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Foreword 
Middleware is the set of services, protocols, and support utilities providing the 'plumbing' that 
makes modern distributed systems and applications possible—the infrastructure that 
underlies web services, distributed objects, collaborative applications, e-commerce systems, 
and other important platforms. Not long ago, the term middleware was rarely heard, and 
middleware developers were rarer still. But over the past decade, the term, the research and 
practice, and its impact have become ubiquitous. Yet, until now, there has not been a book 
describing how to construct networked and concurrent object-oriented (OO) middleware, so 
its design has remained something of a black art. This book demystifies middleware 
construction, replacing the need to have an expert looking over your shoulder with well-
reasoned, empirically-guided accounts of common design problems, forces, successful 
solutions, and consequences. 

As is true for most concepts, nailing down the boundaries of middleware is hard. 
Conventionally, it consists of the software needed to build systems and applications, yet is 
not otherwise an intrinsic part of an operating system kernel. But it is not always possible to 
find middleware where you first look for it: middleware can appear in libraries and 
frameworks, operating systems and their add-ons, Java virtual machines and other run-time 
systems, large-grained software components, and in portions of end-products such as web 
services themselves. 

This book is not a textbook surveying middleware or the types of applications and distributed 
system architectures you can devise using middleware. It instead presents a pattern 
language that captures the design steps leading to the construction of the OO 
communication support involved in most middleware. Many of the patterns described in this 
book also have utility in both higher-level and lower-level systems and applications that are 
not based directly upon middleware.  

This book emphasizes practical solutions over theoretical formalisms. The basic ideas 
behind many presented patterns are well-known to experienced system developers—for 
example, dispatching, demultiplexing, callbacks, and configuration—and are sometimes 
variants of more general OO patterns—for example, proxies, adapters, and facades. This 
book's main contribution centers on in-depth engineering solutions based upon these ideas. 
Middleware developers must resolve a wide range of forces including throughput, 
responsiveness, dependability, interoperability, portability, extensibility, and accommodating 
legacy software. The diversity and severity of these forces accounts for the complexity of 
middleware patterns, as opposed to those seen in smaller-scale OO applications and 
concurrent programming. 

The multitude of such forces, combined with years of engineering experience, often lead to a 
multitude of design considerations and engineering trade-offs separating an idea from its 
expression in middleware frameworks. The pattern description format used in this book 
helps to simplify this process by presenting solutions as series of concrete design steps. 
Many of these steps in turn invoke additional patterns. Together they form a pattern 
language, enabling developers to traverse from pattern to pattern while designing services 
and applications. 

As mentioned by the authors, some of the ideas and techniques discussed in this book are 
complementary to those seen for example in W. Richard Stevens's pioneering books (e.g., 
[Ste98]) on network programming. The main point of departure is the unrelenting focus on 
higher-level design issues. Rather than, for example, discussing the ins and outs of the Unix 
select () call, this book explains how to build a composable and flexible framework—a 
Reactor—based on select () and other operating system calls. 
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One of the implicit themes of this book is how to apply the bits and pieces of functionality 
dealing with I/O, threading, synchronization, and event demultiplexing offered by 
contemporary platforms as the foundation for constructing higher-level frameworks and 
components. The primary emphasis on C/C++ on Unix and Microsoft operating systems 
does not detract from this theme. For example, Java programmers will find a few minor 
disconnects in cases where Java already directly implements some of the patterns 
discussed in this book, for example, Scoped Locking, or provides frameworks structured in 
accord with particular implementations of patterns, such as the JavaBeans framework's 
support of configurable components, as well as a few where Java lacks access to underlying 
system mechanisms, such as synchronous event demultiplexing. 

However, readers most familiar with Java, Smalltalk, and other OO programming languages 
will still profit from the central ideas conveyed by the patterns, can better appreciate how and 
why some became directly supported in language features and libraries, and will be able to 
construct useful components based upon other patterns. As an example, until the advent of 
java.nio, Java did not provide access to system constructs useful for asynchronous I/O. 
However, after referring to a description of the Proactor pattern described in this book, I once 
put together a Java version that simulated the demultiplexing step via a simple spin-loop 
thread that checked for I/O availability across multiple channels. This was less efficient, but 
was perfectly adequate within its intended usage context. 

Over the years, some of the accounts in this book, such as Reactor, have evolved from 
descriptions of design inventions to design patterns. Everyone constructing portable OO 
middleware has written or used at least one Wrapper Facade. But early presentations of 
several other patterns now contained in this book also discussed novel contributions about 
their design. It was at first a bit uncertain whether such descriptions should be considered as 
patterns, which must be time-proven, independently (re)discovered solutions. However, over 
time, the authors and the OO middleware community have become more and more 
confident that the patterns in this book do indeed capture the essence of key forces and 
design issues, and have witnessed the described solutions being used over and over again 
across diverse usage contexts. 

I invite you to share in this phenomenon. By reading—and especially, using—the material in 
this book, you'll see why pattern names such as Reactor and Proactor have become as 
common among OO middleware developers as have Decorator and Observer among OO 
GUI developers. 

Doug Lea  
 

State University of New York at Oswego  
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About this Book 
Patterns have taken the software development community by storm. Software developers 
have been enthusiastic about patterns ever since the seminal work Design Patterns - 
Elements of Reusable Object-Oriented Software [GoF95]. Its successors, such as the 
Pattern Languages of Programming Design (PLoPD) series [PLoPD1] [PLoPD2] [PLoPD3] 
[PLoPD4] and A System of Patterns [POSA1][1] have further fanned the burning interest in 
patterns kindled originally by earlier work on software idioms [Cope92], patterns for building 
architectures [Ale79] [AIS77], and patterns for cultural anthropology [Bat97]. 

This book, Patterns for Concurrent and Networked Objects, is the second volume in the 
Pattern-Oriented Software Architecture (POSA) series. Like its predecessor, A System of 
Patterns [POSA1], it documents patterns and best practices that represent concrete, well-
proven and useful techniques for building industrial-strength software systems. These 
patterns and best practices can and have been applied to applications in a wide range of 
domains, including telecommunications and data communications, financial services, 
medical engineering, aerospace, manufacturing process control, and scientific computing. 
They also form the basis of popular distributed object computing middleware, such as 
CORBA [OMG98c], COM+ [Box97], Java RMI [WRW96], and Jini [Sun99a]. 

Moreover, all the patterns in this book build on the same solid conceptual foundation as 
those in the first POSA volume. For example, we use the same pattern categorization 
schema, the same pattern description format, and present examples and known uses in 
multiple programming languages, including C++, Java, and C. 

Patterns for Concurrent and Networked Objects thus follows the same philosophy and path 
as A System of Patterns and has the same 'look and feel'. 

In contrast to A System of Patterns, however, which covered a broad spectrum of general-
purpose patterns, this book has a more specific focus: concurrency and networking. All the 
patterns in this book center on these two areas, allowing us to discuss many topics related to 
concurrency and networking in more depth than would be possible if the book contained 
patterns from many unrelated domains. The patterns in this book therefore complement the 
general-purpose patterns from A System of Patterns in these increasingly important areas of 
software development. 

Yet we focus on general, domain-independent patterns for concurrent and networked 
applications and middleware. Our goal is to increase the likelihood that the patterns in this 
book will help projects in your daily work. Therefore, we do not cover patterns in this book 
that are specific to a particular application domain, such as those in [DeBr95] [Mes96] 
[ACGH+96], which address networking aspects that pertain to the telecommunication 
domain. 

By focusing on general domain-independent patterns for concurrency and networking, this 
book also complements existing literature in concurrent network programming and object-
oriented design: 
§ Literature on concurrent network programming generally focuses on the syntax and 

semantics of operating system APIs, such as Sockets [Ste98], POSIX Pthreads 
[Lew95], or Win32 threads [Ric97], that mediate access to kernel-level communication 
frameworks, such as System V STREAMS [Ris98] [Rago93], available on popular 
operating systems. In contrast, this book describes how to use these APIs effectively in 
the design and programming of high-quality concurrent and networked systems. 

§ Literature that addresses higher-level software design and quality factors [Boo94] 
[Mey97] [DLF93] generally has not focused on the development of concurrent and 
networked applications. Bridging this gap is the topic of this book. 
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Another way in which Patterns for Concurrent and Distributed Objects differs from A System 
of Patterns is that its patterns constitute more than just a catalog or system of patterns. 
Instead, they augment each other synergistically, providing the foundation of a pattern 
language for concurrent and networked software. When combined with patterns from other 
patterns literature, we describe how this pattern language can and has been used to build 
sophisticated concurrent and networked software systems and applications, web services, 
and distributed object computing middleware, as well as the underlying operating system 
networking protocols and mechanisms. 

Yet we separate the description of the individual patterns from the discussion of how they 
form a pattern language. The patterns themselves are first described in a self-contained 
manner, so that they can be applied in the context that is most useful. A subsequent chapter 
then describes how the patterns interact and how they are complemented by other patterns. 

It is important to note, however, that many patterns in this book can be applied outside the 
context of concurrency and networking. To illustrate the breadth of their applicability we 
present known uses from other domains, such as component-based or interactive software 
systems. In addition, we give examples of how these patterns apply to situations 
experienced in everyday life. 

Some patterns may be familiar, because preliminary versions of them were published in the 
PLoP book series [PLoPD1] [PLoPD2] [PLoPD3] [PLoPD4], and the C++ Report magazine. 
In this book, however, we have improved upon the earlier versions considerably: 
§ This is the first time they have been woven into a single document, which helps to 

emphasize the pattern language they express. 
§ We have rewritten and revised these patterns substantially based on many 

suggestions for improvement we received at conferences and workshops, via e-mail, as 
well as from intensive internal reviewing and reviews provided by our shepherds. 

§ The patterns have been converted to the POSA pattern format and have a consistent 
writing style. 

Intended Audience 

Like our earlier book A System of Patterns, this volume is intended for professional software 
developers, particularly those who are building concurrent and networked systems. It helps 
these software professionals to think about software architecture in a new way and supports 
them in the design and programming of large-scale and complex middleware and 
applications. 

This book is also suitable for advanced undergraduates or graduate students who have a 
solid grasp of networking and operating systems, and who want to learn the core principles, 
patterns, and techniques needed to design and implement such systems effectively. 

[1]We reference A System of Patterns as [POSA1] rather than by author. The same is true for 
this book, which we reference as [POSA2]. We use this convention to avoid a particular 
POSA volume being associated with a single author in reader's minds, in particular the first 
name on the book's cover. 

Structure and Content 

Patterns for Concurrent and Distributed Objects can be used as a text book and read from 
cover to cover, or used as a reference guide for exploring the nuances of specific patterns in 
detail. 
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The first chapter, Concurrent and Networked Objects, presents an overview of the 
challenges facing developers of concurrent and networked object-oriented applications and 
middleware. We use a real example, a concurrent Web server, to illustrate key aspects of 
these domains, including service access and configuration, event handling, synchronization, 
and concurrency. 

Chapters 2 through 5 form the main part of the book. They contain patterns, the 'real things' 
[U2], that codify well-established principles and techniques for developing high-quality 
concurrent and networked systems. We hope these patterns will be useful role models for 
developing your own concurrent and networked applications, and for documenting patterns 
that you discover. 

Chapter 6, Weaving the Patterns Together, discusses how the patterns in Chapters 2 
through 5 are interconnected. We also show how they can be connected with other patterns 
in the literature to form a pattern language for concurrent networked systems and 
middleware. As mentioned earlier, some patterns are also applicable outside the context of 
concurrent and networked systems. For these patterns we summarize the scope of their 
applicability.  

Chapter 7, The Past, Present, and Future of Patterns, revisits our 1996 forecast on 'where 
patterns will go', published in the first volume of the Pattern-Oriented Software Architecture 
series. We discuss the directions that patterns actually took during the past four years and 
analyze where patterns and the patterns community are now. Based on this retrospection, 
we revise our vision about future research and the application of patterns and pattern 
languages. 

The book ends with a general reflection on the patterns we present, a glossary of frequently 
used terms, an appendix of notations, an extensive list of references to work in the field, a 
pattern index, a general subject index, and an index of names that lists all persons who 
helped us shaping this book 

Supplementary material related to this book is available on-line at 
http://www.posa.uci.edu/. This URL also contains links to the ACE and TAO source 
code that contains C++ and some Java examples for all the patterns in this book. 

There are undoubtedly aspects of concurrent and networked object systems that we have 
omitted, or which will emerge over time when applying and extending our pattern language 
in practice. If you have comments, constructive criticism, or suggestions for improving the 
style and content of this book, please send them to us via electronic mail to 
<patterns@mchp.siemens.de>. We also welcome public discussion of our entire work 
on patterns. Please use our mailing list, <siemens-patterns@cs.uiuc.edu>, to send us 
feedback, comments, and suggestions. Guidelines for subscription can be found on the 
patterns home page. Its URL is http://hillside.net/patterns/. This link also 
provides an important source of information on many aspects of patterns, such as available 
and forthcoming books, conferences on patterns, papers on patterns, and so on. 
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Guide to the Reader 
"Cheshire-Puss will you tell me, please, which way I ought to go from here?"  

"That depends a good deal on where you want to get to," said the Cat.  

"I don't much care where—," said Alice.  

"Then it doesn't matter which way you go," said that cat.  

"—so long as I get somewhere" Alice added as an explanation.  

"Oh, you're sure to do that," said the Cat, "if you only walk long enough."  

Louis Carroll, "Alice in Wonderland"  

This book is structured so you can read it cover-to-cover. If you know where you want to get 
to, however, you may want to choose your own route through the book. In this case, the 
following hints can help you decide which topics to focus upon and the order in which to read 
them. 

Introduction to Patterns 

If this book is your initial exposure to patterns, we suggest you first read the introduction to 
patterns in [POSA1] and [GoF95], which explore the concepts and terminology related to 
patterns for software architectures and designs. In particular, all the patterns presented in 
this book build upon the conceptual foundation for patterns specified in [POSA1]: 
§ The definition of patterns for software architectures 
§ The categorization of these patterns into architectural patterns, design patterns, and 

idioms[1] and 
§ The pattern description format 

Moreover, the implementations of many patterns in this book are enhanced by using 
patterns from [POSA1] and [GoF95]. To guide the application of the patterns in production 
software development projects we therefore suggest you keep all three books handy. 

[1]See the Glossary for a definition of these pattern categories. 

Structure and Content 

The first chapter in this book, Concurrent and Networked Objects, describes the key 
challenges of designing concurrent and networked systems. It also outlines the scope and 
context for the patterns we present. Finally, it presents a case study that applies eight 
patterns in this book to develop a concurrent Web server. 

Sixteen pattern descriptions and one idiom form the main part of this book. We group them 
into four chapters, corresponding to key problem areas—service access and configuration, 
event handling, synchronization and concurrency—in the development of concurrent and 
networked middleware and applications. The order in which you read this material is up to 
you. One approach is to read important core patterns first: 
§ The Wrapper Facade design pattern (47)[2]  
§ The Reactor architectural pattern (179) 
§ The Acceptor-Connector design pattern (285) 
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§ The Active Object design pattern (369) 

The other twelve patterns and one idiom in the book are arranged to minimize forward 
references. You can read them in any order of course, and we provide page numbers for 
following references to other patterns within the book. This material completes and 
complements the concepts defined by the four patterns listed above and covers a range of 
issues relevant to designing and implementing concurrent and networked objects effectively. 

You can also use this book to find solutions to problems you encounter in your projects. Use 
the overview of our patterns in Chapter 6, Weaving the Patterns Together, to guide your 
search, then locate in Chapters 2 through 5 the detailed descriptions of the patterns you 
select as potential solutions. 

No pattern is an island, completely separated from other patterns. Therefore, Chapter 6, 
Weaving the Patterns Together, also describes how all the patterns in this book can be 
woven together to form a pattern language for building networked applications and 
middleware. If you want an overall perspective of the patterns in this book before delving into 
the individual patterns, we recommend you skim the pattern language presentation in 
Chapter 6 before reading the patterns in Chapters 2 through 5 in depth. 

Chapter 7, The Past, Present, and Future of Patterns and Chapter 8, Concluding Remarks 
complete the main content of this book. The remainder of the book consists of a glossary of 
technical terms, an overview of the notations used in the figures, references to related work, 
and an index of patterns, topics, and names. 

[2]We adopt the page number notation introduced by [GoF95]. (47) means that the 
corresponding pattern description starts on page 47. 

Pattern Form 

All patterns presented in this book are self-contained, following the [POSA1] pattern form. 
This form allows us to present both the essence and the key details of a pattern. Our goal is 
to serve readers who simply want an overview of the pattern's fundamental ideas, as well as 
those who want to know how the patterns work in depth. 

Each section in our pattern form sets the stage for the subsequent section. For instance, the 
Example section introduces the Context, Problem, and Solution sections, which summarize 
a pattern's essence. The Solution section foreshadows the Structure and Dynamics section, 
which then present more detailed information about how a pattern works, preparing readers 
for the Implementation section. 

The Example Resolved, Variants, Known Uses, Consequences and See Also sections 
complete each pattern description. We include extensive cross-references to help you to 
understand the relationships between the patterns in this book and other published patterns. 

To anchor the presentation of a pattern's implementation activities to production software 
systems, much of the sample code is influenced by components provided in the ACE 
framework [Sch97]. If you first want to get an overview of all the patterns you may therefore 
want to skip over the Implementation sections on your initial pass through the book and 
come back to them when you need to know a particular pattern's implementation details. 

Although the pattern form we use in this book incurs some repetition within the pattern 
descriptions, we have found that this repetition helps readers navigate through the 
descriptions more effectively by minimizing 'back-tracking'. 
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In the diagrams that explain the structure and behavior of our patterns we tried to follow 
standard UML whenever possible. In few cases, however, UML did not allow us to express 
ourselves precisely enough. Thus we 'extended' the standard notation slightly, as specified 
in the Notations chapter. 

 

Background Reading 

Many patterns, particularly Reactor (179), Proactor (215), Half-Sync/Half-Async (423), and 
Leader/Followers (447), assume you are familiar with the following topics: 
§ Object-oriented design techniques, such as patterns [GoF95] [POSA1] and idioms 

[Cope92], UML notation [BRJ98], and the principles of structured programming, 
specifically encapsulation and modularity [Mey97]. 

§ Object-oriented programming language features, such as classes [Str97], inheritance 
and polymorphism [AG98], and parameterized types [Aus98]. Many examples in this 
book are written in C++, though we present Java known uses for most of the patterns. 

§ Systems programming concepts and mechanisms, such as process and thread 
management [Lew95] [Lea99a] [Ric97], synchronization [Ste98], and interprocess 
communication [Ste99]. 

§ Network services and protocols, such as client-server computing [CoSte92] and the 
Internet protocols [Ste93] [SW94]. 

This book contains an extensive glossary and bibliography to clarify unfamiliar terminology, 
and suggest sources for information on topics you may want to learn more about. It is not, 
however, an introductory tutorial on concurrency and network programming. Thus, if you are 
not familiar with certain topics listed above, we encourage you to do some background 
reading on the material we recommend in conjunction with reading this book. 
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Chapter 1: Concurrent and Networked Objects 
Overview 

"With the exception of music, we have been trained to think of patterns as 
fixed affairs. It's easier and lazier that way, but, of course, all nonsense. The 

right way to begin to think of the pattern which connects is to think of a 
dance of interacting parts, pegged down by various sorts of limits." 

Gregory Bateson — Cultural Anthropologist  

This chapter introduces topics related to concurrent and networked objects. We first motivate 
the need for advanced software development techniques in this area. Next, we present an 
overview of key design challenges faced by developers of concurrent and networked object-
oriented applications and middleware. To illustrate how patterns can be applied to resolve 
these problems, we examine a case study of an object-oriented framework and a high-
performance Web server implemented using this framework. In the case study we focus on 
key patterns presented in this book that help to simplify four important aspects of concurrent 
and networked applications: 
§ Service access and configuration 
§ Event handling 
§ Synchronization and 
§ Concurrency 

 
1.1 Motivation 
During the past decade advances in VLSI technology and fiber-optics have increased 
computer processing power by 3–4 orders of magnitude and network link speeds by 6–7 
orders of magnitude. Assuming that these trends continue, by the end of this decade 
§ Desktop computer clock speeds will run at ~100 Gigahertz 
§ Local area network link speeds will run at ~100 Gigabits/second 
§ Wireless link speeds will run at ~100 Megabits/second and 
§ The Internet backbone link speeds will run at ~10 Terabits/second 

Moreover, there will be billions of interactive and embedded computing and communication 
devices in operation throughout the world. These powerful computers and networks will be 
available largely at commodity prices, built mostly with robust common-off-the-shelf (COTS) 
components, and will inter-operate over an increasingly convergent and pervasive Internet 
infrastructure. 

To maximize the benefit from these advances in hardware technology, the quality and 
productivity of technologies for developing concurrent and networked middleware and 
application software must also increase. Historically, hardware has tended to become 
smaller, faster, and more reliable. It has also become cheaper and more predictable to 
develop and innovate, as evidenced by 'Moore's Law'. In contrast, concurrent and networked 
software has often grown larger, slower, and more error-prone. It has also become very 
expensive and time-consuming to develop, validate, maintain, and enhance. 

Although hardware improvements have alleviated the need for some low-level software 
optimizations, the lifecycle cost [Boe81] and effort required to develop software—particularly 
mission-critical concurrent and networked applications—continues to rise. The disparity 
between the rapid rate of hardware advances versus the slower software progress stems 
from a number of factors, including: 
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§ Inherent and accidental complexities. There are vexing problems with concurrent and 
networked software that result from inherent and accidental complexities. Inherent 
complexities arise from fundamental domain challenges, such as dealing with partial 
failures, distributed deadlock, and end-to-end quality of service (QoS) requirements. As 
networked systems have grown in scale and functionality they must now cope with a 
much broader and harder set of these complexities. 

Accidental complexities arise from limitations with software tools and development 
techniques, such as non-portable programming APIs and poor distributed debuggers. 
Ironically, many accidental complexities stem from deliberate choices made by 
developers who favor low-level languages and tools that scale up poorly when applied 
to complex concurrent and networked software. 

§ Inadequate methods and techniques. Popular software analysis methods [SM88] 
[CY91] [RBPEL91] and design techniques [Boo94] [BRJ98] have focused on 
constructing single-process, single-threaded applications with 'best-effort' QoS 
requirements. The development of high-quality concurrent and networked systems—
particularly those with stringent QoS requirements, such as video-conferencing—has 
been left to the intuition and expertise of skilled software architects and engineers. 
Moreover, it has been hard to gain experience with concurrent and networked software 
techniques without spending considerable time learning via trial and error, and wrestling 
with platform-specific details. 

§ Continuous re-invention and re-discovery of core concepts and techniques. The 
software industry has a long history of recreating incompatible solutions to problems 
that are already solved. For example, there are dozens of non-standard general-
purpose and real-time operating systems that manage the same hardware resources. 
Similarly, there are dozens of incompatible operating system encapsulation libraries that 
provide slightly different APIs that implement essentially the same features and 
services. 

If effort had instead been focused on enhancing and optimizing a small number of 
solutions, developers of concurrent and networked software would be reaping the 
benefits available to developers of hardware. These developers innovate rapidly by 
using and applying common CAD tools and standard instruction sets, buses, and 
network protocols. 

No single silver bullet can slay all the demons plaguing concurrent and networked software 
[Broo87]. Over the past decade, however, it has become clear that patterns and pattern 
languages help to alleviate many inherent and accidental software complexities. 

A pattern is a recurring solution schema to a standard problem in a particular context 
[POSA1]. Patterns help to capture and reuse the static and dynamic structure and 
collaboration of key participants in software designs. They are useful for documenting 
recurring micro-architectures, which are abstractions of software components that 
experienced developers apply to resolve common design and implementation problems 
[GoF95]. 

When related patterns are woven together, they form a 'language' that helps to both 
§ Define a vocabulary for talking about software development problems [SFJ96] and 
§ Provide a process for the orderly resolution of these problems [Ale79] [AIS77] 

By studying and applying patterns and pattern languages, developers can often escape 
traps and pitfalls that have been avoided traditionally only via long and costly apprenticeship 
[PLoPD1]. 
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Until recently [Lea99a] patterns for developing concurrent and networked software existed 
only in programming folklore, the heads of expert researchers and developers, or were 
buried deep in complex source code. These locations are not ideal, for three reasons: 
§ Re-discovering patterns opportunistically from source code is expensive and time-

consuming, because it is hard to separate the essential design decisions from the 
implementation details. 

§ If the insights and rationale of experienced designers are not documented, they will be 
lost over time and thus cannot help guide subsequent software maintenance and 
enhancement activities. 

§ Without guidance from earlier work, developers of concurrent and networked software 
face the Herculean task [SeSch70] of engineering complex systems from the ground up, 
rather than reusing proven solutions. 

As a result many concurrent and networked software systems are developed from scratch. 
In today's competitive, time-to-market-driven environments, however, this often yields non-
optimal ad hoc solutions. These solutions are hard to customize and tune, because so much 
effort is spent just trying to make the software operational. Moreover, as requirements 
change over time, evolving ad hoc software solutions becomes prohibitively expensive. Yet, 
end-users expect—or at least desire—software to be affordable, robust, efficient, and agile, 
which is hard to achieve without solid architectural underpinnings. 

To help rectify these problems, this book documents key architectural and design patterns 
for concurrent and networked software. These patterns can and have been applied to solve 
many common problems that arise when developing object-oriented middleware frameworks 
and applications. When used as a documentation aid, these patterns preserve vital design 
information that helps developers evolve existing software more robustly. When used as a 
design aid, the patterns help guide developers to create new software more effectively. 

Of course, patterns, objects, components, and frameworks are no panacea. They cannot, for 
example, absolve developers from responsibility for solving all complex concurrent and 
networked software analysis, design, implementation, validation, and optimization problems. 
Ultimately there is no substitute for human creativity, experience, discipline, diligence, and 
judgement. 

When used properly, however, the patterns described in this book help alleviate many of the 
complexities enumerated earlier. In particular, the patterns 
§ Direct developer focus towards higher-level software application architecture and 

design concerns, such as the specification of suitable service access and configuration, 
event processing, and threading models. These are some of the key strategic aspects 
of concurrent and networked software. If they are addressed properly, the impact of 
many vexing complexities can be alleviated greatly. 

§ Redirect developer focus away from a preoccupation with low-level operating system 
and networking protocols and mechanisms. While having a solid grasp of these topics is 
important, they are tactical in scope and must be placed in the proper context within the 
overall software architecture and development effort. 

 
1.2 Challenges of Concurrent and Networked Software 
In theory, developing software applications that use concurrent and networked services can 
improve system performance, reliability, scalability, and cost-effectiveness. In practice, 
however, developing efficient, robust, extensible, and affordable concurrent and networked 
applications is hard, due to key differences between stand-alone and networked application 
architectures. 

In stand-alone application architectures, user interface, application service processing, and 
persistent data resources reside within one computer, with the peripherals attached directly 
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to it. In contrast, in networked application architectures, interactive presentation, application 
service processing, and data resources may reside in multiple loosely-coupled host 
computers and service tiers connected together by local area or wide area networks. 

A network of X-terminals and 'thin client NetPCs' is an example of a networked system 
architecture. In this environment, user interface presentation is handled by a display service 
on end-user hosts. The processing capabilities are provided by host computer(s) on which 
all or part of application services run. Access to persistent resources is mediated by one or 
more network file servers. Other services, such as naming and directory services, time 
services, HTTP servers, and caches and network management services, can run in the 
network and provide additional capabilities to applications. 

 

There are three common reasons to adopt a networked architecture: 
§ Collaboration and connectivity. The explosive growth of the Web and e-commerce 

exemplify one of the most common reasons for networking: the ability to connect to and 
access vast quantities of geographically-distributed information and services. The 
popularity of the instant messaging and 'chat rooms' available on the Internet 
underscores another common networking motivation: staying connected to family, 
friends, collaborators, and customers. 

§ Enhanced performance, scalability, and fault tolerance. The performance and 
scalability of a networked architecture may be enhanced by taking advantage of the 
parallel processing capabilities that are available in a network. For example, multiple 
computation and communication service processing tasks can be run in parallel on 
different hosts. Similarly, various application services can be replicated across multiple 
hosts. Replication can minimize single points of failure, thereby improving the system's 
reliability in the face of partial failures. 

§ Cost effectiveness. Networked architectures yield decentralized and modular 
applications that can share expensive peripherals, such as high-capacity file servers 
and high-resolution printers. Similarly, selected application components and services 
can be delegated to run on hosts with specialized processing attributes, such as high-
performance disk controllers, large amounts of memory, or enhanced floating-point 
performance. 

Although networked applications offer many potential benefits, they are harder to design, 
implement, debug, optimize, and manage than stand-alone applications. For example, 
developers must address topics that are either not relevant or are less problematic for stand-
alone applications in order to handle the requirements of networked applications. These 
topics include: 
§ Connection establishment and service initialization 
§ Event demultiplexing and event handler dispatching 
§ Interprocess communication (IPC) and network protocols 
§ Primary and secondary storage management and caching 
§ Static and dynamic component configuration 
§ Concurrency and synchronization 
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These topics are generally independent of specific application requirements, so learning to 
master them helps to address a wide range of software development problems. Moreover, in 
the context of these topics many design and programming challenges arise due to several 
inherent and accidental complexities associated with concurrent and networked systems: 
§ Common inherent complexities associated with concurrent and networked systems 

include managing bandwidth [ZBS97], minimizing delays (latency) [SC99] and delay 
variation (jitter) [PRS+99], detecting and recovering from partial failures [CRSS+98], 
determining appropriate service partitioning and load balancing strategies [IEEE95], and 
ensuring causal ordering of events [BR94]. Similarly, common inherent complexities 
found in concurrent programming include eliminating race conditions and avoiding 
deadlocks [Lea99a], determining suitable thread scheduling strategies [SKT96], and 
optimizing end-system protocol processing performance [SchSu95]. 

§ Common accidental complexities associated with concurrent and networked systems 
include lack of portable operating system APIs [Sch97], inadequate debugging support 
and lack of tools for analyzing concurrent and networked applications [LT93], 
widespread use of algorithmic—rather than object-oriented—decomposition [Boo94], 
and continual rediscovery and reinvention of core concepts and common components 
[Kar95]. 

In this section, we therefore discuss many of the design and programming challenges 
associated with building concurrent and networked systems. Yet the patterns in this book do 
not address all the aspects associated with concurrency and networking. Therefore, Chapter 
6, Weaving the Patterns Together, relates the patterns in this book with others from the 
literature that handle many of these aspects. The remaining challenges constitute open 
issues for future patterns research, as described in Chapter 7, The Past, Present, and 
Future of Patterns.  

Challenge 1: Service Access and Configuration 

Components in a stand-alone application can collaborate within a single address space by 
passing parameters via function calls and by accessing global variables. In contrast, 
components in networked applications can collaborate using: 
§ Interprocess communication (IPC) mechanisms, for example shared memory, pipes, 

and Sockets [Ste98],[1] which are based on network protocols like TCP, UDP and IP 
[Ste93], or ATM [CFFT97]. 

§ Communication protocols [Ste93], such as TELNET, FTP, SMTP, HTTP, and LDAP, 
which are used by many types of services, for example remote log-in, file transfer, 
email, Web content delivery, and distributed directories, to export cohesive software 
components and functionality to applications. 

§ Remote operations on application-level service components using high-level 
communication middleware, such as COM+ [Box97] and CORBA [OMG98c]. 

Applications and software components can access these communication mechanisms via 
programming APIs defined at all levels of abstraction in a networked system: 



 25

 

Designing effective APIs for accessing these communication mechanisms is important, 
because these are the interfaces programmed directly by application, component, and 
service developers. 

For infrastructure networking or systems programs, such as TELNET or FTP, service access 
traditionally involved calling 
§ Concurrency service access APIs, such as UNIX processes [Ste99], POSIX Pthreads 

[IEEE96], or Win32 threads [Sol98], to manage concurrency and 
§ IPC service access APIs, such as UNIX- and Internet-domain Sockets [Ste98], to 

configure connections and communicate between processes co-located on a single host 
and on different hosts, respectively. 

Several accidental complexities arise, however, when accessing networking and host 
services via low-level operating system C APIs: 
§ Excessive low-level details. Building networked applications using operating system 

APIs requires developers to have intimate knowledge of many low-level details. For 
instance, developers must carefully track which error codes are returned by each 
system call and handle these problems in the application code itself. UNIX server 
developers, for example, who use the wait() system call must distinguish between 
return errors due to no child processes being present and errors from signal interrupts. 
In the latter case, the wait() must be reissued. Forcing application developers to 
address these details diverts their attention from more strategic issues, such as a 
server's semantics and its software architecture. 

§ Continuous rediscovery and reinvention of incompatible higher-level programming 
abstractions. A common remedy for the excessive level of detail with operating system 
APIs is to define higher-level programming abstractions. For example, many Web 
servers create a file cache component to avoid accessing the file system for each client 
request [HPS99]. However, these types of abstractions are often re-discovered and re-
invented independently by each developer or team. This ad hoc software programming 
process can actually hamper productivity if it diverts application developers from 
meeting their customer's requirements. It can also create a plethora of incompatible 
components that are inadequately documented and debugged, and therefore not readily 
reusable within and across projects. 

§ High potential for errors. Programming to operating system APIs is tedious and error-
prone due to their lack of type-safety and their subtlety. For example, many networked 
applications are programmed with the Socket API [MBKQ96], which is defined in C. 
However, socket endpoints are represented as untyped handles. These handles 
increase the potential for subtle programming mistakes and run-time errors [Sch92]. In 
particular, operations can be applied incorrectly, such as invoking a data transfer 
operation on a passive-mode handle that is only supposed to establish connections. 

§ Lack of portability. Operating system APIs are notoriously non-portable, even across 
releases of the same platform. Implementations of the Socket API on Win32 platforms 
(WinSock), for example, are subtly different than on UNIX platforms. Advanced Socket 
operations, such as multicast and broadcast, are not portable across these platforms as 
a result. Even WinSock implementations on different versions of Windows possess 
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incompatible timing-related bugs that cause sporadic failures when performing non-
blocking connections. 

§ Steep learning curve. Due to the excessive level of detail, the effort required to master 
operating system APIs can be very high. For example, it is hard to learn how to program 
with POSIX asynchronous I/O [POSIX95] correctly. It is even harder to learn how to 
write a portable application using asynchronous I/O mechanisms, because they differ so 
widely across operating system platforms. 

