Software Development Rhythms

Harmonizing Agile Practices for Synergy

SOFTWARE DEVELOPMENT
RHYTHMS

SOFTWARE DEVELOPMENT
RHYTHMS

Harmonizing Agile
Practices for Synergy

Kim Man Lui and Keith C. C. Chan

The Hong Kong Polytechnic University, Hong Kong

)NTeRscience

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except
as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the
prior written permission of the Publisher, or authorization through payment of the appropriate
per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-
750-8400, fax 978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, 201-748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at 800-762-2974, outside the United
States at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Lui, Kim Man.

Software development rhythms : using the flexibility of agile software
practices in combination/By Kim Man Lui & Keith C.C. Chan.

p. cm.

Includes index.

ISBN 978-0-470-07386-5 (cloth)
1. Computer software — Development. 1. Chan, Keith C.C. II. Title.
QA76.76.D47L86 2007
005.1-dc22

2007019073

Printed in the United States of America

10987654321

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com/go/permission
http://www.wiley.com

To my mother and my sister
— K.M.L

To my parents and sisters
and to Emily, Samantha, and Jeremy
— K.C.C.C.

CONTENTS

PREFACE

é Part I: Essentials

1 NO PROGRAMMER DIES

1.1 Developing Software versus Building a Tunnel

1.2

1.3

1.1.1 The Good Old Days?

1.1.2 The More Things Change, the More They Stay the Same?

1.1.3 Behind Software Products
1.1.4 Deal or No Deal

Do-Re-Mi Do-Re-Mi

1.2.1 Iterative Models

1.2.2 Code and Fix

1.2.3 Chaos

1.2.4 Methodology that Matters
Software Development Rhythms
1.3.1 Stave Chart by Example
1.3.2 Game Theory

1.3.3 In-Out Diagram

1.3.4 Master—-Coach Diagram
1.3.5 No Mathematics

1.3.6 Where to Explore Rhythms
References

2 UNDERSTANDING PROGRAMMERS

2.1

Personality and Intelligence
2.1.1 Virtuosi

xiii

37
39
40

vii

viii

CONTENTS

2.1.2 Meeting Your Team
2.1.3 Recruiting Programmers

2.2 Outsourced Programmers
2.2.1 Programmers in Their Environments
2.2.2 Programmers, Cultures, and Teams

2.3 Experienced Management
2.3.1 Being Casual about Causal Relationships
2.3.2 Not Learning from Experience
2.3.3 Doing Things Right Right Now
References

3 START WITH OPEN SOURCE
3.1 Process and Practice
3.1.1 The Four Ps of Projects
3.1.2 Agile Values
3.1.3 Zero-Point Collaboration
3.2 Open-Source Software (OSS) Development
3.2.1 Software Cloning
3.2.2 Software Quality
3.2.3 Starting Processes
3.2.4 Open-Source Development Community
3.2.5 Ugrammers
3.2.6 Participant Roles
3.2.7 Rapid Release
3.2.8 Blackbox Programming
3.2.9 OSS Practices
3.3 OSS-Like Development
3.3.1 Agile Practices
3.3.2 Communication Proximity
3.3.3 Loose and Tight Couples
3.3.4 Collocated Software Development
3.4 Conclusion
References

é’; Part Il: Rhythms

4 PLAGIARISM PROGRAMMING
4.1 Plagiarism
4.1.1 Existing Code

41
43
45
46
47
48
49
50
52
54

55
58
60
63
64
65
66
67
68
69
70
71
72
74
76
77
78
79
80
81
82
83

87
89
90

CONTENTS

ix

4.2

4.3

4.1.2 Social Network Analysis

4.1.3 Being Plagiarized

4.1.4 Turn Everyone into a Programmer
4.1.5 Pattern Language

4.1.6 Software Team Capability

4.1.7 Rough-Cut Design

4.1.8 Training Is Not a Solution
Nothing Faster than Plagiarism

4.2.1 Immorality

4.2.2 Unprecedented Code

4.2.3 People Network

4.2.4 Rhythm for Plagiarism

4.2.5 Plagiarism at Work

Business and Rhythm for Plagiarism
4.3.1 15-Minute Business Presentation
4.3.2 Marketing Research

4.3.3 Chatting Robot

4.3.4 Old Song, New Singer
References

5 PAIR PROGRAMMING

5.1

52

5.3

Art and Science

5.1.1 The Right Partner

5.1.2 Noisy Programming
5.1.3 Just Training

5.1.4 Pay to Watch

Two Worlds

5.2.1 Moneyless World

5.2.2 Money-Led World
5.2.3 Economics

5.2.4 Mythical Quality—Time
5.2.5 Elapsed Time Accelerated
5.2.6 Critical Path Method

5.2.7 Why Two, Not Three: The Antigroup Phenomenon

5.2.8 Software Requirements Are Puzzles
Programming Task Demands

531 2and 41Is6

532 2and 41s4

533 2and 41Is 3

534 2and 4 > 2

5.3.5 2 and 4 is Unknown

91

92

96
100
102
105
107
107
108
110
111
112
114
117
118
120
121
125
129

131
132
133
134
135
135
136
137
139
140
140
141
142
145
146
148
148
149
150
151
152

CONTENTS

54

55

Pair Programming Is More than Programming
5.4.1 Design by Code

5.4.2 Pair Design

5.4.3 Rhythmic Pair Programming

Pair Programming Team Coached

References

REPEAT PROGRAMMING

6.1

6.2

6.3

6.4

Controversies in Pair Programming
6.1.1 Is Programming a Unique Work?
6.1.2 Are Three Minds Better than Two?
6.1.3 Unreplicable Experiments

Repeat Programming

6.2.1 Variances

6.2.2 Principles

6.2.3 Triple Programming Unproductive
Rhythm: Pair-Solo-Pair-Solo

6.3.1 Persistence

6.3.2 Connection

6.3.3 Motivation

An Exception that Proves Brooks” Law
6.4.1 Low Morale

6.4.2 Communication Costs

6.4.3 Rhythm for Late Projects
References

AGILE TEAMING

7.1

7.2

7.3

Project Teams

7.1.1 Self-Organizing Teams

7.1.2 Teams in a Team

7.1.3 Project Team Composition

7.1.4 Team Lifecycle versus Learning Curve
Productivity

7.2.1 The Illusion of Productivity

7.2.2 Collective Code Ownership

7.2.3 Accountability, Responsibility, and Transparency
Problems and Problem Owners

7.3.1 Rhythm: Trouble-Restructuring

7.3.2 Teaming Principles

153
154
156
158
161
162

165
167
168
168
169
170
175
176
177
179
179
181
185
188
190
191
192
195

197
200
202
203
205
206
209
210
210
211
212
213
215

CONTENTS

xi

74

7.5

Failing Projects Rescued

7.4.1 Project Traffic Light Reporting
7.4.2 A Business Case

7.4.3 Steering Committee Meeting
7.4.4 Agile Teaming in Action
Beware of lago

References

8 INCREMENTAL DESIGN

8.1

8.2

8.3

8.4

8.5

Modeling and Planning

8.1.1 Agile Planning

8.1.2 Design by Functional Modules
8.1.3 Simple Design

8.1.4 Total Cost Concept

Rework or Reuse

8.2.1 Unpreventable Rework

8.2.2 Improvisation

8.2.3 Up-Front Design

Just-in-Time Software Development
8.3.1 The CMM Rhythm

8.3.2 A Factory Tour

8.3.3 Walking Worker

8.3.4 Just-in-Time Software Development
8.3.5 Incremental Design
Requirements Complexity

8.4.1 Forgotten Requirements

8.4.2 Conlflicting Requirements

8.4.3 Rapidly Changing Requirements
8.4.4 Requirements and Design
Refactoring

8.5.1 Refactoring Activities

8.5.2 Refactoring by Challenging
8.5.3 Refactoring for Design Patterns
8.5.4 Making Deliberate Mistakes
References

9 TEST-DRIVEN DEVELOPMENT

9.1

Reverse Waterfall
9.1.1 Design-Code-Test

217
219
220
220
222
222
224

225
226
227
229
231
232
234
235
236
238
239
240
243
244
246
247
249
251
252
253
254
254
258
259
261
263
263

265
268
268

xii

CONTENTS

9.2

9.3

94

9.1.2 Test-Code-Design

Test-First Programming

9.2.1 Testing and Verification
9.2.2 Breakpoint Testing

9.2.3 Supporting Practices
Rhythm: Test-Code-Refactor

9.3.1 Simple Example

9.3.2 Automation

9.3.3 Revolution in Consciousness!
9.3.4 Test Case for Collaboration
Rapid Software Process Improvement
9.4.1 Training Program

9.4.2 Project Planning

9.4.3 Project Tracking

9.4.4 Software Quality

9.4.5 Software Configuration

9.4.6 People Discipline

References

EPILOGUE: MEDLEY

INDEX

269
269
270
271
272
274
275
277
278
281
282
283
284
284
286
286
288
288

291

295

PREFACE

This book helps us discover our own software methodologies in a way that
respects the software development rhythms of both people and practices.

In the deep dark night, lying down on Kande beach on the shores of Lake
Malawi, we looked up into the cloudless sky. Countless tiny stars were
blinking at us. A little tired, or perhaps just mesmerized by those distant,
mysterious lights, we closed our eyes and began to hear more, the peaceful
slap of water on the little beach, and the small, almost concerted sounds of the
dark night, throbbing in what seemed like a deep, rhythmic breathing. Nature
is an incomprehensible concert of rhythms. Our Earth in its solar orbit spins
through space composing the rhythm of day and night, endlessly recycling its
four seasons. Following nature’s rhythm, we wake to learn and sleep to
remember, writing and rewriting our own programs in accordance with the
very best universal software practice in a flawless symphony of rhythms.
From heartbeats to footsteps, rhythms are a sustaining, momentum-creating
vital force. In a world where complexity appears very much like chaos, we
seek the confidence of being able to assign causes and identify correlations,
but sometimes it is only the discovery of rhythms that allows us to see the
order that sustains all.

Like any human endeavor, software development is complex and full of
generalizations and correlations, but it is devoid of rules. To help us build
software, we have disciplined software models and software project manage-
ment methodologies. But the ferment of software development, with con-
stantly changing teams and requirements and new tasks, means that there is
no guarantee that any past successful method will succeed on the next
software project. In fact, some project leaders who appear to adopt no method
or methods that are scorned as “ad hoc” are able to get their software projects

xiii

XIv PREFACE

done on time. The secret of their success is the understanding of software
development rhythms.

The knowledge of rhythms gives us a new perspective on some of the
thorniest issues in software development. Methods that work for one team fail
for another because even the most willing software teams can’t achieve
success with a new method until they come to understand its rhythms. Yet
in the management of complex and multifaceted software development
projects, where it is vital to harmonize and synergize both team and individ-
ual practices and processes, rhythms are a largely neglected theme.

Rhythms are not another methodology. There are many methodologies,
and this book does not seek to introduce a new framework for building
software or managing software projects. What is needed today is not more
methodologies but greater wisdom in the application of the methodologies
that we choose to use. The best way to do this is to understand and work in
harmony with the rhythm of whichever methodology the team adopts. To do
otherwise, to fail to understand and apply the rhythms of a method, is to make
the method itself more burden than benefit, and to make the journey of a
project long and difficult.

This book is not for beginners, In fact, we assume that you can already fish
and have caught a few in your time. It is for people who want to refine or even
rediscover some of the skills and techniques that can so easily be lost when we
get into the habit of seeing things from just one perspective. Then, like
someone who is fishing casting the line with a supple wrist and a steady
rhythm, we hope to help you catch more fish than ever before, and to feel more
satisfied as you do it.

Audience

We have tried our best to write a technical book in plain language. Those who
are interested in software development and project management (software
managers, programmers, researchers, etc.) should have no trouble with these
materials as we explain and provide clear examples of any terms that might be
outside those areas.

Along with Kent Back’s Extreme Programming Explained (2nd edition), this
book can serve as an advanced text on agile software development. It describes
anumber of project episodes and industrial cases suitable for use in case-based
learning or for presentation to students as the basis of further work in group
projects. This book is also a monograph as it presents many concepts that have
not been adequately considered in books and scholarly papers on project
management in general and software engineering in particular.

PREFACE XV

This book does address itself to a wide readership, but it is especially
intended for thoughtful readers in search of creative metaphors for project
management and new insights into the complex field of software development.

How to Read This Book

Generally, I would suggest that this book be read according to the chapter
order. It is presented in two parts. Part I consists of three chapters. Chapter 1
introduces the idea of software development rhythms. Chapters 2 and 3
respectively discuss people and practices, clarifying some fundamental
concepts in software development and asking some important questions
such as “Why shouldn’t we learn from experience?,” “what are agile values?,”
“How can it be possible to weight different intangible software practices as
heavy or light?,” and “What can we learn from open source software
development?”

Part II of this book is all about development rhythms. We are used to
using the familiar terms “process” and “practices”—although not everybody
is confident that they know the exact differences. We compose rhythms on the
basis of software practices. To effectively demonstrate how software devel-
opment rhythms are a powerful metaphor that we can use to analyze when
best to use a software methodology, we take a number of more controversial
software practices and consider their rhythms and compare them with some
other more generally accepted software practices.

Once you have learned how an analysis of software rhythms can harmo-
nize practices, you may like, as an intermediate step, to adopt the rhythms
proposed in this book or modify them in any way. Feel free. Ultimately,
however, it is important to realize that rhythms are not models and that in the
end, we should all compose our own rhythms.

Special Acknowledgment

The book covers some topics and ideas that are outside the normal scope of
software development. Fortunately, we were able to benefit from the kind
advice and guidance of a number of renowned experts in these areas. Their
precious time and professional advice were much appreciated. We cannot
thank them enough. In alphabetical order, they are

Paul Davies, who critiqued our description of the physicist and pair
programming

Xvi PREFACE

Don Forsyth, who provided his insights into pair programming from a
group dynamics perspective

Michael McClellan, who reviewed the musical notation in this book

Richard Schonberger, who reviewed a number of sections connected with
lean manufacturing and engineering projects

Frank Vigneron, who commented on the angel’s gender

Joel Watson, who reviewed “Deal or no deal” and the game theory
analogy
Philip Zimbado, who advised us about his prison experiment

Many highly experienced software professionals have done us the great
honor of looking at one or two chapters of the book and providing valuable
feedback. Many thanks to (in alphabetical order): Lawrence Bernstein, Grady
Brooch, Magne Jorgensen, Pete McBreen, George Metes, Peter Middleton,
Mark Paulk, Ioannis Stamelos, Royce Walker, and Sami Zahran.

Thanks to Martin Kyle for his useful advice on writing better using plain
language. We appreciated John Nosek’s insights on collaborative program-
ming. We are delighted to have Angappa Gunasekaran’s support. We thank
Lai Shan Sit for her many funny cartoons illustrating our ideas. We would
also like to thank our friends and colleagues, Jun Wang, Zheng Li, Polly
Leung, Fei Dong, Ka Wing Wong, Whitney Lesch, and Rosalyn Farkas for
their assistance.

Finally, we cannot thank two persons enough. We thank Kent Beck for
inspiring our work on software development rhythms. Kent advised us on
which topics to choose to focus on and he reviewed the whole manuscript for
us. We also thank Paul Petralia, our editor, who told us from the very
beginning that he liked the concept of the book and thought that it would
motivate people to think about old things in their new ways. Without his
encouragement there would not be this book. It is not coincidence that all of us
believe that the idea of software development rhythms could be powerful
metaphors and effective management tools. Rhythms are not methodologies,
they are, rather, a meta-methodology —a methodology about developing new
software methodologies!

KIM MAN LUI
KEITH C. C. CHAN
Hong Kong
January 2008

=4 %

e We Wa 7%

OOCULILIALD

dl

NO PROGRAMMER DIES

The Bible shows the way to go to heaven, not the way the heavens go.
—GALILEO GGALILEI

There is one question that is so frequently asked in software engineering that
it may seem tedious to ask it yet again, but here it is, anyway: “What are the
basic differences between software development projects and engineering
projects (or manufacturing production), that is, say, between producing
enterprise information system and building tunnels or manufacturing cars?”

The usual, dry, academic answer is that software is a conceptual, intan-
gible, invisible artifact. This definition may be useful, but there is another
attribute of software projects that distinguish them even more starkly from
traditional engineering projects. The distinction, which is rarely mentioned, is
that— while engineers may always be in danger — software developers are never
killed or injured while working on their projects.

No matter how lousily or messily planned or implemented a software
development project may be, nobody in a software team is ever seriously
physically hurt at the office computer. There is a clear difference between
developing Adobe and digging the Panama Canal, and this may be one reason
why so many software development projects are hastily, carelessly, and
sloppily managed.

In 2005 the death toll from a tunnel project in western China broke a
new record indicating project mismanagement and poor supervision
of safety procedures. An investigation reveded that many fatal accidents

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright © 2008 John Wiley & Sons, Inc.

4 NO PROGRAMMER DIES

could have been avoided. This brought the issue of the rushed produc-
tivity for the project rather than workers’ and engineers’ safety, environ-
mental concerns, and social needs under even closer scrutiny. The public
severely blamed the chief engineer for the tunnel accidents.

—1L0oCAL NEWs IN CHINA, 2005

In real-world engineering projects, the prospects and costs of death are
always looking over our shoulders, holding individuals personally respon-
sible for the consequences of their decisions and actions. Thus, project
managers must adhere to strict procedures and industrial standards:
agreed-on plans, signed confirmations, written workflows, and timing. When
an error occurs, a project management model enables us to track the work
process, conduct a postmortem review, and identify errors; in addition, this
may also involve financial issues of insurance and litigation.

Because life matters' and mistakes incur heavy costs, real-world engi-
neering demands discipline, consistency, consideration, commitment to
detail, and a strong sense of teamwork. The result is not just greater safety;
it’s also better products. You have to wonder whether software development
can afford to continue in its current (often) irresponsible way. Are there any
factors in society or the marketplace that will ever make it change? If so, what
are they?

1.1 DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL

Many types of cancer are treated with radiotherapy, in which high-energy rays
are used to damage malignant tumors. Given the danger of overdosage, the
amount of radiation energy is supposed to be precise, and safely controlled by
a computer system. The Therac-25 was developed for this purpose by the
Atomic Energy of Canada Limited from a prototype in 1976 to a safety analysis
in 1983 (Leveson 1993). Between 1985 and 1987, the Therac-25 overdosed a
number of patients, killing five. Subsequent investigations blamed the soft-
ware, but there’s something strange in this. The programming code for the
Therac-25 was built by only one person, who also did most of the testing. This
is not even conceivable in a real-world engineering project, but in some
software development the programmers are often responsible for their
own testing. How did the software development process ever get itself into
this mess?

IThe ISO 9000, which have often been compared with CMM and CMMI, came from
BS5750, which was adopted to control quality problems of bombs going off in
munitions factories and bombs not blasting when they should have.

DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL 5

1.1.1 The Good Old Days?

In 2005, a Helios Airways Boeing 737 crashed in Greece, with the loss of
all 121 on board. The suspected cause was a series of design defects in
the 737 where the plane’s pressurization warning alarm made the same
sound as the improper takeoff and landing alert. Confusion over the
reason for the warning may have contributed to the fatal crash. When
things start to go wrong, it sometimes doesn’t take much to spin them
right out of control. Factors that may seem trivial in normal circum-
stances, may contribute to tragic outcomes when things aren’t going
according to plan .

Regardless of whether engineering product defects may be unavoidable,
we are taught that rigorous development processes do remove as many as
possible. A “rigorous” process normally means the separation between
planning and execution. During construction, planned tasks should be
designed to be strict to follow and easy to control. Ideally, constructive
peer pressure should positively shape workplace behavior to ensure that a
development process will be “as rigorous as possible.”

Adopting that philosophy in engineering management, software devel-
opment activities can normally be divided into two types of process—(1)
analysis and design as planning and (2) programming as execution, with (2)
following (1). This intuitive model, generally referred to as the “waterfall
model” by Winston Royce (1970), is normally adopted when managing large
software projects. These two processes are often chopped into smaller but still
ordered processes. Dividing and conquering allows us to better allocate
limited resources and control and track project progresses through a number
of checkpoints and milestones. The analysis—design process is made up of
such activities as software requirements gathering, system analysis and
logical design, while the programming process is made up of coding, unit
testing, system integration, and user acceptance testing, all of which are
basically linked serially, one after the other. For the purpose of discussion, we
consider here what is called a four-stage waterfall model as below:

Requirement—design—coding—testing (R—D—C—T)

The nature of the waterfall model makes it easy for a project plan to be executed
the same way engineers manage their projects. Focusing on breaking down
larger tasks into smaller tasks and putting them in the right order for execution
better allows project resources to be allocated and conflicting problems to be
resolved. With this idea of the separation between planning and execution
behind a waterfall model, a project plan can be reviewed to optimize against

6 NO PROGRAMMER DIES

time and resources. With this, we can then identify and weight various risk
factors to draw up a contingency plan for a project.

Such a project management paradigm to develop software may sound
intuitive, but one could easily discover that it does not encourage the
exploration of interrelationships between people, programming tasks, and
software practices. It can be difficult for some project managers to compre-
hend development synergies between these three elements, particularly in a
situation where something can change unexpectedly during execution.

1.1.2 The More Things Change, the More They Stay the Same?

When project requirements are constantly changing, sometimes more rapidly
than what we had imagined, and when developers know that what they are
building is not what their customers need, they will start to realize that their
software can be developed only by progressing in small steps so as to obtain
constant feedback all the time. This is, however, easier said than done.

Our thinking is often limited by our past experience. For many software
managers, their formative software experience is with the waterfall. Seeking
to improve on it, we come up with an enhanced waterfall. As single-phase
analysis for user requirements may rarely provide a full solution, more than
one phase is often considered necessary, and for this, straightforwardly, we
link two or smaller waterfall cycles together in a chain.

R—-D—-C—-T — R—D—C—T — R—D—C->T

There is really nothing new here. The same principles behind the waterfall
model apply except that, in each cycle, one can plan according to the feedback
obtained from what has previously been done. The current cycle will there-
fore be less stringent and more flexible than previous cycles.

The waterfall model, if strictly implemented as “one cycle” or some
“bureaucratic procedures for turning back,” may not be too popular in the
commercial world. Many software teams take the concept of the waterfall
model butimplement their software projects more flexibly. Some teams adopt
the enhanced waterfall model while still others may go even further to adopt
an adaptive model so that the length and activities in each iteration can be
dynamically adjusted. All these models can be considered as belonging to a
waterfall family of models.

In some extreme cases in such a family, to deal with unexpected
changes, some software managers would substantially revise their project
plans on a weekly basis. Since they know that none of their team members
could die or be injured, they are free to revise their plan to cope with any

DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL 7

change when it occurs. Compared to software projects, in engineering
projects this would be considered very unusual. It would be more normal
to delay the project rather than risk changing what and how we have already
planned and managed.

When project variables keep changing, a revision of a project plan is the
way out of potential crisis. Many project managers do not care how often the
project plans are revised as long as it is necessary. But, what really matters is
our way of thinking being limited to the style of waterfall management, which
always involves breaking down tasks into many sequential tasks, and
resources, responsibilities, and any understanding of any bottleneck are
planned along this line. Whenever there is any change, replanning is needed
and it is hoped that the revised plans can reflect the situation as quickly as if
such changes were already anticipated. This is undesirable as a software team
does not manage change in this case; they are, instead, managed by change.

1.1.3 Behind Software Products

Let us look at the design and planning of manufacturing products and then
come back to software products. If a product is supposedly made up of a
number of components, subcomponents, and sub-subcomponents, and so on,
then one can draw up a hierarchical architecture that consists of the complete
product at the top with a hierarchy of subcomponents, which, in turn, are
made up of sub-subcomponents, and so forth. This structure is called a bill of
materials (BOM) and it is at the heart of operations in many assembly plants. It
supports assembly task planning in manufacturing resource planning (MRP),
as shown in Figure 1.1, where one plans when, what types, and what

BOM to Plan BOM and Plan to Cost
Design # Planning > Costing
TR
— |:| Labor per hour x total hours
1 piece | Bloldy | | Wheel | = 4 pieces x unit cost
[| 4 pieces - 2 pieces x unit cost
1 piece| Base | | Seat | =1
2 pieces - + 1 piece X unit cost
S 2 9% >3 = .
Bill of Materials E5A352 O Unit Cost ofra Car
(BOM) = 5 =
Assembly Tasks

FIGURE 1.1 How bill of materials (BOM) can be used for planning and costing.

8 NO PROGRAMMER DIES

Engine Body Wheel

FIGURE 1.2 Class diagram for a car (simplified) that resembles bill of materials (BOM)
but serves a different purpose.

quantities of materials or subcomponents are needed for production (Chap-
man 2006). The assembly task planning will allow costing to be determined
(Figure 1.1). Subcomponent information can be used to do cost rollup
calculation for customer quotations and for effective internal control over
production costs.

Similar to engineering projects, software is often designed using a class
diagram (see Figure 1.2), which resembles a bill of materials. Class diagrams
help us understand attributes, methods, and class component relationships.
Unfortunately, we could rarely use a class diagram to tell us how to do
assembly task planning and costing. It would be good to have an integrated
approach to tighten up or clarify what needs to be written and how a project
should be planned. Only recently has it become possible to do this to some
extent through the concept of a “user story” in eXtreme programming (XP),
which can be used both for requirements management and project
planning.

Compared to software tasks, other engineering tasks are often more
tangible. Components built in a typical engineering project can be combined
in the order suggested by a bill of materials (BOM) so that work progress can
be objectively measured and quality can easily be monitored. This, when
compared with software, is more tangible. For instance, as part of an
engineering project, one can assemble an engine to the gearshaft and then
form the base before installing the wheels and finally carrying out wheel tests.
The sequence in which these tasks are performed could be designed in
accordance with both physical constraints and economic efficiency, and this
sequence somehow solidifies the idea of the separation of planning and
execution into two stages.

In software projects, products cannot be assembled with this kind of job
sequence as defined with class diagrams in the same way BOMs are, no matter
how these products are designed. Programmers can work out login interfaces
and main menu interfaces in an order that corresponds to how the users

DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL 9

Same Bill of Materials Same Class Diagrams

Built by Built by Built by

Built by
Team A Team B Team X :

leam Y

O 4 O d

Product A Product B Product X Product Y
*+—> <
Higher degree of similarity at the basic Lower degree of similarity at the
level (i.e., elementary components) basic level (i.e., source code)

FIGURE 1.3 Degree of difference is a conceptual term measuring how two products
can be built differently using the same design.

operate the system. But they can also do these later on.? There are virtually no
restrictions on the ordering when we build with software components.
Walker Royce (2005) of IBM suggests that software managers should manage
software in the same way as managing a movie production rather than as a
typical engineering production. To make a film, we have to effectively assess
how all the elements of scenes of the film work together (actors, timing, lines,
sets, props, lighting, sound, etc.) so that scenes of the film will be shot in a way
that will minimize production costs and production time so that the film can
be completed with the least amount of time and money.

In manufacturing, when two products, designed by two groups of
engineers, eventually appear on the same BOM, we can almost speculate
that these products should be built in similar ways. Furthermore, since
products are built to follow the design as given by a BOM, if there are defects,
either they are design problems or the products have not been made to plan.

Unfortunately, this same logic that is applicable to manufacturing does
not apply to software development (refer to Figure 1.3). Unlike BOMs, class
diagrams do not fully address code implementation. Given the same dia-
grams, implementation could be done in a variety of ways by different
programmers. The programmer will not have to write the same software
twice for a second installation, but may have to redo it for a second version,

Tt may make some kind of logical sense that you have to finish writing the login
servlet before you start the logout servlet; but in reality you could write and test them
in any order,” said Robert Martin (2003).

10 NO PROGRAMMER DIES

and this can be done even without modifying the class diagrams! For instance,
programmers may tune structured query language (SQL) algorithms for
better performance when they know the characteristics of real data. Some
software teams will adopt the practice of revisiting each other’s code to detect
defects and improve readability. Again, none of this necessarily implies
redesigning the class diagrams.

In the case of software projects, not all that is well designed ends well!
Worse yet, many software problems cannot be classified as problems even
when the class diagrams or code are not written in compliance with the
design. Bad code but good design is not that rare! In short, having qualified
experienced system analysts do design using data models, unified modeling
language (UML) diagrams, and so on, is not the only necessary condition for
producing good software; we also need qualified experienced programmers
to write code to build the system. Furthermore, with the right design and
good-quality code, we need skilled testers to discover bugs in products.
Managing these people effectively in a team, whether each member has just
onerole (e.g., system analyst, programmer, tester) or multiple roles requires a
methodology for coordination, collaboration, and communication! Left to
themselves, things may go wrong, and once they do, they will go from bad to
worse. One cannot expect a bunch of the right technical people sitting together
(without proper management or coordination) to produce software on time,
within budget, and according to requirements if there is no development
framework.

1.1.4 Deal or No Deal

Traditionally, software management emphasizes mainly relatively formal,
rigorous, software development processes. Recently, agile development
approaches have grown quite popular. There is now an agile or eXtreme
version for formal methods, testing, database, tools, or project management.
Although this new trend has attracted great attention in the software com-
munity, it has not taken over the waterfall model as the dominant approach.
In fact, agile practices are often adopted within a waterfall framework. It
appears that the waterfall model is either so intuitively better than the others
or that software developers have been so used to it that they cannot think of
any other ways better.

The popular TV game show Deal or No Deal displays a number of
briefcases, each of which contains a different cash prize ranging from just
one dollar to millions of dollars. A contestant who wins a game on the show is
allowed to pick any of these briefcases as a prize. The contestant, however, is
not allowed to open the briefcase until the end of the game. As the game

DEVELOPING SOFTWARE VERSUS BUILDING A TUNNEL 11

progresses, a “Banker” offers the contestant a deal to buy the chosen briefcase.
If the contestant rejects the deal, other cases can be chosen and opened
while the banker continues to make offers to the contestant regarding the
suitcase the contestant chose at the beginning. The contestant can either
accept the banker’s offer or take the cash prize inside the briefcase selected at
the beginning of the game. It is interesting to note that many contestants who
had chosen the right briefcase often accepted a lower-value offer from the
bankers. They would have, say, accepted $250,000 dollars, rather than
resisting temptations to hold onto the end to win millions. Even in the
presence of favorable odds, it is interesting that many people are actually
highly risk-averse (Post et al. 2006).

In a study involving 150 volunteers (Tversky and Kahenman 1981),
who were asked to choose between a guaranteed $250 or a 75% chance to
win $1000 dollars, the overwhelming majority (84%) of the participants
took the $250 cash. Interestingly, when the choice was between winning or
losing $750 dollars with a 75% chance, 87% preferred to try their luck.
Mathematically, the odds were the same but not the subjects’ perception of
winning and losing.

Daring to take risk for a higher reward is an entrepreneurial attitude. For
entrepreneurs to be successful, they need to be risk-takers. They need to
understand the odds on success and failure, so that they can spot markets and
seize opportunities before others do. If not, they need to have the gamblers’
attitude. Compared to an entrepreneur or a gambler, how much risk is a
software project manager willing to take when adopting a new development
methodology? On the surface, this seems to be a matter of personal prefer-
ence. However, it may be a bit more complicated than this. There is a chance
that the members of a software team may not be so cooperative. They may try
to stick to their usual way of thinking and work consciously or subconsciously
toward it. If things do not seem to go as originally expected, these members
may well place the blame on the manager. They may say that the manager
should have been more prudent and should not have replaced the usual
practice with something unproven. Is this prudence? Does fear overwhelm
ambition? Or is it politics that has raised its ugly head?

Typically, user requirements continue to change and our competitors act
and react much more quickly than we do. Even with all these arguments and
hesitation, there is a chance that members of a software team will eventually
be willing to adopt a new development methodology. But as software projects
rarely go wrong at the beginning, it can take a significant investment of time
and money before we realize that the old way isn’t working.

Meeting deadlines is often a pressure to make us change our old way of
working. Let us look at a real case here. In 1995, TechTrans, a Hong Kong

12 NO PROGRAMMER DIES

software house with a technical staff of around 20 that specialized in the
development of retail-chain points-of-sales (POS) systems written in C and
Clipper, won a software outsourcing contract to redevelop an AS/400
application on a truly client/server platform. The system had to be written
in PowerBuilder and Informix. At that time, no TechTrans programmer knew
these tools. TechTrans could have used its existing Clipper database model
for the Informix relational database. However, PowerBuilder is an event-
driven programming tool under Windows 3.0, while Clipper is a program-
ming language used to create business applications under the disk operating
system (DOS). The project leader asked two developers to pair up to explore
how to start their programming. The pair was expected to develop a set of
code patterns that the other developers would try to follow. The project was
managed using the waterfall model, and both the leader and the team firmly
believed that this would be an effective, efficient, and less risky way forward.

1.2 DO-RE-MI DO-RE-MI

Experience keeps people growing professionally. The customers today are
different from yesterday’s customers, and so are members of a software team.
For this, one can only expect software projects, and how they should be
managed, to also keep changing. When projects cannot be effectively man-
aged using the simple and familiar waterfall model, an iterative approach is
used. This can revolutionize the way a software team develops software, but
even though resistance to new ways of doing things can be expected, the
resistance may be small as there is a familiar simplicity here.

“When you read, you begin with A-B—C” and “when you sing, you begin
with do-re-mi.”® A good place to begin iterative software development is with
the waterfall model’s requirements analysis (R) — design (D) — coding (C) —
testing (T). The simplest way to perform iteration is to simply join two smaller
waterfalls together as

R—-D—C—-T—R—D—C—-T

One benefit of iterative software development is that it can be adopted flexibly
when coping with the inevitable changes that arise from customer feedback,
communications, and working software. Because of changes and the issues
discovered earlier, we have more realistic views to control projects to ensure
that they are within scope, budget, and timeframe. Another benefit is that it
breaks a protracted system analysis into more phases, and thereby actual

*From Rodgers and Hammerstein’s The Sound of Music in 1965.

DO-RE-MI DO-RE-MI 13

— /\A
| | | |
: R—>D— C->T I R—>D— C->T I R— D— C->T I

FIGURE 1.4 Phase-by-phase development.

programming can start earlier. This is real progress for software delivery as
design diagrams do not cover the details of how to code.

There are at least three ways to implement a simple iterative waterfall
model. Most straightforwardly, a system is logically broken down into two or
three modules, each of which could be consecutively released for production.
It is also possible to implement one or two modules and withdraw the rest.
The development approach is referenced as step-by-step or phase-by-phase.
A metaphoric example of this approach is given in Figure 1.4.

The second way to implement iterative waterfall model is to review the
system nature and functions and to define a kernel and its interface at the
beginning (Figure 1.5). The goal of such an iterative cycle is to build new
components that could be integrated with a kernel. Different software
applications are assembled using the components, which are blackbox to
the outside world, but are accessible via their defined interface. Components
themselves can be written in several different programming languages as
long as they are in full compliance with the interface specifications. This
approach to implementing the iterative waterfall model is particularly useful
when a number of different applications, each sharing the same reusable login
components, are to be developed. Although this can appear to be ambitious, it
is a very traditional computing approach. An example is for one to think of an
operating system (OS) as a kernel and each application running on the OS,
developed with the use of application programming interfaces (APIs), as
components so that the computer running the application can serve as a
dedicated point-of-sales (POS) or an application server.

ml.l.l.um?.l.l.mu -

FIGURE 1.5 Component-based incremental development.

14 NO PROGRAMMER DIES

-~

Product

Devel
eveop Prototype

Prototype

FIGURE 1.6 Evolutionary software development.

Brooks (1995) captures the spirit of evolutionary software development
very well by saying “Grow, don’t build software.” This third way of im-
plementing iterative software development is iterative, generative, and
incremental (see Figure 1.6). With this approach, a small, immature prototype
evolves through constant or regular customer reviews until the software has
all the functionalities required. Customers are encouraged to reengineer their
requirements so that the final product fits their business needs. With this
approach, an early prototype may not even be software. It could be a paper
prototype including a set of screen layouts showing the required function-
ality. However, the prototype must be sufficiently complete for customers to
provide solid feedback.

All these different ways of implementing the iterative waterfall model
can be adopted in the same project. They can be integrated to different
extents into a hybrid iterative model. One way to do this is to have an outer
loop taking a step-by-step approach so that each outer loop has several
inner loops that can take, say, the evolutionary approach. Such a double-
loop iterative model has been proposed and used with some successes as
part of some agile methods such as the scrum (i.e., scrummage meeting, as
in rugby) .

1.2.1 Iterative Models

As early as the 1950s, Deming popularized Shewhart’s closed-loop model in
statistical process control for business continual process improvement, to
measure and identify sources of variations so that one can identify and
manage the areas where improvement is needed. The feedback loop included
in so many project management texts has been generally known as the “plan—
do—check-act” (PDCA) cycle. The PDCA cycle is shown in Figure 1.7, which is
self-explanatory. The PDCA cycle involves a solid grounding in identifying

DO-RE-MI DO-RE-MI 15

FIGURE 1.7 The PDCA cycle.

performance metrics and measuring them for analysis. The underlying
principles have become the foundation of software project management.

Returning to a basic iteration ike R =D —-C—=T—=R—=D—-C—T, we
can see that the iteration does not tell us how to sustain actions! For this reason,
a review session is normally needed after each cycle to determine whether we
have done as planned so that we can realistically plan what the next cycle
should be. In addition to this, we also need to reevaluate the different risk
factors that may affect a project so as to ensure that we can better control
budgets, resources, and schedules against the original project plan. Clearly,
some supporting process areas should be considered to sustain the iteration of
R—D—-C—-T—R—D—C—T so that each iteration delivers solid prog-
ress toward the final product until an application is released for production.

The PDCA and waterfall model activities, can be combined to establish a
complete iterative model — the spiral model — as proposed by Barry Boehm
(1988). This spiral model can be modified as shown in Figure 1.8. The
sequences of R=D —-C—T—R—D—C—T can therefore become, say,
R—R—=D—=R—=D—=C—T (see Figure 1.8). As expected, processes and
practices are required to sustain such a model. It should be noted that this
modified spiral model does not contradict the iterative waterfall model of
R—-D—-C—T—R—D—C—T and software teams can choose to substi-
tute it with the modified spiral model.

The spiral model was originally proposed to develop different prototypes
at various stages of a project until the final product is completed. The use of
such model is both generative and evolutionary. In practice, software teams
may adopt a spiral model according to project requirements. The implemen-
tation of the iterative waterfall model can be flexible, and the three different
approaches to implementing such a model can be integrated and hybridized.

16 NO PROGRAMMER DIES

Objectives, Constraints, Risk Analysis
Alternatives
Prototype 1,2, 3 ...
Commitment 1 2 3

Review K

Next Phase Planning

Development

FIGURE 1.8 The spiral model (simplified version).

With these characteristics, the spiral model, which applies the ideas of the
PDCA and a combination of these three implementation approaches, can be
used rather flexibly with different software projects and thus has been
generally accepted as much better than the waterfall model.

1.2.2 Code and Fix

Even though iterative software development approaches have their advan-
tages, not all iterative approaches are desirable. The code-and-fix approach,
for example, is repetitive. It involves writing code to clarify requirements for
better design later. It is a time-buying strategy where the target is to release
the software on schedule and to release patches afterward. It is common in
software development that project pressure quashes discipline and that when
software developers are under time constraints, they will naturally handle
this pressure by jumping into coding immediately. Another situation in
which developers would adopt a code-and-fix approach is when the appli-
cation being developed is so popular that it attracts new, additional, originally
unintended users who demand additional expansions in performance and
functionalities.

Let us consider a real case as follows. In a retail chain of 45 outlets in
a metropolitan area, operational staff might need to split their time between
staying in office and visiting other stores. The human resources (HR)
department therefore decides to have their information technology (IT)

DO-RE-MI DO-RE-MI 17

department write a system for them to allow staff to submit trip records
electronically. Their goal was to replace manual forms with a database so
that the HR department could quickly retrieve information relating to these
business trips. The written requirements provided by HR were a brief
sample copy of their current form!

The HR system, called TripLog, was written in under a fortnight in
Microsoft Access using Delphi 6.0. Since the functionalities of TripLog
were rather simple, so the HR staff were quick with their user acceptance
testing. As expected, HR occasionally reported minor bugs, but these were
quickly fixed.

After 2 months, the HR staff asked the IT team to distribute TripLog to user
departments so that they could directly enter data into the system. After an
additional 2-month period, the HR department decided to add vacation leave
as a type of a “trip” in the TripLog so as to automate leave applications. Now
that the number of users had unexpectedly increased, the system became
extremely slow. Naturally, users start to request that the IT department to
improve system performance and to have TripLog display leave balances.

The IT department decided to rewrite the system in MS SQL Server using
Delphi 6.0. This took a month, but this was not the end of the story yet as
TripLog continued to be the subject of modifications and eventually its user
base included all staff of 150 back offices.

The development of TripLog was not disciplined, but the system was not
complicated and the software team managed to do a good job. However, the
software team actually redeveloped the system completely. The code-and-fix
cycle in this case resembles the following sequence:

Code—use—fix(—code)—use—fix(—code) —use—fix. ..

The activity shown in parentheses may occasionally be required.

The code-and-fix approach is different from the iterative model in that we
could not tell when a development activity would occur and when one
activity would switch to another. Although there was no sense of rhythm
and events appeared to occur randomly, the pattern was iterative. This
approach can be considered by some developers to be ad hoc.

1.2.3 Chaos

Timing and patterns are important in any kind of iterative model. There can
be huge differences of days and even months in completion dates when the
same iterative software activities are followed. In this section, we will see
what an iterative model may look like when a cycle is as short as a day.

18 NO PROGRAMMER DIES

» Time

FIGURE 1.9 Waterfall topology.

Figure 1.9 shows a four-stage waterfall model over time. If we assume that
there is a deadline to meet for each stage, the project can be tracked with four
separate milestones. According to Parkinson’s law, work expands to fill the
time available for its completion. Therefore, it is rare for a software team to
complete its tasks on time. Assuming the probability of delay in project
schedule be §, for four stages, we can be very pessimistic about the chance of
completing the project on time as § X 1 X 1 x £ = - In other words, there is
very little chance that a project is able to finish on time. Of course, many
project managers would squeeze time from later stages to compensate for
earlier delays, but this effectively shortens the time available for the tasks that
are to be achieved in later stages. This may lead to sacrificing either quality,
functionalities, or both.

To cope with this problem, we can implement an incentive scheme. When
developers are able to complete jobs on time (see the “time box” in Figure 1.10),
they receive a bonus pay. To implement this effectively, we need to assign
different roles to different members of a software team at each stage. It is
possible for us to assign different roles to the same developer. For instance, we
can assign requirements engineers the role of software testing to test the final

, Time Box
F: i
! !
h !
i : [» Time
Requirments R |® :
Engineers 1 B D
! : Documents
\
\ . (4 5
System Y 5 E Software
Architects D
\FQ
Programmers c |e——==- =
Bt Time Box
4= "
‘r i B} 3 b
Testers T 1] e

FIGURE 1.10 Waterfall in action.

DO-RE-MI DO-RE-MI 19

v ___ Project B

-7
|
|
|
|
|

L)

I D

Subteam R R

Subteam

i
i

Subteam h C
'

D

Subteam

Idle Idle 1dle

<« Suppose that all tasks have the same elapsed time

A
E Delayed task

FIGURE 1.11 Delayed tasks and idle developers.

product and the role of coder to system analysts to enable them to write
programs for verification.*

In addition to an incentive scheme and the assignment of different roles,
another question arises as to how people in a team communicate and whether
such communication is effective. For example, there is a need for well-written
documents to be used as a communication tool between two sequential
stages. Figure 1.10 illustrates the waterfall in action.

A software team may be involved in several projects at the same time with
team members organized as divisions. Figure 1.11 illustrates how two
projects can be run by the same team in parallel. Basically, each subteam
either handles just one project at a time or the members deal with one project’s
tasks at a time. However, when documents passed down from a previous

*The idea of how quality control checkpoint can be integrated into each phase
throughout the development as implemented in the V model. As in our simple
example, the look resembles a “V” as shown here:

20 NO PROGRAMMER DIES

stage are difficult to understand, incorrect, or incomplete, the responsible
subteam has to follow up. Thus, some subteam members will find themselves
handling the tasks of two projects at the same time. Although this is quite
typical in the real world, this kind of task switching adds no value at all to
software development (Poppendieck and Poppendieck 2003). Human con-
centration is easy to break and hard to get back. Switching tasks between two
projects eats up time (say, 10-15 minutes) as people reenter the flow of
thought for a new task. Frequent interruptions are time-wasting.

Figure 1.11 illustrates another issue that is perhaps even more disturbing
than task switching. Most staged models require the completion of one stage
before it is possible to enter the next. This makes it difficult to plan two projects
to avoid any slack-time between them! Compounding this is the fact that
delaying some activities in one project will tremendously affect another project.
Figure 1.11 illustrates how “delayed time” and “idle time” intertwine even
though there is no real idle developer as the project plan can be revised as
often as necessary.

To tackle these problems with the simultaneous management of multiple
projects, we are brought to the arena of concurrent engineering. We do not
wait for the completion of one task before the other starts (see Figure 1.12), and
we allow different development processes to run in parallel. To allow a
process to evolve more flexibly, we should not be confined only to documents.
Instead, we hold more face-to-face meetings to facilitate proper communica-
tions. To manage single projects, we can also adopt concurrent software
engineering (Figure 1.13).

Concurrent software engineering can be adopted by applying a model for
managing single as well as multiple projects (Figure 1.13). The greatest benefit
of such a model, called the Sashimi model (Raccoon 1995), is that it shortens the
iteration cycle.

Fomm—m——g e Project A
: :--"'J}\"_T'"ProjcclB
P -
e & . ¢
L | | R PR R R
ﬂ::l D D D D
[P, C o c e
L= T BN T

FIGURE 1.12 Concurrent engineering.

DO-RE-MI DO-RE-MI 21

Involovemnt
0,

100 % R | p R R | p o

R C C Simplified

— R — as R/D/ C T
R P — b — T
C . ¢ #
D — T N T
C T p| C T

0%

time

FIGURE 1.13 Sashimi model.

One way to expedite tasks is to shorten iteration cycles. Iteration cycles
can be shortened by allowing many things to happen simultaneously. For
example, the chaos model (Figure 1.14) looks at a team’s activities as a whole,
fractally. The model uses a short, small problem-solving loop, but unlike the
case with code-and-fix, the chaos model can be very rhythmic as far as we
anticipate when things work, when things can be used (i.e., how one loop
turns to another), how to sustain the rhythm, and so on.

1.2.4 Methodology that Matters

The following statement was made by a finance director in charge of
accounting, administration, personnel, IT, and purchasing departments: “My
daughter, 15, was already building her home page at school! I just don’t
understand what our IT team is busy with.”

Customers can be users within an organization, or they can be the external
client of a software house. They may not see our service the way we do.
Building and managing customer relationships are as important as develop-
ing quality software. Projects with teaming relations with customers could
be twice productive (Bernstein and Yuhas 2005). When it comes to what

T

FIGURE 1.14 Chaos model developed by Raccoon (2006).

22 NO PROGRAMMER DIES

Developer

Attractive

Jawoisn)

Attractive

FIGURE 1.15 Customer—developer relationship.

customer-relations management (CRM) is, Ed Thompson of the Gartner
Group presents the following matrix (see Figure 1.15). CRM, according to
him, is all about how customers see the development team and how the
development team sees them. When customers and developers regard each
other as mutually ugly or mutually attractive, nothing can or needs to be done
(shown as “®” in Figure 1.15). But when the mutual perception is ugly—
attractive, there is room to improve the customer—developer relationship.

From a developer’s perspective, ugly customers are reluctant to partici-
pate in the development process [i.e., requirements management process and
user acceptance testing (UAT)]. Such customers think that what and how
software is built is not their concern. Of course, software that is not targeted to
specific business processes or domain knowledge demands less user partici-
pation. Other than these kinds of customers, there are also customers who are
not concerned with the details of software functionalities. For example, some
people use Microsoft Word every day but have no interest in knowing
anything more than what they already know even though there are better
ways of doing things. Customers with that kind of attitude are not helpful. In
fact, such attitudes can be harmful to a software team. From the customer’s
perspective, besides return on investment, satisfaction with the product or
service, schedules and scheduling, speed of response, ongoing service sup-
port, and product quality are major concerns. Much of this is directly related
to how a software team builds software, namely, software development
methodologies.

Generally, customers do not like jargon or complicated flowchart dia-
grams. For this reason, the ideas of metaphoric communications or writing
short descriptive requirements (see user story in Chapter 3) have been

DO-RE-MI DO-RE-MI 23

proposed. In addition, since many users, not trained as programmers, have
problems with too many if-then-type requirements, keep them fewer than
five.

From time to time, a software team has to give customers progress
reports. Some software team will send their customers an enormous, per-
plexing updated project plan but customers like a product demo (demon-
stration model) or prototype. Instead of a report, it is therefore easier and
more effective if an update of the latest progress status is reported by releasing
a demonstration of working software. Owing to their organizational culture
and operational processes, some customers accept only big-bang implemen-
tation, but it is still a good idea to release working software for a demo, or for
early training.

In the commercial world, customer requirements are often dynamic.
There is often much need for effective exceptional handling ability in an
organization. Customers appreciate quick response from developers. How
fast a software team can change a software to meet new business require-
ments depends on a number of factors. If one is to ignore technical issues and
look only at development procedures, one may conclude that the implemen-
tation of bureaucratic document control and awkward team structure may
make us change our work more slowly than we should.

Modifications can be made with these concerns in place and, after
modification, it is necessary to retest the software. Moreover, after modifica-
tion, retesting what software has worked is necessary. Testing and retesting
are two basic concepts in software testing. Generally speaking, the purpose of
testing is to detect faults in executed code that causes a failure, while retesting
is done to confirm that the changes do not introduce error to other parts of the
code (this is also known as regression testing). Retesting is often boring and
tedious. Automating all or some part of the testing could be an answer to some
of the problems mentioned here. Coding and testing need to be better
integrated here for a more complete solution. Developers need to be able to
write automated testing cases while coding.

When some developers leave a team, others will have to take over, and
developers who take over will have to spend some time to understand and
make changes to a piece of code. To do so, they may have to refer to technical
documents or to read the code directly. This takes time as documents may not
be written in such a way as to make them easy for other developers to follow.
Ideally, developers should rotate jobs among themselves so that each piece of
code can be maintained by more than one person. This, however, may not
always be feasible.

All these development problems can arise at the same time, making it
difficult to respond quickly to changing requirements. Changing our software

24 NO PROGRAMMER DIES

development practices overnight will not lead to successes. We have to take
small steps first. The iterative model discussed so far may meet this require-
ment as it allows us to manage processes, schedules, budgets, and risks.
However, it is not complete. There is still something missing. We need to
harmonize practices, people, and software, and this leads us to so-called
software development rhythms, inspired by Kent Beck who says, in his XP
book (Beck and Andres 2005), that rhythms operate at all different scales. A
principle such as do—check can be applied to the process of doing before the
process of checking or practice for doing before practice for checking. They
are still do—check!

1.3 SOFTWARE DEVELOPMENT RHYTHMS

If you drop a frog into a pan of hot water, the frog will leap straight out. But if
you put the frog into a pan of cold water and slowly heat it, the frog will sit
there until it is cooked, unaware of the gradual changes in temperature. Well,
maybe frogs are that dumb and maybe not, but there is an interesting point
here. No one likes sudden, unexpected changes and, ironically enough, that
includes techies such as software developers.

Suppose that a consultant is hired to coach a software team in a develop-
ment methodology that has a number of new software practices. He asks the
team to start with two or three practices and to gradually exercise others.
Alternatively, he suggests that the team take a maturity approach in which the
team advances toward software practices suggested by the methodology. For
instance, an onsite customer requires at least one customer representative to
be available onsite all the time. We begin with the representatives visiting the
developers frequently enough to sustain personal contacts, then being avail-
able not less than 2 hours per day and eventually being an onsite customer
(Nawrocki et al. 2003). Both approaches are widely used. The secret of making
this successful lies in whether we have successfully complemented either way
with the right rhythms of a development methodology while it is introduced!

For instance, Beck, in his book on eXtreme programming, suggests a
“standup meeting” to start a day and software integration before calling it a
day. Participation of all team members in these meetings is necessary.
Developers have to be punctual; otherwise, time is lost in waiting. Not all
people in every software team can get it done as easily as we thought. In some
extreme cases, people who are not used to the time rhythm dislike the idea of
morning meetings. A better way is to organize an informal morning coffee
meeting for the whole team and to have a day-end gathering to orally confirm
who could not join the coffee meeting the following day. We can see the

SOFTWARE DEVELOPMENT RHYTHMS 25

rhythm as morning gathering-work-day-end gathering. Once the team gets
used to that rhythm, we may easy change to “standup meeting—work—code
integration before go home.”

Often a development framework can have many such rhythms playing
simultaneously. In this case a software team should better get used to a
thematic rhythm that actually drives the success of the framework. For
example, in the iterative waterfall, the thematic rhythm can be design—
programming-design-programming.’ This thematic rhythm must be sus-
tained; otherwise, the paradigm could be more harmful than helpful.

To sustain any rhythm, such as A-B-A-B, requires both strategy and
execution. Determining what practices between A and B are selected and how
they can be harmoniously combined to establish effective development
strategies is the same as exploring when software practices work and when
they can be used. Adopting the right strategy is only half of the story; we need
execution, and we especially need to be able to sustain a rhythm. This issue
will be revisited in Section 1.3.2.

1.3.1 Stave Chart by Example®

“Most people live within a wall of rationality that is defined by the real and the
apparent limits of the world they inhabit” (Anderson 1993). Software profes-
sionals, by occupation, have been trained for so many years that they are
mentally fixed to think in certain patterns. For instance, they often carry a
preference of conditional logic when seeing diagrams looking like flowcharts.
This is sort of reflection, and hence we are often being limited by what we see
(Figure 1.16).

Development rhythm can be expressed in flowcharts as illustrated in
Figure 1.16. However, the use of flowcharts may cause us to lose the ability to
sustain, harmonize, and, most importantly, synergize. For simplicity and
readability, we use stave charts to represent software development rhythms.
We believe that the stave chart gives us a stronger sense of exploring deep
harmony by putting two or more software practices in harmony. (For
instance, in the sequence A-B—A-B depicted in the four different scenario
in Figure 1.16, when practices A and B are harmonized to produce synergies,

5For those who have known eXtreme programming (XP), another example is that the
thematic rhythm of XP is test-code-refactor; see Chapter 9.

® The authors would like to thank Dr. Michael E. McClellan from the Department of
Music at The Chinese University of Hong Kong for technical comments on the “stave
chart by example.”

26 NO PROGRAMMER DIES

=

if A — B
if B— A

repeat

TN

t

O| process
o

EXPLORATION
|

summary
t

system

Aimassit

FIGURE 1.16 Different visual representations of the same thing affects our thinking.

the stave chart is a good choice.) The main purpose, however, is to help us
think of software practices in rhythms.

Let us look at a simple rhythm of software practices such as A-B-A-B-A-B.
The rhythm starting with A is denoted as ¢ :. Then we have é ABABAB .

SOFTWARE DEVELOPMENT RHYTHMS 27

[

Lse 1L
L p | =
Codl R Cad S
LOaT X woac TIx

FIGURE 1.17 ~ Explained by code—fix.

——Standup—— & Standup———&—Standup

FIGURE 1.18 & Explained by standup meetings.

Since it is repeatedly moving between A and B, we use the symbol |: | to show
repetition. As with many rhythms, we are often concerned about which practice
should come at the end. The rhythm will be -@—a}-s—-}»—. Where we don’t care
about the order of starting and ending, a practice can be expressed as
B

Now let us look at another example of code-use—fix—(code)-use—fix—
(code)-use-fix. Here “(code)” has an unplanned duration. It can even be
skipped. The notation #~ is placed over it to mean unplanned or uncertain
practices. The rhythm tells less about when that practice happens and how
long it may last. Figure 1.17 illustrates the rhythm of code—fix using a stave
chart.

In some cases, we would emphasize pause and interruption. Sometimes,
doing and holding onto something for a bit longer will unavoidably incur a
stop or interruption. For example, when trying to have a standup meeting for
an hour, team members will naturally ask for a regular break after 15 minutes.
The symbol & indicates an interruption.

If we do not place §in Figure 1.18, then we would just write one “standup”
instead of three. In this case, we deemphasize any interruption during a
standup meeting.

The pause or interruption of an unknown duration can be really prob-
lematic. Itis not wise to have along standup meeting in the morning to discuss
every project and technical issue that arose yesterday until all issues are
resolved. Long meetings fragment, as shown in Figure 1.19. People may ask
for breaks to return calls and do not return to the meeting on time. In addition,

"This a minor point, but technically, if something is enclosed in repeat signs, it will be
repeated only once and everything within it should be repeated. So, for this example,
the result would be A-B-A-B, nothing more and nothing less. There should be an
indication that the section enclosed in the repeat signs should be repeated more times
or an indefinite number of times.

28 NO PROGRAMMER DIES

o) o)
'7Smmlup'—_i Standup _i Standup

FIGURE 1.19 Long standup meetings.

urgent matters that should be handled soon may come up in the meeting and
the meeting may have to be suspended.

Now we talk about the structure of a rhythm. Consider a rhythm such as

A-BABAB—. Wecaninterpret this to mean that activity A is done to deliver
something tor activity B. Another meaning is that A and B are linked by time.

Another scenario is a bit more complicated. Some objectives of activities
within A are to turn B. Normally, outputs of A are the input for B. But it is
possible that A itself is much more important than its outputs and contributes
much for B. The slur mark here s indicates a special condition in which
A itself triggers B.

Some rhythms have a faster tempo (e.g., hourly or daily basis). We use

Vivace

A

“Vivace” to represent that tempo as . The five lines on which practices or

processes (e.g., A and B) appear are written such that, by comparing A with B, the
higher it is on the stave chart, the more difficult it is or the more human
dynamism is required for a team so that people will pay attention. However,
in the real world, =48 canbe | * for some, but becomes ~* , for
others.

The stave chart is self-explanatory. It is not a detailed workflow diagram.
Basically, we have not invented any notation, although one of them has been
slightly altered. The musical notation here parallels those between the
compositional processes that Bach and Mozart used and the processes that
programmers employ. We draw it on the whiteboard to coach software teams
in development rhythms.

1.3.2 Game Theory

Companies from one country venturing into another are faced with a thicket
of unfamiliar and easily misinterpreted regulations to which they must make
their business operations conform.

Dave is a software leader who is going to take over a project to build an
insurance application in a developing country. His software team has around
10 experienced colleagues, and they have successfully used the waterfall
model to develop similar systems for almost a decade. What Dave needs to do
is to lead the team and repeat the earlier success. However, unprecedented
challenges are ahead of him.

SOFTWARE DEVELOPMENT RHYTHMS 29

>
&
:b‘e(‘
o
4 old W New Way
m“\e’ (Waterf:ﬁ) (terative
o Model)
My Software
Team Stable ABIT | ABIT

Requirements FASTER | SLOWER

Changing MORE LESS
Requirements | REWORK | REWORK

FIGURE 1.20 Software team playing their development game with customer.

The situation is more or less like exploring a game to determine the best
strategy by understanding how the customer and the software team interact.
When requirements are correctly formulated and relatively stable, Dave’s
team can do as well as usual. They feel confident. This way should therefore
be considered as the faster or most expedient approach (see Figure 1.20).
Unfortunately, the customers could ask for any change in their business
requirements during the construction stage. More risks could result from the
frequent change requests. In such a case, rework seems unavoidable.

Dave knows that the requirements could be unstable in that environment.
A big waterfall model is not desirable. On the basis of his past experience, he
works out a simple iterative model to build the system through evolution.
There will be three or four releases, and review sessions will be held immedi-
ately afterward. During the review, the customers are allowed to raise any
questions or comments for modification. Once satisfied with the progress, the
customers have to pay the development fee. Rework can be minimized.

Although this sounds great, this could cause problems in Dave’s software
team, who may not be familiar with such an iterative approach. Adopting a
new software paradigm is a team-level change! As the size of the develop-
ment team is small and Dave has established a good relationship with the
team, he can manage this situation. Nevertheless, the whole development
process is definitely longer.

According to the maximum principle in game theory, players prefer to
minimize the maximum possible loss. Thus, the project leader will plan for the
iterative model because the loss is less.

This game theory analysis is satisfactory only if we can have data to
understand the implications in detail. Moreover, change in software devel-
opment is more than a yes/no issue. To fully analyze the game, the matrix

30 NO PROGRAMMER DIES

shown in Figure 1.20 would have to be much more complicated. Still this type
of tool is helpful for our strategic thinking about playing rhythms.

1.3.3 In-Out Diagram

When praised for brilliant, fantastic piano playing, Johana Sebastian Bach
humbly said,” There’s really nothing remarkable about it. All you have todois
to hit the right key at the right time and the instrument plays itself.” To play
the piano well, we know how good a start is when attempting to tackle a piece
of work that can have tremendous psychological impact on us. A good start
motivates players to keep their focus and continue to strive for better results.
A good beginning is work half-done. How a rhythm can be sustained is
another key factor to be considered for a music player. One wrong key could
break the melody immediately and could ruin all previous efforts!

Every rhythm can be represented as A-B—A-B regardless of what A and
B are. They could be R=D —-C—=T—-R—D—C—T or code — use — fix
code — use — fix or anything at all. Each rhythm is uniquely different from
the others. Some rhythms are easy to start but require a lot of effort to sustain,
and external factors can also affect them negatively. Some rhythms, however,
once we are used to them, are easy to sustain.

Sustainability is a key issue in software development rhythms. So often, a
development rhythm no longer delivers expected values to both the team and
the software but continues to be used. We use the in—out diagram shown in
Figure 1.21 to represent rhythms as easy or difficult to start and to sustain. The
in—out diagram provides a tool for strategic thinking. It is crucial to software
development rhythms and is used throughout this book.

Easyl' Dilficlt

toltol | O

start start

Easy to Difficult

start to sray& Eas

easy to easy t ==
sustain sustain sustain
Easy to Difficult

start to star Difficult
difficu difficu

to sustain | to sustain | sustain

FIGURE 1.21 In-out diagram.

SOFTWARE DEVELOPMENT RHYTHMS 31

Easy-to- | Difficult-
start | to-start

Interative Easy-to-
Waterfall sustain
Traditional Difficult-
radiliona
Waterfall to- .
sustain

FIGURE 1.22 Dave’s decision.

Both the conventional and the iterative waterfall models are easy to start
with but difficult to sustain. Any changes can require substantial rework on
software and its documentation and can also break the rhythm, at least
temporarily. Changing requirements are less vulnerable to the iterative
waterfall than to the conventional waterfall. Thus Dave’s decision can be
depicted in the in—out diagram in Figure 1.22.

In this book, we discuss the in—out development rhythm diagram on the
basis of our experience. When putting this concept into action, it should be
noted that all teams are different and all participants should reevaluate the
diagram for their own team.

1.3.4 Master-Coach Diagram

The in—out diagram alone does not tell us what will happen to a software team
when developers change with old hands leaving and new blood coming in.
For better planning, there is a need to know that a worker has gone and taken
his or her project knowledge and development experience.

Knowledge itself is an evergreen topic in philosophy. Ontologically,
knowledge can be explicit and/or tacit. Explicit knowledge can be simply
recorded in text, symbols, and/or diagrams. It can be articulated. Tacit
knowledge is individual’s actions, experience, values, enjoyment, rapport,
or passion, or the emotions that they embrace. It is human knowledge. A
software team putting rhythms into action has to work with tacit knowledge.

It takes time to learn and master new rhythms of practices in a unique
development environment. Even a single practice such as two people col-
laborating in programming appears so simple, yet both people require hours
or days to learn how to communicate well with each other. One dimension to

32 NO PROGRAMMER DIES

Easy-to- le:g:-ult-
master b
master

Easy-to-
coach

Difficult-
to-
coach

FIGURE 1.23 Master—coach diagram.

consider when adopting development rhythms is whether they are easy or
difficult to master.

Newly hired developers may join a team during the development stage.
Newcomers may find some rhythms easier to learn through on-the-job
training alongside those who have already had experience with them or
through previous project documents or even by absorbing the development
atmosphere and culture. Newcomers start as apprentices to master craftsmen.
However a skill is acquired, the ease or difficulty of acquiring a rhythm adds
another dimension. Bringing team learning and newly hired programmer
training together, we have the master—coach diagram shown in Figure 1.23.In
formal terms, the diagram reflects knowledge transfers between those who
have mastered the rhythm and those who have not.

1.3.5 No Mathematics

We do not need to perceive things through the use of mathematics. For
instance, we can turn a burner to high and heat up a water-filled pot. The pot
warms up and large bubbles rise to the surface. Eventually the pot boils dry.
We have learned the principles of this phenomenon from our own experience.
We do not need equations.

There is no mathematics in rhythms. Depending on how software prac-
tices are played as a rhythm, their synergy cannot be clear through under-
standing each of them individually. An example is shown in Figure 1.24.
Pair programming, which is done by a team of two programmers who always
collaborate on the same program together, is easy to start but difficult to sustain
because the team has only two programmers, there is no partner exchange with

SOFTWARE DEVELOPMENT RHYTHMS 33

Easy-to- | Difficult- Easy-to- | Difficult- Easy-to- | Difficult-
start | to-start start | to-start start | to-start
Easy-to- Solo Easy-to- 9 7 Easy-to-
sustain | - |oopmming sustain | — g : sustain
Pair Difficult- Difficult- Difficult-
Srogramming to- to- 2 2 to-
sustain sustain sustain

FIGURE 1.24 Rhythms have no mathematics.

other pairs. If they work on the same task for long, it may not be easy for them to
always maintain their concentration. Solo programming is easy to start and easy
to sustain. It is hard to conceive of the in—out diagram of two rhythms as one
just by understanding these two individual rhythms. We have to look into how
a rhythm is established.

