 x 37 
for L18 (see Figure 6.16) indicates that the array addresses one factor with 
two levels and seven factors with three levels. L18 is the smallest standard 
array that will fit the problem. A standard array can be larger than a problem, 
but not smaller.[6]  
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[6] Use a larger array if the number of levels is likely to 
change in the future— for example, if more subclasses 
might be added to a receiving class family. Using a larger 
array allows for future expansion of test cases when 
levels are added. 

 

Figure 6.16. The standard orthogonal array L18 (2
1 x 37) 

 
Step 4. Establish a mapping from each factor onto the integers in the 
array so that the standard array can be interpreted. Standard array 
entries are integer values. We analyze each factor in the following list. 

• For the sender class family there are two classes, A and B, so the first 
column in L18 can be used to represent this  data (Figure 6.10). We 



 260

adopt an encoding in which a value of 1 in the first column of the 
array corresponds to the A class and a value of 2 corresponds to the B 
class. 

Figure 6.10. Class A hierarchy 

 

• Class A has two states and class B has three states. When there is a 
difference in the number of levels, we can use a column that matches 
or exceeds the maximum. The second column in L18 has a maximum 
of three, which will fit this data. The interpretation of the values in the 
second column depends on the values in the first column. For a value 
of 2 (class B) in the first column, we are representing the states of 
class B in the second column. If the value in the first column is 1, then 
the second column represents the states of class A. In Figure 6.11, the 
state values for class B directly correspond to the integer values in the 
column. Since class A only has two states, how do we interpret a 3 in 
the second column when there is a value of 1 (class A) in the first 
column? We interpret it as though it were either 1 or 2. When a value 
in the column does not properly correspond to values in other 
columns, then we interpret it as some other domain value that is 
repeated. In this case, as denoted in the table, 3 in the array will 
correspond to state 1. The interpretation can be arbitrary or based on 
an observation that an instance of A is more likely to be in state "1" or 
there is a higher risk associated with being in state "1." 

Figure 6.11. States for class A hierarchy 
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• The third column in L18 represents the parameter hierarchy that only 
has one class, P. Any value in the third column represents P (Figure 
6.12). 

Figure 6.12. States for the class P hierarchy 

 

• The fourth column represents the states of P, of which there are two 
(Figure 6.13). However, the column has values 1, 2, and 3. An array 
value of 1 corresponds to state 1, a value of 2 corresponds to state 2 of 
the P class, and a value of 3 will repeat state 2 of class P. 

Figure 6.13. States for class P hierarchy 

 

• The fifth column represents the class C hierarchy, which has three 
members. There is a direct correspondence between classes and the 
integer values in the array. The interpretation is shown in Figure 6.14. 
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Figure 6.14. The C Class hierarchy 

 

• The sixth column represents the states of the C, D, and E classes 
(Figure 6.15). Since C has only 2 states, the array value of 3 will 
correspond to a value of 2. For classes D and E, there is a direct 
correspondence between states and array values. 

Figure 6.15. States for class P hierarchy 

 

Note: the last two columns of L18 are not used. 

Step 5. Construct test cases based on the mapping and the rows in the 
table. 

Each row in the orthogonal array, Figure 6.16, specifies one specific test case. The 
orthogonal array is interpreted back into test cases by decoding the level numbers 
for a row in the array back to the individual lists for each factor. Thus, for example, 
the 10th row of L18 is interpreted as test case number 10 in which an instance of 
class B in state 1 is to send the message by passing an instance of class P in state 3 
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to an instance of class E in state 2. The last two values in the row are ignored since 
we did not use those factors. 

Adequacy Criteria for OATS 

One of the useful things about OATS is the ability to vary how completely the 
software under test is covered. Here are some possible levels that can be used: 

• Exhaustive—  All possible combinations of all factors are considered. Lots of 
confidence, lots of expense. 

• Minimal—  Only the interactions between the base classes from each 
hierarchy are tested. Little confidence from few test cases. 

• Random—  The tester haphazardly selects cases from several of the classes. 
Confidence level unclear, number of test cases arbitrary. Not a statistically 
random sample. 

• Representative—  A uniform sample that ensures that every class is tested to 
some level. Confidence level is the same across classes; number of test cases 
is minimized. 

• Weighted Representative—  Adds cases to the representative approach based 
on relative importance or risk associated with the class. This is the approach 
we have illustrated in this section. At any point where the matrix has more 
levels than the actual problem does, the tester has the opportunity to generate 
additional tests for priority levels of factors. 

Once all the test cases have been run, look at the results to see if failure can be 
associated with one or more specific factor levels— for example, perhaps most of 
the test cases associated with instances of class A, state 2 fail. This information is 
useful for developers to track down bugs, and it is useful for testers to indicate that 
additional test cases might be warranted. 

Another Example 

Now let us return to the MoveableSprite::collideInto() example from 
page 227. A MoveableSprite object may be passed to any Sprite object 
when it is sent the collideInto() message. In the present design, the Sprite 
class family includes MoveableSprite, StationarySprite, Puck, 
Paddle, Brick, Wall, RightWall, LeftWall, Floor, and Ceiling. 

We make the following analysis and observations: 
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1. Classes Sprite, MoveableSprite, StationarySprite, and Wall 
are abstract classes. We will talk about how to test abstract classes in the 
next chapter, but for now, they will not be a part of the OATS scenario. 

2. Only Puck and Paddle are derived from MoveableSprite, so only 
MoveableSprite, Puck, and Paddle can receive the 
collideInto() message. However, all the classes derived from 
Sprite can receive the collideWith() message. 

3. Each of the objects passed as a parameter is in a specific state. The objects 
may behave differently in different states. An instance of 
MoveableSprite may be moving or not. If it is moving, then it is 
moving in a specific direction. From a state perspective, the directions can 
be grouped into states named DueNorth, DueSouth, DueEast, 
DueWest, NorthEast, NorthWest, SouthEast, and SouthWest. 
Note that an instance of Paddle can only move DueEast and DueWest. 

4. In this case, the sender object and the parameter object are the same, so there 
are only two class family columns and two state of classes columns. 

The possible values for each attribute of the test case are shown in Figure 6.17. 

Figure 6.17. Test attribute values 

 

If we tested all possible combinations, the number of possible tests is 2 x 9 x 8 x 9 
= 1296. Some of these can be eliminated because nonmoveable sprites do not have 
the direction states. The total now appears to be 2 x 9 x 2 x 9 + 2 x 9 x 6 x 1, = 432 
test cases— still quite a few. By using OATS, we can further reduce the number of 
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test cases and still be effective. For example, these are the selected combinations 
from Figure 6.17: 

1. Paddle, DueEast, Puck, SouthEast 
2. Paddle, DueEast, Puck, NorthEast 
3. Paddle, DueEast, Puck, NorthWest 
4. Paddle, DueEast, Puck, DueWest 
5. Puck, DueEast, Puck, DueWest 

OATS would allow case #4 to be eliminated because in #3 Paddle is tested while 
moving DueEast; in #5 Puck is tested moving DueWest; in #3 Paddle is 
tested colliding with Puck. The complete OATS analysis would reduce 
considerably the number of tests required. 

Another Application of OATS 

Consider the need to test a collection class such as Stack, in which the class is 
implemented as a C++ template (see Figure 6.18). 

Figure 6.18. A C++ class template for Stack 

 

The developer's intention is for template parameter T to be replaced by any class 
when Stack is instantiated. Obviously, we cannot test the Stack class definition 
with all possible substitutions. The Stack, like any collection class, does not 
invoke any methods on the objects that it contains. Therefore, the interface 
implemented by the parameter class does not matter. 

To test the template code, we would select a stratified sample of classes from all of 
the classes that are available including vendor libraries, language libraries, and 
application code. Depending on the exact programming language used and other 
factors, the categories in the stratification will include the amount of memory used 
by each instance, the number of associations, and whether the objects placed in a 
collection are persistent. Then we would select a subset of this set of classes each 
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time a collection class needs to be tested. This second sampling can be guided by 
OATS. 

For more complex templates, sets of possible substitutes for each parameter are 
created. Then OATS creates tests that involve combinations of parameter 
substitutions. These tests provide the maximum search for interactions among the 
parameters with the minimum number of tests. 

 

Testing Off-the-Shelf Components 

Increasingly, functionality is added to an application by purchasing "chunks" of 
software referred to as components.[7] The quality of these components varies 
tremendously from one vendor to another. Until standardized measures are adopted 
or the marketplace forces improved quality, you should plan to do an acceptance 
test on any newly acquired component. 

[7] Chapter 10 will cover topics about components, but this is a 
natural place to talk about them. 

An acceptance test should put the component into the context in which it will be 
used. The test cases should thoroughly investigate the limits of the specification.[8] 
Creating the specification document will not be a wasted effort because developers 
will need it in order to properly use the component. 

[8] Create a formal specification if one does not exist. 

We like to begin an acceptance test with extreme, even incorrect, values— for 
example, running the mouse back and forth across the desk to generate a large 
number of mouse move events. A defective component may be overwhelmed by 
the large number of events and crash. Other stress tests include holding down a 
"repeat" key or making multiple menu selections before the program can respond 
and gray out certain selections on a menu. This is as much a test of the component 
manufacturer's attention to detail as it is a test of the software. If there are many 
failures here, you have to suspect that the quality is fairly poor. 

If we continue beyond that set of tests, the testing of this component proceeds 
along the lines of any class. Even if the component is constructed from several 
classes, there is usually a main class that presents the component to the user. The 
tests are based on that class. 
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A Case Study in Component Acceptance Testing 

Let's consider a commercially available Grid user-interface component and 
examine how we would test it before using it in an application.[9] Figure 6.19 
presents the test plan for the Grid component. Figure 6.20 presents a life-cycle 
scenario, which is a description of one specific use of the component that can be 
used to build certain types of test cases. 

[9] We use an actual product, but we have changed the name to 
avoid legal hassles. 

Figure 6.19. A component test plan for the component Grid 
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Figure 6.20. A life-cycle scenario 
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A grid JavaBean displays information in row and column format. It allows users to 
select, manipulate, and store information presented. The product we will consider 
contains 4 interface definitions (implemented as abstract classes in C++) and 10 
public class definitions. Additional classes are nested within these public classes. 
Of the 10 public classes, two— GridMain and GridBigAdapter— are the 
classes that developers use to integrate the component into their application. The 
documentation comprises standard JavaDoc HTML pages. These contain 
comments placed by the class developers, but nothing about the "component." 
Each method is presented in the form int compareTo(java.lang.Object 
anotherObject). 

The compareTo() method returns a value of type int and requires one 
parameter, anotherObject, which is of type Object. There is no information 
about any constraints on anotherObject nor any indication of the range for the 
return value, even though our analysis discovered that it can only take on three 
different values. 

The documentation does not provide a state diagram to use. Substitute scenarios in 
which a life cycle of uses is defined. A sample scenario is shown in Figure 6.20. 
These tests may be combinations of other specification-based tests. 

GridMain has over one hundred methods. Many of them are simple accessor 
methods, but a large number are modifier methods that set specific attributes in the 
object. While testing could be a large job, a component will provide a large amount 
of functionality and, therefore, conducting a thorough test at one time will save 
much effort for the many developers whose objects will interact with the 
component. 

An acceptance test combines elements of a class test and an interaction test. 
Therefore, we are interested in the patterns of interaction of this component with 
the rest of the system as well as the specification of the individual methods on the 
interface of the component. This component follows a standard Java user-interface 
design pattern. It uses an Adapter class to support the creation of the Listener 
objects needed to capture various types of events. An interaction test of this 
component should follow that pattern to achieve an effective interaction test. 

First, let's analyze. Grid is primarily a collection class. It holds and displays data 
and has very little interaction with the objects that it holds. The major interactions 
that it has are with the event producers. The interaction that it has with its contents 
is to display them, store or retrieve them, and forward events on to them. Another 
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type of interaction is when one object requests that a grid provide the object stored 
in a specific cell. Is the requesting object handed a clone? A reference? Does this 
action prevent the grid from being garbage collected? 

A few simple interactions that the grid is intended to have include the following: 

1. A mouse button click occurs in a certain cell of the grid. 
2. A mouse button release occurs in a certain cell of the grid. 
3. A mouse button is double clicked in a certain cell of the grid. 

A test harness should be created that consists of a specialized Adapter that 
listens for these events and at least logs when the event has happened and has been 
handled. The tests should automatically create events for a variety of actions and 
pass the events to the grid. The resulting behavior of the grid should be evaluated. 

A more complete interaction test would examine the complete life cycle of a grid. 
Create a few life-cycle scenarios that briefly describe typical uses of the 
component under test, as shown in Figure 6.20. The test harness would instantiate 
Grid with a variety of data types from the current application in the cells. The test 
harness should stimulate the grid to read its contents from storage and display it. 
The tester should perform a series of mouse actions. Another object should request 
and hold the contents of at least one cell in the table. The test harness should 
stimulate the grid to save the data and finally destroy the grid. Validating the test 
requires that the tester observe the visual behavior of the grid as the events are 
created, and check that the garbage collector can remove the grid while an object 
holds a reference to one of the content objects. 

Tip 

Use the basic logic of the manufacturer's sample programs as the basis for 
individual test cases. We use our standard test driver and then build test 
cases by beginning with the basic code from sample programs. 

 

Incidentally, we found several problems during our acceptance test. These were 
submitted as bugs to the component company and were subsequently fixed in later 
releases. 

Protocol Testing 
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As an object interacts with other objects, it will receive multiple messages. These 
messages must be sequenced in accordance with the specification. Protocol testing 
investigates whether the implementation of a class satisfies its specification. The 
various protocols that an object participates in can be inferred from the pre- and 
postconditions for individual operations defined in its class. Identifying sequences 
of method invocations by combining a method whose postcondition enables the 
precondition of another method defines a protocol. It is much easier to see these 
sequences from the state diagram for a class than deriving them from written pre- 
and postconditions. 

The interaction test suite includes tests of each protocol. This is basically a special 
form of life-cycle testing. Each protocol represents a life cycle for objects from the 
class under test in combination with instances of other classes. Each protocol 
corresponds to a sequence of states beginning with initial states of the two objects 
(as denoted on the state diagrams of the two classes), a sequence of states for each 
object, and ending with the terminal states (again, denoted on the state diagrams). 
A test case takes the two objects through one complete sequence of methods. 

Consider the Timer class and its state diagram given in Figure 2.19. A protocol 
can be found by tracing through that state diagram. One protocol would be to 
create the object then sending one or more attach(...) messages followed by 
the enable() message, the disable() message, and finally, the delete() 
message. This provides a life-cycle test case. This provides an effective test of the 
object in the ways that it will interact with its client objects. 

 

Test Patterns 

Test patterns are design patterns for test software. Design patterns [GHJV94] 
capture and reuse design knowledge that has gained widespread application in the 
object-oriented software development community. Each pattern is a specific 
configuration of interactions among a set of objects that form some cluster in the 
overall design. The pattern description explains the context within which the 
pattern should be considered, provides a set of forces that guide a trade-off 
analysis, and explains how to construct the objects. We use the same format for the 
pattern description as the design community, but we can place more specific 
meaning on certain sections of the description. 
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We have been successful with the concept of relating a test pattern to a particular 
design pattern. When a developer uses a specific design pattern to structure a 
portion of the system, a tester (who may be another developer) then knows which 
test pattern to use to structure the test code. 

The Grid component is based on the Listener design pattern, which is related 
to the more general Observer design pattern to incorporate event handling into 
its GUI. In the next section, we will explain the associated test pattern. 

Listener Test Pattern 

Intent 

There is a need to test the interactions among the Listener, 
ActionListener, and TargetObject objects that are participating in the 
Listener design pattern (Figure 6.21). The interactions need to be examined to 
ensure that: 

• each interaction correctly sets the state of each participating object 
• each interaction is complete in that all objects that should be affected are 
• each interaction is consistent with the specification of the participating 

objects 

Figure 6.21. Conceptual interactions in the Listener pattern 

 

A Listener object is passed to an object that receives events. A Listener is 
only "interested" in a certain set of event objects. The ActionListener object 
forwards to a registered Listener only those events for which the Listener is 
registered. Each Listener is associated with some instance of 
TargetObject. When the Listener receives an event, it performs some 
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action on its target object. That action was defined as a method in the class 
Listener. 

Context 

The Listener design pattern has been heavily used in Java, but equivalent 
event-handling patterns are used in all object-oriented languages. The pattern is 
particularly used in the context of the user interface. Most Java programs contain a 
large number of instances of the Listener pattern.Very little original code is 
written in a Listener class. Developers usually define the original code using 
the anonymous class mechanism. This makes it more difficult to test the 
mechanism in isolation. 

Forces 

There are several forces that constrain the design of the test classes: 

• Modifying the production software to accommodate testing requires that 
additional tests be run after the production software is returned to its original 
state. Therefore, we prefer not to modify the application in order to test it. 

• The test class must know when events are received by the Listener 
object. This may be accomplished by having the test class produce the 
events, or by having the test class register for the same events as the 
Listener class being tested. 

• Participating objects have already been class tested. Therefore, the accessor 
and modifier methods of the individual objects will be trusted and used 
during this test. 

• The small size of each Listener subclass and the large number of 
Listener classes used in an application requires that the tests be easily 
created and ported to a new Listener class. 

Solution 

A TestListener class creates an environment in which the interactions 
between objects in the Listener design pattern are exercised and observed. The 
TestListener object instantiates the pattern. A TestListener object can 
generate any of the events for which a Listener object can register. 

There is essentially one type of test case. An event is generated by the 
TestListener object and sent to the ActionListener object. If the 
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ActionListener object is working correctly, the event is forwarded to all of 
the registered Listener objects. The Listeners invoke specific actions on 
their TargetObjects. The TestListener object registers with the 
ActionListener so that it receives the event at basically the same time as the 
Listener object being tested. The ListenerTest object then checks the 
TargetObject to determine whether the expected changes have occurred there. 

Design 

An instance of the TestListener class, after inheriting from the 
AbstractListener class, can register with the ActionListener object. It 
will then receive a notification of a specific event and will know to activate tests on 
the SpecializedListener object, Figure 6.22. 

Figure 6.22. Conceptual interactions in the Listener pattern 
extended for testing. 

 

Specific Example 

The pattern can be applied to the Brickles TimerObserver class and those 
associated classes, Figure 6.23. 

Figure 6.23. An instantiation of the Listener pattern extended for 
testing timer observers in Brickles 
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Resulting Context 

The production classes participating in the Listener pattern have been tested 
relative to their interaction with each other. A series of test classes and test cases 
have been created that can be reused, with slight modifications, for a variety of 
types of events. By using the pattern approach, new events and new listeners can 
be tested cheaply. 

 

Testing Exceptions 

An exception provides an alternative route for returning from a method that does 
not necessarily move to the next statement after the method is invoked. Exceptions 
are powerful in two respects: 

• The exceptional return value is an object and can be arbitrarily complex. 
• The points at which an exception is thrown varies based on the depth of the 

aggregation hierarchy. 

Most interface designers use exceptions to handle error conditions that can arise 
during processing. Exceptions provide an alternative to return codes and in some 
situations can reduce the amount of code needed to process return codes. However, 
exceptions are also useful for processing exceptional conditions that arise during 
processing that are not really associated with errors. Our design for Brickles uses 
exceptions to terminate play of the game when either the puck supply is exhausted 
or the last brick is broken. Figure 6.24 shows how exceptions and return codes can 
be used in C++ to handle a problem reading from an input stream. 

Figure 6.24. Code structure for return code and exception methods of 
error handling 
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While the prototype for readInt(int) documents that only exceptions of the 
class ReadError (and its derived classes) will be thrown, C++ does not require a 
function (or member function) to list the types of exceptions it can throw. This 
presents a problem for testing (and probably for developing as well!) in that 
postconditions may not be tested completely. There is always a possibility that an 
unexpected perhaps system-level exception could be thrown within the context of a 
function's execution. Consequently, it is a good practice in C++ development to 
use exceptions to fully specify any interface that uses exceptions. 

"Testing exceptions" provides two different perspectives. First, at the class-testing 
level the focus is on whether each of the methods in that class does in fact throw 
the exceptions that it claims to in the appropriate circumstance. This will be 
handled as a normal part of class testing since each potential throw should be a 
postcondition clause. The PuckSupply class would have tests that determine that 
the OutOfPucks exception is thrown when the puck supply has been exhausted. 
The coverage criteria requires that a class throws every exception contained in the 
specifications of the methods. There would be at least one test case per exception. 

The test driver establishes the conditions in the object under test that will result in 
an exceptional event. The driver provides a try block inside which a stimulus 
invokes the method that throws the specific exception. The exception is caught by 
the test driver and verifies that it was the correct exception. Since exceptions are 
objects and belong to classes, the catch statements can use the typing system to 
verify that the exception is of the correct type. 

Second, during integration, interaction testing will determine whether these 
exceptions that are being thrown at the correct time are being caught at the correct 
place. This is a test of the interaction between the originating object that initiates 
the sequence of method invocations that result and catch the exception, and the 
throwing object that reaches an exceptional state and throws the exception. For 
example, in the Brickles game, when the OutOfPucks exception is thrown, is it 
caught? Is it caught in the correct place? The originating object is several levels of 
aggregation removed from the PuckSupply object that actually throws the 
exception. 

The test driver, in this case, instantiates the originating object. The originating 
object is responsible for creating those levels below it in the aggregation hierarchy. 
The test driver stimulates the originating object to create all of the levels and to 
place the originating object into a state in which the lower-level object will throw 
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the exception. The coverage criteria for this level of testing is to be certain that 
every exception thrown is caught in the correct location. 

Both of these points of view can be tested very early in development. During the 
guided inspection of the system-level design model, every user-defined exception 
that is instantiated should be traced to an object that will catch the exception using 
the sequence diagram for the scenario that throws the exception. 

Testing Interactions at the System Level 

At some point, components become so complex that it is easier to test them in the 
context of the application itself instead of in the environment provided by a test 
driver. Some parts of the system might not be modeled by a single class. For 
example, the user interface provided by most application programs is not a single 
instance of some class, but a community of objects that supports input and output. 
The interactions that can be tested at the system level are only those that can also 
be verified at the system level. That means that we can see the direct results of the 
tests, and it also means that there must be a direct relationship between the user 
interface and the ability to view test results. 

Summary 

In an object-oriented system the interactions between objects provide the main 
structure of the program. By testing specifically for problems between objects as 
they are integrated into larger and more complex objects, problems involving 
checking preconditions and the sufficiency of objects returned as the result of a 
message are discovered early. There are many factors that influence each 
interaction. Statistical sampling techniques such as OATS provide a means of 
selecting an effective subset of combinations of these factors to investigate using 
test cases. 

The design of test software is influenced by the design of the software it is 
intended to test. In an object-oriented software development environment, the 
design of the production software is guided by a set of standard patterns. By 
discovering and documenting the standard ways in which test objects interact with 
each other and with the software under test, less experienced testers can benefit 
from the knowledge of more experienced testers. The result is test software that is 
of a better quality and is more reusable. 
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Exercises 

 

6-1. Design a test suite for the exceptions defined in the Brickles design 
documents. 

6-2. Construct test inputs for the Velocity::setSpeed method. 

6-3. Construct a test plan for a commercially available component. How would the 
plan be different if the component is a domain-specific component versus a user-
interface control? 

6-4. Select a design pattern used in a project on which you are currently working. 
Find other projects on which it has been used. Examine those projects' test code. 
Generalize this code to create a test pattern. 
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Chapter 7. Testing Class Hierarchies 

• Need to know what must be retested in code that is inherited? See 
Hierarchical, Incremental Testing. 