§ Inability to scale up to handle increasing complexity. Operating system APIs define 
basic interfaces to mechanisms, such as process and thread management, interprocess 
communication, file systems, and memory management. However, these basic 
interfaces do not scale up gracefully as applications grow in size and complexity. For 
example, a typical UNIX process allows a backlog of only ~7 pending connections 
[Ste98]. This number is completely inadequate for heavily accessed e-commerce 
servers that must handle hundreds or thousands of simultaneous clients. 

Key design challenges for infrastructure networking or system programs thus center on 
minimizing the accidental complexities outlined above without sacrificing performance. 

For higher-level distributed object computing applications, service access often involves 
invoking remote operations on reusable components that define common services, such as 
naming [OMG97a], trading [OMG98b], and event notification [OMG99c]. Many component 
models, such as Enterprise JavaBeans [MaHa99], COM+ [Box97], and the CORBA 
component model [OMG99a], allow components to export different service roles to different 
clients, depending on factors, such as the version expected by the client or the authorization 
level of the client. A key design challenge at this level therefore centers on ensuring that 
clients do not access invalid or unauthorized component service roles. 

Resolving this challenge is important: networked applications are more vulnerable to security 
breaches than stand-alone applications, because there are more access points for an 
intruder to attack [YB99]. For example, many shared-media networks, such as Ethernet, 
Token Ring, and FDDI, provide limited built-in protection against cable tapping and 'packet 
snooping' tools [Ste93]. Similarly, networked applications must guard against one host 
masquerading as another to access unauthorized information. Although some network 
software libraries, such as OpenSSL [OSSL00], support authentication, authorization, and 
data encryption, a single API to access these security services has not been adopted 
universally. 

Supporting the static and dynamic evolution of services and applications is another key 
challenge in networked software systems. Evolution can occur in two ways: 
§ Interfaces to and connectivity between component service roles can change, often at 

run-time, and new service roles can be implemented and installed into existing 
components. 

§ Distributed system performance can be improved by reconfiguring service load to 
harness the processing power of multiple hosts. 

Ideally these component configuration and reconfiguration changes should be transparent to 
client applications that access the various services. Another design challenge therefore is to 
ensure that an entire system need not be shut down, recompiled, relinked, and restarted 
simply because a particular service role in a component is reconfigured or its load is 
redistributed. 

It is even more challenging to determine how to access services that are configured into a 
system 'on-demand' and whose implementations are unknown when the system was 
designed originally. 
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Many modern operating systems and run-time environments provide explicit dynamic linking 
APIs [WHO91] that enable the configuration of applications on-demand: 
§ UNIX defines the dlopen(), dlsym(), and dlclose() API that can be used to 

load a designated dynamically linked library (DLL) into an application process explicitly, 
extract a designated factory function from the DLL, and unlink/unload the DLL, 
respectively [Ste98]. 

§ Win32 provides the LoadLibrary(), GetProcAddr(), and CloseHandle() API 
that perform the same functionality as the UNIX DLL API [Sol98]. 

§ Java's Java.applet.Applet class defines init(), start(), stop(), and 
destroy() hook methods that support the initializing, starting, stopping, and 
terminating of applets loaded dynamically. 

However, configuring services into applications on-demand requires more than dynamic 
linking mechanisms—it requires patterns for coordinating (re)configuration policies. Here the 
design challenges are two-fold. First, an application must export new services, even though 
it may not know their detailed interfaces. Second, an application must integrate these 
services into its own control flow and processing sequence transparently and robustly, even 
at run-time. 

Chapter 2, Service Access and Configuration Patterns, presents four patterns for designing 
effective programming APIs to access and configure services and components in stand-
alone and networked software systems and applications. These patterns are Wrapper 
Facade (47), Component Configurator (75), Interceptor (109), and Extension Interface (141). 

Challenge 2: Event Handling 

As systems become increasingly networked, software development techniques that support 
event-driven applications have become increasingly pervasive. Three characteristics 
differentiate event-driven applications from those with the traditional 'self-directed' flow of 
control [PLoPD1]: 
§ Application behavior is triggered by external or internal events that occur 

asynchronously. Common sources of events include device drivers, I/O ports, sensors, 
keyboards or mice, signals, timers, or other asynchronous software components. 

§ Most events must be handled promptly to prevent CPU starvation, improve perceived 
response time, and keep hardware devices with real-time constraints from failing or 
corrupting data. 

§ Finite state machines [SGWSM94] may be needed to control event processing and 
detect illegal transitions, because event-driven applications generally have little or no 
control over the order in which events arrive. 

Therefore, event-driven applications are often structured as layered architectures [POSA1] 
with so-called 'inversion of control' [John97]: 
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§ At the bottom layer are event sources, which detect and retrieve events from various 
hardware devices or low-level software device drivers that reside within an operating 
system. 

§ At the next layer is an event demultiplexer, such as select() [Ste98], which waits for 
events to arrive on the various event sources and then dispatches events to their 
corresponding event handler callbacks. 

§ The event handlers, together with the application code, form yet another layer that 
performs application-specific processing in response to callbacks—hence the term 
'inversion of control'. 

The separation of concerns in this event-driven architecture allows developers to 
concentrate on application layer functionality, rather than rewriting the event source and 
demultiplexer layers repeatedly for each new system or application. 

In many networked systems, applications communicate via peer-to-peer protocols, such as 
TCP/IP [Ste93], and are implemented using the layered event-driven architecture outlined 
above. The events that are exchanged between peers in this architecture play four different 
roles [Bl91]: 

 

§ PEER1, the client initiator application, invokes a send operation to pass a request event 
to PEER2, the service provider application. The event can contain data necessary for 
PEER1 and PEER2 to collaborate. For example, a PEER1 request may contain a CONNECT 
event to initiate a bidirectional connection, or a DATA event to pass an operation and its 
parameters to be executed remotely at PEER2. 

§ The PEER2 service provider application is notified of the request event arrival via an 
indication event. PEER2 can then invoke a receive operation to obtain and use the 
indication event data to perform its processing. The demultiplexing layer of PEER2 often 
waits for a set of indication events to arrive from multiple peers. 

§ After the PEER2 service provider application finishes processing the indication event, it 
invokes a send operation to pass a response event to PEER1, acknowledging the 
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original event and returning any results. For example, PEER2 could acknowledge the 
CONNECT event as part of an initialization 'handshake', or it could acknowledge the 
DATA event in a reliable two-way remote method invocation. 

§ The PEER1 client initiator application is notified of a response event arrival via a 
completion event. At this point it can use a receive operation to obtain the results of the 
request event it sent to the PEER2 service provider earlier. 

If after sending a request event the PEER1 application blocks to receive the completion event 
containing PEER2's response, it is termed a synchronous client.[2] In contrast, if PEER1 does 
not block after sending a request it is termed an asynchronous client. Asynchronous clients 
can receive completion events via asynchrony mechanisms, such as UNIX signal handlers 
[Ste99] or Win32 I/O completion ports [Sol98]. 

Traditional networked applications detect, demultiplex, and dispatch various types of control 
and data events using low-level operating system APIs, such as Sockets [Ste98], select() 
[Ste98], poll() [Rago93], WaitForMultipleObjects(), and I/O completion ports 
[Sol98]. However, using these low-level APIs increases the accidental complexity of event-
driven programming. Programming with these low-level APIs also increases code duplication 
and maintenance effort by coupling the I/O and demultiplexing aspects of an application with 
its connection and concurrency mechanisms. 

Chapter 3, Event Handling Patterns, presents four patterns that describe how to initiate, 
receive, demultiplex, dispatch, and process various types of events effectively in networked 
software frameworks. The patterns are Reactor (179), Proactor (215), Asynchronous 
Completion Token (261), and Acceptor-Connector (285). 

Challenge 3: Concurrency 

Concurrency is a term that refers to a family of policies and mechanisms that enable one or 
more threads or processes to execute their service processing tasks simultaneously 
[Ben90]. Many networked applications, particularly servers, must handle requests from 
multiple clients concurrently. Therefore, developers of concurrent networked software often 
need to become proficient with various process and thread management mechanisms. 

A process is a collection of resources, such as virtual memory, I/O handles, and signal 
handlers, that provide the context for executing program instructions. In earlier-generation 
operating systems, for example BSD UNIX [MBKQ96], processes had a single thread of 
control. 

A thread is a single sequence of instruction steps executed in the context of a process 
[Lew95]. In addition to an instruction pointer, a thread consists of resources, such as a run-
time stack of function activation records, a set of registers, and thread-specific data. 

The use of single-threaded processes simplified certain types of concurrent applications, 
such as remote logins, because separate processes could not interfere with each other 
without explicit programmer intervention. It is hard, however, to use single-threaded 
processes to develop networked applications. For example, single-threaded BSD UNIX 
servers cannot block for extended periods while handling one client request without 
degrading their responsiveness to other clients. Although it is possible to use techniques like 
signal-driven Socket I/O or forking multiple processes to work around these limitations, the 
resulting programs are complex and inefficient. 

Modern operating systems overcome the limitations of single-threaded processes by 
providing multi-threaded concurrency mechanisms that support the creation of multiple 
processes, each of which may contain multiple concurrent threads. In these operating 
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systems the processes serve as units of protection and resource allocation within hardware-
protected address spaces. Similarly, the threads serve as units of execution that run within a 
process address space shared by other threads: 

 

Popular thread programming models, such as POSIX Pthreads [IEEE96] and Win32 threads 
[Sol98], offer four benefits: 
§ They improve performance transparently by using the parallel processing capabilities 

of hardware and software platforms. 
§ They improve performance explicitly by allowing programmers to overlap computation 

and communication service processing. 
§ They improve perceived response time for interactive applications, such as graphical 

user interfaces, by associating separate threads with different service processing tasks 
in an application. 

§ They simplify application design by allowing multiple service processing tasks to run 
independently using synchronous programming abstractions, for example two-way 
method invocations. 

It is remarkably hard, however, to develop efficient, predictable, scalable, and robust 
concurrent applications [Lea99a]. One source of complexity arises from common multi-
threading hazards, for example race conditions and deadlocks [Lea99a]. Another source of 
complexity arises from limitations with existing development methods, tools, and operating 
system platforms. In particular, the heterogeneity of contemporary hardware and software 
platforms complicates the development of concurrent applications and tools that must run on 
multiple operating systems. 

For example, shutting down multi-threaded programs gracefully and portably is hard. The 
problem stems from inconsistent thread cancellation semantics [Lew95] across operating 
systems, such as POSIX/UNIX, Win32, and real-time embedded systems like VxWorks or 
LynxOS. Similarly, support for advanced threading features, for example thread-specific 
storage (475), 'detached' threads [Lew95], real-time scheduling [Kan92], and scheduler 
activations [ABLL92] varies widely across operating systems. It is therefore infeasible to 
write portable concurrent applications by programming directly to the operating system APIs. 

General-purpose design patterns, such as Adapter [GoF95] and Wrapper Facade (47), can 
be applied to shield concurrent software from the accidental complexities of the APIs 
outlined above. In addition, off-the-shelf 'infrastructure' middleware [SFJ96], such as ACE 
[Sch97] and JVMs, is now widely available and has reified these patterns into efficient and 
reusable object-oriented operating system encapsulation layers. However, even after 
adopting this level of middleware many challenges remain, due to inherent complexities 
associated with concurrent application development, including: 
§ Determining an efficient application concurrency architecture that minimizes context 

switching, synchronization, and data copying/movement overhead in concurrent 
applications [SchSu95] [SKT96]. 

§ Designing complex concurrent systems containing synchronous and asynchronous 
service processing tasks to simplify programming without degrading execution efficiency 
[Sch96]. 
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§ Selecting appropriate synchronization primitives to increase performance, prevent race 
conditions, and reduce the maintenance costs of concurrent applications on multi-
processors [McK95]. 

§ Eliminating unnecessary threads and locks in concurrent [HPS99] or real-time [HLS97] 
applications to enhance performance or simplify resource management without 
compromising correctness, incurring deadlocks, or blocking application progress unduly. 

Resolving these inherent complexities requires more than general-purpose design patterns 
and portable infrastructure middleware threading APIs. Instead, it requires developers to 
learn and internalize the successful patterns for developing concurrent applications, 
components, frameworks, and system architectures. 

Chapter 5, Concurrency Patterns, includes five patterns that define various types of 
concurrency architectures for components, subsystems, and entire applications. These are 
Active Object (369), Monitor Object (399), Half-Sync/Half-Async (423), Leader/Followers 
(447), and Thread-Specific Storage (475). 

Challenge 4: Synchronization 

The efficiency, responsiveness, and design of many networked applications can benefit from 
the use of the concurrency mechanisms and patterns outlined above. For example, objects 
in an application can run concurrently in different threads to simplify program structure. If 
multiple processors are available, threads can be programmed to exploit true hardware 
parallelism and thus improve performance.  

In addition to the complexities outlined in Challenge 3: Concurrency, concurrent 
programming is also harder than sequential programming due to the need to synchronize 
access to shared resources. For example, threads that run concurrently can access the 
same objects or variables simultaneously, and potentially corrupt their internal states. To 
prevent this problem, code that should not execute concurrently in objects or functions can 
be synchronized within a critical section. A critical section is a sequence of instructions that 
obeys the following invariant: while one thread or process is executing in the critical section, 
no other thread or process can execute in the same critical section [Tan95]: 

 

A common way to implement a critical section in object-oriented programs is to hard-code 
some type of lock object into a class or component. For example, a mutual exclusion (mutex) 
object is a type of lock that must be acquired and released serially. If multiple threads 
attempt to acquire the mutex simultaneously, only one thread will succeed. The others must 
wait until the mutex is released, after which all waiting threads will compete again for the lock 
[Tan92]. Other types of locks, such as semaphores and readers/writer locks, use a similar 
acquire/release protocol [McK95]. 

Unfortunately, programming these locking techniques using low-level operating system APIs 
yields two drawbacks: 
§ Error-prone. Explicitly acquiring a lock before entering a critical section and explicitly 

releasing it when exiting a critical section is surprisingly hard. In particular, if a critical 
section has multiple return paths, the lock must be released explicitly in all of them. This 
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usage is a common source of subtle programming errors, because it is easy to forget to 
release a lock in one of the return paths, particularly if exceptions are thrown in the 
block. If the lock is not released, deadlock will occur when subsequent threads enter the 
critical section and they will then block indefinitely. 

§ Inflexible and inefficient. Depending on the context where an application runs, 
performance requirements may necessitate that different lock types be used to 
implement critical sections. For example, if an application that used a mutex originally is 
run on a large-scale multi-processor platform, performance may be improved by 
changing the locking mechanism to a readers/writer lock. This type of lock allows 
multiple reader threads to access a shared resource in parallel [McK95]. If the locking 
primitives are hard-coded into the software at every point of use, however, changing the 
primitives becomes unnecessarily hard and time-consuming. 

Chapter 4, Synchronization Patterns, describes four patterns that alleviate the problems 
described above to simplify serialization and locking in concurrent systems. These patterns 
are Scoped Locking (325), Strategized Locking (333), Thread-Safe Interface (345), and 
Double-Checked Locking Optimization (353). 

Other Challenges for Networked Software 

The four topic areas covered above—service access and configuration, event handling, 
concurrency, and synchronization—represent the core networked software development 
challenges addressed by the patterns in this book. However, developers of networked 
application software must address issues in other topic areas, such as dependability, service 
naming, and location selection. Although these topics are beyond the scope of this book, we 
outline the important challenges below to illustrate the scope of the field. 

Dependability. One of the reasons for adopting a networked architecture is to improve 
reliability and prevent single points of failure. Ironically, networked applications often require 
substantial effort to achieve levels of dependability equivalent to those provided by stand-
alone applications. Detecting service failures in a stand-alone application is relatively easy, 
because the operating system has global knowledge of the health and status of system 
services and peripheral devices. Thus if a resource is unavailable the operating system can 
notify the application quickly. Similarly, if a service or device fails, the operating system can 
terminate an application, leaving no doubt about its exit status. 

In contrast, detecting errors in networked applications is harder, due to incomplete 
knowledge of global system state. For example, networked applications are designed to 
tolerate some amount of latency jitter and non-determinism. As a result, a client may not 
detect an abnormal server termination until after valuable information has been lost. 
Similarly, server responses may get lost in the network, causing clients to retransmit 
duplicate requests. 

There are several techniques for improving application dependability: 
§ Reactivation. Applications and services can be run under control of a monitor daemon 

that detects and automatically restarts servers if they terminate unexpectedly [HK93]. 
Servers report their current status to their associated monitor daemon periodically via 
'heart-beat' messages. If a message does not arrive within a designated interval, the 
monitor daemon assumes that the server has terminated abnormally and reactivates it. 

§ Replication. Applications and services can be run under control of a replica manager at 
multiple locations throughout a network [GS97]. Replica managers can update service 
replicas continuously using 'active replication', or just when a primary service fails using 
'passive replication'. Replication frameworks [FGS98] provide various monitoring, 
membership, consensus, and messaging mechanisms to help enhance application 
dependability. 
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A large body of research literature and tools focuses on improving the dependability of 
processes [GS97] [BR94] [HK93] or distributed objects [CRSS+98] [FGS98]. Some work has 
been documented in pattern form [IM96] [Maf96] [SPM98] [ACGH+96] [Sta100], though 
much research remains to be done. With the adoption of the Fault Tolerant CORBA 
specification [OMG99g] and ORBs that implement it, more application developers will be 
able to document their experience with the patterns of fault-tolerant distributed object 
computing. 

Service Naming and Location Selection. Stand-alone applications generally identify their 
constituent services via object and function memory addresses. In contrast, networked 
applications require more elaborate mechanisms to name, locate, and select their remote 
services. IP host addresses and TCP port numbers are a common remote service 
addressing scheme used by CORBA, DCOM, Java RMI, DCE, and SunRPC. These low-
level mechanisms are often inadequate for large-scale networked systems, however, 
because they are hard to administer in a portable and unambiguous manner. For example, 
TCP port 5000 need not refer to the same service on host machines configured by different 
vendors or network administrators. 

Distributed object computing and RPC middleware therefore provide location brokers that 
allow clients to access services via higher-level names rather than by their low-level IP 
addresses and TCP port numbers. Location brokers simplify networked system 
administration and promote more flexible and dynamic placement of services throughout a 
network by automating the following tasks: 
§ Name binding. This task binds service names onto their current host/process locations. 

For example, the SunRPC rpcbind facility performs the port mapping task on a single 
end-system [Sun88]. More general name binding mechanisms, such as the DCE Cell 
Directory Service (CDS) [RKF92]. LDAP [HSGH99], X.500 [SS99], and the CORBA 
Naming Service [OMG97a], are also available. These services implement a global 
name-space within an administrative domain, such as a local area network or intranet. 

§ Service location. A service or resource may often run at several locations throughout a 
network to improve reliability via replication. In this case applications may use a location 
broker to determine which service provider is most appropriate. For example, the 
CORBA Trading Service allows clients to select remote objects via a set of properties 
associated with services [OMG98b]. A client can select an appropriate resource by 
using these properties, such as choosing a printer by determining which printers in a 
building have Postscript support, color printing, 1200 dpi resolution, and sufficient 
paper. 

Patterns related to name binding and service location have appeared in [POSA1 [Doble96] 
[JK00]. 

[1]In the remainder of this chapter we refer to and use concrete UNIX and Win32 operating 
system APIs in our discussion. You may want to keep copies of references such as [Ste99] 
[Ste98] [Lew95] [Ric97] handy to clarify some topics or terms if they are unfamiliar. 

[2]While reading the patterns in this book it is important to recognize that the terms 'client' and 
'service' are not immutable properties of particular software or hardware components. 
Instead, they are roles [RG98] played during a particular request/response interaction. For 
example, in a symmetric peer-to-peer system PEER1 and PEER2 could play both the roles of 
client initiator and service provider at various times during their interactions. 

1.3 A Case Study: Designing a Concurrent Web Server 
The volume of Web traffic is growing rapidly due to the proliferation of Web browsers that 
allow end-users easy access to a wide range of content [PQ00]. Similarly, Web technology is 
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being increasingly applied to computationally-expensive tasks, such as medical image 
processing servers [PHS96] and database search engines. To keep pace with increasing 
demand, it is essential to develop concurrent Web servers that can provide efficient caching 
and content delivery services to Internet and intranet users. 

The figure below presents an overview of a typical Web system and its components: 

 

These Web system components interact as follows when an HTTP client retrieves an HTML 
file from an HTTP server. 

1. Through GUI interactions via a Web browser, an end-user instructs the HTTP client to 
download a particular file. 

2. The requester is the active component of the HTTP client that communicates over a 
TCP/IP network. It uses the appropriate transfer protocol syntax, such as HTTP 1.0 
[Ste96], to send TCP connection events and HTTP GET request events, which are 
strings that inform the server to download a particular file. 

3. Events arriving at an HTTP server are received by the event dispatcher. This is the 
server's demultiplexing engine that accepts TCP connection events and coordinates 
the socket handles and threads used to receive and process HTTP GET request 
events. 

4. Each HTTP GET request event is processed by a protocol handler, which parses and 
logs the request, fetches file status information, updates the file cache, transmits the 
file back to the HTTP client, and cleans up any resources it allocated. 

5. When a requested file is returned to the client it is parsed by an HTML parser, which 
interprets and renders the file. At this point, the requester may issue other requests 
on behalf of the client, such as updating a client-side cache or downloading 
embedded images. 

Developers must avoid common problems when creating and optimizing Web servers. 
These problems include wrestling with low-level programming details and portability 
constraints, committing to a particular server configuration prematurely, and being 
overwhelmed by the breadth of design alternatives, including: 
§ Concurrency models, such as thread-per-request or thread pool variants 
§ Event demultiplexing models, such as synchronous or asynchronous event 

demultiplexing 
§ File caching models, such as least-recently used (LRU) or least-frequently used (LFU) 
§ Content delivery protocols, such as HTTP/1.0 [BFF96], HTTP/1.1 [FGMFB97], or 

HTTP-NG [W3C98] 

The reason there are so many alternatives is to help ensure that Web servers can be 
tailored to different end-user needs and traffic workloads. However, no single set of 
configuration choices is optimal for all hardware/software platforms and workloads [HPS99] 
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[HMS98]. Moreover, without proper guidance it is time-consuming and error-prone to 
navigate through all these design alternatives. 

The remainder of this section illustrates how eight patterns in this book have been applied to 
produce a flexible and efficient Web server called JAWS [HPS99]. JAWS is both a Web 
server and a framework from which other types of servers can be built [HS98].  

We selected JAWS as our example application for four reasons: 
§ It is a production-quality Web server [ENTERA00] that is representative of challenges 

that arise when developing concurrent and networked software. 
§ JAWS' throughput and scalability are high and its latency and jitter are low [HPS99] 

[HMS98], demonstrating that pattern- and framework-oriented software architectures 
can be efficient. 

§ The JAWS framework itself is developed using the ACE framework [Sch97], which 
provides object-oriented implementations of most patterns in this book. 

§ ACE and JAWS are open-source,[3] so you can see first-hand how patterns are applied 
to avoid rediscovering and reinventing solutions to concurrent and networked software 
design problems. 

Overview of the JAWS Framework 

There are three main framework components in JAWS: 

 

§ Event Dispatcher. This accepts client connection request events, receives HTTP GET 
requests, and coordinates JAWS' event demultiplexing strategy with its concurrency 
strategy. As events are processed they are dispatched to the appropriate Protocol 
Handler. 

§ Protocol Handler. This implements the parsing and protocol processing of HTTP 
request events. JAWS Protocol Handler design allows multiple Web protocols, such as 
HTTP/1.0, HTTP/1.1, and HTTP-NG, to be incorporated into a Web server. To add a 
new protocol, developers just have to write a new Protocol Handler component and 
configure it into the JAWS framework. 

§ Cached Virtual Filesystem. This improves Web server performance by reducing the 
overhead of file system accesses when processing HTTP GET requests. Various 
caching strategies, such as least-recently used (LRU) or least-frequently used (LFU), 
can be selected according to the actual or anticipated workload and configured statically 
or dynamically. 
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Applying Patterns to Resolve Common Design Challenges in 
JAWS 

The overview of the JAWS framework architecture above describes how JAWS is structured, 
but does not explain why it is structured in this way. Understanding why the JAWS 
framework contains these particular components—and why the components are designed 
the way they are—requires a deeper knowledge of the patterns underlying the domain of 
concurrent and networked software in general, and concurrent Web servers in particular. 

Eight patterns are used to implement the main components in JAWS: 

 

These patterns help resolve the following seven common challenges that arise when 
developing concurrent servers: 
§ Encapsulating low-level operating system APIs 
§ Decoupling event demultiplexing and connection management from protocol 

processing 
§ Scaling up server performance via multi-threading 
§ Implementing a synchronized request queue 
§ Minimizing server threading overhead 
§ Using asynchronous I/O effectively 
§ Enhancing server configurability 

In addition to describing the patterns using a minimal 'context/problem/solution' form, we 
note the trade-offs between certain patterns and show how these patterns are applied to 
develop the concurrent JAWS Web server. Chapters 2 through 5 describe these patterns 
both more generally and in more detail. 

Encapsulating Low-level Operating System APIs 

Context 

A Web server must manage a variety of operating system services, including processes, 
threads, Socket connections, virtual memory, and files. Most operating systems, such as 
Win32 or POSIX, provide low-level APIs written in C to access these services. 

Problem 

The diversity of hardware and operating systems makes it hard to build portable and robust 
Web server software by programming to low-level operating system APIs directly. These 
APIs are tedious, error-prone, and non-portable, which makes them an ineffective way to 
develop Web servers or other networked applications. 

Solution 
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Apply the Wrapper Facade pattern (47) to avoid accessing low-level operating system APIs 
directly. This design pattern encapsulates the functions and data provided by existing non-
object-oriented APIs, for example low-level operating system APIs, within more concise, 
robust, portable, maintainable, and cohesive object-oriented class interfaces. 

Use in JAWS 

JAWS uses the wrapper facades defined by ACE to ensure its framework components can 
run on many operating systems, including Windows, UNIX, and many real-time operating 
systems. 

For example, JAWS uses the ACE Thread_Mutex wrapper facade to provide a portable 
interface to operating system mutual exclusion mechanisms.  

 

The Thread_Mutex wrapper shown in the diagram is implemented using the Solaris 
threading API [EKBF+92]. However, the ACE Thread_Mutex wrapper facade is also 
available for other threading APIs, for example Win32 threads or POSIX Pthreads. Other 
ACE wrapper facades used in JAWS encapsulate Sockets, process and thread 
management, memory-mapped files, explicit dynamic linking, and time operations [Sch97]. 

Decoupling Event Demultiplexing and Connection Management 
from Protocol Processing 

Context 

A Web server can be accessed simultaneously by multiple clients, each of which has its own 
connection to the server. A Web server must therefore be able to demultiplex and process 
multiple types of indication events that can arrive from different clients concurrently: 
§ A connection request, which the server receives via a CONNECT indication event that 

instructs it to accept the client connection 
§ An HTTP GET request to download a file, which the server receives via a READ 

indication event that instructs it to receive a request from one of its client connections 

A common way to demultiplex events in a Web server is to use select() [Ste98]. This 
function reports which socket handles have indication events pending so that Socket 
operations, such as accept() for accepting a client connection request or recv() for 
receiving a client request, can be invoked without blocking the server. 

Problem 

Developers often tightly couple a Web server's event-demultiplexing and connection-
management code with its protocol-handling code that performs HTTP 1.0 processing. In 
such a design, however, the demultiplexing and connection-management code cannot be 
reused as black-box components by other HTTP protocols, or by other middleware and 
applications, such as ORBs [SC99] and imaging servers [PHS96]. Moreover, changes to the 
event-demultiplexing and connection-management code, such as porting it to use TLI 
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[Rago93] or WaitForMultipleObjects() [Sol98], will affect the Web server protocol 
code directly and may introduce subtle bugs. 

Solution 

Apply the Reactor pattern (179) and the Acceptor-Connector pattern (285) to separate the 
generic event-demultiplexing and connection-management code from the HTTP protocol 
code. The Reactor architectural pattern decouples the synchronous event demultiplexing 
and dispatching logic of server applications from the service(s), such as HTTP protocol 
processing, performed in response to events. The Acceptor-Connector design pattern can 
build on the Reactor pattern to decouple the connection and initialization of co-operating 
peer services, for example an HTTP client and server, from the processing activities 
performed by these peer services once they are connected and initialized. 

Use in JAWS 

JAWS uses the Reactor pattern to process multiple synchronous events from multiple 
sources of events without polling all its event sources or blocking indefinitely on any single 
source of events. Similarly, it uses the Acceptor-Connector pattern to vary its protocol-
processing code independently from its connection-management code. 

 

In this design, the select() synchronous event demultiplexer waits for events to occur on 
a set of handles. When an event arrives, select() notifies a reactor, which then 
demultiplexes and dispatches this event to a designated event handler for further 
processing.  

There are two types of event handlers in JAWS: 
§ The HTTP_Acceptor registers itself with the Reactor for CONNECT events. When 

these events occur the Reactor invokes the handle_event() hook method of the 
HTTP_Acceptor, which then creates, connects, and activates an HTTP_Handler. 

§ Each HTTP_Handler is a Protocol Handler whose handle_event() hook method is 
responsible for receiving and processing the HTTP GET request sent by its connected 
client. 

By using the Reactor and Acceptor-Connector patterns, the protocol-specific processing 
code in the HTTP_Handler is decoupled from the protocol-independent event 
demultiplexing and connection-management code in the Event Dispatcher. This design 
makes it easier to maintain and reuse the various components in JAWS. 

Scaling Up Server Performance via Multi-threading 

Context 
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HTTP runs over TCP, which uses flow control to ensure that senders do not produce data 
more rapidly than slow receivers or congested networks can buffer and process [Ste93]. 
Achieving efficient end-to-end quality of service (QoS) is important to handle heavy Web 
traffic loads [PQ00]. A Web server must therefore scale up efficiently as its number of clients 
increases. 

Problem 

Processing all HTTP GET requests reactively within a single-threaded process does not 
scale up efficiently, because each Web server CPU time-slice spends much of its time 
blocked waiting for I/O operations to complete. Similarly, to improve Qos for all its connected 
clients, an entire Web server process must not block while waiting for connection flow control 
to abate so it can finish sending a file to a client. 

Solution 

Apply the Half-Sync/Half-Async pattern (423) to scale up server performance by processing 
different HTTP requests concurrently in multiple threads. This architectural pattern defines 
two service processing layers—one asynchronous and one synchronous—along with a 
queueing layer that allows services to exchange messages between the two layers. The 
pattern allows synchronous services, such as HTTP protocol processing, to run concurrently, 
relative both to each other and to asynchronous services, such as event demultiplexing.  

This solution yields two benefits: 
§ Threads can be mapped to separate CPUs to scale up server performance via multi-

processing. 
§ Each thread blocks independently, which prevents one flow-controlled connection from 

degrading the QoS other clients receive. 

Use in JAWS 

JAWS can use the Half-Sync/Half-Async pattern to process HTTP GET requests 
synchronously from multiple clients, but concurrently in separate threads of control: 

 

The Reactor's HTTP_Handlers constitute the services in JAWS' 'asynchronous' layer. 
Although the Reactor is not truly asynchronous, it shares key properties with asynchronous 
services. For example, an HTTP_Handler dispatched by the Reactor cannot block for long 
without starving other clients. Therefore, in this design an HTTP_Handler just reads an 
incoming HTTP GET request and inserts it into a request queue serviced by a pool of worker 
threads. 

The worker thread that removes the request performs HTTP protocol processing 
synchronously. It then transfers the file back to the client. If flow control occurs on its client 
connection this thread can block without degrading the QoS experienced by clients serviced 
by other worker threads in the pool. 
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Implementing a Synchronized Request Queue 

Context 

At the center of the Half-Sync/Half-Async pattern is a queueing layer. In JAWS, the 
Reactor thread is a 'producer' that inserts HTTP GET requests into a queue. The worker 
threads in the pool are 'consumers' that remove and process requests from the queue. 

Problem 

A naive implementation of a request queue will incur race conditions or 'busy waiting' when 
multiple threads insert and remove requests. For example, multiple concurrent producer and 
consumer threads can corrupt the queue's internal state if it is not synchronized properly. 
Similarly, these threads will 'busy wait' when the queue is empty or full, which wastes CPU 
cycles unnecessarily. 

Solution 

Apply the Monitor Object pattern (399) to implement a synchronized request queue. This 
design pattern synchronizes method execution to ensure only one method at a time runs 
within an object, such as the Web server's request queue. In addition, it allows an object's 
methods to schedule their execution sequences co-operatively. For example, a monitor 
object can be used to prevent threads from 'busy waiting' when the request queue is empty 
or full. 

Use in JAWS 

The JAWS synchronized request queue uses a pair of POSIX condition variables to 
implement the queue's not-empty and not-full monitor conditions. This synchronized request 
queue can be integrated into the Half-Sync/Half-Async thread pool implementation in JAWS' 
Event Dispatcher: 

 

When a worker thread attempts to dequeue an HTTP GET request from an empty queue, the 
request queue's get() method atomically releases the monitor lock and the worker thread 
suspends itself on the not-empty monitor condition. It remains suspended until the queue is 
no longer empty, which happens when an HTTP_Handler running in the Reactor thread 
inserts a request into the queue. 

Minimizing Server Threading Overhead 

Context 

Socket implementations in certain multi-threaded operating systems, such as Windows NT 
and Solaris, provide a concurrent accept() optimization [Ste98] to accept client connection 
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requests. This optimization improves the performance of Web servers that implement the 
HTTP 1.0 protocol in three ways: 
§ The operating system allows a pool of threads in a Web server to call accept() on 

the same passive-mode socket handle. 
§ When a connection request arrives, the operating system's transport layer creates a 

new connected transport endpoint, encapsulates this new endpoint with a data-mode 
socket handle and passes the handle as the return value from accept(). 

§ The operating system then schedules one of the threads in the pool to receive this 
data-mode handle, which it uses to communicate with its connected client. 

Problem 

The Half-Sync/Half-Async threading model described in the discussion on Scaling Up Server 
Performance via Multi-threading (31) is more scalable than the purely reactive model 
described in the sub-section on Decoupling Event Demultiplexing and Connection 
Management from Protocol Processing (29). It is not necessarily the most efficient design, 
however. For example, it incurs a dynamic memory allocation, multiple synchronization 
operations, a context switch, and cache updates to pass a request between the Reactor 
thread and a worker thread. This overhead makes JAWS' latency unnecessarily high, 
particularly on operating systems that support the concurrent accept() optimization 
outlined in the Context discussion. 