1.3.6 Where to Explore Rhythms

Iterations, patterns, and rhythms are interrelated. Rhythm refers to harmo-
nized processes and practices in the sense that each element should be used at
appropriate times so as to deliver synergistic values to people and software.
Software development rhythms are also relevant when it comes to the use of
different development strategies and how and when they should be executed.
Both the in—out and master—coach diagrams can guide such analysis.

It is possible for one to identify many rhythms in good software develop-
ment. Some are easy to start but difficult to sustain, while others are difficult to
start but easy to sustain. In this book, we are interested only in those that are
both easy tostart and easy to sustain. There is no single one rhythm that applies
to all kinds of software development. Identifying rhythms is a matter of
observation and experience, and it may even involve many trials and errors.
We have to try different rhythms out in our teams in practical situations. Agile
practices are generally amenable to this kind of approach, and for this reason,
rhythms of agile practices one of the main themes in this book.

Good software rhythms are required to ensure that a software team is
productive and the software projects are completed successfully. For this, we
need to know how to meet our new software teams, and how to recruit new
software developers for our team. A software team has its own norms, and it is
difficult for one to talk about a general template that can be adopted to achieve
the same results with a different team. For this reason, instead of discussing
some standard practices, we present some case studies. We will discuss
software teams in developing countries to emphasize the importance of

34 NO PROGRAMMER DIES

cultural elements in exploring the right rhythms. To make software team
productive, a team must be aware that not all the knowledge gained from their
software project experience may be helpful or useful. We return to this issue in
Chapter 2.

It is tremendously challenging to tell a software team that they need to
change their usual practice and adopt something better. As there are so many
ways to build a piece of software, it is possible for some people to prefer one
method and others to prefer a completely different method. To address such
conflict in typical modern-day software development in Chapter 3 we discuss
open-source software development that is almost diametrically opposite to
the methods used to develop software in the commercial world. Almost every
programmer believes that there is something to be learned from open-source
software development, and in Chapter 3 we describe some of our experience
with using agile software development processes.

Chapters 2 and 3 establish some basics and cover a very broad spectrum
of topics in contemporary software engineering, touching on the essentials of
programmers, social culture, project experience, team communications, soft-
ware processes, and practices. The second part of the book makes use of
proven techniques and applications in engineering management, sociology,
industrial psychology, and group dynamics.

We explain software development rhythms in varying depths through-
out the other chapters in Part II and discuss several software development
rhythms. Many software rhythms are closely related to eXtreme program-
ming (XP), and this is not just a coincidence. While many software teams have
successfully adopted those XP practices, some teams are crying out loud to get
out of it. I have often heard complaints such as “Kim and Keith, we already
tried the agile practices before, but they did not work here!” We think that they
get the software development rhythms wrong or they only get their old
development rhythms right. Trust me! To succeed with any software para-
digms, the mindsets and ways of working have to catch one critical element
right: software development rhythms.

We hope that this book will help you become more aware of the rhythms of
software development and see how they can contribute to the quality of both
processes and products in your own firsthand experience of writing software.

REFERENCES
Anderson JV. Mind mapping: A tool for creative thinking. Business Horizon 1993; 36
(1):41-46.

Beck K and Andres C. Extreme Programming Explained. 2nd ed. Boston: Addison-
Wesley; 2005.

REFERENCES 35

Bernstein L and Yuhas CM. Trustworthy Systems through Quantitative Software
Engineering. Hoboken, NJ: Wiley; 2005.

Boehm B. A spiral model of software development and enhancement. IEEE Computer
1988; 21 (5):61-72.

Brooks FP. The Mythical Man-Month: Essays on Software Engineering. Reading, MA:
Addison-Wesley; 1995.

Chapman SN. The Fundamentals of Production Planning and Control. Upper Saddle River,
NJ: Pearson/Prentice-Hall; 2006.

Leveson N. An investigation of the Therac-25 accidents. IEEE Computer 1993; 26 (7):
18-41.

Martin RC. UML for Java Programmers. Upper Saddle River, NJ: Prentice-Hall; 2003.

Nawrocki J, Walter B, and Wojciechowski A. Toward maturity model for extreme
programming. Proceedings of 27th Euromicro Conference, 2001, p. 233-239.

Poppendieck M and Poppendieck T. Lean Software Development: An Agile Toolkit.
Boston: Addison-Wesley; 2003.

Post TJ, Baltussen G, and Van den Assem M. Deal or no deal? Decision making under
risk in a large-payoff game show. EFA 2006 Zurich Meetings 2006; available at SSRN:
http://ssrn.com/abstract=636508 .

Raccoon LBS. The chaos model and the chaos life cycle. ACM Software Engineering Notes
1995; 20 (1):55-66.

Royce W. Successful software management style: Steering and balance. IEEE Software
2005; 22 (5):40-47.

Royce W. Managing the development of large software systems. Proceedings of IEEE
WESCON, Aug (1970) p.1-9.

Tversky A and Kahenman D. The framing of decisions and the psychology of choice.
Science 1981; 221 (4481):453-458.

UNDERSTANDING
PROGRAMMERS

I believe because it is absurd.!
—FATHER TERTULLIAN

As the saying goes, “If you think you won'’t succeed, you probably won't,”
pretty much the same applies when we consider to what degree we often
internalize other people’s opinions about ourselves and to what extent they
can condition the sorts of outcomes we get in our lives.

In a famous 1968 study, “Pygmalion in the classroom”, two psycholo-
gists, Robert Rosenthal and Lenora Jacobson, informed elementary school
teachers that certain students in their classes were, on the basis of the result of
an intelligence test, highly intelligent (Rosenthal and Jacobson 1968). In fact,
the students in question were simply a randomly selected group. Teaching
continued, and at the end of the study students were tested again. The
students for whom the teachers’” expectations had been raised were found
to have made strongly significant improvements in their test performances.
This phenomenon is the self-fulfilling prophecy.

It’s a paradox of humanity that we are individuals but our ideas about our
individuality are heavily formed by those around us, especially by those with
status.

The original saying is in Latin as “Credo quia absurdum est,” which means that if
something (e.g., the son of God has died) is too absurd to have been invented, then it
must be true (Rohmann 1999)

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright © 2008 John Wiley & Sons, Inc.

37

38 UNDERSTANDING PROGRAMMERS

So the self-fulfilling prophecy works in two directions. Teachers” expec-
tations of students become students’ beliefs about themselves. But students’
beliefs in the teacher matters, too. When you go out to coach or lead a new
software team, it is important to establish the team’s belief in the leader so that
the leader can help the team members believe in themselves. Letting the team
know about your past successes will help your team now. Let them be proud
of working with you.

Software development relies on people, and people rely on each other, in
all sorts of ways. The success or failure of a software project can simply be a
matter of self-belief and belief in the team. So think positively. Besides this, we
also need to understand that each software team is unique and has its own
strengths.

A Fortune 500 company calls you and invites you to advise its software
teams. You are positive, confident, and optimistic. You arrive at the meeting
with great training materials, some pretty good jokes about software devel-
opment, and a passion to share what you know. But wait a moment! Are you
sure you're ready? After all, what do you know about these people and what
they want and need? How is your experience and knowledge relevant to them?
You may be coming in to give them a complete overhaul, but they may just
wanta smallimprovement. They may like what they are already doing and just
want to have someone confirm that they are more effective than anything new.

Team culture and personality traits can be another big issue. One physi-
cian may kill a patient with risky surgery procedures while another lets a
patient die because she is too conservative to take risks. Yet both are trying to
do their best for their patients.

Some of your team’s current software practices may not be appropriate,
but which practices should be dropped or changed, and what should replace
them? To know what is worth learning, we have to know what is generaliz-
able and what is specific to a particular project. A method that has been
successfully used to implement one special project may have little or no value
beyond that project.

If it is people who execute software methodologies, the execution cannot
be too mechanical. Different teams implement the same model differently. So
software methodologies should be more human-centered rather than pro-
cess-centered. The thing to remember is that software methods are carried out
by people and that people will always impose values on even the most
obvious cause-and-effect practices.

Before we take a look at how and when software practices can be
rhythmically combined, we must first briefly visit the realm of the psychology
of programming. In particular, we need to consider how new software teams
should be approached and made to understand working patterns, how to

PERSONALITY AND INTELLIGENCE 39

develop development rhythms by themselves, and also how new members
should be recruited into the team. We also need to consider how cultural
factors can affect software development and how software teams can make
sure that they learn from their own experience.

2.1 PERSONALITY AND INTELLIGENCE

People are more sensitive to the issues of intelligence than personality. For
example, how would you feel if your team leader said that you weren’t up to
the job intellectually? In contrast, how would you feel if she said you were
stubborn? Itis probably worse to be told that you are not smart enough. We are
generally pretty tolerant of our human failings, or we are willing to concede
that we have flaws or just have different personalities. But we don’t like to
think that we aren’t as smart as our peers. You have to wonder whether we put
too much emphasis on this slippery concept that we call ““intelligence.”

Early studies in psychology of programming on the relationship between
psychology and computer programming did not directly deal with person-
ality and intelligence. At that time, there was more interest in the evaluation of
software tools in terms of performance. We looked at activities of program-
ming design, code comprehension, and problem solving. Only then did we
try standardized tests of intelligence to see whether they could be used to
predict programming performance, and to screen job candidates. As ex-
pected, the correlation between intelligence assessments (e.g., figuring out the
next number in a series) and programming capability was shown to be
statistically significant. Yet, as Mayer and Stalnaker (1968) reported and as
anyone in the workplace can tell you, there is actually no strong relationship
between the test and the actual job performance of programmers. A piece of
the puzzle appears to be missing. Is it personality?

Around 1997, we worked for a system analyst who was a dominating
and directing person. He was very fact-oriented with no time for chitchat. As
a programmer, this made him rather unapproachable and it also made it
difficult for us to talk to him about, in one case, a database design of his that
was not really up to standard. Knowing his ways, we decided to approach
him in a very fact-based way. We did our research and collected plenty
of references. Then we attempted to show him why his design may have had
some problems. We knocked on his door. We were given 3 minutes before he
requested us to get back to work. He did not want to hear about any problems.

Being wet behind the ears, we were a little taken aback by this. Shouldn’ta
person who expresses a belief in data be open to persuasion by the presenta-
tion of more facts? Actually, as we’ve since discovered more than once, the

40 UNDERSTANDING PROGRAMMERS

answer is “No.” His interest in “facts”” wasn’t about “the truth.” It was
about his self-image of always being right. If facts were going to prove that he
wasn’t right, suddenly he wasn’t so keen on them. That’s personality in
action.

Shell and Duncan (2000) say that subordinates who have personalities
similar to those of their superiors will have a slightly higher incidence of job
satisfaction if they are instructed by their superiors. Happy programmers
work harder. They bring some sort of positive attitude into the workplace. As
a consequence, problems seem easier to handle. It is, therefore, important that
employees influence each other to create a pleasant, cooperative atmosphere.
This is especially the case where there are a lot of individual, face-to-face
interactions so that a small group of people can have a greater influence on
others’ behaviors. The more positive influence the members of a team have,
the more skills and ideas they share, and the more we can get things done
faster and better.

2.1.1 Virtuosi

A 1972 study showed that the fastest programmer could be as much as 28
times faster than the slowest programmer (Humphrey 1995). This may be of
interest in certain contexts, but in terms of real-world programming products
speed is just one element among many important ones. Programming
includes design, algorithms, coding and, testing. Each of these requires
different skills. As far as speed does matter, it is possible that a programmer
is faster than his colleagues when writing program X but slower when writing
program Y. We might say that a truly talented programmer can produce
solutions to any programming problem more quickly than others can. But
even this assumption does not take into account familiarity with the very
diverse range of software products and development tools available today,
the rise of interactive development environments that provide commands for
checking and instant technical help, or the fact that the complexity of modern
software demands teamwork.

Intuitively, however, one may still know that some programmers are just
more skilled or proficient than others. What are we seeing in such people? Is
it the domain knowledge they possess? One has to know enough about, say,
logistic operations before one can write supply chain applications, know
sales operations before writing customer relation management applications,
manufacturing operations before writing a manufacturing resource planning
(MRP) module, and so on. Often, it is a lack of domain-specific knowledge
that makes programming hard. The more we understand business opera-
tions, the better we design and code for business operations.

PERSONALITY AND INTELLIGENCE 41

Few peoplelive such a hyperfull life or have such a varied career that they
have not only the programming skills but also a knowledge of the world to the
extent that they are expert in every facet of every project that they ever
encounter. Life isn’t that narrow, and most people aren’t that smart. That is
one reason why we need teams, to bring together people with diverse skills.
But even then, the knowledge of each team member has to be available to
other team members at various times, in different contexts, and in various
accessible ways. This calls for managers to be able to create effective teams
that focus on four core skill areas that are not addressed in text books on
programming and never taught in courses on software design: (1) people
collaboration, (2) task coordination, (3) effective communications, and (4)
appreciation of cultural differences.

2.1.2 Meeting Your Team

Programmers live with and think with software activities, and the way they
live with them and think about them affects the way we think and work. This
matters because, surprisingly, among a group of programmers who you
would expect to all have basically similar backgrounds, knowledge, and
experience, there can be huge differences in the way they think about software
activities. We shouldn’t make the mistake of thinking that, when a software
team adopts a particular programming paradigm, old or irrelevant or out-
moded or even entirely contradictory programming practices and attitudes
will just be immediately dropped or forgotten or left behind. No. People are
creatures of habit and prejudice. The way they think about a software practice
really matters and strongly affects the ways others around them think.

Programmers who have used the waterfall model for 10 years may have
to struggle to adopt new programming practices (say, the agile practices as
presented in Chapter 3). They do so not because such stuff is difficult but
because their minds are just not ready for them yet. Every time we meet and
try to help a software team, we have to understand their backgrounds and
respect the way they develop software even though we might consider it
stupid. How do we quickly know a new software team on the day we meet
them? We ask them to draw circles—a little Rorschach inkblot-style exercise
that almost anyone can do.

We give them paper and pencil and ask them to draw four circles, each of
which represents their view of four basic programming concepts: (1) user
requirements, (2) system design, (3) programming, and (4) testing. They may
draw however many they want on the paper. Figure 2.1 shows some of these
pictures drawn by developers. Next, we post the pictures where everyone can
see them, and we see that within each category some drawings are similar

42 UNDERSTANDING PROGRAMMERS

I
| T TN
o / NN
s # ! ! oy
AT
il (O
. P ik
o g -~
5 e, g
\\:‘ _,/ v ';]l.'scrl(cqujremcms

- — e

Il. \ System Design

i Programming

O Testing

FIGURE 2.1 What does your team think of software development?

while others are very different. People usually find this part interesting,
namely, how different people see the “same” thing differently.

Once the circles are drawn, we get into some interpretation. We ask
people to briefly explain how what they have drawn reflects their working
experience as programmers and how it represents the cultures of teams that
they have been part of. One especially interesting phenomenon as these
presentations proceed is that later presenters often start to draw on and
modify their own drawings as they talk—in response to what they have
seen and heard earlier; that is, the present peer input starts to modify how
they are now seeing their own past experiences! This is the power of teams
and this shows how teams can unleash powerful dynamics for better or for
worse.

There is a lot of potential value and interest in this exercise, but it is
important to be clear about what value you are trying to get out of it. It can
produce information about individual attitudes to teams and their develop-
ment rhythms. It can be an effective brainstorm for project management
design. It can also be a good exercise in effective communication. (Get a team
to interpret and explain someone else’s drawing, then get an artist to explain
it.) When you introduce your circle, it is a good, pretty much jargon-free way
to get everyone on the same page about the approach being adopted in a
particular project. And there are many other potential uses. This little exercise

PERSONALITY AND INTELLIGENCE 43

is a good starting point to show everyone that software practices matter, and
that in fact they are at the heart of software design and quality.

2.1.3 Recruiting Programmers

We have met our new software team. Everything started beautifully. The
team has done well! They developed programs according to what we coach
them to do. Then, as always, the team needs to face a problem. The smartest
guy in the team, who already learned everything from us, would now like to
resign from his job. We need to find someone as good as this guy to replace
him. The manager handed out a list of candidates with their resumes for the
team’s consideration. What the team needed to do then was to pick someone
from among the list.

How do we know that someone is going to fit in with what we want to do
in a smooth and productive way? This is well short of using a crystal ball. It is
some kind of guessing game. Some software managers like to screen candi-
dates using written tests, but it is very hard to write good questions to
determine or assess a candidate’s programming abilities or development
experience. Some managers prefer, instead, to ask candidates to write a short
program. This is a bit time-consuming, but it does at least test both their
language skills and domain knowledge.

The programming aptitude test (PAT) is a common test for determin-
ing the ability of an individual to write programs, but it tells us nothing
about specific personality traits relative to specific software practices or
organizational cultures. Greathead and Devito Da Cunha (2004) discovered
that student programmers who have a greater tendency to intuitive
thinking approaches will do better at spotting semantic errors in Java
programs (i.e., code review). Capretz (2003) surveyed 100 full-time soft-
ware engineers and found that the majority preferred working with
technical facts rather than with people. It may be just as interesting to
ask people how they feel about working with software engineers. In most
software organizations nowadays, the alone-with-my-screen model of
software development is as passé as PacMan. Modern developers have
to work closely together with colleagues and customers. Many organiza-
tions now expect their software teams to have some sort of diversity in
terms of personality type.

There are many counts against personality tests. In some places, people
are sensitive about such tests as they may appear to be a cover for racial,
sexual, or other form of discrimination. There are also questions about how
much trust we can put in them. Often enough, the personality test summaries
that are spat out at the end of a questionnaire classify an individual in this

44 UNDERSTANDING PROGRAMMERS

group or that type, and they read pretty much like something from the daily
newspaper’s astrology page. Also you have to wonder how these limited
categories account for variety. They never have anything to say about specific
behaviors or specific circumstances. You read all the categories and wonder
which vague generalization would include the behavior of an axe-murderer:
““Prefers to set own goals?”” “Requires little supervision?”’

What do you think if you
make a serious mistake?

Amiessit

FIGURE 2.2 Asking specific interview questions will help you understand candidates’
perceptions of and experience in software development.

OUTSOURCED PROGRAMMERS 45

Candidates don’t like personality tests, either. They are suspicious of
being categorized without a chance to defend themselves, of being classified
under a general heading without a chance to show how they are special or
unique. Most candidates would actually much prefer a job interview. They
like open questions (e.g., such as that posed in Figure 2.2) that allow them to
make claims and support them with examples, stories, and solid arguments. If
they can talk about technical things and their team experience and can
provide overviews and analyses, they are probably good candidates for any
job that requires those things.

Ultimately, one part of hiring well must be to get the candidate to
demonstrate the desired skills—whether they’re technical skills (e.g., whether
the candidate can program in a certain language) or transferable skills (e.g.,
whether the applicant communicates easily and clearly). So if you’ve got a job
that requires people to sit through personality tests and get certain outcomes
in certain columns, by all means, make a personality test a central part of the
hiring process. But there are probably no such jobs.

2.2 OUTSOURCED PROGRAMMERS

Many software managers and coaches fly between North America and Asia to
run software projects. Normally, these managers will tell you that it is
difficult, but rewarding, to manage a team like this. Not the least of the
rewards are the lessons we take home with us from other places. Learning
from other places begins with respect, which is a keystone of such collabora-
tive practices as pair programming (see Chapter 5).

As the Internet has globalized the demand for programming skills
and data products, there are few geographic advantages any longer associat-
ed with any data manipulation activities. To the users, as long as it does the
job, it makes no difference whether their code is written in Bangalore or
Budapest.

Around the world, the distribution of skilled and less skilled program-
mers has no correlation to geography. It may correlate with other things, but
certainly not with geography. So the “where”” doesn’t matter much any more.
The focus now is almost exclusively on “how much” and “how good.” This,
in turn, explains the modern geography of programming as an answer to the
“how much?” question, countries like China, Thailand, Malaysia, Russia, and
Brazil and eastern European countries provide cheap programmers, making
these places suitable for software outsourcing.

As for “how good,” this raises the issue of ““cultural capital”’—the
advantages and disadvantages inherited from history. One major type of

46 UNDERSTANDING PROGRAMMERS

cultural capital in the globalized world is of course, familiarity with the
English language. Some countries like India have an advantage there. Those
with a better facility in English will need less time to understand and pick up
the latest technical tips. They don’t need to rely on translations and won't
fall victim to local translated Websites that may be putting out inaccurate
information. This is a definite advantage when so many answers to problems
are in fact frequently simply posted on the Internet for those who can read the
source.

In the end, history and the markets may flatten out these distinctions, but
for the moment they are a reality for every project manager to deal with.
Managers should know the places that they are outsourcing to. You should
remember that those places consist really of people and cultures with their
own sets of local standards. Just because so much has gone global now and
just because you sometimes don’t meet face to face with the people who are
working for you, you should not assume that teams or personalities are no
longer relevant.

The right people are still necessary elements for good teamwork. With a
little understanding of the local constraints on programmer behaviors in
developing countries, you will be better prepared to get the best out the
software teams you coach and lead everywhere.

2.2.1 Programmers in Their Environments

In Europe, manufacturing is moving to eastern Europe. In the United States it
moves from northern to southern states, or across the border to Mexico. In
Asia, it finds what it needs in formerly rural areas. Manufacturing has always
done it—moving to places where land and labor are cheaper, and where
governments are keen to provide or subsidize new, purpose-built infrastruc-
ture. In the same way that manufacturing plants spring up, so, too, can
numerous small local software teams, either in-house or externally, to
provide system solutions.

These software teams are defined by their local environments. They are
composed mostly of local people and for various reasons; they may not be
made up of the cream of the crop. Anyone who wants to build a software
team in one of these regions, except perhaps for big corporate headquarters
and top research universities, needs to realize that there can be big
differences in standards and attitudes between those teams in some less-
developed towns and the well-developed cities even though they may be in
close proximity. These differences can continue to widen—very quickly—
when a city, as is the case with China, becomes the focus of government
attention.

OUTSOURCED PROGRAMMERS 47

The authors” experience managing software teams in China has revealed,
briefly, four challenges that one needs to face when working in these areas
with local teams:

« Your programmers will have very poor English. This means that they
will not be able to make the most of new technical information available
on English-language Websites.

« They won’t know much about software methodologies. Currently,
there are few books, written or translated into local languages, on this
topicand even if there are, programmers are very unlikely toregard it as
either practical or useful. Most translated books are about tools (e.g.,
Dreamweaver) and computer languages (e.g., Java).

« You will find that the people on your team are always on the move. Less
developed areas might be remote from the well-developed cities in
terms of practices and attitudes, but that doesn’t mean that they are
physically very far apart. In fact, less developed areas that are devel-
oping as active industrial areas are often within 250 kilometers of the
more modern cities. This makes it easy for programmers to try their luck
in the bigger cities and this makes it hard for team leaders to maintain
stable teams.

« Most of the business is on the hardware side. Generally, 70% of business
offers hardware support and only 30% provides software solutions.
Therefore, they do not focus on software development as it is not their
core business.

2.2.2 Programmers, Cultures, and Teams

The project manager recruited to lead a software team in developing countries
must bridge between cultures. While language, management, and program-
ming skills should not be neglected, cultural understanding of what software
practices will and will not work is critical.

Local IT teams in developing regions will consist of a high proportion of
inexperienced programmers. For them, your team and your project are just an
entry in their resumes. They’re heading for the city sooner or later, and hence,
personnel turnover is usually extremely high. One must be prepared for
frequent job handovers. Whether the software teams are in-house or external
to a company, there is a balance of positives and negatives that you will have
to deal with, some coming from the external environment (e.g., that slippery,
hard-to-define thing called ““culture”’) and some from how we handle those
environmental factors (our corporate culture, e.g., how we communicate or
how we use incentives). In the following lists, we summarize these factors.

48 UNDERSTANDING PROGRAMMERS

The Negatives

« Managers usually have little formal training in software project man-
agement or software engineering.

« A high proportion of programmers are inexperienced.

« There is a high turnover of good programmers.

« Programmers either lack flexibility or are unwilling to display initiative.
They rarely try new ways of solving old problems.

« Programmers prefer step-by-step guidance when learning and apply-
ing new skills.

The Positives

« The cost of programmers are low with monthly salaries ranging from
US $62.50 to US $312.50.

« The software teams are small, around eight members or fewer.

« The programmers are willing to work very long hours (as much as
50-55hours per week) without additional pay.

« The programmers are keen to learn any skills that they regard as
“practical’” or “useful”” for their future jobs.

The Neutral

« Willing to accept comments about their mistakes. Unfortunately, they
are prone to repeating the same kind of mistakes.

2.3 EXPERIENCED MANAGEMENT

We expand our knowledge of software by running software projects. We
know how to say hello to our team and get along with different programmers.
We know which approaches or development rhythms are suitable for some
teams but not others because of team cultures or for other reasons. But have
you ever wondered whether we could ““mislearn’”” something because it is
inherently difficult to learn from software projects?

The knowledge and experience that one gained through involving in
various projects are treasures for an organization but so often only some of
them are treated as valuable or worth collecting. Some managers are particu-
larly keen to collect numerical project data for benchmarking and improve-
ments as if the numbers have some undeniable, inherent truth. They can
appear to be so narrow-minded as to ignore the fact that data must be
interpreted according to how they are collected. This brings us to the

EXPERIENCED MANAGEMENT 49

importance of knowing how a project has been executed. How a team adopts
software practices could be better understood by project events, meetings,
and scenarios that are usually difficult to properly document. For example, it
is unfair to judge how well two programmers are collaborating on a single
assignment by the number of lines they have written. We have to understand
software quality and the efforts involved in reworking and how they are
related to job satisfaction.

Experience becomes exponentially more valuable to a company or team if
itis recordable, teachable, and transferable—f{rom person to person and from
situation to situation. How can we add this value to experience? Given the
right environments and incentives, it might help one to read and write about
it, train it, model it, and mentor it. But all of this begins with recording it,
making observations, and drawing the right conclusions—conclusions about
our experience that are worth passing on.

With everything properly documented, it should be emphasized that
learning from experience is not that easy. Some particular experiences may
not provide lessons that are applicable to all software projects. One can con-
fuse subsequence and consequence in software projects. For instance, just
because one event (e.g., outdated design documents) often precedes another
(programming reworks), we cannot conclude that the former is a cause of the
latter. In other words, subsequence may not be the same as consequence.

2.3.1 Being Casual about Causal Relationships

Experience offers us a tangle of data and the relationships between cause and
effect are not always easy to see from data. However, it is easy to just accept
the first explanation for a phenomenon that comes mind. We really have to
steel ourselves against this habit of blindly attributing causes to effects where,
even if we know that there is a strong correlation between two events, we still
may not know about the direction, the strength, or under what circumstances
the causality takes place. For example, let's consider what might be the
causal meaning of a strong correlation between outdated design documents
and substantial programming reworks. There are four possible casual
relationships.

1. Outdated Design Documents — Substantial Programming Reworks. Soft-
ware developers have to completely rework their programs when they
find out that they have followed outdated design documents to build
software.

2. Substantial Programming Reworks — Outdated Design Documents. Soft-
ware developers rework their programs to fix a number of bugs related

50

UNDERSTANDING PROGRAMMERS

to system design but do not have time to update relevant design
documents.

. Substantial Programming Rework = Outdated Design Documents. Soft-

ware developers have to rework their programs when they find
out that the design document is outdated. At the same time, other
developers detect design bugs and fix them but do not update the
relevant documents soon enough.

. Changing Requirements — Substantial Programming Reworks and/or Out-

dated Design Documents. A fourth factor, not tested for its correlation to
the other elements and thus seldom on our radar, actually causes both
substantial programming reworks and outdated design documents.
There is no direct casual relationship between the rework and the
documents.

Taiichi Ohno 1988, father of just-in-time manufacturing, suggests that

anyone who is looking for a possible cause of a problem should ask “Why?”
5 times. For example

Why did we take much time to make a small modification in the software?

Because the same logic related to the modification was written differently and
placed in more than one place.

Why were pieces of the same logic put into so many different places in a

program? Because they were not grouped into a single submodule.

Why weren’t they grouped into a submodule? Because the program was

written by three developers and each wrote the same logic on their own.

Why didn’t the developers communicate at the beginning so that pieces

of the same logic could be unified? Because the developers thought we
would communicate well through the design documents that they wrote at the
beginning.

Why didn’t they follow the design documents? Because they were written by

the three developers and each part was read and understood only by the one
who wrote it.

Of course, Mr. Ohno didn’t say you had to stop at five "why’’s (Ohno 1988).

2.3.2 Not Learning from Experience

It is often pointed out, but usually with a sneer, that people who believe that
their temperaments are governed by the relative positions of stars tend to
accept general personality descriptions as uniquely applicable to them and

EXPERIENCED MANAGEMENT 51

ignore the fact that such descriptions might equally be applied to many, many
others, or even everyone (Forer 1949).

Of course, the trouble with this observation is that the same could be said
of just about anyone who ever visited a psychologist. So, perhaps we
shouldn’t just pick on people who enjoy the simple-minded vanities of
astrology. The fact is, most of us indulge in this kind of intentional belief—
the behavior where we see what we expect to see and what we have learned to
see. Itis a very common and, in many circumstances, a very efficient behavior.
But, of course, that doesn’t make it a good software management practice.

The difficulty in learning from software projects comes with the fact that,
because of the dynamic and multifactorial nature of many project-specific
problems, the immediate or timely identification of the root causes of
problems may be impossible. For example, changing requirements during
implementation may lead to the ultimate abandonment of a software project,
and this may arise from many causes, such as misunderstanding system
limitations owing to ineffective user training, a lack of user involvement at the
user requirement stage, or lengthy implementation requiring a review of
potentially outdated business requirements. Given that the immediate iden-
tification of root causes is not always possible, it would be wise for problem
solvers to take a Hippocratic approach to offer premature solutions to first
ensure that they do no harm.

Premature bad solutions, however, are hardly worse than delayed bad
ones. It may be, as Jorgensen and Sjeberg (2000) say, that much of the
experience we obtained from IT projects could be in fact mislearned. Perhaps
so. Then length of experience in IT certainly doesn’t correlate with higher-
quality professional judgments.

Even formal postmortem reviews may include much incomplete and /or
incorrect information, and people are so tempted to jump to conclusions
about causal relationships. Some common patterns or habits of thought can
cloud the judgment:

Hypnotic Decision Making. The bases of our own decisionmaking are not
always clear to us. In one study of buyer habits at a wine store, French
and German music was played on alternate days. When German music
was played, more German wines were sold than French and vice versa.
However, in later interviews only 1 out of 44 customers mentioned the
music as a factor in the purchase decision (North et al. 1999).

The Salience of Useless Unique Experience. We all enjoy unique experiences.
They can make the best stories to tell other people. Unfortunately, they
usually just contribute a lot to our prejudices and very little to the
formation of useful generalizations.

52 UNDERSTANDING PROGRAMMERS

Creating False Narratives. It is very common for us to take a fragmented
selection of events from a project and re-form them in our memories as
persuasive narratives. We reorganize events and unconsciously fill
in gaps with plausible materials to make a nondisturbing, rational-
seeming flow of events. Persuasive, but untrue. Don’t rely on your
memory. Remember that your memory thinks that its main job is to
make you the hero of your own story. Just as the law has nothing to do
with justice, your memory has nothing to do with the truth.

Believing Is Seeing. This is like intentional belief. We often formulate
hypotheses or make generalizations, and then everything we see is
made to fit into the theory (Preston and Epley 2005). We think that
programmers like chatting online? We think that tall people are smarter
than short people? We'll notice and take onboard as evidence any
examples that confirm those beliefs. We'll just ignore any that don't.

So, how can we believe, and what can we believe? Part of the answer is to
take on a range of diverse, evidence-based opinions and to record and
reconsider what it is that we have learned. We have to consider alternative
perspectives on the same event and challenge our own. We need to be aware
of the biases and limitations inherent in our learning about a particular event.

Anyone can fall into the trap of project experience. Since so many
software development rhythms can be worked out from project experience,
we can very easily wrongly combine software practices. Rhythms that are
easy to start and easy to sustain become important, as we should easily see
values delivered to programmers and programming. Throughout this book,
we will make use of a number of empirical findings in other areas that will
broaden our perspectives in understanding when and how software devel-
opment rhythms introduced here actually work.

2.3.3 Doing Things Right Right Now

““Works everywhere and always in the same way for everyone”” would be a
great promise for any software product. But there hasn’t been a product yet
developed that can really live up to that kind of promise. One may be full of
confidence and may decide to adopt an ““industrially proven’” programming
paradigm with lots of statistical support only to find that for some reason—or
for many reasons—it just doesn’t work for his or her organization.

At that point, the important question for a software program manager
becomes “What now?”” What do we do when the perfect plan turns out to
have flaws? In many situations, the art of software management is the art of
turning a sow’s ear into a silk purse, of spinning gold out of straw. Software

EXPERIENCED MANAGEMENT 53

paradigms that work well for a project at the beginning may not be sustainable
and may even end up as models for a mess!

Are there management techniques to prevent this? One technique is to be
aware of the rhythms of software development. Because they are iterative,
they allow us to check whether we are making progress, to check how real itis,
and to see whether we are moving in the right direction. After each cycle, we
can see what is more or less valuable and we become more confident that we
are doing things right right now.

Itis important not to assume that a paradigm or a part of paradigm is self-
sustainable or to be overconfident because of previous success with a
particular method or product (Figure 2.3). When things start to go wrong,
we have to be able to change to other development rhythms. It is critical to

Amies:

FIGURE 2.3 We may be misled by our past success.

54 UNDERSTANDING PROGRAMMERS

have rhythms that are easy to start and easy to sustain and to use them as
needed, and this is how we harmonize software practices for synergies.

REFERENCES

Capretz LF. Personality types in software engineering. International Journal of Human-
Computer Studies 2003; 58 (2):207-214.

Forer BR. The fallacy of personal validation: A classroom demonstration of gullibility.
Journal of Abnormal Psychology 1949; 44:118-121.

Greathead D and Devito Da Cunha A. Code Review and Personality: Is Performance Linked
to MBTI Type? Technical Report CS-TR: 837 of Computing Science, Newcastle
University; 2004.

Humphrey WS. A Discipline for Software Engineering. Reading, MA: Addison-Wesley;
1995.

Jorgensen M and Sjeberg D. The importance of not learning from experience.
Proceedings of European Software Process Improvement, 2000.

Mayer DB and Stalnaker AW. Selection and evaluation of computer personnel—the
research history of SIG/CPR. Proceedings of the 1968 ACM National Conference, 23rd
ACM National Conference, 1968, pp. 657-670.

North AC, Hargreaves DJ, and McKendrick J. The influence of in-store music on wine
selections. Journal of Applied Psychology 1999; 84 (2):271-276.

Ohno T. Toyota Production System: Beyond Large-Scale Production. Cambridge, MA:
Productivity Press; 1988.

Preston] and Epley N. Explanations versus applications: The explanatory power of
valuable beliefs. Psychological Science 2005; 16 (10):826-832.

Rohmann C. A World of Ideas: A Dictionary of Important Theories, Concepts, Beliefs, and
Thinkers. New York: Random House; 1999.

Rosenthal R and Jacobson L. Pygmalion in the Classroom: Teacher Expectation and Pupils’
Intellectual Development. New York: Rinehart & Winston; 1968.

Shell MM and Duncan SD.The effects of personality similarity between supervisors
and subordinates on job satisfaction, 2000. available at http://
clearinghouse.missouriwestern.edu.

START WITH OPEN SOURCE

If God had meant for us to be naked, we’d have been born that way.
—MARK TwaIN

Software developed by organizations according to their customer require-
ments is hedged in by an intangible boundary. There are predetermined
limits to its growth. Once it fills its niche, there it often stays. In part, this
limiting boundary is defined not by customer requirements but by commer-
cial considerations—especially issues of ownership.

The usual idea of growth is that it is driven by commercial needs. But
commercial markets don’t offer every good we want, and companies are in
fact quite satisfied with offering fewer goods and choices if they can control a
market and charge us higher prices. In other words, commercial markets
aren’t perfect. There are values that companies don’t care about but people do.

Open-source software is a great example of this. Itis exploding. It is taking
on commercial giants. It is satisfying diverse needs that the commercial
producers thought only they could satisfy. It’s free. It's mysterious. Many
have wondered exactly how open-source software development works.

We have talked about how to meet new teams and to recruit team
members. It is time to ask a bunch of questions to explore your team’s
thoughts about what software development is and to share your under-
standings of the relationships between software practices, programmers,
customers, and software. The success of open-source software development
(OSSD) practices and artifacts is undeniable but is also something of an

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright © 2008 John Wiley & Sons, Inc.

55

56 START WITH OPEN SOURCE

How is the progress
of tasks A,Band C?

l..l..am also work...ing
onta..skA..

Amesst

FIGURE 3.1 Redundancy and duplicated efforts in the workplace if coordinated as an
anonymous open-source team.

anomaly when compared with many other software development processes.
In our experience, it doesn’t matter whether a software team is made up of
waterfall model lovers, agile proponents, or ad hoc enthusiasts; they are
always interested in OSSD.

What are the limits on the growth of open source? What drives an open-
source software project? What sustains it? A paradigm that involves un-
economically large numbers of people asynchronously collaborating on tasks
and tolerant of high levels of redundancy or duplication is not a very
commercial way of managing a project (see Figure 3.1). How is this possible
in the modern era, and what can we learn from it? Is it agile?

There are four important areas to consider with reference to open-source
software:' (1) IT strategy, (2) OSS product management, (3) reusing open-
source code, and (4) the OSS development model.

Companies re-form their business models and commercial strategies
for open-source software. For example, some mobile phone manufacturing

! We might actually say five areas, including open-source licenses.

START WITH OPEN SOURCE 57

companies have already seen market opportunities and made their hard-
ware with Linux preinstalled. Some have said that Linux has been the
largest project in the annals of software development. Maybe so and
maybe not, but certainly Windows Server 2003, which has been said to
be the largest software development project in Microsoft’s history,” was
launched to handle the threat of Linux (Raymond 1998). Microsoft has
continuously expressed concern about competition from open-source
products. Nowadays, the open-source product is nothing more than
software and it can be just one element of a total business solution for
customers in the commercial world.

Using OSS products means making some changes in the way that we
manage software projects as it creates a need to implement and integrate OSS
products alongside other commercial packages. As for software implemen-
tation in the enterprise, Golden (2005) suggested a well-structured open-
source maturity model. This model covers six key areas in which to assess and
manage OSS products: software, support, documents, training, product
integration, and professional services.

For further development, an organization may customize the open-
source products. Reusing previous work of open-source software definitely
accelerates development from the ground up. We will come back to this
exciting topic in Chapter 4.

Finally, what lessons can we learn from so many open-source software
projects? Is there any structured software model in these projects? Open-
source software development has been well studied but it is still an area with
many unknowns and uncertainties. There are some inherent barriers to
understanding OSSD experimentally. It involves the collaboration of a large
number of people from different cultures who may or may not be known to
each other. They have diverse motivations, from killing time to personal
interests to a role in a funded project. It is not easy to determine a suitable
sample size or to manage cultural factors in a way that would satisfy the
requirements of controlled experimentation. Yet this unconventional model
would appear to have lessons to offer us in our commercial software
development environments. Bringing the whole OSSD process into our
commercial workplace is out of the question, but it may be feasible to adopt
some open-source practices.

In this chapter we address the basics of software development. From the
project management viewpoint, we explore commonality and differentiation
between OSSD and agile software development.

2Microsoft’s timeline from 1991, available at http://www.thocp.net/
companies/microsoft/microsoft_company_part2.htm.

58 START WITH OPEN SOURCE

3.1 PROCESS AND PRACTICE

Processes and practices have been freely used in the software literature.
Although we can usually tell the difference in context, some developers make
the mistake of thinking that practices are just lightweight processes. To avoid
confusion, we’ll clarify the differences here.

Simply put, a software process is a collection of activities performed to
achieve given goals. Therefore, a software process is a way of describing how
work should be done (Sommerville et al. 1999). From the perspective of
engineering management, the activities performed should apply disciplines
for accomplishing the goals with a minimum of unplanned intervention.

Processes can be and often are automated with tools. This is important to
recognize because processes with the same objectives and procedures could
achieve very different results in terms of efficiency and effectiveness depend-
ing on whether the processes are executed using manual systems or automa-
tion. In practice, software processes are often semiautomated and use self-
governing automation. It is not the same kind of automation that we see with
machines in manufacturing environments, yet we continually seek to develop
and adopt technologies to make our software processes more automated,
such as the generation of code from user requirements.

Software processes should be recurrent and repetitive. This implies that
we are concerned with how the same process can be performed better than
previously. This brings up a topic called software process improvement. The
resources taken up by the activities of a software process (e.g., cost and time)
can be used to establish a baseline to continuously improve the process.
Simplifying workflow among activities so that communication overheads are
reduced and errors are discovered as early as possible may significantly
improve the overall software process. Therefore, to optimize a software
process, we have to deal with activities and ways of performing activities,
which are collectively called software practices.

When we say “software practices,” we mean two specific things. They can
be ways to execute tasks (or activities) and /or activities (or norms/customs).
The meanings can be best understood by example. In pair programming, two
developers collaborating in front of a single machine is a way of program-
ming. The tasks required to collaborate include design, programming, and
testing. These are activities.

When a process is made up of one or two activities, it may be considered a
practice. However, the reverse may not be true. A number of practices
together may not be regarded as a process if there is no well-defined goal.
Some practices are just more pragmatic and culture-oriented than they are
goal-specific. For example, the practices energized work and shared code

PROCESS AND PRACTICE 59

Solo programing

Pair programing

]
5

FIGURE 3.2 Are you sure pair programming is lightweight?

(Beck and Andres 2005) do not together explicitly indicate any objective.
Along with other practices, energized work and shared code can be used to
achieve certain things, or they alone are just organizational norms.

Depending on activities and their execution, software processes can be
lightweight or heavyweight. And so it is with practices. The term weight is
figurative (e.g., see Figure 3.2). It has no formal definition. Therefore, some
may take the term heavyweight to mean ceremonial, nonadaptable, or bureau-
cratic. Yet this does not clearly explain why some agile practices are said to be
lightweight. For example, a software practice called pair programming has two
developers collaborating on design and programming tasks at the same time.
We were once asked whether pair programming would be a lightweight
practice. On one hand, pair programming allows people to work much closer
so that there are fewer bureaucratic barriers to team communications. It is
more adaptable when, for example, people call in sick. On the other hand, it
can be nonadaptable when team members as the individuals previously
enjoyed more flexible working hours.

The weightiness of software processes and practices is a matter of the
values that arise from them and the degree to which activities directly benefit
and contribute to core developers (i.e., people) and core software program-
ming (i.e., products). So pair programming is lightweight. For example, a
software process that requires writing all-embracing design documentation
for commercial database applications may be considered heavyweight as it
does not directly create value for the core development. Heavyweight
processes have their place. In this case, detailed documents come in handy

60 START WITH OPEN SOURCE

when we are going to outsource technical support and software maintenance
abroad.

This simple definition does not consider customers because they nor-
mally are not interested in software development. But if developers make
software right, this will result in delivering right-quality products at the right
time and at the right price, and that is definitely a set of values that would
benefit customers.

Lightweight and heavyweight are associated with people and products.
Heavyweight processes and practices are less inclined to direct their effort
and their values as directly toward people and products. Lightweight is the
opposite.

3.1.1 The Four Ps of Projects

The Agile Manifesto (2001) declares that individuals and interactions are placed
above processes and tools, working software above comprehensive docu-
mentation, customer collaboration above contract negotiation, and respond-
ing to change above following a plan. Agile software development is light-
weight. The manifesto orients software development toward people and
working software.

This movement appears to overthrow what programmers learned in
traditional software project management in which programming tasks are
commonly deemed either as an aggregate of tasks or as a set of components
(subtasks). Adopting that kind of management model, software managers
would be more interested in resources allocation or tools/methods to facili-
tate programming (or software development).

Although software project management provides guidance for team
organization, its goal is to structure a group of members in order to optimize
the resources and get high performance out of the team. Data collected from
the processes and their results allows the monitoring and controlling of our
activities. Facts are managed to dispel the myths and implications among
people and activities. Little attention is given to the relationships between
programmers and software in managing software projects as process proce-
dures and control documents downplay the importance of such relationships.

To ensure that everyone in a team has the same understanding, we need
to clearly address the mechanism of software processes. Often, the processes
come along with a set of papers that guide and control what and how
programmers perform programming tasks or develop software. The paper
may go electronic, but its contents will be just the same: requirement
specifications, entity-relationship diagrams, training manuals, and so on.
Heavy documents in a small-sized project distract the team’s focus from the
working software product.

PROCESS AND PRACTICE 61

TABLE 3.1 The Four Ps (4Ps) in Software Projects

Projects Managed by Projects Managed by Agile
4Ps Waterfall Software Development
Product A D¢
Paper * A
People A Y
Process * A

Key: % indicates more focus than A.

Table 3.1 summarizes process, people, product, and paper from two
different software project management perspectives. With fewer process
management and control documents as in agile software development, it
becomes more important to understand the links between programmers,
programming tasks, and software. Programming—including requirements
understanding, design, coding, testing, debugging, and integration—belongs
to cognitive activities that demand both learning and understanding. A
variety of skills required in software development are intermingled, such
as problem-solving, planning, backtracking, quick thinking, and causal
(cause—effect) reasoning. Even when individual programmers have all the
necessary skills, they may not be up on new techniques. The response is to
allow people to collaborate and share knowledge.

Jacobson et al. (1999) discussed the 4Ps of software development as
process, people, project, and product. The new 4Ps for software project
management (see Table 3.1) would try to help understand software method-
ologies in terms of the areas that differentiate the methods we use to manage
software projects.

Now that the 4Ps can be used to identify how software projects can be
managed, we can use them to try to understand open-source software projects
(see Table 3.2). Obviously OSSD projects should motivate people to partici-
pate and products to share; otherwise, the project should not have been
opened. Heavyweight documents are hard to keep up-to-date with frequent
releases. Although some OSSD projects may have a set of full documents, the
documents may have been developed before the project became open. To

TABLE 3.2 A4Ps in Open-Source Projects

4Ps Open-Source Software Projects
Product Focused

Paper Just-Enough

People Focused

Process Just-Enough

62 START WITH OPEN SOURCE

allow developers to make contributions at their own pace, the development
process should be designed to be lightweight.

Open-source software development actually avoids the scenario de-
picted in Figure 3.3. The sharing procedures are simple so as to encourage
people to try, join, and contribute.

Open source is good!
| can contribute my
work to the public.

Why do | have to answer so many 1
questions before | can upload?

toc; 4

do‘fUr’r'tenl‘?

Amiessit

FIGURE 3.3 An example of the need for OSSD.

PROCESS AND PRACTICE 63

3.1.2 Agile Values

In a general sense, any positive attribution to people and products in software
development is the agile value. This, of course, is too broad. More specifically,
as suggested in eXtreme programming, agile values can be communication,
simplicity, feedback, courage and respect. But these are not a limit. They are
just basic.

Some basic differences between open-source software development
(OSSD) and agile software development (ASD) are listed below.

Communication

OSSD. For OSSD projects, developers are willing to share their own ideas
and to get feedback from others. Communication is strongly built on rapid
release and user comments.

ASD. Asking knowledge workers to work for extra 2 or 3 hours every day is
not going to achieve any increase in productivity. To maximize their capabil-
ities, we have to let them share their knowledge and experience so that
problems can be dealt with better and faster. A lack of knowledge in a team
could be just a symptom of a lack of communication.

Feedback

OSSD. For open source software development projects, opinions come from
everywhere, critics, end users, and peer developers.

ASD. Software solutions by themselves can be artificially abstract on one
hand and trick-specific on the other hand. When we are approaching a
solution, we always need feedback. True value is delivered only at the
moment that changes can actually be made in the software.

Simplicity

OSSD. For OSSD projects, to deliver frequent releases, developers always
build software for today’s needs.

ASD. You can write a complicated program or a simple one to fulfill
the same requirements. Obviously, everyone will prefer a simple solution.
Let us go a bit extreme. We need 3 weeks to complete a login function.
There are two approaches: (1) we make the code done and runnable after
3 weeks, or, (2) the code is continuously done bit by bit and is partially
executable every day. This is what we call simplicity: gracefully solving
today’s problem.

64 START WITH OPEN SOURCE

Courage

OSSD. For OSSD projects, this goes a bit further. The developers not only
rewrite each other’s working code and discard poor solutions but also share
their own code in public, no matter good or bad it is.

ASD. Changing existing code for the better requires our belief, enthusiasm,
and courage.

Respect

OSSD. For OSSD projects, developers are interested in and care about what
others are doing and what has been achieved.

ASD. Respect for others and the respect of others are elements in motivating
a team so that it enjoys challenges and achieving remarkable things.

Agile values are not accidentally established in the course of past
successful project implementations. They also fulfill needs for a program-
ming team that can manage by self-satisfaction.

Practices always deliver some values. But desirable values can be deliv-
ered only when the right practices are adopted by the right people at the right
moment. Therefore, there may not be a simple mapping between values and
practices. However, values may result not from just one or two software
practices but from their synergies.

In fact, the same set of practices enacted by two teams may produce
different effects: desirable or negative impacts. A team leader who has been
understood to personally favor some agile practices demands that the team
adopt them rigidly. In this case, the leader may ignore the fact that team
members are not yet ready for the change. The team’s culture can even result
in hatred of the team leader and the new practices. For example, software
teams that have allowed members to arrange their working hours within a
broad timespan will feel constrained in pair programming where the whole
team is supposed to work together and flexible working hours are gone. The
team will be blind to agile values, and there could be a campaign against the
leader by criticizing agile practices.

3.1.3 Zero-Point Collaboration

When a group of people collaborate on a new artifact from scratch, they will
have to go through more steps. Software requirements are collected and then
documented through conversations and meetings. Often, programmers will

OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT 65

visit their clients’ workplaces and talk to end users about their existing
workflow. Then the team is asked to define a system architecture like a
database model, class diagrams, or even a small prototype. To deal with a
project like this, team members have to communicate with each other well
and coordinate their subtasks. The proceedings of collaboration can be
basically viewed as building something from nothing. This is called zero-
point collaboration.

In some cases, team members are distributed in a number of locations or
are varied in terms of their capabilities. In this case, the whole team will have
tremendous difficulties in building something from nothing as software itself
is abstract and the team members probably interpret the same things
differently.

A few of the members, who probably share the same ideas, are able to
develop something such as a data model so that others may easily follow the
work. This kind of collaboration is the opposite of the zero-point as the whole
team can become productive only when they are developing and adding to
something. Once an artifact or a prototype has been built, other team
members can see and ask questions that refer to that something.

3.2 OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT

Open source is a special development paradigm. Without budget constraints,
customer pressure, and a schedule to meet, developers, users, and project
competitors can speak equally. Projects are free to grow and even to produce
child projects. The sky is the limit. Any part of the project canvas can be
virtually extended so that other programmers can later add other things. If
someone tries to add something malicious, there’s a whole open community
checking the work. This is the “Bazaar model” (Raymond 2001) for OSSD
where no exclusive group controls the development; everyone who is inter-
ested in the development can take care of the project.

In contrast to the bazaar model, the “cathedral model” makes source code
available, but the development is restricted to an exclusive group of pro-
grammers. Either way, it is the products themselves that have caught our eye.
Many companies have adopted these products for commercial applications
and governments around the world have officially supported the use of open-
source software in civil administration, indicating that the open-source
products have now come to be recognized in terms of not only software
quality but also maintainability.

Between the cathedral and bazaar models there is a hybrid, the applica-
tion kernel maintained by a group of programmers, like the cathedral model
but where anyone can develop different open source plug-ins.

66 START WITH OPEN SOURCE

TABLE 3.3 4Ps in Some Open-Source Software Projects

4Ps Features of Some Open-Source Software Projects

Product Software cloning (or requirements cloning); software quality
People Ugrammers

Paper Same as for product and people, above

Process Starting process, rapid releases

As there can be thousands of open-source software projects in or between
the bazaar and cathedral models, it is not possible to generalize about open
source. In this section we will therefore look at some features that may not be
typical of every open-source project but that are helpful in contrasting it with
the ways we develop the commercial development projects (often referred to
as closed-source software projects).

Some of the features of open-source software projects are listed in
Table 3.3.

3.2.1 Software Cloning*

Cloning in genetic engineering is the process of recreating an identical copy of
DNA, the nucleic acid containing the genetic instructions for the biological
development of an organism. Thus, cloning does not copy us (i.e., human body
and mind) but our DNA. Whatis the DN A of enterprise software applications?

If we get the requirements for an existing system we can use them just like
DNA to rebuild a similar system using other computer languages on other
platforms. The two systems would have a very close functionality from a user
perspective. The functionality of cloned applications should be of interest to
us; otherwise, we would not clone them.

Why do we clone software? There are many reasons. In some cases,
software applications that have been cloned should be either closed-source
software or software built with many technical constraints so that further
modifications are not that feasible. When such software applications interest
programmers, it obviously must be the functionality such as application
requirements and/or better performance, rather than the language used to
write it. This provides us with a clue as to what motivates open-source
developers to join a project and to spend time reading and writing code. Even
though some programmers are not involved in the development because they
are not familiar with the language used to build the software, they still enjoy
providing their opinions and reporting bugs.

*The term cloning has been used in the open source community. For example, the early

version of Miranda IM (Miranda Instant Messenger) regarded itself as a minimalist
ICQ clone.

OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT 67

Example of Software Cloning

In 1991, Linus Torvalds, the initiator of the Linux project, needed a version of
Unix for his PC. To improve its functionality, he made it known what he wanted
to do and invited feedback from those who were interested in the product
(Pavlicek 2000). Whether Linux has evolved beyond the Unix family, it was a
cloned application of Unix.

3.2.2 Software Quality

The big question in open-source development is how software that has been
developed through the collaboration of volunteer programmers could possi-
bly deliver quality as good as we can get from a well-structured team using
well-defined development processes. The cloned application may imitate the
functionality of what we are going to develop, but getting complete require-
ments for software has nothing to do with code quality.

In terms of the number of developers, the Linux project has been recog-
nized as probably the biggest project in the world. Ken Thompon, one of the
principal creators of Unix, disappointed many open-source proponents by
saying that he thought the quality of Linux varied drastically. Some of its
source code was good, and some was not (Thompson 1999). This is just a
sensible comment because after all, the software has been written by many
different people.

Linux has often been assumed to be representative of all open-source
projects, but it is in fact a uniquely large project, and writing operating
systems is much more technical than doing other applications. We cannot
generalize from Linux to other OSSD projects.

Stamelos et al. (2002), tried to quantify code quality in open-source
development. One hundred applications written for Linux were studied
using metrics such as cyclomatic complexity measuring the extent of linear
independences (McCabe 1976) and vocabulary frequency measuring the sum
of the number of the unique operands #; and operators n, (Halstead 1975).
The results showed that the quality of code produced in these open-source
projects was a little below the industrial benchmarking given by Telelogic’s
Logiscope. Interestingly, as the open-source project is running continuously,
the open-source code in terms of software quality could be a little more
maintainable in the next release than closed-source code (Stamelos et al. 2004).

Few commercial software vendors release source code or testing reports
to their clients. Without that information, we actually know little about their
software quality. So we can’t criticize it, but that doesn’t mean high quality

68 START WITH OPEN SOURCE

code. In contrast, open source allows everyone to inspect the software quality
atthe codelevel. Obviously, we can’t say on one hand that all open software is
high-quality or on the other hand that bazaar-model-developed software is of
a lower quality. To judge the quality of open-source software for use in
commercial applications, we have to evaluate it project by project.

3.2.3 Starting Processes

Open-source software projects can have different starting processes. In some
cases as just mentioned in software cloning, a single person (or a few known
people) may begin by calling for public comments that arouse public interest.
The project can be of purely personal interest. It can also be a funded project.

In other cases, the source code of commercial or academic working
software products is released to the public and becomes a new open-source
project. One example is Mozilla. Open-source projects initiated and sup-
ported by a number of organizations do not normally invite public developers
to join the development, but what interested developers probably can do is to
get involved in the customization and deployment of local language inter-
faces, for example, as in A-tutor.

Figure 3.4 provides an overview of how open-source projects like Linux
and Mozilla are initiated. Personal interest in a software product—whether
that interest is one person’s or a group’s—is the driving force in stimulating
and steering an OSSD project. In many cases, the interest is in what the

Personal Interest

l Commercial
Products
Invitation to Public (Closed
Source
Software)

Core Development by a
Small Team

\ Y
The First Time Source Code Released to
Public

On-going Open Source Software
Development

FIGURE 3.4 Open source software development.

OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT 69

product should be or look like rather than in how the product can lead to the
development of an OSSD project.

Public invitations on the Internet to developers to participate may lead to
the establishment of either a small core development team or the quick
development of a prototype based on feedback. At this time, the team must
be small, perhaps just one person. This is because when the product is at zero,
it is both difficult and unproductive to create software on the basis of many
comments and too many people and code changes. At this stage, the main
goal is to release the product, despite its incomplete functionality. Interested
developers can then focus on the product. Thus, an open-source project is
product-driven. Without the first release, many developers can only contrib-
ute comments.

In other cases, closed-source projects that have probably been commercial
products in the market are released to the public. This extends their user bases
so that the companies can concentrate on providing professional services such
as training and consultancy instead of selling software.

Software is purely artificial. It becomes less abstract only when we have
experienced the use of software. In a word, zero-point collaboration, in which
a group of people collaborate on a new artifact from the ground up, is difficult
in a distributed environment.

Therefore, releasing source code is important in making others partici-
pate and hence to build the team. The success of requirements for open-source
projects is that developers need to have something from the ground up that
can be downloaded, installed, tested, and so forth, and it does not seem
possible to build things from the ground up in the open-source style (Sandred
2001).

3.2.4 Open-Source Development Community

Once the first release is available to the public, the project team will rapidly
grow. Some developers actively build more submodules while some others
just play around and suggest potential features to enhance the software.
Although this seems to have a structure of teaming, the OSSD team is just
loosely coupled. The team has a higher degree of collaboration. Each indi-
vidual can work on the product independently, accelerating its development
in many areas such as debugging, performance tuning, refactoring, function-
ality enhancement, and testing on different platforms, such as Chinese
Windows. But it is less coordinated.

As a consequence, people could be individually reinventing the wheel for
the same problem until someone reports her or his findings. Once a solution

70 START WITH OPEN SOURCE

(i.e., a program) is posted, the others would then look at the source for further
improvement. In any case, effort can be duplicated, but others can build more
on that program and later on release a more complete one.

Such low communication proximity makes the team work like a commu-
nity, in which people feel the need to have a share in helping to build a
software product and thereby having a sense of belonging to a group in the
network where they live (having an identity, i.e., nickname; and social
responsibilities, such as fixing their own program bugs once reported).

Surveyed from the open development community, open-source devel-
opers can be classified in terms of the extent of involvements and activities.
For example, a project leader administers the overall project. Core developers
manage concurrent version system (CVS) releases and coordinate others. On
an either regular or irregular basis, codevelopers fix bugs, add features,
submit patches, provide support, and exchange other information. Active
users who probably install latest versions (rather than stable versions) submit
their test reports and suggest potential enhancements. People outside of the
above are free to examine the code and submit patches. When the cathedral
model is adopted for the development, there could be a distinct difference
between a developer raising an issue and some outsider raising the same issue
(Xu and Madey 2004).

3.2.5 Ugrammers

No one likes to be responsible for more jargon, but we need a word to clarify
the different and evolving roles of programmers and end users in the
software world. Somewhere between a programmer and a user there is
someone else, someone nameless. Armed with modern technologies and the
knowledge of how to use them, these people are consumers who have
become proactive. They are not easily satisfied with standardized products
and are willing to let manufacturers know exactly what they want. Alvin
Toffler, the author of Future Shock, coined a word “prosumer,” which sounds
like “proactive consumer,” but he meant to combine producer and consum-
er. We may now at last be seeing the birth of this hybrid creature. Similarly,
as the roles of the producer (i.e., programmers) and the consumer (i.e., end
users) blur in OSSD, we are seeing the evolution of a new, hybrid creature,
the “ugrammer.”

Before, for lack of time and other reasons, developers could not cus-
tomize or add features to closed-source applications for their individual
needs. Open-source software projects give them the opportunity to partici-
pate in developing the application they are really interested in and a chance
to have a wider impact. No longer just passive users but also active

OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT 71

developers, they are two-in-one. They are ugrammers. Consider the follow-
ing definitions:

Programmers—those who build the software but they are not end users

Users (or customers)—those who will use the software (can be end users or
the end-user supervisors)

Ugrammers—those who build and use the software

Traditionally, programmers have deliberately adopted a variety of user
perspectives on the systems they build. But they are not necessarily real end
users. The two-in-one role of the ugrammer contributes to the success of a
software project. The ugrammers complement each other as their develop-
ment knowledge and user experience provide insights into the product they
build.

Two-in-one makes software development a new paradigm. For example,
requirements management is a key area of software project failure. Some
management methods advise sign-off requirements documents while some
suggest tight collaboration between programmers and users. For program-
mers, experience of requirements management is often gained from domain
knowledge that they previously gained from users. Ugrammers can use their
own user experience to better evaluate requirements collected from others
and can ask more insightful questions. This greatly enhances communica-
tions between ugrammers and end users.

3.2.6 Participant Roles

The intuitive way to understand any software project is to simply classify
involved members into two roles, customers (or users) and developers, as a
percentage. In this way, we can easily compare an open-source project with a
commercial software project and understand some fundamental differ-
ences. How the percentage of project participants varies in the two roles
tells us something about the projects. As illustrated in Figure 3.5, project
participants in a commercial enterprise resources planning (ERP) project
could be very separate. In this project, 25% of the participants take a
pure developer role as programmers or system analysts. The rest play a
pure end-user role, performing user acceptance testing, develop training
manuals, and perform other tasks. In some commercial projects, some
participants who adopt a 90% user role and a 10% developer role are often
viewed as superusers. These participants can draw technical diagrams and
even diagnose problems through systematic testing, which substantially
helps the development.

72 START WITH OPEN SOURCE

100 %

Percentage of

people Typical ERP Project
(including . .

users and 50 Open Source Project A Open Source Project B

developers)

involved in

the projects |_|

[100% Developer Role

[85% Developer Role and 15% User Role

[70% Developer Role and 30% User Role

[| Ugrammer Role (i.e. 50% Developer Role and 50% User Role)

[[] 70% End User Role and 30% Developer Role (often referred as Super User)
B 85% End User Role and 15% Developer Role (often referred as Super User)

[l 100% End User Role

FIGURE 3.5 Software project participant roles.

In contrast to the abovementioned industrial project, the roles in many
open-source development projects are any combination in any proportion of
the programmer and user roles. In a case where the developers are the users
(e.g., those who are involved in the development of Miranda-IM, Firefox, or
Joone are the users), ugrammers can have a number of combinational dis-
tributions with active users as shown for projects A and B in Figure 3.5.

There is currently no evidence as to how these distribution curves (A or B
in Figure 3.5) correlate to the success of a project; however, we believe that
having ugrammers in a software project, particularly in a distributed envi-
ronment, helps bridge the communication gap between the developers and
the users.

3.2.7 Rapid Release

By breaking down system functionally, we may rapidly release a software
product from time to time. However, this has to communicate well with
customers; otherwise, it may not be always desirable. Let’s look at a real
industrial case.

We met an IT manager in 2004 who implemented a JSPWiki (open-source
software) as a departmental knowledge base. A Website can be used to
distribute information. It does not facilitate collaboration between people.
But, when JSPWiki allowed people to log in and to easily edit available
content, team members were able to follow documentation standards and
then compile their working notes on practical experience and technical tricks
directly on JSPWiki. This allowed departmental knowledge to be shared and
reused (see Figure 3.6).

OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT 73

Departmental JSPWiki for

Departmental Web Site for
Knowledge Management

Information Distribution

® @

——
e view & edit
) 4'1-’: —_—
@ — . g i
Gew yiew
/ S
| %
ae® @ o
@& ’

® @/

FIGURE 3.6 Unlike many other types of websites, JSPWiki allows individual logins and
editing.

For example, someone may download a copy of JSPWiki to evaluate the
functionality and plan for its implementation. The version was 2.1.134-alpha.
The installation was done, and the server was up. Everything seemed alright
until the team started browsing around the software and they realized that
there was no interface for changing the default password!

From a customer perspective, the software was not that complete. This
would not normally happen in many traditional commercial projects. Some
software houses may release incomplete software packages to clients for
training purposes yet claim that the products are prototypes. Otherwise, as
some end users are “problem pickers,” they will just view any incompleteness
as defects. This may potentially damage the image of professionalism of the
software house.

But what does “the expected completeness” really mean? Itis all about the
user’s knowledge and experience. For example, any software requires au-
thentication. Users will expect to be able to change their login profile
somewhere on the software, just as other software does.” As so many users
often do an apples-to-oranges comparison, it is better to put a release off until
we get basic things done from a user perspective.

