

SOFTWARE DEVELOPMENT
RHYTHMS

SOFTWARE DEVELOPMENT
RHYTHMS

Harmonizing Agile
Practices for Synergy

Kim Man Lui and Keith C. C. Chan

The Hong Kong Polytechnic University, Hong Kong

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright � 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any

formor by anymeans, electronic, mechanical, photocopying, recording, scanning, or otherwise, except

as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the

prior written permission of the Publisher, or authorization through payment of the appropriate

per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-

750-8400, fax 978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for

permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111

River Street, Hoboken, NJ 07030, 201-748-6011, fax (201) 748-6008, or online at http://

www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best

efforts in preparing this book, they make no representations or warranties with respect to the

accuracy or completeness of the contents of this book and specifically disclaim any implied

warranties of merchantability or fitness for a particular purpose. No warranty may be created or

extended by sales representatives or written sales materials. The advice and strategies contained

herein may not be suitable for your situation. You should consult with a professional where

appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other

commercial damages, including but not limited to special, incidental, consequential, or other

damages.

For general information on our other products and services or for technical support, please

contact our CustomerCareDepartment within theUnited States at 800-762-2974, outside theUnited

States at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears

in print may not be available in electronic formats. For more information about Wiley products,

visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Lui, Kim Man.

Software development rhythms : using the flexibility of agile software

practices in combination/By Kim Man Lui & Keith C.C. Chan.

p. cm.

Includes index.

ISBN 978-0-470-07386-5 (cloth)

1. Computer software – Development. I. Chan, Keith C.C. II. Title.

QA76. 76.D47L86 2007

005.1–dc22

2007019073

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com/go/permission
http://www.wiley.com

To my mother and my sister
— K.M.L

To my parents and sisters
and to Emily, Samantha, and Jeremy

— K.C.C.C.

CONTENTS

PREFACE xiii

1 NO PROGRAMMER DIES 3

1.1 Developing Software versus Building a Tunnel 4

1.1.1 The Good Old Days? 5
1.1.2 The More Things Change, the More They Stay the Same? 6

1.1.3 Behind Software Products 7
1.1.4 Deal or No Deal 10

1.2 Do-Re-Mi Do-Re-Mi 12
1.2.1 Iterative Models 14

1.2.2 Code and Fix 16
1.2.3 Chaos 17
1.2.4 Methodology that Matters 21

1.3 Software Development Rhythms 24
1.3.1 Stave Chart by Example 25

1.3.2 Game Theory 28
1.3.3 In–Out Diagram 30

1.3.4 Master–Coach Diagram 31
1.3.5 No Mathematics 32

1.3.6 Where to Explore Rhythms 33
References 34

2 UNDERSTANDING PROGRAMMERS 37

2.1 Personality and Intelligence 39
2.1.1 Virtuosi 40

vii

2.1.2 Meeting Your Team 41
2.1.3 Recruiting Programmers 43

2.2 Outsourced Programmers 45
2.2.1 Programmers in Their Environments 46
2.2.2 Programmers, Cultures, and Teams 47

2.3 Experienced Management 48
2.3.1 Being Casual about Causal Relationships 49

2.3.2 Not Learning from Experience 50
2.3.3 Doing Things Right Right Now 52

References 54

3 START WITH OPEN SOURCE 55

3.1 Process and Practice 58
3.1.1 The Four Ps of Projects 60

3.1.2 Agile Values 63
3.1.3 Zero-Point Collaboration 64

3.2 Open-Source Software (OSS) Development 65

3.2.1 Software Cloning 66
3.2.2 Software Quality 67

3.2.3 Starting Processes 68
3.2.4 Open-Source Development Community 69

3.2.5 Ugrammers 70
3.2.6 Participant Roles 71

3.2.7 Rapid Release 72
3.2.8 Blackbox Programming 74
3.2.9 OSS Practices 76

3.3 OSS-Like Development 77
3.3.1 Agile Practices 78

3.3.2 Communication Proximity 79
3.3.3 Loose and Tight Couples 80

3.3.4 Collocated Software Development 81
3.4 Conclusion 82

References 83

4 PLAGIARISM PROGRAMMING 87

4.1 Plagiarism 89
4.1.1 Existing Code 90

viii CONTENTS

4.1.2 Social Network Analysis 91
4.1.3 Being Plagiarized 92

4.1.4 Turn Everyone into a Programmer 96
4.1.5 Pattern Language 100
4.1.6 Software Team Capability 102

4.1.7 Rough-Cut Design 105
4.1.8 Training Is Not a Solution 107

4.2 Nothing Faster than Plagiarism 107
4.2.1 Immorality 108

4.2.2 Unprecedented Code 110
4.2.3 People Network 111

4.2.4 Rhythm for Plagiarism 112
4.2.5 Plagiarism at Work 114

4.3 Business and Rhythm for Plagiarism 117
4.3.1 15-Minute Business Presentation 118
4.3.2 Marketing Research 120

4.3.3 Chatting Robot 121
4.3.4 Old Song, New Singer 125

References 129

5 PAIR PROGRAMMING 131

5.1 Art and Science 132
5.1.1 The Right Partner 133

5.1.2 Noisy Programming 134
5.1.3 Just Training 135
5.1.4 Pay to Watch 135

5.2 Two Worlds 136
5.2.1 Moneyless World 137

5.2.2 Money-Led World 139
5.2.3 Economics 140

5.2.4 Mythical Quality–Time 140
5.2.5 Elapsed Time Accelerated 141

5.2.6 Critical Path Method 142
5.2.7 Why Two, Not Three: The Antigroup Phenomenon 145

5.2.8 Software Requirements Are Puzzles 146
5.3 Programming Task Demands 148

5.3.1 2 and 4 Is 6 148

5.3.2 2 and 4 Is 4 149
5.3.3 2 and 4 Is 3 150

5.3.4 2 and 4 � 2 151
5.3.5 2 and 4 is Unknown 152

CONTENTS ix

5.4 Pair Programming Is More than Programming 153
5.4.1 Design by Code 154

5.4.2 Pair Design 156
5.4.3 Rhythmic Pair Programming 158

5.5 Pair Programming Team Coached 161

References 162

6 REPEAT PROGRAMMING 165

6.1 Controversies in Pair Programming 167
6.1.1 Is Programming a Unique Work? 168

6.1.2 Are Three Minds Better than Two? 168
6.1.3 Unreplicable Experiments 169

6.2 Repeat Programming 170
6.2.1 Variances 175

6.2.2 Principles 176
6.2.3 Triple Programming Unproductive 177

6.3 Rhythm: Pair–Solo–Pair–Solo 179

6.3.1 Persistence 179
6.3.2 Connection 181

6.3.3 Motivation 185
6.4 An Exception that Proves Brooks’ Law 188

6.4.1 Low Morale 190
6.4.2 Communication Costs 191

6.4.3 Rhythm for Late Projects 192
References 195

7 AGILE TEAMING 197

7.1 Project Teams 200
7.1.1 Self-Organizing Teams 202

7.1.2 Teams in a Team 203
7.1.3 Project Team Composition 205

7.1.4 Team Lifecycle versus Learning Curve 206
7.2 Productivity 209

7.2.1 The Illusion of Productivity 210
7.2.2 Collective Code Ownership 210

7.2.3 Accountability, Responsibility, and Transparency 211
7.3 Problems and Problem Owners 212

7.3.1 Rhythm: Trouble–Restructuring 213

7.3.2 Teaming Principles 215

x CONTENTS

7.4 Failing Projects Rescued 217
7.4.1 Project Traffic Light Reporting 219

7.4.2 A Business Case 220
7.4.3 Steering Committee Meeting 220
7.4.4 Agile Teaming in Action 222

7.5 Beware of Iago 222
References 224

8 INCREMENTAL DESIGN 225

8.1 Modeling and Planning 226

8.1.1 Agile Planning 227
8.1.2 Design by Functional Modules 229

8.1.3 Simple Design 231
8.1.4 Total Cost Concept 232

8.2 Rework or Reuse 234
8.2.1 Unpreventable Rework 235
8.2.2 Improvisation 236

8.2.3 Up-Front Design 238
8.3 Just-in-Time Software Development 239

8.3.1 The CMM Rhythm 240
8.3.2 A Factory Tour 243

8.3.3 Walking Worker 244
8.3.4 Just-in-Time Software Development 246

8.3.5 Incremental Design 247
8.4 Requirements Complexity 249

8.4.1 Forgotten Requirements 251

8.4.2 Conflicting Requirements 252
8.4.3 Rapidly Changing Requirements 253

8.4.4 Requirements and Design 254
8.5 Refactoring 254

8.5.1 Refactoring Activities 258
8.5.2 Refactoring by Challenging 259

8.5.3 Refactoring for Design Patterns 261
8.5.4 Making Deliberate Mistakes 263

References 263

9 TEST-DRIVEN DEVELOPMENT 265

9.1 Reverse Waterfall 268

9.1.1 Design–Code–Test 268

CONTENTS xi

9.1.2 Test–Code–Design 269
9.2 Test-First Programming 269

9.2.1 Testing and Verification 270
9.2.2 Breakpoint Testing 271
9.2.3 Supporting Practices 272

9.3 Rhythm: Test–Code–Refactor 274
9.3.1 Simple Example 275

9.3.2 Automation 277
9.3.3 Revolution in Consciousness! 278

9.3.4 Test Case for Collaboration 281
9.4 Rapid Software Process Improvement 282

9.4.1 Training Program 283
9.4.2 Project Planning 284

9.4.3 Project Tracking 284
9.4.4 Software Quality 286
9.4.5 Software Configuration 286

9.4.6 People Discipline 288
References 288

EPILOGUE: MEDLEY 291

INDEX 295

xii CONTENTS

This bookhelpsusdiscover our ownsoftwaremethodologies in away that

respects the software development rhythms of both people and practices.

In the deep dark night, lying down on Kande beach on the shores of Lake

Malawi, we looked up into the cloudless sky. Countless tiny stars were

blinking at us. A little tired, or perhaps just mesmerized by those distant,

mysterious lights, we closed our eyes and began to hear more, the peaceful

slap ofwater on the little beach, and the small, almost concerted sounds of the

darknight, throbbing inwhat seemed like adeep, rhythmic breathing.Nature

is an incomprehensible concert of rhythms. Our Earth in its solar orbit spins

through space composing the rhythmof day and night, endlessly recycling its

four seasons. Following nature�s rhythm, we wake to learn and sleep to

remember, writing and rewriting our own programs in accordance with the

very best universal software practice in a flawless symphony of rhythms.

From heartbeats to footsteps, rhythms are a sustaining, momentum-creating

vital force. In a world where complexity appears very much like chaos, we

seek the confidence of being able to assign causes and identify correlations,

but sometimes it is only the discovery of rhythms that allows us to see the

order that sustains all.

Like any human endeavor, software development is complex and full of

generalizations and correlations, but it is devoid of rules. To help us build

software, we have disciplined software models and software project manage-

ment methodologies. But the ferment of software development, with con-

stantly changing teams and requirements and new tasks, means that there is

no guarantee that any past successful method will succeed on the next

software project. In fact, some project leaderswho appear to adopt nomethod

or methods that are scorned as �ad hoc� are able to get their software projects

PREFACE

xiii

done on time. The secret of their success is the understanding of software

development rhythms.

The knowledge of rhythms gives us a new perspective on some of the

thorniest issues in softwaredevelopment.Methods thatwork for one team fail

for another because even the most willing software teams can�t achieve

success with a new method until they come to understand its rhythms. Yet

in the management of complex and multifaceted software development

projects, where it is vital to harmonize and synergize both team and individ-

ual practices and processes, rhythms are a largely neglected theme.

Rhythms are not another methodology. There are many methodologies,

and this book does not seek to introduce a new framework for building

software or managing software projects. What is needed today is not more

methodologies but greater wisdom in the application of the methodologies

that we choose to use. The best way to do this is to understand and work in

harmonywith the rhythm of whichevermethodology the team adopts. To do

otherwise, to fail to understand and apply the rhythmsof amethod, is tomake

the method itself more burden than benefit, and to make the journey of a

project long and difficult.

This book is not for beginners, In fact,we assume that you can alreadyfish

and have caught a few in your time. It is for peoplewhowant to refine or even

rediscover some of the skills and techniques that can so easily be lostwhenwe

get into the habit of seeing things from just one perspective. Then, like

someone who is fishing casting the line with a supple wrist and a steady

rhythm,wehope to help you catchmorefish than ever before, and to feelmore

satisfied as you do it.

Audience

Wehave tried our best to write a technical book in plain language. Thosewho

are interested in software development and project management (software

managers, programmers, researchers, etc.) should have no troublewith these

materials aswe explain andprovide clear examples of any terms thatmight be

outside those areas.

Along with Kent Back�s Extreme Programming Explained (2nd edition), this

book can serve as anadvanced text onagile softwaredevelopment. It describes

a number of project episodes and industrial cases suitable foruse in case-based

learning or for presentation to students as the basis of further work in group

projects. This book is also amonograph as it presentsmany concepts that have

not been adequately considered in books and scholarly papers on project

management in general and software engineering in particular.

xiv PREFACE

This book does address itself to a wide readership, but it is especially

intended for thoughtful readers in search of creative metaphors for project

management and new insights into the complex field of software development.

How to Read This Book

Generally, I would suggest that this book be read according to the chapter

order. It is presented in two parts. Part I consists of three chapters. Chapter 1

introduces the idea of software development rhythms. Chapters 2 and 3

respectively discuss people and practices, clarifying some fundamental

concepts in software development and asking some important questions

such as �Why shouldn�twe learn from experience?,� �what are agile values?,�
�How can it be possible to weight different intangible software practices as

heavy or light?,� and �What can we learn from open source software

development?�
Part II of this book is all about development rhythms. We are used to

using the familiar terms �process� and �practices�—although not everybody

is confident that they know the exact differences.We compose rhythms on the

basis of software practices. To effectively demonstrate how software devel-

opment rhythms are a powerful metaphor that we can use to analyze when

best to use a software methodology, we take a number of more controversial

software practices and consider their rhythms and compare them with some

other more generally accepted software practices.

Once you have learned how an analysis of software rhythms can harmo-

nize practices, you may like, as an intermediate step, to adopt the rhythms

proposed in this book or modify them in any way. Feel free. Ultimately,

however, it is important to realize that rhythms are notmodels and that in the

end, we should all compose our own rhythms.

Special Acknowledgment

The book covers some topics and ideas that are outside the normal scope of

software development. Fortunately, we were able to benefit from the kind

advice and guidance of a number of renowned experts in these areas. Their

precious time and professional advice were much appreciated. We cannot

thank them enough. In alphabetical order, they are

Paul Davies, who critiqued our description of the physicist and pair

programming

PREFACE xv

Don Forsyth, who provided his insights into pair programming from a

group dynamics perspective

Michael McClellan, who reviewed the musical notation in this book

Richard Schonberger,who reviewedanumber of sections connectedwith

lean manufacturing and engineering projects

Frank Vigneron, who commented on the angel�s gender

Joel Watson, who reviewed �Deal or no deal� and the game theory

analogy

Philip Zimbado, who advised us about his prison experiment

Many highly experienced software professionals have done us the great

honor of looking at one or two chapters of the book and providing valuable

feedback.Many thanks to (in alphabetical order): Lawrence Bernstein, Grady

Brooch, Magne Jørgensen, Pete McBreen, George Metes, Peter Middleton,

Mark Paulk, Ioannis Stamelos, Royce Walker, and Sami Zahran.

Thanks toMartinKyle for his useful advice onwriting better using plain

language. We appreciated John Nosek�s insights on collaborative program-

ming.We are delighted to have AngappaGunasekaran�s support. We thank

Lai Shan Sit for her many funny cartoons illustrating our ideas. We would

also like to thank our friends and colleagues, Jun Wang, Zheng Li, Polly

Leung, Fei Dong, Ka Wing Wong, Whitney Lesch, and Rosalyn Farkas for

their assistance.

Finally, we cannot thank two persons enough. We thank Kent Beck for

inspiring our work on software development rhythms. Kent advised us on

which topics to choose to focus on and he reviewed the whole manuscript for

us. We also thank Paul Petralia, our editor, who told us from the very

beginning that he liked the concept of the book and thought that it would

motivate people to think about old things in their new ways. Without his

encouragement therewould not be this book. It is not coincidence that all of us

believe that the idea of software development rhythms could be powerful

metaphors and effective management tools. Rhythms are not methodologies,

they are, rather, ameta-methodology – amethodology about developing new

software methodologies!

KIM MAN LUI

KEITH C. C. CHAN

Hong Kong

January 2008

xvi PREFACE

1
NO PROGRAMMER DIES

The Bible shows the way to go to heaven, not the way the heavens go.

—GALILEO GALILEI

There is one question that is so frequently asked in software engineering that

it may seem tedious to ask it yet again, but here it is, anyway: �What are the

basic differences between software development projects and engineering

projects (or manufacturing production), that is, say, between producing

enterprise information system and building tunnels or manufacturing cars?�
The usual, dry, academic answer is that software is a conceptual, intan-

gible, invisible artifact. This definition may be useful, but there is another

attribute of software projects that distinguish them even more starkly from

traditional engineering projects. Thedistinction,which is rarelymentioned, is

that—while engineersmayalways be indanger— software developers are never

killed or injured while working on their projects.

No matter how lousily or messily planned or implemented a software

development project may be, nobody in a software team is ever seriously

physically hurt at the office computer. There is a clear difference between

developingAdobeanddigging thePanamaCanal, and thismaybeone reason

why so many software development projects are hastily, carelessly, and

sloppily managed.

In 2005 the death toll from a tunnel project in western China broke a

new record indicating project mismanagement and poor supervision

of safety procedures. An investigation reveded that many fatal accidents

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright � 2008 John Wiley & Sons, Inc.

3

could have been avoided. This brought the issue of the rushed produc-

tivity for the project rather than workers� and engineers� safety, environ-
mental concerns, and social needs under even closer scrutiny. The public

severely blamed the chief engineer for the tunnel accidents.

—LOCAL NEWS IN CHINA, 2005

In real-world engineering projects, the prospects and costs of death are

always looking over our shoulders, holding individuals personally respon-

sible for the consequences of their decisions and actions. Thus, project

managers must adhere to strict procedures and industrial standards:

agreed-onplans, signed confirmations,writtenworkflows, and timing.When

an error occurs, a project management model enables us to track the work

process, conduct a postmortem review, and identify errors; in addition, this

may also involve financial issues of insurance and litigation.

Because life matters1 and mistakes incur heavy costs, real-world engi-

neering demands discipline, consistency, consideration, commitment to

detail, and a strong sense of teamwork. The result is not just greater safety;

it�s also better products. You have to wonder whether software development

can afford to continue in its current (often) irresponsible way. Are there any

factors in society or themarketplace that will ever make it change? If so, what

are they?

1.1 DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL

Many types of cancer are treatedwith radiotherapy, inwhichhigh-energy rays

are used to damage malignant tumors. Given the danger of overdosage, the

amount of radiation energy is supposed to be precise, and safely controlled by

a computer system. The Therac-25 was developed for this purpose by the

Atomic Energy ofCanadaLimited fromaprototype in 1976 to a safety analysis

in 1983 (Leveson 1993). Between 1985 and 1987, the Therac-25 overdosed a

number of patients, killing five. Subsequent investigations blamed the soft-

ware, but there�s something strange in this. The programming code for the

Therac-25 was built by only one person, who also didmost of the testing. This

is not even conceivable in a real-world engineering project, but in some

software development the programmers are often responsible for their

own testing. How did the software development process ever get itself into

this mess?

1The ISO 9000, which have often been compared with CMM and CMMI, came from
BS5750, which was adopted to control quality problems of bombs going off in
munitions factories and bombs not blasting when they should have.

4 NO PROGRAMMER DIES

1.1.1 The Good Old Days?

In 2005, a Helios Airways Boeing 737 crashed in Greece, with the loss of

all 121 on board. The suspected cause was a series of design defects in

the 737 where the plane�s pressurization warning alarm made the same

sound as the improper takeoff and landing alert. Confusion over the

reason for the warning may have contributed to the fatal crash. When

things start to go wrong, it sometimes doesn�t take much to spin them

right out of control. Factors that may seem trivial in normal circum-

stances, may contribute to tragic outcomes when things aren�t going
according to plan .

Regardless of whether engineering product defects may be unavoidable,

we are taught that rigorous development processes do remove as many as

possible. A �rigorous� process normally means the separation between

planning and execution. During construction, planned tasks should be

designed to be strict to follow and easy to control. Ideally, constructive

peer pressure should positively shape workplace behavior to ensure that a

development process will be �as rigorous as possible.�
Adopting that philosophy in engineering management, software devel-

opment activities can normally be divided into two types of process—(1)

analysis and design as planning and (2) programming as execution, with (2)

following (1). This intuitive model, generally referred to as the �waterfall

model� by Winston Royce (1970), is normally adopted when managing large

software projects. These twoprocesses are often chopped into smaller but still

ordered processes. Dividing and conquering allows us to better allocate

limited resources and control and track project progresses through a number

of checkpoints and milestones. The analysis–design process is made up of

such activities as software requirements gathering, system analysis and

logical design, while the programming process is made up of coding, unit

testing, system integration, and user acceptance testing, all of which are

basically linked serially, one after the other. For the purpose of discussion, we

consider here what is called a four-stage waterfall model as below:

Requirement!design!coding!testing ðR!D!C!TÞ

Thenature of thewaterfallmodelmakes it easy foraprojectplan tobeexecuted

the same way engineers manage their projects. Focusing on breaking down

larger tasks into smaller tasks andputting them in the right order for execution

better allows project resources to be allocated and conflicting problems to be

resolved. With this idea of the separation between planning and execution

behind a waterfall model, a project plan can be reviewed to optimize against

DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL 5

time and resources. With this, we can then identify and weight various risk

factors to draw up a contingency plan for a project.

Such a project management paradigm to develop software may sound

intuitive, but one could easily discover that it does not encourage the

exploration of interrelationships between people, programming tasks, and

software practices. It can be difficult for some project managers to compre-

hend development synergies between these three elements, particularly in a

situation where something can change unexpectedly during execution.

1.1.2 The More Things Change, the More They Stay the Same?

Whenproject requirements are constantly changing, sometimesmore rapidly

than what we had imagined, and when developers know that what they are

building is not what their customers need, they will start to realize that their

software can be developed only by progressing in small steps so as to obtain

constant feedback all the time. This is, however, easier said than done.

Our thinking is often limited by our past experience. For many software

managers, their formative software experience is with the waterfall. Seeking

to improve on it, we come up with an enhanced waterfall. As single-phase

analysis for user requirements may rarely provide a full solution, more than

one phase is often considered necessary, and for this, straightforwardly, we

link two or smaller waterfall cycles together in a chain.

R!D!C!T ! R!D!C!T ! R!D!C!T

There is really nothing new here. The same principles behind the waterfall

model apply except that, in each cycle, one can plan according to the feedback

obtained from what has previously been done. The current cycle will there-

fore be less stringent and more flexible than previous cycles.

The waterfall model, if strictly implemented as �one cycle� or some

�bureaucratic procedures for turning back,� may not be too popular in the

commercial world. Many software teams take the concept of the waterfall

model but implement their software projectsmore flexibly. Some teams adopt

the enhanced waterfall model while still others may go even further to adopt

an adaptive model so that the length and activities in each iteration can be

dynamically adjusted. All these models can be considered as belonging to a

waterfall family of models.

In some extreme cases in such a family, to deal with unexpected

changes, some software managers would substantially revise their project

plans on a weekly basis. Since they know that none of their team members

could die or be injured, they are free to revise their plan to cope with any

6 NO PROGRAMMER DIES

change when it occurs. Compared to software projects, in engineering

projects this would be considered very unusual. It would be more normal

to delay the project rather than risk changingwhat andhowwehave already

planned and managed.

When project variables keep changing, a revision of a project plan is the

way out of potential crisis. Many project managers do not care how often the

project plans are revised as long as it is necessary. But, what really matters is

ourway of thinkingbeing limited to the style ofwaterfallmanagement,which

always involves breaking down tasks into many sequential tasks, and

resources, responsibilities, and any understanding of any bottleneck are

planned along this line. Whenever there is any change, replanning is needed

and it is hoped that the revised plans can reflect the situation as quickly as if

such changeswere already anticipated. This is undesirable as a software team

does not manage change in this case; they are, instead, managed by change.

1.1.3 Behind Software Products

Let us look at the design and planning of manufacturing products and then

come back to software products. If a product is supposedly made up of a

number of components, subcomponents, and sub-subcomponents, and so on,

then one can draw up a hierarchical architecture that consists of the complete

product at the top with a hierarchy of subcomponents, which, in turn, are

made up of sub-subcomponents, and so forth. This structure is called a bill of

materials (BOM) and it is at the heart of operations inmany assembly plants. It

supports assembly task planning inmanufacturing resource planning (MRP),

as shown in Figure 1.1, where one plans when, what types, and what

Car

Body Wheel

4 pieces

1 unit

1 piece

Base Seat

2 pieces

1 piece

Engine1 piece

E
ng

in
e

B
as

e
Se

at

B
od

y
W

he
el

C
ar

Assembly Tasks

Design Planning

M
on

th

Engine 1 piece × unit cost

Seat 2 pieces × unit cost

Wheel 4 pieces × unit cost

Labor per hour × total hours

+

Unit Cost of a Car

BOM to Plan

Bill of Materials
(BOM)

BOM and Plan to Cost

Costing

FIGURE 1.1 How bill of materials (BOM) can be used for planning and costing.

DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL 7

quantities of materials or subcomponents are needed for production (Chap-

man 2006). The assembly task planning will allow costing to be determined

(Figure 1.1). Subcomponent information can be used to do cost rollup

calculation for customer quotations and for effective internal control over

production costs.

Similar to engineering projects, software is often designed using a class

diagram (see Figure 1.2), which resembles a bill ofmaterials. Class diagrams

help us understand attributes, methods, and class component relationships.

Unfortunately, we could rarely use a class diagram to tell us how to do

assembly task planning and costing. It would be good to have an integrated

approach to tighten up or clarify what needs to be written and how a project

should be planned. Only recently has it become possible to do this to some

extent through the concept of a �user story� in eXtreme programming (XP),

which can be used both for requirements management and project

planning.

Compared to software tasks, other engineering tasks are often more

tangible. Components built in a typical engineering project can be combined

in the order suggested by a bill of materials (BOM) so that work progress can

be objectively measured and quality can easily be monitored. This, when

compared with software, is more tangible. For instance, as part of an

engineering project, one can assemble an engine to the gearshaft and then

form the base before installing thewheels andfinally carrying outwheel tests.

The sequence in which these tasks are performed could be designed in

accordance with both physical constraints and economic efficiency, and this

sequence somehow solidifies the idea of the separation of planning and

execution into two stages.

In software projects, products cannot be assembled with this kind of job

sequence asdefinedwith classdiagrams in the samewayBOMsare, nomatter

how these products are designed. Programmers canwork out login interfaces

and main menu interfaces in an order that corresponds to how the users

Car

Body WheelEngine

1 1
1

1 41

FIGURE 1.2 Class diagram for a car (simplified) that resembles bill of materials (BOM)
but serves a different purpose.

8 NO PROGRAMMER DIES

operate the system. But they can also do these later on.2 There are virtually no

restrictions on the ordering when we build with software components.

Walker Royce (2005) of IBM suggests that softwaremanagers shouldmanage

software in the same way as managing a movie production rather than as a

typical engineering production. To make a film, we have to effectively assess

how all the elements of scenes of the filmwork together (actors, timing, lines,

sets, props, lighting, sound, etc.) so that scenes of the filmwill be shot in away

that will minimize production costs and production time so that the film can

be completed with the least amount of time and money.

In manufacturing, when two products, designed by two groups of

engineers, eventually appear on the same BOM, we can almost speculate

that these products should be built in similar ways. Furthermore, since

products are built to follow the design as given by a BOM, if there are defects,

either they are design problems or the products have not been made to plan.

Unfortunately, this same logic that is applicable to manufacturing does

not apply to software development (refer to Figure 1.3). Unlike BOMs, class

diagrams do not fully address code implementation. Given the same dia-

grams, implementation could be done in a variety of ways by different

programmers. The programmer will not have to write the same software

twice for a second installation, but may have to redo it for a second version,

FIGURE 1.3 Degree of difference is a conceptual term measuring how two products
can be built differently using the same design.

2�It may make some kind of logical sense that you have to finish writing the login
servlet before you start the logout servlet; but in reality you could write and test them
in any order,� said Robert Martin (2003).

DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL 9

and this canbedone evenwithoutmodifying the classdiagrams! For instance,

programmers may tune structured query language (SQL) algorithms for

better performance when they know the characteristics of real data. Some

software teamswill adopt the practice of revisiting each other�s code to detect
defects and improve readability. Again, none of this necessarily implies

redesigning the class diagrams.

In the case of software projects, not all that is well designed ends well!

Worse yet, many software problems cannot be classified as problems even

when the class diagrams or code are not written in compliance with the

design. Bad code but good design is not that rare! In short, having qualified

experienced system analysts do design using data models, unified modeling

language (UML) diagrams, and so on, is not the only necessary condition for

producing good software; we also need qualified experienced programmers

to write code to build the system. Furthermore, with the right design and

good-quality code, we need skilled testers to discover bugs in products.

Managing these people effectively in a team, whether each member has just

one role (e.g., system analyst, programmer, tester) ormultiple roles requires a

methodology for coordination, collaboration, and communication! Left to

themselves, things may go wrong, and once they do, they will go from bad to

worse.One cannot expect a bunchof the right technical people sitting together

(without proper management or coordination) to produce software on time,

within budget, and according to requirements if there is no development

framework.

1.1.4 Deal or No Deal

Traditionally, software management emphasizes mainly relatively formal,

rigorous, software development processes. Recently, agile development

approaches have grown quite popular. There is now an agile or eXtreme

version for formal methods, testing, database, tools, or project management.

Although this new trend has attracted great attention in the software com-

munity, it has not taken over the waterfall model as the dominant approach.

In fact, agile practices are often adopted within a waterfall framework. It

appears that the waterfall model is either so intuitively better than the others

or that software developers have been so used to it that they cannot think of

any other ways better.

The popular TV game show Deal or No Deal displays a number of

briefcases, each of which contains a different cash prize ranging from just

one dollar tomillions of dollars. A contestantwhowins a game on the show is

allowed to pick any of these briefcases as a prize. The contestant, however, is

not allowed to open the briefcase until the end of the game. As the game

10 NO PROGRAMMER DIES

progresses, a �Banker� offers the contestant a deal to buy the chosen briefcase.

If the contestant rejects the deal, other cases can be chosen and opened

while the banker continues to make offers to the contestant regarding the

suitcase the contestant chose at the beginning. The contestant can either

accept the banker�s offer or take the cash prize inside the briefcase selected at

the beginning of the game. It is interesting to note that many contestants who

had chosen the right briefcase often accepted a lower-value offer from the

bankers. They would have, say, accepted $250,000 dollars, rather than

resisting temptations to hold onto the end to win millions. Even in the

presence of favorable odds, it is interesting that many people are actually

highly risk-averse (Post et al. 2006).

In a study involving 150 volunteers (Tversky and Kahenman 1981),

who were asked to choose between a guaranteed $250 or a 75% chance to

win $1000 dollars, the overwhelming majority (84%) of the participants

took the $250 cash. Interestingly, when the choice was between winning or

losing $750 dollars with a 75% chance, 87% preferred to try their luck.

Mathematically, the odds were the same but not the subjects� perception of

winning and losing.

Daring to take risk for a higher reward is an entrepreneurial attitude. For

entrepreneurs to be successful, they need to be risk-takers. They need to

understand the odds on success and failure, so that they can spotmarkets and

seize opportunities before others do. If not, they need to have the gamblers�
attitude. Compared to an entrepreneur or a gambler, how much risk is a

software project manager willing to take when adopting a new development

methodology? On the surface, this seems to be a matter of personal prefer-

ence. However, it may be a bit more complicated than this. There is a chance

that themembers of a software teammay not be so cooperative. Theymay try

to stick to their usualwayof thinking andwork consciously or subconsciously

toward it. If things do not seem to go as originally expected, these members

may well place the blame on the manager. They may say that the manager

should have been more prudent and should not have replaced the usual

practice with something unproven. Is this prudence? Does fear overwhelm

ambition? Or is it politics that has raised its ugly head?

Typically, user requirements continue to change and our competitors act

and react much more quickly than we do. Even with all these arguments and

hesitation, there is a chance that members of a software team will eventually

bewilling to adopt a newdevelopmentmethodology. But as software projects

rarely go wrong at the beginning, it can take a significant investment of time

and money before we realize that the old way isn�t working.

Meeting deadlines is often a pressure to make us change our old way of

working. Let us look at a real case here. In 1995, TechTrans, a Hong Kong

DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL 11

software house with a technical staff of around 20 that specialized in the

development of retail-chain points-of-sales (POS) systems written in C and

Clipper, won a software outsourcing contract to redevelop an AS/400

application on a truly client/server platform. The system had to be written

in PowerBuilder and Informix. At that time, no TechTrans programmer knew

these tools. TechTrans could have used its existing Clipper database model

for the Informix relational database. However, PowerBuilder is an event-

driven programming tool under Windows 3.0, while Clipper is a program-

ming language used to create business applications under the disk operating

system (DOS). The project leader asked two developers to pair up to explore

how to start their programming. The pair was expected to develop a set of

code patterns that the other developers would try to follow. The project was

managed using the waterfall model, and both the leader and the team firmly

believed that this would be an effective, efficient, and less riskyway forward.

1.2 DO-RE-MI DO-RE-MI

Experience keeps people growing professionally. The customers today are

different from yesterday�s customers, and so aremembers of a software team.

For this, one can only expect software projects, and how they should be

managed, to also keep changing. When projects cannot be effectively man-

aged using the simple and familiar waterfall model, an iterative approach is

used. This can revolutionize the way a software team develops software, but

even though resistance to new ways of doing things can be expected, the

resistance may be small as there is a familiar simplicity here.

�When you read, you begin with A–B–C� and �when you sing, you begin

with do-re-mi.�3Agoodplace to begin iterative software development iswith

the waterfall model�s requirements analysis (R) – design (D) – coding (C) –

testing (T). The simplest way to perform iteration is to simply join two smaller

waterfalls together as

R!D!C!T!R!D!C!T

Onebenefit of iterative softwaredevelopment is that it can be adoptedflexibly

when coping with the inevitable changes that arise from customer feedback,

communications, and working software. Because of changes and the issues

discovered earlier, we have more realistic views to control projects to ensure

that they are within scope, budget, and timeframe. Another benefit is that it

breaks a protracted system analysis into more phases, and thereby actual

3From Rodgers and Hammerstein�s The Sound of Music in 1965.

12 NO PROGRAMMER DIES

programming can start earlier. This is real progress for software delivery as

design diagrams do not cover the details of how to code.

There are at least three ways to implement a simple iterative waterfall

model.Most straightforwardly, a system is logically broken down into two or

threemodules, each of which could be consecutively released for production.

It is also possible to implement one or two modules and withdraw the rest.

The development approach is referenced as step-by-step or phase-by-phase.

A metaphoric example of this approach is given in Figure 1.4.

The second way to implement iterative waterfall model is to review the

system nature and functions and to define a kernel and its interface at the

beginning (Figure 1.5). The goal of such an iterative cycle is to build new

components that could be integrated with a kernel. Different software

applications are assembled using the components, which are blackbox to

the outside world, but are accessible via their defined interface. Components

themselves can be written in several different programming languages as

long as they are in full compliance with the interface specifications. This

approach to implementing the iterative waterfall model is particularly useful

whenanumber of different applications, each sharing the same reusable login

components, are to be developed.Although this can appear to be ambitious, it

is a very traditional computing approach. An example is for one to think of an

operating system (OS) as a kernel and each application running on the OS,

developed with the use of application programming interfaces (APIs), as

components so that the computer running the application can serve as a

dedicated point-of-sales (POS) or an application server.

 C→T D→ R→ C→T D→ R→ C→T D→ R→

FIGURE 1.4 Phase-by-phase development.

FIGURE 1.5 Component-based incremental development.

DO-RE-MI DO-RE-MI 13

Brooks (1995) captures the spirit of evolutionary software development

very well by saying �Grow, don�t build software.� This third way of im-

plementing iterative software development is iterative, generative, and

incremental (see Figure 1.6).With this approach, a small, immature prototype

evolves through constant or regular customer reviews until the software has

all the functionalities required. Customers are encouraged to reengineer their

requirements so that the final product fits their business needs. With this

approach, an early prototype may not even be software. It could be a paper

prototype including a set of screen layouts showing the required function-

ality. However, the prototype must be sufficiently complete for customers to

provide solid feedback.

All these different ways of implementing the iterative waterfall model

can be adopted in the same project. They can be integrated to different

extents into a hybrid iterative model. One way to do this is to have an outer

loop taking a step-by-step approach so that each outer loop has several

inner loops that can take, say, the evolutionary approach. Such a double-

loop iterative model has been proposed and used with some successes as

part of some agile methods such as the scrum (i.e., scrummage meeting, as

in rugby)Q1 .

1.2.1 Iterative Models

As early as the 1950s, Deming popularized Shewhart�s closed-loop model in

statistical process control for business continual process improvement, to

measure and identify sources of variations so that one can identify and

manage the areaswhere improvement is needed. The feedback loop included

in somany project management texts has been generally known as the �plan–
do–check–act� (PDCA) cycle. The PDCAcycle is shown in Figure 1.7,which is

self-explanatory. The PDCA cycle involves a solid grounding in identifying

User
Initial Requirments

Feedback

Develop

Input

Product

Prototype

Prototype

FIGURE 1.6 Evolutionary software development.

14 NO PROGRAMMER DIES

performance metrics and measuring them for analysis. The underlying

principles have become the foundation of software project management.

Returning to a basic iteration like R!D!C!T!R!D!C!T, we

can see that the iterationdoes not tell us how to sustain actions! For this reason,

a review session is normally needed after each cycle to determinewhether we

have done as planned so that we can realistically plan what the next cycle

should be. In addition to this, we also need to reevaluate the different risk

factors that may affect a project so as to ensure that we can better control

budgets, resources, and schedules against the original project plan. Clearly,

some supporting process areas should be considered to sustain the iteration of

R!D!C!T!R!D!C!T so that each iteration delivers solid prog-

ress toward the final product until an application is released for production.

The PDCA andwaterfall model activities, can be combined to establish a

complete iterative model — the spiral model— as proposed by Barry Boehm

(1988). This spiral model can be modified as shown in Figure 1.8. The

sequences of R!D!C!T!R!D!C!T can therefore become, say,

R!R!D!R!D!C!T (see Figure 1.8). As expected, processes and

practices are required to sustain such a model. It should be noted that this

modified spiral model does not contradict the iterative waterfall model of

R!D!C!T!R!D!C!T and software teams can choose to substi-

tute it with the modified spiral model.

The spiralmodelwas originally proposed todevelopdifferent prototypes

at various stages of a project until the final product is completed. The use of

such model is both generative and evolutionary. In practice, software teams

may adopt a spiral model according to project requirements. The implemen-

tation of the iterative waterfall model can be flexible, and the three different

approaches to implementing such amodel can be integrated and hybridized.

Do

Plan

Check

Act

FIGURE 1.7 The PDCA cycle.

DO-RE-MI DO-RE-MI 15

With these characteristics, the spiral model, which applies the ideas of the

PDCA and a combination of these three implementation approaches, can be

used rather flexibly with different software projects and thus has been

generally accepted as much better than the waterfall model.

1.2.2 Code and Fix

Even though iterative software development approaches have their advan-

tages, not all iterative approaches are desirable. The code-and-fix approach,

for example, is repetitive. It involves writing code to clarify requirements for

better design later. It is a time-buying strategy where the target is to release

the software on schedule and to release patches afterward. It is common in

software development that project pressure quashes discipline and thatwhen

software developers are under time constraints, they will naturally handle

this pressure by jumping into coding immediately. Another situation in

which developers would adopt a code-and-fix approach is when the appli-

cation beingdeveloped is sopopular that it attracts new, additional, originally

unintended users who demand additional expansions in performance and

functionalities.

Let us consider a real case as follows. In a retail chain of 45 outlets in

a metropolitan area, operational staff might need to split their time between

staying in office and visiting other stores. The human resources (HR)

department therefore decides to have their information technology (IT)

Objectives, Constraints,
Alternatives

Prototype 1, 2 , 3 ...

Development

Commitment
Review

1 2 3

Next Phase Planning

Risk Analysis

R R

D

R

D

C

T

FIGURE 1.8 The spiral model (simplified version).

16 NO PROGRAMMER DIES

department write a system for them to allow staff to submit trip records

electronically. Their goal was to replace manual forms with a database so

that the HR department could quickly retrieve information relating to these

business trips. The written requirements provided by HR were a brief

sample copy of their current form!

The HR system, called TripLog, was written in under a fortnight in

Microsoft Access using Delphi 6.0. Since the functionalities of TripLog

were rather simple, so the HR staff were quick with their user acceptance

testing. As expected, HR occasionally reported minor bugs, but these were

quickly fixed.

After 2months, theHRstaff asked the IT team todistributeTripLog touser

departments so that they could directly enter data into the system. After an

additional 2-month period, the HR department decided to add vacation leave

as a type of a �trip� in the TripLog so as to automate leave applications. Now

that the number of users had unexpectedly increased, the system became

extremely slow. Naturally, users start to request that the IT department to

improve system performance and to have TripLog display leave balances.

The IT department decided to rewrite the system inMS SQL Server using

Delphi 6.0. This took a month, but this was not the end of the story yet as

TripLog continued to be the subject of modifications and eventually its user

base included all staff of 150 back offices.

The development of TripLogwas not disciplined, but the systemwas not

complicated and the software teammanaged to do a good job. However, the

software team actually redeveloped the system completely. The code-and-fix

cycle in this case resembles the following sequence:

Code!use!fixð!codeÞ!use!fixð!codeÞ!use!fix . . .

The activity shown in parentheses may occasionally be required.

The code-and-fix approach is different from the iterativemodel in thatwe

could not tell when a development activity would occur and when one

activity would switch to another. Although there was no sense of rhythm

and events appeared to occur randomly, the pattern was iterative. This

approach can be considered by some developers to be ad hoc.

1.2.3 Chaos

Timing and patterns are important in any kind of iterative model. There can

be huge differences of days and even months in completion dates when the

same iterative software activities are followed. In this section, we will see

what an iterative model may look like when a cycle is as short as a day.

DO-RE-MI DO-RE-MI 17

Figure 1.9 showsa four-stagewaterfallmodel over time. Ifwe assume that

there is a deadline to meet for each stage, the project can be tracked with four

separate milestones. According to Parkinson�s law, work expands to fill the

time available for its completion. Therefore, it is rare for a software team to

complete its tasks on time. Assuming the probability of delay in project

schedule be 1
2 , for four stages, we can be very pessimistic about the chance of

completing the project on time as 1
2 ·

1
2 ·

1
2 ·

1
2 ¼ 1

16. In other words, there is

very little chance that a project is able to finish on time. Of course, many

project managers would squeeze time from later stages to compensate for

earlier delays, but this effectively shortens the time available for the tasks that

are to be achieved in later stages. This may lead to sacrificing either quality,

functionalities, or both.

To copewith this problem,we can implement an incentive scheme.When

developers are able to complete jobs on time (see the �timebox� in Figure 1.10),
they receive a bonus pay. To implement this effectively, we need to assign

different roles to different members of a software team at each stage. It is

possible for us to assigndifferent roles to the samedeveloper. For instance,we

can assign requirements engineers the role of software testing to test the final

DR TC

Time

FIGURE 1.9 Waterfall topology.

FIGURE 1.10 Waterfall in action.

18 NO PROGRAMMER DIES

product and the role of coder to system analysts to enable them to write

programs for verification.4

In addition to an incentive scheme and the assignment of different roles,

another question arises as to howpeople in a team communicate andwhether

such communication is effective. For example, there is a need forwell-written

documents to be used as a communication tool between two sequential

stages. Figure 1.10 illustrates the waterfall in action.

A software teammaybe involved in several projects at the same timewith

team members organized as divisions. Figure 1.11 illustrates how two

projects can be run by the same team in parallel. Basically, each subteam

either handles just one project at a time or themembers dealwith one project�s
tasks at a time. However, when documents passed down from a previous

R R

D

C

T

R

D

C

T

D

C

T

R

D

C

T

Idle

Idle

Suppose that all tasks have the same elapsed time

Delayed task

Slack

Project B
Project A

Subteam

Subteam

Subteam

Subteam

Team

Idle Idle

FIGURE 1.11 Delayed tasks and idle developers.

4The idea of how quality control checkpoint can be integrated into each phase
throughout the development as implemented in the V model. As in our simple
example, the look resembles a �V� as shown here:

DO-RE-MI DO-RE-MI 19

stage are difficult to understand, incorrect, or incomplete, the responsible

subteamhas to follow up. Thus, some subteammemberswill find themselves

handling the tasks of two projects at the same time. Although this is quite

typical in the real world, this kind of task switching adds no value at all to

software development (Poppendieck and Poppendieck 2003). Human con-

centration is easy to break and hard to get back. Switching tasks between two

projects eats up time (say, 10–15 minutes) as people reenter the flow of

thought for a new task. Frequent interruptions are time-wasting.

Figure 1.11 illustrates another issue that is perhaps evenmore disturbing

than task switching. Most staged models require the completion of one stage

before it is possible to enter thenext. Thismakes it difficult toplan twoprojects

to avoid any slack-time between them! Compounding this is the fact that

delaying someactivities in oneprojectwill tremendously affect another project.

Figure 1.11 illustrates how �delayed time� and �idle time� intertwine even

though there is no real idle developer as the project plan can be revised as

often as necessary.

To tackle these problemswith the simultaneousmanagement of multiple

projects, we are brought to the arena of concurrent engineering. We do not

wait for the completion of one taskbefore the other starts (see Figure 1.12), and

we allow different development processes to run in parallel. To allow a

process to evolvemoreflexibly,we should not be confinedonly todocuments.

Instead, we hold more face-to-face meetings to facilitate proper communica-

tions. To manage single projects, we can also adopt concurrent software

engineering (Figure 1.13).

Concurrent software engineering can be adopted by applying amodel for

managing single aswell asmultiple projects (Figure 1.13). The greatest benefit

of such amodel, called the Sashimi model (Raccoon 1995), is that it shortens the

iteration cycle.

FIGURE 1.12 Concurrent engineering.

20 NO PROGRAMMER DIES

One way to expedite tasks is to shorten iteration cycles. Iteration cycles

can be shortened by allowing many things to happen simultaneously. For

example, the chaos model (Figure 1.14) looks at a team�s activities as a whole,

fractally. The model uses a short, small problem-solving loop, but unlike the

case with code-and-fix, the chaos model can be very rhythmic as far as we

anticipate when things work, when things can be used (i.e., how one loop

turns to another), how to sustain the rhythm, and so on.

1.2.4 Methodology that Matters

The following statement was made by a finance director in charge of

accounting, administration, personnel, IT, and purchasing departments: �My

daughter, 15, was already building her home page at school! I just don�t
understand what our IT team is busy with.�

Customers canbeuserswithin anorganization, or they canbe the external

client of a software house. They may not see our service the way we do.

Building and managing customer relationships are as important as develop-

ing quality software. Projects with teaming relations with customers could

be twice productive (Bernstein and Yuhas 2005). When it comes to what

R

C

R

D
C

T

R
D C

T
T

D C

R

D
C

T

R
D C

T

R

D

T

Involovemnt

0 %

100 %

time

Simplified
as TCDR

FIGURE 1.13 Sashimi model.

R

D

C

T

FIGURE 1.14 Chaos model developed byQ1 Raccoon (2006).

DO-RE-MI DO-RE-MI 21

customer-relations management (CRM) is, Ed Thompson of the Gartner

Group presents the following matrix (see Figure 1.15). CRM, according to

him, is all about how customers see the development team and how the

development team sees them. When customers and developers regard each

other asmutually ugly ormutually attractive, nothing can or needs to be done

(shown as �,� in Figure 1.15). But when the mutual perception is ugly–

attractive, there is room to improve the customer–developer relationship.

From a developer�s perspective, ugly customers are reluctant to partici-

pate in the development process [i.e., requirementsmanagement process and

user acceptance testing (UAT)]. Such customers think that what and how

software is built is not their concern.Of course, software that is not targeted to

specific business processes or domain knowledge demands less user partici-

pation. Other than these kinds of customers, there are also customers who are

not concernedwith the details of software functionalities. For example, some

people use Microsoft Word every day but have no interest in knowing

anything more than what they already know even though there are better

ways of doing things. Customers with that kind of attitude are not helpful. In

fact, such attitudes can be harmful to a software team. From the customer�s
perspective, besides return on investment, satisfaction with the product or

service, schedules and scheduling, speed of response, ongoing service sup-

port, and product quality are major concerns. Much of this is directly related

to how a software team builds software, namely, software development

methodologies.

Generally, customers do not like jargon or complicated flowchart dia-

grams. For this reason, the ideas of metaphoric communications or writing

short descriptive requirements (see user story in Chapter 3) have been

FIGURE 1.15 Customer–developer relationship.

22 NO PROGRAMMER DIES

proposed. In addition, since many users, not trained as programmers, have

problems with too many if–then-type requirements, keep them fewer than

five.

From time to time, a software team has to give customers progress

reports. Some software team will send their customers an enormous, per-

plexing updated project plan but customers like a product demo (demon-

stration model) or prototype. Instead of a report, it is therefore easier and

more effective if anupdate of the latest progress status is reportedby releasing

a demonstration of working software. Owing to their organizational culture

and operational processes, some customers accept only big-bang implemen-

tation, but it is still a good idea to release working software for a demo, or for

early training.

In the commercial world, customer requirements are often dynamic.

There is often much need for effective exceptional handling ability in an

organization. Customers appreciate quick response from developers. How

fast a software team can change a software to meet new business require-

ments depends on a number of factors. If one is to ignore technical issues and

look only at development procedures, one may conclude that the implemen-

tation of bureaucratic document control and awkward team structure may

make us change our work more slowly than we should.

Modifications can be made with these concerns in place and, after

modification, it is necessary to retest the software. Moreover, after modifica-

tion, retesting what software has worked is necessary. Testing and retesting

are two basic concepts in software testing. Generally speaking, the purpose of

testing is to detect faults in executed code that causes a failure,while retesting

is done to confirm that the changes do not introduce error to other parts of the

code (this is also known as regression testing). Retesting is often boring and

tedious.Automating all or somepart of the testing could be an answer to some

of the problems mentioned here. Coding and testing need to be better

integrated here for a more complete solution. Developers need to be able to

write automated testing cases while coding.

When some developers leave a team, others will have to take over, and

developers who take over will have to spend some time to understand and

make changes to a piece of code. To do so, they may have to refer to technical

documents or to read the code directly. This takes time as documentsmay not

be written in such a way as to make them easy for other developers to follow.

Ideally, developers should rotate jobs among themselves so that each piece of

code can be maintained by more than one person. This, however, may not

always be feasible.

All these development problems can arise at the same time, making it

difficult to respondquickly to changing requirements.Changingour software

DO-RE-MI DO-RE-MI 23

development practices overnight will not lead to successes. We have to take

small steps first. The iterative model discussed so far may meet this require-

ment as it allows us to manage processes, schedules, budgets, and risks.

However, it is not complete. There is still something missing. We need to

harmonize practices, people, and software, and this leads us to so-called

software development rhythms, inspired by Kent Beck who says, in his XP

book (Beck and Andres 2005), that rhythms operate at all different scales. A

principle such as do–check can be applied to the process of doing before the

process of checking or practice for doing before practice for checking. They

are still do–check!

1.3 SOFTWARE DEVELOPMENT RHYTHMS

If you drop a frog into a pan of hot water, the frog will leap straight out. But if

you put the frog into a pan of cold water and slowly heat it, the frog will sit

there until it is cooked, unaware of the gradual changes in temperature.Well,

maybe frogs are that dumb and maybe not, but there is an interesting point

here. No one likes sudden, unexpected changes and, ironically enough, that

includes techies such as software developers.

Suppose that a consultant is hired to coach a software team in a develop-

ment methodology that has a number of new software practices. He asks the

team to start with two or three practices and to gradually exercise others.

Alternatively, he suggests that the team take amaturity approach inwhich the

team advances toward software practices suggested by themethodology. For

instance, an onsite customer requires at least one customer representative to

be available onsite all the time.We begin with the representatives visiting the

developers frequently enough to sustain personal contacts, then being avail-

able not less than 2 hours per day and eventually being an onsite customer

(Nawrocki et al. 2003). Both approaches arewidely used. The secret ofmaking

this successful lies inwhetherwehave successfully complemented eitherway

with the right rhythms of a developmentmethodologywhile it is introduced!

For instance, Beck, in his book on eXtreme programming, suggests a

�standup meeting� to start a day and software integration before calling it a

day. Participation of all team members in these meetings is necessary.

Developers have to be punctual; otherwise, time is lost in waiting. Not all

people in every software team can get it done as easily aswe thought. In some

extreme cases, people who are not used to the time rhythm dislike the idea of

morning meetings. A better way is to organize an informal morning coffee

meeting for thewhole team and to have a day-end gathering to orally confirm

who could not join the coffee meeting the following day. We can see the

24 NO PROGRAMMER DIES

rhythm as morning gathering–work–day-end gathering. Once the team gets

used to that rhythm, we may easy change to �standup meeting–work–code

integration before go home.�
Often a development framework can have many such rhythms playing

simultaneously. In this case a software team should better get used to a

thematic rhythm that actually drives the success of the framework. For

example, in the iterative waterfall, the thematic rhythm can be design–

programming–design–programming.5 This thematic rhythm must be sus-

tained; otherwise, the paradigm could be more harmful than helpful.

To sustain any rhythm, such as A–B–A–B, requires both strategy and

execution. Determiningwhat practices betweenAandB are selected andhow

they can be harmoniously combined to establish effective development

strategies is the same as exploring when software practices work and when

they can be used. Adopting the right strategy is only half of the story;we need

execution, and we especially need to be able to sustain a rhythm. This issue

will be revisited in Section 1.3.2.

1.3.1 Stave Chart by Example6

�Most people livewithin awall of rationality that is definedby the real and the

apparent limits of the world they inhabit� (Anderson 1993). Software profes-

sionals, by occupation, have been trained for so many years that they are

mentally fixed to think in certain patterns. For instance, they often carry a

preference of conditional logicwhen seeing diagrams looking like flowcharts.

This is sort of reflection, and hence we are often being limited bywhat we see

(Figure 1.16).

Development rhythm can be expressed in flowcharts as illustrated in

Figure 1.16. However, the use of flowcharts may cause us to lose the ability to

sustain, harmonize, and, most importantly, synergize. For simplicity and

readability, we use stave charts to represent software development rhythms.

We believe that the stave chart gives us a stronger sense of exploring deep

harmony by putting two or more software practices in harmony. (For

instance, in the sequence A–B–A–B depicted in the four different scenario

in Figure 1.16, when practices A and B are harmonized to produce synergies,

5For those who have known eXtreme programming (XP), another example is that the
thematic rhythm of XP is test–code–refactor; see Chapter 9.
6

Q2 The authors would like to thank Dr. Michael E. McClellan from the Department of
Music at The Chinese University of Hong Kong for technical comments on the �stave
chart by example.�

SOFTWARE DEVELOPMENT RHYTHMS 25

the stave chart is a good choice.) The main purpose, however, is to help us

think of software practices in rhythms.

Let us look at a simple rhythmof software practices such asA–B–A–B–A–B.

The rhythm starting with A is denoted as . Then we have .

FIGURE 1.16 Different visual representations of the same thing affects our thinking.

26 NO PROGRAMMER DIES

Since it is repeatedly moving between A and B, we use the symbol to show

repetition. Aswithmany rhythms,we are often concerned aboutwhich practice

should come at the end. The rhythmwill be .Wherewe don�t care
about the order of starting and ending, a practice can be expressed as

.7

Now let us look at another example of code–use–fix–(code)–use–fix–

(code)–use–fix. Here �(code)� has an unplanned duration. It can even be

skipped. The notation is placed over it to mean unplanned or uncertain

practices. The rhythm tells less about when that practice happens and how

long it may last. Figure 1.17 illustrates the rhythm of code–fix using a stave

chart.

In some cases, we would emphasize pause and interruption. Sometimes,

doing and holding onto something for a bit longer will unavoidably incur a

stop or interruption. For example, when trying to have a standupmeeting for

an hour, teammemberswill naturally ask for a regular break after 15minutes.

The symbol indicates an interruption.

Ifwedonot place in Figure 1.18, thenwewould justwrite one �standup�
instead of three. In this case, we deemphasize any interruption during a

standup meeting.

The pause or interruption of an unknown duration can be really prob-

lematic. It is notwise to have a long standupmeeting in themorning todiscuss

every project and technical issue that arose yesterday until all issues are

resolved. Long meetings fragment, as shown in Figure 1.19. People may ask

for breaks to return calls anddonot return to themeeting on time. In addition,

FIGURE 1.18 Explained by standup meetings.

FIGURE 1.17 Explained by code–fix.

7This a minor point, but technically, if something is enclosed in repeat signs, it will be
repeated only once and everything within it should be repeated. So, for this example,
the result would be A–B–A–B, nothing more and nothing less. There should be an
indication that the section enclosed in the repeat signs should be repeated more times
or an indefinite number of times.

SOFTWARE DEVELOPMENT RHYTHMS 27

urgent matters that should be handled soonmay come up in the meeting and

the meeting may have to be suspended.

Nowwe talk about the structure of a rhythm. Consider a rhythm such as

.We can interpret this tomean that activityA is done to deliver

something for activity B. Another meaning is that A and B are linked by time.

Another scenario is a bit more complicated. Some objectives of activities

within A are to turn B. Normally, outputs of A are the input for B. But it is

possible that A itself ismuchmore important than its outputs and contributes

much for B. The slur mark here indicates a special condition in which

A itself triggers B.

Some rhythms have a faster tempo (e.g., hourly or daily basis). We use

�Vivace� to represent that tempo as . The five lines onwhich practices or

processes (e.g.,AandB)appeararewritten such that, by comparingAwithB, the

higher it is on the stave chart, the more difficult it is or the more human

dynamism is required for a team so that people will pay attention. However,

in the real world, can be for some, but becomes for

others.

The stave chart is self-explanatory. It is not a detailed workflow diagram.

Basically, we have not invented any notation, although one of them has been

slightly altered. The musical notation here parallels those between the

compositional processes that Bach and Mozart used and the processes that

programmers employ.We draw it on thewhiteboard to coach software teams

in development rhythms.

1.3.2 Game Theory

Companies from one country venturing into another are faced with a thicket

of unfamiliar and easily misinterpreted regulations to which theymust make

their business operations conform.

Dave is a software leader who is going to take over a project to build an

insurance application in a developing country. His software teamhas around

10 experienced colleagues, and they have successfully used the waterfall

model to develop similar systems for almost a decade.WhatDave needs to do

is to lead the team and repeat the earlier success. However, unprecedented

challenges are ahead of him.

FIGURE 1.19 Long standup meetings.

28 NO PROGRAMMER DIES

The situation is more or less like exploring a game to determine the best

strategy by understanding how the customer and the software team interact.

When requirements are correctly formulated and relatively stable, Dave�s
team can do as well as usual. They feel confident. This way should therefore

be considered as the faster or most expedient approach (see Figure 1.20).

Unfortunately, the customers could ask for any change in their business

requirements during the construction stage. More risks could result from the

frequent change requests. In such a case, rework seems unavoidable.

Dave knows that the requirements could be unstable in that environment.

A big waterfall model is not desirable. On the basis of his past experience, he

works out a simple iterative model to build the system through evolution.

There will be three or four releases, and review sessions will be held immedi-

ately afterward. During the review, the customers are allowed to raise any

questions or comments for modification. Once satisfied with the progress, the

customers have to pay the development fee. Rework can be minimized.

Although this sounds great, this could cause problems inDave�s software

team, who may not be familiar with such an iterative approach. Adopting a

new software paradigm is a team-level change! As the size of the develop-

ment team is small and Dave has established a good relationship with the

team, he can manage this situation. Nevertheless, the whole development

process is definitely longer.

According to the maximum principle in game theory, players prefer to

minimize themaximumpossible loss. Thus, theproject leaderwill plan for the

iterative model because the loss is less.

This game theory analysis is satisfactory only if we can have data to

understand the implications in detail. Moreover, change in software devel-

opment is more than a yes/no issue. To fully analyze the game, the matrix

A BIT
FASTER

LESS
REWORK

A BIT
SLOWER

MORE
REWORK

Old Way
(Waterfall)

Changing
Requirements

My Softw
are Team

Custo
mer

Stable
Requirements

New Way
(Iterative
Model)

My Software
Team

W
ate

rfa
ll

Iterative
M

odel

Stable

Requirements

ChangingRequirements

Stable

Requirements

ChangingRequirements

A BIT
FASTER

MORE
REWORK

A BIT
SLOWER

LESS
REWORK

FIGURE 1.20 Software team playing their development game with customer.

SOFTWARE DEVELOPMENT RHYTHMS 29

shown in Figure 1.20would have to bemuchmore complicated. Still this type

of tool is helpful for our strategic thinking about playing rhythms.

1.3.3 In–Out Diagram

When praised for brilliant, fantastic piano playing, Johana Sebastian Bach

humbly said,�There�s really nothing remarkable about it.All youhave todo is

to hit the right key at the right time and the instrument plays itself.� To play

the pianowell, we knowhowgood a start iswhen attempting to tackle a piece

of work that can have tremendous psychological impact on us. A good start

motivates players to keep their focus and continue to strive for better results.

A good beginning is work half-done. How a rhythm can be sustained is

another key factor to be considered for a music player. One wrong key could

break the melody immediately and could ruin all previous efforts!

Every rhythm can be represented as A–B–A–B regardless of what A and

B are. They could be R!D!C!T!R!D!C!T or code!use !fix

code!use!fix or anything at all. Each rhythm is uniquely different from

the others. Some rhythms are easy to start but require a lot of effort to sustain,

and external factors can also affect them negatively. Some rhythms, however,

once we are used to them, are easy to sustain.

Sustainability is a key issue in software development rhythms. So often, a

development rhythmno longer delivers expected values to both the teamand

the software but continues to be used. We use the in–out diagram shown in

Figure 1.21 to represent rhythms as easy or difficult to start and to sustain. The

in–out diagram provides a tool for strategic thinking. It is crucial to software

development rhythms and is used throughout this book.

FIGURE 1.21 In–out diagram.

30 NO PROGRAMMER DIES

Both the conventional and the iterative waterfall models are easy to start

with but difficult to sustain. Any changes can require substantial rework on

software and its documentation and can also break the rhythm, at least

temporarily. Changing requirements are less vulnerable to the iterative

waterfall than to the conventional waterfall. Thus Dave�s decision can be

depicted in the in–out diagram in Figure 1.22.

In this book, we discuss the in–out development rhythm diagram on the

basis of our experience. When putting this concept into action, it should be

noted that all teams are different and all participants should reevaluate the

diagram for their own team.

1.3.4 Master–Coach Diagram

The in–out diagramalonedoes not tell uswhatwill happen to a software team

when developers change with old hands leaving and new blood coming in.

For better planning, there is a need to know that a worker has gone and taken

his or her project knowledge and development experience.

Knowledge itself is an evergreen topic in philosophy. Ontologically,

knowledge can be explicit and/or tacit. Explicit knowledge can be simply

recorded in text, symbols, and/or diagrams. It can be articulated. Tacit

knowledge is individual�s actions, experience, values, enjoyment, rapport,

or passion, or the emotions that they embrace. It is human knowledge. A

software team putting rhythms into action has to work with tacit knowledge.

It takes time to learn and master new rhythms of practices in a unique

development environment. Even a single practice such as two people col-

laborating in programming appears so simple, yet both people require hours

or days to learn how to communicate well with each other. One dimension to

FIGURE 1.22 Dave�s decision.

SOFTWARE DEVELOPMENT RHYTHMS 31

consider when adopting development rhythms is whether they are easy or

difficult to master.

Newly hired developers may join a team during the development stage.

Newcomers may find some rhythms easier to learn through on-the-job

training alongside those who have already had experience with them or

through previous project documents or even by absorbing the development

atmosphere and culture.Newcomers start as apprentices tomaster craftsmen.

However a skill is acquired, the ease or difficulty of acquiring a rhythm adds

another dimension. Bringing team learning and newly hired programmer

training together,we have themaster–coach diagram shown in Figure 1.23. In

formal terms, the diagram reflects knowledge transfers between those who

have mastered the rhythm and those who have not.

1.3.5 No Mathematics

We do not need to perceive things through the use of mathematics. For

instance, we can turn a burner to high and heat up a water-filled pot. The pot

warms up and large bubbles rise to the surface. Eventually the pot boils dry.

Wehave learned theprinciples of this phenomenon fromour ownexperience.

We do not need equations.

There is no mathematics in rhythms. Depending on how software prac-

tices are played as a rhythm, their synergy cannot be clear through under-

standing each of them individually. An example is shown in Figure 1.24.