• Want to encapsulate the test cases for a specific class using PACT? See 
Organizing Testing Software. 

• Want to know what testing is possible if the class is abstract? See 
Testing Abstract Classes. 

Inheritance is a powerful mechanism for interface and code reuse. In this chapter 
we describe approaches for the execution-based testing of classes in an inheritance 
hierarchy. We show how to test a subclass given that its superclass has been tested 
using the techniques in Chapter 5 and Chapter 6. We consider many aspects of 
subclass testing, including adequate testing of subclasses, reuse of test cases for a 
class in testing subclasses of that class, and implementation of test drivers for 
subclasses. We also cover testing abstract classes. We provide examples of the 
techniques in both C++ and Java. 

We begin the chapter with a brief review of inheritance and a discussion of 
assumptions we make about how inheritance should be used. Then we analyze the 
inheritance relationship from a testing perspective to identify what needs to be 
tested in a subclass. We describe parallel architecture for class testing (PACT), 
which is a way to organize Tester classes in an inheritance hierarchy. 

 

Inheritance in Object-Oriented Development 

Inheritance provides a mechanism for reuse. Inheritance, as a mechanism for code 
reuse, was probably a significant factor in making object-oriented programming 
attractive in the 1980s and early 1990s. However, good object-oriented design calls 
for inheritance to be used in a very disciplined way— that is, in accordance with the 
substitution principle (see Substitution Principle on page 33). Under that discipline, 
inheritance is a mechanism for interface reuse instead of code reuse.[1] In our 
discussions in this chapter, we assume inheritance is used only in accordance with 
the substitution principle. Under that assumption, the set of test cases identified for 
a class is valid for a subclass of that class. Additional test cases usually apply to a 
subclass. With careful analysis of the incremental changes that define a subclass in 
terms of its superclass, testers can sometimes avoid execution testing of some parts 
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of a subclass because the test cases that apply to the parent just exercise the same 
code that was inherited intact in the subclass. 

[1] In our experience, code reuse frequently falls out of interface 
reuse. 

During analysis and design, inheritance relationships between classes can be 
recognized in the following two general ways: 

• As a specialization of some class that has already been identified 
• As a generalization of one or more classes that have already been identified 

Inheritance relationships can be identified at just about any time during an 
iterative, incremental development effort. In particular, the specialization 
relationship can be applied even fairly late in an effort without a large impact on 
most other program components. This flexibility is one of the big advantages to 
using inheritance and one of the strengths of object-oriented technologies. 

It is also a strength of the technology that code for execution-based testing of 
classes in a hierarchy can be reused. We will show how test plans and test drivers 
for a derived class can be derived from the tests for its base class. 

Subclass Test Requirements 

Implementing classes is more straightforward when done from the top of the 
hierarchy down. In the same way, testing classes in an inheritance hierarchy is 
generally more straightforward when approached from the top down. In testing 
first at the top of a hierarchy, we can address the common interface and code and 
then specialize the test driver code for each subclass. Implementing inheritance 
hierarchies from the bottom up can require significant refactoring of common code 
into a new superclass. The same thing can happen to test drivers. To keep our 
discussion simpler, we will assume that the classes in an inheritance hierarchy are 
to be tested top down. First, we will focus on testing a subclass of a class that has 
already been tested. 

Consider that we would like to test a class D that is a subclass of another class C. 
Assume C has already been tested adequately by the execution of test cases by a 
test driver. What do we need to test in D? 

Since D inherits at least part of its specification and also part of its implementation 
from C, it seems reasonable to assume that some of the test software for C can be 
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reused in testing D. That is indeed the case. Consider, for example, the degenerate 
case in which D inherits from C and makes no changes at all. Thus, D is equivalent 
to C in its specification and implementation. Class D need not be tested at all if we 
are willing to assume that the compiler correctly processes the code. Under such an 
assumption, if C passes all its test cases, then so must D. 

In the more general case in which D contains incremental changes from C, the 
effort needed to test D adequately can be reduced by reusing test cases and parts of 
the test driver for C. We will show how we can extend the testing done for C in a 
straightforward way to test D. 

Refinement Possibilities 

As supported by Java and C++, inheritance permits only a small number of 
incremental changes in deriving a class D from a class C. We can define a new 
derived class D that differs from C in only four general ways: 

1. Add one or more new operations in the interface of D and possibly a new 
method in D to implement each new operation.[2] 

[2] A new operation might be abstract ( pure virtual in C++ 
terminology), deferring implementation to subclasses. 

2. Change the specification or implementation of an operation declared by C in 
one or two ways: 

a. Change in D the specification for an operation declared in C. 
b. Override in D a method[3] in C that implements an operation inherited 

by D. 

[3] We assume if the class is implemented in C++, 
then such operations are declared virtual in the 
base class. Failure to use a virtual member function 
violates the substitution principle. 

3. Note that either or both of these can apply. It is common to override a 
method in a subclass. It is also possible to change a specification for an 
operation without directly changing the method that implements the 
operation in a subclass.[4] 

4. [4] For example, the implementation might be based on a 
Template Method pattern [GHJV94]. 
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5. Add into D one or more new instance variables to implement more states 
and/or attributes. 

6. Change the class invariant in D. 

While inheritance can be used for many reasons, we will assume that inheritance is 
used only in accordance with the substitution principle. This is a reasonable 
assumption because many of the benefits of object-oriented programming arise 
from polymorphism. The substitution principle ensures that objects bound to an 
interface behave as expected, thereby resulting in more reliable and readable code. 
We also assume that the principle of information hiding is followed so that any 
data in an object is not public. If data is indeed public, then we will augment our 
discussion with an assumption that reads and writes to public data correspond to 
implicit get and set operations,respectively. 

Since D inherits part of its specification from C, then all the specification-based test 
cases used in testing C can be used in testing D. The substitution principle ensures 
that all the test cases still apply. We need new, additional specification-based test 
cases for new operations, perhaps additional specification-based test cases for 
operations whose preconditions have been weakened or postconditions have been 
strengthened, and implementation-based test cases to test new methods. If the class 
invariant has been refined in the subclass, then we will need to add test cases to 
address the refinements. 

Figure 7.1. Refinement possibilities in an inheritance relationship 
between two classes 

 

Hierarchical, Incremental Testing 
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The incremental changes between class C and its derived class D can be used to 
guide the identification of what needs to be tested in D. Consider the incremental 
changes from a testing perspective. Since D is a subtype of C, then all the 
specification-based test cases for C also apply to D. Many of the implementation-
based and interaction-based test cases also apply. We use the term inherited test 
cases to refer to the test cases for a subclass that were identified for testing its base 
class. We can determine which inherited test cases apply to testing a subclass 
through a straightforward analysis. As part of that same analysis, we can determine 
which inherited test cases do not have to be executed in testing the subclass. We 
repeat here the list of incremental changes given in the previous section and 
examine each from the testing perspective. 

1. Add one or more new operations in the interface of D and possibly a new 
method in D to implement each new operation. 

A new operation introduces new functionality and new code to test. A new 
operation does not directly affect existing, inherited operations or methods. 
We need to add specification-based test cases for each new operation. We 
need to add implementation-based and interaction-based test cases in order 
to comply with coverage criteria in the test plan if the operation is not 
abstract and has an implementation. 

2. Change the specification or implementation of an operation declared by C in 
one or two ways: 

a. Change in D the specification for an operation declared in C. 

We need to add new specification-based test cases for the operation. 
Additional test cases provide new inputs that meet any weakened 
preconditions and check outputs for the new expected results that 
result from any strengthened postconditions. The test cases for this 
operation defined for C still apply, but must be re-run. In addition, we 
need to add strengthened postcondition requirements to the output for 
each of the test cases used to test this operation in class C. 

b. Override in D a method in C that implements an operation inherited by 
D. 

We can reuse all the inherited specification-based test cases for the 
method. Since there is new code to test, we will need to review each 
of the implementation-based test cases and interaction-based test 
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cases, revising and adding to them as needed to meet the test criteria 
for coverage. 

3. Add into D one or more new instance variables to implement more states 
and/or attributes. 

A new variable is added most likely in connection with new operations 
and/or code in overriding methods, and testing will be handled in connection 
with them. If a new variable is not used in any method, then we do not have 
to make any changes. 

4. Change the class invariant in D. 

Class invariants amount to additional postconditions for every test case. We 
prefer to view them as implied postconditions and to write test cases without 
explicit references to invariant constraints. Test case output is subject to 
invariant constraints— that is, "and the class invariant holds" is implicit in 
every test case output. Thus, if a class invariant changes, then we need to 
rerun all inherited test cases to verify that the new invariant holds. 

We do not need to add specification-based test cases for operations that are 
unchanged from base class to derived class. The test cases can be reused as is. We 
do not need to run any of these test cases if the operations they test have not 
changed in any way— that is, in specification or in implementation. We do, 
however, need to rerun any test cases for an operation if its method has changed 
indirectly because it uses an operation that itself has changed. We also might need 
additional implementation-based test cases for such methods. 

We refer to applying the above analysis and its results as hierarchical 
incremental testing (HIT). We can use the analysis to determine for a subclass 
what test cases need to be added, what inherited test cases need to be run, and what 
inherited test cases do not need to be run. Determining which test cases do not 
need to be run is a bit tricky. In practice, it is usually easier and more reliable to 
just rerun all test cases. However, it pays to determine which test cases can be 
reused. 

Figure 7.2 summarizes the analysis associated with HIT. We classify each 
operation defined for a derived class D in the first column as new, refined, and 
unchanged. The second column specifies whether that change affects specification-
based testing. The third column specifies whether that change affects 
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implementation-based testing. The table adds a dimension of public and private. 
Private features of a class do not affect the public interface. 

Figure 7.2. Summary of refinements and effects in hierarchical 
incremental testing (HIT) 

 

A No entry in the table indicates that the incremental change (for the row 
containing the entry) has no incremental effect on the test suite— that is, the test 
cases for the superclass are still valid for the subclass. A Yes entry indicates that 
test cases must be added to address that incremental change. A Maybe entry 
indicates that a tester must examine the code in the implementation to determine if 
more test cases are needed to achieve some level of coverage. As a short example, 
consider the Timer class in the design of Brickles that represents the passing of 
time as a sequence of discrete "ticks." Each timer event is processed by a Timer 
instance that notifies other objects in the match. Those objects, in turn, process 
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another timer tick. This aspect of the design is based on the Observer pattern 
[GHJV94]. A Timer instance occupies the role of subject, and other objects in a 
Brickles match assume the role of observers. If we implement the design as shown 
in Figure 7.3 based on existing, tested classes Subject and Observer 
prescribed by the Observer pattern, then we can identify from Figure 7.2 what 
needs to be tested in class Timer. Specifically, the specifications of attach(), 
detach(), and notify() do not need to be tested further because their 
specifications have not changed from what was defined in Subject. No new 
implementation-based test cases are needed either because the code (not shown) 
reveals that there has been no changes to the execution flow in these methods—
that is, these methods do not use any of the new code in Timer or there is no new 
interactions with other objects. We do need to add specification-based test cases 
for the new operation tick(), which processes a timer event, and 
implementation-based test cases for the method that implements it. With respect to 
testing TimerObserver, HIT shows we need to test the overridden update() 
operation by adding specification-based test cases because the specification of the 
operation changes in the subclass (it specifies possible state changes in a concrete 
subclass). Since the operation is abstract in Observer, the Maybe in the HIT 
table translates to a need to add implementation-based test cases as well.  

Figure 7.3. Class diagram for Timer and TimerObserver 

 

Let us now examine hierarchical incremental testing from the context of a test 
plan— that is, from the perspective of identifying test cases. Then we will examine 



 288

it from a more detailed level. We will use as an example the inheritance hierarchy 
rooted at Sprite in Brickles (see Figure 7.4). A sprite is an abstraction that 
represents any object that can appear on a playfield in anarcade game. The name 
has historic significance in the domain of arcade games [Hens96]. Some attributes 
associated with a sprite are a bitmap that renders a visual image, a size that 
describes the width and height of the bitmap, a location on a playfield, and a 
bounding rectangle that is the smallest rectangular area of the playfield that 
contains the sprite's image (if it is on a playfield [5]). 

[5] Consider, for example a puck in play and a puck not yet put 
into play. The former is on a playfield, the latter is not. 

Figure 7.4. A class model for the Sprite inheritance hierarchy 
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A movable sprite is a sprite that can change position in a playfield. Associated with 
a movable sprite is the velocity at which it is currently moving. A velocity 
represents a direction and a distance traveled (in playfield units) in a unit of time. 
In our model, a puck and a paddle are both concrete kinds of movable sprites. 

A stationary sprite is a sprite whose position is fixed as long as it is on the 
playfield. In our model, a brick is an example of a stationary sprite. Since we have 
only one kind of stationary sprite in Brickles, we have— probably shortsightedly—
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elected not to represent stationary sprites by an abstract class in the current 
increment. Thus, class Brick inherits directly from Sprite in our model. 

Specifications for some of the operations in these classes in the Sprite hierarchy 
are given in Figure 7.5. 

Figure 7.5. An informal specification for some parts of the Sprite 
class hierarchy 
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Specification-Based Test Cases 

Under hierarchical, incremental testing, changes in a subclass's specification from 
the specification of its base class determine what needs to be tested. Test 
requirements are summarized in the column labeled Affect Class Specification? in 
Figure 7.2. While our discussion will be based on the relatively informal 
specifications given in Figure 7.5, the techniques apply to any form of 
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specification, including Object Constraint Language (OCL) and state transition 
diagrams. 

Let us focus first on the class MovableSprite, assuming test cases have been 
identified and implemented for class Sprite (see Figure 7.6).[6] MovableSprite 
adds some new operations and attributes to model motion in a playfield and also 
overrides some methods. Among the new operations in class MovableSprite 
are move(), which updates a movable sprite's position in a playfield; 
setVelocity(const Velocity &), which changes the velocity at which a 
movable sprite is moving; isMoving() const, which inspects whether a 
movable sprite is currently in a moving state; and collideInto(Sprite &), 
which modifies the state of a movable sprite to reflect a collision with some other 
sprite in the playfield. Among the overridden methods are the constructor. Most of 
the operations declared by Sprite are inherited unchanged. 

[6] We'll address the problem of testing an abstract class, such 
as Sprite, later in this chapter. 

Figure 7.6. A component test plan for class Velocity 
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The implementation of MovableSprite uses the following two new variables to 
store the velocity attribute and indicate whether the sprite is moving: 

• _currentVelocity, which is an instance of class Velocity used to 
store the current velocity. 
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• _isMoving, which indicates whether the movable sprite is currently in 
motion. When this variable is false, move() has no effect. 

What do we need to do to adequately test MovableSprite given that Sprite 
has already been tested? The subclass's code is based on the code tested in the 
superclass. From the class model (Figure 7.4) and the specifications for the 
operations shown in Figure 7.5, we can identify the following based on the HIT 
information in Figure 7.2: 

• The changed invariant demands that all the test cases defined for Sprite 
should be run for MovableSprite and the new invariant checked. 

• The new operations in MovableSprite need to have specification-based 
test cases generated as well as implementation-based test cases generated. 
We will want to check interactions among many of the new operations— for 
example, setting the velocity and then moving a movable sprite a few times 
to ensure it has adopted the specified velocity, or changing the velocity and 
verifying that the heading (up, down, left, or right) is correct. 

• The operations in Sprite for which methods have not been overridden in 
MovableSprite need no additional test cases. 

Implementation-Based Test Cases 

The column labeled Affect Class Implementation? in Figure 7.2 specifies what 
needs to be tested with respect to implementation. If an entry contains Maybe, then 
a tester must examine the code to determine whether additional test cases are 
required. In the case of MovableSprite, quite a few methods have been added 
to implement the operations concerned with movement. Methods for operations 
associated with a position in the playfield have not been overridden. The method 
tick() is overridden so that it causes a movable sprite to change position in the 
playfield based on its current velocity. 

Based on the information in Figure 7.2, we can determine the following about 
implementation-based testing of MovableSprite: 

• No new test cases are needed for size(), bitmap(), 
boundingRect(), overlaps(), position(), setPosition(), 
or playField(). After examining the code for these methods and 
determining that there are no interactions among them with tick(), we 
conclude these test cases do not need to be rerun. 
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• Implementation-based test cases are needed for all the new methods such as 
reverse(), move(), and so on. 

• Implementation-based test cases are needed for the implementation of the 
abstract method tick(). 

We also need interaction test cases associated with checking the correct 
implementation of startMoving() and stopMoving() and the effect of the 
state change on other operations such as tick() and reverse(). 

Organizing Testing Software 

The relationship between test requirements for a subclass, such as 
MovableSprite, and the test requirements for a base class supports an 
inheritance relationship between Tester classes that we described in Chapter 5. 
In other words, we can develop a test driver for a subclass D by deriving its 
Tester class from the Tester class for C, D's superclass. Figure 7.7 shows the 
structure, which we refer to as the parallel architecture for class testing (PACT) 
[McGr97]. The structure determined by PACT for the Sprite class hierarchy is 
shown in Figure 7.8. 

Figure 7.7. Parallel architecture for class testing (PACT) 

 

Figure 7.8. PACT structure for the Sprite hierarchy 
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Using PACT reduces the effort needed to test a new subclass. The organization of 
test case methods and test script methods we described in the previous two 
chapters facilitates the testing of subclasses by letting us invoke them in Tester 
subclasses. If an operation is refined in a subclass, then the corresponding tester 
methods can be reused in the subclass and refined as necessary to reflect new 
preconditions, postconditions, and/or implementation. Test case methods and test 
script methods for new operations can be added in the subclass Tester. PACT 
presents a clean organization and is easy to implement. 

At the root of the PACT hierarchy is the abstract class Tester that we described 
in Chapter 5. Each subclass of Tester must provide implementations for the 
abstract operations and could override methods for any of the other operations. 
Each subclass has the same basic organization presented in Chapter 5: test case 
methods, a method corresponding to each constructor to create an object under test, 
and a method to create an object under test in some specified state. These classes 
are straightforward to implement once the test cases have been identified. 

Testing Abstract Classes 

We usually expect the root class of an inheritance hierarchy— and even some of its 
direct descendents— to be abstract. In this section, we discuss possible ways of 
testing abstract classes, such as Sprite and MovableSprite. Execution-based 
testing of classes requires that an instance of the class be constructed. Most object-
oriented programming languages, including C++ and Java, support syntax for 
identifying abstract classes. Language semantics generally preclude instances of 
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abstract classes from being created. This presents a problem for testing because we 
cannot create the instances we need. We have identified some different approaches 
to testing abstract classes. Each has strengths and drawbacks. We present these 
approaches in the context of testing the Sprite abstract class. 

One approach to testing an abstract class, such as Sprite, is shown in Figure 7.9. 
Under this approach, a concrete subclass of Sprite is defined solely for the 
purpose of testing. In the figure, we name this class ConcreteSprite. The 
implementation of ConcreteSprite defines a stub for each abstract operation 
of Sprite. If one or more of the methods in Sprite is a template method using 
one of Sprite's abstract operations, then that abstract method must be stubbed 
appropriately— so that it effectively appears to meet the postconditions for the 
operation it stubs. In some instances, this is not difficult to accomplish. For some 
complex operations, writing a satisfactory stub can require substantial effort. Once 
a concrete subclass has been implemented, the objectUnderTest() factory 
method of the Tester class— for example, SpriteTester— creates an 
instance of the concrete subclass. 

Figure 7.9. One approach for the execution-based testing of an 
abstract class 

 

One disadvantage to this approach is that the implementation of abstract methods 
cannot be propagated easily to abstract subclasses without using multiple 
(repeated) inheritance. Consider, for example, what is now necessary for testing 
the abstract class MovableSprite, which is a subclass of the abstract class 
Sprite illustrated in Figure 7.10. Ideally, the ConcreteMovableSprite 
class could reuse the stubs implemented in ConcreteSprite. However, this 
reuse is not immediate unless ConcreteMovableSprite inherits from both 
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MovableSprite and ConcreteSprite. While multiple inheritance is 
available in C++, it is not in most object-oriented programming languages nor is its 
use for this purpose encouraged. 

Figure 7.10. Another approach for the execution-based testing of an 
abstract class 

 

A second approach to testing an abstract class is to test it as part of testing the first 
concrete descendent. In the context of testing Sprite, this would be done in 
testing, say, Puck. This approach eliminates the need to develop extra classes for 
testing purposes at a cost of increased complexity in testing this concrete class. In 
writing the Tester class for a concrete class such as Puck, we need to take care 
to implement a Tester class for each ancestor, thereby providing each with the 
appropriate and correct test case and test script methods. This is straightforward to 
do in practice. Careful review of the code in the Tester classes for the abstract 
classes can reduce the effort needed to get the concrete subclass Tester class 
implemented correctly. If the concrete subclass passes all its test cases, then the 
assumption is that the ancestor classes pass their test cases. This assumption is not 
always valid. For example, a concrete subclass might override a method defined in 
one of the abstract classes. In that case, another concrete subclass that does no such 
override must be used to test that method. 
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Neither of these approaches is completely satisfactory. We have investigated a 
third approach based on the direct implementation of a concrete version of an 
abstract class for testing purposes. In other words, we have tried to find a way to 
write source code for a class so that it can easily be compiled as an abstract or a 
concrete class. However, neither an approach based on editor inheritance nor one 
based on conditional compilation[7] has produced good results because the resulting 
code is complex and hard to read, thus it's susceptible to error. 

[7] Editor inheritance refers to the cloning of code by copying 
existing source code and then editing the copy to add, remove, 
or change its function. In this case, we copy the code for the 
abstract class to a separate file, then implement any abstract 
operations to make the class concrete. Of course, the main 
drawback of editor inheritance is that any change to the original 
source code is not propagated automatically to the cloned 
source code. 

To work around this drawback, we can use conditional 
compilation based on, for example, C++ preprocessor 
directives #if defined(TEST) and #elif and #endif, to put the 
code for abstract and concrete versions of the same class in 
the same source file. Using conditional compilation makes code 
very difficult to read and maintain. 

A good alternative is to test an abstract class using guided inspection instead of 
execution-based testing. Reviews are acceptable because a typical abstract class 
provides little or no implementation for the abstract operations. In our experience, 
public interfaces for abstract classes tend to stabilize fairly quickly. The concrete 
operations are primarily inspectors or simple modifiers that can easily be tested by 
inspection. Constructors and destructors are more complicated to test by inspection 
only— for example, the constructor for the Sprite class involves finding a 
bitmap image associated with a resource ID. 

We still prefer to do execution-based testing of concrete classes because it supports 
easier regression testing. PACT offers advantages for testing families of classes, so 
we still want to develop Tester classes for abstract classes. In our practice, we 
prefer the second approach we discussed— that is, testing abstract classes with the 
first concrete subclass to be tested. This approach is straightforward and requires 
relatively little additional coding effort for implementing testers. We still have the 
advantage of easily performing regression testing. 
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Summary 

It is widely accepted that the inheritance relationship provides a powerful analysis 
and design tool. It provides a very powerful testing tool as long as inheritance is 
applied during design in accordance with the substitution principle. An inheritance 
relation holds for test suites. Test suites for subclasses can be derived from the test 
suite for their parent classes. Based on an analysis of the changes, we can decide 
what test cases need to be added, what test cases need to be rerun, what test cases 
need to be modified, and what test cases do not need to be run at all. PACT 
provides a very useful way of organizing test drivers for class testing. 

Exercises 

 

7-1. Hierarchical, incremental testing (HIT) approaches testing with an idea that, 
with a little analysis, we can avoid retesting code that has already been tested. 
Select classes from an inheritance hierarchy on your project and perform a HIT 
analysis. Estimate the effort to implement enough test cases to fully test all classes 
in the hierarchy and compare that estimate with your HIT analysis effort. 