Open-source development projects somehow reverse the logic. Take our
previous example. When the user authorization is done, the module and its
source code will be quickly released. The work at this moment is complete
from a ugrammer perspective. The ugrammer can modify related configura-
tion files to change any password; unfortunately, this might not be regarded
as “expected completeness” by general users. In short, open-source
projects release their work products by the completeness of source code

%In agile software development, the developer and the customer truly participate in a
software project. The customer can even prioritize a feature list for the developer.
Thus, there is no expected completeness.

74 START WITH OPEN SOURCE

A Release In the source code, there are
[l - Compitable and Exeeuabe | € o s Should e
Urer Interface " ommaton i fuure
Solve Modified
Times Add Different ETFf 8
oo gy R o = ment L Nae ey o
l*—Ji l*—J*A liji l*—i {Ei—> Re. ea;feso L)’)rceogfditenen
Login Interface Er Login Maintenance @ Testing = Rt?/eaojfzub;cgg’%fgeness

FIGURE 3.7 Rapid release demystified.

(i.e., compliable and executable) while commercial products are released by
the completeness of functionality (see Figure 3.7).

Among other reasons, release by completeness of source code contributes
greatly to rapidity of release, which, as mentioned, is critical for open-source
workflow because other developers are able to further reuse the latest
released source code so as to avoid doing duplicate work in parallel.

Figure 3.8 illustrates the relationship between rapid release and produc-
tivity. Four programmers who do not communicate with each other are all
interested in spending their leisure time programming one submodule. They
start by downloading the latest copy available to the public. Then we look at
two situations: fewer releases and more releases. In the first case, the source
code is released only when the whole submodule is done in terms of
functionality. Development effort is duplicated until B eventually finishes
and shares her work with others (see Figure 3.8, situation I). The other
developers (i.e., A, C, and D) can obtain benefits afterward.

By comparison, in the second case, developer B shares the code earlier.
Later on developer A can continue B’s work in his spare time and release the
completed version (see Figure 3.8, situation II). The elapsed time has been
greatly shortened and, most importantly, it deals with the inefficiency that
arises from the duplication of effort. The more source code is frequently
shared, the more productive the open-source community can be.

3.2.8 Blackbox Programming

In the commercial environment, regardless of how software teams are man-
aged, it is always recommended that the same set of software practices be

OPEN-SOURCE SOFTWARE (OSS) DEVELOPMENT 75

B releases the source
of a complete
module to the public

Developers
- O Q @ complete
Situation I; B i P software module
One longer release ;
C agpens onn - Cw SO
D -] O a software module
5 being developed
Start > Time ez P
Situation II: A | - - o
Two shorter release @ 2downloaded
B e -, T and software module
o - P = being developed
D -
3 ; p the period of time
I reledbcs;jt ner A g1}cs up]“E = a developer spends
?OUI'E.L code o |TTC\"‘I011.S “(P,T » on \’\’i'ilil]g
incomplete continues B’s
module to the source code and
public and releases a
others can complete module
download B's to the public
source for
reference

FIGURE 3.8 Rapid release and productivity explained.

adopted for a project, even though ways of programming by software teams
may be adaptively evolving. As each developer probably works in a cubicle, all
developers meet at regular meetings to share their individual experience so
that some key software practices are consistently followed. More recently,
agile practitioners have concluded that a cubicle-like environment is not good
for team programming. An open and informative workspace environment
allows programming ideas to be exchanged and practices adopted.

Open-source software development turns the abovementioned develop-
ment experience upside-down. It is not hard to imagine that open-source
developers just sit in their own offices or cubicles and work in their own ways.
They may not coordinate in the same way as industrial team would. But this
situation is not always the case. In some open-source projects, particularly in
the cathedral model, some members within the core developer group know
each other. They probably communicate better for collaboration (shown in
Figure 3.9) and they can share their experiences of how to program with each
other. In this case, the developers coordinate their on-hand tasks and even
agree on their software practices.

Of the codevelopers, those who keep in contact with core developers
and/or other codevelopers by email or through discussion forums may also
be advised to follow largely the same software practices. In any case, there is

76 START WITH OPEN SOURCE

Co-developers and active users

. . Communication
who only communicate publicly -7 Line

Co-developers who
communicate with others

[] Core developers heavily communicate to others

B Some developers who communicate to others

Il Codevelopers and active users who do not communicate well with other
programmers do not known what methodologies other programmers have adopted.
They are a black box to each other.

FIGURE 3.9 Software project community and communications.

no broadly accepted way for these codevelopers to actually carry out their
own functions.

At the same time there may be many anonymous developers who only
communicate publicly through the project’s Website, and it would be a most
unlikely accident if all of the members of this group were to agree to adopt any
single software programming practice.

In any case, writing source code under these conditions is a kind of
blackbox programming. Team members simply do not know how each
individual works. Some code in pairs, and some prefer to work out design
details first. A lack of knowledge about their programming practices also
means ignorance as to their code quality. Blackbox programming has no place
in team software development in the commercial environment.

3.2.9 OSS Practices

Many open-source practices may appear to be unique butin fact can be seen as
simply ways of covering all of the more familiar software project management

OSS-LIKE DEVELOPMENT 77

TABLE 3.4 OSS Practices

Areas Practices

1 Software configuration management Historical bug-fix records
Well-established version control
Different releases: stable, beta, and alpha
CVsS
2 People management Prompt feedback
Praise
Anonymity, which eliminates bias regarding
people and cultural differences
Discussion forum

3 Project plan and project tracking Rapid development release (nightly build)
To-do list
4 Software quality assurances Parallel debugging

Public comments
Code reading

areas (Table 3.4). The purpose of software configuration management is to
record, control, and manage different versions of code produced by open-
source developers. The purpose of people management in open-source
development is to motivate, inspire, support, ensure communication be-
tween, and encourage team members.

There is no formal project plan for resources allocation, project schedule,
and task priority. Instead, rapid release and the to-do list serve to minimize
duplicated effort and to prioritize jobs. Software quality assurance is achieved
by code inspection through code reading by a number of people on the
Internet. Almost all of the open-source practices listed in Table 3.4 directly
pave the way for people and products in the 4Ps.

3.3 OSS-LIKE DEVELOPMENT

The 4P analysis tells us that open-source development is similar to agile
software development although their software practices may not be the same.
Moreover, as mentioned previously, both deliver the same values, such as
communication, feedback, simplicity, courage, and respect. They are inter-
connected. We are then interested in when and how software practices
adopted in these apparently contradictory environments nonetheless tend
to produce the same values. Answering this question will give use a better
understanding of two major factors of a software development methodology:
team size and team location.

78 START WITH OPEN SOURCE

The success or otherwise of past projects is an indicator of whether a
software paradigm has been shown to work in one situation, say, a distributed
environment. But the same paradigm will not necessarily succeed if used in
another, say, a collocated environment. Perhaps some of its practices will still
work and some will not. Those that do not work in one environment might be
replaced with others that have worked in the same environment and that are
compatible with the remaining practices.

3.3.1 Agile Practices

Unlike open-source development, which takes place across a distributed
environment and implies the participation of large teams, many agile prac-
tices are most suitable for collocated teams. Let us look at agile practices that
have been proved suitable for small, collocated teams. A typical example is
eXtreme programming (Beck 2000; Beck and Andres 2005). Although it is not
possible to manage small and large projects by using the same set of practices,
it might be a good idea to try to manage software projects in such a way that
the same values are delivered. For example, communication values can be
delivered at a standup meeting in a collocated team and by instant messaging
in a distributed team. Kent says that practices are situation-dependent but
values do not have to change for every new situation. Agile values will guide
project managers to try to manage a large project according to the same
philosophy regardless of specific agile practices.

Now let us take a brief look at some agile practices. These practices are
generally regarded as lightweight, but remember that the same practice could
just as well be seen as heavyweight. It depends on whether its values are about
people or products. Some of the practices are explained by their names, while
the nature of others need some explanation. All of these practices can be
adopted in a rhythmic way so as to achieve synergies, as will be discussed in
Part II of this book.

Real Customer Involvement. As far as developers are not ugrammers, both
developers and customers must be in close communication to build
software.

Informative Workspace. This type of practice is opposed to blackbox
programming. The workplace layout should encourage people to
communicate.

Shared Code. Source code is controlled by one or two team members.
Source code should be owned by the development team to facilitate
other agile practices.

OSS-LIKE DEVELOPMENT 79

Short Iterative Cycle. Short cycles provide a whole team with more
rapid feedback, measurements of the last cycle for incremental plan-
ning, error discovery, and potential improvements for the next
cycle.

User Story. Requirements are divided and written on a stack of cards so
that programmers can estimate the work in each story for customers
who prioritize the order of development.

Self-Organizing Team. Team members (equally or unequally) participate
in decisionmaking as to how and what they could do best for people
and software.

Standup Morning Meeting. Team members are less likely to waste time on
trivia and will discuss recent and/or potential issues.

Refactoring. Existing code is reviewed and revised without changing its
external behavior for better code readability and maintainability.
Pair Programming. Two people as one single unit collaborate on design
and programming.

Incremental Design. This approach emphasizes that the simplest solution
is always in place and that designs increment not by phase but by daily
work.

Continuous Integration. To detect errors as early as possible, team mem-
bers integrate their work frequently. Continuous integration puts the
emphasis on working software in progress.

Test-First Programming. Simply put, before coding, it is advisable to write
automated unit tests that could probably break a system.

3.3.2 Communication Proximity

Software practices in OSSD are for large, distributed teams as opposed to
small, collocated teams. The dimensions that change from large to small will
affect the way we manage our team. As mentioned, team location and team
size are two important factors to affect the adoption of some software
practices. But neither factor reflects values of communication, feedback, and
so on. We therefore take as our two metrics communication proximity and
team coupling (see Figure 3.10).

Communication proximity is a combination of factors that refer to the
degree of distribution. They include human-human communications versus
computer-mediated communication (e.g., face-to-face meeting or videocon-
ferencing), synchronization versus asynchronization (instant messages and
email), people identity versus anonymity (e.g., talking to people whom you
know or to the public), and language.

80 START WITH OPEN SOURCE

Tight

LPTC HPTC
(Low Proximity and (High Proximity and
Tight Couple) Tight Couple)

Team Couple

(Couple for short)
LPLC HPLC
(Low Proximity and (High Proximity and
Loose Couple) Loose Couple)
Loose
Low High

Communication Proximity
(Proximity for short)

FIGURE 3.10 Communication proximity and team couple.

When communication proximity is high, people are located in the same
place with a common language of communication. This implies that people
know each other well enough to collaborate. In contrast, when communica-
tion proximity is low, people are physically distributed, and communicate
anonymously and asynchronously.

Communication proximity strongly affects software practices that focus
on people and place. Synchronous communications across time zones can
hinder distributed pair programming. Even within the same time zone,
distributed pair programming for two developers in Korea and Australia
through videoconferencing still encounters the language problem and cul-
tural effects. For non-English-speaking programmers, reading and writing
are far easier than listening and speaking.

3.3.3 Loose and Tight Couples

The concept of loose and tight couples originates from that of weak and strong
ties in sociology (Granovetter 1973). An example of a tight couple would be a
well-defined reporting channel, while aloose couple might be a weak acquain-
tance such as a connection made willingly, anonymously, and voluntarily.

Team coupling has a tremendous impact on software practices that
demand a lot of coordination. A loosely coupled team in distributed envi-
ronment will find it much simpler to adopt reviews than will a pair program-
ming team.

OSS-LIKE DEVELOPMENT 81

A loosely coupled team is not so much a team as a network or a
community. Such a team is different from a global software team in which
the members may not know others, but the team has a hierarchy and members
have responsibilities. For example, the organizational structure will require a
developer in London to reply to a colleague’s request from Japan. This is not
the case in open-source software development.

3.3.4 Collocated Software Development

The two dimensions that we have introduced are only metrics for relation-
ships between a software team and a development environment. To learn
more metrics, you may have a look at Cockburn’s Agile Software Development
(2002).

Open-source software development and eXtreme programming are alike
in that they both highly value communication, feedback, simplicity, courage,
and respect. Exploring how proven software practices in a distributed
environment (e.g., OSSD) and a collocated environment (eXtreme program-
ming) may correspond to each other would be of assistance in managing
scaling issues in our existing favorite agile software model. We summarize
key practices in OSSD and XP by process areas in Table 3.5.

Perhaps the most significant characteristic that makes OSSD successful is
that open-source developers themselves are the end users. Since developers
are playing both programmer and customer roles, they know exactly what
they are writing. However, in many commercial software projects, program-
mers often require domain-specific knowledge to write the system, such as in

TABLE 3.5 Analysis of Practices in OSSD and XP by Process Areas

Process Area OSSD XP

Requirements engineering Ugrammer involvement Real customer involvement
(on-site customers)

Requirements documents Point listing User stories
Project planning and Rapid release Short iteration cycle
project tracking (i.e., fast turnaround)
Design Evolution-like incremental Incremental design
design
Collaborative Peer review Pair programming
programming
Software configuration CVS Continuous (daily) integration
Testing Alpha release for those Automated test cases

who would like to test
Integration Nightly build Continuous integration

82 START WITH OPEN SOURCE

CRM and ERP. Practicing real customer involvement, the whole software
team is composed of the roles of programmers and customers, while in OSSD
each single developer can have these two roles.

In eXtreme programming, software project planning involves customers
and programmers together developing estimates for the work to be per-
formed, and defining the plan to perform the work. The rapid-release
schedule itself can be a plan because the release time is shorter than the time
we need to estimate and produce the software plan in a conventional
approach.

Pair programming and shared code adopted for a collocated team and
reviews in OSSD for a distributed environment are different practices but
deliver the same values in communications and feedback. Therefore, when
the dimension changes from collocation to distribution, we may prefer peer
review. In the end, all software managers must understand that their past
success may not be replicated when some metric changes. A good manager,
however, has the imagination to see where the values of one approach can
enhance the practices of another.

3.4 CONCLUSION

This and the previous chapter have covered the essentials of software
development. We have seen that both open-source software development
and agile software development address values and practices, but questions
remain. What, in practical terms, does this mean that we should do? Should
everyone dump their own values and practices and adopt these new ones,
even if they are only half understood? And what if we can’t get rid of our old
values?

While not explicitly serving as guidelines as to what agile practices or
processes should be used, software development rhythms do offer some
answers to these questions. You do not need to be an agilist, and there is no
lightweight or heavyweight in software development rhythms; rather, soft-
ware development rhythms straightforwardly tell us three things:

1. Combine practices or processes rhythmically as your development
rhythms. This step is very important. Although Part II will discuss in
depth when and where individual agile practice works and when
different software practices may be combined for synergies, you can
always compose development rhythms with the software practices
you understand most. However, it should be well understood which
values are added to your software development when software

REFERENCES 83

practices are rhythmically combined, although these values may not
be the same as agile values. This means that they could make some
positive contributions to process and paper, instead of to people and
product.

2. Use the in—out diagram to understand the sustainability of your
composed rhythms so that you can plan effort and resources to sustain
the rhythms. The domain of easy to start and easy to sustain is much to
be preferred. We have observed many agile practices combined into
development rhythms to be domain-specific. As your development
environment may unexpectedly change at any time, you may have to
play another of your development rhythms in response.

3. Software teams have different learning curve and turnover rates, and
this can tremendously impact your development rhythms so analyze
the master—coach diagram for your project team.

In short, the practices of a software team are never pure. They are always
combined either simultaneously or rhythmically. What is critical in software
development is to understand when practices work better and when they
should be used. Take eXtreme programming as an example. Although many
teams successfully adopt eXtreme programming, others appear to encounter
tremendous difficulties. Often, some team members are not yet ready to catch
development rhythms for extreme programming. As a consequence, they fail
to see the value of the whole.

REFERENCES

The Agile Manifesto, 2001. Availableat http: //www.agilealliance.org/home.

Beck K. eXtreme Programming Explained: Embrace Change. Boston: Addison-Wesley;
2000.

Beck K and Andres C. Extreme Programming Explained. 2nd ed. Boston: Addison-
Wesley; 2005.

Cockburn A. Agile Software Development. Boston: Addison-Wesley; 2002.

Granovetter M. The strength of weak ties. American Journal of Sociology 1973; 718 (6):
1360-1380.

Golden B. Succeeding with Open Source. Boston: Addison-Wesley; 2005.

Halstead M. Elements of Software Science. North-Holland: Elsevier; 1975.

Jacobson I, Booch G, and Rumbaugh]J. The Unified Software Development Process.
Reading, MA: Addison-Wesley; 1999.

McCabe T. A complexity measure. IEEE Transactions on Software Engineering 1976;
2 (4):308-320.

84 START WITH OPEN SOURCE

Pavlicek RC. Embracing Insanity: Open Source Software Development. Indianapolis: Sams;
2000.

Raymond ES. Halloween Documents, 1998. Availableat http: //www.opensource.
org/halloween/

Raymond ES. The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. Sebastopol, CA: O’Reilly; 2001.

Sandred J. Managing Open Source Projects: A Wiley Tech Brief. New York: Wiley; 2001.

Sommerville I, Sawyer P, and Viller S. Managing process inconsistency using
viewpoints. IEEE Transactions on Software Engineering 1999; 25 (6):784-799.

Stamelos IS, Angelis L, Oikonomou A, and Bleris GL. Code quality analysis in open-
source software development. Information Systems Journal 2002; 12 (1):43-60.

Stamelos IS, Angelis L, and Oikonomou A. Open source software development
should strive for even greater code maintainability. Communications of ACM 2004;
47 (10): 83-87.

Thompson K. Unix and beyond: an interview with Ken Thompson. IEEE Computer
1999; 32 (5):58-64.

Toffler A. Future Shock. New York: Bantam Books; 1971.

XuJ and Madey G. Exploration of the open source software community. Proceedings of
NAACSOS Conference, Pittsburgh, PA; 2004.

7P

o

PLAGIARISM PROGRAMMING

Copy from one, it’s plagiarism; copy from two, it’s research.
—WILsON MIzNER

A group of ants goes out to look for food. At first, they wander aimlessly, not
knowing where to go. They spread out and crawl in all directions, in an
apparently random fashion. But wherever each ant goes, it leaves a scent that
it can follow back to the nest. At the same time, if one ant comes back with
food, the other ants can follow this scent trail back to where this one ant found
the food, abandoning their random search and instead all trooping back along
the proven trail to where the food was found. In the ant world, an ant that can’t
follow the scent left by another will perish. Being a successful copycat is the
intelligence of the ant.

Ants are playing a simple rhythm: seek—succeed—follow. Once food is
found, others will follow that path without even calculating how far they are
going. However, there is no reason to believe that the path is unique or is less
dangerous. It is just one of many ways to the same place where the food is
found (Figure 4.1). An ant alone has little intelligence, but the way ants
cooperate with each other demonstrates community wisdom, a kind of
shared-intelligence collaboration. It turns out that everybody brings food
home.

Can we do the same thing, turning everyone into a programmer? More
precisely, can programmers regardless of their skills be organized to follow
a way to code successful small subprograms done by others, and to

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright © 2008 John Wiley & Sons, Inc.

87

88 PLAGIARISM PROGRAMMING

- e Her We W Me L., e
‘ Ants
¥
& "
o ¥ *
5
Food

FIGURE 4.1 The trail is not always the shortest, but it guarantees some reward.

continuously repeat that way to code other subprograms, until a complete
system is done? This sounds ambitious, but it is not impossible.

Perhaps youmay think thatlam suggesting “copy-and-paste” or “cut-and -
paste” programming, which is nothing new. Understanding exactly where to
copy from one program or procedure and to paste code into another is a
common way to get a quick solution. But it can introduce problems. If we are
notsure how thelogicof the codeactually works, along with the copy-and -paste
code we may also get hidden bugs or incompatibilities with our existing code.

From experience we know that some programmers, the less experienced
in particular, who do copy-and-paste programming are much less likely to
properly test their program than when they write everything from scratch!
Maybe they assume that whoever wrote the code was more experienced or
responsible than themselves. Even when the copied code crashes, they feel
they have a scapegoat and can forgive themselves for not doing a good job.
After all, what has the world come to when you can’t even be confident about
the quality of what you copy?

Perhaps the biggest limitation of copy-and-paste programming is that it’s
practiced only by individuals. In an integrated team environment, copy-and-
paste programming makes software configuration, standardization, code
reading, debugging, quality, support, and maintenance difficult. Different
developers may cut and paste different source code to get the same func-
tionality for the same application. Clearly, it is not easy to scale copy-and-
paste programming up to the team level, but it may be something worth
doing. Here is our story.

When I was at school, my final-year programming assignment, an
important task in terms of grades as there were no exams, was to write a
program that simulated a flight path. The assignment was challenging, and

PLAGIARISM 89

only a few outstanding students could do it, so many students simply copied
the better students’ programs. However, they couldn’t just cut and paste the
code. They tried to understand the design and then to enhance simpler parts
of the program, for example, by making user interfaces simpler, adding
hotkey options, and providing better descriptive comments. In the end, some
plagiarized assignments were better than the original because while they all
provided the all-important simulation, the copied programs were more user-
friendly. It is true that individual copied programs may have been substan-
dard, but code like this, plagiarized with testing and modifications (or
refactoring), can be economical.

We do not advocate an innovative method in programming; our
endeavor is to seek disciplined mechanisms for easy coding. As you will see
in Section 4.2 (which discusses making use of code written by others) and
Section 4.3 (which provides a real case to readers), this may raise some
controversial issues, so we should say now that we have no intention of
challenging any system that rewards risk taking, or innovation. We all
depend on that.

But at the same time we all have to admit that there is no such thing as total
originality in any field or undertaking, and there is little point or advantage in
programmers day after day reinventing the wheel when there are perfectly
good models of wheels to be found all around us.

4.1 PLAGIARISM

Modern computing technologies continue to advance. So do programming
languages. Yet basic instructions remain more or less unchanged while
integrated development environments have evolved far beyond the old
programming editor with reserved words highlighted. A typical example is
BASIC (Beginners’ All-Purpose Symbolic Instruction Code) developed in the
1970s. This BASIC evolved into the earlier version of Visual BASIC (VB)
(1991), which uses template wizards and enables rapid application develop-
ment, event-driven development, and other Features. VB continued evolving
through the 1990s with a new version about every 1.4 years. When VB 6.0
came out in 1998, the VB programmers who had been busy with catching up
on new features all these years had a long break till VB.net in 2002. VB.net,
however, was a big change. Unlike writing small applications in BASIC in the
past, we have to get very familiar with VB.net and its integrated development
environment (IDE); otherwise, we will be very surprised at why the same
application written in BASIC may take us much more time to develop in
VB.net now.

20 PLAGIARISM PROGRAMMING

Imagine that a talented hacker in 1980 saw the Christopher Reeve movie
Somewhere in Time and fantasized about the same thing happening to him as
happens to the movie’s time-traveling hero. Right after watching the movie,
he rushed to his lab and wrote a BASIC program displaying a large number
count with a “takt” sound so that he could be self-hypnotized into a state that
transcended time and space. As true love did not await him in the past, he had
to bet on the future.

He traveled forward to our time. Before long, he was disappointed that he
would never get used to our modern life—true love is anonymous and good
sex is online! He wanted to go home. So he set about writing the same program
again, but this time he had to do itin VB.net. He did not bother to read through
the online language manual. Instead, he tried to get any demo source, then
compiled and executed it. This working code established a baseline for the next
stage. He studied how it worked, modified it, added his own code, and tested
it. All these things were done in baby steps so that he could change back to his
last success when there were unexpected errors. The program was quickly
done. He returned home and joined Microsoft to develop Visual BASIC.

Plagiarism is an act that is considered unacceptable by many. However,
under certain circumstances, for example, in software development in less-
developed areas or with standard requirements, the conduct appears to be a
productive way in which individuals with less knowledge can carry out
programming. Now, the challenge is to scale up the paradigm for a small team.

4.1.1 Existing Code

In 1998 we were leading a small team in a brewery in southern China
responsible for developing an ERP system for sales and distribution in the
Chinese marketplace. We recruited two fresh graduates who came from
theinland of China. At that time, many schools in the inland regions did not
have enough computing facilities and equipment, and hence they were
more focused on teaching by the textbook. As in the 1980s, students would
design their programs on paper at home. Then they would type in their code
and test it in the computer lab they booked. In this case, C was an ideal
language to learn. As event-driven programming demands that a student
spend much more time playing around with different events in front of a
computer, it was not suitable to teach when the hardware resources were
tight. However, windows programming had been around in the commercial
areas there for few years. Such a gap between skills taught at school and
skills needed in the marketplace was unbelievably big.

As expected, our newly hired staff knew little about Windows pro-
gramming. In the first week, they played around with the development

PLAGIARISM 91

environment such as Windows 95 installation, Transmission Control
Protocol/Internet Protocol (TCP/IP) networking software, Microsoft SQL
server, and PowerBuilder installation.

In the second week, we gave them our PowerBuilder scripts with which to
inquire about customer information written in PowerBuilder 3.0. They were
asked to exactly follow the way we developed another two user interfaces for
product and price inquiries. We told them where to change and to retrieve the
right data they needed to revise the table names and field names. After 2 or
3 days, they completed it.

Plagiarism programming requires us to repeatedly test and then change a
bit and then test again. This becomes tedious when we are unfamiliar with
what we were trying to do, and little progress is made. To support and
motivate the plagiarizing programmers, we needed to establish a people-
caring environment for them.

4.1.2 Social Network Analysis

Although an organization chart may show how the leadership in a team is
structured, surveys directly taken of employees about whom they talk to and
collaborate with in their workplace illustrates another kind of relationship.
The relationship of how information flows among a group of people can be
easily visualized and quantified by social network analysis (SNA). A social
network map consists of nodes that represent the people of a group and links
that show flows between the people. The map show how knowledge may be
shared, how decisionmaking happens, and who supports whom.

Social network mapping is straightforward. In our case, Kimman is
shown in Figure 4.2 as a node with five direct links to other colleagues. As

FIGURE 4.2 Social network mapping.

92 PLAGIARISM PROGRAMMING

we can see, the newcomers, Zhangjun and Wan, may talk to Kimman, who
deals with many people and activities. Szeto had only one connection but held
a position of power. Zhangjun and Wan had the shortest paths to each other.
They would inform each other of what was going on. As we see in Figure 4.2, if
you plan to take over a software team, SNA will give you insights into how
your team members talk to each other.

To quickly plagiarize another person’s work, we need not only to have her
program but to talk to her. An effective social network in the workplace
facilitates communication and feedback. The network schematizes the team
culture in which people collaborate. But how did the two plagiarizing
programmers use our work to make theirs?

4.1.3 Being Plagiarized

Every program is written for some task. Although two programs written
differently may achieve the same task, programs written in a similar logic
probably achieve tasks of the same type. Thus, a set of similar programs and a
set of similar tasks are our two domains of interest.

Suppose that a program is originally written to handle a particular task as
in path 1 in Figure 4.3. Modifying part of the source, such as converting a FOr
loop into a wHILE loop, would not change much. the program would behave
the same (see path 2 in figure 4.3). this kind of modification is superficial.

Of course, we can change the logic for readability such as abc renamed as
monthsalary, for maintainability such as removing duplications by function
calls or for both such as trying to replace nested-IFs with case; this is refactor-
ing, and it facilitates team communications through code.

Domain of Similar Programs Domain of Similar Tasks

3 S
b 7O N\
© ; —)

4 /

,/"?_“H
S AN T

. [
N M 7 2

h,{‘-) _

_.a“'//

.---» Source Modifications: Code is revised to another version.
—® Achievement: Running a source performs a task.

FIGURE 4.3 lllustration of plagiarism programming.

PLAGIARISM 93

Often, we may just revise a small portion of code so that the program
could be used to perform a similar yet different task or to solve a problem
bigger than the one it was originally intended to solve (see path 3 in Figure 4.3).
How to change the source or how to write source for change is the key to
plagiarism programming.

A piece of source for updating a master table for a chart of accounts shows
the same programming techniques as the one for updating a warehouse table.
This is a sort of pattern. However, the code for a chart of accounts itself does
not demonstrate how to plagiarize it for reuse. Thus, a plagiarized program-
mer highlights “the place where followers (i.e., plagiarizing programmers)
should read in order to modify another part where followers should revise,”
or in order to be alert for some other issues. In addition, we may find
highlighted code that remains unchanged when a table is updated so that
followers need not do anything.

To do so, we use three different colors making sure that copiers know
what parts to pay attention to and where changes are required. Blue is used
to represent no change, green indicates the part requiring reading, and red
is for modification. A piece of code is therefore like a series of colors of the
form [B GR B G B R B ... B]. The coloring makes plagiarism easier for
others.

Coloring in plagiarism programming serves indications. We selected our
colors simply by intuition. The primary colors are red, yellow, blue, and
green, which were first suggested by Leonardo da Vinci (Coad et al. 1999).
However, text in yellow was not that easy to read. For some programmers,
text in green was difficult. In this case, try pink instead.

The color series addresses how a program is to be reused and what coding
techniques are required to process that data store. Plagiarizing programmers
read the green part of the source and read / write the red part. What they need
to do is change the red part of the program according to user requirements.
They do not bother with any of the blue parts.

Let us look at how some fresh programmers may write code that deletes
records from a table in SQL database programming. Without plagiarism,
someone writes a simple SQL statement to get rid of a row such as “delete
tablename where col = condition.” However, the programmers do not notice
that many other things should be written to support a recoverable database
transaction.

Now, look at Figure 4.4, which shows another piece of code for deletion.
The code does not actually delete a record, but it updates a flag that indicates
logical deletion of that row. In addition, the code handles transaction rollback
and a mechanism for error checking. We can revise a bit more to ensure that
only one row is deleted each time. Plagiarizing programmers do not need to

94 PLAGIARISM PROGRAMMING

begin transaction

//(i)allow to use“return,” “break,” etc.for only plagiarizedcode
/i) not allow touse “return,” “break,” etc. for nonplagiarized code

update tablename set status = ‘D’ where col='condition’
if@@rowcount<>1//number of rows affected in this operation
//if more than one row is affected, set
//@@rowcount<=1.
//If only 2 rows are affected, se
//@@rowcount<>2
and@@error<>0
begin
raiseerror 50000 ‘error in update tablename setstatus’
exec master..xp_logevent 50000
rollback transaction
return
end

//(i)allow to use “return,” “break,” etc. for only plagiarized code
//(ii)notallowtouse“return,”“break,”etc.for nonplagiarized code

commit transaction

Note:

Bold text represents blue (neither read nor write)

Italic represents green (read only and write occasionally)

Normal text with lighted gray highlights represents red
(read and write)

FIGURE 4.4 When the piece of code displayed above is color-highlighted, the changes
needed it will be visually obvious.

bother much about this. They should be concerned with only three pieces of
semantic information:

1. Name of table where a row is to be deleted.
2. Condition under which a row is to be deleted.

3. Number of rows in which the operation affects—by default, only one
row of deletion is allowed.

For example, when we want to delete an invoice INV00956, we replace
tablename with INVOICE and col = ‘condition’ with INVOICE_NBR =
INVIMAYO01’ (see Figure 4.4).

An old study has shown that most errors arise as the novice programmer
tries to put the “pieces” of code together in a solution plan (Soloway 1967). Do
not let programmers plagiarize code from a number of code samples. A
practical question will have arisen as to how many code samples we need to
highlight to be plagiarized.

PLAGIARISM 95

Tables in any database application can be expressed in a tabular form and
be manipulated by four types of operational commands. The operations
include creation, read, update, and deletion (CRUD). We can use (#, #, #, #) to
show the number of different command types involving in a single database
transaction. For example, (2,3,1,0) indicates that an SQL transaction has two
INSERTs, three SELECTs, and one UPDATE.

Suppose that we develop an ERP application. The system can be func-
tionally decomposed as a number of submodules such as open invoicing,
purchase quotation, and the like. Each submodule could include four types of
user interfaces: (1) data entry, where frontline users key in records; (2) data
modification, where changes are made to the records; (3) data processing,
where midlevel managers authorize business transactions to process; and (4)
inquiries as to status and information (see Table 4.1).

A cross-product matrix can be constructed using submodules and user
interfaces. From the data model, we may estimate CRUD. For example, CRUD
for purchase quotation and data entry is (2,3,0,0), where we retrieve necessary
information from three master tables—customer, product, and price—and
insert new records into two tables: purchase quotation head and purchase
quotation line.

For your first programming task, select those transactions that have
average or higher numbers for CRUD. A transaction with higher numbers
of CRUD has more instructional statements, which better serves as a pattern
of a way of coding. Then color the code for plagiarism as discussed previ-
ously. Review the code colored by other colleagues. The original program-
mers need to roughly explain why this part of the code is red, green, and blue.

Undeniably, plagiarism is easy to adopt. The in—out diagram for plagia-
rism programming is shown in Figure 4.5. When plagiarizing, programmers
can repeat-test and revise at the beginning, and progress here provides an
incentive to carry on. Once they become familiar with the plagiarized code,
they will naturally follow the same methods of programming. Therefore, it is
easy to sustain.

TABLE 4.1 CRUD Analysis

Purchase Purchase Warehouse Warehouse
User Interface Quotation Orders Stocktaking In-Out Data
Inquiry (2,1,2,0) (0,0,3,0) — —
Data entry (2,3,0,0) (0,0,1,0) — —
Data processing (2,4,2,0) (2,3,2,0) — —
Data modification (0,4,2,0) (0,4,2,0) — —

96 PLAGIARISM PROGRAMMING

Easy-to- | Difficult-
start to-start

Plagiarism Easy-to-
Programming sustain
Difficult-
to-
sustain

FIGURE 4.5 In—out diagram for plagiarism programming.

4.1.4 Turn Everyone into a Programmer

In mid-2000 we needed to recruit two more programmers to join our plagia-
rism programming team for a new project. As we were working in China’s
rural industrial sector, there were not many applicants, and those applicants
we received had little experience in real software development. Given that it
would take time to find experienced programmers, our bottom line was to
find some programmers smart enough to plagiarize our existing code quickly
even if they didn’t know how to program.

We decided to use a job simulation test to select 5 or 6 programmers for an
interview. We told the applicants beforehand that there would be a short, one-
hour, written test. In the end, only 16 came for the written test.

Although the simulation test was intended to find candidates who would
fitin with the team, this unexpectedly helped us understand in a quantitative
way the efficiency of plagiarism programming.

Writing a Program. The job test was organized in two parts. For part 1, the
applicants were asked to write an executable program on paper for comput-
ing n factorial (n!) in any computer language; the preferred ones were
Transact-SQL and PowerBuilder Script, which were our development tools.
Many found it difficult to complete a factorial program. This was no great
surprise to us as we had already had a number of years managing inexperi-
enced programmers in developing regions in China.

PLAGIARISM 97

Some readers who do not understand the test environment may wonder
why the applicants failed to finish such a simple program. In fact, many
candidates may have technical skills such as Microsoft access, Web design,
software installation, networking or hardware-related skills, but not pro-
gramming. The candidates were graduates from inland areas who had
traveled far away from home to the cities in southern China but did not
succeed in finding an IT job there. Desperate, they would apply for any IT job
even if they did not have the skills.

When they finished part 1 of the test they proceeded to part 2. We did not
record the time as our objective was to find programmers for the company,
but they returned their answers in around 15-20 minutes.

Plagiarizing a Program. In part 2 of the job test, we gave them three
complete SQL programs, with the solution f(n) =3". The programs were
written in different ways: (1) IF-THEN, (2) wHILE loop, and (3) recursion. the
applicants needed to revise each of them for the calculation of n factorial.

The candidates had to write down on paper those programs that should
have been compliable: that is, with no syntactic errors. Roughly, they finished
them in 30-45 minutes. The whole test lasted for around an hour.

Programs. Table 4.2. shows one candidate’s result. He failed to write a
program of n factorial. Part 2 contained three sample programs to be plagia-
rized. Although he had never done programming in Transact-SQL, the
candidate was now able to modify two SQL programs correctly, in parts
2a and 2b in Table 4.2.

Part 2c used a recursive technique to solve f(n) =3". As discussed, some
programming skills were harder to follow than others, which would make
plagiarizing challenging. Of three original programs of 3", IF—THEN, and DO
loop were easier to perceive while recursion was not.

You Are Hired. For the interview, we selected the four applicants who did
well in only part 1 and two of applicants who did well only in part 2. During
the interview, we also asked how they liked the test the last time but did not
tell them that we wanted to recruit two plagiarizing programmers for our in-
house ERP development. The candidates gave us their view of plagiarism
programming. The two whom we hired in the end showed great interest in
plagiarism programming. We could not recall whether these programmers
did well in part 1 or only in part 2.

Our experience here provides some reference for readers who are
planning to recruit programmers for their companies. They may consider

98

PLAGIARISM PROGRAMMING

TABLE 4.2 Programming in Transact-SQL by a
Non-SQL-Knowledgeable Programmer

Test Part

Source Code Success

Part 1: no plagiarism

Part 2a: plagiarizing
an IF—THEN program

Part 2b:
plagiarizing
a po-loop program

Part 2c: plagiarizing
a recursion program

A=1 X
B=1

c=1

Input N

For Nto 1

A+1=A

A*B=C

C=B

End For

Output C

Create proc factorial v
(@y integer)
as begin
if @y =0 return 1
if @y =1 returnl
if @y =2 return 2
if @y =3 return 6
if @y =4 return 24
if @y >=5
print “ out of the range!”

end

create proc factorial v
(@y integer)
as begin
declare @result integer
select @result =1
while (@y >=1)
begin
select @result = @result * Qy
select @y =@y -1
end
return @result
end

create proc factorial X

(@y integer) as begin
declare @result integer
declare @y_minus integer
if @y =0 returnl
select @y_minus =@y — 1
exec @result = fatr @y_minus
if @y =0 returnl

PLAGIARISM 99

TABLE 4.2 (Continued)

select @y_minus_1 =@y_minus - 1
exec @result = fatr @y_minus_1
if @y =0 return 2
select @y_minus_1 =@y_minus - 1
exec @result = fatr @y_minus_1
if @y =0 return 6
select @y_minus_1 = @y_minus - 1
exec @result = fatr @y_minus_1
if @y = 0 return 24
select @y_minus_1 =@y_minus - 1
exec @result = fatr @y_minus
return (3 * @result)
end

a job simulation test like this. Of course, if your development environment
uses another methodology, you will have to work out your own job
simulation test.

Insights. Some time later we reviewed the interview data and programsin a
more systematic way. When part 1 is compared with part 2, is there any major
difference between those who failed in part 1 but passed part 2?

There are four possible outcomes for their programs, as shown in
Table 4.3. Figure 4.6 summarizes the outcomes of the job simulation test.
Although three assignments in part 2 seemed to be the same, they were
written in different algorithms. We compared part 1 with three results of
part2in turn (i.e., 1 vs. 2a, 1 vs. 2b, 1 vs. 2¢); the percentage of the number of
successes soared 150%, 150%, and 75%. As shown in Figure 4.6, 4 out of 16
applicants (25%) succeeded in coding the problem in part 1; 10 out of 16
applicants (62.5%), in parts 2a and 2b; and 7 out of 16 applicants (43.7%), in
part 2c. Clearly, plagiarism provides a certain degree of assistance in pro-
gramming by inexperienced people.

Cognitively, “easy to do” and “easy to do by steps” (i.e., “easy to follow”)
are two different concepts. The first tends to be a subjective judgment of
implementers. The second is more objective. For instance, coding a program
of factorials by a recursion method is easier for people who are accustomed to
doing it in this way. As for easy to follow, a DO loop could be more
straightforwardly expressed in steps, as all people should already be familiar
with this style. interestingly, in the factorial method, the best way in “easy to
follow” is IF-THEN—ELSE.

Although the purpose of the test was to screen candidates, it was a bit
stricter than the working environment of plagiarism programming as there
were no verbal and informal communications providing feedback. Since it

100 PLAGIARISM PROGRAMMING

TABLE 4.3 An Analysis of Four Outcomes

Outcome Part 1 Part 2 Conclusion Explanations
1 v v No conclusion! Managed to
complete both
2 v X Very unfavorable Overthrew our
to plagiarism belief about

plagiarism as
people are able
to complete the
assignment alone

but fail to
plagiarize it
3 X X Unfavorable Demonstrated a
to plagiarism fruitless attempt

in part 2 even if
the person is not
knowledgeable
about programming

at all
4 X v Favorable to Turned everyone
plagiarism into a programmer

was a written test and we provided no spoken instructions, we also eliminated
coloring.

4.1.5 Pattern Language

Christopher Alexander was an architect who developed the pattern theory in
the 1960s that could be considered as an approach to arranging workspaces so
that new employees would be able to learn by being in proximity to their
mentors. This is called “master and apprentices.” Patterns in architecture are

12+
10+ 7
8_
%7 Z
4 7
1
Part 1 Part 2a Part 2b Part 2¢

FIGURE 4.6 Job test results.

PLAGIARISM 101

Difficult-
to-
master

Easy-to-

master

One Design Design Easy-to-
Pattern Patterns coach

Difficult-

to-
coach

FIGURE 4.7 Master—coach diagram for design patterns.

perceptible; but patterns in logic are conceptual relationships among things
and hence invisible. Shepard (2002) says that we remember pictures (with a
success rate of 98.5%) so much better than words (90.0%) and sentences
(88.2%) that were previously learned. Therefore, efforts required for human
apprentices to learn visible patterns and learn design patterns are very
different.

Anyway, inspired by patterns, the gang of four (Gamma, Helm, Johnson,
and Vlissides) developed their classic work Design Patterns,! which are
templates of descriptions of, conditions for, and examples of how to solve
object design problems that can be used in many different situations. While
this aspect of the pattern theory has proved useful for the problem under
consideration, it should be realized that some patterns might be difficult to
master and follow.

If mastering one or two design patterns sufficed to solve our program-
ming problems, we would have no difficulty. Unfortunately, we have to
master quite a number of patterns, and, most importantly, they are distinct
from one another. Applying patterns to real problems requires experience.
One good thing is that once our organization successfully adopts design
patterns through a project, that application can serve as a solid example to
help our team coach newcomers. Thus, design patterns are difficult to master
but easy to coach (see Figure 4.7).

'If you have not yet read that book, we recommend that you read it. If you prefer Java
code for explanation, Mark Grand’s Patterns in Java is suggested.

102 PLAGIARISM PROGRAMMING

Difficult-
Easy-to-
to-
master
master

Plagiarism Easy-to-
Programming coach

Difficult-
to-
coach

FIGURE 4.8 Master—coach diagram for plagiarism programming.

Plagiarism programming, as a tool that assists inexperienced (if not weak)
developers in getting coding work done, can be an exploration of human
cognition. We seek patterns for easy-to-follow code (i.e., knowledge of
purpose) and patterns of ways to program (i.e., knowledge of structure) to
help people complete their undertakings alone with little or no help from
other team members, training courses, or references as these incur extra time.
In this sense, plagiarism programming is code-oriented and design patterns
are solution-oriented.

Sample code in plagiarism programming must be easy to follow.
Figure 4.8 shows that the practice is easy to master, which does not mean
that we can easily develop simple code to plagiarize any application. It simply
says that once code is written to facilitate plagiarism (see Section 4.13),
plagiarism becomes easy to master for others and they can coach newcomers
on how to use that simple code for writing other programs.

In short, the purpose of plagiarism programming is not to think over
generic application-independent solution built as a set of patterns (Gamma
etal. 1995). For the purposes of plagiarism, design flexibility is not the same as
easy-to-follow. We will clarify this point further in Section 4.1.6.

4.1.6 Software Team Capability

Nowadays, software development demands different kinds of skills. For
example, writing client/server database applications necessitates the use of
client development tools (e.g., VB, Delphi, PowerBuilder), SQL (PL-SQL,
Transact-SQL, etc.), database administration and tuning (e.g., server manager,
database denormalization), and network (e.g., remote access and proxy

PLAGIARISM 103

Index of Expertise
A

Minimum Expertise

sulips

FIGURE 4.9 Minimum expertise for programming in which programmers B, C, and D
could not work on their own.

A Programmers

server). If we are not technically strong enough to master technical difficulties,
they will come back to haunt us.

Therefore, when coming across a technical problem, a team of more
programmers stands a good chance of solving it. To do programming in a
small software team, programmers have to be basically equipped with some
minimum expertise [e.g., skills of inserting record(s) into a table, of database
deadlock handling, of transaction rollback] that allows them to complete
their jobs. For example, developers below that level could do nothing by
themselves. Figure 4.9 depicts the idea. Programmers B, C, and D will have
some trouble working on database programming. Unfortunately, program-
mers may not know how much they don’t know. Software quality is
therefore at risk. Our goal is to push down the line of minimum expertise
to a lower position.

When ['was around 5 or 6, I always carried some 10¢ coins to buy sweets.
My parents did not allow me to spend more than 100¢ per day, so I had to
know how much I had left if I spent 30¢ for a Coke and 40¢ for a burger.
Unfortunately, at that age I had little math skills, so I solved the problem in a
mechanical way. Here was what I did:

Step 1. I emptied my left pocket.
Step 2.1 counted four coins and put them into my right pocket.

Step 3.1 counted three coins and put them into my right pocket, repeating
step 2.

Step 4. I counted the remaining coins.

Thinking about addition as the minimum expertise for paying money and
buying things was transformed into simply counting coins and putting them
aside. Addition is a higher skill than counting. So we did the same job using a
lower-level skill.

104 PLAGIARISM PROGRAMMING

(i) Pull up their capabilities
by training

Index of Expertise
A

Programmers

A
-

; 7 > Minimum Ex pertise
B c D

(i) Assist Programmer A

FIGURE 4.10 Two solutions for what you would do.

Returning to Figure 4.9, what would you do if you were programmer A?
Let uslook ata number of solutions. You could intensively transfer your skills
before programming takes place so that other programmers obtain the know-
how, shown in (i) in Figure 4.10. This solution takes time, and its feasibility
depends on the learning curves of your colleagues. In addition, personal
turnover has not yet been factored in. The resignation of a well-trained staff
member is detrimental to a small team.

You could take over difficult tasks yourself; other colleagues are just your
assistants or are responsible for simpler jobs [see in (ii) in Figure 4.10]. This
way is even less feasible. It ends up with a case in which programmer A has to
do all system analysis and coding, while programmers B, C, and D may be
involved in all testing.

The solutions suggested above are principally correct but not practically
feasible. We have to adopt the right software practice, which can be pair
programming discussed in Chapter 5 and its rhythm discussed in Chapter 6.
Test-driven development discussed in Chapter 9 that tells us how we may
progressively do programming right. Test-driven development is sort of
microiterative; every small success establishes a baseline for programmers to
go forward for more success, or go back to the baseline and start over again.

Plagiarism programming is also a solution; it pushes down the level
of minimum expertise for more developers to do programming (see
Figure 4.11). Although in software development there is no total solution
(i.e., silver bullet), solutions are rarely absolutely incompatible. They
could even become a great symphonic work if they are combined
rhythmically.

PLAGIARISM 105

Index of Expertise
-

J’ l] l l 1 Minimum Expertise
1

A B C D Programmers

FIGURE 4.11 Push down minimum expertise so that programmers A, B, and C can
work independently.

4.1.7 Rough-Cut Design

When the team adopts plagiarism programming alone, programmer A
will work submodules for programmers B, C, and D to plagiarize. Since
programmer A would never be able to complete every detail of the system
design, there can be a case in which B and C write different code for the
same feature in two submodules that they separately work on. For exam-
ple, the value-added tax (VAT)® calculation repeatedly appears in a
number of submodules. If the same things are not put together, we will
have to modify a number of places every time there is a change in the sales
tax. The better way is to use a procedure (or method) to handle all kinds of
VAT in the system, that is, to achieve high cohesion, which in programming
refers to how closely a number of operations in a routine are related
(Shalloway and Trot Dec. 9, 2005; McConnell 2002)

The calculation of VAT needs to retrieve the selling price from a product
code times the VAT ratio for the category of that product. Clearly, the VAT
procedure includes the logic of getting the right selling prices.

However, a selling price of the same product can vary. One copy of a book
is $10, but two are $15. A lunchbox is $10 but 10% off after 2:00 p.m. (14:00
hours). thus, the selling price as another function call should be decoupled
from VAT so that when we have to change the business logic for the selling
price, we do not have to bother about VAT.

Even so, skilled programmers may not be able to plagiarize programs and
at the same time work on design problems with others; plagiarism program-
ming is just a way of coding and does not handle any design issue.

To solve this problem, we have to do some sort of redesign after the code is
done: refactoring (see Figure 4.12)! This does not mean that we wait to
improve code in refactoring. In a situation in which many programmers are

*With VAT at 10%, a consumer should pay for the retail price times 10%.

106 PLAGIARISM PROGRAMMING

€ LS €

A N A
Sub- # Sub- ' Sub- Ready for being
Module W Module W Module W | plagiarized
Programming Coloring l
Q A B C
ﬁ A Q € = Sub- Sub- Sub-

5 Module X Module Y Module Z

Meeting
for refactoring plan Plagiarism programming

Sub- Sub-

Refactoring
Module Module i ae
W X Sub- Sub- Sub- Sub-
— — =P |Module| [Module Module| | Module
Module Module X l Z 2
Y z ¢
VAT
L]
Selling
Price

FIGURE 4.12 Plagiarism programming and refactoring.

inexperienced, programmers could do a rough-cut design (i.e., a rough plan),
which provides a rough high-level view of the architecture. The purpose of
rough-cut design is to share what we know so that we can avoid any mistakes
through good communication. See rhythm displayed in Figure 4.13.

Itis difficult to imagine how unwritten programs are similar to each other.
Once the team has done the working software, it is easier to find similarities
and combine the related logic. Thus, a design review (i.e., refactoring) is held
during weekly meetings. The purpose is to identify improvements in the code

= Refactoring
ough-cut Design ! Plagiariom l

FIGURE 4.13 Refactoring to harmonize two previous practices.

NOTHING FASTER THAN PLAGIARISM 107

that has been done. Programmers report on a list of functional points. When
two or more functional points are alike, we may consider refactoring.

4.1.8 Training Is Not a Solution

The computer language continues to be developed; highly skilled pro-
grammers are in demand everywhere, needless to say in developing areas.
Plagiarism programming provides managers there with a tool for running
inexperienced teams. But why employ inexperienced programmers in the
first place? In the cases we have outlined so far, there was no choice, but
even if you do have experienced programmes available, using them may in
many cases just be costly overkill. As one manager commented to me, “We
aren’t sending a man to the moon. We’re building a trading database
application for a brewery!” And then there’s the issue of “experienced,”
which in certain circumstances can just mean “stuck in the past” as current
programmers can be almost as inexperienced in the tricks and skills of tools
of something like integrated development environment (IDE) as are many
newcomers. Many programming errors are related to the programming
knowledge being used (Ebrahimi 1994), and hence we often hear that the
program worked before we updated the IDE.

Staff turnover and job handover are never-ending problems in software
development. This is especially so when training takes a lot of time and
expense. Your boss may at first appreciate your efforts in building up a
competitive team even though the project moves slowly at the beginning. In
the long run, the company may profit from your work, but when a well-
trained member who has used your program as a finishing school handsina
letter of resignation to take a better opportunity somewhere else, your boss
can’t help judging you as a good technical coach, but a poor project
manager, especially when newly hired programmers may repeat the old
mistakes of the ex-colleagues whom you trained. So total training is not a
total solution. The advantage of plagiarism programming is that it is just a
simple software practice and senior management is happy to see new
members producing acceptable work quickly and getting the project
moving forward.

Finally, you may wonder why we call this “plagiarism programming.” It
has nothing to do with plagiarism! We will tell you why in the next section.

4.2 NOTHING FASTER THAN PLAGIARISM

When our software team is designing applications under time pressure, some
of its members will naturally think about whether part of the code (i.e., the

108 PLAGIARISM PROGRAMMING

source or logic) has been developed elsewhere, how the other people have
solved the same problem, where they may find similar source code, and
finally whether we could reuse it. There is little chance that we are writing
unprecedented logic.

Suppose that we are sure that what we are going to code for our
application is part of a software source written by others. However, software
is an integrated product. To extract the source code in the right place for reuse,
we have to understand the structure of the software. The good news is that
many programs available over the Internet are often as maintainable as if the
program authors were actually writing for others, and that means that we just
need to take a little time to figure the logic out. Once we learn where to change,
we will be able to reuse the software. Reusing the software source that we
successfully compile and execute is by all means faster than writing the same
from scratch.

Once we identify where to extract, we need to test whether that piece of
code is working as you expected. This is neither blackbox testing, where
system behavior is determined by studying its inputs and outputs (Sommer-
ville 1986), nor whitebox testing, where the system’s behavior is analyzed by
examining the code. We may go through only a part of the source. In addition,
the source code may call other external libraries for which we do not have the
source. Therefore, the testing is something in between black and white. If the
extracted software does not work in the way we expect, we can go back and
test the original program.

We may modify the existing code and build our application according to
user requirements. Generally, the time that it takes us to repeatedly do test
and revision and retest is much less than when we write everything from the
ground up. As far as the program we plagiarize is executable and working, we
stand a good chance of accelerating our own development. (See Figure 4.14.).

4.2.1 Immorality

Plagiarism can be defined as using or reproducing the work of someone else
without acknowledging the source or obtaining permission. Mimicking the
code of your colleagues introduced in Section 4.1 is not plagiarism. It is if we
intend to get sample code from the outside. In fact, plagiarism has already
hit the open-source world. Many software companies are using open-source
software without honoring the relevant licenses (O’Brien 2005). Dishonest
companies may even try to pass off open-source product to their clients as if
it were developed by them.

Adopting plagiarism programming by taking advantage of open-source
software to manage programmers in an in-house environment is a gray-area

NOTHING FASTER THAN PLAGIARISM 109

This program is urgent!

After 1 day

No, because it's

Have you started
already done.

the work ?

Download open source code
and modify it !

ol

Amiessit

FIGURE 4.14 Nothing faster than plagiarism.

issue. Staff actually get paid for the efforts of someone else, although there is
no reselling for money.

Under the terms of the GNU general-public license (GPL),? plagiarism
programming is acceptable. If we modify and distribute copies of the
program or any portion of it, by the copyright holder under the terms of
this GPL, whether gratis or for a fee, then we must give the recipients all the
rights that we have. Other licenses may impose different limits on our rights
to use software sources.

However, if we enhance GPL products for customers in a software-house
environment, we must clearly understand that any derivative work incorpo-
rating any part of a GPL product is also licensed as the GNU GPL.

SAvailable at http://www.gnu.org/ .

110 PLAGIARISM PROGRAMMING

Many open-source developers do not mind being modified for other
purposes as long as the code stays free: “.. .I only have one requirement if you
download either the source or binary, and that’s what is free stays free. Make
the world a better place if you want, but please don’t take my code and try to
make a quick buck off of it...”*

4.2.2 Unprecedented Code

Ed Thompson of Gartner Inc. (2004) says that around 80% of customer-
relations management applications have been developed with a tailor-made
approach. As customer behaviors and purchasing patterns differ in different
industrial sectors, business processes of disseminating customer information
and providing a deeper customer experience can hardly be automated in
standard ERP applications or off-the-shelf software packages. Each customer-
relations management (CRM) application has its unique features.

Two or more applications [say, CRM and supply chain management
(SCM)] in the same family (e.g., database applications) can be designed in
such a way that the reuse of core assets is planned, enabled, and enforced
(Clements and Northrop 2001). Within the application, submodules can be
common to other non-CRM systems. In short, there is no need to get CRM
application source code in order to build your CRM by plagiarism.

Let us look at an example of how we can proceed with a CRM application
developmentbyreusing opensource code. A manufacturing company wants to
develop its CRM system. Part of the system will assist in simplifying customer
requests. Customers cansend theirrequeststoacommonemailaddress, and the
system, according to the domain names of received email addresses, automati-
cally forwards them to their account representatives. In addition, the system
needs to keep track if a request is handled within 2 working days; otherwise, an
“alert” email will be sent to the account managers for their attention. The
company aims to reply to their customers in 3 working days.

The system needs to retrieve emails from a Post Office Protocol Version 3
(POP3) server, extract the sender address of an email, record that header
information and email body into a database, and send Simple Mail Transfer
Protocol (SMTP) emails to corresponding account managers. Obviously, any
program given for the four functions mentioned above will accelerate the
progress.

Finding sample code may take time, but with luck we might get that code
sample from computer books to start with. But there are some issues. The
examples may be incomplete so that execution results in a compile error, some

4Available at http://mohairsofa.com/ .

NOTHING FASTER THAN PLAGIARISM 111

libraries are missing, or they do not conform to the version of your compiler.
In short, repeating the results may not be as straightforward as we might
anticipate. Also, electronic sources may not be available; this problem is trivial
if a piece of code is less than 100 lines. But a complete example may involve
several hundred or 1000 lines. The best way seems to have advice from the
authors or from those who have tried the same thing before.

Examples alone are presented only for reference. What is missing here is
people who could share their experience and advise us where to look for the
exact information.

4.2.3 People Network

We do not need to be experts to act like experts! Years ago, we were invited to
give a presentation on software engineering at an international conference
held in Paris. It was our first time there. A young Asian couple came and asked
us for low-budget hotels. We probably looked like tourists. Clearly, the couple
had a language problem, but so did we. I used my mobile phone to send text
messages to friends of mine in Paris whom I had met in a chatroom (e.g., “I
seek you” ICQ). They soon called me back . Even though not all of them were
helpful, they could suggest one or two places to try. This story tells us two
things: (1) “C’est toujours bien de parler un peu frangais a Paris” and (2)
building a people network is important for both information sharing and
problem solving.

Open-source software development itself can be considered as a kind of
people network. Many active open-source projects have their own discussion
forums or newsgroups. Discussion forums may be using different commu-
nication channels: Network News Transfer Protocol (NNTP) messages,
emailing lists, blogs, or chatrooms. Often, subscriptions are free. People there
are willing to share or exchange their experience and program sources and
libraries with those who are interested in them. The shared work could be
originally written for open-source development or even private companies.
We simply use the term “people network” to mean any form of open-source
development and its related discussion groups.

In our CRM project, sample code for retrieving and sending emails could
be obtained from the people network. The coding involves Socket program-
ming and SMTP and POP3 protocols, which could be quite a task for a team of
database programmers. We once interviewed a number of database program-
mers, and few were sure whether they could send email using Telnet. Database
programmers are well versed in SQL programming and database tuning, but
they may be inexperienced in network programming.

>4t is always good to speak a little French in Paris.”

112 PLAGIARISM PROGRAMMING

Our team can write an initial request for help to the people network. Of a
number of replies, there are always one or two suggesting where we may be
able to download the source code. If we get no reply, we rephrase our request.
As those who reply are simply sharing with us what they did or got in the past,
the sample program will normally work fine as long as we get the software
configuration right enough. Now that the project team no longer needs to start
everything from scratch, the team can focus on how to revise or integrate the
software.

While it is possible to enjoy the past efforts of people in a network, they
aren’t part of the development team. To allow development resources to be
used optimally, we have to manage and coordinate a way of assessing shared
sources.

4.2.4 Rhythm for Plagiarism

System requirements and applications are always lengthy and specific to a
domain. People not in the same industry may have problems digesting user
requirements. Thus, we have to generalize a specific application to a nonspe-
cific one so that there is a greater likelihood that members of our people
network understand and thus provide informative and useful contributions.
For example, rather than asking for help as to how to automatically forward to
sales representatives in the CRM project, we should just request the source for
an email client application. An action list is as follows:

1. Generalize particular user requirements into a common application
that can still demonstrate the same techniques for solving our specific
problem.

2. Send your problem to the people network.

3. Request any shared program that will employ that know-how in
programming.

4. Obtain a shared program among replies. (If there is no reply or only
negative comments, regeneralize your question in point 1.)

5. If you need to download the source, try to download stable versions.

6. Test and run the system. Request further help if any difficulties are
encountered.

7. Software configuration management should keep the original source,
using the latest source (with modifications in place) and the procedure
to rerun it. and results and the modification made.

The sample code we are looking for can be embedded in either an
open-source application or a complete open source library. In any case,

NOTHING FASTER THAN PLAGIARISM 113

finding the right copy of simple code is a critical step. Although this
should logically come after our requirements have been studied, it is possible
to start as early as possible in order to quickly gain technical feedback.

Whether the sample code is developed by the same software team or
obtained from the people network is not an issue as long as we get the right
code and repeat the results. Most importantly, the process should be com-
pleted more quickly than if we did it from scratch. Success will depend on the
contributions of members of the people network, the complexity of the
problem, and the capabilities of the software team.

After successfully testing the source, our team can proceed to revise the
shared program according to the user requirements. As sources are not
highlighted in color, the team will have to digest and figure out some
semantics and syntax. Since it is not possible to read through every single
line and it is not easy to fully understand the details of the program, relying
on reading code is of little practical use. However, once the original
program has to be successfully rerun, the team can always modify a small
part of the program and retest it to gain more understanding. The team can
always go several steps backward or, as a last resort, return to the original
and start all over again if it is lost during modifications. Here are some
more suggestions:

« The team may post more questions to the people network to solve
technical problems in the source. Since people from the people network
normally reply with short answers, they will not instruct us what and
how to do anything in detail.

Two developers work together to revise and to test. If the team has no
idea where to revise, try to work in pairs, which will facilitate a heuristic
search of an open-ended kind (Kaner et al.). Pair programming is
discussed further in Chapter 5 and 6.

The team can be split into two or three subteams to individually modify
and test in parallel. All subteams will have communicated with one
another; they share their findings and highlight modifications in color
once any progress has been made. The process is as follows:

1. Revise the program by subteams.

2. Highlight any necessary modifications that should indicate any user
requirements.

3. Communicate any findings with other subteams working on the
same shared program by providing the revised program in color and
results implemented.

4. Repeat above until the expected result is attained

114 PLAGIARISM PROGRAMMING

Vivace

— - YT -
[(oo B Copy I: oy Test :I

FIGURE 4.15 Rhythm for plagiarism programming .

As we could not control the people network, by no means can we actually
guarantee success, but we have learned that programmers, who cannot even
plagiarize a solution for a problem of the same kind, cannot possibly devise
that solution by themselves. Given this, plagiarism programming particularly
facilitates software development in either of two cases: (1) the inexperienced
team needs programming knowledge assistance or (2) the team does not have
certain skills for completing part of an application.

In summary, a rhythm for plagiarism programming is shown in
Figure 4.15. You may notice that “copy” is an abbreviated term. It means
copying other people’s success; that is, download the source, compile the
program, then run and test it.

In eXtreme programming, we always stand on a baseline of the last
success and make some progress forward. This can be done only with high-
frequency iteration. The development team must successfully integrate the
software and pass its unit tests before the team calls ita day. This makes a lot of
sense. We cannot get integration and testing done by going home, throwing
out today’s code, and starting again from our last success. Today’s code has
become hard to maintain and should be trashed so that the team does not
waste more effort in maintaining it. Besides, it may not be worthwhile to
spend so much time fixing one day’s code. So we don’t fix it. We throw itaway.

In plagiarism programming, if we modify the original program to the
point that we lose track of the changes and can’t see which changes are to
blame for failures, we can always roll back to our last success checkpoint and
restart again. This means applying a highly iterative rhythm (see Figure 4.15).
Iteration frequency is an important concept in understanding the software
development rhythm in any methodology that your team adopts.

4.2.5 Plagiarism at Work

Case 1: CRM A manufacturing company has three regional sales offices in
Chinese cities: Huizhou (HZ), Shanghai (SH), and Beijing (BJ). Each office had
its own IT support team, but the Huizhou team was the head team.

The company decided to go for its CRM project in 2001 after a long
evaluation. The system had a number of modules, one of which was about
customer communication solutions. The management believed that what
customers really needed was “easy.” To many customers, convenience is more

NOTHING FASTER THAN PLAGIARISM 115

Use traceability IT .
People IT person in matrix to share person in
Network Beijing pmgress Guangzhou
Users
o
Download, Download,
Q o test, revise test, revise
Get replies
from
Get user Send people Suest Request colleagues to help
. colleagues
requirements POSts network o help Integrate and consolidate
Small Small Small Small
software software software software
team in team in team in team in
Huizhou Huizhou Huizhou Huizhou

@ Incremental development: Progressively build code g
\

< ——

Iterative software development: User stories or features added each time

FIGURE 4.16 A case of virtual software development.

attractive than free. Therefore, the company wanted to establish a universal
email address for all kinds of requests from sales orders to service complaints.
Moreover, each request would be handled in three working days.

On the received email address, the system will record the header infor-
mation and send an internal email to the responsible staff to follow up. In
addition, the system counts the time. When no reply has been sent to the
customer in 2 days, the system will send a reminder note. Section 4.2.2 has
explained the application requirements.

Figure 4.16 illustrates the CRM project development cycle. At the begin-
ning, the requirements would be related to the technical know-how of a
general email program that sent and received messages. The Huizhou team at
the head office therefore posted the requests to the people network (a Perl
newsgroup) asking for any code samples for sending SMTP and receiving
POP3 emails. The Huizhou team managed to get sample code. As the whole
team was in a distributed environment, it was able to share these findings and
coordinate its two remote subteams while the Huizhou team worked on other
modules of the CRM. They first retested the program, which was always the
first necessary step in plagiarism programming. The two centers worked
independently and in parallel.

To avoid redundancy and share the progress of each team, they posted
their results on the Intranet Website via VPN. Using a traceability matrix

116 PLAGIARISM PROGRAMMING

TABLE 4.4 Traceability Matrix

Test Case Huizhou Beijing Guangzhou
1. Rerun the original program Yes (Nov. 11) Yes (Nov. 15) Yes (Nov. 16)
2. Change the POP3 Yes (Nov. 17) Yes (Nov. 19) —

server as our email
server and Test

3. Retrieve the email — Yes (Nov. 26) Yes (Nov. 22)
header and print it out

4. Get the sender — Yes (Dec. 27)
address and email body.

Progress 1 4 3

(Kaner et al.) such as that shown in Table 4.4 enables each team to trace
forward to each test case and backward from every success of other teams.
The team should highlight its modifications with color coding for other teams
to easily replicate and inspect. Once a team has managed to examine a
particular test case, others can either learn how that test is done, or even
skip that test and move on to other modifications.