Pair programming, which is done by a team of two programmers who always

collaborateon the sameprogram together, is easy to startbutdifficult to sustain

because the teamhasonly twoprogrammers, there isnopartner exchangewith

FIGURE 1.23 Master–coach diagram.

32 NO PROGRAMMER DIES

otherpairs. If theyworkon the same task for long, itmaynotbeeasy for themto

alwaysmaintain their concentration. Solo programming is easy to start and easy

to sustain. It is hard to conceive of the in–out diagram of two rhythms as one

just byunderstanding these two individual rhythms.Wehave to look intohow

a rhythm is established.

1.3.6 Where to Explore Rhythms

Iterations, patterns, and rhythms are interrelated. Rhythm refers to harmo-

nized processes and practices in the sense that each element should be used at

appropriate times so as to deliver synergistic values to people and software.

Software development rhythms are also relevant when it comes to the use of

different development strategies andhowandwhen they should be executed.

Both the in–out and master–coach diagrams can guide such analysis.

It is possible for one to identify many rhythms in good software develop-

ment. Some are easy to start but difficult to sustain,while others are difficult to

start but easy to sustain. In this book, we are interested only in those that are

botheasy to start andeasy to sustain.There isno singleone rhythm that applies

to all kinds of software development. Identifying rhythms is a matter of

observation and experience, and it may even involve many trials and errors.

We have to try different rhythms out in our teams in practical situations. Agile

practices are generally amenable to this kind of approach, and for this reason,

rhythms of agile practices one of the main themes in this book.

Good software rhythms are required to ensure that a software team is

productive and the software projects are completed successfully. For this, we

need to know how to meet our new software teams, and how to recruit new

software developers for our team.A software teamhas its ownnorms, and it is

difficult for one to talk about a general template that can be adopted to achieve

the same results with a different team. For this reason, instead of discussing

some standard practices, we present some case studies. We will discuss

software teams in developing countries to emphasize the importance of

FIGURE 1.24 Rhythms have no mathematics.

SOFTWARE DEVELOPMENT RHYTHMS 33

cultural elements in exploring the right rhythms. To make software team

productive, a teammust be aware that not all the knowledge gained from their

software project experiencemaybe helpful or useful.We return to this issue in

Chapter 2.

It is tremendously challenging to tell a software team that they need to

change their usual practice and adopt something better. As there are somany

ways to build a piece of software, it is possible for some people to prefer one

method and others to prefer a completely different method. To address such

conflict in typicalmodern-day software development inChapter 3wediscuss

open-source software development that is almost diametrically opposite to

themethods used to develop software in the commercialworld.Almost every

programmer believes that there is something to be learned from open-source

software development, and in Chapter 3 we describe some of our experience

with using agile software development processes.

Chapters 2 and 3 establish some basics and cover a very broad spectrum

of topics in contemporary software engineering, touching on the essentials of

programmers, social culture, project experience, team communications, soft-

ware processes, and practices. The second part of the book makes use of

proven techniques and applications in engineering management, sociology,

industrial psychology, and group dynamics.

We explain software development rhythms in varying depths through-

out the other chapters in Part II and discuss several software development

rhythms. Many software rhythms are closely related to eXtreme program-

ming (XP), and this is not just a coincidence.Whilemany software teams have

successfully adopted thoseXPpractices, some teamsare crying out loud to get

out of it. I have often heard complaints such as �Kim and Keith, we already

tried the agile practices before, but theydidnotworkhere!�We think that they

get the software development rhythms wrong or they only get their old

development rhythms right. Trust me! To succeed with any software para-

digms, the mindsets and ways of working have to catch one critical element

right: software development rhythms.

Wehope that this bookwill helpyoubecomemore awareof the rhythmsof

software development and see how they can contribute to the quality of both

processes and products in your own firsthand experience of writing software.

REFERENCES

Anderson JV. Mind mapping: A tool for creative thinking. Business Horizon 1993; 36
(1):41–46.

Beck K and Andres C. Extreme Programming Explained. 2nd ed. Boston: Addison-

Wesley; 2005.

34 NO PROGRAMMER DIES

Bernstein L and Yuhas CM. Trustworthy Systems through Quantitative Software

Engineering. Hoboken, NJ: Wiley; 2005.

Boehm B. A spiral model of software development and enhancement. IEEE Computer

1988; 21 (5):61–72.

Brooks FP. The Mythical Man-Month: Essays on Software Engineering. Reading, MA:

Addison-Wesley; 1995.

ChapmanSN.The Fundamentals of ProductionPlanning andControl. Upper SaddleRiver,

NJ: Pearson/Prentice-Hall; 2006.

Leveson N. An investigation of the Therac-25 accidents. IEEE Computer 1993; 26 (7):

18–41.

Martin RC. UML for Java Programmers. Upper Saddle River, NJ: Prentice-Hall; 2003.

Nawrocki J, Walter B, and Wojciechowski A. Toward maturity model for extreme

programming. Proceedings of 27th Euromicro Conference, 2001, p. 233–239.

Poppendieck M and Poppendieck T. Lean Software Development: An Agile Toolkit.

Boston: Addison-Wesley; 2003.

Post TJ, Baltussen G, and Van den AssemM. Deal or no deal? Decision making under

risk in a large-payoff game show.EFA2006ZurichMeetings 2006; available at SSRN:

http://ssrn.com/abstract¼636508 .

RaccoonLBS.The chaosmodel and the chaos life cycle.ACMSoftwareEngineeringNotes

1995; 20 (1):55–66.

Royce W. Successful software management style: Steering and balance. IEEE Software

2005; 22 (5):40–47.

Royce W. Managing the development of large software systems. Proceedings of IEEE

WESCON, Aug (1970) p.1–9.

Tversky A and Kahenman D. The framing of decisions and the psychology of choice.

Science 1981; 221 (4481):453–458.

REFERENCES 35

2
UNDERSTANDING
PROGRAMMERS

I believe because it is absurd.1

—FATHER TERTULLIAN

As the saying goes, ‘‘If you think you won’t succeed, you probably won’t,’’

pretty much the same applies when we consider to what degree we often

internalize other people’s opinions about ourselves and to what extent they

can condition the sorts of outcomes we get in our lives.

In a famous 1968 study, ‘‘Pygmalion in the classroom’’, two psycholo-

gists, Robert Rosenthal and Lenora Jacobson, informed elementary school

teachers that certain students in their classeswere, on the basis of the result of

an intelligence test, highly intelligent (Rosenthal and Jacobson 1968). In fact,

the students in question were simply a randomly selected group. Teaching

continued, and at the end of the study students were tested again. The

students for whom the teachers’ expectations had been raised were found

to have made strongly significant improvements in their test performances.

This phenomenon is the self-fulfilling prophecy.

It’s a paradox of humanity thatwe are individuals but our ideas about our

individuality are heavily formed by those around us, especially by thosewith

status.

1The original saying is in Latin as ‘‘Credo quia absurdum est,’’ which means that if
something (e.g., the son of God has died) is too absurd to have been invented, then it
must be true (Rohmann 1999)

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright � 2008 John Wiley & Sons, Inc.

37

So the self-fulfilling prophecy works in two directions. Teachers’ expec-

tations of students become students’ beliefs about themselves. But students’

beliefs in the teacher matters, too. When you go out to coach or lead a new

software team, it is important to establish the team’s belief in the leader so that

the leader can help the teammembers believe in themselves. Letting the team

know about your past successes will help your team now. Let them be proud

of working with you.

Software development relies on people, and people rely on each other, in

all sorts of ways. The success or failure of a software project can simply be a

matter of self-belief andbelief in the team. So think positively. Besides this,we

also need to understand that each software team is unique and has its own

strengths.

A Fortune 500 company calls you and invites you to advise its software

teams. You are positive, confident, and optimistic. You arrive at the meeting

with great training materials, some pretty good jokes about software devel-

opment, and a passion to share what you know. But wait a moment! Are you

sure you’re ready? After all, what do you know about these people and what

theywant andneed?Howisyour experience andknowledge relevant to them?

You may be coming in to give them a complete overhaul, but they may just

want a small improvement. Theymay likewhat theyare alreadydoingand just

want to have someone confirm that they aremore effective than anythingnew.

Team culture and personality traits can be another big issue. One physi-

cian may kill a patient with risky surgery procedures while another lets a

patient die because she is too conservative to take risks. Yet both are trying to

do their best for their patients.

Some of your team’s current software practices may not be appropriate,

but which practices should be dropped or changed, and what should replace

them? To know what is worth learning, we have to know what is generaliz-

able and what is specific to a particular project. A method that has been

successfully used to implement one special projectmay have little or no value

beyond that project.

If it is people who execute software methodologies, the execution cannot

be toomechanical. Different teams implement the samemodel differently. So

software methodologies should be more human-centered rather than pro-

cess-centered. The thing to remember is that softwaremethods are carried out

by people and that people will always impose values on even the most

obvious cause-and-effect practices.

Before we take a look at how and when software practices can be

rhythmically combined,wemust first briefly visit the realmof the psychology

of programming. In particular, we need to consider how new software teams

should be approached and made to understand working patterns, how to

38 UNDERSTANDING PROGRAMMERS

develop development rhythms by themselves, and also how new members

should be recruited into the team. We also need to consider how cultural

factors can affect software development and how software teams can make

sure that they learn from their own experience.

2.1 PERSONALITY AND INTELLIGENCE

People are more sensitive to the issues of intelligence than personality. For

example, how would you feel if your team leader said that you weren’t up to

the job intellectually? In contrast, how would you feel if she said you were

stubborn? It is probablyworse to be told that you are not smart enough.Weare

generally pretty tolerant of our human failings, or we are willing to concede

that we have flaws or just have different personalities. But we don’t like to

think thatwe aren’t as smart as our peers. Youhave towonderwhetherweput

too much emphasis on this slippery concept that we call ‘‘intelligence.’’

Early studies in psychology of programming on the relationship between

psychology and computer programming did not directly deal with person-

ality and intelligence.At that time, therewasmore interest in the evaluation of

software tools in terms of performance. We looked at activities of program-

ming design, code comprehension, and problem solving. Only then did we

try standardized tests of intelligence to see whether they could be used to

predict programming performance, and to screen job candidates. As ex-

pected, the correlationbetween intelligence assessments (e.g., figuring out the

next number in a series) and programming capability was shown to be

statistically significant. Yet, as Mayer and Stalnaker (1968) reported and as

anyone in the workplace can tell you, there is actually no strong relationship

between the test and the actual job performance of programmers. A piece of

the puzzle appears to be missing. Is it personality?

Around 1997, we worked for a system analyst who was a dominating

anddirectingperson.Hewas very fact-orientedwith no time for chitchat. As

a programmer, this made him rather unapproachable and it also made it

difficult for us to talk to him about, in one case, a database design of his that

was not really up to standard. Knowing his ways, we decided to approach

him in a very fact-based way. We did our research and collected plenty

of references. Thenwe attempted to showhimwhy his designmay have had

someproblems.We knocked on his door.Wewere given 3minutes before he

requested us to get back towork.He did notwant to hear about any problems.

Beingwet behind the ears,wewere a little taken aback by this. Shouldn’t a

person who expresses a belief in data be open to persuasion by the presenta-

tion of more facts? Actually, as we’ve since discovered more than once, the

PERSONALITY AND INTELLIGENCE 39

answer is ‘‘No.’’ His interest in ‘‘facts’’ wasn’t about ‘‘the truth.’’ It was

about his self-image of always being right. If facts were going to prove that he

wasn’t right, suddenly he wasn’t so keen on them. That’s personality in

action.

Shell and Duncan (2000) say that subordinates who have personalities

similar to those of their superiors will have a slightly higher incidence of job

satisfaction if they are instructed by their superiors. Happy programmers

work harder. They bring some sort of positive attitude into the workplace. As

a consequence, problems seem easier to handle. It is, therefore, important that

employees influence each other to create a pleasant, cooperative atmosphere.

This is especially the case where there are a lot of individual, face-to-face

interactions so that a small group of people can have a greater influence on

others’ behaviors. The more positive influence the members of a team have,

the more skills and ideas they share, and the more we can get things done

faster and better.

2.1.1 Virtuosi

A 1972 study showed that the fastest programmer could be as much as 28

times faster than the slowest programmer (Humphrey 1995). This may be of

interest in certain contexts, but in terms of real-world programming products

speed is just one element among many important ones. Programming

includes design, algorithms, coding and, testing. Each of these requires

different skills. As far as speed does matter, it is possible that a programmer

is faster than his colleagueswhenwritingprogramXbut slowerwhenwriting

program Y. We might say that a truly talented programmer can produce

solutions to any programming problem more quickly than others can. But

even this assumption does not take into account familiarity with the very

diverse range of software products and development tools available today,

the rise of interactive development environments that provide commands for

checking and instant technical help, or the fact that the complexity of modern

software demands teamwork.

Intuitively, however, onemay still know that someprogrammers are just

more skilled or proficient than others. What are we seeing in such people? Is

it the domain knowledge they possess? One has to know enough about, say,

logistic operations before one can write supply chain applications, know

sales operations before writing customer relationmanagement applications,

manufacturing operations before writing amanufacturing resource planning

(MRP) module, and so on. Often, it is a lack of domain-specific knowledge

that makes programming hard. The more we understand business opera-

tions, the better we design and code for business operations.

40 UNDERSTANDING PROGRAMMERS

Fewpeople live such a hyperfull life or have such a varied career that they

have not only the programming skills but also a knowledge of theworld to the

extent that they are expert in every facet of every project that they ever

encounter. Life isn’t that narrow, and most people aren’t that smart. That is

one reason why we need teams, to bring together people with diverse skills.

But even then, the knowledge of each team member has to be available to

other team members at various times, in different contexts, and in various

accessible ways. This calls for managers to be able to create effective teams

that focus on four core skill areas that are not addressed in text books on

programming and never taught in courses on software design: (1) people

collaboration, (2) task coordination, (3) effective communications, and (4)

appreciation of cultural differences.

2.1.2 Meeting Your Team

Programmers live with and think with software activities, and the way they

live with them and think about them affects the waywe think andwork. This

matters because, surprisingly, among a group of programmers who you

would expect to all have basically similar backgrounds, knowledge, and

experience, there canbehugedifferences in theway they think about software

activities. We shouldn’t make the mistake of thinking that, when a software

team adopts a particular programming paradigm, old or irrelevant or out-

moded or even entirely contradictory programming practices and attitudes

will just be immediately dropped or forgotten or left behind. No. People are

creatures of habit and prejudice. Theway they think about a software practice

really matters and strongly affects the ways others around them think.

Programmers who have used the waterfall model for 10 years may have

to struggle to adopt new programming practices (say, the agile practices as

presented in Chapter 3). They do so not because such stuff is difficult but

because their minds are just not ready for them yet. Every time we meet and

try to help a software team, we have to understand their backgrounds and

respect the way they develop software even though we might consider it

stupid. How do we quickly know a new software team on the day we meet

them? We ask them to draw circles—a little Rorschach inkblot–style exercise

that almost anyone can do.

We give them paper and pencil and ask them to draw four circles, each of

which represents their view of four basic programming concepts: (1) user

requirements, (2) system design, (3) programming, and (4) testing. Theymay

draw however many they want on the paper. Figure 2.1 shows some of these

pictures drawnbydevelopers.Next,we post the pictureswhere everyone can

see them, and we see that within each category some drawings are similar

PERSONALITY AND INTELLIGENCE 41

while others are very different. People usually find this part interesting,

namely, how different people see the ‘‘same’’ thing differently.

Once the circles are drawn, we get into some interpretation. We ask

people to briefly explain how what they have drawn reflects their working

experience as programmers and how it represents the cultures of teams that

they have been part of. One especially interesting phenomenon as these

presentations proceed is that later presenters often start to draw on and

modify their own drawings as they talk—in response to what they have

seen and heard earlier; that is, the present peer input starts to modify how

they are now seeing their own past experiences! This is the power of teams

and this shows how teams can unleash powerful dynamics for better or for

worse.

There is a lot of potential value and interest in this exercise, but it is

important to be clear about what value you are trying to get out of it. It can

produce information about individual attitudes to teams and their develop-

ment rhythms. It can be an effective brainstorm for project management

design. It can also be a good exercise in effective communication. (Get a team

to interpret and explain someone else’s drawing, then get an artist to explain

it.) When you introduce your circle, it is a good, pretty much jargon-free way

to get everyone on the same page about the approach being adopted in a

particular project. And there aremany other potential uses. This little exercise

FIGURE 2.1 What does your team think of software development?

42 UNDERSTANDING PROGRAMMERS

is a good starting point to show everyone that software practices matter, and

that in fact they are at the heart of software design and quality.

2.1.3 Recruiting Programmers

We have met our new software team. Everything started beautifully. The

team has done well! They developed programs according to what we coach

them to do. Then, as always, the team needs to face a problem. The smartest

guy in the team, who already learned everything from us, would now like to

resign from his job. We need to find someone as good as this guy to replace

him. The manager handed out a list of candidates with their resumes for the

team’s consideration. What the team needed to do then was to pick someone

from among the list.

How dowe know that someone is going to fit in with what wewant to do

in a smooth and productive way? This is well short of using a crystal ball. It is

some kind of guessing game. Some software managers like to screen candi-

dates using written tests, but it is very hard to write good questions to

determine or assess a candidate’s programming abilities or development

experience. Somemanagers prefer, instead, to ask candidates to write a short

program. This is a bit time-consuming, but it does at least test both their

language skills and domain knowledge.

The programming aptitude test (PAT) is a common test for determin-

ing the ability of an individual to write programs, but it tells us nothing

about specific personality traits relative to specific software practices or

organizational cultures. Greathead and Devito Da Cunha (2004) discovered

that student programmers who have a greater tendency to intuitive

thinking approaches will do better at spotting semantic errors in Java

programs (i.e., code review). Capretz (2003) surveyed 100 full-time soft-

ware engineers and found that the majority preferred working with

technical facts rather than with people. It may be just as interesting to

ask people how they feel about working with software engineers. In most

software organizations nowadays, the alone-with-my-screen model of

software development is as passé as PacMan. Modern developers have

to work closely together with colleagues and customers. Many organiza-

tions now expect their software teams to have some sort of diversity in

terms of personality type.

There are many counts against personality tests. In some places, people

are sensitive about such tests as they may appear to be a cover for racial,

sexual, or other form of discrimination. There are also questions about how

much trust we can put in them. Often enough, the personality test summaries

that are spat out at the end of a questionnaire classify an individual in this

PERSONALITY AND INTELLIGENCE 43

group or that type, and they read pretty much like something from the daily

newspaper’s astrology page. Also you have to wonder how these limited

categories account for variety. They never have anything to say about specific

behaviors or specific circumstances. You read all the categories and wonder

which vague generalization would include the behavior of an axe-murderer:

‘‘Prefers to set own goals?’’ ‘‘Requires little supervision?’’

FIGURE 2.2 Asking specific interview questions will help you understand candidates’
perceptions of and experience in software development.

44 UNDERSTANDING PROGRAMMERS

Candidates don’t like personality tests, either. They are suspicious of

being categorized without a chance to defend themselves, of being classified

under a general heading without a chance to show how they are special or

unique. Most candidates would actually much prefer a job interview. They

like open questions (e.g., such as that posed in Figure 2.2) that allow them to

make claims and support themwith examples, stories, and solid arguments. If

they can talk about technical things and their team experience and can

provide overviews and analyses, they are probably good candidates for any

job that requires those things.

Ultimately, one part of hiring well must be to get the candidate to

demonstrate thedesired skills—whether they’re technical skills (e.g.,whether

the candidate can program in a certain language) or transferable skills (e.g.,

whether the applicant communicates easily and clearly). So if you’ve got a job

that requires people to sit through personality tests and get certain outcomes

in certain columns, by all means, make a personality test a central part of the

hiring process. But there are probably no such jobs.

2.2 OUTSOURCED PROGRAMMERS

Many softwaremanagers and coaches flybetweenNorthAmerica andAsia to

run software projects. Normally, these managers will tell you that it is

difficult, but rewarding, to manage a team like this. Not the least of the

rewards are the lessons we take home with us from other places. Learning

from other places begins with respect, which is a keystone of such collabora-

tive practices as pair programming (see Chapter 5).

As the Internet has globalized the demand for programming skills

and data products, there are few geographic advantages any longer associat-

ed with any data manipulation activities. To the users, as long as it does the

job, it makes no difference whether their code is written in Bangalore or

Budapest.

Around the world, the distribution of skilled and less skilled program-

mers has no correlation to geography. It may correlate with other things, but

certainly notwith geography. So the ‘‘where’’ doesn’tmattermuch anymore.

The focus now is almost exclusively on ‘‘how much’’ and ‘‘how good.’’ This,

in turn, explains the modern geography of programming as an answer to the

‘‘howmuch?’’ question, countries likeChina, Thailand,Malaysia, Russia, and

Brazil and eastern European countries provide cheap programmers, making

these places suitable for software outsourcing.

As for ‘‘how good,’’ this raises the issue of ‘‘cultural capital’’—the

advantages and disadvantages inherited from history. One major type of

OUTSOURCED PROGRAMMERS 45

cultural capital in the globalized world is of course, familiarity with the

English language. Some countries like India have an advantage there. Those

with a better facility in English will need less time to understand and pick up

the latest technical tips. They don’t need to rely on translations and won’t

fall victim to local translated Websites that may be putting out inaccurate

information. This is a definite advantage when somany answers to problems

are in fact frequently simply posted on the Internet for thosewho can read the

source.

In the end, history and themarkets may flatten out these distinctions, but

for the moment they are a reality for every project manager to deal with.

Managers should know the places that they are outsourcing to. You should

remember that those places consist really of people and cultures with their

own sets of local standards. Just because so much has gone global now and

just because you sometimes don’t meet face to face with the people who are

working for you, you should not assume that teams or personalities are no

longer relevant.

The right people are still necessary elements for good teamwork. With a

little understanding of the local constraints on programmer behaviors in

developing countries, you will be better prepared to get the best out the

software teams you coach and lead everywhere.

2.2.1 Programmers in Their Environments

In Europe, manufacturing ismoving to eastern Europe. In the United States it

moves from northern to southern states, or across the border to Mexico. In

Asia, it findswhat it needs in formerly rural areas.Manufacturing has always

done it—moving to places where land and labor are cheaper, and where

governments are keen to provide or subsidize new, purpose-built infrastruc-

ture. In the same way that manufacturing plants spring up, so, too, can

numerous small local software teams, either in-house or externally, to

provide system solutions.

These software teams are defined by their local environments. They are

composed mostly of local people and for various reasons; they may not be

made up of the cream of the crop. Anyone who wants to build a software

team in one of these regions, except perhaps for big corporate headquarters

and top research universities, needs to realize that there can be big

differences in standards and attitudes between those teams in some less-

developed towns and the well-developed cities even though they may be in

close proximity. These differences can continue to widen—very quickly—

when a city, as is the case with China, becomes the focus of government

attention.

46 UNDERSTANDING PROGRAMMERS

The authors’ experiencemanaging software teams in China has revealed,

briefly, four challenges that one needs to face when working in these areas

with local teams:

. Your programmers will have very poor English. This means that they

will not be able tomake themost of new technical information available

on English-language Websites.

. They won’t know much about software methodologies. Currently,

there are few books, written or translated into local languages, on this

topic and even if there are, programmers are veryunlikely to regard it as

either practical or useful. Most translated books are about tools (e.g.,

Dreamweaver) and computer languages (e.g., Java).

. Youwill find that the people on your teamare always on themove. Less

developed areas might be remote from the well-developed cities in

terms of practices and attitudes, but that doesn’t mean that they are

physically very far apart. In fact, less developed areas that are devel-

oping as active industrial areas are often within 250 kilometers of the

moremodern cities. Thismakes it easy for programmers to try their luck

in the bigger cities and this makes it hard for team leaders to maintain

stable teams.

. Most of the business is on the hardware side. Generally, 70%of business

offers hardware support and only 30% provides software solutions.

Therefore, they do not focus on software development as it is not their

core business.

2.2.2 Programmers, Cultures, and Teams

Theprojectmanager recruited to lead a software team indeveloping countries

must bridge between cultures. While language, management, and program-

ming skills should not be neglected, cultural understanding of what software

practices will and will not work is critical.

Local IT teams in developing regions will consist of a high proportion of

inexperiencedprogrammers. For them, your teamandyour project are just an

entry in their resumes. They’re heading for the city sooner or later, and hence,

personnel turnover is usually extremely high. One must be prepared for

frequent job handovers. Whether the software teams are in-house or external

to a company, there is a balance of positives and negatives that you will have

to deal with, some coming from the external environment (e.g., that slippery,

hard-to-define thing called ‘‘culture’’) and some from how we handle those

environmental factors (our corporate culture, e.g., how we communicate or

how we use incentives). In the following lists, we summarize these factors.

OUTSOURCED PROGRAMMERS 47

The Negatives

. Managers usually have little formal training in software project man-

agement or software engineering.

. A high proportion of programmers are inexperienced.

. There is a high turnover of good programmers.

. Programmers either lackflexibility or are unwilling todisplay initiative.

They rarely try new ways of solving old problems.

. Programmers prefer step-by-step guidance when learning and apply-

ing new skills.

The Positives

. The cost of programmers are low with monthly salaries ranging from

US $62.50 to US $312.50.

. The software teams are small, around eight members or fewer.

. The programmers are willing to work very long hours (as much as

50–55 hours per week) without additional pay.

. The programmers are keen to learn any skills that they regard as

‘‘practical’’ or ‘‘useful’’ for their future jobs.

The Neutral

. Willing to accept comments about their mistakes. Unfortunately, they

are prone to repeating the same kind of mistakes.

2.3 EXPERIENCED MANAGEMENT

We expand our knowledge of software by running software projects. We

knowhow to say hello to our teamand get alongwith different programmers.

We know which approaches or development rhythms are suitable for some

teams but not others because of team cultures or for other reasons. But have

you ever wondered whether we could ‘‘mislearn’’ something because it is

inherently difficult to learn from software projects?

The knowledge and experience that one gained through involving in

various projects are treasures for an organization but so often only some of

them are treated as valuable or worth collecting. Somemanagers are particu-

larly keen to collect numerical project data for benchmarking and improve-

ments as if the numbers have some undeniable, inherent truth. They can

appear to be so narrow-minded as to ignore the fact that data must be

interpreted according to how they are collected. This brings us to the

48 UNDERSTANDING PROGRAMMERS

importance of knowing how a project has been executed. How a team adopts

software practices could be better understood by project events, meetings,

and scenarios that are usually difficult to properly document. For example, it

is unfair to judge how well two programmers are collaborating on a single

assignment by the number of lines they have written.We have to understand

software quality and the efforts involved in reworking and how they are

related to job satisfaction.

Experience becomes exponentiallymore valuable to a company or team if

it is recordable, teachable, and transferable—from person to person and from

situation to situation. How can we add this value to experience? Given the

right environments and incentives, it might help one to read and write about

it, train it, model it, and mentor it. But all of this begins with recording it,

making observations, and drawing the right conclusions—conclusions about

our experience that are worth passing on.

With everything properly documented, it should be emphasized that

learning from experience is not that easy. Some particular experiences may

not provide lessons that are applicable to all software projects. One can con-

fuse subsequence and consequence in software projects. For instance, just

because one event (e.g., outdated design documents) often precedes another

(programming reworks), we cannot conclude that the former is a cause of the

latter. In other words, subsequence may not be the same as consequence.

2.3.1 Being Casual about Causal Relationships

Experience offers us a tangle of data and the relationships between cause and

effect are not always easy to see from data. However, it is easy to just accept

the first explanation for a phenomenon that comes mind. We really have to

steel ourselves against this habit of blindly attributing causes to effectswhere,

even if we know that there is a strong correlation between two events, we still

may not know about the direction, the strength, or underwhat circumstances

the causality takes place. For example, let’s consider what might be the

causal meaning of a strong correlation between outdated design documents

and substantial programming reworks. There are four possible casual

relationships.

1. Outdated Design Documents! Substantial Programming Reworks. Soft-

ware developers have to completely rework their programswhen they

find out that they have followed outdated design documents to build

software.

2. Substantial Programming Reworks!Outdated Design Documents. Soft-

ware developers rework their programs tofix anumber of bugs related

EXPERIENCED MANAGEMENT 49

to system design but do not have time to update relevant design

documents.

3. Substantial Programming Rework � Outdated Design Documents. Soft-

ware developers have to rework their programs when they find

out that the design document is outdated. At the same time, other

developers detect design bugs and fix them but do not update the

relevant documents soon enough.

4. Changing Requirements! Substantial Programming Reworks and/or Out-

dated Design Documents. A fourth factor, not tested for its correlation to

the other elements and thus seldom on our radar, actually causes both

substantial programming reworks and outdated design documents.

There is no direct casual relationship between the rework and the

documents.

Taiichi Ohno 1988, father of just-in-time manufacturing, suggests that

anyone who is looking for a possible cause of a problem should ask ‘‘Why?’’

5 times. For example

Whydidwe takemuch time tomake a smallmodification in the software?

Because the same logic related to the modification was written differently and

placed in more than one place.

Whywere pieces of the same logic put into so many different places in a

program? Because they were not grouped into a single submodule.

Why weren’t they grouped into a submodule? Because the program was

written by three developers and each wrote the same logic on their own.

Why didn’t the developers communicate at the beginning so that pieces

of the same logic could be unified? Because the developers thought we

would communicate well through the design documents that they wrote at the

beginning.

Whydidn’t they follow thedesigndocuments?Because theywerewritten by

the three developers and each part was read and understood only by the one

who wrote it.

Ofcourse,Mr.Ohnodidn’t sayyouhad to stopatfive ’’why’’s (Ohno1988).

2.3.2 Not Learning from Experience

It is often pointed out, but usually with a sneer, that people who believe that

their temperaments are governed by the relative positions of stars tend to

accept general personality descriptions as uniquely applicable to them and

50 UNDERSTANDING PROGRAMMERS

ignore the fact that suchdescriptionsmight equally be applied tomany,many

others, or even everyone (Forer 1949).

Of course, the trouble with this observation is that the same could be said

of just about anyone who ever visited a psychologist. So, perhaps we

shouldn’t just pick on people who enjoy the simple-minded vanities of

astrology. The fact is, most of us indulge in this kind of intentional belief—

the behaviorwherewe seewhatwe expect to see andwhatwehave learned to

see. It is a very common and, inmany circumstances, a very efficient behavior.

But, of course, that doesn’t make it a good software management practice.

The difficulty in learning from software projects comeswith the fact that,

because of the dynamic and multifactorial nature of many project-specific

problems, the immediate or timely identification of the root causes of

problems may be impossible. For example, changing requirements during

implementation may lead to the ultimate abandonment of a software project,

and this may arise from many causes, such as misunderstanding system

limitations owing to ineffective user training, a lack of user involvement at the

user requirement stage, or lengthy implementation requiring a review of

potentially outdated business requirements. Given that the immediate iden-

tification of root causes is not always possible, it would be wise for problem

solvers to take a Hippocratic approach to offer premature solutions to first

ensure that they do no harm.

Premature bad solutions, however, are hardly worse than delayed bad

ones. It may be, as Jørgensen and Sjøberg (2000) say, that much of the

experience we obtained from IT projects could be in fact mislearned. Perhaps

so. Then length of experience in IT certainly doesn’t correlate with higher-

quality professional judgments.

Even formal postmortem reviews may include much incomplete and/or

incorrect information, and people are so tempted to jump to conclusions

about causal relationships. Some common patterns or habits of thought can

cloud the judgment:

Hypnotic Decision Making. The bases of our own decisionmaking are not

always clear to us. In one study of buyer habits at a wine store, French

andGermanmusicwasplayedonalternatedays.WhenGermanmusic

wasplayed,moreGermanwineswere sold than French andvice versa.

However, in later interviews only 1 out of 44 customersmentioned the

music as a factor in the purchase decision (North et al. 1999).

The Salience of UselessUnique Experience. We all enjoy unique experiences.

They canmake the best stories to tell other people. Unfortunately, they

usually just contribute a lot to our prejudices and very little to the

formation of useful generalizations.

EXPERIENCED MANAGEMENT 51

Creating False Narratives. It is very common for us to take a fragmented

selection of events from a project and re-form them in ourmemories as

persuasive narratives. We reorganize events and unconsciously fill

in gaps with plausible materials to make a nondisturbing, rational-

seeming flow of events. Persuasive, but untrue. Don’t rely on your

memory. Remember that your memory thinks that its main job is to

make you the hero of your own story. Just as the law has nothing to do

with justice, your memory has nothing to do with the truth.

Believing Is Seeing. This is like intentional belief. We often formulate

hypotheses or make generalizations, and then everything we see is

made to fit into the theory (Preston and Epley 2005). We think that

programmers like chattingonline?We think that tall people are smarter

than short people? We’ll notice and take onboard as evidence any

examples that confirm those beliefs. We’ll just ignore any that don’t.

So, how canwe believe, andwhat can we believe? Part of the answer is to

take on a range of diverse, evidence-based opinions and to record and

reconsider what it is that we have learned. We have to consider alternative

perspectives on the same event and challenge our own. We need to be aware

of the biases and limitations inherent in our learning about a particular event.

Anyone can fall into the trap of project experience. Since so many

software development rhythms can be worked out from project experience,

we can very easily wrongly combine software practices. Rhythms that are

easy to start and easy to sustain become important, as we should easily see

values delivered to programmers and programming. Throughout this book,

we will make use of a number of empirical findings in other areas that will

broaden our perspectives in understanding when and how software devel-

opment rhythms introduced here actually work.

2.3.3 Doing Things Right Right Now

‘‘Works everywhere and always in the same way for everyone’’ would be a

great promise for any software product. But there hasn’t been a product yet

developed that can really live up to that kind of promise. One may be full of

confidence and may decide to adopt an ‘‘industrially proven’’ programming

paradigmwith lots of statistical support only to find that for some reason—or

for many reasons—it just doesn’t work for his or her organization.

At that point, the important question for a software program manager

becomes ‘‘What now?’’ What do we do when the perfect plan turns out to

have flaws? In many situations, the art of software management is the art of

turning a sow’s ear into a silk purse, of spinning gold out of straw. Software

52 UNDERSTANDING PROGRAMMERS

paradigms thatworkwell for aproject at thebeginningmaynot be sustainable

and may even end up as models for a mess!

Are theremanagement techniques to prevent this? One technique is to be

aware of the rhythms of software development. Because they are iterative,

they allowus to checkwhetherwe aremakingprogress, to checkhow real it is,

and to see whether we are moving in the right direction. After each cycle, we

can see what is more or less valuable and we become more confident that we

are doing things right right now.

It is important not to assume that a paradigmor a part of paradigm is self-

sustainable or to be overconfident because of previous success with a

particular method or product (Figure 2.3). When things start to go wrong,

we have to be able to change to other development rhythms. It is critical to

FIGURE 2.3 We may be misled by our past success.

EXPERIENCED MANAGEMENT 53

have rhythms that are easy to start and easy to sustain and to use them as

needed, and this is how we harmonize software practices for synergies.

REFERENCES

Capretz LF. Personality types in software engineering. International Journal of Human-

Computer Studies 2003; 58 (2):207–214.

Forer BR. The fallacy of personal validation: A classroom demonstration of gullibility.

Journal of Abnormal Psychology 1949; 44:118–121.

GreatheadDand DevitoDaCunhaA.CodeReview andPersonality: Is Performance Linked

to MBTI Type? Technical Report CS-TR: 837 of Computing Science, Newcastle

University; 2004.

Humphrey WS. A Discipline for Software Engineering. Reading, MA: Addison-Wesley;

1995.

Jørgensen M and Sjøberg D. The importance of not learning from experience.

Proceedings of European Software Process Improvement, 2000.

Mayer DB and Stalnaker AW. Selection and evaluation of computer personnel—the

research history of SIG/CPR. Proceedings of the 1968 ACMNational Conference, 23rd

ACM National Conference, 1968, pp. 657–670.

North AC, Hargreaves DJ, andMcKendrick J. The influence of in-store music on wine

selections. Journal of Applied Psychology 1999; 84 (2):271–276.

Ohno T. Toyota Production System: Beyond Large-Scale Production. Cambridge, MA:

Productivity Press; 1988.

Preston J and Epley N. Explanations versus applications: The explanatory power of

valuable beliefs. Psychological Science 2005; 16 (10):826–832.

Rohmann C. A World of Ideas: A Dictionary of Important Theories, Concepts, Beliefs, and

Thinkers. New York: Random House; 1999.

Rosenthal R and Jacobson L. Pygmalion in the Classroom: Teacher Expectation and Pupils’

Intellectual Development. New York: Rinehart & Winston; 1968.

Shell MM and Duncan SD.The effects of personality similarity between supervisors

and subordinates on job satisfaction, 2000. available at http://

clearinghouse.missouriwestern.edu.

54 UNDERSTANDING PROGRAMMERS

3
START WITH OPEN SOURCE

If God had meant for us to be naked, we�d have been born that way.

—MARK TWAIN

Software developed by organizations according to their customer require-

ments is hedged in by an intangible boundary. There are predetermined

limits to its growth. Once it fills its niche, there it often stays. In part, this

limiting boundary is defined not by customer requirements but by commer-

cial considerations—especially issues of ownership.

The usual idea of growth is that it is driven by commercial needs. But

commercial markets don�t offer every good we want, and companies are in

fact quite satisfiedwith offering fewer goods and choices if they can control a

market and charge us higher prices. In other words, commercial markets

aren�t perfect. There are values that companies don�t care about but peopledo.
Open-source software is agreat exampleof this. It is exploding. It is taking

on commercial giants. It is satisfying diverse needs that the commercial

producers thought only they could satisfy. It�s free. It�s mysterious. Many

have wondered exactly how open-source software development works.

We have talked about how to meet new teams and to recruit team

members. It is time to ask a bunch of questions to explore your team�s
thoughts about what software development is and to share your under-

standings of the relationships between software practices, programmers,

customers, and software. The success of open-source software development

(OSSD) practices and artifacts is undeniable but is also something of an

55

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright � 2008 John Wiley & Sons, Inc.

anomaly when compared with many other software development processes.

In our experience, it doesn�t matter whether a software team is made up of

waterfall model lovers, agile proponents, or ad hoc enthusiasts; they are

always interested in OSSD.

What are the limits on the growth of open source? What drives an open-

source software project? What sustains it? A paradigm that involves un-

economically large numbers of people asynchronously collaborating on tasks

and tolerant of high levels of redundancy or duplication is not a very

commercial way of managing a project (see Figure 3.1). How is this possible

in the modern era, and what can we learn from it? Is it agile?

There are four important areas to consider with reference to open-source

software:1 (1) IT strategy, (2) OSS product management, (3) reusing open-

source code, and (4) the OSS development model.

Companies re-form their business models and commercial strategies

for open-source software. For example, some mobile phone manufacturing

FIGURE 3.1 Redundancy and duplicated efforts in the workplace if coordinated as an
anonymous open-source team.

1We might actually say five areas, including open-source licenses.

56 START WITH OPEN SOURCE

companies have already seen market opportunities and made their hard-

ware with Linux preinstalled. Some have said that Linux has been the

largest project in the annals of software development. Maybe so and

maybe not, but certainly Windows Server 2003, which has been said to

be the largest software development project in Microsoft�s history,2 was

launched to handle the threat of Linux (Raymond 1998). Microsoft has

continuously expressed concern about competition from open-source

products. Nowadays, the open-source product is nothing more than

software and it can be just one element of a total business solution for

customers in the commercial world.

Using OSS products means making some changes in the way that we

manage software projects as it creates a need to implement and integrate OSS

products alongside other commercial packages. As for software implemen-

tation in the enterprise, Golden (2005) suggested a well-structured open-

sourcematuritymodel. Thismodel covers six key areas inwhich to assess and

manage OSS products: software, support, documents, training, product

integration, and professional services.

For further development, an organization may customize the open-

source products. Reusing previous work of open-source software definitely

accelerates development from the ground up. We will come back to this

exciting topic in Chapter 4.

Finally, what lessons can we learn from so many open-source software

projects? Is there any structured software model in these projects? Open-

source software development has been well studied but it is still an area with

many unknowns and uncertainties. There are some inherent barriers to

understanding OSSD experimentally. It involves the collaboration of a large

number of people from different cultures who may or may not be known to

each other. They have diverse motivations, from killing time to personal

interests to a role in a funded project. It is not easy to determine a suitable

sample size or to manage cultural factors in a way that would satisfy the

requirements of controlled experimentation. Yet this unconventional model

would appear to have lessons to offer us in our commercial software

development environments. Bringing the whole OSSD process into our

commercial workplace is out of the question, but it may be feasible to adopt

some open-source practices.

In this chapter we address the basics of software development. From the

project management viewpoint, we explore commonality and differentiation

between OSSD and agile software development.

START WITH OPEN SOURCE 57

*2Microsoft�s timeline from 1991, available at http://www.thocp.net/

companies/microsoft/microsoft_company_part2.htm.

3.1 PROCESS AND PRACTICE

Processes and practices have been freely used in the software literature.

Althoughwe can usually tell the difference in context, some developersmake

themistake of thinking that practices are just lightweight processes. To avoid

confusion, we�ll clarify the differences here.

Simply put, a software process is a collection of activities performed to

achieve given goals. Therefore, a software process is a way of describing how

work should be done (Sommerville et al. 1999). From the perspective of

engineering management, the activities performed should apply disciplines

for accomplishing the goals with a minimum of unplanned intervention.

Processes can be and often are automatedwith tools. This is important to

recognize because processes with the same objectives and procedures could

achieve very different results in terms of efficiency and effectiveness depend-

ing on whether the processes are executed using manual systems or automa-

tion. In practice, software processes are often semiautomated and use self-

governing automation. It is not the same kind of automation that we see with

machines inmanufacturing environments, yetwe continually seek todevelop

and adopt technologies to make our software processes more automated,

such as the generation of code from user requirements.

Software processes should be recurrent and repetitive. This implies that

we are concerned with how the same process can be performed better than

previously. This brings up a topic called software process improvement. The

resources taken up by the activities of a software process (e.g., cost and time)

can be used to establish a baseline to continuously improve the process.

Simplifyingworkflow among activities so that communication overheads are

reduced and errors are discovered as early as possible may significantly

improve the overall software process. Therefore, to optimize a software

process, we have to deal with activities and ways of performing activities,

which are collectively called software practices.

Whenwe say �software practices,�wemean two specific things. They can

be ways to execute tasks (or activities) and/or activities (or norms/customs).

Themeanings can be best understood by example. In pair programming, two

developers collaborating in front of a single machine is a way of program-

ming. The tasks required to collaborate include design, programming, and

testing. These are activities.

When a process ismade up of one or two activities, itmay be considered a

practice. However, the reverse may not be true. A number of practices

together may not be regarded as a process if there is no well-defined goal.

Some practices are just more pragmatic and culture-oriented than they are

goal-specific. For example, the practices energized work and shared code

58 START WITH OPEN SOURCE

(Beck and Andres 2005) do not together explicitly indicate any objective.

Along with other practices, energized work and shared code can be used to

achieve certain things, or they alone are just organizational norms.

Depending on activities and their execution, software processes can be

lightweight or heavyweight. And so it is with practices. The term weight is

figurative (e.g., see Figure 3.2). It has no formal definition. Therefore, some

may take the term heavyweight to mean ceremonial, nonadaptable, or bureau-

cratic. Yet this does not clearly explainwhy some agile practices are said to be

lightweight. For example, a software practice called pair programming has two

developers collaborating on design and programming tasks at the same time.

We were once asked whether pair programming would be a lightweight

practice. On one hand, pair programming allows people to workmuch closer

so that there are fewer bureaucratic barriers to team communications. It is

more adaptable when, for example, people call in sick. On the other hand, it

can be nonadaptable when team members as the individuals previously

enjoyed more flexible working hours.

The weightiness of software processes and practices is a matter of the

values that arise from them and the degree to which activities directly benefit

and contribute to core developers (i.e., people) and core software program-

ming (i.e., products). So pair programming is lightweight. For example, a

software process that requires writing all-embracing design documentation

for commercial database applications may be considered heavyweight as it

does not directly create value for the core development. Heavyweight

processes have their place. In this case, detailed documents come in handy

FIGURE 3.2 Are you sure pair programming is lightweight?

PROCESS AND PRACTICE 59

whenwe are going to outsource technical support and softwaremaintenance

abroad.

This simple definition does not consider customers because they nor-

mally are not interested in software development. But if developers make

software right, this will result in delivering right-quality products at the right

time and at the right price, and that is definitely a set of values that would

benefit customers.

Lightweight and heavyweight are associated with people and products.

Heavyweight processes and practices are less inclined to direct their effort

and their values as directly toward people and products. Lightweight is the

opposite.

3.1.1 The Four Ps of Projects

TheAgileManifesto (2001) declares that individuals and interactions areplaced

above processes and tools, working software above comprehensive docu-

mentation, customer collaboration above contract negotiation, and respond-

ing to change above following a plan. Agile software development is light-

weight. The manifesto orients software development toward people and

working software.

This movement appears to overthrow what programmers learned in

traditional software project management in which programming tasks are

commonly deemed either as an aggregate of tasks or as a set of components

(subtasks). Adopting that kind of management model, software managers

would be more interested in resources allocation or tools/methods to facili-

tate programming (or software development).

Although software project management provides guidance for team

organization, its goal is to structure a group of members in order to optimize

the resources and get high performance out of the team. Data collected from

the processes and their results allows the monitoring and controlling of our

activities. Facts are managed to dispel the myths and implications among

people and activities. Little attention is given to the relationships between

programmers and software in managing software projects as process proce-

dures and control documents downplay the importance of such relationships.

To ensure that everyone in a team has the same understanding, we need

to clearly address the mechanism of software processes. Often, the processes

come along with a set of papers that guide and control what and how

programmers perform programming tasks or develop software. The paper

may go electronic, but its contents will be just the same: requirement

specifications, entity–relationship diagrams, training manuals, and so on.

Heavy documents in a small-sized project distract the team�s focus from the

working software product.

60 START WITH OPEN SOURCE

Table 3.1 summarizes process, people, product, and paper from two

different software project management perspectives. With fewer process

management and control documents as in agile software development, it

becomes more important to understand the links between programmers,

programming tasks, and software. Programming—including requirements

understanding, design, coding, testing, debugging, and integration—belongs

to cognitive activities that demand both learning and understanding. A

variety of skills required in software development are intermingled, such

as problem-solving, planning, backtracking, quick thinking, and causal

(cause–effect) reasoning. Even when individual programmers have all the

necessary skills, they may not be up on new techniques. The response is to

allow people to collaborate and share knowledge.

Jacobson et al. (1999) discussed the 4Ps of software development as

process, people, project, and product. The new 4Ps for software project

management (see Table 3.1) would try to help understand software method-

ologies in terms of the areas that differentiate the methods we use to manage

software projects.

Now that the 4Ps can be used to identify how software projects can be

managed,we canuse them to try tounderstandopen-source softwareprojects

(see Table 3.2). Obviously OSSD projects should motivate people to partici-

pate and products to share; otherwise, the project should not have been

opened. Heavyweight documents are hard to keep up-to-date with frequent

releases. Although some OSSD projects may have a set of full documents, the

documents may have been developed before the project became open. To

TABLE 3.1 The Four Ps (4Ps) in Software Projects

4Ps
Projects Managed by

Waterfall
Projects Managed by Agile
Software Development

Product ~ $
Paper $ ~
People ~ $
Process $ ~

Key: $ indicates more focus than ~.

TABLE 3.2 4Ps in Open-Source Projects

4Ps Open-Source Software Projects

Product Focused
Paper Just-Enough
People Focused
Process Just-Enough

PROCESS AND PRACTICE 61

allow developers to make contributions at their own pace, the development

process should be designed to be lightweight.

Open-source software development actually avoids the scenario de-

picted in Figure 3.3. The sharing procedures are simple so as to encourage

people to try, join, and contribute.

FIGURE 3.3 An example of the need for OSSD.

62 START WITH OPEN SOURCE

3.1.2 Agile Values

In a general sense, any positive attribution to people andproducts in software

development is the agile value. This, of course, is too broad.More specifically,

as suggested in eXtreme programming, agile values can be communication,

simplicity, feedback, courage and respect. But these are not a limit. They are

just basic.

Some basic differences between open-source software development

(OSSD) and agile software development (ASD) are listed below.

Communication

OSSD. For OSSD projects, developers are willing to share their own ideas

and to get feedback from others. Communication is strongly built on rapid

release and user comments.

ASD. Asking knowledge workers to work for extra 2 or 3 hours every day is

not going to achieve any increase in productivity. To maximize their capabil-

ities, we have to let them share their knowledge and experience so that

problems can be dealt with better and faster. A lack of knowledge in a team

could be just a symptom of a lack of communication.

Feedback

OSSD. For open source software development projects, opinions come from

everywhere, critics, end users, and peer developers.

ASD. Software solutions by themselves can be artificially abstract on one

hand and trick-specific on the other hand. When we are approaching a

solution, we always need feedback. True value is delivered only at the

moment that changes can actually be made in the software.

Simplicity

OSSD. For OSSD projects, to deliver frequent releases, developers always

build software for today�s needs.

ASD. You can write a complicated program or a simple one to fulfill

the same requirements. Obviously, everyone will prefer a simple solution.

Let us go a bit extreme. We need 3 weeks to complete a login function.

There are two approaches: (1) we make the code done and runnable after

3 weeks, or, (2) the code is continuously done bit by bit and is partially

executable every day. This is what we call simplicity: gracefully solving

today�s problem.

PROCESS AND PRACTICE 63

Courage

OSSD. For OSSD projects, this goes a bit further. The developers not only

rewrite each other�s working code and discard poor solutions but also share

their own code in public, no matter good or bad it is.

ASD. Changing existing code for the better requires our belief, enthusiasm,

and courage.

Respect

OSSD. For OSSD projects, developers are interested in and care about what

others are doing and what has been achieved.

ASD. Respect for others and the respect of others are elements in motivating

a team so that it enjoys challenges and achieving remarkable things.

Agile values are not accidentally established in the course of past

successful project implementations. They also fulfill needs for a program-

ming team that can manage by self-satisfaction.

Practices always deliver some values. But desirable values can be deliv-

ered onlywhen the right practices are adopted by the right people at the right

moment. Therefore, there may not be a simple mapping between values and

practices. However, values may result not from just one or two software

practices but from their synergies.

In fact, the same set of practices enacted by two teams may produce

different effects: desirable or negative impacts. A team leader who has been

understood to personally favor some agile practices demands that the team

adopt them rigidly. In this case, the leader may ignore the fact that team

members are not yet ready for the change. The team�s culture can even result

in hatred of the team leader and the new practices. For example, software

teams that have allowed members to arrange their working hours within a

broad timespan will feel constrained in pair programming where the whole

team is supposed to work together and flexible working hours are gone. The

team will be blind to agile values, and there could be a campaign against the

leader by criticizing agile practices.

3.1.3 Zero-Point Collaboration

When a group of people collaborate on a new artifact from scratch, they will

have to go throughmore steps. Software requirements are collected and then

documented through conversations and meetings. Often, programmers will

64 START WITH OPEN SOURCE

visit their clients� workplaces and talk to end users about their existing

workflow. Then the team is asked to define a system architecture like a

database model, class diagrams, or even a small prototype. To deal with a

project like this, team members have to communicate with each other well

and coordinate their subtasks. The proceedings of collaboration can be

basically viewed as building something from nothing. This is called zero-

point collaboration.

In some cases, team members are distributed in a number of locations or

are varied in terms of their capabilities. In this case, the whole teamwill have

tremendous difficulties in building something from nothing as software itself

is abstract and the team members probably interpret the same things

differently.

A few of the members, who probably share the same ideas, are able to

develop something such as a data model so that others may easily follow the

work. This kind of collaboration is the opposite of the zero-point as the whole

team can become productive only when they are developing and adding to

something. Once an artifact or a prototype has been built, other team

members can see and ask questions that refer to that something.

3.2 OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT

Open source is a special development paradigm.Without budget constraints,

customer pressure, and a schedule to meet, developers, users, and project

competitors can speak equally. Projects are free to grow and even to produce

child projects. The sky is the limit. Any part of the project canvas can be

virtually extended so that other programmers can later add other things. If

someone tries to add something malicious, there�s a whole open community

checking the work. This is the �Bazaar model� (Raymond 2001) for OSSD

where no exclusive group controls the development; everyone who is inter-

ested in the development can take care of the project.

In contrast to the bazaarmodel, the �cathedralmodel�makes source code

available, but the development is restricted to an exclusive group of pro-

grammers. Eitherway, it is the products themselves that have caught our eye.

Many companies have adopted these products for commercial applications

and governments around theworld have officially supported the use of open-

source software in civil administration, indicating that the open-source

products have now come to be recognized in terms of not only software

quality but also maintainability.

Between the cathedral and bazaar models there is a hybrid, the applica-

tion kernel maintained by a group of programmers, like the cathedral model

but where anyone can develop different open source plug-ins.

OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT 65

As there can be thousands of open-source software projects in or between

the bazaar and cathedral models, it is not possible to generalize about open

source. In this section we will therefore look at some features that may not be

typical of every open-source project but that are helpful in contrasting it with

the ways we develop the commercial development projects (often referred to

as closed-source software projects).

Some of the features of open-source software projects are listed in

Table 3.3.

3.2.1 Software Cloning*

Cloning in genetic engineering is the process of recreating an identical copy of

DNA, the nucleic acid containing the genetic instructions for the biological

development of anorganism.Thus, cloningdoesnot copyus (i.e., humanbody

andmind) but ourDNA.What is theDNAof enterprise software applications?

Ifwe get the requirements for an existing systemwe can use them just like

DNA to rebuild a similar system using other computer languages on other

platforms. The two systemswould have a very close functionality from a user

perspective. The functionality of cloned applications should be of interest to

us; otherwise, we would not clone them.

Why do we clone software? There are many reasons. In some cases,

software applications that have been cloned should be either closed-source

software or software built with many technical constraints so that further

modifications are not that feasible. When such software applications interest

programmers, it obviously must be the functionality such as application

requirements and/or better performance, rather than the language used to

write it. This provides us with a clue as to what motivates open-source

developers to join a project and to spend time reading andwriting code. Even

though someprogrammers are not involved in the development because they

are not familiar with the language used to build the software, they still enjoy

providing their opinions and reporting bugs.

TABLE 3.3 4Ps in Some Open-Source Software Projects

4Ps Features of Some Open-Source Software Projects

Product Software cloning (or requirements cloning); software quality
People Ugrammers
Paper Same as for product and people, above
Process Starting process, rapid releases

*The term cloninghas beenused in the open source community. For example, the early
version of Miranda IM (Miranda Instant Messenger) regarded itself as a minimalist
ICQ clone.

66 START WITH OPEN SOURCE

Example of Software Cloning

In 1991, Linus Torvalds, the initiator of the Linux project, needed a version of

Unix for his PC. To improve its functionality, hemade it knownwhat hewanted

to do and invited feedback from those who were interested in the product

(Pavlicek 2000). Whether Linux has evolved beyond the Unix family, it was a

cloned application of Unix.

3.2.2 Software Quality

The big question in open-source development is how software that has been

developed through the collaboration of volunteer programmers could possi-

bly deliver quality as good as we can get from a well-structured team using

well-defined development processes. The cloned applicationmay imitate the

functionality of what we are going to develop, but getting complete require-

ments for software has nothing to do with code quality.

In terms of the number of developers, the Linux project has been recog-

nized as probably the biggest project in the world. Ken Thompon, one of the

principal creators of Unix, disappointed many open-source proponents by

saying that he thought the quality of Linux varied drastically. Some of its

source code was good, and some was not (Thompson 1999). This is just a

sensible comment because after all, the software has been written by many

different people.

Linux has often been assumed to be representative of all open-source

projects, but it is in fact a uniquely large project, and writing operating

systems is much more technical than doing other applications. We cannot

generalize from Linux to other OSSD projects.

Stamelos et al. (2002), tried to quantify code quality in open-source

development. One hundred applications written for Linux were studied

using metrics such as cyclomatic complexity measuring the extent of linear

independences (McCabe 1976) and vocabulary frequencymeasuring the sum

of the number of the unique operands n1 and operators n2 (Halstead 1975).

The results showed that the quality of code produced in these open-source

projects was a little below the industrial benchmarking given by Telelogic�s
Logiscope. Interestingly, as the open-source project is running continuously,

the open-source code in terms of software quality could be a little more

maintainable in thenext release than closed-source code (Stamelos et al. 2004).

Few commercial software vendors release source code or testing reports

to their clients. Without that information, we actually know little about their

software quality. So we can�t criticize it, but that doesn�t mean high quality

OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT 67

code. In contrast, open source allows everyone to inspect the software quality

at the code level. Obviously,we can�t say on one hand that all open software is

high-quality or on the other hand that bazaar-model-developed software is of

a lower quality. To judge the quality of open-source software for use in

commercial applications, we have to evaluate it project by project.

3.2.3 Starting Processes

Open-source software projects can have different starting processes. In some

cases as just mentioned in software cloning, a single person (or a few known

people) may begin by calling for public comments that arouse public interest.

The project can be of purely personal interest. It can also be a funded project.

In other cases, the source code of commercial or academic working

software products is released to the public and becomes a new open-source

project. One example is Mozilla. Open-source projects initiated and sup-

ported by anumber of organizations donot normally invite public developers

to join the development, but what interested developers probably can do is to

get involved in the customization and deployment of local language inter-

faces, for example, as in A-tutor.

Figure 3.4 provides an overview of how open-source projects like Linux

and Mozilla are initiated. Personal interest in a software product—whether

that interest is one person�s or a group�s—is the driving force in stimulating

and steering an OSSD project. In many cases, the interest is in what the

Personal Interest

Invitation to Public

Core Development by a
Small Team

Commercial
Products
(Closed
Source

Software)

The First Time Source Code Released to
Public

On-going Open Source Software
Development

FIGURE 3.4 Open source software development.

68 START WITH OPEN SOURCE

product should be or look like rather than in how the product can lead to the

development of an OSSD project.

Public invitations on the Internet to developers to participate may lead to

the establishment of either a small core development team or the quick

development of a prototype based on feedback. At this time, the team must

be small, perhaps just one person. This is becausewhen the product is at zero,

it is both difficult and unproductive to create software on the basis of many

comments and too many people and code changes. At this stage, the main

goal is to release the product, despite its incomplete functionality. Interested

developers can then focus on the product. Thus, an open-source project is

product-driven. Without the first release, many developers can only contrib-

ute comments.

In other cases, closed-sourceprojects that haveprobably been commercial

products in themarket are released to the public. This extends their user bases

so that the companies can concentrate onprovidingprofessional services such

as training and consultancy instead of selling software.

Software is purely artificial. It becomes less abstract only when we have

experienced the use of software. In aword, zero-point collaboration, inwhich

a group of people collaborate on a new artifact from the groundup, is difficult

in a distributed environment.

Therefore, releasing source code is important in making others partici-

pate andhence to build the team. The success of requirements for open-source

projects is that developers need to have something from the ground up that

can be downloaded, installed, tested, and so forth, and it does not seem

possible to build things from the groundup in the open-source style (Sandred

2001).

3.2.4 Open-Source Development Community

Once the first release is available to the public, the project team will rapidly

grow. Some developers actively build more submodules while some others

just play around and suggest potential features to enhance the software.

Although this seems to have a structure of teaming, the OSSD team is just

loosely coupled. The team has a higher degree of collaboration. Each indi-

vidual can work on the product independently, accelerating its development

in many areas such as debugging, performance tuning, refactoring, function-

ality enhancement, and testing on different platforms, such as Chinese

Windows. But it is less coordinated.

As a consequence, people could be individually reinventing thewheel for

the same problem until someone reports her or his findings. Once a solution

OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT 69

(i.e., a program) is posted, the others would then look at the source for further

improvement. In any case, effort can be duplicated, but others can buildmore

on that program and later on release a more complete one.

Such low communication proximitymakes the teamwork like a commu-

nity, in which people feel the need to have a share in helping to build a

software product and thereby having a sense of belonging to a group in the

network where they live (having an identity, i.e., nickname; and social

responsibilities, such as fixing their own program bugs once reported).

Surveyed from the open development community, open-source devel-

opers can be classified in terms of the extent of involvements and activities.

For example, a project leader administers the overall project. Core developers

manage concurrent version system (CVS) releases and coordinate others. On

an either regular or irregular basis, codevelopers fix bugs, add features,

submit patches, provide support, and exchange other information. Active

userswho probably install latest versions (rather than stable versions) submit

their test reports and suggest potential enhancements. People outside of the

above are free to examine the code and submit patches. When the cathedral

model is adopted for the development, there could be a distinct difference

between adeveloper raising an issue and someoutsider raising the same issue

(Xu and Madey 2004).

3.2.5 Ugrammers

No one likes to be responsible for more jargon, but we need aword to clarify

the different and evolving roles of programmers and end users in the

software world. Somewhere between a programmer and a user there is

someone else, someone nameless. Armedwithmodern technologies and the

knowledge of how to use them, these people are consumers who have

become proactive. They are not easily satisfied with standardized products

and are willing to let manufacturers know exactly what they want. Alvin

Toffler, the author of Future Shock, coined aword �prosumer,�which sounds

like �proactive consumer,� but he meant to combine producer and consum-

er. We may now at last be seeing the birth of this hybrid creature. Similarly,

as the roles of the producer (i.e., programmers) and the consumer (i.e., end

users) blur in OSSD, we are seeing the evolution of a new, hybrid creature,

the �ugrammer.�
Before, for lack of time and other reasons, developers could not cus-

tomize or add features to closed-source applications for their individual

needs. Open-source software projects give them the opportunity to partici-

pate in developing the application they are really interested in and a chance

to have a wider impact. No longer just passive users but also active

70 START WITH OPEN SOURCE

developers, they are two-in-one. They are ugrammers. Consider the follow-

ing definitions:

Programmers—those who build the software but they are not end users

Users (or customers)—thosewhowill use the software (can be end users or

the end-user supervisors)

Ugrammers—those who build and use the software

Traditionally, programmers have deliberately adopted a variety of user

perspectives on the systems they build. But they are not necessarily real end

users. The two-in-one role of the ugrammer contributes to the success of a

software project. The ugrammers complement each other as their develop-

ment knowledge and user experience provide insights into the product they

build.

Two-in-onemakes software development a new paradigm. For example,

requirements management is a key area of software project failure. Some

management methods advise sign-off requirements documents while some

suggest tight collaboration between programmers and users. For program-

mers, experience of requirements management is often gained from domain

knowledge that they previously gained from users. Ugrammers can use their

own user experience to better evaluate requirements collected from others

and can ask more insightful questions. This greatly enhances communica-

tions between ugrammers and end users.

3.2.6 Participant Roles

The intuitive way to understand any software project is to simply classify

involved members into two roles, customers (or users) and developers, as a

percentage. In thisway,we can easily compare an open-source projectwith a

commercial software project and understand some fundamental differ-

ences. How the percentage of project participants varies in the two roles

tells us something about the projects. As illustrated in Figure 3.5, project

participants in a commercial enterprise resources planning (ERP) project

could be very separate. In this project, 25% of the participants take a

pure developer role as programmers or system analysts. The rest play a

pure end-user role, performing user acceptance testing, develop training

manuals, and perform other tasks. In some commercial projects, some

participants who adopt a 90% user role and a 10% developer role are often

viewed as superusers. These participants can draw technical diagrams and

even diagnose problems through systematic testing, which substantially

helps the development.

OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT 71

In contrast to the abovementioned industrial project, the roles in many

open-source development projects are any combination in any proportion of

the programmer and user roles. In a case where the developers are the users

(e.g., those who are involved in the development of Miranda-IM, Firefox, or

Joone are the users), ugrammers can have a number of combinational dis-

tributions with active users as shown for projects A and B in Figure 3.5.

There is currently no evidence as to how these distribution curves (A or B

in Figure 3.5) correlate to the success of a project; however, we believe that

having ugrammers in a software project, particularly in a distributed envi-

ronment, helps bridge the communication gap between the developers and

the users.

3.2.7 Rapid Release

By breaking down system functionally, we may rapidly release a software

product from time to time. However, this has to communicate well with

customers; otherwise, it may not be always desirable. Let�s look at a real

industrial case.

Wemet an ITmanager in 2004who implemented a JSPWiki (open-source

software) as a departmental knowledge base. A Website can be used to

distribute information. It does not facilitate collaboration between people.

But, when JSPWiki allowed people to log in and to easily edit available

content, team members were able to follow documentation standards and

then compile their working notes on practical experience and technical tricks

directly on JSPWiki. This allowed departmental knowledge to be shared and

reused (see Figure 3.6).

Percentage of
people
(including
users and
developers)
involved in
the projects

100 %

50 Open Source Project A Open Source Project B

Typical ERP Project

100% End User Role

100% Developer Role

Ugrammer Role (i.e. 50% Developer Role and 50% User Role)

85% Developer Role and 15% User Role
70% Developer Role and 30% User Role

85% End User Role and 15% Developer Role (often referred as Super User)

70% End User Role and 30% Developer Role (often referred as Super User)

FIGURE 3.5 Software project participant roles.