Solution 

Apply the Leader/Followers pattern (447) to minimize server threading overhead. This 
architectural pattern provides an efficient concurrency model where multiple threads take 
turns to share event sources, such as a passive-mode socket handle, in order to detect, 
demultiplex, dispatch, and process service requests that occur on the event sources. This 
pattern eliminates the need for—and the overhead of—a separate Reactor thread and 
synchronized request queue. 

Use in JAWS 

JAWS' Event Dispatcher and Protocol Handler can be implemented via a Leader/Followers 
thread pool design, as follows: 

 

In this design, multiple worker threads in a pool share the same passive-mode socket 
handle. There are two variants to consider: 
§ If the operating system supports the concurrent accept() optimization described in 

the Context paragraph, all worker threads can simply call accept(). The operating 
system thread scheduler then determines the order in which client HTTP GET requests 
are dispatched to HTTP_Handlers by applying the steps outlined above. Each 
HTTP_Handler now runs in its own thread of control, so it can perform its I/O 
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operations synchronously without blocking other threads that are processing their client 
requests. 

§ If the operating system does not support the accept() optimization a different 
Leader/Followers implementation can be used to share the passive-mode socket 
handle. In this design, one thread at a time—the leader thread—calls the Reactor's 
handle_events() method to wait for a connection to arrive on the passive-mode 
socket handle. The other threads—the followers—queue waiting their turn to become 
the leader. 

After the current leader thread receives a newly-connected socket handle, it promotes a 
follower thread to become the new leader. It then plays the role of a processing thread, 
using the Reactor to demultiplex and dispatch the event to an HTTP_Handler that 
performs all HTTP protocol processing for that client's request. Multiple processing 
threads can run concurrently while the new leader thread waits for new connections to 
arrive via the Reactor.  

After handling its HTTP GET request, a processing thread reverts to a follower role and 
waits to become the leader thread again. 

The Leader/Followers thread pool design is highly efficient [SMFG00]. If there are 
requirements besides just raw performance, however, the Half-Sync/Half-Async (423) design 
may still be a more appropriate concurrency model for a Web server: 
§ The Half-Sync/Half-Async design can reorder and prioritize client requests more 

flexibly, because it has a synchronized request queue implemented using the Monitor 
Object pattern (399). 

§ It may be more scalable, because it queues requests in Web server virtual memory, 
rather than the operating system kernel [Sch97]. 

We cover both thread pool alternatives here to illustrate how the use of patterns helps to 
make these design trade-offs explicit. 

Leveraging Asynchronous I/O Effectively 

Context 

Synchronous multi-threading may not be the most scalable way to implement a Web server 
on operating system platforms that support asynchronous I/O more efficiently than 
synchronous multi-threading. For example, highly-efficient Web servers can be implemented 
on Windows NT [Sol98] by invoking asynchronous Win32 operations that perform the 
following activities: 
§ Processing indication events, such as TCP CONNECT and HTTP GET requests, via 

AcceptEx() and ReadFile(), respectively 
§ Transmitting requested files to clients asynchronously via WriteFile() or 

TransmitFile() [HPS99] 

When these asynchronous operations complete, the operating system delivers the 
associated completion events containing their results to the Web server. It then processes 
these events and performs the appropriate actions before returning to its event loop. 

Problem 

Developing software that achieves the potential efficiency and scalability of asynchronous 
I/O is hard. The challenge is due largely to the separation in time and space of 
asynchronous operation invocations and their subsequent completion events. 
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Solution 

Apply the Proactor pattern (215) to make efficient use of asynchronous I/O. This 
architectural pattern structures event-driven concurrent server applications that receive and 
process requests from multiple clients asynchronously. Application services are split into two 
parts: 
§ Operations that execute asynchronously, for example to accept connections and 

receive client HTTP GET requests 
§ The corresponding completion handlers that process the asynchronous operation 

results, for example to transmit a file back to a client after an asynchronous connection 
operation completes 

As with the Reactor pattern, the Proactor pattern decouples the event demultiplexing and 
event-handler dispatching logic of server applications from the service(s) performed in 
response to events. The primary difference is that the Proactor handles completion events 
resulting from asynchronous operations, whereas the Reactor handles indication events that 
trigger synchronous operations. 

Use in JAWS 

JAWS can use the Proactor pattern to perform its Protocol Handler processing, such as 
parsing the headers of an HTTP GET request, while processing other connection- and I/O-
related events asynchronously. JAWS can thus implement its Event Dispatcher and Protocol 
Handler components efficiently on Windows NT: 

 

In this design, JAWS initiates asynchronous Win32 operations via socket handles to process 
service requests 'proactively'. For example, AcceptEx() can accept incoming connection 
requests from clients and TransmitFile() can send a file back to the client. These 
operations are executed asynchronously by the Windows NT kernel. 

When an asynchronous operation finishes, the kernel inserts a completion event containing 
that operation's results into an I/O completion port, which queues the completion events. 
Completion events are removed from this port via the GetQueuedCompletionStatus() 
Win32 function, which is called by the Proactor that runs JAWS' event loop. The 
Proactor demultiplexes and dispatches completion events to the appropriate 
HTTP_Acceptor or HTTP_Handler that is associated with the asynchronous operation. 

Completion handlers process the results of asynchronous operations, potentially invoking 
additional asynchronous operations. For example, the completion handler for an 
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asynchronous AcceptEx() operation typically initiates an asynchronous WriteFile() or 
TransmitFile() operation to download a requested file to the client. 

On platforms that support asynchronous I/O efficiently, Proactor pattern implementations of 
Web servers are often substantially more efficient than Half-Sync/Half-Async (423) and 
Leader/Followers (447) pattern implementations [HPS99]. However, the Proactor pattern can 
be more complex to implement than the other two concurrency architectures: 
§ It has more participants than the other two patterns, which requires more effort to 

understand and implement. 
§ The combination of 'inversion of control' and asynchrony in Proactor requires a great 

deal of experience to program and debug. 

As discussed in the section Minimizing Server Threading Overhead, (34) the use of patterns 
enables us to evaluate the pros and cons of various Web server architectures without being 
distracted by nonessential implementation details, such as the syntax of a platform's 
threading, demultiplexing, or connection-management APIs. 

Enhancing Server Configurability 

Context 

The implementation of certain Web server strategies depends on a variety of factors. Certain 
factors are static, such as the number of available CPUs and operating system support for 
asynchronous I/O. Other factors are dynamic, such as Web workload characteristics. 

Problem 

No single Web server configuration is optimal for all use cases. In addition, some design 
decisions cannot be made efficiently until runtime. Prematurely committing to a particular 
Web server configuration is therefore inflexible and inefficient. For example, it is undesirable 
to include unused Protocol Handler or Cached Virtual Filesystem components in a Web 
server, because this increases its memory footprint and can degrade its performance. 

Solution 

Apply the Component Configurator pattern (75) to enhance the configurability of a Web 
server. This design pattern allows an application to link and unlink its component 
implementations at runtime. New and enhanced services can therefore be added without 
having to modify, recompile, statically relink, or shut down and restart a running application. 

Use in JAWS 

JAWS uses the Component Configurator pattern to dynamically optimize, control, and 
reconfigure the behavior of its Web server strategies at installation-time or during run-time. 
For example, JAWS applies the Component Configurator pattern to configure its various 
Cached Virtual Filesystem strategies, such as least-recently used (LRU) or least-frequently 
used (LFU): 
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The Component class defines a uniform interface for configuring and controlling a particular 
application service that it provides. Concrete components, which include the 
LRU_File_Caching_Strategy class and the LFU_File_Caching_Strategy class, 
then implement this interface. Web server administrators can use the Component interface 
to initiate, suspend, resume, and terminate the concrete components dynamically, 
depending on anticipated or actual workload. 

Concrete components can be packaged into a suitable unit of configuration, such as a 
dynamically linked library (DLL). Only the components that are currently in use need to be 
configured into the Web server. These components can be linked/unlinked into and out of an 
application dynamically under the control of a Component Configurator. In turn, this 
object uses a Component Repository, which is a memory-resident database that 
manages all concrete components configured into the Web server. 

Other Patterns Used to Implement JAWS 

The implementation of JAWS applies other design patterns to improve its flexibility and 
modularity. For example, two other design patterns and an idiom in this book are used in 
JAWS: 
§ The Thread-Safe Interface (345) and Strategized Locking (333) patterns help minimize 

locking overhead in the JAWS' Cached Virtual Filesystem file cache strategies. They 
also ensure that intra-component method calls do not incur 'self-deadlock' by trying to 
reacquire a lock that a file cache already holds. 

§ The Scoped Locking C++ idiom (325) is used throughout JAWS to ensure that a lock is 
acquired when control enters a scope and the lock is released automatically when 
control leaves the scope, regardless of the path out of the scope. 

Three patterns from [GoF95] are also used in JAWS: 
§ The Singleton pattern ensures that a class has only one instance and provides a global 

point of access to it. JAWS uses a Singleton to ensure that only one instance of its 
Cached Virtual Filesystem exists in a Web server process. 

§ The State pattern defines a composite object whose behavior depends upon its state. 
The Event Dispatcher in JAWS uses the State pattern to support both different 
concurrency strategies and synchronous and asynchronous I/O seamlessly [HPS99]. 

§ The Strategy pattern defines a family of algorithms, encapsulates each one, and 
makes them interchangeable. JAWS uses this pattern extensively, for example to select 
different HTTP protocols without affecting its Protocol Handler software architecture. 

Other design patterns from [GoF95], such as Adapter, Bridge, Factory Method, Iterator and 
Template Method, and from [POSA1], such as Proxy, are used in JAWS to implement the 
eight patterns we presented above. The pattern descriptions presented in Chapters 2 
through 5 describe the relationships between all these patterns in full detail. 

In contrast to the four architectural patterns—Reactor, Proactor, Half-Sync/Half-Async, and 
Leader/Followers—described in section Applying Patterns to Resolve Common Design 
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Challenges in JAWS, these design patterns have a relatively localized impact on JAWS. For 
example, although the Strategized Locking pattern is domain-independent and widely 
applicable, the problem it addresses does not impact JAWS' Web server software 
architecture as pervasively as the Proactor or Leader/Followers patterns. A thorough 
understanding of design patterns is essential, however, to implement highly-flexible software 
that is resilient to changes in application requirements and platform characteristics. 

[3]The source for JAWS and ACE can be downloaded at http://www.posa.uci.edu/. 

1.4 Wrapping Up 
Computing power and network bandwidth will continue to increase dramatically during this 
decade. However, the requirements, scale, and complexity of the concurrent and networked 
application software that builds on these hardware advances will also increase at a similar 
pace. Without corresponding advances in software techniques, it will be hard to manage 
lifecycle costs and develop quality software within a reasonable time and level of effort. 

Much of the cost and effort of concurrent and networked software stems from the continual 
rediscovery and reinvention of fundamental patterns and framework components that reify 
these patterns. Patterns and pattern languages help reduce this cost and improve the quality 
of software by using proven architectures and designs to produce applications and 
application frameworks. These frameworks can be customized to meet existing application 
requirements, as well as extended to meet future requirements. 

The JAWS example presented in this chapter demonstrates how the effort required to 
develop concurrent and networked software can be reduced significantly by applying 
patterns and framework components judiciously. Rather than rediscovering solutions to 
complex concurrent and networked software problems and reinventing the corresponding 
software from scratch, developers can instead focus on achieving their strategic technical 
and business objectives. Even when changes to technologies or tools preclude the direct 
use of existing components, algorithms, detailed designs, and implementations, the core 
architectural and design patterns that underlie these artifacts often can still be reused. 

The JAWS example also illustrates the importance of understanding how groups of patterns 
collaborate to help resolve complex concurrent and networked application design problems. 
Problems and forces are often inter-related, and these relationships should be considered 
when addressing key design issues and implementation trade-offs. Regardless of their 
individual utility, therefore, no single pattern is an island. Instead, patterns must be 
understood in the larger software architecture context in which they apply. 

http://www.posa.uci.edu/
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Chapter 2: Service Access and Configuration 
Patterns 
Overview 

There once was a man who went to a computer trade show. Each day as he 
entered the man told the guard at the door: "I am a great thief, renowned for 
my feats of shoplifting. Be forewarned, for this trade show shall not escape 

unplundered."  

This speech disturbed the guard greatly, because there were millions of 
dollars of computer equipment inside, so he watched the man carefully. But 

the man merely wandered from booth to booth, asking questions and 
humming quietly to himself. 

When the man left, the guard took him aside and searched his clothes, but 
nothing was to be found. On the next day of the trade show, the man 

returned and chided the guard saying: "I escaped with a vast booty 
yesterday, but today will be even better." So the guard watched him ever 

more closely, but to no avail. 

On the final day of the trade show, the guard could restrain his curiosity no 
longer. "Sir Thief", he said, "I am so perplexed, I cannot live in peace. 

Please enlighten me. What is it that you are stealing?"  

The man smiled. "I am stealing patterns", he said. 

Adapted from "The TAO Of Programming" [JH98] by Geoffrey James and 
Duke Hillard  

This chapter presents four patterns for designing effective application programming 
interfaces (APIs) to access and configure services and components in stand-alone and 
networked systems: Wrapper Facade, Component Configurator, Interceptor, and Extension 
Interface.  

Networked systems are inherently heterogeneous [HV99]. Therefore, a key challenge 
confronting researchers and developers is how to effectively design and configure 
application access to the interfaces and implementations of evolving service components. 
This chapter presents four patterns that address various aspects of service access and 
configuration: 
§ The Wrapper Facade design pattern (47) encapsulates the functions and data 

provided by existing non-object-oriented APIs within more concise, robust, portable, 
maintainable, and cohesive object-oriented class interfaces. Wrapper Facade is often 
applied to improve application portability by 'wrapping' lower-level operating system 
APIs. It can also alleviate the accidental complexity associated with programming using 
low-level APIs. 

To minimize redundancy in other patterns in the book, the Implementation section of the 
Wrapper Facade pattern contains detailed coverage of wrapper facades for threads, 
mutex locks, condition variables, and Sockets. Subsequent patterns, such as Reactor 
(179), Proactor (215), Acceptor-Connector (285), Strategized Locking (333), Active 
Object (369), and Monitor Object (399), use these wrapper facades in their own 
implementations. Therefore, we recommend you read Wrapper Facade first. 
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§ The Component Configurator design pattern (75) allows an application to link and 
unlink its component implementations at run-time without having to modify, recompile, 
or relink the application statically. Applications with high availability requirements, such 
as mission-critical systems that perform online transaction processing or real-time 
industrial process automation, often require such flexible configuration capabilities. 
Component Configurator therefore addresses aspects of service configuration and 
service evolution. 

Other patterns in this section, particularly Extension Interface (141) and Interceptor 
(109), can use the Component Configurator pattern to (re)configure various service 
roles into components in application processes without having to shut down and restart 
running application processes. 

§ The Interceptor architectural pattern (109) allows services to be added to a framework 
transparently and to be triggered automatically when certain events occur. Interceptor 
therefore prepares a framework for its own evolution to accommodate services that are 
not configured or not even known during the framework's original development. 
Interceptor also allows other applications to integrate components and services with 
instances of the framework. Such services are often 'out-of-band' or application-specific 
from the perspective of the framework instance, but are important for the productive and 
proper operation of applications that use the framework. 

§ The Extension Interface design pattern (141) prevents the 'bloating' of interfaces and 
breakage of client code when developers extend or modify the service functionality of 
existing components. Multiple extension interfaces can be attached to the same 
component. Extension Interface addresses both the challenge of component and 
service evolution and the provision of clients with an authorized and role-specific access 
to a component's functionality. 

The topics of service access and configuration involve more challenges than are addressed 
by the patterns in this section. These challenges include: 
§ Mediating access to remote services via local proxies 
§ Managing the lifecycle of services, locating services in a distributed system and 
§ Controlling the operating system and computing resources a server can provide to the 

service implementations it hosts 

Other patterns in the literature address these issues, such as Activator [Sta100], Evictor 
[HV99], Half Object plus Protocol [Mes95], Locator [JK00], Object Lifetime Manager 
[LGS99], and Proxy [POSA1] [GoF95]. These patterns complement those presented in this 
section and together describe key principles that well-structured distributed systems should 
apply to configure and provide access to the services they offer. 

 
Wrapper Facade 
The Wrapper Facade design pattern encapsulates the functions and data provided by 
existing non-object-oriented APIs within more concise, robust, portable, maintainable, and 
cohesive object-oriented class interfaces. 

Example 

Consider a server for a distributed logging service that handles multiple clients concurrently 
using the connection-oriented TCP protocol [Ste98]. To log data a client must send a 
connection request to a server transport address, which consists of a TCP port number and 
IP address. In the logging server, a passive-mode socket handle factory listens on this 
address for connection requests. The socket handle factory accepts the connection request 
and creates a data-mode socket handle that identifies this client's transport address. This 
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handle is passed to the server, which spawns a logging handler thread that processes client 
logging requests. 

After a client is connected it sends logging requests to the server. The logging handler 
thread receives these requests via its connected socket handle. It then processes the 
requests in the logging handler thread and writes the requests to a log file. 

 

A common way to develop this logging server is to use low-level C language APIs, such as 
Solaris threads [EKBF+92] and Sockets [Ste98], to program the server's threading, 
synchronization, and network communication functionality. If the logging server runs on 
multiple platforms, however, there will be differences between functions and data in the low-
level APIs, as well as different operating system and compiler features and defects. 
Developers commonly handle these differences by inserting conditional compilation 
directives, such as C/C++ #ifdefs, throughout their code. For instance, the following code 
illustrates a logging server that has been implemented using #ifdefs to run on Solaris and 
Windows NT: 

#if defined (_WIN32) 
   #include <windows.h> 
   typedef int ssize_t; 
#else 
   typedef unsigned int 
UINT32; 
   #include <thread.h> 
   #include <unistd.h> 
   #include <sys/socket.h> 
   #include <netinet/in.h> 
   #include <memory.h> 
#endif /* _WIN32 */ 
 
// Keep track of number of 
logging requests. 
static int request_count; 
 
// Lock that serializes 
concurrent access to 
request_count. 
#if defined (_WIN32) 
   static CRITICAL_SECTION 
lock; 
#else 

#if defined (_WIN32) 
       EnterCriticalSection (&lock); 
#else 
       mutex_lock (&lock); 
#endif /* _WIN32 */ 
       // Execute following two 
statements in a critical 
       // section to avoid ace conditions 
and scrambled 
       // output, respectively. 
       ++request_count; 
       // A return value of -1 signifies 
failure. 
       if (write_record (log_record, len) 
== -1) 
          break; 
#if defined (_WIN32) 
       LeaveCriticalSection (&lock); 
#else 
       mutex_unlock (&lock); 
#endif /* _WIN32 */ 
   } 
#if defined (_WIN32) 
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   static mutex_t lock; 
#endif /* _WIN32 */ 
 
// Maximum size of a logging 
record. 
static const int 
LOG_RECORD_MAX = 1024; 
 
// Port number to listen on 
for requests. 
static const int 
LOGGING_PORT = 10000; 
 
// Entry point that writes 
logging records. 
int write_record (char 
log_record[], int len) { 
   /* ... */ 
   return 0; 
} 
 
// Entry point that 
processes logging records 
for 
// one client connection. 
#if defined (_WIN32) 
   u_long 
#else 
   void * 
#endif /* _WIN32 */ 
logging_handler (void *arg) 
{ 
   // Handle UNIX/Win32 
portability. 
#if defined (_WIN32) 
   SOCKET h = 
reinterpret_cast <SOCKET> 
(arg); 
#else 
   int h = reinterpret_cast 
<int> (arg); 
#endif /* _WIN32 */ 
 

   closesocket (h); 
#else 
   close (h); 
#endif /* _WIN32 */ 
   return 0; 
} 
 
// Main driver function for the server. 
int main (int argc, char *argv[]) { 
   struct sockaddr_in sock_addr; 
   // Handle UNIX/Win32 portability. 
#if defined (_WIN32) 
   SOCKET acceptor; 
   WORD version_requested = MAKEWORD(2, 
0); 
   WSADATA wsa_data; 
   int error = 
WSAStartup(version_requested, &wsa_data); 
   if (error != 0) return -1; 
#else 
   int acceptor; 
#endif /* _WIN32 */ 
   // Create a local endpoint of 
communication. 
   acceptor = socket (AF_INET, 
SOCK_STREAM, 0); 
   // Set up the address to become a 
server. 
   memset (&sock_addr, 0, sizeof 
sock_addr); 
   sock_addr.sin_family = PF_INET; 
   sock_addr.sin_port = htons 
(LOGGING_PORT); 
   sock_addr.sin_addr.s_addr = htonl 
(INADDR_ANY); 
   // Associate address with endpoint. 
   bind (acceptor, 
reinterpret_cast<struct sockaddr *> 
          (&sock_addr), sizeof 
sock_addr); 
   // Make endpoint listen for 
connections. 
   listen (acceptor, 5); 
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   for (;;) { 
#if defined (_WIN32) 
       ULONG len; 
#else 
       UINT32 len; 
#endif /* _WIN32 */ 
       // Ensure a 32-bit 
quantity. 
       char 
log_record[LOG_RECORD_MAX]; 
       // The first <recv> 
reads the length 
       // (stored as a 32-
bit integer) of 
       // adjacent logging 
record. This code 
       // does not handle 
"short-<recv>s". 
       ssize_t n = recv (h, 
                
reinterpret_cast <char *> 
(&len), 
                sizeof len, 
0); 
       // Bail out if we're 
shutdown or 
       // errors occur 
unexpectedly. 
       if (n <= sizeof len) 
break; 
       len = ntohl (len); 
       if (len > 
LOG_RECORD_MAX) break; 
 
       // The second <recv> 
then reads <len> 
       // bytes to obtain 
the actual record. 
       // This code handles 
"short-<recv>s". 
       for (size_t nread = 
0; nread < len; nread += n) 
{ 
          n = recv (h, 
log_record + nread, 

 
   // Main server event loop. 
   for (;;) { 
       // Handle UNIX/Win32 portability. 
#if defined (_WIN32) 
       SOCKET h; 
       DWORD t_id; 
#else 
       int h; 
       thread_t t_id; 
#endif /* _WIN32 */ 
       // Block waiting for clients to 
connect. 
       h = accept (acceptor, 0, 0); 
       // Spawn a new thread that runs 
the <server> 
       // entry point. 
#if defined (_WIN32) 
       CreateThread (0, 0, 
            
LPTHREAD_START_ROUTINE(&logging_handler), 
            reinterpret_cast <void *> 
(h), 0, &t_id); 
#else 
       thr_create 
           (0, 0, logging_handler, 
           reinterpret_cast <void *> (h), 
           THR_DETACHED, &t_id); 
#endif /* _WIN32 */ 
   } 
   return 0; 
} 
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                 len - 
nread, 0); 
          // Bail out if an 
error occurs. 
          if (n <= 0) return 
0; 
       } 

The design shown above may work for short-lived, 'throw-away' prototypes [FoYo99]. It is 
inadequate, however, for software that must be maintained and enhanced over time. The 
use of conditional compilation directives and direct programming of low-level APIs makes the 
code unnecessarily hard to understand, debug, port, maintain, and evolve. 

Certain problems can be alleviated by moving platform-specific declarations, such as the 
mutex and socket types, into separate configuration header files. This solution is incomplete, 
however, because the #ifdefs that separate the use of platform-specific APIs, such as 
thread creation calls, will still pollute application code. Supporting new platforms will also 
require modifications to platform-specific declarations, irrespective of whether they are 
included directly into application code or separated into configuration files. 

Several well-known patterns address similar problems, but unfortunately do not help to 
resolve the problems outlined above. For example, Facade [GoF95] encapsulates object-
oriented subsystems rather than lower-level non-object-oriented APIs. Decorator [GoF95] 
extends an object dynamically by attaching additional responsibilities transparently, which 
incurs unnecessary performance overhead. Bridge and Adapter [GoF95] also introduce an 
additional layer of indirection that can incur overhead. In general, therefore, these patterns 
are not well suited to encapsulate existing lower-level non-object oriented APIs, where it may 
be more important that the solution be efficient than be dynamically extensible. 

Context 

Maintainable and evolvable applications that access mechanisms or services provided by 
existing non-object-oriented APIs. 

Problem 

Applications are often written using non-object-oriented operating system APIs or system 
libraries. These APIs access network and thread programming mechanisms, as well as user 
interface or database programming libraries. Although this design is common, it causes 
problems for application developers by not resolving the following forces: 
§ Concise code is often more robust than verbose code because it is easier to develop 

and maintain. Using object-oriented languages that support higher-level features, such 
as constructors, destructors, exceptions, and garbage collection, reduces the likelihood 
of common programming errors. However, developers who program using lower-level 
function-based APIs directly tend to rewrite a great deal of verbose and error-prone 
software repeatedly. 

 

§ The code for creating and initializing an acceptor socket in the main() function of our 
logging server example is error-prone. Moreover, these errors are subtle, such as 
failing to initialize the sock_addr to zero or not using the htons() macro to 
convert the LOGGING_PORT number into network byte order [Sch92]. The lack of 
constructors and destructors in C also makes it hard to ensure that resources are 
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allocated and released properly. For example, note how the lock that serializes 
access to request_count will not be released correctly if the write_record() 
function returns -1. 
 

 

§ Software that is portable or can be ported easily to different operating systems, 
compilers, and hardware platforms helps increase product market-share. Although 
reusing existing lower-level APIs may reduce some of the software development effort, 
applications programmed directed with lower-level APIs are often non-portable. 
Programming using lower-level APIs across different versions of the same operating 
system or compiler also may be non-portable due to the lack of source-level or binary-
level compatibility across software releases [Box97]. 

 

§ Our logging server example has hard-coded dependencies on several non-portable 
operating system threading and network programming C APIs. For example, the 
Solaris thr_create(), mutex_lock(), and mutex_unlock() functions are 
not portable to Win32 platforms. Although the code is quasi-portable—it also 
compiles and runs on Win32 platforms—there are various subtle portability 
problems. In particular, there will be resource leaks on Win32 platforms because 
there is no equivalent to the Solaris THR_DETACHED feature, which spawns a 
'detached' thread whose exit status is not retained by the threading library [Lew95]. 
 

 

§ Improving software maintainability helps reduce lifecycle costs. Programs written 
directly to low-level non-object-oriented APIs are often hard to maintain, however. For 
example, C and C++ developers often address portability issues by embedding 
conditional compilation directives into their application source. Unfortunately, 
addressing platform-specific variations via conditional compilation at all points of use 
increases the software's physical design complexity [Lak95]. For instance, platform-
specific details become scattered throughout the application source files. 

 

§ Maintenance of our logging server is impeded by the #ifdefs that handle Win32 and 
Solaris portability, for example the differences in the type of a socket on Win32 and 
Solaris. In general, developers who program to low-level C APIs like these must 
have intimate knowledge of many operating system idiosyncrasies to maintain and 
evolve their code. 
 

 

§ Cohesive components are easier to learn, maintain, and enhance. However, low-level 
APIs are rarely grouped into cohesive components because languages like C lack 
features such as classes, namespaces, or packages. It is hard, therefore, to recognize 
the extent of low-level APIs. Programming with non-cohesive stand-alone function APIs 
also scatters common code throughout an application, making it hard to 'plug in' new 
components that support different policies and mechanisms. 

 

§ The Socket API is particularly hard to learn because the several dozen C functions in 
the Socket library lack a uniform naming convention. For example, it is not obvious 
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that socket(), bind(), listen(), connect() , and accept() are related. 
Other low-level network programming APIs, such as TLI, address this problem by 
prepending a common function prefix, such as the t_ prefixed before each function 
in the TLI API. However, the use of a common prefix does not by itself make the TLI 
API more 'pluggable' than Sockets. It remains a low-level function-based API rather 
than a more cohesive object-oriented class interface. 
 

 

In general, developing applications by programming to non-object-oriented APIs directly is a 
poor design choice for software that must be maintained and evolved over time. 

Solution 

Avoid accessing non-object-oriented APIs directly. For each set of related functions and data 
in a non-object-oriented API, create one or more wrapper facade classes that encapsulate 
these functions and data within the more concise, robust, portable, and maintainable 
methods provided by the object-oriented wrapper facade(s). 

Structure 

There are two participants in the Wrapper Facade pattern: 

Functions are the building blocks of existing non-object-oriented APIs. They provide a stand-
alone service or mechanism and manipulate data passed as parameters or accessed 
through global variables. 

A wrapper facade is a set of one or more object-oriented classes that encapsulate existing 
functions and their associated data. These class(es) export a cohesive abstraction that 
provides a specific type of functionality. Each class represents a specific role in this 
abstraction. 

The methods in the wrapper facade class(es) generally forward application invocations to 
one or more of the functions, passing the data as parameters. The data is often hidden 
within the private portion of the wrapper facade and is not accessible to client applications. 
Compilers can then enforce type safety because primitive data types, such as pointers or 
integers, are encapsulated within strongly-typed wrapper facades. 

 

The following class diagram illustrates the structure of Wrapper Facade: 



 55

 

Dynamics 

Collaborations in the Wrapper Facade pattern are often straightforward: 
§ The application code invokes a method on an instance of the wrapper facade. 
§ The wrapper facade method forwards the request and its parameters to one or more of 

the lower-level API functions that it encapsulates, passing along any internal data 
needed by the underlying function(s). 

 

Implementation 

This section describes the activities involved in implementing the Wrapper Facade pattern. 
Certain activities may require multiple iterations to identify and implement suitable wrapper 
facade abstractions. To reduce repetition elsewhere in the book, we present an in-depth 
discussion of concrete wrapper facades for mutexes, condition variables, Sockets, and 
threads in this section. Although this lengthens the current section somewhat, the 
implementation examples of other patterns in this book, including Acceptor-Connector (285), 
Strategized Locking (333), Thread-Specific Storage (475), and Monitor Object (399), are 
simplified by using these wrapper facades. 

1. Identify the cohesive abstractions and relationships among existing low-level APIs. 
Mature low-level APIs contain functions and data structures that define many 
cohesive abstractions and map cleanly onto object-oriented classes and methods. 
Common examples include the C APIs for Win32 synchronization and threading, 
POSIX network programming, and X Windows GUI event dispatching. Due to the lack 
of data abstraction in languages like C, however, it may not be clear how functions in 
these existing APIs relate to each other. The first activity in implementing the 
Wrapper Facade pattern is therefore to identify the cohesive abstractions and 
relations among existing APIs.  

 

2. The original implementation of our logging server carefully uses many low-level 
functions that provide several cohesive operating system mechanisms, such as 
synchronization and network communication. The Solaris mutex_lock() and 
mutex_unlock() functions, for example, are associated with a mutex 
synchronization abstraction. Similarly, the socket(), bind(), listen(), 
and accept() functions play various roles in a network programming 
abstraction. 
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4. If existing functions and data structures have been developed as throw-away code or 
via piecemeal growth [FoYo99], they may exhibit little or no cohesive abstractions. In 
this case the code should be refactored [Opd92] [FBBOR99], if possible, before 
proceeding with the implementation of the Wrapper Facade pattern. 

5. Cluster cohesive groups of functions into wrapper facade classes and methods. This 
activity defines one or more class abstractions that shield applications from low-level 
data representations, arbitrary variations in function syntax, and other implementation 
details. It can be decomposed into five sub-activities: 

1. Create cohesive classes. We start by defining one or more wrapper facade 
classes for each group of existing non-object-oriented APIs that are related to 
a particular abstraction. Common criteria used to create cohesive classes 
include the following: 
§ Coalesce functions and data with high cohesion into individual 

classes, while minimizing unnecessary coupling between classes. 
Examples of cohesive functions are those that manipulate common data 
structures, such as a Socket, a file, or a signal set [Ste98]. 

§ Identify the common and variable aspects in the underlying functions 
and data [Cope98]. Common aspects include mechanisms for 
synchronization, threading, memory management, addressing, and 
operating system platform APIs. Variable aspects often include the 
implementations of these mechanisms. Whenever possible variation in 
functions and data should be factored into classes that isolate variation 
behind uniform interfaces to enhance extensibility. 

In general, if the original API contains a wide range of related functions, it may 
be necessary to create several wrapper facade classes to separate concerns 
properly. 

2. Coalesce multiple individual functions into a single method. In addition to 
grouping existing functions into classes, it may be useful to coalesce multiple 
individual functions into a smaller number of methods in each wrapper facade 
class. Coalescing can be used to ensure that a group of lower-level functions 
are called in the appropriate order, as with the Template Method pattern 
[GoF95]. 

3. Automate creation and destruction operations, if possible. Lower-level APIs 
often require programmers to call functions explicitly to create and destroy 
data structures that implement instances of the API. This procedure is error-
prone, however, because developers may forget to call these functions in one 
or more paths through their code. A more robust approach therefore is to 
leverage the implicit creation and destruction operation capabilities provided 
by object-oriented languages, such as C++ and Java. In fact, the ability to 
create and destroy objects automatically often justifies the use of the Wrapper 
Facade pattern, even if the wrapper facade methods do nothing but forward 
control to the lower-level function calls. 

4. Select the level of indirection. Most wrapper facade classes simply forward 
their method calls to the underlying low-level functions, as mentioned above. If 
wrapper facade methods can be inlined implicitly or explicitly, there need be 
no run-time indirection overhead when compared to invoking the low-level 
functions directly. It is also possible to add another level of indirection by 
dispatching wrapper facade implementations using dynamically bound 
methods or some other form of polymorphism. In this case the wrapper facade 
classes play the role of the abstraction class in the Bridge pattern [GoF95]. 
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5. Determine where to encapsulate any platform-specific variation. A common 
use of the Wrapper Facade pattern is to minimize platform-specific variation in 
application code. Although wrapper facade method implementations may differ 
across different operating system platforms, they should provide uniform, 
platform-independent interfaces. Where platform-specific variation exists it can 
be encapsulated via conditional compilation or separate directories: 
§ Conditional compilation can be used to select among different wrapper 

facade class method implementations. The use of conditional compilation 
is inelegant and tedious when #ifdefs are scattered throughout 
application code. Conditional compilation may be acceptable, however, if 
it is localized in a few platform-specific wrapper facade classes or files 
that are not accessed directly by application developers. When 
conditional compilation is used in conjunction with auto-configuration 
tools, such as GNU autoconf, platform-independent wrapper facades 
can be created within a single source file. As long as the number of 
variations supported in this file is not unwieldy therefore, conditional 
compilation can help localize variation and simplify maintenance. 