7-2. Write a test driver for an abstract class with a small number of operations. 
Evaluate the effort needed to test the class using the three approaches described in 
the last part of this chapter. 

7-3. Implement a PACT hierarchy of Tester classes for the classes in an 
inheritance hierarchy to which you have access. Modify the abstract class Tester 
described in Chapter 5 to be useful in your test environment. Enhancements can 
include measuring memory allocation, collecting timing information, and doing 
more sophisticated logging of results. 
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Chapter 8. Testing Distributed Objects 

• Need to define standards for specifying distributed systems? See 
Specifying Distributed Objects. 

• Interested in a new definition of "path" especially for distributed 
systems? See Path Testing in Distributed Systems. 

• Need to develop tests that explore the temporal characteristics of a 
program? See Temporal Logic. 

• Want to explore testing an Internet application? See The Ultimate 
Distributed System— The Internet. 

Few systems these days are designed to execute on a single processor in a single 
process. In an attempt to gain flexibility and extensibility, many systems are 
designed in pieces that are sufficiently independent that can reside in a separate 
process from the others. The term distributed means systems with a client/server 
architecture in which the client and server pieces are designed to be in separate 
processes. Today's systems are much more varied than the client/server systems of 
the eighties in which the server was always a database server and the clients simply 
queried or modified the data. Appplications often begin with one component of the 
application being downloaded to run on a customer's computer. Information is 
streamed back to an application server, which in turn works with a database 
component to fulfill a transaction. 

In this chapter we will add to our repertoire of testing techniques to include tests 
that are targeted at new types of defects specifically related to concurrent, 
distributed software. Basically we will consider the following two types of faults. 

• Concurrent threads of execution must coordinate their accesses to shared 
data values. Failure to synchronize these accesses can lead to incorrect data 
values being present in memory even though each thread is correctly 
computing its result. 

• A specific node in a distributed system can fail to perform correctly even if 
every other processor is working properly. A network link between nodes 
can also fail while the remainder of the system continues to function. This 
results in a system failure. 

The Brickles example, as we have been using it thus far, is not distributed and not 
useful in this context. We will use examples from the Java version of Brickles that 
is multithreaded and that uses an applet running in a Web browser as its interface. 
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Basic Concepts 

The basic unit that we will deal with in this chapter is a thread. A thread is an 
independent context of execution within an operating system process. It has its 
own program counter and local data. A thread is the smallest unit of execution that 
can be scheduled. Most modern operating systems allow a single process to group 
multiple threads into a related set that shares some properties and keeps certain 
others private. A single thread is a sequence of computations and is the simplest 
testing situation. Techniques discussed in earlier chapters have "covered" the 
various entry points into and the paths through a single thread of computation. The 
techniques have accounted for alternative paths through the logic including the 
dynamic substitution of one piece of code for another. 

The basic complication introduced by having multiple threads arises when they 
share information or access data stores that are available to more than one thread. 
For concurrency to be of value, there should be as few dependencies between 
threads as possible. Dependencies imply that the order in which computations in 
the two threads occur matters. Since each thread is independently scheduled by the 
operating system, the developer must provide some mechanism to synchronize the 
threads so that the correct order is followed. 

Object-oriented languages provide some natural means of synchronization by 
hiding attributes behind interfaces and, in some cases, making threads correspond 
to objects. This means that synchronization is visible in the object interface (such 
as the synchronize keyword in Java) and that messaging is a key element in 
synchronization. In this environment, class testing does not detect many, if any, 
synchronization defects. It is only when a set of objects interact that the real 
opportunity to detect synchronization defects occurs. 

The case study that we have been using was originally written sequentially and the 
C++ version that can be downloaded from the Web is a sequential version. The 
Java version does introduce concurrency. Essentially, the MovablePiece objects 
are autonomous from the other computations in the game. They are in the sense 
that the Timer object maintains a separate thread and sends the tick() message 
to every MovablePiece object that is registered with it. The synchronization 
problem that must be examined is whether it is possible for the Timer thread to 
retain control of the processor and send the tick() message to a single object 
several times before the thread that manages the display can compute a collision, 
change the location of the object that was moved, and update the display. 
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Computational Models 

Sequential processing of program statements is the "default" model of 
computation. In this section we will discuss some other models and briefly talk 
about the testing implications of each. 

Concurrent 

The concurrent model of computation introduces a logical notion of multiple things 
happening at the same time. Physically it may or may not be possible for two 
things to happen at the exact same time, but a design must be constructed to 
assume that things are happening at the same time. The introduction of light-
weight threads into recent operating systems have made this model easy to realize. 

Testing for concurrency defects should focus on those points at which two threads 
interact. Methods should receive the typical testing described in Chapter 5 before 
being exercised in an interaction setting. The interaction tests, which we began 
talking about in Chapter 6, should provide opportunity for two or more clients to 
request the same service. But more about this later in the chapter (see Path Testing 
in Distributed Systems, on page 275). 

Parallel 

The parallel model of computation uses a set of physical processors to achieve true 
physically concurrent computing. As many computations as processors may 
proceed at exactly the same time. There are various definitions of this term but a 
"parallel computer" is usually taken to be one in which these multiple processors 
share a common high-speed data bus and are thought to be in the same "box." The 
National Oceanic and Atmospheric Administration (NOAA) uses a computer with 
over two thousand processors to compute forecasts from vast quantities of 
measurements from around the world. We will not discuss the issues associated 
with this model. 

Networked 

In this model, physical concurrency is achieved by linking together separate boxes 
with communication devices that operate at a slower speed than the internal data 
bus. This is a model we will consider because it is applicable to such heavily used 
systems as the Internet. One of the testing problems associated with networked 
computing is the difficulty in synchronizing the many independent machines that 
comprise a networked system. This can make it difficult to determine how 
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thoroughly an implementation has been tested because the times at which events 
occurred are measured in terms of each local clock. Without getting into the details 
of networking and Web communication, we will discuss some techniques for 
testing systems that incorporate a Web component. 

Distributed 

Distributed systems use multiple processes to support a flexible architecture in 
which the number of participating objects can change. Although the objects of a 
system can be distributed across multiple processes on the same machine, they are 
usually distributed across multiple physical computers. These distributed 
components must be able to locate the other components with which they must 
interact. An object variously named the "Naming Service" or registry or some 
other name is known to all the components. In some cases a configuration file lists 
the machines that are authorized to participate in the system. These and other 
pieces constitute what we will refer to as the infrastructure of the distributed 
system. This infrastructure may be standardized and reusable across a number of 
systems with little or no modification. We will consider a number of issues related 
to testing these distributed components and systems. 

 

Basic Differences 

We want to consider some of the basic differences between sequential systems and 
these other models particularly from a testing perspective. 

Nondeterminism 

It is very difficult to exactly replicate a test run when the software contains 
multiple concurrent threads. The exact ordering is determined by the scheduler of 
the operating system. Changes in programs not associated with the system under 
test can affect the order in which threads of the system under test are executed. 
This means that if a failure is encountered, the defect is isolated and repaired and 
the test is repeated, we can't be certain that the defect is removed just because the 
error does not reoccur during a specific run. 

This leads us to use one of the following techniques: 

• Conduct more thorough testing at the class level. The design review of a 
class that produces distributed objects should investigate whether there is an 
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appropriate provision for synchronization in the design for the class. The 
dynamic class testing should determine whether the synchronization is 
working correctly in a controlled test environment. 

• Execute a large number of test cases while attempting to record the 
order in which events occur. This provides a higher probability that all 
possible orderings have been executed. The problems we are attempting to 
detect result from sequences of actions. If all possible sequences of these 
actions have been executed, the defects will have to be found. 

• Specify a standard test environment. Begin with as clean a machine as 
possible including as few connections to networks, modems, or other shared 
devices as possible. Identify those applications that must run for the platform 
to be viable. Add a basic set of applications that would be running on the 
typical machine. Each test case should provide a description of any 
modifications made to this standard environment. This includes the order in 
which processes are started. Including a debugger in the standard 
environment allows the tester to verify the order in which threads are 
created, executed, and deleted. The larger the environment and the more it 
can be shared and networked, the more difficult it is to maintain consistency 
within that environment. Wherever possible there should be a testing lab in 
which machines are isolated (at least for the initial testing phases) from the 
rest of the corporate net and dedicated to the test process. 

Additional Infrastructure 

Many of the distributed object systems rely on an infrastructure provided by a 
third-party vendor. Over time, successive versions of this infrastructure will be 
released. A regression test suite should be created that tests the compatibility 
between the application and the infrastructure. 

A second issue here is the reconfiguration of the system. Some infrastructures are 
self modifying and reconfigure themselves when the system reconfigures itself. 
Essentially a specific input data set can cause a different path to be executed 
because the previous path no longer exists. An analysis of the infrastructure should 
provide a set of standard configurations for the infrastructure and tests should be 
executed for each different one. 

Partial Failures 

A distributed system can find that a portion of its code cannot execute because of 
hardware or software failures on one of the machines hosting the system. An 
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application running on a single machine does not experience this type of failure: it 
is either running or not. The possibility of partial failure leads us to include tests in 
which failures are simulated by removing or disabling network connections or by 
shutting down a node in the network. This can be implemented in the previously 
mentioned test lab. 

Time-Outs 

Networked systems avoid deadlock by setting timers when a request is sent to 
another system. If no response is received within a specified time, the request is 
abandoned. The system may be deadlocked or one of the machines in the network 
may simply be very busy and may be taking longer to respond than what is allowed 
by the timer. The software must be able to perform the correct behavior in the case 
when the request is answered and when it is not, even though that behavior may be 
very different in the two situations. Tests must be run with a variety of loading 
configurations on the machines in the network. 

Dynamic Nature of the Structure 

A distributed system is often built with the capability of changing its configuration, 
for example, where specific requests are directed dynamically, depending on the 
load on the various machines. Systems are also designed to allow a variable 
number of machines to participate in the system. Tests need to be replicated with a 
variety of configurations. If there are a set number of configurations, it may be 
possible to test them all. Otherwise, a technique such as orthogonal array testing 
system (OATS) can be used to select a specific set of tests and configurations. 

 

Threads 

We have already introduced the concept of a thread as a unit of computation that 
can be scheduled. During design, the principal trade-off concerns the number of 
threads. Increasing the number of threads can simplify certain algorithms and 
techniques but increases the risk of sequencing problems. Reducing the number of 
threads reduces sequencing problems but makes the software more rigid and often 
more inefficient. 

Synchronization 
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When two or more threads must access the same memory location, a mechanism is 
needed to prevent the two threads from interfering with each other. Two threads 
may try to execute a method that modifies a data value at the same time. Some 
languages, such as Java, provide a language keyword that automatically adds the 
mechanism to prevent this simultaneous access. Others, such as C++, require 
explicit structures that each individual developer must construct. 

Synchronization can be easier in an object-oriented language because the 
mechanism can be localized on the modifier method for the common data attribute. 
The actual data is protected from direct access by more than a single specific 
method. 

Specifying the Need for Synchronization 

In design documents, synchronization can be specified in the guard clauses of the 
UML state diagram. In Java, the keyword synchronize is used on the signature of 
a method to specify the need for a synchronization mechanism. C++ has no 
keywords for specifying synchronization; however, the synchronization 
mechanisms are designed as classes. The creation of an instance of a monitor 
object, for instance, indicates the location at which synchronization is needed. 

Testing That the Need Is Met 

Even though the language automatically provides the mechanism, the developer 
may have misplaced the specification for synchronization. During class testing, a 
test harness should create multiple thread-based test objects. Each of these fires a 
request against the object under test (OUT). 

 

Path Testing in Distributed Systems 

Path testing is a well established technique for selecting test cases. A path is a set 
of logically contiguous statements that is executed when a specific input set is 
used, such as the following: 

S1; 
if(cond1) S2 
else S3 
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There are the paths S1, S2 and S1, S3. Other control structures introduce new paths 
and may result in an indeterminate number of paths or, worse still, an infinite 
number of paths. 

Coverage is measured by computing the percentage of paths that have been 
exercised by a test case. Executing 100% of the paths in a program provides 
complete code coverage although it may not detect defects related to the 
computation environment. Of course, this is difficult to achieve when there are an 
infinite number of paths. Alternatives include only measuring the branches out of 
selection statements, or if and case statements that have been covered. This does 
not cover the combinations of a branch from one control structure to another. 

Another definition for a path is to link the place where a variable is given a value 
(a def) with all those places where the variable is used (a use). Covering all def-use 
pairs constitutes complete path coverage. Other types of significant attributes of 
the code can be used to define a "path." For example, branch testing, as previously 
mentioned, is defining paths that are based on the decision statements in the 
program. 

For distributed systems, Richard Carver and K. C. Tai [CaTa98] have identified a 
definition of a path that results in effective coverage. First, we provide a couple of 
definitions: 

SYN-event: A SYN-event is any action that involves the 
synchronization of two threads. The spawning of one thread by 
another is one example of a SYN-event. 

SYN-sequence: SYN-sequence is a sequence of SYN-events that will 
occur in a specified order. This is one type of path through the 
program code. 

The idea is to design test cases that correspond to SYN-sequences. For example, 
when a program begins execution, a single thread is operating. When it spawns a 
second thread, that is a SYN-event. In the simple case, each thread carries out 
simple computations. Eventually, the two threads join and the program terminates. 
This is a single SYN-sequence since any single input data set causes both threads 
to execute. The basic or "main" thread does not count in the number of paths since 
it executes regardless of the data set. 

Figure 8.1 illustrates the interactions between several objects. The 
BricklesView object is the main thread of the program. It creates the second 
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thread that is devoted to the Timer. The Puck and Paddle objects are 
controlled on the main thread. The tick() message from the Timer object to the 
Puck and Paddle objects are points of synchronization and thus SYN-events. 
The SYN-sequences of interest run from the creation of the Timer to its 
destruction. In this case there are an infinite number of SYN-paths because the 
Timer simply keeps sending tick() messages until it is destroyed. The create, 
destroy, and start and stop messages are SYN-events. Analysis of these events 
leads to the following SYN-paths that should be executed by test cases: 

1. create the timer, it runs until the game is over, the timer is destroyed 
2. create the timer, it runs for a while, it is stopped, it is started, the game is 

over, the timer is destroyed 
3. create the timer, it runs for a while, it is stopped, the user destroys the game, 

and the timer is destroyed 
4. create the timer, it runs for a while, it is stopped, it is started, the timer is 

stopped and started three times, the game is over, the timer is destroyed 

Figure 8.1. An activity diagram of multiple threads 

 

Our experience and research has shown that this technique of SYN-paths identifies 
defects that are related mainly to synchronization defects. Use of this analysis 
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technique does not replace the need to use conventional path testing techniques to 
find defects unrelated to synchronization errors. 

Now that we have looked at an example, let's analyze the types of events in an 
object-oriented language that might qualify as SYN-events. 

• Creation and destruction of an object that represents a thread. 
• Creation and destruction of an object that encapsulates a thread. 
• Sending of a message from an object on one thread to an object on another 

thread. 
• One object controls another by putting it to sleep or waking it up. 

The tester should trace paths from one of these events to another. Even if there are 
multiple paths through control statements from one SYN-event to the other, only 
one path needs to be covered to give SYN-path coverage. Exactly where these 
events occur depends partially on where the threads are located. 

An object that has its own thread should receive thorough testing as a class (with 
all of its aggregated attributes) before being interacted with other objects. In Figure 
8.2, we show selected portions of the TimerTester. In particular we include a 
few test cases. The Timer instance had been working in the context of the 
completed game for a short time when it was class tested. A problem was found 
that allowed the timer to start but it never stopped! The pause() method set a 
Boolean attribute so that no further ticks were sent out, but the thread was not 
halted so it continued to use system resources. This was only found when the 
absence of ticks was tested rather than their presence. 

Figure 8.2. Selected TimerTester code 
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Objects on Threads and Threads in Objects 

There are only a few basic models for threads in object-oriented programs. 
An object has its own personal thread or it is visited by the active thread as 
necessary. Usually most programs will have examples of each approach. 
The Timer class from the Java implementation of Brickles is an example 
of the object owning its own thread. All of the other objects share the 
"main" thread. An object that owns a thread also indicates when it can be 
interrupted by other threads. In either design, there must be a mechanism 
that prevents multiple threads from operating in the same modifier method 
at the same time. 

In the code in Figure 8.2, the test object registers with the timer to receive the 
tick() message. This is possible because the TimerTester class implements 
the TimeObservable interface. A test case like this one can be easily 
constructed because the test object receives the event or message directly rather 
than having to create a surrogate object that receives the message and then informs 
the test object. 
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Thread Models 

The "motto" of Java is "Write Once Run Anywhere." The reality is "Write Once 
Run Anywhere after Testing Everywhere." A particular example is the differences 
in behavior of Java threads among operating systems. The test suite of any Java 
program that creates threads should include tests on multiple operating systems 
chosen for its different behavior. Using a Windows version, Sun Unix and Mac OS 
give a cross section; however, variants of Unix and even different models of 
workstations with different options installed may give different results. 

Running the applet version of Brickles on a Windows machine and a Sun 
workstation results in different behaviors, some correct and some not. The thread 
for the Timer does not necessarily release control of the processor to allow the 
display to be updated. 

Design for Testability #2 

After our discussion about testing threads, you should notice that Timer 
implements the TimeObservable interface. 

Design Rule: In Java, with single inheritance, the root of every inheritance 
hierarchy should be an interface. 

This allows the test harness, which must inherit from a tester parent class 
to also implement the interface. This is often useful as in the case for 
TimerTester, which needs to register itself with the OUT. This is the Java 
equivalent of the long time C++ design rule that the base class for any 
hierarchy should be abstract. 

Design for Testability #3 

It is not obvious from the code used in TimerTester, but the Timer 
class is very difficult to test. This is due to the following statement: 

OUT = new Timer(new BricklesView()); 

The parameter to the constructor, BricklesView, requires most of the 
classes in the application: BricklesGame, ArcadeGamePiece, 
StationaryObject, MovableObject, Puck, Paddle, and 
Brick. These classes must be in the compiler's path before it can be 
constructed even though the reason those classes are aggregated into 
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BricklesView has nothing to do with the actions of the time. 

Design Rule: Wherever possible define a default constructor that can be 
used during unit testing without requiring dependencies on a large number 
of other classes. The default constructor need not be public. 

In some cases, creating a default constructor in the class to be tested is  a 
good design decision. In some cases it is not. With Timer, this was not 
possible because the Timer implementation assumes it has a reference to 
a BricklesView object and aborts its main loop when that reference is 
null. Since this object is a parameter to the only constructor, it is a 
reasonable precondition that the reference is not null.  
 
 

Life-Cycle Testing 

We have discussed using life-cycle testing in Chapter 6, and we will continue the 
discussion in Chapter 9, as a technique that is applicable at various levels of 
development. We need to first determine what life cycle to use and then develop 
test cases based on it. For a distributed system, this life cycle may be measured by 
the lifetime of the infrastructure components instantiated to support the system. 

The test plan for the system should include a test run starting from nothing 
instantiated, followed by bringing the system up, executing a series of actions, and 
then bringing the system completely down. The following three important checks 
should be made to determine if this system test has succeeded: 

• Did each of the actions carried out by the system complete successfully? 
• Were all resources allocated by the system released after the system was 

terminated? 
• Can the system successfully be restarted? (Or has the infrastructure stored a 

state that makes it impossible to restart?) 

Life-Cycle Testing 

A life-cycle approach to testing implies that a series of test cases will be 
selected so that whatever is being tested is exercised from its creation to its 
destruction. Typically, there are many paths through the complete life 
cycle. The test plan should select representative paths to provide 
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maximum coverage. For a class, life-cycle testing means choosing a series 
of tests that construct an instance of the class, use it through a series of 
messages, and then destroy the object. An effective life-cycle test should 
validate more than just correct answers. It should also validate that the 
item being tested interacts correctly with its environment. For a class, 
checking that after destruction all acquired resources have been released is 
a useful validation. Also checking that other elements with which the 
tested piece interacted are in correct states is a good idea. For example, 
when a server crashes, the "Naming Service" for a CORBA object request 
broker (ORB) might be corrupted and revert to a default setup. 

 
 

Models of Distribution 

We now want to discuss testing programs that use some of the standard 
infrastructures for distributed systems. 

Basic Client/Server Model 

The client/server model in which multiple clients all have access to the server is 
the simplest model of distribution. The server is a single process and an indefinite 
number of client processes can request service from the server. This model has a 
single point of failure since all of the clients interact with the same server. This 
model gives a basic idea of a few of the testing issues for distributed systems, but a 
few systems raise issues that are more difficult than this model.  

Testing implications: 

1. Can the server deliver correct results to the correct client in the face of a 
steady load of a moderate number of requests simultaneously over an 
extended period of time? The server may occasionally send the answer to a 
request to the incorrect client. This set of tests can be modified to reflect the 
profile of expected requests in which the number fluctuates with some 
business cycle. 

2. Can the server correctly handle a rapidly increasing load? The server may 
quickly degrade as the load increases, or it may abort. The test set should 
present a large number of test cases at increasing arrival rates. 

Standard Models of Distribution 
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The simple client/server model has been generalized to allow the single point of 
failure of the client/server model to be eliminated. Multiple servers can provide the 
same service and a client can select which server to use. The early implementations 
of these models were error prone even in the hands of highly qualified developers 
because of the primitive pipe and socket structures that had to be manipulated. 
With the advent of object-oriented techniques, models were developed that 
abstracted away the networking details and reduced the number of errors. We will 
not go back and talk about testing the more primitive implementations. We will 
remain at the object level and assume that a commercial infrastructure is available 
to hide the communication details. 

We will provide just a brief introduction to each of three standard models and then 
discuss how each supports or facilitates testing systems written using the model. 
Later, we will discuss the basic infrastructure for Internet applications. 

CORBA 

The Common Object Request Broker Architecture (CORBA) has been developed 
by the Object Management Group (OMG) as a standard architecture for distributed 
object systems. The central element in this architecture is an object request broker 
(ORB) that one object uses to communicate with other objects in the system. The 
standard infrastructure provided by a CORBA-compliant system provides services 
that allow one object to find other objects based on objects being requested, 
location, or load. The infrastructure also provides services needed to connect two 
objects written in different languages or objects that are executing on different 
types of machines. A number of vendors provide products that form the 
infrastructure for this model. This "standard architecture" does not totally specify 
an implementation so the software provided by different vendors have competitive 
differences such as faster throughput and a smaller footprint. CORBA is 
sufficiently mature so that many of these products have experienced many releases 
and can be considered "trusted." The CORBA standard is based on the following 
set of assumptions: 

• The machines being linked by the infrastructure may have different 
operating systems and different memory layout. 

• The components that comprise the distributed system may be written in 
different languages. 

• The infrastructure may change its configuration based on the distribution of 
the objects and the types of machines in the network. 
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CORBA has the advantage in terms of flexibility. We will focus on this technology 
in the following examples although the techniques can be applied to the other 
models with slight modifications. 

Testing implications: 

• Does the system work correctly regardless of the configuration of the 
infrastructure? Test plans should provide test cases that result in the 
expected variety of configurations of the infrastructure being tested. 

• Can the test cases be made more reusable by building them based on the 
services of the standard infrastructure? The infrastructure design is 
sufficiently mature so that the structure of the test cases should be very 
stable and the implementation should be mature. The test cases should be 
designed to use the infrastructure as much as possible. 

• Does a specific new release of the infrastructure integrate effectively with 
existing applications? There should be a regression test suite and test harness 
that allows new releases of the infrastructure to be tested prior to it being 
integrated into products. 