72 START WITH OPEN SOURCE

For example, someone may download a copy of JSPWiki to evaluate the

functionality and plan for its implementation. The versionwas 2.1.134-alpha.

The installation was done, and the server was up. Everything seemed alright

until the team started browsing around the software and they realized that

there was no interface for changing the default password!

From a customer perspective, the software was not that complete. This

would not normally happen in many traditional commercial projects. Some

software houses may release incomplete software packages to clients for

training purposes yet claim that the products are prototypes. Otherwise, as

some end users are �problempickers,� theywill just view any incompleteness

as defects. This may potentially damage the image of professionalism of the

software house.

Butwhat does �the expected completeness� reallymean? It is all about the

user�s knowledge and experience. For example, any software requires au-

thentication. Users will expect to be able to change their login profile

somewhere on the software, just as other software does.3 As so many users

often do an apples-to-oranges comparison, it is better to put a release off until

we get basic things done from a user perspective.

Open-source development projects somehow reverse the logic. Take our

previous example. When the user authorization is done, the module and its

source code will be quickly released. The work at this moment is complete

from a ugrammer perspective. The ugrammer can modify related configura-

tion files to change any password; unfortunately, this might not be regarded

as �expected completeness� by general users. In short, open-source

projects release their work products by the completeness of source code

FIGURE 3.6 Unlikemany other types of websites, JSPWiki allows individual logins and
editing.

3 In agile software development, the developer and the customer truly participate in a
software project. The customer can even prioritize a feature list for the developer.
Thus, there is no expected completeness.

OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT 73

(i.e., compliable and executable) while commercial products are released by

the completeness of functionality (see Figure 3.7).

Among other reasons, release by completeness of source code contributes

greatly to rapidity of release, which, as mentioned, is critical for open-source

workflow because other developers are able to further reuse the latest

released source code so as to avoid doing duplicate work in parallel.

Figure 3.8 illustrates the relationship between rapid release and produc-

tivity. Four programmers who do not communicate with each other are all

interested in spending their leisure time programming one submodule. They

start by downloading the latest copy available to the public. Then we look at

two situations: fewer releases and more releases. In the first case, the source

code is released only when the whole submodule is done in terms of

functionality. Development effort is duplicated until B eventually finishes

and shares her work with others (see Figure 3.8, situation I). The other

developers (i.e., A, C, and D) can obtain benefits afterward.

By comparison, in the second case, developer B shares the code earlier.

Later on developer A can continue B�s work in his spare time and release the

completed version (see Figure 3.8, situation II). The elapsed time has been

greatly shortened and, most importantly, it deals with the inefficiency that

arises from the duplication of effort. The more source code is frequently

shared, the more productive the open-source community can be.

3.2.8 Blackbox Programming

In the commercial environment, regardless of how software teams are man-

aged, it is always recommended that the same set of software practices be

TestingLogin Maintenance Login Interface

Release

Released by Completeness
of Functionality

Released by Completeness
of Source Code

User Interface

Compilable and Executable

Login
Function

Three
Times
Login
Retries

Solve
Security
Loop and

Add
Time
Out

In the source code, there are
comments for others: For example,
the following ten lines should be

revised to handle the session
information in future

UTF-8
Login
Name

Modified
as Three
Times

Different
Password
Retries

FIGURE 3.7 Rapid release demystified.

74 START WITH OPEN SOURCE

adopted for a project, even though ways of programming by software teams

maybeadaptively evolving.As eachdeveloperprobablyworks in a cubicle, all

developers meet at regular meetings to share their individual experience so

that some key software practices are consistently followed. More recently,

agile practitioners have concluded that a cubicle-like environment is not good

for team programming. An open and informative workspace environment

allows programming ideas to be exchanged and practices adopted.

Open-source software development turns the abovementioned develop-

ment experience upside-down. It is not hard to imagine that open-source

developers just sit in their ownoffices or cubicles andwork in their ownways.

They may not coordinate in the same way as industrial team would. But this

situation is not always the case. In some open-source projects, particularly in

the cathedral model, some members within the core developer group know

each other. They probably communicate better for collaboration (shown in

Figure 3.9) and they can share their experiences of how to programwith each

other. In this case, the developers coordinate their on-hand tasks and even

agree on their software practices.

Of the codevelopers, those who keep in contact with core developers

and/or other codevelopers by email or through discussion forums may also

be advised to follow largely the same software practices. In any case, there is

FIGURE 3.8 Rapid release and productivity explained.

OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT 75

no broadly accepted way for these codevelopers to actually carry out their

own functions.

At the same time there may be many anonymous developers who only

communicate publicly through the project�s Website, and it would be a most

unlikely accident if all of themembers of this groupwere to agree to adopt any

single software programming practice.

In any case, writing source code under these conditions is a kind of

blackbox programming. Team members simply do not know how each

individual works. Some code in pairs, and some prefer to work out design

details first. A lack of knowledge about their programming practices also

means ignorance as to their code quality. Blackboxprogramminghas noplace

in team software development in the commercial environment.

3.2.9 OSS Practices

Manyopen-source practicesmayappear to beunique but in fact canbe seen as

simplyways of covering all of themore familiar softwareprojectmanagement

Co-developers and active users
who only communicate publicly

Co-developers who
communicate with others

Core developers heavily communicate to others

Some developers who communicate to others

Codevelopers and active users who do not communicate well with other
programmers do not known what methodologies other programmers have adopted.
They are a black box to each other.

Core developers

Communication
Line

FIGURE 3.9 Software project community and communications.

76 START WITH OPEN SOURCE

areas (Table 3.4). The purpose of software configuration management is to

record, control, and manage different versions of code produced by open-

source developers. The purpose of people management in open-source

development is to motivate, inspire, support, ensure communication be-

tween, and encourage team members.

There is no formal project plan for resources allocation, project schedule,

and task priority. Instead, rapid release and the to-do list serve to minimize

duplicated effort and toprioritize jobs. Software quality assurance is achieved

by code inspection through code reading by a number of people on the

Internet. Almost all of the open-source practices listed in Table 3.4 directly

pave the way for people and products in the 4Ps.

3.3 OSS-LIKE DEVELOPMENT

The 4P analysis tells us that open-source development is similar to agile

software development although their software practicesmay not be the same.

Moreover, as mentioned previously, both deliver the same values, such as

communication, feedback, simplicity, courage, and respect. They are inter-

connected. We are then interested in when and how software practices

adopted in these apparently contradictory environments nonetheless tend

to produce the same values. Answering this question will give use a better

understanding of twomajor factors of a software developmentmethodology:

team size and team location.

TABLE 3.4 OSS Practices

Areas Practices

1 Software configuration management Historical bug-fix records
Well-established version control
Different releases: stable, beta, and alpha
CVS

2 People management Prompt feedback
Praise
Anonymity, which eliminates bias regarding
people and cultural differences

Discussion forum
3 Project plan and project tracking Rapid development release (nightly build)

To-do list
4 Software quality assurances Parallel debugging

Public comments
Code reading

OSS-LIKE DEVELOPMENT 77

The success or otherwise of past projects is an indicator of whether a

softwareparadigmhasbeen shown towork in one situation, say, adistributed

environment. But the same paradigm will not necessarily succeed if used in

another, say, a collocated environment. Perhaps some of its practices will still

work and somewill not. Those that do notwork in one environmentmight be

replaced with others that have worked in the same environment and that are

compatible with the remaining practices.

3.3.1 Agile Practices

Unlike open-source development, which takes place across a distributed

environment and implies the participation of large teams, many agile prac-

tices are most suitable for collocated teams. Let us look at agile practices that

have been proved suitable for small, collocated teams. A typical example is

eXtreme programming (Beck 2000; Beck and Andres 2005). Although it is not

possible tomanage small and large projects by using the same set of practices,

it might be a good idea to try to manage software projects in such a way that

the same values are delivered. For example, communication values can be

delivered at a standupmeeting in a collocated team and by instantmessaging

in a distributed team. Kent says that practices are situation-dependent but

values do not have to change for every new situation. Agile values will guide

project managers to try to manage a large project according to the same

philosophy regardless of specific agile practices.

Now let us take a brief look at some agile practices. These practices are

generally regarded as lightweight, but remember that the samepractice could

just aswell be seen asheavyweight. It depends onwhether its values are about

people or products. Some of the practices are explained by their names, while

the nature of others need some explanation. All of these practices can be

adopted in a rhythmic way so as to achieve synergies, as will be discussed in

Part II of this book.

Real Customer Involvement. As far as developers are not ugrammers, both

developers and customers must be in close communication to build

software.

Informative Workspace. This type of practice is opposed to blackbox

programming. The workplace layout should encourage people to

communicate.

Shared Code. Source code is controlled by one or two team members.

Source code should be owned by the development team to facilitate

other agile practices.

78 START WITH OPEN SOURCE

Short Iterative Cycle. Short cycles provide a whole team with more

rapid feedback, measurements of the last cycle for incremental plan-

ning, error discovery, and potential improvements for the next

cycle.

User Story. Requirements are divided and written on a stack of cards so

that programmers can estimate the work in each story for customers

who prioritize the order of development.

Self-Organizing Team. Team members (equally or unequally) participate

in decisionmaking as to how and what they could do best for people

and software.

StandupMorningMeeting. Teammembers are less likely to waste time on

trivia and will discuss recent and/or potential issues.

Refactoring. Existing code is reviewed and revised without changing its

external behavior for better code readability and maintainability.

Pair Programming. Two people as one single unit collaborate on design

and programming.

Incremental Design. This approach emphasizes that the simplest solution

is always in place andQ1 that designs increment not by phase but by daily

work.

Continuous Integration. To detect errors as early as possible, team mem-

bers integrate their work frequently. Continuous integration puts the

emphasis on working software in progress.

Test-First Programming. Simply put, before coding, it is advisable towrite

automated unit tests that could probably break a system.

3.3.2 Communication Proximity

Software practices in OSSD are for large, distributed teams as opposed to

small, collocated teams. The dimensions that change from large to small will

affect the way we manage our team. As mentioned, team location and team

size are two important factors to affect the adoption of some software

practices. But neither factor reflects values of communication, feedback, and

so on. We therefore take as our two metrics communication proximity and

team coupling (see Figure 3.10).

Communication proximity is a combination of factors that refer to the

degree of distribution. They include human–human communications versus

computer-mediated communication (e.g., face-to-face meeting or videocon-

ferencing), synchronization versus asynchronization (instant messages and

email), people identity versus anonymity (e.g., talking to people whom you

know or to the public), and language.

OSS-LIKE DEVELOPMENT 79

When communication proximity is high, people are located in the same

place with a common language of communication. This implies that people

know each other well enough to collaborate. In contrast, when communica-

tion proximity is low, people are physically distributed, and communicate

anonymously and asynchronously.

Communication proximity strongly affects software practices that focus

on people and place. Synchronous communications across time zones can

hinder distributed pair programming. Even within the same time zone,

distributed pair programming for two developers in Korea and Australia

through videoconferencing still encounters the language problem and cul-

tural effects. For non-English-speaking programmers, reading and writing

are far easier than listening and speaking.

3.3.3 Loose and Tight Couples

The concept of loose and tight couples originates from that ofweak and strong

ties in sociology (Granovetter 1973). An example of a tight couple would be a

well-defined reporting channel,while a loose couplemight be aweak acquain-

tance such as a connection made willingly, anonymously, and voluntarily.

Team coupling has a tremendous impact on software practices that

demand a lot of coordination. A loosely coupled team in distributed envi-

ronment will find it much simpler to adopt reviews than will a pair program-

ming team.

Low High

Communication Proximity
(Proximity for short)

Team Couple
(Couple for short)

Loose

Tight

XP

OSSD
HPLC
(High Proximity and
Loose Couple)

HPTC
(High Proximity and
Tight Couple)

LPLC
(Low Proximity and

Loose Couple)

LPTC
(Low Proximity and

Tight Couple)

FIGURE 3.10 Communication proximity and team couple.

80 START WITH OPEN SOURCE

A loosely coupled team is not so much a team as a network or a

community. Such a team is different from a global software team in which

themembersmaynot knowothers, but the teamhas ahierarchy andmembers

have responsibilities. For example, the organizational structure will require a

developer in London to reply to a colleague�s request from Japan. This is not

the case in open-source software development.

3.3.4 Collocated Software Development

The two dimensions that we have introduced are only metrics for relation-

ships between a software team and a development environment. To learn

more metrics, you may have a look at Cockburn�s Agile Software Development

(2002).

Open-source software development and eXtreme programming are alike

in that they both highly value communication, feedback, simplicity, courage,

and respect. Exploring how proven software practices in a distributed

environment (e.g., OSSD) and a collocated environment (eXtreme program-

ming) may correspond to each other would be of assistance in managing

scaling issues in our existing favorite agile software model. We summarize

key practices in OSSD and XP by process areas in Table 3.5.

Perhaps themost significant characteristic that makes OSSD successful is

that open-source developers themselves are the end users. Since developers

are playing both programmer and customer roles, they know exactly what

they are writing. However, in many commercial software projects, program-

mers often require domain-specific knowledge towrite the system, such as in

TABLE 3.5 Analysis of Practices in OSSD and XP by Process Areas

Process Area OSSD XP

Requirements engineering Ugrammer involvement Real customer involvement
(on-site customers)

Requirements documents Point listing User stories
Project planning and
project tracking

Rapid release
(i.e., fast turnaround)

Short iteration cycle

Design Evolution-like incremental
design

Incremental design

Collaborative
programming

Peer review Pair programming

Software configuration CVS Continuous (daily) integration
Testing Alpha release for those

who would like to test
Automated test cases

Integration Nightly build Continuous integration

OSS-LIKE DEVELOPMENT 81

CRM and ERP. Practicing real customer involvement, the whole software

team is composed of the roles of programmers and customers, while in OSSD

each single developer can have these two roles.

In eXtreme programming, software project planning involves customers

and programmers together developing estimates for the work to be per-

formed, and defining the plan to perform the work. The rapid-release

schedule itself can be a plan because the release time is shorter than the time

we need to estimate and produce the software plan in a conventional

approach.

Pair programming and shared code adopted for a collocated team and

reviews in OSSD for a distributed environment are different practices but

deliver the same values in communications and feedback. Therefore, when

the dimension changes from collocation to distribution, we may prefer peer

review. In the end, all software managers must understand that their past

success may not be replicated when some metric changes. A good manager,

however, has the imagination to see where the values of one approach can

enhance the practices of another.

3.4 CONCLUSION

This and the previous chapter have covered the essentials of software

development. We have seen that both open-source software development

and agile software development address values and practices, but questions

remain. What, in practical terms, does this mean that we should do? Should

everyone dump their own values and practices and adopt these new ones,

even if they are only half understood? And what if we can�t get rid of our old

values?

While not explicitly serving as guidelines as to what agile practices or

processes should be used, software development rhythms do offer some

answers to these questions. You do not need to be an agilist, and there is no

lightweight or heavyweight in software development rhythms; rather, soft-

ware development rhythms straightforwardly tell us three things:

1. Combine practices or processes rhythmically as your development

rhythms. This step is very important. Although Part II will discuss in

depth when and where individual agile practice works and when

different software practices may be combined for synergies, you can

always compose development rhythms with the software practices

you understand most. However, it should be well understood which

values are added to your software development when software

82 START WITH OPEN SOURCE

practices are rhythmically combined, although these values may not

be the same as agile values. This means that they could make some

positive contributions to process and paper, instead of to people and

product.

2. Use the in–out diagram to understand the sustainability of your

composed rhythms so that you can plan effort and resources to sustain

the rhythms. The domain of easy to start and easy to sustain ismuch to

be preferred. We have observed many agile practices combined into

development rhythms to be domain-specific. As your development

environment may unexpectedly change at any time, you may have to

play another of your development rhythms in response.

3. Software teams have different learning curve and turnover rates, and

this can tremendously impact your development rhythms so analyze

the master–coach diagram for your project team.

In short, the practices of a software team are never pure. They are always

combined either simultaneously or rhythmically. What is critical in software

development is to understand when practices work better and when they

should be used. Take eXtreme programming as an example. Although many

teams successfully adopt eXtreme programming, others appear to encounter

tremendous difficulties. Often, some teammembers are not yet ready to catch

development rhythms for extreme programming. As a consequence, they fail

to see the value of the whole.

REFERENCES

TheAgileManifesto, 2001.Available at http://www.agilealliance.org/home.

Beck K. eXtreme Programming Explained: Embrace Change. Boston: Addison-Wesley;

2000.

Beck K and Andres C. Extreme Programming Explained. 2nd ed. Boston: Addison-

Wesley; 2005.

Cockburn A. Agile Software Development. Boston: Addison-Wesley; 2002.

Granovetter M. The strength of weak ties. American Journal of Sociology 1973; 78 (6):

1360–1380.

Golden B. Succeeding with Open Source. Boston: Addison-Wesley; 2005.

Halstead M. Elements of Software Science. North-Holland: Elsevier; 1975.

Jacobson I, Booch G, and Rumbaugh J. The Unified Software Development Process.

Reading, MA: Addison-Wesley; 1999.

McCabe T. A complexity measure. IEEE Transactions on Software Engineering 1976;

2 (4):308–320.

REFERENCES 83

PavlicekRC.Embracing Insanity:Open Source SoftwareDevelopment. Indianapolis: Sams;

2000.

RaymondES.HalloweenDocuments, 1998. Available athttp://www.opensource.

org/halloween/

Raymond ES. The Cathedral and the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary. Sebastopol, CA: O�Reilly; 2001.

Sandred J. Managing Open Source Projects: A Wiley Tech Brief. New York: Wiley; 2001.

Sommerville I, Sawyer P, and Viller S. Managing process inconsistency using

viewpoints. IEEE Transactions on Software Engineering 1999; 25 (6):784–799.

Stamelos IS, Angelis L, Oikonomou A, and Bleris GL. Code quality analysis in open-

source software development. Information Systems Journal 2002; 12 (1):43–60.

Stamelos IS, Angelis L, and Oikonomou A. Open source software development

should strive for even greater code maintainability. Communications of ACM 2004;

47 (10): 83–87.

Thompson K. Unix and beyond: an interview with Ken Thompson. IEEE Computer

1999; 32 (5):58–64.

Toffler A. Future Shock. New York: Bantam Books; 1971.

Xu J andMadey G. Exploration of the open source software community. Proceedings of

NAACSOS Conference, Pittsburgh, PA; 2004.

84 START WITH OPEN SOURCE

4
PLAGIARISM PROGRAMMING

Copy from one, it�s plagiarism; copy from two, it�s research.
—WILSON MIZNER

A group of ants goes out to look for food. At first, they wander aimlessly, not

knowing where to go. They spread out and crawl in all directions, in an

apparently random fashion. But wherever each ant goes, it leaves a scent that

it can follow back to the nest. At the same time, if one ant comes back with

food, the other ants can follow this scent trail back towhere this one ant found

the food, abandoning their randomsearch and instead all trooping back along

theproven trail towhere the foodwas found. In the antworld, an ant that can�t
follow the scent left by another will perish. Being a successful copycat is the

intelligence of the ant.

Ants are playing a simple rhythm: seek–succeed–follow. Once food is

found, others will follow that path without even calculating how far they are

going. However, there is no reason to believe that the path is unique or is less

dangerous. It is just one of many ways to the same place where the food is

found (Figure 4.1). An ant alone has little intelligence, but the way ants

cooperate with each other demonstrates community wisdom, a kind of

shared-intelligence collaboration. It turns out that everybody brings food

home.

Can we do the same thing, turning everyone into a programmer? More

precisely, can programmers regardless of their skills be organized to follow

a way to code successful small subprograms done by others, and to

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright � 2008 John Wiley & Sons, Inc.

87

continuously repeat that way to code other subprograms, until a complete

system is done? This sounds ambitious, but it is not impossible.

Perhapsyoumaythinkthat Iamsuggesting �copy-and-paste�or�cut-and-
paste� programming, which is nothing new. Understanding exactly where to

copy from one program or procedure and to paste code into another is a

common way to get a quick solution. But it can introduce problems. If we are

notsurehowthelogicofthecodeactuallyworks,alongwiththecopy-and-paste

codewemay also get hidden bugs or incompatibilities with our existing code.

From experience we know that some programmers, the less experienced

in particular, who do copy-and-paste programming are much less likely to

properly test their program than when they write everything from scratch!

Maybe they assume that whoever wrote the code was more experienced or

responsible than themselves. Even when the copied code crashes, they feel

they have a scapegoat and can forgive themselves for not doing a good job.

After all, what has the world come to when you can�t even be confident about

the quality of what you copy?

Perhaps the biggest limitation of copy-and-paste programming is that it�s
practiced only by individuals. In an integrated team environment, copy-and-

paste programming makes software configuration, standardization, code

reading, debugging, quality, support, and maintenance difficult. Different

developers may cut and paste different source code to get the same func-

tionality for the same application. Clearly, it is not easy to scale copy-and-

paste programming up to the team level, but it may be something worth

doing. Here is our story.

When I was at school, my final-year programming assignment, an

important task in terms of grades as there were no exams, was to write a

program that simulated a flight path. The assignment was challenging, and

FIGURE 4.1 The trail is not always the shortest, but it guarantees some reward.

88 PLAGIARISM PROGRAMMING

only a few outstanding students could do it, so many students simply copied

the better students� programs. However, they couldn�t just cut and paste the

code. They tried to understand the design and then to enhance simpler parts

of the program, for example, by making user interfaces simpler, adding

hotkey options, and providing better descriptive comments. In the end, some

plagiarized assignments were better than the original because while they all

provided the all-important simulation, the copied programsweremore user-

friendly. It is true that individual copied programs may have been substan-

dard, but code like this, plagiarized with testing and modifications (or

refactoring), can be economical.

We do not advocate an innovative method in programming; our

endeavor is to seek disciplined mechanisms for easy coding. As you will see

in Section 4.2 (which discusses making use of code written by others) and

Section 4.3 (which provides a real case to readers), this may raise some

controversial issues, so we should say now that we have no intention of

challenging any system that rewards risk taking, or innovation. We all

depend on that.

But at the same timeweall have to admit that there is no such thing as total

originality in any field or undertaking, and there is little point or advantage in

programmers day after day reinventing the wheel when there are perfectly

good models of wheels to be found all around us.

4.1 PLAGIARISM

Modern computing technologies continue to advance. So do programming

languages. Yet basic instructions remain more or less unchanged while

integrated development environments have evolved far beyond the old

programming editor with reserved words highlighted. A typical example is

BASIC (Beginners�All-Purpose Symbolic Instruction Code) developed in the

1970s. This BASIC evolved into the earlier version of Visual BASIC (VB)

(1991), which uses template wizards and enables rapid application develop-

ment, event-driven development, and other Features. VB continued evolving

through the 1990s with a new version about every 1.4 years. When VB 6.0

came out in 1998, the VB programmers who had been busy with catching up

on new features all these years had a long break till VB.net in 2002. VB.net,

however, was a big change. Unlikewriting small applications in BASIC in the

past, we have to get very familiarwith VB.net and its integrated development

environment (IDE); otherwise, we will be very surprised at why the same

application written in BASIC may take us much more time to develop in

VB.net now.

PLAGIARISM 89

Imagine that a talented hacker in 1980 saw the Christopher Reeve movie

Somewhere in Time and fantasized about the same thing happening to him as

happens to the movie�s time-traveling hero. Right after watching the movie,

he rushed to his lab and wrote a BASIC program displaying a large number

count with a �takt� sound so that he could be self-hypnotized into a state that

transcended time and space.As true love did not await him in the past, he had

to bet on the future.

He traveled forward to our time. Before long, hewas disappointed that he

would never get used to our modern life—true love is anonymous and good

sex is online!Hewanted to go home. So he set aboutwriting the sameprogram

again, but this time he had to do it inVB.net.He did not bother to read through

the online language manual. Instead, he tried to get any demo source, then

compiledandexecuted it. Thisworking code establishedabaseline for thenext

stage. He studied how it worked, modified it, added his own code, and tested

it. All these thingswere done in baby steps so that he could change back to his

last success when there were unexpected errors. The program was quickly

done. He returned home and joined Microsoft to develop Visual BASIC.

Plagiarism is an act that is considered unacceptable by many. However,

under certain circumstances, for example, in software development in less-

developed areas or with standard requirements, the conduct appears to be a

productive way in which individuals with less knowledge can carry out

programming.Now, the challenge is to scaleup theparadigm for a small team.

4.1.1 Existing Code

In 1998 we were leading a small team in a brewery in southern China

responsible for developing an ERP system for sales and distribution in the

Chinese marketplace. We recruited two fresh graduates who came from

the inland of China. At that time, many schools in the inland regions did not

have enough computing facilities and equipment, and hence they were

more focused on teaching by the textbook. As in the 1980s, students would

design their programs on paper at home. Then theywould type in their code

and test it in the computer lab they booked. In this case, C was an ideal

language to learn. As event-driven programming demands that a student

spend much more time playing around with different events in front of a

computer, it was not suitable to teach when the hardware resources were

tight. However,windows programminghad been around in the commercial

areas there for few years. Such a gap between skills taught at school and

skills needed in the marketplace was unbelievably big.

As expected, our newly hired staff knew little about Windows pro-

gramming. In the first week, they played around with the development

90 PLAGIARISM PROGRAMMING

environment such as Windows 95 installation, Transmission Control

Protocol/Internet Protocol (TCP/IP) networking software, Microsoft SQL

server, and PowerBuilder installation.

In the secondweek,wegave themourPowerBuilder scriptswithwhich to

inquire about customer information written in PowerBuilder 3.0. They were

asked to exactly follow the waywe developed another two user interfaces for

product andprice inquiries.We told themwhere to change and to retrieve the

right data they needed to revise the table names and field names. After 2 or

3 days, they completed it.

Plagiarismprogramming requires us to repeatedly test and then change a

bit and then test again. This becomes tedious when we are unfamiliar with

what we were trying to do, and little progress is made. To support and

motivate the plagiarizing programmers, we needed to establish a people-

caring environment for them.

4.1.2 Social Network Analysis

Although an organization chart may show how the leadership in a team is

structured, surveys directly taken of employees about whom they talk to and

collaborate with in their workplace illustrates another kind of relationship.

The relationship of how information flows among a group of people can be

easily visualized and quantified by social network analysis (SNA). A social

networkmap consists of nodes that represent the people of a group and links

that show flows between the people. The map show how knowledge may be

shared, how decisionmaking happens, and who supports whom.

Social network mapping is straightforward. In our case, Kimman is

shown in Figure 4.2 as a node with five direct links to other colleagues. As

Kimman

Szeto

Wan

Zhangjun

Weidong

Zhou

FIGURE 4.2 Social network mapping.

PLAGIARISM 91

we can see, the newcomers, Zhangjun and Wan, may talk to Kimman, who

dealswithmanypeople andactivities. Szeto hadonly one connection but held

a position of power. Zhangjun andWan had the shortest paths to each other.

Theywould informeachother ofwhatwas going on.Aswe see in Figure 4.2, if

you plan to take over a software team, SNA will give you insights into how

your team members talk to each other.

Toquicklyplagiarize anotherperson�swork,weneednot only tohaveher

program but to talk to her. An effective social network in the workplace

facilitates communication and feedback. The network schematizes the team

culture in which people collaborate. But how did the two plagiarizing

programmers use our work to make theirs?

4.1.3 Being Plagiarized

Every program is written for some task. Although two programs written

differently may achieve the same task, programs written in a similar logic

probably achieve tasks of the same type. Thus, a set of similar programs and a

set of similar tasks are our two domains of interest.

Suppose that a program is originallywritten to handle a particular task as

in path 1 in Figure 4.3. Modifying part of the source, such as converting a FOR

loop into a WHILE loop, would not change much. the program would behave

the same (see path 2 in figure 4.3). this kind of modification is superficial.

Of course, we can change the logic for readability such as abc renamed as

monthsalary, for maintainability such as removing duplications by function

calls or for both such as trying to replace nested-IFs with case; this is refactor-

ing, and it facilitates team communications through code.

FIGURE 4.3 Illustration of plagiarism programming.

92 PLAGIARISM PROGRAMMING

Often, we may just revise a small portion of code so that the program

could be used to perform a similar yet different task or to solve a problem

bigger than the one itwas originally intended to solve (see path 3 in Figure 4.3).

How to change the source or how to write source for change is the key to

plagiarism programming.

Apiece of source for updating amaster table for a chart of accounts shows

the sameprogramming techniques as the one for updating awarehouse table.

This is a sort of pattern. However, the code for a chart of accounts itself does

not demonstrate how to plagiarize it for reuse. Thus, a plagiarized program-

mer highlights �the place where followers (i.e., plagiarizing programmers)

should read in order to modify another part where followers should revise,�
or in order to be alert for some other issues. In addition, we may find

highlighted code that remains unchanged when a table is updated so that

followers need not do anything.

To do so, we use three different colors making sure that copiers know

what parts to pay attention to and where changes are required. Blue is used

to represent no change, green indicates the part requiring reading, and red

is for modification. A piece of code is therefore like a series of colors of the

form [B G R B G B R B . . . B]. The coloring makes plagiarism easier for

others.

Coloring in plagiarism programming serves indications.We selected our

colors simply by intuition. The primary colors are red, yellow, blue, and

green, which were first suggested by Leonardo da Vinci (Coad et al. 1999).

However, text in yellow was not that easy to read. For some programmers,

text in green was difficult. In this case, try pink instead.

The color series addresses howaprogram is to be reused andwhat coding

techniques are required to process that data store. Plagiarizing programmers

read the green part of the source and read/write the red part.What they need

to do is change the red part of the program according to user requirements.

They do not bother with any of the blue parts.

Let us look at how some fresh programmersmaywrite code that deletes

records from a table in SQL database programming. Without plagiarism,

someone writes a simple SQL statement to get rid of a row such as �delete
tablename where col¼ condition.� However, the programmers do not notice

that many other things should be written to support a recoverable database

transaction.

Now, look at Figure 4.4, which shows another piece of code for deletion.

The code does not actually delete a record, but it updates a flag that indicates

logical deletion of that row. In addition, the code handles transaction rollback

and a mechanism for error checking. We can revise a bit more to ensure that

only one row is deleted each time. Plagiarizing programmers do not need to

PLAGIARISM 93

bother much about this. They should be concerned with only three pieces of

semantic information:

1. Name of table where a row is to be deleted.

2. Condition under which a row is to be deleted.

3. Number of rows in which the operation affects—by default, only one

row of deletion is allowed.

For example, when we want to delete an invoice INV00956, we replace

tablename with INVOICE and col¼ �condition� with INVOICE_NBR¼
INV1MAY01� (see Figure 4.4).

An old study has shown that most errors arise as the novice programmer

tries to put the �pieces� of code together in a solution plan (Soloway 1967). Do

not let programmers plagiarize code from a number of code samples. A

practical question will have arisen as to how many code samples we need to

highlight to be plagiarized.

begin transaction
…
//(i)allow to use“return,” “break,”etc.for only plagiarized code
//(ii)not allow to use“return,” “break,” etc.for nonplagiarized code
…
update tablename set status = ‘D’ where col=’condition’
if@@rowcount<>1//number of rows affected in this operation

//if more than one row is affected, set
//@@rowcount<=1.

// If only 2 rows are affected, se
//@@rowcount<>2

and@@error<>0
begin
raiseerror 50000 ‘error in update tablename setstatus’
exec master..xp_logevent 50000
rollback transaction
return

end
…
//(i)allow to use “return,” “break,” etc. for only plagiarized code
//(ii)notallowtouse“return,”“break,”etc.for nonplagiarized code
…
commit transaction

Note:
Bold text represents blue (neither read nor write)
Italic represents green (read only and write occasionally)
Normal text with lighted gray highlights represents red
(read and write)

FIGURE4.4 When thepiece of codedisplayed above is color-highlighted, the changes
needed it will be visually obvious.

94 PLAGIARISM PROGRAMMING

Tables in anydatabase application can be expressed in a tabular form and

be manipulated by four types of operational commands. The operations

include creation, read, update, and deletion (CRUD). We can use (#, #, #, #) to

show the number of different command types involving in a single database

transaction. For example, (2,3,1,0) indicates that an SQL transaction has two

INSERTs, three SELECTs, and one UPDATE.
Suppose that we develop an ERP application. The system can be func-

tionally decomposed as a number of submodules such as open invoicing,

purchase quotation, and the like. Each submodule could include four types of

user interfaces: (1) data entry, where frontline users key in records; (2) data

modification, where changes are made to the records; (3) data processing,

where midlevel managers authorize business transactions to process; and (4)

inquiries as to status and information (see Table 4.1).

A cross-product matrix can be constructed using submodules and user

interfaces. From thedatamodel,wemayestimateCRUD. For example,CRUD

for purchase quotation anddata entry is (2,3,0,0),wherewe retrieve necessary

information from three master tables—customer, product, and price—and

insert new records into two tables: purchase quotation head and purchase

quotation line.

For your first programming task, select those transactions that have

average or higher numbers for CRUD. A transaction with higher numbers

of CRUD has more instructional statements, which better serves as a pattern

of a way of coding. Then color the code for plagiarism as discussed previ-

ously. Review the code colored by other colleagues. The original program-

mers need to roughly explainwhy this part of the code is red, green, and blue.

Undeniably, plagiarism is easy to adopt. The in–out diagram for plagia-

rism programming is shown in Figure 4.5. When plagiarizing, programmers

can repeat-test and revise at the beginning, and progress here provides an

incentive to carry on. Once they become familiar with the plagiarized code,

they will naturally follow the samemethods of programming. Therefore, it is

easy to sustain.

TABLE 4.1 CRUD Analysis

User Interface
Purchase
Quotation

Purchase
Orders

Warehouse
Stocktaking

Warehouse
In–Out Data

Inquiry (2,1,2,0) (0,0,3,0) — —
Data entry (2,3,0,0) (0,0,1,0) — —
Data processing (2,4,2,0) (2,3,2,0) — —
Data modification (0,4,2,0) (0,4,2,0) — —

PLAGIARISM 95

4.1.4 Turn Everyone into a Programmer

In mid-2000 we needed to recruit two more programmers to join our plagia-

rism programming team for a new project. As we were working in China�s
rural industrial sector, there were not many applicants, and those applicants

we received had little experience in real software development. Given that it

would take time to find experienced programmers, our bottom line was to

find some programmers smart enough to plagiarize our existing code quickly

even if they didn�t know how to program.

Wedecided to use a job simulation test to select 5 or 6 programmers for an

interview.We told the applicants beforehand that therewouldbe a short, one-

hour, written test. In the end, only 16 came for the written test.

Although the simulation testwas intended to find candidateswhowould

fit in with the team, this unexpectedly helped us understand in a quantitative

way the efficiency of plagiarism programming.

Writing a Program. The job test was organized in two parts. For part 1, the

applicants were asked to write an executable program on paper for comput-

ing n factorial (n!) in any computer language; the preferred ones were

Transact-SQL and PowerBuilder Script, which were our development tools.

Many found it difficult to complete a factorial program. This was no great

surprise to us as we had already had a number of years managing inexperi-

enced programmers in developing regions in China.

Easy-to-
sustain

Difficult-
to-

sustain

Easy-to-
start

Difficult-
to-start

Plagiarism
Programming

FIGURE 4.5 In–out diagram for plagiarism programming.

96 PLAGIARISM PROGRAMMING

Some readers who do not understand the test environment may wonder

why the applicants failed to finish such a simple program. In fact, many

candidates may have technical skills such as Microsoft access, Web design,

software installation, networking or hardware-related skills, but not pro-

gramming. The candidates were graduates from inland areas who had

traveled far away from home to the cities in southern China but did not

succeed in finding an IT job there. Desperate, they would apply for any IT job

even if they did not have the skills.

When they finished part 1 of the test they proceeded to part 2.We did not

record the time as our objective was to find programmers for the company,

but they returned their answers in around 15–20 minutes.

Plagiarizing a Program. In part 2 of the job test, we gave them three

complete SQL programs, with the solution f(n)¼ 3n. The programs were

written in different ways: (1) IF–THEN, (2) WHILE loop, and (3) recursion. the

applicants needed to revise each of them for the calculation of n factorial.

The candidates had to write down on paper those programs that should

have been compliable: that is, with no syntactic errors. Roughly, they finished

them in 30–45 minutes. The whole test lasted for around an hour.

Programs. Table 4.2. shows one candidate�s result. He failed to write a

program of n factorial. Part 2 contained three sample programs to be plagia-

rized. Although he had never done programming in Transact-SQL, the

candidate was now able to modify two SQL programs correctly, in parts

2a and 2b in Table 4.2.

Part 2c used a recursive technique to solve f(n)¼ 3n. As discussed, some

programming skills were harder to follow than others, which would make

plagiarizing challenging. Of three original programs of 3n, IF–THEN, and DO

loop were easier to perceive while recursion was not.

You Are Hired. For the interview, we selected the four applicants who did

well in only part 1 and two of applicants who did well only in part 2. During

the interview, we also asked how they liked the test the last time but did not

tell them that we wanted to recruit two plagiarizing programmers for our in-

house ERP development. The candidates gave us their view of plagiarism

programming. The two whom we hired in the end showed great interest in

plagiarism programming. We could not recall whether these programmers

did well in part 1 or only in part 2.

Our experience here provides some reference for readers who are

planning to recruit programmers for their companies. They may consider

PLAGIARISM 97

TABLE 4.2 Programming in Transact-SQL by a
Non-SQL-Knowledgeable Programmer

Test Part Source Code Success

Part 1: no plagiarism A¼1 �
B¼1

C¼1

Input N

For N to 1

Aþ1¼A

A*B¼C

C¼B

End For

Output C

Part 2a: plagiarizing Create proc factorial @
an IF– THEN program (@y integer)

as begin

if @y ¼ 0 return 1

if @y ¼ 1 return 1

if @y ¼ 2 return 2

if @y ¼ 3 return 6

if @y ¼ 4 return 24

if @y >¼ 5

print “ out of the range!”
end

Part 2b: create proc factorial @
plagiarizing (@y integer)

a DO-loop program as begin

declare @result integer

select @result ¼ 1

while (@y >¼1)

begin

select @result ¼ @result * @y

select @y ¼ @y - 1
end

return @result

end

Part 2c: plagiarizing
a recursion program

create proc factorial �

(@y integer) as begin

declare @result integer

declare @y_minus integer

if @y ¼ 0 return 1

select @y_minus ¼ @y – 1

exec @result ¼ fatr @y_minus

if @y ¼ 0 return 1

98 PLAGIARISM PROGRAMMING

a job simulation test like this. Of course, if your development environment

uses another methodology, you will have to work out your own job

simulation test.

Insights. Some time laterwe reviewed the interviewdata andprograms in a

more systematic way.When part 1 is comparedwith part 2, is there anymajor

difference between those who failed in part 1 but passed part 2?

There are four possible outcomes for their programs, as shown in

Table 4.3. Figure 4.6 summarizes the outcomes of the job simulation test.

Although three assignments in part 2 seemed to be the same, they were

written in different algorithms. We compared part 1 with three results of

part 2 in turn (i.e., 1 vs. 2a, 1 vs. 2b, 1 vs. 2c); the percentage of the number of

successes soared 150%, 150%, and 75%. As shown in Figure 4.6, 4 out of 16

applicants (25%) succeeded in coding the problem in part 1; 10 out of 16

applicants (62.5%), in parts 2a and 2b; and 7 out of 16 applicants (43.7%), in

part 2c. Clearly, plagiarism provides a certain degree of assistance in pro-

gramming by inexperienced people.

Cognitively, �easy to do� and �easy to do by steps� (i.e., �easy to follow�)
are two different concepts. The first tends to be a subjective judgment of

implementers. The second is more objective. For instance, coding a program

of factorials by a recursionmethod is easier for peoplewho are accustomed to

doing it in this way. As for easy to follow, a DO loop could be more

straightforwardly expressed in steps, as all people should already be familiar

with this style. interestingly, in the factorial method, the best way in �easy to

follow� is IF–THEN–ELSE.

Although the purpose of the test was to screen candidates, it was a bit

stricter than the working environment of plagiarism programming as there

were no verbal and informal communications providing feedback. Since it

select @y_minus_1 ¼ @y_minus - 1

exec @result ¼ fatr @y_minus_1

if @y ¼ 0 return 2

select @y_minus_1 ¼ @y_minus - 1

exec @result ¼ fatr @y_minus_1

if @y ¼ 0 return 6

select @y_minus_1 ¼ @y_minus - 1

exec @result ¼ fatr @y_minus_1

if @y ¼ 0 return 24

select @y_minus_1 ¼ @y_minus - 1

exec @result ¼ fatr @y_minus

return (3 * @result)

end

TABLE 4.2 (Continued)

PLAGIARISM 99

was awritten test andweprovidedno spoken instructions,we also eliminated

coloring.

4.1.5 Pattern Language

Christopher Alexander was an architect who developed the pattern theory in

the 1960s that could be considered as an approach to arrangingworkspaces so

that new employees would be able to learn by being in proximity to their

mentors. This is called �master and apprentices.� Patterns in architecture are

TABLE 4.3 An Analysis of Four Outcomes

Outcome Part 1 Part 2 Conclusion Explanations

1 @ @ No conclusion! Managed to
complete both

2 @ � Very unfavorable
to plagiarism

Overthrew our
belief about
plagiarism as
people are able
to complete the
assignment alone
but fail to
plagiarize it

3 � � Unfavorable
to plagiarism

Demonstrated a
fruitless attempt
in part 2 even if
the person is not
knowledgeable
about programming
at all

4 � @ Favorable to
plagiarism

Turned everyone
into a programmer

FIGURE 4.6 Job test results.

100 PLAGIARISM PROGRAMMING

perceptible; but patterns in logic are conceptual relationships among things

and hence invisible. Shepard (2002) says that we remember pictures (with a

success rate of 98.5%) so much better than words (90.0%) and sentences

(88.2%) that were previously learned. Therefore, efforts required for human

apprentices to learn visible patterns and learn design patterns are very

different.

Anyway, inspired by patterns, the gang of four (Gamma, Helm, Johnson,

and Vlissides) developed their classic work Design Patterns,1 which are

templates of descriptions of, conditions for, and examples of how to solve

object design problems that can be used in many different situations. While

this aspect of the pattern theory has proved useful for the problem under

consideration, it should be realized that some patterns might be difficult to

master and follow.

If mastering one or two design patterns sufficed to solve our program-

ming problems, we would have no difficulty. Unfortunately, we have to

master quite a number of patterns, and, most importantly, they are distinct

from one another. Applying patterns to real problems requires experience.

One good thing is that once our organization successfully adopts design

patterns through a project, that application can serve as a solid example to

help our team coach newcomers. Thus, design patterns are difficult to master

but easy to coach (see Figure 4.7).

1If you have not yet read that book, we recommend that you read it. If you prefer Java
code for explanation, Mark Grand�s Patterns in Java is suggested.

Easy-to-
coach

Difficult-
to-

coach

Easy-to-
master

Difficult-
to-

master

One Design
Pattern

Design
Patterns

FIGURE 4.7 Master–coach diagram for design patterns.

PLAGIARISM 101

Plagiarism programming, as a tool that assists inexperienced (if not weak)

developers in getting coding work done, can be an exploration of human

cognition. We seek patterns for easy-to-follow code (i.e., knowledge of

purpose) and patterns of ways to program (i.e., knowledge of structure) to

help people complete their undertakings alone with little or no help from

other teammembers, training courses, or references as these incur extra time.

In this sense, plagiarism programming is code-oriented and design patterns

are solution-oriented.

Sample code in plagiarism programming must be easy to follow.

Figure 4.8 shows that the practice is easy to master, which does not mean

thatwe can easily develop simple code to plagiarize any application. It simply

says that once code is written to facilitate plagiarism (see Section 4.13),

plagiarism becomes easy to master for others and they can coach newcomers

on how to use that simple code for writing other programs.

In short, the purpose of plagiarism programming is not to think over

generic application-independent solution built as a set of patterns (Gamma

et al. 1995). For the purposes of plagiarism, design flexibility is not the same as

easy-to-follow. We will clarify this point further in Section 4.1.6.

4.1.6 Software Team Capability

Nowadays, software development demands different kinds of skills. For

example, writing client/server database applications necessitates the use of

client development tools (e.g., VB, Delphi, PowerBuilder), SQL (PL-SQL,

Transact-SQL, etc.), database administration and tuning (e.g., servermanager,

database denormalization), and network (e.g., remote access and proxy

Easy-to-
coach

Difficult-
to-

coach

Easy-to-
master

Difficult-
to-

master

Plagiarism
Programming

FIGURE 4.8 Master–coach diagram for plagiarism programming.

102 PLAGIARISM PROGRAMMING

server). If we are not technically strong enough tomaster technical difficulties,

they will come back to haunt us.

Therefore, when coming across a technical problem, a team of more

programmers stands a good chance of solving it. To do programming in a

small software team, programmers have to be basically equippedwith some

minimumexpertise [e.g., skills of inserting record(s) into a table, of database

deadlock handling, of transaction rollback] that allows them to complete

their jobs. For example, developers below that level could do nothing by

themselves. Figure 4.9 depicts the idea. Programmers B, C, and D will have

some trouble working on database programming. Unfortunately, program-

mers may not know how much they don�t know. Software quality is

therefore at risk. Our goal is to push down the line of minimum expertise

to a lower position.

When Iwas around 5 or 6, I always carried some 10¢ coins to buy sweets.

My parents did not allow me to spend more than 100¢ per day, so I had to

know how much I had left if I spent 30¢ for a Coke and 40¢ for a burger.

Unfortunately, at that age I had little math skills, so I solved the problem in a

mechanical way. Here was what I did:

Step 1. I emptied my left pocket.

Step 2. I counted four coins and put them into my right pocket.

Step 3. I counted three coins and put them intomy right pocket, repeating

step 2.

Step 4. I counted the remaining coins.

Thinking about addition as theminimumexpertise for payingmoney and

buying things was transformed into simply counting coins and putting them

aside. Addition is a higher skill than counting. So we did the same job using a

lower-level skill.

A B C D

Index of Expertise

Minimum Expertise

Programmers

FIGURE 4.9 Minimum expertise for programming in which programmers B, C, and D
could not work on their own.

PLAGIARISM 103

Returning to Figure 4.9, what would you do if you were programmer A?

Let us look at a number of solutions. You could intensively transfer your skills

before programming takes place so that other programmers obtain the know-

how, shown in (i) in Figure 4.10. This solution takes time, and its feasibility

depends on the learning curves of your colleagues. In addition, personal

turnover has not yet been factored in. The resignation of a well-trained staff

member is detrimental to a small team.

You could take over difficult tasks yourself; other colleagues are just your

assistants or are responsible for simpler jobs [see in (ii) in Figure 4.10]. This

way is even less feasible. It ends upwith a case inwhich programmerAhas to

do all system analysis and coding, while programmers B, C, and D may be

involved in all testing.

The solutions suggested above are principally correct but not practically

feasible. We have to adopt the right software practice, which can be pair

programming discussed in Chapter 5 and its rhythm discussed in Chapter 6.

Test-driven development discussed in Chapter 9 that tells us how we may

progressively do programming right. Test-driven development is sort of

microiterative; every small success establishes a baseline for programmers to

go forward for more success, or go back to the baseline and start over again.

Plagiarism programming is also a solution; it pushes down the level

of minimum expertise for more developers to do programming (see

Figure 4.11). Although in software development there is no total solution

(i.e., silver bullet), solutions are rarely absolutely incompatible. They

could even become a great symphonic work if they are combined

rhythmically.

FIGURE 4.10 Two solutions for what you would do.

104 PLAGIARISM PROGRAMMING

4.1.7 Rough-Cut Design

When the team adopts plagiarism programming alone, programmer A

will work submodules for programmers B, C, and D to plagiarize. Since

programmer A would never be able to complete every detail of the system

design, there can be a case in which B and C write different code for the

same feature in two submodules that they separately work on. For exam-

ple, the value-added tax (VAT)2 calculation repeatedly appears in a

number of submodules. If the same things are not put together, we will

have to modify a number of places every time there is a change in the sales

tax. The better way is to use a procedure (or method) to handle all kinds of

VAT in the system, that is, to achieve high cohesion, which in programming

refers to how closely a number of operations in a routine are related

(Shalloway and Trot Dec. 9, 2005; McConnell 2002)

The calculation of VAT needs to retrieve the selling price from a product

code times the VAT ratio for the category of that product. Clearly, the VAT

procedure includes the logic of getting the right selling prices.

However, a selling price of the sameproduct can vary.One copy of a book

is $10, but two are $15. A lunchbox is $10 but 10% off after 2:00 P.M. (14:00

hours). thus, the selling price as another function call should be decoupled

from VAT so that when we have to change the business logic for the selling

price, we do not have to bother about VAT.

Even so, skilled programmersmaynot be able to plagiarize programs and

at the same time work on design problems with others; plagiarism program-

ming is just a way of coding and does not handle any design issue.

To solve this problem,wehave todo some sort of redesign after the code is

done: refactoring (see Figure 4.12)! This does not mean that we wait to

improve code in refactoring. In a situation in which many programmers are

2With VAT at 10%, a consumer should pay for the retail price times 10%.

FIGURE 4.11 Push down minimum expertise so that programmers A, B, and C can
work independently.

PLAGIARISM 105

inexperienced, programmers could do a rough-cut design (i.e., a rough plan),

which provides a rough high-level view of the architecture. The purpose of

rough-cut design is to sharewhat we know so that we can avoid anymistakes

through good communication. See rhythm displayed in Figure 4.13.

It is difficult to imaginehowunwrittenprogramsare similar to eachother.

Once the team has done the working software, it is easier to find similarities

and combine the related logic. Thus, a design review (i.e., refactoring) is held

during weeklymeetings. Thepurpose is to identify improvements in the code

FIGURE 4.12 Plagiarism programming and refactoring.

FIGURE 4.13 Refactoring to harmonize two previous practices.

106 PLAGIARISM PROGRAMMING

that has been done. Programmers report on a list of functional points. When

two or more functional points are alike, we may consider refactoring.

4.1.8 Training Is Not a Solution

The computer language continues to be developed; highly skilled pro-

grammers are in demand everywhere, needless to say in developing areas.

Plagiarism programming provides managers there with a tool for running

inexperienced teams. But why employ inexperienced programmers in the

first place? In the cases we have outlined so far, there was no choice, but

even if you do have experienced programmes available, using them may in

many cases just be costly overkill. As one manager commented to me, �We

aren�t sending a man to the moon. We�re building a trading database

application for a brewery!� And then there�s the issue of �experienced,�
which in certain circumstances can just mean �stuck in the past� as current
programmers can be almost as inexperienced in the tricks and skills of tools

of something like integrated development environment (IDE) as are many

newcomers. Many programming errors are related to the programming

knowledge being used (Ebrahimi 1994), and hence we often hear that the

program worked before we updated the IDE.

Staff turnover and job handover are never-ending problems in software

development. This is especially so when training takes a lot of time and

expense. Your boss may at first appreciate your efforts in building up a

competitive team even though the projectmoves slowly at the beginning. In

the long run, the company may profit from your work, but when a well-

trainedmemberwhohas used your programas afinishing school hands in a

letter of resignation to take a better opportunity somewhere else, your boss

can�t help judging you as a good technical coach, but a poor project

manager, especially when newly hired programmers may repeat the old

mistakes of the ex-colleagues whom you trained. So total training is not a

total solution. The advantage of plagiarism programming is that it is just a

simple software practice and senior management is happy to see new

members producing acceptable work quickly and getting the project

moving forward.

Finally, you may wonder why we call this �plagiarism programming.� It
has nothing to do with plagiarism! We will tell you why in the next section.

4.2 NOTHING FASTER THAN PLAGIARISM

When our software team is designing applications under time pressure, some

of its members will naturally think about whether part of the code (i.e., the

NOTHING FASTER THAN PLAGIARISM 107

source or logic) has been developed elsewhere, how the other people have

solved the same problem, where they may find similar source code, and

finally whether we could reuse it. There is little chance that we are writing

unprecedented logic.

Suppose that we are sure that what we are going to code for our

application is part of a software source written by others. However, software

is an integratedproduct. To extract the source code in the right place for reuse,

we have to understand the structure of the software. The good news is that

many programs available over the Internet are often as maintainable as if the

program authorswere actuallywriting for others, and thatmeans thatwe just

need to take a little time to figure the logic out.Oncewe learnwhere to change,

we will be able to reuse the software. Reusing the software source that we

successfully compile and execute is by all means faster than writing the same

from scratch.

Once we identify where to extract, we need to test whether that piece of

code is working as you expected. This is neither blackbox testing, where

system behavior is determined by studying its inputs and outputs (Sommer-

ville 1986), nor whitebox testing, where the system�s behavior is analyzed by

examining the code.Wemay go through only a part of the source. In addition,

the source codemay call other external libraries for whichwe do not have the

source. Therefore, the testing is something in between black and white. If the

extracted software does not work in the way we expect, we can go back and

test the original program.

Wemaymodify the existing code and build our application according to

user requirements. Generally, the time that it takes us to repeatedly do test

and revision and retest is much less than when we write everything from the

groundup.As far as the programweplagiarize is executable andworking,we

stand a good chance of accelerating our own development. (See Figure 4.14.).

4.2.1 Immorality

Plagiarism can be defined as using or reproducing thework of someone else

without acknowledging the source or obtaining permission. Mimicking the

code of your colleagues introduced in Section 4.1 is not plagiarism. It is if we

intend to get sample code from the outside. In fact, plagiarism has already

hit the open-sourceworld.Many software companies are using open-source

software without honoring the relevant licenses (O�Brien 2005). Dishonest

companies may even try to pass off open-source product to their clients as if

it were developed by them.

Adopting plagiarism programming by taking advantage of open-source

software to manage programmers in an in-house environment is a gray-area

108 PLAGIARISM PROGRAMMING

issue. Staff actually get paid for the efforts of someone else, although there is

no reselling for money.

Under the terms of the GNU general-public license (GPL),3 plagiarism

programming is acceptable. If we modify and distribute copies of the

program or any portion of it, by the copyright holder under the terms of

this GPL, whether gratis or for a fee, then we must give the recipients all the

rights that we have. Other licenses may impose different limits on our rights

to use software sources.

However, if we enhanceGPL products for customers in a software-house

environment, we must clearly understand that any derivative work incorpo-

rating any part of a GPL product is also licensed as the GNU GPL.

3Available at http://www.gnu.org/ .

FIGURE 4.14 Nothing faster than plagiarism.

NOTHING FASTER THAN PLAGIARISM 109

Many open-source developers do not mind being modified for other

purposes as long as the code stays free: �. . .I only have one requirement if you

download either the source or binary, and that�s what is free stays free. Make

the world a better place if you want, but please don�t take my code and try to

make a quick buck off of it. . .�4

4.2.2 Unprecedented Code

Ed Thompson of Gartner Inc. (2004) says that around 80% of customer-

relations management applications have been developed with a tailor-made

approach. As customer behaviors and purchasing patterns differ in different

industrial sectors, business processes of disseminating customer information

and providing a deeper customer experience can hardly be automated in

standardERPapplications or off-the-shelf softwarepackages. Each customer-

relations management (CRM) application has its unique features.

Two or more applications [say, CRM and supply chain management

(SCM)] in the same family (e.g., database applications) can be designed in

such a way that the reuse of core assets is planned, enabled, and enforced

(Clements and Northrop 2001). Within the application, submodules can be

common to other non-CRM systems. In short, there is no need to get CRM

application source code in order to build your CRM by plagiarism.

Let us look at an example of howwe can proceedwith a CRM application

developmentbyreusingopensourcecode.Amanufacturingcompanywantsto

develop its CRM system. Part of the systemwill assist in simplifying customer

requests.Customerscansendtheirrequeststoacommonemailaddress,andthe

system, according to thedomainnames of receivedemail addresses, automati-

cally forwards them to their account representatives. In addition, the system

needs tokeep track if a request ishandledwithin2workingdays; otherwise, an

�alert� email will be sent to the account managers for their attention. The

company aims to reply to their customers in 3 working days.

The system needs to retrieve emails from a Post Office Protocol Version 3

(POP3) server, extract the sender address of an email, record that header

information and email body into a database, and send Simple Mail Transfer

Protocol (SMTP) emails to corresponding account managers. Obviously, any

program given for the four functions mentioned above will accelerate the

progress.

Finding sample codemay take time, but with luckwemight get that code

sample from computer books to start with. But there are some issues. The

examplesmaybe incomplete so that execution results in a compile error, some

4Available at http://mohairsofa.com/ .

110 PLAGIARISM PROGRAMMING

libraries are missing, or they do not conform to the version of your compiler.

In short, repeating the results may not be as straightforward as we might

anticipate.Also, electronic sourcesmaynot be available; this problem is trivial

if a piece of code is less than 100 lines. But a complete example may involve

several hundred or 1000 lines. The best way seems to have advice from the

authors or from those who have tried the same thing before.

Examples alone are presented only for reference. What is missing here is

people who could share their experience and advise us where to look for the

exact information.

4.2.3 People Network

Wedo not need to be experts to act like experts! Years ago, wewere invited to

give a presentation on software engineering at an international conference

held inParis. Itwas ourfirst time there.AyoungAsian couple cameandasked

us for low-budget hotels.Weprobably looked like tourists. Clearly, the couple

had a language problem, but so did we. I used my mobile phone to send text

messages to friends of mine in Paris whom I had met in a chatroom (e.g., �I
seek you� ICQ). They soon called me back . Even though not all of themwere

helpful, they could suggest one or two places to try. This story tells us two

things: (1) �C�est toujours bien de parler un peu français à Paris�5 and (2)

building a people network is important for both information sharing and

problem solving.

Open-source software development itself can be considered as a kind of

people network.Many active open-source projects have their own discussion

forums or newsgroups. Discussion forums may be using different commu-

nication channels: Network News Transfer Protocol (NNTP) messages,

emailing lists, blogs, or chatrooms. Often, subscriptions are free. People there

are willing to share or exchange their experience and program sources and

libraries with those who are interested in them. The shared work could be

originally written for open-source development or even private companies.

We simply use the term �people network� to mean any form of open-source

development and its related discussion groups.

In our CRM project, sample code for retrieving and sending emails could

be obtained from the people network. The coding involves Socket program-

ming and SMTP and POP3 protocols, which could be quite a task for a team of

database programmers.We once interviewed a number of database program-

mers, and fewwere surewhether they could sendemail usingTelnet.Database

programmers are well versed in SQL programming and database tuning, but

they may be inexperienced in network programming.

5�It is always good to speak a little French in Paris.�

NOTHING FASTER THAN PLAGIARISM 111

Our team can write an initial request for help to the people network. Of a

number of replies, there are always one or two suggesting where we may be

able to download the source code. If we get no reply, we rephrase our request.

As thosewho reply are simply sharingwith uswhat they did or got in the past,

the sample program will normally work fine as long as we get the software

configuration right enough.Now that the project teamno longer needs to start

everything from scratch, the team can focus on how to revise or integrate the

software.

While it is possible to enjoy the past efforts of people in a network, they

aren�t part of the development team. To allow development resources to be

used optimally, we have tomanage and coordinate away of assessing shared

sources.

4.2.4 Rhythm for Plagiarism

System requirements and applications are always lengthy and specific to a

domain. People not in the same industry may have problems digesting user

requirements. Thus, we have to generalize a specific application to a nonspe-

cific one so that there is a greater likelihood that members of our people

network understand and thus provide informative and useful contributions.

For example, rather than asking for help as to how to automatically forward to

sales representatives in theCRMproject,we should just request the source for

an email client application. An action list is as follows:

1. Generalize particular user requirements into a common application

that can still demonstrate the same techniques for solving our specific

problem.

2. Send your problem to the people network.

3. Request any shared program that will employ that know-how in

programming.

4. Obtain a shared program among replies. (If there is no reply or only

negative comments, regeneralize your question in point 1.)

5. If you need to download the source, try to download stable versions.

6. Test and run the system. Request further help if any difficulties are

encountered.

7. Software configuration management should keep the original source,

using the latest source (withmodifications in place) and the procedure

to rerun it. and results and the modification made.

The sample code we are looking for can be embedded in either an

open-source application or a complete open source library. In any case,

112 PLAGIARISM PROGRAMMING

finding the right copy of simple code is a critical step. Although this

should logically come after our requirements have been studied, it is possible

to start as early as possible in order to quickly gain technical feedback.

Whether the sample code is developed by the same software team or

obtained from the people network is not an issue as long as we get the right

code and repeat the results. Most importantly, the process should be com-

pletedmore quickly than if we did it from scratch. Success will depend on the

contributions of members of the people network, the complexity of the

problem, and the capabilities of the software team.

After successfully testing the source, our team can proceed to revise the

shared program according to the user requirements. As sources are not

highlighted in color, the team will have to digest and figure out some

semantics and syntax. Since it is not possible to read through every single

line and it is not easy to fully understand the details of the program, relying

on reading code is of little practical use. However, once the original

program has to be successfully rerun, the team can always modify a small

part of the program and retest it to gain more understanding. The team can

always go several steps backward or, as a last resort, return to the original

and start all over again if it is lost during modifications. Here are some

more suggestions:

. The team may post more questions to the people network to solve

technical problems in the source. Since people from the people network

normally reply with short answers, they will not instruct us what and

how to do anything in detail.

. Two developers work together to revise and to test. If the team has no

ideawhere to revise, try towork in pairs,whichwill facilitate a heuristic

search of an open-ended kind (Kaner et al.). Pair programming is

discussed further in Chapter 5 and 6.

. The team can be split into two or three subteams to individuallymodify

and test in parallel. All subteams will have communicated with one

another; they share their findings and highlight modifications in color

once any progress has been made. The process is as follows:

1. Revise the program by subteams.

2. Highlight any necessary modifications that should indicate any user

requirements.

3. Communicate any findings with other subteams working on the

same shared program by providing the revised program in color and

results implemented.

4. Repeat above until the expected result is attained

NOTHING FASTER THAN PLAGIARISM 113

FIGURE 4.15 Rhythm for plagiarism programming .

Aswe could not control the people network, by nomeans canwe actually

guarantee success, but we have learned that programmers, who cannot even

plagiarize a solution for a problem of the same kind, cannot possibly devise

that solutionby themselves.Given this, plagiarismprogrammingparticularly

facilitates software development in either of two cases: (1) the inexperienced

teamneeds programming knowledge assistance or (2) the teamdoes not have

certain skills for completing part of an application.

In summary, a rhythm for plagiarism programming is shown in

Figure 4.15. You may notice that �copy� is an abbreviated term. It means

copying other people�s success; that is, download the source, compile the

program, then run and test it.

In eXtreme programming, we always stand on a baseline of the last

success and make some progress forward. This can be done only with high-

frequency iteration. The development team must successfully integrate the

software andpass its unit tests before the teamcalls it aday. Thismakes a lot of

sense. We cannot get integration and testing done by going home, throwing

out today�s code, and starting again from our last success. Today�s code has
become hard to maintain and should be trashed so that the team does not

waste more effort in maintaining it. Besides, it may not be worthwhile to

spend somuch timefixingoneday�s code. Sowedon�t fix it.We throw it away.

In plagiarism programming, if we modify the original program to the

point that we lose track of the changes and can�t see which changes are to

blame for failures, we can always roll back to our last success checkpoint and

restart again. Thismeans applying a highly iterative rhythm (see Figure 4.15).

Iteration frequency is an important concept in understanding the software

development rhythm in any methodology that your team adopts.

4.2.5 Plagiarism at Work

Case 1: CRM Amanufacturing company has three regional sales offices in

Chinese cities:Huizhou (HZ), Shanghai (SH), andBeijing (BJ). Each office had

its own IT support team, but the Huizhou team was the head team.

The company decided to go for its CRM project in 2001 after a long

evaluation. The system had a number of modules, one of which was about

customer communication solutions. The management believed that what

customers really neededwas �easy.�Tomanycustomers, convenience ismore

114 PLAGIARISM PROGRAMMING

Small
software
team in
Huizhou

Small
software
team in
Huizhou

Small
software
team in
Huizhou

IT person in
Guangzhou

 IT person in
Beijing

Download,
test, revise

Request colleagues to help

Small
software
team in
Huizhou

Integrate and consolidate

Download,
test, revise

Send
posts

Get user
requirements

Iterative software development: User stories or features added each time

Incremental development: Progressively build code

Get replies
from
people
network

Use traceability
matrix to share
progress

Request
colleagues
to help

People
Network

Users

FIGURE 4.16 A case of virtual software development.

attractive than free. Therefore, the company wanted to establish a universal

email address for all kinds of requests from sales orders to service complaints.

Moreover, each request would be handled in three working days.

On the received email address, the system will record the header infor-

mation and send an internal email to the responsible staff to follow up. In

addition, the system counts the time. When no reply has been sent to the

customer in 2 days, the system will send a reminder note. Section 4.2.2 has

explained the application requirements.