§ Separate directories can be used to factor out different wrapper facade 
implementations, thereby minimizing conditional compilation or avoiding it 
altogether. For example, each operating system platform can have its 
own directory containing implementations of platform-specific wrapper 
facades. Language processing tools can be used to include the 
appropriate wrapper facade class from the relevant directory at 
compilation. To obtain a different implementation, a different include path 
could be provided to the compiler. This strategy avoids the problems with 
conditional compilation described above because it physically decouples 
the various alternative implementations into separate directories. 

Choosing a strategy depends on how often wrapper facade interfaces and 
implementations change. If changes occur frequently it may be time-
consuming to update the conditional compilation sections for each platform. 
Similarly, all files that depend on the affected files will be recompiled even if 
the change is only necessary for one platform. Therefore the use of condition 
compilation becomes increasingly complex as a larger number of different 
platforms are supported. Regardless of which strategy is selected, however, 
the burden of maintaining wrapper facade implementations should be the 
responsibility of wrapper facade developers rather than application 
developers. 

 

To simplify our logging server implementation, we define wrapper facades 
that encapsulate existing low-level C APIs for mutexes, Sockets, and 
threads. Each wrapper facade illustrates how various design issues 
outlined above can be addressed systematically. We focus on defining 
wrapper facades for C functions because C is used to define popular 
operating system APIs, such as POSIX or Win32. However, the same 
design principles and techniques can be applied to other non-object-
oriented languages, such as FORTRAN, Ada 83, Scheme, or Pascal, as 
well as to non-operating system APIs, such as X Windows or ODBC 
database toolkits [San98]. 

Mutex wrapper facades. We first define a Thread_Mutex abstraction that 
encapsulates the Solaris mutex functions with a uniform and portable 
class interface:[1]  
    class Thread_Mutex { 
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    public: 
        Thread_Mutex () 
            { mutex_init (&mutex_, USYNC_THREAD, 0); } 
        ~Thread_Mutex () { mutex_destroy (&mutex_); } 
 
        void acquire () { mutex_lock (&mutex_); } 
        void release () { mutex_unlock (&mutex_); } 
    private: 
        // Solaris-specific Mutex mechanism. 
        mutex_t mutex_; 
 
        // Disallow copying and assignment. 
        Thread_Mutex (const Thread_Mutex &); 
        void operator= (const Thread_Mutex &); 
 
        // Define a <Thread_Condition> as a friend so 
it can 
        // access <mutex_>. 
        friend class Thread_Condition; 
    }; 

Note how we define the copy constructor and assignment operator as 
private methods in the Thread_Mutex class. This C++ idiom ensures that 
application programmers cannot copy or assign one Thread_Mutex to 
another accidentally [Mey98] [Str97]. Copying mutexes is a semantically-
invalid operation that is erroneously permitted by the less strongly-typed C 
programming API. Our Thread_Mutex wrapper facade therefore provides 
a mutex interface that is less error-prone than programming directly to the 
lower-level Solaris synchronization functions. 

By defining a Thread_Mutex class interface and then writing applications 
to use it, rather than lower-level native operating system C APIs, we can 
port our wrapper facade to other platforms more easily. For example, the 
identical Thread_Mutex interface can be implemented to run on Win32: 
    class Thread_Mutex { 
    public: 
        Thread_Mutex () 
            { InitializeCriticalSection (&mutex_); } 
        ~Thread_Mutex () 
            { DeleteCriticalSection (&mutex_); } 
 
        void acquire () { EnterCriticalSection 
(&mutex_); } 
        void release () { LeaveCriticalSection 
(&mutex_); } 
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    private: 
        // Win32-specific Mutex mechanism. 
        CRITICAL_SECTION mutex_; 
 
        // Disallow copying and assignment. 
        Thread_Mutex (const Thread_Mutex &); 
        void operator= (const Thread_Mutex &); 
    }; 

Naturally, a complete implementation of Thread_Mutex would map the 
platform-specific error handling return values from the various mutex_t 
and CRITICAL_SECTION functions to portable C++ exceptions. 

As described earlier, we can support multiple operating systems 
simultaneously by using conditional compilation and #ifdef'ing the 
Thread_Mutex method implementations. If conditional compilation is 
unwieldy due to the number of supported platforms, it is possible to factor 
out the different Thread_Mutex implementations into separate 
directories. In this case, language processing tools such as compilers and 
preprocessors can be instructed to include the appropriate platform-
specific variant into the application during compilation. 

Condition variable wrapper facade. A condition variable is a 
synchronization mechanism used by collaborating threads to suspend 
themselves temporarily until condition expressions involving data shared 
between the threads attain desired states [IEEE96]. We describe the 
wrapper facade for condition variables at this point because they are often 
used in conjunction with the Thread_Mutex wrapper facade described 
above. Although our logging server example does not use condition 
variables, they are used by other patterns throughout the book, such as 
Strategized Locking (333), Leader/Followers (447), and Monitor Object 
(399).  

As mentioned above, a condition variable is always used in conjunction 
with a mutex that the client thread must acquire before evaluating the 
condition expression. If the condition expression is false the client 
suspends itself on the condition variable and releases the mutex 
atomically, so that other threads can change the shared data. When a 
cooperating thread changes this data it can notify the condition variable, 
which resumes a thread atomically that had suspended itself previously on 
the condition variable. The thread then re-acquires the mutex associated 
with the condition variable. 

After re-acquiring its mutex a newly-resumed thread next re-evaluates its 
condition expression. If the shared data has attained the desired state, the 
thread continues. Otherwise it suspends itself on the condition variable 
again until it is resumed. This process can repeat until the condition 
expression becomes true. 

In general, when complex condition expressions or scheduling behaviors 
are required, combining a mutex with a condition variable is more 
appropriate than just using a mutex. For example, condition variables can 
be used to implement synchronized message queues, as shown in the 



 60

Monitor Object pattern example (399). In this situation a pair of condition 
variables are employed to block supplier threads cooperatively when a 
message queue is full, and to block consumer threads when the queue is 
empty. 

The following Thread_Condition class is a wrapper facade that is 
implemented using the Solaris condition variable API: 
    class Thread_Condition { 
    public: 
         // Initialize the condition variable and 
         // associate it with the <mutex_>. 
         Thread_Condition (const Thread_Mutex &m) : 
mutex_ (m) 
              { cond_init (&cond_, USYNC_THREAD, 0); } 
 
         // Destroy the condition variable. 
         ~Thread_Condition () { cond_destroy (&cond_); 
} 
 
         // Wait for the <Thread_Condition> to be 
notified 
         // or until <timeout> has elapsed. If 
<timeout> == 0 
         // then wait indefinitely. 
         void wait (Time_Value *timeout = 0) { 
             cond_timedwait (&cond_, &mutex_.mutex_, 
                           timeout == 0 
                              ? 0 : timeout->msec ()); 
         } 
         // Notify one thread waiting on 
<Thread_Condition>. 
         void notify () { cond_signal (&cond_); } 
 
         // Notify all threads waiting on 
<Thread_Condition>. 
         void notify_all () { cond_broadcast (&cond_); 
} 
     private: 
         // Solaris condition variable. 
         cond_t cond_; 
 
         // Reference to mutex lock. 
         const Thread_Mutex &mutex_; 
     }; 
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The constructor initializes the condition variable and associates it with the 
Thread_Mutex passed as a parameter. The destructor destroys the 
condition variable, which releases allocated resources. Note that the 
mutex is not owned by the Thread_Condition so it is not destroyed in 
the destructor. 

When called by a client thread the wait() method performs the following 
two steps atomically: 
§ It releases the associated mutex and 
§ It suspends itself atomically for up to a timeout amount of time, 

waiting for the Thread_Condition object to be notified by another 
thread. 

The notify() method resumes one thread waiting on a 
Thread_Condition. Similarly the notify_all() method notifies all 
threads that are currently waiting on a Thread_Condition. The mutex_ 
lock is reacquired by the wait() method before it returns to its client 
thread, either because the condition variable was notified or because its 
timeout expired. 

Socket wrapper facades. Our next wrapper facade encapsulates the 
Socket API. This API is much larger and more expressive than the Solaris 
mutex API [Sch92]. We must therefore define a group of related wrapper 
facade classes to encapsulate Sockets. We start by defining a typedef 
and a macro that hide some of the UNIX/POSIX and Win32 portability 
differences: 
    typedef int SOCKET; 
    const int INVALID_HANDLE_VALUE = -1; 

Both SOCKET and INVALID_HANDLE_VALUE are defined in the Win32 
API already. Therefore, we could either integrate them using #ifdefs or 
using separate platform-specific directories, as discussed earlier in 
implementation activity 2.5 (55). 

Next, we define an INET_Addr class that encapsulates the internet 
domain address struct: 
    class INET_Addr { 
    public: 
        INET_Addr (u_short port, u_long addr) { 
            // Set up the address to become a server. 
            memset (&addr_, 0, sizeof addr_); 
            addr_.sin_family = AF_INET; 
            addr_.sin_port = htons (port); 
            addr_.sin_addr.s_addr = htonl (addr); 
        } 
 
        u_short get_port () const { return 
addr_.sin_port; } 
 



 62

        u_long get_ip_addr () const 
            { return addr_.sin_addr.s_addr; } 
 
        sockaddr *addr () const 
            { return reinterpret_cast <sockaddr *> 
(&addr_);} 
 
        size_t size () const { return sizeof (addr_); 
} 
 
        // ... 
    private: 
        sockaddr_in addr_; 
    }; 

Note how the INET_Addr constructor eliminates several common Socket 
programming errors. For example, it initializes the sockaddr_in field to 
zero, and ensures the TCP port number and IP address are converted into 
network byte order by applying the ntons() and ntonl() macros 
automatically [Ste98]. 

The next wrapper facade class, SOCK_Stream, encapsulates the I/O 
operations, such as recv() and send(), that an application can invoke 
on a connected socket handle: 
    class SOCK_Stream { 
    public: 
        // Default and copy constructor. 
        SOCK_Stream () : handle_ 
(INVALID_HANDLE_VALUE) { } 
        SOCK_Stream (SOCKET h): handle_ (h) { } 
 
        // Automatically close the handle on 
destruction. 
        ~SOCK_Stream () { close (handle_); } 
        // Set/get the underlying SOCKET handle. 
        void set_handle (SOCKET h) { handle_ = h; } 
        SOCKET get_handle () const { return handle_; } 
 
        // Regular I/O operations. 
        ssize_t recv (void *buf, size_t len, int 
flags); 
        ssize_t send (const char *buf, size_t len, int 
flags); 
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        // I/O operations for "short" receives and 
sends. 
        ssize_t recv_n (char *buf, size_t len, int 
flags); 
        ssize_t send_n (const char *buf, size_t len, 
                      int flags); 
 
        // ... other methods omitted. 
    private: 
        // Socket handle for exchanging socket data. 
        SOCKET handle_; 
    }; 

As discussed in implementation activity 2.3 (55), this class leverages the 
semantics of C++ destructors to ensure that a socket handle is closed 
automatically when a SOCK_Stream object goes out of scope. In addition, 
the send_n() and recv_n() methods can handle networking 
idiosyncrasies, for example 'short' send and receive operations. 

SOCK_Stream objects can be created via a connection factory, called 
SOCK_Acceptor, which encapsulates passive establishment of Socket 
connections. The SOCK_Acceptor constructor initializes the passive-
mode acceptor socket to listen at the sock_addr address. The 
SOCK_Acceptor's accept() method is a factory that initializes the 
SOCK_Stream parameter with a socket handle to a new connection: 
    class SOCK_Acceptor { 
    public: 
        // Initialize a passive-mode acceptor socket. 
        SOCK_Acceptor (const INET_Addr &addr) { 
            // Create a local endpoint of 
communication. 
            handle_ = socket (PF_INET, SOCK_STREAM, 
0); 
            // Associate address with endpoint. 
            bind (handle_, addr.addr (), addr.size 
()); 
            // Make endpoint listen for connections. 
            listen (handle_, 5); 
        }; 
 
        // A second method to initialize a passive-
mode 
        // acceptor socket, analogously to the 
constructor. 
        void open (const INET_Addr &sock_addr) { /* 
... */ }; 
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        // Accept a connection and initialize the 
<stream>. 
        void accept (SOCK_Stream &s) { 
            s.set_handle (accept (handle_, 0, 0)); 
        } 
    private: 
        SOCKET handle_; // Socket handle factory. 
    }; 

Note how the constructor for the SOCK_Acceptor applies the strategy 
discussed in implementation activity 2.2 (55) to ensure that the low-level 
socket(), bind(), and listen() functions are always called 
together and in the correct order. 

A complete set of Socket [Sch97] wrapper facades would also include a 
SOCK_Connector that encapsulates the logic for establishing 
connections actively. The SOCK_Acceptor and SOCK_Connector 
classes are concrete IPC mechanisms that can be used to instantiate the 
generic acceptor and connector classes described in the Acceptor-
Connector pattern (285) to perform connection establishment. 

Thread wrapper facade. Our final wrapper facade encapsulates operating 
system threading APIs that are available on different operating system 
platforms, including Solaris threads, POSIX Pthreads, and Win32 threads. 
These APIs exhibit subtle syntactic and semantic differences. For 
example, Solaris and POSIX threads can be spawned in 'detached' mode, 
whereas Win32 threads cannot. It is possible, however, to provide a 
Thread_Manager wrapper facade that encapsulates these differences in 
a uniform manner. The Thread_Manager wrapper facade below, which is 
a Singleton [GoF95], illustrates the spawn method implemented for Solaris 
threads: 
    class Thread_Manager { 
    public: 
        // Singleton access point. 
        Thread_Manager *instance (); 
 
        // Spawn a thread. 
        void spawn (void *(*entry_point_function) 
(void *), 
                     void *arg = 0, long flags = 0, 
                     long stack_size = 0, 
                     void *stack_pointer = 0, 
                     thread_t *t_id = 0) { 
            thread_t t; 
            if (t_id == 0) 
                t_id = &t; 
             thr_create 
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                 (stack_size, stack_pointer, 
                  entry_point_function, arg, flags, 
t_id); 
        } 
 
        // ... Other methods omitted. 
    }; 

The Thread_Manager class also provides methods for joining and 
canceling threads that can be ported to other operating systems. 
 

 

6. Consider allowing applications controlled access to implementation details. One 
benefit of defining a wrapper facade is to make it hard to write incorrect or non-
portable applications. For example, wrapper facades can shield applications from 
error-prone or platform-specific implementation details, such as whether a socket is 
represented as a pointer or an integer. Cases may arise, however, where the extra 
abstraction and type safety actually prevent programmers from using a wrapper 
facade in useful ways not anticipated by its designer. This experience can be 
frustrating and may discourage programmers from leveraging other benefits of 
wrapper facades. 

A common solution to the problem of 'too much' abstraction is to provide an 'escape 
hatch' mechanism or open implementation technique, such as AOP [KLM+97]. This 
design allows applications to access implementation details in a controlled manner. 

 

The SOCK_Stream class defines a pair of methods that set and get the 
underlying SOCKET handle: 
    class SOCK_Stream { 
    public: 
        // Set/get the underlying SOCKET handle. 
        void set_handle (SOCKET h) { handle_ = h; } 
        SOCKET get_handle () const { return handle_; } 

These methods can be used to set and get certain Socket options, such as 
support for 'out-of-band' data [Ste98], that were not defined by the original Socket 
wrapper facades. 
 

 

Escape-hatch mechanisms should be used sparingly of course, because they 
decrease portability and increase the potential for errors, thereby nullifying key 
benefits of the Wrapper Facade pattern. If applications use certain escape hatches 
repeatedly in similar situations, it may indicate that explicit methods should be added 
to the public interface of the wrapper facade. The Extension Interface pattern (141) 
defines techniques for adding these new methods without disrupting existing clients. 

7. Develop an error-handling mechanism. Low-level C operating system function APIs 
often use return values and integer codes, such as errno, to return errors to their 
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calling code. This technique can be error-prone, however, if callers do not check the 
return status of their function calls. 

A more elegant way of reporting errors is to use exception handling. Many 
programming languages, such as C++ and Java, support exception handling as a 
fundamental error-reporting mechanism. It is also used in some operating systems, 
for example Win32 [Sol98]. There are several benefits of using exception handling as 
the error-handling mechanism for wrapper facade classes: 
§ It is extensible, for example by defining hierarchies of exception classes in C++ 

and Java. 
§ It cleanly decouples error handling from normal processing. Error handling 

information is neither passed to an operation explicitly, nor can an application 
accidentally ignore an exception by failing to check function return values. 

§ It can be type-safe. In languages like C++ and Java, exceptions can be thrown 
and caught in a strongly-typed manner. 
 

We can define the following exception class to keep track of which operating 
system error or condition has occurred: 
    class System_Ex : public exception { 
    public: 
        // Map <os_status> into a platform-independent error 
        // or condition status and store it into <error_>. 
        System_Ex (int os_status) { /* ... */ } 
 
        // Platform-independent error or condition status. 
        int status () const { return status_; } 
        // ... 
    private: 
        // Store platform-independent error/condition 
status. 
        int status_; 
    }; 

Platform-independent errors and conditions could be defined via macros or 
constants that map onto unique values across all operating systems. For 
instance, the Solaris implementation of the Thread_Mutex::acquire() 
method shown on page 57 could be written as follows: 
    void Thread_Mutex::acquire () { 
        int result = mutex_lock (&mutex); 
        if (result != 0) { throw System_Ex (result); } 
    } 
 

 

Unfortunately, there are several drawbacks to the use of exception handling for 
wrapper facade classes: 
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§ Not all languages or implementations provide exception handling. For 
example, C does not define an exception model and some C++ compilers do not 
implement exceptions. 

§ Languages implement exceptions in different ways. It can thus be hard to 
integrate components written in different languages when they throw exceptions. 
Using proprietary exception handling mechanisms, such as Windows NT's 
structured exception handling [Sol98], can also reduce the portability of 
applications that use these mechanisms. 

§ Resource management can be complicated if there are multiple exit paths from 
a block of C++ or Java code [Mue96]. If garbage collection is not supported by 
the language or programming environment, care must be taken to ensure that 
dynamically-allocated objects are deleted when an exception is thrown. 

§ Poor exception handling implementations incur time or space over-heads even 
when exceptions are not thrown [Mue96]. This overhead is problematic for 
embedded systems that must be efficient and have small memory footprints 
[GS98]. 

The drawbacks of exception handling are particularly problematic for wrapper facades 
that encapsulate kernel-level device drivers or low-level operating system APIs that 
must run on many platforms [Sch92], such as the mutex, Socket and thread wrapper 
facades described above. A common error handling mechanism for system-level 
wrapper facades [Sch97] is based on the Thread-Specific Storage pattern (475) in 
conjunction with errno. This solution is efficient, portable, and thread-safe, though 
more obtrusive and potentially error-prone than using C++ exceptions. 

8. Define related helper classes (optional). After lower-level APIs are encapsulated within 
wrapper facade classes it often becomes possible to create other helper classes that 
further simplify application development. The benefits of these helper classes are 
often apparent only after the Wrapper Facade pattern has been applied to cluster 
lower-level functions and their associated data into classes. 

 

9. In our logging example we can leverage the Guard template class defined in the 
Strategized Locking pattern (333) [Str97]. This class ensures that a 
Thread_Mutex is acquired and released properly within a scope regardless of 
how the method's flow of control leaves the scope. The Guard class constructor 
acquires the mutex and the destructor releases it within a scope automatically: 

10.     { 
11.          // Constructor of <guard> automatically 
12.          // acquires the <mutex> lock. 
13.          Guard<Thread_Mutex> guard (mutex); 
14.          // ... operations that must be serialized. 
15.  
16.          // Destructor of <guard> automatically 
17.          // releases the <mutex> lock. 
18.     } 

19. We can easily substitute a different type of locking mechanism while still using 
the Guard's automatic locking and unlocking protocol because we used a class 
as the Thread_Mutex wrapper facade. For example, we can replace the 
Thread_Mutex class with a Process_Mutex class: 

20.     // Acquire a process-wide mutex. 
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21.     Guard<Process_Mutex> guard (mutex); 

22. It is much harder to achieve this degree of 'pluggability' using lower-level C 
functions and data structures instead of C++ classes. The main problem is that 
the functions and data lack language support for cohesion, whereas the C++ 
classes provide this support naturally. 
 

 

Example Resolved 

The code below illustrates the logging_handler() function of our logging server after it 
has been rewritten to use the wrapper facades for mutexes, Sockets, and threads described 
in the Implementation section. To ease comparison with the original code, we present it in a 
two-column table with the original code from the example section in the left-hand column and 
the new code in the right-hand column  

#if defined (_WIN32) 
   #include <windows.h> 
   typedef int ssize_t; 
#else 
   typedef unsigned int UINT32; 
   #include <thread.h> 
   #include <unistd.h> 
   #include <sys/socket.h> 
   #include <netinet/in.h> 
   #include <memory.h> 
#endif /* _WIN32 */ 
 
// Keep track of number of logging 
requests. 
static int request_count; 
 
// Lock to protect request_count. 
#if defined (_WIN32) 
   static CRITICAL_SECTION lock; 
#else 
   static mutex_t lock; 
#endif /* _WIN32 */ 
 
// Maximum size of a logging 
record. 
static const int LOG_RECORD_MAX = 
1024; 
 

#include "ThreadManager.h" 
#include "ThreadMutex.h" 
#include "Guard.h" 
#include "INET_Addr.h" 
#include "SOCKET.h" 
#include "SOCK_Acceptor.h" 
#include "SOCK_Stream.h" 
 
 
 
 
 
// Keep track of number of logging 
requests. 
static int request_count; 
 
 
 
 
 
 
 
// Maximum size of a logging 
record. 
static const int LOG_RECORD_MAX = 
1024; 
 
// Port number to listen on for 
requests. 
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// Port number to listen on for 
requests. 
static const int LOGGING_PORT = 
10000; 
 
// Entry point that writes logging 
records. 
int write_record (const char 
log_record[], size_t len) { 
   /* ... */ return 0; 
} 
 
// Entry point that processes 
logging records for 
// one client connection. 
#if defined (_WIN32) 
   u_long 
#else 
   void * 
#endif /* _WIN32 */ 
logging_handler (void *arg) { 
#if defined (_WIN32) 
   SOCKET h = reinterpret_cast 
<SOCKET> (arg); 
#else 
   int h = reinterpret_cast <int> 
(arg); 
#endif /* _WIN32 */ 
 
   for (;;) { 
       // Ensure a 32-bit 
quantify; 
#if defined (_WIN32) 
      ULONG len; 
#else 
      UINT32 len; 
#endif /* _WIN32 */ 
              char 
log_record[LOG_RECORD_MAX]; 
 
       // The first <recv> reads 
the length 

static const int LOGGING_PORT = 
10000; 
 
// Entry point that writes logging 
records. 
int write_record (const char 
log_record[], size_t len) { 
   /* ... */ return 0; 
} 
 
// Entry point that processes 
logging records for 
// one client connection. 
 
 
 
 
 
void *logging_handler (void *arg) 
{ 
 
   SOCKET h = reinterpret_cast 
<SOCKET> (arg); 
 
   // Create a <SOCK_Stream> 
object. 
   SOCK_Stream stream (h); 
   for (;;) { 
      // Ensure a 32-bit quantity. 
      UINT_32 len; 
 
 
 
 
 
      char 
log_record[LOG_RECORD_MAX]; 
 
      // The first <recv_n> reads 
the length 
      // (stored as a 32-bit 
integer) of 
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       // (stored as a 32-bit 
integer) of 
       // adjacent logging record. 
       ssize_t n = recv (h, &len, 
sizeof len, 0); 
 
       if (n <= sizeof len) break; 
// Bailout on error. 
       len = ntohl (len); 
       if (len > LOG_RECORD_MAX) 
break; 
       // Loop to <recv> the data. 
       for (size_t nread = 0; 
nread < len; nread += n) { 
          n = recv (h, log_record 
+ nread, 
                 len - nread, 0); 
          if (n <= 0) return 0; 
       } 
#if defined (_WIN32) 
       EnterCriticalSection 
(&lock); 
#else 
       mutex_lock (&lock); 
#endif /* _WIN32 */ 
       ++request_count; 
       // A -1 return value 
signifies failure. 
       if (write_record 
(log_record, len) == -1) 
          break; 
#if defined (_WIN32) 
       LeaveCriticalSection 
(&lock); 
#else 
       mutex_unlock (&lock); 
#endif /* _WIN32 */ 
   } 
#if defined (_WIN32) 
   closesocket (h); 
#else 
   close (h); 

      // adjacent logging record. 
      ssize_t n = stream.recv_n 
(&len, sizeof len); 
 
      if (n <= 0) break; // 
Bailout on error. 
      len = ntohl (len); 
      if (len > LOG_RECORD_MAX) 
break; 
      // Second <recv_n> reads the 
data. 
      n = stream.recv_n 
(log_record, len); 
 
      if (n <= 0) break; 
      { 
          // Constructor acquires 
the lock. 
          Guard<Thread_Mutex> mon 
(lock); 
 
 
          ++request_count; 
          // A -1 return value 
signifies failure. 
          if (write_record 
(log_record, len) == -1) 
             break; 
 
          // Destructor releases 
the lock. 
      } 
   } 
 
 
 
 
 
   return 0; 
   // Destructor of <stream> 
closes down <h>. 
} 
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#endif /* _WIN32 */ 
   return 0; 
} 

The code in the right-hand column addresses the problems with the code shown in the left-
hand column. For example, the destructors of SOCK_Stream and Guard will close the 
socket handle and release the Thread_Mutex, respectively, regardless of how the code 
blocks are exited. This code is also easier to understand, maintain, and port because it is 
more concise and uses no platform-specific APIs. 

Analogously to the logging_handler() function, we present a two-column table below 
that compares the original code for the main() function with the new code using wrapper 
facades: 

// Main driver function for the server. 
int main (int argc, char *argv[]) { 
   struct sockaddr_in sock_addr; 
   // Handle UNIX/Win32 portability. 
#if defined (_WIN32) 
   SOCKET acceptor; 
   WORD version_requested = MAKEWORD(2, 0); 
   WSADATA wsa_data; 
   int error = WSAStartup(version_requested, 
&wsa_data); 
   if (error != 0) return -1; 
#else 
   int acceptor; 
#endif /* _WIN32 */ 
   // Create a local endpoint of 
communication. 
   acceptor = socket (AF_INET, SOCK_STREAM, 
0); 
   // Set up the address to become a server. 
   memset (reinterpret_cast<void *> 
(&sock_addr), 
              0, sizeof sock_addr); 
   sock_addr.sin_family = PF_INET; 
   sock_addr.sin_port = htons 
(LOGGING_PORT); 
   sock_addr.sin_addr.s_addr = htonl 
(INADDR_ANY); 
   // Associate address with endpoint. 
   bind (acceptor, reinterpret_cast<struct 
sockaddr *> 
          (&sock_addr), sizeof sock_addr); 

// Main driver function 
for the server. 
int main (int argc, char 
*argv[]) { 
   INET_Addr addr (port); 
 
   // Passive-mode 
acceptor object. 
   SOCK_Acceptor server 
(addr); 
   SOCK_Stream 
new_stream; 
   // Main server event 
loop. 
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   // Make endpoint listen for connections. 
   listen (acceptor, 5); 
   // Main server event loop. 
   for (;;) { 
      // Handle UNIX/Win32 portability. 
#if defined (_WIN32) 
      SOCKET h; 
      DWORD t_id; 
#else 
      int h; 
      thread_t t_id; 
#endif /* _WIN32 */ 
      // Block waiting for clients to 
connect. 
      h = accept (acceptor, 0, 0); 
 
 
 
 
      // Spawn a new thread that runs the 
<server> 
      // entry point. 
#if defined (_WIN32) 
      CreateThread (0, 0, 
           
LPTHREAD_START_ROUTINE(&logging_handler), 
           reinterpret_cast <void *> (h), 0, 
&t_id); 
#else 
      thr_create 
          (0, 0, logging_handler, 
           reinterpret_cast <void *> (h), 
           THR_DETACHED, &t_id); 
#endif /* _WIN32 */ 
   } 
   return 0; 
} 

 
 
   for (;;) { 
 
 
 
 
 
 
 
 
 
 
      // Accept a 
connection from a client. 
      server.accept 
(new_stream); 
 
      // Get the 
underlying handle. 
      SOCKET h = 
new_stream.get_handle (); 
 
      // Spawn off a 
thread-per-connection. 
 
      thr_mgr.spawn 
          
(logging_handler 
           
reinterpret_cast <void *> 
(h), 
           THR_DETACHED); 
   } 
 
 
 
 
 
   return 0; 
} 
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Note how literally dozens of lines of low-level, conditionally compiled code disappear in the 
right-hand column version that uses the Wrapper Facade pattern. 

Known Uses 

Microsoft Foundation Classes (MFC). MFC [Pro99] provides a set of wrapper facades that 
encapsulate many lower-level C Win32 APIs. It focuses largely on providing GUI 
components that implement the Microsoft Document-View architecture, which is a variant of 
the Document-View architecture described in [POSA1]. 

ACE. The Socket, thread, and mutex wrapper facades described in the Implementation 
section are abstractions of ACE framework [Sch97] components, such as the ACE_SOCK*, 
ACE_Thread_Manager and ACE_ Thread_Mutex classes, respectively. 

Rogue Wave. Rogue Wave's Net.h++ and Threads.h++ class libraries implement 
wrapper facades for Sockets, threads, and synchronization mechanisms on a number of 
operating system platforms. 

ObjectSpace. The ObjectSpace System<Toolkit> also implements platform-independent 
wrapper facades for Sockets, threads, and synchronization mechanisms. 

Java Virtual Machine and Java class libraries. The Java Virtual Machine (JVM) and 
various Java class libraries, such as AWT and Swing [RBV99], provide a set of wrapper 
facades that encapsulate many low-level native operating system calls and GUI APIs. 

Siemens REFORM. The REFORM framework [BGHS98] for hot rolling mill process 
automation uses the Wrapper Facade pattern to shield the object-oriented parts of the 
system, such as material tracking and setpoint transmission, from a neural network for the 
actual process control. This neural network is programmed in C due to its algorithmic nature 
and contains mathematical models that characterize the physics of the automation process. 

The wrapper facades defined in the REFORM framework differ from wrapper facades for 
operating system mechanisms because the process-control APIs they encapsulate are at a 
higher level of abstraction. In fact the neural network is part of the REFORM system itself. 
However, its function-based C APIs are lower-level compared to the complex object-oriented 
high-level structure and logic of the hot rolling mill framework. The REFORM wrapper 
facades therefore have similar goals and properties as the lower-level operating system 
wrapper facades: 
§ They provide the views and abstractions that the object-oriented parts of the 

framework need of the process control neural network. There is a separate wrapper 
facade for every component using the neural network. 

§ They hide API variations. For different customer-specific instances of the framework 
there may be (slightly) different implementations of the neural network. As a result, 
semantically identical functions in these neural network implementations may have 
different signatures. These differences do not affect the framework implementation, 
however. 

§ They ensure lower-level C functions are invoked in the right order. 

Books consisting of edited collections of papers. A real-life example of the Wrapper 
Facade pattern are books consisting of edited collections of papers that are organized into 
one or more 'themes'. For example, the PLoPD series [PLoPD1] [PLoPD2] [PLoPD3] 
[PLoPD4] consist of individual papers that are organized into cohesive sections, such as 
event handling, fault tolerance, application framework design, or concurrency. Thus, readers 
who are interested in a particular topic area or domain can focus their attention on these 
sections, rather than having to locate each paper individually. 
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Consequences 

The Wrapper Facade pattern provides the following benefits: 

Concise, cohesive and robust higher-level object-oriented programming interfaces. The 
Wrapper Facade pattern can be used to encapsulate lower-level APIs within a more concise 
and cohesive set of higher-level object-oriented classes. These abstractions reduce the 
tedium of developing applications, thereby decreasing the potential for certain types of 
programming error. In addition, the use of encapsulation eliminates programming errors that 
occur when using untyped data structures incorrectly, such as socket or file handles. 
Application code can therefore use wrapper facades to access lower-level APIs correctly and 
uniformly. 

Portability and maintainability. Wrapper facades can be implemented to shield application 
developers from non-portable aspects of lower-level APIs. The Wrapper Facade pattern also 
improves software structure by replacing an application configuration strategy based on 
physical design entities, such as files and #ifdefs, with logical design entities, such as 
base classes, subclasses, and their relationships. It is often much easier to understand, 
maintain, and enhance applications in terms of their logical design rather than their physical 
design [Lak95]. 

Modularity, reusability and configurability. The Wrapper Facade pattern creates cohesive 
and reusable class components that can be 'plugged' into other components in a wholesale 
fashion, using object-oriented language features like inheritance and parameterized types. In 
contrast, it is harder to replace groups of functions without resorting to coarse-grained 
operating system tools such as linkers or file systems. 

The Wrapper Facade pattern incurs several liabilities: 

Loss of functionality. Whenever an abstraction is layered on top of an existing abstraction it 
is possible to lose functionality. In particular, situations can occur in which the new 
abstraction prevents developers from accessing certain capabilities of the underlying 
abstraction. It is hard to define a suitable high-level abstraction that covers all these use 
cases without becoming bloated. One useful heuristic to follow is to design wrapper facades 
so that they are easy to use correctly, hard to use incorrectly, but not impossible to use in 
ways that the original designers did not anticipate. An 'escape-hatch' mechanism or open 
implementation [KLM+97] technique can often help reconcile these design forces cleanly. 

Performance degradation. The Wrapper Facade pattern can degrade performance. For 
example, if wrapper facade classes are implemented with the Bridge pattern [GoF95], or if 
they make several forwarding function calls per method, the additional indirection may be 
more costly than programming to the lower-level APIs directly. However, languages that 
support inlining, such as C++ or certain C compilers, can implement the Wrapper Facade 
pattern with no significant overhead, because compilers can inline the method calls used to 
implement the wrapper facades. The overhead is therefore the same as calling lower-level 
functions directly. 

Programming language and compiler limitations. Defining C++ wrapper facades for well-
designed C APIs is relatively straightforward, because the C++ language and C++ compilers 
define features that facilitate cross-language integration. It may be hard to define wrapper 
facades for other languages, however, due to a lack of language support or limitations with 
compilers. For example, there is no universally accepted standard for integrating C functions 
into languages like Ada, Smalltalk, and Java. Programmers may therefore need to use to 
non-portable mechanisms to develop wrapper facades. 

See Also 
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The Wrapper Facade pattern is related to several of the structural patterns in [GoF95], 
including Facade, Bridge, Adapter, and Decorator. 