The Huizhou team will examine all the resulting programs and may
request further enhancements. Once the team can successfully integrate with
other CRM submodules, the team may progressively utilize its remote teams
for software development.

Case 2: Product Knowledge Training (A-Tutor) A retail chain selling
Chinese herbal remedies had around 45 shops in Hong Kong in 2005. The
company was planning to reach 50 outlets by the end of year. However, the
high turnover rate of frontline staff caused setbacks to normal business
operations in high seasons and limited their capacity to expand. Newly
recruited staff seldom had knowledge of the functions of the different herbs
that, according to Chinese medicine, can be used medicinally and for special
diets. The staff in the chain had the job of not only selling the product but also
providing advisory services and so required strong product knowledge.
The company produced a training video compact disk (VCD) on Chinese
herbs and distributed the VCD to new staff; however, there were cases in which
VCDs were not given to the staff promptly. In one case the number of VCDs
needed to be burned by the IT department beforehand was incorrectly esti-
mated by the training department, and when the company wanted to update
some videoclips the company had to dispose of old VCDs and reproduce them.
The company launched an e-training project. One of the objectives was to
allow colleagues to access videoclips online (see Figure 4.17). Two technical
support staff who were responsible for networking and PC maintenance

BUSINESS AND RHYTHM FOR PLAGIARISM 117

Training Website

'

BT g v :
i REY o e e

Videoclip

-

A-Tutor Modified

L.

FIGURE 4.17 A company website to train new frontline staff in herbal product
applications.

would be involved in the project. They downloaded and installed an open-
source Web-based content management system, A-tutor (http://www.
atutor.ca/).

To enhance the A-tutor for videodisplay, we had convert VCD file format
into audiovideo interleave (AVI) format. Then, the support staff modified the
PHP scripts and even though they were not programmers and knew nothing
about PHP and MySQL, they managed to get the sample script onto the Internet
and tomodify A-tutor. The two staff members completed the projectin2 weeks.

4.3 BUSINESS AND RHYTHM FOR PLAGIARISM

The rhythm for plagiarism programming could sometimes help us do
amazing things! It may also bring along more controversial issues on copyleft,
in which original authors allow free distribution of their works. Here is our
true story about business, copyleft, and rhythm for plagiarism.

In September 2005, we had a chance to meet the managing director of Swire
Coca Cola. Coca Cola was franchised to a British company, the Swire group, to
manufacture and distribute the product in southern and western China,
Hong Kong, and Taiwan. The major competitor of Coca Cola was always
Pepsi. In some regions Pepsi won while in others Coca Cola was ahead.
Location is important in the soft-drink industry in that some locations have
more extreme competitive consequences. When we order a beerin a restaurant,
for example, our choice of drink excludes both Pepsi and Coca Cola. However,
when we buy them in a supermarket, we may purchase all three.

In this short meeting, we had a chance to talk to them about our chatting
robot, Nammik, and how Nammik may excel in a worldwide consulting firm,

118 PLAGIARISM PROGRAMMING

ACNielsen, by its inexpensive, up-to-date market surveys. We were making a
proposal about service, data, and ourselves, not about software and
technology.

4.3.1 15-Minute Business Presentation

Wewere waiting in a small conference room. A man entered the room. His dress
appeared unusual in a sizable British company. He was John from the United
States, tall, in a casual shirt without a tie. We distributed our report to John. It
was just one page long! We had around 15-20 minutes to sell what we had.

The company had already developed its own tailor-made ERP system
many years ago, called the sales-and-distribution system (SDS). It was a
powerful business operation database that supported and provided sales
information in any dimensional breakdown. The manufacturing cost could be
easily calculated from the sum of raw materials, logistic cost, expenses, and
other factors. We all know that profits are sales minus costs and people
running companies have to maximize profits by either increasing sales,
decreasing costs, or both. Well, in reality, only small companies manage
their business in this way. The strategy of a large company is monopoly, or at
least market share, with big fish eating little fish. Therefore, Swire Coka Cola
would always take efforts to expand their market segment and their share of
each segment. The company purchased marketing data from ACNielsen to
learn about its consumers and competitors. The date would assist the
company to truly learn their business position and sales performance. John
could understand his different regional sales and marketing teams by their
key performance indicator (KPI), defined as follows:

KPI(by region) = regional sales

population aged 0-14 years

The KPI combined three types of information: data from SDS or ERP,
demographic data, and marketing research. Thereby, it fairly reflected the
business performance. As discussed, the sales amount, rebates, and volume
[in hectoliters (hL)] by region could be retrieved from SDS. We may replace
volume with sales, and hence we could have a number of KPIs measuring
performance from different aspects.

As for demographic data, the National Bureau of Statistics of China
published three populations of people at age of 0-14, 15-64, and over 65.
However, selecting which one segment as target would necessitate marketing
research data. Unlike demographic data, marketing research information can
change unexpectedly. Section 4.3.2 discusses this topic in more detail. For

BUSINESS AND RHYTHM FOR PLAGIARISM 119

now, we just need to know that marketing research helps us identify segments
of our market and demographic data tell us the population of an age segment.

Box 4.1. shows our report. We presented data on a geographic map. In our
proposal the KPI was indicated with colors for different sales performances.

Box 4.

BUSINESS PROPOSAL

September 2, 2005
1. Objective. Different sources give new insights into business.

2. Business System Proposed. SDS merely supports the operational informa-
tion. To understand market changes and to measure business performance,
we propose a data warehouse that provides different views which comple-
ment each other. Such a system combines (1) basic data, (2) demographic
data, and (3) market research.

Basic (ERP or SDS): Sales, costs of sales (rebate), A/R (credit), volume,
+ and so on.

Demographic data: Population information
+
Market research: Customer segment, competitor data analysis, and so on.

3. Data Source (Real Data)

ERP Demographic Dataa Market Research b
(Age)
Regions |Sales | Volume| 0-14 [15-64| >65 | Total | Lowest price of a
can of

(Pepsi/ Coca Cola)

Guangdong| — — [20,593(50,799| 6,283|77,676| 2.0 RMB/2.0 RMB

Beijing = = 1,486 [11,008| 1,576 | 14,070 | 1.8 RMB/ 1.8 RMB

9 Data from National Bureau of Statistics of China (NBSC) available at
http://www.stats.gov.cn/tjsj/ndsj/yb2004-c/index.htm.

b pata from Nammik system developed by the authors.

4. Information Fusion (Example). In China, populations in different regions
can vary significantly. Sales [or hectoliters (hL)] by region is not informative
enough. Thus, “sales by region/population by region” can provide more
information. Defining a benchmark, we may find key areas for improve-
ment (see the diagram below).

120 PLAGIARISM PROGRAMMING

SDS (Sales, Rebate, hL, | 2003 demographic data |KPI to help
etc.) (age 0-14) management learn
more information

Different colors indicate sales performances.

5. Conclusion. Explore different ratios to discover any new business opportunity.

In each annual board meeting, John had to report on any change in the
company’s market and market share to evaluate their performance. Although
our proposal indicated that we were advising a type of computer application,
this was not the case. What we have not clearly addressed is how we could get
“market information” by ourselves without expensive market measurement
services from ACNielsen.

4.3.2 Marketing Research

Consumer marketing research is a form of applied sociology that uses
sociological knowledge and statistics to help organizations understand
consumer behaviors. Although there are many different kinds of marketing
research, such as brand equity research, customer satisfaction studies, and
consumer decision process research, the techniques used to obtain data are
limited. Generally, the most commonly used method is the questionnaire.

In July 2005, we did some marketing research. We questioned more than
5000 Chinese people in a chatroom about their favorite drink and received
around 500 complete replies. Figure 4.18 shows the result of our own
marketing research.

As data provided by NBSC are presented in three groups (ages 0-14,
15-64, and >65), we may conclude that the population aged 0-14 years
could be close to the right market segment of soft-drink consumers,
and hence this age group was suggested for the KPI calculation in
Section 4.3.1

BUSINESS AND RHYTHM FOR PLAGIARISM 121

40 Ecoke
—— Otea

Wother
18-22 male (144ppl) 23-29 male (104ppl) 30-39 male (56ppl)

@ none

| B coke
Otea

@beer
mother
| none

18-22 female (112ppl) 23-29 female (69ppl) 30-39 female (87ppl)

FIGURE 4.18 What is your favorite drink? (“None” means tapwater or particular
preference) (real data by authors).

In a similar fashion, Figure 4.19 shows a contour map of China in which
the population group at age 0-14 by province is indicated in the background
and a small pie chart associated with each province shows Pepsi versus
Coca Cola in percentage. Those who favor neither Coke nor Pepsi are shown
as “neutral.” The total number of intelligible responses from each province is
shown below the pie charts.

Swire Coca Cola purchased data of this kind from ACNielsen annually.
However, consumer behaviors can change significantly in a year. For
example, Pepsi’s commercial starring soccer star David Beckham had a
tremendous impact on David’s Fans (see Box 4.3 in Section 4.3.3). How do
we get the latest marketing data, and how do they relate to software
development?

4.3.3 Chatting Robot

Marketing data can be obtained from customers. Often we want to know not
only who our existing customers are but also those who are not yet
customers, and when they may become our customers. Since we have fewer
current customers than noncustomers, getting to know the needs of non-
customers (i e., prospective customers) is a good start toward making them
customers.

There are so many public chatrooms on the Internet. One of them is ICQ
(“I'seek you”). Although different chatrooms and instant messages have their

122 PLAGIARISM PROGRAMMING

Lol x|
Applet
Population (0-14)
21465 711 .
9
&
. 3
’ e
® 4 .g' '
2 P o
L Sa |
3 e e
e N
e @@
__ g 19 SRR
=, 1 1, N ,. _'.'\:)1
e e V. J
4 _ 1 . . 24 |
, S 12 4 .. S
| \ E UL S 16
. I! i/
pepsi_ coca cola - 1 - , 4 . ol . 82
& Lor =
neutral x L |
number of interpretable response
G hic Infs tion System (China)
Applet S «

FIGURE 4.19 Coke versus Pepsi. (Taiwan population data not included). (Real data by
authors).

own features, they were not very different in our case. ICQ can be a place to
talk to people and to learn something from them, a bit like what we saw in the
people network in Section 4.2.3.

When conducting a telephone survey or an interview survey, we have to
design a good questionnaire. Therefore, a dialog-based questionnaire is
designed and carefully examined. Then, our interviewers will log in to ICQ,
search for people who are online and live in China, say “Hello” to them, and
ask how they feel about Coca Cola and Pepsi. Our interviewer must be
extremely patient as interviewees may be busy and may respond very
slowly. They may be away or logged off. Our interviewers will have to
talk to others. The process is unbelievably slow. The solution is to have more
interviewers, which can become clumsy and costly. On one hand, we need to
manage who has talked to whom, to avoid interviewing the same person
twice. On the other hand, this kind of survey is expensive. The interviewees
may log off anytime, leaving us an incomplete questionnaire that can rarely
be used for statistical analysis. It would be better if we had a chatting robot to
do the job.

BUSINESS AND RHYTHM FOR PLAGIARISM 123

Box 4.

THREE DIALOG SAMPLES (Aug. 2005)

Dialog 1

Nammik
1cCQ
ICQ
Nammik

1CQ
1CQ
1CQ
Nammik

1CQ
1CQ
Nammik
1CQ
Nammik
1CQ
Nammik
1CQ
Nammik
1CQ
Nammik

Dialog 2

1CQ
Nammik
1CQ
1CQ
Nammik

1CQ
Nammik

1CQ
Nammik
1cCQ
Nammik
1cQ
Nammik

I live in Hong Kong. Where do you live?

I live in Yiwu City, Zhejiang.

So you can type Chinese to me?

Cannot read simplified chinese because i am using
traditional Chinese Windows

OK, no problem

What is your job?

Oh,has you been to another city of China? Except Hong Kong

Can | ask you some questions about soft drink? i want to
compare it with Hong Kong.

I means which city did you go before except Hong Kong City?

Ok

How much is a can of pepsi there in rmb

2.5-3 rmb/can.

How much is a can of Coke?

Nearly same.

Which one do you like most? | mean Coke or Pepsi

Both i don't like.

That's cool.

Which one do you prefer?

| appreciate your help. Here is a joke for you. Tom: my
wife is just forty. Kim: why don’t you change her for
two twenties?

oohhh—I like this city and | wanna work in this city

That's great

I'm in mainland [Chinal].

My English poor

My English is not good
either...dont worry. ..

-P

Can | ask you some questions about soft drink? | want to
compare it with Hong Kong

My English poor | not know

How much is a can of pepsi there in rmb

Wat is mean?

How much is a can of Coke?

Oohh...3

Which one do you like most? | mean Coke or Pepsi

124 PLAGIARISM PROGRAMMING

1CQ Pepsi.

Nammik Why Pepsi? Why not Coke?

ICQ | think it has co2 more.

Nammik | appreciate your help. Here is a joke for you. Tom: my wife
is just forty. Kim: why don’t you change her for two
twenties?

Dialog 3

Nammik I live in Hong Kong. Where do you live?

ICQ Shenzhen

ICQ Why you show you are 31 years old, and living in Singapore?

Nammik That's great

ICQ -) why great ?

Nammik Can | ask you some questions about soft drink? | want to
compare it with Hong Kong

1CQ Yes

Nammik How much is a can of Pepsi there in rmb

IcQ 35

Nammik How much is a can of Coke?

ICQ The same

Nammik Which one do you like most? | mean Coke or Pepsi?

IcQ Coke

Nammik Why Coke ? Why not Pepsi?

IcQ Just like.

Nammik | appreciate your help. Here is a joke for you. Tom: my wife is

just forty. Kim: why don’t you change her for two twenties.

Nammik is an ICQ chatting robot (see Box 4.2). We may write different
dialog scripts (see Appendix). Nammik will talk according to that script.
Differing from other chatting robots like ELIZA (1966), ALICE (by Al
Foundation in 1995), and Dave (English teacher), which were developed
to intelligently answer our questions rather than to conduct interviews,
Nammik has been built to interview people.

Nammik does not have any sophisticated speech understanding engine.
In of fact, we discovered that many people in the chatrooms do not speak
English properly. For example, they say “what does it mean” as “wat is mean”
(see Box 4.2). In Hong Kong and China, people may use their dialect “88” as
“byebye.” Thus, according to the dialog script given, Nammik simply looks for
keywords and related responses.

Although Nammik does not have text mining capabilities, we may easily
extract responses after a related question. For example, to learn about “how
people like Coca Cola and Pepsi,” we can easily extract responses for that kind
of question (see Box 4.3).

BUSINESS AND RHYTHM FOR PLAGIARISM 125

Box 4.

WHY DO YOU LIKE COKE OR PEPSI?

Nammik why pepsi? why not coke?

IcQ i think pepsi is more sweet than coke i think children here prefer
to pepsi

1CQ see you next time!! i get off line

Nammik why coke ? why not pepsi?

1CQ i would like coke and pepsi

1CQ i don't know

ICQ but i would like coke

Nammik why pepsi? why not coke?

ICQ because of the advertisement, i like the football stars that are
signed with Pepsi, like david beckham, and zidene

Nammik why coke ? why not pepsi?

ICQ i'd like coke because it's more classical brand for me, and coke’s
tasty i'd like a bit more

Nammik why pepsi? why not coke?

1CQ i like the logo of pepsi

Nammik why coke ? why not pepsi?

1CQ maybe | feel the pepsi is suit to the fashion people, and I m

older:) actually, | don't refuse any brand

How challenging can it be to write Nammik? Well, many of programmers
like us do not know much about ICQ protocol, network programming, and
event-driven programming. Fortunately, basic knowledge of Windows API
and “C” language skills is just enough. Nammik is simple and easy to write
because many developers have already done the code for us to plagiarize. We
just need to play the rhythm: copy—-modify—test.

4.3.4 Old Song, New Singer

To build Nammik using plagiarism programming, we have to get a chatroom
client application. There were a number of open-source ICQ clients. We used
Miranda IM (http: /www.Miranda-im.org) as our sample code. Miranda
instant messaging (IM) written in C is built by a community of volunteers. It is
an open-source project under the GNU GPL license. There is a chatting robot
plug-in for Miranda IM, called ANNA (an implementation of an ALICE), but
it is complex and does not meet our requirements.

Miranda IM architecture is simple and flexible. There are many powerful
plug-ins (e.g., ICQ, Yahoo, email) that are dynamic-link library (DLL) files for
the Miranda IM kernel (see Figure 4.20). To add functionality to Miranda IM,

126 PLAGIARISM PROGRAMMING

f& Miranda IM Options == %]

| & Contact List | Plugin |_Name | Vession || Running 4|
& Events dbx_3udll Miranda database diver 0501 Yes
”“‘;"&wi findamsg.di Find A Message 0210 Yes
1€Q . gmaim.di Genail Multiple Notiet 0231 Yes
Talk Agent icq.dil leqDscat) Protocol (Unicode) 0370 Yes
[::-:"u': [isbber.an Jabber Protocol 0118 No
. Idie D keepstatus.dl KeepStatus 0.0.24 Yes

KeepStatus E klsearch.dll People Agent

Status Messapes nammik dl Talk Agent 0010 Yes
oy [netivexai NetLibEx 0014 No

D strnmn. il Send/Receive Messaging (Unicode) 1.043 No :I

People Agent

Descriptior: People Agent is part of the Nammik System. -

Author(st Kim Man Lui
Copyright: 2004 Kim Man Lui
E-mait
Homepage: hitp.//

Please restart Miranda IM for your changes to take effect.

[¥ Show expert options [k | concel aoply |

FIGURE 4.20 Plug-ins of Miranda IM are DLL files.

we have to develop our own plug-ins. We downloaded a small plug-in source,
modified it a bit, and tested it so that we knew how that plug-in could interface
with the Miranda IM kernel.

Nammik has been built in a rhythm of modify-test since we and our
student programmers knew a little about ICQ protocol and network pro-
gramming. Figure 4.21 shows the architecture of Nammik.

Send/Receive Messaging Plug-in With this plug-in, we could type in
and send our instant message in a dialog window. The plug-in was modified
to display all posted and received messages. In addition, we could
send the ICQ text through function calls (see Figure 4.22). Because we have
to code-modify—test the plug-in, the plug-in is not regarded as a reusable
component in this case.

People Agent from IcqOscar] Protocol Plug-in The original plug-in
provides searching functionality of on-line ICQ users shown in Figure 4.23.
Those online users are random. It is possible that some of them to whom you
have just talked are also listed. Besides, we have to type in welcome messages
one by one.

BUSINESS AND RHYTHM FOR PLAGIARISM 127

Send/Receive
Messaging Plug-in

- [Nammi }

ICQ object inT-» —Text in—q

Send/Receive ‘ Talk Agent
ICQ object outi— Inferface -Text out—— Plug-in
Miranda IM ‘ *
Kernel

People Agent

1CQ people info i Plug-in

— ICQ#1
M » develope
: !U.dnk d“.‘ I”.FL d IeqOscarJ Protocol
usmngy p.’ugmn.\'m Pfﬂ i
programming 8

FIGURE 4.21 Nammik architecture.

Similar Functionality _ =101 x|

A send (JCOY,
Text Message)

|»

£ Trivsadekagbabla

@h lasst mich endlich in ruhe

L] LR AR hi¥g dich weq
#3008 ermmmriia M e b ey
D]

4018 i Wit e memaT

et Tiihbob i D

v Wy a1 o Kl
L T A R

REPIYTO .

Similar fLOR Hi nice to maet ol
Functionality

olljpece o

Same Functionality
.

FIGURE 4.22 Send/receive messaging plug-in modified using plagiarism program-
ming.

128 PLAGIARISM PROGRAMMING

zea Similar -
A Functionality |

Same]'llll\.'[l\‘liil'll_\ -\||lu|!1.'il|'|;;:||_\ Broadcast Message

FIGURE 4.23 IcqOscar] protocol plug-in modified.

We modified the plug-in so that it filters out people we met already and
broadcast a “welcome” message to new people. When they respond,
Nammik’s talk agent will take over the dialog. In short, the function of people
agent is to automate “find/add contacts” in the IcqOscar] plug-in.

Talk Agent In essence, the talk agent is an interpreter of the dialog script.
Figure 4.24 illustrates its function. When the execution pointer is on line 330, it
sends a message through a say() function call to the ICQ user whom we are
talking to, and the execution pointer changes to 340, the next line of 330. Then
Nammik will wait for a response.

Although the talk agent is the core part of Nammik, its code is about string
handling and matching, which is much simpler than both IcqOscar] protocol
or send/receive messaging plug-ins in terms of data structure and excep-
tional handling. We rely heavily on the rhythm for plagiarism to build
Nammik. Nammik is an old song with a new singer because Miranda IM
has almost every code we need.

How can we tell dancing from body shaking? It is rhythm. In the same
fashion, rhythm makes the difference between copy-and-paste programming
and plagiarism programming. Without rhythm, plagiarism programming
just becomes cut-and-paste and software projects managed by plagiarism will
sooner or later end up in a mess. Plagiarism programming has a strong sense
of what activities should follow after we copy other people’s work. The
rhythm helps the team members communicate with each other.

Some readers may notice that we rarely mention software disciplines.
The reason why is because software development rhythms implicitly
demand that people be disciplined and that there be a team effort to sustain
them.

REFERENCES 129

[NAMMIK |
1C0) Send/Receive lalk Agent ‘ ‘ Seript
say(can | ask you +———p 330 say(canlask you same
some questions guestions about soft drink? | want
about soft drink? i 1o compare it with Hong Kongl;

wanl to compare it
with Hong Kong):

—- —— 340 if_reply (no||sorryl then
no” or “sorry” found [say (okj;

in "no meod® execute (THANKYOU)
1
say {ok) clse
B R R e [
‘_________..-——-—'_'-_ ok Wajt & 1010 saconds say [How much isa can of Peps
execute (THANKYOLS there in RME} ;
L
+——— 610 labell THANKYOU j;
saylss) 620 say(=>);
s = il alt y
[—— sormy
D
700 say(Wait..., thank you |
- say {wait ..., thank you)
wait ..., thank you
—
FIGURE 4.24 Talk agent.

Clements P and Northrop L. Software Product Lines: Practices and Patterns. Boston:
Addison-Wesley; 2001.

Coad P, Lefebvre E, and de Luca J. Java Modeling in Color with UML: Enterprise
Components and Process. Upper Saddle River, NJ: Prentice-Hall PTR; 1999.

Ebrahimi A. Novice programmer errors: Language constructs and plan composition.
International Journal of Human-Computer Studies 1994; 41:457-480.

Gamma E, Helm R, Johnson R, and Vlissides]. Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-Wesley; 1995.

Gartner Inc. Customer Relationship Management Summit 2004. Oct. 4-6, Scottsdale, AZ,
The Westin Kierland Resort and Spa, Stamford, CT, 2004.

Grand M. Patterns in Java: A Catalog of Reusable Design Patterns Illustrated with UML, 2nd
Ed. New York: Wiley; 2002.

Kaner C, Bach], and Pettichord B. Lessons Learned in Software Testing: A Context-Driven
Approach. New York: Wiley; 2002.

McConnell S. Code Complete: A Practical Handbook of Software Construction. Redmond,
WA: Microsoft Press; 1993.

O’Brien KJ. In open source, an unexpected trap, International Herald Tribune, Dec. 9,
2005. Available at http://www.iht.com/bin/print_ipub.php?file=/
articles/2005/12/09/business/open.php .

130 PLAGIARISM PROGRAMMING

Shalloway A and Trot J. Design Patterns Explained: A New Perspective on Object-Oriented
Design. Boston: Addison-Wesley; 2002.

Shepard RN. Recognition memory for words, sentences and pictures. Journal of Verbal
Learning and Verbal Behavior 1967; 5:201-204.

Soloway E. Learning to program=learning to construct mechanisms and explanations.
Communications of The ACM 1986; 29 (9):850-858.

Sommerville I. Software Engineering. 5th ed. Reading, MA: Addison-Wesley; 1995.

PAIR PROGRAMMING

Three thousand years ago, scholars in pairs studied the Torah by taking up
opposite positions on each issue. Three thousand years later, we write
programs in pairs by taking up doing and watching roles on each piece of
code.

“Spend less” is a new rule for corporate executives in an article “IT doesn’t
matter.” As we all know, it is getting more difficult to achieve a sales advantage
through IT investment but easier to put a company at a cost disadvantage
(Carr 2003). This brings us to another two protective rules: “Follow, don’tlead”
and “Focus on vulnerabilities, not opportunities.” The idea is to get cost
benefits by keeping ourselves less than state-of-the-art competitive.

This reminds us of a paper product manufacturing company we visited
some years ago. The management employed many uncompetent staff that
were unbelievably loyal to them. Perhaps for this reason the staff worked
harder and made up for their deficiencies to the point that they were cost-
efficient. The company could have cut its administrative staff by half and
replaced them with more competent people who the company would have
had to pay even more. It wouldn’t have been economically worthwhile. The
company that employed too many less-than-competent individuals turned
out to be more productive and faster than a company that was “optimally”

1 Spend less on information technology (IT).

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright © 2008 John Wiley & Sons, Inc.

131

132 PAIR PROGRAMMING

staffed. The idea seems as odd as pair programming, in which two people
who are working on a single task that just one person could complete alone.

Let us clarify what we mean by pair programming. Pair programming is the
hallmark of eXtreme programming (XP). It defines pair programming as two
programmers sitting side by side to collaborate on a unitary job that includes
the design, coding, and testing of a piece of software. One programmer acting
as the driver controls the keyboard/mouse and actively implements the
program, and the other programmer, serving as the observer, continuously
watches the work with a view to identifying tactical defects and providing
strategic planning. Therefore, it is not pair programming if they subtask the
program so that one does one set of code and the other does another set of code.

It is likely that the observer may write part of the code faster or may get
bored watching or tired of explaining her/his ideas to the partner. Thus, they
rotate their roles. Done with the right timing, both are having fun and
maximizing their contributions. When more than one pair participates in
software development, partners of each pair need to be periodically ex-
changed. This may seem a bit complicated, but each programmer can get
involved with every single line of code. This supports code standards in
action and creates synergies within the pairs.

According to this definition, few non-XP programmers would have tried
pair programming, although they may have collaborated with someone in
front of the same screen while writing some code. But why can’t both have
keyboards, and work on the same file simultaneously, communicating orally
to coordinate their efforts? The one-keyboard/program/driver element cre-
ates a bottleneck in the process. Should we just take collaborative cognition as
the idea behind how and when pair programming works, it can be under-
stood as the driver writes the code and her/his partner actively provides any
kind of assistance in order to achieve higher-quality software.

To distinguish this from eXtreme programming by name, we might better
call it collaborative programming. We easily generalize triple programming and
side-by-side programming (see Chapter 6) as collaborative programming.
Fortunately, it is not that necessary to rigorously differentiate their defini-
tions, and we believe that many programmers have once worked in a way of
pair programming, or more precisely, collaborative programming.

5.1 ART AND SCIENCE

A number of problems with pair programming have been widely discussed in
the past. Developers who are new to pair programming will probably ask a
number of basic questions that many others have raised or responded to. To
start with, we are going to have a short review of some frequently asked
questions (FAQs) such as whether a programmer prefers to work alone as in

ART AND SCIENCE 133

solo programming and not work aloud (vocally) as in pair programming and
so on (Williams and Kessler 2003). Afterward, we can move forward on more
mysterious issues: Why pair but not triple? Does pair programming actually
speed up the completion of a software project?

These questions might be related more to art than to science. Because
many practitioners may have their own perspectives on them, they are
divided and vocal in pair programming. Different people understand pair
programming as meaning different things, and this has made it somewhat
controversial in some circles.

However, we will, by drawing on the existing understanding of collabo-
rative work, offer some general recommendations for forming pair program-
ming teams, but that these recommendations are guidelines that may, in some
cases, be less than effective when put into practice.

In this section we are primarily presenting commonsense ideas about
pairs of people working together. In Section 5.2 we will address each of these
concerns and show how pair programming, combined with proper design of
the program environment, can offset some its inherent limitations.

5.1.1 The Right Partner

FAQ: Twoheadsarebetter than one! But pair programming works well only
with the right pair as the partners complement each other’s knowledge.

Our intuition tells us that with the right pairing two heads are better than
one, and to some extent this is the case because paired programmers will
always complement each other as long as two people think differently and
have different focuses. For example, one observer may focus more on
alternative programming design. We're generally unlikely to get two people
who think so similarly that they may as well be just one person.

There are frequent cases in which today’s business needs require unpre-
dictable programming changes and programmers have to modify what they
have done. The difficulties of such revision depends on how much they have
already coded, how many changes are required, and how they are able to
effectively modify existing code to respond to those changes. In such a coding
game, programmers working in pairs complementing each other’s ideas
make better teams. It is not an issue about a right partner, but it demands
close collaboration to meet the new challenge and get the job done.

Two brains may tackle projects more creatively and efficiently than
one (Constantine 1995). Saying that two heads are better than one is too
bold. People, methodologies, and tasks should be put in place so as to
ensure in-depth understanding of when a software practice works and when

134 PAIR PROGRAMMING

practices are connected. “Work well” relies on what kind of task can be better
solved by pair programming.

In group dynamics, studies of group composition suggest that groups
with optimal diversity will work together more effectively than others. In
practice we have to carefully balance the need for similarity against the need
for complementarity and/or diversity. Diversity is good for creativity, but it
can cause tensions within the group that may eventually undermine produc-
tivity. A group of programmers (including a pair) may end up fighting,
chatting, or even worse, flirting. But these are problems with social profes-
sionalism. They can occur in any form of team programming, not just pair
programming. In these situations, developers are simply not mature enough or
sufficiently self-disciplined to respect their team members in the workplace.

5.1.2 Noisy Programming

FAQ: Many programming tasks can be so challenging that developers
need to have a quiet place to think about them. Pair programming,
however, is noisy.

A “quiet” place is not the same as a “silent” place. Quietness can be
subjective. Programmers may feel like listening to music and would still
consider it quiet if it helped them get the job done. You know! Playing Mozart
to children for 10 minutes enhances their spatio-temporal reasoning, as
shown in Figure 5.1.

= =4

C. d. e.
= 0 oCs) (020 0]
0008 O = =3
= 0 a%p) (030 O]
=00 Lo p
= ogo) (oo

FIGURE 5.1 Spatio-temporal exercise.”

2The answer is (b) (Hansen 2001). http://coe.sdsu.edu/eet/Articles/
mozarteffect/start.htm.

ART AND SCIENCE 135

Some programmers prefer working in a cubicle, where they can create
private environments with decorations or photos. In reality, many of us work
in an interrupting environment. After being interrupted by the mobile phone,
a programmer might not be able to concentrate for at least 15 minutes
(DeMacro and Lister 1987).

Some don't like to be watched. They need to be trusted. This can be due to
personal traits or cultural influences. Some of our colleagues are nocturnal and
enjoy writing codelateatnight. Thisistheirideal quietness. A need for quietness
can be just a matter of personal preference. Some programmers prefer to work
alone in what they regard as a quiet place, although they may, of course, be
online with ICQ and irregularly hear the sound of an incoming message.

5.1.3 Just Training

FAQ: Pair programming facilitates on-the-job training for newly hired
programmers; however, paired programmers will be a waste of time once
they receive enough training.

We can rephrase this as “Pair programming is not mutually beneficial to
paired experienced programmers.” When we pair two experienced program-
mers, we should ask what kind of problem they are going to solve. Are they
going to solve a simple problem, or are they going to solve a very difficult
problem?

A newly hired programmer might ask questions that an experienced
programmer would regard as stupid, and, of course, such questioning may
affect productivity, but this situation is not in general representative of team
productivity.

Collaboration demands sharing and task focus. Itisimportant tolearn how to
practice pair programming and how programmers play their roles. For example,
it can be a mistake to regard pair programming as a training session in which the
driver writes code and explains what she is doing in detail whereas the observer,
as her secretary, takes notes of everything that is said. People share knowledge
through the code. This is a bit different from training.

Finally, the most obvious FAQ, by which a manager is bewildered, can be
the next one.

5.1.4 Pay to Watch

FAQ: Why is a job that can be finished by just one person now still done by
one person but with one watching?

136 PAIR PROGRAMMING

Tasks that can be completed either alone or together always present
theoretical and applied issues (Stasser and Dietz-Uhler 2001). When all
members are independently capable of doing their work, pair programming
will cut the team productivity in half. This seems counterproductive, but the
people who have tried it now swear by it.

In programming, a task isn’t necessarily done well or even completed.
Often, owing to hidden bugs and requirements changes requested by users,
rework is necessary and, in the worst case, this can happen when the original
author has already moved on. Another programmer takes over the modifica-
tions. If the code is not written for easy comprehension, is hardcode
development or spaghetti code, that programmer will have a hard time.
How do we solve them all? Pair programming throws light on a bottom line
for software quality problems.

The issue then becomes whether a company is happy to pay twice as
much to get better result:

1. We must understand how much salary a programmer earns. This
depends on the country or, within the same country, the region where
the hire is working.

2. Suppose that an energetic but less experienced programmer costs $50.
Then two will cost $100. From a quality perspective, the question now
is whether, if working together they will produce something better
than a more experienced programmer who costs $100.

So, why adopt pair programming? What is more, we might need to
convince senior management about the adoption of pair programming. Our
reply should be determined and sensible. The advantages of pair program-
ming must be potential so that we are willing to tackle problems with
adoption of pair programming and to present to our management. Otherwise,
we shouldn’t risk it.

Ultimately, anyone who is considering adopting pair programming will
have to think about these issues because for all of its complexity, one thing
about pair programming is clear—it is more than simple collaboration.

5.2 TWO WORLDS

Medieval philosophers tell us that if an object or a thing happens to be true or
exists in some but not all possible worlds, it is contingent. To the contrary, it is
necessary if it exists in all possible worlds; for example, in mathematics, 1 and
11is 2. It is always held true in any possible world. That simple distinction
between these two truths eventually helps some mathematician logically

TWO WORLDS 137

prove the existence of God (Godel 1995). Apparently, that pair programming
is beneficial to software development is a contingent truth.

Imagine that there are two worlds: a moneyless world and a money-led
world. At first glance, this may seem a bit unrealistic, but it does not matter.
We are merely interested in how pair programming may work in these two
worlds. How these two worlds may come to exist is a job for economists.

5.2.1 Moneyless World

In the moneyless world, we will prefer a working style that has more support
for staff learning. Knowledge is power. Pair working provides opportunities
for learning from each other. In addition, we would like to minimize any risk
due to staff resigning or becoming sick. Another advantage comes with
quality. In computer programming, removing defects as early as possible
by having an observer help is always ideal. All these can be achieved by pair
programming without balancing staff costs in a moneyless world.

Learning. Pair learning or pair work is a type of cooperative learning that is
often defined as a range of concepts and techniques for enhancing the value of
learner—learner interaction (Tan et al. 1999). Cooperative learning has been
associated with gains in achievement, such as for assignments, thinking skills,
enjoyment, interethnic relations, and self-esteem. This sounds pretty good.

The idea can be further extended to develop problem-based learning in
which learners work collaboratively in small groups to analyze (or solve) a
case. With no clear-cut right or wrong answer, the objective is revealed to the
learners toward the end of the case.

Pair programming creates an on-the-job learning environment. It is a
combination of cooperative learning and case-based learning. The process of
analyzing and critiquing software written by others is a way for learning
about design and code. There is no clear-cut right or wrong in system design
and writing code. Thus, each software application can be considered an
individual case in which a team of paired programmers explores the best and
fastest way to complete it.

There is a body of research looking at how groups learn versus how
individuals learn. Groups are not as fast as individuals when it comes to
acquiring new manual skills. The group, once it learns, may be collectively
smarter than the individual, but it will take longer to reach that state. A group
of two (i.e., pair) will often take less time than will a larger group to acquire the
skills necessary for collaboration.

In short, pair programming brings the benefits of cooperative learning to
a workplace.

138 PAIR PROGRAMMING

Personnel Turnover. Inaconventional software project, we practice either
solo programming or pair programming. Each member has been given
different responsibilities. Some of them are given very important ones, and
some are given less important ones. There are two extreme cases: (1) mem-
bers’ jobs never overlap one another, so that the jobs are complementary,
together forming a useful combination of skills; and (2) members’ jobs overlap
in a way that knowledge and skill in doing their jobs are shared. In the
moneyless world, we would prefer case 2.

With pair programming, the risk from losing key programmers is reduced,
because there are multiple people familiar with each part of the system. If a pair
works together consistently, then there are two people familiar with this
particular area of the program. If the pairs rotate, as is always suggested in
pair programming, many people can be familiar with each part.

There is an amusing idea in project management. A project manager takes
over a very tightly run project and has to try hard to maximize team efficiency.
The manager has carefully assign tasks to team members so that no tasks
overlap. The project has gone two-thirds just as planned. To celebrate this
success, the project managerinvites the team to dine out. When they are walking
across a street to a Chinese restaurant; you see a truck steered by an obviously
intoxicated guy who is picking up speed and going to hit them. You shout to
warnthem. Everyoneleaps outof the way exceptone unfortunate team member
whois hitand killed on the spot. Bad enough for the manager by itself, but even
worse because this accident has killed not just a team member, but the entire
project, because the truck number for the software project is just one.

A “truck number” is defined as the number of team members that would
need to be hit by a truck to have an impact on a project. If it is one, losing any
single member of a team will mean the loss of skills or techniques that are
critical to the success of a project. A high truck number can protect us against
personnel turnover.

Error Detection. Software inspections were introduced in the early 1980s.
Although there are many consistent, positive findings to support software
inspections, not many software teams have fully adopted the inspections.
From an informal USENET survey, only 20% of 90 respondents practiced
software inspections (Cockburn and Williams 2000).

There is little doubt that a second look from others at existing code
provides a useful, fresh perspective on our work. In software inspections and
peer reviews, inspectors can look at the program and identify (troubleshoot)
the problem. They provide supporting data and may even consider solutions
and fixes. Software inspections and peer reviews serve as a vital final check on
software quality. However, they cannot detect errors that are not there yet or

TWO WORLDS 139

are about to appear. Sometimes, inspectors may discover a design defect that
requires a number of fundamental changes in the program. In this case, we
may have to consider an add-on patch approach to hiding the defect instead of
substantial reworking.

In pair programming, your partner is a safeguard against potential
design defects. The driver may actively ask for the observer’s opinions.
Explaining our code to the partner helps us learn more about design defects
in our code. What is more, pair programming will not compromise on
quality, and paired programmers are willing to make changes while devel-
oping the code. They will remind each other that better quality will save on
maintenance.

Although pair programming can be considered as problem identification
on a minute-by-minute basis, we also see pair programming as being about
defect prevention whereas software inspections are concerned mainly with
defect detection. In this way, pair programming is complementary to soft-
ware inspections.

Pair Pressure. When two programmers are committed to their work and
respect each other, in pairs they put a positive form of pressure on each other.
The programmers admit to working harder and even more intelligently on
programs (Williams and Kessler 2003). They do not want to disappoint their
partner. In pair programming, any mistake made by either that causes rework
later will burden the teammate.

5.2.2 Money-Led World

Notwithstanding the advantages of the moneyless world, there is one impor-
tant element missing. It is programming productivity. While other advan-
tages of pair programming are determined, its productivity remains a bit
uncertain. Even though we ignore the money, it is still not obvious that pair
programming is better than solo programming.

As expected, pair programming has been challenged on the basis of
productivity as we need to pay two people for a single job. The question is not
whether those advantages that exist in the moneyless world can outweigh
concerns about money. We have to justify the productivity of pair program-
ming against solo programming; otherwise, we should consider other ways of
programming in the money-led world.

For example, software experts proposed (or rediscovered) alternatives to
pair programming such as mutual programming, in which two programmers
write their code but mutually inspect and test it (Keefer 2002), and two-person
inspections, in which programmers are needed to pair up and inspect their
design or code (Bisant and Lyle 1989).

140 PAIR PROGRAMMING

In comparison of these two worlds, pair programming does have many
advantages, particularly when we intend to ignore productivity. Unfortu-
nately, we cannot pontificate about paying double for a job that can be done by
one programmer.

5.2.3 Economics

Undoubtedly, talented programmers may write a piece of beautiful code that
other programmers are just not able to or take much longer to write. These
programmers are rare, and for this reason they are expensive. The ideal case is
thatan application is divided into a number of parts according to the degree of
difficulty. The ideal case in terms of economics is expert programmers who
are responsible for more difficult tasks and less experienced programmers for
easier ones.

In this case, we may expect a quality threshold and we are satisfied with
software as long as its quality is higher than that threshold. The implication of
this is that for programming modules requiring less skill, we would employ
graduate-level developers as long as their salary ratio multiplying total
finished time satisfies the condition of minimum cost.

With regard to pair programming, we may ask “Why employ two
programmers when the same job can be fairly done by one?” In terms of
economics, this question can be answered with the question “Why employ
experienced programmers when graduates can do the job?” Since matters of
economics are central in pair programming, by “economical” we mean here
that programs of an expected quality are produced at the lowest cost.

One pair programming study shows that pairs took longer person-hours
than individuals on average but the percentage of pairs passing the test cases
was 86% while individuals, 70% (Williams et al. 2000). If software quality
were good enough for just 70% of test cases passed, pair programming would
not be adopted because it would be uneconomic. The focus of programmer
economics is on the production of quality programs at the lowest cost.

5.2.4 Mythical Quality-Time

The focus of programmer productivity is on the production of quality
programs as fast as possible. Cost—in our definition of economics—is
replaced with time because we consider a fixed salary ratio among all levels
of programmer. This makes it clear which programming practice (in pairs or
singles) produces better-quality programs most quickly per person. Unfor-
tunately, the two independent constraints, time and quality, cannot be easily
understood without a common relationship.

TWO WORLDS 141

In pair programming, the mythical quality—time has baffled many people
who struggle to understand why to pay two people to perform one person’s
programming. It has been known that pair programming will take around 15—
42% person-hours on the same task yet produce a higher-quality program
(Williams et al. 2000; Nosek 1998).

Time and quality are not easily exchangeable. Taking a conservative view
of time and quality, we may assume that they are not exchangeable. Also, we
can always take software quality as a justification for pair programming when
quality means everything.

5.2.5 Elapsed Time Accelerated

Suppose we estimate that a program can be done in 10 person-days. The
program can easily be broken down into two submodules that are shorter
than 10 person-days. Assume that each submodule takes 5 person-days. As
long as we have two programmers working in parallel, we can get the
program done in 5 days.

We may not be satisfied with that schedule. We would like to continu-
ously divide these two submodules into smaller ones for programming.
Eventually, there will be two cases in Figure 5.2:

1. For some submodules, when developers estimate that each submo-
dule is done in less than one day, this can be the optimum size of a

A program

Breakdow

3

Submodule Submodule | seeees

Breakdown

h 4

Submodule | et

!

Stop to divide the submodule because:

e the submodule can be finished in a day (or half a day)

& not easy to break down something smaller

FIGURE 5.2 The smaller you divide, the more time you need to think how to divide.

142 PAIR PROGRAMMING

programming task to work, and we will not further divide the
submodule.

2. We simply cannot easily divide some submodules into anything
smaller for two or more programmers working in parallel. Moreover,
we get much more time overheads to think about how to divide when
we keep breaking down a submodule further.

Suppose that we manage to break the program down into 10 atomic tasks
and each requires one person-day, with enough workforce we stand a chance
of getting it done in one day. We may still frown on our efforts because we
have yet to deal with how to expedite work on atomic tasks. Can the whole
program be completed in less than a day?

In a word, for atomic tasks, pair programming may be a way if we would
like to complete them as soon as possible. Pair programming can shorten the
total elapsed time. Even though in some case pair programming takes
the same time to finish programming exercises as does solo programming
(Nawrocki and Wojciechowski 2001), pair programming will not take a longer
elapsed time.

In today’s market, getting a quality product out as quickly as possible is a
competitive advantage that might even mean survival. There is a problem in
our analysis for speeding up a software project in reality because we have to
consider economics in a money-led world. We will see how to accelerate
software projects in the next section.

5.2.6 Critical Path Method

A telecommunication client comes to us and consults about its small mobile
computing software project. They want to complete the project sooner than
they planned as they have received unannounced information that the
competitor may launch its product next month.

The project plan is shown in Figure 5.3 and Table 5.1, in which a project
composed of six tasks whose precedence requirements have been planned
and whose duration have been estimated.

Task 1
Create database tables for data entry
Implement a login interface

Write interfaces for user enquiry
PI'()dl.i(_'(.‘ user rt'p()r‘[s

(&%)
(¥
B
h
o
~1
o
o
=)

Build interfaces for data entry
Perform an integration test

=[=[c[a]=]>

FIGURE 5.3 Project plan.

TWO WORLDS 143

TABLE 5.1 Project Specification and Estimation

Task Duration, weeks Precedents
A. Create database tables for data entry 1 —

B. Implement a login interface 1 A

C. Write interfaces for user enquiry 2 B

D. Produce user reports 3 B

E. Build interfaces for data entry 5 A

F. Perform an integration test 4 CE

Naively, we know that if we can cut the elapsed time of every task in half,
the 10-week project will be done in 5 weeks. For this reason, we advise the
client to do everything in pair programming! However, this does not sound
professional to our client.

We quickly ask ourselves which tasks are very relevant to shortening the
completion time of the project. In 1957, DuPont developed a technique called
critical path method (CPM), observing that a task that can be done one day faster
will make the project done one day faster. The reverse is also true; a one-day
delay in that task will end in the project being delayed by one day.

The CPM involves two steps: (1) forward pass, to calculate the earliest date,
and (2) backward pass, to obtain the latest date. When the earliest date is the
same as the latest date, any change at that point will affect the completion time
of the whole project.

Starting at week 0, the earliest date to finish task A is week 1. As tasks B
and C cannot start until week 1, the earliest dates for task B and task C are
weeks 2 and 6, respectively. In a similar fashion, we can calculate all the
earliest dates as shown in Figure 5.4. We can see at the endnode that the
earliest date to complete the project is week 10.

1+5=6
N: Node Number ()
E: Earliest Date

FIGURE 5.4 Forward pass.

144 PAIR PROGRAMMING

L: Latest Date
S: Slack

N: Node Number
@’% E: Earliest Date {6-6=0}

s>

FIGURE 5.5 Backward pass.

The next step is to retime the network starting at the endnode as the latest
date. The latest date for the project should be the same as the earliest date,
which indicates that the project is done as early as possible. We start at week
10 at the endnode (i.e., node 5). The latest date to start tasks D and F are weeks
7 and 6 without affecting any outcome shown in nodes 3 and 4. In a similar
fashion, we complete the diagram, and the results are shown in Figure 5.5.

If task B is finished at week 2 as planned, its subsequent tasks, C and D,
can be started as late as at week 7 without any impact on project completion.
We have 5 weeks with an empty slot in between, which is called “slack.”
Saving such time does not help us complete the project earlier. Slack at each
node is the difference between the earliest date and the latest date.

To find the critical path, we simply look at the nodes whose slacks are
zero. Now all we have to do is assign resources and put time-critical tasks in
control. The correlation between CPM and pair programming becomes
obvious to us. According to CPM, we advise our client that tasks A, E, and
F must be done in pair programming, shown in Figure 5.6. If any of their
elapsed times are shortened, the project will be completed earlier.

Start

PP : Pair Programming
SP: Solo Programming

FIGURE 5.6 Tasks on critical path by pair programming.

TWO WORLDS 145

In this section, we have combined traditional software project manage-
ment (i.e., CPM) with agile practice (i.e., pair programming). If you are
running a project like this, this may be a way to accelerate your project
economically.

The critical path method has been questioned by agile project manage-
ment. As software itself is artificial, most task precedents can be avoided
(Robert 2003). For example, we must design before we can begin coding, but
coding and design can be developed simultaneously.

5.2.7 Why Two, Not Three: The Antigroup Phenomenon

Many programmers who have been involved in open-source software
development may easily believe that more eyeballs are better, a generaliza-
tion that is often referred to as Linux’s law. Have we ever doubted that there
can be a case in which, given more eyeballs, the truth just goes a bit far off?

A well-known horse-trading problem by Maier may help to refute the
popular myth: “Why pair programming, not triple programming.” The horse-
trading problem states that “A man bought a horse for $60 and sold it for $70.
Then he bought it back for $80 and again sold it for $90.” On average
individuals normally work out a solution in 3 minutes. However, not all of
them can correctly understand the problem and calculate how much the man
actually earns.

In 2006 we asked computer science students to solve a horse-trading
problem. There is a significant improvement in the average percentage of
correctness from solos to pairs. However, from two to “three and four,” the
percentage of correctness drops. So does “five and six”! How can this happen?
Why two? Why not more? The results shown in Figure 5.7 are consistent with
sociologists’ findings.

When team members provide their answers in turn, which is often
the case in small team discussions, rather than by anonymous voting, an

100 1
90
80
70 ¢
60
50
40
30
20 +
10
0

1 2 3ord 5o0r6

FIGURE 5.7 Three heads are better than one but worse than two.

146 PAIR PROGRAMMING

aand b should
be floating point.
Ah...ah...Okay..
| guess so.

inta=1

int b=0

a=alb

printa
/i

L__J

Amiessit

FIGURE 5.8 Triple programming and antigroup.

individual’s decision will be influenced by the degree to which the individ-
ual identifies with or sees her/himself as being similar to others. In partic-
ular, this happens when the majority starts out with the same answer. The
minority will feel less confident of their opinions. Thus, if the majority is
holding an incorrect answer, there is a greater likelihood of team errors
occurring (Figure 5.8).

In the case of two, there is no majority or minority. And two reaches an
optimum in which we always perceive a 50-50 chance on either side. As a
consequence, we will give a second thought to a problem. In pair program-
ming, when considerable disagreement arises between two people, the pair
may put the problem aside and work on something else. Often, the solution
can be around the corner but the pair is simply unable to see it the first time.

5.2.8 Software Requirements Are Puzzles

Understanding software requirements in many cases can be compared to
solving puzzles. Puzzles are intentionally designed for the players to work
out tricks. Moreover, puzzles sometimes give you a feeling of being almost
solved. Many of the tricks are about our perceptions and cultures as well. For
example, we will not guess that a gregarious person who talks about many
interesting things at a cocktail party is a programmer. We picture program-
mers as people of few words, or even as introverted.

TWO WORLDS 147

Trans_profit = - 60 + 70
business = business +
Trans_profit
Trans_profit = + 70 - 80
business = business +
Trans_profit
Trans_profit = -80 + 90
business = business +
Trans_profit

Print business

FIGURE 5.9 Pseudocode of horse-trading (see also Figure 5.10).

Compare the following two paragraphs. How much are they alike?

1. A man and his son are in a serious car accident. The father is killed, and
the son is rushed to the hospital emergency room. On arrival, the
attending physician looks at the child and gasps, “This child is my
son!” Who is the physician (Gladwell 2005)°

2. Ontheback of an ATM card it says that if your ATM login fails 3 times,
the system will not allow further logins. But you just failed once; the
system has already blocked any further attempts. How could this
happen?*

We understand system requirements from a number of users at different
levels: from operators to managers. The requirements we collected can often
be inconsistent, misleading, incomplete, and ill-defined. If we are lucky, we
may notice the problems in the requirements and then ask the users for
clarification. However, there can be a case in which we just misunderstand the
requirements!

Let us come back to our horse-trading problem. When someone asks us to
write a system by giving the requirements as the horse-trading problem, we
may finish the problem with a piece of code (see Figure 5.9) and not realize
that we have been wrong even at the beginning of writing. Not all program-
mers can correctly grasp the user requirements as if they thought that they
fully understood and surely solved this small horse-trading problem without
any need to have a second look. Therefore, users often say to us, “This is not
exactly what I want.” As discussed in Section 5.2.7, pair programming helps
us understand requirements better.

? Answer: The physician is his mother.

* Answer: The system does not reset a retry counter to zero when you successfully log in
the system every time.

148 PAIR PROGRAMMING

paid = 60

sold = 70

paid = paid + 80

sold = sold + 90
business sold - paid
Print business

FIGURE 5.10 Pseudocode for horse—pig-trading (compare to Figure 5.9).

Interestingly, once we have really solved a puzzle it is no longer a puzzle.
We can reframe the exercise as follows. A man bought a horse for $60 and sold
it for $70. Then he bought a pig for $80 and sold it for $90. Believe it or not,
everyone now can do it right (see Figure 5.10).

5.3 PROGRAMMING TASK DEMANDS

More users today are computer-system-literate and demand a system that has
more functions and is easy to use. The system should be flexible to change and
could be delivered sooner. On the contrary, programming tasks involve a
greater variety of skill sets than before. Unsurprisingly, programmers who do
well at one programming task might not be equally good at other program-
ming tasks. In addition, it makes sense that what one person could do in the
past may now actually require the combined efforts of two or three people,
and hence it is expected that programmers have to closely collaborate to meet
such demands.

Software teams that go with agility will work in a different way by writing
less technical documents and sharing their thoughts more. However, to
optimize the team performance in the context of the task type, we need to
properly identify programming task demands.

Other factors such as team motivation and personality traits also affect
programming productivity. But, regardless of these factors, we often misun-
derstand that the productivity effect of teams is the sum of the efforts of
members.

Imagine that there would be a team of two programmers who could try
their best to contribute project efforts of 2 and 4 units. Let us look at whether
their total contribution as a pair can be 6!

5.3.1 2and41Is6

Tasks or activities that are aggregated can be divisible into a number of
subtasks required of members working in the same way. They are classified as

PROGRAMMING TASK DEMANDS 149

100 Expected Output (1)

[Losses of Motivation
Expected Output (2)
[Losses of Coordination

Actual Output

0 T 1 Group Size

FIGURE 5.11 The Ringelmann effect and steiner analysis.

additive tasks. The group product is the sum of the input of all team members;
that it, 2 and 4 is 6. A typical example is rope pulling.

According to the Ringelmann effect, as groups increase in size, they
gradually decrease in quantity of output. Steiner then provided an analysis of
the Ringelmann effect. The social loafing splits the reduction in output into
two segments: motivation loss and coordination loss (see Figure 5.11).
However, the productivity effect is better than that of the best member.

In software development, a critical activity is to decide how the whole
work can be divided into a number of similar subtasks so that part of
development work can be aggregated. For example, how well we can group
a number of similar transactions together is so important that subprograms
sharing the same coding pattern are grouped together (Figure 5.12). The
activity of completing subtasks in the same group is an additive task.
However, the activity of dividing tasks into additive subtasks in software
development is not aggregated.

53.2 2and41s4

Problems that require that the truth-wins rule holds are disjunctive. Solving
language riddles (e.g., “-gry” riddle) or mathematical puzzles can sometimes

How many tables are involved in this transaction
Transaction type Update Insert Select
Sales order 2 3 3 >_' Grouped
Goods return 2 4 2
Issuc invoice 1 1 0 — Grouped

FIGURE 5.12 Different transactional operations in the ERP application.

150 PAIR PROGRAMMING

be a eureka task. A “eureka”-type problem has a very limited number of
solutions. For example, find an English word ending in “-gry.” Two are
“angry” and “hungry.” What is a third? Thus, in many situations, the highest-
performing members of the team are able to compensate for the weaknesses of
the other members; that is, 2 and 4 is 4.

Programming involves a number of technical tricks. Harold said he had a
number of “aha!” experiences when exploring Java programming tricks (Har-
old 1997). By common consent, it is difficult to “get” programming problems,
but once we have them, they will be either easy or trivial (Bruce 1996).”

Many programmers usually take a trial-and-error approach to resolve
technical problems. They may take from several minutes to days and even-
tually discover what the problems really are. Once you know technical
problems, you may easily demonstrate both the problems and solutions to
your colleagues. Thus, the “truth-supported wins” rule holds, and solving
many technical problems is a disjunctive task.

Start a Day

Advances in communications technology now allow us to get help by posting
our questions on the Internet. When encountering technical problems, it can be
useful to distribute them to each member by email or instant message because
many technical questions are disjunctive. Therefore, one recommended prac-
tice in agile software development is to have a short, standup meeting before
the day starts so that every member can look at problems and suggest quick
answers.

533 2and41Is3

All members contribute toward estimating uncertainties; this type of task is
compensatory, and 2 and 4 is 3. Exemplars of the tasks are the Fermi question:
“How many jellybeans fill a one-liter jar?” When each member of a group
makes its estimate for the number of beans and the estimates are averaged, the
result is more accurate. Thus, the productivity effect is better than most. This
case is a bit similar to what we have addressed in the horse-trading problem.
The difference is between unnamed and named.

5 “Is there a name for this aha experience?” (http: / /discuss . fogcreek . com/
joelonsoftware / default.asp?cmd=show&ixPost=118430); “Pressing but-
tons using c#” (http://forums.devshed.com/c-programming-42/pressing-
buttons-using-c-322084.html) .

PROGRAMMING TASK DEMANDS 151

Managing software requirements is challenging because in the views of
team members they are usually ill-defined. There are three reasons for this:
lack of domain knowledge, incomplete requirements, and personal biases.

Domain-knowledge specific is needed to help digest user requirements.
For example, ERP developers who have had extensive working experience in
retailing systems [e.g., point-of-sales, (POS)] are not considered as being
suitable for work as system analysts developing manufacturing applications,
although both applications belong to database programming. There is little
evidence to suggest that the expertise from one domain (e.g., retailing) is
transferable to the other (e.g., manufacturing).

User requirements can be incomplete. Users may have skills to system-
atically categorize their cases. In addition, the requirements may not be static
but changing. Finally, it is possible that the requirements are so fuzzy that
there can be many uncertain and exceptional cases to handle.

Requirements are often written in natural language, and hence biases in
people can become problematic. This has been mentioned in the horse-
trading problem. When it is reframed, the problem becomes a piece of cake.

To some extent programmers have to “guess” what user requirements
could be. Thus, in this regard, many tasks in requirements engineering can be
compensatory tasks

534 2and4 =2

Activities that require input from different skills of all team members are
conjunctive tasks. Unlike working on additive tasks, each member now per-
forms a different function. When the tasks can be divided into a number of
subtasks and each matches member capabilities, the performance of the team
isimproved. For example, in manufacturing, skilled workers may specialize in
particular subtasks on a production line. It appears that a perfect match is
difficult, if not impossible, in many cases. Thus, the productivity effect can be
said to be only as better than the worst; that is, 2 and 4 is greater than 2.

Once the team decides on the logical separation of a system, we have a
problem with whether subtasks are divided in such a way to match individual
capabilities or whether individual members are suitably allocated to sub-
tasks. As a result, the overall productivity effect depends on making the right
resource allocations.

Often, tasks are not divisible and team performance actually relies on the
least competent member. For example, in an assembly line, if one worker
works slowly, the whole process is affected. Any assembled component that
has been improperly installed will cause the finished product to malfunction.
Thus, the productivity effect can only be equal to the worst; thatis, 2 and 4 is 2.

152 PAIR PROGRAMMING

The purpose of software integration is to combine two or more programs
(or submodules) into one application in which the programs use a common
data structure (or database) and interface with each other to exchange data or
information. Software integration is similar to the assembly line. Any soft-
ware module that has a minute defect or is slightly incompatible can crash the
system or have hidden errors on it. Thus, software integration is a conjunctive
(unitary) task.

Call It a Day

System integration should be done often because the task is unitarily conjunc-
tive. That is to say, the lowest performers have the most impact on overall team
performance. Therefore, eXtreme programming encourages continuous inte-
gration and throwing away today’s code if integration problems cannot be
solved before the team calls it a day.

5.3.5 2 and 4 Is Unknown

When the team can decide on how to combine their efforts to solve a problem,
the performance accounts for a method they chose (Steiner 1972). For example,
how would a team estimate the effort (days) involved in writing an ERP
application? Members may determine that programmers who have developed
ERP applications beforeare particularly good atsuch judgments. Analternative
is to average all members’ judgments. In either case, judging the programming
effortsis a discretionary task. The productivity effectis therefore variable. Thus,
two heads are only unpredictably better than one (Kameda and Tindale 2006).

When software teams can decide on how they allocate their resources to
design and coding, which is often the case in small teams, this has a
tremendous effect on subsequent tasks. For example, software teams
can divide a project by system modules or by development phases. In the
first case, three application subteams are responsible for sales, warehouse,
and finance modules, while in the second case, three development subteams
are established for “design and testing,” coding, and report writing (see
Figure 5.13). The productivity effects in these two cases are different. This
kind of task is classified as a discretionary task.

Software development tasks are so complex and interconnected that it is
difficult, if not impossible, to strictly classify every programming task into
only one or two types of task demand. For example, the tasks of requirements
management cannot be easily classified into additive or compensatory.
Rather, we discuss key issues and their task demands.

PAIR PROGRAMMING IS MORE THAN PROGRAMMING 153

Sales W/H Finance
module module module

Design and testing

Coding

Report

FIGURE 5.13 How we divide development tasks affects structure and productivity
of a software team.

Learning real requirements is difficult, and developers may have to
speculate about some details in order to develop a model. A divide-and-
conquer strategy may seem to accelerate the requirement engineering tasks,
but a software team sharing their own opinions stands a bigger chance of
correctly identifying real requirements. Because some requirement tasks are
compensatory, it is good for all members of a small team to get involved in
understanding requirements. In a pair programming study, solo groups and
pair groups are often asked to write the same program and to measure the
elapsed time. Obviously, the first task is to understand their assignment!
Although we do not know how many difficulties there can be between solo
groups and pair groups in understanding the assignment at the beginning,
assignment interpretation problems do occur in solo groups (Nawrocki and
Wojciechowski 2001).

Tasks of design and coding are divisibly conjunctive. Matching people’s
capabilities to the right tasks is not easy, and hence team productivity is not
maximizing. Pair programming with partner rotation compensates for the
effect of imperfect matching.

This section helps us understand better why we rarely get 6 from 2 and 4
and when we can organize our team to solve some particular problems
according to the task demands.

5.4 PAIR PROGRAMMING IS MORE THAN PROGRAMMING

In software engineering, formal methods is a fundamental topic. It provide sets
of notations in which to express the initial specification and future design
steps toward the final program. Computer-aided software engineering
(CASE) software tools help us design, develop, and maintain software. Both

154 PAIR PROGRAMMING

are about design. When we have spent a number of hours on working on
design using formal methods or CASE, we may wonder how the design can
automatically generate executable code, or why we do not design our
software just by code so that the design is machine-executable!

5.4.1 Design by Code

Design and coding are intermingled. By design, we mean abstraction and
semantic algorithm analysis and by coding, converting the semantic algorithm
analysis into a final executable program in a specific computer language.
However, what is programming itself?

The piece of Java code in Figure 5.14 illustrates that the design of an ATM
system has had the following four classes: UserSession, User, ATM and Bank,
which respectively handle the session’s options, user information and secu-
rity, a menu of possible types of ATM transaction, and bank accounts.

Writing lines 11, 12, 14, and 15 in Figure 5.14 can be compared with
solving a deduction problem that requires working out a logical model that
describes what we understand about the problem (see Figure 5.15).

Certainly, programming is more than a deduction problem. Looking at
lines 01, 04, 05, and 10 in Figure 5.14, we also need to work out a problem of
another kind, namely, one about analysis of a flowchart, required in every
programming design (see Figure 5.16).

The difference between a deduction problem and a procedural algorithm
is a matter of sequential relationships. We may reverse the deduction
problems; for example, solving a problem “A B C _? 7 is the same as

01 if UserSession.checkAlreadyLogin() return ATM.Error (NOLOGIN);
02 UserSession.selectedOption =

03 ATM.displayOptions (User.authorityLevel) ;

04 switch (UserSession.selectedOption)

05 {

05 case _ENQUIRY:

06 {

07 ATM.Display (Bank.Balance (User.account)) ;

08 return 1;

09 bi

10 case WITHDRAWL:

11 if (User.balance >0 and User.requestedAmount <
12 ATM.availableCash)

13 {

14 if (User.balance > 0 and User.requestedAmount <
15 User.balance)

16 {

17 ATM.processWithdraw () ;

18 }

19 bi

20 };

FIGURE 5.14 Automated teller machine (ATM) system.

PAIR PROGRAMMING IS MORE THAN PROGRAMMING 155

User.Account.balance > 0 and User.requested Amount _?_ ATM.availableCash
Or
User.Account.balance > 0 and User.requested Amount _?_ User.balance

What is ‘2?2’

I
e @ [JK ® e @ -
(10 00 UL L) 3__._ |
Or
ABC_?

What is “'?/”
FIGURE 5.15 Deduction problem.

“ 7 BCD”; “(statement A) and (statement B)” will be the same as “(statement
B) and (statement A).”

However, if we reverse the order of a procedural algorithm as in
Figure 5.16 “inquiry — select options — 7 ,” the possible answer can be
“inquiry” again or “withdraw money” rather than “log in.” Artificial intelli-
gence tells us that solving both kinds of problem faster is an exploration in a
searching space (Luger and Stubblefield 1989) and a pair is able to explore
more programming design alternatives than are two individuals working
separately (Flor and Hutchins 1991).

Select Options

Inquiry

? =Login

FIGURE 5.16 Procedural algorithm.

156 PAIR PROGRAMMING

If we go ahead doing design by code, programmers are simultaneously
thinking about requirement comprehension, deduction problems, procedur-
al algorithms, scripting, code reading, and so on every minute. A team of
programmers paired up should rise to the challenge.