Figure 4.16 illustrates the CRM project development cycle. At the begin-

ning, the requirements would be related to the technical know-how of a

general email program that sent and receivedmessages. TheHuizhou teamat

the head office therefore posted the requests to the people network (a Perl

newsgroup) asking for any code samples for sending SMTP and receiving

POP3 emails. The Huizhou team managed to get sample code. As the whole

teamwas in a distributed environment, itwas able to share these findings and

coordinate its two remote subteamswhile theHuizhou teamworked on other

modules of the CRM. They first retested the program, which was always the

first necessary step in plagiarism programming. The two centers worked

independently and in parallel.

To avoid redundancy and share the progress of each team, they posted

their results on the Intranet Website via VPN. Using a traceability matrix

NOTHING FASTER THAN PLAGIARISM 115

(Kaner et al.) such as that shown in Table 4.4 enables each team to trace

forward to each test case and backward from every success of other teams.

The team should highlight itsmodificationswith color coding for other teams

to easily replicate and inspect. Once a team has managed to examine a

particular test case, others can either learn how that test is done, or even

skip that test and move on to other modifications.

The Huizhou team will examine all the resulting programs and may

request further enhancements. Once the team can successfully integrate with

other CRM submodules, the teammay progressively utilize its remote teams

for software development.

Case 2: Product Knowledge Training (A-Tutor) A retail chain selling

Chinese herbal remedies had around 45 shops in Hong Kong in 2005. The

company was planning to reach 50 outlets by the end of year. However, the

high turnover rate of frontline staff caused setbacks to normal business

operations in high seasons and limited their capacity to expand. Newly

recruited staff seldom had knowledge of the functions of the different herbs

that, according to Chinese medicine, can be used medicinally and for special

diets. The staff in the chain had the job of not only selling the product but also

providing advisory services and so required strong product knowledge.

The company produced a training video compact disk (VCD) on Chinese

herbs anddistributed theVCD tonewstaff; however, therewere cases inwhich

VCDs were not given to the staff promptly. In one case the number of VCDs

needed to be burned by the IT department beforehand was incorrectly esti-

mated by the training department, and when the company wanted to update

somevideoclips the companyhad todisposeof oldVCDsand reproduce them.

The company launched an e-training project. One of the objectiveswas to

allow colleagues to access videoclips online (see Figure 4.17). Two technical

support staff who were responsible for networking and PC maintenance

TABLE 4.4 Traceability Matrix

Test Case Huizhou Beijing Guangzhou

1. Rerun the original program Yes (Nov. 11) Yes (Nov. 15) Yes (Nov. 16)
2. Change the POP3

server as our email
server and Test

Yes (Nov. 17) Yes (Nov. 19) —

3. Retrieve the email
header and print it out

— Yes (Nov. 26) Yes (Nov. 22)

4. Get the sender
address and email body.

— Yes (Dec. 27)

Progress 1 4 3

116 PLAGIARISM PROGRAMMING

would be involved in the project. They downloaded and installed an open-

source Web-based content management system, A-tutor (http://www.

atutor.ca/).

To enhance the A-tutor for videodisplay, we had convert VCD file format

into audiovideo interleave (AVI) format. Then, the support staff modified the

PHP scripts and even though they were not programmers and knew nothing

aboutPHPandMySQL, theymanagedtoget thesamplescriptonto the Internet

andtomodifyA-tutor.Thetwostaffmemberscompletedtheproject in2weeks.

4.3 BUSINESS AND RHYTHM FOR PLAGIARISM

The rhythm for plagiarism programming could sometimes help us do

amazing things! It may also bring alongmore controversial issues on copyleft,

in which original authors allow free distribution of their works. Here is our

true story about business, copyleft, and rhythm for plagiarism.

InSeptember2005,wehadachance tomeet themanagingdirectorofSwire

Coca Cola. CocaColawas franchised to a British company, the Swire group, to

manufacture and distribute the product in southern and western China,

Hong Kong, and Taiwan. The major competitor of Coca Cola was always

Pepsi. In some regions Pepsi won while in others Coca Cola was ahead.

Location is important in the soft-drink industry in that some locations have

moreextremecompetitive consequences.Whenweorderabeer ina restaurant,

for example, our choice of drink excludes both Pepsi andCocaCola.However,

when we buy them in a supermarket, we may purchase all three.

In this short meeting, we had a chance to talk to them about our chatting

robot,Nammik, and howNammik may excel in a worldwide consulting firm,

FIGURE 4.17 A company website to train new frontline staff in herbal product
applications.

BUSINESS AND RHYTHM FOR PLAGIARISM 117

ACNielsen, by its inexpensive, up-to-datemarket surveys.Weweremaking a

proposal about service, data, and ourselves, not about software and

technology.

4.3.1 15-Minute Business Presentation

Wewerewaiting inasmallconferenceroom.Amanenteredtheroom.Hisdress

appeared unusual in a sizable British company. He was John from the United

States, tall, in a casual shirt without a tie. We distributed our report to John. It

was just one page long! We had around 15–20 minutes to sell what we had.

The company had already developed its own tailor-made ERP system

many years ago, called the sales-and-distribution system (SDS). It was a

powerful business operation database that supported and provided sales

information in anydimensional breakdown. Themanufacturing cost could be

easily calculated from the sum of raw materials, logistic cost, expenses, and

other factors. We all know that profits are sales minus costs and people

running companies have to maximize profits by either increasing sales,

decreasing costs, or both. Well, in reality, only small companies manage

their business in this way. The strategy of a large company is monopoly, or at

least market share, with big fish eating little fish. Therefore, Swire Coka Cola

would always take efforts to expand their market segment and their share of

each segment. The company purchased marketing data from ACNielsen to

learn about its consumers and competitors. The date would assist the

company to truly learn their business position and sales performance. John

could understand his different regional sales and marketing teams by their

key performance indicator (KPI), defined as follows:

KPIðby regionÞ ¼ regional sales
population aged 0--14 years

The KPI combined three types of information: data from SDS or ERP,

demographic data, and marketing research. Thereby, it fairly reflected the

business performance. As discussed, the sales amount, rebates, and volume

[in hectoliters (hL)] by region could be retrieved from SDS. We may replace

volume with sales, and hence we could have a number of KPIs measuring

performance from different aspects.

As for demographic data, the National Bureau of Statistics of China

published three populations of people at age of 0–14, 15–64, and over 65.

However, selectingwhich one segment as targetwould necessitatemarketing

research data. Unlike demographic data, marketing research information can

change unexpectedly. Section 4.3.2 discusses this topic in more detail. For

118 PLAGIARISM PROGRAMMING

now,we just need to know thatmarketing researchhelpsus identify segments

of ourmarket and demographic data tell us the population of an age segment.

Box 4.1. shows our report.Wepresenteddata on a geographicmap. In our

proposal the KPI was indicated with colors for different sales performances.

BOX 4.1
BUSINESS PROPOSAL

 Basic (ERP or SDS): Sales, costs of sales (rebate), A/R (credit), volume,
and so on.

+

+

 Demographic data: : Population information

 Market research: Customer segment, competitor data analysis, and so on.

3. Data Source (Real Data)

September 2, 2005

1. Objective. Different sources give new insights into business.

a Data from National Bureau of Statistics of China (NBSC) available at
 http://www.stats.gov.cn/tjsj/ndsj/yb2004-c/index.htm.
b Data from Nammik system developed by the authors.

ERP a Market Research b

Regions Sales Volume 0–14 Total Lowest price of a
can of

(Pepsi / Coca Cola)

— — 20,593 50,799 6,283 77,676 2.0 RMB/2.0 RMB

Beijing — — 1,486 11,008 1,576 14,070 1.8 RMB/ 1.8 RMB

>6515 – 64

Demographic Data
(Age)

Guangdong

2. Business System Proposed. SDS merely supports the operational informa-
tion. To understand market changes and to measure business performance,
we propose a data warehouse that provides different views which comple-
ment each other. Such a system combines (1) basic data, (2) demographic
data, and (3) market research.

4. Information Fusion (Example). In China, populations in different regions
can vary significantly. Sales [or hectoliters (hL)] by region is not informative
enough. Thus, “sales by region/population by region” can provide more
information. Defining a benchmark, we may find key areas for improve-
ment (see the diagram below).

BUSINESS AND RHYTHM FOR PLAGIARISM 119

In each annual board meeting, John had to report on any change in the

company�smarket andmarket share to evaluate their performance. Although

our proposal indicated that wewere advising a type of computer application,

thiswas not the case.Whatwe have not clearly addressed is howwe could get

�market information� by ourselves without expensive market measurement

services from ACNielsen.

4.3.2 Marketing Research

Consumer marketing research is a form of applied sociology that uses

sociological knowledge and statistics to help organizations understand

consumer behaviors. Although there are many different kinds of marketing

research, such as brand equity research, customer satisfaction studies, and

consumer decision process research, the techniques used to obtain data are

limited. Generally, the most commonly used method is the questionnaire.

In July 2005, we did some marketing research. We questioned more than

5000 Chinese people in a chatroom about their favorite drink and received

around 500 complete replies. Figure 4.18 shows the result of our own

marketing research.

As data provided by NBSC are presented in three groups (ages 0–14,

15–64, and >65), we may conclude that the population aged 0–14 years

could be close to the right market segment of soft-drink consumers,

and hence this age group was suggested for the KPI calculation in

Section 4.3.1

120 PLAGIARISM PROGRAMMING

In a similar fashion, Figure 4.19 shows a contour map of China in which

the population group at age 0–14 by province is indicated in the background

and a small pie chart associated with each province shows Pepsi versus

Coca Cola in percentage. Those who favor neither Coke nor Pepsi are shown

as �neutral.� The total number of intelligible responses from each province is

shown below the pie charts.

Swire Coca Cola purchased data of this kind fromACNielsen annually.

However, consumer behaviors can change significantly in a year. For

example, Pepsi�s commercial starring soccer star David Beckham had a

tremendous impact on David�s Fans (see Box 4.3 in Section 4.3.3). How do

we get the latest marketing data, and how do they relate to software

development?

4.3.3 Chatting Robot

Marketing data can be obtained from customers. Oftenwewant to know not

only who our existing customers are but also those who are not yet

customers, andwhen theymay become our customers. Since we have fewer

current customers than noncustomers, getting to know the needs of non-

customers (i e., prospective customers) is a good start toward making them

customers.

There are so many public chatrooms on the Internet. One of them is ICQ

(�I seek you�). Although different chatrooms and instant messages have their

FIGURE 4.18 What is your favorite drink? (�None� means tapwater or particular
preference) (real data by authors).

BUSINESS AND RHYTHM FOR PLAGIARISM 121

own features, they were not very different in our case. ICQ can be a place to

talk to people and to learn something from them, a bit likewhat we saw in the

people network in Section 4.2.3.

When conducting a telephone survey or an interview survey,we have to

design a good questionnaire. Therefore, a dialog-based questionnaire is

designed and carefully examined. Then, our interviewers will log in to ICQ,

search for people who are online and live in China, say �Hello� to them, and

ask how they feel about Coca Cola and Pepsi. Our interviewer must be

extremely patient as interviewees may be busy and may respond very

slowly. They may be away or logged off. Our interviewers will have to

talk to others. The process is unbelievably slow. The solution is to havemore

interviewers,which can become clumsy and costly. On one hand,weneed to

manage who has talked to whom, to avoid interviewing the same person

twice. On the other hand, this kind of survey is expensive. The interviewees

may log off anytime, leaving us an incomplete questionnaire that can rarely

be used for statistical analysis. Itwould be better ifwe had a chatting robot to

do the job.

FIGURE 4.19 Coke versus Pepsi. (Taiwan population data not included). (Real data by
authors).

122 PLAGIARISM PROGRAMMING

BOX 4.2
THREE DIALOG SAMPLES (Aug. 2005)

Dialog 1

Nammik I live in Hong Kong. Where do you live?
ICQ I live in Yiwu City, Zhejiang.
ICQ So you can type Chinese to me?
Nammik Cannot read simplified chinese because i am using

traditional Chinese Windows
ICQ OK, no problem
ICQ What is your job?
ICQ Oh,has you been to another city of China? Except Hong Kong
Nammik Can I ask you some questions about soft drink? i want to

compare it with Hong Kong.
ICQ I means which city did you go before except Hong Kong City?
ICQ Ok
Nammik How much is a can of pepsi there in rmb
ICQ 2.5–3 rmb/can.
Nammik How much is a can of Coke?
ICQ Nearly same.
Nammik Which one do you like most? I mean Coke or Pepsi
ICQ Both i don’t like.
Nammik That’s cool.
ICQ Which one do you prefer?
Nammik I appreciate your help. Here is a joke for you. Tom: my

wife is just forty. Kim: why don’t you change her for
two twenties?

Dialog 2

ICQ oohhh—I like this city and I wanna work in this city
Nammik That’s great
ICQ I’m in mainland [China].
ICQ My English poor
Nammik My English is not good

either. . .dont worry. . .
ICQ :-P
Nammik Can I ask you some questions about soft drink? I want to

compare it with Hong Kong
ICQ My English poor I not know
Nammik How much is a can of pepsi there in rmb
ICQ Wat is mean?
Nammik How much is a can of Coke?
ICQ Oohh. . . 3
Nammik Which one do you like most? I mean Coke or Pepsi

BUSINESS AND RHYTHM FOR PLAGIARISM 123

ICQ Pepsi.
Nammik Why Pepsi? Why not Coke?
ICQ I think it has co2 more.
Nammik I appreciate your help. Here is a joke for you. Tom: my wife

is just forty. Kim: why don’t you change her for two
twenties?

Dialog 3

Nammik I live in Hong Kong. Where do you live?
ICQ Shenzhen
ICQ Why you show you are 31 years old, and living in Singapore?
Nammik That’s great
ICQ :-) why great ?
Nammik Can I ask you some questions about soft drink? I want to

compare it with Hong Kong
ICQ Yes
Nammik How much is a can of Pepsi there in rmb
ICQ 3.5
Nammik How much is a can of Coke?
ICQ The same
Nammik Which one do you like most? I mean Coke or Pepsi?
ICQ Coke
Nammik Why Coke ? Why not Pepsi?
ICQ Just like.
Nammik I appreciate your help. Here is a joke for you. Tom: my wife is

just forty. Kim: why don’t you change her for two twenties.

Nammik is an ICQ chatting robot (see Box 4.2). We may write different

dialog scripts (see Appendix). Nammik will talk according to that script.

Differing from other chatting robots like ELIZA (1966), ALICE (by AI

Foundation in 1995), and Dave (English teacher), which were developed

to intelligently answer our questions rather than to conduct interviews,

Nammik has been built to interview people.

Nammik does not have any sophisticated speech understanding engine.

In of fact, we discovered that many people in the chatrooms do not speak

English properly. For example, they say �what does it mean� as �wat is mean�
(see Box 4.2). In Hong Kong and China, people may use their dialect �88� as
�byebye.�Thus, according to thedialog script given,Nammik simply looks for

keywords and related responses.

AlthoughNammik does not have text mining capabilities, wemay easily

extract responses after a related question. For example, to learn about �how
people likeCocaCola andPepsi,�we can easily extract responses for that kind

of question (see Box 4.3).

124 PLAGIARISM PROGRAMMING

Howchallenging can it be towriteNammik?Well,many of programmers

like us do not know much about ICQ protocol, network programming, and

event-driven programming. Fortunately, basic knowledge of Windows API

and �C� language skills is just enough. Nammik is simple and easy to write

becausemany developers have already done the code for us to plagiarize.We

just need to play the rhythm: copy–modify–test.

4.3.4 Old Song, New Singer

To buildNammik using plagiarism programming, we have to get a chatroom

client application. There were a number of open-source ICQ clients. We used

Miranda IM (http://www.Miranda-im.org) as our sample code. Miranda

instantmessaging (IM)written inC is built by a community of volunteers. It is

an open-source project under the GNUGPL license. There is a chatting robot

plug-in for Miranda IM, called ANNA (an implementation of an ALICE), but

it is complex and does not meet our requirements.

Miranda IM architecture is simple and flexible. There are many powerful

plug-ins (e.g., ICQ, Yahoo, email) that are dynamic-link library (DLL) files for

the Miranda IM kernel (see Figure 4.20). To add functionality to Miranda IM,

BOX 4.3
WHY DO YOU LIKE COKE OR PEPSI?

Nammik why pepsi? why not coke?
ICQ i think pepsi is more sweet than coke i think children here prefer

to pepsi
ICQ see you next time!! i get off line

Nammik why coke ? why not pepsi?
ICQ i would like coke and pepsi
ICQ i don’t know
ICQ but i would like coke

Nammik why pepsi? why not coke?
ICQ because of the advertisement, i like the football stars that are

signed with Pepsi, like david beckham, and zidene

Nammik why coke ? why not pepsi?
ICQ i’d like coke because it’s more classical brand for me, and coke’s

tasty i’d like a bit more

Nammik why pepsi? why not coke?
ICQ i like the logo of pepsi

Nammik why coke ? why not pepsi?
ICQ maybe I feel the pepsi is suit to the fashion people, and I m

older:) actually, I don’t refuse any brand

BUSINESS AND RHYTHM FOR PLAGIARISM 125

wehave todevelopour ownplug-ins.Wedownloadeda small plug-in source,

modified it a bit, and tested it so thatweknewhowthat plug-in could interface

with the Miranda IM kernel.

Nammik has been built in a rhythm of modify–test since we and our

student programmers knew a little about ICQ protocol and network pro-

gramming. Figure 4.21 shows the architecture of Nammik.

Send/Receive Messaging Plug-in With this plug-in, we could type in

and send our instant message in a dialog window. The plug-in was modified

to display all posted and received messages. In addition, we could

send the ICQ text through function calls (see Figure 4.22). Because we have

to code–modify–test the plug-in, the plug-in is not regarded as a reusable

component in this case.

People Agent from IcqOscarJ Protocol Plug-in The original plug-in

provides searching functionality of on-line ICQ users shown in Figure 4.23.

Those online users are random. It is possible that some of them to whom you

have just talked are also listed. Besides,we have to type in welcomemessages

one by one.

FIGURE 4.20 Plug-ins of Miranda IM are DLL files.

126 PLAGIARISM PROGRAMMING

FIGURE 4.21 Nammik architecture.

FIGURE 4.22 Send/receive messaging plug-in modified using plagiarism program-
ming.

BUSINESS AND RHYTHM FOR PLAGIARISM 127

We modified the plug-in so that it filters out people we met already and

broadcast a �welcome� message to new people. When they respond,

Nammik�s talk agentwill take over the dialog. In short, the function of people

agent is to automate �find/add contacts� in the IcqOscarJ plug-in.

Talk Agent In essence, the talk agent is an interpreter of the dialog script.

Figure 4.24 illustrates its function.When the execution pointer is on line 330, it

sends a message through a say() function call to the ICQ user whom we are

talking to, and the execution pointer changes to 340, the next line of 330. Then

Nammik will wait for a response.

Although the talk agent is the core part ofNammik, its code is about string

handling and matching, which is much simpler than both IcqOscarJ protocol

or send/receive messaging plug-ins in terms of data structure and excep-

tional handling. We rely heavily on the rhythm for plagiarism to build

Nammik. Nammik is an old song with a new singer because Miranda IM

has almost every code we need.

How can we tell dancing from body shaking? It is rhythm. In the same

fashion, rhythmmakes the difference between copy-and-paste programming

and plagiarism programming. Without rhythm, plagiarism programming

just becomes cut-and-paste and softwareprojectsmanagedbyplagiarismwill

sooner or later end up in a mess. Plagiarism programming has a strong sense

of what activities should follow after we copy other people�s work. The

rhythm helps the team members communicate with each other.

Some readers may notice that we rarely mention software disciplines.

The reason why is because software development rhythms implicitly

demand that people be disciplined and that there be a team effort to sustain

them.

FIGURE 4.23 IcqOscarJ protocol plug-in modified.

128 PLAGIARISM PROGRAMMING

REFERENCES

Clements P and Northrop L. Software Product Lines: Practices and Patterns. Boston:

Addison-Wesley; 2001.

Coad P, Lefebvre E, and de Luca J. Java Modeling in Color with UML: Enterprise

Components and Process. Upper Saddle River, NJ: Prentice-Hall PTR; 1999.

Ebrahimi A. Novice programmer errors: Language constructs and plan composition.

International Journal of Human-Computer Studies 1994; 41:457–480.

Gamma E, Helm R, Johnson R, and Vlissides J. Design Patterns: Elements of Reusable

Object-Oriented Software. Reading, MA: Addison-Wesley; 1995.

Gartner Inc. Customer Relationship Management Summit 2004. Oct. 4–6, Scottsdale, AZ,

The Westin Kierland Resort and Spa, Stamford, CT, 2004.

GrandM.Patterns in Java: ACatalog of ReusableDesignPatterns IllustratedwithUML, 2nd

Ed. New York: Wiley; 2002.

KanerC, Bach J, and PettichordB. Lessons Learned in Software Testing: AContext-Driven

Approach. New York: Wiley; 2002.

McConnell S. Code Complete: A Practical Handbook of Software Construction. Redmond,

WA: Microsoft Press; 1993.

O�Brien KJ. In open source, an unexpected trap, International Herald Tribune, Dec. 9,

2005. Available at http://www.iht.com/bin/print_ipub.php?file¼/

articles/2005/12/09/business/open.php .

FIGURE 4.24 Talk agent.

REFERENCES 129

ShallowayA and Trot J.Design Patterns Explained: A New Perspective on Object-Oriented

Design. Boston: Addison-Wesley; 2002.

Shepard RN. Recognition memory for words, sentences and pictures. Journal of Verbal

Learning and Verbal Behavior 1967; 5:201–204.

SolowayE. Learning toprogram¼learning to constructmechanisms and explanations.

Communications of The ACM 1986; 29 (9):850–858.

Sommerville I. Software Engineering. 5th ed. Reading, MA: Addison-Wesley; 1995.

130 PLAGIARISM PROGRAMMING

5
PAIR PROGRAMMING

Three thousandyears ago, scholars inpairs studied theTorahby takingup

opposite positions on each issue. Three thousand years later, we write

programs in pairs by taking up doing andwatching roles on each piece of

code.

�Spend less�1 is a new rule for corporate executives in an article �IT doesn�t
matter.�Asweall know, it is gettingmoredifficult to achieve a sales advantage

through IT investment but easier to put a company at a cost disadvantage

(Carr 2003). This bringsus to another twoprotective rules: �Follow, don�t lead�
and �Focus on vulnerabilities, not opportunities.� The idea is to get cost

benefits by keeping ourselves less than state-of-the-art competitive.

This reminds us of a paper product manufacturing company we visited

some years ago. The management employed many uncompetent staff that

were unbelievably loyal to them. Perhaps for this reason the staff worked

harder and made up for their deficiencies to the point that they were cost-

efficient. The company could have cut its administrative staff by half and

replaced them with more competent people who the company would have

had to pay even more. It wouldn�t have been economically worthwhile. The

company that employed too many less-than-competent individuals turned

out to be more productive and faster than a company that was �optimally�

1 Spend less on information technology (IT).

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright � 2008 John Wiley & Sons, Inc.

131

staffed. The idea seems as odd as pair programming, in which two people

who are working on a single task that just one person could complete alone.

Let us clarifywhatwemean bypair programming.Pair programming is the

hallmark of eXtreme programming (XP). It defines pair programming as two

programmers sitting side by side to collaborate on a unitary job that includes

the design, coding, and testing of a piece of software. One programmer acting

as the driver controls the keyboard/mouse and actively implements the

program, and the other programmer, serving as the observer, continuously

watches the work with a view to identifying tactical defects and providing

strategic planning. Therefore, it is not pair programming if they subtask the

programso that onedoes one set of code and the otherdoes another set of code.

It is likely that the observer may write part of the code faster or may get

boredwatching or tired of explaining her/his ideas to the partner. Thus, they

rotate their roles. Done with the right timing, both are having fun and

maximizing their contributions. When more than one pair participates in

software development, partners of each pair need to be periodically ex-

changed. This may seem a bit complicated, but each programmer can get

involved with every single line of code. This supports code standards in

action and creates synergies within the pairs.

According to this definition, few non-XP programmers would have tried

pair programming, although they may have collaborated with someone in

front of the same screen while writing some code. But why can�t both have

keyboards, and work on the same file simultaneously, communicating orally

to coordinate their efforts? The one-keyboard/program/driver element cre-

ates a bottleneck in the process. Shouldwe just take collaborative cognition as

the idea behind how and when pair programming works, it can be under-

stood as the driver writes the code and her/his partner actively provides any

kind of assistance in order to achieve higher-quality software.

Todistinguish this fromeXtremeprogramming byname,wemight better

call it collaborative programming.We easily generalize triple programming and

side-by-side programming (see Chapter 6) as collaborative programming.

Fortunately, it is not that necessary to rigorously differentiate their defini-

tions, and we believe that many programmers have once worked in a way of

pair programming, or more precisely, collaborative programming.

5.1 ART AND SCIENCE

Anumber of problemswithpair programminghave beenwidelydiscussed in

the past. Developers who are new to pair programming will probably ask a

number of basic questions that many others have raised or responded to. To

start with, we are going to have a short review of some frequently asked

questions (FAQs) such as whether a programmer prefers to work alone as in

132 PAIR PROGRAMMING

solo programming and not work aloud (vocally) as in pair programming and

so on (Williams and Kessler 2003). Afterward, we canmove forward onmore

mysterious issues: Why pair but not triple? Does pair programming actually

speed up the completion of a software project?

These questions might be related more to art than to science. Because

many practitioners may have their own perspectives on them, they are

divided and vocal in pair programming. Different people understand pair

programming as meaning different things, and this has made it somewhat

controversial in some circles.

However, we will, by drawing on the existing understanding of collabo-

rative work, offer some general recommendations for forming pair program-

ming teams, but that these recommendations are guidelines thatmay, in some

cases, be less than effective when put into practice.

In this section we are primarily presenting commonsense ideas about

pairs of people working together. In Section 5.2 we will address each of these

concerns and show how pair programming, combined with proper design of

the program environment, can offset some its inherent limitations.

5.1.1 The Right Partner

FAQ: Twoheadsarebetter thanone!Butpairprogrammingworkswellonly

with the right pair as the partners complement each other�s knowledge.

Our intuition tells us that with the right pairing two heads are better than

one, and to some extent this is the case because paired programmers will

always complement each other as long as two people think differently and

have different focuses. For example, one observer may focus more on

alternative programming design. We�re generally unlikely to get two people

who think so similarly that they may as well be just one person.

There are frequent cases in which today�s business needs require unpre-
dictable programming changes and programmers have to modify what they

have done. The difficulties of such revision depends on howmuch they have

already coded, how many changes are required, and how they are able to

effectivelymodify existing code to respond to those changes. In such a coding

game, programmers working in pairs complementing each other�s ideas

make better teams. It is not an issue about a right partner, but it demands

close collaboration to meet the new challenge and get the job done.

Two brains may tackle projects more creatively and efficiently than

one (Constantine 1995). Saying that two heads are better than one is too

bold. People, methodologies, and tasks should be put in place so as to

ensure in-depth understanding of when a software practice works and when

ART AND SCIENCE 133

practices are connected. �Work well� relies on what kind of task can be better

solved by pair programming.

In group dynamics, studies of group composition suggest that groups

with optimal diversity will work together more effectively than others. In

practice we have to carefully balance the need for similarity against the need

for complementarity and/or diversity. Diversity is good for creativity, but it

can cause tensions within the group that may eventually undermine produc-

tivity. A group of programmers (including a pair) may end up fighting,

chatting, or even worse, flirting. But these are problems with social profes-

sionalism. They can occur in any form of team programming, not just pair

programming. In these situations,developersare simplynotmatureenoughor

sufficiently self-disciplined to respect their team members in the workplace.

5.1.2 Noisy Programming

FAQ: Many programming tasks can be so challenging that developers

need to have a quiet place to think about them. Pair programming,

however, is noisy.

A �quiet� place is not the same as a �silent� place. Quietness can be

subjective. Programmers may feel like listening to music and would still

consider it quiet if it helped them get the job done. You know! PlayingMozart

to children for 10 minutes enhances their spatio-temporal reasoning, as

shown in Figure 5.1.

FIGURE 5.1 Spatio-temporal exercise.2

2 The answer is (b) (Hansen 2001). http://coe.sdsu.edu/eet/Articles/

mozarteffect/start.htm.

134 PAIR PROGRAMMING

Some programmers prefer working in a cubicle, where they can create

private environments with decorations or photos. In reality, many of uswork

in an interrupting environment. After being interrupted by themobile phone,

a programmer might not be able to concentrate for at least 15 minutes

(DeMacro and Lister 1987).

Some don�t like to bewatched. They need to be trusted. This can be due to

personal traits or cultural influences. Some of our colleagues are nocturnal and

enjoywritingcodelateatnight.Thisistheiridealquietness.Aneedforquietness

can be just amatter of personal preference. Some programmers prefer towork

alone in what they regard as a quiet place, although they may, of course, be

online with ICQ and irregularly hear the sound of an incoming message.

5.1.3 Just Training

FAQ: Pair programming facilitates on-the-job training for newly hired

programmers; however, paired programmerswill be awaste of time once

they receive enough training.

We can rephrase this as �Pair programming is not mutually beneficial to

paired experienced programmers.�When we pair two experienced program-

mers, we should ask what kind of problem they are going to solve. Are they

going to solve a simple problem, or are they going to solve a very difficult

problem?

A newly hired programmer might ask questions that an experienced

programmer would regard as stupid, and, of course, such questioning may

affect productivity, but this situation is not in general representative of team

productivity.

Collaborationdemandssharingandtaskfocus.It isimportanttolearnhowto

practicepairprogrammingandhowprogrammersplaytheir roles.Forexample,

it canbeamistake to regardpairprogrammingas a training session inwhich the

driverwrites codeandexplainswhat she isdoing indetailwhereas theobserver,

as her secretary, takes notes of everything that is said. People share knowledge

through the code. This is a bit different from training.

Finally, themost obvious FAQ, bywhich amanager is bewildered, can be

the next one.

5.1.4 Pay to Watch

FAQ:Why is a job that can be finished by just one person now still done by

one person but with one watching?

ART AND SCIENCE 135

Tasks that can be completed either alone or together always present

theoretical and applied issues (Stasser and Dietz-Uhler 2001). When all

members are independently capable of doing their work, pair programming

will cut the team productivity in half. This seems counterproductive, but the

people who have tried it now swear by it.

In programming, a task isn�t necessarily done well or even completed.

Often, owing to hidden bugs and requirements changes requested by users,

rework is necessary and, in the worst case, this can happen when the original

author has alreadymoved on. Another programmer takes over the modifica-

tions. If the code is not written for easy comprehension, is hardcode

development or spaghetti code, that programmer will have a hard time.

How do we solve them all? Pair programming throws light on a bottom line

for software quality problems.

The issue then becomes whether a company is happy to pay twice as

much to get better result:

1. We must understand how much salary a programmer earns. This

depends on the country or, within the same country, the region where

the hire is working.

2. Suppose that an energetic but less experienced programmer costs $50.

Then two will cost $100. From a quality perspective, the question now

is whether, if working together they will produce something better

than a more experienced programmer who costs $100.

So, why adopt pair programming? What is more, we might need to

convince senior management about the adoption of pair programming. Our

reply should be determined and sensible. The advantages of pair program-

ming must be potential so that we are willing to tackle problems with

adoption of pair programming and topresent to ourmanagement.Otherwise,

we shouldn�t risk it.

Ultimately, anyone who is considering adopting pair programming will

have to think about these issues because for all of its complexity, one thing

about pair programming is clear—it is more than simple collaboration.

5.2 TWO WORLDS

Medieval philosophers tell us that if an object or a thing happens to be true or

exists in some but not all possibleworlds, it is contingent. To the contrary, it is

necessary if it exists in all possibleworlds; for example, inmathematics, 1 and

1 is 2. It is always held true in any possible world. That simple distinction

between these two truths eventually helps some mathematician logically

136 PAIR PROGRAMMING

prove the existence of God (Gödel 1995). Apparently, that pair programming

is beneficial to software development is a contingent truth.

Imagine that there are two worlds: a moneyless world and a money-led

world. At first glance, this may seem a bit unrealistic, but it does not matter.

We are merely interested in how pair programming may work in these two

worlds. How these two worlds may come to exist is a job for economists.

5.2.1 Moneyless World

In themoneyless world, wewill prefer a working style that has more support

for staff learning. Knowledge is power. Pair working provides opportunities

for learning from each other. In addition, we would like to minimize any risk

due to staff resigning or becoming sick. Another advantage comes with

quality. In computer programming, removing defects as early as possible

by having an observer help is always ideal. All these can be achieved by pair

programming without balancing staff costs in a moneyless world.

Learning. Pair learning or pair work is a type of cooperative learning that is

often defined as a range of concepts and techniques for enhancing the value of

learner–learner interaction (Tan et al. 1999). Cooperative learning has been

associatedwith gains in achievement, such as for assignments, thinking skills,

enjoyment, interethnic relations, and self-esteem. This sounds pretty good.

The idea can be further extended to develop problem-based learning in

which learners work collaboratively in small groups to analyze (or solve) a

case. With no clear-cut right or wrong answer, the objective is revealed to the

learners toward the end of the case.

Pair programming creates an on-the-job learning environment. It is a

combination of cooperative learning and case-based learning. The process of

analyzing and critiquing software written by others is a way for learning

about design and code. There is no clear-cut right or wrong in system design

and writing code. Thus, each software application can be considered an

individual case inwhich a team of paired programmers explores the best and

fastest way to complete it.

There is a body of research looking at how groups learn versus how

individuals learn. Groups are not as fast as individuals when it comes to

acquiring new manual skills. The group, once it learns, may be collectively

smarter than the individual, but it will take longer to reach that state. A group

of two (i.e., pair)will often take less time thanwill a larger group to acquire the

skills necessary for collaboration.

In short, pair programming brings the benefits of cooperative learning to

a workplace.

TWO WORLDS 137

Personnel Turnover. In a conventional software project, we practice either

solo programming or pair programming. Each member has been given

different responsibilities. Some of them are given very important ones, and

some are given less important ones. There are two extreme cases: (1) mem-

bers� jobs never overlap one another, so that the jobs are complementary,

together forming auseful combination of skills; and (2)members� jobs overlap
in a way that knowledge and skill in doing their jobs are shared. In the

moneyless world, we would prefer case 2.

Withpairprogramming, the risk fromlosingkeyprogrammers is reduced,

because there aremultiplepeople familiarwith eachpart of the system. If apair

works together consistently, then there are two people familiar with this

particular area of the program. If the pairs rotate, as is always suggested in

pair programming, many people can be familiar with each part.

There is an amusing idea in projectmanagement. A projectmanager takes

over a very tightly runproject and has to try hard tomaximize team efficiency.

The manager has carefully assign tasks to team members so that no tasks

overlap. The project has gone two-thirds just as planned. To celebrate this

success, theprojectmanagerinvitestheteamtodineout.Whentheyarewalking

across a street to a Chinese restaurant; you see a truck steered by an obviously

intoxicated guy who is picking up speed and going to hit them. You shout to

warnthem.Everyoneleapsoutofthewayexceptoneunfortunateteammember

who ishit andkilledon the spot. Badenough for themanager by itself, but even

worse because this accident has killed not just a team member, but the entire

project, because the truck number for the software project is just one.

A �truck number� is defined as the number of teammembers that would

need to be hit by a truck to have an impact on a project. If it is one, losing any

single member of a team will mean the loss of skills or techniques that are

critical to the success of a project. A high truck number can protect us against

personnel turnover.

Error Detection. Software inspections were introduced in the early 1980s.

Although there are many consistent, positive findings to support software

inspections, not many software teams have fully adopted the inspections.

From an informal USENET survey, only 20% of 90 respondents practiced

software inspections (Cockburn and Williams 2000).

There is little doubt that a second look from others at existing code

provides a useful, fresh perspective on ourwork. In software inspections and

peer reviews, inspectors can look at the program and identify (troubleshoot)

the problem. They provide supporting data andmay even consider solutions

andfixes. Software inspections andpeer reviews serve as a vital final check on

software quality. However, they cannot detect errors that are not there yet or

138 PAIR PROGRAMMING

are about to appear. Sometimes, inspectors may discover a design defect that

requires a number of fundamental changes in the program. In this case, we

mayhave to consider an add-onpatch approach tohiding thedefect insteadof

substantial reworking.

In pair programming, your partner is a safeguard against potential

design defects. The driver may actively ask for the observer�s opinions.

Explaining our code to the partner helps us learnmore about design defects

in our code. What is more, pair programming will not compromise on

quality, and paired programmers are willing to make changes while devel-

oping the code. They will remind each other that better quality will save on

maintenance.

Although pair programming can be considered as problem identification

on a minute-by-minute basis, we also see pair programming as being about

defect prevention whereas software inspections are concerned mainly with

defect detection. In this way, pair programming is complementary to soft-

ware inspections.

Pair Pressure. When two programmers are committed to their work and

respect each other, in pairs they put a positive form of pressure on each other.

The programmers admit to working harder and even more intelligently on

programs (Williams and Kessler 2003). They do not want to disappoint their

partner. In pair programming, anymistakemade by either that causes rework

later will burden the teammate.

5.2.2 Money-Led World

Notwithstanding the advantages of themoneyless world, there is one impor-

tant element missing. It is programming productivity. While other advan-

tages of pair programming are determined, its productivity remains a bit

uncertain. Even though we ignore the money, it is still not obvious that pair

programming is better than solo programming.

As expected, pair programming has been challenged on the basis of

productivity aswe need to pay two people for a single job. The question is not

whether those advantages that exist in the moneyless world can outweigh

concerns about money. We have to justify the productivity of pair program-

ming against soloprogramming; otherwise,we should consider otherways of

programming in the money-led world.

For example, software experts proposed (or rediscovered) alternatives to

pair programming such asmutual programming, inwhich two programmers

write their codebutmutually inspect and test it (Keefer 2002), and two-person

inspections, in which programmers are needed to pair up and inspect their

design or code (Bisant and Lyle 1989).

TWO WORLDS 139

In comparison of these two worlds, pair programming does have many

advantages, particularly when we intend to ignore productivity. Unfortu-

nately,we cannotpontificate about payingdouble for a job that canbedone by

one programmer.

5.2.3 Economics

Undoubtedly, talented programmers maywrite a piece of beautiful code that

other programmers are just not able to or take much longer to write. These

programmers are rare, and for this reason they are expensive. The ideal case is

that an application is divided into anumber of parts according to thedegree of

difficulty. The ideal case in terms of economics is expert programmers who

are responsible formore difficult tasks and less experienced programmers for

easier ones.

In this case, we may expect a quality threshold and we are satisfied with

software as long as its quality is higher than that threshold. The implication of

this is that for programming modules requiring less skill, we would employ

graduate-level developers as long as their salary ratio multiplying total

finished time satisfies the condition of minimum cost.

With regard to pair programming, we may ask �Why employ two

programmers when the same job can be fairly done by one?� In terms of

economics, this question can be answered with the question �Why employ

experienced programmers when graduates can do the job?� Since matters of

economics are central in pair programming, by �economical� we mean here

that programs of an expected quality are produced at the lowest cost.

One pair programming study shows that pairs took longer person-hours

than individuals on average but the percentage of pairs passing the test cases

was 86% while individuals, 70% (Williams et al. 2000). If software quality

were good enough for just 70% of test cases passed, pair programmingwould

not be adopted because it would be uneconomic. The focus of programmer

economics is on the production of quality programs at the lowest cost.

5.2.4 Mythical Quality–Time

The focus of programmer productivity is on the production of quality

programs as fast as possible. Cost—in our definition of economics—is

replaced with time because we consider a fixed salary ratio among all levels

of programmer. This makes it clear which programming practice (in pairs or

singles) produces better-quality programs most quickly per person. Unfor-

tunately, the two independent constraints, time and quality, cannot be easily

understood without a common relationship.

140 PAIR PROGRAMMING

In pair programming, themythical quality–time has baffledmany people

who struggle to understand why to pay two people to perform one person�s
programming. It has beenknown that pair programmingwill take around 15–

42% person-hours on the same task yet produce a higher-quality program

(Williams et al. 2000; Nosek 1998).

Time and quality are not easily exchangeable. Taking a conservative view

of time and quality, we may assume that they are not exchangeable. Also, we

can always take software quality as a justification for pair programmingwhen

quality means everything.

5.2.5 Elapsed Time Accelerated

Suppose we estimate that a program can be done in 10 person-days. The

program can easily be broken down into two submodules that are shorter

than 10 person-days. Assume that each submodule takes 5 person-days. As

long as we have two programmers working in parallel, we can get the

program done in 5 days.

We may not be satisfied with that schedule. We would like to continu-

ously divide these two submodules into smaller ones for programming.

Eventually, there will be two cases in Figure 5.2:

1. For some submodules, when developers estimate that each submo-

dule is done in less than one day, this can be the optimum size of a

FIGURE 5.2 The smaller you divide, the more time you need to think how to divide.

TWO WORLDS 141

programming task to work, and we will not further divide the

submodule.

2. We simply cannot easily divide some submodules into anything

smaller for two or more programmers working in parallel. Moreover,

we get much more time overheads to think about how to divide when

we keep breaking down a submodule further.

Suppose that wemanage to break the program down into 10 atomic tasks

and each requires one person-day, with enoughworkforcewe stand a chance

of getting it done in one day. We may still frown on our efforts because we

have yet to deal with how to expedite work on atomic tasks. Can the whole

program be completed in less than a day?

In a word, for atomic tasks, pair programmingmay be away if wewould

like to complete them as soon as possible. Pair programming can shorten the

total elapsed time. Even though in some case pair programming takes

the same time to finish programming exercises as does solo programming

(Nawrocki andWojciechowski 2001), pair programmingwill not take a longer

elapsed time.

In today�smarket, getting a quality product out as quickly as possible is a

competitive advantage that might even mean survival. There is a problem in

our analysis for speeding up a software project in reality because we have to

consider economics in a money-led world. We will see how to accelerate

software projects in the next section.

5.2.6 Critical Path Method

A telecommunication client comes to us and consults about its small mobile

computing software project. They want to complete the project sooner than

they planned as they have received unannounced information that the

competitor may launch its product next month.

The project plan is shown in Figure 5.3 and Table 5.1, in which a project

composed of six tasks whose precedence requirements have been planned

and whose duration have been estimated.

FIGURE 5.3 Project plan.

142 PAIR PROGRAMMING

Naively, we know that if we can cut the elapsed time of every task in half,

the 10-week project will be done in 5 weeks. For this reason, we advise the

client to do everything in pair programming! However, this does not sound

professional to our client.

We quickly ask ourselves which tasks are very relevant to shortening the

completion time of the project. In 1957, DuPont developed a technique called

critical pathmethod (CPM), observing that a task that canbedoneoneday faster

will make the project done one day faster. The reverse is also true; a one-day

delay in that task will end in the project being delayed by one day.

TheCPM involves two steps: (1) forward pass, to calculate the earliest date,

and (2) backward pass, to obtain the latest date. When the earliest date is the

sameas the latest date, any change at that pointwill affect the completion time

of the whole project.

Starting at week 0, the earliest date to finish task A is week 1. As tasks B

and C cannot start until week 1, the earliest dates for task B and task C are

weeks 2 and 6, respectively. In a similar fashion, we can calculate all the

earliest dates as shown in Figure 5.4. We can see at the endnode that the

earliest date to complete the project is week 10.

TABLE 5.1 Project Specification and Estimation

Task Duration, weeks Precedents

A. Create database tables for data entry 1 —
B. Implement a login interface 1 A
C. Write interfaces for user enquiry 2 B
D. Produce user reports 3 B
E. Build interfaces for data entry 5 A
F. Perform an integration test 4 C, E

(1 + 1 = 2) EndStart

1
0

5
10

2
1

3
2

4
6

 (0 + 1 = 1)

(1 + 5 = 6)

D=3

F=4

C=2

E=5

B=1

A=1

(6 + 4 = 10)

N
E N: Node Number

E: Earliest Date

FIGURE 5.4 Forward pass.

TWO WORLDS 143

The next step is to retime the network starting at the endnode as the latest

date. The latest date for the project should be the same as the earliest date,

which indicates that the project is done as early as possible. We start at week

10 at the endnode (i.e., node 5). The latest date to start tasks D and F areweeks

7 and 6 without affecting any outcome shown in nodes 3 and 4. In a similar

fashion, we complete the diagram, and the results are shown in Figure 5.5.

If task B is finished at week 2 as planned, its subsequent tasks, C and D,

can be started as late as at week 7 without any impact on project completion.

We have 5 weeks with an empty slot in between, which is called �slack.�
Saving such time does not help us complete the project earlier. Slack at each

node is the difference between the earliest date and the latest date.

To find the critical path, we simply look at the nodes whose slacks are

zero. Now all we have to do is assign resources and put time-critical tasks in

control. The correlation between CPM and pair programming becomes

obvious to us. According to CPM, we advise our client that tasks A, E, and

F must be done in pair programming, shown in Figure 5.6. If any of their

elapsed times are shortened, the project will be completed earlier.

4 = 6][10 -

EndStart

0
1

0
0

10
5

10
0

1
2

1
0

7
3

2
5

6
4

6
0

6 = 0 }{ 6 -

10 = 0 }{ 10 -

2 = 5 }{ 7 -

1 = 0 }{ 1 -

3 = 7][10 -

5 = 1][6 -

D=3

F=4

C=2

E=5

B=1

A=1

L
N

E
S

N: Node Number
E: Earliest Date
L: Latest Date
S: Slack

FIGURE 5.5 Backward pass.

EndStart

0
1

0
0

10
2

10
0

1
2

1
0

7
3

2
5

6
4

6
0

SP

PP

SP

PP

SP

PP

PP : Pair Programming
SP: Solo Programming

FIGURE 5.6 Tasks on critical path by pair programming.

144 PAIR PROGRAMMING

In this section, we have combined traditional software project manage-

ment (i.e., CPM) with agile practice (i.e., pair programming). If you are

running a project like this, this may be a way to accelerate your project

economically.

The critical path method has been questioned by agile project manage-

ment. As software itself is artificial, most task precedents can be avoided

(Robert 2003). For example, we must design before we can begin coding, but

coding and design can be developed simultaneously.

5.2.7 Why Two, Not Three: The Antigroup Phenomenon

Many programmers who have been involved in open-source software

development may easily believe that more eyeballs are better, a generaliza-

tion that is often referred to as Linux�s law. Have we ever doubted that there

can be a case in which, given more eyeballs, the truth just goes a bit far off?

A well-known horse-trading problem by Maier may help to refute the

popularmyth: �Whypair programming, not triple programming.�The horse-
trading problem states that �Aman bought a horse for $60 and sold it for $70.

Then he bought it back for $80 and again sold it for $90.� On average

individuals normally work out a solution in 3 minutes. However, not all of

them can correctly understand the problem and calculate howmuch theman

actually earns.

In 2006 we asked computer science students to solve a horse-trading

problem. There is a significant improvement in the average percentage of

correctness from solos to pairs. However, from two to �three and four,� the
percentage of correctness drops. So does �five and six�! How can this happen?

Why two?Why notmore? The results shown in Figure 5.7 are consistent with

sociologists� findings.
When team members provide their answers in turn, which is often

the case in small team discussions, rather than by anonymous voting, an

FIGURE 5.7 Three heads are better than one but worse than two.

TWO WORLDS 145

individual�s decision will be influenced by the degree to which the individ-

ual identifies with or sees her/himself as being similar to others. In partic-

ular, this happens when the majority starts out with the same answer. The

minority will feel less confident of their opinions. Thus, if the majority is

holding an incorrect answer, there is a greater likelihood of team errors

occurring (Figure 5.8).

In the case of two, there is no majority or minority. And two reaches an

optimum in which we always perceive a 50–50 chance on either side. As a

consequence, we will give a second thought to a problem. In pair program-

ming, when considerable disagreement arises between two people, the pair

may put the problem aside and work on something else. Often, the solution

can be around the corner but the pair is simply unable to see it the first time.

5.2.8 Software Requirements Are Puzzles

Understanding software requirements in many cases can be compared to

solving puzzles. Puzzles are intentionally designed for the players to work

out tricks. Moreover, puzzles sometimes give you a feeling of being almost

solved. Many of the tricks are about our perceptions and cultures as well. For

example, we will not guess that a gregarious person who talks about many

interesting things at a cocktail party is a programmer. We picture program-

mers as people of few words, or even as introverted.

FIGURE 5.8 Triple programming and antigroup.

146 PAIR PROGRAMMING

Compare the following two paragraphs. How much are they alike?

1. Aman andhis son are in a serious car accident. The father is killed, and

the son is rushed to the hospital emergency room. On arrival, the

attending physician looks at the child and gasps, �This child is my

son!� Who is the physician (Gladwell 2005)3

2. On the back of anATMcard it says that if yourATM login fails 3 times,

the system will not allow further logins. But you just failed once; the

system has already blocked any further attempts. How could this

happen?4

We understand system requirements from a number of users at different

levels: from operators to managers. The requirements we collected can often

be inconsistent, misleading, incomplete, and ill-defined. If we are lucky, we

may notice the problems in the requirements and then ask the users for

clarification.However, there canbe a case inwhichwe justmisunderstand the

requirements!

Let us come back to our horse-trading problem.When someone asks us to

write a system by giving the requirements as the horse-trading problem, we

may finish the problem with a piece of code (see Figure 5.9) and not realize

that we have been wrong even at the beginning of writing. Not all program-

mers can correctly grasp the user requirements as if they thought that they

fully understood and surely solved this small horse-trading problemwithout

any need to have a second look. Therefore, users often say to us, �This is not
exactly what I want.� As discussed in Section 5.2.7, pair programming helps

us understand requirements better.

Trans_profit = – 60 + 70
business = business +
Trans_profit
Trans_profit = + 70 – 80
business = business +
Trans_profit
Trans_profit = -80 + 90
business = business +
Trans_profit
Print business

FIGURE 5.9 Pseudocode of horse-trading (see also Figure 5.10).

3Answer: The physician is his mother.
4Answer: The systemdoes not reset a retry counter to zerowhenyou successfully log in
the system every time.

TWO WORLDS 147

Interestingly, oncewe have really solved a puzzle it is no longer a puzzle.

We can reframe the exercise as follows.Aman bought a horse for $60 and sold

it for $70. Then he bought a pig for $80 and sold it for $90. Believe it or not,

everyone now can do it right (see Figure 5.10).

5.3 PROGRAMMING TASK DEMANDS

Moreusers today are computer-system-literate anddemanda system that has

more functions and is easy to use. The system should beflexible to change and

could be delivered sooner. On the contrary, programming tasks involve a

greater variety of skill sets than before. Unsurprisingly, programmerswhodo

well at one programming task might not be equally good at other program-

ming tasks. In addition, it makes sense that what one person could do in the

past may now actually require the combined efforts of two or three people,

and hence it is expected that programmers have to closely collaborate tomeet

such demands.

Software teams that gowith agilitywillwork in adifferentwaybywriting

less technical documents and sharing their thoughts more. However, to

optimize the team performance in the context of the task type, we need to

properly identify programming task demands.

Other factors such as team motivation and personality traits also affect

programming productivity. But, regardless of these factors, we often misun-

derstand that the productivity effect of teams is the sum of the efforts of

members.

Imagine that there would be a team of two programmers who could try

their best to contribute project efforts of 2 and 4 units. Let us look at whether

their total contribution as a pair can be 6!

5.3.1 2 and 4 Is 6

Tasks or activities that are aggregated can be divisible into a number of

subtasks required ofmembersworking in the sameway. They are classified as

paid = 60
sold = 70
paid = paid + 80
sold = sold + 90
business = sold – paid
Print business

FIGURE 5.10 Pseudocode for horse–pig-trading (compare to Figure 5.9).

148 PAIR PROGRAMMING

additive tasks. The groupproduct is the sumof the input of all teammembers;

that it, 2 and 4 is 6. A typical example is rope pulling.

According to the Ringelmann effect, as groups increase in size, they

gradually decrease in quantity of output. Steiner then provided an analysis of

the Ringelmann effect. The social loafing splits the reduction in output into

two segments: motivation loss and coordination loss (see Figure 5.11).

However, the productivity effect is better than that of the best member.

In software development, a critical activity is to decide how the whole

work can be divided into a number of similar subtasks so that part of

development work can be aggregated. For example, how well we can group

a number of similar transactions together is so important that subprograms

sharing the same coding pattern are grouped together (Figure 5.12). The

activity of completing subtasks in the same group is an additive task.

However, the activity of dividing tasks into additive subtasks in software

development is not aggregated.

5.3.2 2 and 4 Is 4

Problems that require that the truth-wins rule holds are disjunctive. Solving

language riddles (e.g., �-gry� riddle) or mathematical puzzles can sometimes

FIGURE 5.11 The Ringelmann effect and steiner analysis.

FIGURE 5.12 Different transactional operations in the ERP application.

PROGRAMMING TASK DEMANDS 149

be a eureka task. A �eureka�-type problem has a very limited number of

solutions. For example, find an English word ending in �-gry.� Two are

�angry� and �hungry.�What is a third? Thus, in many situations, the highest-

performingmembers of the teamare able to compensate for theweaknesses of

the other members; that is, 2 and 4 is 4.

Programming involves a number of technical tricks. Harold said he had a

number of �aha!� experiences when exploring Java programming tricks (Har-

old 1997). By common consent, it is difficult to �get� programming problems,

but once we have them, they will be either easy or trivial (Bruce 1996).5

Many programmers usually take a trial-and-error approach to resolve

technical problems. They may take from several minutes to days and even-

tually discover what the problems really are. Once you know technical

problems, you may easily demonstrate both the problems and solutions to

your colleagues. Thus, the �truth-supported wins� rule holds, and solving

many technical problems is a disjunctive task.

Start a Day

Advances in communications technology now allow us to get help by posting

ourquestions on the Internet.Whenencountering technical problems, it canbe

useful to distribute them to each member by email or instant message because

many technical questions are disjunctive. Therefore, one recommended prac-

tice in agile software development is to have a short, standup meeting before

the day starts so that every member can look at problems and suggest quick

answers.

5.3.3 2 and 4 Is 3

All members contribute toward estimating uncertainties; this type of task is

compensatory, and 2 and 4 is 3. Exemplars of the tasks are the Fermi question:

�How many jellybeans fill a one-liter jar?� When each member of a group

makes its estimate for the number of beans and the estimates are averaged, the

result is more accurate. Thus, the productivity effect is better than most. This

case is a bit similar to what we have addressed in the horse-trading problem.

The difference is between unnamed and named.

5 �Is there a name for this aha experience?� (http://discuss.fogcreek.com/

joelonsoftware/default.asp?cmd¼show&ixPost¼118430); �Pressing but-
tons using c#� (http://forums.devshed.com/c-programming-42/pressing-
buttons-using-c-322084.html).

150 PAIR PROGRAMMING

Managing software requirements is challenging because in the views of

teammembers they are usually ill-defined. There are three reasons for this:

lack of domain knowledge, incomplete requirements, and personal biases.

Domain-knowledge specific is needed to help digest user requirements.

For example, ERP developers who have had extensive working experience in

retailing systems [e.g., point-of-sales, (POS)] are not considered as being

suitable for work as system analysts developingmanufacturing applications,

although both applications belong to database programming. There is little

evidence to suggest that the expertise from one domain (e.g., retailing) is

transferable to the other (e.g., manufacturing).

User requirements can be incomplete. Users may have skills to system-

atically categorize their cases. In addition, the requirements may not be static

but changing. Finally, it is possible that the requirements are so fuzzy that

there can be many uncertain and exceptional cases to handle.

Requirements are often written in natural language, and hence biases in

people can become problematic. This has been mentioned in the horse-

trading problem. When it is reframed, the problem becomes a piece of cake.

To some extent programmers have to �guess� what user requirements

could be. Thus, in this regard, many tasks in requirements engineering can be

compensatory tasks

5.3.4 2 and 4 $ 2

Activities that require input from different skills of all team members are

conjunctive tasks. Unlike working on additive tasks, each member now per-

forms a different function. When the tasks can be divided into a number of

subtasks and each matches member capabilities, the performance of the team

is improved. For example, inmanufacturing, skilledworkersmay specialize in

particular subtasks on a production line. It appears that a perfect match is

difficult, if not impossible, in many cases. Thus, the productivity effect can be

said to be only as better than the worst; that is, 2 and 4 is greater than 2.

Once the team decides on the logical separation of a system, we have a

problemwithwhether subtasks aredivided in such away tomatch individual

capabilities or whether individual members are suitably allocated to sub-

tasks. As a result, the overall productivity effect depends onmaking the right

resource allocations.

Often, tasks are not divisible and team performance actually relies on the

least competent member. For example, in an assembly line, if one worker

works slowly, the whole process is affected. Any assembled component that

has been improperly installedwill cause the finished product tomalfunction.

Thus, the productivity effect can only be equal to theworst; that is, 2 and 4 is 2.

PROGRAMMING TASK DEMANDS 151

The purpose of software integration is to combine two or more programs

(or submodules) into one application in which the programs use a common

data structure (or database) and interface with each other to exchange data or

information. Software integration is similar to the assembly line. Any soft-

waremodule that has aminute defect or is slightly incompatible can crash the

systemor have hidden errors on it. Thus, software integration is a conjunctive

(unitary) task.

Call It a Day

System integration should be done often because the task is unitarily conjunc-

tive. That is to say, the lowest performers have themost impact on overall team

performance. Therefore, eXtreme programming encourages continuous inte-

gration and throwing away today�s code if integration problems cannot be

solved before the team calls it a day.

5.3.5 2 and 4 Is Unknown

When the team can decide on how to combine their efforts to solve a problem,

the performance accounts for amethod they chose (Steiner 1972). For example,

how would a team estimate the effort (days) involved in writing an ERP

application?Membersmay determine that programmerswho have developed

ERPapplicationsbeforeareparticularlygoodatsuch judgments.Analternative

is to average all members� judgments. In either case, judging the programming

efforts is adiscretionary task.Theproductivityeffect is thereforevariable.Thus,

two heads are only unpredictably better than one (Kameda and Tindale 2006).

When software teams can decide on how they allocate their resources to

design and coding, which is often the case in small teams, this has a

tremendous effect on subsequent tasks. For example, software teams

can divide a project by system modules or by development phases. In the

first case, three application subteams are responsible for sales, warehouse,

and financemodules, while in the second case, three development subteams

are established for �design and testing,� coding, and report writing (see

Figure 5.13). The productivity effects in these two cases are different. This

kind of task is classified as a discretionary task.

Software development tasks are so complex and interconnected that it is

difficult, if not impossible, to strictly classify every programming task into

only one or two types of task demand. For example, the tasks of requirements

management cannot be easily classified into additive or compensatory.

Rather, we discuss key issues and their task demands.

152 PAIR PROGRAMMING

Learning real requirements is difficult, and developers may have to

speculate about some details in order to develop a model. A divide-and-

conquer strategy may seem to accelerate the requirement engineering tasks,

but a software team sharing their own opinions stands a bigger chance of

correctly identifying real requirements. Because some requirement tasks are

compensatory, it is good for all members of a small team to get involved in

understanding requirements. In a pair programming study, solo groups and

pair groups are often asked to write the same program and to measure the

elapsed time. Obviously, the first task is to understand their assignment!

Although we do not know how many difficulties there can be between solo

groups and pair groups in understanding the assignment at the beginning,

assignment interpretation problems do occur in solo groups (Nawrocki and

Wojciechowski 2001).

Tasks of design and coding are divisibly conjunctive. Matching people�s
capabilities to the right tasks is not easy, and hence team productivity is not

maximizing. Pair programming with partner rotation compensates for the

effect of imperfect matching.

This section helps us understand better why we rarely get 6 from 2 and 4

and when we can organize our team to solve some particular problems

according to the task demands.

5.4 PAIR PROGRAMMING IS MORE THAN PROGRAMMING

In software engineering, formal methods is a fundamental topic. It provide sets

of notations in which to express the initial specification and future design

steps toward the final program. Computer-aided software engineering

(CASE) software tools help us design, develop, and maintain software. Both

Sales
module

W/H
 module

Finance
 module

Coding

Report

Design and testing

FIGURE 5.13 How we divide development tasks affects structure and productivity
of a software team.

PAIR PROGRAMMING IS MORE THAN PROGRAMMING 153

are about design. When we have spent a number of hours on working on

design using formal methods or CASE, we may wonder how the design can

automatically generate executable code, or why we do not design our

software just by code so that the design is machine-executable!

5.4.1 Design by Code

Design and coding are intermingled. By design, we mean abstraction and

semantic algorithmanalysis and by coding, converting the semantic algorithm

analysis into a final executable program in a specific computer language.

However, what is programming itself?

The piece of Java code in Figure 5.14 illustrates that the design of anATM

systemhas had the following four classes: UserSession, User, ATMand Bank,

which respectively handle the session�s options, user information and secu-

rity, a menu of possible types of ATM transaction, and bank accounts.

Writing lines 11, 12, 14, and 15 in Figure 5.14 can be compared with

solving a deduction problem that requires working out a logical model that

describes what we understand about the problem (see Figure 5.15).

Certainly, programming is more than a deduction problem. Looking at

lines 01, 04, 05, and 10 in Figure 5.14, we also need to work out a problem of

another kind, namely, one about analysis of a flowchart, required in every

programming design (see Figure 5.16).

The difference between a deduction problem and a procedural algorithm

is a matter of sequential relationships. We may reverse the deduction

problems; for example, solving a problem �A B C _?_� is the same as

01 if UserSession.checkAlreadyLogin() return ATM.Error(NOLOGIN);
02 UserSession.selectedOption =
03 ATM.displayOptions(User.authorityLevel);
04 switch(UserSession.selectedOption)
05 {
05 case _ENQUIRY:
06 {
07 ATM.Display(Bank.Balance(User.account));
08 return 1;
09 };
10 case _WITHDRAWL:
11 if (User.balance >0 and User.requestedAmount <
12 ATM.availableCash)
13 {
14 if(User.balance > 0 and User.requestedAmount <
15 User.balance)
16 {
17 ATM.processWithdraw();
18 }
19 };
20 };

FIGURE 5.14 Automated teller machine (ATM) system.

154 PAIR PROGRAMMING

�_?_ BCD�; �(statement A) and (statement B)�will be the same as �(statement

B) and (statement A).�
However, if we reverse the order of a procedural algorithm as in

Figure 5.16 �inquiry ! select options ! _?_,� the possible answer can be

�inquiry� again or �withdraw money� rather than �log in.� Artificial intelli-

gence tells us that solving both kinds of problem faster is an exploration in a

searching space (Luger and Stubblefield 1989) and a pair is able to explore

more programming design alternatives than are two individuals working

separately (Flor and Hutchins 1991).

User.Account.balance > 0 and User.requestedAmount _ ? _ ATM.availableCash

Or

User.Account.balance > 0 and User.requestedAmount _ ? _ User.balance

What is ‘‘?’’

Or

A B C _ ? _

What is ‘‘?’’

Select Options

?

Inquiry

? = Login

FIGURE 5.16 Procedural algorithm.

FIGURE 5.15 Deduction problem.

PAIR PROGRAMMING IS MORE THAN PROGRAMMING 155

If we go ahead doing design by code, programmers are simultaneously

thinking about requirement comprehension, deduction problems, procedur-

al algorithms, scripting, code reading, and so on every minute. A team of

programmers paired up should rise to the challenge.

Another challenge for design by code is readability. Since there are few

design documents for software maintenance, code reading becomes the only

way we can maintain the software. In the end, we have to pay the cost for

programming source that is hard to read. Scripts written by two persons

should be much more readable than scripts written by an individual. Al-

though the term code readability is often used in agile software development,

what it means in programming is that writing code is better explained by

exploiting depictability and consistency. For example, getSalary() is more

easily depicted than Salary(). In short, if you are doing design by code, go for

pair programming!

Design by code was not so possible in the old days. Many old version

compilers do not support us in writing virtual functions or dynamic data

structure. Not until the emergence of object-oriented programming in the

early 1990swere computer languages developed in away thatweunderstand

in today�sworld. Class inheritance, polymorphisms, and other concepts have

now allowed us to do design by code.

5.4.2 Pair Design

We once paired with a smart guy who acted as an observer. The system we

wrote had a variety of business logic, and the guy was lost in what we were

doing several times!Heblamedhimself for his distraction.Andwegavehima

humorous reply: �You are not Stephen Hawking.�
Hawking is a genius mathematician and theoretical physicist but unfor-

tunately suffers from motor neuron disease (amyotrophic lateral sclerosis)

andhas been severelydisabled.HowcanHawkinghave something todowith

pair programming? But, surely we are not joking.

Studyingphysical cosmology involves lots of understanding of advanced

mathematics,6 and your best companion is always pencil and paper. Even

though equations are given step-by-step in print, we still need pencil and

6 For those programmers who forgot how difficult the mathematics in advanced
physics can be, here is the linearized Einstein equation (Wald ; 1984), and we really
need pencil and paper to help ourselves out to understand where it comes from and
where it will go:

Gð1Þ
ab ¼ � 1

2 q
cqc�gabþqcqðb�gaÞc� 1

2habq
cqd�g cd ¼ 8pTab

156 PAIR PROGRAMMING

paper to understand the logic andwork out the calculation. It is very difficult,

and for many people simply impossible, to just watch (i.e., read) and think

(i.e., do the calculation mentally).