Facade. The intent of Facade is to provide a unified interface that simplifies client access to 
subsystem interfaces. The intent of Wrapper Facade is more specific: it provides concise, 
robust, portable, maintainable, and cohesive class interfaces that encapsulate lower-level 
APIs such as operating system mutex, Socket, thread, and GUI C APIs. In general, facades 
hide complex class relationships behind a simpler API, whereas wrapper facades hide 
complex function and data structure API relationships behind richer object-oriented classes. 
Wrapper facades also provide building-block components that can be 'plugged' into higher-
level objects or components. 

Bridge. The intent of Bridge is to decouple an abstraction from its implementation, so the two 
can vary independently and dynamically via polymorphism. Wrapper Facade has a similar 
intent: minimizing the overhead of indirection and polymorphism. Wrapper Facade 
implementations rarely vary dynamically, however, due to the nature of the systems 
programming mechanisms that they encapsulate. 

Adapter. The intent of Adapter is to convert the interface of a class into another interface that 
is expected by a client. A common application of Wrapper Facade is to create a set of 
classes that 'adapt' low-level operating system APIs to create a portable set of wrapper 
facades that appear the same for all applications. Although the structure of this solution is 
not identical to either the object or class form of Adapter in [GoF95], the wrapper facades 
play a similar role as an adapter by exporting an object-oriented interface that is common 
across platforms. 

Decorator. The intent of Decorator is to extend an object dynamically by attaching 
responsibilities transparently. In contrast, Wrapper Facade statically encapsulates lower-
level functions and data with object-oriented class interfaces.  

In general, Wrapper Facade should be applied in lieu of these other patterns when there are 
existing lower-level, non-object-oriented APIs to encapsulate, and when it is more important 
that the solution be efficient than be dynamically extensible. 

The Layers pattern [POSA1] helps organize multiple wrapper facades into a separate 
component layer. This layer resides directly on top of the operating system and shields 
applications from all the low-level APIs they use. 

Credits 

Thanks to Brad Appleton, Luciano Gerber, Ralph Johnson, Bob Hanmer, Roger Whitney, 
and Joe Yoder for extensive comments that improved the form and content of the Wrapper 
Facade pattern description substantially. 

During the public review of Wrapper Facade we debated the best name for this pattern. 
Several reviewers suggested to call it Wrapper because the Wrapper Facade pattern 
describes what is often referred to as a 'wrapper' by software developers. Unfortunately the 
term 'wrapper' is already overloaded in the patterns community. For example, Wrapper is 
listed in the Also Known As sections of the Adapter and Decorator patterns [GoF95], 
However, the pattern in this book differs from these patterns. We therefore decided to use a 
non-overloaded name for the pattern we present here. 

[1]To conserve space and focus on the essential design issues, many of our method 
implementations in this book do not check for errors, nor do they always return values from 
functions with non-void return types or throw exceptions. Naturally, production software 
should always check for and propagate errors consistently and correctly. 
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Component Configurator 
The Component Configurator design pattern allows an application to link and unlink its 
component implementations at run-time without having to modify, recompile, or statically 
relink the application. Component Configurator further supports the reconfiguration of 
components into different application processes without having to shut down and re-start 
running processes. 

Also Known As 

Service Configurator [JS97b] 

Example 

A distributed time service [Mil88] [OMG97c] provides accurate clock synchronization for 
computers that collaborate in local-area or wide-area networks. Its architecture contains 
three types of components: 
§ Time server components answer queries about the current time. 
§ Clerk components query one or more time servers to sample their notion of the current 

time, calculate the 'approximate' correct time, and update their own local system time 
accordingly. 

§ Client application components use the globally-consistent time information maintained 
by their clerks to synchronize their behavior with clients on other hosts. 

The conventional way to implement this distributed time service is to configure the 
functionality of the time server, clerk, and client components statically at compile-time into 
separate processes running on hosts in the network: 

 

In such a configuration, one or more hosts run processes containing time service 
components that handle requests for time updates. A clerk component runs in a process on 
each host on which applications require global time synchronization. Client components in 
application processes perform computations using the synchronized time reported by their 
local clerk component. 

Although a distributed time service design can be implemented in this way, two general 
types of problems arise: 
§ The choice of component implementation can depend on the environment in which 

applications run. For example, if a WWV receiver is available,[2] the Cristian time service 
algorithm [Cris89] is most appropriate. Otherwise the Berkeley algorithm [GZ89] is the 
better choice. 

Changing the environment in which applications run may therefore also require a 
change to the implementation of time service components. A design in which the 
implementation of a particular component is fixed statically within a process at compile-
time, however, makes it hard to exchange this component's implementation. In addition, 
as each component is coupled statically with a process, existing applications must be 
modified, recompiled, and statically relinked when changes occur. 
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§ Components may also need to be reconfigured to enhance key quality-of-service 
(QoS) properties, such as latency and throughput. For example, we can reconfigure the 
clerk and the time server components in our distributed time service so they are 
collocated [WSV99] on the same host. In this case, communication overhead can be 
minimized by allowing the clerk to access the time server's notion of time via shared 
memory, rather than exchanging data through a pipe or 'loopback' Socket connection. 

However, if components are configured statically into processes, making the changes 
outlined above requires terminating, reconfiguring, and restarting running time service 
processes. These activities are not only inefficient, they are potentially infeasible for 
systems with high availability requirements.  

Unfortunately patterns such as Bridge and Strategy [GoF95] are not sufficient by 
themselves to solve these types of problems. For example, Bridge and Strategy are 
often used to alleviate unnecessary coupling between components. When these 
patterns are applied to our example application in isolation, however, all possible 
implementations of time service components must be configured at compile-time in 
order to support the selection of different strategies at run-time. This constraint may be 
excessively inflexible or costly for certain applications. 

For example, if a time service runs on a personal computing device with stringent 
memory and power limitations, components that are not currently in use should be 
unlinked to minimize resource consumption. This 'dynamic reconfiguration' aspect is not 
addressed directly by patterns such as Bridge and Strategy. 

Context 

An application or system in which components must be initiated, suspended, resumed, and 
terminated as flexibly and transparently as possible. 

Problem 

Applications that are composed of components must provide a mechanism to configure 
these components into one or more processes. The solution to this problem is influenced by 
three forces: 
§ Changes to component functionality or implementation details are common in many 

systems and applications. For example, better algorithms or architectures may be 
discovered as an application matures. It should be possible therefore to modify 
component implementations at any point during an application's development and 
deployment lifecycle. 

Modifications to one component should have minimal impact on the implementation of 
other components that use it. Similarly, it should be possible to initiate, suspend, 
resume, terminate, or exchange a component dynamically within an application at 
runtime. These activities should have minimal impact on other components that are 
configured into the application. 

§ Developers often may not know the most effective way to collocate or distribute 
multiple component components into processes and hosts at the time an application is 
developed. If developers commit prematurely to a particular configuration of 
components it may impede flexibility, reduce overall system performance and 
functionality, and unnecessarily increase resource utilization. 

In addition, initial component configuration decisions may prove to be sub-optimal over 
time. For example, platform upgrades or increased workloads may require the 
redistribution of certain components to other processes and hosts. In such cases, it may 
be helpful to make these component configuration decisions as late as possible in an 
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application's development or deployment cycle, without having to modify or shut down 
an application obtrusively. 

§ Performing common administrative tasks such as configuring, initializing, and 
controlling components should be straightforward and component-independent. These 
tasks can often be managed most effectively by a central administrator rather than 
being distributed throughout an application or system. They should be automated 
whenever possible, for example by using some type of scripting mechanism [MGG00]. 

Solution 

Decouple component interfaces from their implementations and make applications 
independent of the point(s) in time at which component implementations are configured into 
application processes. 

In detail: a component defines a uniform interface for configuring and controlling a particular 
type of application service or functionality that it provides. Concrete components implement 
this interface in an application-specific manner. Applications or administrators can use 
component interfaces to initiate, suspend, resume, and terminate their concrete components 
dynamically, as well as to obtain run-time information about each configured concrete 
component. Concrete components are packaged into a suitable unit of configuration, such 
as a dynamically linked library (DLL). This DLL can be dynamically linked and unlinked into 
and out of an application under the control of a component configurator, which uses a 
component repository to manage all concrete components configured into an application. 

Structure 

The Component Configurator pattern includes four participants: 

A component defines a uniform interface that can be used to configure and control the type 
of application service or functionality provided by a component implementation. Common 
control operations include initializing, suspending, resuming, and terminating a component. 

Concrete components implement the component control interface to provide a specific type 
of component. A concrete component also implements methods to provide application-
specific functionality, such as processing data exchanged with other connected peer 
components. Concrete components are packaged in a form that can be dynamically linked 
and unlinked into or out of an application at run-time, such as a DLL. 

 

 

Two types of concrete components are used in our distributed time service: time server 
and clerk. Each of these concrete components provides specific functionality to the 
distributed time service. The time server component receives and processes requests 
for time updates from clerks. The clerk component queries one or more time servers to 
determine the 'approximate' correct time and uses this value to update its own local 
system time. Two time server implementations are available in our example, one for the 
Cristian algorithm and one for the Berkeley algorithm. 
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A component repository manages all concrete components that are configured currently into 
an application. This repository allows system management applications or administrators to 
control the behavior of configured concrete components via a central administrative 
mechanism.  

A component configurator uses the component repository to coordinate the (re)configuration 
of concrete components. It implements a mechanism that interprets and executes a script 
specifying which of the available concrete components to (re)configure into the application 
via dynamic linking and unlinking from DLLs. 

 

The class diagram for the Component Configurator pattern is as follows: 

 

Dynamics 

The behavior of the Component Configurator pattern can be characterized by three phases: 
§ Component initialization. The component configurator dynamically links a component 

into an application and initializes it.[3] After a component has been initialized 
successfully the component configurator adds it to its component repository. This 
repository manages all configured components at run-time. 

§ Component processing. After being configured into an application, a component 
performs its processing tasks, such as exchanging messages with peer components 
and performing service requests. The component configurator can suspend and resume 
existing components temporarily, for example when (re)configuring other components. 

§ Component termination. The component configurator shuts down components after 
they are no longer needed, allowing them the opportunity to clean up their resources 
before terminating. When terminating a component, the component configurator 
removes it from the component repository and unlinks it from the application's address 
space. 
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The following state chart diagram illustrates how a component configurator controls the 
lifecycle of a single concrete component: 

 

This diagram illustrates the event-driven 'inversion of control' [Vlis98a] behavior of a 
component configurator. For example, in response to the occurrence of events like 
CONFIGURE and TERMINATE, the component configurator invokes the component's 
corresponding method, in this case init() and fini(), respectively. 

Implementation 

The participants in the Component Configurator pattern can be decomposed into two layers: 
§ Configuration management layer components. This layer performs general-purpose, 

application-independent strategies that install, initialize, control, and terminate 
components. 

§ Application layer components. This layer implements the concrete components that 
perform application-specific processing. 

The implementation activities in this section start at the 'bottom' with the configuration 
management layer and work upwards to components in the application layer. 

1. Define the component configuration and control interface. Components should support 
the following operations so that they can be configured and controlled by a 
component configurator: 
§ Component initialization. Initialize or re-initialize a component. 
§ Component finalization. Shut down a component and clean up its resources. 



 81

§ Component suspension. Suspend component execution temporarily. 
§ Component resumption. Resume execution of a suspended component. 
§ Component information. Report information describing the static or dynamic 

directives of a component. 

The interface used to configure and control a component can be based on either an 
inheritance or a message passing strategy: 
§ Inheritance-based interface. In this strategy, each component inherits from a 

common base class that contains pure virtual hook methods [Pree95] for each 
component configuration and control operation. 

 

§ The following abstract Component class is based on the ACE framework 
[SchSu94]: 

§    class Component : public Event_Handler { 
§    public: 
§        // Initialization and termination hooks. 
§        virtual void init (int argc, const char *argv[]) = 

0; 
§        virtual void fini () = 0; 
§  
§        // Scheduling hooks. 
§        virtual void suspend (); 
§        virtual void resume (); 
§  
§        // Status information hook. 
§        virtual void info (string &status) const = 0; 
§    }; 

§ The component execution mechanism for our time service example is based 
on a reactive event handling model within a single thread of control, as 
described by the Reactor pattern (179). By inheriting from the Reactor 
pattern's Event_Handler participant, a Component implementation can 
register itself with a reactor, which then demultiplexes and dispatches events 
to the component. 
 

 

§ Message-based interface. Another strategy for configuring and controlling 
components is to program them to respond to a set of messages, such as INIT, 
SUSPEND, RESUME, and FINI, sent to the component from the component 
configurator. Component developers must write code to process these 
messages, in this case to initialize, suspend, resume, and terminate a 
component, respectively. Using messages rather than inheritance makes it 
possible to implement the Component Configurator pattern in non-object-
oriented programming languages that lack inheritance, such as C or Ada 83. 

2. Implement a component repository. All concrete component implementations that are 
linked into an application via DLLs are managed by a component repository. A 
component configurator uses this repository to control a component when it is 



 82

configured into or out of an application. Each component's current status, such as 
whether it is active or suspended, can be maintained in the repository. 

A component repository can be a reusable container, for example a Java 
java.util.Hashtable [Sun00a] or a C++ standard template library map [Aus98]. 
Conversely it can be implemented as a container in accordance with the Manager 
pattern [Som97]. This container can be stored in main memory, a file system, or 
shared memory. Depending on where it resides, a component repository can be 
managed within the application or by a separate process. 

 

The interface of our Component_Repository class is also based on the ACE 
framework [SchSu94]: 
    class Component_Repository { 
    public: 
        // Initialize and close down the repository. 
        Component_Repository (); 
        ~Component_Repository (); 
 
        // Insert a new <Component> with <component_name>. 
        void insert (const string &component_name, 
                     Component *); 
 
        // Find <Component> associated with 
<component_name>. 
        Component *find (const string &component_name); 
 
        // Remove <Component> associated with 
        // <component_name>. 
        void remove (const string &component_name); 
 
        // Suspend/resume <Component> associated with 
        // <component_name>. 
        void suspend (const string &component_name); 
        void resume (const string &component_name); 
   private: 
        // ... 
   }; 
 

 

3. Implement the component (re)configuration mechanism. A component must be 
configured into an application's address space before it can be executed. The 
component configurator defines a mechanism to control the static and/or dynamic 
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(re)configuration of components into application processes. The implementation of a 
component configurator involves five sub-activities: 

1. Define the component configurator interface. The component configurator is 
often implemented as a singleton facade [GoF95]. This can mediate access to 
other Component Configurator pattern components, such as the component 
repository described in implementation activity 2 (84) and the mechanism for 
interpreting the component configuration directives described in 
implementation activity 3.3 (88). 

 

2. The following C++ interface, which is also based on ACE, is the singleton 
facade used for our distributed time server example: 

3.     class Component_Configurator { 
4.     public: 
5.         // Initialize the component configurator. 
6.         Component_Configurator (); 
7.  
8.         // Close down the component configurator and 

free up 
9.         // dynamically allocated resources. 
10.         ~Component_Configurator (); 
11.  
12.         // Process the directives specified in the 
13.         // <script_name>. 
14.         void process_directives (const string 

&script_name); 
15.  
16.         // Process a single directive specified as a 

string. 
17.         void process_directive 
18.              (const string &directive_string); 
19.  
20.         // Accessor to the <Component_Repository>. 
21.         Component_Repository *component_repository (); 
22.  
23.         // Singleton accessor. 
24.         static Component_Configurator *instance (); 
25.    private: 
26.         // ... 
27.    }; 

 
 

29. Define a language for specifying component configuration directives. These 
directives supply the component configurator with the information it needs to 
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locate and initialize a component's implementation at run-time, as well as to 
suspend, resume, re-initialize, and/or terminate a component after it has been 
initialized. Component configuration directives can be specified in various 
ways, such as via the command line, environment variables, a graphical user 
interface, or a configuration script. 

 

30. To simplify installation and administration, the component configurator in 
our distributed time server example uses a component scripting 
mechanism similar to the one provided by ACE [SchSu94]. A script file, 
which we call comp.conf, consolidates component configuration 
directives into a single location that can be managed centrally by 
applications, developers, or administrators. Every component to be 
(re)configured into an application is specified by a directive in the 
comp.conf script. 

31. The following comp.conf script illustrates how a time server can be 
configured dynamically into an application: 

32.     # Configure a Time Server. 
33.     dynamic Time_Server Component * 
34.         cristian.dll:make_Time_Server() 
35.                  "-p $TIME_SERVER_PORT"  

36. The directive in this comp.conf script contains a dynamic command, 
which instructs the interpreter to perform two actions: 
§ Dynamically link the cristian.dll DLL into the application's 

address space and 
§ Invoke the make_Time_Server() factory function automatically. This 

function allocates a new time server instance dynamically: 
§   // Keep C++ compiler from non-portably mangling 

name! 
§   extern "C"  
§   Component *make_Time_Server () { 
§        // <Time_Server> inherits from the 

<Component> 
§        // class. 
§        return new Time_Server; 
§   } 

The string parameter "-p $TIME_SERVER_PORT" at the end of the 
directive contains an environment variable that specifies the port number 
on which the time server component listens to receive connections from 
clerks. The component configurator converts this string into an 
'argc/argv'-style array and passes it to the init() hook method of the 
time server component. If the init() method initializes the component 
successfully, a pointer to the component is stored in the component 
repository under the name 'Time_Server'. This name identifies the 
newly-configured component so that it can be controlled dynamically by 
the component configurator on behalf of an application or an 
administrator. 
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The directives in a comp.conf script are processed by the component 
configurator's directive interpreter, as described in implementation activity 
3.3(88). Each directive begins with a command that instructs the 
interpreter how to configure, reconfigure, or control a component: 

Command  Description  

dynamic  Dynamically link and initialize a component 

static  Initialize a statically linked component 

remove  Remove a component from the component repository and 
unlink it 

suspend  Suspend a component temporarily without removing it 

resume  Resume a previously suspended component 

Directives can be written using a simple configuration scripting language 
defined by the following BNF grammar: 
    <directive>::= <dynamic> | <static> | <suspend> 
                           | <resume> | <remove> 
    <dynamic> ::= dynamic <comp-location> <parameters-
opt> 
    <static> ::= static <comp-name> <parameters-opt> 
    <suspend> ::= suspend <comp-name> 
    <resume> ::= resume <comp-name> 
    <remove> ::= remove <comp-name> 
    <comp-location> ::= <comp-name> <type> <function-
name> 
    <type> ::= Component '*' | NULL 
    <function-name> ::= STRING ':' STRING '(' ')' 
    <parameters-opt> ::= '"' STRING '"'| NULL 
    <comp-name> ::= STRING 
 

 

37. Implement a mechanism for parsing and processing component configuration 
directives. This mechanism is often implemented as a directive interpreter that 
decouples the configuration-related aspects of a component from its run-time 
aspects. A directive interpreter can be implemented using the Interpreter 
pattern [GoF95], or standard parser-generator tools, such as lex and yacc 
[SchSu94]. 

 

38. The Component_Configurator facade class defines two methods that 
allow applications to invoke a component configurator's directive 
interpreter. The process_directives() method can process a 
sequence of (re)configuration and control directives that are stored in a 
designated script file. This method allows multiple directives to be stored 
persistently and processed iteratively. Conversely, the 
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process_directive() method can process a single directive passed 
as a string parameter. This method allows directives to be created 
dynamically and/or processed interactively. 
 

 

40. A simple directive interpreter executes each component configuration directive 
in the order in which they are specified. In this case, application developers 
are responsible for ensuring this execution sequence satisfies any ordering 
dependencies among components being configured. A more complex 
interpreter and scripting language could of course be devised to allow the 
directive interpreter to handle ordering dependencies automatically, for 
example by using topological sorting. 

41. Implement the dynamic configuration mechanism. A component configurator 
uses this mechanism to link and unlink components into and out of an 
application process dynamically. Modern operating systems, such as System 
V Release 4 (SVR4) UNIX and Win32, support this feature via explicit dynamic 
linking mechanisms [WHO91]. 

SVR4 UNIX, for example, defines the dlopen(), dlsym(), and 
dlclose() API to link a designated DLL dynamically into an application 
process explicitly, extract a designated factory function from the DLL, and 
unlink the DLL, respectively. Microsoft's Win32 operating systems support the 
LoadLibrary(), GetProcAddr(), and CloseHandle() APIs to perform 
the same functionality. As the component configurator's directive interpreter 
parses and processes directives, it uses these APIs to link and unlink DLLs 
dynamically into the application's address space.  

 

Our Component_Configurator implementation uses the following 
explicit dynamic linking API, based on the wrapper facade (47) defined in 
ACE [Sch97]: 
    class DLL { 
        // This wrapper facade defines a portable 
interface to 
        // program various DLL operations. The <OS::*> 
        // methods are lower-level wrapper facades 
that 
        // encapsulate the variation among explicit 
dynamic 
        // linking APIs defined on different operating 
        // systems. 
    public: 
        // Opens and dynamically links the DLL 
<dll_name>. 
        DLL (const string &dll_name) { 
            handle_ = OS::dlopen (dll_name.c_str ()); 
        } 
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        // Unlinks the DLL opened in the constructor. 
        ~DLL () { OS::dlclose (handle_); } 
 
        // If <symbol_name> is in the symbol table of 
the DLL 
        // return a pointer to it, else return 0. 
        void *symbol (const string &symbol_name) { 
            return OS::dlsym (handle_, 
symbol_name.c_str (); 
        } 
    private: 
        // Handle to the dynamically linked DLL. 
        HANDLE handle_; 
    }; 
 

 

To illustrate how a component configurator can use this API, consider the 
directive used to configure a Time_Server component shown in 
implementation activity 3.2 (86). In this example the component configurator 
performs seven steps: 

1. It creates a DLL object and passes the 'cristian.dll' string to its 
constructor. 

2. The cristian.dll DLL is then linked into the application's address 
space dynamically via the OS::dlopen() method called in the DLL 
class constructor. 

3. The component configurator next passes the string 
'make_Time_Server()' to the symbol() method of the DLL object. 

4. This method uses the OS::dlsym() method to locate the 
make_Time_Server entry in the symbol table of the cristian.dll 
DLL and returns a pointer to this factory function. 

5. Assuming the first four steps succeed, the component configurator 
invokes the factory function, which returns a pointer to a Time_Server 
component. 

6. The component configurator then calls the init() method of this 
component, passing the string '-p $TIME_SERVER_PORT' as an 
'argc/argv'-style array. The init() method is a hook that the 
Time_Server component uses to initialize itself. 

7. Finally, the component configurator stores the initialized Time_Server 
component into its component repository. 

42. Implement the dynamic reconfiguration mechanism. This mechanism builds on 
the dynamic configuration mechanism described above to trigger dynamic 
reconfiguration of component implementations. Component reconfiguration 
should have minimal impact on the execution of other components in an 
application process. The following two aspects should therefore be addressed 
when implementing a dynamic reconfiguration mechanism: 

Define the reconfiguration triggering strategy. There are two strategies for 
triggering component reconfiguration, in-band and out-of-band: 
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§ An in-band strategy initiates reconfigurations synchronously by using 
an IPC mechanism, such as a Socket connection or a CORBA operation. 
The application and/or component configurator is responsible for checking 
for such a reconfiguration event at designated 'reconfiguration points'. 

§ An out-of-band strategy generates an asynchronous event, such as a 
UNIX SIGHUP signal, that can interrupt a running application process or 
thread to initiate reconfiguration. In either case, on receiving a 
reconfiguration event the component configurator will interpret a new set 
of component configuration directives. 

An in-band strategy for triggering reconfiguration is generally easier to 
implement, because there is less potential for race conditions. In-band 
triggering may, however, be less responsive, because reconfiguration can only 
occur at designated reconfiguration points. In contrast, out-of-band 
reconfiguration triggering is more responsive. However, it is harder to use out-
of-band reconfiguration to implement robust protocols for determining when 
configuration can occur.  

Define protocols for ensuring robust reconfiguration. Another important aspect 
to consider when implementing a reconfiguration mechanism is robustness. 
For example, if other components in an application are using a component that 
is being reconfigured, a component configurator may not be able to execute 
requests to remove or suspend this component immediately. Instead, certain 
components must be allowed to finish their computation before reconfiguration 
can be performed. 

If a new component is configured into an application, other components may 
want to be notified, so that they can interact with the new component. 
Similarly, when a suspended component is resumed, other components may 
want to be notified so that they can resume their computations. 

The Component Configurator pattern focuses on (re)configuration 
mechanisms, such as how to interpret a script containing component 
configuration directives to link and unlink components dynamically. It is 
therefore beyond the scope of Component Configurator to ensure robust 
dynamic component reconfiguration unilaterally. Supporting robust 
reconfiguration requires collaboration between a component configurator and 
component/configuration-specific protocols. These protocols determine when 
to trigger a reconfiguration and which components to link and interact with to 
configure particular application processes. 

One way to implement a robust reconfiguration mechanism is to apply the 
Observer pattern [GoF95]. Client components that want to access a particular 
component are observers. These observers register with the component 
configurator, which contains a notifier that plays the role of the Observer 
pattern's subject participant. 

When a component is scheduled for termination, the component configurator 
implements a two-phase protocol. The first phase notifies its registered client 
component 'observers' to finish their computations. In the second phase, the 
component configurator removes the component after all client components 
acknowledge this notification. When a new component is initialized, the 
component configurator re-notifies its registered client components to indicate 
that they can connect to the new component.  
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Similarly, client components can register with the component configurator and 
be notified when a particular component's execution is suspended and 
resumed. 

 

For example, the following changes could be made to the Component and 
Component_Configurator classes to support the Observer-based 
reconfiguration mechanism: 
    class Component : public Event_Handler { 
    public: 
         // Hook method called back when 
<observed_component> 
         // receives a configuration-related event. 
         virtual void handle_update 
                       (Component *observed_component, 
                        Configuration_Event_Type 
event); 
         // ... 
    }; 
 
    class Component_Configurator { 
    public: 
         // Type of configuration-related events. 
         enum Event_Type { INIT, SUSPEND, RESUME, FINI 
}; 
 
         // Register <notified_component> to receive 
         // notifications when <observed_component> is 
         // reconfigured or suspended/resumed. 
         void register_observer 
                  (Component *notified_component, 
                   Component *observed_component); 
         // ... 
    }; 
 

 

4. Implement the concrete components. Concrete component classes can be derived 
from a common base class such as the Component class specified in implementation 
activity 1 (82). They can also be implemented via a message-passing mechanism 
that allows them to receive and process component control messages. Components 
often implement other methods, such as establishing connections with remote peer 
components and processing service requests received from clients. Component 
implementations typically reside in DLLs, though they can also be linked statically 
with the application. 
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Implementing concrete components involves three sub-activities: 
0. Implement the concrete component concurrency model. An important aspect 

of implementing a concrete component involves selecting the component's 
concurrency strategy. For example, a component configured into an 
application by a component configurator can be executed using event 
demultiplexing patterns such as Reactor (179) or Proactor (215), or 
concurrency patterns, such as Active Object (369), Monitor Object (399), Half-
Sync/Half-Async (423), or Leader/Followers (447): 
§ Reactive/proactive execution. Using these strategies, one thread of 

control can be used to process all components reactively or proactively. 
Components implemented using the Reactor pattern are relatively 
straightforward to (re)configure and control, because race conditions are 
minimized or eliminated. However, reactive components may not scale as 
well as other strategies because they are single-threaded. 

Conversely, components using the Proactor pattern may be more efficient 
than reactive implementations on platforms that support asynchronous I/O 
efficiently. However, it may be more complicated to reconfigure and 
control proactive components, due to the subtleties of canceling 
asynchronous operations. See the Proactor pattern's liability discussion 
on page 258 for more details. 

§ Multi-threaded or multi-process concurrent execution. Using these 
strategies, the configured components execute in their own threads or 
processes after being initialized by a component configurator. For 
instance, components can run concurrently using the Active Object 
pattern (369), or execute within a pre-spawned pool of threads or 
processes in accordance with the Leader/Followers (447) or Half-
Sync/Half-Async (423) patterns. 

In general, executing components in one or more threads within the same 
process as the component configurator may be more efficient than 
running the components in separate processes. Conversely, configuring 
components into separate processes may be more robust and secure, 
because each component can be isolated from accidental corruption via 
operating system and hardware protection mechanisms [Sch94]. 

1. Implement a mechanism for inter-component communication. Some 
components run in complete isolation, whereas other components must 
communicate with one another. In the latter case, component developers must 
select a mechanism for inter-component communication.  

The choice of mechanism is often guided by whether the communicating 
components will be collocated or distributed: 
§ When components are collocated, the choice is typically between 

hard-coding pointer relationships between components, which is inflexible 
and can defeat the benefits of dynamic component configuration, versus 
accessing components 'by name' using a component repository. 

 

§ Applications in our time service example use a template to retrieve 
concrete components from a singleton 
Component_Configurator's Component_Repository in a type-
safe manner: 

§   template <class COMPONENT> 
§   class Concrete_Component { 
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§   public: 
§        // Return a pointer to the <COMPONENT> 

instance 
§        // in the singleton 

<Component_Configurator>'s 
§        // <Component_Repository> associated with 

<name>. 
§        static COMPONENT *instance (const string 

&name) ; 
§   }; 

§ The instance() method is implemented as follows: 
§   template <class COMPONENT> 
§   COMPONENT *Concrete_Component<COMPONENT>::instance 
§        (const string &name) { 
§        // Find the <Component> associated with 

<name>, 
§        // and downcast to ensure type-safety. 
§        Component *comp = Component_Configurator:: 
§            instance ()->component_repository ()-

>find(name) ; 
§        return dynamic_cast<COMPONENT *> (comp) ; 
§   } 

§ This template is used to retrieve components from the component 
repository: 

§   Time_Server *time_server = 
§       Concrete_Component<Time_Server>::instance 
§           ("Time_Server") ; 
§   // Invoke methods on the <time_server> 

component... 
 

 

§ When components are distributed, the typical choice is between low-
level IPC mechanisms, such as TCP/IP connections programmed using 
Sockets [Ste98] or TLI [Rago93], and higher-level mechanisms, such as 
CORBA [OMG98a]. One of the benefits of using CORBA is that the ORB 
can transparently optimize for the fastest IPC mechanism, by determining 
automatically whether the component is collocated or distributed 
[WSV99]. 

2. Implement a mechanism to re-establish component relationships. As outlined 
in implementation activity 4.2 (93), components can use other components, or 
even other objects in an application, to perform the services they offer. 
Replacing one component implementation with another at run-time therefore 
requires the component configurator to reconnect the new component 
automatically with components used by the removed component. 



 92

One strategy for implementing this mechanism is to checkpoint a component's 
references to its related components and store it in a Memento [GoF95]. This 
memento can be passed to the component configurator before shutting down 
the component. Similarly, the memento may contain additional state 
information passed from the old to the new component. After the new 
component is installed, the component configurator can pass the memento to 
the new component. This component then re-installs the connections and 
state information that were saved in the memento. 

 

Implementing a mechanism to save and re-establish component 
relationships would require three changes to our 
Component_Configurator and Component classes: 
§ Define a Memento hierarchy. For every concrete component type, 

define a memento that saves the references that the component type 
can maintain to other components. A reference can be denoted either 
by a component's name or by a pointer, as outlined in implementation 
activity 4.2 (93). All mementos derive from an abstract memento. This 
allows the Component_Configurator to handle arbitrary 
mementos using polymorphism. 

§ Implement a mechanism for maintaining mementos in the component 
configurator. During a component's reconfiguration, the memento 
containing references to other components is stored in the 
Component_Configurator. The corresponding infrastructure for 
handling this memento within the Component_Configurator can 
contain a reference to the memento, as well as the component type 
whose references the memento stores. 

§ Change the component interface and implementation. To pass a 
memento from a component to the Component_Configurator and 
vice versa, we must change the Component interface. For example, 
the memento can be passed to a Component as a parameter to its 
init() method, and back to the Component_Configurator via a 
parameter in the Component's fini() method. Within the init() 
and fini() method implementations of concrete components, the 
memento is then used to retrieve and save the component's 
relationships to other components and objects. 

In addition to component references, the memento could maintain other 
state information that is passed to the new component. For example, 
Clerk components could pass the frequency at which they poll time 
servers, so that new Clerk components can update their local system 
time at the same frequency. 
 

 

In the remainder of this section, we show how the implementation activity 4 
(92) and its sub-activities can be applied to guide the implementation of 
concrete component participants in our distributed time service example. 

 

There are two types of concrete components in a distributed time service: 
Time_Server and Clerk. The Time_Server component receives and 
processes requests for time updates from Clerks. Both Time_Server 
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and Clerk components are designed using the Acceptor-Connector 
pattern (285). As outlined in implementation activity 1 (82), the component 
execution mechanism for the Time_Server and Clerk is based on a 
reactive event-handling model within a single thread of control, in 
accordance with the Reactor pattern (179). 

The Time_Server inherits from the Component class: 
    class Time_Server : public Component { 
    public: 
        // Initialize and terminate a <Time_Server>. 
        virtual void init (int argc, const char 
*argv[]) ; 
        virtual void fini () ; 
 
        // Other methods (e.g., <info>, <suspend>, and 
        // <resume>) omitted. 
    private: 
        // The <Time_Server_Acceptor> that creates, 
accepts, 
        // and initializes <Time_Server_Handler>s. 
        Time_Server_Acceptor acceptor_; 
 
        // A C++ standard library <list> of 
        // <Time_Server_Handler>s. 
        list<Time_Server_Handler *> handler_list_; 
    }; 

By inheriting from Component, Time_Server objects can be linked and 
unlinked by the Component_Configurator dynamically. This design 
decouples the implementation of the Time_Server from the time or 
context when it is configured, allowing developers to switch readily 
between different Time_Server algorithms. 

Before storing the Time_Server component in its component repository, 
the application's component configurator singleton invokes the 
component's init() hook method. This allows the Time_Server 
component to initialize itself. 

Internally, the Time_Server contains a Time_Server_Acceptor that 
listens for connection requests to arrive from Clerks. It also contains a 
C++ standard template library [Aus98] list of Time_Server_Handlers 
that process time update requests. The Time_Server_Acceptor is 
created and registered with a reactor when the Time_Server's init() 
method is called. 

When a new connection request arrives from a Clerk, the acceptor 
creates a new Time_Server_Handler, which processes subsequent 
time update requests from the Clerk. When its init() method is 
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invoked by the Time_Server_Acceptor, each handler registers itself 
with the singleton reactor, which subsequently dispatches the handler's 
handle_event() method when time update requests arrive. 