Another challenge for design by code is readability. Since there are few
design documents for software maintenance, code reading becomes the only
way we can maintain the software. In the end, we have to pay the cost for
programming source that is hard to read. Scripts written by two persons
should be much more readable than scripts written by an individual. Al-
though the term code readability is often used in agile software development,
what it means in programming is that writing code is better explained by
exploiting depictability and consistency. For example, getSalary() is more
easily depicted than Salary(). In short, if you are doing design by code, go for
pair programming!

Design by code was not so possible in the old days. Many old version
compilers do not support us in writing virtual functions or dynamic data
structure. Not until the emergence of object-oriented programming in the
early 1990s were computer languages developed in a way that we understand
in today’s world. Class inheritance, polymorphisms, and other concepts have
now allowed us to do design by code.

5.4.2 Pair Design

We once paired with a smart guy who acted as an observer. The system we
wrote had a variety of business logic, and the guy was lost in what we were
doing several times! He blamed himself for his distraction. And we gave hima
humorous reply: “You are not Stephen Hawking.”

Hawking is a genius mathematician and theoretical physicist but unfor-
tunately suffers from motor neuron disease (amyotrophic lateral sclerosis)
and has been severely disabled. How can Hawking have something to do with
pair programming? But, surely we are not joking.

Studying physical cosmology involves lots of understanding of advanced
mathematics,® and your best companion is always pencil and paper. Even
though equations are given step-by-step in print, we still need pencil and

®For those programmers who forgot how difficult the mathematics in advanced
physics can be, here is the linearized Einstein equation (Wald ; 1984), and we really
need pencil and paper to help ourselves out to understand where it comes from and
where it will go:

Gr(zi) = % acaﬂ’yab'i'aca(bya)c_ %ﬂabacadﬂd =8nTy,

PAIR PROGRAMMING IS MORE THAN PROGRAMMING 157

paper to understand the logic and work out the calculation. It is very difficult,
and for many people simply impossible, to just watch (i.e., read) and think
(i.e., do the calculation mentally).

In pair programming, the driver controls the keyboard and mouse and
her eyeballs fix on what she writes and she may at any time talk to her partner
about what she is writing. It is however, rare, to be writing code and be
explaining another part of code finished yesterday that has been on screen. In
this regard, the observer may be just doing the same thing that the driver is
doing, fixing his eyeballs on what the driver is typing and narrowly thinking
about the code on the screen. Anything not on the screen will be out of mind!
Of course, this kind of pair programming is not good for design by code. In
spite of this, not many programmers can watch the lines on screen but at the
same time see a wider picture and strategically think and quest for better
ways. In fact, this has nothing to do with their programming capabilities! If we
cannot help paired programmers do a better job of pair design, for some
paired programmers, design is dead!

Bring pen and paper with you (Figure 5.17). This is our advice. The
partner now is more than watching. He will still look at the screen but can now
jot points down and sketch a flowchart to strategically look at a bigger design
picture. This is an effective way for many programmers who are not yet used
to pair programming or are not good at “watch code and think design.”

A

FIGURE 5.17 Bring your pencil and paper with you to pair.

158 PAIR PROGRAMMING

5.4.3 Rhythmic Pair Programming

Well, it seems a bit odd as we have one subsection in this chapter to discuss
development rhythms. With a good understanding of what pair program-
ming is, we will have few difficulties adopting pair programming rhythmi-
cally. Moreover, software development rhythms are not practices; they reveal
when the practices work and when they are used so that the practices deliver
value to programmers and software writing in the workplace.

Now let us consider two situations: a team that has just one pair so that the
pair cannot exchange its partner, which is referred to as “single pair
programming,” and a team that has more than one pair, which is referred
to as “team pair programming.” In fact, team pair programming can become
single pair programming when no pair in a team decides to exchange partners.

As for single pair programming, there is no partner exchange, only role
exchange. When to exchange role in a pair is less critical as two programmers
are working closely together. Either of two programmers in a pair may
volunteer to assume a particular role. According to one study, we have a
higher length of concentration in the first 30-60 minutes while just listening
and watching. Thus, every time a pair has a short tea break, they should
consider changing their roles. However, changing roles has nothing to do
with the problem that the pair is working on. The pair is still collaborating on
the same programming task before or after their roles are exchanged. When
the pair has fully shared their ideas and figured out a good solution (i.e., when
thereis noneed to think of an alternative), the driver will be just watching how
her partner writes code. Therefore, single pair programming is easy to start
but not easy to sustain (see Figure 5.18).

Easy-to- | Difficult-
start | to-start b

Easy-to-
sustain
) _ Difficult-
Single Pair
. to-
Programming .
sustain

FIGURE 5.18 Pair programming for a team that has only two programmers.

PAIR PROGRAMMING IS MORE THAN PROGRAMMING 159

-
AB AB AE AE AE AE AE AB
CD CD CD CD CB CB CB CD Time

EF EF BF BFI DF DF DFI EF

F Call for partner exchange (CPE) Call for partner “X” (CPX)

FIGURE 5.19 Walk along time to see the rhythm of partner exchange.

In contrast to single pair programming, team pair programming allows
pairs to rotate their partners. In this situation, some programmers will have to
think out and work on new problems. As discussed in Section 5.3.5, there is
some variation in the productivity effects in pairs that can make their own
judgments on how to organize their work. Two and four is unknown. The
right timing of partner changes is very important. If we have not rotated
the partner for some time, we will simply find ourselves back again with
single pair programming. Therefore, to ensure team pair programming
productivity, more guidelines should be explicitly given to less experienced,
paired teams, in particular, on when to change partners. We do not expect less
experienced programmers to organize and do pair programming by
themselves.

Pair programming is a way to achieve design by code. The moment a pair
has reached a rough design, they should consider partner rotation. This
maximizes our chance to let other team members improve our design,
thereby removing design defects as early as possible.

A pair that is ready for a partner exchange may have to wait for another
pair to be ready. Then, the pair calls for a partner exchange (CPE) by showing
a sign card (or a flag, etc.) to the other pair. The idea of signaling to other
colleagues or parties where we are is similar to kanban,” which is the means
through which just-in-time (JIT) and “lean” manufacturing are managed.
Next, any other pair that has roughly planned out what it will do for its task
and is about to exchange partners will rotate its partner with a pair with a sign
card displayed (see Figure 5.19).

Often, we may change an agreed-on rough design with a new partner.
Once that happens, we have to call our previous partner (CPX) to confirm the

7 Kanbanis a Japanese word meaning a mechanism using story cards to signal the need
for a particular item.

160 PAIR PROGRAMMING

-

i CPE

FIGURE 5.20 Rhythmic pair programming.

change (see Figure 5.19). There can also be a situation where two partners
agree on the design but a third partner does not. However, your coding
should have almost done a lot. Depending on how good the third partner’s
idea may be, we may either discard the existing code or discuss it in a standup
meeting.

If you walk through spacetime, you will see how CPE and CPX interplay
in Figure 5.19! Although the diagram looks complicated, the rhythm is simple
(Figure 5.20).

Rhythmic pair programming tells us to exchange a partner when a pair
has reached a rough design and call for an ex-partner exchange when a pair
has revised what has been agreed to by the ex-partner.

This rhythm is good for small software teams and only for team pair
programming. When the teams become familiar with this rhythm, it is not
necessary to use any sign cards, nor is there any need to mechanically play
out the rhythm. Many experienced pairs will know when they should
change their partners and when they should pair off with their old
buddies again. Rhythmic pair programming is easy to start and easy to
sustain (see Figure 5.21).

Easy-to- | Difficult-
start | to-start b

Rhythmic

Pair EaS)tl-iiO-
Programming sustain
Difficult-
to-
sustain

FIGURE 5.21 In—out diagram for rhythmic pair programming.

PAIR PROGRAMMING TEAM COACHED 161

5.5 PAIR PROGRAMMING TEAM COACHED

The productivity effect is variable, for pair programming teams as well as for
self-organizing teams. Although we should trust that the pair programming
team and the members will organize their work best (Schwaber and Beedle
2002), as far as we understand that, the tasks of decisions on design and
coding are so discretionary that the team should systematically adopt a way of
pair programming.

Here is a summary of some guidelines on coaching pair programming
teams:

Principle 1. When adopting pair programming in conventional project
management, we have to identify time-critical tasks and shorten them
(see Section 5.2.6).

Principle 2. In pair programming, asking your partner open-ended ques-
tions minimizes your influence on him/her when you want advice, not
consent. For example, how long will it take for others to understand the
code? Instead, is it readable? (see Section 5.2.7).

Principle3. A pair should resolve conflicts by postponing decisions; leave
them for a while and let them rethink before deciding to ask for help
from others (Section 5.2.7).

Principle 4. Ensure that the requirements are fully understood. Although
pair programming results in fewer errors in requirement comprehen-
sion, mistakes of this kind will cost much more than in solo program-
ming (Sections 5.2.8 and 5.3.3).

Principle 5. Team members who work in pairs with partner rotation
should meet in a short, standup meeting in the morning (Section 5.3.2).

Principle 6. The purpose of the standup meeting is to solve tricky
technical problems. Don’t rely on each pair to individually work out
solutions to them. Remember that 2 and 4 is still 4 (Section 5.3.2).

Principle 7. During the standup meeting, if there is a need to collect
opinions from the participants, they should give feedback in descend-
ing order of their confidence or experience (Section 5.2.7).

Principle 8. To ensure that paired programmers are making efforts that
make the project move forward, continuous integration is necessary
(Section 5.3.4).

Principle 9. Bring your pencil and paper with you to pair (Section 5.4.2).

Principle 10. Exchange your partner when a pair has reached a design
solution and call for an ex-partner exchange when the design solution
has been revised (Section 5.4.3).

162 PAIR PROGRAMMING

We have yet to discuss pair programming productivity, although in
looking for software development rhythms, we have come to see that
productivity levels for single pair programming and team pair programming
are very different. Exploring productivity in single pair programming will open
more issues than we expect. Will the productivity rise and then drop along the
development time if a paired team develops an application with unchanged
requirements adopting pair programming practice? Will the productivity of
novice-novice pairs be the same as that of expert-expert pairs? Will triple
programming (sometimes called triplet programming) be just as productive as
or less productive than pair programming? Chapter 6 deals with the produc-
tivity of single pair programming. Most importantly, we consider the situa-
tion in which single pair programming can be productive.

This chapter presents the work in the group’s rhythm as a unit. However,
we should be mindful of the natural ebb and flow of people’s motivation. In
addition, groups take time to gel. Once the group reaches its stage of high
productivity, provided it is given positive feedback, it can often remain in that
stage for a long period of time. Chapter 7 discusses the rhythm of the groups
and how they usually go through four phases of productivity, followed by
reduced productivity.

REFERENCES

Bisant D and Lyle J. A two-person inspection method to improve programming
productivity. IEEE Transactions on Software Engineering 1989; 15 (10):1294-1304.

Bruce K. Thoughts on computer science education. ACM Computing Surveys 1996;
28A (4).

Carr NG. IT doesn’t matter. Harvard Business Review 2003; 81 (5):41-49.

Cockburn A and Williams L. The costs and benefits of pair programming. Proceedings of
First International Conference on Extreme Programming and Flexible Processes in
Software Engineering, Cagliari, Sardinia, Italy, June 2000.

Constantine LL. Constantine on Peopleware. Englewood Cliffs, NJ: Yourdon Press; 1995.

DeMacro T and Lister T. Peopleware: Productive Projects and Teams. New York: Dorset
House; 1987.

Flor NV and Hutchins E. Analyzing distributed cognition in software teams: A case
study of team programming during perfective software maintenance. In:
Koenemann-Belliveau], Moher T, and Robertson S, editors. Empirical Studies of
Programmers: Fourth Workshop. Norwood, NJ: Ablex; 1991.

Gladwell M. Blink: The Power of Thinking without Thinking. New York: Little, Brown; 2005.

Godel K. Ontological proof. In: Feferman S, Dawson JW, Goldfarb W, Parsons C, and
Solovay R, editors. Collected Works: Unpublished Essays & Lectures, Vol III, New York:
Oxford University Press; 1995, pp. 403-404.

REFERENCES 163

Hansen J. Music enhances reasoning. In: Hoffman B, editor. Encyclopedia of Educational
Technology. 2001; retrieved Sept. 1, 2006, from http://coe.sdsu.edu/eet/
Articles/mozarteffect/start.htm.

Harold ER. Java Secrets. Foster City, CA: IDG Books Worldwide; 1997.

Kameda T and Tindale RS. Groups as adaptive devices: Human docility and group
aggregation mechanisms in evolutionary context. In: Schaller M, Kenrick DT, and
Simpson JA, editors. Evolution and Social Psychology. New York: Psychology Press;
2006.

Keefer G. Extreme programming considered harmful for reliable software. Proceedings
of the 6th Conference on Quality Engineering in Software Technology, 2002, pp. 129-141.

Luger G and Stubblefield W. Artificial Intelligence and the Design of Expert Systems.
Benjamin/Cummings: 1989.

Nawrocki] and Wojciechowski A. Experimental evaluation of pair programming,
Proceedings of the 12th European Software Control and Metrics Conference, 2001,
pp. 269-276.

Nosek JT. The case for collaborative programming. Communications of the ACM 1998;
41 (3):105-108.

Robert M. Agile Software Development: Principles, Patterns, and Practices. Upper Saddle
River, NJ: Prentice Hall; 2003.

Schwaber K and Beedle M. Agile Software Development with Scrum. Upper Saddle River,
NJ: Prentice Hall; 2002.

Stasser G and Dietz-Uhler B. Collective choice, judgment and problem solving. In:
Hogg MA and Tindale S, editors. Blackwell Handbook of Social Psychology: Group
Processes: Oxford: Blackwell; 2001, pp. 31-55.

Steiner ID. Group Process and Productivity. New York: Academic Press:1972.

Tan G, Gallo PB, and Jacobs GM. Using cooperative learning to integrate thinking and
information technology in a content-based writing lesson. The Internet TESL Journal
1999; 5 (8).

Wald RM. General Relativity. Chicago: University of Chicago Press; 1984.

Williams L and Kessler R. Pair Programming Illuminated Reading. Reading, MA:
Addison-Wesley; 2003.

Williams LA, Kessler RR, Cunningham W, and Jeffries R. Strengthening the case for
pair programming. IEEE Software 2000; 17 (4):19-25.

REPEAT PROGRAMMING

One day to build a piccolo, and two days for two.
One minute to cook an egg, and one minute for two.
One week to write a piece of code, but never think
of writing the same twice?

A shocking experiment, known as the Stanford prison experiment, which was
terminated when it went out of control 6 days into its planned 2 weeks, was
designed to investigate what happens when good people (students) are putin
an evil place (Zimbardo 1971). After three decades, two professors, Haslam
and Reicher (2002), re-created aspects of the same experiment to investigate
how decent people (nonstudents) in a mock prison could behave with malice.
Ultimately, some may express surprise that people could behave as badly as
they did given such trivial stimuli. Although there were many differences
between two experiments in terms of mock prison conditions, interrupts for
TV confessionals, and known being videotaped all the time, both experiments
appear to entail that, rather than arising from anything inherent in the
individual personalities involved, it is the situation that dominates
the participants’ bad behavior. Every angel in the hell' becomes a sort of
Lucifer—and it does not matter how you run the prison experiment. The
prison experiment will always cause good people to act in evil ways.

The prison experiment stimulates our thinking about the relationships
between experiments, software practices, and programmers. How can we

The term Lucifer effect was coined by Professor Zimbardo (2007).

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright © 2008 John Wiley & Sons, Inc.

165

166 REPEAT PROGRAMMING

reproduce programming experiments of a particular type and reach consis-
tent findings regardless of individual human capabilities, team cultures, and
human emotions?

In pair programming, some people support pair programming
productivity by controlled experiments. Others question whether pair pro-
gramming productivity is still valid in the workplace as such experiments
by students in academic environments never cross the line between
writing to study and working to live.” Later, we will realize that either
pair programming or solo programming is too extreme. As so often
happens, the truth lies in between. Thus, alternatives of pair programming
could be side-by-side collaboration on a software maintenance task (Flor
1998), side-by-side programming (Cockburn 2005) and reviews (Miiller
2004), and some experiments conducted to juxtapose them with pair
programming.

Now no one needs to scratch one’s head over pair programming (PP)
against solo programming (SP); everyone is comfortable, at least psychologi-
cally, to say that pair programming is good but side-by-side programming (or
reviews) is even better (see Figure 6.1 for all three types). To celebrate our
achievements, everyone gives a yell of delight and opens a bottle of whisky.
While swirling the hooch and before saying cheers, there is a collective
expression as everyone recalls the last time we drank to forget troubles.
Does whisky “always” mean celebration? We are unconsciously brought to
another maze: Is pair programming (or side-by-side programming, reviews,
etc.) “always” better than solo programming?”

“When does pair programming work best?” is not a good question. The
challenge is to demonstrate to people who have never tried and /or have been
skeptical about pair programming when pair programming can be signifi-
cantly productive. More importantly, it helps synthesize one interesting
rhythm:

PP~ SP ~ PP~ SP---PP

This chapter could be a little academic! To unlock the secret of pair
programming and to discover that rhythm, we have to adopt a much more
rigorous approach to pair programming. We will come back to the practical
applications in Section 6.3. Bear in mind that pair programming in this
chapter means team pair programming in general and single pair programming
in particular.

?As the students know that they are being studied, their tendency may be to act
differently. This is the Hawthorne effect.

CONTROVERSIES IN PAIR PROGRAMMING 167

Solo Programming

[

[

Pair Programming reported by Constantine in 1995

\ Il

Side-by-side Programming proposed by Cockburn in 2005

L1

FIGURE 6.1 The evolution of solo programming, pair programming, and side-by-side
programming.

Amiessit

6.1 CONTROVERSIES IN PAIR PROGRAMMING

The basic idea of pair programming rests on a time-honored and superficially
straightforward assumption—two heads are better than one. However, pair
programming has always been controversial. In reality, pair programming is
simply a way of teaming in which two programmers collaborate on the
design, coding, and testing of a piece of software. It's an approach that
supports skills transfer, job rotation, and more creative approaches. On the
surface, it seems as uncontroversial as any type of teamwork. So why is it
controversial?

Well, like so many things, it’s all about money. Many people question the
economy of pair programming: Why pay double to do just one job? Interest-
ingly, pair programming is much more than our intuition tells us. It is a

168 REPEAT PROGRAMMING

problem with passion and belief. We shall discuss three questions that we
think have been pretty heavily challenged on the Internet and, surprisingly,
none of them is about money.

6.1.1 Is Programming a Unique Work?

Many adherents of eXtreme programming (XP) push to try pair program-
ming, to become familiar with its advantages and its practices. But project
managers and inspectors who know little about programming or have not
programmed for a long time won’t understand why pair programming is
better. It will be apparent to them that it would increase the cost of a project. To
determine whether pair programming is good, such managers can only listen
to other people’s comments. Supporters will say “pair programming is
effective, and people have proven it by experiment! But, if you're still not
sure, they may at last recommend that the simplest way is to have a try!”

It's a very interesting phenomenon that the nature of programming seems
to be overemphasized—it’s so challenging that we need two people to do the
same work (i.e., design, code, test, and integrate) together! Is there any work in
the world that has the same characteristics as computer programming?

If not, then is there any work besides programming that is best done in
pairs? Teaching—team teaching—may be one area, and we note that students
can learn better and faster if they are paired. But are teaching, learning, and
working three different things?

Who else works in pairs? Police and pilots work in pairs for safety, and in
this they do the same work but play different roles—good cop-bad cop, driver
and navigator/observer, for example. But the pair work of physicians,
teachers, and engineers is not necessarily better than their individual work.
And why are there only pair programmers, but no pair engineers, pair
managers, or pair editors? Is programming more challenging than the tasks
of these other jobs?

6.1.2 Are Three Minds Better than Two?

If two minds are better than one, are three better than two? We have discussed
the antigroup phenomenon in Section 5.2.7. When two people of a group of
three firmly believe that they have worked out a good solution, the third
person may just either follow them or be persuaded into favoring that
solution, even though that solution is in fact the worst. However, this cannot
be used to conclude that triple programming is antiproductive as triple
programming does not mean three programmers sitting together to vote on
how to program!

CONTROVERSIES IN PAIR PROGRAMMING 169

Triple
programming

Pair programing

k] L]

' Channel of '

Programmer communication

FIGURE 6.2 The number of communication channels increases to 3 when the number
of programmers is increased by 1.

In education, research into the effectiveness of pair learning relative to
group learning has shown that group learning could be more effective than
pair learning. Well, if it makes sense to place two people on one computer,
why not put three or four people on one computer? The defense of pairing
relies on certain hard-to-prove claims about better quality, knowledge shar-
ing, and collaboration. All of these claims support tripling and quadrupling in
addition to pairing.

Intuitively, the argument that triple, quadruple, or quintuple program-
ming is relatively unproductive is too obvious to need proof. Oddly,
Williams and Kessler (2003) mentioned triple programming—the collabo-
ration of three very experienced, mature, responsible programmers (using a
single computer) can provide a solution to a very tough problem. An
effective triplet was once used at Bell Labs; one person who represents the
customer thinks out aloud, one at the whiteboard works on design, and one
controls the keyboard.

Stephens and Rosenberg (2003) then argued that two or more people
results in slower communication and decisionmaking because there’s more
than one channel of communication. Increasing the number of communica-
tion channels decreases the productivity of programming (Figure 6.2).

The argument that pair programming is more productive than solo
programming and other multiple programming arrangements has yet to be
proved experimentally. However, if we assume that there are relationships
between pair programming and triple programming, then an experiment that
can show that pair programming is efficient should also validate triple
programming.

6.1.3 Unreplicable Experiments

The best way to deal with these controversies would be to conduct an
experiment. It should be a simple matter to compare the productivity of a

170 REPEAT PROGRAMMING

pair of programmers and a solo programmer. Just invite some programmers
to take part in an experiment, divide them into a pair programming group and
a solo programming group, and then ask them to write the same program so
that their results can be directly compared. Such an experiment appears at
least intuitively valid and would also appear to be easy to conduct. But that
isn’t so.

People have done these experiments, but they have clarified little as
different people have conducted similar experiments and produced very
different, apparently incompatible results (Nosek 1998; Williams et al. 2000;
Nawrocki and Wojciechowski 2001; Arisholm et al. 2007). Yet the results are
far from being in agreement and sometimes contradict each other. It may well
be that pair programming is productive under some conditions and not under
others, but that the difference in the conditions was not accounted for or made
explicit.

Interestingly, despite the uncertainty around these results, proponents
and opponents on every side have tried to exploit them. Supporters of
eXtreme programming claim that pair programming is a practice proved by
academic experiments. Naturally, their opponents challenge it by pointing
out the discrepancies between those experiments.

If all of these experiments were conducted with care, seriously, and
without artificial error, then only two assumptions would be left to us:
(1) either the productivity of pair programming measured by controlled
experiments is always uncertain® or (2) we have not yet looked at the right
variables that can produce consistent results.

Before there was any detailed research into pair programming, the only
controversy was over cost, because it meant paying for two programmers.
Research into pair programming raised more issues than it solved, issues
beyond money, such as unique work, multiple programming, and unrepeat-
able experiments. The more research we’ve done on pair programming, the
more controversy we’ve seen.

6.2 REPEAT PROGRAMMING

Many experimental situations in software development are not representa-
tive. Even using the same assessment method for different subjects and
problems may produce a variety of results. Often, time alone can be deceiving,.

3We feel that there is nothing wrong with the existence of uncertainty in our world,
although Einstein said that God does not play dice.

REPEAT PROGRAMMING 171

Different programmers might solve different problems at different speeds so
itis hard to convince anyone to select 10 or a 100 programmers out of millions
of programmers around the world and put them in front of low-complexity
problems in straightforward development environments.

That is not to say that programming situations do not have certain
common features. There exist certain intrinsic properties regardless of the
complexity of the problem, the profession, the personnel, or environments, in
the same way that the sum of the internal angles of a triangle is 180 regardless
of the triangle’s size and shape.* These intrinsic properties are what we set out
to test as we sought to answer one fundamental question: How can we
demonstrate when pair programming is most productive?

Many project managers will be familiar with the following experience. A
new programmer comes onto the team. This guy is new to the problems that
the team is working on and has not written anything similar before, so initially
he takes a week to complete a program. He continues to work on other
problems of that type, and soon he can write them faster and better even
starting from scratch and without looking back at his previous code. After
3 months he is a master at coding that problem and he can finish a program of
that type in one day, but that is the limit of his improvement, that is, there is a
point at which it is nearly impossible for him to finish the job sooner.

We now look at a slightly more complicated case. In pair programming,
we have two scenarios: novice-novice and expert—expert. A novice-novice
pair, two newcomers working as in pair programming, may complete a
program in less than a week. In this scenario, we assume that there will be x%
time reduction. By intuition, we know that 50% is the breakeven point since
there are two people.

In another scenario, after three months of these two people working on
the same kind of problem, we put one of them with an experienced colleague
as in pair programming for collaboration. This is an expert-expert pair, at
least with regard to the kind of problem they have already mastered.
Hypothetically, as a pair they should work y% faster.

We do not think that we can differentiate the values of x and y. Therefore,
the figures are meaningless. Well! Nothing interesting can be found until
we put x and y together! Relationships like dx/dy’ could be something

“Strictly speaking, the sum of the internal angles in a triangle is 180 in space whose
intrinsic curvature is 0. Whether the intrinsic curvature is 0 constitutes the difference
between Newton mechanics and relativism.

5 To ensure accuracy, we should be interested in d%x/d?y, which measures the change
of curvature.

172 REPEAT PROGRAMMING

Number of Days

7 r
[e i
Individual
5
4
3
2
1
1 1 1 1 1 1 1 J
Number of
1 2 3 4 5 6 7 Rounds
Individual 5.81) 325|252] 205]| 1.63 | 1.31 | 1.18 | 1.17 | Days
Pair 3131208 [1.76 | 1.62 | 1.56 | 1.43 | 1.41 | 1.37 | Days
Pair vs. Individual | 7.5 | 23.1 40 62.5 1 923 119 | 142.1 | 134 |%

FIGURE 6.3 Repeat programming: a pair versus an individual.®

that throws a light on answering when pair programming can be adopted
for the maximum of its productivity or when a pair outperforms two
individuals.

An experiment called “repeat programming” examines how pair pro-
gramming performance varied when measured along an axis in which
developers become more familiar with a programming problem by repeat-
edly writing the same program several times. By holding some variables in
each situation relatively constant, we can see variation in others. We keep one
aspect of the human variable constant so that we can see how task solution
time varies with problem repetition.

Figure 6.3 shows how long the individual and the pair took to write the
same program on each occasion. The two curves are similar as both are
hyperbolic descending. The trend is far more noteworthy and meaningful
than the values indicated by the curves. Itis a little unrealistic to claim to have
three programmers with nearly equivalent skills, knowledge, and ability.
There has to be a certain amount of variation between them. Programmers
with different abilities can produce different sets of results. However, it
makes less difference whether a value is 5.8 or 6.8 days on any one round
because what we are interested in is the pattern in each round, which is

®The percentage in the table is calculated by
(finish_time_of _pair) x 2 — (finish_time_of individual)

x 100%.
finish_time_of individual 0

REPEAT PROGRAMMING 173

illustrated in the slope of the curves and how they cross. In short, the trend of
the curve remains consistent. The characteristic is conservative and is inde-
pendent of whether they are fast or slow coders, or talented or weak
programmers.

To apply repeat programming out of the laboratory with confidence, we
have to fully exploit the rigor of repeat programming. Here are several major
issues in human-computer studies:

o Human Intelligence. The theory of multiple intelligences by Gardner
(1993, 1997) states the fact that people can be intelligent in various ways.
So often, we are more competent in one task or ability than in others.
This suggests that intellectual strengths are not faithfully reflected in
high intelligence test scores. Thus, experiments can be much more
controlled to observe how people can master the same programming
task in different situations rather than to measure them in pairs writing
different programs. This is compatible with our current understanding
of the theory of human intelligence.

« People Distribution. During the early 1990s, the MIT Blackjack
Team beat the casinos by card-counting techniques that allowed the
team to know when there were more high-value cards than low-
value cards left in the deck(s). It worked as long as they knew how
many kings and queens were in one deck and they could track every
hand. In the same way, knowing how many novices and experts
are in a group of programmers is essential in pair programming.
We have to take a combination of people skills into account;
otherwise, we are just finding the average of the productivity of
the most frequent pairs among novice-novice, novice-expert, and
expert-expert.

« Born to Program. When it comes to pair programming, there are at least
three kinds of combinations: novice—expert, novice-novice, and
expert—expert. Understanding how the last two work is more difficult.
The reason is that, on the basis of our total of 25 years’ experience,
novice programmers may never become experts. They may only
become better mediocre programmers. On the other hand, experts
may already be experts during their student days. Thus, “repeat
programming” does not merely refer to an experiment but to a model
for understanding how people who are new to programming become
expert at it. More precisely, we are modeling novice-novice and
experienced—experienced pairs, rather than expert-expert. We pre-
sume that experienced programmers able to select a best solution from
other solutions that they already knew before, while expert program-
mers not only are experienced but also have the ability to improve a
solution from nothing.

174 REPEAT PROGRAMMING

EXPERIMENT (2004): REPEAT PROGRAMMING

The repeat programming experiment is conducted in two steps: select “nearly
capable” subjects and write the same program repeatedly.

By choosing “nearly capable” subjects, we minimize a disparity in pro-
gramming ability that, between the best and the worst, can greatly vary. In
2004, from among 63 candidates we selected three whose abilities were the
most nearly capable. This was done by testing the candidates on several
programming exercises. Whether their programs were good or bad was not
an issue.

Wesplitthesethreeintoanindividualandapair.Togetataste of how pair
programmingworksforthem, they were asked to write warmup exercises. We
also suggested that in cases where conflicts arose they should be resolved by
the decision falling to the one controlling the keyboard/mouse. The subjects
fully understood that dispute and self-assertion would reduce productivity
and run counter to the objective of the experiment.

The subjects, the individual and the pair, were asked to write a first-in
first-out (FIFO) warehouse application in our laboratory. The tasks were
standard—they had to create tablesin SQL 2000 and code in JSP. The subjects
worked 8 hours a day. The time was measured in day units in order to avoid
confusion over nonstop working hours. The subjects worked on consecutive
days. In Figure 6.3, one day is 8 hours.

Inthe experiment, subjects’ programs had to pass 756 test cases. The cases
included (1)application requirements, (2) load tests, and (3) exceptional
handlings such as power-off during a long transaction. These three types
of measurement were appropriate because (1) we could objectively measure
the quality by testing rather than by relying on human graders and (2) from a
customer perspective, users (i.e., customers) would be more satisfied with
software products that had been extensively examined by these three types
of test and would regard the products as being of a high quality. Developers
and customers tend to see software quality differently.

All the programs submitted by the subjects had to pass 756 test cases.
It was unlikely that subjects would be able to pass all 756 test cases at
the first attempt. The more test cases, the less likely would it be for one
program to be of very high quality, while the other would be merely good
enough to pass the tests. Thus, the subjects needed to test the cases in an
iterative manner in order to get through them. This way, software quality
could be maintained constant.

On the first round of programming, the individual completed the pro-
gramin a bit lessthan 6 days (5.8 days). Predictably, the second round he did it
much faster. The result is shown in Figure 6.3.

REPEAT PROGRAMMING 175

6.2.1 Variances

Repeat programming (Box 6.1) confirms the results of past experiments that
independently reported that pairs require 15%, 42% or 100% longer than
individuals (Nosek 1998; Williams et al 2000; Nawrocki and Wojciechowski
2001).It does not matter what the value we get each time by experiment but how
those values are correlated. According to the descriptions of their experiments,
the difficulty of programming problems for subjects was different in each
experiment. In Nawrocki’s experiment, subjects were asked to write programs
for finding the mean and standard deviation of samples of numerical data. This
is regarded as an easy job for university students with majors in computer
science. Thus, the result of this case can be reflected in the late round in repeat
programming and shows that pair programming is inefficient.

STOP! Repeat programming appears to be too academic to be practical. It is
neither a software practice nor a management theory; it is just a controlled
experiment. We are keenly interested in which agile practices deal with rapid
changing requirements or how we can avoid pitfalls of developing software
so that we do a better job, rather than in the psychology of programming and
empirical software engineering! You really think so, and we cannot agree with
you more. But please hold on!

Many software principles are a sort of Murphy’s law. They are conclu-
sively established from our experience and observation. If we have seen that a
number of software project failures are attributed to inadequate requirements
development, our advice to people will be “having signed requirements for
confirmation secures the success of software projects.” This is an experience-
based principle.

One day, we have another experience-based principle, namely, eXtreme
programming tells us not to work on tomorrow’s design, and we always
anticipate changes. This sounds like the opposite of what we learned in the
past. On second thought, eXtreme programming emphasizes dealing with
rapid changing requirements; our adoption for projects without fixed re-
quirements makes sense.

Unfortunately, before project managers meet eXtreme programming, they
may be unaware of changing requirements and rigidly apply the old principle
for every project. It is expected that these managers will complain about the
users who changed the agreed-on requirements. There is no experience-based
principle for all software projects. Along with bad things comes good news.
New lessons and enhanced principles from experience put software develop-
ment into perspective time after time. All we need to do is sacrifice more of our
family time for reading and differentiate them from our old principles.

176 REPEAT PROGRAMMING

Principles deduced from experiments can be different. Ideally, they
should be widely applicable as long as certain conditions addressed in the
experiments are met. They are proved by scientific experiments with statisti-
cally accurate results. Perhaps we just do not realize that many experiments in
software engineering are merely good for reference. Reproducing the previ-
ous results may not be so straightforward owing to inherent complexity and
changes of technology. Thus, we should always bear in mind that references
are from Mars and principles are from Venus. What we have learned can be
just experiment-based references!

The characteristics of repeat programming utilize matching instead of
randomization, and time-series analysis. In this sense, repeat programming is a
quasi-experiment; not a true experiment. However, the experiment is rigorous
as mentioned before and it is reproducible. In 2005 we were able to reproduce
repeat programming with a large sample size (Lui and Chan 2006).

Well, we should not have kept you waiting so long. But we have to learn to
walk before running fast and jumping high. It is philosophically essential to
understand the nature of principles in software engineering. Then, it makes
sense to focus on when they can be actually applicable.

6.2.2 Principles

To be essentially pragmatic and broadly applicable for pair programming in
real development, we must first resolve the question of when a pair outper-
forms two individuals. Thus, from the interpretation of the people perfor-
mance along time series in repeat programming, we establish the first
principle.

Principle 1: A pair is much more productive in terms of completion time
and can work out a better solution in terms of software quality and
maintenance than can two individuals when the pair is new to a pro-
gramming problem and more effort is required for design, algorithm, and
coding of that program.

This principle says that pair programming works well when a pair
encounters challenging programming problems. Although few people will
define what the term “challenging programming problems” actually means,
for us it simply means solving problems that make greater demands using
more complicated (i.e., less straightforward) computer algorithms. Rarely is it
related to the skills of any particular computer language.

Usually, if a principle is in connection with human behaviors, the reverse
may not hold. This is well exemplified by Herzberg’s (2003) motivation

REPEAT PROGRAMMING 177

theory—job dissatisfaction is not opposite to satisfaction, but is simply no
dissatisfaction.

Principle 2: The productivity of pair programming can substantially drop
when a pair has had previous experience with the same task.

This principle does not address any change in software quality. It simply
states the fact that in terms of time, solo programming can definitely beat pair
programming when programmers are working on solutions they have
already met. As long as a pair knows a programming solution well enough,
itis effective for the writing of programmer A, who controls the keyboard and
mouse, to not be interrupted even with the risk of making small mistakes such
as typos. On the other hand, programmer B probably feels less challenged by
watching the known solution that programmer A is writing.

Clearly, two principles suggest pair programming before solo pro-
gramming. Assume that there are three submodules in ERP (e.g., Internal
purchase requests, purchase quotation, purchase order) in which the
programming logic patterns are somewhat similar for A and B. Principle
1 tells us to do one of three in pair and principle 2 tells the rest of two
in solo.

6.2.3 Triple Programming Unproductive

Triple programming was once mentioned as an efficient approach to solving
extremely complex problems. However, this does not mean that it is a
productive way of programming. How triple programming can be adopted
in real applications is a matter of myth. More questions like time-to-market,
productivity per worker, and cost should be separately understood in
comparison of solo programming and pair programming. Moreover, the
case of better than solo but worse than pair is possible.

Here, we analyze triple programming with repeat programming. The
purpose is not to prove that triple programming is unproductive. Rather, we
would like to introduce the patterns discovered in repeat programming.

It is easily observed that there are two conservative patterns in Figure 6.4.
They can be used to explore the efficiency of triple programming.

Pattern 1. The curves are degressive, and the slope decreases along with
the axis of rounds and finally is near to zero.

Pattern 2. The curve for pair programming is relatively flat, so there may
be a breakeven point, before which pair programming is better and
after which solo programming is better.

178 REPEAT PROGRAMMING

As repeat programming involves modeling the skills development of
programmers, early rounds and late rounds, respectively, represent the
performance of novices and experts. Thus, we will investigate triple pro-
gramming from these two aspects. For the late rounds, it is straightforward.
Referring to pattern (2) in Figure 6.4, solo programming is optimal when the
programmers are quite familiar with the problem. It is expected that the curve
of triple programming there is flat and definitely above the curve of solo
programming.

As in the early rounds, we suppose that triple programming is better than
pair programming when programmers have no knowledge of the problem at
all. The curve will appear as in Figure 6.4a. The curve becomes a rather
straight line. This appears to contradict pattern (1). To match our pattern (1) as
shown in Figure 6.4b, we can see that triple programming compared with pair
programming is less productive.

Now that pair programming and solo programming are understood
better, we continue to move forward in our efforts to design a rhythm using
these two software practices.

—e—Individual
-=-Pair
—+Triple

Number of Days
o = N W~ 00 O N

8‘ Number of Rounds

—+— Individual
—— Pair
—— Triple

Number of Days
o = N o:_/j/m o N

8. Number of Rounds

(b)

FIGURE 6.4 Speculated curves for (a) productive and (b) unproductive triple programming.

RHYTHM: PAIR-SOLO-PAIR-SOLO 179

6.3 RHYTHM: PAIR-SOLO-PAIR-SOLO

In eXtreme programming, all production code must be written by pairs of
programmers. Individuals can write prototype code for a feasibility study.
However, in eXtreme programming, any code not written in pairs must be
discarded. This approach appears to contradict what we did in software
development in 1996. At that time, we were asked to pair to explore the
functions of PowerBuilder 1.0. After 2 weeks, we learned the tool well enough,
knowing the best way for us to manage a database and develop graphical user
interfaces (GUIs). Everything then got back to normal and we returned to
working in our own cubicles. Occasionally, we paired when we were haunted
by hard-to-kill problems.

Not all work is pair programming. Pair programming is a heteronym. In
eXtreme programming what pair programming does has a rhythm: test first—
code-refactor, whereas the rhythm we normally beat out is design—code—test.
Two or more rhythms are often playing simultaneously. We will talk about
how to compose the pair-solo rhythm with the usual method of program-
ming: design—code-test. Although combining rhythms may produce differ-
ent effects, the principle behind how we compose the pair—solo rhythm (i.e.,
when a number of software practices work) can still be applicable to many
others.

6.3.1 Persistence

Anyone who has learned how to play the piano knows that touching the
right key at the right time and continuing to do it right are two separate
things. Understanding whether pair programming is productive, we also need
to consider the difficulty of sustaining pair programming implementation.

As mentioned in Chapter 1, the in—out diagram helps us analyze how
easily we can adopt a practice or rhythm. However, starting them does not
mean that we can easily continue to do so. Often, this requires a discipline.
How difficult it is for the team to sustain is very important for rhythms. The
in—out diagram in Figure 6.5 illustrates that single pair programming is easy
to start practicing. However, to sustain it depends on more factors.

Most of us will talk to a driver while they are driving. When a driver has
just learned how to drive they will probably tell you that they need to
concentrate. But an experienced driver on a routine path is happy with an
entertaining traveling companion. Driving is a piece of cake. Their minds are
now doing two things: chatting and driving.

Among many other things, the problem with sustaining pair program-
ming can come from a program itself. It is rare that every part of a program is

180 REPEAT PROGRAMMING

Easy-to- | Difficult-
start | to-start

Solo Easy-to-
Programming sustain
Sinele Pai Difficult-
h mg.e air to-
rogramming :

sustain

FIGURE 6.5 In-out diagram for analyzing solo programming and single pair
programming.

equally challenging; there are always easy portions. When a pair is working
on easy parts, the observer may get bored and can be easily distracted to chat
with his partner about something else. Focus is lost. The pair is doing two
things: chatting for fun and programming for work. In many cases, the driver
will not mind the observer taking his own break. Thus, pair programming is
then practiced intermittently, and this is why all-the-time single pair pro-
gramming is hard to sustain (see Figure 6.6).

The program task is not the only problem with sustaining pair program-
ming. It also depends on the working environment, project pressure, and
software development leadership. It is interesting that pair programming can
often end up as pair programming at will (or in need)—programmers pair up
when they need support.

In an empirical study, two novice programmers in a company, TCMS,
were selected to produce portions of an application for the verification of
payload hardware at TCMS in the Kennedy Space Center (Poff 2003). The
study lasted one month, and the data collected were compared with historical
data. Instructions were given to programmers that the successful and timely
development of the application was of primary importance; the experiment
was a secondary priority. Therefore, the programmers were left to decide how
often they would actually work together but were required to work as a pair at

~ ~ ~ ~ ~ Lo o}

Pair Pair Pair Pair

A

. .
b L2

FIGURE 6.6 Hard-to-sustain all-the-time single pair programming.

RHYTHM: PAIR-SOLO-PAIR-SOLO 181

Easy-to- | Difficult-
start | to-start

Pair

- ; Easy-to-
Programming tai
in Need SUSEATH
Sinele Pai Difficult-
gle e
: m:.e i to-
rogrammming .
sustain

FIGURE 6.7 Pair programming in need.

least 33% of the time. If they wished, they could work as a pair all the time. The
result was that this single pair worked as a pair around 50% of the time.

Figure 6.7 shows that pair programming in need is both easy to practice
and easy to sustain. However, we do not consider it a good software practice.
Itis ad hoc. Most importantly, it is not a rhythm. Moving from one practice to
another without planning is counterproductive. Without rhythms, the alter-
nating pair-solo programming appears to be uncontrolled and chaotic (see
Figure 6.8).

We would like to compose a rhythm that tells us when to change between
pair and solo for better programming.

6.3.2 Connection

On real-world software development projects, many programmers may pair
up at will (or in need) to seek assistance or to manage personal stress. This
cannot be considered a disciplined practice as there is no planning or guide-
lines to say when they should pair up and split off for better performance.
Repeat programming has shown us that the less experience a pair has, the
better the pair performs relative to the two similarly inexperienced singles
(see cartoon in Figure 6.9). A programming task can normally be divided into
anumber of subtasks, and many subtasks share a similar logic. It makes sense

~ N N o

Pair : Pair-
Solo ~Solo

FIGURE 6.8 Pair programming in need is not a rhythm.

182 REPEAT PROGRAMMING

How do we solve Shall we pair.
this puzzle faster?
@

|
Ahal We got a pattern. | do these three
There are five of them.
and you those twol

€
<

FIGURE 6.9 Using repeat programming to solve a puzzle.

for us to adopt pair programming to pilot the best breakup of a task and solo
programming to work on any subtask in which its logic has been well tested in
pairs.

It would be impractical to attempt to identify all such similarities and
complementarities of all subtasks at one time in pairs. To be effective and
pragmatic, programmers pair up to discover a few patterns and test them all.
Then they split off to work on subtasks with those tested patterns. This pairing
up and splitting off is repeated until the task is done. The following case, albeit
simplified, shows how to move with the pair—-solo rhythm.

RHYTHM: PAIR-SOLO-PAIR-SOLO 183

TABLE 6.1 Master Data Setup for an ERP System

GUI Creation Maintenance Inquiry
Product Insert into product_table Update product_table Select data from
values data set data product_table
Insert into price_table
values data
Customer insert into customer_ Update customer_table Select data from
table values data set data customer_table
Price Insert into price_table Update price_table set data Select data from
values data Update product_table set data price_table,

product_table

Inan ERP project, we were assigned to develop a module thathad anumber
of graphical user interfaces (GUIs) setting up several master data including
products, customers, and prices. We paired up and quickly learned that each
GUI involved specific tables (see the pseudo-SQL statements in Table 6.1).

Having patterns allows us to manage software complexity so that we can
apply the same logic to different GUIs. This helps us expedite our overall
software development because it makes little difference for either a pair or
two individuals to work on subtasks relevant to any pattern(s) that the pair
has discovered and tested. Nothing is given up for this movement. Bearing
this in mind, we as a pair notice that price GUI is required to retrieve data from
and update two tables; and product GUI involves inserting data into two
tables. They are two-table manipulations whereas the others are merely one-
table (see Figure 6.10). Aha! We make our first attempt to build product GUI
for creation, price GUI for maintenance, and price GUI for inquiry. The real
challenge is to develop not only the three work products but also the patterns
for building the other GUI with one-table logic such as a customer GUL.

Two Tables Logic One Tables Logic
Creation e Product GUI - e Customer GUI —
e Price GUI =
Maintenance ® Price GUI —1| ® Customer GUI —
e Price GUI -
Enquiry e Price GUI || @ Product GUI —
e Customer GUI —

— To adopt Solo Programming

L To adopt Pair Programming

FIGURE 6.10 Analysis of similarity.

184 REPEAT PROGRAMMING

iitix

i
|
o -
|
1

P TN
. Solo | Patterns of Field Checking Logic | *tomer GUI | Product GUI |~ Price GUI
Pair l l

Programmers + Programming = Svstems

FIGURE 6.11 Pair-solo rhythm at work.

After having completed these three programming subtasks, we feel
excited about our little achievements. We are confident of working on the
restin solo programming. We split off and code subtasks alone. On the basis of
your own experience, you may like to do unit tests in solo or in pair, but a
quick review in pair is a must. Once we have finished the subtasks, we pair up
again and continue to work on other things such as security logic and field
checking. Figure 6.11 illustrates how the alternation of pair and solo moves on
for building the GUIs.

The pair-solo rhythm directs our movement of collaboration. The rhythm
chart shown in Figure 6.12 describes the pair—solo rhythm. We start with pair
programming in which pairs work on design and identify patterns of logic
that demand more effort, and pair programming is a right approach to adopt.
The pair then split off to work on subtasks that are similar to the subtask that
they have previously worked on in pairs. To metamorphose into solo
programming depends on the contributions from pair programming. Next,
programmers pair up to review their work products. More effort is needed for
design and pilot execution. Thus, it should be achieved in pairs. Less
challenging jobs are then left to two individuals.

Consider a case in which the pair work out all the patterns and implement
each of them and then split off to work alone on the rest. In this case, there
seems to be just pair-then—solo rather than a rhythm as shown in Figure 6.12.
Pair-then—solo can be possible when the pair documents their work. Human
programmers can easily forget what they have done and need to refer to some

T s
4 [|
Pair I; Pair. L. Fair
N\ : Solo- Solo

FIGURE 6.12 Pair-solo rhythm.

RHYTHM: PAIR-SOLO-PAIR-SOLO 185

documentation; otherwise, two individuals will have to talk to each other
intermittently.

The pair—solo rhythm has not yet been played simultaneously with test-
driven development (TDD). We will explore the TDD rhythm in Chapter 9.

6.3.3 Motivation

The performance of a committed team is a product of ability, self-efficacy, and
progress demonstration. In certain situations when problems and solutions
are well known to programmers, pair programming can take as much time as
solo programming does; this doubles the effort. Fortunately, pair program-
ming in any case does not seem to produce lower-quality software than solo
programming does. Thus, two programmers in a pair offer a combination of
the experience of two people, and this undoubtedly increases their ability to
do the work. Self-efficacy is the expectation of performing well. Pair pro-
gramming facilities self-efficacy through pair pressure; a pair member does
not want to disappoint a partner. Pair pressure encourages the pair to plan
their time more wisely (Williams et al. 2000).

As for progress demonstration, people are better motivated when their
efforts can be physically seen as early and often as possible.” Sadly, work
products are invisible during software development. In pair programming, we
do not metaphorically interpret that early work progress is shown by the
participation in a pair’s discussion. Effective communications can indicate the
work progress, but it can be apparently irrelevant to how often or long a pair
talks.

Inherently, a rhythm through its beat (i.e., movement) “visualizes” work in
progress. For example, as in the pair-solo rhythm, the change from pair to solo
can be considered an intermediate target signaling that a pair has managed to
develop design patterns and to implement them once in pairs. Each change is
the completion of the intermediate target. This kind of progress demonstration
fosters a very positive attitude toward job achievement.

On day 1, a team leader who walks through spacetime (see Figure 6.13)
will see pairs talking about their assigned tasks. Again, depending on their
cultures and means of communication, the leader may hear them laugh or
dialectically talk, whisper, kvetch (complain habitually), “hai”® or similar. As

"The claim is supported by the observation that “virtually every individual learns at an
early age that you perform better on a task if you pay attention to it, exert effort on it,
and persist at it over time than if you do not do so” (Locke and Latham 1990, p. 11).

8In Japanese, “hai” means not only “Yes” but also “Uh-huh,” “I see,” or “Hmm.”
Therefore, Westerners are frequently confused by Japanese saying “yes” all the time
(Hiroshi 1997).

186 REPEAT PROGRAMMING

FIGURE 6.13 Walk along time to see the rhythm of splitting off and pairing up.

long as the team does not lose their focus, the leader should not bother about
this. The team leader strolls away and on day 2 the team may see one pair split
off. The leader thinks “Looks good!” The programmers are applying their
reusable patterns. On later days, the team will pair up to continue their work.
Their progress beats out the rhythm. After a month, the team leader has caught
the rhythm of the team and is now able to notice unusual cases if the rhythm is
out of beat: pairs are not split a long time or solos are working unexpectedly
long. This could be a signal that the team needs more support.

It is clear that paired programmers are glad to move on to solo program-
ming as their separation shows their achievements not only to others but also
to themselves. To master the complexity of problems through the understand-
ing of “similarity” and “complementarity,” they develop reusable patterns of
their own. The time when programmers are splitting off is a moment to enjoy a
cup of coffee after their hard work. It is also a time to share their experiences
with others and even their supervisor on how, working in pairs, they have
killed many birds with one stone. Perhaps, working with good software
practice without seeing anyone around does not encourage programmers.

An example of pair-solo rhythm in software development is illustrated in
Box 6.2 (see also Table 6.2).

TABLE 6.2 Experimental Project in Southern China

Huida Programmers

Item Measurement Description Pair Pair Single
1 Number of GUIs developed 7 6 2

2 Number of stored procedures written 15 9 5

3 Ratio 1.7 1.9 N/A?

“Not applicable.

RHYTHM: PAIR-SOLO-PAIR-SOLO 187

CASE STUDY (2005): SOFTWARE DEVELOPMENT IN CHINA

In southern China, Huida Technology Ltd. had seven technical staff providing
ERP solutions to their local customers. Two had 4 years’ experience and the
other less than one year. To better manage less experienced programmers, the
company was piloting the pair-solo rhythm on their Web-based CRM project.

After amonth, the company provided their measurementsto us (Table 6.2).
As the project was not an experiment, it is a matter of happenstance that there
were five staff available, so the use of a single programmer was not intended
to serve as a control group. The programmers appeared to develop more
(sub)modules in terms of stored procedures and GUI. From an academic
perspective, we are interested in a ratio, defined by the total time in solo
programming over the total time in pair programming which can be used to
compare with other team’s adoption of the pair-solo rhythm. For example,
Poff’s experiment on pair programming, which ended up with pair program-
ming at will, was about 1 (Poff 2003).

Supervisors’ Comments

The supervisors worked with those five programmers daily and knew them well.
Their comments on the process are of interest:

1. They found that they were able to spend less time supervising the pairs as
they tended to support and monitor themselves.

2. Coding standards were much better.

3. The pair-solo rhythm encouraged junior programmers to actively seek
design patterns for reuse. This has rarely been seen before as the pro-
grammers just wanted to complete the program on time, rather than
considering software reuse. Hitherto, it was common to see duplications
of logic in the junior programmer’s code as they had the habit of simply
cutting and pasting code.

We should be aware that superimposing another rhythm may break the
harmony. But it may also produce a synergy. The principle by which we
compose the pair-solo rhythm may be implemented flexibly so as to develop
a new rhythm for your workplace. In eXtreme programming, exchanging
partners with another pair supports “collective code ownership.” Unfortu-
nately, the timing of partner changing is an unresearched topic. On the basis
of pair-solo rhythm, we may replace splitting off with exchanging partners,
and the rhythm will be “pair—pair with exchanging partner—pair with
exchanging partner.” In this way, once a pattern is discovered by a pair,

188 REPEAT PROGRAMMING

they need to rotate partners with another pair to facilitate knowledge sharing.
Looking at a single rhythm for all development situations is not wise. Readers
should be careful to compose their own rhythms.

6.4 AN EXCEPTION THAT PROVES BROOKS’ LAW

According to the Brooks’ law, adding manpower to a late project makes it
even later.” This is not too difficult to understand as adding new members to a
team often means an increase in communication costs, the need for additional
training time, and time to reassign responsibilities and /or repartition a task.
All these factors together can outweigh the productivity gain from the
additional team members.

During the course of software development, a project team may encoun-
ter problems relating to variables such as product quality, budget control, and
project planning. Among these different problems, schedule slippage is most
easily noticeable. While it requires rigorous testing to identify defective
quality, every member of a team can tell how long a project has been late.
It probably is not difficult to convince anyone that, of all the problems,
schedule slippage is the problem most commonly encountered when man-
aging a project. In fact, the problem is more of how late a project is rather than
whether it is late. There is, as yet, no easy solution to such a problem.
Consciously or subconsciously, many project managers hope that Brooks’
law does not hold true in their projects. They hope that they can add people in
their team in exchange for a shorter completion time.'” What is truer than
Brooks’ law is the preference for believing what we want to believe!

There have been studies on how an increase in manpower may impact
factors such as communication costs and productivity showing that commu-
nication costs can be asymptotically proportional to the square of the number
of programmers'' or, if there exists an optimal number of people, above
which project time can be decreased only marginally. These studies are
concerned with communications, productivity, design complexity, optimi-
zation, and people management. Here, we suggest a different way to look at
Brooks’ law.

°A study shows that adding manpower to a late project can be very costly, but it does
not necessarily make it later (Abdel-Hamid and Madnick 1991). This statement is not
very relevant to our discussion here as long as it is held that adding manpower to a late
project does not shorten the completion time.

Men and months are not interchangeable units because partitioned tasks are not
totally independent in software development (Brooks 1995).

"The number of communication paths of channels for N programmers can be
computed as [Nx(N—1)]/2, that is, this is of order O(N?).

AN EXCEPTION THAT PROVES BROOKS’ LAW 189

To explain our observation, let us consider a simple example. Suppose
that an outsourced programmer in India promises to submit a program to her
manager in the United States in 4 weeks’ time. The project manager, Ralph,
would naturally plan to start the user acceptance testing in week 5.

One lovely morning, although the project has been a week behind
schedule, the programmer, Sita, is relaxing in a Mumbai café, when her
phonerings. Ralph, who is very worried about the progress, tries to explain to
Sita the terrible consequences of a late submission. Ralph would like to
introduce another developer there to speed up the work. This idea is rejected
as Sita thinks that it will only delay the project further.

By committing to the original one month schedule, Sita was only guessing
as to how long she would need to complete the program. Taking a number of
risk factors into account, a probability distribution function can be developed
(see Figure 6.14). There may be a 50% chance that she will complete the work
in week 4, and the chance of completing by week 6 may be 10%. The
cumulative probability that Ralph will receive the work by week 6 is therefore
95%. In this case, adding an additional developer may not make it faster as
there is already a 95% chance that the work will be finished by the following
week as long as all risk factors can be kept unchanged.

If Ralph knew the probability distribution, he would probably be willing
to wait another week for the program. Even though he might still be con-
cerned, he probably would only ask whether the probability distribution
function is still valid. If there were no other uncertainty factors and if all
known risk factors were managed, things would be regarded as under control
and the schedule would be regarded as more or less predictable!

What this story intends to convey is that all late projects are different. In
fact, there are two different ways of classifying late projects. There are late
projects that are simply late and there are late projects that are troubled and late.
In case of the former, risk factors originally anticipated may materialize. In

Probability
5+ 650+ 30+ 0+5 = 100%
0.5
/ ~——> Planned completion
0.3 -E.- X T » Simply late
TN K
0.1 i it e, SO

I I | I |
i 2 3 4 5 & T 8 9 Week
FIGURE 6.14 A project plan says that a task will be done by week 4; this actually might
mean that there is a 50-50 chance of completing it by then.

190 REPEAT PROGRAMMING

such a case, the probability distribution function of the project being on time
may remain valid. As long as a project team can keep their morale up, adding
manpower is just not of any value. The team may just need a pat on the back,
and everything can continue as planned.

For troubled-late projects, however, lateness (tardiness) may be the
consequence of something that is more serious. For example, changing of
requirements, insufficient user involvement, lack of executive support,
unrealistic project goals, and other factors can all be hidden behind the
noticeable result of lateness. In the most serious cases, these could lead to
project abandonment. Thus, a troubled-late project can radically change
the original probability distribution. Often, in such a situation, a project
manager is under great pressure and would like to do more than just add
additional manpower.

6.4.1 Low Morale

Troubled-late projects, as one can easily imagine, usually accompany low
morale and high stress. The low morale is a result of negative outcomes
despite a team’s hard work. Team members can be very worried and
frustrated about what might happen to both themselves and to the project
as a result of possible drastic actions that may be taken to alleviate problems
and ease difficult situations.

Although Brooks’ law is generally accepted by most people, many
programmers probably will admit to having been helped by some very
experienced developers at some point in time. In fact, this is particularly
the case when one finds oneself overwhelmed by the work on hand
and experiences low morale at work and is under great stress. A study
on CRM implementation reports that a project team with low morale, with
overall satisfaction graded at 2 out of 10, can quickly jump up to a rating of
5 or 6 whenever a new member joins the team (Anton and Petouhoff 2002).
If emotional support has such an impact on a CRM implementation’s
success, we believe it to be particularly important for troubled-late
projects.

Adding manpower is a way to boost morale. If team spirit can be kept
up, the team can work faster and better. However, is this something that is in
direct contradiction to Brooks’ law? No, probably not. With a team of such
low-morale members, a troubled-late project can be doomed for termina-
tion in the minds of these team members. Adding new members to a late
project may mean that the management is still interested in rescuing the
project. Even though it can complete the project even later, late is better than
never.

AN EXCEPTION THAT PROVES BROOKS’ LAW 191

6.4.2 Communication Costs

Brooks’ law assumes certain relationships between people and their com-
munications. One may wonder if there is an ideal situation in which Brook’s
law does not hold and in which we add manpower without adding to the costs
of training and of repartitioning tasks. Of course, project managers don’t
consciously follow laws. They are concerned only with making sure that their
projects are successful. Under pressure to perform and weighing up adding
new members as opposed to being removed from the project, many managers
of troubled-late projects would probably opt for the former. To minimize any
possible damage to an already late project, it is important that new members
be added to the project in the optimal way.

In eXtreme programming, there its a truck number criterion. If a project
fails when just one member got hit by a truck, then all members of the project
team are critical to the successes of a project. This is a very risky situation that
should be avoided.

However, a truck number is influenced by how programmers are orga-
nized and how tasks or responsibilities are assigned. To decide whether
progress can be made on a project, we need to know how many developers
can quickly take over each task. Here, we define the smallest such number to
be an extended truck number.

Tasks in software development are rarely independent. In Figure 6.15,
even though Liz is working on task D, she needs to find out, from other team
members at times, how other tasks such as task B are related to task D. Since
task B is assigned to one person only, Liz can talk only to John. If John is busy,
she has to wait.

Liz can continue to work if she does not need immediate answers to her
questions. However, if Liz has joined the team only recently, a quick response

John Mike Liz The way we look at truck number
i § [} is people allocation!
2 1 2 2
8 '8 The way we look at extended truck
A ! B C D number is task allocation!
SRRNpORt v

Extended truck number is 1

FIGURE 6.15 Extended truck number.

192 REPEAT PROGRAMMING

to her questions can be critical. Communication costs including calling time
and waiting time can be minimized if anyone in a team can give Liz answers to
all the questions she has immediately. To reduce the slope of a learning curve,
old team members must allocate time from their original schedule to train
new members. Thus, the higher the extended truck number, the less likely we
are to get information flow bottlenecks.

In pair programming, the extended truck number is at least 2. Imagine
that a new but experienced member is assigned to a pair. While an observer
discusses with the driver, he can spare time to brief a new member on
necessary background and progress to date. This should be seen as a factor
in calculating training costs and mentoring burden.

Adding more staff may require reorganization or reallocation of tasks. As
repartitioning an original task involves rework, effort previously made will
unavoidably go into the trash. Straightforwardly, dividing existing subtasks
into smaller ones appears to make sense if a subtask is divisible. Otherwise, on
repartitioning, you have to balance the time you need to rework the previous
task with the time you gain from the shorter completion time.

If all these issues can be dealt with, we stand a better chance of over-
throwing Brooks’ law.

6.4.3 Rhythm for Late Projects

Everything has its day. Briefly speaking, triple programming could be
unproductive when compared with pair programming. However, out of the
shadow of pair programming, triple programming has its place in real-world
applications. In triple programming, as more people are involved, there
will be a corresponding increase in communication overheads. In particular,
the number of communication channels would raise costs exponentially.
Intercommunication, in fact, can be considered the bottleneck of triple
programming.

Pair programmers who have not practiced triple programming may think
that there would be three communication channels (or paths) (Figure 6.16a).
This, in reality, may not be the case. The driver can be substantially distracted
by the two observers’ discussions and or by conflicts between them. If three
people are to work together, they have to work rhythmically; that is, their
activities should be planned and coordinated.

In triple programming, we introduce a new role for a programmer, called
a moderator, who coordinates the communications between the driver and the
observer, who, basically, do not talk to each other. The moderator, like a
bridge across two heads, not only communicates to the driver and thinks
strategically, but also discusses ideas with the observer sitting beside her.

AN EXCEPTION THAT PROVES BROOKS’ LAW 193

i Driver i Observer

T Newcomer - Communication Channel

e T =
A A i— i
P — r{

(a)

(c)
(b)

FIGURE 6.16 Communication channels (or paths) in triple Programming: (a) unfeasible;
(b) feasible but crowded; (c) feasible.

In the case of adding a new person to a pair, the pair will be either the
driver or the moderator and the new member can only be the observer. This
can ensure that there are just two communication channels (see Figures 6.16b
and 6.16c), and this can help reduce communication costs. Physically, to
facilitate their working together, a larger liquid crystal display (LCD) can be
used to enable the three people working together to more easily view the
screen contents (see Figure 6.16b). From an ergonomic perspective, three
peoplesitting close to each other, talking and working together for a prolonged
period, can feel quite uncomfortable. Technically, Figure 6.16b is feasible, but it
could be too crowded for the programmers to work comfortably.

With remote desktop technology such as terminal servers, it is better for a
triple to sit in front of two machines (see Figure 6.16¢) so that the driver can
work on a single machine, with the other two sitting in front of another
machine accessing the driver’s computer. These two programmers can talk
very quietly so as not to distract the driver’s attention from programming. The
driver and the moderator can talk as usuals.

With the communications moderated, adding new members to pairs can
be pragmatic. Triple programming facilitates the transfer of necessary back-
ground knowledge so that the third programmer can become a contributing
member in a shorter time period. Adding new members in such a way can
have a smaller impact on task repartitioning.

Despite these advantages, it should be noted that triple programming
cannot be made very productive if it is adopted from the very beginning.
However, this is not the case if it is adopted to counter the negative impact of
introducing new members to a late-project team. By adopting triple program-
ming as described here, we can at least be sure that productivity will not

194 REPEAT PROGRAMMING

Friple

Triple T
1
Solo

Pair

AR
i

FIGURE 6.17 Rhythm of triple programming.

decrease. In fact, if splitting, a technique we propose here, is introduced to turn
triple into solo programming, productivity can be increased.

The idea of splitting is fairly simple as it is the same as the pair-solo
rhythm (see Figure 6.17). The triple, together, are looking for patterns of logic
and ways to break up remaining tasks. They share necessary background
knowledge with the new member, and therefore, Figure 6.18, which is a chart
showing a development rhythm for troubled-late projects, can apply.

The rhythm of triple programming may actually save a troubled-late
project and can allow Brooks’ law to be overcome to some extent. To manage
troubled-late projects, one may have to “burn the boat” even though this
could be an expensive thing to do. In addition to adopting this strategy,
determination and encouragement are also essential. One does not have to
be bothered by Brooks’ law. A project manager can ask for the necessary
human resources but should not practice anything ad hoc. Instead, she
should focus on a rhythm of her own and keep moving on towards the
project goals.

Software development rhythms are not development methodologies.
Unlike eXtreme programming, the development rhythms won’t tell you how
tobuild software from beginning to end. This also cannot be done for software
principles. For example, one may have mastered practices in eXtreme pro-
gramming that are useful in one’s organization and know how these practices
are interrelated. But, one may wonder what practices should be adopted
under a particular development rhythm.