DCOM 

The Distributed Component Object Model (DCOM) is a standard developed and 
promoted by Microsoft. This infrastructure is freely distributed with the Windows 
operating system, thus making its cost a clear advantage. The DCOM "standard" is 
described in terms of standard interfaces containing specific methods rather than 
architectural generalities. Each standard interface provides a specific set of 
services. A single component may implement the services of several interfaces or 
several components may each implement the services of the same interface but in 
different ways. 

The DCOM infrastructure supports the initial connection between components but 
not as an ongoing part of the application. This reduces the layers through which 
messages must flow and increases the throughput. However, the standard is largely 
limited to Intel-compatible machines. This eliminates the need for any type of 
translation or interfacing services at a cost of the types of systems that can be 
included in the system. DCOM is a low-level technique that requires an 
understanding of low-level details and requires the developer to make a number of 
detailed decisions correctly. Some tools are emerging that automate some of the 
implementation process and reduce the number of errors. 

Testing implications: 



 317

• Did the developer correctly align the required unique identifiers at various 
places in the various components? Test cases should be written to utilize all 
the various components to ensure that all needed connections can be made. 

• Does each component implement the required interfaces? Test cases again 
should utilize all of the available components to ensure that all services are 
available and perform the expected functions. 

• Do the implementations of the standard interfaces provide the correct 
behavior? This implies there should be a set of tests defined for each 
standard interface. That set of tests can be applied to each server that 
implements the corresponding interface. 

RMI 

The Remote Method Invocation (RMI) package in Java provides a simplified 
distributed environment that assumes that no matter what machines or what type of 
machines are connected, they will all be running a Java virtual machine. This 
homogeneous environment has a structure that is similar to CORBA but is simpler 
due to the less flexible assumptions. A registry object is provided and all objects 
participating in the distributed system must know which port the registry listens to 
for messages. 

The latest version of RMI uses the Internet Inter-Orb Protocol (IIOP) to allow RMI 
objects and CORBA objects to work together. But more about this in the following 
general model. 

Testing implications: 

• Which CORBA test patterns can be used in RMI-based systems? Test cases 
may be structured the same as many CORBA test cases. 

Comparisons and Implications 

These three models emphasize the prominent role of interfaces in object-oriented 
systems in general and distributed systems in particular. Distributed objects 
advertise services by listing their interfaces with the naming service of the 
infrastructure. The implication is that functional tests can be organized by 
interfaces. In particular, in DCOM applications, many classes may implement the 
same interface and the reuse of the tests for a specific interface will be high. 

Distributed object systems are based on a relatively small number of standards. 
Each model that we have discussed has a more or less formal standard, at least to 
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the extent of standard design patterns. Tests based on these standards have the 
potential to be reused many times on a single project and across projects in a 
development organization. 

A Generic Distributed-Component Model 

As we present testing techniques for distributed components, we will generalize 
about the architecture and infrastructure for the system. Our specific examples will 
come from CORBA. We have even abandoned the terms "client" and "server" 
because they tend to have very rigid architectural connotations for some people. In 
a distributed object system, any provider of service will almost invariably also be 
requesting service from some other object. 

Basic Architecture 

In Figure 8.3 we illustrate the basic architecture of a distributed system. The major 
action occurs when the service requester sends a message to the service provider. 
That is certainly the intent of each test case. The request is first sent to the 
surrogate object that is local to the requester so the requester does not handle any 
of the distribution semantics. The surrogate contacts the communication 
infrastructure and passes on the request. The communication infrastructure may 
actually have to instantiate the service provider, but it eventually obtains a 
reference to the provider from an object locator service and passes along the 
request. The request may be channeled through a requester surrogate so that the 
provider is also protected from the details of distribution. The return, if any, 
follows the route back. 

Figure 8.3. Generic architecture 
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At this level basically all three models are the same, although DCOM would return 
the result directly to the requester. As we discuss the components of the 
architecture, remember that an object can be, and often is, both a requester and a 
provider. 

Requester 

The requester participates in the distributed system as a stimulus. As such, its 
behaviors have been previously tested using the class testing techniques that we 
have already discussed with one exception: timing. If the requester sends any 
asynchronous messages (one-way messages in CORBA), the test cases must 
investigate the effect of the length of the time it takes to receive a reply. That is, 
when an asynchronous message is sent, the sender immediately proceeds to other 
business. The implementation of the sender may be written to expect an answer to 
the message within a certain amount of computation, but the implementation may 
not be properly written to wait for that answer if it is not received in the expected 
time. Test cases should be written to test this interaction under various load 
conditions, thereby introducing different amounts of latency (delay) in the 
communication. 

The requester also participates in the interaction tests once the provider has been 
class tested using the specialized techniques discussed in the next section. The 
focus of these tests is the protocol between the requester and providers. Remember 
from Chapter 6 that the protocol describes the complete set of messages sent 
between two objects to accomplish an identifiable task. This is a separate phase of 
testing because there are often multiple providers of the same service. The protocol 
test suite and the individual test cases can be reused every time a new provider for 
a given protocol is added to inventory. The protocol test suite provides a life-cycle 
approach to testing the interactions. 

Provider 

The provider is the central figure in a distributed interaction. It performs behaviors 
and, in some cases, returns information to the requester. The complete interface of 
the provider can be tested using the basic class testing techniques discussed 
previously. Those behaviors that are expected to be invoked by other distributed 
objects will require specialized testing that we will describe in the next section. 

The provider is registered with the infrastructure along with information about the 
services that it provides. In some cases, the provider may not be an object waiting 
actively in memory for a request to be received. It is first instantiated, and then the 
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request is forwarded to it. This can be the source of timing differences. Any 
provider that can be dynamically instantiated upon request should be exercised 
using test cases starting both from instantiated and noninstantiated scenarios. 

Stubs and Skeletons 

A stub is the surrogate for the provider in the requester process. A skeleton is the 
surrogate on the requester side. The stub keeps the requester from knowing about 
the semantics of the infrastructure. Some implementations of these infrastructures 
are intelligent enough to reconfigure themselves depending on whether the two 
objects are actually in the same process, in different processes on the same 
machine, or on different machines with different architectures. 

As it reconfigures itself, the infrastructure will add or remove stubs and skeletons 
or other method calls. This changes the path through which a request must travel. 
Interaction test suites should be designed to execute a set of tests over the path 
corresponding to each possible configuration. 

Local and Remote Interfaces 

The interface of a distributed object is often divided into local and remote 
interfaces. The remote interface is the specification of those services that may be 
requested by an object that is outside of the process in which the provider is 
located. Those behaviors specified in the local interface can only be accessed by 
objects in the same process. 

The local interface can be tested using the usual class testing techniques that we 
have already discussed. The remote interface can be tested by local test harnesses 
as an initial step but additional testing requiring a specialized environment is still 
needed. 

 
 

Specifying Distributed Objects 

Interface Definition Language 

The specification for service providers is usually written in an interface definition 
language (IDL). Since they are only for specification, the IDLs are simpler than a 
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programming language. The IDL specification provides several pieces of 
information that are useful for testing purposes: 

• signature—  The main portion of the IDL specification is the usual signature 
for a method. This includes the name of the method, the types of each of the 
parameters, and the type of the return object, if any. The standard techniques 
for sampling values for each of these parameters should be followed in 
constructing test cases. 

• one-way—  This designation signals an asynchronous message. Testing 
messages with this attribute requires that the test be conducted over a 
complete life cycle. There is the possibility that the requester will need the 
requested information before the provider sends it. There is also the 
possibility that the message will result in an exception being thrown by the 
provider. Tests should specifically investigate whether such exceptions are 
caught in the correct object. 

• in, out—  This attribute of a parameter defines whether the requester is to 
provide this information or whether it should expect the parameter to be 
modified by the provider. The tests of a method that specifies an out 
parameter must locate the returned object (because most object-oriented 
languages do not handle this case gracefully) and must verify that it has the 
correct state. 

Traditional Pre- and Postconditions and Invariants 

We have already presented techniques for building tests from traditional pre- and 
postconditions, so we will not repeat them here. Distributed components should be 
designed not to know their location relative to other components; however, the 
components do have to know about an expanded set of possible errors. The 
postconditions are expanded to include exceptions for scenarios such as a service 
that isn't available from the specified provider, a provider that doesn't respond in 
time, and a requester that provides an invalid address. As with any postcondition, 
each clause, such as an invalid address, should be covered by a specific test case. 

Implicit Tests 

Any method that sends a request to invoke a method on a provider may 
receive a "Provider not found" exception from the infrastructure. 
Developers are seldom patient enough to write this out as a possible 
postcondition of every method that causes such an exception to be 
generated. It is usually the case that there is a set of exceptions that many 
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of the methods in a class may provoke. This is just one example of what 
we refer to as implicit specifications. These should be matched by 
implicit test cases. For a distributed system, some appropriate implicit test 
cases would include the following: 

• Test that a requester can handle a "Provider not found" exception. 
• Test that a requester can handle a "Provider busy" time-out 

exception. 
• Test that a requester can handle a null provider reference (obviously 

any null pointer is a problem, but some infrastructures invalidate a 
pointer after some amount of inactivity). 

• Test that a requester can handle a null "out" parameter. 

These test cases should be made as general as possible so that it is easy to 
apply them to each method that fits the implicit specification. The tests 
should be included in a test checklist for the type of class being 
constructed. 

For each "domain" there is a different list. User-interface objects will have 
implicit specifications about events and displaying. These should be 
captured in lists as part of the project test strategy and delivered to the 
developers and integration testers. 
 
 

Temporal Logic 

Time is one of the critical issues in distributed systems, but it is not handled well 
with most specification techniques. We have found that interval temporal logic is 
useful in expressing temporal relationships. The operators of temporal logic allow 
concepts of time ordering to be expressed and reasoned about. Interval temporal 
logic allows concepts about time periods, as opposed to specific points in time, to 
be expressed. For example, the before(a,b) states that in the time period 
before event b happened, condition a was true. 

The time periods about which we are reasoning must be appropriate to the problem 
at hand. Two distinctly different time periods are used in computer-based systems. 
One is real calendar time that is represented in domain objects. This is usually in 
the form of dates. The second type of time period is execution time. In object-
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oriented systems, this is often related to the lifetime of an object. This will be 
where we focus most of our discussion. 

Temporal logic operators have been used implicitly for a long time. The always 
operator is an implicit part of every class invariant. Remember that the class 
invariant is a statement of those properties that are always true. The pre-condition 
is implicitly a before condition. 

A few of the temporal operators that we have found useful include the following: 

• before(a, b) a is true before event b occurs 
• until(a, b) a is true until event b occurs 
• after(a, b) a is true after event b occurs 

An interval temporal operator applies for some period of time. Therefore, a test 
that seeks to verify that the implementation satisfies such a requirement must cover 
this interval. So how do you test something like the invariant 

always(x >=0) 

We handle this by repeatedly testing the validity of the invariant statement during 
all of our class tests. Always is interpreted as anytime that there is an instance 
object alive. Part of the behavioral specification for Timer objects might state the 
following: 

After it is started, the Timer instance sends tick() messages to 
every registered listener until it is stopped. 

It is fairly easy to test this at the class level, but it does require special handling. In 
the case of Timer, the test harness should inherit from TimeObservable so 
that it can be registered with the Timer instance. The test harness would do the 
following: 

• Register itself with the Timer instance. 
• Check that no tick() messages are being received. 
• Send the start() message to the Timer instance. 
• Check that tick() messages are being received. 
• Send the stop() message to the Timer instance. 
• Verify that no tick() messages are being received. 
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This basic test case should be repeated for a variety of time intervals between the 
various messages. A StopWatchTimer would be used to tell the test harness 
when to move to the next step. 

To test that a temporal constraint is not violated, you can use two approaches. The 
first is to encapsulate the object on which the constraint is written. Then any access 
to the state about which the constraint applies can be monitored. After the access, 
the validity of the constraint is checked. The disadvantage of this is the possibility 
of altering the operation of the object by the instrumentation. We will consider this 
in the next section. 

The second approach, as previously illustrated with Timer objects, is to sample 
over the interval about which the constraint is written. The intervals over which we 
normally sample would be the following: 

• an interval in which a beginning time and an ending time are specified 
• from instance creation until a specified time 
• from a specified time until object destruction 

Note that when we say a "specified time," it is usually specified as the occurrence 
of a specific event. The specified time is just whenever that event occurs. 

Class and Object Invariants 

We would like to make a distinction here between the class and object 
invariants that parallels our earlier distinction between class objects and 
instance objects. There can be a "class invariant" that corresponds to the 
class object and an "instance invariant" that corresponds to the instance 
objects. Basically, an invariant is any statement that should always be true 
when the subject of the invariant is in a steady state. We can also have 
system invariants. For example, the Singleton design pattern requires that 
there should only ever be at most one instance of the class. The class 
invariant would be 

number of instances < = 1 

The instance invariant would be related to the semantics of the domain. 
The instance object has no idea about the number of instances that can be 
created and its invariant shouldn't address that issue. 

Please note that this is not accepted terminology in the industry, but 
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hopefully it will make you think about the precise expression of invariants. 

Temporal Test Patterns 

In this section we will present three test patterns written in an informal style for the 
sake of space. 

When a postcondition or a semantic description includes constraints written using 
temporal logic, new test conditions must be satisfied. In general, temporal 
constraints impose time requirements on the testing process. As a result, the 
parallel architecture for component testing (PACT) objects that exercise these tests 
will need to maintain their own threads of control so that they can independently 
act over an interval of time. In most cases those intervals are not based on clock 
time (although in a real-time system they might be), but rather the interval is from 
some event such as a method that has been completing until some event occurs. 
The PACT object will have to spawn observer objects to monitor the OUT. 

The following are three of the operators that were previously defined and 
descriptions of how we have been successful in testing them. 

Eventually(p) 

Eventually, the postcondition of b.x(), p, will be true, but the temporal 
constraint is part of the postcondition of a.y(). It states a condition that will 
become true sometime in the future. The "future" is relative to the lifetime of 
a.y(). Anything that happens after a.y() terminates is in a's future. 

Testing this condition obviously requires delaying the decision as to whether p is 
satisfied. The test must be conducted in the future of a.y(). In this situation, the 
PACT object for a is placed in a context that will last as long as the context for b. 
The PACT object has a separate thread. Periodically the a PACT object wakes up 
and sends messages to b to determine whether b.x() has completed execution. 
When it is determined that b.x() has occurred, the PACT object logs the fact and 
uses the results from the other portions of the postcondition of a.y() to determine 
whether the entire postcondition is satisfied. It then logs that result as well.  

Figure 8.4. Eventually(b.x()) 
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The PACT object continues to interrogate the b object until either b.x() occurs 
and p can be evaluated or b is deleted. If it is still checking when b is deleted, the 
PACT object logs a failure. 

Until(p,q) 

Until b.x(), b is in a state s1. This is stated as until(s1, b.x()). To 
validate that this constraint holds, we need to test from the point that this assertion 
remains active until the b.x() event occurs. The PACT object is "fired off" at the 
moment the constraint becomes effective. It then periodically wakes up and checks 
the condition. 

In the case of until, we need to determine that the condition "b is in s1" is true 
every instant in time "until" the occurrence of the specified event. With 
eventually, we only evaluate the truth value of the condition once, after the 
event occurs, but with until we must continuously evaluate the condition "until" 
the specified event. If it evaluates to true every time until the terminal event, then 
the constraint is satisfied. 

We obviously can't check the truth value continuously or no other work would get 
done in the system! If we check only at the time that the event occurs, we can't be 
certain what value the constraint had previous to that time, and the constraint 
doesn't say what should happen after the event has happened. The PACT object 
tester has to check previous to the event occurring. Checking once is hardly 
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sufficient. Basically, we set the interval when the PACT object is created. The 
shorter the interval, the more certain the evaluation. 

Figure 8.5. Until(b.x(),s1) 

 

Always (p) 

The always temporal operator is the most heavily used of the operators because 
every class invariant is essentially an always constraint. The always constraint 
says that at any point in the b swimlane, the logical constraint statement p is true. 

Always as a class invariant refers to a time interval that corresponds to the 
lifetime of each instance of the class. As we stated about until, we cannot test 
continuously. We compromise by sampling periodically and evaluating the truth 
value at each time. In Chapter 5, we talked about testing for the class invariant at 
the end of each test case. This is the sampling technique we use as a default: test 
with each test method invocation. The potential problem is that a test case may 
cause several methods to be invoked. This is why we even call the invariant 
evaluation method multiple times in a test case method if the test case directly 
invokes multiple methods on the OUT. 

Each temporal operator imposes different testing conditions, but each time the 
operator is used it follows the same basic pattern. The basic principles we have 
presented here should provide a basis for you to create your own test patterns. 
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A Test Environment 

Class Testing 

Class testing of distributed components often requires a special environment such 
as the one illustrated in Figure 8.7. The purpose of this environment is to provide a 
means of trapping messages to the OUT so that issues such as the timing of 
messages can be analyzed and changes of state can be logged. 

Figure 8.6. The always temporal operator 

 

Figure 8.7. Class testing wrapper 
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This wrapper is an object that simply encapsulates the OUT. We have used various 
types of implementations to automatically extract the interface of the OUT and 
copy it into the wrapper. The wrapper object can be injected into a larger system 
context and behaves just as the OUT as far as the larger system is concerned. The 
wrapper has fairly standard implementations of each of the OUT interface 
methods. Each method does whatever logging is wanted and then forwards the 
message on to the real implementation in the OUT. The return path will return 
control to the wrapper. At that time, the method will validate the state in the OUT, 
log the results, and return the object returned from the OUT. 

This approach invades the larger system and is not considered to be testing that 
context. The objective is testing only the OUT. 

This approach is also useful for testing the reordering of asynchronous messages. 
The wrapper object can simply receive and hold message1 until message2 is 
received. It can then forward message2 prior to forwarding message1. 

One value of this approach is that it allows complex computations from other parts 
of the system that would be difficult to provide from a test harness, and allows 
them to be utilized in testing a class. The wrapper can be built automatically except 
for the implementation of the OUT methods in the wrapper, but even these use 
functionality in the wrapper class for logging, checking, and other functionality. 

Interaction Testing 
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Testing the interaction between two objects that are distributed in separate 
processes from each other uses a configuration such as the one shown in Figure 
8.8. As we have previously discussed in Chapter 6, testing a complete protocol is 
one important aspect of interaction testing. In a distributed system, one of the 
testing questions that must be addressed is whether messages are really received in 
that order, even if they are sent in the sequence described by the protocol.  

Figure 8.8. An interaction test 

 

In the testing environment shown in Figure 8.8, the presence of a distributed test 
architecture allows many operations to be done locally. That is, when test driver1 
initiates a test, it informs test driver2 which test has been executed. Test driver2 can 
then verify, on machine2, that the portion of the test running on machine2 has been 
successfully completed. It then informs test driver1. This greatly reduces the 
amount of information that must flow from one machine to another and speeds up 
the testing process. 

 

Test Cases 

Much work has been done to make distributed system infrastructures as abstract as 
possible so that users have little to worry about with respect to the distribution 
semantics. Each vendor works to make its product conform to the standard it is 
addressing. These two factors make it possible to have a set of model-specific and 
then application-specific test cases. 

Model-specific Tests 
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Each standard model results in its own set of design patterns. This in turn results in 
a set of test patterns. 

Tests for the Basic Client/Server Model 

We have already described a couple of types of tests for the client/server model; 
however, the basic client/server model has a number of variations. In the following 
test pattern, the design pattern under test is a widely used variant named distributed 
callbacks. 

Problem: The synchronous messaging between two objects is modified to be 
asynchronous messaging by adding a Callback object. The client constructs a 
Callback object and sends it a request and the address of a server. The 
Callback object submits the request to the server synchronously. When an 
answer is received, the Callback object forwards the answer to the Client 
object. 

Context: The code for the design under test is being used because the designer 
wants to be able to do other work while this message is being answered. 
Potentially, the original thread will complete its work before the answer is ready. 

Forces: Functional tests may pass when executed once, but race conditions can 
lead to inconsistent results so repeating the same tests may obtain different results. 
Numerous factors affect the visibility of failures due to race conditions. 

Solution: Construct test suites that execute each test case multiple times. The test 
suite should adjust factors to make race conditions more visible. The system should 
be set back to its original state after each test. The tests should include the 
following (see Figure 8.10): 

• A test in which the server returns the expected result almost immediately. 
• A test in which the client is deleted before the callback fires. 
• A test in which the server fires an exception. 
• A test in which the server is deleted before returning a value. 

Figure 8.9. Adding callbacks to a client/server pattern 
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Figure 8.10. Testing the distributed callback pattern 

 

Tests for the Generic Distribution Model 

Now let's return to the generic distributed architecture and consider some tests. To 
organize this we have completed test plans for the Provider and the 
Requester objects, as shown in Figure 8.11 and Figure 8.12. These are not 
specific to the semantics of each, but they do address the general function of each 
component. 

Figure 8.11. A component test plan for the provider 
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Figure 8.12. A component test plan for the requester 
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Testing Every Assumption 

The different models of distribution make very different assumptions about the 
type of application or the deployment environment. These should be the focus of 
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tests. Some of these should be done during the Guided Inspection phase while 
others will have to wait for an executable. 

Language Dependence Issues 

The RMI model assumes that the part of the system for which it is being used is 
completely written in Java. CORBA makes no assumptions about the languages of 
even two interacting requesters and providers. Specific tests should be designed 
where two components written in different languages interface even through the 
infrastructure. The code of the infrastructure is tested and will handle the transfer 
correctly; however, the application code may not be correct. Depending on the 
infrastructure, the programmers have some degree of control (hence the possibility 
of mistakes exists) and must manually be certain that the data types used in the two 
classes are compatible. The documentation for the infrastructure may do a less than 
perfect job of explaining what is possible. We recently experienced errors when 
passing an array between a Java requester and a C++ provider due to incorrect 
documentation. Test cases not only detected a failure, but they also provided a 
pointer to the cause of the problem. 

During guided inspection, the inspectors should determine that the correct 
mappings are being used. CORBA, for example, uses a set of types that are very 
compatible with most C++ types. The variation between CORBA types and Java 
types is much greater. Java also does not directly provide support for "out" 
parameters. The inspection should determine that return objects are being handled 
properly. 

Platform Independence Issues 

Basically, all of the models of distribution are independent of the platform on 
which they run, although DCOM is used primarily on Intel-compatible platforms at 
this time. However, the bigger issue of deployment environment remains critical. 
Implicit requirements about the size of available memory or processor speed can 
still cause the software to work differently on one specific machine from another. 

One technique we have found useful is to provide deployment tests with a product 
release. Each user can then run these tests after installation to determine whether 
the application is operating correctly. We will discuss this in more detail in 
Chapter 9. 

Infrastructure Tests 
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The infrastructure delivered from a vendor is "trusted" code that will not be 
subjected to detailed testing. There are situations beyond the control of the vendor 
that can corrupt the infrastructure. For example, the stubs and skeletons needed in a 
CORBA implementation are produced automatically by a compiler for the IDL 
specification. Often developers will edit these default implementations. This is no 
longer trusted code. There should be tests that will at least exercise all of the 
modified code. 

Compatibility Tests 

When a new version of the infrastructure is released, compatibility tests should be 
run to determine if modifications in the application are required. This is usually 
done by a designated group on a project. This is the same type of testing needed for 
new versions of frameworks or even tools. 