In pair programming, the driver controls the keyboard and mouse and

her eyeballs fix onwhat shewrites and shemay at any time talk to her partner

about what she is writing. It is however, rare, to be writing code and be

explaining another part of code finished yesterday that has been on screen. In

this regard, the observer may be just doing the same thing that the driver is

doing, fixing his eyeballs on what the driver is typing and narrowly thinking

about the code on the screen. Anything not on the screen will be out of mind!

Of course, this kind of pair programming is not good for design by code. In

spite of this, not many programmers can watch the lines on screen but at the

same time see a wider picture and strategically think and quest for better

ways. In fact, this has nothing todowith their programming capabilities! Ifwe

cannot help paired programmers do a better job of pair design, for some

paired programmers, design is dead!

Bring pen and paper with you (Figure 5.17). This is our advice. The

partner now ismore thanwatching.Hewill still look at the screen but cannow

jot points down and sketch a flowchart to strategically look at a bigger design

picture. This is an effective way for many programmers who are not yet used

to pair programming or are not good at �watch code and think design.�

FIGURE 5.17 Bring your pencil and paper with you to pair.

PAIR PROGRAMMING IS MORE THAN PROGRAMMING 157

5.4.3 Rhythmic Pair Programming

Well, it seems a bit odd as we have one subsection in this chapter to discuss

development rhythms. With a good understanding of what pair program-

ming is, we will have few difficulties adopting pair programming rhythmi-

cally.Moreover, software development rhythms are not practices; they reveal

when the practices work and when they are used so that the practices deliver

value to programmers and software writing in the workplace.

Now let us consider two situations: a team that has just one pair so that the

pair cannot exchange its partner, which is referred to as �single pair

programming,� and a team that has more than one pair, which is referred

to as �team pair programming.� In fact, team pair programming can become

single pair programmingwhennopair in a teamdecides to exchangepartners.

As for single pair programming, there is no partner exchange, only role

exchange.When to exchange role in a pair is less critical as two programmers

are working closely together. Either of two programmers in a pair may

volunteer to assume a particular role. According to one study, we have a

higher length of concentration in the first 30–60 minutes while just listening

and watching. Thus, every time a pair has a short tea break, they should

consider changing their roles. However, changing roles has nothing to do

with the problem that the pair is working on. The pair is still collaborating on

the same programming task before or after their roles are exchanged. When

thepair has fully shared their ideas andfigured out a good solution (i.e.,when

there is noneed to think of analternative), thedriverwill be justwatchinghow

her partner writes code. Therefore, single pair programming is easy to start

but not easy to sustain (see Figure 5.18).

Easy-to-
sustain

Difficult-
to-

sustain

Easy-to-
start

Difficult-
to-start

Single Pair
Programming

FIGURE 5.18 Pair programming for a team that has only two programmers.

158 PAIR PROGRAMMING

In contrast to single pair programming, team pair programming allows

pairs to rotate their partners. In this situation, someprogrammerswill have to

think out and work on new problems. As discussed in Section 5.3.5, there is

some variation in the productivity effects in pairs that can make their own

judgments on how to organize their work. Two and four is unknown. The

right timing of partner changes is very important. If we have not rotated

the partner for some time, we will simply find ourselves back again with

single pair programming. Therefore, to ensure team pair programming

productivity, more guidelines should be explicitly given to less experienced,

paired teams, in particular, onwhen to changepartners.Wedonot expect less

experienced programmers to organize and do pair programming by

themselves.

Pair programming is away to achieve design by code. Themoment a pair

has reached a rough design, they should consider partner rotation. This

maximizes our chance to let other team members improve our design,

thereby removing design defects as early as possible.

A pair that is ready for a partner exchange may have to wait for another

pair to be ready. Then, the pair calls for a partner exchange (CPE) by showing

a sign card (or a flag, etc.) to the other pair. The idea of signaling to other

colleagues or parties where we are is similar to kanban,7 which is the means

through which just-in-time (JIT) and �lean� manufacturing are managed.

Next, any other pair that has roughly planned out what it will do for its task

and is about to exchange partnerswill rotate its partnerwith a pairwith a sign

card displayed (see Figure 5.19).

Often, we may change an agreed-on rough design with a new partner.

Once that happens, we have to call our previous partner (CPX) to confirm the

A B

C D

 E F

A B

C D

 E F

A E

C D

 B F

A E

C D

 B F

A E

C B

 D F

A E

C B

 D F

A E

C B

 D F

A B

C D

 E F

Call for partner exchange (CPE) Call for partner “X” (CPX)

Time

B B

X

FIGURE 5.19 Walk along time to see the rhythm of partner exchange.

7Kanban is a Japanesewordmeaning amechanismusing story cards to signal the need
for a particular item.

PAIR PROGRAMMING IS MORE THAN PROGRAMMING 159

change (see Figure 5.19). There can also be a situation where two partners

agree on the design but a third partner does not. However, your coding

should have almost done a lot. Depending on how good the third partner�s
ideamay be,wemay either discard the existing code or discuss it in a standup

meeting.

If you walk through spacetime, you will see how CPE and CPX interplay

in Figure 5.19! Although the diagram looks complicated, the rhythm is simple

(Figure 5.20).

Rhythmic pair programming tells us to exchange a partner when a pair

has reached a rough design and call for an ex-partner exchange when a pair

has revised what has been agreed to by the ex-partner.

This rhythm is good for small software teams and only for team pair

programming. When the teams become familiar with this rhythm, it is not

necessary to use any sign cards, nor is there any need to mechanically play

out the rhythm. Many experienced pairs will know when they should

change their partners and when they should pair off with their old

buddies again. Rhythmic pair programming is easy to start and easy to

sustain (see Figure 5.21).

FIGURE 5.20 Rhythmic pair programming.

Easy-to-
sustain

Difficult-
to-

sustain

Easy-to-
start

Difficult-
to-start

Rhythmic
Pair

Programming

FIGURE 5.21 In–out diagram for rhythmic pair programming.

160 PAIR PROGRAMMING

5.5 PAIR PROGRAMMING TEAM COACHED

The productivity effect is variable, for pair programming teams as well as for

self-organizing teams. Although we should trust that the pair programming

team and the members will organize their work best (Schwaber and Beedle

2002), as far as we understand that, the tasks of decisions on design and

coding are sodiscretionary that the teamshould systematically adopt awayof

pair programming.

Here is a summary of some guidelines on coaching pair programming

teams:

Principle 1. When adopting pair programming in conventional project

management, we have to identify time-critical tasks and shorten them

(see Section 5.2.6).

Principle 2. In pair programming, asking your partner open-ended ques-

tionsminimizes your influence onhim/herwhen youwant advice, not

consent. For example, how longwill it take for others to understand the

code? Instead, is it readable? (see Section 5.2.7).

Principle 3. Apair should resolve conflicts by postponingdecisions; leave

them for a while and let them rethink before deciding to ask for help

from others (Section 5.2.7).

Principle 4. Ensure that the requirements are fully understood. Although

pair programming results in fewer errors in requirement comprehen-

sion, mistakes of this kind will cost much more than in solo program-

ming (Sections 5.2.8 and 5.3.3).

Principle 5. Team members who work in pairs with partner rotation

shouldmeet in a short, standupmeeting in themorning (Section 5.3.2).

Principle 6. The purpose of the standup meeting is to solve tricky

technical problems. Don�t rely on each pair to individually work out

solutions to them. Remember that 2 and 4 is still 4 (Section 5.3.2).

Principle 7. During the standup meeting, if there is a need to collect

opinions from the participants, they should give feedback in descend-

ing order of their confidence or experience (Section 5.2.7).

Principle 8. To ensure that paired programmers are making efforts that

make the project move forward, continuous integration is necessary

(Section 5.3.4).

Principle 9. Bring your pencil and paper with you to pair (Section 5.4.2).

Principle 10. Exchange your partner when a pair has reached a design

solution and call for an ex-partner exchange when the design solution

has been revised (Section 5.4.3).

PAIR PROGRAMMING TEAM COACHED 161

We have yet to discuss pair programming productivity, although in

looking for software development rhythms, we have come to see that

productivity levels for single pair programming and team pair programming

are very different. Exploring productivity in single pair programmingwill open

more issues thanwe expect.Will the productivity rise and thendropalong the

development time if a paired team develops an application with unchanged

requirements adopting pair programming practice? Will the productivity of

novice–novice pairs be the same as that of expert–expert pairs? Will triple

programming (sometimes called triplet programming) be just as productive as

or less productive than pair programming? Chapter 6 deals with the produc-

tivity of single pair programming. Most importantly, we consider the situa-

tion in which single pair programming can be productive.

This chapter presents thework in the group�s rhythm as a unit. However,

we should be mindful of the natural ebb and flow of people�s motivation. In

addition, groups take time to gel. Once the group reaches its stage of high

productivity, provided it is givenpositive feedback, it can often remain in that

stage for a long period of time. Chapter 7 discusses the rhythm of the groups

and how they usually go through four phases of productivity, followed by

reduced productivity.

REFERENCES

Bisant D and Lyle J. A two-person inspection method to improve programming

productivity. IEEE Transactions on Software Engineering 1989; 15 (10):1294–1304.

Bruce K. Thoughts on computer science education. ACM Computing Surveys 1996;

28A (4).

Carr NG. IT doesn�t matter. Harvard Business Review 2003; 81 (5):41–49.

CockburnAandWilliamsL.The costs andbenefits ofpair programming.Proceedings of

First International Conference on Extreme Programming and Flexible Processes in

Software Engineering, Cagliari, Sardinia, Italy, June 2000.

Constantine LL.Constantine on Peopleware. EnglewoodCliffs, NJ: Yourdon Press; 1995.

DeMacro T and Lister T. Peopleware: Productive Projects and Teams. New York: Dorset

House; 1987.

Flor NV and Hutchins E. Analyzing distributed cognition in software teams: A case

study of team programming during perfective software maintenance. In:

Koenemann-Belliveau J, Moher T, and Robertson S, editors. Empirical Studies of

Programmers: Fourth Workshop. Norwood, NJ: Ablex; 1991.

GladwellM.Blink:ThePower ofThinkingwithoutThinking.NewYork:Little,Brown; 2005.

Gödel K. Ontological proof. In: Feferman S, Dawson JW, Goldfarb W, Parsons C, and

SolovayR, editors.CollectedWorks: Unpublished Essays&Lectures, Vol III,NewYork:

Oxford University Press; 1995, pp. 403–404.

162 PAIR PROGRAMMING

Hansen J.Music enhances reasoning. In: Hoffman B, editor. Encyclopedia of Educational

Technology. 2001; retrieved Sept. 1, 2006, from http://coe.sdsu.edu/eet/

Articles/mozarteffect/start.htm .

Harold ER. Java Secrets. Foster City, CA: IDG Books Worldwide; 1997.

Kameda T and Tindale RS. Groups as adaptive devices: Human docility and group

aggregation mechanisms in evolutionary context. In: Schaller M, Kenrick DT, and

Simpson JA, editors. Evolution and Social Psychology. New York: Psychology Press;

2006.

KeeferG. Extremeprogramming consideredharmful for reliable software. Proceedings

of the 6th Conference on Quality Engineering in Software Technology, 2002, pp. 129–141.

Luger G and Stubblefield W. Artificial Intelligence and the Design of Expert Systems.

Benjamin/Cummings: 1989.

Nawrocki J and Wojciechowski A. Experimental evaluation of pair programming,

Proceedings of the 12th European Software Control and Metrics Conference, 2001,

pp. 269–276.

Nosek JT. The case for collaborative programming. Communications of the ACM 1998;

41 (3):105–108.

Robert M. Agile Software Development: Principles, Patterns, and Practices. Upper Saddle

River, NJ: Prentice Hall; 2003.

Schwaber K andBeedleM.Agile SoftwareDevelopment with Scrum. Upper Saddle River,

NJ: Prentice Hall; 2002.

Stasser G and Dietz-Uhler B. Collective choice, judgment and problem solving. In:

Hogg MA and Tindale S, editors. Blackwell Handbook of Social Psychology: Group

Processes: Oxford: Blackwell; 2001, pp. 31–55.

Steiner ID. Group Process and Productivity. New York: Academic Press:1972.

Tan G, Gallo PB, and Jacobs GM. Using cooperative learning to integrate thinking and

information technology in a content-basedwriting lesson. The Internet TESL Journal

1999; 5 (8).

Wald RM. General Relativity. Chicago: University of Chicago Press; 1984.

Williams L and Kessler R. Pair Programming Illuminated Reading. Reading, MA:

Addison-Wesley; 2003.

Williams LA, Kessler RR, Cunningham W, and Jeffries R. Strengthening the case for

pair programming. IEEE Software 2000; 17 (4):19–25.

REFERENCES 163

6
REPEAT PROGRAMMING

One day to build a piccolo, and two days for two.

One minute to cook an egg, and one minute for two.

One week to write a piece of code, but never think

of writing the same twice?

A shocking experiment, known as the Stanford prison experiment, which was

terminated when it went out of control 6 days into its planned 2 weeks, was

designed to investigatewhat happenswhen goodpeople (students) are put in

an evil place (Zimbardo 1971). After three decades, two professors, Haslam

and Reicher (2002), re-created aspects of the same experiment to investigate

howdecent people (nonstudents) in amock prison could behavewithmalice.

Ultimately, some may express surprise that people could behave as badly as

they did given such trivial stimuli. Although there were many differences

between two experiments in terms of mock prison conditions, interrupts for

TV confessionals, and knownbeing videotaped all the time, both experiments

appear to entail that, rather than arising from anything inherent in the

individual personalities involved, it is the situation that dominates

the participants� bad behavior. Every angel in the hell1 becomes a sort of

Lucifer—and it does not matter how you run the prison experiment. The

prison experiment will always cause good people to act in evil ways.

The prison experiment stimulates our thinking about the relationships

between experiments, software practices, and programmers. How can we

165

1The term Lucifer effect was coined by Professor Zimbardo (2007).

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright � 2008 John Wiley & Sons, Inc.

reproduce programming experiments of a particular type and reach consis-

tent findings regardless of individual human capabilities, team cultures, and

human emotions?

In pair programming, some people support pair programming

productivity by controlled experiments. Others question whether pair pro-

gramming productivity is still valid in the workplace as such experiments

by students in academic environments never cross the line between

writing to study and working to live.2 Later, we will realize that either

pair programming or solo programming is too extreme. As so often

happens, the truth lies in between. Thus, alternatives of pair programming

could be side-by-side collaboration on a software maintenance task (Flor

1998), side-by-side programming (Cockburn 2005) and reviews (Müller

2004), and some experiments conducted to juxtapose them with pair

programming.

Now no one needs to scratch one�s head over pair programming (PP)

against solo programming (SP); everyone is comfortable, at least psychologi-

cally, to say that pair programming is good but side-by-side programming (or

reviews) is even better (see Figure 6.1 for all three types). To celebrate our

achievements, everyone gives a yell of delight and opens a bottle of whisky.

While swirling the hooch and before saying cheers, there is a collective

expression as everyone recalls the last time we drank to forget troubles.

Does whisky �always� mean celebration? We are unconsciously brought to

another maze: Is pair programming (or side-by-side programming, reviews,

etc.) �always� better than solo programming?�
�When does pair programming work best?� is not a good question. The

challenge is to demonstrate to peoplewho have never tried and/or have been

skeptical about pair programming when pair programming can be signifi-

cantly productive. More importantly, it helps synthesize one interesting

rhythm:

PP � SP � PP � SP . . .PP

This chapter could be a little academic! To unlock the secret of pair

programming and to discover that rhythm, we have to adopt a much more

rigorous approach to pair programming. We will come back to the practical

applications in Section 6.3. Bear in mind that pair programming in this

chapter means team pair programming in general and single pair programming

in particular.

2As the students know that they are being studied, their tendency may be to act
differently. This is the Hawthorne effect.

166 REPEAT PROGRAMMING

6.1 CONTROVERSIES IN PAIR PROGRAMMING

The basic idea of pair programming rests on a time-honored and superficially

straightforward assumption—two heads are better than one. However, pair

programming has always been controversial. In reality, pair programming is

simply a way of teaming in which two programmers collaborate on the

design, coding, and testing of a piece of software. It�s an approach that

supports skills transfer, job rotation, and more creative approaches. On the

surface, it seems as uncontroversial as any type of teamwork. So why is it

controversial?

Well, like somany things, it�s all about money. Many people question the

economy of pair programming: Why pay double to do just one job? Interest-

ingly, pair programming is much more than our intuition tells us. It is a

FIGURE 6.1 The evolution of solo programming, pair programming, and side-by-side
programming.

CONTROVERSIES IN PAIR PROGRAMMING 167

problem with passion and belief. We shall discuss three questions that we

think have been pretty heavily challenged on the Internet and, surprisingly,

none of them is about money.

6.1.1 Is Programming a Unique Work?

Many adherents of eXtreme programming (XP) push to try pair program-

ming, to become familiar with its advantages and its practices. But project

managers and inspectors who know little about programming or have not

programmed for a long time won�t understand why pair programming is

better. Itwill be apparent to them that itwould increase the cost of aproject. To

determinewhether pair programming is good, suchmanagers can only listen

to other people�s comments. Supporters will say �pair programming is

effective, and people have proven it by experiment! But, if you�re still not

sure, they may at last recommend that the simplest way is to have a try!�
It�s a very interesting phenomenon that thenature of programming seems

to be overemphasized—it�s so challenging that we need two people to do the

samework (i.e., design, code, test, and integrate) together! Is there anywork in

the world that has the same characteristics as computer programming?

If not, then is there any work besides programming that is best done in

pairs? Teaching—team teaching—may be one area, andwenote that students

can learn better and faster if they are paired. But are teaching, learning, and

working three different things?

Who else works in pairs? Police and pilots work in pairs for safety, and in

this theydo the sameworkbutplaydifferent roles—good cop–bad cop,driver

and navigator/observer, for example. But the pair work of physicians,

teachers, and engineers is not necessarily better than their individual work.

And why are there only pair programmers, but no pair engineers, pair

managers, or pair editors? Is programming more challenging than the tasks

of these other jobs?

6.1.2 Are Three Minds Better than Two?

If twominds are better than one, are three better than two?Wehavediscussed

the antigroup phenomenon in Section 5.2.7. When two people of a group of

three firmly believe that they have worked out a good solution, the third

person may just either follow them or be persuaded into favoring that

solution, even though that solution is in fact the worst. However, this cannot

be used to conclude that triple programming is antiproductive as triple

programming does not mean three programmers sitting together to vote on

how to program!

168 REPEAT PROGRAMMING

In education, research into the effectiveness of pair learning relative to

group learning has shown that group learning could be more effective than

pair learning. Well, if it makes sense to place two people on one computer,

why not put three or four people on one computer? The defense of pairing

relies on certain hard-to-prove claims about better quality, knowledge shar-

ing, and collaboration.All of these claims support tripling andquadrupling in

addition to pairing.

Intuitively, the argument that triple, quadruple, or quintuple program-

ming is relatively unproductive is too obvious to need proof. Oddly,

Williams and Kessler (2003) mentioned triple programming—the collabo-

ration of three very experienced, mature, responsible programmers (using a

single computer) can provide a solution to a very tough problem. An

effective triplet was once used at Bell Labs; one person who represents the

customer thinks out aloud, one at the whiteboard works on design, and one

controls the keyboard.

Stephens and Rosenberg (2003) then argued that two or more people

results in slower communication and decisionmaking because there�s more

than one channel of communication. Increasing the number of communica-

tion channels decreases the productivity of programming (Figure 6.2).

The argument that pair programming is more productive than solo

programming and other multiple programming arrangements has yet to be

proved experimentally. However, if we assume that there are relationships

betweenpair programming and triple programming, then an experiment that

can show that pair programming is efficient should also validate triple

programming.

6.1.3 Unreplicable Experiments

The best way to deal with these controversies would be to conduct an

experiment. It should be a simple matter to compare the productivity of a

FIGURE 6.2 The number of communication channels increases to 3 when the number
of programmers is increased by 1.

CONTROVERSIES IN PAIR PROGRAMMING 169

pair of programmers and a solo programmer. Just invite some programmers

to takepart in an experiment, divide them into apair programminggroupand

a solo programming group, and then ask them to write the same program so

that their results can be directly compared. Such an experiment appears at

least intuitively valid and would also appear to be easy to conduct. But that

isn�t so.
People have done these experiments, but they have clarified little as

different people have conducted similar experiments and produced very

different, apparently incompatible results (Nosek 1998; Williams et al. 2000;

Nawrocki and Wojciechowski 2001; Arisholm et al. 2007). Yet the results are

far from being in agreement and sometimes contradict each other. Itmaywell

be that pair programming is productive under some conditions andnot under

others, but that the difference in the conditionswas not accounted for ormade

explicit.

Interestingly, despite the uncertainty around these results, proponents

and opponents on every side have tried to exploit them. Supporters of

eXtreme programming claim that pair programming is a practice proved by

academic experiments. Naturally, their opponents challenge it by pointing

out the discrepancies between those experiments.

If all of these experiments were conducted with care, seriously, and

without artificial error, then only two assumptions would be left to us:

(1) either the productivity of pair programming measured by controlled

experiments is always uncertain3 or (2) we have not yet looked at the right

variables that can produce consistent results.

Before there was any detailed research into pair programming, the only

controversy was over cost, because it meant paying for two programmers.

Research into pair programming raised more issues than it solved, issues

beyond money, such as unique work, multiple programming, and unrepeat-

able experiments. The more research we�ve done on pair programming, the

more controversy we�ve seen.

6.2 REPEAT PROGRAMMING

Many experimental situations in software development are not representa-

tive. Even using the same assessment method for different subjects and

problemsmayproduce avarietyof results.Often, time alone canbedeceiving.

3We feel that there is nothing wrong with the existence of uncertainty in our world,
although Einstein said that God does not play dice.

170 REPEAT PROGRAMMING

Different programmers might solve different problems at different speeds so

it is hard to convince anyone to select 10 or a 100 programmers out ofmillions

of programmers around the world and put them in front of low-complexity

problems in straightforward development environments.

That is not to say that programming situations do not have certain

common features. There exist certain intrinsic properties regardless of the

complexity of the problem, the profession, the personnel, or environments, in

the sameway that the sum of the internal angles of a triangle is 180 regardless

of the triangle�s size and shape.4 These intrinsic properties arewhatwe set out

to test as we sought to answer one fundamental question: How can we

demonstrate when pair programming is most productive?

Many project managers will be familiar with the following experience. A

new programmer comes onto the team. This guy is new to the problems that

the team isworkingon andhasnotwritten anything similar before, so initially

he takes a week to complete a program. He continues to work on other

problems of that type, and soon he can write them faster and better even

starting from scratch and without looking back at his previous code. After

3months he is amaster at coding that problem and he can finish a program of

that type in one day, but that is the limit of his improvement, that is, there is a

point at which it is nearly impossible for him to finish the job sooner.

We now look at a slightly more complicated case. In pair programming,

we have two scenarios: novice–novice and expert–expert. A novice–novice

pair, two newcomers working as in pair programming, may complete a

program in less than aweek. In this scenario, we assume that there will be x%

time reduction. By intuition, we know that 50% is the breakeven point since

there are two people.

In another scenario, after three months of these two people working on

the same kind of problem, we put one of themwith an experienced colleague

as in pair programming for collaboration. This is an expert–expert pair, at

least with regard to the kind of problem they have already mastered.

Hypothetically, as a pair they should work y% faster.

We do not think that we can differentiate the values of x and y. Therefore,

the figures are meaningless. Well! Nothing interesting can be found until

we put x and y together! Relationships like dx/dy5 could be something

4Strictly speaking, the sum of the internal angles in a triangle is 180 in space whose
intrinsic curvature is 0. Whether the intrinsic curvature is 0 constitutes the difference
between Newton mechanics and relativism.
5 To ensure accuracy, we should be interested in d2x/d2y, which measures the change
of curvature.

REPEAT PROGRAMMING 171

that throws a light on answering when pair programming can be adopted

for the maximum of its productivity or when a pair outperforms two

individuals.

An experiment called �repeat programming� examines how pair pro-

gramming performance varied when measured along an axis in which

developers become more familiar with a programming problem by repeat-

edly writing the same program several times. By holding some variables in

each situation relatively constant, we can see variation in others.We keep one

aspect of the human variable constant so that we can see how task solution

time varies with problem repetition.

Figure 6.3 shows how long the individual and the pair took to write the

same program on each occasion. The two curves are similar as both are

hyperbolic descending. The trend is far more noteworthy and meaningful

than the values indicated by the curves. It is a little unrealistic to claim to have

three programmers with nearly equivalent skills, knowledge, and ability.

There has to be a certain amount of variation between them. Programmers

with different abilities can produce different sets of results. However, it

makes less difference whether a value is 5.8 or 6.8 days on any one round

because what we are interested in is the pattern in each round, which is

6The percentage in the table is calculated by

ðf inish--time--of --pairÞ · 2 � ðf inish--time--of --individualÞ
f inish--time--of --individual

· 100%.

Number of
Rounds

5.81 3.25 2.52 2.05 1.63 1.31 1.18 1.17Individual
3.13 2.08 1.76 1.62 1.56 1.43 1.41 1.37Pair
7.5 23.1 40 62.5 92.3 119 142.1 134Pair vs. Individual

Days
Days
%

Number of Days

Individual

Pair

7

6

5

4

3

2

1

 1 2 3 4 5 6 7 8

FIGURE 6.3 Repeat programming: a pair versus an individual.6

172 REPEAT PROGRAMMING

illustrated in the slope of the curves and how they cross. In short, the trend of

the curve remains consistent. The characteristic is conservative and is inde-

pendent of whether they are fast or slow coders, or talented or weak

programmers.

To apply repeat programming out of the laboratory with confidence, we

have to fully exploit the rigor of repeat programming. Here are several major

issues in human–computer studies:

. Human Intelligence. The theory of multiple intelligences by Gardner
(1993, 1997) states the fact that people can be intelligent in variousways.
So often, we are more competent in one task or ability than in others.
This suggests that intellectual strengths are not faithfully reflected in
high intelligence test scores. Thus, experiments can be much more
controlled to observe how people can master the same programming
task in different situations rather than tomeasure them in pairs writing
different programs. This is compatible with our current understanding
of the theory of human intelligence.

. People Distribution. During the early 1990s, the MIT Blackjack
Team beat the casinos by card-counting techniques that allowed the
team to know when there were more high-value cards than low-
value cards left in the deck(s). It worked as long as they knew how
many kings and queens were in one deck and they could track every
hand. In the same way, knowing how many novices and experts
are in a group of programmers is essential in pair programming.
We have to take a combination of people skills into account;
otherwise, we are just finding the average of the productivity of
the most frequent pairs among novice–novice, novice–expert, and
expert–expert.

. Born to Program. When it comes to pair programming, there are at least
three kinds of combinations: novice–expert, novice–novice, and
expert–expert. Understanding how the last twowork ismore difficult.
The reason is that, on the basis of our total of 25 years� experience,
novice programmers may never become experts. They may only
become better mediocre programmers. On the other hand, experts
may already be experts during their student days. Thus, �repeat
programming� does not merely refer to an experiment but to a model
for understanding how people who are new to programming become
expert at it. More precisely, we are modeling novice–novice and
experienced–experienced pairs, rather than expert–expert. We pre-
sume that experienced programmers able to select a best solution from
other solutions that they already knew before, while expert program-
mers not only are experienced but also have the ability to improve a
solution from nothing.

REPEAT PROGRAMMING 173

BOX 6.1
EXPERIMENT (2004): REPEAT PROGRAMMING

The repeat programming experiment is conducted in two steps: select �nearly
capable� subjects and write the same program repeatedly.

By choosing �nearly capable� subjects, we minimize a disparity in pro-

gramming ability that, between the best and the worst, can greatly vary. In

2004, from among 63 candidates we selected three whose abilities were the

most nearly capable. This was done by testing the candidates on several

programming exercises. Whether their programs were good or bad was not

an issue.

Wesplit these three intoan individualandapair. Togeta tasteofhowpair

programmingworks for them, theywereasked towritewarmupexercises.We

also suggested that in cases where conflicts arose they should be resolved by

the decision falling to the one controlling the keyboard/mouse. The subjects

fully understood that dispute and self-assertion would reduce productivity

and run counter to the objective of the experiment.

The subjects, the individual and the pair, were asked to write a first-in

first-out (FIFO) warehouse application in our laboratory. The tasks were

standard—they had to create tables in SQL 2000 and code in JSP. The subjects

worked 8 hours a day. The time was measured in day units in order to avoid

confusion over nonstop working hours. The subjects worked on consecutive

days. In Figure 6.3, one day is 8 hours.

In the experiment, subjects�programshad topass 756 test cases. The cases

included (1)application requirements, (2) load tests, and (3) exceptional

handlings such as power-off during a long transaction. These three types

of measurement were appropriate because (1) we could objectively measure

the quality by testing rather than by relying on human graders and (2) from a

customer perspective, users (i.e., customers) would be more satisfied with

software products that had been extensively examined by these three types

of test and would regard the products as being of a high quality. Developers

and customers tend to see software quality differently.

All the programs submitted by the subjects had to pass 756 test cases.

It was unlikely that subjects would be able to pass all 756 test cases at

the first attempt. The more test cases, the less likely would it be for one

program to be of very high quality, while the other would be merely good

enough to pass the tests. Thus, the subjects needed to test the cases in an

iterative manner in order to get through them. This way, software quality

could be maintained constant.

On the first round of programming, the individual completed the pro-

gram in a bit less than 6 days (5.8 days). Predictably, the second round he did it

much faster. The result is shown in Figure 6.3.

174 REPEAT PROGRAMMING

6.2.1 Variances

Repeat programming (Box 6.1) confirms the results of past experiments that

independently reported that pairs require 15%, 42% or 100% longer than

individuals (Nosek 1998; Williams et al 2000; Nawrocki and Wojciechowski

2001). Itdoesnotmatterwhat thevaluewegeteachtimebyexperimentbuthow

thosevalues are correlated.According to thedescriptionsof their experiments,

the difficulty of programming problems for subjects was different in each

experiment. InNawrocki�s experiment, subjectswere asked towrite programs

forfinding themeanandstandarddeviationof samplesofnumericaldata.This

is regarded as an easy job for university students with majors in computer

science. Thus, the result of this case can be reflected in the late round in repeat

programming and shows that pair programming is inefficient.

STOP! Repeat programming appears to be too academic to be practical. It is

neither a software practice nor a management theory; it is just a controlled

experiment.We are keenly interested inwhich agile practices deal with rapid

changing requirements or how we can avoid pitfalls of developing software

so that we do a better job, rather than in the psychology of programming and

empirical software engineering!You really think so, andwe cannot agreewith

you more. But please hold on!

Many software principles are a sort of Murphy�s law. They are conclu-

sively established fromour experience and observation. Ifwe have seen that a

number of software project failures are attributed to inadequate requirements

development, our advice to people will be �having signed requirements for

confirmation secures the success of software projects.� This is an experience-

based principle.

One day, we have another experience-based principle, namely, eXtreme

programming tells us not to work on tomorrow�s design, and we always

anticipate changes. This sounds like the opposite of what we learned in the

past. On second thought, eXtreme programming emphasizes dealing with

rapid changing requirements; our adoption for projects without fixed re-

quirements makes sense.

Unfortunately, before projectmanagersmeet eXtremeprogramming, they

may be unaware of changing requirements and rigidly apply the old principle

for every project. It is expected that these managers will complain about the

users who changed the agreed-on requirements. There is no experience-based

principle for all software projects. Along with bad things comes good news.

New lessons and enhanced principles from experience put software develop-

ment into perspective time after time.Allwe need to do is sacrificemore of our

family time for reading and differentiate them from our old principles.

REPEAT PROGRAMMING 175

Principles deduced from experiments can be different. Ideally, they

should be widely applicable as long as certain conditions addressed in the

experiments are met. They are proved by scientific experiments with statisti-

cally accurate results. Perhapswe just donot realize thatmany experiments in

software engineering are merely good for reference. Reproducing the previ-

ous results may not be so straightforward owing to inherent complexity and

changes of technology. Thus, we should always bear in mind that references

are from Mars and principles are from Venus. What we have learned can be

just experiment-based references!

The characteristics of repeat programming utilize matching instead of

randomization, and time-series analysis. In this sense, repeatprogramming is a

quasi-experiment; not a true experiment. However, the experiment is rigorous

as mentioned before and it is reproducible. In 2005 we were able to reproduce

repeat programming with a large sample size (Lui and Chan 2006).

Well,we shouldnot have kept youwaiting so long. Butwehave to learn to

walk before running fast and jumping high. It is philosophically essential to

understand the nature of principles in software engineering. Then, it makes

sense to focus on when they can be actually applicable.

6.2.2 Principles

To be essentially pragmatic and broadly applicable for pair programming in

real development, we must first resolve the question of when a pair outper-

forms two individuals. Thus, from the interpretation of the people perfor-

mance along time series in repeat programming, we establish the first

principle.

Principle 1: A pair is much more productive in terms of completion time

and can work out a better solution in terms of software quality and

maintenance than can two individuals when the pair is new to a pro-

gramming problem andmore effort is required for design, algorithm, and

coding of that program.

This principle says that pair programming works well when a pair

encounters challenging programming problems. Although few people will

define what the term �challenging programming problems� actually means,

for us it simply means solving problems that make greater demands using

more complicated (i.e., less straightforward) computer algorithms. Rarely is it

related to the skills of any particular computer language.

Usually, if a principle is in connectionwith human behaviors, the reverse

may not hold. This is well exemplified by Herzberg�s (2003) motivation

176 REPEAT PROGRAMMING

theory—job dissatisfaction is not opposite to satisfaction, but is simply no

dissatisfaction.

Principle 2: The productivity of pair programming can substantially drop

when a pair has had previous experience with the same task.

This principle does not address any change in software quality. It simply

states the fact that in terms of time, solo programming can definitely beat pair

programming when programmers are working on solutions they have

already met. As long as a pair knows a programming solution well enough,

it is effective for thewriting of programmerA,who controls the keyboard and

mouse, to not be interrupted evenwith the risk ofmaking smallmistakes such

as typos. On the other hand, programmer B probably feels less challenged by

watching the known solution that programmer A is writing.

Clearly, two principles suggest pair programming before solo pro-

gramming. Assume that there are three submodules in ERP (e.g., Internal

purchase requests, purchase quotation, purchase order) in which the

programming logic patterns are somewhat similar for A and B. Principle

1 tells us to do one of three in pair and principle 2 tells the rest of two

in solo.

6.2.3 Triple Programming Unproductive

Triple programming was once mentioned as an efficient approach to solving

extremely complex problems. However, this does not mean that it is a

productive way of programming. How triple programming can be adopted

in real applications is a matter of myth. More questions like time-to-market,

productivity per worker, and cost should be separately understood in

comparison of solo programming and pair programming. Moreover, the

case of better than solo but worse than pair is possible.

Here, we analyze triple programming with repeat programming. The

purpose is not to prove that triple programming is unproductive. Rather, we

would like to introduce the patterns discovered in repeat programming.

It is easily observed that there are two conservative patterns in Figure 6.4.

They can be used to explore the efficiency of triple programming.

Pattern 1. The curves are degressive, and the slope decreases along with

the axis of rounds and finally is near to zero.

Pattern 2. The curve for pair programming is relatively flat, so there may

be a breakeven point, before which pair programming is better and

after which solo programming is better.

REPEAT PROGRAMMING 177

As repeat programming involves modeling the skills development of

programmers, early rounds and late rounds, respectively, represent the

performance of novices and experts. Thus, we will investigate triple pro-

gramming from these two aspects. For the late rounds, it is straightforward.

Referring to pattern (2) in Figure 6.4, solo programming is optimal when the

programmers are quite familiarwith the problem. It is expected that the curve

of triple programming there is flat and definitely above the curve of solo

programming.

As in the early rounds, we suppose that triple programming is better than

pair programmingwhen programmers have no knowledge of the problem at

all. The curve will appear as in Figure 6.4a. The curve becomes a rather

straight line. This appears to contradict pattern (1). Tomatch our pattern (1) as

shown in Figure 6.4b,we can see that triple programming comparedwith pair

programming is less productive.

Now that pair programming and solo programming are understood

better, we continue to move forward in our efforts to design a rhythm using

these two software practices.

7

6

5

4

3

2

1

0
1 2 3 4 5 6 7 8

N
um

be
r

of
 D

ay
s

 Number of Rounds

(a)

Individual
Pair
Triple

7

6

5

4

3

2

1

0
1 2 3 4 5 6 7 8

N
um

be
r

of
 D

ay
s

Number of Rounds

(b)

Individual
Pair
Triple

FIGURE 6.4 Speculated curves for (a) productive and (b) unproductive triple programming.

178 REPEAT PROGRAMMING

6.3 RHYTHM: PAIR–SOLO–PAIR–SOLO

In eXtreme programming, all production code must be written by pairs of

programmers. Individuals can write prototype code for a feasibility study.

However, in eXtreme programming, any code not written in pairs must be

discarded. This approach appears to contradict what we did in software

development in 1996. At that time, we were asked to pair to explore the

functions of PowerBuilder 1.0.After 2weeks,we learned the toolwell enough,

knowing the bestway for us tomanage adatabase anddevelop graphical user

interfaces (GUIs). Everything then got back to normal and we returned to

working in our own cubicles. Occasionally,we pairedwhenwewere haunted

by hard-to-kill problems.

Not all work is pair programming. Pair programming is a heteronym. In

eXtreme programmingwhat pair programming does has a rhythm: test first–

code–refactor, whereas the rhythmwe normally beat out is design–code–test.

Two or more rhythms are often playing simultaneously. We will talk about

how to compose the pair–solo rhythm with the usual method of program-

ming: design–code–test. Although combining rhythms may produce differ-

ent effects, the principle behind how we compose the pair–solo rhythm (i.e.,

when a number of software practices work) can still be applicable to many

others.

6.3.1 Persistence

Anyone who has learned how to play the piano knows that touching the

right key at the right time and continuing to do it right are two separate

things.Understandingwhetherpair programming isproductive,wealsoneed

to consider the difficulty of sustaining pair programming implementation.

As mentioned in Chapter 1, the in–out diagram helps us analyze how

easily we can adopt a practice or rhythm. However, starting them does not

mean that we can easily continue to do so. Often, this requires a discipline.

How difficult it is for the team to sustain is very important for rhythms. The

in–out diagram in Figure 6.5 illustrates that single pair programming is easy

to start practicing. However, to sustain it depends on more factors.

Most of us will talk to a driver while they are driving. When a driver has

just learned how to drive they will probably tell you that they need to

concentrate. But an experienced driver on a routine path is happy with an

entertaining traveling companion. Driving is a piece of cake. Their minds are

now doing two things: chatting and driving.

Among many other things, the problem with sustaining pair program-

ming can come from a program itself. It is rare that every part of a program is

RHYTHM: PAIR–SOLO–PAIR–SOLO 179

equally challenging; there are always easy portions. When a pair is working

on easy parts, the observer may get bored and can be easily distracted to chat

with his partner about something else. Focus is lost. The pair is doing two

things: chatting for fun and programming for work. Inmany cases, the driver

will not mind the observer taking his own break. Thus, pair programming is

then practiced intermittently, and this is why all-the-time single pair pro-

gramming is hard to sustain (see Figure 6.6).

The program task is not the only problem with sustaining pair program-

ming. It also depends on the working environment, project pressure, and

software development leadership. It is interesting that pair programming can

often end up as pair programming at will (or in need)—programmers pair up

when they need support.

In an empirical study, two novice programmers in a company, TCMS,

were selected to produce portions of an application for the verification of

payload hardware at TCMS in the Kennedy Space Center (Poff 2003). The

study lasted onemonth, and the data collectedwere comparedwith historical

data. Instructions were given to programmers that the successful and timely

development of the application was of primary importance; the experiment

was a secondary priority. Therefore, the programmers were left to decide how

often theywould actuallywork together butwere required towork as apair at

FIGURE 6.5 In–out diagram for analyzing solo programming and single pair
programming.

FIGURE 6.6 Hard-to-sustain all-the-time single pair programming.

180 REPEAT PROGRAMMING

least 33%of the time. If theywished, they couldwork as apair all the time. The

result was that this single pair worked as a pair around 50% of the time.

Figure 6.7 shows that pair programming in need is both easy to practice

and easy to sustain. However, we do not consider it a good software practice.

It is ad hoc. Most importantly, it is not a rhythm.Moving from one practice to

another without planning is counterproductive. Without rhythms, the alter-

nating pair–solo programming appears to be uncontrolled and chaotic (see

Figure 6.8).

Wewould like to compose a rhythm that tells uswhen to change between

pair and solo for better programming.

6.3.2 Connection

On real-world software development projects, many programmers may pair

up at will (or in need) to seek assistance or to manage personal stress. This

cannot be considered a disciplined practice as there is no planning or guide-

lines to say when they should pair up and split off for better performance.

Repeat programming has shownus that the less experience a pair has, the

better the pair performs relative to the two similarly inexperienced singles

(see cartoon in Figure 6.9). A programming task can normally be divided into

a number of subtasks, andmany subtasks share a similar logic. Itmakes sense

FIGURE 6.7 Pair programming in need.

FIGURE 6.8 Pair programming in need is not a rhythm.

RHYTHM: PAIR–SOLO–PAIR–SOLO 181

for us to adopt pair programming to pilot the best breakup of a task and solo

programming towork on any subtask inwhich its logic has beenwell tested in

pairs.

It would be impractical to attempt to identify all such similarities and

complementarities of all subtasks at one time in pairs. To be effective and

pragmatic, programmers pair up to discover a few patterns and test them all.

Then they split off towork on subtaskswith those testedpatterns. This pairing

upand splitting off is repeateduntil the task is done. The following case, albeit

simplified, shows how to move with the pair–solo rhythm.

FIGURE 6.9 Using repeat programming to solve a puzzle.

182 REPEAT PROGRAMMING

InanERPproject,wewereassignedtodevelopamodulethathadanumber

of graphical user interfaces (GUIs) setting up several master data including

products, customers, and prices. We paired up and quickly learned that each

GUI involved specific tables (see the pseudo-SQL statements in Table 6.1).

Having patterns allows us tomanage software complexity so that we can

apply the same logic to different GUIs. This helps us expedite our overall

software development because it makes little difference for either a pair or

two individuals to work on subtasks relevant to any pattern(s) that the pair

has discovered and tested. Nothing is given up for this movement. Bearing

this inmind,weas apair notice that priceGUI is required to retrieve data from

and update two tables; and product GUI involves inserting data into two

tables. They are two-table manipulations whereas the others are merely one-

table (see Figure 6.10). Aha! We make our first attempt to build product GUI

for creation, price GUI for maintenance, and price GUI for inquiry. The real

challenge is to develop not only the three work products but also the patterns

for building the other GUI with one-table logic such as a customer GUI.

TABLE 6.1 Master Data Setup for an ERP System

GUI Creation Maintenance Inquiry

Product Insert into product_table
values data

Update product_table
set data

Select data from
product_table

Insert into price_table
values data

Customer insert into customer_
table values data

Update customer_table
set data

Select data from
customer_table

Price Insert into price_table
values data

Update price_table set data Select data from
price_table,
product_table

Update product_table set data

FIGURE 6.10 Analysis of similarity.

RHYTHM: PAIR–SOLO–PAIR–SOLO 183

After having completed these three programming subtasks, we feel

excited about our little achievements. We are confident of working on the

rest in soloprogramming.We split off and code subtasks alone.On the basis of

your own experience, you may like to do unit tests in solo or in pair, but a

quick review in pair is amust. Oncewehave finished the subtasks,we pair up

again and continue to work on other things such as security logic and field

checking. Figure 6.11 illustrates how the alternation of pair and solomoves on

for building the GUIs.

The pair–solo rhythmdirects ourmovement of collaboration. The rhythm

chart shown in Figure 6.12 describes the pair–solo rhythm.We start with pair

programming in which pairs work on design and identify patterns of logic

that demandmore effort, and pair programming is a right approach to adopt.

The pair then split off to work on subtasks that are similar to the subtask that

they have previously worked on in pairs. To metamorphose into solo

programming depends on the contributions from pair programming. Next,

programmers pair up to review theirworkproducts.More effort is needed for

design and pilot execution. Thus, it should be achieved in pairs. Less

challenging jobs are then left to two individuals.

Consider a case inwhich the pairwork out all the patterns and implement

each of them and then split off to work alone on the rest. In this case, there

seems to be just pair–then–solo rather than a rhythm as shown in Figure 6.12.

Pair–then–solo can be possible when the pair documents their work. Human

programmers can easily forgetwhat they have done and need to refer to some

FIGURE 6.11 Pair–solo rhythm at work.

FIGURE 6.12 Pair-solo rhythm.

184 REPEAT PROGRAMMING

documentation; otherwise, two individuals will have to talk to each other

intermittently.

The pair–solo rhythm has not yet been played simultaneously with test-

driven development (TDD). We will explore the TDD rhythm in Chapter 9.

6.3.3 Motivation

The performance of a committed team is a product of ability, self-efficacy, and

progress demonstration. In certain situations when problems and solutions

are well known to programmers, pair programming can take asmuch time as

solo programming does; this doubles the effort. Fortunately, pair program-

ming in any case does not seem to produce lower-quality software than solo

programming does. Thus, two programmers in a pair offer a combination of

the experience of two people, and this undoubtedly increases their ability to

do the work. Self-efficacy is the expectation of performing well. Pair pro-

gramming facilities self-efficacy through pair pressure; a pair member does

not want to disappoint a partner. Pair pressure encourages the pair to plan

their time more wisely (Williams et al. 2000).

As for progress demonstration, people are better motivated when their

efforts can be physically seen as early and often as possible.7 Sadly, work

products are invisibleduring softwaredevelopment. Inpair programming,we

do not metaphorically interpret that early work progress is shown by the

participation in a pair�s discussion. Effective communications can indicate the

work progress, but it can be apparently irrelevant to how often or long a pair

talks.

Inherently, a rhythm through its beat (i.e.,movement) �visualizes�work in

progress. For example, as in the pair–solo rhythm, the change frompair to solo

can be considered an intermediate target signaling that a pair has managed to

develop design patterns and to implement them once in pairs. Each change is

the completion of the intermediate target. This kind of progress demonstration

fosters a very positive attitude toward job achievement.

On day 1, a team leader who walks through spacetime (see Figure 6.13)

will see pairs talking about their assigned tasks. Again, depending on their

cultures and means of communication, the leader may hear them laugh or

dialectically talk, whisper, kvetch (complain habitually), �hai�8 or similar. As

7The claim is supported by the observation that �virtually every individual learns at an
early age that you perform better on a task if you pay attention to it, exert effort on it,
and persist at it over time than if you do not do so� (Locke and Latham 1990, p. 11).
8In Japanese, �hai� means not only �Yes� but also �Uh-huh,� �I see,� or �Hmm.�
Therefore, Westerners are frequently confused by Japanese saying �yes� all the time
(Hiroshi 1997).

RHYTHM: PAIR–SOLO–PAIR–SOLO 185

long as the team does not lose their focus, the leader should not bother about

this. The team leader strolls away and on day 2 the teammay see one pair split

off. The leader thinks �Looks good!� The programmers are applying their

reusable patterns. On later days, the teamwill pair up to continue their work.

Their progress beats out the rhythm.After amonth, the team leader has caught

the rhythm of the team and is now able to notice unusual cases if the rhythm is

out of beat: pairs are not split a long time or solos are working unexpectedly

long. This could be a signal that the team needs more support.

It is clear that paired programmers are glad to move on to solo program-

ming as their separation shows their achievements not only to others but also

to themselves. Tomaster the complexity of problems through the understand-

ing of �similarity� and �complementarity,� they develop reusable patterns of

their own. The timewhenprogrammers are splitting off is amoment to enjoy a

cup of coffee after their hard work. It is also a time to share their experiences

with others and even their supervisor on how, working in pairs, they have

killed many birds with one stone. Perhaps, working with good software

practice without seeing anyone around does not encourage programmers.

An example of pair–solo rhythm in software development is illustrated in

Box 6.2 (see also Table 6.2).

FIGURE 6.13 Walk along time to see the rhythm of splitting off and pairing up.

TABLE 6.2 Experimental Project in Southern China

Huida Programmers

Item Measurement Description Pair Pair Single

1 Number of GUIs developed 7 6 2
2 Number of stored procedures written 15 9 5
3 Ratio 1.7 1.9 N/Aa

aNot applicable.

186 REPEAT PROGRAMMING

BOX 6.2
CASE STUDY (2005): SOFTWARE DEVELOPMENT IN CHINA

In southern China, Huida Technology Ltd. had seven technical staff providing

ERP solutions to their local customers. Two had 4 years� experience and the

other less than one year. To better manage less experienced programmers, the

company was piloting the pair–solo rhythm on their Web-based CRM project.

After amonth, the companyprovided theirmeasurements to us (Table 6.2).

As the project was not an experiment, it is a matter of happenstance that there

were five staff available, so the use of a single programmer was not intended

to serve as a control group. The programmers appeared to develop more

(sub)modules in terms of stored procedures and GUI. From an academic

perspective, we are interested in a ratio, defined by the total time in solo

programming over the total time in pair programming which can be used to

compare with other team�s adoption of the pair–solo rhythm. For example,

Poff�s experiment on pair programming, which ended up with pair program-

ming at will, was about 1 (Poff 2003).

Supervisors� Comments

The supervisorsworkedwith thosefiveprogrammers daily andknewthemwell.

Their comments on the process are of interest:

1. They found that theywere able to spend less time supervising the pairs as

they tended to support and monitor themselves.

2. Coding standards were much better.

3. The pair–solo rhythm encouraged junior programmers to actively seek

design patterns for reuse. This has rarely been seen before as the pro-

grammers just wanted to complete the program on time, rather than

considering software reuse. Hitherto, it was common to see duplications

of logic in the junior programmer�s code as they had the habit of simply

cutting and pasting code.

We should be aware that superimposing another rhythm may break the

harmony. But it may also produce a synergy. The principle by which we

compose the pair–solo rhythmmay be implemented flexibly so as to develop

a new rhythm for your workplace. In eXtreme programming, exchanging

partners with another pair supports �collective code ownership.� Unfortu-

nately, the timing of partner changing is an unresearched topic. On the basis

of pair–solo rhythm, we may replace splitting off with exchanging partners,

and the rhythm will be �pair–pair with exchanging partner–pair with

exchanging partner.� In this way, once a pattern is discovered by a pair,

RHYTHM: PAIR–SOLO–PAIR–SOLO 187

they need to rotate partnerswith another pair to facilitate knowledge sharing.

Looking at a single rhythm for all development situations is notwise. Readers

should be careful to compose their own rhythms.

6.4 AN EXCEPTION THAT PROVES BROOKS� LAW

According to the Brooks� law, adding manpower to a late project makes it

even later.9 This is not too difficult to understand as adding newmembers to a

teamoftenmeans an increase in communication costs, the need for additional

training time, and time to reassign responsibilities and/or repartition a task.

All these factors together can outweigh the productivity gain from the

additional team members.

During the course of software development, a project teammay encoun-

ter problems relating to variables such asproduct quality, budget control, and

project planning. Among these different problems, schedule slippage is most

easily noticeable. While it requires rigorous testing to identify defective

quality, every member of a team can tell how long a project has been late.

It probably is not difficult to convince anyone that, of all the problems,

schedule slippage is the problem most commonly encountered when man-

aging a project. In fact, the problem ismore of how late a project is rather than

whether it is late. There is, as yet, no easy solution to such a problem.

Consciously or subconsciously, many project managers hope that Brooks�
lawdoes not hold true in their projects. They hope that they can addpeople in

their team in exchange for a shorter completion time.10 What is truer than

Brooks� law is the preference for believing what we want to believe!

There have been studies on how an increase in manpower may impact

factors such as communication costs and productivity showing that commu-

nication costs can be asymptotically proportional to the square of the number

of programmers11 or, if there exists an optimal number of people, above

which project time can be decreased only marginally. These studies are

concerned with communications, productivity, design complexity, optimi-

zation, and people management. Here, we suggest a different way to look at

Brooks� law.

9A study shows that adding manpower to a late project can be very costly, but it does
not necessarily make it later (Abdel-Hamid and Madnick 1991). This statement is not
very relevant to our discussion here as long as it is held that addingmanpower to a late
project does not shorten the completion time.
10Men and months are not interchangeable units because partitioned tasks are not
totally independent in software development (Brooks 1995).
11The number of communication paths of channels for N programmers can be
computed as ½N·ðN�1Þ�=2, that is, this is of order O(N2).

188 REPEAT PROGRAMMING

To explain our observation, let us consider a simple example. Suppose

that an outsourced programmer in India promises to submit a program to her

manager in the United States in 4 weeks� time. The project manager, Ralph,

would naturally plan to start the user acceptance testing in week 5.

One lovely morning, although the project has been a week behind

schedule, the programmer, Sita, is relaxing in a Mumbai café, when her

phone rings. Ralph,who is veryworried about the progress, tries to explain to

Sita the terrible consequences of a late submission. Ralph would like to

introduce another developer there to speed up the work. This idea is rejected

as Sita thinks that it will only delay the project further.

By committing to the original onemonth schedule, Sitawas only guessing

as to how long she would need to complete the program. Taking a number of

risk factors into account, a probability distribution function can be developed

(see Figure 6.14). There may be a 50% chance that she will complete the work

in week 4, and the chance of completing by week 6 may be 10%. The

cumulative probability that Ralphwill receive thework byweek 6 is therefore

95%. In this case, adding an additional developer may not make it faster as

there is already a 95% chance that the work will be finished by the following

week as long as all risk factors can be kept unchanged.

If Ralph knew the probability distribution, he would probably be willing

to wait another week for the program. Even though he might still be con-

cerned, he probably would only ask whether the probability distribution

function is still valid. If there were no other uncertainty factors and if all

known risk factorsweremanaged, thingswould be regarded as under control

and the schedule would be regarded as more or less predictable!

What this story intends to convey is that all late projects are different. In

fact, there are two different ways of classifying late projects. There are late

projects that are simply late and there are late projects that are troubled and late.

In case of the former, risk factors originally anticipated may materialize. In

FIGURE 6.14 Aproject plan says that a taskwill be done byweek 4; this actuallymight
mean that there is a 50–50 chance of completing it by then.

AN EXCEPTION THAT PROVES BROOKS� LAW 189

such a case, the probability distribution function of the project being on time

may remain valid. As long as a project team can keep their morale up, adding

manpower is just not of any value. The teammay just need a pat on the back,

and everything can continue as planned.

For troubled–late projects, however, lateness (tardiness) may be the

consequence of something that is more serious. For example, changing of

requirements, insufficient user involvement, lack of executive support,

unrealistic project goals, and other factors can all be hidden behind the

noticeable result of lateness. In the most serious cases, these could lead to

project abandonment. Thus, a troubled–late project can radically change

the original probability distribution. Often, in such a situation, a project

manager is under great pressure and would like to do more than just add

additional manpower.

6.4.1 Low Morale

Troubled–late projects, as one can easily imagine, usually accompany low

morale and high stress. The low morale is a result of negative outcomes

despite a team�s hard work. Team members can be very worried and

frustrated about what might happen to both themselves and to the project

as a result of possible drastic actions that may be taken to alleviate problems

and ease difficult situations.

Although Brooks� law is generally accepted by most people, many

programmers probably will admit to having been helped by some very

experienced developers at some point in time. In fact, this is particularly

the case when one finds oneself overwhelmed by the work on hand

and experiences low morale at work and is under great stress. A study

on CRM implementation reports that a project team with low morale, with

overall satisfaction graded at 2 out of 10, can quickly jump up to a rating of

5 or 6 whenever a new member joins the team (Anton and Petouhoff 2002).

If emotional support has such an impact on a CRM implementation�s
success, we believe it to be particularly important for troubled–late

projects.

Adding manpower is a way to boost morale. If team spirit can be kept

up, the team canwork faster and better. However, is this something that is in

direct contradiction to Brooks� law? No, probably not. With a team of such

low-morale members, a troubled–late project can be doomed for termina-

tion in the minds of these team members. Adding new members to a late

project may mean that the management is still interested in rescuing the

project. Even though it can complete the project even later, late is better than

never.

190 REPEAT PROGRAMMING

6.4.2 Communication Costs

Brooks� law assumes certain relationships between people and their com-

munications. One may wonder if there is an ideal situation in which Brook�s
lawdoesnot hold and inwhichweaddmanpowerwithout adding to the costs

of training and of repartitioning tasks. Of course, project managers don�t
consciously follow laws. They are concerned onlywithmaking sure that their

projects are successful. Under pressure to perform and weighing up adding

newmembers as opposed to being removed from the project,manymanagers

of troubled–late projectswould probably opt for the former. Tominimize any

possible damage to an already late project, it is important that newmembers

be added to the project in the optimal way.

In eXtreme programming, there its a truck number criterion. If a project

fails when just one member got hit by a truck, then all members of the project

team are critical to the successes of a project. This is a very risky situation that

should be avoided.

However, a truck number is influenced by how programmers are orga-

nized and how tasks or responsibilities are assigned. To decide whether

progress can be made on a project, we need to know how many developers

can quickly take over each task. Here, we define the smallest such number to

be an extended truck number.

Tasks in software development are rarely independent. In Figure 6.15,

even though Liz is working on task D, she needs to find out, from other team

members at times, how other tasks such as task B are related to task D. Since

task B is assigned to one person only, Liz can talk only to John. If John is busy,

she has to wait.

Liz can continue to work if she does not need immediate answers to her

questions. However, if Liz has joined the team only recently, a quick response

FIGURE 6.15 Extended truck number.

AN EXCEPTION THAT PROVES BROOKS� LAW 191

to her questions can be critical. Communication costs including calling time

andwaiting time canbeminimized if anyone in a teamcangive Liz answers to

all the questions she has immediately. To reduce the slope of a learning curve,

old team members must allocate time from their original schedule to train

newmembers. Thus, the higher the extended truck number, the less likelywe

are to get information flow bottlenecks.

In pair programming, the extended truck number is at least 2. Imagine

that a new but experienced member is assigned to a pair. While an observer

discusses with the driver, he can spare time to brief a new member on

necessary background and progress to date. This should be seen as a factor

in calculating training costs and mentoring burden.

Addingmore staffmay require reorganization or reallocation of tasks. As

repartitioning an original task involves rework, effort previously made will

unavoidably go into the trash. Straightforwardly, dividing existing subtasks

into smaller ones appears tomake sense if a subtask is divisible.Otherwise, on

repartitioning, you have to balance the time you need to rework the previous

task with the time you gain from the shorter completion time.

If all these issues can be dealt with, we stand a better chance of over-

throwing Brooks� law.

6.4.3 Rhythm for Late Projects

Everything has its day. Briefly speaking, triple programming could be

unproductive when compared with pair programming. However, out of the

shadow of pair programming, triple programming has its place in real-world

applications. In triple programming, as more people are involved, there

will be a corresponding increase in communication overheads. In particular,

the number of communication channels would raise costs exponentially.

Intercommunication, in fact, can be considered the bottleneck of triple

programming.

Pair programmerswhohavenot practiced triple programmingmay think

that there would be three communication channels (or paths) (Figure 6.16a).

This, in reality, may not be the case. The driver can be substantially distracted

by the two observers� discussions and or by conflicts between them. If three

people are to work together, they have to work rhythmically; that is, their

activities should be planned and coordinated.

In triple programming, we introduce a new role for a programmer, called

amoderator, who coordinates the communications between the driver and the

observer, who, basically, do not talk to each other. The moderator, like a

bridge across two heads, not only communicates to the driver and thinks

strategically, but also discusses ideas with the observer sitting beside her.

192 REPEAT PROGRAMMING

In the case of adding a new person to a pair, the pair will be either the

driver or the moderator and the new member can only be the observer. This

can ensure that there are just two communication channels (see Figures 6.16b

and 6.16c), and this can help reduce communication costs. Physically, to

facilitate their working together, a larger liquid crystal display (LCD) can be

used to enable the three people working together to more easily view the

screen contents (see Figure 6.16b). From an ergonomic perspective, three

people sitting close to eachother, talkingandworking together for aprolonged

period, can feel quiteuncomfortable. Technically, Figure 6.16b is feasible, but it

could be too crowded for the programmers to work comfortably.

With remote desktop technology such as terminal servers, it is better for a

triple to sit in front of two machines (see Figure 6.16c) so that the driver can

work on a single machine, with the other two sitting in front of another

machine accessing the driver�s computer. These two programmers can talk

veryquietly so as not to distract the driver�s attention fromprogramming. The

driver and the moderator can talk as usuals.

With the communications moderated, adding newmembers to pairs can

be pragmatic. Triple programming facilitates the transfer of necessary back-

ground knowledge so that the third programmer can become a contributing

member in a shorter time period. Adding new members in such a way can

have a smaller impact on task repartitioning.

Despite these advantages, it should be noted that triple programming

cannot be made very productive if it is adopted from the very beginning.

However, this is not the case if it is adopted to counter the negative impact of

introducing newmembers to a late-project team. By adopting triple program-

ming as described here, we can at least be sure that productivity will not

FIGURE 6.16 Communication channels (or paths) in triple Programming: (a) unfeasible;
(b) feasible but crowded; (c) feasible.

AN EXCEPTION THAT PROVES BROOKS� LAW 193

decrease. In fact, if splitting, a techniquewepropose here, is introduced to turn

triple into solo programming, productivity can be increased.

The idea of splitting is fairly simple as it is the same as the pair–solo

rhythm (see Figure 6.17). The triple, together, are looking for patterns of logic

and ways to break up remaining tasks. They share necessary background

knowledgewith the newmember, and therefore, Figure 6.18, which is a chart

showing a development rhythm for troubled–late projects, can apply.

The rhythm of triple programming may actually save a troubled–late

project and can allow Brooks� law to be overcome to some extent. To manage

troubled–late projects, one may have to �burn the boat� even though this

could be an expensive thing to do. In addition to adopting this strategy,

determination and encouragement are also essential. One does not have to

be bothered by Brooks� law. A project manager can ask for the necessary

human resources but should not practice anything ad hoc. Instead, she

should focus on a rhythm of her own and keep moving on towards the

project goals.

Software development rhythms are not development methodologies.

Unlike eXtreme programming, the development rhythms won�t tell you how

tobuild software frombeginning to end. This also cannot bedone for software

principles. For example, one may have mastered practices in eXtreme pro-

gramming that are useful in one�s organization and knowhow these practices

are interrelated. But, one may wonder what practices should be adopted

under a particular development rhythm.

Every software methodology has it own rhythm, and software develop-

ment rhythms are a way of understanding them all, regardless of whether

they are heavyweight, lightweight, rigorous, adaptive, static, dynamic,

just-in-time, schedule-based, fast-paced, slow-paced, people-focused, or

FIGURE 6.17 Rhythm of triple programming.

FIGURE 6.18 Rhythm for late projects.

194 REPEAT PROGRAMMING

process-driven. A particular method for managing software projects will

work only for some of us. It is better for us to develop our own unique

situation based on some guiding principles:

Fair is foul and foul is fair.

REFERENCES

Abdel-Hamid T and Madnick S. Software Project Dynamics: An Integrated Approach.

Upper Saddle River, NJ: Prentice-Hall; 1991.

Anton J and Petouhoff NL. Customer Relationship Management: The Bottom Line to

Optimizing Your ROI. Upper Saddle River, NJ: Prentice-Hall; 2002.

Arisholm E, Gallis H, Dyba T, and Sjøberg D. Evaluating pair programming with

respect to system complexity and programmer expertise. IEEE Transactions on

Software Engineering 2007; 33 (22):65–86.

Brooks FP. The Mythical Man-month. Reading, MA: Addison-Wesley; 1995.

Cockburn A. Crystal Clear: A Human-powered Methodology for Small Teams. Boston:

Addison-Wesley; 2005.

Constantine LL.Constantine on Peopleware. EnglewoodCliffs, NJ: Yourdon Press; 1995.

Flor NV. Side-by-side collaboration: a case study. International Journal of Human

Computer Studies 1998; 49 (3):201–222.

Gardner H. Frames of Mind. 2nd ed. New York: Basic Books; 1993.

Gardner H. Extraordinary Minds. New York: Basic Books; 1997.

Haslam A and Reicher S. The Experiment (videorecording). London: BBC Worldwide;

2002.

Herzberg F.Onemore time:Howdoyoumotivate employees?Harvard Business Review

Jan. 2003; pp. 87–96.

Hiroshi K. The Inscrutable Japanese: 41 Cultural Puzzles that Foreigners Have on the

Japanese. Tokyo: Kodansha International; 1997.

Locke EA and Latham GP. A Theory of Goal and Task Performance. Upper Saddle River,

NJ: Prentice-Hall; 1990.

Lui KM and Chan KCC. Pair programming productivity: novice-novice vs. expert-

expert. International Journal of Human Computer Studies 2006; 64:915–925.

Müller MM. Are reviews an alternative to pair programming? Empirical Software

Engineering 2004, 9 (4):335–351.

Nawrocki J and Wojciechowski A. Experimental evaluation of pair programming.

Proceedings of the 12th European Software Control and Metrics Conference 2001.

pp. 269–276.