Every software methodology has it own rhythm, and software develop-
ment rhythms are a way of understanding them all, regardless of whether
they are heavyweight, lightweight, rigorous, adaptive, static, dynamic,
just-in-time, schedule-based, fast-paced, slow-paced, people-focused, or

AN A
G o

FIGURE 6.18 Rhythm for late projects.

L I
g iTipic

1
[elilig L

REFERENCES 195

process-driven. A particular method for managing software projects will
work only for some of us. It is better for us to develop our own unique
situation based on some guiding principles:

Fair is foul and foul is fair.

REFERENCES

Abdel-Hamid T and Madnick S. Software Project Dynamics: An Integrated Approach.
Upper Saddle River, NJ: Prentice-Hall; 1991.

Anton] and Petouhoff NL. Customer Relationship Management: The Bottom Line to
Optimizing Your ROI. Upper Saddle River, NJ: Prentice-Hall; 2002.

Arisholm E, Gallis H, Dyba T, and Sjeberg D. Evaluating pair programming with
respect to system complexity and programmer expertise. IEEE Transactions on
Software Engineering 2007; 33 (22):65-86.

Brooks FP. The Mythical Man-month. Reading, MA: Addison-Wesley; 1995.

Cockburn A. Crystal Clear: A Human-powered Methodology for Small Teams. Boston:
Addison-Wesley; 2005.

Constantine LL. Constantine on Peopleware. Englewood Cliffs, NJ: Yourdon Press; 1995.

Flor NV. Side-by-side collaboration: a case study. International Journal of Human
Computer Studies 1998; 49 (3):201-222.

Gardner H. Frames of Mind. 2nd ed. New York: Basic Books; 1993.

Gardner H. Extraordinary Minds. New York: Basic Books; 1997.

Haslam A and Reicher S. The Experiment (videorecording). London: BBC Worldwide;
2002.

Herzberg F. One more time: How do you motivate employees? Harvard Business Review
Jan. 2003; pp. 87-96.

Hiroshi K. The Inscrutable Japanese: 41 Cultural Puzzles that Foreigners Have on the
Japanese. Tokyo: Kodansha International; 1997.

Locke EA and Latham GP. A Theory of Goal and Task Performance. Upper Saddle River,
NJ: Prentice-Hall; 1990.

Lui KM and Chan KCC. Pair programming productivity: novice-novice vs. expert-
expert. International Journal of Human Computer Studies 2006; 64:915-925.

Miiller MM. Are reviews an alternative to pair programming? Empirical Software
Engineering 2004, 9 (4):335-351.

Nawrocki] and Wojciechowski A. Experimental evaluation of pair programming.
Proceedings of the 12th European Software Control and Metrics Conference 2001.
pp- 269-276.

Nosek JT. The case for collaborative programming. Communications of the ACM 1998;
41 (3):105-108.

196 REPEAT PROGRAMMING

Poff MA. Pair Programming to Facilitate the Training of Newly-Hired Programmers. MSc
thesis. Florida Institute of Technology; 2003.

Stephens M and Rosenberg D. Extreme Programming Refactored: The Case Against XP.
Berlin: Springer; 2003.

Williams L and Kessler R. Pair Programming Illuminated. Boston: Addison-Wesley;
2003.

Williams L, Kessler R, Cunningham W, and Jeffries R. Strengthening the case for pair
programming. IEEE Software 2000; 17 (4):19-25.

Zimbardo PG. Quiet Rage (videorecording, 1971): The Stanford prison study/Stanford
Instructional Television Network; production services provided by Stanford
Center for Professional Development Publisher: Philip G. Zimbardo, Inc., The
Board of Trustees of Leland Stanford Junior University, 1992.

Zimbardo PG, The Lucifer Effect. London: Ebury Press; 2007.

AGILE TEAMING

One step by 100 people is better than 100 steps by one person.
—Koichr TsukamoTo'

A college rugby team from Uruguay flew to Chile for a match. The plane
crashed into the frozen Andes Mountains. Of the 45 passengers on the plane,
27 survived the crash but now they faced the problem of surviving in the
freezing mountains. The most important survival decisions were made by the
group, so it was a collective decision when the group decided to eat the flesh
from the bodies of their dead friends. And it was a group brainstorm that
produced an insulated sleeping bag to keep them alive through the cold
nights. On December 22, 1972, after 72 brutal days, they were rescued, but
only 16 had survived (Parrado and Rause 1998).

The group was isolated from the outside world. They had to reach
consensus with little time to test and evaluate their ideas. The group mem-
bers, as human beings, were instinctively motivated to survive, but that does
not mean that they shared a common belief. For example, although everyone
wanted to survive, some did not think that they would be rescued while some
firmly believed they would just survive.

When a group of people share a common belief, they can be totally
devoted to the group. In fact, it can be less important whether the belief is
understandable to the outsider. Depending on how a group is established,

! Quoted in Eppler.

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright © 2008 John Wiley & Sons, Inc.

197

198 AGILE TEAMING

motivated, and led, the team members could be totally committed to achiev-
ing it. Let us look at another story.

In 1997 there were 39 people who belonged to a religious group and
together they ran a successful Website design company. One spring morning,
the team all put on brand-new running shoes and gathered in a rented
house in a suburb of San Diego. These people passionately believed their
group leader’s claim that extraterrestrials from the “kingdom of heaven” were
monitoring Earth with a view to taking a select part of humanity away to
salvation. The group had long been preparing for the day when a spacecraft,
concealed by the Hale-Bopp comet, would come to take them off to heaven.
But the only way to get a boarding pass for the aliens’ craft was to free
their souls from the bodies. So on March 27, 1997 all 39 of those educated and
otherwise average people took overdoses of sleeping pills and very soon after
they were indeed freed from their bodies (Giddens et al. 2006).

Whenever we hear this kind of news, “teaming” comes to mind. We can
see that the team has goals, resources, plans, and timeframes; it is just like
running a project. It involves member motivation (i.e., what they are looking
forin a team), team organization (i.e., how the group interlocks different roles
played by the members that guides the group behavior), a disciplined
methodology (i.e., how to die or survive), and so on. It also includes one
significant element at the group level: a can-do attitude.

Software teaming is multidisciplinary, involving psychology, sociology,
group dynamics, project management, and software engineering. Experts in
different areas on team collaboration, however, are exploring more or less the
same things. Psychologists and sociologists have reported their studies
on the behavior of software project teams (Sonnentag 2002; Yeh and Chou
2005). Unfortunately, teaming is an area less popular in software engineer-
ing, although this topic is almost as old as the first Unix system by Ed
Thompson.

When software products can be produced only by more than one, we
have to deal with teaming. An early study of software teaming is Baker’s chief
programmer teams (1972), a model of teaming in which developers are divided
into chief programmers who are responsible for all development tasks,
backup programmers whose role is to act as assistants to the chief program-
mers, and a librarian whose job is to support all the clerical functions
associated with a project.

Yet, although teaming may have been soft-pedaled, issues of group
dynamics are always addressed in traditional software methods/models
[e.g., team software process (TSP) and CMMI]. A wall of project management
books have discussed the establishment of a “project charter” at the inception
of a project that is designed to define roles and responsibilities.

AGILE TEAMING 199

Agile software development also emphasizes people, and claims to bring
concerns with accountability, responsibility, and transparency (Beck and
Andres 2005) back into the discussion of software development. How do
TSP, CMM], and so on, differ from what agile software development tells us?
Are they (i.e., agilist and nonagilist) just saying the same thing from different
perspectives? Our answer is “No.”

A process is a collection of specific activities that together can be used to
achieve the process objectives. Many software processes have been practically
structured with the idea that developers are well coordinated so that activities
for acting, planning, doing, and checking are controlled. As such, software
processes should be designed to coordinate a number of activities and to
assign responsibilities to developers.

Agile software development realizes that it is not possible to execute
plans with perfect accuracy because of the uncertainties that will arise within
a team and working on a software project. Therefore, people in a team should
closely collaborate on the same set of tasks to ensure a more accurate
estimation of the whole team’s performance and software capability.

In short, the emphasis in traditional software development is more on
task coordination, with allocation of the right amount of tasks for each
developer, while agile software development focuses more on people collab-
oration for completing tasks. Now that people over process (i.e., focus on how
people collaborate) or process over people (i.e., focus on how tasks assigned to
people are better coordinated) are different approaches, two thorny issues are
arising: when either one works better and when either can be better used. Let
us look at a simple example.

Assume that you are running a project that can definitely be completed
much earlier before deadline. In this case, process over people or people over
process does not matter. You have plenty of time to manage any inaccuracy
and risk that may materialize.

Yet, if the deadline is suddenly brought forward, how do people react?
Process over people is inflexible, as the order among processes or activities is
established under an assumption of no change. It is people over process that
could handle the problem of this kind. When will there be such unexpectedly
dramatic events during software projects? Our opinion would be that many
software projects that have been changing from promising to failing always
occur unexpectedly. Later in this chapter, when we are dealing with failing
software projects, we will manage troubles better using a people-over-process
approach.

Unfortunately, teaming is a difficult topic and it is difficult to put its
theories into action. In Winning, Jack Welch, CEO of General Electric for 20
years, argues his preference for a flat organization (see Figure 7.1) because it

200 AGILE TEAMING

¢
OOO000000OO0

Large Flat versus More Layers

FIGURE 7.1 “Managers should have 10 direct reports at the minimum” (Welch and
Welch 2003).

allows for more talented subordinates to be directly involved in decisionmak-
ing. This is an example of people over process (or people before process).

Nowadays, software projects are so large and complex that they are
beyond an individual’s efforts alone to complete. As long as development and
implementation requires more than one person, there is the need for teaming.
Excellent teaming is just sufficient to successfully run a software project. When
we intend to rescue troubled-late projects, teaming plays a dominant role in
dealing with such projects. Teaming with a sponsor from top management is a
necessary condition.

7.1 PROJECT TEAMS

Some software managers who are merely interested in project data and
deliverables may consider themselves result-oriented persons. However, it
is people not project data who do the job and get the result. Failing to
understanding people and the development paradigms that they adopt will
not provide any proven evidence that the same team always delivers quality
software on time and within budget. Both people and results should be
equally important. However, when people are working as a team to deliver
the results, there is the need to first learn more about how the team works.
Obviously, software development will never make teaming dispensable.
One of the authors attended a Hewlett-packard (HP) industrial seminar
in 1997 and talked to a person who was the head of the IT department of a
retail chain. Since the author was working as project leader in a large
supermarket chain in Hong Kong, he talked to and shared project experiences

PROJECT TEAMS 201

with this IT person who said it was good to be a department head. Certainly,
as far as money is concerned, the salary package for the head of IT canbe 2 or 3
times higher than that of a project manager. But what this IT guy was trying to
say was that heading a departmental team would be much easier than running
a software project.

When members are in a permanent team according to an organizational
chart, its manager (e.g., department head) has absolute power and can
manipulate rewards and penalties in the work environment.

A project team can be temporarily established to achieve specific goals,
and teammates are often selected from different departments within an
organization, or from two or three software vendors. With that kind of project
team, there are two problems: (1) the project manager is expected to exercise
more personal power than positional power because he/she is often
regarded as one highly competitive person and should provide a good role
model for his/her team members, and (2) the project manager may not
have much power to take disciplinary action against problematic members
from other departments or companies. Such differences between managing
permanent teams and running project teams are where conflicts come
from.

In addition, while we may want to educate a project development team
and establish some sort of team culture, we must consider the project
schedule. Teams that are more permanent such as departmental teams are
easier to control, and longer timelines and greater team stability mean that
team development is not necessarily in conflict with work progress.

Even in a software company, a project team is established by selecting
programmers from different specialties in the company. Such a heteroge-
neous team will introduce conflicts as there are many ways to build software.
When the company is sizable, team members may not know each other well. It
takes time for us to understand them. It is not easy to manage the heteroge-
neous teams with their differences in personalities and to resolve conflicts
among people’s ideas. In some cases, some programmers, particularly ex-
perts, are often involved in many projects rather than just one. In a worst-case
scenario, they may just show up in a project meeting to report their work
progress. For sure, the team members hardly establish a close rapport with
one another and they become increasingly coordinated to achieve their
assigned tasks. The team ends up practicing process over people.

In a project that involves partnership, it is not unusual for project team
members to be drawn from two companies. In this case we should be cautious
about cultural differences between the two organizations. Potential team
members should not assume that the way things are done in their organiza-
tion must be the way things are done in the combined team. In particular,

202 AGILE TEAMING

Project Success

Teamin

People

FIGURE 7.2 People are the foundations of software projects.

people from different areas should take the time to agree with practices that
should be adopted before tasks are undertaken.

Project teams have their own dynamics and lifecycles. People are the most
fundamental layer of program tasks and programming paradigms. A project
must be built on the base of a strong team (see Figure 7.2). The path to success
involves a series of tasks that the team must finish. However, it is not enough
just to get the tasks done. Methodology and tasks are interrelated. The team
must use good methods to complete all the tasks. By “good methods”, we
mean that there should be working rhythms that are right for the team to
ensure that values to people and software are delivered.

7.1.1 Self-Organizing Teams

The software requirements can be written in a stack of user stories, each of
which has one or a few features. A small software team can pick up some user
stories that can be completed within 30 days. These 30 days constitute a
noninterrupted iteration that is called a “sprint.” During the sprint, the team is
totally self-organizing and can do whatever is necessary to get the work done.
When the sprint ends, they give a presentation to their users of what they did.
The users may change the features after a review. Afterward, the team picks
up more features and enters another sprint of 30-days. This iterative process
continues until the application is done. But it is not without problems.
Self-organizing teams can be a risky practice if the team members do not
know how to organize themselves to maximize productivity. Team decisions

PROJECT TEAMS 203

3 Days M |
0 ' J)

FIGURE 7.3 A rhythm of 30 days—review.

as to how to combine their efforts to solve a problem are a discretionary task
(see Chapter 5). To play it safe, there should be a coach to guide the self-
organizing teams.

Fortunately, the risk can be lower when the iteration is short. Even if a
user is not satisfied with the work or wants to make substantial changes
leading to a total loss of all work done to that point, the team will still lose only
30 days (Schwaber and Beedle 2001).

During a sprint, users cannot interrupt the team. The user can change
their requirements only after the 30 days. Team organization in the first sprint
is risky. However, if we look at each sprint flowing as a rhythm, it is not. We
can see the rhythm after two or three sprints. The rhythm of each sprint tells us
what the team will achieve. When the team runs into difficulties and needs
help, a short daily meeting, a scrum (scrummage) meeting, is a good problem-
solving device.

Such a self-organizing team is normally small and very rhythmic
(Figure 7.3), which fits well with agile teaming. Later we will discuss agile
teaming in which the structure of a team is dynamic so as to respond easily to
projectissues and changes. We will see that a self-organizing team can achieve
agile teaming as long as the team can organize itself to react to changes.

7.1.2 Teams in a Team

A traditional team structure is like a tree diagram (see Figure 7.4). Team
members often possess complementary skills. Mutual education and skill-
sharing is a possible outcome. In many real situations, to make a team
productive by skill sharing is challenging. For example, one is in finding
ways to promote the sharing of knowledge and experience. Sharing experi-
ence that does not help meet a project’s deadline around the corner can be
time-wasting. Another problem is in ensuring that theoretically complemen-
tary team member skills do in fact work together in a complementary way.
Complementary skills are not freebies. There are associated communication
overheads as team members need to understand one another.

As pointed out in our earlier discussion of pair programming, two people
can work together as a single unit to collaborate on the same task (see
Figure 7.5). This practice not only sets the scene for complementary skill use

204 AGILE TEAMING

FIGURE 7.4 Traditional team structure.

but also reduces the associated communication overhead. The structure (see
Figure 7.5) must be dynamic because the sharing of knowledge and experi-
ence is an outcome of well-timed pair rotations.

This is a team-in—team approach, which is different from arrangements
where a team is composed of subteams. Each team in a team-in-team
approach exists for just a short period and exchanges partners with other
teams. Teams can organize their own partner rotations, but this doesn’t
always produce ideal outcomes. It is not reasonable to expect that all teams
will perform equally or ideally.

When members of a team rotate their partners with “right” timing, they
will soon feel their rhythms (shown Figure 7.6) and get an idea of the strengths
of each pair. But this depends on how long the self-organizing team takes to
get its timing. In some cases, it may just create an arrhythmic atmosphere in
the workplace (see Figure 7.7).

Rotate

FIGURE 7.5 Dynamic team structure for team pair programming.

PROJECT TEAMS 205

l 0
F Pairing =|

FIGURE 7.6 Rotating makes team structure dynamic.

7.1.3 Project Team Composition

Any project must start with the establishment of a project team in which the
members are selected from different positions in major functional units of the
company. Such heterogeneity in a team will, on one hand, contribute to a staff
member’s functional expertise in reengineering a business process and
designing an integrated system, and, on the other hand, cause conflicts of
interest among different functional departments, which to some extent may
lead to scheduling slippage, failure to keep costs within budget, and low
morale among team members (Yeh and Chou 2005).

Suppose that we won a CRM contract. CRM applications are a bit more
company-oriented than industry-driven. Where one company sees attractive
customers, another may see only the ugly. The Gartner Group says that many
CRM applications are tailor-designed and are built in-house. This kind of
project needs technical programmers and different staff.

We may need to form a project team to build a CRM system by finding the
right people from one (probably more) organization so that the whole team
have good domain knowledge for that industry, the company’s unique
operations, and technical programming. There are two simple ways to
compose our team: functional diversity and positional diversity.

Functional diversity is when team members are selected from different
functional areas (e.g., sales and marketing, finance, distribution, information
systems). Functional diversity has been negatively associated with team
performance because people from different backgrounds may bring irresolv-
able viewpoints to a team and a project manager will have to manage their
conflicts.

Positional diversity is when team members are selected from different
ranks within an organization. Positional diversity has a positive influence on
team performance because people at the junior level appreciate the opportu-
nity to engage at the level of strategy and planning with more experienced

o)

F afation ﬂ
~oOtaton P 1
g EdIrng

FIGURE 7.7 Arrhythmatic pairing.

206 AGILE TEAMING

Team

Composition A

Organization
Structure

Team

Composition B .',:":

FIGURE 7.8 Team B is better than Team Al

staff, while senior staff are exposed to issues related to more operational
problems. This way may lead to lower levels of conflict within a team and
greater effectiveness.

We might want to try to use positional diversity to lessen conflicts caused
by different functional perspectives (i.e., functional diversity), to get people at
different levels from different divisions (see Figure 7.8).

7.1.4 Team Lifecycle versus Learning Curve

A project plan that shows the tasks of a project team and project charter also
records roles and responsibilities. But this may not address one critical point:
how productive a team can be. The productivity of a group of people, even
though they form a team with common project goals, relies on communication
and respect to develop its structure. This grows over time. Let us start with a
rhythm for team formation.

Once a project team has been established, it moves through four stages to
reach its optimal level of productivity (Figure 7.9). In the formation phase,
group members start to orient toward one another. Then conflict emerges. It
subsides when the group becomes more structured. Norms and cultures
emerge in the structure phase. Finally, in the production phase, the group
moves beyond disagreement and concentrates on the work to be done.

Strictly speaking, the Tuckman model can be arrhythmic if we don’t get
the right timing for a team we are building. Each team may take a different
amount of time to pass through the cycle regardless of whether it is a big team

PROJECT TEAMS 207

Increasing unity, cohesion, and productivity

Production

Structure

Conflict

Formation Dissolution

» Time

FIGURE 7.9 A Lifecycle of a project team by Tuckman’s model (1965).

or a team of just two members. Thus, the model alone does not give us the
details of how to build a productive team. The team has to get its rhythm at
each phase (see Figure 7.10).

For example, expecting two people to sit down and immediately make
pair programming productive is unrealistic. Even a team of two requires time
to communicate on how to collaborate. As in pair programming, this period is
referred to as the “pair jelling” time (Williams et al. 1965).

The Tuckman model has a relationship with a project cycle. When the
project lifecycle is shorter than the time that a project team requires to reach its
optimum productivity (i.e., the production phase of the Tuckman model), the
project manager will have to deal with more teaming problems than project
issues. This is not good at all (see Figure 7.11). It is preferable to select the right
members so that the team will reach their productivity in the fastest possible
time. In addition, we should also try some warmup exercises and cooperative
games to facilitate team building.

In many software projects, a newly established team needs to learn new
skills, such as software tools, development languages, and domain knowl-
edge. Depending on the team’s experience, its learning curve can vary.
Suppose that a learning curve over project time for a team can have three
possible scenarios as depicted in Figure 7.12.

No team has complete knowledge about any software project. Often, they
have to learn new skills or acquire project-relevant knowledge. Throughout a
project cycle, we may expect that project tasks will demand different skills

—— Production
onflict_—structure

[
Formation- Dissotution

FIGURE 7.10 Rhythm for Tuckman’s model.

208 AGILE TEAMING

Increasing unity, cohesion, and productivity
A

Production Stage

|t ;‘
|‘ V‘

» Time
*—— ProjectA >
Start End
——— Project B —»
Start End

FIGURE 7.11 The worst-case scenario would be project B’s lifecycle being much
shorter than the time to reach the team’s production stage.

over time, and so the learning curve-project skill demand curve will not rise
regularly and irresistibly but will rise and fall over time.

Learning speed varies with each team and project. Ideally, a team
gains the necessary skills quickly and is capable of performing the most
challenging time- and skill-demanding development tasks well before
they arise, at the apex of the project cycle (see learning curve A in
Figure 7.12).

If the learning pace lags behind the project cycle, team productivity
will not reach the level required by the project cycle until the end of the
project, resulting in a waste of resources (see learning curve C in Figure 7.12).
This is the worst—case scenario, and the project is not expected to go
smoothly.

Skills Level

Learning Curve A Learning Curve B

Learning Curve C

Skills Demands

Time

|_Project Cycle !

1
Project Start Project End

FIGURE 7.12 Learning curves versus project skills demands.

PRODUCTIVITY 209

Training is not the same as learning. We can provide extensive training to
our team, but when or whether they acquire the skills and knowledge to
contribute to a project is another story. For this reason, teams should start with
enough experience rather than trying to train everybody on the job. Reliance
on the learning curve should be avoided.

Despite the importance of all of these factors—team performance,
learning curve, and project cycle—they are never reflected in a project
plan.

7.2 PRODUCTIVITY

Low or below-target productivity is always a problem in software develop-
ment, yet itis not always easy to identify its sources, in part because the factors
of productivity are often intangible and hard to measure. Even if a factor has
been identified, there are difficulties in isolating and influencing it. Produc-
tivity in software development is not, as in manufacturing, a relatively simple
matter of machine capacity and labor-hours. Programmers rarely complain
that their tools—the computers, for example—affect their programming
speed. Rather, productivity in software development is a function of factors
that are difficult to identify, measure, or motivate; for instance, human
intelligence and human experience.

The productivity of creative workers can be captive to personal factors.
Some work well in the day and others at night. Similarly, over an 8-hour
day, some may be more productive in the first four hours and less
productive thereafter. Imagine that two independent programs of the same
amount of workload need to be written. When one of the two is done in 4
hours, there is the expectation that the other will take no longer so that the
whole task will require a total of 8 hours. But experience tells us that this is
notnecessarily so. Any programmer who has worked hard for the first four
hours can be expected to be less productive for the next four hours.
However, two programmers may complete the two tasks in 8 man-hours.
This is because human productivity of writing code varies along working
hours—and this can be far more complicated for team productivity.

Team productivity in software development relates to how a team makes
use of their intelligence and experience so as to produce high-quality products
with less rework effort. A team’s organisation definitely affects productivity.
Although it is hard to tell how to reach the maximum productivity of a
software team, we surely know of some teaming issues that will hurt a
software team’s productivity.

210 AGILE TEAMING

7.2.1 The Illusion of Productivity

Members of teams working on collective tasks generally think that their team is
more productive than other teams. Team members also feel that they are doing
more than their fair share—even those who are loafers. These two individual
illusions produce the group illusion of team productivity. At the same time,
people performing simple tasks often work harder over any period when they
are being watched and evaluated and do less when they are not being evaluated.

We can show the relationship between anonymity and social loafing by the
shouting test. There are large differences in how loudly people will shout in
pairs, shouting alone, and as part of six-person groups that shout at the same
time. In pairs and six-member groups, individuals worked at only 59% and
31%, respectively, of their individually expressed capacity. But when their
individual contributions were to be identified, their loudness increased by 69%
for individuals in pairs and by 61% for individuals in six-person groups. The
identification of a contribution encouraged people to make a contribution.

When teammates work anonymously and their contributions are not
easily identified or recognized, individual contributions fall. Even in a self-
organizing team, the efforts and contributions of individuals should be
appreciated and evaluated.

7.2.2 Collective Code Ownership

Team members can do less than their share of the work yet still share equally
inthe team’srewards. When people’s contributions are combined into a single
work product and itis difficult to measure individual contributions, some will
try to “free-ride.” And the more free riders there are perceived to be, the more
other team members will hold back, for fear of being “suckers” (Forsyth, 2003).
They will only get the average team reward, so why should they make more
than the average team effort? If we were writing “the 10 laws of teamwork,”
law 1 would have to be:

Workers in a team-rewarded team will eventually try to match their efforts
to the average of what they think their workmates are doing.

It is important to be able to identify contributions to collaborative work.
Therefore, collective code ownership, in which any programmers can make
any change to any part of the source code at any time, should not be
anonymous. We should be able to identify who has fixed bugs and updated
the system. If this is difficult in small software teams, have a day-end meeting
to let team members claim credit for their work.

PRODUCTIVITY 211

It is somewhat difficult to quantify individual contributions in pair
programming as two programmers sit side-by-side and collaborate on the
same task. Williams and Kessler 2000 suggested peer appraisal to provide a
clearer idea of whom to reward. This can provide valuable feedback, although
peer appraisal doesn’t always work well (Peiperl 2006).

Another straightforward way to quantify individual contributions is to
measure the pair’s effort by achievement. For example, A and B pair up and
spend a morning finishing nine function points, while C and D complete
another eight function points. Then in the afternoon, the pairs rotate and
exchange partners. This time A and C finish seven function points while B and
D finish six points. Each function point will be different but in the long run
such variances should be averaged out. A simple calculation will measure the
individual’s contributions:

A:947 =16
B:9+6 =15
C:8+7=15
D:8+6=14

If these ratios remain consistent, we may conclude that D is a free rider or
simply that the programmers have different abilities. This measure, albeit less
subjective, can just be one part of a diagnosis.

7.2.3 Accountability, Responsibility, and Transparency

The difference between responsibility and accountability is not that clear. For
example, a program was written by Colleen. Its testing was assigned to Jason,
so he had the responsibility. Jason tested the system and picked up all the
software bugs for Colleen to fix. Later on, when a customer called about a
hidden bug that had caused data loss, the boss may wrongly blame Jason for
doing nothing. This is an accountability issue.

Accountability is about holding people responsible for their actions. We
always need to improve accountability for results as in Jason’s case. In
software development, it is not enough to fully take responsibility for our
work tasks. Accountability is a connection between the responsible party and
a given outcome.

To deal with this situation, we have to consider another element,
transparency. This helps us understand what others are doing and vice
versa. We should communicate obligations and expected behavior in a
team even in collective tasks. Let the team know how their efforts are
recognized on one hand and what is known about social loafing on the
other hand.

212 AGILE TEAMING

It is important to be proactive in identifying and preventing teaming
problems. Accountability, responsibility and transparency provide the foun-
dations to make teams more productive.

7.3 PROBLEMS AND PROBLEM OWNERS

As early as 1998, and before the “agile manifesto,” Metes et al. had already
talked about agile teams. They are virtual teams that are trained to quickly
adapt themselves and their processes to change. Metes’s agile teams can also
be quickly formed and just as quickly disbanded when an initiative ends. In
addition, the team members collaborate in a distributed manner. Metes’
definition described it as teaming on demand (Metes et al. 1996).

Software teams that adopt agile practices and thereby embrace changes
are closed to Metes’ definition, except that they may not be virtual at all. The
teams can be collocated and face-to-face in the workplace.

Here agile teaming is a little bit different. Agile teaming is a practice that
restructures a software team so as to maximize team performance or to
respond to serious project issues. While the project is ongoing, many things
can happen. There is no reason to think that the original team structure is
always suitable for solving every problem throughout a project’s lifecycle.

As agile teaming is considered to be a software practice, we may say that
any group that adopts agile software practices is an agile team. But this is not
to say that an agile team adopts the practice of agile teaming.

It is difficult to generalize about the root causes of many problems in
software projects. What appear to be causes of one problem may simply be the
symptoms of another. However, it is relatively easy to group an event or a
problem by type rather than to identify its cause. In this way, we can identify a
problem by its type and as having two dimensions: a process area dimension and
a functional module dimension. For example, a problem such as a user dis-
agreement with new report formats may correspond to three functional modules
but will correspond to only one process area: report writing development.

The process area and the functional module can link up with two types of
team structure. A team can be established according to the functional model as
shown in Figure 7.13. The drawback is the main source of task conflicts. A team can
also be structured with process areas. Many software development teams are
formed in this way; this team is usually composed of three or more subteams, each
of which is responsible for business requirements, development, and testing.

A two-dimensional matrix of process area and functional module can be
formed. Problem types can be identified in the matrix. For example, problem
A, as shown in Figure 7.13, involves both user acceptance test and report
development; problem B involves three functional modules.

PROBLEMS AND PROBLEM OWNERS 213

Functional Module
Module 1 Module 2 Module 3

C—

Process
Area 1

Process
Area 2

Process
Area 3

Process
Area 4

FIGURE 7.13 A matrix of process area and functional module.

When project problems are oriented to more functional modules than
process areas, the team structure should be organized by process areas so that
each problem will be managed by one subteam. For example, in problem B in
Figure 7.13, a team structure by functional module says nothing about which
subteam is responsible for dealing with problem B. However, when a team
structure is formed by process area, problem B belongs to the subteam of the
user acceptance test. The team and its subteams can concentrate on their
commitment to accountability, responsibility, and transparency in the way
the team manages and operates software projects.

For instance, consider the scenarios unfolding in Figure 7.14. The
message here is to avoid “nobody’s business” and “everybody’s business”;
and make sure that each project issue has just one owner.

7.3.1 Rhythm: Trouble-Restructuring

When a software project is making slow progress, sometimes even halting for
a while, and finally slipping behind schedule, that project is in deep trouble.
This trouble often comes with reworking something, as shown in Figure 7.15;
the team has lost its development rhythm.

Arrhythmic software projects have problems concerning either no own-
ers or too many owners. Agile teaming deals with this by restructuring the
teams so that they match the problem sets (see Figure 7.16).

There are limits on how often we can use agile teaming. For those teams
that are sizable and have been well-structured, we may be restructuring them
only once or twice. In this case, agile teaming is not considered as easy to
sustain.

214 AGILE TEAMING

Week 10

Who could be responsible
for the problem?

Amiessit

FIGURE 7.14 Problem ownership.

Although agile teaming can be used to resolve serious problems, as in
troubled-late software projects, some project leaders commonly use agile
teaming to maximize team productivity and to facilitate job rotation in an
iterative development method, tuning their team structure in review meet-
ings between two iterations. As we can see, for a self-organizing team it is
possible to change team structure to react to problems encountered previ-
ously in the review (see Figure 7.3). In this case, the practice is easy to start and
easy to sustain in the in—out diagram (see Figure 7.17).

N N o

= Rework g
7H_5‘10W Progress :I 1
Pause

FIGURE 7.15 “Trouble” rhythm.

PROBLEMS AND PROBLEM OWNERS 215

froubte = ; ﬂ
RESTTUCIUTING
FIGURE 7.16 Agile teaming rhythm.

Kent Beck said that we should keep a team workload constant
but gradually reduce the team size until there is no more wasted effort
(Beck and Andres 2005). What Beck advised was actually about agile teaming
adopted for a self-organizing team, to enable it to reach an optimum structure
and size that can lead to a highly productive team.

We know when to beat out the rhythm; but our next question is how to
beat the rhythm: agile teaming.

7.3.2 Teaming Principles

Agile teaming involves changing team structures in troubled projects, is not
without costs, and is best reserved for serious problems. The following are
some principles for executing agile teaming.

The importance of root cause analysis has been addressed in agile software
development management (Beck and Andres 2005), but learning from software
projectsis just as challenging as managing them. Project problems can be rooted
in a different combination of factors, such as programming issues, domain
knowledge, and human factors. Causes that are multifactorial and difficult to
define are not going to produce problems that are easy to fix.

Overcoming the temptation to think in terms of cause and effect is very
difficult for software managers who combine technical skills with an under-
standing of the organization across all functions from problem solving to

Easy-to- | Difficult-
start | to-start b

Agile
Teaming e
(Self- Easy-to
organizing sustain
Team)
Difficult-
to-
sustain

FIGURE 7.17 Agile teaming for self-organizing teams.

216 AGILE TEAMING

strategies. Instead of doing a lot of analyses, taking some exploratory action
such as agile teaming is suggested.

Principle 1: Exploratory action over heavy analysis.

Project managers seldom know much about technical implications.
Drawing incorrect conclusions about problems in IT projects can be danger-
ous. Executives who have stronger programming backgrounds tend to prefer
determining causality in a troubled software project and then immediately
taking remedial actions to rescue the project.

Rescue practice (1): In a troubled software project, executives should
concentrate on the process areas and functional modules where the
(technical /non-technical) problems show up rather than on where the
problems actually come from.

Many people focus on stepwise solutions. But we should find the right
problem owners for problems. Many software projects in the commercial
sector involve users over more than one department (e.g., writing ERP
applications) and / or sometimes over several organizations (i.e., supply chain
management). Thus, we have another principle behind agile teaming.

Principle 2: Problem owners over problems.

Many companies are in trouble with their supply chain systems. Most
difficulties stem from an uncoordinated and fragmented allocation of re-
sponsibility of the various supply chain activities over a number of functional
areas. But we often overlook a simple problem when in trouble. This is
because no one in the company is responsible for solving each supply chain
problem (Taylor 2002).

Similarly, we should ascertain who owns a problem rather than what the
problem could be. It makes sense that the project structure has gone wrong
when many project issues have no owner or more than one owner. It is
therefore important to fix the project structure in order to rescue a troubled
software project.

Rescue Practice (2): In a troubled software project, if there is no owner or
more than one owner, restructure the team so that for each problem
there is always one owner of each problem.

Management that ignores the complexity of software projects may
replace the project manager. They then need to be sure to put the right

FAILING PROJECTS RESCUED 217

person in charge because removing team leaders and members late in the life
of a project can be counterproductive as it means losing valuable experience.

Principle 3: Change people responsibilities as needed over their titles
responsibilities as planned.

Rather than asking a team leader to leave a software project, management
should continuously motivate the project manager but, meanwhile, narrow
that person’s responsibilities to a few particular areas.

Rescue Practice (3): In a troubled software project, senior management
should narrow down the responsibilities of the driving staff (e.g.,
project managers) so that they could focus on only one or two process
areas (or functional modules).

Management should assign a person of a senior rank to take over the
functional title of the project manager. The superior will be the project owner
(e.g., senior management). This resolves or relieves existing conflicts.

Principle 4: Collaboration over organization hierarchy.

To deal with a troubled project, it is advisable for management to sitin on
all regular meetings. This has three major benefits: (1) rebuilding team spirit,
(2) resolving any politics among team members, and (3) improving team
effectiveness by providing positional diversity.

Rescue Practice (4): In a troubled software project, management should
assign a person of a higher rank than the project manager to take the
chairperson role for each project meeting.

These principles conform to those of the agile manifesto. This is no
accident. Agile thinking provides a way to solve problems that are uncertain
and changing. Table 7.1 juxtaposes each principle with its related expression
in the agile manifesto.

7.4 TFAILING PROJECTS RESCUED

High failure rates have long been associated with software projects (Ewusi-
Mensha 1997), even though there are a number of postmortem studies on
abandoned software projects, key lessons learned from the successful soft-
ware projects, classifications of troubled projects, and advice on how to avoid
project failures by using risk management. However, these are of little help

218 AGILE TEAMING

TABLE 7.1 Principle for Agile Teaming Related to the Agile Manifesto

Principle for Agile Teaming Agile Manifesto
1 Exploratory action over heavy analysis Work product over
document
2 Problem owners over problems People over process

3 Change people responsibilities when needed over Change over planned
their position responsibilities as planned
4 Collaboration over organisation hierarchy Collaboration over contract

for dealing with failing or troubled late projects because we not only have to
take corrective actions but must also respond in a timely manner to many
project-related problems that we do not really know much about or how they
were developed. In fact, once the cause of a problem is understood, half the
battle is won, and solutions will be found.

In 2006, we were giving a presentation on rescuing software projects in
Finland. In the question/answer (Q/A) session, one audience member
suggested investing in project management tools, techniques, and training,
in the areas of teaming and risk control, saying that these would produce
substantial benefits in dealing with runaway projects. One woman in the
audience was very keen to share her experience on this and spoke up, saying,
“I have done lots of things, including risk management and project manage-
ment, to monitor and control my projects, but there are times where things can
still go unexpectedly wrong. I don’t know why.”

This is true. Sometimes we just don’t know why things won’t go accord-
ing to plan. These situations call for corrective action, which can be very
different from either preventive or detective action. All three of these are part
of a rhythmic problem management cycle: detection—correction—prevention.
When we are dealing with troubled late IT projects, bear in mind the following;

« Don’t play Sherlock Holmes. The famous sleuth had a prodigious eye for
detail and never missed a clue. But saving a failing project is a race
against the clock. You don’t have time for the unlikely and the obscure.

« Don’t believe everything project members tell you. Project members may
speak out of self-interest, rather than with the goal of identifying real
problems.

« Bad news always comes late. People are reluctant to report bad news in a
runaway software project.

« Project data may not be correct. Since software is intangible, measure-
ments for building software may not be used as reliable tools in
assessing the real status of a software project.

FAILING PROJECTS RESCUED 219

« No one wants to be fired. When the problem is a conflict of interest
between two parties, the situation can create political infighting. Every
one is afraid of bearing all the responsibilities at the end.

Teaming helps us act quickly. What is important is not what caused a
problem but who owns it.

7.4.1 Project Traffic Light Reporting

Managers may typically use any of a number of approaches to identify a
troubled project. One simple and useful project status reporting technique is
“traffic light reporting,” where status is reported as “green,” “yellow,” or “red,”
according to whether the project has met three basic project objectives of being
within budget, on schedule, and achieving function/performance ratios as
planned (Snow and Keil 2001).

Traffic light reporting has been used to rate business partners for many
Y2K readiness tracks. It provides a simple and intuitive way of communicat-
ing project status. However, what constitutes a green, yellow, or red state can
be variously defined in different organizations.

For any project, a review meeting will be held on a regular basis and a
project manager will report on the status of the assessment of the above-
mentioned three project objectives:

A green light means that all three objectives have been substantially met
to date. The project is on track.

A yellow light means that two of the three basic project objectives have
been substantially met to date; management involvement or resources
may be required to handle the problems before the next review.

A red light means that only one objective has been substantially met to
date. Senior management involvement is needed to deal with the
project problems. Projects that get a red light are defined as failing
projects rather than as “simply late projects.” A red light project may
eventually be abandoned, or it could be partially complete.

Traffic light reporting is intuitive for senior management. However, it is
not without problems. Suppose that every new project starts with a green light.
Ifthereisalong gap betweenmeetings, itis possible for the trafficlight to change
from green to red without passing through yellow. Therefore, we have to
carefully define the satisfaction of objectives in percentage terms to avoid a
sudden leap from safety to danger without getting yellow warning signs.

Now let us look at a real case rescued by agile teaming.

220 AGILE TEAMING

7.4.2 A Business Case

Jespersen was the managing director of KuDrink*, an international beverage
company with a presence in more than 100 countries. His background was in
law and he had taken part in many mergers and acquisitions in Laos,
Thailand, and China. He knew little about IT, but he knew that KuDrink’s
current IT project was in deep trouble.

In the beer industry, the use of “customer fund/outlet promotions” and
“free beer/discounts” constituted nearly 40% of the total annual costs,
implying that there should be a proper control over how these resources
were allocated, in particular to high-repeat customers.

The legacy application on IBM A/S400 in KuDrink could not provide
an analysis of past performance (e.g., profitability of operational transactions of
customers), which would provide a rational support for decisionmaking and
would serve as a baseline for judgment, so the KuDrink senior
management established a project goal that used a new application that could
handle rebates, customer sales contracts, logistic costs, promoter bonus, and
other requirements. This application would produce a profit-and-loss state-
ment for each customer. This would allow KuDrink to better allocate its
resources and determine the right level of service, pricing, and distribution.

7.4.3 Steering Committee Meeting

The project was running okay and was reported as green and yellow.
Jespersen did not attend any meeting until the traffic light turned red. The
original plan shown in Figure 7.18 (where the asterisks * denote time needed
torevise a project plan) indicated that the project should have been completed

2001 2002

Onginal Project Plan

1st Revision by Project Manager s

2nd Revision by Project Manager =

3rd Revision by Project Manager

Proposed Revised Plan by voting =

FIGURE 7.18 Project schedule.

*KuDrink is not the company’s real name.

FAILING PROJECTS RESCUED 221

in 7 months, from September 2001 to March 2002. The system was to go live on
April 1,2002. The project schedule was revised several times: in January, early
March, late March and May 2002.

The reported reason for extending the length of the project was that users
could not complete their assigned tasks on schedule, yet the users complained
about their heavy workload in producing lengthy documents and drawing
flow diagrams, and had also encountered unknown technical problems
during testing. Often the users reported that previous cases tested okay but
the same cases failed after the consultants fixed other problems. They felt
frustrated and lost confidence in the system.

The company’s finance director accused project managers of making
confusing and misleading comments relating to the potential issues of
“overexpectation of finance functionality and overused accruals.”

However, what stunned Jespersen was the idea of “project management
by democracy.” The project manager reported that she had asked all project
members to vote for the date of the system going live. She told everyone in the
team:

Before we move forward, I would like to have opinion polls. My role is to
set up the achievable goal for the project team; therefore, you must agree on
it. Our consensus is crucial. My philosophy is that we are our own enemies.
Many of us have lost faith in this project and we are losing our team spirit.
Quality must not be sacrificed for productivity. I will not give up quality.
However, you can make your own choice. Please select one of the go-live
dates and send it to me by email.

Here are their date candidates:

. August 1, 2002
. September 1, 2002
. October 1, 2002

. I cannot say, as it is unforeseen at this moment

= W N =

Jespersen thought that this sounded more like a spiritual speech than
project management. And it seemed to be just a technique to galvanize senior
management into accepting the difficulties. Evidence and data were pre-
sented, but how could Jespersen make a ruling? Defendants and prosecutors
had their reasons. Jespersen only knew that he was not a judge to decide on
these issues. Nevertheless, none of the so-called reasons would be good
enough for the board of directors.

222 AGILE TEAMING

7.4.4 Agile Teaming in Action

Jespersen applied a sort of development rhythm of agile teaming. He
thought of problems and problem owners and decided to put this thought
into action. He knew nothing about IT and hence did not bother to try to
understand the causes of the problems. What he looked at was not remedial
actions but the connection between the team structure and problem domains.

On June 1, 2002, Jespersen announced a restructure of the project team
from functional modules to process areas. The finance director was appointed
to assume all the responsibilities of user acceptance testing. The project
manager would be responsible only for data migration, but she still held the
title of project manager. One MIS guy would be in charge of all other technical
problems.

Surely, before the announcement, Jespersen already talked to those
key project members about his concept of team flexibility and personal
adaptability. He further explained that the project methodology was
inflexible to cope with unexpected challenges, and hence the project
team had to be restructured to overcome such inflexibility. Moreover, he
praised the hardworking project manager and asked her to support his
decision.

These three team leaders reported directly to the general manager. With
this structure, the team leaders managed their resources with the direct
support of the top management. A weekly meeting chaired by the general
manager was held as usual to report and monitor the progress of the
project.

A month later, Jespersen and the general manager further restructure the
team by splitting the technical area into two. A more experienced person was
fully responsible for the report writing, and the MIS programmer was
responsible just for technical server problems. Now four team leaders re-
ported to the general manager in the weekly meeting.

Agile teaming was adopted in this case to match the team structure with
the problem areas. The system with the original planned functionality went
live on September 1, 2002. After a month, the legacy system A /S400 stopped
production.

7.5 BEWARE OF IAGO

We would like to end this chapter by another real case to illustrate
that some software project failures are not because of development
rhythms, team structure, management support, software complexity,

BEWARE OF IAGO 223

risk management, or rapid changing requirements, but just one kind
of person. We call him or her “lago.” Unfortunately, we have no
hints as to how you can tell whether lago has joined your software
team.

On December 1, 2004, Brian, a senior IT manager with 10 years working
experience, joined a well-established pharmaceutical company in Asia. After
6 months, he and his subordinate, Dennis, were dismissed from their posts as
IT managers and an analyst programmer, Yvonne, was promoted to system
analyst.

Yvonne was around 30, was sociable, and got along with the other seven
colleagues except her supervisor, Dennis, who was in his late 30s. Other staff
thought Dennis was not really qualified to be the IT manager because they
knew more new technical stuff than he did. But, they did not conspire against
him.

On the first day, Brian could smell some problems with the team that was
made up of analyst programmers. There was no system analyst levels
between the IT manager and the programmers. As Brian was new, Yvonne
came to him and they talked about jobs and the company’s culture. Yvonne
did not mention that she did not get on well with Dennis. On the contrary, she
said Dennis was a nice guy.

The bomb started with a meeting in which company directors got
together to discuss project difficulties. Two analyst programmers absented
themselves from the meeting. This situation immediately embarrassed the
two IT managers. The human-relations (HR) manager was instructed to
interview every member in the department.

Yvonne managed to convince other colleagues to speak ill of both
Dennis and Brian because Dennis had given a list of names to Brian as part
of a plan to replace some staff in the department. They all complained about
the two IT managers when HR interviewed them. Meanwhile, Yvonne almost
won a chance to be promoted to project manager instead of system analyst.
One programmer who realized that he was being used for her promotion said
to Brian after he left the company: “Yvonne was manipulating the whole
game.”

Not all project team members positively contribute to a project or help
make it a success. At the worst, someone like Yvonne acts as an Iago in a
project, winning the friendship of a manager and offering advice but with
only his or her own interests in mind or perhaps even out of some animosity.
Anlagoina project is sly and acts like a friend but is not. In the end, we should
remember that not all project problems are to be found in the programming
code or the team structure.

224 AGILE TEAMING

O, beware, my lord of jealousy; It is the green-eyed monster which doth
mock The meat it feeds on.”
— OrHELLO, AcT III, ScenE III

REFERENCES

Baker FT. Chief programmer team management of production programming. IBM
Systems Journal 1972; 11 (No. 1):56-73.

Beck K and Andres C. Extreme Programming Explained. 2nd ed. Boston: Addison-
Wesley; 2005.

Eppler M. Management Mess-ups. Franklin Lakes, NJ: Career Press, 1997.

Ewusi-Mensha K. Software Development Failures: Anatomy of Abandoned Projects.
Cambridge, MA: MIT Press; 2003.

Forsyth DR. Group Dynamics. 4th ed. Belmont, CA: Thomson/Wadsworth; 2006.

Giddens A, Duneier M, and Appelbaum R. Introduction to Sociology. 2nd ed. New York:
Norton; 1996.

Metes G, Gundry], and Brahish P. Agile Networking: Competing through the Internet and
Intranets. Upper Saddle River, NJ: Prentice-Hall PTR; 1998.

Parrado N and Rause V. Miracle in the Andes: 72 Days on the Mountain and My Long Trek
Home. New York: Crown; 2006.

Peiperl M. Getting 360-degree feedback right. Harvard Business Review 2001; 79
(No. 1):177.

Schwaber K and Beedle M. Agile Software Development with Scrum. Upper Saddle River,
NJ: Prentice-Hall; 2002.

Sonnentag S. High performance and meeting participation: An observational study
in software design teams. Group Dynamics: Theory, Research and Practice 2001; 5
(No. 1):3-18.

Snow AP and Keil M. The challenge of accurate software project status reporting: A
two-stage model incorporating status errors. IEEE Transactions on Engineering
Management 2002; 49 (No. 4):491-504.

Taylor D. Supply Chains: A Manager’s Guide. Reading MA: Addison-Wesley; 2003.

Tuckman BW. Developmental sequence in small groups. Psychological Bulletin 1965;
63:384-399.

Williams LA, Kessler RR, Cunningham W, and Jeffries R. Strengthening the case for
pair programming. IEEE Software 2000; 17 (No. 4), 19-25.

Williams L and Kessler R. Pair Programming Illuminated. Boston: Addison-Wesley; 2003.
Welch J and Welch S. Winning. New York: HarperBusiness; 2005.

Yeh Y] and Chou HW. Team composition and learning behaviors in cross functional
teams. Social Behavior and Personality 2005; 33 (No. 3):391-402

% This was the villain lago’s persuasive warning to Shakespeare’s Othello against the
very jealousy, but it was just a means to hide Iago’s real intentions.

INCREMENTAL DESIGN

Programmers don’t design software; they make the computer work
for users.

In the early 1990s, many commercial PC applications such as accounting
packages and point-of-sales (POS) systems were written in Clipper or FoxPro.
They are standalone applications with facilities for data exchange. For
example, in the POS system, sales data were exported into a file, which
would be transferred from stores to the office over phone lines. The reverse
flow would be used to update price and product files from the office to stores.
Data exchange was not automated, so end users had to complete their day-
end operations to initiate data transfers. In practice, some end users may have
forgotten to do so, and the price and product masters on the POS became
outdated. The business operations could be in a mess. To secure our job, we
had no choice but to say that even a well-designed system needs user
cooperation.

Before long, the advance in Transmission Control Protocol/Internet
Protocol (TCP/IP) networking lowered the costs of data communications
and made system data transfer simpler. This led many management infor-
mation system (MIS) heads to think about how their information systems
could facilitate workflow collaboration, information sharing and real-time
availability. Software was modifiable. Now the only question would be how
much they had to pay to modify their existing systems that enabled multiuser
operations over a network. Their bottom line would be to pay nearly 50%
more than the original investment. Then, MIS guys picked up phones and
asked their vendor the amount. Straightforwardly, the vendor said, “I am

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright © 2008 John Wiley & Sons, Inc.

225

226 INCREMENTAL DESIGN

afraid that it is nothing about money. We will have to redevelop the system for
you!”

It was a bit hard to imagine why the vendor had to rebuild the system, just
because the system was not designed flexibly from the beginning! Some of
customers may have expressed disapproval of rebuilding as there should be
virtually no limitation to software modifications. But the vendor said that
“programming multiuser systems technically involves data locking, deadlock
handling, timeout to release resources, and user authorization.” Thus, we
have to change almost every part of the existing code related to data
manipulations. Besides, success in redesigning the system also very much
depends on the tool that we used to build it. If Clipper supported modular-
izing of crosscutting concerns as aspect-oriented programming suggests, it
would be easily to modify the system for the multiuser authority. In fact,
Clipper was dying rather than evolving.

Finally, concerning the application, the user interface should display
information differently depending on the role of the users. Many people just
did not quickly see that “multiuser” actually means that a system has different
authorization levels or roles to retrieve and update records. MIS managers
need to review their existing user requirements from A to Z.

It became clear that the interplay between programming issues, technol-
ogy availability (or constraints), and changes of user requirements dominates
our success in redesigning an existing system or developing a new system. To
meet the challenge of changing requirements, we should build software in
such a way that we are able to shorten the time our users take to go from
imagining what they want to understanding what they need by seeing a
prototype product.

8.1 MODELING AND PLANNING

Many software architects have given anumber of slightly different definitions
of software design. For software teams, software design means two things:
modeling and planning. Software design can be described as the general
arrangement of the different parts of software logic — what and how it will be
implemented and tested. Basically, we cannot complete our design tasks
without understanding the requirements. For example, in database applica-
tions, user requirements affect what and how we define the data model,
business mapping, screen layouts, and systemwide procedure calls.
Software design is also a process of deciding when different parts of the
system should be built. We can carefully plan our activities in order to
optimize our resource allocation in the whole project cycle. As mentioned

MODELING AND PLANNING 227

in Chapter 1, modeling and planning in developing software are not as tightly
connected as in building engineering products.

Now let us look at incremental design. As its name implies, this means to
design and develop software in a highly evolutionary manner. Incremental
design ties in with the first semantics of software design (i.e., modeling) as we
can always build new components, add on some features, modify old
components, or integrate them with others. However, incremental design
by nature should be highly iterative. It does not seem to follow traditional
project planning, in which, as best as we can, activities have been prioritized
far in advance so that resources will be optimally allocated.

8.1.1 Agile Planning

Traditional software project management tells us that we should try our best
to understand task dependences and estimate time. In addition, we should be
cautious about allocating resources: who will be responsible for a particular
task. All these elements would be reflected into a project plan. Furthermore,
we could calculate the critical path among all the tasks that must be completed
on schedule (see Section 5.2.6 on CPM).

When user requirements can be continuously collected for implementa-
tion, it may not be possible to develop a full plan for construction at one
particular stage as we did in the waterfall model. Moreover, in traditional
project management scheduling, the duration of each task is more complete
and less split over different time periods. Tasks are longer (days to weeks, but
not hours to days) and are less frequently repeated. When adopting incremen-
tal design, the tasks become much shorter and highly repetitive (see Figure 8.1).

Irrespective of the programming implementation, the amount of business
functionality is defined and then measured in a unit of logical user function,
which can be referred to as function points. When user requirements can be
divided into a number of blocks, each of which has few enough function
points that it can be done in a few days, we may easily prioritize these blocks
and incrementally build them.

More precisely, in agile software development, we briefly record user
requirements in a stack of cards (called “story cards” in eXtreme program-
ming or “product backlogs” in scrum) so that customers can prioritize the
story cards by moving them around and programmers can incrementally
build the system according to the order of the story cards (see Figure 8.2).

In order to estimate the programming effort required to build each story
card, we use an index scale ranging from 1 representing minimum effort to 5
representing maximum effort. The software team will pick up some story
cards to develop, and we can calculate the team’s velocity by the elapsed time

228 INCREMENTAL DESIGN

For all requirements

Data Modeling pzzzz7777777]
Building integrity logic AR

Testing ERRRRRRS

11—+ Time (day)

Progress

Data Modeling, ..., testing etc just
Jfor one piece of requirements

FIGURE 8.1 Traditional project planning versus incremental design.

over the sum of the indices as follows:

: elapsed time
V 1 =
elocity sum of indices

Think of software development as a journey and each story card as a road
segment. Then the index will be a measurement of the segment. To monitor
the team’s progress along the journey, we have to know how quickly the team
drives forward. Figure 8.3 illustrates this idea—the total development time is
the sum of the indices of each story card over the team velocity.

Customers write Programmers Customers
user stories estimate efforts decide priority
(1-5)

A Al M| c
B B | 3 @ | a
C C |4 G| B
D D |4 @ | b

FIGURE 8.2 Planning as part of software design.

MODELING AND PLANNING 229

Total Distance
Total Development Time = —————
Velocity

e

Development Team

iy Velocity

Total Distance

Estimate the distance of each section
as 1 — 5 units

FIGURE 8.3 Software development journey.

The team certainly has different development speeds. Thus, we may
prefer to set our iteration as a fixed short interval, say, a week. Our project
progress can then be easily tracked. At any moment, our customer may
change or add new features to the project and therefore the stack of outstand-
ing story cards does not always shrink. In addition, we may reestimate our
index for some story cards. As far as we can track the change in velocity, we
should be confident in managing the project and can predict more accurately
when we are likely to complete the project on the basis of our team velocity.
This management methodology, called agile project planning, is suitable for
incremental design (see Figure 8.4)

Incremental design, however, differs from what we know as tradi-
tional software development by module although both involve building a
system by dividing a whole system into smaller ones.

8.1.2 Design by Functional Modules

In the 1990s, enterprise resources planning (ERP) was introduced to integrate
all core business functions into a single database so as to streamline the

Number of outstanding
story cards

A

Velocity

p Iteration

FIGURE 8.4 Agile project progress.

230 INCREMENTAL DESIGN

workflow across each different department within the enterprise. For such a
fully integrated system, it seems logical to design a database model covering
all necessary functions at the beginning. In fact, many early versions of the
ERP package had just a few complete modules that most companies could
implement for their business needs. Take MFG/PRO (an ERP package) as an
example. The early version included manufacturing resources planning,
rough-cut capacity planning, and other modules but, it did not support sales
quotation or customer relations management. Another example is Exact’s
ERP. The system had strong features in accounting and e-commerce. But until
2005, the Exact’s ERP package had only enough functionality to support
midsized manufacturing operations.

No doubt, software can always be divided into a number of modules. A
module-by-module approach is characterized by the construction of the
software in modules, and normally concentrates on the implementation of
a few related functions across modules at any one time. This approach
however is not considered as incremental design here, for the software
requirements are logically broken down into a few modules that are then
built by a chain of complete development cycles instead of a number of story
cards that are small enough to be done in a slot of a few days (see Figure 8.5).

In reality, we may adopt a hybrid approach by dividing the system into
modules. We take a top—down strategy to estimate the effort and resources
required to build each module. Each is then built incrementally. The team
velocity can be used to adjust our early estimate of the effort required to
develop the module. This is a bottom—up approach. The new estimation based
on velocity can be used to monitor our overall project plan.

Divide according
to its feature

Divide but each

piece must be
smaller than this

square [JJjj

FIGURE 8.5 Divide by module or divide by slot.

MODELING AND PLANNING 231

So far, we have seen how incremental design is related to the software
modeling and project planning. In the following, we will discuss two impor-
tant concepts in software design: simple design and total cost concept.

8.1.3 Simple Design

In general, eXtreme programming encourages doing the simplest thing that
could possibly work and discourages building features not requested by
customers; in a word: “Just in need.” Building things for future use is unwise.
We do not know exactly what features will deliver business value to our
customers. To ensure that our design can cope with unpredictable future
requirements, we should make things simple.

Simple design is also where art and engineering come from. In software
development, the quality of being simple cannot be measured just by lines of
code or the number of classes or other variables. Although small is beautiful,
modeling our relationships among objects is the beauty of contemporary
software design. Let’s consider an example. Figure 8.6 illustrates a simple
design competition in which you need to find the simplest design for a story
card saying that the general manager assigns a quota of customers to each
account manager. Are you ready to win? In other words, software design is

General Account
staff Manager

Employee
£
General
staff

Account
Manager

Customer

Account
Manager

Welcome to
“Simple Design Competiton”

&

&
&
&

C

General
staff

030 30 3% Syo

FIGURE 8.6 Labyrinthine Pattern of software design.

232 INCREMENTAL DESIGN

like a maze or labyrinth; it is easy to lose one’s way. For example, which design
shown in Figure 8.6 is leanest and simplest?

If we consider only that story card alone, we don’t need the employee
classand/or the people class. Therefore, we will just go for “C.” In practice, we
are working on many story cards, instead of one. They are always intertwined
and interrelated; we may not easily tell which design is simplest.

In any case, we should not implement any function thatis not yet requested.
However, we should have a thinking-forward mindset for design. From an
incremental design perspective, the purpose of simple design is to make sure
that any late functions added do not force a substantial redesign of the system.

8.1.4 Total Cost Concept

To many of us who work in the commercial world, the purpose of software
applications is to virtually simulate behaviors or processes or to model
business systems. Unfortunately, business processes can be partially ill-
defined while programming logic allows no fuzziness. Worse yet, ill-defined
things often represent a gray area for which users have their own inter-
pretations.

Therefore, from the viewpoint of programmers, user requirements be-
come ambiguous, inconsistent, and incomplete. However, the user often fails
to understand why programmers or programming cannot cope with business
operations that they can manually carry out without advanced computer
technology. This means that we need a platform on which the user and the
programmer can easily communicate.

When building a system, we should start with something less ambiguous
that we can explore further with our users. We need to talk to them often
throughout the development cycle instead of just at the user requirement
phase. The best strategy is to have the users involved in the software design!
Therefore, invite the users to review your design. But to do this, we have to
illustrate our design in a visual presentation that the user can understand.

To bridge the perception gap of system requirements between users and
programmers, we need pictures that can represent thousands of program-
ming commands. These pictures show us how real-world events are mapped
to software functionality (see Figure 8.7). Such visual software design docu-
ments complex business processes. It also assists us in continuous and ever
more detailed modeling of the target system. As we see in Figure 8.7, both
customers and programmers can communicate with each other through a
diagram that shows relationships among different events.

OMG, a nonprofit computer industry consortium, has already set up
a standard for drawing diagrams in software engineering, the universal

MODELING AND PLANNING 233

| Information —le---------- -

Web Interface Database Sales [Product Costs
Wrapper Information Information

| | i |

| | | |

Users ! ! ! !

| Request Profit | ! ! !

' .

.MI Get Profit | i |

| E—— Load Sales | }
! L — e

| : | | }

| | | _Return Sales Data |

: | \4__________7 |

| | | | Load Costs J

| | r T L}

' ! ! ! Return Costs Data |

| | - ———————— —— bmm e ———— -

| Display Profit | Return Profit Data | i }

| |

I |

| |

| |

i
0
|
|
|
|
|
|
|
|

1

FIGURE 8.7 Customer—programmer communication.

modeling language (UML), a visual tool for user specifications, documenta-
tion, and software construction.

We may design our programs using diagrams, code, or both. Even though
we practice design by code, we can still quickly write UML diagrams to
communicate with our teammates and customers. As for incremental design,
completing every UML diagram before coding is not necessary. What we may
suggest are “code” to build software and “UML” to communicate with people.
When we are stuck with code, it may be time to stop and draw a diagram that
clarifies our understanding and ask others to review it.

“Visual software design” (i.e., design by diagram) or “design by code”
involves two kinds of cost. Software practitioners are seldom alert to the total
cost concept. Since reducing costs and waste in one area could drive up costs
and waste in other areas, we have to be aware of total costs, not only one or two
cost drivers.

On one hand, if programmers merely do design by code in which the
programming activities include code and user interface, the cost of non-
coding related work is low because the source code can be compiled for the
end product but communication costs go up because the source code can be
easily understood only by other programmers, needless to say not by
customers. Using communication or explanation only through conversations
or short descriptive texts (e.g., email dialogs and story cards) may not be
enough.' Our customers may misunderstand us. Customers are just like us.

In eXtreme programming, real user involvement consists in coping with that
limitation.

234 INCREMENTAL DESIGN

/ Total costs

2 Non coding

(=}

3 task costs
Communication
costs

0

Code Code

User interfaces User interfaces

Programming

activities Design diagrams

Documents

FIGURE 8.8 Costs in software development.

They also need both time and visual tools (i.e., diagrams) to think about their
requirements.

On the other hand, drawing any design diagram to allow ideas to be shared
with others reduces communication costs but increases non-coding tasks costs
because the diagram cannot be automatically converted into computer instruc-
tions. Figure 8.8 illustrates the total cost concept, in which we should balance
our communication costs against the costs of non-coding tasks.

8.2 REWORK OR REUSE

Good design often evolves from bad designs. If we think so, then we have one
big problem haunting almost every programmer: rework! The ability to do
less reworking in getting a program done is a great talent. Some programmers
code with amazing speed. Some build programs with few bugs. Some are well
versed in language skills. Some can write code that can be easily understood
by others. However, if we were asked to seek gifted programmers, we would
judge them by the amount of rework on design.

There are many scenarios that result in “rework.” Some are quite preven-
tive. For example, rework that arises from miscommunications with users
about requirements could be avoidable. Many of us have a fairly negative
attitude to rework. However, in some situations it can be positive.

In order to examine and reconstitute an existing system into one that is
built from more reusable components, we rework (or refactor) program code
(Mens and Tourwé 2004). We are eager to encapsulate the right features into
the right classes, associate the right inhabitant relationships between parent

REWORK OR REUSE 235

and child classes, and so on so that our code can be truly reusable for other
systems as well. In this case, rework, maintainability, and reusability are
connected.

This seems to be telling us that we are not able to get things right at the
beginning. Obvious solutions today were not so obvious yesterday. Let us
have a look at some cases.

8.2.1 Unpreventable Rework

The BodyBuilder Gymnasium chain allows clients to work out on their own
program and training schedule. It has attracted many busy people. Its
customer base almost grew by 30% in one year to a total of 30,000 clients.
The gym owner was a very customer-oriented person who thought of many
special promotions to target the right people. He gave drink discounts
randomly daily for those customers who spent 3 hours in the gym and did
not buy a drink or snack. He gave no coupons to those who regularly bought
snacks. The wisdom of “torment your customers (they’ll love it)” seems
applicable here (HBR, 2002). Let those who got the discount feel lucky and
those who did not be envious!

In order to execute that special promotion, the gym needed a bidaily
(twice daily) operation report from the computer system showing them which
customers spent 3 hours in the gym without buying a drink. The logic may
look like this:

if(staying>=3hours andbuying_drink=no)thenprint
customer_name

The report, albeit easy, took hours to run and the users were not happy at
all. The problem was that we did not consider the data distribution when the
report was being developed. We knew from the past that 90% of customers
spent 3 hours in the gym and that 20% of customers brought water with them
and so would not buy a drink at the gym. For performance purposes, we
should rewrite the code as follows:

if(buying- drink = noand staying>=3 hours) then print
customer_name

In this way, we can filter 80% of customers using the first condition,
thereby reducing workload in the second condition as shown in Figure 8.9.
This case demonstrates the necessity of reconstructing the program-
ming code to reflect the distribution of data. Certainly, there was little we

236 INCREMENTAL DESIGN

30,000 records 30,000 records

Buying_drink
==n0

Staying
3 hours

records records

Buying_drink
==no

Staying
3 hours

FIGURE 8.9 Performance tuning.

could do before the system was implemented. Often, we have to denorma-
lize a database in order to meet the performance requirements. This is
usually done by adding summary tables and/or deliberately introducing
redundancy. When data volume grows exponentially, the code definitely
needs reexamining. Having highly maintainable code is a strategy for future
success.