Testing the Recovery of Failures 

One of the critical differences in a distributed system is the possibility of partial 
failures of the system due to the breakdown of one of the machines hosting the 
system. As a part of the deployment testing effort, the following type of test case 
should be built using the distributed test harness illustrated in Figure 8.8. A system 
configuration should be constructed in which there is a "main" machine on which 
the locator portion of the infrastructure is running (this may not be possible for all 
types of systems), and for which a server is instantiated on a specific machine. 
Once the server has registered with the infrastructure, the test driver on the 
machine containing the server should display a dialog box on that machine that 
requests that the tester remove the network cable from the machine. Once the user 
selects OK on the dialog box, this test driver would send a message to the main test 
driver. The main test driver would then initiate a sequence in which the application 
would attempt to contact the server that is now unavailable. The ability to 
recognize that the server is not available and to handle it gracefully is one of the 
implicit requirements we discussed in Implicit Tests, on page 288. The correctness 
of the implementation relies on the experience of the individual developer as 
opposed to detailed specifications. 

Dynamic Modification of Infrastructure 

CORBA infrastructure implementations provide the means by which it can be 
modified during program execution. One vendor, for example, provides the ability 
to add or remove "filters" from the pathway between requester and provider during 
execution. These modifications change the configuration of the system and can 
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change the timing and execution path. Since these modifications usually occur in 
specific situations, tests should be constructed that exercise each possible 
configuration given the dynamic components that are available. 

Logic-Specific Test Cases 

The types of logic defects that can occur in a distributed system are not that 
different from a sequential system with a couple of exceptions. 

Different Sequences of Events 

With asynchronous messages between processes, events may occur in a variety of 
sequences. A requester may send several requests in a short period of time and not 
wait for any of them to complete. The order in which these requests return can vary 
considerably from one execution to another. If the design assumption is that it 
makes no difference in what order the replies are received, the testing obligation is 
to test as many of the combinations as possible. The statistical sampling techniques 
discussed in Chapter 6 can be used to determine the minimum number of possible 
tests. 

Requested Object Unavailable 

Many systems allow users to enter the names of providers or other resources. Users 
may misspell names, omit a portion of the name, or request a resource that once 
was available but no longer exists. This is certainly a common occurrence with 
Internet browsers. It is slightly different from the previous case in which the object 
is registered but not available due to machine failure. In the partial failure case the 
infrastructure returns a null pointer, whereas with this case the infrastructure may 
throw an exception. This type of fault and the test cases to detect it only make 
sense in the event that the provider's identification is acquired dynamically. The 
testing objective here is to determine whether the exception is caught in an 
appropriate location in the requester, and whether the application is able to abort 
the operation gracefully and give the user another chance to give the address of the 
provider or some other appropriate response. 

Test Case Summary 

Use the test suite giving the following coverages: 

1. every method of each standard interface 
2. every SYN-path, 
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3. every logical control path 

Apply the test suite repeatedly using variations in the following factors: 

1. load of applications running on the same systems 
2. load of user input into the overall system 
3. connections between machines 
4. configurations of the infrastructure 

 
 

The Ultimate Distributed System— The Internet 

The Internet represents a very large and dynamic distributed system. Servers are 
added to and removed from this network continuously. Applications that live in 
this environment must be able to operate in the presence of partial failures in the 
form of missing systems or nonexistent addresses on machines. Some of these 
systems form basic business environments for the company running the Web site. 
These e-commerce systems have specific and stringent requirements for reliability 
and security. In this section we will consider the issues specific to this type of 
environment. It will not be a complete overview, but we will provide an outline of 
how these systems should be tested. 

The "Web pages" that are displayed in the browser include both data, in the form 
of marked up text using HTML or XML, and behaviors, in the form of scripted 
functions using languages such as JavaScript. These pages often allow input from 
the user, perform computations, and format and present output. The browser is an 
extensible application that can sense when the data that it has been provided 
requires an additional application in order to handle it properly. These "plug-in" 
modules add functionality dynamically so that the browser is a changing execution 
environment. 

So what does testing a Web page mean? It means testing that the intended display 
is presented to the user; that input is accepted and forwarded to a waiting 
application correctly; and that all actions are performed as intended. The display 
can fail in terms of the following: 

• incorrect fonts being displayed 
• mismatch of coordinates so that a figure is not visible 
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• the wrong language is used or different languages are used for different 
sections of text 

• a mismatch between the platform configuration and the browser display 
attributes 

There are pieces of code embedded into the display file as well as separate script 
files. Browsers can directly execute code written in languages such as Java. The 
Java version of Brickles runs as an applet in a browser. The browser and the 
standard plug-ins are "trusted" code. The testing objective is the content of the 
display data plus embedded and external script files. Failures include the 
following: 

• incorrect or insufficient permissions to execute code in a specific file 
• an inability to create a file when necessary 
• the usual failures associated with any function such as computing the wrong 

answer 
• inability to locate resources during execution, such as missing bitmaps 

Several pieces of code may be added to the browser by a single page. This may 
include the Acroread PDF file viewer, a RealPlayer video player, and even the 
Visigenics CORBA ORB. Once loaded by a page, the code may remain loaded 
while other pages are loaded and other plug-ins are added. It is impossible to test 
all possible combinations of programs for interactions. However, it is possible to 
construct tests that result in different combinations of code being loaded into the 
browser environment. You should analyze the source listing for each of your pages 
and construct paths through the pages that lead to different combinations of plug-
ins being loaded. 

GUI versus API Testing 

Earlier we discussed the differences between testing an application from 
the GUI or from its API. The API level is chosen less often in this 
situation because functions embedded in a Web page are so visually 
oriented that it takes less effort to simply use the GUI. The display text can 
be parsed and validated as syntactically correct. Then sufficient tests are 
constructed that execute the script code to achieve levels of coverage 
similar to that of a programming language. 

Web Servers 
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The browser and Web pages sometimes work in conjunction with an application 
server, as shown in Figure 8.13, to invoke other applications. These servers are 
generic software applications available from vendors; therefore, after an 
acceptance test, they will be "trusted" code. The server incorporates a database that 
stores both the content of the pages and the data produced by users of the system. 

Figure 8.13. Web server architecture 

 

These systems automate certain aspects of customer service. A page might accept 
input into a customer order form, create a client record, invoke applications that 
automatically generate an account number and password, and then e-mail the 
account information to the customer. 

These systems are designed to be very modular. The application programs can be 
changed with no modifications to the Web server and only minor changes to the 
Web pages. The Web pages are changed by simply changing the data, which is 
often stored in XML format. 

Testing these systems involves two facets. First, do the scripts do what they are 
intended to do? There have been many versions of the browsers and their scripting 
languages in a very short time. As a result, unless you are deploying browsers into 
a managed environment in which everyone runs the same version, the tests should 
be run on the different combinations of the browser version and the script language 
version. Frames and tables are examples of features that have varied radically from 
one environment to another and have resulted in very different display results. 
Many developers include alternative paths depending on whether the browser 
supports frames or not. There should be test cases to cover these different 
possibilities. 
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Second, is the current data correct and in the form expected by the applications and 
Web pages? Testing this aspect requires scenarios in which the various data 
displays of the Web site are combined with the types of data that the user would 
enter. This analysis follows the same process as described in Using Scenarios to 
Construct Test Cases on page 317 in Chapter 9. The data types for each entry are 
analyzed, equivalence classes are defined, and values are sampled from each class. 

Life-Cycle Testing of Internet Applications 

Life-cycle testing, in this context, means testing across a set of user transactions. 
These should be selected to utilize the complete set of back-end applications. The 
life-cycle perspective will typically span several different platforms including the 
user's system, the Web site, and the supplier applications. For example, with an e-
commerce system, we would begin with the presentation of material to the user. Is 
it presented accurately? Many of the pages are constructed using XML trees of 
information. It is possible for the program to incorrectly associate descriptions and 
prices. After presentation comes the acceptance of a customer order. This involves 
the Web page to receive and handle events and data, and it involves the database to 
manipulate inventory and to record the order. The application must allow the user 
to modify the order by adding or deleting items. Other applications are used to 
order the goods from suppliers so that they search for new orders, bundle all the 
items for each supplier, and interact electronically with the supplier applications. 
The test suite should identify multiple interlocking life cycles based on the actors 
for the system. The client actor has a life cycle of creating an order while the 
supplier actor has a life cycle of creating a different type of order. 

There are significant interaction testing activities in two dimensions in this 
example. First, complete systems written by different teams must interact. The 
Web site software itself also integrates several different technologies. The example 
system probably includes HTML, JavaScript, XML, and Java technologies. There 
are issues about the compatibility of data types as well as the timing of events and 
limiting their effects. 

One of the most important tests for a Web application is  to construct test cases that 
stress the Web site. There are tools that make it easy to clone Web pages and 
invoke multiple operations on the server. The stress test should be designed to 
accurately reproduce the expected profile of use. There should also be tests of the 
server's capability to limit the number of connections in a controlled manner 
(display a message) rather than in a catastrophic manner (server crashes). 
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Perhaps the most important function of a Web page is to recognize that a request it 
has made has not been fulfilled. Browsers set timers to monitor every connection 
that must be made to another resource such as other pages and servers. Since the 
browser is "trusted" code, we are not testing whether the failure to obtain a 
resource will be recognized. We are testing whether the scripts in the page handle 
that failure appropriately. 

What Haven't We Said? 

The important areas of performance and security have not been covered. There is a 
growing number of tools devoted to those topics because of their implications for 
e-commerce. As the second major wave of e-commerce sites are deployed these 
areas will be a particular focus. Research is being conducted and some 
sophisticated models are being developed that described performance 
characteristics. Maybe we can cover this in the next edition. 

 

Summary 

Distributed objects are first of all objects and need much of the same type of 
testing as other objects. One of the principal differences between distributed and 
nondistributed systems is the importance of timing. Timing is influenced by the 
sequence of statements in a method, the scheduling algorithms of the operating 
system, and the number of objects and their relationships. An initial question is 
whether the design sufficiently expresses the timing assumptions made by the 
design. The main testing question is whether the implementation is sufficiently 
flexible to operate correctly in the face of all legitimate orderings of execution. We 
have discussed temporal logic as a means of being expressive, and some 
instrumentation that allows us to investigate the effects of various sequences. 

 

Exercises 
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8-1. Examine the distribution infrastructure being used in your project. Determine 
the conditions under which the infrastructure changes its structure, and the way the 
paths of request change. Identify a set of initial test case conditions that would 
cover all possible configurations. 

8-2. Construct a test suite for a concurrent application by identifying the places at 
which SYN-events occur and defining SYN-sequences to do test cases. 

8-3. Study any software that you have developed using design patterns and select 
one of the patterns to study or read a design pattern description. How did you or 
would you test the software developed using the design pattern? Write the 
description in the test pattern style. 

8-4. Identify a Web site to be tested. Based on the application on the Web site, 
describe a set of actions that represent a typical session, from start to finish, that a 
visitor might participate in on the site. Include as many of the data input pages as 
possible. Write test scenarios that cover all of these possibilities. 
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Chapter 9. Testing Systems 

• Need to write a test plan? See Defining the System Test Plan. 
• Want to know how to write test cases from use cases? See Use Cases as 

Sources of Test Cases. 
• Need to know how the special features of a program affect testing? See 

Testing Different Types of Systems. 
• Want to know how to quantify the quality of testing? See Measuring 

Test Coverage. 

We have reached the point in the development process in which the word testing is 
used in its popular sense. But even this meaning has changed. System testing 
usually refers to the testing of a completed application to determine that it provides 
all of the behaviors required of the application. We will consider a somewhat 
broader definition that encompasses completed increments that provide some 
degree of end-user functionality. We have already discussed this level of testing in 
Chapter 4 for the case when code has not yet been written. In this chapter we 
assume that executable code is available. 

This level of testing has been seen as "throwing it over the wall" to an unrelated 
group after the development is completed. However, in an incremental 
development effort, system testing usually refers to successive rounds of testing 
end-user functionality with extensive feedback and interaction between the 
development staff and the test team. The test plan and the development plan must 
coordinate this interaction. 

The words "system" and "application" are used as synonyms by some and distinct 
concepts by others. When used as distinct concepts, system refers to a "complete" 
environment including the program being developed, that is, the application, and 
the operating environment including the operating system, virtual machines, Web 
browsers, and hardware. We will not make the distinction. We will use the two 
terms synonymously to mean the complete environment. 

Originally we said that testing was a search for defects. Well, that was the truth, 
but not the whole truth. The focus for testing at this point in the development 
process shifts from a search for defects that lead to program failures (although 
some will still be found) to a search for defects that are variances between the 
actual operation of the system and the requirements for the system. Remember that 
we took this same viewpoint back in Chapter 4 when we tested the system-level 
analysis and design models. At that time we investigated whether the analysis and 
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design models were a complete, consistent, and correct solution to the problem 
stated in the requirements. This early round of validation reduces the number of 
"variance-from-requirements" defects found during the "end-of-development" 
round of testing. 

This testing phase may be a multilevel activity. For software that will be executed 
on a processor embedded within special purpose hardware, you should first test the 
software on a simulator of some type before looking at the actual hardware. The 
scope of the "system" will also change as development progresses. Eventually 
"system" test can be applied to the integration of several embedded applications 
into a single system. For example, many modern automobiles have a number of 
controllers located in assemblies such as the sunroof or the automatic windows. 
These controllers communicate with each other in some cases and receive data 
from sensors in places where there are no controllers. 

There are several other types of testing that occur at this point in the development 
process. These are related directly or indirectly to the requirements. Performance, 
security, load, and deployment testing activities are all speciality tests conducted 
under certain circumstances. We will consider these activities in the context of 
object-oriented systems in this chapter. 

Many development contracts call for an acceptance test that is performed by the 
customer prior to the development activity that's officially ending. This testing is 
carried out in the deployment environment at the customer site. The customer 
performs the test and determines whether the product is performing satisfactorily 
from her point of view. Acceptance testing is a special kind of system testing. 

In this chapter we will continue the work from Chapter 4, only now we will 
assume that code is available. We will consider strategies for selecting the most 
effective test cases, and we will consider the effect of different testing strategies on 
the growth of the reliability of the system. But first we must plan. 

 
 

Defining the System Test Plan 

The system test plan is a more formal and more comprehensive document than the 
component test plans we have been using. In many cases it will be reviewed by the 
customers. In Figure 3.14 we listed the sections in the IEEE test plan format. We 
are not going to discuss every section, but we will cover some of the sections and 
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we will complete some of the sections for the Brickles application. We will touch 
on a couple of the items here, and then, in the following sections, we will expand 
on the more important ones. In Figure 9.1 we provide an abbreviated system test 
plan for Brickles using the format that we have used in previous chapters. 

Figure 9.1. A system test plan for Brickles 
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Features Tested and Not Tested 

Some amount of validation testing is performed as each increment is delivered. 
Rather than having sections on which features are tested, we have a schedule that is 
a copy of the project's increment plan combined with dates by which each 
increment will be tested. This increment plan is usually defined in terms of use 
cases and so is the test plan. 

For Brickles we created a plan that called for three increments, as shown in Figure 
3.2. First we developed the basic infrastructure, the "Move Paddle" and "Lose 
Puck" use cases. The second increment contained the "Break Brick" and 
"Win/Lose" use cases. The third increment provided the "Pause" use case. The test 
plan schedules a system validation at the end of each increment. 

Figure 9.2. A Brickles state diagram 

 

Test Suspension Criteria and Resumption Requirements 

Since system testers are neither debuggers nor developers, if the system being 
tested contains too many defects, testing may need to be suspended before all 
planned tests have been run. Typically we would begin with tests of one of the use 
cases scheduled for the current increment and then move on to the next use case. If 
we run a test against a use case and it fails, then we move to tests for the next use 
case. Testing is suspended if there is no use case for which we can successfully 
complete a test. Testing is resumed when sufficient development effort has been 
expended to cause a significant percentage of the use cases to pass tests. 

 
 

Complementary Strategies for Selecting Test Cases 
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There are two possible avenues for selecting test cases for the system. One 
approach is to think about the types of defects that a product might contain and 
write test cases to find them. A second approach is to determine how the system 
will be used and build test cases that take it through its paces. In the following 
sections we will describe each technique and discuss how we use them together for 
an effective test strategy. Ultimately, we use the second approach to determine 
how many test cases to apply to each use case and then use the first approach to 
guide the selection of the test cases for maximum defect-finding power. 

Use Profile 

A traditional system test approach is to construct an operational profile. The 
profile is a listing of the relative frequency with which each end-user function in 
the system is used. For example, in Brickles, the player uses the mouse and moves 
it from side to side as the most frequent operation. Selecting a help feature or 
pausing play by depressing a mouse button are very infrequent operations. 

This approach is also used in the computation of the reliability of a piece of 
software. Reliability is a measure of how long a software system operates without 
failure in a specific operational environment. The operational profile is one 
technique for specifying the operational environment. However, it is difficult to 
specify the operational profile until the system has been deployed for some time. 

We defined a use profile in Chapter 4 as an accurate estimate of the operational 
profile. The use profile uses the priority of an operation rather than the frequency. 
It is possible to estimate the priority of a use case more accurately than it is to 
estimate the frequency of specific operations that may be used by several different 
types of users. We can estimate the priority of a use case by considering estimates 
of both frequency and criticality for each individual actor and then combining 
these for individual use cases. The use profile is built from the actor and use case 
diagrams. 

ODC 

Orthogonal Defect Classification (ODC) is a technique developed at IBM for 
capturing information about the type of faults that are present in a software system 
under development. This technique is useful for collecting and analyzing test 
information to direct a process improvement effort; however, our intent is to use 
the standard classifications developed by the creators of ODC as a basis for 
selecting test cases (see Orthogonal Defect Classification as a Test Case Selector 
on page 125). 
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Figure 9.3 lists the six categories of causes of failures identified in the ODC 
technique. Our interest is to be certain that we have built test cases that will allow 
each of these triggers to occur. Some of the categories, such as Startup and Normal 
Mode, are actually hard to avoid. However, the Exception category reminds us to 
cover every system-level exception just as we tried every exception at the 
component level. The word Recovery in that category also reminds us that the 
expected result of catching an exception should be clearly specified. It is not 
always possible to continue operations in the face of some exceptions; however, 
others are routinely encountered, such as "File Not Found."Any good program 
should be able to handle these. 

Figure 9.3. ODC system-level failure triggers 

 

The Hardware and Software Configuration categories are less obvious but very 
important areas for testing. For personal computers, software memory, for 
example, can be a major issue because there may not be a provision for virtual 
memory, or at least one that is sufficient. We have had clients who were very 
proud of the up-to-date development environment that every one of their 
developers had been given. Unfortunately some of their customers did not have 
that same environment and the program failed because the developer never 



 350

encountered the situation in which insufficient memory was available to the 
program. The code failed to catch and handle out-of-memory exceptions. 

The system test plan should include the use of a range of machines that have a 
variety of hardware devices. The sidebar System Configuration provides just one 
example of the interactions that can happen among software and hardware drivers. 
Likewise, software configurations can cause problems. Many programs have been 
thwarted by the order of libraries in a search path. While this is not a program 
defect, it is a defect in the installation process or the program documentation. 

System Configuration 

We developed a version of a tic-tac-toe game using the CORBA object 
request broker (ORB) that comes in the Java Developer's Kit (JDK). The 
naming service that comes with the JDK runs as a separate process that 
servers register with and clients query to locate the servers. We created a 
release of the game and tested it. The game was installed on a laptop that 
contained a combination modem/networking card. The game started, but 
did not appear to accept output. The process was left running while we 
went away to do something else. When we returned, the game was ready 
for a player to select a square. Selecting a square froze the game again. 
When the laptop was plugged into the network and the game was started, it 
ran at reasonable speed. Subsequent tests showed that the naming service 
object changed behavior with every state of the modem/networking card 
and was different on machines that had no network card at all.  

There are many elements that go into the configuration of a system. Often 
these seem unrelated but later defects are traced to interactions between 
these elements. Different versions of the operating system, including 
foreign releases that are different from the domestic ones, font and 
language metrics, and even the environment variables can affect the 
execution of a system. Orthogonal array test designs can be used to reduce 
the number of combinations of factors that must be tested. 
 
 

Use Cases as Sources of Test Cases 

To test for conformance to requirements, we want to construct the test cases from 
the use cases that specify requirements. As we previously noted, we need to 
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determine how many test cases to use from each use case and then build the test 
cases themselves. Although we discussed this in Chapter 4, we will provide 
additional details here. 

Constructing Use Profiles 

The construction of a use profile begins with the actors from the use case diagram. 
The actor profile in Figure 9.4 is for the player actor in the Brickles game. When 
there is a single actor, that profile should match the frequency field in the use 
cases. The interesting, and useful, case is when there are several actors. Seldom 
will all of these actors use the system in exactly the same way. The frequency field 
in the use case is a composite of the frequency values in the individual actor 
profiles. 

Figure 9.4. An actor profile 
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In Figure 9.5, the frequency in Use Case #1 would be some type of average of the 
frequencies provided in the profiles of actors A and B. You might wish to weigh 
the frequency of actor A more heavily than that of actor B. The frequency field for 
each of the use cases is constructed from these actor profiles. 

Figure 9.5. Actor to use case mapping 
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This technique is a very useful one for systems that have never been deployed. It is 
more accurate to estimate how each actor will use the system than to guess what 
the aggregate of individual uses will be. After deployment the use case frequencies 
can be updated based on actual data and used for regression testing. 

Using Scenarios to Construct Test Cases 

A use case typically contains multiple scenarios that could be converted to test 
cases. The use case section labeled The system responds by is the normal case and 
is the first source of test cases. There will be data attributes that should be analyzed 
in the same way as any parameter to a method. The Boundary Conditions sidebar 
on page 180 provides one type of analysis that can be used. Here we take a few 
lines to give the details of a table-driven approach. 

The process for identifying specific values from the variables mentioned in a use 
case has four steps: 

1. Identify all of the values that would be supplied by the actors contained in 
the use case model.  

2. Identify equivalence classes of values for each input data type. 
3. Construct tables that list combinations of values from the various 

equivalence classes. 
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4. Construct test cases that combine a single permutation of values with the 
necessary environmental constraints. 

Since there are not enough inputs to our continuing example to make for an 
adequate example, we will consider a few variables from the personnel system 
example first introduced in Chapter 3. There are three variables mentioned in the 
use cases for that system. Each person has a name, an indication of whether the 
person is new to the system or has been existing, and a level of security 
authorization. Figure 9.6 shows the equivalence classes for these three variables. 
Figure 9.7 contains a column for each variable. Down the column are values from 
different equivalence classes for the variable. Each row of the table specifies a test. 

Figure 9.6. Input value specifications for a personnel system 

 

Figure 9.7. Input data permutations for a personnel system 

 

The use case section Alternative Courses of Action is one of the most frequently 
used sections. These are less frequent but still normal cases. Also the Extends 
section provides successful cases in which the system achieves the use indicated in 
the main scenario and performs additional behaviors as well. These scenarios 
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receive relatively less testing attention in the extending use case than in the original 
use case. 

The Exceptions section provides those scenarios in which the use described in the 
normal cases cannot be achieved. These cases will be covered for the full system 
test; however, they will not be covered in regression test suites unless life-critical 
or safety-critical issues are involved. 

The number of test cases that are created will depend on the contents of the 
frequency attribute of each use case. One technique for estimating the appropriate 
number is to take the number of distinct inputs and the number of equivalence 
classes for each input type and multiply them to get the maximum number of 
permutations: 

E1 * E2 * E3 *... * En 

in which Ei is the number of equivalence classes for the ith input. This gives the 
maximum number of test cases that could be created using this approach. 