Nosek JT. The case for collaborative programming. Communications of the ACM 1998;

41 (3):105–108.

REFERENCES 195

Poff MA. Pair Programming to Facilitate the Training of Newly-Hired Programmers. MSc

thesis. Florida Institute of Technology; 2003.

Stephens M and Rosenberg D. Extreme Programming Refactored: The Case Against XP.

Berlin: Springer; 2003.

Williams L and Kessler R. Pair Programming Illuminated. Boston: Addison-Wesley;

2003.

Williams L, Kessler R, CunninghamW, and Jeffries R. Strengthening the case for pair

programming. IEEE Software 2000; 17 (4):19–25.

Zimbardo PG.Quiet Rage (videorecording, 1971): The Stanford prison study/Stanford

Instructional Television Network; production services provided by Stanford

Center for Professional Development Publisher: Philip G. Zimbardo, Inc., The

Board of Trustees of Leland Stanford Junior University, 1992.

Zimbardo PG, The Lucifer Effect. London: Ebury Press; 2007.

196 REPEAT PROGRAMMING

7
AGILE TEAMING

One step by 100 people is better than 100 steps by one person.

—KOICHI TSUKAMOTO
1

A college rugby team from Uruguay flew to Chile for a match. The plane

crashed into the frozen AndesMountains. Of the 45 passengers on the plane,

27 survived the crash but now they faced the problem of surviving in the

freezingmountains. Themost important survival decisionsweremade by the

group, so it was a collective decision when the group decided to eat the flesh

from the bodies of their dead friends. And it was a group brainstorm that

produced an insulated sleeping bag to keep them alive through the cold

nights. On December 22, 1972, after 72 brutal days, they were rescued, but

only 16 had survived (Parrado and Rause 1998).

The group was isolated from the outside world. They had to reach

consensus with little time to test and evaluate their ideas. The group mem-

bers, as human beings, were instinctively motivated to survive, but that does

not mean that they shared a common belief. For example, although everyone

wanted to survive, somedid not think that theywould be rescuedwhile some

firmly believed they would just survive.

When a group of people share a common belief, they can be totally

devoted to the group. In fact, it can be less important whether the belief is

understandable to the outsider. Depending on how a group is established,

1Quoted in Eppler.

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright � 2008 John Wiley & Sons, Inc.

197

motivated, and led, the teammembers could be totally committed to achiev-

ing it. Let us look at another story.

In 1997 there were 39 people who belonged to a religious group and

together they ran a successfulWebsite design company. One springmorning,

the team all put on brand-new running shoes and gathered in a rented

house in a suburb of San Diego. These people passionately believed their

group leader�s claim that extraterrestrials from the �kingdomof heaven�were

monitoring Earth with a view to taking a select part of humanity away to

salvation. The group had long been preparing for the day when a spacecraft,

concealed by the Hale–Bopp comet, would come to take them off to heaven.

But the only way to get a boarding pass for the aliens� craft was to free

their souls from the bodies. So onMarch 27, 1997 all 39 of those educated and

otherwise average people took overdoses of sleeping pills and very soon after

they were indeed freed from their bodies (Giddens et al. 2006).

Whenever we hear this kind of news, �teaming� comes to mind. We can

see that the team has goals, resources, plans, and timeframes; it is just like

running a project. It involves member motivation (i.e., what they are looking

for in a team), team organization (i.e., how the group interlocks different roles

played by the members that guides the group behavior), a disciplined

methodology (i.e., how to die or survive), and so on. It also includes one

significant element at the group level: a can-do attitude.

Software teaming is multidisciplinary, involving psychology, sociology,

group dynamics, project management, and software engineering. Experts in

different areas on team collaboration, however, are exploringmore or less the

same things. Psychologists and sociologists have reported their studies

on the behavior of software project teams (Sonnentag 2002; Yeh and Chou

2005). Unfortunately, teaming is an area less popular in software engineer-

ing, although this topic is almost as old as the first Unix system by Ed

Thompson.

When software products can be produced only by more than one, we

have to deal with teaming. An early study of software teaming is Baker�s chief
programmer teams (1972), amodel of teaming inwhich developers are divided

into chief programmers who are responsible for all development tasks,

backup programmers whose role is to act as assistants to the chief program-

mers, and a librarian whose job is to support all the clerical functions

associated with a project.

Yet, although teaming may have been soft-pedaled, issues of group

dynamics are always addressed in traditional software methods/models

[e.g., team software process (TSP) and CMMI]. Awall of project management

books have discussed the establishment of a �project charter� at the inception
of a project that is designed to define roles and responsibilities.

198 AGILE TEAMING

Agile software development also emphasizes people, and claims to bring

concerns with accountability, responsibility, and transparency (Beck and

Andres 2005) back into the discussion of software development. How do

TSP, CMMI, and so on, differ fromwhat agile software development tells us?

Are they (i.e., agilist and nonagilist) just saying the same thing from different

perspectives? Our answer is �No.�
A process is a collection of specific activities that together can be used to

achieve theprocess objectives.Many softwareprocesses havebeenpractically

structuredwith the idea that developers arewell coordinated so that activities

for acting, planning, doing, and checking are controlled. As such, software

processes should be designed to coordinate a number of activities and to

assign responsibilities to developers.

Agile software development realizes that it is not possible to execute

plans with perfect accuracy because of the uncertainties that will arise within

a team andworking on a software project. Therefore, people in a team should

closely collaborate on the same set of tasks to ensure a more accurate

estimation of the whole team�s performance and software capability.

In short, the emphasis in traditional software development is more on

task coordination, with allocation of the right amount of tasks for each

developer, while agile software development focuses more on people collab-

oration for completing tasks.Now that people over process (i.e., focus on how

people collaborate) or process overpeople (i.e., focus onhow tasks assigned to

people are better coordinated) are different approaches, two thorny issues are

arising: when either one works better andwhen either can be better used. Let

us look at a simple example.

Assume that you are running a project that can definitely be completed

much earlier before deadline. In this case, process over people or people over

process does not matter. You have plenty of time to manage any inaccuracy

and risk that may materialize.

Yet, if the deadline is suddenly brought forward, how do people react?

Process over people is inflexible, as the order among processes or activities is

established under an assumption of no change. It is people over process that

could handle the problem of this kind.Whenwill there be such unexpectedly

dramatic events during software projects? Our opinion would be that many

software projects that have been changing from promising to failing always

occur unexpectedly. Later in this chapter, when we are dealing with failing

software projects,wewillmanage troubles better using apeople-over-process

approach.

Unfortunately, teaming is a difficult topic and it is difficult to put its

theories into action. In Winning, Jack Welch, CEO of General Electric for 20

years, argues his preference for a flat organization (see Figure 7.1) because it

AGILE TEAMING 199

allows formore talented subordinates to be directly involved in decisionmak-

ing. This is an example of people over process (or people before process).

Nowadays, software projects are so large and complex that they are

beyond an individual�s efforts alone to complete.As long asdevelopment and

implementation requiresmore than one person, there is the need for teaming.

Excellent teaming is just sufficient to successfully run a software project.When

we intend to rescue troubled–late projects, teaming plays a dominant role in

dealingwith suchprojects. Teamingwith a sponsor from topmanagement is a

necessary condition.

7.1 PROJECT TEAMS

Some software managers who are merely interested in project data and

deliverables may consider themselves result-oriented persons. However, it

is people not project data who do the job and get the result. Failing to

understanding people and the development paradigms that they adopt will

not provide any proven evidence that the same team always delivers quality

software on time and within budget. Both people and results should be

equally important. However, when people are working as a team to deliver

the results, there is the need to first learn more about how the team works.

Obviously, software development will never make teaming dispensable.

One of the authors attended a Hewlett-packard (HP) industrial seminar

in 1997 and talked to a person who was the head of the IT department of a

retail chain. Since the author was working as project leader in a large

supermarket chain inHongKong, he talked to and shared project experiences

Large Flat versus More Layers

FIGURE 7.1 �Managers should have 10 direct reports at the minimum� (Welch and
Welch 2003).

200 AGILE TEAMING

with this IT person who said it was good to be a department head. Certainly,

as far asmoney is concerned, the salary package for the head of IT can be 2 or 3

times higher than that of a projectmanager. Butwhat this IT guywas trying to

saywas that heading adepartmental teamwould bemuch easier than running

a software project.

When members are in a permanent team according to an organizational

chart, its manager (e.g., department head) has absolute power and can

manipulate rewards and penalties in the work environment.

A project team can be temporarily established to achieve specific goals,

and teammates are often selected from different departments within an

organization, or from two or three software vendors.With that kind of project

team, there are two problems: (1) the project manager is expected to exercise

more personal power than positional power because he/she is often

regarded as one highly competitive person and should provide a good role

model for his/her team members, and (2) the project manager may not

have much power to take disciplinary action against problematic members

from other departments or companies. Such differences between managing

permanent teams and running project teams are where conflicts come

from.

In addition, while we may want to educate a project development team

and establish some sort of team culture, we must consider the project

schedule. Teams that are more permanent such as departmental teams are

easier to control, and longer timelines and greater team stability mean that

team development is not necessarily in conflict with work progress.

Even in a software company, a project team is established by selecting

programmers from different specialties in the company. Such a heteroge-

neous teamwill introduce conflicts as there are manyways to build software.

When the company is sizable, teammembersmaynot knoweach otherwell. It

takes time for us to understand them. It is not easy to manage the heteroge-

neous teams with their differences in personalities and to resolve conflicts

among people�s ideas. In some cases, some programmers, particularly ex-

perts, are often involved inmany projects rather than just one. In aworst-case

scenario, they may just show up in a project meeting to report their work

progress. For sure, the team members hardly establish a close rapport with

one another and they become increasingly coordinated to achieve their

assigned tasks. The team ends up practicing process over people.

In a project that involves partnership, it is not unusual for project team

members to be drawn from two companies. In this casewe should be cautious

about cultural differences between the two organizations. Potential team

members should not assume that the way things are done in their organiza-

tion must be the way things are done in the combined team. In particular,

PROJECT TEAMS 201

people from different areas should take the time to agree with practices that

should be adopted before tasks are undertaken.

Project teamshave their owndynamics and lifecycles. People are themost

fundamental layer of program tasks and programming paradigms. A project

must be built on the base of a strong team (see Figure 7.2). The path to success

involves a series of tasks that the teammust finish. However, it is not enough

just to get the tasks done. Methodology and tasks are interrelated. The team

must use good methods to complete all the tasks. By �good methods�, we

mean that there should be working rhythms that are right for the team to

ensure that values to people and software are delivered.

7.1.1 Self-Organizing Teams

The software requirements can be written in a stack of user stories, each of

which has one or a few features. A small software team can pick up some user

stories that can be completed within 30 days. These 30 days constitute a

noninterrupted iteration that is called a �sprint.�During the sprint, the team is

totally self-organizing and can dowhatever is necessary to get thework done.

When the sprint ends, they give a presentation to their users ofwhat they did.

The users may change the features after a review. Afterward, the team picks

up more features and enters another sprint of 30-days. This iterative process

continues until the application is done. But it is not without problems.

Self-organizing teams can be a risky practice if the teammembers do not

know how to organize themselves to maximize productivity. Team decisions

Methodology

People

Tasks

Teaming

Project Success

FIGURE 7.2 People are the foundations of software projects.

202 AGILE TEAMING

as to how to combine their efforts to solve a problem are a discretionary task

(see Chapter 5). To play it safe, there should be a coach to guide the self-

organizing teams.

Fortunately, the risk can be lower when the iteration is short. Even if a

user is not satisfied with the work or wants to make substantial changes

leading to a total loss of all work done to that point, the teamwill still lose only

30 days (Schwaber and Beedle 2001).

During a sprint, users cannot interrupt the team. The user can change

their requirements only after the 30 days. Teamorganization in the first sprint

is risky. However, if we look at each sprint flowing as a rhythm, it is not. We

can see the rhythmafter twoor three sprints. The rhythmof each sprint tells us

what the team will achieve. When the team runs into difficulties and needs

help, a short dailymeeting, a scrum (scrummage)meeting, is a goodproblem-

solving device.

Such a self-organizing team is normally small and very rhythmic

(Figure 7.3), which fits well with agile teaming. Later we will discuss agile

teaming inwhich the structure of a team is dynamic so as to respond easily to

project issues and changes.Wewill see that a self-organizing teamcanachieve

agile teaming as long as the team can organize itself to react to changes.

7.1.2 Teams in a Team

A traditional team structure is like a tree diagram (see Figure 7.4). Team

members often possess complementary skills. Mutual education and skill-

sharing is a possible outcome. In many real situations, to make a team

productive by skill sharing is challenging. For example, one is in finding

ways to promote the sharing of knowledge and experience. Sharing experi-

ence that does not help meet a project�s deadline around the corner can be

time-wasting. Another problem is in ensuring that theoretically complemen-

tary team member skills do in fact work together in a complementary way.

Complementary skills are not freebies. There are associated communication

overheads as team members need to understand one another.

As pointed out in our earlier discussion of pair programming, two people

can work together as a single unit to collaborate on the same task (see

Figure 7.5). This practice not only sets the scene for complementary skill use

FIGURE 7.3 A rhythm of 30 days—review.

PROJECT TEAMS 203

but also reduces the associated communication overhead. The structure (see

Figure 7.5) must be dynamic because the sharing of knowledge and experi-

ence is an outcome of well-timed pair rotations.

This is a team-in–team approach, which is different from arrangements

where a team is composed of subteams. Each team in a team-in-team

approach exists for just a short period and exchanges partners with other

teams. Teams can organize their own partner rotations, but this doesn�t
always produce ideal outcomes. It is not reasonable to expect that all teams

will perform equally or ideally.

When members of a team rotate their partners with �right� timing, they

will soon feel their rhythms (shownFigure 7.6) andget an idea of the strengths

of each pair. But this depends on how long the self-organizing team takes to

get its timing. In some cases, it may just create an arrhythmic atmosphere in

the workplace (see Figure 7.7).

FIGURE 7.4 Traditional team structure.

FIGURE 7.5 Dynamic team structure for team pair programming.

204 AGILE TEAMING

7.1.3 Project Team Composition

Any project must start with the establishment of a project team in which the

members are selected from different positions inmajor functional units of the

company. Such heterogeneity in a teamwill, on one hand, contribute to a staff

member�s functional expertise in reengineering a business process and

designing an integrated system, and, on the other hand, cause conflicts of

interest among different functional departments, which to some extent may

lead to scheduling slippage, failure to keep costs within budget, and low

morale among team members (Yeh and Chou 2005).

Suppose that we won a CRM contract. CRM applications are a bit more

company-oriented than industry-driven. Where one company sees attractive

customers, anothermay see only the ugly. TheGartner Group says thatmany

CRM applications are tailor-designed and are built in-house. This kind of

project needs technical programmers and different staff.

Wemayneed to formaproject team to build aCRMsystembyfinding the

right people from one (probably more) organization so that the whole team

have good domain knowledge for that industry, the company�s unique

operations, and technical programming. There are two simple ways to

compose our team: functional diversity and positional diversity.

Functional diversity is when team members are selected from different

functional areas (e.g., sales and marketing, finance, distribution, information

systems). Functional diversity has been negatively associated with team

performance because people from different backgroundsmay bring irresolv-

able viewpoints to a team and a project manager will have to manage their

conflicts.

Positional diversity is when team members are selected from different

ranks within an organization. Positional diversity has a positive influence on

team performance because people at the junior level appreciate the opportu-

nity to engage at the level of strategy and planning with more experienced

FIGURE 7.6 Rotating makes team structure dynamic.

FIGURE 7.7 Arrhythmatic pairing.

PROJECT TEAMS 205

staff, while senior staff are exposed to issues related to more operational

problems. This way may lead to lower levels of conflict within a team and

greater effectiveness.

Wemightwant to try to use positional diversity to lessen conflicts caused

bydifferent functional perspectives (i.e., functional diversity), to get people at

different levels from different divisions (see Figure 7.8).

7.1.4 Team Lifecycle versus Learning Curve

A project plan that shows the tasks of a project team and project charter also

records roles and responsibilities. But this may not address one critical point:

how productive a team can be. The productivity of a group of people, even

though they forma teamwith commonproject goals, relies on communication

and respect to develop its structure. This grows over time. Let us start with a

rhythm for team formation.

Once a project team has been established, it moves through four stages to

reach its optimal level of productivity (Figure 7.9). In the formation phase,

group members start to orient toward one another. Then conflict emerges. It

subsides when the group becomes more structured. Norms and cultures

emerge in the structure phase. Finally, in the production phase, the group

moves beyond disagreement and concentrates on the work to be done.

Strictly speaking, the Tuckman model can be arrhythmic if we don�t get
the right timing for a team we are building. Each team may take a different

amount of time to pass through the cycle regardless ofwhether it is a big team

Team
Composition B

Team
Composition A

Organization
Structure

FIGURE 7.8 Team B is better than Team A!

206 AGILE TEAMING

or a team of just two members. Thus, the model alone does not give us the

details of how to build a productive team. The team has to get its rhythm at

each phase (see Figure 7.10).

For example, expecting two people to sit down and immediately make

pair programming productive is unrealistic. Even a team of two requires time

to communicate on how to collaborate. As in pair programming, this period is

referred to as the �pair jelling� time (Williams et al. 1965).

The Tuckman model has a relationship with a project cycle. When the

project lifecycle is shorter than the time that a project team requires to reach its

optimumproductivity (i.e., the production phase of the Tuckmanmodel), the

project manager will have to deal with more teaming problems than project

issues. This is not good at all (see Figure 7.11). It is preferable to select the right

members so that the team will reach their productivity in the fastest possible

time. In addition, we should also try somewarmup exercises and cooperative

games to facilitate team building.

In many software projects, a newly established team needs to learn new

skills, such as software tools, development languages, and domain knowl-

edge. Depending on the team�s experience, its learning curve can vary.

Suppose that a learning curve over project time for a team can have three

possible scenarios as depicted in Figure 7.12.

No teamhas complete knowledge about any software project. Often, they

have to learn new skills or acquire project-relevant knowledge. Throughout a

project cycle, we may expect that project tasks will demand different skills

FIGURE 7.9 A Lifecycle of a project team by Tuckman�s model (1965).

FIGURE 7.10 Rhythm for Tuckman�s model.

PROJECT TEAMS 207

over time, and so the learning curve–project skill demand curve will not rise

regularly and irresistibly but will rise and fall over time.

Learning speed varies with each team and project. Ideally, a team

gains the necessary skills quickly and is capable of performing the most

challenging time- and skill-demanding development tasks well before

they arise, at the apex of the project cycle (see learning curve A in

Figure 7.12).

If the learning pace lags behind the project cycle, team productivity

will not reach the level required by the project cycle until the end of the

project, resulting in a waste of resources (see learning curve C in Figure 7.12).

This is the worst–case scenario, and the project is not expected to go

smoothly.

FIGURE 7.11 The worst-case scenario would be project B�s lifecycle being much
shorter than the time to reach the team�s production stage.

Project Cycle
Project EndProject Start

Learning Curve A

Time

Learning Curve C

Skills Level

Skills Demands

Learning Curve B

FIGURE 7.12 Learning curves versus project skills demands.

208 AGILE TEAMING

Training is not the same as learning.We can provide extensive training to

our team, but when or whether they acquire the skills and knowledge to

contribute to aproject is another story. For this reason, teams should startwith

enough experience rather than trying to train everybody on the job. Reliance

on the learning curve should be avoided.

Despite the importance of all of these factors—team performance,

learning curve, and project cycle—they are never reflected in a project

plan.

7.2 PRODUCTIVITY

Low or below-target productivity is always a problem in software develop-

ment, yet it is not always easy to identify its sources, inpart because the factors

of productivity are often intangible and hard to measure. Even if a factor has

been identified, there are difficulties in isolating and influencing it. Produc-

tivity in software development is not, as inmanufacturing, a relatively simple

matter of machine capacity and labor-hours. Programmers rarely complain

that their tools—the computers, for example—affect their programming

speed. Rather, productivity in software development is a function of factors

that are difficult to identify, measure, or motivate; for instance, human

intelligence and human experience.

The productivity of creativeworkers can be captive to personal factors.

Some work well in the day and others at night. Similarly, over an 8-hour

day, some may be more productive in the first four hours and less

productive thereafter. Imagine that two independent programs of the same

amount of workload need to be written. When one of the two is done in 4

hours, there is the expectation that the other will take no longer so that the

whole task will require a total of 8 hours. But experience tells us that this is

not necessarily so. Any programmerwho hasworked hard for the first four

hours can be expected to be less productive for the next four hours.

However, two programmers may complete the two tasks in 8 man-hours.

This is because human productivity of writing code varies along working

hours—and this can be far more complicated for team productivity.

Team productivity in software development relates to how a teammakes

use of their intelligence andexperience so as toproducehigh-qualityproducts

with less rework effort. A team�s organisation definitely affects productivity.

Although it is hard to tell how to reach the maximum productivity of a

software team, we surely know of some teaming issues that will hurt a

software team�s productivity.

PRODUCTIVITY 209

7.2.1 The Illusion of Productivity

Members of teams working on collective tasks generally think that their team is

more productive than other teams. Teammembers also feel that they are doing

more than their fair share—even those who are loafers. These two individual

illusions produce the group illusion of team productivity. At the same time,

people performing simple tasks often work harder over any period when they

are beingwatched and evaluated anddo lesswhen they are not being evaluated.

We can show the relationship between anonymity and social loafingby the

shouting test. There are large differences in how loudly people will shout in

pairs, shouting alone, and as part of six-person groups that shout at the same

time. In pairs and six-member groups, individuals worked at only 59% and

31%, respectively, of their individually expressed capacity. But when their

individual contributionswere to be identified, their loudness increased by 69%

for individuals in pairs and by 61% for individuals in six-person groups. The

identification of a contribution encouraged people to make a contribution.

When teammates work anonymously and their contributions are not

easily identified or recognized, individual contributions fall. Even in a self-

organizing team, the efforts and contributions of individuals should be

appreciated and evaluated.

7.2.2 Collective Code Ownership

Teammembers can do less than their share of the work yet still share equally

in the team�s rewards.Whenpeople�s contributions are combined into a single

workproduct and it is difficult tomeasure individual contributions, somewill

try to �free-ride.�And themore free riders there are perceived to be, the more

other teammemberswill hold back, for fear of being �suckers� (Forsyth, 2003).
They will only get the average team reward, so why should they make more

than the average team effort? If we were writing �the 10 laws of teamwork,�
law 1 would have to be:

Workers in a team-rewarded teamwill eventually try tomatch their efforts

to the average of what they think their workmates are doing.

It is important to be able to identify contributions to collaborative work.

Therefore, collective code ownership, in which any programmers can make

any change to any part of the source code at any time, should not be

anonymous. We should be able to identify who has fixed bugs and updated

the system. If this is difficult in small software teams, have a day-endmeeting

to let team members claim credit for their work.

210 AGILE TEAMING

It is somewhat difficult to quantify individual contributions in pair

programming as two programmers sit side-by-side and collaborate on the

same task. Williams and Kessler 2000 suggested peer appraisal to provide a

clearer idea ofwhom to reward. This canprovide valuable feedback, although

peer appraisal doesn�t always work well (Peiperl 2006).

Another straightforward way to quantify individual contributions is to

measure the pair�s effort by achievement. For example, A and B pair up and

spend a morning finishing nine function points, while C and D complete

another eight function points. Then in the afternoon, the pairs rotate and

exchangepartners. This timeAandCfinish seven functionpointswhile B and

D finish six points. Each function point will be different but in the long run

such variances should be averaged out. A simple calculationwillmeasure the

individual�s contributions:

A : 9þ7 ¼ 16
B : 9þ6 ¼ 15
C : 8þ7 ¼ 15
D : 8þ6 ¼ 14

If these ratios remain consistent, we may conclude that D is a free rider or

simply that the programmers have different abilities. Thismeasure, albeit less

subjective, can just be one part of a diagnosis.

7.2.3 Accountability, Responsibility, and Transparency

The difference between responsibility and accountability is not that clear. For

example, a programwaswritten by Colleen. Its testingwas assigned to Jason,

so he had the responsibility. Jason tested the system and picked up all the

software bugs for Colleen to fix. Later on, when a customer called about a

hidden bug that had caused data loss, the boss may wrongly blame Jason for

doing nothing. This is an accountability issue.

Accountability is about holding people responsible for their actions. We

always need to improve accountability for results as in Jason�s case. In

software development, it is not enough to fully take responsibility for our

work tasks. Accountability is a connection between the responsible party and

a given outcome.

To deal with this situation, we have to consider another element,

transparency. This helps us understand what others are doing and vice

versa. We should communicate obligations and expected behavior in a

team even in collective tasks. Let the team know how their efforts are

recognized on one hand and what is known about social loafing on the

other hand.

PRODUCTIVITY 211

It is important to be proactive in identifying and preventing teaming

problems. Accountability, responsibility and transparency provide the foun-

dations to make teams more productive.

7.3 PROBLEMS AND PROBLEM OWNERS

As early as 1998, and before the �agile manifesto,� Metes et al. had already

talked about agile teams. They are virtual teams that are trained to quickly

adapt themselves and their processes to change. Metes�s agile teams can also

be quickly formed and just as quickly disbanded when an initiative ends. In

addition, the team members collaborate in a distributed manner. Metes�
definition described it as teaming on demand (Metes et al. 1996).

Software teams that adopt agile practices and thereby embrace changes

are closed to Metes� definition, except that they may not be virtual at all. The

teams can be collocated and face-to-face in the workplace.

Here agile teaming is a little bit different. Agile teaming is a practice that

restructures a software team so as to maximize team performance or to

respond to serious project issues. While the project is ongoing, many things

can happen. There is no reason to think that the original team structure is

always suitable for solving every problem throughout a project�s lifecycle.
As agile teaming is considered to be a software practice, we may say that

any group that adopts agile software practices is an agile team. But this is not

to say that an agile team adopts the practice of agile teaming.

It is difficult to generalize about the root causes of many problems in

software projects. What appear to be causes of one problem may simply be the

symptoms of another. However, it is relatively easy to group an event or a

problem by type rather than to identify its cause. In this way, we can identify a

problemby its typeandashaving twodimensions: aprocess areadimensionand

a functional module dimension. For example, a problem such as a user dis-

agreementwithnewreport formatsmaycorrespond to three functionalmodules

but will correspond to only one process area: report writing development.

The process area and the functional module can link up with two types of

team structure. A team can be established according to the functional model as

showninFigure7.13.Thedrawback is themainsourceof taskconflicts.Ateamcan

also be structured with process areas. Many software development teams are

formed in thisway; this team isusually composedof threeormore subteams, each

of which is responsible for business requirements, development, and testing.

A two-dimensional matrix of process area and functional module can be

formed. Problem types can be identified in the matrix. For example, problem

A, as shown in Figure 7.13, involves both user acceptance test and report

development; problem B involves three functional modules.

212 AGILE TEAMING

When project problems are oriented to more functional modules than

process areas, the team structure should be organized by process areas so that

each problemwill be managed by one subteam. For example, in problem B in

Figure 7.13, a team structure by functional module says nothing about which

subteam is responsible for dealing with problem B. However, when a team

structure is formed by process area, problem B belongs to the subteam of the

user acceptance test. The team and its subteams can concentrate on their

commitment to accountability, responsibility, and transparency in the way

the team manages and operates software projects.

For instance, consider the scenarios unfolding in Figure 7.14. The

message here is to avoid �nobody�s business� and �everybody�s business�;
and make sure that each project issue has just one owner.

7.3.1 Rhythm: Trouble–Restructuring

When a software project ismaking slow progress, sometimes even halting for

a while, and finally slipping behind schedule, that project is in deep trouble.

This trouble often comeswith reworking something, as shown in Figure 7.15;

the team has lost its development rhythm.

Arrhythmic software projects have problems concerning either no own-

ers or too many owners. Agile teaming deals with this by restructuring the

teams so that they match the problem sets (see Figure 7.16).

There are limits on how often we can use agile teaming. For those teams

that are sizable and have beenwell-structured,wemay be restructuring them

only once or twice. In this case, agile teaming is not considered as easy to

sustain.

A
B

Functional Module
Module 3Module 2Module 1

Process

Area 1

Process

Area 2

Process

Area 3

Process

Area 4

FIGURE 7.13 A matrix of process area and functional module.

PROBLEMS AND PROBLEM OWNERS 213

Although agile teaming can be used to resolve serious problems, as in

troubled–late software projects, some project leaders commonly use agile

teaming to maximize team productivity and to facilitate job rotation in an

iterative development method, tuning their team structure in review meet-

ings between two iterations. As we can see, for a self-organizing team it is

possible to change team structure to react to problems encountered previ-

ously in the review (see Figure 7.3). In this case, the practice is easy to start and

easy to sustain in the in–out diagram (see Figure 7.17).

FIGURE 7.14 Problem ownership.

FIGURE 7.15 �Trouble� rhythm.

214 AGILE TEAMING

Kent Beck said that we should keep a team workload constant

but gradually reduce the team size until there is no more wasted effort

(Beck andAndres 2005).What Beck advisedwas actually about agile teaming

adopted for a self-organizing team, to enable it to reach an optimum structure

and size that can lead to a highly productive team.

We know when to beat out the rhythm; but our next question is how to

beat the rhythm: agile teaming.

7.3.2 Teaming Principles

Agile teaming involves changing team structures in troubled projects, is not

without costs, and is best reserved for serious problems. The following are

some principles for executing agile teaming.

The importance of root cause analysis has been addressed in agile software

developmentmanagement (BeckandAndres 2005), but learning fromsoftware

projects is just as challengingasmanaging them.Projectproblemscanberooted

in a different combination of factors, such as programming issues, domain

knowledge, and human factors. Causes that are multifactorial and difficult to

define are not going to produce problems that are easy to fix.

Overcoming the temptation to think in terms of cause and effect is very

difficult for software managers who combine technical skills with an under-

standing of the organization across all functions from problem solving to

FIGURE 7.16 Agile teaming rhythm.

FIGURE 7.17 Agile teaming for self-organizing teams.

PROBLEMS AND PROBLEM OWNERS 215

strategies. Instead of doing a lot of analyses, taking some exploratory action

such as agile teaming is suggested.

Principle 1: Exploratory action over heavy analysis.

Project managers seldom know much about technical implications.

Drawing incorrect conclusions about problems in IT projects can be danger-

ous. Executiveswho have stronger programming backgrounds tend to prefer

determining causality in a troubled software project and then immediately

taking remedial actions to rescue the project.

Rescue practice (1): In a troubled software project, executives should

concentrate on the process areas and functional modules where the

(technical/non-technical) problems show up rather than onwhere the

problems actually come from.

Many people focus on stepwise solutions. But we should find the right

problem owners for problems. Many software projects in the commercial

sector involve users over more than one department (e.g., writing ERP

applications) and/or sometimes over several organizations (i.e., supply chain

management). Thus, we have another principle behind agile teaming.

Principle 2: Problem owners over problems.

Many companies are in trouble with their supply chain systems. Most

difficulties stem from an uncoordinated and fragmented allocation of re-

sponsibility of the various supply chain activities over a number of functional

areas. But we often overlook a simple problem when in trouble. This is

because no one in the company is responsible for solving each supply chain

problem (Taylor 2002).

Similarly, we should ascertain who owns a problem rather than what the

problem could be. It makes sense that the project structure has gone wrong

when many project issues have no owner or more than one owner. It is

therefore important to fix the project structure in order to rescue a troubled

software project.

Rescue Practice (2): In a troubled software project, if there is no owner or

more than one owner, restructure the team so that for each problem

there is always one owner of each problem.

Management that ignores the complexity of software projects may

replace the project manager. They then need to be sure to put the right

216 AGILE TEAMING

person in charge because removing team leaders andmembers late in the life

of a project can be counterproductive as it means losing valuable experience.

Principle 3: Change people responsibilities as needed over their titles

responsibilities as planned.

Rather than asking a team leader to leave a software project,management

should continuously motivate the project manager but, meanwhile, narrow

that person�s responsibilities to a few particular areas.

Rescue Practice (3): In a troubled software project, senior management

should narrow down the responsibilities of the driving staff (e.g.,

project managers) so that they could focus on only one or two process

areas (or functional modules).

Management should assign a person of a senior rank to take over the

functional title of the project manager. The superior will be the project owner

(e.g., senior management). This resolves or relieves existing conflicts.

Principle 4: Collaboration over organization hierarchy.

To deal with a troubled project, it is advisable formanagement to sit in on

all regular meetings. This has three major benefits: (1) rebuilding team spirit,

(2) resolving any politics among team members, and (3) improving team

effectiveness by providing positional diversity.

Rescue Practice (4): In a troubled software project, management should

assign a person of a higher rank than the project manager to take the

chairperson role for each project meeting.

These principles conform to those of the agile manifesto. This is no

accident. Agile thinking provides a way to solve problems that are uncertain

and changing. Table 7.1 juxtaposes each principle with its related expression

in the agile manifesto.

7.4 FAILING PROJECTS RESCUED

High failure rates have long been associated with software projects (Ewusi-

Mensha 1997), even though there are a number of postmortem studies on

abandoned software projects, key lessons learned from the successful soft-

ware projects, classifications of troubled projects, and advice on how to avoid

project failures by using risk management. However, these are of little help

FAILING PROJECTS RESCUED 217

for dealing with failing or troubled late projects because we not only have to

take corrective actions but must also respond in a timely manner to many

project-related problems that we do not really knowmuch about or how they

were developed. In fact, once the cause of a problem is understood, half the

battle is won, and solutions will be found.

In 2006, we were giving a presentation on rescuing software projects in

Finland. In the question/answer (Q/A) session, one audience member

suggested investing in project management tools, techniques, and training,

in the areas of teaming and risk control, saying that these would produce

substantial benefits in dealing with runaway projects. One woman in the

audience was very keen to share her experience on this and spoke up, saying,

�I have done lots of things, including risk management and project manage-

ment, tomonitor and controlmyprojects, but there are timeswhere things can

still go unexpectedly wrong. I don�t know why.�
This is true. Sometimes we just don�t know why things won�t go accord-

ing to plan. These situations call for corrective action, which can be very

different from either preventive or detective action. All three of these are part

of a rhythmic problem management cycle: detection–correction–prevention.

Whenwearedealingwith troubled late ITprojects, bear inmind the following;

. Don�t play Sherlock Holmes. The famous sleuth had a prodigious eye for

detail and never missed a clue. But saving a failing project is a race

against the clock. You don�t have time for the unlikely and the obscure.

. Don�t believe everything project members tell you. Project members may

speak out of self-interest, rather than with the goal of identifying real

problems.

. Bad news always comes late. People are reluctant to report bad news in a

runaway software project.

. Project data may not be correct. Since software is intangible, measure-

ments for building software may not be used as reliable tools in

assessing the real status of a software project.

TABLE 7.1 Principle for Agile Teaming Related to the Agile Manifesto

Principle for Agile Teaming Agile Manifesto

1 Exploratory action over heavy analysis Work product over
document

2 Problem owners over problems People over process
3 Change people responsibilities when needed over

their position responsibilities as planned
Change over planned

4 Collaboration over organisation hierarchy Collaboration over contract

218 AGILE TEAMING

. No one wants to be fired. When the problem is a conflict of interest

between two parties, the situation can create political infighting. Every

one is afraid of bearing all the responsibilities at the end.

Teaming helps us act quickly. What is important is not what caused a

problem but who owns it.

7.4.1 Project Traffic Light Reporting

Managers may typically use any of a number of approaches to identify a

troubled project. One simple and useful project status reporting technique is

�traffic light reporting,�where status is reported as �green,� �yellow,�or �red,�
according towhether theproject hasmet three basic project objectives of being

within budget, on schedule, and achieving function/performance ratios as

planned (Snow and Keil 2001).

Traffic light reporting has been used to rate business partners for many

Y2K readiness tracks. It provides a simple and intuitive way of communicat-

ing project status. However, what constitutes a green, yellow, or red state can

be variously defined in different organizations.

For any project, a review meeting will be held on a regular basis and a

project manager will report on the status of the assessment of the above-

mentioned three project objectives:

A green light means that all three objectives have been substantially met

to date. The project is on track.

A yellow light means that two of the three basic project objectives have

been substantially met to date; management involvement or resources

may be required to handle the problems before the next review.

A red light means that only one objective has been substantially met to

date. Senior management involvement is needed to deal with the

project problems. Projects that get a red light are defined as failing

projects rather than as �simply late projects.� A red light project may

eventually be abandoned, or it could be partially complete.

Traffic light reporting is intuitive for senior management. However, it is

notwithoutproblems. Suppose that everynewproject startswith a green light.

If thereisa longgapbetweenmeetings, it ispossibleforthetraffic lighttochange

from green to red without passing through yellow. Therefore, we have to

carefully define the satisfaction of objectives in percentage terms to avoid a

sudden leap from safety to danger without getting yellow warning signs.

Now let us look at a real case rescued by agile teaming.

FAILING PROJECTS RESCUED 219

7.4.2 A Business Case

Jespersen was the managing director of KuDrink*, an international beverage

company with a presence in more than 100 countries. His backgroundwas in

law and he had taken part in many mergers and acquisitions in Laos,

Thailand, and China. He knew little about IT, but he knew that KuDrink�s
current IT project was in deep trouble.

In the beer industry, the use of �customer fund/outlet promotions� and
�free beer/discounts� constituted nearly 40% of the total annual costs,

implying that there should be a proper control over how these resources

were allocated, in particular to high-repeat customers.

The legacy application on IBM A/S400 in KuDrink could not provide

ananalysis ofpast performance (e.g., profitability of operational transactions of

customers), which would provide a rational support for decisionmaking and

would serve as a baseline for judgment, so the KuDrink senior

management established a project goal that used a new application that could

handle rebates, customer sales contracts, logistic costs, promoter bonus, and

other requirements. This application would produce a profit-and-loss state-

ment for each customer. This would allow KuDrink to better allocate its

resources and determine the right level of service, pricing, and distribution.

7.4.3 Steering Committee Meeting

The project was running okay and was reported as green and yellow.

Jespersen did not attend any meeting until the traffic light turned red. The

original plan shown in Figure 7.18 (where the asterisks * denote time needed

to revise a project plan) indicated that the project should have been completed

FIGURE 7.18 Project schedule.

*KuDrink is not the company’s real name.

220 AGILE TEAMING

in 7months, fromSeptember 2001 toMarch 2002. The systemwas to go live on

April 1, 2002. The project schedulewas revised several times: in January, early

March, late March and May 2002.

The reported reason for extending the length of the project was that users

couldnot complete their assigned tasks on schedule, yet the users complained

about their heavy workload in producing lengthy documents and drawing

flow diagrams, and had also encountered unknown technical problems

during testing. Often the users reported that previous cases tested okay but

the same cases failed after the consultants fixed other problems. They felt

frustrated and lost confidence in the system.

The company�s finance director accused project managers of making

confusing and misleading comments relating to the potential issues of

�overexpectation of finance functionality and overused accruals.�
However, what stunned Jespersen was the idea of �project management

by democracy.� The project manager reported that she had asked all project

members to vote for the date of the system going live. She told everyone in the

team:

Before we move forward, I would like to have opinion polls. My role is to

set up the achievable goal for the project team; therefore, youmust agree on

it. Our consensus is crucial.Myphilosophy is thatwe are our own enemies.

Many of us have lost faith in this project and we are losing our team spirit.

Quality must not be sacrificed for productivity. I will not give up quality.

However, you can make your own choice. Please select one of the go-live

dates and send it to me by email.

Here are their date candidates:

1. August 1, 2002

2. September 1, 2002

3. October 1, 2002

4. I cannot say, as it is unforeseen at this moment

Jespersen thought that this sounded more like a spiritual speech than

project management. And it seemed to be just a technique to galvanize senior

management into accepting the difficulties. Evidence and data were pre-

sented, but how could Jespersen make a ruling? Defendants and prosecutors

had their reasons. Jespersen only knew that he was not a judge to decide on

these issues. Nevertheless, none of the so-called reasons would be good

enough for the board of directors.

FAILING PROJECTS RESCUED 221

7.4.4 Agile Teaming in Action

Jespersen applied a sort of development rhythm of agile teaming. He

thought of problems and problem owners and decided to put this thought

into action. He knew nothing about IT and hence did not bother to try to

understand the causes of the problems. What he looked at was not remedial

actions but the connection between the team structure and problem domains.

On June 1, 2002, Jespersen announced a restructure of the project team

from functionalmodules to process areas. The financedirectorwas appointed

to assume all the responsibilities of user acceptance testing. The project

manager would be responsible only for data migration, but she still held the

title of projectmanager. OneMIS guywould be in charge of all other technical

problems.

Surely, before the announcement, Jespersen already talked to those

key project members about his concept of team flexibility and personal

adaptability. He further explained that the project methodology was

inflexible to cope with unexpected challenges, and hence the project

team had to be restructured to overcome such inflexibility. Moreover, he

praised the hardworking project manager and asked her to support his

decision.

These three team leaders reported directly to the general manager. With

this structure, the team leaders managed their resources with the direct

support of the top management. A weekly meeting chaired by the general

manager was held as usual to report and monitor the progress of the

project.

Amonth later, Jespersen and the general manager further restructure the

team by splitting the technical area into two. Amore experienced personwas

fully responsible for the report writing, and the MIS programmer was

responsible just for technical server problems. Now four team leaders re-

ported to the general manager in the weekly meeting.

Agile teaming was adopted in this case to match the team structure with

the problem areas. The system with the original planned functionality went

live on September 1, 2002. After a month, the legacy system A/S400 stopped

production.

7.5 BEWARE OF IAGO

We would like to end this chapter by another real case to illustrate

that some software project failures are not because of development

rhythms, team structure, management support, software complexity,

222 AGILE TEAMING

risk management, or rapid changing requirements, but just one kind

of person. We call him or her �Iago.� Unfortunately, we have no

hints as to how you can tell whether Iago has joined your software

team.

On December 1, 2004, Brian, a senior IT manager with 10 years working

experience, joined a well-established pharmaceutical company in Asia. After

6months, he and his subordinate, Dennis, were dismissed from their posts as

IT managers and an analyst programmer, Yvonne, was promoted to system

analyst.

Yvonne was around 30, was sociable, and got along with the other seven

colleagues except her supervisor, Dennis, who was in his late 30s. Other staff

thought Dennis was not really qualified to be the IT manager because they

knewmore new technical stuff than he did. But, they did not conspire against

him.

On the first day, Brian could smell some problemswith the team that was

made up of analyst programmers. There was no system analyst levels

between the IT manager and the programmers. As Brian was new, Yvonne

came to him and they talked about jobs and the company�s culture. Yvonne
did notmention that she did not get onwell withDennis. On the contrary, she

said Dennis was a nice guy.

The bomb started with a meeting in which company directors got

together to discuss project difficulties. Two analyst programmers absented

themselves from the meeting. This situation immediately embarrassed the

two IT managers. The human-relations (HR) manager was instructed to

interview every member in the department.

Yvonne managed to convince other colleagues to speak ill of both

Dennis and Brian because Dennis had given a list of names to Brian as part

of a plan to replace some staff in the department. They all complained about

the two ITmanagerswhenHR interviewed them.Meanwhile, Yvonne almost

won a chance to be promoted to project manager instead of system analyst.

One programmerwho realized that hewas being used for her promotion said

to Brian after he left the company: �Yvonne was manipulating the whole

game.�
Not all project team members positively contribute to a project or help

make it a success. At the worst, someone like Yvonne acts as an Iago in a

project, winning the friendship of a manager and offering advice but with

only his or her own interests in mind or perhaps even out of some animosity.

An Iago in a project is sly and acts like a friend but is not. In the end,we should

remember that not all project problems are to be found in the programming

code or the team structure.

BEWARE OF IAGO 223

O, beware, my lord of jealousy; It is the green-eyed monster which doth

mock The meat it feeds on.2

—OTHELLO, ACT III, SCENE III

REFERENCES

Baker FT. Chief programmer team management of production programming. IBM

Systems Journal 1972; 11 (No. 1):56–73.

Beck K and Andres C. Extreme Programming Explained. 2nd ed. Boston: Addison-

Wesley; 2005.

Eppler M. Management Mess-ups. Franklin Lakes, NJ: Career Press, 1997.

Ewusi-Mensha K. Software Development Failures: Anatomy of Abandoned Projects.

Cambridge, MA: MIT Press; 2003.

Forsyth DR. Group Dynamics. 4th ed. Belmont, CA: Thomson/Wadsworth; 2006.

GiddensA,DuneierM, andAppelbaumR. Introduction to Sociology. 2nd ed.NewYork:

Norton; 1996.

Metes G, Gundry J, and Brahish P.Agile Networking: Competing through the Internet and

Intranets. Upper Saddle River, NJ: Prentice-Hall PTR; 1998.

ParradoN andRause V. Miracle in the Andes: 72 Days on theMountain andMy Long Trek

Home. New York: Crown; 2006.

Peiperl M. Getting 360-degree feedback right. Harvard Business Review 2001; 79
(No. 1):177.

SchwaberK andBeedleM.Agile Software Development with Scrum. Upper Saddle River,

NJ: Prentice-Hall; 2002.

Sonnentag S. High performance and meeting participation: An observational study

in software design teams. Group Dynamics: Theory, Research and Practice 2001; 5
(No. 1):3–18.

Snow AP and Keil M. The challenge of accurate software project status reporting: A

two-stage model incorporating status errors. IEEE Transactions on Engineering

Management 2002; 49 (No. 4):491–504.

Taylor D. Supply Chains: A Manager�s Guide. Reading MA: Addison-Wesley; 2003.

Tuckman BW. Developmental sequence in small groups. Psychological Bulletin 1965;

63:384–399.

Williams LA, Kessler RR, Cunningham W, and Jeffries R. Strengthening the case for

pair programming. IEEE Software 2000; 17 (No. 4), 19–25.

WilliamsL andKessler R.Pair Programming Illuminated. Boston:Addison-Wesley; 2003.

Welch J and Welch S. Winning. New York: HarperBusiness; 2005.

Yeh YJ and Chou HW. Team composition and learning behaviors in cross functional

teams. Social Behavior and Personality 2005; 33 (No. 3):391–402

2 This was the villain Iago�s persuasive warning to Shakespeare�s Othello against the
very jealousy, but it was just a means to hide Iago�s real intentions.

224 AGILE TEAMING

8
INCREMENTAL DESIGN

Programmers don�t design software; they make the computer work

for users.

In the early 1990s, many commercial PC applications such as accounting

packages andpoint-of-sales (POS) systemswerewritten inClipper or FoxPro.

They are standalone applications with facilities for data exchange. For

example, in the POS system, sales data were exported into a file, which

would be transferred from stores to the office over phone lines. The reverse

flowwould be used to update price and product files from the office to stores.

Data exchange was not automated, so end users had to complete their day-

end operations to initiate data transfers. In practice, some end usersmay have

forgotten to do so, and the price and product masters on the POS became

outdated. The business operations could be in a mess. To secure our job, we

had no choice but to say that even a well-designed system needs user

cooperation.

Before long, the advance in Transmission Control Protocol/Internet

Protocol (TCP/IP) networking lowered the costs of data communications

and made system data transfer simpler. This led many management infor-

mation system (MIS) heads to think about how their information systems

could facilitate workflow collaboration, information sharing and real-time

availability. Software was modifiable. Now the only question would be how

much they had to pay tomodify their existing systems that enabledmultiuser

operations over a network. Their bottom line would be to pay nearly 50%

more than the original investment. Then, MIS guys picked up phones and

asked their vendor the amount. Straightforwardly, the vendor said, �I am

225

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright � 2008 John Wiley & Sons, Inc.

afraid that it is nothing aboutmoney.Wewill have to redevelop the system for

you!�
Itwas a bit hard to imaginewhy the vendor had to rebuild the system, just

because the system was not designed flexibly from the beginning! Some of

customers may have expressed disapproval of rebuilding as there should be

virtually no limitation to software modifications. But the vendor said that

�programmingmultiuser systems technically involvesdata locking, deadlock

handling, timeout to release resources, and user authorization.� Thus, we

have to change almost every part of the existing code related to data

manipulations. Besides, success in redesigning the system also very much

depends on the tool that we used to build it. If Clipper supported modular-

izing of crosscutting concerns as aspect-oriented programming suggests, it

would be easily to modify the system for the multiuser authority. In fact,

Clipper was dying rather than evolving.

Finally, concerning the application, the user interface should display

information differently depending on the role of the users. Many people just

did not quickly see that �multiuser� actuallymeans that a systemhas different

authorization levels or roles to retrieve and update records. MIS managers

need to review their existing user requirements from A to Z.

It became clear that the interplay between programming issues, technol-

ogy availability (or constraints), and changes of user requirements dominates

our success in redesigning an existing systemor developing a new system. To

meet the challenge of changing requirements, we should build software in

such a way that we are able to shorten the time our users take to go from

imagining what they want to understanding what they need by seeing a

prototype product.

8.1 MODELING AND PLANNING

Many software architects havegiven anumber of slightlydifferent definitions

of software design. For software teams, software design means two things:

modeling and planning. Software design can be described as the general

arrangement of the different parts of software logic ––what and how itwill be

implemented and tested. Basically, we cannot complete our design tasks

without understanding the requirements. For example, in database applica-

tions, user requirements affect what and how we define the data model,

business mapping, screen layouts, and systemwide procedure calls.

Software design is also a process of deciding when different parts of the

system should be built. We can carefully plan our activities in order to

optimize our resource allocation in the whole project cycle. As mentioned

226 INCREMENTAL DESIGN

in Chapter 1,modeling andplanning in developing software are not as tightly

connected as in building engineering products.

Now let us look at incremental design. As its name implies, this means to

design and develop software in a highly evolutionary manner. Incremental

design ties inwith the first semantics of software design (i.e., modeling) aswe

can always build new components, add on some features, modify old

components, or integrate them with others. However, incremental design

by nature should be highly iterative. It does not seem to follow traditional

project planning, in which, as best as we can, activities have been prioritized

far in advance so that resources will be optimally allocated.

8.1.1 Agile Planning

Traditional software project management tells us that we should try our best

to understand task dependences and estimate time. In addition, we should be

cautious about allocating resources: who will be responsible for a particular

task. All these elements would be reflected into a project plan. Furthermore,

we could calculate the critical path amongall the tasks thatmust be completed

on schedule (see Section 5.2.6 on CPM).

When user requirements can be continuously collected for implementa-

tion, it may not be possible to develop a full plan for construction at one

particular stage as we did in the waterfall model. Moreover, in traditional

project management scheduling, the duration of each task is more complete

and less split over different time periods. Tasks are longer (days to weeks, but

not hours to days) and are less frequently repeated.When adopting incremen-

tal design, the tasks becomemuch shorter andhighly repetitive (see Figure 8.1).

Irrespective of theprogramming implementation, the amount of business

functionality is defined and then measured in a unit of logical user function,

which can be referred to as function points. When user requirements can be

divided into a number of blocks, each of which has few enough function

points that it can be done in a few days, we may easily prioritize these blocks

and incrementally build them.

More precisely, in agile software development, we briefly record user

requirements in a stack of cards (called �story cards� in eXtreme program-

ming or �product backlogs� in scrum) so that customers can prioritize the

story cards by moving them around and programmers can incrementally

build the system according to the order of the story cards (see Figure 8.2).

In order to estimate the programming effort required to build each story

card, we use an index scale ranging from 1 representing minimum effort to 5

representing maximum effort. The software team will pick up some story

cards to develop, andwe can calculate the team�s velocity by the elapsed time

MODELING AND PLANNING 227

over the sum of the indices as follows:

Velocity ¼ elapsed time
sum of indices

Think of software development as a journey and each story card as a road

segment. Then the index will be a measurement of the segment. To monitor

the team�s progress along the journey,we have to knowhowquickly the team

drives forward. Figure 8.3 illustrates this idea––the total development time is

the sum of the indices of each story card over the team velocity.

FIGURE 8.1 Traditional project planning versus incremental design.

A

B

C

D

A

B

C

D

1

3

4

4

C

A

B

D

Customers write
user stories

Programmers
estimate efforts
(1 – 5)

Customers
decide priority

(1)

(2)

(3)

(4)

FIGURE 8.2 Planning as part of software design.

228 INCREMENTAL DESIGN

The team certainly has different development speeds. Thus, we may

prefer to set our iteration as a fixed short interval, say, a week. Our project

progress can then be easily tracked. At any moment, our customer may

change or add new features to the project and therefore the stack of outstand-

ing story cards does not always shrink. In addition, we may reestimate our

index for some story cards. As far as we can track the change in velocity, we

should be confident in managing the project and can predict more accurately

when we are likely to complete the project on the basis of our team velocity.

This management methodology, called agile project planning, is suitable for

incremental design (see Figure 8.4)

Incremental design, however, differs from what we know as tradi-

tional software development by module although both involve building a

system by dividing a whole system into smaller ones.

8.1.2 Design by Functional Modules

In the 1990s, enterprise resources planning (ERP)was introduced to integrate

all core business functions into a single database so as to streamline the

FIGURE 8.3 Software development journey.

Number of outstanding
story cards

Iteration

Velocity

FIGURE 8.4 Agile project progress.

MODELING AND PLANNING 229

workflow across each different department within the enterprise. For such a

fully integrated system, it seems logical to design a database model covering

all necessary functions at the beginning. In fact, many early versions of the

ERP package had just a few complete modules that most companies could

implement for their business needs. Take MFG/PRO (an ERP package) as an

example. The early version included manufacturing resources planning,

rough-cut capacity planning, and other modules but, it did not support sales

quotation or customer relations management. Another example is Exact�s
ERP. The systemhad strong features in accounting and e-commerce. But until

2005, the Exact�s ERP package had only enough functionality to support

midsized manufacturing operations.

No doubt, software can always be divided into a number of modules. A

module-by-module approach is characterized by the construction of the

software in modules, and normally concentrates on the implementation of

a few related functions across modules at any one time. This approach

however is not considered as incremental design here, for the software

requirements are logically broken down into a few modules that are then

built by a chain of complete development cycles instead of a number of story

cards that are small enough to be done in a slot of a few days (see Figure 8.5).

In reality, we may adopt a hybrid approach by dividing the system into

modules. We take a top–down strategy to estimate the effort and resources

required to build each module. Each is then built incrementally. The team

velocity can be used to adjust our early estimate of the effort required to

develop themodule. This is a bottom–upapproach. Thenewestimationbased

on velocity can be used to monitor our overall project plan.

Divide according
to its feature

Divide but each
piece must be
smaller than this
square

FIGURE 8.5 Divide by module or divide by slot.

230 INCREMENTAL DESIGN

So far, we have seen how incremental design is related to the software

modeling and project planning. In the following, we will discuss two impor-

tant concepts in software design: simple design and total cost concept.

8.1.3 Simple Design

In general, eXtreme programming encourages doing the simplest thing that

could possibly work and discourages building features not requested by

customers; in a word: �Just in need.� Building things for future use is unwise.

We do not know exactly what features will deliver business value to our

customers. To ensure that our design can cope with unpredictable future

requirements, we should make things simple.

Simple design is also where art and engineering come from. In software

development, the quality of being simple cannot be measured just by lines of

code or the number of classes or other variables. Although small is beautiful,

modeling our relationships among objects is the beauty of contemporary

software design. Let�s consider an example. Figure 8.6 illustrates a simple

design competition in which you need to find the simplest design for a story

card saying that the general manager assigns a quota of customers to each

account manager. Are you ready to win? In other words, software design is

FIGURE 8.6 Labyrinthine Pattern of software design.

MODELING AND PLANNING 231

like amazeor labyrinth; it is easy to lose one�sway. For example,whichdesign

shown in Figure 8.6 is leanest and simplest?

If we consider only that story card alone, we don�t need the employee

class and/or the people class. Therefore,wewill just go for �C.� Inpractice,we

areworking onmany story cards, instead of one. They are always intertwined

and interrelated; we may not easily tell which design is simplest.

In anycase,we shouldnot implement any function that is not yet requested.

However, we should have a thinking-forward mindset for design. From an

incremental design perspective, the purpose of simple design is to make sure

that any late functions added do not force a substantial redesign of the system.

8.1.4 Total Cost Concept

To many of us who work in the commercial world, the purpose of software

applications is to virtually simulate behaviors or processes or to model

business systems. Unfortunately, business processes can be partially ill-

defined while programming logic allows no fuzziness. Worse yet, ill-defined

things often represent a gray area for which users have their own inter-

pretations.

Therefore, from the viewpoint of programmers, user requirements be-

come ambiguous, inconsistent, and incomplete. However, the user often fails

to understandwhyprogrammers or programming cannot copewith business

operations that they can manually carry out without advanced computer

technology. This means that we need a platform on which the user and the

programmer can easily communicate.

When building a system,we should start with something less ambiguous

that we can explore further with our users. We need to talk to them often

throughout the development cycle instead of just at the user requirement

phase. The best strategy is to have the users involved in the software design!

Therefore, invite the users to review your design. But to do this, we have to

illustrate our design in a visual presentation that the user can understand.

To bridge the perception gap of system requirements between users and

programmers, we need pictures that can represent thousands of program-

ming commands. These pictures show us how real-world events are mapped

to software functionality (see Figure 8.7). Such visual software design docu-

ments complex business processes. It also assists us in continuous and ever

more detailed modeling of the target system. As we see in Figure 8.7, both

customers and programmers can communicate with each other through a

diagram that shows relationships among different events.

OMG, a nonprofit computer industry consortium, has already set up

a standard for drawing diagrams in software engineering, the universal

232 INCREMENTAL DESIGN

modeling language (UML), a visual tool for user specifications, documenta-

tion, and software construction.

Wemaydesign ourprogramsusingdiagrams, code, or both. Even though

we practice design by code, we can still quickly write UML diagrams to

communicate with our teammates and customers. As for incremental design,

completing everyUMLdiagrambefore coding is not necessary.Whatwemay

suggest are �code� to build software and �UML� to communicatewith people.

Whenwe are stuckwith code, it may be time to stop and draw a diagram that

clarifies our understanding and ask others to review it.

�Visual software design� (i.e., design by diagram) or �design by code�
involves two kinds of cost. Software practitioners are seldom alert to the total

cost concept. Since reducing costs and waste in one area could drive up costs

andwaste inother areas,wehave tobe awareof total costs, not onlyoneor two

cost drivers.

On one hand, if programmers merely do design by code in which the

programming activities include code and user interface, the cost of non-

coding related work is low because the source code can be compiled for the

end product but communication costs go up because the source code can be

easily understood only by other programmers, needless to say not by

customers. Using communication or explanation only through conversations

or short descriptive texts (e.g., email dialogs and story cards) may not be

enough.1 Our customers may misunderstand us. Customers are just like us.

Web Interface
Database
Wrapper

Sales
Information

Product Costs
Information

Users

Request Profit
Information Get Profit

Load Sales

Return Sales Data

Load Costs

Return Costs Data

Return Profit DataDisplay Profit
Information

FIGURE 8.7 Customer–programmer communication.

1In eXtreme programming, real user involvement consists in coping with that
limitation.

MODELING AND PLANNING 233

They also need both time and visual tools (i.e., diagrams) to think about their

requirements.

On theother hand,drawinganydesigndiagram toallow ideas tobe shared

with others reduces communication costs but increases non-coding tasks costs

because the diagram cannot be automatically converted into computer instruc-

tions. Figure 8.8 illustrates the total cost concept, in which we should balance

our communication costs against the costs of non-coding tasks.

8.2 REWORK OR REUSE

Good design often evolves from bad designs. If we think so, thenwe have one

big problem haunting almost every programmer: rework! The ability to do

less reworking in getting a programdone is a great talent. Someprogrammers

codewith amazing speed. Somebuildprogramswith fewbugs. Some arewell

versed in language skills. Some can write code that can be easily understood

by others. However, if we were asked to seek gifted programmers, we would

judge them by the amount of rework on design.

There are many scenarios that result in �rework.� Some are quite preven-

tive. For example, rework that arises from miscommunications with users

about requirements could be avoidable. Many of us have a fairly negative

attitude to rework. However, in some situations it can be positive.

In order to examine and reconstitute an existing system into one that is

built frommore reusable components, we rework (or refactor) program code

(Mens and Tourwé 2004). We are eager to encapsulate the right features into

the right classes, associate the right inhabitant relationships between parent

Total costs

Non coding
task costs

Communication
costs

Code

activities

User interfaces

Code
User interfaces

C
os

ts

0

Design diagrams

Documents

Programming

FIGURE 8.8 Costs in software development.

234 INCREMENTAL DESIGN

and child classes, and so on so that our code can be truly reusable for other

systems as well. In this case, rework, maintainability, and reusability are

connected.

This seems to be telling us that we are not able to get things right at the

beginning. Obvious solutions today were not so obvious yesterday. Let us

have a look at some cases.

8.2.1 Unpreventable Rework

The BodyBuilder Gymnasium chain allows clients to work out on their own

program and training schedule. It has attracted many busy people. Its

customer base almost grew by 30% in one year to a total of 30,000 clients.

The gym owner was a very customer-oriented person who thought of many

special promotions to target the right people. He gave drink discounts

randomly daily for those customers who spent 3 hours in the gym and did

not buy a drink or snack. He gave no coupons to those who regularly bought

snacks. The wisdom of �torment your customers (they�ll love it)� seems

applicable here (HBR, 2002). Let those who got the discount feel lucky and

those who did not be envious!

In order to execute that special promotion, the gym needed a bidaily

(twicedaily) operation report from the computer systemshowing themwhich

customers spent 3 hours in the gym without buying a drink. The logic may

look like this:

if(staying>¼3hours and buying-drink¼¼noÞthen print

customer-name

The report, albeit easy, took hours to run and the users were not happy at

all. The problemwas that we did not consider the data distribution when the

report was being developed. We knew from the past that 90% of customers

spent 3 hours in the gym and that 20% of customers brought water with them

and so would not buy a drink at the gym. For performance purposes, we

should rewrite the code as follows:

if(buying-- drink ¼¼ no and staying>¼3 hoursÞ then print

customer--name

In this way, we can filter 80% of customers using the first condition,

thereby reducing workload in the second condition as shown in Figure 8.9.

This case demonstrates the necessity of reconstructing the program-

ming code to reflect the distribution of data. Certainly, there was little we

REWORK OR REUSE 235

could do before the system was implemented. Often, we have to denorma-

lize a database in order to meet the performance requirements. This is

usually done by adding summary tables and/or deliberately introducing

redundancy. When data volume grows exponentially, the code definitely

needs reexamining.Having highlymaintainable code is a strategy for future

success.

8.2.2 Improvisation

Romeo It is my lady.

Two of the fairest stars in all the heaven

do entreat her eyes

to twinkle in their sphere till they return.

Juliet Ay me!

Romeo She speaks. O speak again bright angel.

Juliet O Romeo, Romeo, wherefore art thou Romeo?What man art

thou that thus bescreened in night so stumblest on my counsel

Romeo By a name I know not how to tell thee who I am

Juliet Art thou not Romeo, and a Montague?

Romeo Neither, fair maid, if either thee dislike.

Juliet By whose direction found�st thou out this place.

Romeo By love. He lent me counsel, and I lent him eyes.

—ROMEO AND JULIET: ACT II, SCENE 2

Staying
3 hours

Buying_drink
== no

NO

NO

YES

YES

27,000
records

30,000 records

NO

NO

YES

YES

6,000
records

30,000 records

Staying
3 hours

Buying_drink
== no

FIGURE 8.9 Performance tuning.

236 INCREMENTAL DESIGN

Playwrights edit their work thousands of times. The modifications could

vary from trivial to substantial. Nomatter what changes have beenmade; the

theme, actor and actress should remain much the same.

Take a look at a counterexample of what would happen if the Bard felt

like swapping the role of Juliet and Romeo. Juliet was strolling inMontague�s
garden and heard Romeo sighing heavily on his balcony. The revision

would mean rereading and rethinking each word and sentence. Besides

issues of syntactic correctness fixing gender-specific pronouns (e.g., he and

she), there are changes for semantics, for example, the expression �bright
angel�2 could become �brave hero.� Obviously, play writing needs a plot

(i.e., a plan). The actors� roles were well thought out; there would not be any

role alteration. Thus, play rewriting needs a plan. The same goes for

program rewriting.

When programmers prefer an experience-driven approach to code and

software development has few planning activities, we call this improvisation.

In the working environment of a small software house, requirements may

even be written down in keywords. In addition, programmers may very

quickly deliver a small prototype, but the increase in the amount of rework

becomes obvious as the software complexity grows beyond a certain point.

Improvisation is different from incremental design, in which developers

practice simple design, small lot-size-like user requirements, and agile project

management to plan and to control their development. Improvised developers

may not even bother to ask their customers what they really need. Their

experience guides their minds. Improvisation might work well, depending on

thecomplexityofuser requirementsand theprogrammer�s individual talent and
experience. However, improvisation makes it difficult to team up with others.

Another problem with improvisation is that when customers ask for

any change, the improvising developers may be required to do a tremen-

dous amount of rework because their design has not been thoughtful or

their experience fails to predict what customers want now. In reality,

improvisation is extreme and only a few gifted programmers can write

by ear. In conclusion, improvisation is easy to start, but sooner or later

the team will encounter lots of stupid problems. It isn�t sustainable (see

Figure 8.10).