8.2.2 Improvisation

Romeo It is my lady.
Two of the fairest stars in all the heaven
do entreat her eyes
to twinkle in their sphere till they return.

Juliet Ay me!
Romeo She speaks. O speak again bright angel.

Juliet O Romeo, Romeo, wherefore art thou Romeo?What man art
thou that thus bescreened in night so stumblest on my counsel

Romeo By a name I know not how to tell thee who I am
Juliet Art thou not Romeo, and a Montague?

Romeo Neither, fair maid, if either thee dislike.

Juliet By whose direction found’st thou out this place.
Romeo By love. He lent me counsel, and I lent him eyes.

—RoMEO AND JuLIeT: AcT II, SCENE 2

REWORK OR REUSE 237

Playwrights edit their work thousands of times. The modifications could
vary from trivial to substantial. No matter what changes have been made; the
theme, actor and actress should remain much the same.

Take a look at a counterexample of what would happen if the Bard felt
like swapping the role of Juliet and Romeo. Juliet was strolling in Montague’s
garden and heard Romeo sighing heavily on his balcony. The revision
would mean rereading and rethinking each word and sentence. Besides
issues of syntactic correctness fixing gender-specific pronouns (e.g., he and
she), there are changes for semantics, for example, the expression “bright
angel”? could become “brave hero.” Obviously, play writing needs a plot
(i.e., a plan). The actors’ roles were well thought out; there would not be any
role alteration. Thus, play rewriting needs a plan. The same goes for
program rewriting.

When programmers prefer an experience-driven approach to code and
software development has few planning activities, we call this improvisation.
In the working environment of a small software house, requirements may
even be written down in keywords. In addition, programmers may very
quickly deliver a small prototype, but the increase in the amount of rework
becomes obvious as the software complexity grows beyond a certain point.

Improvisation is different from incremental design, in which developers
practice simple design, small lot-size-like user requirements, and agile project
management to plan and to control their development. Improvised developers
may not even bother to ask their customers what they really need. Their
experience guides their minds. Improvisation might work well, depending on
the complexity of user requirements and the programmer’s individual talent and
experience. However, improvisation makes it difficult to team up with others.

Another problem with improvisation is that when customers ask for
any change, the improvising developers may be required to do a tremen-
dous amount of rework because their design has not been thoughtful or
their experience fails to predict what customers want now. In reality,
improvisation is extreme and only a few gifted programmers can write
by ear. In conclusion, improvisation is easy to start, but sooner or later
the team will encounter lots of stupid problems. It isn’t sustainable (see
Figure 8.10).

2Angels are not “female” or “male” in theology. Although early Renaissance artists
would prefer to cultivate this gender ambiguity commented by Dr. Frank Vigneron in
the Department of Fine Arts at the Chinese Hong Kong University, angels are often
depicted as female. Examples are The Virgin of the Rock by Da Vinci, The Virgin with
Angels by Bouguereau, and Lost and Found by van Gogh.

238 INCREMENTAL DESIGN

Easy-to- | Difficult-
start | to-start k

Easy-to-
sustain

Difficult-

[mprovisation| to-
sustain

FIGURE 8.10 Improvisation is not sustainable in software development.

8.2.3 Up-Front Design

The purpose of up-front design is to establish a process in which developers
work on the what, how, when, or even the why of constructing and
implementing a software system. As expected, a formal, well-organized
design process will guide the whole team as to what to do almost for the
rest of the project. From a management perspective, building things as
planned is good. Furthermore, programmers from a project team who have
more experience can contribute more in the areas of both user requirements
and design. Allocating the right people experience to the right tasks optimizes
a team’s performance.

What makes up-front design different from incremental design is that we
deliver a plan that should be well-documented for software construction,
team collaboration, people communications, and task execution. The team is
committed to following the plan and the design accordingly. Doing anything
outside the plan could have uncertain negative impacts on the whole devel-
opment and on the team. We would ruin the previous effort that was put into
developing the plan and damage the team commitment and collaboration.
The team may need to rework previous tasks. However, when the user
requirements are stable, up-front design is easy to start and easy to sustain
(see Figure 8.11).

Separating design and construction as two big phases is less workable
when user requirements are changing. In this case, a software team needs
constant feedback. Design guides us how to code, and the program being
coded provides us with feedback to a better design. The values of incremental
design seem to have nothing to do with design from a technical perspective

JUST-IN-TIME SOFTWARE DEVELOPMENT 239

Easy-to- | Difficult-
start | to-start b

Upfront Easy-to-
Design sustain
Difficult-
to-
sustain

FIGURE 8.11 In-out diagram for upfront design for stable user requirements.

but everything to do with communication and collaboration. This paradigm is
more acceptable in a changing world. Information has been much more
available than before, which keeps driving the world getting flatter (Friedman
2006)! Therefore, our world is always changing and changing faster than
yesterday. So are user requirements.

Before we discuss incremental design further and understand when
incremental design can be best used, we have to understand the just-in-time
concept. Here is a review in one sentence of how we understand incremental
design so far:

Incremental design lies somewhere between big up-front design and
improvisation.

8.3 JUST-IN-TIME SOFTWARE DEVELOPMENT

In the mid-1970s, responding to the global oil crisis, the manufacturing
and logistics costs of the Toyota Motor Company increased sharply as the
company imported almost everything they needed to produce cars. To
remain competitive, the company had to eliminate any kind of waste
such as idle time, storage, transportation, workforce imbalance, quality
defects, linking production cells, equipment downtime, labors, and
product backlog. The company invented the Toyota production
system (TPS).

The philosophy behind TPS was just-in-time (JIT). There is no generally
accepted definition of JIT. Itis an approach to manufacturing that, in the ideal,
attempts to meet demand with zero delay (Schonberger 1982). Womack et al.

240 INCREMENTAL DESIGN

(1991) coined the term “lean production,” placing emphasis on the removal of
all sorts of waste rather than just time. Perhaps the term just in time has misled
many programmers into thinking that it deals with time only. JIT is about
eliminating anything that is wasteful and does not add value to the
manufacturing and customers (Harrison and Petty 2002). In fact, JIT and
“lean” are almost exchangeable in manufacturing (Black 1991; Black and
Hunter 2003).”

Manufacturing is about the production process. Therefore, JIT met
kaizen, a Japanese term meaning “continuous improvement.” It is clear that
techniques should be designed to help minimize unnecessary work by
continuously improving the production processes. Wait a minute! This
sounds like the capability maturity model (CMM) or CMM integrated
(CMMI) developed in the early 1990s, which concerns software process
improvement (Paulk et al. 1995). The association is not accidental! The main
idea of “eliminating waste” is to achieve production excellence, which
cannot be done in a single reengineering project, but only through continu-
ous process improvement.

8.3.1 The CMM Rhythm

Neither CMM nor CMMI explicitly addresses waste elimination, but the model
appears to be useful in understanding lean (i.e. JIT) production. We can even
adopt some CMM principles for “lean manufacturing” to eliminate waste in
manufacturing production. CMM recommends that after basic project manage-
ment techniques (i.e., CMM level 2) are in place, we have to clearly standardize
our working process so that we can tailor our process to suit unique features of
each software project (i.e., CMM level 3). According to the standard process, we
quantitatively measure the performance of those tailored processes, and use
these measurements as the basis for continuous process improvement (.e.,
CMM levels 4 and 5). The assessment helps us improve our process. Undoubt-
edly, the method of “measure to improve” is fundamental in JIT.

In software development, we borrowed principles from lean manufactur-
ing for lean software development (Middleton and Sutton 2005). However, a
few agile zealots may turn a blind eye to the value of CMM. For example, some
may say that with CMM the task is to follow a process. This shifts the focus to
process rather than single project success, while lean focuses purely on the
work products and continual improvement. Software development rhythms

*Black, in his early book The Design of the Factory with a Future, explains JIT by a flow
diagram; 12 years later, the same diagram in Black’s book on lean production was used
but only the term JIT was replaced by Lean Production.

JUST-IN-TIME SOFTWARE DEVELOPMENT 241

improving
E:Eﬂonng_nﬂeaaunng 1

Standardizing

FIGURE 8.12 The CMM rhythm.

will help us understand CMM* and agile software development from another
perspective.

As we see things as being about rhythm rather than where they belong,
CMM has a strong rhythm (Figure 8.12) for managing a set of software
projects: (1) standardizing our organization process, which is an important step
for assessment, enabling us to define different measurements; (2) tailoring a
standardized process for a single project; (3) measuring the tailored process;
and (4) improving our standardized process in order to better manage future
projects through tailoring an even better standardized process.

Adopting a full set of CMM practices demands a lot of effort to sustain the
rhythm. In a word, to sustain the rhythm using CMM practices is another
story. However, the CMM rhythm is useful for both agile software develop-
ment and JIT manufacturing. Here is an example: standardize generic lean
practices to eliminate waste, tailor (and/or select) the practices that are most
beneficial for the project we are running, then measure how much waste has
been reduced and improve the generic practices on the basis of the previous
assessment. As illustrated in Figure 8.13, agile practices also need continuous
process improvement.

Now, we have a little confusion over JIT software development because
improving software process and eliminating development wastes can be
strongly associated, in the same way as light is a coin of two sides: particle and
wave. To clarify what we could learn from JIT for software development, we
had better go back and ask what the Toyota production system has suggested
to achieve manufacturing excellence. This kind of relationship has something
to do with incremental design!

To avoid confusion so far, here is a short summary:

JIT software development entails developing software by incremental
design and implementation in small steps in a way to reduce both
preventable rework and unnecessary work.

4Although some may argue that there is massive expense and waste in the CMM
accreditation process to satisfy the examiner rather than the customer, let us look at the
basic idea of the CMM model. It is about process improvement, as shown in
Figure 8.12.

242 INCREMENTAL DESIGN

Just like CMM, we should communicate
through right documents.

Document read per day
DocRate= ——————————
Total Document

Document Used

]

Document un-used

oot N

Wow, now is 0.000001%

1 Year later

Well Done
Doc Rate

Agile Principle:
Unused Documents
are wastes

K8\

| |

FIGURE 8.13 Agile and CMM.

Amiessil

The CMM rhythm is related to about managing software projects

by standardizing, tailoring, measuring, and improving software
processes and/or practice.

We had years of personal experience in working in different production
plants in China. Honestly, we did not enjoy working there much. The shop
floors were filthy, the air was polluted from the smoke and dust coming from

JUST-IN-TIME SOFTWARE DEVELOPMENT 243

other neighboring factories, and the dormitory had few entertainment facili-
ties. The bright side was that we could gain rich, hands-on experience of JIT
assembly lines. Sections 8.3.1 and 8.3.2 will give a fast-track route to JIT
practices in the manufacturing process. Afterward, we will return to our
discussion of JIT software development.

Now let us visit a factory that makes clocks. Enjoy your journey.

8.3.2 A Factory Tour

Walking into a factory of the classical manufacturing system, we quickly
see that machines are functionally grouped together according to the
manufacturing process. For example, the drilling department will be respon-
sible for all kinds of drilling tasks such as tube bending, hole drilling,
and punching operations. The layout shown in Figure 8.14 is intuitive,
particularly when doing mass production.

We often use forklifts or handcarts to move around work-in-progress
(WIP) components that are being worked on or are waiting between different
operations in the factory. For example, we move subassemblies from a work
center for spraying to another for welding. After welding, we may have to
move some product components back again for spray finishing. Such trans-
portation has been regarded as unnecessary work.

A simple assembly line promotes efficiency by dividing labor. Each
worker is repeatedly doing a type of single-skilled task such as drilling a
clock spindle. Workers need not move between different stations. They are
organized to perform a single operation in a repeatable manner at fixed

//
/// Assembly
—
Materials’
Croods i
Movement

Welding Spraying
Parking

\
i : Factory

Drilling Molding

FIGURE 8.14 Where is the waste in traditional manufacturing plants?

244 INCREMENTAL DESIGN

Packaging
Plastic Color Oil Numbers and Hands Battery Materials

ag mmnnh 8 dede
r ' 1 Y Y

A A A Drin A Pack
5 Attacl Pl
Cut. » Smooth [—= Spray = for clock —= ’d, ttach | 4C1 A the
Plastic |@ @ Edee |©@® o0 swindle | @ Numbers Battery lock
L 1 4 & lee e SPINdI®] @ | And Hands ¢
®o® ® L 1] []
ee ee ee) WIP &
- WiP WIP WP WP
WIP
o |
=

Finished Goods

FIGURE 8.15 An assembly line for producing clocks.

locations as illustrated in Figure 8.15; the assembly line shown in this
flowchart is somewhat analogous to the traditional software development
method (e.g., the waterfall model).

Because of lack of communication and varied speeds of production, the
worker who sprays the clockworks much faster than does the one who drills
spindles. This leads to work-in-progress (WIP) inventory accumulation of
semifinished goods. Those inventories are not ready-to-sell goods. There are
costs of waiting time for WIP and stock storage.

Worse yet, defects not caught at an earlier stage will accumulate lots of
WIP with the same defects at later stages. For example, it will be too late if the
worker at the fourth stage discovers the defect. He or she will have to return
the goods to the earlier work area for rework while colleagues at the earlier
work area are continuing to make defected parts.

An assembly line is a proven technique for the industry to produce a large
quantity of products of a standardized design. However, there is the potential
for many kinds of waste along the line.

8.3.3 Walking Worker

If our raw materials are less plentiful, “make to stock” is not smart. Moreover,
what we have made may not be exactly the same as what customers order. For
example, if the customers prefer red instead of green clocks, the manufacturer
will have to rework the finished products. Clearly, we may prefer producing
things only when they are needed!

We can arrange our manufacturing production layout as in Figure 8.16.
Unlike a traditional layout, the production line is organized as a number of

JUST-IN-TIME SOFTWARE DEVELOPMENT 245

When a defect is found, light the
bulb and stop the production line

Smooth Edge

Place

Battery
| pal o
Cut. < w. ..¥ | Pack the Clock
Plastic A ﬁ
. { Buffer D - —>
oo

Plastic & Attach Numbers and Hands

123456789101012 1
123456789101012 I

Drill for
Clock Spindle

FIGURE 8.16 Just-in-time manufacturing.

U-shaped cells. In each cell, equipment, machines, and tools are placed in
process sequence. The workers move around within the cell to perform
multiskilled operations. The last processing step is in close proximity to the
first step so that workers can quickly move to the beginning point of the
next cycle.

To avoid accumulation of WIP inventory, a small lot buffer (i.e., small lot
size) is used as a signal to workers when to manufacture particular items. The
worker will produce only when the buffer is empty or drops to a certain level.
This mechanism can also be implemented using cards to signal the need for an
item (i.e., recall the Japanese term Kanban from Chapter 5, footnote 7).

Any worker who encounters a defect, abnormality, or tool malfunction
switches on a light, may find production halted both upstream and down-
stream. Work does not continue until the problem is corrected. On the surface,
this may sound counterproductive because the whole assembly line must
stop even though a defect is found at only one point on the line. However, it is
meaningless to continue to produce semifinished products that are defective
and that will be subject to reexamination and rework to remove the defects
later on.

It is easier to implement the JIT methodology for repetitive product
manufacturing,” in which the skill set is low, the equipment is highly

5Some of the key tools of JIT are appropriate and valuable for any kind of production,
from repetitive to highly customized.

246 INCREMENTAL DESIGN

TABLE 8.1 Traditional Assembly Line (Push) Versus
Just-in-Time (Pull) Manufacturing

Traditional
Parameter JIT Assembly Line
Lot size Small Large
Skilled environment Multiple Single
Quick action for any Stop production line N/A
serious defect found

System Pull Push
Production Good for repetitive N/A

products

specialized, and flow of work is highly defined and fixed. A short summary of
traditional assembly line and JIT is presented in Table 8.1.

8.3.4 Just-in-Time Software Development

Just-in-time software development makes use of many ideas from JIT prac-
tices. Handling small-lot-size user requirements parallels organizing user
requirements in a stack of user story cards in eXtreme programming or
backlog items in scrum, each of which has one or a few features. Small-lot-size
user requirements (i.e., story cards) allow customers to give a software team
prompt feedback. Customers can add or remove story cards or reprioritize
their order. This can reduce avoidable waste as feedback is provided on a JIT
basis. In addition, small-lot-size user requirements allow the measurement of
a team’s velocity and the closer tracking of the progress of a project (see
Section 8.1.1).

In traditional software development, we always see that, regardless of the
size of a team, programmers are assigned to different dedicated jobs, such as
collecting requirements, designing databases, or writing interfaces. In con-
trast, JIT demands that workers perform a variety of functions within a
process. This versatility makes them more valuable to their teams. As dis-
cussed earlier, coding gives feedback to design. When we adopt design by
code, programmers will no longer do just one task, but all of them.

Many programmers, however, have specialized in only one or two task
areas such as UML or programming in C. They really need continuous
training. Unfortunately, in reality, 52% of programmers receive less than
2 days of training annually (Harrison 2005). In this case, pair programming
becomes a solution. Even though the JIT practice never addresses paired
workers, JIT emphasizes the need for multiple skills in each individual.

JUST-IN-TIME SOFTWARE DEVELOPMENT 247

The purpose of an alert system in JIT is to ensure that defects are fixed
promptly so as to reduce the costs of rework. Software teams should integrate
software daily to ensure that errors are not perpetuated. If a problem is found,
the team should either fix it before going home or discard the day’s work.

Software applications seem to operate as a pull model because they are
responsive to customer requirements. Yet we may also say that customers
actually push their requirements at the system analysts and the analyst pushes
them at the programmers. As a consequence, many programmers do not fully
understand what their customers want and need. This kind of collaboration is
unsatisfactory. The better way to eliminate waste due to misunderstanding is
for customers to generally describe how they expect the system to help their
business and for the programmers to study the descriptions to confirm their
understanding and then clarify the details with customers. This is the philoso-
phy of a pull model. The “pull” comes from the actual customers directly
communicating with the working programmers, and the programmers incre-
mentally get the detailed requirements to build the system.

Just-in-time practices in manufacturing are appropriate (i.e., easier to
implement) for repetitive products. Therefore, when we adopt JIT thinking
for software development, programmers must have relevant experience. For
example, a team of programmers that specializes only in point-of-scale (POS)
applications may not be able to develop airport resource management using
JIT software development. In a word, the more relevant the experience, the
more effective is JIT software development.

8.3.5 Incremental Design

There are at least two approaches to incremental design: divide—conquer—
integrate and evolution through prototyping. For the first method, the
requirements are divided and recorded. At any time the customer may add
new features. We incrementally build them while the work product is
continuously integrated.

Evolution through prototyping places emphasis on completing a proto-
typing system, from which developers collect feedback from the customer and
continue to enhance the functionality on that prototyping system. Since there is
virtually no physical law to govern relationships among logical software
components, they do not contradict each other. We are able to combine these
techniques to various extents for our incremental development model.

Incremental design is something between big up-front design and im-
provisation. In fact, anything within the circle shown in Figure 8.17 is
incremental development. This gives us the flexibility to choose our
own way to incrementally develop software. There is a dimension where

248 INCREMENTAL DESIGN

Improvisation Up Front

FIGURE 8.17 Software design methodology.

divide—conquer-integrate is on one end and evolution through prototyping on
the other end. We may like to have up-front design that just covers a database
model and a rough plan of what we do in 2 months and then during that
period, we incrementally build the system. It is still possible that we have up-
front design covering the details of our prototyping development. A premise
tells that a complex system must start with a successful simple system and
then evolve (Lowell 1992). Afterward, customers may add features on the
basis of the prototype application and we further develop the application.
Software teams using incremental development may not immediately see
its associated difficulties. It is relatively easy to start. The team will realize that
the design methodology is inappropriate for their software project only when
they cannot sustain (or are exerting much unexpected effort to sustain) the
original incremental design of that software. In a word, we cannot easily judge
whether incremental design is easy or difficult to sustain (see Figure 8.18). This
leads to our final question. What component has been missing that has made it

Easy-to- | Difficult-
start | to-start b

Incremental Easy-to-
design sustain
Incremental Difficult-
design to-
sustain

FIGURE 8.18 In—out diagram for incremental design.

REQUIREMENTS COMPLEXITY 249

Relative Cost

1o Correct

110

100

80

60

40

20

n - I_'H

< T Pl T P I

Start [Requirements Design Construction
0 225 50 835 (915 100 %

Integration

FIGURE 8.19 Relative cost to correct a requirement defect (meta-analysis).

so difficult to determine whether our incremental design is easy to sustain for a
particular software project? An immediate answer is requirements complexity!

8.4 REQUIREMENTS COMPLEXITY

No software product is designed without user requirements. Their impor-
tance cannot be overemphasized. Changing the requirements or having
defective requirements will drive up our development costs. Wiegers
(2006) summarized previous findings and reported that the relative cost of
correcting a requirements defect in operation can be as high as 110 times.
During 1993-94, Blackburn et al. (1996) surveyed over 150 software projects
and conducted a number of follow-up field interviews to learn about the
development stage as a percentage of the total software development time. As
a rough estimate, we get the relative cost to correct a requirement defect by
combining two studies: Wiegers’ and Blackburn’s data. The relative cost
curve shown in Figure 8.19 resembles the cost of change given by Beck (2000).

Cost of change is significantly affected by both requirements and software
design. Consider a case in which programmers design an ordering processing
module comprising four classes (Figure 8.20). Hence, one more class may
create more channels of object communications as the number of messaging
units is a factorial of the number of classes. Clearly, it may be riskier to
produce a design that is difficult to manage. As shown in Figure 8.20, by

250 INCREMENTAL DESIGN

. :UrgentOrder
:OrderEntry Entry
:Credit :Inventory

FIGURE 8.20 Design complexity.

combining UrgentOrderEntry and OrderEntry, the system has fewer
classes. Unfortunately, things are not black or white. We cannot judge a
design by the number of its classes. Our experience just tells us that more
features added to a “bad smell” design could result in spaghetti messages
passing among lots of objects. Therefore, design and requirements have a
strongly coupled relationship that affects our costs of change.

There is a fuzzy line between requirements and design (Wiegers 2006). In
a serial process model like the waterfall, the cost of change can sharply
increase (Figure 8.19). In incremental design, the cost of dealing with bad-
smell design can also make our software complexity grow exponentially to
unmanageability and require redesign of parts of the system.

Another problem with user requirements that affects incremental design
is the number of users contributing to requirements. In the case of building a
small system, the requirements can be collected from and confirmed by just
one customer. We call this type of communication for requirements “one to
one” (i.e., one programming team to one user or one programming team to a
few users in the same department in an organization).

Programmers Users
— 7 e ——»
7 A -~
¥ 1 x p
v ¥
<« D
\A
B

Y C

FIGURE 8.21 Communication burdens.

REQUIREMENTS COMPLEXITY 251

Very often, as illustrated in Figure 8.21, three customers, A, B, and C, are
responsible for different departmental functions in the same company. To
build an integrated system across their functions, they all need to provide
their requirements. Thus, each user talks to our programmer X. In the end,
programmer X sees their requirements as both overlapping and contradict-
ing. Just as eye-witnesses to a crime tell different stories, users do not provide
consistent requirements. This type of communication is called “one to many”
(i.e., one team to many users from different domain types).

Internal communications on the user side may be noticed only when
problems arise. For example, for some reason users B and D rarely talk to A
and C. There is a gap in their internal communications.

In addition, programmers may have a profoundly different under-
standing of the same requirements. For example, user A may separately
talk or write to both X and Y but they interpret A’s requirements differ-
ently. In this case, some may suggest that we put effort into formal or
semiformal specifications. However, not all user requirements will lead to
different interpretations between X, Y, and Z. Writing specifications for
clearly understood requirements is unnecessary work. The best strategy is
to have an effective communication mechanism for software development
in place.

In the following sections, let us learn about three situations of software
requirements given by our users in the commercial world: forgotten require-
ments, conflicting requirements, and rapidly changing requirements.

8.4.1 Forgotten Requirements

A beer manufacturing company in Laos planned to phase out its legacy
system and move forward to an Internet-based ERP application so that their
retail customers could place orders themselves and thereby the average order
cycle could be cut by 20%. Gary was a hands-on marketing manager there. He
was a systematically thinking guy and knew the ins and outs of the sales and
marketing operations. Gary could tell us exactly what he wanted and explain
when certain conditions were true, what results the system should produce,
and what quality his sales team wanted.

Gary could roughly draw the system modules (Figure 8.22). When a
customer places a sales order, the system immediately checks the available
stock in our finished goods inventory for fulfillment and reserves the stock for
the customer. In addition, the credit control helps us manage the customer
credit status. For customers who are far from the warehouse, the delivery lead
time may be days. Therefore, the invoice can be issued only after the customer
has received the goods.

252 INCREMENTAL DESIGN

Sales Management Finance Management
Credit Goods Delivery > Account || Cash
Control [™ and Invoice Receivable Management
Sales Order Sales Customer Customer
Analysis Statement Aging Analysis
A
Master Data Setup Mat&ria]s Management (FIFO)
| Customer Maintenance LR
| Inventory
| P ——— l

"
[]
:
4 Free Goods (e.g. buy 10 get |

free) and Distribution Analysis

Manufacturing k======

FIGURE 8.22 Typical sales and distribution application for beer.

The system should not delete any data that the users have typed in so that
the finance department could audit the data. Gary also suggested that sales
supervisors could create new customer accounts and the system would assign
credit limits by default. This would expedite sales processes for new
customers.

Everything seemed to be covered. However, Gary forgot to mention one
thing. During the Christmas holiday season, each sales order should expire in
one day. Some customers might wish to place an extraordinarily large order
several days before Christmas, but it was not possible for the company to hold
stock for them for more than 2 days as they would become monopoly
customers. This would prevent the company from serving others and would
adversely affect product distribution and availability in the market place. This
had happened only rarely in previous years but it was a problem to be
avoided.

Gary forgot to mention one critical requirement: every sales order issued
7 days before the holidays should automatically expire just in one day!

8.4.2 Conflicting Requirements

After meeting with the sales manager, we met another key user, the
company’s financial controller, Szeto. One of major duties of the finance

REQUIREMENTS COMPLEXITY 253

department is to monitor not only the cash flow control but also the company’s
performance. Szeto repeated much of what Gary told us, but he talked from a
finance perspective. And there were apparent contradictions in the two
descriptions.

According to generally accepted accounting principles, the company
should issue invoices to the customer when goods have left the warehouse.
This differed from Gary’s version of events. What is more, all customer
accounts, including their credit limits, should be maintained by the finance
department. Szeto understood that new customers would have to wait longer
to process their first orders. But he did not want to write off a huge amount of
uncollectible invoices in accounts receivable.

The financial controller disagreed with the sales manager about many
operational practices.

We should talk to every key user before we start our development;
otherwise, we will have to rework our system later. Conflicting requirements
will exist across functional departments, and the situation can become
political.

8.4.3 Rapidly Changing Requirements

The CHAOS report from the Standish Group in 1994 reported that three major
causes of software project failures regarding user requirements were lack
of user input, incomplete requirements, and changing requirements. The
CHAOS Chronicles report (2003) reflected some major improvements. As
computer systems have become indispensable business tools, today’s users,
like Gary and Szeto, are more IT-enabled, process-literate, and experienced
with commercial computer systems and are therefore much more willing to
participate than before. But this is not to say that they can provide complete
user requirements.

Incomplete requirements are different from forgotten requirements.
Incompleteness could mean exploring requirements in which users lack a
vision or knowledge of how a future system could help them. For example,
new business applications such as CRM in early 2000 could trouble many
users to give their CRM requirements because CRM applications were just
new to them. Forgotten requirements are a kind of incomplete requirement.
Less experienced programmers who have not yet gained domain-specific
knowledge may not easily realize that the requirements have defects due to
some missing pieces.

254 INCREMENTAL DESIGN

Changing requirements could partially result from adding forgotten
requirements and resolving conflicting requirements. What users say may
not be what they want. Users could realize their needs only from product
experience. We can lessen the extent of this problem through frequent
feedback from peers and users.

Changing requirements are still a constant factor, and this is not expected
to change soon in our work. As organizations evolve and change existing
practices, merge or partner with competitors, and share information with
their suppliers for supply chain management, requirements will change
rapidly, and this has scared many of us into going agile!

For the 2002 FIFA World Cup, the beer company created the slogan
“Without fresh beer, no real live match.” To support the million-dollar
campaign, senior management decided that the distribution center would
temporarily take a last-in first-out (LIFO) method to ensure that fresh beer
would be delivered to major cities in Lao and would use a first-in first-out
(FIFO) approach for small towns in the countryside. When the world cup
campaign was over, everything would get back to normal. As expected, the
logistic department immediately called the MIS to support.

Experience tells us that users would demand new features in days or
weeks because business opportunities never wait!

8.4.4 Requirements and Design

Our case presented many challenges about user requirements in the real
world. Table 8.2 provides seven situations in which we consider different
design strategies. The recommendations listed in the table serve as a simple
guideline because our real situation could be more complicated as other
factors such as size, complexity, or risk profile are not fully considered.
Table 8.2 does, however, provide an overview of where we may consider a
development strategy for each software project.

8.5 REFACTORING

The term refactoring in software development was first used by Opdyke in
1992 in his PhD dissertation, where it was defined as a process of changing an
object-oriented software system in a way that the internal structure of an
object-oriented program is restructured to improve reusability but the exter-
nal behavior of the code is not altered. The restructuring may include
redistributing classes, variables, and methods across the class hierarchy in
order to facilitate future adaptations and reusability (Opdyke 1992). There has

uonedidde ayy jo a8pajmouy|
dyads-urewiop ou sey wea) ay) pue

nag AL P231s988ng J0N P231sa88ng JoN ‘syuswaiinbal 1asn a8ueyd Ajpider 03 swaag L
310joq uonedidde jo
9dAy awres ay) uo payIom sey weay ay) pue

poon 191399 Ay P231sa88ng J0N ‘syuswiaiinbal 1asn a8ueyd Ajpider 03 swaag ‘9
uonedidde ayy Jo a8pajmouy| dypads

PENET:| poon Pa3sa88ns 10N poon -urewop ou sey wea)} 3y} pue ‘pa(oid mau e S| ‘G
a10joq uopedijdde jo 2dA) swes ayy

poon poon AL AL UO PI)AIOM Sty Wed) IeMYOS Y} INg ‘Ml S| 7
syuswalinbaz
Iasn 10§ UoIEdIUNWWOD AULW-0)-U0

poon AL Pa31sa88ng JoN poon Ing syuswainbal 1asn 3|qels aArY 0} SWIS €
[IJInJ 30U P[NOS SUO P|O Sy} Jey} sainyes)

poon poon 191399 Ay BIIXS SWOS PIM W)sAs Aoe83] e aovldal 0} 5| Z

poon poon poon poon syuawRIINbal Jasn 9[qels seH 1

(@3) usSisaqg di pue [Dg uaamiaq (1DQ) 2re18Say| usisaqg ——1103[01 [ePPISWWOD) 3Y] ‘Ief 0S SMmouy|

Areuonnjony uSisa([eIUSWIRIDU| —Ianbuon—-apialg juoij-dn wrea] InO YeYA\ ua9g seH Syl

uSIsa [eIUSWRIDUY|

S3183jea)g uSIS9(IPMYOS 10J SUOIIRIIPISUO) 7°8 11dVL

255

256 INCREMENTAL DESIGN

not been much change in the definition of refactoring, except that it may not be
a process. It can be a practice of changing the internal behavior of programs in
small steps (Fowler 1999). Readability is now emphasized in refactoring.

For some simple programs, it is not difficult to guarantee the preservation
of system behavior after modification. For complex systems, this could be
guaranteed only by blackbox testing. Given the same set of input values, the
resulting set of output values should be the same before and after the
refactoring (Opdyke 1992).

Refactoring has been closely connected with design in general and
incremental design in particular. Adding features requires changing the
structure of a program, but external behaviors for existing features are, of
course, preserved. Doing refactoring can be more than readability and
maintainability of the existing code. In practice we do refactoring and
performance tuning at the same time. However, we may still sacrifice
performance for readability and maintainability, the objectives of refactoring.

Refactoring comes with costs:

1. To ensure behavior preserved and correctness of recoding, we have to
retest our program.

2. Testing cannot show the absence of fault, and the part being revised
might often be connected to others; more test cases may be needed after
the system is refactored. Otherwise, only when we encounter pro-
blems with some part of code that is related to our modifications do we
realize that we should have changed it as well.

3. Itis not easy to estimate the amount of effort involved in refactoring a
program. Often, an expected hour of effort turns out to be a day.

There is always room for improvement. Refactoring is not a way to
produce perfect code. We must know when to start and when to stop. Time,
however, is precious. Considering that constraint, we have to prioritize our
refactoring tasks. Some experts have recommended a number of techniques
called “bad smell” that can be used to spot where to refactor. As it is difficult
to judge the time required to do refactoring, we offer this advice: Refactor
only those parts that you may think are most likely to be the first to have new
features added.

There are at least three levels of refactoring: within-classes, among-
classes, and class-relationship-restructured. By within-classes, we mean that
programmers refactor the structure and logic only within classes, for exam-
ple, variable naming, method accessibility, or method addition. Even though
the logic of the variables or methods that we have restructured could be
accessed or called by other classes, the programming complexity is limited.

REFACTORING 257

We may use a refactoring browser to help, which can allow a programmer to
rename variables or methods and then all other logic related to it will be
automatically changed.

By among-classes, we mean that we move variables or methods from one
class to another. Clearly, this will be more complicated than within-classes in
terms of programming logic, even though a refactoring browser has a
graphical user interface (GUI) that allows us to simply drag among classes
instead of having to use text editor commands.

Class-relationship-restructured is the most complex and is most prone to
having bugs that won’t manifest until the program is used in a particular
way. Programmers redefine relationships between classes by introducing
new classes, merging class relationships, or changing class inheritance
relationships. Restructuring classes helps us better model objects for real-
world problems. Figure 8.23 provides a simple illustration of three types of
refactoring.

Level 1 Class A Class A
methodA() methodX()
:: methodY()
Level2[.) Class A
methodA()
Class B Class B
methodB
methodB() methodA8
Level 3 Class A B Class A
methodA()
e dn methodA()
L Class X New
Class
methodB() Created

FIGURE 8.23 Within classes, among-classes, and class-relationship restructured
changes.

258 INCREMENTAL DESIGN

Here is some more advice: Don’t refactor any code at the third level when the
product is going to be released next week! Try to refactor programs at the third
level at the soonest. This is like something called prefactoring, in which
programmers should pay attention to their refactoring experience so that
they get the design right as early as possible (Pugh 2005). Prefactoring does
not mean that we do not need refactoring. It emphasizes the value of the
refactoring experience we have had.

8.5.1 Refactoring Activities

This section discusses refactoring activities. At the beginning, we have to
identify where to refactor. Beck (2000) and Fowler (1999) introduced 22 kinds
of bad smell where code should be fixed for both readability and maintain-
ability. This bad-smell concept has been identified for decades; we were all
taught not to write a long procedure. Long methods, long classes, and long
parameter lists are the same—small is beautiful. Some bad smell is concerned
with software design; for example, an object class not sufficiently responsible
enough to be recognized as a class should be considered for refactoring.

Another approach to spotting where to refactor is to take an economical
perspective. Refactor bad-smell code that is more likely to have features. This
is not to say that we guess as to future requirements. We don’t need to know
exactly what the new functionality is; we only need to consider where it may
be added. We should talk to our customers, understand their business, think
about the user experience, and use your intuition.

Now we have to think about which refactoring techniques should be
applied. This is more important when we plan to do level 3 refactoring.
Various techniques are explained in Fowler’s book 1999.

We should guarantee that we have unit tests on hand to ensure that the
applied refactoring preserves external behavior. We may need to roll back to
the previous version at any time. Since extreme programming tells us to
discard our unfinished refactored code before calling it a day, a version
control system should be in place before we start refactoring.

After refactoring, it would be good to have some sort of assessment of
whether we have reached a certain level of software quality. Unfortunately,
this can be a time-consuming activity as there is no direct assessment. To make
evaluation objective, we have to adopt quantitative evaluation, which may
include peer review, grading, and statistical analysis. To go agile, we may
consider adopting pair programming in which the characteristics of software
readability and maintainability are assessed constantly.

Finally, we have to maintain consistency between the refactored pro-
gram and other software artifacts such as data models, class diagrams, and

REFACTORING 259

any test cases added for refactoring. Here is a summary list (Mens and
Tourwé 2004):

Identify where to refactor.

Determine which refactoring technique(s) to apply.

Guarantee the preservation of external behavior.

Make sure that a version control system works for refactoring.
Apply the refactoring.

Assess the effects of the refactoring.

NS g whe

Maintain consistency between the refactored program code and other
software artifacts.

8.5.2 Refactoring by Challenging

Our program has been done and tested. Later on, we may devise a better
design solution. This is referred to as code-driven refactoring (see Box 8.1). If
coding tasks are assigned to different programmers, then the biggest problem

[J

CODE-DRIVEN REFACTORING

Original programmers working in solo programming cannot be as good at
code-driven refactoring of their own programs as they are refactoring pro-
grams created by others.

In 2005 five programmers from a technology company in Beijing participated
in an on-the-job study of refactoring. Three of them had around 3 years’
experience. The other two were randomly assigned to grade the source code
on a scale of 1-5 in four areas: readability, style consistency, maintainability,
and class relationships.

To support multilanguage programming and communications of terminolo-
giesrequires professionals in the field to do the translation. As strings appeared
on GUI and message box are stored in *.properties file (for JAVA application),
we sent these files to translators for language conversion, say, from Chinese to
Korean. The return of these files needs examination to ensure the correctness of
the file format, for example:

1. Deleting line breaks by mistake
2. Confusion with some symbol such as “or ”
3. Forgetting to add \ for \\.

260 INCREMENTAL DESIGN

A Java program was written to check the files returned from translators. One of
three programmers, Zhao, wrote that program. None of participants were
informed that this was part of an experiment; they thought it was just an ad hoc
programming task. We asked Zhao to review his program to make it more
readable and maintainable and we distributed the source to another program-
mer, Qian, for refactoring. In week 3, we asked Zhao to make a final check and
again to attend to readability and maintainability. We forwarded Qian’s
refactored program to Lin for refactoring. The following flowchart shows the
proceedings of our study.

Situation A . Situation A
Refactoring by Written by Zhao Refactoring by
Original Author Others
‘ Version 0
LOC: Time:
139 6 hours
Written by Zhao Written by Qian
Version 1 Version 3
152 | 23 mins PR2 | 48 mins
Written by Zhao v Written by Lin v
Version 2 Version 4
158 31 mins PR3 54 mins

Two programmers graded each version. Their results are shown in the bar
charts below. It was concluded that refactoring by multiple developers would
achieve much higher software quality in terms of readability and maintainabil-
ity than if it were done by the original developer. The limitation of this initial
study was its small sample size. This short experiment infers achieving synergies
between refactoring and pair programming.

REFACTORING 261

Version

LSS TLSSSSSSSSSSTS

ST TS TSI IS
b R b]

VST LTTIS LTSS SIS

R]

- E Readability
ST TS ITISITS.
WRTATT T TT

N

080

Style Consistency
Maintainability

Better Class Relationships

with code-driven refactoring is that the original authors may be blind to any
inefficiency in their design solutions. Nevertheless, the original authors can
judge readability and maintainability on their own. We are just not as good at
debugging our own models as we are at debugging models created by others
(Panko 1996).

Original developers will be biased toward the structures of their pro-
grams. Methods may have been grouped in an inappropriate class; however,
this would hardly be known until the methods would be moved in right object
classes. Other people may see better places to put the method. The original
authors are so familiar with their code that they take its readability for
granted. One person’s readability is another person’s cryptic text. The naming
of variables and methods should be explainable.

Effective refactoring should not be a self-review but an exercise of
accumulating design experience from each programmer. The insights we
have gleaned from our experience, as well as the experience of others, in
developing software provide better refactoring. In this case, it makes sense
that pair programming is adopted to maximize the team throughput to
achieve code that is more readable and maintainable.

If your teams simply do not like pair programming, try to get them to do
refactoring for each other. Two-developer refactoring would still give better
quality of code than would refactoring repeatedly done by the same
individuals.

8.5.3 Refactoring for Design Patterns

Many “bad smells” apply only for generally accepted programming princi-
ples. Therefore, we have valuable and applicable C language techniques such

262 INCREMENTAL DESIGN

as “Do not use terse C expression forms even when they sacrifice no read-
ability atalland write ‘flat’ rather than ‘deep’ programs, for example, if if if if . . .
then then then then ...” (Perry 1998).

Here are some more examples of bad-smell advice. We should use a class
method or procedure call to group duplicated code. Anything long is difficult
to maintain and should be divided into smaller units, and this will also
increase reusability. Comments should be concise. The names of the right
variables and methods are self-explanatory. Message chains in which a client
asks to exchange one object for another object should be decoupled as a long
deep chain is not good for maintainability.

However, computer languages such as C do not clearly state the knowl-
edge of purpose (i.e., what this class is supposed to do and why these methods
belong to this class) and knowledge of structure (i.e., class structure, relation-
ships, subclass, inheritance) needed to model real-world systems. Thus,
refactoring C programming to model things that we perceive in the real
world is not very easy. This results in writing in-line comments to achieve
readability and maintainability for other programmers. Sometimes, we re-
write those in-line comments to explain C code rather than refactoring the
C code.

Refactoring is non-zero-point collaboration. Two programmers may start
with the program code; however, they may do refactoring in different ways
even though they perceive the same bad smell. Therefore, we want to know
what good design is so that we can refactor according to that pattern. In a
word, we need design patterns as standards to complement individual design
experience.

Design patterns inspired by Alexander’s pattern languages® (Alexan-
der et al. 1977) tell us that there are patterns between problems and
designsolutions based on past experience so that programmers can learn
what good object-oriented design is all about (Gamma et al. 1995). Often,
when we are baffled with what we should do to refactor the code, itis time to
brush up Gammea’s Design Patterns. Almost all design patterns concern
class relationships, which is to say that we have to refactor at levels 2
and 3.

®Patterns in architecture have a long history in China. It is called fengshui, which
addresses what patterns of location and direction of the hill, the bush, the pond, the sun
(rising and setting), the landscape, and the house could make people live more
comfortably and thereby more fortunately. Fengshui was developed 1000 years ago
and did not evolve over a long time. It is less appropriate for modern architecture.

REFERENCES 263

8.5.4 Making Deliberate Mistakes

“Making deliberate mistakes! Are you telling me to write lousy code?” asked
an experienced programmer. Hold on; this does not mean that we write
programs with bugs. We don’t want to make mistakes. In fact, we want to
avoid mistakes (Schoemaker and Gunther 2006). However, we can use wrong
solutions to confirm that our test cases are right!

Suppose that we write a test case before code. This has two benefits. Like
specifications, it helps us clarify our understanding of user requirements, but
we can also use the test case for testing. However, we should not be overcon-
fident about the correctness of the test case, which, just like our program, may
have defects. Therefore, we either write a quick solution or do hardcoding to
see if our test case is right. Then we may work back and revise our solution
from bad to good. This development is referred to as “test-driven refactoring
development” and this method of refactoring, in contrast with “code-driven
refactoring,” is called “test-first refactoring” (Mens and Tourwé 2004). Write a
quick solution to ensure that a test case works and refactor the solution.

REFERENCES

Alexander C, Ishikawa S, Silverstein M, Jacobson M, Fiksdahl-King I, and Angel S. A
Pattern Language: Towns, Buildings, Construction. New York: Oxford University
Press; 1977.

Beck K. eXtreme Programming Explained: Embrace Change. Boston: Addison-Wesley;
2000.

Black JT. The Design of the Factory with a Future. New York: McGraw-Hill; 1991.

Black JT and Hunter SL. Lean Manufacturing Systems and Cell Design. Dearborn, MI:
Society of Manufacturing Engineers; 2003.

Blackburn JD, Hoedemaker G, and Van Wassenhove LN. Concurrent software
engineering: Prospects and pitfalls. IEEE Transactions on Engineering Management
1996; 43 (2):179-188.

Fowler M. Refactoring: Improving the Design of Existing Code. Reading, MA: Addison-
Wesley; 1999.

Friedman TL. The World is Flat: A Brief History of the Twenty-First Century. New York:
Farrar, Straus and Giroux; 2006.

Gamma E, Helm R, Johnson R, and Vlissides]. Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-Wesley; 1995.

Harrison DK and Petty DJ. Systems for Planning and Control in Manufacturing. Oxford:
Newnes; 2002.

Harrison W. Do you learn just in time or just in case? IEEE Software 2005; 22 (1):
5-7.

264 INCREMENTAL DESIGN

HBR. Don’t delight your customer away. Harvard Business Review March 2002; 64—65.

Lowell J. Rapid Evolutionary Development: Requirements, Prototyping and Software
Creation. New York: Wiley; 1992.

Mens T and Tourwé T. A survey of software refactoring. IEEE Transactions on Software
Engineering 2004; 30 (2):126-139.

Middleton P and Sutton]. Lean Software Strategies: Proven Techniques for Managers and
Developers. New York: Productivity Press; 2005.

Opdyke WF. Refactoring Object-Oriented Frameworks. PhD thesis. Chicago: University
of Illinois; 1992.

Panko RR. Hitting the wall: Errors in developing and debugging a simple spreadsheet
model. Proceedings of the 29th Hawaii International Conference on System Sciences. Jan.
1996; pp. 356-363.

Paulk M, et al. The Capability Maturity Model: Guidelines for Improving the Software
Process. Reading, MA: Addison-Wesley; 1995.

Perry JW. Advanced C Programming by Example. Boston: PWS Publishing Company;
1998.

Pugh K. Prefactoring: Extreme Abstraction, Extreme Separation, Extreme Readability.
Sebastopol, CA: O’Reilly; 2005.

Schoemaker PJH and Gunther RE. The wisdom of deliberate mistakes. Harvard
Business Review 2006; 84 (6):108-115.

Schonberger R. Japanese Manufacturing Techniques: Nine Hidden Lessons in Simplicity.
New York: Free Press; 1982.

Wiegers KE. More about Software Requirements: Thorny Issues and Practical Advice.
Redmond, WA: Microsoft Press; 2006.

WomackJP, Jones DT, and Roos D. The Machine that Changed the World: The Story of Lean
Production. London: Harper Perennial; 1991.

TEST-DRIVEN DEVELOPMENT

One death is a tragedy; a million is a statistic.
—JOSEPH STALIN

A desperate-looking guy is sitting in front of a poker machine, shaking his
head. Clearly, he has lost lots of money. He slowly stands up and walks away
from the machine. Immediately another man rushes over to sit in this place
and starts feeding coins into the machine. He looks like someone who has just
found a treasure. He thinks that because the machine has not paid outinalong
time, it must pay out soon. This is a common belief among gamblers. But it’s
wrong.

Amateur gamblers—and in life all of us are gamblers in one area or
another—are often unconsciously governed by one of four beliefs: (1) an event
is likely to happen because it has not happened for a long time, (2) an event is
likely to happen because it has just happened, (3) an event is unlikely to
happen because it has not happened for a long time, or (4) an event is unlikely
to happen again for some time because it just happened. All of these beliefs fail
to account for the fact that every toss of a coin has the same odds of producing
heads or tails. Even if you toss heads 10 times in a row, on the 11th throw the
odds of heads or tails is just the same as at the first throw, 50-50. But this
simple fact is not apparent to the amateur gambler. They have their own
beliefs and their own view of the world and how it works. And the more they
lose, the more they depend on those beliefs to save them in the end.

In software development projects too, we also make decisions on the basis
of false beliefs. Experienced programmers—competent, mathematically

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright © 2008 John Wiley & Sons, Inc.

265

266 TEST-DRIVEN DEVELOPMENT

minded individuals—still declare themselves satisfied that a system that has
successfully passed 10 test cases stands a good chance of passing the 11th even
though the test cases are independent of each other. The discrete nature of
software can make every test independent, although software development
has nothing to do with probability.

Psychologically, we are trapped by two beliefs: that new tests are
assumed to pass because many others have successfully passed, and that
the code we have changed to fix bugs will not introduce new ones! Software
feasibility and human factors could cause us to fail to cope with randomiza-
tion from complexity. The software complexity causes us to intellectually deal
with a form of logic of probability with software. For example, if we were to
accidentally change one command, it might disable functionality, or it could
even crash the entire system!

Therefore, a software application is brought to its knees because we don’t
have enough time for all tests, because we are not clever enough to identify
hidden bugs and write useless test cases, or just because we think we are so
smart that we think we know how to selectively test system functionality
instead of a whole system.

Testing substantially impacts on financial bottom lines. It may con-
sume as much as 40% or 50% of the cost of software development. And as
software becomes pervasive in our society and increasingly indispens-
able to every part of a business, between home and business, between
business and business, it becomes both more complex and more critical.
This, in turn, means that more testing is needed and testing is even more
important than ever. Unless we are able to find more efficient ways to
effectively test software, the percentage of development costs devoted to
testing will only increase, And there is no way to avoid this. We can’t, for
example, simply design and code programs better so that they will need
fewer tests.

When users tell us that their business cannot afford to have an application
down, we become more serious about software quality. Our team extensively
devises user test cases and testing data. When the team has accumulated lots
of test cases, we have another problem. It is difficult to judge which cases
are redundant. Doing exhaustive, overlapping testing consumes project
resources. In terms of development times and project running costs, it would
be valuable for a project manager to know what the economical (minimum)
number of test cases should be run.

Suppose that an application has 10 features. We should at least write 20
user test cases, with each pair of testing true and testing false mapped to one
feature (or a story card). The idea of the economical number of test cases
contradicts the common wisdom that critical systems demand more test cases

TEST-DRIVEN DEVELOPMENT 267

for each single feature. However, the economical number of test cases is still
practical, and for project managers it serves as the bottom line.

Another way to make testing economical is to prioritize what major
features of the software should be tested in order to balance testing with the
project resources. This is common in the workplace. In particular, when
there is a need to trade off against a project schedule, putting testing effort
only into those features that may pose higher risks for the customer becomes
critical.

So often, our customers add or modify their requirements without
changing the project completion date. They use all kinds of means to get us
to accept this, such as project incentives. Uncertain about our estimates, we
lack the courage to defend our position against customer pressure (Brooks
1995). To survive in a death march, the software team desperately attempts to
get the software done by either fair or foul means. The team tries to right the
course of the project by throwing out any activity that can be discarded as
they hurry to code for the extra requirements without considering the best
design solutions. They write fewer documents than necessary. As alast resort,
they test only some major functions even though the software now has
additional features.

This happens in so many software development projects because soft-
ware requirements are coupled with coding but both are decoupled from
testing (see Figure 9.1), which illustrates the fact that no matter how much
one adds or changes, testing efforts remain constant. If, however, we move
testing ahead of coding, we ensure that software requirements are coupled
with test cases, guaranteeing software quality. This is test-first programming
(Beck 2000). And an iterative process that reinforces the practice of test-first
programming is test-driven development (TDD) (Beck 2003).

User
Requirements

—h o

Coding Efforts || Testing Efforts

FIGURE 9.1 Testing decoupled requirements from other activities.

268 TEST-DRIVEN DEVELOPMENT

9.1 REVERSE WATERFALL

Programmers are aware that the classic waterfall model is not responsive
enough to customers’ dynamic demands and have adopted more iterative
development paradigms and models. These models all variously build
software in terms of the four Ps (process, people, paper, and product), but
they also apply a repeated design—code—test rhythm. Whether a cycle of the
design, code, and test processes is carried out in small steps or bigger ones,
programmers are still thinking design-code-test, and that also applies to
experienced programmers who may adopt “design by code” to write less
complicated applications but whose reflexive approach remains design-
code-test. Although there are no physical laws governing how to build
software, programmers can test programs they have not yet coded or work
out test cases for a system that hasn’t yet been designed. Also we can reverse
the rhythm design—code-test to test-code—design, and then testing and
coding become much more interdependent.

9.1.1 Design-Code-Test

The order of software development activities is not accidental: requirements,
design, coding, and testing. The order has been established for decades. We
collect requirements from users. Then we formulate specifications to confirm
our understanding and distribute them to a development team. Or, for less
complicated requirements, we go directly to software design. Next, we build
the software. Finally we test it before releasing it to our customers. As for
incremental design, we may either continually, or regularly collect user
requirements and feedback. However, what we do in our minds is
design—-code-test. It seems so completely natural that we never even try to
imagine an alternative.

Design involves planning what a software team is going to do. For any
project including software development, there can be several ways to reach
the same goals. Some ways are uneconomical and some are risky. Therefore,
the more we design, the more likely we are to see faster and better ways to
develop a good design blueprint for execution and to ensure that team
members can discuss the blueprint at an early stage. Fixing errors early
avoids rework.

Coding is the execution of software design. We can use a design to devise
test cases and data to examine external behavior of modules or pieces of code
even before coding. At this point, we have to write test cases in a program-
ming language, because there may not be user interfaces ready for testing.
However, there is a problem with this approach. We see the test code failing

TEST-FIRST PROGRAMMING 269

only because the implementation has not yet been done. In other words, we
can determine the correctness of our test cases only after the program has been
written. We do not have to wait for the whole program to be done before we
test. As long as we have a piece of code that is complete enough to be
executable, we can go ahead and test it. As each test case itself is a tiny
program, the real problem here is that there could be defects. We can be
misled by the system passing the wrong test case. Worse yet, we may assume
the test case works because its logic is so small.

9.1.2 Test-Code-Design

The test-code-design rhythm means putting design after coding. It also
implies that something was not right and that some sort of redesign is needed.
Clearly, this kind of redesign is avoidable as long as we think over what to do
before execution. Then why should we go for test-code—design?

Some experienced programmers can do “design by code” well. On the
basis of their experience in knowing how the code will be tested, they write
test cases in advance. But it is not that beneficial. In this case, testing first or
testing later does not appear to be significant. Then when does test—code-
design work better?

As for the test-code—design rhythm, test cases are written beforehand to
confirm the existence of features. It helps couple test cases with user require-
ments so that no single requirement goes untested. To make test before code
work, we have to write a quick solution to ensure the correctness of our
understanding and the tiny program (i.e., test case). The solution can be a
dummy one just to check whether the test case really works. But it must be
quick enough to be productive. This critical step gives us early feedback on
both requirements and programming.

As the solution can be just temporary, incomplete, or hardcoded, we have
to redesign a better one or just rewrite it for maintainability. Obviously, test—
code—design does not straightforwardly reverse design—code—test. The tasks
at each phase are different. Our thinking is now driven by test-first, which
aligns the programming mind with customers, and we are centered on seeing
what a system does before seeing how it works.

9.2 TEST-FIRST PROGRAMMING

Psychologically, those people who make things that did not exist before
should be optimistic; otherwise, nothing would have been created. Program-
mers should also be optimistic. They might not fully test each feature or

270 TEST-DRIVEN DEVELOPMENT

programming logic that they think is too simple to be wrong. They might
ignore and deemphasize the impact of defects. This approach can be charac-
terized by what we often say to our colleagues and customers: “We can fix itin
15 minutes!”

As for test-last programming, because of the constraints of software
contracts, time, and budgets, a common strategy is to reduce the number of
test cases so as to shorten testing time and deliver the product on schedule. We
“assume” that the software has passed. If need be, we can release a patch later
on. Another strategy used in some small software houses is called “paid by
bug.” Ask a number of freelance programmers to find 50 bugs within 3 days.
Have your team fix them all in 3 days and release the program to customers on
day7. But why identify just 50 bugs? There may be thousands! Well, it has been
estimated that the team could have only 3 days to fix that number of bugs.

This section will take a deeper look at what test-first programming
really is.

9.2.1 Testing and Verification

Testing is a means of improving our understanding of the software we are
building, not just a way of assessing its quality. Testing requires the execution
of the software, often referred to as dynamic analysis. It often involves three
steps: testing cases with data, program execution, and generation of results.
The opposite form of testing, a form of verification that does not require
execution of the software, such as mathematically proving properties about
a given source, is referred to as static analysis. A flowchart for obtaining yes/
no-type results through the testing—verification procedure is shown in 9.2
Testing has several advantages over static analysis techniques, which
often makes testing necessary and verification sufficient. The developed
software should be executed in a target environment including hardware

»| Results

\/—\

YES/NO
Results

Program Execution

Test Data / Case

Program Source

Specification /

FIGURE 9.2 Testing and verification.

\d

Verification

TEST-FIRST PROGRAMMING 271

requirements and the version of the operating system specified. The success
of these executions with the test cases provides a software configuration
baseline on which the software will perform as intended. For example, if the
application has been tested only on Windows 98, it would not be expected to
also run on another operating system.

Output from execution and the comparison of expected results can be
used to identify the test cases on which the software did not pass. We can
therefore assess the software functionality and code quality (such as perfor-
mance and runtime errors) by the test case requirements. The same test case
with different testing data can often be regarded as different cases. Therefore,
ideally, testing should be automated. In this case, test cases can be regres-
sively used for future testing as the software evolves.

Testing, however, has some limitations, and hence we have to rely on
software verification to complement testing for critical applications or zero-
defect software. Test cases are quite independent and cannot be easily
generalized to other cases. Therefore, we might think that we have developed
lots of test cases to measure software quality but in fact many of them can be
totally redundant. In addition, when we change the requirements, we have to
rework the test cases involved. Furthermore, testing cannot determine, for
instance, whether faults are absent. It can only show that they are present.

Unfortunately, many application programmers find software verification
complex. Testing has often been used to provide the level of confidence in the
quality of software. Since there is no formal notation required to conduct
testing activities, test case requirements can be prepared by programmers or
users. Testing has become generally accepted as a way of assessing software
quality in the software industry.

9.2.2 Breakpoint Testing

A key element of testing is unit tests. Unit tests differ from user acceptance
tests (UATSs) in that they do not involve programming. Crispin (2003) explains
that unit tests are written in the same language as is used to directly interact
with programming modules. Thus, unit testing, as the name implies, examines
a piece of code or a unit of functionality. User acceptance tests are often
prepared by customers to ensure the completeness of functionality rather than
software quality. Naturally, the user acceptance test cannot be conducted until
all required modules including external user interfaces are ready.

A unit test has a structure of input parameters, expected return output
values, and exception handling (see Figure 9.3). We may write unit
tests covering (1) valid parameter values that return correctly, for example
(—5/2)=—-2.50and (10/3)! = 3.34 and (2) invalid that which cause appropriate

272 TEST-DRIVEN DEVELOPMENT

Predefined input parameters

Test
Case

Method or |«
Function [Errors!

\ 4

Exceptional|
Handling

Expected Results

Values
Returned

FIGURE 9.3 Unit tests.

exception such as 5/0. Boundary values, rounding numbers, negative values,
null, and February 29 are often selected as test data. In addition, throwing an
exception may also be done by testing records not yet set up in master tables
such as nonexistent customer code.

Writing exhaustive unit tests for each user function is costly. We should
try to write test cases that probably break the system (called breakpoint
testing) rather than typical expected behavior with valid parameters and a
few negative paths. There are two reasons for this: (1) these test cases make us
think about exceptional application behavior, and (2) they are often the cases
that will fail once we change the code in the future.

For this reason, when a software team has incrementally built or refac-
tored a program for some time and never sees any of its old test cases failing,
this could be an indication that the team has not understood that they should
write unit tests that will probably break the function. For example, an
application is designed to allow six characters in a password field. We should
at a minimum examine two passwords of six and seven characters long.

9.2.3 Supporting Practices

Let us just look at test-code; more precisely, write test case before coding. The
test cases serve both for quality assurance (QA), avoiding the introduction of
defects, and quality checking (QC), detecting for any defects that may have
been introduced. When we automate our testing so that test cases are
reusable, testing before coding implements both QA and QC. Test-first

TEST-FIRST PROGRAMMING 273

programming is a software practice in which unit tests are written down
before coding and then these test are regressively executed.

Writing unit tests before coding helps us understand user requirements
from a programming perspective. Requirements may not be the same as
application functionality. Even though well-written story cards can make
good documents, descriptive stories in plain human language aren’t the same
as exact blueprints. Instead of developing program specifications for a
software team to collaborate on and share, writing unit tests before coding
can achieve more or less the same objectives as do technical specifications.
Moreover, when unit tests are repetitively used throughout development and
maintenance, it is much more economical and productive than having
extensive non-machine-executable program specifications.

Moving unit tests development closer to requirements activities binds
each story card with unit tests. This ensures the overall quality of software
because it covers every function of an application. However, writing unit tests
without making sure that they are correct is just talk without action. We need
to quickly write a solution to confirm the validity of each case. To make the
unit tests reusable, they must be free of error.

Solutions aren’t always easy to find or write, especially when the require-
ments for a unit test are very complicated. But in these cases it is still better to
quickly develop a “dummy” solution, that is, one where the programmers
know that the solutions are dummy (hypothetical), partial, incomplete, or
even hard to code, but where the solutions can at least be used to study testing
inputs and expected outputs. At the minimum, applying dummy solutions
knowingly allows us to test our assumptions inside unit test cases (Schoe-
maker and Gunther 2006) and is a way of alerting us to any accidental code
changes in the future. Dummy solutions that pass these test cases help us
explore better design solutions. This is the spirit of test first programming,
which not only introduces a new way to program but also helps us think about
programming in a new way.

Practices that support test first programming include

« Coupling requirements and test cases
« Using test cases for specifications
« Executing a quick solution for test cases as quick feedback

« Writing unit tests in computer code. (So that they can be used to test
pieces of code rather than any sort of submodule)

« Taking an iterative approach
« Accumulating unit tests
. Automating test cases for reusability

274

TEST-DRIVEN DEVELOPMENT

« Making simple designs

. Having breakingpoint testing

« Making deliberate mistakes

An iterative software process from these principles and practices of
writing software is called test-driven development (Beck 2003).

9.3 RHYTHM: TEST—CODE—REFACTOR

Beck (2003) suggests two rules be adopted for test-first programming.

1.

2.

Don’t write even a single line of code if an automated test has failed.
This rule can be regarded as an essential precondition. It can also be
applied when working with a third-party package. A test for all third-
party library functionality should be done before it is used.

Have all tests run at 100% all the time. This rule is a criterion for the
beginning of coding and the completion of refactoring.

Now that we have described the key principles and practices of test—
code—design, we can formulate them as 11 essential steps called test—driven
development:

1.

© ® NS

10.

11.

Pick a user story (i.e., a user requirement log) that may have a number
of pieces of functionality.

Add a unit test that can specify each piece of functionality and think
about how that test “may” break the system.

Run all tests including the one that has been added in step 2.

See that the new test is failed as that code has not yet been
implemented.

Write the code to pass the new test or fake it if the code cannot be
implemented quickly.

Run all tests and see them all succeed.

Refactor the code.

Run all tests and see them all succeed.

Decide whether to do more refactoring. If yes, go back to step 7.
Atany time, if abug is detected, write a unit test to detect that bug and
fix it.

Go back to step 1 until finished.

RHYTHM: TEST—CODE—REFACTOR 275

Principles and practices summarized in Section 9.2.3 are embedded in
test-driven development. Depending on how the tests were done in steps 5
and 7, we could either just improve the design or rewrite the solution;
however, we should conserve the external behavior of the program to pass
all accumulated written test cases as in step 5.

In particular, we should pay attention to simple design, breakpoint testing,
and deliberate mistakes for dummy solutions in test-driven development
because some programmers are not used to thinking in this way. Some
programmers read the user stories and often associate some other features
that they think the application is likely to have. They then proceed to code
solutions for the present but also for the unforeseeable future, but this is
contrary to the principle of “simple design.” Worse still, since unit tests are
coupled with requirements (i.e., story cards), they may break the first rule; that
is, they may write system features without writing corresponding test cases.

Simple design, breakpoint testing, and deliberate mistakes distinguish
test-driven development from other methodologies. Just reversing the order
from design—code-test to test—code-refactor (where design becomes refactor-
ing) does not improve our thinking— and good programming is all about
better thinking. The good news is that, from our experience, once we elaborate
these points to programmers in the workplace, they soon begin to develop
test-driven minds.

Test-driven development is fractal-like iterative. Each loop not only
comes from the previous one but also results from work in step 5, which has
a corresponding refactoring in step 7 that fulfills the same set of test cases.
Still, we regard the development rhythm as test-code-refactor. As shown in
Figure 9.4, the curved line indicates that two activities are connected in such
a way that both the inside of a previous activity and its results contribute to
the next activity. In addition, coding a quick solution as suggested in step 5
makes our development rhythm fast and vivid. The rhythm is “vivace!”

9.3.1 Simple Example

The following brief example illustrates the operation of test-driven devel-
opment. More examples showing the detailed use can be found in Beck’s book

Vivace s —
\ i
- | — I: o Refactor .I :I
@ Test—1§ Sode i
o

FIGURE 9.4 Test, Code, and Refactoring are all done in the same programming
language.

276 TEST-DRIVEN DEVELOPMENT

(2003). This example is given in Python code as it is self-explanatory.
In Python, a function block begins with the keyword def followed by
the function name and parentheses, and the pound # sign is used for
comments.

Our team wants to develop a payroll submodule for an ERP system.
Monthly income for sales and managerial staff often includes a basic salary
and a performance bonus. In the calculation for a regular employee, there will
be no bonus. Our customer writes down on a story card that staff income
before tax is the sum of the basic salary and bonus.