The number that will actually be created can then be limited either by the 
importance of the use case or by the amount of resources available. A small pilot 
effort or historical data can be used to determine the amount of resources required 
for a typical use case. Given the total number of use cases, an estimate can be 
made of the total effort that would be required for the full project. 

The Expected Results Section of a Test Case 

One of the most difficult things about testing complex systems is being able to 
determine the expected results from a test run. Telecommunication systems, 
scientific systems such as spacecraft control software, and information systems for 
multinational corporations are examples of systems for which test data and test 
results are expensive to construct. For each of the test cases derived from scenarios 
in the previous section, there must be a description of the results expected from the 
system during the test. 

On a recent project we began to construct scenarios and derive test cases from 
them. It was only when we were ready to evaluate the test results that it became 
obvious that the development staff and their management had no idea what the 
exact system behavior should be for each of the scenarios! 
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A couple of techniques are useful to reduce the amount of effort required to 
develop expected results. The first is to construct the results incrementally just as 
the test cases are constructed incrementally. In this approach the test cases are 
written to cover some subset of a use of the system, perhaps only the data entry 
portion. Then, in succeeding cases the scope is broadened to cover the complete 
use. As the cases are broadened, the test results are extended. 

This can be expanded to include iterative development of test cases. In this mode 
we begin by writing small test cases and gradually increase in size and complexity 
until the tests are realistic in terms of the production environment. In a database 
system, we might begin with a database containing fifty records and gradually 
increase until we have several thousand. The results expected at each new level 
must include any interactions that will occur because of the new cases. For 
example, in a database the presence of one record may inhibit the selection of 
another record that was selected in the previous test. 

The second technique is to develop grand tour test cases in which the result of 
one test case produces the data that is input to the next test case. In this approach 
each test moves the test data through an entire life cycle. The resulting state of the 
database is then used as the input for the next test. This technique is particularly 
useful for life-cycle testing after low-level testing has found most of the failure-
causing defects. By sequencing the test cases properly, the state after a successful 
execution of test case 1 establishes the database expected as the input to test case 2. 
The obvious problem with this approach is that a failure of test case 1 leaves the 
database in an unexpected state and we either cannot run test case 2 or at least must 
fix the database before we do. 

Brickles 

In Chapter 4 we began the system-level testing of Brickles by conducting a guided 
inspection. In preparation for that we prioritized the use cases using the frequency 
and criticality measures from the use cases. Figure 4.23 shows the results of that 
analysis. By the time the first increment is ready for code-based testing, we should 
reexamine this analysis to determine whether there are reasons to change the 
ratings for individual use cases. We will continue to use the ratings that were 
computed in Chapter 4. 

With such a simple set of inputs there are few input parameters to analyze. Figure 
9.8 shows the results of the analysis and adds additional factors such as the 
operating system version. 
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Figure 9.8. Input value specifications for Brickles 

 

Figure 9.9 gives a subset of the permutations of those variables. Each row provides 
a test scenario. We will use the set of rows for a single Java operational 
environment, such as the Appletviewer, as the test suite for the C++ version. 

Figure 9.9. Input data permutations for Brickles 
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In the first row, if zero pucks are lost, the expected end result would be that the 
game is won. However, in Brickles, if there is no movement of the paddle, all 
pucks should be lost (eventually). This is referred to as an infeasible test case. 
That is, it is a test case that is generated by some algorithm, but it is not possible. 
There is another infeasible case in which only three pucks are lost and there is no 
movement. 

There is another variable that affects the operation of the game and the portion of 
the paddle on which the puck hits. A different computation is performed depending 
on whether the puck hits the paddle on the left, center, or right portion of the 
paddle. However, the analysis of the sequence of hits on the paddle produces a 
very large number of possibilities. The tester might choose to informally explore 
this dimension by having some hits occur in each of the regions. We will add it to 
the table because we are about to use an orthogonal array testing system (OATS) to 
reduce the number of tests needed to cover the problem. 

Our table of permutations, shown in Figure 9.9, has four factors.[1] Each factor 
happens to have three levels. Figure 9.10 provides the standard orthogonal array 
that fits the problem. Figure 9.11 shows the same array with problem-specific 
values substituted for the integers. These nine cases assume that each of the factors 
is independent of the others. Cases 1 and 4 are infeasible because if there is no 
movement then all the pucks will be lost. There is a dependency between these two 
factors, but it is not a perfect correlation. By changing the number to all, we can 
still use the test cases to cover some of the permutations. 

[1] See the earlier discussion of OATS in Orthogonal Array 
Testing on page 228 if you have forgotten the terminology. 

Figure 9.10. Array for an OATS test design 
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Figure 9.11. Mapping of equivalence class values onto array 

 

 

Testing Incremental Projects 

Fewer and fewer software development projects build a complete system from the 
raw products of a programming language and a comprehensive set of requirements. 
Many are "remodeling" projects in which a portion of an existing system is 
replaced with updated, often expanded, functionality. Commercial-off-the-shelf 
(COTS) software is used when possible to provide portions of the functionality of a 
system, whether it's completely new or renovated. 

For example, one project we are working on as we write this is the incorporation of 
a voice-recognition engine; another is using a spreadsheet component comprised of 
several classes; and yet another is using a commercial application server as the 
middle layer in a three-tiered architecture. So does this, and should it, affect the 
test cases we use and the levels of coverage we require? 
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Any product that is purchased from a vendor to be included in a product or to be 
used to help produce a product should be subjected to an acceptance test by project 
personnel. Components that are purchased as a library from a vendor and 
components that come included in a product such as a development environment 
should be tested. We will discuss this in Chapter 10. 

For projects that focus on a portion of a development effort, such as the renovation 
of a piece of legacy software, the basic testing phases remain but the relative 
importance of the phases shift. We have participated in a number of these projects 
over the years. Our experience has shown that each project should develop a test 
plan that clearly defines the amount of testing to be conducted at each phase. The 
amount is determined by the quality of the product being renovated, the depth of 
the renovation, and the quality demanded by the domain. 

Legacy Projects 

For legacy projects, in which a portion of the existing functionality is being 
replaced with new code, two types of testing are emphasized. First, guided 
inspection is conducted to ensure the quality of the interfaces that are designed to 
isolate the new portion of the system from the remaining legacy code. These 
interfaces are intended to represent at least the functionality that existed previously 
in the code that is being replaced. The interfaces to the legacy are complete if they 
provide all of the behaviors needed by the extension software to be able to 
implement their behavior. The interfaces are consistent if a behavior in the legacy 
code is accessed through a single entry point in the interfaces. The interfaces are 
correct if they accurately transmit the behavior of the legacy code. 

The second type of testing that is emphasized is integration testing. This focuses 
attention on the points at which the new code actually interacts with the legacy 
code. Depending on how the modifications are implemented, you may find issues 
of compatibility among even primitive data types if the languages are different 
across the interfaces. 

Protocols between the legacy and extended code should be identified, documented, 
and tested. This includes the usual messages going back and forth, and the 
exceptions that each throws that are caught by the other. To digress for a moment, 
a widely used design pattern, Facade, formalizes the protocol into an object. We 
use this approach so that if more of the legacy system is later converted to objects, 
the protocol objects will be thrown away and a new set will be created at the new 
interface between legacy and object code. 
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For both levels, the issues are relatively the same: 

1. consistency of ranges of values used as parameters across legacy boundaries 
in both directions 

2. consistency of new and existing state machines 
3. completeness of the interfaces 
4. correctness of the new computations 

The system test plan should identify the interfaces being created in the project and 
should plan for extensive testing of those interfaces. 

 

Testing Multiple Representations 

Few systems these days are written in a single, compiled language with a single 
data representation. More likely, they are a composite of compiled servers, perhaps 
written in C++, and interpreted clients, perhaps written in Java, whose screen 
presentation is dynamically computed as the representation is pulled from a 
database. The customer data is structured in a relational architecture and must be 
repackaged to reflect the object-oriented architecture of the computational logic. 

Several features of these systems are important from a testing perspective: 

1. interactions between two data models 
2. interactions between pieces written in different languages 
3. interactions between static and dynamic portions of the program 

The first step in addressing these features is a thorough unit test process. Each 
piece of the system, especially the dynamic pieces, should be exercised in its native 
language. The second step is to test the interactions across language and 
representation boundaries. The focus of these tests should be boundaries on the 
data types for parameters that are passed between code written in different 
languages.[2] We implemented the tic-tac-toe game in Java using a variation of our 
game framework. It included a strategy component that determined the next move 
a computer player would make. We implemented the strategy piece in C++ and 
used an interface between Java and C++ to return the results to the main Java 
program. Our initial testing found defects such as data-word alignment issues that 
resulted from misunderstanding the type mapping between languages. 
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[2] This same situation will arise when one data type is 
converted to another. This type of testing should be conducted 
to ensure that conversions are working correctly. 

Tip 

Test the interfaces between two languages to determine that a complete 
object is transferred. First, be certain that each connection in either 
direction is exercised. Second, validate the test results by examining the 
transformed objects in detail to ensure that nothing is missing or 
misrepresented. Measure coverage by covering all of the primitive types 
of each language.Testing here is primarily implementation-based. 

 

One example of testing the dynamic aspects of a system involves the mapping 
from one type of representation to another. For an XML-based system, the first 
step is to use a validating parser to determine that the XML itself is of the correct 
form. The portion of the program logic that manipulates the XML description is 
then tested under the assumption that the description is correct. This validation of 
input data by a validating XML parser is conceptually the same as the use of a 
direct SQL query facility to validate the results of tests in a system based on a 
relational database or the object viewer for an object-oriented database. That is, 
first determine that the inputs are correct and then address the correctness of the 
outputs. 

Another example of mixing system types is the fairly common approach of using a 
relational database as the back end to a system that has an object-oriented front 
end. The interface between the two models provides an opportunity for incorrect 
mapping as data coming from the relational side is grouped into objects. The test 
suite should include validation of the newly created objects. 

Tip 

Exercise all of the interfaces between two data representations by 
identifying existing test cases that together map a representative of each 
equivalence class. Verify (1) that the mapping from one representation to 
another happens correctly, (2) that everything is mapped in each direction 
(completeness), and (3) that each element is mapped the same all the time 
(consistency). 
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What Needs to Be Tested? 

Testing against Functional Requirements 

Checking functional requirements is the traditional "system testing" activity and is 
one that we have already covered. It is based on the derivation of test cases from 
use cases. 

Testing for Qualitative System Attributes 

Project charters and advertising literature often present qualitative claims that go 
unsubstantiated. A mature software development organization wants techniques for 
validating all system "requirements," including claims that are intended to make a 
product distinctive. In this section we address testing a system to validate 
qualitative claims. 

There are two types of claims that a development organization may make about 
their products. The first type is a claim of interest only to the development 
organization. For example, "the code will be reusable." The second type of claim is 
one that is of interest to the users of the system. For example, the system will be 
more comprehensive than others on the market currently. Clearly not all of these 
claims can be subjected to validation through testing. 

Most of these claims are best tested by examining the design rather than executing 
the code. The Guided Inspection technique in Chapter 4 provides a method for 
examining these types of system-level attributes. 

Technique Summary— Validating Qualitative Claims 

1. Translate each qualitative claim into measurable attributes that 
covary with the qualitative attribute or that define the qualitative 
attribute. 

2. Design test cases that can detect the presence or absence of these 
measurable attributes. 

3. Execute the test cases and analyze the results. 
4. Aggregate these results to determine if a specific claim is justified. 



 364

One type of claim that can be validated by executing code is performance-based 
claims. Component manufacturers may make claims that their database 
performance remains acceptable under a rapid increase in the number of 
transactions. To substantiate this claim, the system testers perform a load test as 
follows: 

1. Quantify the terms "acceptable performance" and "rapid increase." 
Acceptable performance would be quantified by a number of transactions 
per second given a record size of 1024 bytes. Rapid increase would be 
quantified by defining the shape of the increase curve, "a quadratic increase 
over a 10 minute period." 

2. The testers would create new data or capture and groom historical data for 
use in the tests. A test frame capable of delivering the maximum number of 
transactions per second would be developed. The frame would include 
instrumentation that would assist in collecting service times. 

3. The tests would be run. Test results and timing data would be collected. 
4. The test group would make a pass/fail determination for that claim. 

Clearly this type of testing will not be used on every project, but it is an important 
aspect of a complete validation program. 

Testing the System Deployment 

Testing the deployment mechanism for your application is not necessarily new, but 
it takes on added importance for configurable systems and those that require 
dynamic interaction with the environment. Deployment testing is intended to 
ensure that the packaging used for the system provides adequate setup steps and 
delivers a product in working condition. The most expensive part of this process is 
handling the installation of options. 

The initial test case is a full, complete installation. This might seem to be a 
sufficient test all by itself; however, there are usually interactions between options. 
If certain options are not installed, libraries or drivers may be needed for other 
options, but they are not copied to the installation directories. An interaction matrix 
(see Chapter 6) can be used to record the dependencies between options. Test cases 
can then be designed that attempt to install one option but not the other. The 
expected result, if the two options are not interdependent, should be normal 
operation of the system. There can be many possible combinations, particularly if 
the different types of platforms on which the system will be installed are 
considered. This is a canonical situation for applying OATS, but we will not do a 
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detailed example here since we have already included two examples. The factors 
are the options that are to be installed and which levels are installed or not 
installed. In the case of mode complex options the levels might be the canonical 
ones: typical, custom, and full installations. 

Normal operation is judged by running a set of regression tests for the system. The 
regression set must be pruned to remove any tests that use options that were not 
installed. 

Technique Summary— Deployment Testing 

1. Identify categories of platforms on which the system will be 
deployed. 

2. Locate at least one system of each type that has a typical 
environment but that has not had the system installed on it. 

3. Install the system using the deployment mechanism. 
4. Run a regression set of system tests and evaluate the results. 

Testing after Deployment 

A natural extension of deployment testing is to provide self-test functionality in 
the product. Deployment testing exercises the mechanism for deployment in a test 
lab environment while the self-test functionality tests the actual deployment in the 
customer's environment. A separate self-test component of the architecture is 
designed to invoke the end-user functionality of the product and to evaluate the 
results. This provides a user with the opportunity to run a set of tests whenever 
there is doubt about the "sanity" of the application. 

The test suite for this type of testing is a subset of the regression test suite for the 
system. The test suite concentrates on those parts of the system that can be affected 
by changes in the environment. We consider that software "wears" over time due to 
changes in its interactions with its environment much as mechanical systems wear 
over time due to friction between components. As new versions of standard drivers 
and libraries are installed, the mismatches increase and the chance of failure 
increases as well. Each new version of a dynamic link library (DLL) brings the 
possibility of mismatched domains on standard interfaces or the exposure of race 
conditions between the library and the application. The self-test functionality must 
provide tests that exercise the interfaces between these products. 

Testing Environment Interactions 
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On a recent project, the development was performed on a Windows NT platform 
with 256 megabytes of RAM and a 20 gigabyte hard drive. When the system was 
placed into beta testing, it failed on a range of systems. It crashed more 
dramatically under Windows 95, but it failed on several systems that had a range of 
configurations. There was an interaction between the size of RAM and the 
available space on the disk due to the swap space allocated by the operating 
system. 

We investigated this by defining a set of test cases like the ones shown in Figure 
9.12. Because the development machines were larger than many of the machines 
on which the system would typically be deployed, memory handling had not been 
properly investigated. One problem was that every window that was opened 
increased the need for swap space even though RAM was available for the entire 
window. This problem did not appear until we accidently executed the program 
with the disk nearly full so that the swap space could not be allocated. That failure 
caused us to create a set of test cases that investigated the failure (see More Truth 
below). 

Figure 9.12. Test cases for memory/disk interaction 

 

Technique Summary— Defining a Context 

1. Describe the scope of the context, such as a single platform or 
distributed environment of heterogeneous machines. 

2. Identify the attributes of the system that affect the operation of the 
system, such as the amount of memory in the platform or the other 
applications running concurrently. 

3. Analyze each of the attributes and identify the usual equivalence 
classes. 

4. Construct combinations of attribute values that provide good 
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coverage of the context. 

More Truth 

So we lied when we said that the purpose of testing was to find failures. 
We came closer to telling the truth when we added that testing is also 
intended to determine whether the system satisfies its requirements. Now, 
some more truth. Testing can also provide information to support the 
repair effort after a failure. The test cases in Figure 9.12 were constructed 
to systematically investigate the root cause of a failure. By sending this 
table back to the developers, the testers speed the diagnostic process. 

Test the application in a variety of situations that a user might create— for 
example, execute the application concurrently with Microsoft Word, Lotus Notes, 
or other application programs. 

Test System Security 

Testing the effects of security on an application is not special to object-oriented 
systems, but there are some special aspects. There are three categories of issues 
that could be classified as security: 

1. The ability of the application to allow authorized persons access and to 
prevent access by unauthorized persons. 

2. The ability of the code to access all of the resources that it needs to execute. 
3. The ability of the application to prevent unauthorized access to other system 

resources not related to the application. 

We will not get into issues 1 and 3, which consider holes in firewalls or the usual 
system account/password software. 

Tip 

Try special character keys as a means of accessing operating system-level 
loopholes to bypass security features such as password protection. Use a 
free-play style of testing to try combinations of CTRL, ESC, ALT and 
other keys to determine whether you can escape to the level where data is 
available for access. 
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Specifically, the modularity of the executables and the dynamic aspects of the code 
does raise some security issues. We briefly discussed (see Testing after 
Deployment on page 328) situations in which an application is deployed and files 
are copied to a number of different directories. Most will be within the directory 
created for the application; however, several may have to be copied to specific 
subdirectories under system directories. When this is done by a system 
administrator, the files may have permissions that are different from those used by 
the actual users. The application may begin operation with no problem and may 
even be able to be used successfully by users for certain tasks. Only certain 
operations may fail and, in fact, only certain operations for certain users may fail. 
The level of testing that should be accomplished here is to execute sufficient test 
cases to use at least one resource from each directory and one user from each 
security class. 

Java now uses a permissions file that is independent of the security of the operating 
system. Permissions can be required for accessing any number of system or 
application resources. Again, inadequate permissions may not show up initially 
unless they are explicitly tested. 

 

Types of Testing 

Stress Testing 

Stress testing is operating a system under conditions that come close to exhausting 
the resources needed by the system. This may be filling RAM with objects, filling 
the hard drive with records, or filling internal data structures. One of our favorite 
tests is to rapidly move the mouse back and forth. This can cause the mouse move-
events queue to overflow. If this condition is not handled properly a program will 
crash. 

Object-oriented systems will usually be stressed by creating a large number of 
instances of classes. Select those classes that are likely to actually have a large 
number of instances in normal operation. Use random number generators or other 
devices to vary the values of parameters since this is a good opportunity to test 
constructors on a variety of classes. 

Objects are often larger than you think. An object that contains a reference to a 30-
second full-motion video clip has an object reference (usually 4 bytes), but the 
total memory required to instantiate that object includes the memory needed to 
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hold some portion of the video clip. Object-oriented systems will often stress 
memory in normal operation because the developers do not pay sufficient attention 
to the real sizes of objects. Over the development life cycle, testing begins with a 
small number of objects being used during unit tests, normal operational numbers 
of objects during integration and system tests, and extraordinary numbers of 
objects later in a system test when the system has become stable under operational 
limits. 

One of the most frequently overlooked stresses is the natural growth of information 
that accumulates as a system is operated. As a company uses a computerized 
accounting system and accumulates years of data, there is a natural tendency for 
users to expand their analyses. So the department head who used to budget by the 
seat of his pants, now asks the system to load the last five years of data. This can 
lead to a degradation of performance and even a system failure. This type of stress 
should be applied during life-cycle testing. 

Life-Cycle Testing 

The life cycle for a system can be rather long and therefore difficult to simulate in 
a testing environment. There are two types of life cycles that do make sense to test. 
First are domain life cycles. Second are computer application life cycles. 

Domain life cycles correspond to key processes in the domain. For example, in an 
accounting system, you might choose to run a series of tests that cover a complete 
fiscal year for a specific set of accounts. This begins with initializing the accounts 
for the year, posting a series of transactions, and performing other operations 
before closing the accounts for the year. Life-cycle testing must include realistic 
growth in the load on the system. The schedule has to include time to manufacture 
test data or to write programs to convert existing data into the appropriate format 
for use in the system under test. We have found that this is the most time-
consuming part of the test process. Customers and domain experts can be a source 
of help. 

Technique Summary— Stress Testing 

The steps in stress testing are: 

• Identify the variable resources that increase the amount of work the 
system has to do. 

• If there are relationships among these resources, develop a matrix 
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that lists combinations of resource levels to use. 
• Create test cases that use each combination. 
• Execute and evaluate the results. 

The life cycle of an application begins with its installation and ends with its 
removal. This means that we want to test the installer program and the uninstaller 
program. The initial conditions are a typical machine (on which the program will 
be installed) that has not been used in the development of the product. Running the 
installer program should result in a usable application. After that, running the 
uninstaller should essentially return the system to its condition prior to the 
installation. Numbers of files on the disk and space available should be returned to 
their original values, otherwise the test has failed. 

Problems with Real Data in Testing 

When extensive past data— maybe from the operation of an earlier version 
of the system— is available, there is a tendency to think this is an easy way 
to obtain test data. The time required to analyze this data is usually 
underestimated. For each test case, the data must be examined to 
determine the expected results for test cases run against this data set. For 
tests that involve business rules and databases, this can be a very time-
consuming task. It may be quicker to manufacture data that has specific 
properties than to use the real data. Test data is constructed by following 
these steps: 

• Analyze the existing data to identify patterns. 
• Construct test data that follow these patterns but for which the 

expected results are more easily determined. 
• Design test cases that use the test data in the context of a complete 

life cycle. 
• Execute and evaluate the results. 

Performance Testing 

Object-oriented systems originally had a reputation for being inherently slow. 
Therefore, systems for which performance was particularly critical just stayed 
away from the approach. A couple of things have happened to change both the 
perception and reality. 
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First, tools have improved. C++ compilers generate better code. Java virtual 
machines have been optimized. Much research has led to optimizations and new 
constructs for compilers and runtime environments. We have helped clients deploy 
successful systems using distributed object technologies in real-time, embedded 
environments. 

Second, as people have become more knowledgeable in object-oriented techniques, 
they have become more skillful at articulating design rationales. Object-oriented 
systems are often slower than they have to be, in an absolute sense, because other 
design objectives have a higher priority. There are simply different design patterns 
that come into play if performance is the priority as opposed to the design in which 
flexibility or ease of maintenance is the priority. 

"Testing" for performance is much like measuring the reliability of a piece of 
software. The most important aspect is defining and establishing the context within 
which performance will be measured. By context we mean a description of the 
environment in which the measurement will be made. The number of users logged 
into the system, the configuration of the machine being used, and other factors that 
may affect the behavior of a system should be addressed in the description. There 
may be multiple contexts with a different goal and different criteria in each 
context. A context should be meaningful to the user of the program and should 
include those aspects of the program that will be of value to the user. 

The attributes of the system that are related to performance will vary with the type 
of system. In some systems, throughput of the system, measured in transactions per 
minute, will be the most important aspect while in others it may be the ability to 
react to individual events fast enough. In Brickles, there are two aspects of 
performance: the speed with which the graphics are refreshed and the speed with 
which a collision is detected and the display is updated. 

The test cases for measuring the refresh of graphics use the heaviest load possible 
on the system. Each test case places the maximum number of bricks on the screen, 
and it calls for high levels of input. The paddle is moved back and forth very 
quickly. This produces the maximum number of calculations and drawing 
activities. The expected result during this test is no noticeable "flicker" in the 
graphics on the screen. The movement of the paddle image, as the mouse is moved 
from side to side, should be smooth and should correspond to the position of the 
mouse. 
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As discussed in the Testing Environment Interactions section on page 328, the 
other applications running concurrently with the tests can affect the results, 
particularly from a performance perspective. The context definition for the test 
cases should also provide a description of the state of the other applications 
running. The tests should be conducted using a typical load on the system. 