2Angels are not �female� or �male� in theology. Although early Renaissance artists
would prefer to cultivate this gender ambiguity commented by Dr. Frank Vigneron in
the Department of Fine Arts at the Chinese Hong Kong University, angels are often
depicted as female. Examples are The Virgin of the Rock by Da Vinci, The Virgin with
Angels by Bouguereau, and Lost and Found by van Gogh.

REWORK OR REUSE 237

8.2.3 Up-Front Design

The purpose of up-front design is to establish a process in which developers

work on the what, how, when, or even the why of constructing and

implementing a software system. As expected, a formal, well-organized

design process will guide the whole team as to what to do almost for the

rest of the project. From a management perspective, building things as

planned is good. Furthermore, programmers from a project team who have

more experience can contribute more in the areas of both user requirements

anddesign.Allocating the right people experience to the right tasks optimizes

a team�s performance.

Whatmakes up-front design different from incremental design is that we

deliver a plan that should be well-documented for software construction,

team collaboration, people communications, and task execution. The team is

committed to following the plan and the design accordingly. Doing anything

outside the plan could have uncertain negative impacts on the whole devel-

opment and on the team.Wewould ruin the previous effort that was put into

developing the plan and damage the team commitment and collaboration.

The team may need to rework previous tasks. However, when the user

requirements are stable, up-front design is easy to start and easy to sustain

(see Figure 8.11).

Separating design and construction as two big phases is less workable

when user requirements are changing. In this case, a software team needs

constant feedback. Design guides us how to code, and the program being

coded provides uswith feedback to a better design. The values of incremental

design seem to have nothing to do with design from a technical perspective

Improvisation

Easy-to-
sustain

Difficult-
to-

sustain

Easy-to-
start

Difficult-
to-start

FIGURE 8.10 Improvisation is not sustainable in software development.

238 INCREMENTAL DESIGN

but everything todowith communication and collaboration. This paradigm is

more acceptable in a changing world. Information has been much more

available thanbefore,whichkeepsdriving theworld gettingflatter (Friedman

2006)! Therefore, our world is always changing and changing faster than

yesterday. So are user requirements.

Before we discuss incremental design further and understand when

incremental design can be best used, we have to understand the just-in-time

concept. Here is a review in one sentence of howwe understand incremental

design so far:

Incremental design lies somewhere between big up-front design and

improvisation.

8.3 JUST-IN-TIME SOFTWARE DEVELOPMENT

In the mid-1970s, responding to the global oil crisis, the manufacturing

and logistics costs of the Toyota Motor Company increased sharply as the

company imported almost everything they needed to produce cars. To

remain competitive, the company had to eliminate any kind of waste

such as idle time, storage, transportation, workforce imbalance, quality

defects, linking production cells, equipment downtime, labors, and

product backlog. The company invented the Toyota production

system (TPS).

The philosophy behind TPS was just-in-time (JIT). There is no generally

accepteddefinition of JIT. It is an approach tomanufacturing that, in the ideal,

attempts to meet demand with zero delay (Schonberger 1982). Womack et al.

Upfront
Design

Easy-to-
sustain

Difficult-
to-

sustain

Easy-to-
start

Difficult-
to-start

FIGURE 8.11 In-out diagram for upfront design for stable user requirements.

JUST-IN-TIME SOFTWARE DEVELOPMENT 239

(1991) coined the term �lean production,� placing emphasis on the removal of

all sorts ofwaste rather than just time. Perhaps the term just in time hasmisled

many programmers into thinking that it deals with time only. JIT is about

eliminating anything that is wasteful and does not add value to the

manufacturing and customers (Harrison and Petty 2002). In fact, JIT and

�lean� are almost exchangeable in manufacturing (Black 1991; Black and

Hunter 2003).3

Manufacturing is about the production process. Therefore, JIT met

kaizen, a Japanese term meaning �continuous improvement.� It is clear that
techniques should be designed to help minimize unnecessary work by

continuously improving the production processes. Wait a minute! This

sounds like the capability maturity model (CMM) or CMM integrated

(CMMI) developed in the early 1990s, which concerns software process

improvement (Paulk et al. 1995). The association is not accidental! Themain

idea of �eliminating waste� is to achieve production excellence, which

cannot be done in a single reengineering project, but only through continu-

ous process improvement.

8.3.1 The CMM Rhythm

Neither CMMnor CMMI explicitly addresses waste elimination, but the model

appears to be useful in understanding lean (i.e. JIT) production. We can even

adopt some CMM principles for �lean manufacturing� to eliminate waste in

manufacturing production. CMM recommends that after basic project manage-

ment techniques (i.e., CMM level 2) are in place, we have to clearly standardize

our working process so that we can tailor our process to suit unique features of

each software project (i.e., CMM level 3). According to the standard process, we

quantitatively measure the performance of those tailored processes, and use

these measurements as the basis for continuous process improvement (i.e.,

CMM levels 4 and 5). The assessment helps us improve our process. Undoubt-

edly, the method of �measure to improve� is fundamental in JIT.

In softwaredevelopment,we borrowedprinciples from leanmanufactur-

ing for lean software development (Middleton and Sutton 2005). However, a

fewagile zealotsmay turn ablind eye to the value ofCMM.For example, some

may say that with CMM the task is to follow a process. This shifts the focus to

process rather than single project success, while lean focuses purely on the

work products and continual improvement. Software development rhythms

3 Black, in his early book The Design of the Factory with a Future, explains JIT by a flow
diagram; 12 years later, the samediagram inBlack�s book on lean productionwas used
but only the term JIT was replaced by Lean Production.

240 INCREMENTAL DESIGN

will help us understandCMM4and agile software development fromanother

perspective.

As we see things as being about rhythm rather than where they belong,

CMM has a strong rhythm (Figure 8.12) for managing a set of software

projects: (1) standardizingour organizationprocess,which is an important step

for assessment, enabling us to define different measurements; (2) tailoring a

standardized process for a single project; (3) measuring the tailored process;

and (4) improving our standardized process in order to better manage future

projects through tailoring an even better standardized process.

Adopting a full set of CMMpractices demands a lot of effort to sustain the

rhythm. In a word, to sustain the rhythm using CMM practices is another

story. However, the CMM rhythm is useful for both agile software develop-

ment and JIT manufacturing. Here is an example: standardize generic lean

practices to eliminate waste, tailor (and/or select) the practices that are most

beneficial for the project we are running, then measure how much waste has

been reduced and improve the generic practices on the basis of the previous

assessment. As illustrated in Figure 8.13, agile practices also need continuous

process improvement.

Now, we have a little confusion over JIT software development because

improving software process and eliminating development wastes can be

strongly associated, in the sameway as light is a coin of two sides: particle and

wave. To clarify what we could learn from JIT for software development, we

had better go back and askwhat the Toyota production system has suggested

to achievemanufacturing excellence. This kind of relationship has something

to do with incremental design!

To avoid confusion so far, here is a short summary:

JIT software development entails developing software by incremental

design and implementation in small steps in a way to reduce both

preventable rework and unnecessary work.

FIGURE 8.12 The CMM rhythm.

4Although some may argue that there is massive expense and waste in the CMM
accreditation process to satisfy the examiner rather than the customer, let us look at the
basic idea of the CMM model. It is about process improvement, as shown in
Figure 8.12.

JUST-IN-TIME SOFTWARE DEVELOPMENT 241

The CMM rhythm is related to about managing software projects

by standardizing, tailoring, measuring, and improving software

processes and/or practice.

We had years of personal experience in working in different production

plants in China. Honestly, we did not enjoy working there much. The shop

floors were filthy, the air was polluted from the smoke and dust coming from

FIGURE 8.13 Agile and CMM.

242 INCREMENTAL DESIGN

other neighboring factories, and the dormitory had few entertainment facili-

ties. The bright side was that we could gain rich, hands-on experience of JIT

assembly lines. Sections 8.3.1 and 8.3.2 will give a fast-track route to JIT

practices in the manufacturing process. Afterward, we will return to our

discussion of JIT software development.

Now let us visit a factory that makes clocks. Enjoy your journey.

8.3.2 A Factory Tour

Walking into a factory of the classical manufacturing system, we quickly

see that machines are functionally grouped together according to the

manufacturing process. For example, the drilling department will be respon-

sible for all kinds of drilling tasks such as tube bending, hole drilling,

and punching operations. The layout shown in Figure 8.14 is intuitive,

particularly when doing mass production.

We often use forklifts or handcarts to move around work-in-progress

(WIP) components that are beingworked on or are waiting between different

operations in the factory. For example, we move subassemblies from a work

center for spraying to another for welding. After welding, we may have to

move some product components back again for spray finishing. Such trans-

portation has been regarded as unnecessary work.

A simple assembly line promotes efficiency by dividing labor. Each

worker is repeatedly doing a type of single-skilled task such as drilling a

clock spindle. Workers need not move between different stations. They are

organized to perform a single operation in a repeatable manner at fixed

FIGURE 8.14 Where is the waste in traditional manufacturing plants?

JUST-IN-TIME SOFTWARE DEVELOPMENT 243

locations as illustrated in Figure 8.15; the assembly line shown in this

flowchart is somewhat analogous to the traditional software development

method (e.g., the waterfall model).

Because of lack of communication and varied speeds of production, the

worker who sprays the clockworks much faster than does the one who drills

spindles. This leads to work-in-progress (WIP) inventory accumulation of

semifinished goods. Those inventories are not ready-to-sell goods. There are

costs of waiting time for WIP and stock storage.

Worse yet, defects not caught at an earlier stage will accumulate lots of

WIPwith the same defects at later stages. For example, it will be too late if the

worker at the fourth stage discovers the defect. He or she will have to return

the goods to the earlier work area for rework while colleagues at the earlier

work area are continuing to make defected parts.

An assembly line is a proven technique for the industry to produce a large

quantity of products of a standardizeddesign.However, there is the potential

for many kinds of waste along the line.

8.3.3 Walking Worker

If our rawmaterials are less plentiful, �make to stock� is not smart. Moreover,

whatwehavemademaynot be exactly the same aswhat customers order. For

example, if the customers prefer red instead of green clocks, themanufacturer

will have to rework the finished products. Clearly, we may prefer producing

things only when they are needed!

We can arrange our manufacturing production layout as in Figure 8.16.

Unlike a traditional layout, the production line is organized as a number of

FIGURE 8.15 An assembly line for producing clocks.

244 INCREMENTAL DESIGN

U-shaped cells. In each cell, equipment, machines, and tools are placed in

process sequence. The workers move around within the cell to perform

multiskilled operations. The last processing step is in close proximity to the

first step so that workers can quickly move to the beginning point of the

next cycle.

To avoid accumulation ofWIP inventory, a small lot buffer (i.e., small lot

size) is used as a signal toworkerswhen tomanufacture particular items. The

workerwill produce onlywhen the buffer is empty or drops to a certain level.

Thismechanismcan also be implementedusing cards to signal theneed for an

item (i.e., recall the Japanese term Kanban from Chapter 5, footnote 7).

Any worker who encounters a defect, abnormality, or tool malfunction

switches on a light, may find production halted both upstream and down-

stream.Workdoes not continueuntil the problem is corrected.On the surface,

this may sound counterproductive because the whole assembly line must

stop even though a defect is found at only one point on the line. However, it is

meaningless to continue to produce semifinished products that are defective

and that will be subject to reexamination and rework to remove the defects

later on.

It is easier to implement the JIT methodology for repetitive product

manufacturing,5 in which the skill set is low, the equipment is highly

FIGURE 8.16 Just-in-time manufacturing.

5Some of the key tools of JIT are appropriate and valuable for any kind of production,
from repetitive to highly customized.

JUST-IN-TIME SOFTWARE DEVELOPMENT 245

specialized, andflowofwork is highly defined andfixed.A short summary of

traditional assembly line and JIT is presented in Table 8.1.

8.3.4 Just-in-Time Software Development

Just-in-time software development makes use of many ideas from JIT prac-

tices. Handling small-lot-size user requirements parallels organizing user

requirements in a stack of user story cards in eXtreme programming or

backlog items in scrum, each ofwhich has one or a few features. Small-lot-size

user requirements (i.e., story cards) allow customers to give a software team

prompt feedback. Customers can add or remove story cards or reprioritize

their order. This can reduce avoidable waste as feedback is provided on a JIT

basis. In addition, small-lot-size user requirements allow themeasurement of

a team�s velocity and the closer tracking of the progress of a project (see

Section 8.1.1).

In traditional softwaredevelopment,we always see that, regardless of the

size of a team, programmers are assigned to different dedicated jobs, such as

collecting requirements, designing databases, or writing interfaces. In con-

trast, JIT demands that workers perform a variety of functions within a

process. This versatility makes them more valuable to their teams. As dis-

cussed earlier, coding gives feedback to design. When we adopt design by

code, programmers will no longer do just one task, but all of them.

Many programmers, however, have specialized in only one or two task

areas such as UML or programming in C. They really need continuous

training. Unfortunately, in reality, 52% of programmers receive less than

2 days of training annually (Harrison 2005). In this case, pair programming

becomes a solution. Even though the JIT practice never addresses paired

workers, JIT emphasizes the need for multiple skills in each individual.

TABLE 8.1 Traditional Assembly Line (Push) Versus
Just-in-Time (Pull) Manufacturing

Parameter JIT
Traditional

Assembly Line

Lot size Small Large
Skilled environment Multiple Single
Quick action for any
serious defect found

Stop production line N/A

System Pull Push
Production Good for repetitive

products
N/A

246 INCREMENTAL DESIGN

The purpose of an alert system in JIT is to ensure that defects are fixed

promptly so as to reduce the costs of rework. Software teams should integrate

software daily to ensure that errors are not perpetuated. If a problem is found,

the team should either fix it before going home or discard the day�s work.

Software applications seem to operate as a pull model because they are

responsive to customer requirements. Yet we may also say that customers

actually push their requirements at the systemanalysts and the analyst pushes

them at the programmers. As a consequence, many programmers do not fully

understandwhat their customers want and need. This kind of collaboration is

unsatisfactory. The better way to eliminate waste due to misunderstanding is

for customers to generally describe how they expect the system to help their

business and for the programmers to study the descriptions to confirm their

understanding and then clarify the details with customers. This is the philoso-

phy of a pull model. The �pull� comes from the actual customers directly

communicating with the working programmers, and the programmers incre-

mentally get the detailed requirements to build the system.

Just-in-time practices in manufacturing are appropriate (i.e., easier to

implement) for repetitive products. Therefore, when we adopt JIT thinking

for software development, programmers must have relevant experience. For

example, a team of programmers that specializes only in point-of-scale (POS)

applications may not be able to develop airport resource management using

JIT software development. In a word, the more relevant the experience, the

more effective is JIT software development.

8.3.5 Incremental Design

There are at least two approaches to incremental design: divide–conquer–

integrate and evolution through prototyping. For the first method, the

requirements are divided and recorded. At any time the customer may add

new features. We incrementally build them while the work product is

continuously integrated.

Evolution through prototyping places emphasis on completing a proto-

typing system, fromwhich developers collect feedback from the customer and

continue to enhance the functionalityon thatprototyping system. Since there is

virtually no physical law to govern relationships among logical software

components, they do not contradict each other. We are able to combine these

techniques to various extents for our incremental development model.

Incremental design is something between big up-front design and im-

provisation. In fact, anything within the circle shown in Figure 8.17 is

incremental development. This gives us the flexibility to choose our

own way to incrementally develop software. There is a dimension where

JUST-IN-TIME SOFTWARE DEVELOPMENT 247

divide–conquer–integrate is onone endandevolution throughprototypingon

the other end.Wemay like to have up-front design that just covers a database

model and a rough plan of what we do in 2 months and then during that

period, we incrementally build the system. It is still possible that we have up-

front design covering the details of our prototyping development. A premise

tells that a complex system must start with a successful simple system and

then evolve (Lowell 1992). Afterward, customers may add features on the

basis of the prototype application and we further develop the application.

Software teams using incremental development may not immediately see

its associated difficulties. It is relatively easy to start. The teamwill realize that

the design methodology is inappropriate for their software project only when

they cannot sustain (or are exerting much unexpected effort to sustain) the

original incremental design of that software. In a word, we cannot easily judge

whether incremental design is easy or difficult to sustain (see Figure 8.18). This

leads to our final question.What component has beenmissing that hasmade it

Divide-conquer-
integrate

Evolution

Up FrontImprovisation

 Incremental Design In
cre

men
tal

 D
es

ign

 Incremental Design In
cre

men
tal

Des
ign

FIGURE 8.17 Software design methodology.

Incremental
design

Incremental
design

Easy-to-
sustain

Difficult-
to-

sustain

Easy-to-
start

Difficult-
to-start

FIGURE 8.18 In–out diagram for incremental design.

248 INCREMENTAL DESIGN

so difficult to determinewhether our incremental design is easy to sustain for a

particular software project?An immediate answer is requirements complexity!

8.4 REQUIREMENTS COMPLEXITY

No software product is designed without user requirements. Their impor-

tance cannot be overemphasized. Changing the requirements or having

defective requirements will drive up our development costs. Wiegers

(2006) summarized previous findings and reported that the relative cost of

correcting a requirements defect in operation can be as high as 110 times.

During 1993–94, Blackburn et al. (1996) surveyed over 150 software projects

and conducted a number of follow-up field interviews to learn about the

development stage as a percentage of the total software development time.As

a rough estimate, we get the relative cost to correct a requirement defect by

combining two studies: Wiegers� and Blackburn�s data. The relative cost

curve shown in Figure 8.19 resembles the cost of change given by Beck (2000).

Cost of change is significantly affectedbyboth requirements and software

design.Consider a case inwhichprogrammersdesign anordering processing

module comprising four classes (Figure 8.20). Hence, one more class may

create more channels of object communications as the number of messaging

units is a factorial of the number of classes. Clearly, it may be riskier to

produce a design that is difficult to manage. As shown in Figure 8.20, by

FIGURE 8.19 Relative cost to correct a requirement defect (meta-analysis).

REQUIREMENTS COMPLEXITY 249

combining UrgentOrderEntry and OrderEntry, the system has fewer

classes. Unfortunately, things are not black or white. We cannot judge a

design by the number of its classes. Our experience just tells us that more

features added to a �bad smell� design could result in spaghetti messages

passing among lots of objects. Therefore, design and requirements have a

strongly coupled relationship that affects our costs of change.

There is a fuzzy line between requirements and design (Wiegers 2006). In

a serial process model like the waterfall, the cost of change can sharply

increase (Figure 8.19). In incremental design, the cost of dealing with bad-

smell design can also make our software complexity grow exponentially to

unmanageability and require redesign of parts of the system.

Another problemwith user requirements that affects incremental design

is the number of users contributing to requirements. In the case of building a

small system, the requirements can be collected from and confirmed by just

one customer. We call this type of communication for requirements �one to

one� (i.e., one programming team to one user or one programming team to a

few users in the same department in an organization).

:OrderEntry :UrgentOrder
Entry

:Inventory:Credit

FIGURE 8.20 Design complexity.

X

Z

Y

A

B

D

C

Programmers Users

FIGURE 8.21 Communication burdens.

250 INCREMENTAL DESIGN

Very often, as illustrated in Figure 8.21, three customers, A, B, and C, are

responsible for different departmental functions in the same company. To

build an integrated system across their functions, they all need to provide

their requirements. Thus, each user talks to our programmer X. In the end,

programmer X sees their requirements as both overlapping and contradict-

ing. Just as eye-witnesses to a crime tell different stories, users do not provide

consistent requirements. This type of communication is called �one to many�
(i.e., one team to many users from different domain types).

Internal communications on the user side may be noticed only when

problems arise. For example, for some reason users B and D rarely talk to A

and C. There is a gap in their internal communications.

In addition, programmers may have a profoundly different under-

standing of the same requirements. For example, user A may separately

talk or write to both X and Y but they interpret A�s requirements differ-

ently. In this case, some may suggest that we put effort into formal or

semiformal specifications. However, not all user requirements will lead to

different interpretations between X, Y, and Z. Writing specifications for

clearly understood requirements is unnecessary work. The best strategy is

to have an effective communication mechanism for software development

in place.

In the following sections, let us learn about three situations of software

requirements given by our users in the commercial world: forgotten require-

ments, conflicting requirements, and rapidly changing requirements.

8.4.1 Forgotten Requirements

A beer manufacturing company in Laos planned to phase out its legacy

system and move forward to an Internet-based ERP application so that their

retail customers could place orders themselves and thereby the average order

cycle could be cut by 20%.Garywas a hands-onmarketingmanager there. He

was a systematically thinking guy and knew the ins and outs of the sales and

marketing operations. Gary could tell us exactly what he wanted and explain

when certain conditions were true, what results the system should produce,

and what quality his sales team wanted.

Gary could roughly draw the system modules (Figure 8.22). When a

customer places a sales order, the system immediately checks the available

stock in our finished goods inventory for fulfillment and reserves the stock for

the customer. In addition, the credit control helps us manage the customer

credit status. For customerswho are far from thewarehouse, the delivery lead

timemay be days. Therefore, the invoice can be issued only after the customer

has received the goods.

REQUIREMENTS COMPLEXITY 251

The system should not delete any data that the users have typed in so that

the finance department could audit the data. Gary also suggested that sales

supervisors could create newcustomer accounts and the systemwouldassign

credit limits by default. This would expedite sales processes for new

customers.

Everything seemed to be covered. However, Gary forgot to mention one

thing. During the Christmas holiday season, each sales order should expire in

one day. Some customers might wish to place an extraordinarily large order

several days beforeChristmas, but itwas not possible for the company to hold

stock for them for more than 2 days as they would become monopoly

customers. This would prevent the company from serving others and would

adversely affect productdistribution andavailability in themarket place. This

had happened only rarely in previous years but it was a problem to be

avoided.

Gary forgot to mention one critical requirement: every sales order issued

7 days before the holidays should automatically expire just in one day!

8.4.2 Conflicting Requirements

After meeting with the sales manager, we met another key user, the

company�s financial controller, Szeto. One of major duties of the finance

FIGURE 8.22 Typical sales and distribution application for beer.

252 INCREMENTAL DESIGN

department is tomonitor not only the cash flow control but also the company�s
performance. Szeto repeatedmuch of what Gary told us, but he talked from a

finance perspective. And there were apparent contradictions in the two

descriptions.

According to generally accepted accounting principles, the company

should issue invoices to the customer when goods have left the warehouse.

This differed from Gary�s version of events. What is more, all customer

accounts, including their credit limits, should be maintained by the finance

department. Szeto understood that new customerswould have towait longer

to process their first orders. But he did not want to write off a huge amount of

uncollectible invoices in accounts receivable.

The financial controller disagreed with the sales manager about many

operational practices.

We should talk to every key user before we start our development;

otherwise, wewill have to rework our system later. Conflicting requirements

will exist across functional departments, and the situation can become

political.

8.4.3 Rapidly Changing Requirements

TheCHAOS report from the StandishGroup in 1994 reported that threemajor

causes of software project failures regarding user requirements were lack

of user input, incomplete requirements, and changing requirements. The

CHAOS Chronicles report (2003) reflected some major improvements. As

computer systems have become indispensable business tools, today�s users,
like Gary and Szeto, are more IT-enabled, process-literate, and experienced

with commercial computer systems and are therefore much more willing to

participate than before. But this is not to say that they can provide complete

user requirements.

Incomplete requirements are different from forgotten requirements.

Incompleteness could mean exploring requirements in which users lack a

vision or knowledge of how a future system could help them. For example,

new business applications such as CRM in early 2000 could trouble many

users to give their CRM requirements because CRM applications were just

new to them. Forgotten requirements are a kind of incomplete requirement.

Less experienced programmers who have not yet gained domain-specific

knowledge may not easily realize that the requirements have defects due to

some missing pieces.

REQUIREMENTS COMPLEXITY 253

Changing requirements could partially result from adding forgotten

requirements and resolving conflicting requirements. What users say may

not be what they want. Users could realize their needs only from product

experience. We can lessen the extent of this problem through frequent

feedback from peers and users.

Changing requirements are still a constant factor, and this is not expected

to change soon in our work. As organizations evolve and change existing

practices, merge or partner with competitors, and share information with

their suppliers for supply chain management, requirements will change

rapidly, and this has scared many of us into going agile!

For the 2002 FIFA World Cup, the beer company created the slogan

�Without fresh beer, no real live match.� To support the million-dollar

campaign, senior management decided that the distribution center would

temporarily take a last-in first-out (LIFO) method to ensure that fresh beer

would be delivered to major cities in Lao and would use a first-in first-out

(FIFO) approach for small towns in the countryside. When the world cup

campaign was over, everything would get back to normal. As expected, the

logistic department immediately called the MIS to support.

Experience tells us that users would demand new features in days or

weeks because business opportunities never wait!

8.4.4 Requirements and Design

Our case presented many challenges about user requirements in the real

world. Table 8.2 provides seven situations in which we consider different

design strategies. The recommendations listed in the table serve as a simple

guideline because our real situation could be more complicated as other

factors such as size, complexity, or risk profile are not fully considered.

Table 8.2 does, however, provide an overview of where we may consider a

development strategy for each software project.

8.5 REFACTORING

The term refactoring in software development was first used by Opdyke in

1992 in his PhD dissertation, where it was defined as a process of changing an

object-oriented software system in a way that the internal structure of an

object-oriented program is restructured to improve reusability but the exter-

nal behavior of the code is not altered. The restructuring may include

redistributing classes, variables, and methods across the class hierarchy in

order to facilitate future adaptations and reusability (Opdyke 1992). There has

254 INCREMENTAL DESIGN

TA
B
LE

8
.2

C
o
ns

id
er
at
io
ns

fo
r
So

ft
w
ar
e
D
es

ig
n
St
ra
te
gi
es

In
cr
e
m
e
n
ta
l
D
e
si
g
n

Th
is
H
as

B
e
e
n
W
h
at

O
u
r
Te
am

K
n
o
w
s
S
o
Fa
r.
Th
e
C
o
m
m
e
rc
ia
l
P
ro
je
ct
:–
–
–

U
p
-F
ro
n
t

D
e
si
g
n

D
iv
id
e
–
C
o
n
q
u
e
r–

In
te
g
ra
te

(D
C
I)

In
cr
e
m
e
n
ta
l
D
e
si
g
n

b
e
tw

e
e
n
D
C
I
an

d
E
D

E
v
o
lu
ti
o
n
ar
y

D
e
si
g
n
(E
D
)

1
.

H
as

st
ab

le
u
se
r
re
q
u
ir
e
m
e
n
ts

G
o
o
d

G
o
o
d

G
o
o
d

G
o
o
d

2
.

Is
to

re
p
la
ce

a
le
g
ac
y
sy
st
e
m

w
it
h
so
m
e
e
x
tr
a

fe
at
u
re
s
th
at

th
e
o
ld

o
n
e
co

u
ld

n
o
t
fu
lfi
ll

Tr
y

B
e
tt
e
r

G
o
o
d

G
o
o
d

3
.

S
e
e
m
s
to

h
av
e
st
ab

le
u
se
r
re
q
u
ir
e
m
e
n
ts

b
u
t

o
n
e
-t
o
-m

an
y
co

m
m
u
n
ic
at
io
n
fo
r
u
se
r

re
q
u
ir
e
m
e
n
ts

G
o
o
d

N
o
t
S
u
g
g
e
st
e
d

Tr
y

G
o
o
d

4
.

Is
n
e
w
,
b
u
t
th
e
so
ft
w
ar
e
te
am

h
as

w
o
rk
e
d
o
n

th
e
sa
m
e
ty
p
e
o
f
ap

p
lic
at
io
n
b
e
fo
re

Tr
y

Tr
y

G
o
o
d

G
o
o
d

5
.

Is
a
n
e
w

p
ro
je
ct
,
an

d
th
e
te
am

h
as

n
o
d
o
m
ai
n
-

sp
e
ci
fi
c
kn

o
w
le
d
g
e
o
f
th
e
ap

p
lic
at
io
n

G
o
o
d

N
o
t
S
u
g
g
e
st
e
d

G
o
o
d

B
e
tt
e
r

6
.

S
e
e
m
s
to

ra
p
id
ly

ch
an

g
e
u
se
r
re
q
u
ir
e
m
e
n
ts
,

an
d
th
e
te
am

h
as

w
o
rk
e
d
o
n
th
e
sa
m
e
ty
p
e

o
f
ap

p
lic
at
io
n
b
e
fo
re

N
o
t
S
u
g
g
e
st
e
d

Tr
y

B
e
tt
e
r

G
o
o
d

7
.

S
e
e
m
s
to

ra
p
id
ly

ch
an

g
e
u
se
r
re
q
u
ir
e
m
e
n
ts
,

an
d
th
e
te
am

h
as

n
o
d
o
m
ai
n
-s
p
e
ci
fi
c

kn
o
w
le
d
g
e
o
f
th
e
ap

p
lic
at
io
n

N
o
t
S
u
g
g
e
st
e
d

N
o
t
S
u
g
g
e
st
e
d

Tr
y

B
e
tt
e
r

255

not beenmuch change in thedefinitionof refactoring, except that itmaynot be

a process. It can be a practice of changing the internal behavior of programs in

small steps (Fowler 1999). Readability is now emphasized in refactoring.

For some simple programs, it is not difficult to guarantee the preservation

of system behavior after modification. For complex systems, this could be

guaranteed only by blackbox testing. Given the same set of input values, the

resulting set of output values should be the same before and after the

refactoring (Opdyke 1992).

Refactoring has been closely connected with design in general and

incremental design in particular. Adding features requires changing the

structure of a program, but external behaviors for existing features are, of

course, preserved. Doing refactoring can be more than readability and

maintainability of the existing code. In practice we do refactoring and

performance tuning at the same time. However, we may still sacrifice

performance for readability andmaintainability, the objectives of refactoring.

Refactoring comes with costs:

1. To ensure behavior preserved and correctness of recoding, we have to

retest our program.

2. Testing cannot show the absence of fault, and the part being revised

might oftenbe connected to others;more test casesmaybeneeded after

the system is refactored. Otherwise, only when we encounter pro-

blemswith somepart of code that is related to ourmodifications dowe

realize that we should have changed it as well.

3. It is not easy to estimate the amount of effort involved in refactoring a

program. Often, an expected hour of effort turns out to be a day.

There is always room for improvement. Refactoring is not a way to

produce perfect code. Wemust knowwhen to start and when to stop. Time,

however, is precious. Considering that constraint, we have to prioritize our

refactoring tasks. Some experts have recommended a number of techniques

called �bad smell� that can be used to spot where to refactor. As it is difficult

to judge the time required to do refactoring, we offer this advice: Refactor

only those parts that you may think are most likely to be the first to have new

features added.

There are at least three levels of refactoring: within-classes, among-

classes, and class-relationship-restructured. By within-classes, we mean that

programmers refactor the structure and logic only within classes, for exam-

ple, variable naming, method accessibility, or method addition. Even though

the logic of the variables or methods that we have restructured could be

accessed or called by other classes, the programming complexity is limited.

256 INCREMENTAL DESIGN

Wemay use a refactoring browser to help, which can allow a programmer to

rename variables or methods and then all other logic related to it will be

automatically changed.

By among-classes, we mean that we move variables or methods from one

class to another. Clearly, this will be more complicated than within-classes in

terms of programming logic, even though a refactoring browser has a

graphical user interface (GUI) that allows us to simply drag among classes

instead of having to use text editor commands.

Class-relationship-restructured is the most complex and is most prone to

having bugs that won�t manifest until the program is used in a particular

way. Programmers redefine relationships between classes by introducing

new classes, merging class relationships, or changing class inheritance

relationships. Restructuring classes helps us better model objects for real-

world problems. Figure 8.23 provides a simple illustration of three types of

refactoring.

Class A

methodA()

Class A

methodX()
methodY()

methodA()

Class B

methodB()

Class A

Class B

methodB()
methodA()

Class A

methodA()
methodB()

Class A

methodA()

Class X

methodB()

Level 1

Level 2

Level 3

Class A

New
Class
Created

FIGURE 8.23 Within classes, among-classes, and class-relationship restructured
changes.

REFACTORING 257

Here is some more advice:Don�t refactor any code at the third level when the

product is going to be released next week! Try to refactor programs at the third

level at the soonest. This is like something called prefactoring, in which

programmers should pay attention to their refactoring experience so that

they get the design right as early as possible (Pugh 2005). Prefactoring does

not mean that we do not need refactoring. It emphasizes the value of the

refactoring experience we have had.

8.5.1 Refactoring Activities

This section discusses refactoring activities. At the beginning, we have to

identify where to refactor. Beck (2000) and Fowler (1999) introduced 22 kinds

of bad smell where code should be fixed for both readability and maintain-

ability. This bad-smell concept has been identified for decades; we were all

taught not to write a long procedure. Long methods, long classes, and long

parameter lists are the same––small is beautiful. Some bad smell is concerned

with software design; for example, an object class not sufficiently responsible

enough to be recognized as a class should be considered for refactoring.

Another approach to spotting where to refactor is to take an economical

perspective. Refactor bad-smell code that is more likely to have features. This

is not to say that we guess as to future requirements. We don�t need to know

exactly what the new functionality is; we only need to consider where it may

be added. We should talk to our customers, understand their business, think

about the user experience, and use your intuition.

Now we have to think about which refactoring techniques should be

applied. This is more important when we plan to do level 3 refactoring.

Various techniques are explained in Fowler�s book 1999.

We should guarantee that we have unit tests on hand to ensure that the

applied refactoring preserves external behavior. We may need to roll back to

the previous version at any time. Since extreme programming tells us to

discard our unfinished refactored code before calling it a day, a version

control system should be in place before we start refactoring.

After refactoring, it would be good to have some sort of assessment of

whether we have reached a certain level of software quality. Unfortunately,

this canbe a time-consumingactivity as there is nodirect assessment. Tomake

evaluation objective, we have to adopt quantitative evaluation, which may

include peer review, grading, and statistical analysis. To go agile, we may

consider adopting pair programming in which the characteristics of software

readability and maintainability are assessed constantly.

Finally, we have to maintain consistency between the refactored pro-

gram and other software artifacts such as data models, class diagrams, and

258 INCREMENTAL DESIGN

any test cases added for refactoring. Here is a summary list (Mens and

Tourwé 2004):

1. Identify where to refactor.

2. Determine which refactoring technique(s) to apply.

3. Guarantee the preservation of external behavior.

4. Make sure that a version control system works for refactoring.

5. Apply the refactoring.

6. Assess the effects of the refactoring.

7. Maintain consistency between the refactored program code and other

software artifacts.

8.5.2 Refactoring by Challenging

Our program has been done and tested. Later on, we may devise a better

design solution. This is referred to as code-driven refactoring (see Box 8.1). If

coding tasks are assigned to different programmers, then the biggest problem

BOX 8.1
CODE-DRIVEN REFACTORING

Original programmers working in solo programming cannot be as good at

code-driven refactoring of their own programs as they are refactoring pro-

grams created by others.

In 2005 five programmers froma technology company in Beijing participated

in an on-the-job study of refactoring. Three of them had around 3 years�
experience. The other two were randomly assigned to grade the source code

on a scale of 1–5 in four areas: readability, style consistency, maintainability,

and class relationships.

To support multilanguage programming and communications of terminolo-

gies requires professionals in thefield to do the translation. As strings appeared

on GUI and message box are stored in *.properties file (for JAVA application),

we sent these files to translators for language conversion, say, from Chinese to

Korean. The returnof thesefiles needs examination toensure the correctness of

the file format, for example:

1. Deleting line breaks by mistake

2. Confusion with some symbol such as �or �
3. Forgetting to add \ for \\.

REFACTORING 259

A Java programwaswritten to check the files returned from translators. One of

three programmers, Zhao, wrote that program. None of participants were

informed that thiswas part of an experiment; they thought itwas just an adhoc

programming task. We asked Zhao to review his program to make it more

readable andmaintainable andwe distributed the source to another program-

mer, Qian, for refactoring. In week 3, we asked Zhao to make a final check and

again to attend to readability and maintainability. We forwarded Qian�s
refactored program to Lin for refactoring. The following flowchart shows the

proceedings of our study.

Program 0 (P0)

PR1 T0

Program 3 (P3)

PR2 T3

Program 2 (P2)

PR1 T2

Program 1 (P1)

PR1 T1

Program 4 (P4)

PR3 T4

Situation A
Refactoring by
Original Author

Version 1

Version 2 Version 4

Version 3

Version 0

LOC:
139

152

158

Time:
6 hours

23 mins

31 mins 54 mins

48 mins

Situation A
Refactoring by

Others

Written by Zhao

Written by Zhao

Written by Zhao

Written by Qian

Written by Lin

Two programmers graded each version. Their results are shown in the bar

charts below. It was concluded that refactoring by multiple developers would

achievemuch higher software quality in terms of readability andmaintainabil-

ity than if it were done by the original developer. The limitation of this initial

studywas its small sample size. This short experiment infers achieving synergies

between refactoring and pair programming.

260 INCREMENTAL DESIGN

with code-driven refactoring is that the original authors may be blind to any

inefficiency in their design solutions. Nevertheless, the original authors can

judge readability andmaintainability on their own. We are just not as good at

debugging our ownmodels as we are at debugging models created by others

(Panko 1996).

Original developers will be biased toward the structures of their pro-

grams. Methods may have been grouped in an inappropriate class; however,

thiswouldhardly be knownuntil themethodswouldbemoved in right object

classes. Other people may see better places to put the method. The original

authors are so familiar with their code that they take its readability for

granted.One person�s readability is another person�s cryptic text. The naming

of variables and methods should be explainable.

Effective refactoring should not be a self-review but an exercise of

accumulating design experience from each programmer. The insights we

have gleaned from our experience, as well as the experience of others, in

developing software provide better refactoring. In this case, it makes sense

that pair programming is adopted to maximize the team throughput to

achieve code that is more readable and maintainable.

If your teams simply do not like pair programming, try to get them to do

refactoring for each other. Two-developer refactoring would still give better

quality of code than would refactoring repeatedly done by the same

individuals.

8.5.3 Refactoring for Design Patterns

Many �bad smells� apply only for generally accepted programming princi-

ples. Therefore, we have valuable and applicable C language techniques such

REFACTORING 261

as �Do not use terse C expression forms even when they sacrifice no read-

ability at all andwrite �flat� rather than �deep�programs, for example, if if if if . . .

then then then then . . .� (Perry 1998).

Here are somemore examples of bad-smell advice.We should use a class

method or procedure call to group duplicated code. Anything long is difficult

to maintain and should be divided into smaller units, and this will also

increase reusability. Comments should be concise. The names of the right

variables andmethods are self-explanatory. Message chains in which a client

asks to exchange one object for another object should be decoupled as a long

deep chain is not good for maintainability.

However, computer languages such as C do not clearly state the knowl-

edge of purpose (i.e.,what this class is supposed todo andwhy thesemethods

belong to this class) and knowledge of structure (i.e., class structure, relation-

ships, subclass, inheritance) needed to model real-world systems. Thus,

refactoring C programming to model things that we perceive in the real

world is not very easy. This results in writing in-line comments to achieve

readability and maintainability for other programmers. Sometimes, we re-

write those in-line comments to explain C code rather than refactoring the

C code.

Refactoring is non-zero-point collaboration. Two programmersmay start

with the program code; however, they may do refactoring in different ways

even though they perceive the same bad smell. Therefore, we want to know

what good design is so that we can refactor according to that pattern. In a

word,weneeddesignpatterns as standards to complement individual design

experience.

Design patterns inspired by Alexander�s pattern languages6 (Alexan-

der et al. 1977) tell us that there are patterns between problems and

designsolutions based on past experience so that programmers can learn

what good object-oriented design is all about (Gamma et al. 1995). Often,

whenwe are baffledwithwhatwe shoulddo to refactor the code, it is time to

brush up Gammea�s Design Patterns. Almost all design patterns concern

class relationships, which is to say that we have to refactor at levels 2

and 3.

6Patterns in architecture have a long history in China. It is called fengshui, which
addresseswhatpatterns of locationanddirection of thehill, the bush, thepond, the sun
(rising and setting), the landscape, and the house could make people live more
comfortably and thereby more fortunately. Fengshui was developed 1000 years ago
and did not evolve over a long time. It is less appropriate for modern architecture.

262 INCREMENTAL DESIGN

8.5.4 Making Deliberate Mistakes

�Making deliberate mistakes! Are you telling me to write lousy code?� asked
an experienced programmer. Hold on; this does not mean that we write

programs with bugs. We don�t want to make mistakes. In fact, we want to

avoidmistakes (Schoemaker andGunther 2006). However, we can usewrong

solutions to confirm that our test cases are right!

Suppose that we write a test case before code. This has two benefits. Like

specifications, it helps us clarify our understanding of user requirements, but

we can also use the test case for testing. However, we should not be overcon-

fident about the correctness of the test case, which, just like our program,may

have defects. Therefore, we either write a quick solution or do hardcoding to

see if our test case is right. Then we may work back and revise our solution

from bad to good. This development is referred to as �test-driven refactoring

development� and this method of refactoring, in contrast with �code-driven
refactoring,� is called �test-first refactoring� (Mens and Tourwé 2004). Write a

quick solution to ensure that a test case works and refactor the solution.

REFERENCES

Alexander C, Ishikawa S, Silverstein M, Jacobson M, Fiksdahl-King I, and Angel S. A

Pattern Language: Towns, Buildings, Construction. New York: Oxford University

Press; 1977.

Beck K. eXtreme Programming Explained: Embrace Change. Boston: Addison-Wesley;

2000.

Black JT. The Design of the Factory with a Future. New York: McGraw-Hill; 1991.

Black JT and Hunter SL. Lean Manufacturing Systems and Cell Design. Dearborn, MI:

Society of Manufacturing Engineers; 2003.

Blackburn JD, Hoedemaker G, and Van Wassenhove LN. Concurrent software

engineering: Prospects and pitfalls. IEEE Transactions on Engineering Management

1996; 43 (2):179–188.

Fowler M. Refactoring: Improving the Design of Existing Code. Reading, MA: Addison-

Wesley; 1999.

Friedman TL. The World is Flat: A Brief History of the Twenty-First Century. New York:

Farrar, Straus and Giroux; 2006.

Gamma E, Helm R, Johnson R, and Vlissides J. Design Patterns: Elements of Reusable

Object-Oriented Software. Reading, MA: Addison-Wesley; 1995.

Harrison DK and Petty DJ. Systems for Planning and Control in Manufacturing. Oxford:

Newnes; 2002.

Harrison W. Do you learn just in time or just in case? IEEE Software 2005; 22 (1):

5–7.

REFERENCES 263

HBR. Don�t delight your customer away. Harvard Business Review March 2002; 64–65.

Lowell J. Rapid Evolutionary Development: Requirements, Prototyping and Software

Creation. New York: Wiley; 1992.

Mens T and Tourwé T. A survey of software refactoring. IEEE Transactions on Software

Engineering 2004; 30 (2):126–139.

Middleton P and Sutton J. Lean Software Strategies: Proven Techniques for Managers and

Developers. New York: Productivity Press; 2005.

Opdyke WF. Refactoring Object-Oriented Frameworks. PhD thesis. Chicago: University

of Illinois; 1992.

Panko RR. Hitting thewall: Errors in developing and debugging a simple spreadsheet

model. Proceedings of the 29th Hawaii International Conference on System Sciences. Jan.

1996; pp. 356–363.

Paulk M, et al. The Capability Maturity Model: Guidelines for Improving the Software

Process. Reading, MA: Addison-Wesley; 1995.

Perry JW. Advanced C Programming by Example. Boston: PWS Publishing Company;

1998.

Pugh K. Prefactoring: Extreme Abstraction, Extreme Separation, Extreme Readability.

Sebastopol, CA: O�Reilly; 2005.

Schoemaker PJH and Gunther RE. The wisdom of deliberate mistakes. Harvard

Business Review 2006; 84 (6):108–115.

Schonberger R. Japanese Manufacturing Techniques: Nine Hidden Lessons in Simplicity.

New York: Free Press; 1982.

Wiegers KE. More about Software Requirements: Thorny Issues and Practical Advice.

Redmond, WA: Microsoft Press; 2006.

Womack JP, JonesDT, andRoosD.TheMachine that Changed theWorld: The Story of Lean

Production. London: Harper Perennial; 1991.

264 INCREMENTAL DESIGN

9
TEST-DRIVEN DEVELOPMENT

One death is a tragedy; a million is a statistic.

—JOSEPH STALIN

A desperate-looking guy is sitting in front of a poker machine, shaking his

head. Clearly, he has lost lots of money. He slowly stands up andwalks away

from the machine. Immediately another man rushes over to sit in this place

and starts feeding coins into themachine. He looks like someonewho has just

founda treasure.He thinks that because themachinehasnot paid out in a long

time, it must pay out soon. This is a common belief among gamblers. But it�s
wrong.

Amateur gamblers—and in life all of us are gamblers in one area or

another—are oftenunconsciously governedbyone of four beliefs: (1) an event

is likely to happen because it has not happened for a long time, (2) an event is

likely to happen because it has just happened, (3) an event is unlikely to

happen because it has not happened for a long time, or (4) an event is unlikely

tohappenagain for some timebecause it just happened.All of these beliefs fail

to account for the fact that every toss of a coin has the same odds of producing

heads or tails. Even if you toss heads 10 times in a row, on the 11th throw the

odds of heads or tails is just the same as at the first throw, 50–50. But this

simple fact is not apparent to the amateur gambler. They have their own

beliefs and their own view of the world and how it works. And themore they

lose, the more they depend on those beliefs to save them in the end.

In softwaredevelopment projects too,we alsomakedecisions on the basis

of false beliefs. Experienced programmers—competent, mathematically

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright � 2008 John Wiley & Sons, Inc.

265

minded individuals—still declare themselves satisfied that a system that has

successfully passed 10 test cases stands agood chance of passing the 11th even

though the test cases are independent of each other. The discrete nature of

software can make every test independent, although software development

has nothing to do with probability.

Psychologically, we are trapped by two beliefs: that new tests are

assumed to pass because many others have successfully passed, and that

the code we have changed to fix bugs will not introduce new ones! Software

feasibility and human factors could cause us to fail to cope with randomiza-

tion fromcomplexity. The software complexity causesus to intellectually deal

with a form of logic of probability with software. For example, if we were to

accidentally change one command, it might disable functionality, or it could

even crash the entire system!

Therefore, a software application is brought to its knees becausewe don�t
have enough time for all tests, because we are not clever enough to identify

hidden bugs and write useless test cases, or just because we think we are so

smart that we think we know how to selectively test system functionality

instead of a whole system.

Testing substantially impacts on financial bottom lines. It may con-

sume as much as 40% or 50% of the cost of software development. And as

software becomes pervasive in our society and increasingly indispens-

able to every part of a business, between home and business, between

business and business, it becomes both more complex and more critical.

This, in turn, means that more testing is needed and testing is even more

important than ever. Unless we are able to find more efficient ways to

effectively test software, the percentage of development costs devoted to

testing will only increase, And there is no way to avoid this. We can�t, for
example, simply design and code programs better so that they will need

fewer tests.

Whenusers tell us that their business cannot afford to have an application

down,we becomemore serious about software quality. Our team extensively

devises user test cases and testing data. When the team has accumulated lots

of test cases, we have another problem. It is difficult to judge which cases

are redundant. Doing exhaustive, overlapping testing consumes project

resources. In terms of development times and project running costs, it would

be valuable for a project manager to know what the economical (minimum)

number of test cases should be run.

Suppose that an application has 10 features. We should at least write 20

user test cases, with each pair of testing true and testing false mapped to one

feature (or a story card). The idea of the economical number of test cases

contradicts the commonwisdom that critical systemsdemandmore test cases

266 TEST-DRIVEN DEVELOPMENT

for each single feature. However, the economical number of test cases is still

practical, and for project managers it serves as the bottom line.

Another way to make testing economical is to prioritize what major

features of the software should be tested in order to balance testing with the

project resources. This is common in the workplace. In particular, when

there is a need to trade off against a project schedule, putting testing effort

only into those features thatmay pose higher risks for the customer becomes

critical.

So often, our customers add or modify their requirements without

changing the project completion date. They use all kinds of means to get us

to accept this, such as project incentives. Uncertain about our estimates, we

lack the courage to defend our position against customer pressure (Brooks

1995). To survive in a death march, the software team desperately attempts to

get the software done by either fair or foul means. The team tries to right the

course of the project by throwing out any activity that can be discarded as

they hurry to code for the extra requirements without considering the best

design solutions. Theywrite fewerdocuments thannecessary.As a last resort,

they test only some major functions even though the software now has

additional features.

This happens in so many software development projects because soft-

ware requirements are coupled with coding but both are decoupled from

testing (see Figure 9.1), which illustrates the fact that no matter how much

one adds or changes, testing efforts remain constant. If, however, we move

testing ahead of coding, we ensure that software requirements are coupled

with test cases, guaranteeing software quality. This is test-first programming

(Beck 2000). And an iterative process that reinforces the practice of test-first

programming is test-driven development (TDD) (Beck 2003).

FIGURE 9.1 Testing decoupled requirements from other activities.

TEST-DRIVEN DEVELOPMENT 267

9.1 REVERSE WATERFALL

Programmers are aware that the classic waterfall model is not responsive

enough to customers� dynamic demands and have adopted more iterative

development paradigms and models. These models all variously build

software in terms of the four Ps (process, people, paper, and product), but

they also apply a repeated design–code–test rhythm. Whether a cycle of the

design, code, and test processes is carried out in small steps or bigger ones,

programmers are still thinking design–code–test, and that also applies to

experienced programmers who may adopt �design by code� to write less

complicated applications but whose reflexive approach remains design–

code–test. Although there are no physical laws governing how to build

software, programmers can test programs they have not yet coded or work

out test cases for a system that hasn�t yet been designed. Also we can reverse

the rhythm design–code–test to test–code–design, and then testing and

coding become much more interdependent.

9.1.1 Design–Code–Test

The order of software development activities is not accidental: requirements,

design, coding, and testing. The order has been established for decades. We

collect requirements from users. Then we formulate specifications to confirm

our understanding and distribute them to a development team. Or, for less

complicated requirements, we go directly to software design. Next, we build

the software. Finally we test it before releasing it to our customers. As for

incremental design, we may either continually, or regularly collect user

requirements and feedback. However, what we do in our minds is

design–code–test. It seems so completely natural that we never even try to

imagine an alternative.

Design involves planning what a software team is going to do. For any

project including software development, there can be several ways to reach

the same goals. Some ways are uneconomical and some are risky. Therefore,

the more we design, the more likely we are to see faster and better ways to

develop a good design blueprint for execution and to ensure that team

members can discuss the blueprint at an early stage. Fixing errors early

avoids rework.

Coding is the execution of software design.We can use a design to devise

test cases and data to examine external behavior of modules or pieces of code

even before coding. At this point, we have to write test cases in a program-

ming language, because there may not be user interfaces ready for testing.

However, there is a problem with this approach. We see the test code failing

268 TEST-DRIVEN DEVELOPMENT

only because the implementation has not yet been done. In other words, we

candetermine the correctness of our test cases only after theprogramhasbeen

written. We do not have to wait for the whole program to be done before we

test. As long as we have a piece of code that is complete enough to be

executable, we can go ahead and test it. As each test case itself is a tiny

program, the real problem here is that there could be defects. We can be

misled by the system passing the wrong test case.Worse yet, wemay assume

the test case works because its logic is so small.

9.1.2 Test–Code–Design

The test–code–design rhythm means putting design after coding. It also

implies that somethingwas not right and that some sort of redesign is needed.

Clearly, this kind of redesign is avoidable as long as we think over what to do

before execution. Then why should we go for test–code–design?

Some experienced programmers can do �design by code� well. On the

basis of their experience in knowing how the code will be tested, they write

test cases in advance. But it is not that beneficial. In this case, testing first or

testing later does not appear to be significant. Then when does test–code–

design work better?

As for the test–code–design rhythm, test cases are written beforehand to

confirm the existence of features. It helps couple test cases with user require-

ments so that no single requirement goes untested. To make test before code

work, we have to write a quick solution to ensure the correctness of our

understanding and the tiny program (i.e., test case). The solution can be a

dummy one just to check whether the test case really works. But it must be

quick enough to be productive. This critical step gives us early feedback on

both requirements and programming.

As the solution can be just temporary, incomplete, or hardcoded,we have

to redesign a better one or just rewrite it for maintainability. Obviously, test–

code–design does not straightforwardly reverse design–code–test. The tasks

at each phase are different. Our thinking is now driven by test-first, which

aligns the programmingmindwith customers, andwe are centered on seeing

what a system does before seeing how it works.

9.2 TEST-FIRST PROGRAMMING

Psychologically, those people who make things that did not exist before

should be optimistic; otherwise, nothing would have been created. Program-

mers should also be optimistic. They might not fully test each feature or

TEST-FIRST PROGRAMMING 269

programming logic that they think is too simple to be wrong. They might

ignore and deemphasize the impact of defects. This approach can be charac-

terized bywhatwe often say to our colleagues and customers: �Wecan fix it in

15 minutes!�
As for test-last programming, because of the constraints of software

contracts, time, and budgets, a common strategy is to reduce the number of

test cases so as to shorten testing time anddeliver the product on schedule.We

�assume� that the software has passed. If need be, we can release a patch later

on. Another strategy used in some small software houses is called �paid by

bug.� Ask a number of freelance programmers to find 50 bugs within 3 days.

Have your teamfix them all in 3 days and release the program to customers on

day7.Butwhy identify just 50 bugs?Theremaybe thousands!Well, it has been

estimated that the team could have only 3 days to fix that number of bugs.

This section will take a deeper look at what test-first programming

really is.

9.2.1 Testing and Verification

Testing is a means of improving our understanding of the software we are

building, not just away of assessing its quality. Testing requires the execution

of the software, often referred to as dynamic analysis. It often involves three

steps: testing cases with data, program execution, and generation of results.

The opposite form of testing, a form of verification that does not require

execution of the software, such as mathematically proving properties about

a given source, is referred to as static analysis. A flowchart for obtaining yes/

no-type results through the testing–verification procedure is shown in 9.2

Testing has several advantages over static analysis techniques, which

often makes testing necessary and verification sufficient. The developed

software should be executed in a target environment including hardware

Test Data / Case

Program Source

Specification

Program Execution

Verification

Results

YES/NO
Results

FIGURE 9.2 Testing and verification.

270 TEST-DRIVEN DEVELOPMENT

requirements and the version of the operating system specified. The success

of these executions with the test cases provides a software configuration

baseline on which the software will perform as intended. For example, if the

application has been tested only onWindows 98, it would not be expected to

also run on another operating system.

Output from execution and the comparison of expected results can be

used to identify the test cases on which the software did not pass. We can

therefore assess the software functionality and code quality (such as perfor-

mance and runtime errors) by the test case requirements. The same test case

with different testing data can often be regarded as different cases. Therefore,

ideally, testing should be automated. In this case, test cases can be regres-

sively used for future testing as the software evolves.

Testing, however, has some limitations, and hence we have to rely on

software verification to complement testing for critical applications or zero-

defect software. Test cases are quite independent and cannot be easily

generalized to other cases. Therefore, wemight think that we have developed

lots of test cases to measure software quality but in fact many of them can be

totally redundant. In addition, whenwe change the requirements, we have to

rework the test cases involved. Furthermore, testing cannot determine, for

instance, whether faults are absent. It can only show that they are present.

Unfortunately,many applicationprogrammers find software verification

complex. Testing has often been used to provide the level of confidence in the

quality of software. Since there is no formal notation required to conduct

testing activities, test case requirements can be prepared by programmers or

users. Testing has become generally accepted as a way of assessing software

quality in the software industry.

9.2.2 Breakpoint Testing

A key element of testing is unit tests. Unit tests differ from user acceptance

tests (UATs) in that theydonot involveprogramming.Crispin (2003) explains

that unit tests are written in the same language as is used to directly interact

withprogrammingmodules. Thus,unit testing, as the name implies, examines

a piece of code or a unit of functionality. User acceptance tests are often

prepared by customers to ensure the completeness of functionality rather than

software quality.Naturally, the user acceptance test cannot be conducted until

all required modules including external user interfaces are ready.

A unit test has a structure of input parameters, expected return output

values, and exception handling (see Figure 9.3). We may write unit

tests covering (1) valid parameter values that return correctly, for example

(�5/2)¼�2.50 and (10/3)!¼ 3.34 and (2) invalid thatwhich cause appropriate

TEST-FIRST PROGRAMMING 271

exception such as 5/0. Boundary values, rounding numbers, negative values,

null, and February 29 are often selected as test data. In addition, throwing an

exception may also be done by testing records not yet set up in master tables

such as nonexistent customer code.

Writing exhaustive unit tests for each user function is costly. We should

try to write test cases that probably break the system (called breakpoint

testing) rather than typical expected behavior with valid parameters and a

few negative paths. There are two reasons for this: (1) these test casesmake us

think about exceptional application behavior, and (2) they are often the cases

that will fail once we change the code in the future.

For this reason, when a software team has incrementally built or refac-

tored a program for some time and never sees any of its old test cases failing,

this could be an indication that the team has not understood that they should

write unit tests that will probably break the function. For example, an

application is designed to allow six characters in a password field.We should

at a minimum examine two passwords of six and seven characters long.

9.2.3 Supporting Practices

Let us just look at test–code;more precisely, write test case before coding. The

test cases serve both for quality assurance (QA), avoiding the introduction of

defects, and quality checking (QC), detecting for any defects that may have

been introduced. When we automate our testing so that test cases are

reusable, testing before coding implements both QA and QC. Test-first

 xo, x1, x2,. . . ., . xn

Method or
Function

Exceptional
Handling

Values
Returned

Errors!

Input Predefined input parameters

Expected Results

Test
Case

FIGURE 9.3 Unit tests.

272 TEST-DRIVEN DEVELOPMENT

programming is a software practice in which unit tests are written down

before coding and then these test are regressively executed.

Writing unit tests before coding helps us understand user requirements

from a programming perspective. Requirements may not be the same as

application functionality. Even though well-written story cards can make

good documents, descriptive stories in plain human language aren�t the same

as exact blueprints. Instead of developing program specifications for a

software team to collaborate on and share, writing unit tests before coding

can achieve more or less the same objectives as do technical specifications.

Moreover,whenunit tests are repetitively used throughout development and

maintenance, it is much more economical and productive than having

extensive non-machine-executable program specifications.

Moving unit tests development closer to requirements activities binds

each story card with unit tests. This ensures the overall quality of software

because it covers every function of an application.However,writingunit tests

without making sure that they are correct is just talk without action. We need

to quickly write a solution to confirm the validity of each case. To make the

unit tests reusable, they must be free of error.

Solutions aren�t always easy to find orwrite, especially when the require-

ments for a unit test are very complicated. But in these cases it is still better to

quickly develop a �dummy� solution, that is, one where the programmers

know that the solutions are dummy (hypothetical), partial, incomplete, or

even hard to code, butwhere the solutions can at least be used to study testing

inputs and expected outputs. At the minimum, applying dummy solutions

knowingly allows us to test our assumptions inside unit test cases (Schoe-

maker and Gunther 2006) and is a way of alerting us to any accidental code

changes in the future. Dummy solutions that pass these test cases help us

explore better design solutions. This is the spirit of test first programming,

whichnot only introduces anewway toprogrambut also helpsus think about

programming in a new way.

Practices that support test first programming include

. Coupling requirements and test cases

. Using test cases for specifications

. Executing a quick solution for test cases as quick feedback

. Writing unit tests in computer code. (So that they can be used to test

pieces of code rather than any sort of submodule)

. Taking an iterative approach

. Accumulating unit tests

. Automating test cases for reusability

TEST-FIRST PROGRAMMING 273

. Making simple designs

. Having breakingpoint testing

. Making deliberate mistakes

An iterative software process from these principles and practices of

writing software is called test-driven development (Beck 2003).

9.3 RHYTHM: TEST—CODE—REFACTOR

Beck (2003) suggests two rules be adopted for test-first programming.

1. Don�t write even a single line of code if an automated test has failed.

This rule can be regarded as an essential precondition. It can also be

applied when working with a third-party package. A test for all third-

party library functionality should be done before it is used.

2. Have all tests run at 100% all the time. This rule is a criterion for the

beginning of coding and the completion of refactoring.

Now that we have described the key principles and practices of test–

code–design, we can formulate them as 11 essential steps called test–driven

development:

1. Pick a user story (i.e., a user requirement log) thatmay have a number

of pieces of functionality.

2. Add a unit test that can specify each piece of functionality and think

about how that test �may� break the system.

3. Run all tests including the one that has been added in step 2.

4. See that the new test is failed as that code has not yet been

implemented.

5. Write the code to pass the new test or fake it if the code cannot be

implemented quickly.

6. Run all tests and see them all succeed.

7. Refactor the code.

8. Run all tests and see them all succeed.

9. Decide whether to do more refactoring. If yes, go back to step 7.

10. At any time, if a bug is detected,write a unit test to detect that bug and

fix it.

11. Go back to step 1 until finished.

274 TEST-DRIVEN DEVELOPMENT

Principles and practices summarized in Section 9.2.3 are embedded in

test-driven development. Depending on how the tests were done in steps 5

and 7, we could either just improve the design or rewrite the solution;

however, we should conserve the external behavior of the program to pass

all accumulated written test cases as in step 5.

Inparticular,we shouldpayattention to simpledesign, breakpoint testing,

and deliberate mistakes for dummy solutions in test-driven development

because some programmers are not used to thinking in this way. Some

programmers read the user stories and often associate some other features

that they think the application is likely to have. They then proceed to code

solutions for the present but also for the unforeseeable future, but this is

contrary to the principle of �simple design.� Worse still, since unit tests are

coupledwith requirements (i.e., story cards), theymaybreak thefirst rule; that

is, they may write system features without writing corresponding test cases.

Simple design, breakpoint testing, and deliberate mistakes distinguish

test-driven development from other methodologies. Just reversing the order

fromdesign–code–test to test–code–refactor (where design becomes refactor-

ing) does not improve our thinking— and good programming is all about

better thinking. The goodnews is that, fromour experience, oncewe elaborate

these points to programmers in the workplace, they soon begin to develop

test-driven minds.

Test-driven development is fractal-like iterative. Each loop not only

comes from the previous one but also results fromwork in step 5, which has

a corresponding refactoring in step 7 that fulfills the same set of test cases.

Still, we regard the development rhythm as test–code–refactor. As shown in

Figure 9.4, the curved line indicates that two activities are connected in such

a way that both the inside of a previous activity and its results contribute to

the next activity. In addition, coding a quick solution as suggested in step 5

makes our development rhythm fast and vivid. The rhythm is �vivace!�

9.3.1 Simple Example

The following brief example illustrates the operation of test-driven devel-

opment.More examples showing thedetailed use can be found inBeck�s book

FIGURE 9.4 Test, Code, and Refactoring are all done in the same programming
language.

RHYTHM: TEST—CODE—REFACTOR 275

(2003). This example is given in Python code as it is self-explanatory.

In Python, a function block begins with the keyword def followed by

the function name and parentheses, and the pound # sign is used for

comments.

Our team wants to develop a payroll submodule for an ERP system.

Monthly income for sales and managerial staff often includes a basic salary

and a performance bonus. In the calculation for a regular employee, therewill

be no bonus. Our customer writes down on a story card that staff income

before tax is the sum of the basic salary and bonus.

Straightforwardly, we immediately think of a method for adding both

salary and bonus as calcMthIncome(salary, bonus). Before doing

anything else, we have to add a unit test case for calcMthIncome(),which

can be assert(calcMthIncome(1, 2) is 3). The test does not seem

quite right. No staff has ever earned less than $100 permonth in the company.

Similarly, assert(calcMthIncome(987654321.123, 9876543) is
997530864.123 does not make any sense either. We cross both out and

askwhat themaximumwage is that staff could get from the company for just

onemonth. We have to talk to our customer, who then agrees that the system

should not be able to mistakenly process an unreasonable amount. The

highest basic salary is less than 99999.99 and the bonus less than 9999.99.

The unit test becomes assert(calcMthIncome(99999.99, 9999.99)¼
109999.98). In the same fashion, more unit test cases are written.

Assume thatwehave no idea how towrite a quick solution.We just fake it

by returning a value irrespective of the right calculation:

def calcMthIncome(salary, bonus):
return 109999.98

This does not implement any logic for calcMthIncome() at all. The

value of �fake it� is that programmers can anticipate the expected result and

roll back to the last point at which all tests ran with a 100% pass rate. Starting

from this point as a baseline, we proceed to implement calcMthIncome().
Human programmers sometimes make mistakes even though they know

better. So let�s absentmindedly do some stupid coding as follows:

def calcIncome(salary, bonus):
return 109999.98

return salary · bonus

A typo like �þ� never causes backsliding as it will not pass our test case

and we can go back to the previous point for correction. Of course, we do not

always begin by faking everything.When a solution is known and simple, we

should try to quickly complete it.Notice that these testing tasks are regressive.

276 TEST-DRIVEN DEVELOPMENT

If they are not automated, testing will become more tedious and time-

consuming than before.

9.3.2 Automation

A tool to automate the execution of accumulated unit tests is indispensable in

test-driven development. It integrates unit test caseswith the tested program.