When a component configurator terminates a Time_Server, it calls the 
Time_Server's fini() method. This method unregisters the 
Time_Server_Acceptor and all of its associated 
Time_Server_Handlers from the reactor and destroys them. 

We provide two Time_Server component implementations: 
§ The first component implements Cristian's algorithm [Cris89]. In this 

algorithm each Time_Server is a passive entity that responds to 
queries made by Clerks. In particular, a Time_Server does not 
query other machines actively to determine its own notion of time. 

§ The second component implements the Berkeley algorithm [GZ89]. In 
this algorithm, the Time_Server is an active component that polls 
every machine in the network periodically to determine its local time. 
Based on the responses it receives, the Time_Server computes an 
aggregate notion of the correct time. 

As with the Time_Server above, the Clerk inherits from the 
Component class: 
    class Clerk : public Component { 
    public: 
        // Initialize and terminate a <Clerk>. 
        virtual void init (int argc, const char 
*argv[]); 
        virtual void fini () ; 
 
        // <info>, <suspend>, and <resume> methods 
omitted. 
 
        // Hook method invoked by a <Reactor> when a 
timeout 
        // occurs periodically. This method contacts 
several 
        // <Time_Server>s to compute its local notion 
of time. 
        virtual void handle_event (HANDLE, Event_Type) 
; 
    private: 
        // The <Clerk_Connector> that connects and 
        // initializes <Clerk_Handler>s. 
        Clerk_Connector connector_; 
 
        // A C++ standard library <list> of 
<Clerk_Handler>s. 
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        list<Clerk_Handler *> handler_list_ ; 
    }; 

By inheriting from Component, the Clerk can be linked and unlinked 
dynamically by a component configurator. Similarly, a component 
configurator can configure, control and reconfigure the Clerk it manages 
by calling its init(), suspend(), resume(), and fini() hook 
methods. 

Our Clerk component establishes and maintains connections with 
Time_Servers and queries them to calculate the current time. The 
Clerk's init() method dynamically allocates Clerk_Handlers that 
send time update requests to Time_Servers connected via a 
Clerk_Connector. It also registers the Clerk with a reactor to receive 
timeout events periodically, such as every five minutes. 

When the timeout period elapses, the reactor notifies the Clerk's 
handle_event() hook method. This method instructs the Clerk's 
Clerk_Handlers to request the current time at the time servers to which 
they are connected. The Clerk receives and processes these server 
replies, then updates its local system time accordingly. When Clients 
ask the Clerk component for the current time, they receive a locally-
cached time value that has been synchronized with the global notion of 
time. The Clerk's fini() method shuts down and cleans up its 
connector and handlers.  

The two alternative implementations of the time services are provided 
within two DLLs. The cristian.dll contains a factory that creates 
components that run the Cristian algorithm. Likewise, the berkeley.dll 
contains a factory that creates components that run the Berkeley 
algorithm. 
 

 

Example Resolved 

In this section, we show how our example distributed time server implementation applies the 
Component Configurator pattern using a configuration mechanism based on explicit dynamic 
linking [SchSu94] and a comp.conf configuration script. The example is presented as 
follows: 
§ We first show how the configuration mechanism supports the dynamic configuration of 

Clerk and Time_Server components into application processes via scripting. 
§ We then show how these features allow Clerk components to change the algorithms 

used to compute local system time. In particular, after a new algorithm has been 
selected, a singleton Component_Configurator can reconfigure the Clerk 
component dynamically without affecting the execution of other types of components 
controlled by the component configurator. 

There are two general strategies for configuring a distributed time component application: 
collocated and distributed. We outline each strategy to illustrate how a component 
configurator-enabled application can be dynamically (re)configured and run. 
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Collocated configuration. This configuration uses a comp.conf script to collocate the 
Time_Server and the Clerk within the same process.  

A generic main() program configures components dynamically using the 
process_directives() method of the Component_Configurator object and then 
runs the application's event loop. This event loop is based on the Reactor pattern (179): 
    int main (int argc, char *argv[]) { 
        Component_Configurator server; 
 
        // Interpret the comp.conf file specified in argv[1]. 
        server.process_directives (argv[1]); 
 
        // Reactor singleton perform component processing and 
        // any reconfiguration updates. 
        for (;;) 
            Reactor::instance ()->handle_events (); 
        /* NOTREACHED */ 
    } 

The process_directives() method configures components into the server process 
dynamically as it interprets the following comp.conf configuration script: 
    # Configure a Time Server. 
    dynamic Time_Server Component * 
        cristian.dll:make_Time_Server() 
            "-p $TIME_SERVER_PORT"  
 
    # Configure a Clerk. 
    dynamic Clerk Component * 
        cristian.dll:make_Clerk() 
            "-h tango.cs:$TIME_SERVER_PORT"  
            "-h perdita.wuerl:$TIME_SERVER_PORT"  
            "-h atomic-clock.lanl.gov:$TIME_SERVER_PORT"  
            "-P 10" # polling frequency 

The directives in comp.conf specify to the Component_Configurator how to configure 
a collocated Time_Server and Clerk dynamically in the same application process using 
the Cristian algorithm. The Component_Configurator links the cristian.dll DLL into 
the application's address space dynamically and invokes the appropriate factory function to 
create new component instances. In our example, these factory functions are called 
make_Time_Server() and make_Clerk(), which are defined as follows: 
    Component *make_Time_Server () { return new Time_Server; } 
    Component *make_Clerk () { return new Clerk; } 

After each factory function returns its new allocated component, the designated initialization 
parameters in the comp.conf script are passed to the respective init() hook methods. 
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These perform the corresponding component-specific initialization, as illustrated in 
implementation activity 4 (92). 

Distributed configuration. To reduce the memory footprint of an application, we may want to 
collocate the Time_Server and the Clerk in different processes. Due to the flexibility of 
the Component Configurator pattern, all that is required to distribute these components is to 
split the comp.conf script into two parts and run them in separate processes or hosts. One 
process contains the Time_ Server component and the other process contains the Clerk 
component. 

The figure below shows what the configuration looks like with the Time_Server and Clerk 
collocated in the same process, as well as the new configuration after the reconfiguration 
split. Note that the components themselves need not change, because the Component 
Configurator pattern decouples their processing behavior from the point in time when they 
are configured. 

 

Reconfiguring an application's components. Now consider what happens if we decide to 
change the algorithms that implement components in the distributed time service. For 
example, we may need to switch from Cristian's algorithm to the Berkeley algorithm to take 
advantage of new features in the environment. For example, if the machine on which the 
Time_Server resides has a WWV receiver, the Time_Server can act as a passive entity 
and the Cristian algorithm may be appropriate. Conversely, if the machine on which the 
Time_Server resides does not have a WWV receiver, an implementation of the Berkeley 
algorithm may be more appropriate. 

Ideally, we should be able to change Time_Server algorithm implementations without 
affecting the execution of other components of the distributed time service. Accomplishing 
this using the Component Configurator pattern simply requires minor modifications to our 
distributed time service configuration activities: 

1. Modify the existing comp.conf script. We start by making the following change to the 
comp.conf script: 

2.    # Shut down <Time_Server>. 
3.    remove Time_Server 

This directive instructs the Component_Configurator to shut down the 
Time_Server component, remove it from the Component_Repository, and unlink 
the cristian.dll if there are no more references to it. 

4. Notify the component configurator to reinterpret the comp.conf script. Next we must 
instruct the Component_Configurator to process the updated comp.conf script. 
This can be triggered either in-band, such as via a Socket connection or a CORBA 
operation, or out-of-band, such as via a UNIX SIGHUP signal. Regardless of which 
triggering strategy is used, after the Component_Configurator receives a 
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reconfiguration event, it consults its comp.conf script again and shuts down the 
Time_Server component by calling its fini() method. During this step the 
execution of other components should be unaffected. 

5. Initiate reconfiguration. We can now repeat steps 1 and 2 to reconfigure the Berkeley 
Time_Server component implementation into an application. The comp.conf script 
must be modified with a new directive to specify that the Berkeley Time_Server 
component be linked dynamically from the berkeley.dll DLL: 

6.   # Configure a Time Server. 
7.   dynamic Time_Server Component * 
8.       berkeley.dll:make_Time_Server() 
9.           "-p $TIME_SERVER_PORT"  

Finally, an event is generated to trigger the Component_Configurator in the 
process to reread its comp.conf script and add the updated Time_Server 
component to the Component_Repository. This component starts executing 
immediately after its init() method is invoked successfully. 

The ease with which new component implementations can be replaced dynamically 
exemplifies the flexibility and extensibility provided by the Component Configurator pattern. 
In particular, no other configured components in an application should be affected when the 
Component_Configurator removes or reconfigures the Time_Server component. 

Known Uses 

The Windows NT Service Control Manager (SCM). The SCM allows a master SCM process 
to initiate and control administrator-installed service components automatically using the 
message-based strategy described in the Implementation section. The master SCM process 
initiates and manages system service components by passing them various control 
messages, such as PAUSE, RESUME, and TERMINATE, that must be handled by each 
service component. SCM-based service components run as separate threads within either a 
single-service or a multi-service server process. Each installed service component is 
responsible for configuring itself and monitoring any communication endpoints, which can be 
more general than socket ports. For instance, the SCM can control named pipes and shared 
memory. 

Modern operating system device drivers. Most modern operating systems, such as Solaris, 
Linux, and Windows NT, provide support for dynamically-configured kernel-level device 
drivers. These drivers can be linked into and unlinked out of the system dynamically via 
hooks, such as the init(), fini(), and info() functions defined in SVR4 UNIX 
[Rago93]. These operating systems apply the Component Configurator pattern to allow 
administrators to reconfigure the operating system kernel without having to shut it down, 
recompile, and statically relink new drivers and restart it. 

Java applets. The applet mechanism in Java supports dynamic downloading, initializing, 
starting, stopping, and terminating of Java applets. Web browsers implement the 
infrastructure software to actually download applets and prepare them for execution. The 
class java.applet.Applet provides empty methods init(), start(), stop(), and 
destroy(), to be overridden in application-specific subclasses. Java therefore uses the 
inheritance-based strategy described in the Implementation section. The four life-cycle hook 
methods mentioned above are called by the browser at the correct time. They give the 
applet a chance to provide custom behavior that will be called at appropriate times. 
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For example, the init() hook will be called by the browser once the applet is loaded. The 
start() hook will be called once set-up is complete and the applet should start its 
application logic. The stop() hook will be called when the user leaves the Web site. Note 
that start() and stop() can be called repeatedly, for example when the user visits and 
leaves a Web site multiple times. The destroy() hook is called once the applet is 
reclaimed and should free all resources. Finer-grained life-cycle behavior inside an applet 
can be achieved by creating multiple threads inside the applet and having them scheduled 
as in ordinary Java applications. Additional examples of how the Component Configurator 
pattern is used for Java applets are presented in [JS97b]. 

The dynamicTAO reflective ORB [KRL+00] implements a collection of component 
configurators that allow the transfer of components across a distributed system, loading and 
unloading modules into the ORB run-time system, and inspecting and modifying the ORB 
configuration state. Each component configurator is responsible for handling the 
(re)configuration of a particular aspect of dynamicTAO. For example, its TAOConfigurator 
component configurator contains hooks to which implementations of concurrency and 
scheduling strategies, as well as security and monitoring interceptors (109), can be attached. 
In addition, a DomainConfigurator provides common services for loading and unloading 
components into dynamicTAO. It is the base class from which all other component 
configurators derive, such as TAOConfigurator. 

ACE [Sch97]. The ADAPTIVE Communication Environment (ACE) framework provides a set 
of C++ mechanisms for configuring and controlling components dynamically using the 
inheritance-based strategy described in the Implementation section. The ACE Service 
Configurator framework [SchSu94] extends the mechanisms provided by Inetd, Listen, 
and SCM to support automatic dynamic linking and unlinking of communication service 
components. 

The Service Configurator framework provided by ACE was influenced by the mechanisms 
and patterns used to configure and control device drivers in modern operating systems. 
Rather than targeting kernel-level device drivers, however, ACE focuses on dynamic 
configuration and control of application-level components. These ACE components are often 
used in conjunction with the Reactor (179), Acceptor-Connector (285), and Active Object 
(369) patterns to implement communication services. 

In football, which Americans call soccer, each team's coach can substitute a limited number 
of players during a match. The coach is the component configurator who decides which 
players to substitute, and the players embody the role of components. All players obey the 
same protocol with respect to substitution, which occurs dynamically, that is, the game does 
not stop during the substitutions. When players see a sign waved with their numbers, they 
leave the field and new players join the game immediately. The coach's list of the current 11 
players corresponds to the Component Repository. Just as the reconfiguration script is not 
always written by the coach: some home crowds are renowned for asking and shouting for 
specific players to be put into the game—and for firing the coach. 

Consequences 

The Component Configurator pattern offers the following benefits: 

Uniformity. The Component Configurator pattern imposes a uniform configuration and 
control interface for managing components. This uniformity allows components to be treated 
as building blocks that can be integrated as components into a larger application. Enforcing 
a common interface across all components makes them 'look and feel' the same with 
respect to their configuration activities, which simplifies application development by 
promoting the 'principle of least surprise'. 
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Centralized administration. The Component Configurator pattern groups one or more 
components into a single administrative unit. This consolidation simplifies development by 
enabling common component initialization and termination activities, such as 
opening/closing files and acquiring/releasing locks, to be performed automatically. In 
addition, the pattern centralizes the administration of components by ensuring that each 
component supports the same configuration management operations, such as init(), 
suspend(), resume(), and fini(). 

Modularity, testability, and reusability. The Component Configurator pattern improves 
application modularity and reusability by decoupling the implementation of components from 
the manner in which the components are configured into processes. Because all 
components have a uniform configuration and control interface, monolithic applications can 
be decomposed more easily into reusable components that can be developed and tested 
independently. This separation of concerns encourages greater reuse and simplifies 
development of subsequent components. 

Configuration dynamism and control. The Component Configurator pattern enables a 
component to be dynamically reconfigured without modifying, recompiling, or statically 
relinking existing code. In addition, (re)configuration of a component can often be performed 
without restarting the component or other active components with which it is collocated. 
These features help create an infrastructure for application-defined component configuration 
frameworks. 

Tuning and optimization. The Component Configurator pattern increases the range of 
component configuration alternatives available to developers by decoupling component 
functionality from component execution mechanisms. For instance, developers can tune 
server concurrency strategies adaptively to match client demands and available operating 
system processing resources. Common execution alternatives include spawning a thread or 
process upon the arrival of a client request or pre-spawning a thread or process at 
component creation time. 

The Component Configurator pattern has several liabilities: 

Lack of determinism and ordering dependencies. The Component Configurator pattern 
makes it hard to determine or analyze the behavior of an application until its components are 
configured at runtime. This can be problematic for certain types of system, particularly real-
time systems, because a dynamically-configured component may not behave predictably 
when run with certain other components. For example, a newly configured component may 
consume excessive CPU cycles, thereby starving other components of processing time and 
causing them to miss deadlines. 

Reduced security or reliability. An application that uses the Component Configurator pattern 
may be less secure or reliable than an equivalent statically-configured application. It may be 
less secure because impostors can masquerade as components in DLLs. It may be less 
reliable because a particular component configuration may adversely affect component 
execution. A faulty component may crash, for example, corrupting state information it shares 
with other components configured into the same process. 

Increased run-time overhead and infrastructure complexity. The Component Configurator 
pattern adds levels of abstraction and indirection when executing components. For example, 
the component configurator first initializes components and then links them into the 
component repository, which may incur excessive overhead in time-critical applications. In 
addition, when dynamic linking is used to implement components many compilers add extra 
levels of indirection to invoke methods and access global variables [GLDW87]. 
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Overly narrow common interfaces. The initialization or termination of a component may be 
too complicated or too tightly coupled with its context to be performed in a uniform manner 
via common component control interfaces, such as init() and fini(). 

See Also 

The intent of the Component Configurator pattern is similar to the Configuration pattern 
[CMP95]. The Configuration pattern decouples structural issues related to configuring 
protocols and services in distributed applications from the execution of the protocols and 
services themselves. The Configuration pattern has been used in frameworks that support 
the construction of distributed systems out of building-block components. 

In a similar way, the Component Configurator pattern decouples component initialization 
from component processing. The primary difference is that the Configuration pattern focuses 
on the active composition of chains of related protocols and services. In contrast, the 
Component Configurator pattern focuses on the dynamic initialization of components that 
process requests exchanged between transport endpoints. 

Credit 

Thanks to Giorgio Angiolini, who provided us with feedback on an earlier version of this 
pattern. In addition, thanks to Prashant Jain, who was the co-author of the original version of 
the Service Configurator pattern, which formed the basis for the Component Configurator 
pattern described here. Fabio Kon contributed the description of the dynamicTAO known 
use. 

[2]A WWV receiver intercepts the short pulses broadcast by the US National Institute of 
Standard Time (NIST) to provide Universal Coordinated Time (UTC) to the public. 

[3]The Implementation section describes how parameters can be passed into the component, 
as well as different options for activating the component. 

Interceptor 
The Interceptor architectural pattern allows services to be added transparently to a 
framework and triggered automatically when certain events occur. 

Example 

MiddleSoft Inc. is developing an object request broker (ORB) middleware framework called 
MiddleORB, which is an implementation of the Broker pattern [POSA1]. MiddleORB provides 
communication services that simplify the development of distributed applications. In addition 
to core communication services, such as connection management and transport protocols, 
applications using MiddleORB may require other services, such as transactions and security, 
load balancing and fault tolerance, auditing, and logging, non-standard communication 
mechanisms like shared memory, and monitoring and debugging tools. 
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To satisfy a wide-range of application demands, the MiddleORB architecture must support 
the integration of these extended services. One strategy for coping [Cope98] with this 
requirement is to integrate as many services as possible into the default MiddleORB 
configuration. This strategy is often infeasible, however, because not all ORB services can 
be anticipated at its development time. As distributed applications evolved, the ORB 
framework would inevitably expand to include new features. Such piecemeal growth can 
complicate ORB design and maintenance, as well as increase its memory footprint, even 
though many of these features are not used by all applications all the time. 

An alternative strategy is to keep the MiddleORB framework as simple and concise as 
possible. In this model, if application developers require services not available in the 
framework, they would implement them along with their own client and server code. 
However, this strategy would require developers to implement much code that was unrelated 
to their application logic. 

In addition, certain services cannot be implemented solely at the application client and object 
level, because they must interact intimately with core ORB features. For example, a security 
service should be integrated with the ORB infrastructure. Otherwise, applications can 
masquerade as privileged users and gain unauthorized access to protected system 
resources. 

Clearly, neither strategy outlined above is entirely satisfactory. With the first strategy 
MiddleORB will be too large and inflexible, whereas with the second, applications will 
become overly complex and potentially insecure or error-prone. We must therefore devise a 
better strategy for integrating application-specific services into MiddleORB. 

Context 

Developing frameworks that can be extended transparently. 

Problem 

Frameworks, such as ORBs, application servers, and domain-specific software architectures 
[SG96], cannot anticipate all the services they must offer to users. It may also not be feasible 
to extend certain types of frameworks, particularly black-box frameworks [HJE95], with new 
services that they were not originally designed to support. Similarly, it is often undesirable to 
rely upon applications to implement all the necessary services themselves, because this 
defeats many benefits of reuse. Framework developers must therefore address the following 
three forces: 
§ A framework should allow integration of additional services without requiring 

modifications to its core architecture. 
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§ For example, it should be possible to extend MiddleORB to support security services, 
such as Kerberos or SSL [OSSL00], without modifying the structure of its internal 
design [OMG98d]. 
 

 

§ The integration of application-specific services into a framework should not affect 
existing framework components, nor should it require changes to the design or 
implementation of existing applications that use the framework. 

 

§ For instance, adding load balancing to MiddleORB should be unobtrusive to existing 
MiddleORB client and server applications. 
 

 

§ Applications using a framework may need to monitor and control its behavior. 
 

§ For example, some applications may want to control MiddleORB's fault tolerance 
strategies [OMG99g] via the Reflection pattern [POSA1] to direct its responses to 
failure conditions. 
 

 

Solution 

Allow applications to extend a framework transparently by registering 'out-of-band' services 
with the framework via predefined interfaces, then let the framework trigger these services 
automatically when certain events occur.[4] In addition, open the framework's implementation 
[Kic92] so that the out-of-band services can access and control certain aspects of the 
framework's behavior. 

In detail: for a designated set of events processed by a framework, specify and expose an 
interceptor callback interface. Applications can derive concrete interceptors from this 
interface to implement out-of-band services that process occurrences of these events in an 
application-specific manner. Provide a dispatcher for each interceptor that allows 
applications to register their concrete interceptors with the framework. When the designated 
events occur, the framework notifies the appropriate dispatchers to invoke the callbacks of 
the registered concrete interceptors. 

Define context objects to allow a concrete interceptor to introspect and control certain 
aspects of the framework's internal state and behavior in response to events. Context 
objects provide methods to access and modify a framework's internal state, thus opening its 
implementation. Context objects can be passed to concrete interceptors when they are 
dispatched by the framework. 

Structure 

A concrete framework instantiates a generic and extensible architecture to define the 
services provided by a particular system, such as an ORB, a Web server, or an application 
server. 
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Two types of concrete frameworks are available in MiddleORB, one for the client and 
one for the server:[5]  
§ Client applications use the client concrete ORB framework's programming interface to 

access remote objects. This concrete framework provides common services, such 
as binding to a remote object, sending requests to the object, waiting for replies, 
and returning them to the client. 

§ The server concrete ORB framework provides complementary services, including 
registering and managing object implementations, listening on transport endpoints, 
receiving requests, dispatching these requests to object implementations, and 
returning replies to clients. 

 
 

Interceptors are associated with a particular event or set of events exposed by a concrete 
framework. An interceptor defines the signatures of hook methods [Pree95] [GHJV95] that 
the concrete framework will invoke automatically via a designated dispatching mechanism 
when the corresponding events occur. Concrete interceptors specialize interceptor interfaces 
and implement their hook methods to handle these events in an application-specific manner.  

 

In our MiddleORB example, we specify an interceptor interface containing several hook 
methods that the client and server concrete ORB frameworks dispatch automatically 
when a client application invokes a remote operation and the corresponding server 
receives the new request, respectively. 
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To allow interceptors to handle the occurrence of particular events, a concrete framework 
defines dispatchers for configuring and triggering concrete interceptors. Typically there is a 
dispatcher for each interceptor. A dispatcher defines registration and removal methods that 
applications use to subscribe and un-subscribe concrete interceptors with the concrete 
framework. 

A dispatcher also defines another interface that the concrete framework calls when specific 
events occur for which concrete interceptors have registered. When the concrete framework 
notifies a dispatcher that such an event has occurred, the dispatcher invokes all the concrete 
interceptor callbacks that have registered for it. A dispatcher maintains all its registered 
interceptors in a container. 

 

In our MiddleORB example, the client concrete ORB framework implements a dispatcher 
that allows client applications to intercept certain events, such as outgoing requests to 
remote objects and incoming object replies. Servers use a corresponding dispatcher in 
the server concrete ORB framework to intercept related events, such as incoming client 
requests and outgoing object replies. Other dispatchers can be defined at different 
layers in the ORB to intercept other types of events such as connection and message 
transport events. 
 

 

Concrete interceptors can use context objects to access and control certain aspects of a 
concrete framework. Context objects can provide accessor methods to obtain information 
from the concrete framework and mutator methods to control the behavior of the concrete 
framework. A context object can be instantiated by a concrete framework and passed to a 
concrete interceptor with each callback invocation. In this case the context object can 
contain information related to the event that triggered its creation. 

Conversely, a context object can be passed to an interceptor when it registers with a 
dispatcher. This design provides less information but also incurs less overhead. 

 

 

In our MiddleORB example, the interceptor interface defines methods that the client 
concrete ORB framework dispatches automatically when it processes an outgoing 
request. These methods are passed a context object parameter containing information 
about the current request. Each context object defines accessor and mutator methods 
that allow a concrete interceptor to query and change ORB state and behavior, 
respectively. 

For example, an accessor method in a context object can return the arguments for a 
remote operation. Using the context object's mutator methods, a client application's 
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concrete interceptor can redirect an operation to a different object. This feature can be 
used to implement custom load balancing and fault tolerance services [ZBS97]. 
 

 

An application runs on top of a concrete framework and reuses the services it provides. An 
application can also implement concrete interceptors and register them with the concrete 
framework to handle certain events. When these events occur, they trigger the concrete 
framework and its dispatchers to invoke concrete interceptor callbacks that perform 
application-specific event processing.  

 

The class diagram below illustrates the structure of participants in the Interceptor pattern. 

 

Dynamics 

A typical scenario for the Interceptor pattern illustrates how an application implements a 
concrete interceptor and registers it with the corresponding dispatcher. The dispatcher then 
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invokes the interceptor callback when the concrete framework notifies it that an event of 
interest has occurred: 
§ An application instantiates a concrete interceptor that implements a specific interceptor 

interface. The application registers this concrete interceptor with the appropriate 
dispatcher. 

§ The concrete framework subsequently receives an event that is subject to interception. 
In this scenario a special context object is available for each kind of event. The concrete 
framework therefore instantiates an event-specific context object that contains 
information related to the event, as well as functionality to access and potentially control 
the concrete framework. 

§ The concrete framework notifies the appropriate dispatcher about the occurrence of 
the event, passing the context object as a parameter. 

§ The dispatcher iterates through its container of registered concrete interceptors and 
invokes their callback hook methods, passing the context object as an argument. 

§ Each concrete interceptor can use its context object to retrieve information about the 
event or the concrete framework. After processing this information, a concrete 
interceptor can optionally call method(s) on the context object to control the behavior of 
the concrete framework and its subsequent event processing. 

§ After all concrete interceptor callback methods have returned, the concrete framework 
continues with its normal operation. 

 

Implementation 

Seven implementation activities describe a common approach for implementing the 
Interceptor pattern. 

1. Model the internal behavior of the concrete framework using a state machine or an 
equivalent notation, if such a model is not available already. This modeling need not 
capture all abstractions of the concrete framework, but should document the aspects 
that are related to interception. To minimize the complexity of any given state 
machine, the modeled parts of the concrete framework can be composed from 
smaller state machines that together form a composite state machine.[6]  

Each smaller state machine represents a particular aspect of the concrete framework. 
Once the dynamic aspects of the concrete framework are modeled as a state 
machine, use this model to determine where and when certain events can be 
intercepted. 

In ORB middleware and many other component-based systems at least two types of 
concrete frameworks exist, one for the role of client and one for the role of server. In 
this case the concrete frameworks should be modeled as separate state machines. In 
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general, state machine modeling helps identify where to place interceptors and how 
to define their behavior in a concrete framework. 

 

Consider the client concrete ORB framework defined by MiddleORB. During ORB 
start-up this framework is initialized to continue processing client requests until it 
is shut down. The client concrete ORB framework provides two types of service 
to clients: 
§ When a client binds to a new remote object, the concrete framework creates a 

proxy that connects to the object. 
§ If the bind operation is successful the client can send requests to the remote 

object. Each request is marshaled and delivered to the remote object using a 
pre-established connection. After successful delivery, the concrete 
framework waits for the object's response message, demarshals it upon 
arrival, returns the result to the client, and transitions to the idle state. 

Additional error states denote situations in which problems are encountered, such 
as communication errors or marshaling errors, are shown in the following figure. 
Note that this figure illustrates only a portion of the client concrete ORB 
framework's internal composite state machine. 
 

 

 

2. Identify and model interception points. This implementation activity can be divided into 
four sub-activities: 

1. Identify concrete framework state transitions that may not be visible to external 
applications, but are subject to interception. For example, a client may want to 
intercept outgoing requests so it can add functionality, such as logging or 
changing certain request parameters, dynamically. We call these state 
transitions 'interception points'. 

2. Partition interception points into reader and writer sets. The reader set includes 
all state transitions in which applications only access information from the 
concrete framework. Conversely the writer set includes all state transitions in 
which applications can modify the behavior of the concrete framework. 

3. Integrate interception points into the state machine model. Interception points 
can be modeled in the state machine by introducing intermediary states. If a 
state transition is subject to interception, place a new interception state 
between the source state and the sink state of the original transition. This 
interception state triggers the corresponding interceptors. For interception 
points that belong to the writer set, introduce additional state transitions in 
which the following properties apply: 
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§ The interception state is the start node and 
§ The target nodes are states that represent the subsequent behavior of 

the concrete framework after the interception. 

Many component-based distributed systems define peer concrete frameworks, 
such as client and server ORBs, that are organized in accordance with the 
Layers pattern [POSA1]. When identifying interception points in one of these 
concrete frameworks, introduce a related interception point in the other peer 
concrete framework at the same logical layer. For example, if a client ORB 
intercepts outgoing requests, it is likely that the server ORB should also 
intercept incoming requests. When integrating layered services, such as 
adding security tokens on the client-side and encrypting outgoing request 
data, a corresponding interceptor is therefore required on the server to extract 
the security token and decrypt the incoming data. 

 

By applying the state machine model of the client concrete ORB 
framework shown above, we can identify the potential interception points 
shown in the following table: 

Interception Point  Description  Reader 
/ Writer  

Shut-down The concrete framework is 
shutting down its operation. 
Clients may need to perform 
certain cleanup work, such as 
freeing resources they have 
allocated previously. 

Reader 

Binding The client application is binding 
to a remote object. The 
concrete framework instantiates 
a new proxy and establishes a 
communication channel. A 
monitoring service might 
intercept this event to visualize 
new client/object relationships. 

Reader 

PreMarshalOutRequest The client application sends a 
request to the remote object. 
Interceptors might be used to 
change the target object or the 
parameter values to support 
load balancing, validate certain 
preconditions, or encrypt 
parameters. 

Reader 
+ Writer 

PostMarshalOutRequest The client concrete ORB 
framework has marshaled the 
data but not yet delivered it. A 
client may be interested in 
monitoring activities, such as 
starting a timer to measure the 
round-trip latency. 

Reader 

PreMarshalInReply The reply just arrived and the Reader 
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Interception Point  Description  Reader 
/ Writer  

concrete framework has not yet 
demarshaled the data. A client 
may be interested in monitoring 
this event or stopping a round-
trip latency timer. 

PostMarshalInReply The client concrete ORB 
framework has marshaled the 
reply. An interceptor might 
evaluate post-conditions or 
change the result. For example, 
it could decrypt the result if it 
was encrypted by a server-side 
interceptor. 

Reader 
+ Writer 

Additional interception points may be required if a client intercepts 
exceptions, such as failed connection events. The server concrete ORB 
framework can also define peer interception points. 
 

 

4. Partition interception points into disjoint interception groups. To process 
events, concrete frameworks often perform a series of related activities, each 
of which may be associated with an interception point. To emphasize the 
relationship between each activity, it may be useful to coalesce a series of 
semantically-related interception points into an interception group. 

For example, all interception points associated with sending a request can 
form one interception group, whereas all interception points associated with 
receiving a request can form another group. These interception groups help to 
minimize the number of necessary interceptors and dispatchers as shown in 
implementation activity 4 (123). 

To identify interception groups, analyze the state machine for interception 
points that are located in the same area of the state machine and participate in 
the same activity. For example, interception points that are triggered by 
transitions originating from a particular state, ending in a particular state, or 
ending in a particular set of neighbor states may be candidates for 
consideration as part of the same interception group. 

 

In MiddleORB, both the PreMarshalOutRequest and 
PostMarshalOutRequest interception points participate in sending a 
request. These interception points can therefore constitute the 
OutRequest interception group. This interception group coalesces all 
events related to the activities of sending a request in order to differentiate 
these events from other interception groups, such as InRequest, 
OutReply, or InReply. 
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3. Specify the context objects. Context objects allow interceptors to access and control 
aspects of the framework's internal state and behavior in response to certain events. 
Three sub-activities can be applied to specify context objects: 

0. Determine the context object semantics. Context objects provide information 
about an interception point and may also define services to control the 
framework's subsequent behavior. Concrete interceptors use the information 
and services to handle interception points in an application-specific manner. 
The accessor and mutator methods defined for context objects can be based 
on information that a concrete framework provides to interceptors, as well as 
the degree to which a framework is 'open': 
§ If an interception point belongs to the reader set, determine what 

information the concrete framework should provide the interceptor for 
each event it handles. For example, if a context object provides 
information about a particular remote operation invocation, it may contain 
the reference of the target object being called as well as the operation's 
name and parameter values. 

§ If the interception point belongs to the writer set, determine how to 
'open' the concrete framework's implementation so that concrete 
interceptors can control selected aspects of its behavior [Kic92]. For 
example, if a context object provides information about a particular 
remote operation invocation, it may contain methods that can modify the 
operation's parameter values. The design force to balance here, of 
course, is 'open extensibility' versus 'errorprone interception code'.  

Although concrete frameworks with open implementations can ha ve 
powerful interceptors, they are also more vulnerable to interceptors that 
maliciously or accidentally corrupt the concrete framework's robustness 
and security. Some interception designs therefore disallow mutator 
functionality within context objects. 

1. Determine the number of context object types. Here are two strategies for 
selecting the number and types of context objects: 
§ Multiple interfaces. If the interception points in a concrete framework 

cover a diverse set of requirements, different types of context objects can 
be defined for different interception points. This strategy is flexible, 
because it allows fine-grained control of particular interception points. 
However it increases the number of interfaces that developers of concrete 
interceptors must understand. 

§ Single interface. It is possible to specify a generic context object with a 
single interface. Using a single interface reduces the number of context 
object interfaces, but may yield a bloated and complex context object 
interface. 

In general, multiple interfaces are useful when client applications intercept a 
wide variety of different framework events. In other cases, however, the single 
interface strategy may be preferable due to its simplicity. 

 

When the MiddleORB client ORB framework intercepts outgoing client 
requests, applications may want to access and/or control the following 
aspects: 
§ Reading and changing the target object reference to implement fault 

tolerance or load balancing. 
§ Reading and modifying parameter values to encrypt data, validate 

selected arguments, or change behavior reflectively [POSA1]. 
§ Adding new data to the request to send out-of-band information, such 

as security tokens or transaction contexts. 
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§ Integrating custom parameter marshalers and demarshalers. 