Technique Summary— Performance Testing 

1. Define the context in which the performance measure applies. 
a. Describe the state of the application to be tested. 
b. Describe the execution environment in terms of the platform 

being used. 
c. Describe the other applications running at the time of the 

tests. 
2. Identify the extremes within that context. 
3. Define, as the expected result, what will constitute acceptable 

performance. 
4. Execute the tests and evaluate the results. 

 
 
 

Testing Different Types of Systems 

There are many aspects of a system that affect the way it should be tested for 
maximum effectiveness. We still take the view that testing is a search process. 
Different types of systems need to be searched in different ways and for different 
things. We will summarize some ideas that have been presented elsewhere in this 
book and provide a few new ideas as well.  

Reactive Systems 

Object-oriented techniques have been used heavily in building systems that are 
driven by the inputs of a user. One important characteristic of these systems is that 
there is a very large number of paths through the code. Each run is different from 
the last. The result is often a very complicated state machine. 

One technique was illustrated in Chapter 7. The state machine can be decomposed 
along the lines of the inheritance relation and the "implements" relation. An 
interface can specify a state machine even if it is not implemented. Test cases are 
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created from the decomposed state machines and then the test cases can be 
composed. 

For reactive systems, it is usually possible to identify concurrent state machines. 
These often come from the inherited classes or composed objects. In particular, 
they come from the "listener" threads in the interface that are waiting for the user 
to stimulate a mouse event, keypress/release event, or other input event. These 
concurrent state machines can be tested separately first and then tested together. 

A coverage metric that is especially useful for reactive systems is the "all events" 
level of coverage. This provides an input-side measure of coverage. As such it 
allows us to determine that the system doesn't do anything that it is not supposed to 
do. All events coverage for a system such as Brickles entails the events generated 
by mouse actions, events generated by the windowing system, and the operating 
environment. For both versions of Brickles, the mouse-move and button-press 
events are the same and the test cases can be used for all versions. A Java applet 
version adds events that relate to starting, stopping, and refreshing the applet. 
There should be test cases for each of these, as shown in Figure 9.13. 

Figure 9.13. Events coverage test cases 

 

Embedded Systems 

Programs that run within a piece of machinery are referred to as embedded 
software. The software is working within the constraints of limited memory and 
constraints (sometimes stringent) on performance. A specific set of object-oriented 
design patterns apply to this type of system. The development environment is also 
special in that a simulator is often used as the initial execution environment and the 
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program will be compiled with one code generator and then, later, another code 
generator. This first raises the question of how well the simulator conforms to the 
real environment, and then how different the two code generators are. Certain 
complex compilation issues, such as template instantiation in C++, result in very 
different object code from two different compilers. 

When testing on two different compilers/environments, the type of testing used 
depends on the nature of the test cases. If the test cases are going to require 
extensive stubbing of other pieces of the environment, then it may be best to do a 
minimum amount of testing in the simulation environment and a maximum amount 
in the actual environment. If extensive stubbing is not needed, or perhaps if the 
entire system is being assembled in the simulation environment, then doing 
extensive testing in the simulation environment is preferred. There usually are 
more tools on the simulation side than the actual hardware side. 

In either case, the reuse of test cases will be an important issue. The approach of 
writing the test cases in the language of the system implementation instead of a 
scripting language becomes useful at this point. The team must have language tools 
that work on both the simulator and the target hardware; therefore, they can apply 
the test cases in both environments. 

Embedded systems tend to be more state driven and more safety critical than other 
kinds of systems. In many cases they cannot stop executing regardless of an error. 
This means that there is extensive recovery functionality associated with the 
system. This basically leads to a number of tests that inject faults into the system 
and evaluates whether the error recovery matches the specified behavior. 

We use a technique from communication protocol testing to generate tests from the 
state machine for an embedded system. The technique is called an n-way switch 
cover [Chow87]. Consider the state machine shown in Figure 9.14. A very basic 
set of tests would cover every transition in the state machine at least once. These 
tests would determine whether any transitions are not provided in the 
implementation of the state machine. The next level of coverage would be to 
consider combinations of specific transitions in one of the concurrent sets of states 
with specific transitions in other concurrent sets. 

Figure 9.14. State machine for a cell phone 
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These systems also often include a "self-test" mode like we described earlier in this 
chapter. Rather than thinking of this as a testing issue, we should think of it as a 
part of the system's behavior that should be tested in the same manner as any other 
behavior. A self-test capability is intended to identify portions of the system that 
are not working correctly. To test the self-test behavior, a tester must introduce an 
error in the configuration, modify file permissions, or remove a resource. Then a 
test case that invokes the self-test should be executed. The expected result is that 
the system fails. 

Multitiered Systems 

Multitiered and distributed systems are similar topics. A multitiered system is 
simply a distributed system with a particular architectural style. Often when this 
term is used, it refers to systems in which there is a pipeline-style architecture. The 
client has a GUI at the user's end and some amount of computational logic, an 
application server, or multiple layers of servers in the middle, and a database on 
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the back end. The amount of computation that can be performed at the client level 
varies. A client and GUI that does a minimum amount of work is referred to as a 
thin client. 

These systems encompass an amazing diversity of technologies. The GUI portion 
of the client may be Web-based and may be written in JavaScript. The exact form 
of the display may be changed depending on the data being received in XML 
format. The GUI might contain Enterprise JavaBeans and, if so, then the middle 
layer is an application server. 

Distributed Systems 

We have addressed this topic in Chapter 8 from an infrastructure perspective. From 
a requirements perspective, there is only a small difference between distributed and 
nondistributed systems. The difference in specification is whether the system is 
supposed to be able to do the following: 

1. Seek an alternative server when the expected one cannot be found. 
2. Notify its user and pause operation while waiting for the network problem to 

be corrected. 
3. Shut down the system. 

Our point here is that the system's specification should explicitly address these 
possibilities. Tests can then be developed to cover these possibilities. 

 

Measuring Test Coverage 

Recall that coverage is the metric that indicates the level of confidence we can 
have in our testing. 

What Is to Be Covered? 

There are a large number of attributes of a system that could be used to measure 
coverage. Fundamentally, there are two categories of these attributes: inputs and 
outputs. That is, we can measure how many of the possible inputs have been used 
in test cases and we can measure how many of the possible outputs that a system 
can produce have been produced during testing. 
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Traditionally, coverage has been viewed from the output perspective. Metrics such 
as the percentage of lines of code covered or the number of alternatives out of a 
decision that have been exercised are typical. We have worked to cover all uses of 
the system based on our use case model. This approach works fine for being 
certain that the product does what it is supposed to do. If we can produce all of the 
required outputs, then the product does what it is supposed to do. 

As systems have become more integrated into life-critical and mission-critical 
systems, expectations have increased to include "Does the system do anything it is 
not supposed to?" Coverage must then be measured in terms of inputs. Are there 
inputs that can cause catastrophic effects? Our earlier discussions about input 
decision tables and equivalence classes provide a basis for this. Some possible 
metrics include the percentage of possible events that can be generated at the 
interface or the percentage of values within an equivalence class that have been 
used. 

When Is Coverage Measured? 

Coverage data is collected continuously during testing. In fact, the PACT classes 
include specific groupings of test cases— the test suites— that are intended to 
achieve certain types of coverage. Each test case is selected for a reason and can be 
directly related to covering some aspect of the system. Since development is 
incremental, coverage figures are updated as additional functionality is added. For 
example, a use case has a main scenario and then a set of alternative paths, 
extensions, and exceptions. Usually these various uses will gradually be completed 
over the course of an increment. As test cases are added to cover the various paths 
through the use case, the degree of coverage increases. The test plan for the use 
case documents the mapping between test cases and the coverage of the use case 
they provide. 

Coverage can change even after a product is released. In particular it can go down! 
When new versions of a DLL are released, additional classes may be defined in the 
DLL and integrated into the application dynamically. The number of possible paths 
is increased and, unless additional test cases are added, the coverage over the 
application has decreased. 

When Is Coverage Used? 

Our answer is "at release time." That is, coverage is part of the decision criteria for 
a release. We don't release until we have achieved our test coverage goals (not the 
promised delivery date). The system test report relates the level of coverage to the 
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quality of the delivered product as measured by the percentage of defects found 
after delivery. This document is updated periodically to reflect the latest 
information. 

ODC— Defect Impacts 

We used the defect triggers defined by ODC earlier in this chapter to select test 
cases. Now we want to use the defect impacts (see Figure 9.15) to examine how 
well the important aspects of the system have been tested by the test cases we have 
selected. The defect impact categories are attributes of the system that are 
adversely affected by defects. As we analyze the results of a testing session, the 
question is whether the test set resulted in defects being identified in each of the 
impact areas. The system test report should list each of these categories and 
describe how each was evidenced in the test results. 

Figure 9.15. ODC defect impacts 
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This alternative to traditional coverage provides a means of ensuring that tests have 
covered those attributes that are most important to the success of the application. 
The difficulty is that in taking this reverse view of the world, we cannot be certain 
whether the program simply is not going to impact a specific area or whether our 
testing has not been sufficiently thorough. In Figure 9.15 we provide some 
additional information for the tester to consider. There is no exact algorithm to 
follow, but having the list in hand when writing the system test plan and evaluating 
coverage has proven useful for us. 
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More Examples 

The Java version of Brickles was developed on a PC and then installed on a Unix 
box. After installation, users reported that the game wasn't working. It went 
straight to the "All Pucks Gone, You Lose" message. A closer look showed that the 
game was working properly except that the bitmaps for the paddle and puck were 
not accessible. Thus the user didn't see anything and each puck dropped on the 
sticky floor directly! The developers fixed the problem by making the bitmaps 
accessible and conducted a deployment test on a clean machine to certify that the 
fix worked. 

The tic-tac-toe distributed program uses the JavaHelp framework. When the 
program was created on a development machine it was not recognized that the 
Help system did not automatically add itself to the class path. Deployment testing 
found this defect during tests to cover all events including menu selections and 
mouse move events. 

 

Summary 

It is not so much that objects construct an application that influences how it is 
tested, but that the technologies encapsulate and deploy these applications. The 
granularity of the packaging and the dynamic nature of assembling the executable 
code both affect the types of tests that need to be executed. 

The seemingly endless array of tests that could be run must be trimmed to the set 
that should be run using the functional priorities of the project, as indicated by the 
use profile, and the level of quality desired, as indicated by the levels of coverage 
proposed in the project test plan. 

What we have tried to do in this chapter is to touch on several application 
characteristics and attributes that affect testing and to describe briefly a testing 
technique associated with each. Finally, we have discussed the relationship of 
coverage to the types of impact that defects will have on the application. 

 

Exercises 
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9-1. If you have been tracking through the exercises using your own example, 
consider the following: 

• Write a test plan for the example using the full test plan template. 
• Select those sections in this chapter that apply to your application and write 

those types of tests. 
• Compare your test cases with the ODC defect impacts to determine missing 

areas. 

9-2. Consider our running example of Brickles. 

• Fill in those portions of the test plan that we didn't specify. 
• Add tests to those that we have specified. 
• Compare the test suites to the ODC defect impacts to determine missing 

areas. 

9-3. Consider the typical events that are handled by interactive systems. Write a 
test pattern that describes to the system tester how to build a comprehensive and 
effective set of tests for these events. 
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Chapter 10. Components, Frameworks, and Product Lines 

• Need to understand the difference between testing components and 
objects? See Testing Components versus Objects. 

• Want to understand how to create test cases from interfaces? See 
Testing in a Product Line Project. 

• Want to understand how to test a framework? See Framework Testing 
Processes. 

• Want to understand how testing can be organized in a software product 
line project? See Testing in a Product Line Project. 

Each of the topics named in the title has testing issues in its own right and we will 
address them in this chapter. Together they also provide power to developers and 
challenges to testers. The issues of ease of reuse and flexible design have been 
addressed in earlier chapters at the object level. In this chapter we will consider 
these topics once again but in a context of the development of multiple applications 
through component composition with a framework. 

A product line is a series of related software applications that are developed from 
a common architecture that is designed to accept modifications in certain 
predefined ways. This is an organizational strategy that deploys development 
teams in a series of related application construction projects. The teams use design 
and implementation techniques to realize large increases in productivity and 
quality. The basic architecture can be realized as a type of application framework. 
Components are shared among the teams who populate the frame work's 
implementation of the architecture with varying arrangements and combinations of 
the components. 

A framework is a partially completed application that is designed to be modified 
in certain predetermined ways. This is an architecture realization strategy that uses 
design techniques such as design patterns and implementation techniques such as 
polymorphism. The object-oriented concept of a framework is designed with 
numerous abstract classes in strategic locations. The application developer 
specializes those classes that will provide the application-specific behaviors and 
accepts the default behaviors where appropriate. The more general component 
view of a framework replaces the abstract classes with interfaces that may be 
implemented by individual classes or more complex, even nonobject-oriented 
components. 
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Components have become the latest silver bullet for those people who could not 
solve all of their problems with objects. We have used the term in several places in 
the book without an explicit definition and you won't find one here. The term is 
applied to several different implementation technologies. We have been and will 
continue using component to mean a significant piece of functionality that, in our 
case, is supplied by a set of objects. A component implements a set of interfaces 
that specifies the behaviors available to the rest of the world. A component uses a 
packaging technology that encapsulates and hides the implementation. 

Much of the discussion concerning distributed objects in Chapter 8, particularly the 
discussion about interfaces, applies to components. We will consider some 
differences between objects and components, but mainly in this chapter we will 
consider components in the context of frameworks and product lines. 

Together these three ideas provide the technology to deliver high-quality, low-cost 
software applications. We will consider the interplay of the three and how the 
testing process can be optimized in a development environment that takes 
advantage of these techniques. 

 

Component Models 

One of the standard definitions for a component is given by Clemens Szyperski 
[Szyp98]: 

A software component is a unit of composition with contractually 
specified interfaces and explicit context dependencies only. A 
software component can be deployed independently and is subject to 
composition by third parties. 

This addresses both the technical and market aspects of "component." Even though 
we will continue to use our less formal definition, we will use this definition to 
organize our discussion of testing components. 

A component is a "chunk" of functionality hidden within some type of package but 
advertised through one or more interfaces. The complete specification for a 
component is the list of services (we will use the term service in place of method in 
the context of a component) available to users of the component. Each service is 
defined by a precondition and a postcondition just as we have described in earlier 
chapters. So creating functional test cases for a component is no different than 
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creating them for a class except that each service is usually a larger chunk than a 
method and has more parameters. This, in turn, means more permutations of 
values. A component usually implements several interfaces and each interface may 
be implemented by several components. 

Distributed Components 

We have already discussed this topic in Chapter 8 because the infrastructure 
needed for component interoperability can, with only a little effort, be extended to 
support the distribution of components. We also discussed aspects of this topic in 
Chapter 9 from the "system" perspective. Here we will focus on the "component" 
aspect of distributed objects. 

Distributed environments were the first products to provide sufficient infrastructure 
to separate the functionality of a unit from its ability to communicate with other 
units. These systems provide an extensive set of services that "glue" together 
components based on a set of assumptions and a set of interfaces. Some of these 
infrastructures support the interoperating of components that are writing in 
different languages, executing on machines of different architectures, or residing in 
a different operating environment. 

The major component models include the Object Management Group's (OMG) 
Common Object Request Broker Architecture (CORBA) specification [OMG98], 
Microsoft's Distributed Common Object Model (DCOM) [Redm97], and Sun's 
Enterprise JavaBeans (EJB) Model [MoHa00]. We have already described 
CORBA and DCOM in Chapter 8 so we will focus on EJB here. 

Enterprise JavaBeans Component Model 

Enterprise JavaBeans are first of all Java beans. A bean is a cluster of one or more 
classes that cooperate to provide the behavior described in the bean's specification. 
The "bean" model relies on a developer's adherence to specific design patterns 
rather than requiring that every component implements a single standard interface 
or inherits from a common base class. The bean component model provides a 
standard approach to how components interact with each other and how they are 
comprised into applications. 

The bean model adds a level of development between the design and 
implementation of the classes and its instantiation within an application. Each bean 
defines a set of properties. A property is an attribute that can take on one of a set of 
values. For example, a bean might select one object from a pool of available 
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objects because that object implements a specific sorting algorithm. The values of 
the properties for a bean are stored in a separate properties file. Using a 
development tool, a developer can specialize a bean object, as opposed to a class, 
by giving its attributes specific values. These specialized beans should be tested to 
be certain the property values are behaving properly. 

A bean interacts with other beans through events and standard patterns of 
interaction. Each type of bean specifies a set of events that it will generate and a set 
to which it will respond. The BeanBox [White97] is a simple bean that allows 
developers to instantiate and exercise their beans by sending standard events to the 
instance in the box and observing the response. The sidebar The BeanBox TestBox 
explores this further. 

Enterprise JavaBeans are beans that participate in a distributed interaction with 
other beans using the Remote Method Invocation (RMI) protocol that was briefly 
described in the RMI section on page 284. These beans often also use a Web-based 
user interface and an application server. 

Probably the most important point about beans from a testing perspective is the 
emphasis on patterns. Two of the most frequently used patterns in bean design are 
the Listener pattern and the Vetoable-change pattern. In the listener pattern, a 
mechanism similar to event registration and broadcast is established. 

The BeanBox TestBox 

The BeanBox works particularly well as a test environment for those 
beans that are visual. The tester can use the box to interactively cause 
events to be generated and then observe the result. It is also possible to 
specialize the BeanBox and execute a set of tests repeatedly. Even for 
beans that are not visual, the BeanBox can be a useful test environment 
with a few simple additions. A simple method is added for each event to 
provide a visible cue that the bean has received and reacted to the event. 
This works because there is a well-defined set of events that beans can 
respond to. 

For other types of components, we have extended the BeanBox approach 
to what we are calling the TestBox. Each TestBox is implemented to 
respond to a specific set of methods that are described in an interface 
definition. For every interface that will be widely used, the creation of a 
TestBox is a worthwhile investment. We have integrated the TestBox 
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concept with the parallel architecture for component testing (PACT) test 
class approach. Each test class contains test cases written to invoke 
methods on the TestBox. 

Testing Components versus Objects 

From a testing perspective, there are many similarities and a few differences 
between objects and components. The similarities include the following: 

1. well-defined specification—  The technologies used to encapsulate 
functionality into a component also support the definition of a specification. 
Specifications written in standard notations such as object constraint 
language (OCL) facilitate writing test cases. The specification for a 
component is an aggregation of the specifications of all of the services 
provided by the component. This is accompanied by an invariant that 
constrains the overall state of the component. The preconditions for 
individual services are supplemented with a specification of the "requires" 
interface of the component. The requires interface specifies the external 
behaviors that the component must have access to in order to perform 
correctly. See Chapter 5 for details of building tests from pre- and 
postconditions and invariants. 

2. dynamic plug and play—  Component technologies allow for "hot 
swapping" of components within an application. This is realized using the 
polymorphic substitution principle. The interfaces implemented by the 
component are the "types" that are related in a generalization hierarchy and 
are used to determine valid substitutions. The orthogonal array testing 
system (OATS) statistically guided "experiments" that test a subset of the 
possible configurations of components is useful in achieving thorough test 
coverage with the minimum number of tests. See Chapter 7 for more about 
sampling among polymorphically interchangeable units. 

3. standard patterns of interaction—  The design and development 
techniques used for components follow a pattern-oriented development 
approach. The use of the test patterns approach will be of benefit here. See 
Chapter 8 and later in this chapter for examples of test patterns. 

There are some differences between components and objects. These are usually 
related to either the scope of the functionality or the technology used. They include 
the following: 
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1. Components are clusters of objects. Testing components has many of the 
elements of testing the interactions among a cluster of objects. 

2. A component is larger than a single class. It is more difficult to get good 
code coverage using a functional approach based on the component 
specification. 

3. A component is intended to be more autonomous than an object. The 
packaging for a component will usually satisfy all of its "requires" 
specification. That is, the component will usually be shipped with the 
resources, libraries, graphics, and data that it needs to work. This can present 
problems if resources such as dynamic link libraries (DLLs) needed by the 
component and packaged with it are visible and conflict with existing 
versions of the same DLLs used by other components. In Testing the System 
Deployment on page 327 and Testing after Deployment on page 328, we 
talked about techniques that can be employed at the component level in the 
same way that they are used at the system level.  

Component Test Processes 

We will focus on three test processes that involve components at various points in 
their life cycle. 

1. A component is tested as it is developed. 
2. Components are tested as they are integrated into a larger aggregate. 
3. A component is tested prior to being selected for use. 

In each of these processes we are interested in certain features of the component 
that might trigger a failure. 

Development-Level Component Test Process 

The development process includes specifying, developing, and testing a component 
as an isolated entity. Some of the defect triggers include the following: 

1. Interactions—  A component will typically be an aggregate of several 
objects. An error in one object may cause errors to ripple through many of 
the objects in the component. Use the techniques in Chapter 6 to define test 
cases that exercise the interclass interactions between the objects within the 
component. 

2. Concurrency—  Most components will encapsulate multiple threads. Use 
the techniques discussed in Chapter 8 to test for interactions among the 
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threads. Use PACT classes that incorporate multiple threads to 
simultaneously invoke methods on the component's interface. 

Integration-Level Component Test Process 

The integration of a set of components involves at least three special features that 
may trigger failures. 

1. Sequence—  The protocol previously mentioned is the sequence of messages 
exchanged between two components. Test cases should be constructed to 
cover each protocol in which the components participate. This includes 
throwing exceptions between components. 

2. Timing—  Race conditions can exist when two components that manage 
their own threads are integrated. Messages may not be sent or arrive when 
expected. Test cases should investigate the effects of exaggerated latencies 
on the interaction between two components. (It may be that your in-house 
network provides this as a feature.) 

3. Communication—  Components that are created in different models, such as 
CORBA and COM, communicate through adapters that are referred to as 
gateways or bridges. There are also mappings from the primitive data types 
in a specific programming language to the representation in the component 
model. Test cases should be constructed that traverse each of the 
communication paths in the program. 

Acceptance-Level Component Test Process 

When components are obtained from other commercial sources, or even freeware 
if you dare, they should be carefully tested to measure their quality. Although there 
is probably a need for a comprehensive set of tests, the following areas are 
particularly important: 

1. Check operation at the extreme points on each service's specification. Also 
determine how defensive the component is by providing values outside those 
extreme points. 

2. Check compatibility with nonstandard portions of the infrastructure. If the 
component is based on the CORBA infrastructure, determine that the 
component makes appropriate calls to connect to and use the ORB since 
there is not a standard API. 

3. Load test the component. Simple test programs may fail to reveal a very 
inefficient algorithm or an abnormally large memory requirement. At least 
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use representative amounts of data that simulate real use and, if there is time, 
stress the system beyond the usual limits to determine its robustness. 

Test Cases Based on Interfaces 

The PACT approach applies to interfaces just as it does to classes. That is, each 
interface should be accompanied by a test class that defines a set of functional test 
cases for the services listed in the interface. The test class for each implementer of 
the interface aggregates the test cases defined for the interface. There are two 
reasons why the relationship between test classes is aggregation rather than 
inheritance. First, many languages do not support multiple inheritance yet often 
multiple interfaces apply to a single class. Second, an interface does not provide an 
implementation, but only a specification. The test class serves as a proxy and 
passes through requests for tests to an instance of the interface test class. 