The tool displays which tests fail and measures the overall percentage. Erich

Gamma and Kent Beck developed an open-source tool to automate unit

testing called �JUnit�. As discussed, unit test cases are written in the same

language that we use to program. JUnit is used only for Java programming.

However, testing frameworks for other languages have been developed, and

this kind of code-driven testing tool is known as �xUnit�
JUnit is also helpful for refactoring alone. As the tool is designed to

automate unit testing, programmerswill develop a number of automated test

cases to make assertions about external behavior reserved after refactoring.

By continuously running these automated test cases, JUnit will identify

where refactoring breaks anything in the existing program.

JUnit creates a thorough regression testbed, which allows smooth inte-

gration of new features into and refactoring for the code base. The two rules

for test-driven development are framed by JUnit. In Figure 9.5, the purpose of

�see it fail� is to have a failing automated test before coding. All tests running

at 100% all the time are objectively controlled by JUnit. Since software

development can never be fully automated, it is best to use an automation

tool on a regular basis. It helps to control and monitor the whole cycle.

FIGURE 9.5 JUnit for automation.

RHYTHM: TEST—CODE—REFACTOR 277

FIGURE 9.6 In–out diagram for test-driven development.

There are three major benefits to automated testing: (1) productivity, (2)

reusability, and (3) quality improvement. Using the automated tool, it is

easier to adopt and sustain test-driven development, as shown in Figure 9.6.

In a real environment, one of the authors I has seen programmers fail to write

meaningful unit tests, and some may even test after code occasionally. In

general, however, test-drivendevelopment is easy to sustain. There is noneed

to be strict. As long as straying programmers can get back on track, the test–

code–refactor rhythm can be sustained.

9.3.3 Revolution in Consciousness!

Superficially, test-driven development gets programmers to write testing

code that is automatically testable and that can be checked against expected

results. The obvious benefit of this is improved task understanding and focus.

Yet these benefits can be realized in essentially any development method

simply by moving test cases before implementation. Test-driven develop-

ment is not significantly related to productivity. As long as unit test cases are

written in an automated way, it is possible to reduce the burden of rework. It

does not matter whether it is done before or after. In addition, the amount of

automated unit tests does not truly represent quality because software testing

can show the presence, but not the absence, of defects. It simply ensures that

system features arewell covered by unit tests and that programmers have not

abandoned testing just to meet a deadline.

Test-driven development is more than writing automated test cases first.

It must comewith test-first thinking, which is not merely a step-by-step set of

actions but a problem-solving method (see Section 9.2.3). (For instance, as

depicted in figure 9.7, the path followed to go forward might not be the same

as the path used to come back; in otherwords, order reversal necessitates new

278 TEST-DRIVEN DEVELOPMENT

FIGURE 9.7 Order reversal necessitates rethinking.

thinking). This is similar to what Ohno in the Toyota production system talks

about, a revolution in consciousness, a change in people�s attitudes and

viewpoints (Ohno 1988).

What will happen if our team just mechanically exercises test-first but

their minds fail to think test-first? From our experience, the team will not see

any significant improvement out of test-first programming. Qualitymay tend

to improve owing to the coupling of requirements and test cases. This is the

worst that can happen, as test-first programming without test-first thinking

does not appear to beworse than test-last programming (see a short summary

of test-driven development in Table 9.1).

We were once learned that a smart software team in Japan was doing

both test-first programming and test-last programming (Figure 9.8). The

key to getting the best of both worlds is to do both test-first programming

and test-last programming, switching as needed with a suitable rhythm.

Before coding, write unit tests that probably break and, after coding,

write essential unit tests. This won�t improve productivity but it will help

the team pay attention to breakpoint testing for software quality while they

RHYTHM: TEST—CODE—REFACTOR 279

TA
B
LE

9
.1

R
es

ea
rc
h
Fi
nd

in
gs

o
n
Te
st
-F
ir
st

Pr
o
gr
am

m
in
g
an

d
Te
st
-D

ri
ve

n
D
ev

el
o
p
m
en

t
(T
D
D
)

S
u
b
je
ct
s

E
x
p
e
ri
m
e
n
t
Fo
cu
s

Ty
p
e

#
W
ri
te

Te
st

C
as
e
B
e
fo
re

S
o
lo
–
P
ai
r

P
ro
g
ra
m
m
in
g

Te
st

C
as
e
s

th
at

P
ro
b
ab

ly
B
re
ak

D
e
lib

e
ra
te

M
is
ta
ke

R
e
fa
ct
o
ri
n
g

E
m
p
h
as
iz
e
d

C
o
d
e

Q
u
al
it
y

P
ro
d
u
ct
iv
it
y

C
o
n
cl
u
si
o
n

R
e
fe
re
n
ce

S
tu
d
e
n
ts

1
9

Y
e
s

S
o
lo

N
o

N
o

N
o

N
/D

a
N
/D

C
o
n
se
rv
at
iv
e
,

n
e
e
d
m
o
re

st
u
d
y

M
u
lle
r
an

d
H
ag

n
e
r

(2
0
0
2
)

P
ro
g
ra
m
m
e
rs

2
4

Y
e
s

P
ai
r

N
o

N
o

N
o

TD
D
is

b
e
tt
e
r

TD
D
ta
ke
s

1
6
%

m
o
re

ti
m
e

C
o
n
st
ru
ct
iv
e

M
ax
im

ili
e
n

an
d
W
ill
ia
m
s

(2
0
0
3
)

S
tu
d
e
n
ts

3
5

Y
e
s

S
o
lo

N
o

N
o

N
o

N
/D

N
/A

b
B
e
tt
e
r
ta
sk

fo
cu
s,
fa
st
e
r

le
ar
n
in
g

E
rd
o
g
m
u
s

e
t
al
.
(2
0
0
5
)

S
tu
d
e
n
ts

1
0

Y
e
s

S
o
lo

N
o

N
o

N
o

N
/D

TD
D
is

b
e
tt
e
r

C
o
n
st
ru
ct
iv
e

Ja
n
ze
n
an

d
S
ai
e
d
ia
n

(2
0
0
5
)

a N
o
d
iff
e
re
n
ce
.

b N
o
t
ap

p
lic
ab

le
.

280

are writing code. The team composes a very strong rhythm. The flexibility

to change is a central part of applying effective software development

rhythms.

9.3.4 Test Case for Collaboration

We had all seen nervous team leaders. They want to be kept in the loop, so

they tend tohover aroundaproject, askingquestions but not ones that seem to

matter much to the programmers. Their main issue is usually deadlines, so

they want to know about the latest project progress but they really already

know about the overall progress, so they ask about details so that they can

solve small problems before they snowball into big ones.

So, what do programmers tell the team leaders about when asked about

their progress? Telling them which part of a program they are working on

does not provide any new information. Telling them exactly what they are

doing right nowmight just be about DO-loop or IF-THEN logic. Perhaps itwould

be more informative to talk about the unit tests they have just developed.

Since each unit test is a solid example for the system, they are easy to

understand and even comment on, perhaps helpfully!

Our ability to communicate with others what we are doing and thinking in

the workplace is very important. But, personal bonding aside, the talk-to-

information ratio has to be worthwhile. We all know that effective communica-

tions save time and resources, but how do we improve a programmer�s ability
to communicatewellwithhis or herpeers?Unit test cases are oneway todo this.

In test-driven development, we write unit tests at the beginning. Each

unit test is a tiny example with data and expected outcomes. We can make

mistakes there, but there is no gray area for communications. For example, a

unit test like assert(add(1,1) is 3) is just wrong but it causes no

confusion for team communications.

Given a piece of a requirement, there can be many programming solu-

tions. And even if you explain until your head falls off, your partner may still

misunderstand one or twopoints. Sowhynot start by talking about unit tests?

Test cases are unambiguous, objective, and concrete. They have inputs and

expected results. Once we have a unit test on hand, collaborating on its

solution and pair communications are greatly simplified. In particular, when

developers will be collaborating closely with other, team members on the

FIGURE 9.8 A rhythm for test-first and test-last.

RHYTHM: TEST—CODE—REFACTOR 281

same task, as in pair programming or side-by-side programming, starting by

communicating unit tests quickly builds some ground-up understanding.

Then they can get down to the business of writing code.

Even where software teams do not adopt pair programming, test-driven

development is still practical. Their experience in writing good unit test cases

that are embedded with domain-specific knowledge and testing skills can be

shared with other team members. Depending on programming experience, it

normally does not take long to absorb the principles we discussed in Section

9.2.3. Inaddition,masteringJUnit isnotthatdifficult,andsoasoftwareteamcan

easilygettest-drivendevelopmentright.Asfornewjointprogrammers, thebest

way to learn test-drivendevelopment is throughon-the-job training,which is a

kind of all-around learning activity including practice, skills, thinking, and

attitude.Newjointprogrammerscanlearnhowtest-drivendevelopmentworks

by seeing for themselves how each unit test case should be designed and how

making deliberate mistakes can help developers explore solutions. Figure 9.9

shows a master–coach diagram for test-driven development.

Although we have discussed many principles, practices, and rules for

test-driven development, the important element is to develop test-first

thinking. We see nothing wrong with test-driven programmers sometimes

adding more unit tests after implementation or occasionally coding before

testing. This doesn�t matter as long as programmers have internalized test-

first thinking and the rhythm for test-driven development.

9.4 RAPID SOFTWARE PROCESS IMPROVEMENT

Capabilities of programmers in developing countries are likely to be diverse.

In particular, programmerswho have less than 3 years� experience are coders

FIGURE 9.9 Master–coach diagram for test-driven development.

282 TEST-DRIVEN DEVELOPMENT

more than developers. To manage a team composed of many of these

programmers is very challenging. In this case, project managers may prefer

a process-oriented approach, like CMM (or CMMI).

Capability maturity modeling is a regular choice for software managers

who are not sure which software practices will be most important to project

success in their unique environments and teams. CMM addresses so many

practices that it is hard to miss anything (Zahran 1998). It�s like the slogan:

�Just do it!� CMM is a scattergun approach where managers do little follow-

uponwhen eachpractice is usedor how itworks.Maybe this is okay, if you�ve
got the budget.

In contrast, agile team leaders have to catch and/or explore rhythms

among people and practices. This is a very hands-on and human-centered

and not at all robotic approach. Agile practices should be adopted according

to the values that they deliver to the team and the software. Among many

agile practices, test-drivendevelopment is a process that includes anumber of

practices organized in a strong rhythm. Yet there are also tools available to

support test-driven development so test-driven development is not hard or

costly to adopt and can be quickly learned, applied and adopted in all kinds of

environments, including developing countries, to improve team capabilities

in a very short time.

9.4.1 Training Program

Programmers in developing countries work in an ad hoc environment and

consequently do not perceive in any significant way a correlation between

software and software methodologies. Yet while they are not so interested in

software methodologies such as CMMI or eXtreme programming, these

developers do have a strong interest in programming techniques such as

thread programming and computer languages such as C#.

Many programmers in developing countries are code gurus or enthu-

siasts. They may take time to appreciate the importance of a software meth-

odology in teamcollaborationanda longer time todiscover their rhythmswith

their development methodology. They may not be able to give up old ways

and adopt new software practices as quickly as they can learn a new testing

tool. Theway togowith theseguys is to view test-drivendevelopment as a tool

(e.g., JUnit) rather than as a method. Mastering a development tool will

definitely interest many programmers more than understanding how to use

templates for quick documentation or learning software paradigms. Progres-

sively implement a software paradigm through a testing tool. It may be that in

this way JUnit has contributed to the wide popularity of the software meth-

odologies, XP and TDD (Janzen and Saiedian 2005).

RAPID SOFTWARE PROCESS IMPROVEMENT 283

9.4.2 Project Planning

One of the major problems with project planning in developing countries is

that programmers find it harder to estimate how long it will take to code a

piece of a program. They tend to underestimate the time required for their

planned tasks. They even try to correct their errors in estimating by cutting

down testing efforts. In addition, too little time is devoted to testing relative to

programming, with ratios as great as 4 days of code to 2 hours of testing. This

has a substantial impact on project planning.

Here is a daily scenariowe often see in theworkplace.Aprojectmanager

asks two colleagues how much time they need to write a program for a

problem.On the basis of their replies and themanager�s ownassessment, the

manager will work out the time estimation for the task. The estimate is

subjective and can deviate unpredictably from the actual outcome (see

Figure 9.10).

Wemayadopt agileplanning tomanage rapid iterativedevelopment cycles

as discussed in Section 8.1.1. However, most software teams in developing

countries are conservative and actually greatly prefer step-by-step change. A

conventional project plan should be done at the beginning of the project.

Here is our advice for developing that plan. Let the teammembers spend

a little time on getting a number of unit tests randomly selected from user

requirements and getting their quick solutions done. Having the unit test

establishes a specific goal; the programmers are more confident about their

estimates of the amount of effort required after theywrite unit tests. This is not

a perfect approach, but many programmers have told us that it is better than

what they are used to.

9.4.3 Project Tracking

Programming progress should be tracked in terms of completeness. When a

programmer reports 40% of coding done, it is by no means clear what this

means in terms of progress. The work isn�t 40% functionally complete since it

can�t be executed—and 40% complete in terms of time? If she did that 40% in 4

days, does this mean that she will do the rest in 6 days? And if she hasn�t yet
finished it, how can she know the length of her complete program? If she

doesn�t know how many lines of code the program will have, how can she

report 40% done?

When requirements are decomposed into story cards and each story card

is examined by unit tests, wemay determine our current progress against the

outstanding user stories, completed stories, and, most importantly, the

velocity (see Section 8.1.1). Even using test-driven development with tradi-

tional project management, we can use velocity to track our progress.

284 TEST-DRIVEN DEVELOPMENT

Anothermetric is the number of times that the project team isworking on

something current but previous unit tests fail (see Table 9.2). This is an

interesting metric. When it is low, this probably means either that the team

has written many typical unit tests or that the team rarely makes mistakes so

that old unit tests are always passed. A higher value indicates either that the

team has worked out a number of amazing unit tests that have broken the

system many times while the development is ongoing or that the team has

FIGURE 9.10 Planning dilemma.

RAPID SOFTWARE PROCESS IMPROVEMENT 285

made lots ofmistakes. Get to learnmore about thismetric.While this does not

tell us how long the developers will require to complete the program, it does

provide reliable information that assists us in overseeing the process, espe-

cially in relation to team performance.

9.4.4 Software Quality

As for programmers in developing countries, software quality is unpredict-

able. For instance, developers can repeat the same kind ofmistake anddeliver

work products to other teammembers without testing them thoroughly. The

most noticeable benefit of test-driven development in such an environment is

to have software quality improved as test-first thinking and making deliber-

ate mistakes becomes the development strategy. With test-driven develop-

ment, many defects are systematically identified through the accumulated

reusable test cases after we refactor the program or add new features.

How much has software quality improved after software teams have

adopted test-driven development to build software? In 2004 we collected

some industrial data. Because different teams wrote different commercial

systems, it is not possible to analyze the defects on the same baseline, so we

compared how much time programmers needed to fix defects reported by

users duringuser acceptance testing andproduction operations.We collected

643 and 212 bug fixes from non-TDD teams and TDD teams in China,

respectively. With automated unit tests, 97% of defects can be fixed by TDD

teams in one day (see Figure 9.11). TDD helps to fix defects faster.

9.4.5 Software Configuration

One of the biggest but most neglected problems for many inexperienced

programmers is software configuration management. We have all heard

TABLE 9.2 Unit Test Cases that Probably Break

Iteration
Metric . . . n Nþ1 Nþ2 . . .

Number of unit test cases written at
the current iteration

. . . 3 4 4 . . .

Total number of accumulated unit test
cases from previous iterations

. . . 100 103 107 . . .

Number of accumulated unit test cases
failed at the current iteration

. . . 0 2 8 . . .

Old unit tests failed in percentage (%) . . . 0 0.19 7.4 . . .

286 TEST-DRIVEN DEVELOPMENT

stories like this. At the beginning of the day, we each get the same copy of the

program and make separate changes. At the end of the day, we upload our

programbackonto the server, and sodoyou.Thenextmorning,wedownload

the program and code the other parts. Only after 2 or 3 hours do we realize

that this is not the right version. Our program was accidentally overwritten

yesterday.

In traditional software development, when tasks are assigned to pro-

grammers, they will be busy with their work and may not talk to each other

very often. They even take it for granted thatwhat they areworking on has no

relationship to what others are working on.

In test-driven development, we have to communicate with each other

closely because unit tests must pass 100%. Anythingwrongwill immediately

cause our work to be lost! This seems messy, but it is good to know that we

will at worst lose only hours rather than days of work.

It is about discipline and team cooperation. Test-driven development

does not address software configuration management. However, if the

team does not have a mechanism for version control in place, they will

more quickly encounter configuration problems than when using other

methods.

There are two artifacts that are so closely associated that we have to

manage their versions all the time: unit test cases and programs. Unit tests

must be shared with others. To avoid mistakes, the team has to integrate the

software at least daily. Perhaps the biggest benefit of test-drivendevelopment

for software configuration is that any version control problem will quickly

stop the development rhythm,which avoids any sort of snowball growingbig

enough to ruin the development efforts of weeks.

Time
Required to
Fix1

da
y

1–
3

da
ys

3–
5

da
ys

ov
er

 5
 d

ay
s

1–
3h

ou
rs

15
m

in
s

1h
ou

rs
–

le
ss

 th
an

 1
5

m
in

s

0

10

20

30

40

TDD

non-TDD

FIGURE 9.11 Shortening time to fix reported bugs.

RAPID SOFTWARE PROCESS IMPROVEMENT 287

9.4.6 People Discipline

Programming activities in test-driven development are easily tracked. If,

owing to personal lack of discipline because they misunderstand test-driven

development, the developers do not follow the framework, they can be

quickly identified. However, this is not why programmers who adopt test-

driven development tend to bemore disciplined.Writing unit test cases is just

the same as writing code. We do not ask programmers to do things like write

documents and fill in forms. Testing is an automated process. In addition,

coding and refactoring are both about technical programming. This is why so

manyprogrammerswemet like themethodologyandarewilling tokeep to its

practices.

In 2003 a speaker in an international software engineering conference

asked the audience what they thought was the best methodology. Among

many answers, including XP, CMM, and the waterfall model, the most

popular answer seemed to be �ad hoc.� Programmers do not follow software

models in a disciplinedway.Asnoprogrammerhurts or dies during software

development, we don�t take our practices seriously.

Itwouldbehard to believe that the adhocmethod,which is regardedas an

undisciplined way to build software, could be acceptable to so many people.

Why? Some programmers may understand that their methods are ad hoc

because they cannot be clearly classified by one of the models or paradigms

suggested by CMM, CMMI, Lean Software Development, Scrum, eXtreme

Programming, and so on. However, if you look deeply at when their practices

work andwhen thepractices areused, youmaynotice that the success is due to

their own ways of playing software development rhythms well.

REFERENCES

Beck K. Extreme Programming Explained: Embrace Change. Boston: Addison-Wesley;

2000.

Beck K. Test-Driven Development: By Example. Boston: Addison-Wesley; 2003.

Brooks FP. The Mythical Man-Month: Essays on Software Engineering. Reading, MA:

Addison-Wesley; 1995.

Crispin L. Testing Extreme Programming. Boston: Addison-Wesley; 2003.

ErdogmusH,MorisioM, and TorchianoM.On the effectiveness of the test-first approach

to programming. IEEE Transactions on Software Engineering 2005; 31 (3):226–237.

Janzen D and Saiedian H. Test-driven development: Concepts, taxonomy, and future

direction. IEEE Computer 2005; 38 (9):43–50.

MaximilienEMandWilliamsL.Assessing test-drivendevelopment at IBM.Proceedings

of the 25th International Conference on Software Engineering. 2003; p. 564–569.

288 TEST-DRIVEN DEVELOPMENT

Muller MM and Hagner O. Experiment about test-first programming. IEE Proceedings

Software 2002; 149 (5):131–136.

Ohno T. Toyota Production System: Beyond Large-Scale Production. Cambridge, MA:

Productivity Press; 1988.

Schoemaker P and Gunther R. The wisdom of deliberate mistakes. Harvard Business

Review 2006; 8 (6):108–115.

Stephens M and Rosenberg D. Extreme Programming Refactored: The Case Against XP.

Berlin: Springer; 2003.

Zahran S. Software Process Improvement: Practical Guidelines for Business Success.

Reading, MA: Addison-Wesley; 1998.

REFERENCES 289

EPILOGUE: MEDLEY

If music be the food of love, play on!

—SHAKESPEARE

A first piano lesson starts with learning to sit upright with the chest forward

and shoulders pulled back and the arms and hands relaxed.We then practice

playing C, D, E, F, and G with our right hand. By the end of the first lesson

many of us can play a simple tune. On the surface, playing the piano is easy!

But when we start to learn to play with two hands, we have two rhythms to

play, and then it�s not that easy at all.

Unlike many other musical instruments like the violin or the saxophone,

we often play the piano melody with the right hand and chords with the left.

Software development rhythms are like this. One rhythm is for the theme,

and the other is for the chords that support the theme.

Software development rhythms are embedded in any executing para-

digm. There are two areas: a theme that guides or moves us forward and

chords that support our theme practices. However, in many cases, we may

have to alter the rhythms to match changes in the project environment. We

could start to play another rhythm and thereby alter our accompaniment or

our theme. This is the reason why we prefer development rhythms that are

easy to start and easy to sustain in a rapidly changing environment or in an

uncertain commercial world.

No musician in an orchestra will hand in a resignation letter to the

conductor and then leave during the performance. However, in the presence

of relatively high personnel turnover in the software team, we have to

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright � 2008 John Wiley & Sons, Inc.

291

consider themaster–coachdiagram,whichhelpsusunderstand the impact on

the development rhythms we are playing.

All these considerationswill help youdiscover the right rhythms for your

team in the workplace.

Rhythms and You

In this final section we hope to stimulate the reader�s thinking. The two

rhythms that you see in Figures E.1 and E.2 workedwell with small teamswe

coached in agile software development in China. We suggest that you read

the stave chart and think about

. When these rhythms would work for your team and when they most
definitely would not

. When these rhythms have been used in a project in your workplace

Then you might like to consider the kinds of rhythms that you

might employ with your team or your staff in a particular project in your

workplace.

FIGURE E.2 TDD as themeþpair programming as chord.

FIGURE E.1 TDD as themeþpair programming as chord.

292 EPILOGUE: MEDLEY

Rhythms for More Repetitious Programming Tasks

All test cases and their code source have beenwritten in pairs.When the same

code patterns have previously been done in pairs, they can be refactored by

individuals (see Figure E.1).

Rhythms for Challenging Tasks

All test cases and their code source have been written in pairs. The pair is

ready to change partnerswhen both knowwhat and how to refactor a piece of

code. Change partners so that new partners bring a fresh view to the pairing

(see Figure E.2).

EPILOGUE: MEDLEY 293

Abandoned software project, 217
Abdel-Hamid, T., 188, 195
Accounts receivable, 253
Accused project managers, 221
ACNielsen, 118, 120, 122
Active users, 70, 72, 76
Ad hoc, 288
Ad hoc environment, 283
Ad hoc programming tasks, 259
Adaptive, 194
Adaptive models, 6
Adding manpower, 188, 190
Additive tasks, 149, 151
Agile manifesto, 60, 83, 212, 217–218
Agile methods, 14
Agile practices, 10, 33–34, 41, 59, 78,

82–83, 145, 212, 241, 283
Agile project management, 145, 237
Agile project progress, 229
Agile software development (ASD), 10, 57, 60–

61, 63–64, 73, 77, 83, 150, 156, 163, 199, 224,
227, 240–241

Agile software development processes, 34
Agile team, 212
Agile teaming, 197–200, 202–204, 206, 208, 210,

212–216, 218–220, 222, 224
Agile teaming rhythm, 215
Agile values, 63–64, 78, 83
Agreed-on plans, 4
Alexander, C., 100, 262, 263
Algorithms, 40, 176
ALICE, 124, 126
All-the-time single pair programming, 180
Among-classes, 256–257
Analysis and design as planning, 5

Analysis-design process, 5
Analyst programmers, 223
Andres, C., 24, 34, 59, 199, 215, 224
ANNA, 126
Antigroup phenomenon, 145, 168
Anton, J., 190, 195
Application, 12–13, 15–17, 88–89, 101–102,

108, 110, 112, 151–152, 180, 220, 247, 255,
266, 271–273

Application requirements, 66, 115, 174
Applying development rhythms, 281,

288
Architecture, 100, 106
Arrhythmatic pairing, 205
Arrhythmic, 204, 206
Arrhythmic software project, 213
A/S400, 220, 222
ASD, see Agile software development
Asia, 46
Assembly line, 151–152, 243–246
Assembly task planning, 7, 8
Asynchronously collaborating, 56
ATM, 154
Atomic Energy of Canada Limited, 4
Atomic tasks, 142
A-Tutor, 68, 116–117
Automated test cases, 81, 277–278
Automated unit tests, 79, 278, 286
Awkward team structure, 23

Backward pass, 143
Bad-smell concept, 258
Bank accounts, 154
Bank, 154
Basic project management techniques, 240

INDEX

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright � 2008 John Wiley & Sons, Inc.

295

BASIC, see Beginners’ All-Purpose Symbolic
Instruction Code

Bazaar models, 65
Beck, K., 24, 34, 59, 199, 215, 224, 249, 263, 267,

274, 277, 288
Beckham, David, 121, 125
Beedle, M., 161, 163, 203, 224
Beginners’ All-Purpose Symbolic Instruction

Code (BASIC), 89
Bernstein, L., 21, 35
Big-bang implementation, 23
Bill of Materials (BOM), 7–9
Black, J. T., 240, 263
Blackbox programming, 74, 76, 78
Blackbox testing, 108
Blackburn, J. D., 249, 263
Boehm, B., 15, 35
BOM, see Bill of Materials
Bonus pay, 18
Bottom-up approach, 230
Boundary values, 272
Breakpoint testing, 271, 275
Brooks’ law, 14, 188, 190–191, 194
Brooks, F. P., 35, 188, 195, 267, 288
BS5750, 4
Budget, 12
Budget control, 188
Business continual process improvement, 14
Business logic, 156
Business operations, 28, 40–41, 116, 225,

232
Business processes, 22, 205

C, 12, 90, 125, 261
C#, 283
Calls for a partner exchange, 159
Capability maturity model, see CMM
Capability maturity model integrated, see

CMMI
Capretz, L. F., 43, 54
Carr, N. G., 131, 162
CASE, see Computer-aided software

engineering
Cathedral models, 65–66, 70, 75
Causal relationships, 51
Challenging programming problems, 176
Chan, K. C. C., 176, 195
Changing requirements, 23, 223, 253
Chaos models, 21, 35
CHAOS report, 253
Chapman, S. N., 8, 35
Chatting robot, 122
Chief programmers, 198

China, 4, 45, 47, 90, 96, 119, 122–123, 187, 220,
241, 262, 292

Chinese marketplace, 90
Chords, 291
Chou, H. W., 198, 205, 224
Class component, 8
Class diagrams, 8–10, 65
Class hierarchy, 254
Class inheritance, 156
Class relationships, 257, 259, 262
Class-relationship-restructured, 256–257
Clients, 21, 65, 67, 73, 108, 142–144,

235, 261
Clipper, 12, 225
Closed-source software project, 66, 69
CMM, 4, 240–242, 283, 288
CMM levels, 240
CMM rhythm, 240–241
CMMI, 4, 198–199, 240, 283, 288
Coach software team, 28
Coaching pair programming teams, 161
Coad, P., 93, 129
Cockburn, A., 81, 83, 138, 162, 195
Code comprehension, 39
Code patterns, 12, 293
Code quality, 67, 76, 271, 280
Code readability, 156
Code samples, 94, 102, 108, 110–113,

115, 126
Code-and-fix, 16–17, 21
Code-driven refactoring, 259
Code-oriented, 102
Coders, 19
Codevelopers, 75–76
Coding, 16–17, 27, 63–64, 87–90, 92–96, 105–

108, 131–133, 135–139, 156–161, 233–238,
261–262, 266–269, 271–275, 277–279

Collaboration, 10, 41, 57, 65, 67, 69, 71–72, 75,
135–137, 169, 171, 184, 217–218, 238

Collaborative cognition, 132
Collaborative programming, 81, 132, 163, 195
Collaborative work, 133, 210
Collective code ownership, 187, 210
Collective tasks, 209, 211
Collocated team, 78–79, 82
Commercial products, 68–69, 74
Commercial projects, 71, 286
Commercial software project, 66, 71, 81
Communication channels, 111, 169,

192–193
Communication costs, 188, 191–193, 233–234
Communication overheads, 192
Communication proximity, 79, 80

296 INDEX

Complementary skills, 203
Completeness of source code, 73–74
Completion time, 17–18, 20, 133, 143, 176, 185,

188, 192, 274
Computer languages, 107, 261
Computer programming, 39, 137, 168
Computer-aided software engineering

(CASE), 154
Concurrent software, 20, 263
Concurrent software engineering, 20
Conflicting requirements, 251, 253
Conflicts, 161
Constant feedback, 6
Constantine, L. L., 133, 162, 195
Contemporary software design, 231
Continuous improvement, 240
Continuous integration, 79, 81, 152, 161
Control projects, 12
Cooperative learning, 137
Copy-and-paste programming, 88, 128
Copyleft, 117
Core developers, 59, 70, 75–76
Core software programming, 59
Cost of change, 249
Costs, 4, 7, 48, 58, 119, 136, 140, 156, 161, 168,

170, 191–192, 233–234, 249
CPE, 159
CPM, see Critical path method
CPX, 159
Creativity, 134
Crispin, L., 271, 288
Critical path method (CPM), 142–143, 227
CRM, see Customer relations management
CRM applications, 110, 205, 253
CRM project development cycle, 115
CRM project, 111–112, 114
CRUD, 95
Cultural capital, 45–46
Cultural differences, 201
Cultural elements, 34
Cultural understanding, 47
Customer(s), 22
Customer collaboration, 60
Customer feedback, 12
Customer relationships, 21
Customer-relations management (CRM), 22,

40, 82, 110, 114–115, 145, 190, 230, 253. See
also CRM entries

Cut-and-paste programming, 88

Data locking, 226
Database, 10
Database administration, 102

Database denormalization, 102
Database programming, 151
Dave, 124
Deadline, 281
Deadlock handling, 226
Deal or No Deal, 10
Death march, 267
Debugging, 69
Defect(s), 9, 10, 73, 139, 152, 244–246, 249, 253,

262, 269–270, 272, 278, 286
Defect detection, 139
Delayed time, 20
Deliberate mistakes, 275, 286
Delivery lead time, 251
Delphi, 17
Deming, W. E., 14
Demographic data, 118–120
Departmental team, 201
Design, 154, 168, 176, 268
Design and testing, 152
Design by code, 156–157, 159, 233,

268–269
Design by diagram, 233
Design defects, 5, 139, 159
Design documents, 49, 50, 156
Design flexibility, 102
Design patterns, 101–102, 129, 185, 187, 261–

263
Design problems, 9, 105
Design review, 106
Design rhythm, 269
Design software, 225
Design solutions, 161, 259, 261–262,

273
Developed areas, 47
Developer role, 71–72
Developers, 12, 16–18, 23–24, 50, 58–60, 62–65,

67–75, 78, 80–81, 102–104, 134, 189, 198–
199, 281–283

Developing software, 4, 5, 7, 9, 11, 175, 227, 241,
261

Development environment, 31, 40, 81, 83, 171
Development framework, 10, 25
Development languages, 207
Development methodology, 11, 24, 194, 283
Development processes, 5, 20, 22, 29, 62
Development rhythms, 25, 28, 30, 32, 34, 39,

42, 48, 53, 82–83, 158, 194, 275,
291–292

Development team, 22, 29, 69, 78, 112, 114, 229,
268

Devito Da Cunha, A., 43, 54
Dietz-Uhler, B., 136, 163

INDEX 297

Discretionary tasks, 152, 203
Distributed environment, 115
Distributed pair programming, 80
Distributed team, 78–79
Diversity, 134
Dividing and conquering, 5
Documents, 57, 60, 148
Domain knowledge, 22, 151, 207
Double-loop iterative model, 14
Dreamweaver, 47
Dummy solutions, 275
Duncan, S. D., 40, 54
Dynamic, 194, 202
Dynamic analysis, 270

Easy to do, 99
Easy to follow, 99
Easy-to-start, 96, 158, 160, 238–239, 248
Easy-to-sustain, 96, 158, 160,

238–239, 248
Ebrahimi, A., 107, 129
Economical number of test cases, 266–267
Economics, 140
Elapsed time, 228
ELIZA, 124
Empirical software, 175, 195
Empirical software engineering, 175
End-user, 71
Engineering product defects, 5
Engineering projects, 3, 7, 8
English language, 46–47
Enhanced waterfall, 6
Enterprise resources planning (ERP),

71–72, 95, 97, 118, 149, 152, 177, 216,
229–230, 251

Entity-relationship diagrams, 60
Epley, N., 52, 54
ERP, see Enterprise resources planning
Error detection, 138
E-training project, 116
Eureka task, 150
‘‘Eureka’’-type problem, 150
Europe, 46
Evaluating pair programming, 195
Event-driven programming, 12, 90, 125
Evolutionary software development, 14
Evolution through prototyping, 247
Ewusi-Mensha, K., 217, 224
Exceptional handling, 23, 174
Execution, 5
Ex-partner exchange, 161
Experienced management, 48–49, 51, 53
Experienced programmers, 96, 135–136, 140,

159, 173, 253, 262, 265, 268–269

Experimental evaluation of pair
programming, 163, 195

Experiments, 165
Expert programmers, 140, 173
Explicit knowledge, 31
External behaviors, 254, 256, 258, 268, 275, 277
External user interfaces, 271
EXtreme programming, 8, 24–25, 34–35, 63, 78,

81–83, 114, 132, 152, 162–163, 175, 179, 194,
288–289

Face-to-face meeting, 20
Factors, cultural, 39
FAQ, see Frequently asked questions
Fast-paced, 194
Fermi question, 150
FIFO, see First-in first-out
Final-year programming assignment, 88
Finance director, 221
Finished products, 14–15, 151, 244–245
Firefox, 72
First-in first-out (FIFO), 174, 254
Flor, N. V., 155, 162, 195
Flowcharts, 25, 155, 157, 243, 259, 270
Forer, B. R., 51, 54
Forgotten requirements, 251, 253
Formal methods, 153
Formation phases, 206
Forsyth, D. R., 210, 224
Forward pass, 143
Four Ps, 61, 268
Four-stage waterfall model, 5, 18
Fowler, M., 258, 263
FoxPro, 225
Free riders, 211
Freelance programmers, 270
Frequently asked questions (FAQ), 132
Function points, 202, 211, 227, 246,

266, 269
Functional diversity, 205
Functional modules, 212–213, 216–217,

222, 229
Functionality enhancement, 69
Functions, 13, 76, 110, 116, 128, 148, 151, 179,

209, 215, 230, 232, 246, 272–273
Funded project, 57, 68

Game theory, 28
Game theory analysis, 29
Gamma, E., 101, 129, 262, 263, 277
Gang of four, 101
Gardner, H., 173, 195
Gartner Group, 22
General public licence (GPL), 109

298 INDEX

Giddens, A., 198, 224
Gifted programmers, 234, 237
Global software team, 81
GNU, 109
GNU GPL, 109, 126
Gödel, K., 137, 162
GPL, see General public licence
Grading, 258
Graphical user interfaces (GUI), 179, 183–184,

186–187, 256, 259
Greathead, D., 43, 54
Group dynamics, 34, 134, 198, 224
Group learning, 169
Group of programmers, 41, 65, 134, 173
GUI Creation Maintenance Inquiry, 183
GUI, see Graphical user interfaces
Gunther, R. E., 262, 264, 273, 289

Halstead, M., 67, 83
Hansen, J., 134, 163
Hardcode development, 136
Harrison, D. K., 239, 263
Harrison, W., 246, 263
Haslam, A., 165, 195
Hawking, Stephen, 156
Hawthorne effect, 166
Heavyweight, 59, 60, 78, 82, 194
Heavyweight processes, 59, 60
Herzberg, F., 176, 195
Heterogeneous team, 201
High cohesion, 105
Higher-quality software, 132
Highly maintainable code, 236
Hired programmers, 107, 135
Hong Kong, 11, 116–117, 123–124, 200
Horse-trading problem, 145, 150
Human-centered, 38
Human-computer studies, 173
Human dynamism, 28
Human programmers, 184, 276
Human resources, 16–17
Hunter, S. L., 240, 263
Hutchins, E., 155, 162
Hybrid approach, 230
Hypnotic decision making, 51

Iago, 222–223
ICQ, 111, 122–126, 135
IcqOscarJ plug-in, 128
Idle time, 20
Immature prototype, 14
Implementation, 9
Improvisation, 237
Incentive scheme, 18–19

Incomplete requirements, 151, 253
Incremental design, 79, 81, 225–234,

236–242, 244, 246–250, 252, 254, 256, 258,
260, 262, 264, 268

Incremental development, 248
India, 46
Inexperienced programmers, 47, 107, 286
Information technology, see IT entries
Informix, 12
In-out diagram, 95, 179, 239
Inspectors, 168
Integrate, 168
Intentional beliefs, 52
Invoice, 251
ISO 9000, 4
IT, 16–17, 131, 162, 201, 220, 222
IT managers, 223
IT projects, 216, 220
Iteration cycles, 20–21
Iterative model, 14, 17, 24, 29
Iterative software development, 12
Iterative software processes, 274
Iterative waterfall model, 13–15, 25, 31

Jacobson, L., 37, 54
Janzen, D., 283, 288
Java, 47
Java programming, 150, 277
Java programs, 43, 101, 154, 259
Jespersen, 220–221
JIT, see Just-in-time
JIT software development, see Just-in-time

software development
Job(s), 17, 39, 43, 45, 48, 52, 97, 103–104,

122–123, 133–135, 137–138, 140,
167–168, 175

Job simulation test, 96, 99
Job test, 96–97
Joone, 72
Jorgensen, M., 51, 54
JSPWiki, 72–73
Junior programmer’s code, 187
JUnit, 277, 283
Just-in-time (JIT), 159, 239–242, 245–247
Just-In-time Software Development, 239, 241,

243, 245, 247

Kahenman, D., 11
Kameda, T., 152, 163
Kanban, 159, 245
Kaner, C., 113, 116, 130
Keefer, G., 139, 163
Keil, M., 219, 224
Kessler, R., 133, 139, 163, 196, 211, 224

INDEX 299

Key performance indicator (KPI),
118–120

Key users, 252–253
Knowledge, 31, 34, 38, 40–41, 48, 63, 76, 81,

90–91, 116, 137–138, 203–204,
253, 255

Knowledge of purpose, 261
Knowledge of structure, 261
Knowledge sharing, 169
KPI, see Key performance indicator

Labyrinthine pattern of software design,
231

Lack of user input, 253
Large project, 67, 78
Last-in first-out (LIFO), 254
Late software project, 213
Late-project team, 193
Lean manufacturing, 240
Lean production, 239–240, 264
Lean software development, 35, 240, 288
Learning, 38, 45, 48–52, 54, 61, 130, 137, 153,

168, 208–209, 215, 280, 291
Learning curve, 83, 104, 192, 206–209
Learning speed, 208
Level 3 refactoring, 258
Leveson, N., 4, 35
License, general-public, 109
Lifecycle, 202, 207–208
LIFO, see Last-in-first-out
Lightweight processes, 58
Lightweight, 59, 60, 62, 78, 82, 194
Linearized Einstein equation, 156
Linux, 57, 67–68, 84
Linux’s law, 145
Load test, 174
Local software team, 46
Logical design, 5
Logistics, 239
Long meetings, 27
Loosely coupled team, 80
Luger, G., 155, 163
Lui, K. M., 176, 195

Madnick, S., 188, 195
Maier, 145
Maintain software, 154
Maintainability, 235, 259–60
Maintenance, 176
Management, 10, 47, 77, 114, 120, 131, 136, 188,

190, 216–217
Management support, 223
Management theory, 175

Managers, 11, 41, 43, 45–46, 48, 72, 82, 107, 110,
138, 200–201, 222–223, 231, 283–284

Managing software project, 5, 60, 194, 241
Managing software team, 47
Manufacturing, 9, 46, 151, 159, 209, 239–240,

246–247, 263
Manufacturing process, 242–243
Manufacturing production, 3
Manufacturing resource planning (MRP), 40
Marketing research, 118–120
Master and apprentices, 100
Master-coach diagram, 31–33, 83, 101–102, 282,

292
Matrix, cross-product, 95
Maturity model, capability, 240
Mayer, D. B., 39, 54
McCabe, T., 67, 83
McConnell, S., 105, 130
Meeting, 24, 27–28, 38, 41, 49, 64, 106, 203, 220,

222–223, 252
Mens, T., 234, 262, 264
Message chains, 261
Messaging unit, 249
Metaphoric communications, 22
Metes, G., 212, 224
Methods, 254
Metrics, 286
Mexico, 46
MFG/PRO, 230
Microsoft, 57, 90
Microsoft Access, 17, 97
Microsoft SQL server, 91
Middleton, P., 240, 264
Miranda IM, 72, 126, 128
MIS, 222, 225, 254
Mislearn, 48
Mobile computing software project, 142
Modeling, 178, 226–227, 229, 231–233
Models, 6, 15, 19, 20, 38, 49, 53, 57, 89, 153, 173,

198, 207, 261, 268
Moderator, 192
Moneyless world, 137
Motivation, 148
Mozilla, 68
MRP, see Manufacturing resource planning
MS SQL Server, 17
Multiple project, 20

Nammik, 117, 123–126, 128
Nammik architecture, 126–127
Natural language, 151
Nawrocki’s experiment, 175
Nawrocki, J., 24, 35, 142, 163, 175, 195

300 INDEX

Negative values, 272
Network, 144
Network News Transfer

Protocol (NNTP), 111
Network programming, 111, 125–126
Nonexistent customer code, 272
Nonplagiarized code, 94
Non-zero-point collaboration, 262
Nosek, J. T., 141, 163, 175, 195
Novice programmers, 94, 173, 180

Object classes, 258
Object-oriented programming, 156
Object-oriented software system, 254
O’Brien, K. J., 108, 130
Observer, 193
Ohno, T., 50, 54, 279, 289
Opdyke, W. F., 254, 264
Open-ended questions, 161
Open source, 55–58, 60, 62, 64, 66–68, 70, 72, 74,

76, 78, 80, 82–84, 117, 130
Open-source developers, 66, 70, 75, 77, 81, 110
Open-source development, 67, 77–78, 111
Open-source development project, 72–73
Open-source maturity model, 57
Open-source practices, 57
Open-source products, 57, 65, 108
Open-source projects, 61, 66–69, 71–73, 75, 111,

126
Open-source software, 55–57, 65, 67–69, 71–73,

75, 108
Open-source software development, 34, 55, 57,

62–63, 68, 75, 81–82, 84, 111, 145
Open-source software project, 56–57, 61, 66, 68,

70
Operating system, 12–13, 67, 271
Operational processes, 23
Optimum productivity, 207
Organizational cultures, 23
OSS, see Open-source software entries
OSSD, seeOpen-source software development
Outsourced programmers, 45, 47, 189

PacMan, 43
Paid by bugs, 270
Pair design, 156–157
Paired experienced programmers, 135
Paired programmers, 133, 135, 137, 139, 157,

161, 186
Paired team, 159, 162
Pair groups, 153
Pair jelling time, 207
Pair learning, 137

Pair programming, 32, 58–59, 131–148, 152–
163, 166–173, 175–182, 184–185, 187, 192,
195–196, 207, 260–261, 282, 292

Pair programming group, 170
Pair programming practice, 135, 162
Pair programming productivity, 162
Pair programming teams, 80, 133, 161
Pair-solo rhythm, 184–185
Pair work, 137
Panko, R. R., 261, 264
Parkinson’s law, 18
Parrado, N., 197, 224
Partner exchange, 158
Partner rotation, 159
Paste code, 88
PAT, see Programming aptitude test
Pattern theory, 100
Patterns, 100–101
Paulk, M., 240, 264
Pavlicek, R. C., 67, 83
PDCA, 14–16
PDCA cycle, 14–15
Peer reviews, 258
People communications, 238
People discipline, 288
People-focused, 194
People network, 111, 122
People over process, 199
Performance tuning, 69
Perry, J. W., 261, 264
Personal interest, 68
Personality test, 43, 45
Personality traits, 38, 148
Personal preference, 11
Personnel turnover, 138
Petouhoff, N. L., 190, 195
Petty, D. J., 239, 263
Plagiarism, 87, 89, 90, 93, 95, 98–100, 102, 107–

110, 112, 114, 117, 128–129
Plagiarism programming, 87–88, 90–100, 102,

104–110, 112, 114–118, 120, 122, 124–130
Plagiarism programming team, 96
Plagiarized assignments, 89
Plagiarized code, 94–95
Plagiarizing programmers, 91, 93, 97
Plan to cost, 7
Planning, 5, 226, 268
Platforms, client/server, 12
PL-SQL, 102
Plug-ins, 126
Poff, M. A., 180, 187, 196
Point-of-sales (POS), 12, 151
Polymorphisms, 156

INDEX 301

POP3, see Post Office Protocol Version 3
Poppendieck, M., 20, 35
Poppendieck, T., 20, 35
POS, see Point-of-sales
Positional diversity, 205
Post Office Protocol Version 3 (POP3), 110
Post, T. J., 11, 35
Postmortem review, 4
PowerBuilder, 12
Prefactoring, 257
Premature bad solutions, 51
Preston, J., 52, 54
Preventing teaming problems, 211
Prison experiments, 165
Probability distribution, 189–190
Problem solving, 39
Procedural algorithms, 155–156
Process(es), 5, 15, 20, 24, 28, 34, 58–61, 63, 68,

82–83, 113, 199–201, 240, 253–254
Process-centered, 38
Process-driven, 194
Process over people, 199
Process, people, paper, and product, 268
Product backlogs, 227
Product integration, 57
Production phase, 206
Productive team, 207, 215
Productivity, 63, 74–75, 134–135, 139–140, 153,

162–163, 169, 172–174, 177, 188, 193–194,
206–207, 209, 278–280

Products, 4, 7–10, 19, 22, 34, 52–53, 59–61, 63,
65–67, 69, 77–78, 105, 116–117, 183

Professional service, 57
Program execution, 270
Program specifications, 273
Programmer(s), 46–49, 70–72, 95–97, 103–108,

132–136, 139–142, 156–159, 167–172, 177–
181, 185–193, 232–234, 246–247, 259–262,
280–284

Programmer productivity, 140
Programming, 25, 40–41, 58, 60–61, 89, 90, 97–

100, 103–105, 138–139, 153–154, 165–170,
172–182, 184–188, 192–194, 273

Programming activities, 233, 288
Programming aptitude test (PAT), 43
Programming as execution, 5
Programming code, 10
Programming design, 39, 133, 155
Programming design alternatives, 155
Programming efforts, 152, 227
Programming exercises, 174
Programming experiments, 166, 174

Programming languages, 12–13, 89,
268, 275

Programming logic, 232, 256, 270
Programming modules, 140, 271
Programming paradigms, 41, 202
Programming practices, 41, 76, 140
Programming problems, 40, 101, 150, 172, 175–

176
Programming process, 5
Programming productivity, 139, 148,

162, 169
Programming rework, 49
Programming skills, 41, 45, 47, 97
Programming solutions, 177, 281
Programming tasks, 6, 59–61, 95, 134, 142, 148,

152, 158, 173, 181
Programming techniques, 93, 283
Progress reports, 23
Project, 3–8, 14–15, 18–21, 47–49, 51–53, 60–61,

65–68, 70–72, 138, 142–145, 187–191, 198–
202, 208–209, 216–223

Project charter, 198
Project cycle, 207–209, 226
Project development team, 201
Project goals, 194, 220
Project leader, 12, 29, 70, 200, 213
Project lifecycle, 212
Project management, 10, 138, 161, 198, 218, 221
Project management design, 42
Project management model, 4
Project management paradigm, 6
Project management scheduling, 227
Project management tools, 218
Project managers, 4, 6, 7, 18, 46–47, 138, 168,

171, 175, 188–191, 201, 216–217, 221–223,
266–267, 283–284

Project meeting, 201, 217
Project members, 218, 221
Project mismanagement, 3
Project participants, 71
Project plan, 5–7, 15, 20, 23, 77, 142, 189, 206,

209, 220, 227, 230, 284
Project planning, 8, 188, 231, 284
Project requirements, 6
Project resources, 5, 218, 266–267
Project schedule, 18, 77, 201, 220–221,

267
Project skill demand curve, 208
Project structure, 216
Project team, 69, 83, 112, 188, 190–191, 200–203,

205–207, 221–222, 238, 285
Project team composition, 205

302 INDEX

Project team members, 201, 223
Project time, 188, 207
Project tracking, 77, 81, 284
Prosumer, 70
Prototype, 4, 14–16, 23, 65, 69, 73, 237
Psychology of programming, 38–39, 175
Pugh, K., 257, 264
Pygmalion in the classroom, 37
Python code, 276

Quality assurance (QA), 272
Quality checking (QC), 272
Quality improvement, 278
Quasi-experiment, 176
Quick solutions, 88, 262, 269, 273,

275–276, 284

Raccoon, L. B. S., 20, 35
Radiotherapy, 4
Rapid iterative development cycle, 284
Rapid releases, 63, 66, 72, 74–75, 77, 81
Rapid software process improvement, 282–

283, 285, 287
Rapidly changing requirements, 251
Rause, V., 197, 224
Raymond, E. S., 65, 83
Readability, 10, 25, 92, 156, 254, 256, 258–262
Redesign, 105
Redistributing classes, 254
Redundancy, 236
Refactoring, 25, 69, 79, 89, 92, 105–107, 179, 234,

254, 256–263, 274–275, 277, 280, 286
Refactoring techniques, 258
Regression testbed, 277
Regression testing, 23
Reicher, S., 165, 195
Release patches, 16
Releases, 16, 23, 29, 67, 69, 70, 72–75,

77, 270
Remote access, 102
Remote desktop, 193
Repeat programming, 172–173
Repeat-test, 95
Repetitious programming tasks, 293
Repetitive products, 246–247
Report writing, 152
Requirement(s), 5, 10, 14, 16–17, 24, 29, 147, 151,

228, 234, 246–255, 267–269, 271, 273
Requirement specifications, 60
Requirements complexity, 248–249, 251, 253
Requirements engineering, 151
Requirements management processes, 22

Requirements management, 8, 71, 152
Rescue practice, 216–217
Rescuing software project, 218
Resource(s), 5–7, 15, 58, 60, 83, 144, 152, 198,

208, 219–220, 222, 227, 230, 281
Resource allocations, 151
Return on investment, 22
Reusability, 235, 254, 278
Rework, 235
Rhythm(s), 24–28, 30–33, 117, 125–129, 159–

160, 178–179, 181–188, 194,
202–204, 206–207, 241, 274–275,
281–283, 291–293

Rhythm for challenging tasks, 293
Rhythm for late projects, 192
Rhythm of the groups, 162
Rhythm of software practices, 26
Rhythm of triple programming, 194
Rhythmic pair programming, 158, 160
Rhythmic problem management cycle, 218
Right rhythms, 24, 34, 292
Right timing, 204
Rigorous, 194
Rigorous development processes, 5
Ringelmann effect, 149
Risk, 7, 11, 24, 29, 35, 38, 103, 136–138, 177, 199,

203, 267
Risk control, 218
Risk factors, 6, 15, 189
Risk management, 218, 223
Robert, M., 145, 163
Role(s), 10, 18–19, 57, 70–72, 82, 131–132, 135,

158, 168, 192, 198, 221, 226, 237
Role exchange, 158
Roles of programmers, 70, 82
Root cause, 51
Root cause analysis, 215
Rorschach inkblot, 41
Rosenberg, D., 169, 196, 289
Rosenthal, R., 37, 54
Rough-cut design, 106
Royce, Walker, 9, 35
Royce, Winston, 5, 35
Runaway software project, 218
Running project team, 201

Saiedian, H., 283, 288
Sales-and-distribution system (SDS), 118–120
Sashimi model, 20
Schedule, 15, 141
Schedule-based, 194
Scheduling slippage, 205

INDEX 303

Schoemaker, P. J. H., 262, 264, 273, 289
Schonberger, R., 239, 264
Schwaber, K., 161, 163, 203, 224
SCM, see Supply chain management
Scrum, 14, 203, 227, 288
Scrummage, 203
Scrummage meeting, 14
SDS, see Sales-and-distribution system
Self-fulfilling prophecy, 37
Self-organizing team, 79, 161, 202–204, 210,

214–215
Semantic algorithm analysis, 154
Server managers, 102
Shalloway, A., 105, 130
Shared-intelligence collaboration, 87
Shell, M. M., 40, 54
Shewhart’s closed-loop model, 14
Short descriptive requirements, 22
Side-by-side programming, 132, 166–167, 282
Sign cards, 159
Signed confirmations, 4
Simple design, 231, 275
Simple Mail Transfer Protocol (SMTP), 110
Single pair programming, 158–159, 162, 166,

179–180
Single-phase analysis, 6
Sjoberg, D., 51, 54
Skilled programmers, 45, 105, 107
Slack, 144
Slack-time, 20
Slow-paced, 194
Small-lot-size user requirements, 246
Smart software team, 279
SMTP, see Simple Mail Transfer Protocol
SNA, see Social network analysis
Snow, A. P. 219, 224
Social network analysis (SNA), 91
Software, 3, 4, 8–10, 14, 22–24, 29–31,

33–34, 48–50, 54–55, 60–61, 65–67,
69, 73, 266–268, 270–271

Software activities, 41
Software applications, 13, 66, 137, 232, 246, 266
Software architects, 226
Software capability, 199
Software cloning, 66–68
Software complexity, 183, 223, 237,

250, 266
Software configuration, 88, 112, 286–287
Software configuration management, 77, 112,

286–287
Software construction, 130, 233, 238
Software design, 43, 226–8, 231–232, 249, 258,

268

Software design methodology, 248
Software design teams, 224
Software developers, 3, 10, 16, 24, 33, 49
Software development, 4, 9, 33–35, 38–39, 57,

60–61, 82–83, 185–186, 188, 199, 200, 209,
237–238, 240–241, 266

Software development activities, 5, 268
Software development methodologies, 22, 77
Software development processes, 4, 10, 56
Software development projects, 3, 57, 265, 267
Software development rhythms, 3, 24–25, 27,

29–31, 33–34, 37, 52–53, 55, 82, 87, 114, 129,
194, 291

Software development tasks, 152
Software development teams, 212
Software disciplines, 129
Software engineering, 3, 35, 54, 130, 288
Software functionalities, 22, 232, 271
Software house, 12, 21, 73, 237, 270
Software inspections, 138–139
Software installation, 97
Software integration, 24, 152
Software leader, 28
Software maintenance, 60, 156, 166
Software management, 10, 52
Softwaremanagers, 6, 9, 43, 45, 60, 82, 200, 215,

283
Software methodologies, 38, 47, 61, 194, 283
Software module, 75, 152
Software outsourcing, 45
Software paradigms, 29, 34, 78, 283
Software practices, 6, 24–26, 32, 38, 41, 43,

47, 49, 52, 54–55, 58–59, 74–77,
79–82, 283

Software principles, 175, 194
Software problems, 10
Software process, 34, 58–60, 199, 241, 263
Software process improvement, 58, 240, 289
Software products, 7, 40, 52, 68, 70, 72, 129, 174,

198, 248
Software professionals, 25
Software program managers, 52
Software project, 6–8, 10–12, 48–49, 51, 61, 71–

73, 138, 142, 175, 199–202, 207, 212–213,
215–218, 248–249

Software project community, 76
Software project dynamics, 195
Software project experience, 34
Software project failures, 71, 175, 222, 253
Software project management, 14, 48,

60–61, 76, 145
Software project manager, 11
Software project participant roles, 72

304 INDEX

Software project planning, 82
Software project status, 224
Software project teams, 198
Software quality, 49, 65, 67–68, 103, 136, 138,

140–141, 174, 176–177, 258, 260, 266–267,
271, 286

Software requirements, 5, 64, 146, 202, 230, 251,
264, 267

Software rhythms, 34
Software solutions, 47, 63
Software teams, 6, 7, 10–12, 15, 17–19,

22–25, 28–29, 31, 33–34, 38–39, 41,
46–48, 74–75, 81–83, 152–153

Software team’s productivity, 209
Software testing, 18, 23
Software tools, 39, 207
Software verification, 271
Solo groups, 153
Solo programming, 33, 133, 138–139, 142, 144,

161, 166–167, 169–170, 177–178, 180–182,
184–187, 194, 259

Soloway, E., 94, 130
Solution(s), 6, 63–64, 104, 114, 145–146, 150,

168–169, 173, 176–177, 262, 269, 273, 275–
276, 281–282

Solution-oriented, 102
Sommerville, I., 58, 83, 108, 130
Sonnentag, S., 198, 224
Source code, 65, 67–68, 73–76, 78, 88, 108, 112,

210, 233, 259
Spiral model, 15–16, 35
Sprint, 202
SQL database programming, 93
SQL, see Structured query language
Staff, 17, 109, 116, 131, 187, 192, 205–206, 223,

276, 292
Staff turnover, 107
Stalnaker, A. W., 39, 54
Stamelos, I. S., 67, 83
Standardized process, 241
Standish Group, 253
Standup meeting, 24–25, 27, 78, 150, 160–161
Stanford prison experiment, 165
Stasser, G., 136, 163
Static, 194
Statistical analysis, 258
Statistical process control, 14
Stave chart, 25
Steiner, I. D., 152, 163
Stephens, M., 169, 196, 289
Stock, make to, 244
Story cards, 159, 227–233, 246, 266, 273, 275–

276, 284

Strategic planning, 132
Strong rhythms, 241, 281, 283
Structure of a rhythm, 28
Structure phase, 206
Structured query language (SQL), 10
Stubblefield, W., 155, 163
Student programmers, 43, 126
Style consistency, 259
Subcomponents, 7, 8
Submodules, 50, 69, 74, 95, 105, 110,

141–142, 152, 177, 273
Subprograms, 87–88, 149
Substantial programming reworks, 49, 50
Substantial redesign, 232
Subtasks, 60, 65, 132, 148–149, 151,

181–184, 192
Subteams, 19, 113, 204, 212–213
Suckers, 210
Supply chain applications, 40
Supply chain management (SCM), 110, 216
Support pair programming productivity, 166
Sustaining pair programming, 179–180
Sutton, J., 240, 264
Swire group, 117
System analysts, 10, 19
System design, 41
System integration, 5, 152, 205, 230, 250
System modules, 251
System requirements, 147

Tacit knowledge, 31
Tailored processes, 240–241
Talented programmers, 40, 140
Task(s), 5, 7, 8, 18, 20–21, 92–93, 133–134, 136,

140–144, 148–153, 191–192, 199, 202–203,
209–211, 227

Task execution, 238
Task switching, 20
Taylor, D., 216, 224
TCP/IP, see Transmission Control Protocol/

Internet Protocol (TCP/IT)
TDD, see Test-driven development
Teaching, 168
Team, 23–25, 28–34, 38–43, 45–49, 63–65, 68–70,

111–116, 150–153, 186, 190–192, 198–209,
211–213, 237–238, 285–287

Team collaboration, 198, 238, 283
Team communications, 59, 92, 281
Team coupling, 79, 80
Team cultures, 38, 42, 48, 92, 166, 201
Team development, 201
Teaming, 69, 167, 198–200, 202, 212,

218–219

INDEX 305

Teaming principles, 215
Teaming problems, 207
Teaming relations, 21
Team-in-team approach, 204
Team leaders, 39, 47, 64, 185–186, 217,

222, 281
Team location, 77, 79
Teammates, 139, 201, 210, 233
Team members, 6, 19, 24, 27, 41, 64–65, 76–79,

138, 151, 190–192, 201–203, 205, 209–210,
281–282

Team of programmers, 156, 247
Team organization, 60, 198, 203
Team pair programming, 158–160, 162, 166,

204
Team pair programming productivity, 159
Team performance, 148, 151–152, 205, 209, 286
Team productivity, 135–136, 153, 208–210
Team programming, 75, 134, 162
Team progress, 185, 228
Team size, 77, 79, 214
Team software development, 76
Team software process (TSP), 198
Team structure, 205, 212–214, 222–223
Team velocity, 228–230
Teamwork, 4, 40, 46, 167, 210
Technical programming, 205, 288
Technical staff, 12
TechTrans, 11
Telelogic’s Logiscope, 67
Test, 39, 40, 43, 90–91, 96–97, 99, 100, 108, 112–

114, 116, 125–126, 174, 179, 262, 266–269,
271–281

Test case, 116, 140, 174, 256, 258, 262,
266–273, 275–276, 279, 281, 293

Test case requirements, 271
Test code, 268
Test-drivendevelopment (TDD), 104, 185, 267–

268, 274–275, 278, 280–281, 283, 284, 286–
288, 292

Test environment, 97
Tester, 10
Test-first programming, 79, 267, 269–271, 273–

274, 279, 289
Test-first refactoring, 262
Test-first thinking, 278–279, 282, 286
Testing, 268
Test-last programming, 270, 279
Thematic rhythms, 25
Theme, 291
Therac-25, 4
They’ll love it, 235
Thompson, Ed, 22, 110, 198

Thompson, K., 67, 83
Thread programming, 283
Time box, 18
Time-critical tasks, 161
Timeframes, 12
Time-to-market, 177
Time-wasting, 203
Tindale, R. S., 152, 163
Toffler, Alvin, 70
Tools, open-source, 277
Torment your customers, 235
Total cost concept, 231
Tourwe, T. A., 234, 262, 264
Toyota Motor Company, 239
Toyota production system (TPS), 239
Traditional project management, 60, 227, 284
Traditional project planning, 227–228
Traditional software development, 199, 229,

246, 287
Traditional team structure, 203–204
Traffic light reporting, 219
Training, 57, 218
Training manuals, 60, 71
Transact-SQL, 96
Transmission Control Protocol/Internet

Protocol (TCP/IT), 91
Transparency, 211
Triple programming, 132–133,

145–146, 162, 168–169, 177–178,
192–194

Triplet programming, 162
TripLog, 17
Trot, J., 105, 130
Troubled late IT projects, 218
Troubled-late projects, 190–191
Truck number, 138, 191
TSP, see Team software process
Tuckman model, 206
Tversky, A., 11, 35

UAT, see User acceptance test
Ugly customers, 22
Ugrammers, 70–71
UML, see Universal modeling language
Unit costs, 7
Unit test, 5, 114, 184, 258, 271–279,

281–282, 284–287
Unit test cases, 273, 276–278, 282,

286–288
Unitarily conjunctive, 152
Universal modeling language, 10, 233
Unix, 67, 84, 198
Unpredictable programming changes, 133

306 INDEX

Update products, 183
Upfront design, 237–239, 247, 255
USENET, 138
User(s), 8, 14, 17, 21, 65, 70–73, 147–148, 174–

175, 202–203, 221, 225–226,
232–235, 250–251, 253–255

User acceptance tests, 5, 22, 212–213, 271
User interfaces, 74, 89, 91, 95, 226, 233, 268
User requirement log, 274
User requirements, 6, 11, 41, 58, 93, 108, 112–

113, 147, 151, 226–227, 237–238, 250–251,
253–254, 268–269

User roles, 71–72
UserSession, 154
User specifications, 233
User stories, 8, 22, 202, 274
User test cases, 266

Value-added tax (VAT), 105
Variables, 254
VB, see Visual BASIC
VB.net, 89
VCD, see Video compact disk
Velocity, 228–230, 284
Video compact disk (VCD), 116
Virtual team, 212
Virtuosi, 40
Visual BASIC (VB), 89, 90
Visual software design, 232–233

Wald, R. M., 156, 163
Walter, B., 24, 35
Warehouse application, 174
Waterfall management, 7
Waterfall model, 5, 6, 10, 12, 16, 28–29, 41, 227,

243, 288

Web-based content management system,
117

Web-based CRM, 187
Web design, 97
Welch, J., 200, 224
Welch, S., 200, 224
Whitebox testing, 108
Wiegers’ and Blackburn’s data, 249
Wiegers, K. E., 248–249, 264
Williams, L. A., 133, 138, 139, 141, 162, 163, 175,

196, 207, 211, 224
Windows 95, 91
Windows 98, 271
Windows programming, 90
Windows Server 2003, 57
Within-classes, 256–257
Wojciechowski, A., 24, 35, 142, 163, 175,

195
Womack, J. P., 239, 264
Work products, 73, 183–185, 240, 247,

286
Working, 168
Working software, 12, 23, 60, 68, 79, 106
Work-in-progress, 243, 244

XP, 25, 34, 80–81, 132, 168, 196, 283,
288–289

XUnit, 277

Yeh, Y. J., 198, 205, 224
Yuhas, C. M., 21, 35

Zahran, S., 283, 289
Zero-defect software, 271
Zero-point collaboration, 64
Zimbardo, P. G., 165, 196

INDEX 307