These activities correspond to those specified by the 
PreMarshalOutRequest and PostMarshalOutRequest interception points 
outlined in the table in implementation activity 2.3 (118). We therefore 
introduce two corresponding context object types, 
UnmarshaledRequest and MarshaledRequest. The interface 
UnmarshaledRequest is structured as follows: 
    public interface UnmarshaledRequest { 
        public String getHost (); // get host 
        public void setHost (String host); // set host 
        public long getPort (); // get server port 
        public void setPort (long newPort); // set new 
port 
        public String getObjName (); // get object 
name 
        public void setObjName (String newName); // 
set name 
        public String getMethod (); // get method name 
        public void setMethod (String name); // set 
method 
        public Enumeration getParameters ();// get 
parameters 
        public Object getArg (long i); // get i_th arg 
        public void setArg (long i, Object o); // set 
i_th arg 
        public void addInfo (Object info); // add 
extra info. 
        // ... 
    } 
 

 

2. Define how to pass context objects to concrete interceptors. Context objects 
are instantiated by the concrete framework. They are passed to a concrete 
interceptor using one of the following two strategies: 
§ Per-registration. In this strategy a context object is passed to an 

interceptor once when it registers with a dispatcher. 
§ Per-event. In this strategy a context object is passed to a concrete 

interceptor with every callback invocation. 

The per-event strategy allows a concrete framework to provide finegrained 
information about the occurrence of a particular event. In contrast, the per-
registration strategy only provides general information common to all 
occurrences of a particular event type. The per-event strategy may incur 
higher overhead, however, due to repeated creation and deletion of context 
objects. 

4. Specify the interceptors. An interceptor defines a generic interface that a concrete 
framework uses to invoke concrete interceptors, via dispatchers, when interception 
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points are triggered. An interceptor is defined for each interception group identified in 
implementation activity 2.4 (120). Consequently each concrete interceptor that 
derives from a particular interceptor is responsible for handling all the interception 
points of a specific interception group. 

For each interception point in an interception group, an interceptor defines a 
designated callback hook method. There is thus a one-to-one relationship between 
an interception point and an interceptor hook method. In general the interceptor 
corresponds to the observer participant in the Observer pattern [GoF95], where its 
callback hook methods play the role of event-specific update methods. If the 
'perevent' context object strategy described in implementation activity 3 (121) is 
applied, context objects can be passed as parameters to the concrete interceptor 
callback hook methods. These methods can return results or raise exceptions, in 
accordance with the policies described in implementation activity 6 (126). 

 

In implementation activity 2.4 (120) we identified the interception group 
OutRequest. Below we illustrate a common interceptor interface for this 
interception group: 
    public interface ClientRequestInterceptor { 
        public void onPreMarshalRequest 
            (UnmarshaledRequest context); 
        public void onPostMarshalRequest 
            (MarshaledRequest context); 
    } 

For each interception point associated with the OutRequest interception group, 
the ClientRequestInterceptor defines a separate hook method that is 
called back by the dispatcher at the appropriate interception point. 
 

 

5. Specify the dispatchers. For each interceptor, define a dispatcher interface that 
applications can use to register and remove concrete interceptors with the concrete 
framework. In addition, this interface is used by the framework to dispatch concrete 
interceptors registered at interception points. Two sub-activities are involved: 

0. Specify the interceptor registration interface. A dispatcher corresponds to the 
Observer pattern's [GoF95] subject role. It implements a registration interface 
for interceptors, which correspond to the observer role. Applications pass a 
reference to a concrete interceptor to the registration method, which stores the 
reference in a container in accordance with the Manager pattern [Som97]. 

To implement different callback policies, an application can pass a dispatcher 
additional parameters. For example, it can pass a priority value that 
determines the invocation order when multiple interceptors are registered for 
the same interception point, as described in implementation activity 6 (126). 
The dispatcher returns a key to the application that identifies the registered 
interceptor uniquely. An application passes this key to the dispatcher when it 
removes an interceptor it registered previously. 

To automate interceptor registration, and to hide its implementation, a 
concrete framework can implement helper classes that provide 'noop' 
implementations of interceptor interfaces. The constructors of these classes 
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register instances automatically with the concrete framework. Applications 
derive their concrete interceptor implementations from the appropriate helper 
class, override its methods and call the base class constructor to register their 
interceptors implicitly. 

In general, a specific dispatcher can forward every occurrence of its 
corresponding event types from the concrete framework to the concrete 
interceptors that registered for these events. Dispatchers are therefore often 
implemented using the Singleton pattern [GoF95]. 

 

The methods defined in the following ClientRequestDispatcher class 
allow applications to register and remove ClientRequestInterceptor 
instances with the MiddleORB concrete framework: 
    public class ClientRequestDispatcher { 
        // Interceptors are stored in a Java vector 
and called 
        // in FIFO order. 
        Vector interceptors_; 
 
        synchronized public void 
        registerClientRequestInterceptor 
            (ClientRequestInterceptor i) { 
            interceptors_.addElement (i); // Add 
interceptor. 
        } 
 
        synchronized public void 
        removeClientRequestInterceptor 
            (ClientRequestInterceptor i) { 
            // Remove interceptor. 
            interceptors_.removeElement (i); 
        } 
        // ... 
    } 
 

 

1. Specify the dispatcher callback interface. When an interception event occurs 
the concrete framework notifies its dispatcher. When notified, a dispatcher 
invokes the corresponding hook methods of its registered concrete 
interceptors. A dispatcher often provides the same interface to the concrete 
framework that its associated interceptor provides to the dispatcher.  

There are two reasons for this similarity: 
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§ It streamlines performance, by allowing a dispatcher to delegate event 
notifications to its registered interceptors efficiently, without transforming 
any parameters. 

§ It localizes and minimizes the modifications required if the public 
interface of the dispatcher changes. An example of such a modification 
might be the addition of a new interception point to the interception group 
associated with the dispatcher callback interface. In this case an 
additional hook method would be added to the callback interface. 
 

In MiddleORB the internal dispatcher ClientRequestDispatcher also 
implements the interface ClientRequestInterceptor: 
    public class ClientRequestDispatcher 
        implements ClientRequestInterceptor { /* ... 
*/ } 

The MiddleORB client concrete ORB framework can thus use the callback 
hook methods in this interface to notify the dispatcher about all events 
related to client requests. 
 

 

6. Implement the callback mechanisms in the concrete framework. When an interception 
event occurs the concrete framework notifies the corresponding dispatcher. The 
dispatcher then invokes the hook methods of all registered concrete interceptor 
callbacks in turn. A mechanism is therefore needed to propagate events from the 
concrete framework to its dispatchers and from the dispatchers to the registered 
interceptors. This mechanism can be implemented by applying the Observer pattern 
[GoF95] twice. 

The first application of the Observer pattern occurs whenever the concrete framework 
reaches an interception point. At this point it creates the appropriate context object 
and notifies the dispatcher about the occurrence of the event. In terms of the 
Observer pattern, the concrete framework is a subject that is observed by a 
dispatcher. 

When the concrete framework notifies the dispatcher, it can either pass the context 
object as a parameter, or it can use a pre-allocated singleton context object that acts 
as an interface to the concrete framework. In the first strategy, all event-related 
information is encapsulated in the context object, while the second strategy requires 
the concrete framework to store all of the necessary information. The choice of 
strategy depends on the design of the concrete framework, as described in 
implementation activity 3.3 (123). 

The second application of the Observer pattern occurs after the dispatcher is notified. 
At this point it iterates over all interceptors that have registered at this interception 
point and invokes the appropriate callback method in their interface, passing the 
context object as a parameter. The dispatcher is thus also a subject that is observed 
by concrete interceptors. 

The dispatcher's internal callback mechanism can be implemented with the Iterator 
pattern [GoF95]. Similarly, a dispatcher can apply the Strategy pattern [GoF95] to 
allow applications to select from among several interceptor callback orderings: 
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§ Simple invocation strategies include 'first-in first-out' (FIFO) or 'last-in first-out' 
(LIFO) ordering strategies, where interceptors are invoked in the order they were 
registered or vice-versa. When using the Interceptor pattern to implement a 
particular 'interceptor stack', a combined FIFO/LIFO approach can be used to 
process messages traversing the stack. On the client a FIFO strategy can be 
used to pass messages down the stack. On the server a LIFO strategy can be 
used to pass messages up the stack. 

§ A more sophisticated ordering callback strategy dispatches concrete 
interceptors in priority order. In this strategy an application passes a priority 
parameter when registering a concrete interceptor with a dispatcher. When 
propagating an event, the dispatcher invokes interceptors with higher priorities 
first. 

§ Another sophisticated callback strategy is based on the Chain of Responsibility 
pattern [GoF95]. If a concrete interceptor can handle the event that its dispatcher 
delivers, it returns the corresponding result. Otherwise it can return a special 
value or raise an exception to indicate it is not interested in intercepting the 
event. In this case the callback dispatching mechanism asks the next interceptor 
in the chain to handle the event. This progression stops after one of the 
interceptors handles the event. 

If an interceptor encounters error conditions that prevent it from completing its work 
successfully, it can invoke exceptions or return failure values to propagate these 
errors to handlers. In this case the concrete framework must be prepared to handle 
these errors.  

 

When a client concrete ORB framework processes a request it instantiates a 
context object, and notifies the corresponding dispatcher to iterate through the 
registered interceptors to call their appropriate event handling hook methods, 
such as onPreMarshalRequest(): 
    public class ClientRequestDispatcher { 
        // ... 
        public void 
        dispatchClientRequestInterceptorPreMarshal 
            (UnmarshaledRequest context) { 
            Vector interceptors; 
            synchronized (this) { // Clone vector. 
                interceptors = (Vector) 
                    interceptors.clone (); 
            } 
            for (int i = 0; i < interceptors.size (); ++i) { 
                ClientRequestInterceptor ic = 
                    (ClientRequestInterceptor) 
                    interceptors.elementAt (i); 
                // Dispatch callback hook method. 
                ic.onPreMarshalRequest (context); 
            } 
        } 
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        // ... 
    } 
 

 

7. Implement the concrete interceptors. Concrete interceptors can derive from and 
implement the corresponding interceptor interface in application-specific ways. A 
concrete interceptor can use the context object it receives as a parameter to either: 
§ Obtain additional information about the event that occurred or 
§ Control the subsequent behavior of the concrete framework, as described in 

implementation activity 3 (121) 

The Extension Interface pattern (141) can be applied to minimize the number of 
different interceptor types in an application. Each interception interface becomes an 
extension interface of a single interceptor object. The same 'physical' object can thus 
be used to implement different 'logical' interceptors.  

 

A client application can provide its own ClientRequestInterceptor class: 
    public class Client { 
        static final void main (String args[]) { 
            ClientRequestInterceptor myInterceptor = 
                // Use an anonymous inner class. 
                new ClientRequestInterceptor () { 
                public void onPreMarshalRequest 
                    (UnmarshaledRequest context) { 
                    System.out.println 
                        (context.getObj () + " called"); 
                    // ... 
                } 
                public void onPostMarshalRequest 
                    (MarshaledRequest context) { /* ... */ } 
            }; 
            ClientRequestDispatcher.theInstance (). 
                registerClientRequestInterceptor 
                    (myInterceptor); 
            // Do normal work. 
        } 
    } 

In this implementation the client's main() method creates an instance of an 
anonymous ClientRequestInterceptor inner class and registers it with the 
singleton instance of the ClientRequestDispatcher class. Whenever the 
client concrete ORB framework encounters a client request event it notifies the 
dispatcher, which then calls back the appropriate hook method of the registered 
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interceptor. In this example the interceptor just prints a message on the screen 
after a method is invoked but before it is marshaled. 
 

 

Example Resolved 

Applications can use the Interceptor pattern to integrate a customized load-balancing 
mechanism into MiddleORB. By using interceptors, this mechanism is transparent to the 
client application, the server application, and the ORB infrastructure itself. In this example a 
pair of concrete interceptors are interposed by the client application: 
§ Bind interceptor. When a client binds to a remote object, the bind interceptor 

determines whether subsequent invocations on the CORBA object should be load 
balanced. All such 'load balancing' objects can be replicated [GS97] automatically on 
predefined server machines. Information on load balancing, servers, and available 
replicated objects can be maintained in the ORB's Implementation Repository [Hen98] 
and cached within memory-resident tables. Information on the current system load can 
reside in separate tables. 

§ Client request interceptor. When a client invokes an operation on a remote object, the 
client request concrete interceptor is dispatched. This interceptor checks whether the 
object is replicated. If it is, the interceptor finds a server machine with a light load and 
forwards the request to the appropriate target object. The algorithm for measuring the 
current load can be configured using the Strategy pattern [GoF95]. Client developers 
can thus substitute their own algorithms transparently without affecting the ORB 
infrastructure or the client/server application logic. 

The following diagram illustrates the scenario executed by the client request interceptor after 
the bind interceptor has replicated an object that is load balanced on multiple servers: 

 

This scenario involves three steps: 
§ A client invokes an operation on a replicated object (1). 
§ The client request interceptor intercepts this request (2). It then consults a table 

containing the object's replicas to identify a server with a lightest load (3). The bind 
interceptor created this table earlier when the object was replicated. 

§ The client ORB forwards the request to the server with a light load (4). The server's 
ORB then delivers it to the object implementation residing on this server (5) and 
dispatches its operation (6). 

Variants 

Interceptor Proxy variant (also known as Delegator). This variant is often used on the server-
side of a distributed system to intercept remote operations. The server concrete framework 
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automatically instantiates a proxy [POSA1] to a local object implementation residing on the 
server. This proxy implements the same interfaces as the object. When the proxy is 
instantiated it receives a reference to the actual server object. 

When a client issues a request, the server's proxy intercepts the incoming request and 
performs certain pre-processing functionality, such as starting a new transaction or validating 
a security tokens. The proxy then forwards the request to the local server object, which 
performs its process operations in the context established by the proxy: 

 

After the object processing is finished, the proxy performs any post-processing that is 
needed and returns the result, if any, to the client. Both the client and the server object are 
oblivious to the existence of the interceptor proxy. 

Single Interceptor-per-Dispatcher. This variant allows only one interceptor to register with a 
specific dispatcher. This restriction can simplify the pattern's implementation when it makes 
no sense to have more than one interceptor, in which case there is no need for the concrete 
framework to retain a whole collection of interceptors.  

 

In MiddleORB there could be an interceptor interface for changing the concrete 
framework's transport protocol dynamically [Naka00]. At most there should be one 
interceptor that changes the default behavior of the concrete framework. Thus, there is 
no reason to register a chain of different interceptors that are each responsible for 
changing the transport protocol. 
 

 

Interceptor Factory. This variant is applicable when the concrete framework instantiates the 
same class multiple times and each instance of the class is subject to interception. Instead 
of registering an interceptor for each object with the dispatcher explicitly, applications 
register interceptor factories with the concrete framework. Thus, for every object the 
concrete framework instantiates, it also instantiates a concrete interceptor using the supplied 
factory. 

 

In MiddleORB there could be a different interceptor for each object implementation 
created by the server concrete ORB framework. In addition the client concrete ORB 
framework could use a factory to instantiate a separate client interceptor for each proxy. 
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Implicit Interceptor Registration. Rather than registering interceptors via dispatchers 
explicitly, a concrete framework can load interceptors dynamically. There are two ways to 
implement this strategy: 
§ The concrete framework searches for interceptor libraries in predefined locations. It 

then loads these libraries into the concrete framework and ensures that they support the 
required interceptor interfaces before installing and dispatching events to them. 

§ The concrete framework can link interceptors dynamically using a run-time 
configuration mechanism, such as the one defined by the Component Configurator 
pattern (75). In this design a component configurator component within the concrete 
framework interprets a script that specifies which interceptors to link, where to find the 
dynamically linked libraries (DLLs) that contain these interceptors, and how to initialize 
them. The component configurator then links the specified DLLs and registers the 
interceptors contained within them with the concrete framework. 

Known Uses 

Component-based application servers for server-side components, such as EJB 
[MaHa99], CORBA Components [OMG99a], or COM+ [Box97], implement the Interceptor 
Proxy variant. To help developers focus on their application-specific business logic, special 
concrete frameworks—often denoted as 'containers' in this context—are introduced to shield 
components from the system-specific run-time environment. Components need not 
implement all their infrastructural services, such as transactions, security, or persistence, but 
instead declare their requirements using configuration-specific attributes. The diagram below 
illustrates this container architecture: 

 

After a new component is instantiated, the concrete framework also instantiates an 
interceptor proxy and associates it with that particular component, for example, by providing 
the proxy with a component reference during its initialization. After any client request arrives 
the proxy checks the configuration-specific attributes of the component and performs the 
services it expects, such as initiating new transactions. 

Application servers often provide an instantiation of the standard Interceptor pattern to notify 
components about lifecycle events, such as connection initiation and termination, component 
activation and passivation, or transaction-specific events. 

CORBA implementations [OMG98c] such as TAO [SLM98] and Orbix [Bak97] apply the 
Interceptor pattern so that application developers can integrate additional services to handle 
specific types of events. Interceptors enhance ORB flexibility by separating request 
processing from the traditional ORB communication mechanisms required to send and 
receive requests and replies. 
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For example, Orbix defines the concept of filters that are based on the concept of 'flexible 
bindings' [Shap93]. By deriving from a predefined base class, developers can intercept 
events. Common events include client-initiated transmission and arrival of remote 
operations, as well as the object implementation-initiated transmission and arrival of replies. 
Developers can choose whether to intercept the request or result before or after marshaling. 
Orbix programmers can leverage the same filtering mechanism to build multi-threaded 
servers [SV96a] [SV96b] [SV96c]. Other ORBs, such as Visibroker, implement the 
Interceptor Factory variant of the Interceptor pattern. 

The OMG has introduced a CORBA Portable Interceptor specification [OMG99f] to 
standardize the use of interceptors for CORBA-compliant implementations. Portable 
Interceptors are intimately tied into the communication between a client and server. They 
can thus affect the contents of CORBA requests and replies as they are exchanged, as 
outlined in the following two examples: 
§ A client-side security interceptor can add authorization information to a request 

transparently before it leaves the client process. The matching server-side security 
interceptor in the receiving server could then verify that the client is authorized to invoke 
requests on the target object before the request is dispatched. If authorization fails the 
request should be rejected. 

§ A transaction interceptor is another example of a Portable Interceptor. This interceptor 
adds a transaction ID to a request before it leaves the client. The corresponding server-
side transaction interceptor then ensures the request is dispatched to the target object 
within the context of that particular transaction. 

Fault-tolerant ORB frameworks. The Interceptor pattern has been applied in a number of 
fault-tolerant ORB frameworks, such as the Eternal system [NMM99] [MMN99] and the 
CORBA Fault-Tolerance specification [OMG99g]. Eternal intercepts system calls made by 
clients through the lower-level I/O subsystem and maps these system calls to a reliable 
multicast subsystem. Eternal does not modify the ORB or the CORBA language mapping, 
thereby ensuring the transparency of fault tolerance from applications. 

The AQuA framework [CRSS+98] also provides a variant of the Interceptor pattern. The 
AQuA gateway acts as an intermediary between the CORBA objects and the Ensemble 
group communication subsystem, and translates GIOP messages to group communication 
primitives. AQuA uses the Quality Objects (QuO) [ZBS97] framework to allow applications to 
specify their dependability requirements. 

COM [Box97] [HS99a] programmers can use the Interceptor pattern to implement the 
standard interface IMarshal in their components. IMarshal provides custom marshaling 
functionality rather than standard marshaling, which is useful for several reasons. For 
example, custom marshaling can be used to send complex data such as graph structures 
across a network efficiently. 

When the COM run-time system transfers an interface pointer from a component to a client 
residing in another execution environment, it queries the corresponding component for an 
implementation of the interceptor interface IMarshal. If the component actually implements 
IMarshal, the COM run-time uses the methods of this interceptor interface to ask the 
component for specific information to allow it to externalize the data to a stream object. 

Web browsers. Web browsers implement the Interceptor pattern to help third-party vendors 
and users integrate their own tools and plug-ins. For example, Netscape Communicator and 
Internet Explorer allow browsers to register plug-ins for handling specific media types. When 
a media stream arrives from a Web server the browser extracts the content type. If the 
browser does not support the content type natively, it checks whether a plug-in has 
registered for it. The browser then invokes the appropriate plug-in automatically to handle 
the data. 
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The dynamicTAO reflective ORB [KRL+00] supports interceptors for monitoring and 
security. Particular interceptor implementations are loaded into dynamicTAO using 
component configurators (75). Using component configurators to install interceptors in 
dynamicTAO allows applications to exchange monitoring and security strategies at run-time.  

Change of address surface mail forwarding. A real-life example of the Interceptor pattern 
arises when people move from one house to another. The post office can be instructed to 
intercept surface mail addressed to the original house and have it transparently forwarded to 
the new house. In this case, the contents of the mail is not modified and only the destination 
address is changed. 

Consequences 

The Interceptor pattern offers the following benefits:  

Extensibility and flexibility. By customizing and configuring Interceptor and dispatcher 
interfaces, users of a concrete framework can add, change, and remove services without 
changing the concrete framework architecture or implementation. 

Separation of concerns. Interceptors can be added transparently without affecting existing 
application code because interceptors are decoupled from application behavior. Interceptors 
can be viewed as aspects [KLM+97] that are woven into an application, so that programmers 
can focus on application logic rather than on infrastructure services. The Interceptor pattern 
also helps to decouple programmers who write interceptor code from programmers who are 
responsible for developing and deploying application logic. 

Support for monitoring and control of frameworks. Interceptors and context objects help to 
obtain information from the concrete framework dynamically, as well as to control its 
behavior. These capabilities help developers build administration tools, debuggers, and 
other advanced services, such as load balancing and fault tolerance. 

When a client invokes a remote operation, an interceptor can be notified automatically. By 
using the context object the interceptor can change the target object specified in the method 
invocation from the original destination to another server that provides the requested service. 
The choice of server can depend on various dynamic factors, such as current server load or 
availability. If a framework cannot complete a request successfully, another interceptor can 
be activated to re-send the request to a replicated server that provides the same service, 
thereby enhancing fault tolerance via replication [OMG99a]. 

Layer symmetry. To implement layered services, developers can introduce symmetrical 
interceptors for related events exposed by the concrete framework. For example, in a 
CORBA environment developers could write a client-side interceptor that creates security 
tokens and automatically adds these tokens to outgoing requests. Similarly, they could write 
a symmetrical server-side interceptor that extracts these tokens before the incoming request 
is forwarded to the actual object implementation. 

Reusability. By separating interceptor code from other application code, interceptors can be 
reused across applications. For example, an interceptor used to write information into a log 
file may be reused in other applications that require the same type of logging functionality. 

The Interceptor pattern also incurs the following liabilities: 

Complex design issues. Anticipating the requirements of applications that use a specific 
concrete framework is non-trivial, which makes it hard to decide which interceptor 
dispatchers to provide. In general, providing insufficient dispatchers reduces the flexibility 



 123

and extensibility of the concrete framework. Conversely, providing too many dispatchers can 
yield large, inefficient systems that are complex to implement, use and optimize. 

A similar problem arises when a concrete framework defines many different interceptor 
interfaces and dispatchers. In this case interceptor implementors must address all these 
heterogeneous extensibility mechanisms. If there are too many different mechanisms it is 
hard to learn and use them. In contrast, providing only one generic interceptor and one 
generic dispatcher can lead to bloated interfaces or complex method signatures. In general, 
it is hard to find the right balance without knowledge of common application usages. 

Malicious or erroneous interceptors. If a concrete framework invokes an interceptor that fails 
to return, the entire application may block. To prevent blocking, concrete frameworks can 
use configurable time-out values. If the interceptor does not return control after a specified 
time, a separate thread can interrupt the execution of the interceptor. This approach can 
complicate concrete framework design, however. 

For example, complex functionality may be required to help concrete frameworks recover 
from time-outs without leaking resources or corrupting important data structures. Interceptors 
can also perform unanticipated activities or cause run-time errors. It is hard to prevent these 
problems because concrete frameworks and interceptors generally execute in the same 
address space.  

Potential interception cascades. If an interceptor leverages a context object to change the 
behavior of the concrete framework it may trigger new events, thereby initiating state 
transitions in the underlying state machine. These state transitions may cause the concrete 
framework to invoke a cascade of interceptors that trigger new events, and so on. 
Interception cascades can lead to severe performance bottlenecks or deadlocks. The more 
interceptor dispatchers that a concrete framework provides, the greater the risk of 
interception cascades. 

See Also 

The Template Method pattern [GoF95] specifies a skeleton for an algorithm—called the 
'template method'—where different steps in the algorithm can vary. The execution of these 
variants is delegated to hook methods, which can be overridden in subclasses provided by 
clients. The template method can therefore be viewed as a lightweight concrete framework, 
and the hook methods as lightweight interceptors. The Template Method pattern can be 
used to leverage interception locally at a particular level of abstraction, whereas the 
Interceptor pattern promotes interception as a fundamental design aspect that cuts across 
multiple layers in a framework architecture. 

The Chain-of-Responsibility pattern [GoF95] defines different handlers that can be 
interposed between the sender and the receiver of a request. As with the Interceptor pattern, 
these handlers can be used to integrate additional services between senders and receivers. 
In the Chain-of-Responsibility pattern, however, requests are forwarded until one of the 
intermediary handlers processes the request. In contrast, a dispatcher in the Interceptor 
pattern usually forwards events to all concrete interceptors that have registered for it. 

To emulate the Interceptor pattern, each intermediary handler in a chain of responsibility 
must therefore both handle and forward the request. Interceptor and Chain of Responsibility 
differ in two other aspects, however. Event handlers in a chain of responsibility are chained 
together, as the name of the pattern implies. In contrast, concrete interceptors in a 
framework need not be chained together, but can instead be associated at various levels of 
abstraction in a layered architecture [POSA1]. Event handlers in a chain of responsibility 
also cannot control the subsequent behavior of other event handlers or application 
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components. Conversely, a key aspect of the Interceptor pattern is its ability to control a 
concrete framework's subsequent behavior when a specific event occurs.  

The Pipes and Filters pattern [POSA1] defines an architecture for processing a stream of 
data in which each processing step is encapsulated in a filter component. Data is passed 
through pipes between adjacent filters. If a concrete framework is structured as a Pipes and 
Filters architecture with clients and objects being the endpoints, each pipe in the Pipes and 
Filter chain defines a potential location at which interceptors can be interposed between 
adjacent filters. In this case, registration of interceptors consists of reconfiguring the Pipes 
and Filters chain. 

The context object is the information passed from the source filter to the interceptor. The 
interceptor is responsible for sending information to the sink filter in the appropriate format. 
However, in the Pipes and Filters pattern, filters are chained via pipes, whereas in the 
Interceptor pattern concrete interceptors at different layers are often independent. In 
addition, Pipes and Filters defines a fundamental computational model for a complete 
application 'pipeline', whereas interceptors are used to implement 'out-of-band' services in 
any type of concrete framework. 

The Proxy pattern [GoF95] [POSA1] provides a surrogate or placeholder for an object to 
control access to itself. Although proxies can be used to integrate additional functionality to a 
system, their use is restricted to objects that are already visible in a system. In contrast, 
interceptors allow external components to access and control internal and otherwise 
'invisible' components. As described in the Variants section, to instantiate the Interceptor 
Proxy variant, we can instantiate the Proxy pattern with enhancements such as context 
objects. 

The Observer [GoF95] and Publisher-Subscriber [POSA1] patterns help synchronize the 
state of cooperating components. These patterns perform a one-way propagation of 
changes in which a publisher can notify one or more observers/subscribers when the state of 
a subject changes. In contrast to the Interceptor pattern, the Observer and Publisher-
Subscriber patterns do not specify how observers/subscribers should access the 
functionality of publishers because they define only one-way communication from the 
publishers to the subscribers. These patterns also emphasize event notifications, whereas 
the Interceptor pattern focuses on the integration of services into a framework.  

These differences are also illustrated by the difference between event objects and context 
objects. While event objects often contain values related to the current event, context objects 
provide an additional programming interface to access and control concrete frameworks. 
The Observer and Publisher-Subscriber patterns can therefore be viewed as variants of the 
Interceptor pattern, in which context objects correspond to event types that are transferred 
from concrete frameworks playing the subject role to interceptors playing the 
observer/subscribe roles. 

The Reflection pattern [POSA1] provides a mechanism for changing structure and behavior 
of software systems. A layer of base-level objects includes the application logic. An 
additional layer, the meta-level, provides information about system properties and allows 
developers to control the semantics of the base level. The relationship between the 
Reflection pattern and the Interceptor pattern is twofold: 
§ Interception provides a means to implement reflective mechanisms. For example, to 

instantiate the Reflection pattern we can introduce dispatchers that help developers 
introduce new behavior by registering interceptors with the meta-level. Interception can 
thus be viewed as a lightweight reflective approach that is easier to implement and less 
consumptive of CPU and memory. Moreover, interception only exposes certain of the 
internals of the underlying system, whereas reflection often covers a broader scope. 
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§ Reflection can define a type of interception mechanism. The main intent of reflection is 
to allow applications to observe their own state so that they can change their own 
behavior dynamically. In contrast, the main intent of Interceptor is to allow other 
applications to extend and control the behavior of a concrete framework. 

The Reactor pattern (179) demultiplexes and dispatches service requests that are delivered 
concurrently to an application from one or more clients. While the Reactor pattern focuses 
on handling system-specific events, the Interceptor pattern helps to intercept application-
specific events. The Reactor pattern is often instantiated to handle system events occurring 
in the lower layers of a communication framework, whereas the Interceptor pattern is used in 
multiple layers between the framework and the application. 

Credits 

Thanks to Fabio Kon who contributed the dynamicTAO known use. 

[4]In this context, events denotes application-level events such as the delivery of requests 
and responses within an ORB framework. These events are often visible only within the 
framework implementation. 

[5]ORBs support peer-to-peer communication. Thus 'client' and 'server' are relative terms 
corresponding to roles played during a particular request/response interaction, rather than 
being fundamental properties of particular system components. 

[6]More details on composite state machines is available in the UML User Guide [BRJ98]. 

Extension Interface 
The Extension Interface design pattern allows multiple interfaces to be exported by a 
component, to prevent bloating of interfaces and breaking of client code when developers 
extend or modify the functionality of the component. 

Example 

Consider a telecommunication management network (TMN) [ITUT92] framework that can be 
customized to monitor and control remote network elements such as IP routers and ATM 
switches. Each type of network element is modeled as a multi-part framework component in 
accordance with the Model-View-Controller pattern [POSA1]. A view and a controller are 
located on a management application console. The view renders the current state of a 
network element on the console and the controller allows network administrators to manage 
the network element. 

A model resides on the network element and communicates with the view and controller to 
receive and process commands, such as commands to send state information about the 
network element to the management application console. All components in the TMN 
framework are organized in a hierarchy. The UniversalComponent interface shown in the 
following figure provides the common functionality needed by every component, such as 
displaying key properties of a network element and accessing its neighbors. 
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In theory, this design might be appropriate if the UniversalComponent interface shown 
above is never changed, because it would allow client applications to access a wide range of 
network elements via a uniform interface. In practice, however, as the TMN framework 
becomes increasingly popular, management application developers will request that new 
functionality and new methods, such as dump () and persist (), be added to the 
UniversalComponent interface. 

Over time the addition of these requests can bloat the interface with functionality not 
anticipated in the initial framework design. If new methods are added to the 
UniversalComponent interface directly, all client code must be updated and recompiled. 
This is tedious and error-prone. A key design challenge is therefore to ensure that 
evolutionary extensions to the TMN framework do not bloat its interfaces or break its client 
code. 

Context 

An application environment in which component interfaces may evolve over time. 

Problem 

Coping with changing application requirements often necessitates modifications and 
extensions to component functionality. Sometimes all interface changes can be anticipated 
before components are released to application developers. In this case it may be possible to 
apply the 'Liskov Substitution Principle' [Mar95]. This principle defines stable base interfaces 
whose methods can be extended solely via subclassing and polymorphism. 

In other cases, however, it is hard to design stable interfaces, because requirements can 
change in unanticipated ways after components have been delivered and integrated into 
applications. When not handled carefully, these changes can break existing client code that 
uses the components. In addition, if the new functionality is used by only few applications, all 
other applications must incur unnecessary time and space overhead to support component 
services they do not need. 

To avoid these problems, it may be necessary to design components to support evolution, 
both anticipated and unanticipated. This requires the resolution of four forces: 
§ When component interfaces do not change, modifications to component 

implementations should not break existing client code.  
 

§ If implementations of our UniversalComponent interface store their state 
persistently in external storage, clients should not be affected if this functionality is 
re-implemented differently, as long as the component's interface is unchanged. 
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§ Existing client code should not break when developers extend a component with new 
services that are visible externally. Ideally it should not be necessary to re-compile client 
code. 

 

§ It may be necessary to add a logging service to the UniversalComponent interface 
so that management applications and network elements can log information to a 
central repository. Existing clients that are aware of the original version of 
UniversalComponent should not be affected by this change, whereas new 
clients should be able to take advantage of the new logging functionality. 
 

 

§ Changing or extending a component's functionality should be relatively straightforward, 
neither bloating existing component interfaces nor destabilizing the internal architecture 
of existing components. 

 

§ When adding the logging service outlined above, we should minimize changes to 
existing implementations of the UniversalComponent interface. 
 

 

§ It should be possible to access components remotely or locally using the same 
interface. If components and their clients are distributed across network nodes, the 
interfaces and implementations of a component should be decoupled. 

 

§ Management applications can benefit from location-transparent access to remote 
network elements in our TMN system. It should therefore be possible to separate 
the interfaces of network element management components from their physical 
implementations. These can be distributed throughout the network. 
 

 

Solution 

Program clients to access components via separate interfaces, one for each role a 
component plays, rather than programming clients to use a single component that merges all 
its roles into a single interface or implementation.  

In detail: export component functionality via extension interfaces, one for each semantically-
related set of operations. A component must implement at least one extension interface. To 
add new functionality to a component, or to modify existing component functionality, export 
new extension interfaces rather than modify existing ones. Moreover, program clients to 
access a component via its extension interfaces instead of its implementation. Hence, clients 
only have dependencies on the different roles of a component, each of which is represented 
by a separate extension interface. 

To enable clients to create component instances and retrieve component extension 
interfaces, introduce additional indirection. For example, introduce an associated component 
factory for each component type that creates component instances. Ensure that it returns an 
initial interface reference that clients can use to retrieve other component extension 
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interfaces. Similarly, ensure that each interface inherits from a root interface that defines 
functionality common to all components, such as the mechanism for retrieving a particular 
extension interface. All other extension interfaces derive from the root interface. This 
ensures that at minimum they offer the functionality it exports. 

Structure 

The structure of the Extension interface pattern includes four participants: 

Components aggregate and implement various types of service-specific functionality. This 
functionality can often be partitioned into several independent roles, each of which defines a 
set of semantically-related operations. 