This reuse of tests from interfaces is even more productive for "standard" 
interfaces. A number of international, commercial, and ad-hoc standards such as 
CORBA and ODBC are being used in component-based systems. Test capabilities 
developed against the interface of the ORB adopted by a company should be made 
available to the wider development community of the company. A TestBox is 
created for each special type of component and used in conjunction with the test 
classes (see TestBox versus Test Class above). This communication of standard 
test cases is a service that can be provided by the quality assurance group of the 
company. Providing detailed tests of these standard tasks is particularly useful 
because many of them involve asynchronous interactions between threads. 

TestBox versus Test Class 

The TestBox provides an execution environment for the component under 
test. It provides special services that are specific to a special type of 
component. For example, the CORBA TestBox provides access to the 
object request broker (ORB) and other services. A test class is the 
aggregation of all the tests for a component. A TestBox uses a test class to 
provide test cases. A TestBox can work with many different components 
and their corresponding test classes. 

The packaging technology for a component is used to encapsulate all of the pieces 
that comprise the component. DLLs and Java Archives (JAR) are two widely used 
packaging technologies. During the production and creation of the packages, it is 
important that test cases be run against the product so that every package is used at 
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least once. This is particularly important with the dynamic JAR files and other 
dynamic resources such as Web pages or scripts. 

The protocol between two components is the sequence of messages exchanged 
between them. This is a further constraint on the two components. Not only should 
a component advertise the services that it provides (through its interface) and what 
it requires (through its preconditions), but it should also describe the sequence in 
which these interactions are expected. By combining the provided and required 
specifications of the two components, the overall sequence is defined. One set of 
test cases defined from the protocols should exercise the integration of two 
components through the complete protocol.  

Consider the interaction between two components when one controls a piece of 
hardware and the other interacts with the user, as in Figure 10.1. The user 
component wants the hardware to perform a service that will take a few seconds, 
but the user component does not want to block it during that period. 

Figure 10.1. A protocol 

 

The user might want to cancel the operation so the user component must be free to 
receive and process events. The user component sends an asynchronous message to 
the hardware component to start the action. At some point, the hardware 
component that services multiple clients sends an asynchronous message back that 
the action has been started. A similar exchange occurs when the user component 
wants the hardware to stop. These four messages occur as a group. A designer 
incorporating these components into their design need to understand this grouping 
for which there is no notational convention. Two of the messages are for services 
on one component and two are for the other component. 

A component may participate in several protocols by having sets of its methods 
included in each protocol definition. A service provided by a component may be 
included in multiple protocol definitions. The component's test suite should include 
test cases in which the Tester class plays the role of the other component in a 
protocol. This means that in Java, for example, the Tester class may implement 
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several interfaces. This allows a Tester object to pass itself as a parameter to the 
component under test, and then to invoke the services specified in the protocol.  

Case Study— A GameBoard Component 

In the Java version of the tic-tac-toe system that we developed, the game board is 
implemented as a Java bean called GameBoard. Among other things, this means 
that the game board is written to be much more general than just the user interface 
for a tic-tac-toe game. It is written to be configured as the game board for any 
game that requires a rectangular grid of positions. It also means that the 
"component" comprises several classes. There is a GameBoardInfo class that is 
a standard feature of beans and a GameBoardPosition class that abstracts the 
concept of each location on the board. 

The GameBoard bean is designed following both standard Java and JavaBeans 
design patterns. The ability to select a square on the tic-tac-toe game board is 
implemented as a vetoable change. In this design pattern, objects register to receive 
notification of a change and they have the opportunity to abort, or veto, the change. 
If the change is not vetoed, it is made. If it is vetoed, then the change is not made. 
Figure 10.2 illustrates the vetoable-change algorithm. 

Figure 10.2. An activity diagram for a vetoable change 
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In Figure 10.3 we provide the interface for the GameBoard bean. It includes the 
signature of the setMove(int) method. This method invokes the vetoable-
change mechanism. The test pattern for this design pattern is described in Figure 
10.4 and is implemented by the classes shown in Figure 10.5. The flow of actions 
in using the test pattern is shown in Figure 10.6. In Figure 10.7 we show an 
implementation of the vetoable-change test pattern as programmed in the 
setMoveTest() method. Figure 10.8 shows a test plan for the component. 

Figure 10.3. An interface for a GameBoard bean 

 

Figure 10.4. A vetoable-change test pattern 
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Figure 10.5. A class diagram for a vetoable-change test pattern 
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Figure 10.6. An activity diagram for the vetoable-change pattern 

 

Figure 10.7. A Java reflective test case 



 396

 

Figure 10.8. A component test plan for the GameBoard component 
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If there were templated methods in Java, as in C++, we could generate a test 
method that could be (re)used across a number of methods and across a number of 
classes. The method allows the tester to test each of the game positions on the tic-
tac-toe game board. Since the test method is written using the Java reflective API, 
it can also be cut and pasted to other test classes and easily modified. The vetoable-
change design pattern is used very often in JavaBeans. In fact, it is usually used 
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multiple times within a single visible bean. The test pattern given in Figure 10.4 
can be applied multiple times in the same test class. 

 

Frameworks 

A large number of software projects that use object-oriented techniques also use 
application frameworks as a basis for some part of their system. For example, the 
Microsoft Foundation Classes (MFC) provide a framework for PC-based 
windowing programs. The framework provides an architecture for interactive, 
visual programs and a library of classes that support application development 
[Pros99]. We have used two frameworks in the C++ version of Brickles. We used 
the MFC as the basic implementation of the graphical front end. We also used our 
own game framework as the basic structure for the game aspect of Brickles. 

There are several topics that we will consider in this section. The final application 
based on a framework must be tested. The classes in a framework's library should 
be tested as they are created. We will also consider differences between testing 
applications built with frameworks purchased from an outside vendor as opposed 
to those frameworks created in-house. 

Basic Issues 

Frameworks are intended to be partially completed applications. The developers 
intend that their framework will serve as the basic design and implementation for 
several applications— a set of programs that have some measure of commonality in 
their behavior. This results in a better return on investment than one-off systems. 
The framework concept is perhaps the most successful approach for reuse to date; 
although we will see that the product line approach broadens the possibilities for 
reuse. 

A framework provides three specific ingredients: a software architecture, the major 
control logic for an application, and a library of ready-to-use components. The 
places where the application developer can provide problem-specific code are 
termed hot spots. Frameworks operate on the "don't call us, we'll call you" 
principle. At a given hot spot, the application developer provides code that will be 
called when the framework code determines that it is appropriate. The framework 
provides a specification that components must satisfy in order to be inserted at a 
given hot spot. 
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A particular framework usually can be associated with a specific domain or a 
specific subsystem for an application. The MFC, as already mentioned, is 
associated predominantly with the user interface subsystem of an application. We 
have participated in the creation and use of domain-specific frameworks in the 
telecommunication industry, and we have built ground support systems for earth-
orbiting satellites. 

Framework Testing Processes 

Projects that involve a framework may need as many as three different types of 
testing processes. Ultimately, the team must test the products that they create. The 
process for testing an application being developed from a framework is very 
similar to the one for any object-oriented application that is being developed 
iteratively with an emphasis on reuse. We have already presented a testing process 
in Chapter 3 so we will not repeat the details here. 

The primary difference in the testing process is the degree to which the classes in a 
framework are abstract. The classes that comprise the framework are tested as they 
are developed. The PACT approach described in Chapter 7 can be utilized to 
support the reuse of the test cases; however, there is a limit to how specific the 
tests can be. 

To test a framework that is being constructed within your development 
organization, one of the steps in the testing process has to be Build sample 
applications using the framework. Ideally, the set of samples should be sufficiently 
complete to use all of the hot spots. We have used different versions of our game 
framework to create a number of applications over several years. This is, however, 
an expensive process. One of the things that we used, and this should be done early 
in the life of a framework, was guided inspection. We will consider types of 
inspection test cases and some inspection criteria specific to framework style 
applications in the next section. 

This same approach can be used to do an acceptance test on a framework that an 
organization is considering for purchase. One question that testing can be used to 
investigate is whether the framework has the flexibility to make the changes 
needed for proposed (or intended) applications. A second question is whether the 
quality of the individual components in the framework is sufficient. This is 
accomplished using the set of use cases, which is constructed to cover the points at 
which flexibility is needed. 

Inspecting a Framework 
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Since a framework is an incomplete application, the earlier discussions of Guided 
Inspection test cases hold. Here we will provide those test cases that are different. 
Also we will add new criteria that are appropriate for a framework. 

Completeness 

The specification for a framework should provide a complete description of the 
scope of the framework. That is, it should be possible to take a set of use cases and 
determine whether the application specified by the use cases is within the scope of 
the framework. 

A framework should be able to pass the same type of inspection that any 
application can with regard to completeness. It should be possible to see how every 
use case for an application will be handled. The difference is that with the 
framework, a use case may be satisfied by the functionality of a hot spot. It is 
assumed, during the inspection, that a hot spot will be implemented. 

Consistency 

The specification of hot spots should provide sufficient information to prevent an 
application developer from specializing one hot spot in a way that is inconsistent 
with the way another hot spot has been extended. That is, there are times when a 
set of hot spots are related and the documentation of a hot spot should indicate any 
constraints that exist among the hot spots. 

Correctness 

The correctness of a framework is at a different level of abstraction than an 
application. Correctness at this level means that the appropriate information is 
being passed from the framework to the application-specific code, and that the 
appropriate types of information are being passed back from the application. 

Specificity 

A framework can be too specific. That is, it can constrain the framework to a set of 
possible applications that is too narrow. It can also fix certain system attributes that 
should be variable. The Guided Inspection test cases that should be included are as 
follows: 

1. Given the set of use cases for each of several anticipated products, examine 
each hot spot and determine how the application would extend the 
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framework to achieve the required functionality. Note places where the 
framework does not allow sufficient flexibility and where it would need to 
be modified. 

2. Ask an independent set of domain experts (who have not participated in the 
framework design) to conduct a variability analysis. They make a list of 
attributes that should change from one application to another. The inspection 
team compares that information to the list of hot spots to determine that it is 
possible to vary these attributes. 

Structuring Test Cases to Support a Framework 

It is usually expected that an application developer will utilize a framework by 
inheriting from framework classes. The PACT approach (see Chapter 7) 
complements this on the testing side. The framework development team constructs 
test cases using the PACT approach. Application developers are then able to 
extend these test case classes to build their own test cases. The result will be less 
effort to build the test cases for the application or, by expending the same effort, 
better test coverage. 

 

Product Lines 

As companies search for techniques that will provide leverage in the manufacture 
of software, the product line approach has allowed some to achieve remarkable 
increases in productivity [Dono00]. The Software Engineering Institute (SEI) is 
pursuing an initiative in this area and has published much good information on this 
topic [NoCl00]. These gains are achieved by a three-pronged approach: an 
organizational strategy, technical management tactics, and software engineering 
methods. We will discuss each of these, but we will focus on the software 
engineering level. 

Before we do that we need to define a few concepts. A software product line is a 
set of software products that are sufficiently closely related that they can be 
constructed from a common set of pieces. If this sounds like yet another attempt at 
reuse, you are correct. However, this is the most comprehensive approach we have 
seen to date and the most successful. It starts at the organizational level where a set 
of products is defined. During product definition, a set of variation points, which 
roughly correspond to hot spots of a framework, is identified. These are the areas 
of functionality that will vary from product to product within the product line. 
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The product line approach uses what is referred to as a set of core assets to build 
the individual products. The most important asset of the product line group is the 
product line architecture. This architecture provides the skeleton onto which 
components are attached to form an application. The architecture description 
identifies the points at which variations are allowed. The architecture also specifies 
a set of attributes that the product is expected to achieve. These attributes include 
performance goals, security features and expectations for extensibility. 

The companies that can most productively utilize a product line approach are those 
that have moved above Level 1, as defined in the Capability Maturity Model for 
Software (SW-CMM)[1] [SEI93]. This approach involves the coordination of 
processes across a set of product development teams and between the product line 
level and the level of individual products. It also involves a sophisticated planning 
process that builds a base of collected data and makes information-guided 
decisions. 

[1] Capability Maturity Models is a registered trademark of the 
SEI. The SEI has defined the CMM as a scale against which 
the process maturity of an organization is measured. The scale 
defines five levels with Level 1 being the least mature. 

Testing at the Organizational Management Level 

A company that adopts the product line approach organizes its resources to support 
the flow of information and assets among multiple product development efforts. 
For our purposes, the testing assets at this level include a product line test strategy 
and a master test plan. The test plan defines an organization of the groups who will 
be responsible for various types of testing. The goal of that organization is to 
achieve the same reuse in testing that will be realized in development. 

Testing at the Technical Management Level 

A product line organization makes tactical decisions about the methods by which 
they will implement the organizational strategy. This includes determining the 
levels of test coverage needed to achieve the desired level of quality and 
techniques for organizing test software and test cases. It also includes defining a 
test process that is integrated with the software development process. 

Testing at the Software Engineering Level 
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A product line organization implements the tactical decisions in two groups: a 
product line development group that manufactures the core assets and the 
individual product teams that build upon the core assets. The product line group 
produces a product framework and a set of components that can be composed 
within the framework. The individual product teams produce additional 
components needed for specific products; however, these components are only 
introduced at the previously identified points of variation. After mapping the 
techniques described in previous chapters, you will find that the responsibilities for 
testing are assigned as shown in Figure 10.9. 

Figure 10.9. Testing responsibilities in a product line project 

 

Testing in a Product Line Project 

The basic testing process in a product line project is very similar to the process that 
we have described in this text. The test assets are originated by the product line 
development team and are designed so that they are reusable across the multiple 
product development projects. The organizational structure exists to facilitate this 
approach by establishing planning, reporting, and supporting lines of 
communication and software delivery within the product line organization. 

The product line architecture is thoroughly verified using the guided inspection 
technique. The architecture is inspected for qualities beyond the standard complete, 
correct, and consistent. Depending on the domain, the architecture may be 
evaluated for such qualities as performance and security. In Chapter 4, we 
presented techniques for inspecting architectures. Using executable representations 
such as Rapide or using tools such as ObjectTime, working models of the 
architecture are created, inspected, and finally used as the basis for 
implementation. The product line architecture will be used for several products, so 
it is cost effective to spend adequate resources to inspect the architecture 
thoroughly. 
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At the points of variation in particular, the architecture will define interfaces that 
specify the services expected at that point. The product line team can define a 
standard set of test cases based on that interface. The product line team creates the 
basic PACT classes for the components produced at that level. When a product 
team produces a substitute component for a new variation, it is responsible for 
creating a new PACT class from the existing base classes. 

Although product validation is the responsibility of the individual product teams, 
the product line team provides important inputs into the process. The specific 
requirements for a product developed in the product line are derived from the base 
requirements developed at the product line level. Even at the GUI level of testing, 
it is possible to utilize the hierarchical organization of the product line project. 

The scripting languages of some of the GUI-level test tools provide for inheritance 
between test scripts. We have built specialization hierarchies of test scripts for 
execution by a GUI-based test tool using the scripting language in that tool. The 
more general levels in the hierarchy can be shared among many product teams who 
create the lower levels of the hierarchy specific to their individual product. We 
have also used this technique to parallel the extends relationship between use cases. 

Future 

The product line approach is a relatively recent step in the evolution of software 
manufacturing. It is our hope that the heavy emphasis on process in this type of 
approach will result in an emphasis on early measures such as guided inspection. 
This, combined with an efficient means of maintaining test suites, can result in 
high-quality software. 

Summary 

The topics covered in this chapter produce a powerful development approach that 
supports the rapid development of high-quality software. These techniques have 
been used by some of our largest customers, in one form or another, for many 
years. As the "manufacturing mentality" becomes more prevalent in the industry 
and companies move up the CMM scale, the product line approach and a well-
defined component manufacturing process are being adopted by a wider range of 
companies. 

Exercises 
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10-1. After building Brickles we decided to build other games from the same basic 
architecture using the product line approach. Revisit the class tests in chapters 5, 6, 
7. Describe how the tests defined in those chapters might be modified in a product 
line environment. 

10-2. Consider your current project. If it uses a framework, how did you test to 
determine that the framework was adequate for the complete project? How did 
your test plan change because of the framework? 

10-3. Describe those tests that you currently do not do but would like to. How 
many of these could you do if you could amortize the effort across a number of 
products? 
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Chapter 11. Conclusion 

We have reached the end of the book. We have covered a lot of ground and in 
some cases we have given you different ways to do the same tasks. In this section 
we want to pull together several threads of discussion and provide some 
comprehensive perspective. We will do this by providing a series of suggestions. 

 

Suggestions 

Organization and Process 

Create a testing organization with two levels. The first level has responsibility for 
facilitating low-level testing among developers. This group provides high-level 
Tester classes and other reusable test assets to developers. The members of this 
organization must be able to program and probably can have split assignments 
between a development team and the project testing team. 

The second level supports system-wide testing activities. This group interacts with 
the development group throughout the entire course of a project. They write test 
cases from the use cases early in the project to identify requirements that are not 
testable. They participate in guided inspection sessions and ultimately test 
applications as complete entities. 

Begin organizational improvement by sharing testing assets that you have 
created with others in your organization. When decisions are being discussed in 
a project meeting, ask how it will affect the team's ability to test the software. 
Basically, raise the level of visibility of testing and cast it in a positive way: "Look 
how many defects are not delivered to customers." 

Write an explicit process description for each of these levels. Use the ones that 
we have provided as a starting point (see A Testing Process on page 78). Tailor 
those to your organization's level of maturity and type of system. 

Data 

Collect data over the lifetime of the project and use it as the basis for making 
decisions. "I think…" and "It seems to me that…" are not the bases on which 
business or technical decisions should be made. "This technique is better because it 
increases the defect/hour detection rate" is a much more successful strategy. Even 
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rough numbers are better than no numbers. Figure 11.1 lists some test metrics and 
references places in the text where we have discussed them. 

Figure 11.1. Test metrics 

 

Include logging mechanisms in the Tester classes that make the detection of 
failures easy to quantify. Standardize the terminology and symbols used in the 
logging. Remember that a test case that should result in an "error" condition and 
the throwing of an exception passes if the error occurs and fails if not. Count those 
times when the software doesn't do what the specification says it should. 

Standards 

Use standards as the starting point for any products that will be archived for 
continuing use. Even de facto standards have evolved through the discussions of a 
community of supporters and early adopters and that gives a broader perspective 
than it would if you had a few developers on a single project. Be certain that the 
standards chosen for testing are compatible with the standards chosen for 
development. 
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Define a set of templates for the testing of work products. This reduces the 
effort required to develop these products. Standardize these templates throughout 
your organization. 

Test Plans, Cases, and Reports 

Use IEEE standards [IEEE87], just as we did for the test plan as a jump start 
for creating your test plan or test case formats. These should be tailored to your 
domain and type of system, but it is easier to delete or modify an existing item than 
it is to create it originally. Refine your formats based on your experience with 
them. To do this: 

1. Collect data on deviations from plans. 
2. Use test reports to collect data on live defect ranges, reliability, and number 

of defects per thousand lines of code. 

Requirements 

Create your own standard use case template by modifying our template and 
the template available on Alastair Cockburn's Web site [Cock00]. Write test 
scenarios for guided inspection as early as possible in the development cycle. This 
will identify vague requirements as early as possible. 

Defect Categories 

Use widely accepted de facto standards such as Orthogonal Defect 
Classification, which is based on a large body of data collected within IBM. 
These classifications can serve as the basis for reviewing your test cases and test 
case strategies. We have provided lists of some of these and illustrated their use in 
Orthogonal Defect Classification as a Test Case Selector on page 125 and ODCon 
page 314. 

Software Infrastructure 

Spend resources on infrastructure for testing. It will take the time of 
experienced designers to produce well-designed Tester classes and to use 
parallel architecture for class testing (PACT) effectively. We have discussed test 
environments for C++ and Java that support various types of low-level testing. 
Versions of many of these are available on the Web site. Each will require 
resources to modify the tool to your environment, but each will save you many 
person-hours of time spent testing. 
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Take advantage of free or low-cost testing tools such as JUnit [Beck99]. It 
works well with PACT classes and provides an execution environment for them. 
Bring these into your project and use them to automate the routine parts of testing 
so that you have time for selecting appropriately diabolical test cases. 

Techniques 

We have presented a number of techniques that are applied at a variety of points in 
the development process. Let's consider these as a tester's toolbox. 

Apply guided inspection from the first models until models are no longer 
updated. Early on this will be a test both of the requirements from which the tests 
are derived and the models. As the requirements become stable there will be less 
need to question whether the tests are correct. It will be faster and easier to apply 
and evaluate the results. 

Use temporal logic as you create design specifications that involve 
concurrency. This will allow you to design the software more exactly and to test it 
more thoroughly. Where timing makes a difference be certain that the specification 
expresses that difference. 

Use SYN-path analysis as you create test cases to ensure coverage of possible 
synchronization defects. Identify critical points at which two threads must access 
the same state information. Create test cases by following each thread to other 
synchronization points in the code. 

Apply hierarchical increment testing (HIT) and the orthogonal array testing 
system (OATS) when there are more tests that could be run than there are 
resources to run them. Use HIT to determine which of the test cases that are 
inherited from a parent PACT class will be applied to the child class. If they are all 
fully automated and machine time is not a problem, run them all! If the resources 
required increases as the number of tests that you run increases, then use HIT to 
eliminate those tests that are less likely to discover new defects. 

Use OATS to sample from a population of possible, but not yet written, test 
cases. Look for places in the design where a large amount of flexibility is designed 
into the software. 

Use test patterns that correspond to the specific developmental design 
patterns as you design test cases and the supporting PACT classes. Where the 
design documentation refers to specific design patterns, determine if a 
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corresponding test pattern exists. If it does, use it to speed the design of test cases 
and software. If it does not exist, write it and publish it either within the company 
or in the many patterns conferences. 

Risks 

There are a number of risks associated with the testing roles of a project. Let's 
consider a few and how to mitigate them. 

1. Testing may be viewed as a secondary concern behind development rather 
than as an equal partner. This risk should be mitigated by collecting data to 
show the "worth" of testing. Be careful that this worth is not seen as being at 
the expense of developers. 

2. Testers may underestimate the amount of testing that the project is willing to 
support and allow serious faults to escape detection. Be a pain to managers 
and developers. Always test until you are told, "No more." At the same time, 
collect data so that you know the cost per defect of your testing. Use the 
reuse and automation techniques that we have described to keep this cost as 
low as possible. 

3. Traditional test strategies may not be effective at identifying the types of 
defects that occur in dynamically reconfigurable, distributed object systems. 
This is mitigated by modifying existing strategies to include some of the 
techniques listed in Chapter 8. 

 

Brickles 

We have used the Brickles example throughout most of the text. Now we would 
like to recap the testing we did as a summary of the various activities (see Figure 
11.2). We list these testing activities in a sequential order because that is the most 
understandable when using two-dimensional paper. We will also attempt to convey 
the complexity of the interrelationships that occur over multiple iterations within 
multiple increments. 

Figure 11.2. Summary of a step-by-step test process 
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Finally 

We have provided techniques for every step in the software development life cycle. 
We have used each of these techniques in a variety of real projects. We have not 
tried to cover every testing technique reported in the literature or even every type 
of testing. 

Our approach stresses testing intensely early in the life cycle. The approach 
couples the development and testing processes with testing activities that feed 
information back into both the development activities and the process-
improvement effort. Our experience has shown that this approach offers solid 
benefits to you, both in achieving short-term objectives and developing capabilities 
in the long term. 
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Let us know your experiences with the techniques we have outlined. Let us know 
what does and doesn't work. We wish you much success in your testing. 
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