Straightforwardly, we immediately think of a method for adding both
salary and bonus as calcMthIncome (salary, bonus) . Before doing
anything else, we have to add a unit test case for calcMthIncome (), which
can be assert (calcMthIncome (1, 2) is 3) . The test does not seem
quite right. No staff has ever earned less than $100 per month in the company.
Similarly, assert (calcMthIncome (987654321.123, 9876543) is
997530864 .123 does not make any sense either. We cross both out and
ask what the maximum wage is that staff could get from the company for just
one month. We have to talk to our customer, who then agrees that the system
should not be able to mistakenly process an unreasonable amount. The
highest basic salary is less than 99999.99 and the bonus less than 9999.99.
The unit test becomes assert (calcMthIncome (99999.99, 9999.99) =
109999.98). In the same fashion, more unit test cases are written.

Assume that we have no idea how to write a quick solution. We just fake it
by returning a value irrespective of the right calculation:

def calcMthIncome (salary, bonus) :
return 109999.98

This does not implement any logic for calcMthIncome () at all. The
value of “fake it” is that programmers can anticipate the expected result and
roll back to the last point at which all tests ran with a 100% pass rate. Starting
from this point as a baseline, we proceed to implement calcMthIncome ().
Human programmers sometimes make mistakes even though they know
better. So let’s absentmindedly do some stupid coding as follows:

def calcIncome (salary, bonus) :
return 109999.98
return salary X bonus

A typo like “+” never causes backsliding as it will not pass our test case
and we can go back to the previous point for correction. Of course, we do not
always begin by faking everything. When a solution is known and simple, we
should try to quickly complete it. Notice that these testing tasks are regressive.

RHYTHM: TEST—CODE—REFACTOR 277

If they are not automated, testing will become more tedious and time-
consuming than before.

9.3.2 Automation

A tool to automate the execution of accumulated unit tests is indispensable in
test-driven development. It integrates unit test cases with the tested program.
The tool displays which tests fail and measures the overall percentage. Erich
Gamma and Kent Beck developed an open-source tool to automate unit
testing called “JUnit”. As discussed, unit test cases are written in the same
language that we use to program. JUnit is used only for Java programming.
However, testing frameworks for other languages have been developed, and
this kind of code-driven testing tool is known as “xUnit”

JUnit is also helpful for refactoring alone. As the tool is designed to
automate unit testing, programmers will develop a number of automated test
cases to make assertions about external behavior reserved after refactoring.
By continuously running these automated test cases, JUnit will identify
where refactoring breaks anything in the existing program.

JUnit creates a thorough regression testbed, which allows smooth inte-
gration of new features into and refactoring for the code base. The two rules
for test-driven development are framed by JUnit. In Figure 9.5, the purpose of
“see it fail” is to have a failing automated test before coding. All tests running
at 100% all the time are objectively controlled by JUnit. Since software
development can never be fully automated, it is best to use an automation
tool on a regular basis. It helps to control and monitor the whole cycle.

o » Write test -
- case = . N
Tt . P See it Fail Fake it
N ,/
\ P
. g .
Automation 10G%Puss s
I // --.-"""“---H_____ _:—-—_- e
100% Pass —
= - Refactor]

FIGURE 9.5 Junit for automation.

278 TEST-DRIVEN DEVELOPMENT

Easy-to- | Difficult-
start | to-start b

Test Driven Easy -to-
Development sustain
Difficult-
to-
sustain

FIGURE 9.6 In—out diagram for test-driven development.

There are three major benefits to automated testing: (1) productivity, (2)
reusability, and (3) quality improvement. Using the automated tool, it is
easier to adopt and sustain test-driven development, as shown in Figure 9.6.
In a real environment, one of the authors I has seen programmers fail to write
meaningful unit tests, and some may even test after code occasionally. In
general, however, test-driven development is easy to sustain. There is no need
to be strict. As long as straying programmers can get back on track, the test—
code-refactor rhythm can be sustained.

9.3.3 Revolution in Consciousness!

Superficially, test-driven development gets programmers to write testing
code that is automatically testable and that can be checked against expected
results. The obvious benefit of this is improved task understanding and focus.
Yet these benefits can be realized in essentially any development method
simply by moving test cases before implementation. Test-driven develop-
ment is not significantly related to productivity. As long as unit test cases are
written in an automated way, it is possible to reduce the burden of rework. It
does not matter whether it is done before or after. In addition, the amount of
automated unit tests does not truly represent quality because software testing
can show the presence, but not the absence, of defects. It simply ensures that
system features are well covered by unit tests and that programmers have not
abandoned testing just to meet a deadline.

Test-driven development is more than writing automated test cases first.
It must come with test-first thinking, which is not merely a step-by-step set of
actions but a problem-solving method (see Section 9.2.3). (For instance, as
depicted in figure 9.7, the path followed to go forward might not be the same
as the path used to come back; in other words, order reversal necessitates new

RHYTHM: TEST—CODE—REFACTOR 279

Amiess

FIGURE 9.7 Order reversal necessitates rethinking.

thinking). This is similar to what Ohno in the Toyota production system talks
about, a revolution in consciousness, a change in people’s attitudes and
viewpoints (Ohno 1988).

What will happen if our team just mechanically exercises test-first but
their minds fail to think test-first? From our experience, the team will not see
any significant improvement out of test-first programming. Quality may tend
to improve owing to the coupling of requirements and test cases. This is the
worst that can happen, as test-first programming without test-first thinking
does not appear to be worse than test-last programming (see a short summary
of test-driven development in Table 9.1).

We were once learned that a smart software team in Japan was doing
both test-first programming and test-last programming (Figure 9.8). The
key to getting the best of both worlds is to do both test-first programming
and test-last programming, switching as needed with a suitable rhythm.
Before coding, write unit tests that probably break and, after coding,
write essential unit tests. This won’t improve productivity but it will help
the team pay attention to breakpoint testing for software quality while they

-9)qedidde 10N,
‘9dDUISYIP ON,

(50027)
ueipafeg BEMETq
pue usazue[2ApdNISUO) Sl AL a/N ON ON ON o|os SOA 0l [STTETS oIS
Sujurea]
(S007) ‘230 19358 ‘sndoy
snwiSopli3y dse} Janag 4¥/N a/N ON ON ON ojos SOA Ge [STTETSIeIN
(€002) [win
SWeI[IIM pue SloW %91 I9neq
USI[IWIXPIA] SANDDNISUO) sSyP)y ddl Sl ddl ON ON ON e SOA 7 slowwreiSold
(z002) Apmis
Iou8eH 2I0W pasu
pue I9[IN ‘SARAISSUOD a/N /N ON ON ON o|os SOA 6l SHuspnIS
DUAIYY uoisnpuo) Ajaponpold Aend paziseydwy SdeISIN yealg SuiwweiSol] 2I1ojog Ise) # odAL
9poD Suuoyejey eraqieg Aqeqold ey IreJ—o[os 1S9 S
sase) 1sa]
snd>o4 uswnadxy syRlqng

(adl) yuswdojaaaqg uaALIQ-1S3] pue SutwweiSold ISiI{-3S3] uo sSuipulj yareasay |°6 119VL

280

RHYTHM: TEST—CODE—REFACTOR 281

Test-first programming ————\— - :I |
: Test-last programming -

FIGURE 9.8 A rhythm for test-first and test-last.

are writing code. The team composes a very strong rhythm. The flexibility
to change is a central part of applying effective software development
rhythms.

9.3.4 Test Case for Collaboration

We had all seen nervous team leaders. They want to be kept in the loop, so
they tend to hover around a project, asking questions but not ones that seem to
matter much to the programmers. Their main issue is usually deadlines, so
they want to know about the latest project progress but they really already
know about the overall progress, so they ask about details so that they can
solve small problems before they snowball into big ones.

So, what do programmers tell the team leaders about when asked about
their progress? Telling them which part of a program they are working on
does not provide any new information. Telling them exactly what they are
doing right now might just be about po-loop or 1F-THEN logic. Perhaps it would
be more informative to talk about the unit tests they have just developed.
Since each unit test is a solid example for the system, they are easy to
understand and even comment on, perhaps helpfully!

Our ability to communicate with others what we are doing and thinking in
the workplace is very important. But, personal bonding aside, the talk-to-
information ratio has to be worthwhile. We all know that effective communica-
tions save time and resources, but how do we improve a programmer’s ability
to communicate well with his or her peers? Unit test cases are one way to do this.

In test-driven development, we write unit tests at the beginning. Each
unit test is a tiny example with data and expected outcomes. We can make
mistakes there, but there is no gray area for communications. For example, a
unit test like assert (add(1,1) is 3) is just wrong but it causes no
confusion for team communications.

Given a piece of a requirement, there can be many programming solu-
tions. And even if you explain until your head falls off, your partner may still
misunderstand one or two points. So why not start by talking about unit tests?
Test cases are unambiguous, objective, and concrete. They have inputs and
expected results. Once we have a unit test on hand, collaborating on its
solution and pair communications are greatly simplified. In particular, when
developers will be collaborating closely with other, team members on the

282 TEST-DRIVEN DEVELOPMENT

Difficult-
Easy-to- o
master b
master

Test Driven Easy-to-
Development coach

Difficult-
to-
coach

FIGURE 9.9 Master—coach diagram for test-driven development.

same task, as in pair programming or side-by-side programming, starting by
communicating unit tests quickly builds some ground-up understanding.
Then they can get down to the business of writing code.

Even where software teams do not adopt pair programming, test-driven
development is still practical. Their experience in writing good unit test cases
that are embedded with domain-specific knowledge and testing skills can be
shared with other team members. Depending on programming experience, it
normally does not take long to absorb the principles we discussed in Section
9.2.3.Inaddjition, mastering JUnitis not thatdifficult,and soa software team can
easily gettest-drivendevelopmentright. Asfornewjoint programmers, thebest
way tolearn test-driven developmentis through on-the-job training, whichisa
kind of all-around learning activity including practice, skills, thinking, and
attitude. New joint programmers canlearn how test-driven development works
by seeing for themselves how each unit test case should be designed and how
making deliberate mistakes can help developers explore solutions. Figure 9.9
shows a master—coach diagram for test-driven development.

Although we have discussed many principles, practices, and rules for
test-driven development, the important element is to develop test-first
thinking. We see nothing wrong with test-driven programmers sometimes
adding more unit tests after implementation or occasionally coding before
testing. This doesn’t matter as long as programmers have internalized test-
first thinking and the rhythm for test-driven development.

9.4 RAPID SOFTWARE PROCESS IMPROVEMENT

Capabilities of programmers in developing countries are likely to be diverse.
In particular, programmers who have less than 3 years’ experience are coders

RAPID SOFTWARE PROCESS IMPROVEMENT 283

more than developers. To manage a team composed of many of these
programmers is very challenging. In this case, project managers may prefer
a process-oriented approach, like CMM (or CMMI).

Capability maturity modeling is a regular choice for software managers
who are not sure which software practices will be most important to project
success in their unique environments and teams. CMM addresses so many
practices that it is hard to miss anything (Zahran 1998). It’s like the slogan:
“Just do it!” CMM is a scattergun approach where managers do little follow-
up on when each practice is used or how it works. Maybe this is okay, if you've
got the budget.

In contrast, agile team leaders have to catch and/or explore rhythms
among people and practices. This is a very hands-on and human-centered
and not at all robotic approach. Agile practices should be adopted according
to the values that they deliver to the team and the software. Among many
agile practices, test-driven development is a process that includes a number of
practices organized in a strong rhythm. Yet there are also tools available to
support test-driven development so test-driven development is not hard or
costly toadopt and can be quickly learned, applied and adopted in all kinds of
environments, including developing countries, to improve team capabilities
in a very short time.

9.4.1 Training Program

Programmers in developing countries work in an ad hoc environment and
consequently do not perceive in any significant way a correlation between
software and software methodologies. Yet while they are not so interested in
software methodologies such as CMMI or eXtreme programming, these
developers do have a strong interest in programming techniques such as
thread programming and computer languages such as C#.

Many programmers in developing countries are code gurus or enthu-
siasts. They may take time to appreciate the importance of a software meth-
odology in team collaboration and a longer time to discover their rhythms with
their development methodology. They may not be able to give up old ways
and adopt new software practices as quickly as they can learn a new testing
tool. The way to go with these guys is to view test-driven developmentas a tool
(e.g., JUnit) rather than as a method. Mastering a development tool will
definitely interest many programmers more than understanding how to use
templates for quick documentation or learning software paradigms. Progres-
sively implement a software paradigm through a testing tool. It may be that in
this way JUnit has contributed to the wide popularity of the software meth-
odologies, XP and TDD (Janzen and Saiedian 2005).

284 TEST-DRIVEN DEVELOPMENT

9.4.2 Project Planning

One of the major problems with project planning in developing countries is
that programmers find it harder to estimate how long it will take to code a
piece of a program. They tend to underestimate the time required for their
planned tasks. They even try to correct their errors in estimating by cutting
down testing efforts. In addition, too little time is devoted to testing relative to
programming, with ratios as great as 4 days of code to 2 hours of testing. This
has a substantial impact on project planning.

Hereis a daily scenario we often see in the workplace. A project manager
asks two colleagues how much time they need to write a program for a
problem. On the basis of their replies and the manager’s own assessment, the
manager will work out the time estimation for the task. The estimate is
subjective and can deviate unpredictably from the actual outcome (see
Figure 9.10).

We may adopt agile planning to manage rapid iterative development cycles
as discussed in Section 8.1.1. However, most software teams in developing
countries are conservative and actually greatly prefer step-by-step change. A
conventional project plan should be done at the beginning of the project.

Here is our advice for developing that plan. Let the team members spend
a little time on getting a number of unit tests randomly selected from user
requirements and getting their quick solutions done. Having the unit test
establishes a specific goal; the programmers are more confident about their
estimates of the amount of effort required after they write unit tests. This is not
a perfect approach, but many programmers have told us that it is better than
what they are used to.

9.4.3 Project Tracking

Programming progress should be tracked in terms of completeness. When a
programmer reports 40% of coding done, it is by no means clear what this
means in terms of progress. The work isn’t 40% functionally complete since it
can’t be executed—and 40% complete in terms of time? If she did that 40% in 4
days, does this mean that she will do the rest in 6 days? And if she hasn’t yet
finished it, how can she know the length of her complete program? If she
doesn’t know how many lines of code the program will have, how can she
report 40% done?

When requirements are decomposed into story cards and each story card
is examined by unit tests, we may determine our current progress against the
outstanding user stories, completed stories, and, most importantly, the
velocity (see Section 8.1.1). Even using test-driven development with tradi-
tional project management, we can use velocity to track our progress.

RAPID SOFTWARE PROCESS IMPROVEMENT 285

How long do you
need to finish the job ?

Let me plan it for 10 days.

i

FIGURE 9.10 Planning dilemma.

But, | think | can do it in 8 days. J

Amiessit

Another metric is the number of times that the project team is working on
something current but previous unit tests fail (see Table 9.2). This is an
interesting metric. When it is low, this probably means either that the team
has written many typical unit tests or that the team rarely makes mistakes so
that old unit tests are always passed. A higher value indicates either that the
team has worked out a number of amazing unit tests that have broken the
system many times while the development is ongoing or that the team has

286 TEST-DRIVEN DEVELOPMENT

TABLE 9.2 Unit Test Cases that Probably Break

Iteration

Metric - n N+1 N+2

Number of unit test cases written at - 3 4 4
the current iteration

Total number of accumulated unit test . 100 103 107
cases from previous iterations

Number of accumulated unit test cases ... 0 2 8
failed at the current iteration

Old unit tests failed in percentage (%) - 0 0.19 7.4

made lots of mistakes. Get to learn more about this metric. While this does not
tell us how long the developers will require to complete the program, it does
provide reliable information that assists us in overseeing the process, espe-
cially in relation to team performance.

9.4.4 Software Quality

As for programmers in developing countries, software quality is unpredict-
able. For instance, developers can repeat the same kind of mistake and deliver
work products to other team members without testing them thoroughly. The
most noticeable benefit of test-driven development in such an environment is
to have software quality improved as test-first thinking and making deliber-
ate mistakes becomes the development strategy. With test-driven develop-
ment, many defects are systematically identified through the accumulated
reusable test cases after we refactor the program or add new features.

How much has software quality improved after software teams have
adopted test-driven development to build software? In 2004 we collected
some industrial data. Because different teams wrote different commercial
systems, it is not possible to analyze the defects on the same baseline, so we
compared how much time programmers needed to fix defects reported by
users during user acceptance testing and production operations. We collected
643 and 212 bug fixes from non-TDD teams and TDD teams in China,
respectively. With automated unit tests, 97% of defects can be fixed by TDD
teams in one day (see Figure 9.11). TDD helps to fix defects faster.

9.4.5 Software Configuration

One of the biggest but most neglected problems for many inexperienced
programmers is software configuration management. We have all heard

RAPID SOFTWARE PROCESS IMPROVEMENT 287

40

Time
Required to
Fix

FIGURE 9.11 Shortening time to fix reported bugs.

stories like this. At the beginning of the day, we each get the same copy of the
program and make separate changes. At the end of the day, we upload our
program back onto the server, and so do you. The next morning, we download
the program and code the other parts. Only after 2 or 3 hours do we realize
that this is not the right version. Our program was accidentally overwritten
yesterday.

In traditional software development, when tasks are assigned to pro-
grammers, they will be busy with their work and may not talk to each other
very often. They even take it for granted that what they are working on has no
relationship to what others are working on.

In test-driven development, we have to communicate with each other
closely because unit tests must pass 100%. Anything wrong will immediately
cause our work to be lost! This seems messy, but it is good to know that we
will at worst lose only hours rather than days of work.

It is about discipline and team cooperation. Test-driven development
does not address software configuration management. However, if the
team does not have a mechanism for version control in place, they will
more quickly encounter configuration problems than when using other
methods.

There are two artifacts that are so closely associated that we have to
manage their versions all the time: unit test cases and programs. Unit tests
must be shared with others. To avoid mistakes, the team has to integrate the
software at least daily. Perhaps the biggest benefit of test-driven development
for software configuration is that any version control problem will quickly
stop the development rhythm, which avoids any sort of snowball growing big
enough to ruin the development efforts of weeks.

288 TEST-DRIVEN DEVELOPMENT

9.4.6 People Discipline

Programming activities in test-driven development are easily tracked. If,
owing to personal lack of discipline because they misunderstand test-driven
development, the developers do not follow the framework, they can be
quickly identified. However, this is not why programmers who adopt test-
driven development tend to be more disciplined. Writing unit test cases is just
the same as writing code. We do not ask programmers to do things like write
documents and fill in forms. Testing is an automated process. In addition,
coding and refactoring are both about technical programming. This is why so
many programmers we met like the methodology and are willing to keep to its
practices.

In 2003 a speaker in an international software engineering conference
asked the audience what they thought was the best methodology. Among
many answers, including XP, CMM, and the waterfall model, the most
popular answer seemed to be “ad hoc.” Programmers do not follow software
models in a disciplined way. As no programmer hurts or dies during software
development, we don’t take our practices seriously.

It would be hard to believe that the ad hoc method, which is regarded as an
undisciplined way to build software, could be acceptable to so many people.
Why? Some programmers may understand that their methods are ad hoc
because they cannot be clearly classified by one of the models or paradigms
suggested by CMM, CMMI, Lean Software Development, Scrum, eXtreme
Programming, and so on. However, if you look deeply at when their practices
work and when the practices are used, you may notice that the success is due to
their own ways of playing software development rhythms well.

REFERENCES

Beck K. Extreme Programming Explained: Embrace Change. Boston: Addison-Wesley;
2000.

Beck K. Test-Driven Development: By Example. Boston: Addison-Wesley; 2003.

Brooks FP. The Mythical Man-Month: Essays on Software Engineering. Reading, MA:
Addison-Wesley; 1995.

Crispin L. Testing Extreme Programming. Boston: Addison-Wesley; 2003.

Erdogmus H, Morisio M, and Torchiano M. On the effectiveness of the test-first approach
to programming. IEEE Transactions on Software Engineering 2005; 31 (3):226-237.

Janzen D and Saiedian H. Test-driven development: Concepts, taxonomy, and future
direction. IEEE Computer 2005; 38 (9):43-50.

Maximilien EM and Williams L. Assessing test-driven development at IBM. Proceedings
of the 25th International Conference on Software Engineering. 2003; p. 564-569.

REFERENCES 289

Muller MM and Hagner O. Experiment about test-first programming. IEE Proceedings
Software 2002; 149 (5):131-136.

Ohno T. Toyota Production System: Beyond Large-Scale Production. Cambridge, MA:
Productivity Press; 1988.

Schoemaker P and Gunther R. The wisdom of deliberate mistakes. Harvard Business
Review 2006; 8 (6):108-115.

Stephens M and Rosenberg D. Extreme Programming Refactored: The Case Against XP.
Berlin: Springer; 2003.

Zahran S. Software Process Improvement: Practical Guidelines for Business Success.
Reading, MA: Addison-Wesley; 1998.

EPILOGUE: MEDLEY

If music be the food of love, play on!
—SHAKESPEARE

A first piano lesson starts with learning to sit upright with the chest forward
and shoulders pulled back and the arms and hands relaxed. We then practice
playing C, D, E, F, and G with our right hand. By the end of the first lesson
many of us can play a simple tune. On the surface, playing the piano is easy!
But when we start to learn to play with two hands, we have two rhythms to
play, and then it’s not that easy at all.

Unlike many other musical instruments like the violin or the saxophone,
we often play the piano melody with the right hand and chords with the left.
Software development rhythms are like this. One rhythm is for the theme,
and the other is for the chords that support the theme.

Software development rhythms are embedded in any executing para-
digm. There are two areas: a theme that guides or moves us forward and
chords that support our theme practices. However, in many cases, we may
have to alter the rhythms to match changes in the project environment. We
could start to play another rhythm and thereby alter our accompaniment or
our theme. This is the reason why we prefer development rhythms that are
easy to start and easy to sustain in a rapidly changing environment or in an
uncertain commercial world.

No musician in an orchestra will hand in a resignation letter to the
conductor and then leave during the performance. However, in the presence
of relatively high personnel turnover in the software team, we have to

Software Development Rhythms: Harmonizing Agile Practices for Synergy
By Kim Man Lui and Keith C. C. Chan
Copyright © 2008 John Wiley & Sons, Inc.

291

292 EPILOGUE: MEDLEY

=t
Coae

pry |
code = P,
Tasf Test Test

- ~
$ - il f‘ de/?’ N W AN
¢

FIGURE E.1 TDD as theme + pair programming as chord.

consider the master—coach diagram, which helps us understand the impact on
the development rhythms we are playing.

All these considerations will help you discover the right rhythms for your
team in the workplace.

Rhythms and You

In this final section we hope to stimulate the reader’s thinking. The two
rhythms that you see in Figures E.1 and E.2 worked well with small teams we
coached in agile software development in China. We suggest that you read
the stave chart and think about

« When these rhythms would work for your team and when they most
definitely would not

« When these rhythms have been used in a project in your workplace

Then you might like to consider the kinds of rhythms that you
might employ with your team or your staff in a particular project in your
workplace.

Partner
air Exchanged I

FIGURE E.2 TDD as theme -+ pair programming as chord.

EPILOGUE: MEDLEY 293

Rhythms for More Repetitious Programming Tasks

All test cases and their code source have been written in pairs. When the same
code patterns have previously been done in pairs, they can be refactored by
individuals (see Figure E.1).

Rhythms for Challenging Tasks

All test cases and their code source have been written in pairs. The pair is
ready to change partners when both know what and how to refactor a piece of
code. Change partners so that new partners bring a fresh view to the pairing
(see Figure E.2).

INDEX

Abandoned software project, 217

Abdel-Hamid, T., 188, 195

Accounts receivable, 253

Accused project managers, 221

ACNielsen, 118, 120, 122

Active users, 70, 72, 76

Ad hoc, 288

Ad hoc environment, 283

Ad hoc programming tasks, 259

Adaptive, 194

Adaptive models, 6

Adding manpower, 188, 190

Additive tasks, 149, 151

Agile manifesto, 60, 83, 212, 217-218

Agile methods, 14

Agile practices, 10, 33-34, 41, 59, 78,
82-83, 145, 212, 241, 283

Agile project management, 145, 237

Agile project progress, 229

Agile software development (ASD), 10, 57, 60—
61,63-64,73,77,83,150, 156, 163, 199, 224,
227,240-241

Agile software development processes, 34

Agile team, 212

Agile teaming, 197-200, 202204, 206, 208, 210,
212-216, 218-220, 222, 224

Agile teaming rhythm, 215

Agile values, 63-64, 78, 83

Agreed-on plans, 4

Alexander, C., 100, 262, 263

Algorithms, 40, 176

ALICE, 124, 126

All-the-time single pair programming, 180

Among-classes, 256-257

Analysis and design as planning, 5

Analysis-design process, 5

Analyst programmers, 223

Andres, C., 24, 34, 59, 199, 215, 224

ANNA, 126

Antigroup phenomenon, 145, 168

Anton, J., 190, 195

Application, 12-13, 15-17, 88-89, 101-102,
108, 110, 112, 151-152, 180, 220, 247, 255,
266, 271-273

Application requirements, 66, 115, 174

Applying development rhythms, 281,
288

Architecture, 100, 106

Arrhythmatic pairing, 205

Arrhythmic, 204, 206

Arrhythmic software project, 213

A/S400, 220, 222

ASD, see Agile software development

Asia, 46

Assembly line, 151-152, 243-246

Assembly task planning, 7, 8

Asynchronously collaborating, 56

ATM, 154

Atomic Energy of Canada Limited, 4

Atomic tasks, 142

A-Tutor, 68, 116-117

Automated test cases, 81, 277-278

Automated unit tests, 79, 278, 286

Awkward team structure, 23

Backward pass, 143

Bad-smell concept, 258

Bank accounts, 154

Bank, 154

Basic project management techniques, 240

Software Development Rhythms: Harmonizing Agile Practices for Synergy

By Kim Man Lui and Keith C. C. Chan
Copyright © 2008 John Wiley & Sons, Inc.

295

296

INDEX

BASIC, see Beginners’ All-Purpose Symbolic
Instruction Code

Bazaar models, 65

Beck, K., 24, 34,59, 199, 215, 224, 249, 263, 267,
274,277, 288

Beckham, David, 121, 125

Beedle, M., 161, 163, 203, 224

Beginners’ All-Purpose Symbolic Instruction
Code (BASIC), 89

Bernstein, L., 21, 35

Big-bang implementation, 23

Bill of Materials (BOM), 7-9

Black, J. T., 240, 263

Blackbox programming, 74, 76, 78

Blackbox testing, 108

Blackburn, J. D., 249, 263

Boehm, B., 15, 35

BOM, see Bill of Materials

Bonus pay, 18

Bottom-up approach, 230

Boundary values, 272

Breakpoint testing, 271, 275

Brooks’ law, 14, 188, 190-191, 194

Brooks, F. P., 35, 188, 195, 267, 288

BS5750, 4

Budget, 12

Budget control, 188

Business continual process improvement, 14

Business logic, 156

Business operations, 28, 4041, 116, 225,
232

Business processes, 22, 205

C, 12,90, 125, 261

C#, 283

Calls for a partner exchange, 159

Capability maturity model, see CMM

Capability maturity model integrated, see
CMMI

Capretz, L. F., 43, 54

Carr, N. G,, 131, 162

CASE, see Computer-aided software
engineering

Cathedral models, 65-66, 70, 75

Causal relationships, 51

Challenging programming problems, 176

Chan, K. C. C,, 176, 195

Changing requirements, 23, 223, 253

Chaos models, 21, 35

CHAOS report, 253

Chapman, S. N, 8, 35

Chatting robot, 122

Chief programmers, 198

China, 4, 45, 47, 90, 96, 119, 122-123, 187, 220,
241, 262, 292

Chinese marketplace, 90

Chords, 291

Chou, H. W., 198, 205, 224

Class component, 8

Class diagrams, 8-10, 65

Class hierarchy, 254

Class inheritance, 156

Class relationships, 257, 259, 262

Class-relationship-restructured, 256-257

Clients, 21, 65, 67, 73, 108, 142-144,
235, 261

Clipper, 12, 225

Closed-source software project, 66, 69

CMM, 4, 240-242, 283, 288

CMM levels, 240

CMM rhythm, 240-241

CMM], 4, 198-199, 240, 283, 288

Coach software team, 28

Coaching pair programming teams, 161

Coad, P., 93, 129

Cockburn, A., 81, 83, 138, 162, 195

Code comprehension, 39

Code patterns, 12, 293

Code quality, 67, 76, 271, 280

Code readability, 156

Code samples, 94, 102, 108, 110-113,
115, 126

Code-and-fix, 16-17, 21

Code-driven refactoring, 259

Code-oriented, 102

Coders, 19

Codevelopers, 75-76

Coding, 16-17, 27, 63-64, 87-90, 92-96, 105-
108, 131-133, 135-139, 156161, 233-238,
261-262, 266-269, 271-275, 277-279

Collaboration, 10, 41, 57, 65, 67, 69, 71-72, 75,
135-137, 169, 171, 184, 217-218, 238

Collaborative cognition, 132

Collaborative programming, 81, 132, 163, 195

Collaborative work, 133, 210

Collective code ownership, 187, 210

Collective tasks, 209, 211

Collocated team, 78-79, 82

Commercial products, 68-69, 74

Commercial projects, 71, 286

Commercial software project, 66, 71, 81

Communication channels, 111, 169,
192-193

Communication costs, 188, 191-193, 233-234

Communication overheads, 192

Communication proximity, 79, 80

INDEX

297

Complementary skills, 203

Completeness of source code, 73-74

Completion time, 17-18, 20, 133, 143, 176, 185,
188, 192, 274

Computer languages, 107, 261

Computer programming, 39, 137, 168

Computer-aided software engineering
(CASE), 154

Concurrent software, 20, 263

Concurrent software engineering, 20

Conflicting requirements, 251, 253

Conflicts, 161

Constant feedback, 6

Constantine, L. L., 133, 162, 195

Contemporary software design, 231

Continuous improvement, 240

Continuous integration, 79, 81, 152, 161

Control projects, 12

Cooperative learning, 137

Copy-and-paste programming, 88, 128

Copyleft, 117

Core developers, 59, 70, 75-76

Core software programming, 59

Cost of change, 249

Costs, 4,7, 48, 58, 119, 136, 140, 156, 161, 168,
170, 191-192, 233-234, 249

CPE, 159

CPM, see Critical path method

CPX, 159

Creativity, 134

Crispin, L., 271, 288

Critical path method (CPM), 142-143, 227

CRM, see Customer relations management

CRM applications, 110, 205, 253

CRM project development cycle, 115

CRM project, 111-112, 114

CRUD, 95

Cultural capital, 4546

Cultural differences, 201

Cultural elements, 34

Cultural understanding, 47

Customer(s), 22

Customer collaboration, 60

Customer feedback, 12

Customer relationships, 21

Customer-relations management (CRM), 22,
40, 82,110, 114-115, 145, 190, 230, 253. See
also CRM entries

Cut-and-paste programming, 88

Data locking, 226
Database, 10
Database administration, 102

Database denormalization, 102

Database programming, 151

Dave, 124

Deadline, 281

Deadlock handling, 226

Deal or No Deal, 10

Death march, 267

Debugging, 69

Defect(s), 9, 10, 73, 139, 152, 244-246, 249, 253,
262, 269-270, 272, 278, 286

Defect detection, 139

Delayed time, 20

Deliberate mistakes, 275, 286

Delivery lead time, 251

Delphi, 17

Deming, W. E., 14

Demographic data, 118-120

Departmental team, 201

Design, 154, 168, 176, 268

Design and testing, 152

Design by code, 156-157, 159, 233,
268-269

Design by diagram, 233

Design defects, 5, 139, 159

Design documents, 49, 50, 156

Design flexibility, 102

Design patterns, 101-102, 129, 185, 187, 261-
263

Design problems, 9, 105

Design review, 106

Design rhythm, 269

Design software, 225

Design solutions, 161, 259, 261-262,
273

Developed areas, 47

Developer role, 71-72

Developers, 12, 16-18, 23-24, 50, 58-60, 62-65,
67-75, 78, 80-81, 102-104, 134, 189, 198-
199, 281-283

Developing software, 4,5,7,9,11,175,227,241,
261

Development environment, 31, 40, 81, 83, 171

Development framework, 10, 25

Development languages, 207

Development methodology, 11, 24, 194, 283

Development processes, 5, 20, 22, 29, 62

Development rhythms, 25, 28, 30, 32, 34, 39,
42,48, 53, 82-83, 158, 194, 275,
291-292

Development team, 22,29, 69, 78, 112, 114, 229,
268

Devito Da Cunha, A., 43, 54

Dietz-Uhler, B., 136, 163

298

INDEX

Discretionary tasks, 152, 203
Distributed environment, 115
Distributed pair programming, 80
Distributed team, 78-79
Diversity, 134

Dividing and conquering, 5
Documents, 57, 60, 148

Domain knowledge, 22, 151, 207
Double-loop iterative model, 14
Dreamweaver, 47

Dummy solutions, 275

Duncan, S. D., 40, 54

Dynamic, 194, 202

Dynamic analysis, 270

Easy to do, 99

Easy to follow, 99

Easy-to-start, 96, 158, 160, 238-239, 248

Easy-to-sustain, 96, 158, 160,
238-239, 248

Ebrahimi, A., 107, 129

Economical number of test cases, 266-267

Economics, 140

Elapsed time, 228

ELIZA, 124

Empirical software, 175, 195

Empirical software engineering, 175

End-user, 71

Engineering product defects, 5

Engineering projects, 3, 7, 8

English language, 4647

Enhanced waterfall, 6

Enterprise resources planning (ERP),
71-72,95, 97, 118, 149, 152, 177, 216,
229-230, 251

Entity-relationship diagrams, 60

Epley, N., 52, 54

ERP, see Enterprise resources planning

Error detection, 138

E-training project, 116

Eureka task, 150

“’Eureka”-type problem, 150

Europe, 46

Evaluating pair programming, 195

Event-driven programming, 12, 90, 125

Evolutionary software development, 14

Evolution through prototyping, 247

Ewusi-Mensha, K., 217, 224

Exceptional handling, 23, 174

Execution, 5

Ex-partner exchange, 161

Experienced management, 48-49, 51, 53

Experienced programmers, 96, 135-136, 140,

159, 173, 253, 262, 265, 268-269

Experimental evaluation of pair
programming, 163, 195

Experiments, 165

Expert programmers, 140, 173

Explicit knowledge, 31

External behaviors, 254, 256, 258, 268, 275, 277

External user interfaces, 271

EXtreme programming, 8, 24-25, 34-35, 63, 78,
81-83,114,132,152,162-163,175,179, 194,

288-289

Face-to-face meeting, 20

Factors, cultural, 39

FAQ, see Frequently asked questions

Fast-paced, 194

Fermi question, 150

FIFO, see First-in first-out

Final-year programming assignment, 88

Finance director, 221

Finished products, 14-15, 151, 244-245

Firefox, 72

First-in first-out (FIFO), 174, 254

Flor, N. V., 155, 162, 195

Flowcharts, 25, 155, 157, 243, 259, 270

Forer, B. R., 51, 54

Forgotten requirements, 251, 253

Formal methods, 153

Formation phases, 206

Forsyth, D. R., 210, 224

Forward pass, 143

Four Ps, 61, 268

Four-stage waterfall model, 5, 18

Fowler, M., 258, 263

FoxPro, 225

Free riders, 211

Freelance programmers, 270

Frequently asked questions (FAQ), 132

Function points, 202, 211, 227, 246,
266, 269

Functional diversity, 205

Functional modules, 212-213, 216-217,
222,229

Functionality enhancement, 69

Functions, 13, 76, 110, 116, 128, 148, 151, 179,

209, 215, 230, 232, 246, 272-273
Funded project, 57, 68

Game theory, 28

Game theory analysis, 29
Gamma, E., 101, 129, 262, 263, 277
Gang of four, 101

Gardner, H., 173, 195

Gartner Group, 22

General public licence (GPL), 109

INDEX 299

Giddens, A., 198, 224 Incomplete requirements, 151, 253
Gifted programmers, 234, 237 Incremental design, 79, 81, 225-234,
Global software team, 81 236-242, 244, 246-250, 252, 254, 256, 258,
GNU, 109 260, 262, 264, 268
GNU GPL, 109, 126 Incremental development, 248
Godel, K., 137, 162 India, 46
GPL, see General public licence Inexperienced programmers, 47, 107, 286
Grading, 258 Information technology, see IT entries
Graphical user interfaces (GUI), 179, 183-184, Informix, 12
186-187, 256, 259 In-out diagram, 95, 179, 239

Greathead, D., 43, 54 Inspectors, 168
Group dynamics, 34, 134, 198, 224 Integrate, 168
Group learning, 169 Intentional beliefs, 52
Group of programmers, 41, 65, 134, 173 Invoice, 251
GUI Creation Maintenance Inquiry, 183 ISO 9000, 4
GUI, see Graphical user interfaces 1T, 16-17, 131, 162, 201, 220, 222
Gunther, R. E., 262, 264, 273, 289 IT managers, 223

IT projects, 216, 220
Halstead, M., 67, 83 Iteration cycles, 20-21
Hansen, J., 134, 163 Iterative model, 14, 17, 24, 29
Hardcode development, 136 Iterative software development, 12
Harrison, D. K., 239, 263 Iterative software processes, 274
Harrison, W., 246, 263 Iterative waterfall model, 13-15, 25, 31
Haslam, A., 165, 195
Hawking, Stephen, 156 Jacobson, L., 37, 54
Hawthorne effect, 166 Janzen, D., 283, 288
Heavyweight, 59, 60, 78, 82, 194 Java, 47
Heavyweight processes, 59, 60 Java programming, 150, 277
Herzberg, F., 176, 195 Java programs, 43, 101, 154, 259
Heterogeneous team, 201 Jespersen, 220-221
High cohesion, 105 JIT, see Just-in-time
Higher-quality software, 132 JIT software development, see Just-in-time
Highly maintainable code, 236 software development
Hired programmers, 107, 135 Job(s), 17, 39, 43, 45, 48, 52, 97, 103-104,
Hong Kong, 11, 116-117, 123-124, 200 122-123, 133-135, 137-138, 140,
Horse-trading problem, 145, 150 167-168, 175
Human-centered, 38 Job simulation test, 96, 99
Human-computer studies, 173 Job test, 96-97
Human dynamism, 28 Joone, 72
Human programmers, 184, 276 Jorgensen, M., 51, 54
Human resources, 16-17 JSPWiki, 72-73
Hunter, S. L., 240, 263 Junior programmer’s code, 187
Hutchins, E., 155, 162 JUnit, 277, 283
Hybrid approach, 230 Just-in-time (JIT), 159, 239-242, 245-247
Hypnotic decision making, 51 Just-In-time Software Development, 239, 241,

243, 245, 247
lago, 222-223

ICQ, 111, 122-126, 135 Kahenman, D., 11
IcqOscar] plug-in, 128 Kameda, T., 152, 163
Idle time, 20 Kanban, 159, 245
Immature prototype, 14 Kaner, C., 113, 116, 130
Implementation, 9 Keefer, G., 139, 163
Improvisation, 237 Keil, M., 219, 224

Incentive scheme, 18-19 Kessler, R., 133, 139, 163, 196, 211, 224

300

INDEX

Key performance indicator (KPI),
118-120

Key users, 252-253

Knowledge, 31, 34, 38, 4041, 48, 63, 76, 81,
90-91, 116, 137-138, 203-204,
253, 255

Knowledge of purpose, 261

Knowledge of structure, 261

Knowledge sharing, 169

KPI, see Key performance indicator

Labyrinthine pattern of software design,
231

Lack of user input, 253

Large project, 67, 78

Last-in first-out (LIFO), 254

Late software project, 213

Late-project team, 193

Lean manufacturing, 240

Lean production, 239-240, 264

Lean software development, 35, 240, 288

Learning, 38, 45, 48-52, 54, 61, 130, 137, 153,
168, 208-209, 215, 280, 291

Learning curve, 83, 104, 192, 206-209

Learning speed, 208

Level 3 refactoring, 258

Leveson, N, 4, 35

License, general-public, 109

Lifecycle, 202, 207-208

LIFO, see Last-in-first-out

Lightweight processes, 58

Lightweight, 59, 60, 62, 78, 82, 194

Linearized Einstein equation, 156

Linux, 57, 67-68, 84

Linux’s law, 145

Load test, 174

Local software team, 46

Logical design, 5

Logistics, 239

Long meetings, 27

Loosely coupled team, 80

Luger, G., 155, 163

Lui, K. M., 176, 195

Madnick, S., 188, 195

Maier, 145

Maintain software, 154

Maintainability, 235, 259-60

Maintenance, 176

Management, 10, 47,77, 114,120, 131, 136, 188,
190, 216-217

Management support, 223

Management theory, 175

Managers, 11, 41, 43, 45-46, 48,72, 82,107, 110,
138, 200-201, 222-223, 231, 283-284

Managing software project, 5, 60, 194, 241

Managing software team, 47

Manufacturing, 9, 46, 151, 159, 209, 239-240,
246-247, 263

Manufacturing process, 242-243

Manufacturing production, 3

Manufacturing resource planning (MRP), 40

Marketing research, 118-120

Master and apprentices, 100

Master-coach diagram, 31-33, 83,101-102, 282,
292

Matrix, cross-product, 95

Maturity model, capability, 240

Mayer, D. B., 39, 54

McCabe, T., 67, 83

McConnell, S., 105, 130

Meeting, 24, 27-28, 38, 41, 49, 64, 106, 203, 220,
222-223,252

Mens, T., 234, 262, 264

Message chains, 261

Messaging unit, 249

Metaphoric communications, 22

Metes, G., 212, 224

Methods, 254

Metrics, 286

Mexico, 46

MFG/PRO, 230

Microsoft, 57, 90

Microsoft Access, 17, 97

Microsoft SQL server, 91

Middleton, P., 240, 264

Miranda IM, 72, 126, 128

MIS, 222, 225, 254

Mislearn, 48

Mobile computing software project, 142

Modeling, 178, 226-227, 229, 231-233

Models, 6, 15, 19, 20, 38, 49, 53, 57, 89, 153, 173,
198, 207, 261, 268

Moderator, 192

Moneyless world, 137

Motivation, 148

Mozilla, 68

MRP, see Manufacturing resource planning

MS SQL Server, 17

Multiple project, 20

Nammik, 117, 123-126, 128

Nammik architecture, 126-127
Natural language, 151

Nawrocki’s experiment, 175
Nawrocki, J., 24, 35, 142, 163, 175, 195

INDEX

301

Negative values, 272
Network, 144
Network News Transfer

Protocol NNTP), 111
Network programming, 111, 125-126
Nonexistent customer code, 272
Nonplagiarized code, 94
Non-zero-point collaboration, 262
Nosek, J. T., 141, 163, 175, 195
Novice programmers, 94, 173, 180

Object classes, 258

Object-oriented programming, 156

Object-oriented software system, 254

O’Brien, K. J., 108, 130

Observer, 193

Ohno, T., 50, 54, 279, 289

Opdyke, W. F., 254, 264

Open-ended questions, 161

Open source, 55-58, 60, 62, 64, 66-68, 70,72, 74,
76,78, 80, 82-84, 117, 130

Open-source developers, 66, 70, 75, 77, 81, 110

Open-source development, 67, 77-78, 111

Open-source development project, 72-73

Open-source maturity model, 57

Open-source practices, 57

Open-source products, 57, 65, 108

Open-source projects, 61, 66-69, 71-73,75, 111,
126

Open-source software, 55-57, 65, 67-69, 71-73,
75, 108

Open-source software development, 34, 55, 57,
62-63, 68, 75, 81-82, 84, 111, 145

Open-source software project, 56-57, 61, 66, 68,
70

Operating system, 12-13, 67, 271

Operational processes, 23

Optimum productivity, 207

Organizational cultures, 23

OSS, see Open-source software entries

OSSD, see Open-source software development

Outsourced programmers, 45, 47, 189

PacMan, 43

Paid by bugs, 270

Pair design, 156-157

Paired experienced programmers, 135

Paired programmers, 133, 135, 137, 139, 157,
161, 186

Paired team, 159, 162

Pair groups, 153

Pair jelling time, 207

Pair learning, 137

Pair programming, 32, 58-59, 131-148, 152—
163, 166-173, 175-182, 184185, 187, 192,
195-196, 207, 260-261, 282, 292

Pair programming group, 170

Pair programming practice, 135, 162

Pair programming productivity, 162

Pair programming teams, 80, 133, 161

Pair-solo rhythm, 184-185

Pair work, 137

Panko, R. R., 261, 264

Parkinson’s law, 18

Parrado, N., 197, 224

Partner exchange, 158

Partner rotation, 159

Paste code, 88

PAT, see Programming aptitude test

Pattern theory, 100

Patterns, 100-101

Paulk, M., 240, 264

Pavlicek, R. C., 67, 83

PDCA, 14-16

PDCA cycle, 14-15

Peer reviews, 258

People communications, 238

People discipline, 288

People-focused, 194

People network, 111, 122

People over process, 199

Performance tuning, 69

Perry, J. W., 261, 264

Personal interest, 68

Personality test, 43, 45

Personality traits, 38, 148

Personal preference, 11

Personnel turnover, 138

Petouhoff, N. L., 190, 195

Petty, D. J., 239, 263

Plagiarism, 87, 89, 90, 93, 95, 98-100, 102, 107—
110, 112, 114, 117, 128-129

Plagiarism programming, 87-88, 90-100, 102,
104-110, 112, 114-118, 120, 122, 124-130

Plagiarism programming team, 96

Plagiarized assignments, 89

Plagiarized code, 94-95

Plagiarizing programmers, 91, 93, 97

Plan to cost, 7

Planning, 5, 226, 268

Platforms, client/server, 12

PL-SQL, 102

Plug-ins, 126

Poff, M. A., 180, 187, 196

Point-of-sales (POS), 12, 151

Polymorphisms, 156

302

INDEX

POP3, see Post Office Protocol Version 3

Poppendieck, M., 20, 35

Poppendieck, T., 20, 35

POS, see Point-of-sales

Positional diversity, 205

Post Office Protocol Version 3 (POP3), 110

Post, T.]., 11, 35

Postmortem review, 4

PowerBuilder, 12

Prefactoring, 257

Premature bad solutions, 51

Preston, J., 52, 54

Preventing teaming problems, 211

Prison experiments, 165

Probability distribution, 189-190

Problem solving, 39

Procedural algorithms, 155-156

Process(es), 5, 15, 20, 24, 28, 34, 58-61, 63, 68,
82-83, 113, 199-201, 240, 253-254

Process-centered, 38

Process-driven, 194

Process over people, 199

Process, people, paper, and product, 268

Product backlogs, 227

Product integration, 57

Production phase, 206

Productive team, 207, 215

Productivity, 63, 74-75, 134-135, 139-140, 153,
162-163, 169, 172-174, 177, 188, 193-194,
206-207, 209, 278-280

Products, 4, 7-10, 19, 22, 34, 52-53, 59-61, 63,
65-67, 69, 77-78, 105, 116-117, 183

Professional service, 57

Program execution, 270

Program specifications, 273

Programmer(s), 46-49, 70-72, 95-97, 103-108,
132-136, 139-142, 156-159, 167-172, 177-
181, 185-193, 232-234, 246247, 259-262,
280-284

Programmer productivity, 140

Programming, 25, 4041, 58, 60-61, 89, 90, 97—
100, 103-105, 138-139, 153-154, 165-170,
172-182, 184-188, 192-194, 273

Programming activities, 233, 288

Programming aptitude test (PAT), 43

Programming as execution, 5

Programming code, 10

Programming design, 39, 133, 155

Programming design alternatives, 155

Programming efforts, 152, 227

Programming exercises, 174

Programming experiments, 166, 174

Programming languages, 12-13, 89,
268, 275

Programming logic, 232, 256, 270

Programming modules, 140, 271

Programming paradigms, 41, 202

Programming practices, 41, 76, 140

Programming problems, 40, 101, 150, 172, 175-
176

Programming process, 5

Programming productivity, 139, 148,
162, 169

Programming rework, 49

Programming skills, 41, 45, 47, 97

Programming solutions, 177, 281

Programming tasks, 6, 59-61, 95, 134, 142, 148,
152, 158, 173, 181

Programming techniques, 93, 283

Progress reports, 23

Project, 3-8, 14-15, 18-21, 47-49, 51-53, 60-61,
65-68, 70-72, 138, 142-145, 187-191, 198—
202, 208-209, 216-223

Project charter, 198

Project cycle, 207209, 226

Project development team, 201

Project goals, 194, 220

Project leader, 12, 29, 70, 200, 213

Project lifecycle, 212

Project management, 10, 138, 161, 198, 218, 221

Project management design, 42

Project management model, 4

Project management paradigm, 6

Project management scheduling, 227

Project management tools, 218

Project managers, 4, 6, 7, 18, 46-47, 138, 168,
171, 175, 188-191, 201, 216-217, 221-223,
266-267, 283-284

Project meeting, 201, 217

Project members, 218, 221

Project mismanagement, 3

Project participants, 71

Project plan, 5-7, 15, 20, 23, 77, 142, 189, 206,
209, 220, 227, 230, 284

Project planning, 8, 188, 231, 284

Project requirements, 6

Project resources, 5, 218, 266267

Project schedule, 18, 77, 201, 220-221,
267

Project skill demand curve, 208

Project structure, 216

Project team, 69, 83, 112, 188, 190-191, 200-203,
205-207, 221-222, 238, 285

Project team composition, 205

INDEX

303

Project team members, 201, 223

Project time, 188, 207

Project tracking, 77, 81, 284

Prosumer, 70

Prototype, 4, 14-16, 23, 65, 69, 73, 237
Psychology of programming, 38-39, 175
Pugh, K., 257, 264

Pygmalion in the classroom, 37

Python code, 276

Quality assurance (QA), 272

Quality checking (QC), 272

Quality improvement, 278

Quasi-experiment, 176

Quick solutions, 88, 262, 269, 273,
275-276, 284

Raccoon, L. B. S., 20, 35

Radiotherapy, 4

Rapid iterative development cycle, 284

Rapid releases, 63, 66, 72, 74-75, 77, 81

Rapid software process improvement, 282—
283, 285, 287

Rapidly changing requirements, 251

Rause, V., 197, 224

Raymond, E. S., 65, 83

Readability, 10, 25, 92, 156, 254, 256, 258-262

Redesign, 105

Redistributing classes, 254

Redundancy, 236

Refactoring, 25,69, 79, 89,92,105-107,179, 234,
254, 256-263, 274-275, 277, 280, 286

Refactoring techniques, 258

Regression testbed, 277

Regression testing, 23

Reicher, S., 165, 195

Release patches, 16

Releases, 16, 23, 29, 67, 69, 70, 72-75,
77,270

Remote access, 102

Remote desktop, 193

Repeat programming, 172-173

Repeat-test, 95

Repetitious programming tasks, 293

Repetitive products, 246247

Report writing, 152

Requirement(s), 5,10, 14,16-17,24,29,147,151,
228, 234, 246-255, 267-269, 271, 273

Requirement specifications, 60

Requirements complexity, 248-249, 251, 253

Requirements engineering, 151

Requirements management processes, 22

Requirements management, 8, 71, 152

Rescue practice, 216-217

Rescuing software project, 218

Resource(s), 5-7, 15, 58, 60, 83, 144, 152, 198,
208, 219-220, 222, 227, 230, 281

Resource allocations, 151

Return on investment, 22

Reusability, 235, 254, 278

Rework, 235

Rhythm(s), 24-28, 30-33, 117, 125-129, 159-
160, 178-179, 181-188, 194,
202-204, 206-207, 241, 274-275,
281-283, 291-293

Rhythm for challenging tasks, 293

Rhythm for late projects, 192

Rhythm of the groups, 162

Rhythm of software practices, 26

Rhythm of triple programming, 194

Rhythmic pair programming, 158, 160

Rhythmic problem management cycle, 218

Right rhythms, 24, 34, 292

Right timing, 204

Rigorous, 194

Rigorous development processes, 5

Ringelmann effect, 149

Risk, 7,11, 24, 29, 35, 38, 103, 136-138, 177, 199,
203, 267

Risk control, 218

Risk factors, 6, 15, 189

Risk management, 218, 223

Robert, M., 145, 163

Role(s), 10, 18-19, 57, 70-72, 82, 131-132, 135,
158, 168, 192, 198, 221, 226, 237

Role exchange, 158

Roles of programmers, 70, 82

Root cause, 51

Root cause analysis, 215

Rorschach inkblot, 41

Rosenberg, D., 169, 196, 289

Rosenthal, R., 37, 54

Rough-cut design, 106

Royce, Walker, 9, 35

Royce, Winston, 5, 35

Runaway software project, 218

Running project team, 201

Saiedian, H., 283, 288

Sales-and-distribution system (SDS), 118-120
Sashimi model, 20

Schedule, 15, 141

Schedule-based, 194

Scheduling slippage, 205

304

INDEX

Schoemaker, P. J. H., 262, 264, 273, 289

Schonberger, R., 239, 264

Schwaber, K., 161, 163, 203, 224

SCM, see Supply chain management

Scrum, 14, 203, 227, 288

Scrummage, 203

Scrummage meeting, 14

SDS, see Sales-and-distribution system

Self-fulfilling prophecy, 37

Self-organizing team, 79, 161, 202204, 210,
214-215

Semantic algorithm analysis, 154

Server managers, 102

Shalloway, A., 105, 130

Shared-intelligence collaboration, 87

Shell, M. M., 40, 54

Shewhart’s closed-loop model, 14

Short descriptive requirements, 22

Side-by-side programming, 132, 166-167, 282

Sign cards, 159

Signed confirmations, 4

Simple design, 231, 275

Simple Mail Transfer Protocol (SMTP), 110

Single pair programming, 158-159, 162, 166,
179-180

Single-phase analysis, 6

Sjoberg, D., 51, 54

Skilled programmers, 45, 105, 107

Slack, 144

Slack-time, 20

Slow-paced, 194

Small-lot-size user requirements, 246

Smart software team, 279

SMTP, see Simple Mail Transfer Protocol

SNA, see Social network analysis

Snow, A. P. 219, 224

Social network analysis (SNA), 91

Software, 3, 4, 8-10, 14, 22-24, 29-31,
33-34, 48-50, 54-55, 60-61, 65-67,
69, 73, 266-268, 270-271

Software activities, 41

Software applications, 13, 66, 137, 232, 246, 266

Software architects, 226

Software capability, 199

Software cloning, 66-68

Software complexity, 183, 223, 237,
250, 266

Software configuration, 88, 112, 286-287

Software configuration management, 77, 112,
286-287

Software construction, 130, 233, 238

Software design, 43, 226-8, 231-232, 249, 258,
268

Software design methodology, 248

Software design teams, 224

Software developers, 3, 10, 16, 24, 33, 49

Software development, 4, 9, 33-35, 38-39, 57,
60-61, 82-83, 185-186, 188, 199, 200, 209,
237-238, 240-241, 266

Software development activities, 5, 268

Software development methodologies, 22, 77

Software development processes, 4, 10, 56

Software development projects, 3, 57, 265, 267

Software development rhythms, 3, 24-25, 27,
29-31,33-34,37,52-53,55,82,87,114, 129,
194, 291

Software development tasks, 152

Software development teams, 212

Software disciplines, 129

Software engineering, 3, 35, 54, 130, 288

Software functionalities, 22, 232, 271

Software house, 12, 21, 73, 237, 270

Software inspections, 138-139

Software installation, 97

Software integration, 24, 152

Software leader, 28

Software maintenance, 60, 156, 166

Software management, 10, 52

Software managers, 6,9, 43, 45, 60, 82, 200, 215,
283

Software methodologies, 38, 47, 61, 194, 283

Software module, 75, 152

Software outsourcing, 45

Software paradigms, 29, 34, 78, 283

Software practices, 6, 24-26, 32, 38, 41, 43,
47,49, 52, 54-55, 58-59, 74-77,
79-82, 283

Software principles, 175, 194

Software problems, 10

Software process, 34, 58-60, 199, 241, 263

Software process improvement, 58, 240, 289

Software products, 7, 40, 52, 68,70, 72,129, 174,
198, 248

Software professionals, 25

Software program managers, 52

Software project, 6-8,10-12, 48-49, 51, 61, 71—
73,138, 142, 175, 199-202, 207, 212-213,
215-218, 248-249

Software project community, 76

Software project dynamics, 195

Software project experience, 34

Software project failures, 71, 175, 222, 253

Software project management, 14, 48,
60-61, 76, 145

Software project manager, 11

Software project participant roles, 72

INDEX

305

Software project planning, 82

Software project status, 224

Software project teams, 198

Software quality, 49, 65, 67-68, 103, 136, 138,
140-141, 174, 176177, 258, 260, 266267,
271, 286

Software requirements, 5, 64, 146,202, 230, 251,
264, 267

Software rhythms, 34

Software solutions, 47, 63

Software teams, 6, 7, 10-12, 15, 17-19,
22-25,28-29, 31, 33-34, 38-39, 41,
46-48, 74-75, 81-83, 152-153

Software team’s productivity, 209

Software testing, 18, 23

Software tools, 39, 207

Software verification, 271

Solo groups, 153

Solo programming, 33, 133, 138-139, 142, 144,
161, 166-167, 169-170, 177-178, 180-182,
184-187, 194, 259

Soloway, E., 94, 130

Solution(s), 6, 63-64, 104, 114, 145-146, 150,
168-169, 173, 176177, 262, 269, 273, 275—
276, 281-282

Solution-oriented, 102

Sommerville, 1., 58, 83, 108, 130

Sonnentag, S., 198, 224

Source code, 65, 67-68, 73-76, 78, 88, 108, 112,
210, 233, 259

Spiral model, 15-16, 35

Sprint, 202

SQL database programming, 93

SQL, see Structured query language

Staff, 17, 109, 116, 131, 187, 192, 205-206, 223,
276, 292

Staff turnover, 107

Stalnaker, A. W., 39, 54

Stamelos, I. S., 67, 83

Standardized process, 241

Standish Group, 253

Standup meeting, 24-25, 27, 78, 150, 160-161

Stanford prison experiment, 165

Stasser, G., 136, 163

Static, 194

Statistical analysis, 258

Statistical process control, 14

Stave chart, 25

Steiner, 1. D., 152, 163

Stephens, M., 169, 196, 289

Stock, make to, 244

Story cards, 159, 227-233, 246, 266, 273, 275
276, 284

Strategic planning, 132

Strong rhythms, 241, 281, 283

Structure of a rhythm, 28

Structure phase, 206

Structured query language (SQL), 10

Stubblefield, W., 155, 163

Student programmers, 43, 126

Style consistency, 259

Subcomponents, 7, 8

Submodules, 50, 69, 74, 95, 105, 110,
141-142, 152, 177, 273

Subprograms, 87-88, 149

Substantial programming reworks, 49, 50

Substantial redesign, 232

Subtasks, 60, 65, 132, 148-149, 151,
181-184, 192

Subteams, 19, 113, 204, 212-213

Suckers, 210

Supply chain applications, 40

Supply chain management (SCM), 110, 216

Support pair programming productivity, 166

Sustaining pair programming, 179-180

Sutton, J., 240, 264

Swire group, 117

System analysts, 10, 19

System design, 41

System integration, 5, 152, 205, 230, 250

System modules, 251

System requirements, 147

Tacit knowledge, 31

Tailored processes, 240-241

Talented programmers, 40, 140

Task(s), 5, 7, 8, 18, 20-21, 92-93, 133-134, 136,
140-144, 148-153, 191-192, 199, 202-203,
209-211, 227

Task execution, 238

Task switching, 20

Taylor, D., 216, 224

TCP /1P, see Transmission Control Protocol/
Internet Protocol (TCP/IT)

TDD, see Test-driven development

Teaching, 168

Team, 23-25,28-34,38-43,45-49, 63-65, 68-70,
111-116, 150-153, 186, 190-192, 198-209,
211-213, 237-238, 285-287

Team collaboration, 198, 238, 283

Team communications, 59, 92, 281

Team coupling, 79, 80

Team cultures, 38, 42, 48, 92, 166, 201

Team development, 201

Teaming, 69, 167, 198-200, 202, 212,
218-219

306

INDEX

Teaming principles, 215

Teaming problems, 207

Teaming relations, 21

Team-in-team approach, 204

Team leaders, 39, 47, 64, 185-186, 217,
222,281

Team location, 77, 79

Teammates, 139, 201, 210, 233

Team members, 6, 19, 24, 27, 41, 64-65, 76-79,
138, 151, 190-192, 201-203, 205, 209-210,
281-282

Team of programmers, 156, 247

Team organization, 60, 198, 203

Team pair programming, 158-160, 162, 166,
204

Team pair programming productivity, 159

Team performance, 148, 151-152, 205, 209, 286

Team productivity, 135-136, 153, 208-210

Team programming, 75, 134, 162

Team progress, 185, 228

Team size, 77, 79, 214

Team software development, 76

Team software process (TSP), 198

Team structure, 205, 212-214, 222-223

Team velocity, 228-230

Teamwork, 4, 40, 46, 167, 210

Technical programming, 205, 288

Technical staff, 12

TechTrans, 11

Telelogic’s Logiscope, 67

Test, 39, 40, 43, 90-91, 96-97, 99, 100, 108, 112—
114, 116, 125-126, 174, 179, 262, 266-269,
271-281

Test case, 116, 140, 174, 256, 258, 262,
266-273, 275-276, 279, 281, 293

Test case requirements, 271

Test code, 268

Test-driven development (TDD), 104, 185,267—
268, 274-275, 278, 280-281, 283, 284, 286—
288, 292

Test environment, 97

Tester, 10

Test-first programming, 79, 267, 269271, 273~
274,279, 289

Test-first refactoring, 262

Test-first thinking, 278-279, 282, 286

Testing, 268

Test-last programming, 270, 279

Thematic rhythms, 25

Theme, 291

Therac-25, 4

They'll love it, 235

Thompson, Ed, 22, 110, 198

Thompson, K., 67, 83

Thread programming, 283

Time box, 18

Time-critical tasks, 161

Timeframes, 12

Time-to-market, 177

Time-wasting, 203

Tindale, R. S., 152, 163

Toffler, Alvin, 70

Tools, open-source, 277

Torment your customers, 235

Total cost concept, 231

Tourwe, T. A., 234, 262, 264

Toyota Motor Company, 239

Toyota production system (TPS), 239

Traditional project management, 60, 227, 284

Traditional project planning, 227-228

Traditional software development, 199, 229,
246, 287

Traditional team structure, 203-204

Traffic light reporting, 219

Training, 57, 218

Training manuals, 60, 71

Transact-SQL, 96

Transmission Control Protocol/Internet
Protocol (TCP/IT), 91

Transparency, 211

Triple programming, 132-133,
145-146, 162, 168-169, 177-178,
192-194

Triplet programming, 162

TripLog, 17

Trot, J., 105, 130

Troubled late IT projects, 218

Troubled-late projects, 190-191

Truck number, 138, 191

TSP, see Team software process

Tuckman model, 206

Tversky, A., 11, 35

UAT, see User acceptance test

Ugly customers, 22

Ugrammers, 70-71

UML, see Universal modeling language

Unit costs, 7

Unit test, 5, 114, 184, 258, 271279,
281-282, 284-287

Unit test cases, 273, 276-278, 282,
286-288

Unitarily conjunctive, 152

Universal modeling language, 10, 233

Unix, 67, 84, 198

Unpredictable programming changes, 133

INDEX

307

Update products, 183

Upfront design, 237-239, 247, 255

USENET, 138

User(s), 8, 14, 17, 21, 65, 70-73, 147-148, 174—
175, 202-203, 221, 225-226,
232-235, 250-251, 253-255

User acceptance tests, 5, 22, 212-213, 271

User interfaces, 74, 89, 91, 95, 226, 233, 268

User requirement log, 274

User requirements, 6, 11, 41, 58, 93, 108, 112-
113, 147, 151, 226-227, 237-238, 250-251,
253-254, 268-269

User roles, 71-72

UserSession, 154

User specifications, 233

User stories, 8, 22, 202, 274

User test cases, 266

Value-added tax (VAT), 105
Variables, 254

VB, see Visual BASIC

VB.net, 89

VCD, see Video compact disk
Velocity, 228-230, 284

Video compact disk (VCD), 116
Virtual team, 212

Virtuosi, 40

Visual BASIC (VB), 89, 90
Visual software design, 232-233

Wald, R. M., 156, 163

Walter, B., 24, 35

Warehouse application, 174

Waterfall management, 7

Waterfall model, 5, 6, 10, 12, 16, 28-29, 41, 227,
243, 288

Web-based content management system,
117

Web-based CRM, 187

Web design, 97

Welch, J., 200, 224

Welch, S., 200, 224

Whitebox testing, 108

Wiegers’ and Blackburn’s data, 249

Wiegers, K. E., 248-249, 264

Williams, L. A., 133,138,139, 141, 162,163,175,
196, 207, 211, 224

Windows 95, 91

Windows 98, 271

Windows programming, 90

Windows Server 2003, 57

Within-classes, 256-257

Wojciechowski, A., 24, 35, 142, 163, 175,
195

Womack, J. P., 239, 264

Work products, 73, 183-185, 240, 247,
286

Working, 168

Working software, 12, 23, 60, 68, 79, 106

Work-in-progress, 243, 244

XP, 25, 34, 80-81, 132, 168, 196, 283,
288-289
XUnit, 277

Yeh, Y. J., 198, 205, 224
Yuhas, C. M., 21, 35

Zahran, S., 283, 289
Zero-defect software, 271
Zero-point collaboration, 64
Zimbardo, P. G., 165, 196