 

 

Components in our TMN framework play various roles, such as storing and retrieving the 
state of a network element or managing the persistence of a component's internal state. 
 

 

Extension interfaces export selected facets of a component's implementation. There is one 
extension interface for each role [RG98] that a component implements. In addition, an 
extension interface implicitly specifies a contract that describes how clients should use the 
component's functionality. This contract defines the protocol for invoking the methods of the 
extension interface, such as the acceptable parameter types and the order in which methods 
must be called. 

 

The components in the TMN framework can implement the IStateMemory interface, 
which allows them to maintain their state in memory. A persistence manager, such as 
the CORBA Persistent State Service [OMG99e] can use the IStateMemory interface to 
manage component persistence without requiring components to expose their 
representational details. 

If new network element components are added that also implement IStateMemory, the 
persistence manager can manage their persistence without requiring any changes. The 
IStateMemory interface contains methods to prepare the component for reading and 
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writing its state, as well as its read and write operations. The implicit contract between 
the interface and its users therefore prescribes that the prepare() method must be 
called before either readState() or writeState(). 
 

 

The root interface is a special extension interface that provides three types of functionality: 
§ Core functionality that all extension interfaces must support, for example functionality 

that allows clients to retrieve the interfaces they request. This functionality defines the 
basic mechanisms a component must implement to allow clients to retrieve and 
navigate among its interfaces. 

§ Domain-independent functionality, such as methods that manage component life-
cycles. 

§ Domain-specific functionality that should be provided by all components within a 
particular domain. 

Although the root interface must implement core functionality, it need not support domain-
independent or domain-specific functionality. However, all extension interfaces must support 
the functionality defined by the root interface. Each extension interface can thus play the role 
of the root interface, which guarantees that every extension interface can return any other 
extension interface on behalf of a client request. 

 

 

A UniversalComponent interface can be defined as the root interface in our TMN 
framework. Unlike the multi-faceted—and increasingly bloated—
UniversalComponent interface outlined in the Example section, however, this root 
interface only defines the minimum set of methods that are common to all components 
in the TMN framework. 
 

 

Clients access the functionality provided by components only via extension interfaces. After 
a client retrieves a reference to an initial extension interface, it can use this reference to 
retrieve any other extension interface supported by a component. 

 

A management application console client can use components in the TMN framework to 
render the state of network elements and their relations visually on the screen, as well 
as to store and retrieve their state using persistent storage. 
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To retrieve an initial reference, clients interact with a component factory associated with a 
particular component type. This component factory separates the creation and initialization 
aspects of a component from its processing aspects. When a client creates a new 
component instance, it delegates this task to the appropriate component factory. 

After a component is created successfully, the component factory returns a reference to an 
extension interface to the client. A component factory may allow clients to request a specific 
type of initial extension interface. Factories may also provide functionality to locate and 
return references to existing component instances. 

 

The class diagram below illustrates the participants in the Extension Interface pattern. This 
diagram emphasizes logical rather than physical relationships between components. For 
example, extension interfaces could be implemented using multiple inheritance or nested 
classes, as described in implementation activity 6.1 (155). Such implementation details are 
transparent to clients. 

 

Dynamics 

We illustrate the key collaborations in the Extension Interface pattern using two scenarios. 
Scenario I depicts how clients create new components and retrieve an initial extension 
interface: 
§ The client requests a component factory to create a new component and return a 

reference to a particular extension interface. 
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§ The component factory creates a new component and retrieves a reference to its root 
interface. 

§ The component factory asks the root interface for the requested extension interface, 
then returns a reference to the extension interface to the client. 

 

Note that the factory could return any interface to the client, instead of retrieving a specific 
extension one. Such a design can incur additional round-trips in a distributed system, 
however, which increases the overhead of accessing the required interface. 

Scenario II depicts the collaboration between clients and extension interfaces. Note that the 
component implementation itself is not visible to the client, because it only deals with 
extension interfaces: 
§ The client invokes a method on extension interface A, which can either be the root 

interface or an extension interface. 
§ The implementation of extension interface A within the component executes the 

requested method and returns the results, if any, to the client. 
§ The client calls the getExtension() method on extension interface A and passes it a 

parameter that specifies the extension interface in which the client is interested. The 
getExtension() method is defined in the root interface, so it is supported by all 
extension interfaces. The implementation of extension interface A within the component 
locates the requested extension interface B and returns the client a reference to it. 

§ The client invokes a method on extension interface B, which is then executed within 
the component implementation. 

 

Implementation 

This section describes the activities associated with implementing the Extension Interface 
pattern. This pattern should be familiar to anyone who has programmed with Microsoft's 
Component Object Model (COM) [Box97], Enterprise JavaBeans (EJB) [MaHa99], or the 
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CORBA Component Model (CCM) [OMG99a], because it captures and generalizes the core 
concepts underlying these component technologies. 

1. Determine the stability of the design and the long-term application requirements. 
Before applying the Extension Interface pattern, it is important to determine whether it 
is really needed. Although this pattern is a powerful solution to a particular set of 
forces, it is nontrivial to implement. It can also complicate a software design 
significantly if applied unnecessarily. 

We therefore recommend that the forces outlined in the Problem section are 
considered carefully. You should ensure that these issues are faced in your software 
system before applying this pattern. For example, it may turn out that the complete 
set of methods an interface requires can be determined during system development, 
and that the interface will not change over time as application requirements evolve. In 
this case, it may be simpler to use the Liskov Substitution Principle [Mar95] rather 
than the Extension Interface pattern. 

2. Analyze the domain and specify a domain-specific component model. Assuming that 
the Extension Interface pattern is necessary, the next activity involves analyzing 
domain-specific application requirements. In particular, this activity focuses on 
identifying application-specific entities, such as the network elements in our TMN 
example, the roles a particular entity provides to the system, and the functionality that 
supports the different roles. The result is a domain model that identifies which 
components to implement, as well as the functionality they must provide. 

 

3. For the management application console, every type of entity to be controlled is 
implemented as a separate managed object [ITUT92], which is an abstraction 
used to represent hardware units, such as routers, computers, bridges, or 
switches. Managed objects can also represent software elements, such as 
applications, ports, or connections. Management applications use managed 
objects to control and monitor the state of network elements, display debugging 
information, or visualize system behavior on a management console. 
 

 

5. After devising a domain model, it is necessary to specify a component model to 
implement the identified components: 
§ If the components are restricted to a single application domain or a small set of 

related domains, consider specifying a domainspecific component model that is 
tailored for the application or family of applications being developed. 

§ Conversely, if the components must be applied to a wide range of applications, 
or even across multiple domains, consider using an existing component 
technology, such as Microsoft COM [Box97], EJB [MaHa99], or the CORBA 
Component Model [OMG99a]. 

In the latter case, the next implementation activity can be skipped, because these 
component models define the infrastructure it specifies. 

6. Specify the root interface. Determine if each type of functionality identified in 
implementation activity 2 above should form part of the root interface, or be separated 
into an extension interface.  

With this criteria in mind, iterate through three sub-activities: 
1. Specify core functionality. Several issues must be addressed when defining 

the core functionality of the root interface: 
§ Extension interface retrieval. At minimum, the root interface must 

include a method that returns extension interface references to clients. 
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The type of information returned from this method depends largely on the 
programming language. For example, Java clients expect to retrieve an 
object reference, whereas pointers are an appropriate choice for C++. 

§ Unique naming. Extension interfaces must be named using integer 
values or strings. Strings can be read more easily by programmers and 
simple management tools, but integer values can be smaller and 
processed more efficiently. To prevent name clashes, interface identifiers 
can be generated algorithmically. For instance, Microsoft COM uses 128 
bit globally unique identifiers (GUIDs) based on the address of the 
network interface, the date, and the time. 

§ Error handling. Component developers must determine what a 
component should do when a client requests an extension interface that 
is not supported. For example, a component could either return an error 
value or raise an exception. The Implementation section of the Wrapper 
Facade pattern (47) discusses several strategies for implementing an 
error-handling mechanism and evaluates their trade-offs. 

2. Specify domain-independent services. In addition to defining a method for 
retrieving extension interfaces, the root interface can provide methods for 
various domain-independent services. Here are two possibilities: 
§ Reference counting. In programming languages that do not provide 

automatic garbage collection, such as C or C++, clients are responsible 
for deleting extension interfaces they no longer need. However, multiple 
clients may share the same extension interface. Components can thus 
provide a reference counting mechanism to prevent the accidental 
deletion of resources used to implement extension interfaces. 

Reference counting enables components to track the number of clients 
accessing specific extension interfaces. After an extension interface is no 
longer referenced by any clients, the resources used by the component's 
implementation of the interface can be released automatically. The 
Counted Pointer idiom [POSA1] [Cope92] presents several options for 
implementing a reference counting mechanism. 

§ Run-time reflection. Another example of a domain-independent service 
is a run-time reflection mechanism. This mechanism allows components 
to publish information about the specific roles, extension interfaces, and 
methods they support. Using this knowledge, clients can construct and 
send method invocations dynamically [GS96]. This enables scripting 
languages to integrate components into existing client applications at run-
time. Reflection mechanisms can be instantiated using the Reflection 
architectural pattern [POSA1]. 

3. Specify domain-specific functionality. The root interface can also export 
domain-specific functionality if all components implementing the root interface 
provide this functionality. 

 

4. In our management application console, the drawing functionality could be 
moved to the root interface. 
 

 

6. The decision about which domain-specific services to specify in the root 
interface should normally be deferred until after implementation activity 4 
(153). Ideally, all domain-specific functionality should reside in separate 
extension interfaces. If all components end up implementing a particular 
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extension interface, refactor the current solution [Opd92] [FBBOR99] and 
move the methods of that particular extension interface to the root interface. 

 

7. In our TMN framework example, extension interfaces are identified by 
unique integer constants. We use Java as the implementation language 
because it provides automatic garbage collection, which simplifies 
memory management. The only common functionality therefore required 
in the root interface—which we call IRoot—is a method that allows client 
to retrieve any interface they need. 

8.     // Definition of IRoot: 
9.     public interface IRoot { 
10.         IRoot getExtension (int ID) throws UnknownEx; 
11.     } 

12. IRoot serves as a generic base interface for all extension interfaces, If a 
component does not support a particular interface, it throws an 
UnknownEx exception: 

13.     // Definition of UnknownEx: 
14.     public class UnknownEx extends Exception { 
15.         protected int ID; 
16.         public UnknownEx (int ID) { this.ID = ID; } 
17.         public int getID () { return ID; } 
18.     } 

19. The unique identifier of the requested interface is passed as an argument 
to the UnknownEx constructor. This allows a client to determine which 
interface caused the exception. 
 

 

21. Another potential candidate for inclusion in the root interface is a persistence 
mechanism. However, there are many different strategies and policies for 
handling persistence, such as managing component state in databases or flat 
files, which makes it hard to anticipate all possible use cases. Therefore, 
components can choose to support whatever persistence mechanism they 
consider appropriate by implementing specific extension interfaces. 

7. Introduce general-purpose ext3ension interfaces. General-purpose extension 
interfaces contain functional roles that must be provided by more than one 
component and that are not included in the root interface. A separate extension 
interface should be defined for each role. For example, extension interfaces can be 
defined to handle persistence aspects of components, as discussed at the end of 
implementation activity 3 (150). 

 

8. Our management application console helps to control and monitor remote 
network entities via managed objects. Managed objects are implemented as 
components that send information to the management application console and 
receive commands from it.  
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9. Every managed object therefore implements the following interface, 
IManagedObject:[7]  

10.     // Definition of IManagedObject: 
11.     import java.util.*; 
12.  
13.     public interface IManagedObject extends IRoot { 
14.         public void setValue (String key, Object 

value) ; 
15.         public Object getValue (String key) throws 
16.                  WrongKeyEx; 
17.         public void setMultipleValues 
18.              (Vector keys, Vector values); 
19.         public Vector getMultipleValues 
20.              (Vector keys) throws WrongKeyEx; 
21.         public long addNotificationListener 
22.              (INotificationSink sink) ; 
23.         public void removeNotificationListener (long 

handle) ; 
24.         public void setFilter (String expr) ; 
25.     } 

26. This example illustrates managed objects that are visualized on a management 
console. We therefore introduce two additional extension interfaces, IDump and 
IRender, which are implemented by all components that print debug information 
on the console or draw themselves. 

27.     // Definition of IDump: 
28.     public interface IDump extends IRoot { 
29.         public String dump () ; 
30.     } 
31.  
32.     // File IDraw.java. 
33.     public interface IRender extends IRoot { 
34.         public void render () ; 
35.     } 

 
 

37. If a particular general-purpose extension interface must be supported by all 
components, it may be feasible to refactor the root interface specified in 
implementation activity 3 (150) and integrate this functionality there. Note, however, 
that refactoring the root interface may bloat it with functionality or break existing 
applications, thereby defeating the benefits of the Extension Interface pattern. 

38. Define component-specific extension interfaces. The extension interfaces needed to 
export generic component functionality were specified in implementation activities 3 
(150) and 4 (153). This implementation activity defines additional interfaces that are 
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specific to a particular component or that are applicable to a limited range of 
components. 

 

39. For our TMN framework, we specify the extension interfaces IPort and 
IConnection. Managed objects that represent ports on a particular host 
implement IPort: 

40.     // Definition of IPort: 
41.     public interface IPort extends IRoot { 
42.         public void setHost (String host) ; 
43.         public String getHost (); 
44.         public void setPort (long port); 
45.         public long getPort (); 
46.     } 

47. Likewise, objects that represent the connection between two ports implement 
IConnection: 

48.     // Definition of IConnection: 
49.     public interface IConnection extends IRoot { 
50.         public void setPort1 (IPort p1) ; 
51.         public IPort getPort1 () ; 
52.         public void setPort2 (IPort p2); 
53.         public IPort getPort2 (); 
54.         public void openConnection () throws 

CommErrorEx; 
55.         public void closeConnection () throws 

CommErrorEx; 
56.     } 

 
 

58. Implement the components. The implementation of components involves five sub-
activities: 

0. Specify the component implementation strategy. This activity determines how 
extension interface implementations should be linked, in accordance with the 
following three strategies: 
§ Multiple inheritance. In this strategy a component class inherits from 

all of its extension interfaces. 
§ Nested classes. In this strategy extension interfaces can be 

implemented as nested classes within the component class. The 
component class instantiates a singleton instance [GoF95] of each nested 
class. Whenever the client asks for a particular extension interface, the 
getExtension() method implementation returns the appropriate nested 
class object. 

§ Separate interface classes. Extension interfaces can use the Bridge or 
Adapter patterns [GoF95] to implement separate classes that are 
independent of the component itself. This strategy is particularly useful 
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when applying the Extension Interface pattern to refactor an existing 
component that does not implement the pattern. 

The 'tie' adapter [SV98a] defined in the CORBA IDL mappings for Java 
and C++ is an example of this component implementation strategy. In 
CORBA a tie adapter inherits from an automatically-generated servant 
class, overrides all its pure virtual methods, and delegates these methods 
to another C++ object, the so-called 'tied object'. A server application 
developer defines the tied object. 

1. Regardless of which component implementation strategy is selected, the client 
is unaffected, because it only accesses the component via references to 
extension interfaces. 

2. Implement the mechanism to retrieve extension interfaces. When 
implementing the generic method that retrieves extension interfaces on behalf 
of clients, ensure that the method implementation conforms to three 
conventions: 
§ Reflexivity. When clients query extension interface A for the same 

extension interface A, they must always receive the same reference A. 
§ Symmetry. If a client can retrieve extension interface B from extension 

interface A, it also must be able to retrieve extension interface A from 
extension interface B. 

§ Transitivity. If a client can retrieve extension interface B from extension 
interface A and extension interface C from extension interface B, it must 
be possible to retrieve extension interface C directly from extension 
interface A. 

Following the conventions above ensures that a client can always navigate 
from a specific extension interface of a component to any other extension 
interface of the same component. In other words, each extension interface can 
be connected with every other extension interface via navigation. 

3. Implement a reference counting mechanism (optional). If the root interface 
requires the reference counting mechanism discussed in implementation 
activity 3.2 (151), specify the resources in the component implementation that 
must be managed by this mechanism. There are two common options for 
implementing a reference counting mechanism: 
§ If each interface implementation requires or uses separate resources, 

or if there are separate implementations for each interface, introduce a 
separate reference counter for each extension interface. If a particular 
reference counter drops to zero, release all resources used by the 
corresponding extension interface. After the last reference counter has 
fallen to zero, all resources associated with the component can be 
released. 

§ If all interface implementations share the same resources, introduce a 
global reference counter for the entire component. After this global 
reference counter reaches zero, release the component's resources. 

The first option can optimize resource management more effectively than the 
second option, because in the second option all resources must always be 
available. In the first option, in contrast, extension interfaces and their required 
resources may be activated and deactivated on demand. Only those extension 
interfaces and resources actually used by clients are activated. The 
disadvantage of maintaining extension interface-specific reference counters, 
however, is their complex implementation within the component. 
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We can apply reference counting to activate and deactivate extension 
interface implementations on-demand in our TMN framework. This avoids 
the unnecessary commitment of resources such as memory or socket 
handles. For example, when a management application client accesses 
an extension interface whose reference counter is zero, the component 
can activate the interface implementation and its resources transparently. 
When no clients access the extension interface, the corresponding 
implementation and resources can be deactivated and released 
selectively. The COM [Box97] component model implements this strategy. 
 

 

4. Select a concurrency strategy. In concurrent or networked systems, multiple 
clients can access a particular extension interface simultaneously. 
Implementations of different extension interfaces may share state and 
resources within the component. Critical sections and state within the 
component's implementation must be serialized therefore to provide corruption 
from concurrent access by clients. 

The Active Object (369) and Monitor Object (399) concurrency patterns, as 
well as the Scoped Locking (325), Strategized Locking (333), and Thread-Safe 
Interface (345) synchronization patterns, define various strategies and 
mechanisms for protecting critical sections and state within components. 

5. Implement the extension interface functionality using the selected component 
implementation strategy. This implementation activity is largely domain- or 
application-specific, so there are no general issues to address. 

 

6. In our TMN framework example we implement components using multiple 
interface inheritance. Our components do not require explicit reference 
counting, because Java provides automatic garbage collection. 

7. For simplicity, we do not illustrate the component concurrency strategy. To 
identify different extension interfaces uniquely, we define an 
InterfaceID class that enumerates all interface identifiers. These are 
defined to be integers via the following types: 

8.     // Definition of InterfaceID: 
9.     public class InterfaceID { 
10.         public final static int ID_ROOT = 0; 
11.         public final static int ID_MANOBJ= 1; 
12.         public final static int ID_DUMP = 2; 
13.         public final static int ID_RENDER= 3; 
14.         public final static int ID_PORT = 4; 
15.         public final static int ID_CONN = 5; 
16.     } 

17. A more sophisticated implementation could use a repository of interface 
identifiers. In this case, unique identifiers could be generated automatically 
by tools to prevent name clashes when different component providers 
define different interfaces. We could also use a String as the identifier 
type rather than an int. This might improve the readability and 
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debuggability of the component system, but at the expense of larger 
memory footprint and slower lookup time. 

18. One of the component types in the management application console 
represents a connection between two ports. This component supports the 
extension interfaces IManagedObject, IRender, IConnection , and 
IDump. We implement all extension interfaces using Java interface 
inheritance: 

19.     // Definition of ConnectionComponent: 
20.     public class ConnectionComponent implements 
21.     IManagedObject, IRender, IDump, IConnection { 
22.          // <table> contains all properties. 
23.          private Hashtable table = new Hashtable (); 
24.  
25.          // <listener> contains event sinks. 
26.          private Hashtable listeners = new Hashtable 

(); 
27.          private long nListeners = 0; 
28.  
29.          private IPort port1, port2; 
30.          private String filterExpression; 
31.  
32.          // <IRoot> method. 
33.          public IRoot getExtension (int ID) 
34.              throws UnknownEx { 
35.              switch (ID) { 
36.                  case InterfaceID.ID_ROOT: 
37.                  case InterfaceID.ID_MANOBJ: 
38.                  case InterfaceID.ID_DUMP: 
39.                  case InterfaceID.ID_RENDER: 
40.                  case InterfaceID.ID_CONNECT: 
41.                      return this; 
42.                  default: 
43.                      throw new UnknownEx (ID); 
44.              } 
45.          } 

46. Note how the getExtension() interface uses a switch statement to 
determine which interface is supported by the component. Had the 
identifier type been defined as a String rather than an int, we would 
have used a different type of lookup strategy such as linear search, 
dynamic hashing, or perfect hashing [Sch98a]. 

47.          // Definition of IManagedObject: 
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48.          public void setValue (String key, Object 
value) { 

49.               table.put (key, value); 
50.          } 
51.          public Object getValue (String key) 
52.              throws WrongKeyEx { 
53.              WrongKeyEx wkEx = new WrongKeyEx (); 
54.              if (!table.containsKey (key)) { 
55.                  wkEx.addKey (key); throw wkEx; 
56.              } 
57.              return table.get (key); 
58.          } 
59.  
60.          // Additional methods from <IManagedObject>. 
61.          public void setMultipleValues 
62.              (Vector keys, Vector values) { /* ... */ 

} 
63.          public Vector getMultipleValues 
64.              (Vector keys) throws WrongKeyEx { /* ... 

*/ } 
65.          public long addNotificationListener 
66.                   (INotificationSink sink) { /* ... */ 

} 
67.          public void removeNotificationListener 
68.                   (long handle) { /* ... */ } 
69.          public void setFilter (String expr) { /* ... 

*/ } 
70.  
71.          // <IDump> and <IRender> methods. 
72.          public String dump () { /* ... */ } 
73.          public void render () { /* ... */ } 
74.  
75.          // <IConnection> methods. 
76.          public void setPort1 (IPort p1) { port1 = p1; 

} 
77.          public IPort getPort1 () { return port1; } 
78.          public void setPort2 (IPort p2) { port2 = p2; 

} 
79.          public IPort getPort2 () { return port2; } 
80.          public void openConnection () throws 

CommErrorEx { } 
81.          public void closeConnection () throws 

CommErrorEx { } 
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82.      } 
 

 

59. Implement component factories. Every component type must implement a factory that 
clients can use to obtain instances of the component type. This involves three sub-
activities: 

0. Define the association between component factories and components. For 
every component type, a singleton [GoF95] component factory can be defined 
to create instances of this component type. Two strategies can be applied to 
implement this association: 
§ One component factory interface per component type. In this strategy 

a separate factory interface is defined for every component type and used 
to instantiate the component type. One component type could offer a 
component factory interface with a single method create(). Another 
component type could offer a selection of different methods for creating 
components. The Factory Method pattern [GoF95] can be used to 
implement this strategy. It requires clients to handle many different 
component factory interfaces, however. 

§ One component factory interface for all component types. In this 
strategy there is only one component factory interface that all concrete 
component factories must implement. This design enables clients to 
create different components in a uniform manner. For example, when a 
client creates a new component, it only must know how to invoke the 
generic component factory interface. The Abstract Factory design pattern 
[GoF95] can be used to implement this strategy. 

1. Decide which functionality the factory will export. Regardless of the strategy 
selected in implementation activity 7.1 (160), the following issues must be 
addressed when specifying the interface of a particular component factory: 
§ There could be one or more different methods for creating new 

components. These creation methods are similar to constructors in 
object-oriented programming languages, such as C++ or Java, in that 
they instantiate and initialize component types. Different types of 
initialization information might be necessary to construct a new 
component instance. For each of these alternatives, a separate create 
method is introduced with its own, possibly empty, set of initialization 
parameters. 

§ Methods could be available for finding existing components rather than 
creating them for each invocation. If component instances are already 
available and if they can be identified uniquely, a factory can be 
implemented using the Manager pattern [Som97]. In this case, its find() 
methods are passed a set of conditions as arguments, such as the 
primary key associated with each component. It then retrieves one or 
more components that adhere to the condition arguments. 

§ Clients can specify component usage policies. For example, one 
policy could provide a singleton implementation for a particular 
component type. Another policy could determine whether a specific 
component is expected to maintain its state persistently. 

§ Life-cycle management support for components is another candidate 
for the component factory interface. For example, methods to release 
existing components might be included in the component factory. 
 

2. For every managed object in our TMN framework, we provide a separate 
component factory, implemented as a singleton. The interface IFactory 
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is generic and is supported by all concrete component factory 
implementations. It contains the create() method that clients use to 
instantiate a new component and to return the IRoot interface to the 
caller: 

3.     // Definition of Factory: 
4.     public interface Factory { 
5.         IRoot create (); 
6.     } 

7. Every concrete component factory must implement this factory interface: 
8.     // Definition of ConnectionFactory: 
9.     public class ConnectionFactory implements Factory 

{ 
10.         // Implement the Singleton pattern. 
11.         private static ConnectionFactory theInstance; 
12.  
13.         private ConnectionFactory () { } 
14.  
15.         public static ConnectionFactory getInstance () 

{ 
16.             if (theInstance == null) 
17.                 theInstance = new ConnectionFactory 

(); 
18.             return theInstance; 
19.         } 
20.  
21.         // Component creation method. 
22.         public IRoot create () { 
23.             return new ConnectionComponent (); 
24.         } 
25.     } 

 
 

27. Introduce a component factory finder. As the number of component types 
increases, the problem of how to find the associated component factories 
arises. One way to resolve this is to define a global component factory finder. 
This finder could maintain the associations between component types and 
their component factories, as specified in implementation activity 7.1 (160). 

To obtain the component factory for a particular component type, clients must 
indicate to the component factory finder which component type they require. 
Component types must therefore be identified uniquely. A common way to 
implement this identification mechanism is to introduce a primary key type for 
every component type. This key type helps to associate component instances 
with instances of the primary key type uniquely. 
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For example, each component instance might be associated uniquely with an 
integer value. This integer value might be passed as an argument to a 
particular find() method of the component factory, which uses the primary 
key to obtain the associated component instance. For this purpose, the 
component factory can apply the Manager pattern [Som97] and map from 
primary key values to component instances. To simplify client programming, 
the same primary key type can be used to identify both component instances 
and extension interfaces, as shown in implementation activity 3.1 (151). In 
Microsoft COM, for example, globally-unique identifiers (GUIDs) identify both 
extension interfaces and component types. 

When clients request a specific component factory from the component factory 
finder, the factory finder returns the interface of the component factory. By 
using this interface, clients can instantiate the components they need. If there 
is only one global component factory finder in the system, use the Singleton 
pattern [GoF95] to implement it. 

The component factory finder can optionally provide a trading mechanism 
[OMG98b]. In this case, clients do not pass a concrete component type to the 
component factory finder. Instead, they specify properties that can be used by 
the component factory finder to retrieve an appropriate component factory. For 
example, a client might specify certain properties of extension interfaces in 
which it is interested to a component factory finder. The component factory 
finder then locates a component type that implements all the requested 
interfaces. 

 

Management application clients in our TMN system need not know all 
component factories. We therefore introduce a component factory finder 
that is responsible for managing a hash table with component-to-factory 
associations. Clients need only know where the single component factory 
finder is located. To identify components uniquely, we apply the same 
strategy used for interfaces in implementation activity 6.5 (158).  

A class ComponentID is introduced that contains integer values, each 
associated with a single component factory: 
    // Definition of ComponentID: 
    public class ComponentID { 
        public final static int CID_PORT = 0; 
        public final static int CID_CONN = 1; 
    } 

The component factory finder is implemented as a singleton. It contains 
two methods that are publicly accessible. The registerFactory() 
method must be called—either by clients or by components—to register 
component factories with the component factory finder. The 
findFactory() method is used to search for existing component 
factories. 
    // Definition of FactoryFinder: 
    import java.util.*; 
 
    public class FactoryFinder { 
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        // ID/factory associations are stored in a 
hash table. 
        Hashtable table = null; 
        // Implement the Singleton pattern. 
        private static FactoryFinder theInstance; 
 
        public static FactoryFinder getInstance () { 
            if (theInstance == null) { 
                theInstance = new FactoryFinder (); 
            } 
            return theInstance; 
        } 
 
        private FactoryFinder () { 
            table = new Hashtable (); 
        } 
 
        // Component factory is registered with the 
finder. 
        public void registerFactory (int ID, Factory 
f) { 
            table.put (new Integer (ID), f); 
        } 
 
        // Finder is asked for a specific component 
factory. 
        public Factory findFactory (int ID) 
            throws UnknownEx { 
            Factory f = (Factory) table.get 
                 (new Integer (ID)); 
            if (f == null) throw new UnknownEx (ID); 
            else return f; 
        } 
    } 
 

 

60. Implement the clients. Clients use functionality provided by components. They may 
also act as containers[8] for these components. To implement clients apply the 
following steps: 
§ First determine which component functionality they require. For example, 

determine if there are existing components that cover some or all of the 
functionality the clients are expected to provide. 
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§ Identify which components should be composed together and determine which 
components can use other components. 

§ Determine if there are any subsystems within the client application that might 
be used in other applications and separate these into new component types. 

After evaluating these issues, integrate the client application using the components 
identified via the analysis outlined in the implementation activities above. 

 

In our example, to localize the initialization of our TMN system we provide a class 
ComponentInstaller within a client that creates all the necessary component 
factories and registers them with the component factory finder: 
    class ComponentInstaller { 
        static public void install () { 
            // First, get the global factory finder 
instance. 
            FactoryFinder finder = 
                FactoryFinder.getInstance (); 
            // Ask the factory finder for the comp. 
factories 
            PortFactory pFactory = 
                PortFactory.getInstance (); 
            ConnectionFactory cFactory = 
                ConnectionFactory.getInstance (); 
 
            // Register both component factories. 
            finder.registerFactory 
                (componentID.CID_PORT, pFactory); 
            finder.registerFactory 
                (componentID.CID_CONN, cFactory); 
        } 
    } 

The main class of the client application defines the methods dumpAll() and 
drawAll(). Both methods are passed an array of components as a parameter. 
They then iterate through the array querying each component for the extension 
interface IDump and IRender, respectively, calling the methods dump() and 
render() if the query succeeds. This example shows that polymorphism can be 
supported by using interface inheritance rather than implementation inheritance. 
    // This client instantiates three components: two ports 
    // and a connection between them. 
    public class Client { 
        private static void dumpAll (IRoot components[]) 
            throws UnknownEx { 
            for (int i = 0; i < components.length; ++i) { 
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                IDump d = (IDump) 
                     components[i].getExtension 
                         (InterfaceID.ID_DUMP); 
                System.out.println (d.dump ()); 
            } 
        } 
 
        private static void drawAll (IRoot components[]) 
            throws UnknownEx { 
            for (int i = 0; i < components.length; ++i) { 
                IRender r = (IRender) 
                     components[i].getExtension 
                         (InterfaceID.ID_RENDER); 
                r.render (); 
            } 
        } 

The main() method is the entry point into the client application. It first initializes 
the TMN system using the initialization component introduced above, then it 
retrieves the required component factories representing ports and connections 
between ports: 
         public static void main (String args[]) { 
             Factory pFactory = null; 
             Factory cFactory = null; 
 
             // Register components with the factory finder. 
             ComponentInstaller.install (); 
 
             // access factory finder. 
             FactoryFinder finder = 
                  FactoryFinder.getInstance (); 
             try { 
                 // Get factories. 
                 pFactory = finder.findFactory 
                              (componentID.CID_PORT); 
                 cFactory = finder.findFactory 
                              (componentID.CID_CONN); 
             } 
             catch (UnknownEx ex) { 
                 System.out.println (ex.getID () + 
                                       "not found!"); 
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                 System.exit (1); 
             } 
 
             // Create two ports and a connection. 
             IRoot port1Root = pFactory.create (); 
             IRoot port2Root = pFactory.create (); 
             IRoot connectionRoot = cFactory.create (); 

Note that a client could type cast port1Root and port2Root below instead of 
calling the getExtension() method, because the components use interface 
inheritance to implement the extension interfaces. However, this design would 
tightly couple the client implementation and the component implementation. If we 
later restructured the components to use Java inner classes rather than multiple 
interface inheritance, for example, all the client code would break. 
            try { 
                // Initialize port 1. 
                IPort p1 = (IPort) port1Root.getExtension 
                                  (InterfaceID.ID_PORT); 
                p1.setHost ("Machine A"); 
                p1.setPort (PORT_NUMBER); 
                // ...Initialize port 2 and connection... 
 
                // Build array of components. 
                IRoot components[] = { c, p1, p2 }; 
                // Dump all components. 
                dumpAll (components); 
                // Draw all components. 
                drawAll (components); 
            } catch (UnknownEx error) { 
                System.out.println ("Interface " 
                    +error.getID () + " not supported!"); 
            } catch (CommErrorEx commError) { 
                System.out.println ("Connection problem"); 
            } 
        } 
    } 
 

 

Example Resolved 

Shortly after delivering the component-based management application console to their 
customers, the TMN framework developers receive two change requests. The first request 
requires each component in the TMN framework to load and store its state from a persistent 
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database. The second request requires a new component with a star connection topology. 
This topology denotes a set of network elements that are all connected to a central element, 
yielding a star-like shape. 

To satisfy these change requests, the TMN framework developers can apply the Extension 
Interface pattern: 
§ To support loading and storing component state from a persistent database, a new 

extension interface called IPersistence is defined: 
§   public interface IPersistence extends IRoot { 
§       public PersistenceId store (); 
§       public load (PersistenceId persistenceId); 
§   } 

Every existing component is then enhanced to implement this interface. In detail, a 
component implementor must add all methods defined in the new interface to the 
component implementation. The amount of work necessary to extend a component with 
a new extension interface directly depends on the particular extension interface added 
to the component. The persistence example requires just a few database calls to 
implement the new interface. 

§ To support star connection topologies, we define an IConnectionStar interface: 
§   public interface IConnectionStar extends IRoot { 
§       public void setAllPorts (IPort ports []); 
§       public void setPort (long whichPort, IPort port); 
§       public IPort getPort (long whichPort); 
§   } 

All TMN framework components must then implement the IRender, IDump, 
IConnectionStar, IManagedObject and IPersistence interfaces. 

The InterfaceID class defined in implementation activity 6.5 (158) is extended with 
identifiers for the new interfaces.  

If a client needs to access the new functionality, it can retrieve any extension interface from 
the component, query the component for a new extension interface and use the new service: 
    IRoot iRoot = /* ... */; // use any component interface 
    try { 
        PersistenceId storage = /* ... */; 
        IPersistence iPersistence = 
            iRoot.getExtension (InterfaceID.ID_PERSISTENCE); 
        PersistenceId id = iPersistence.load (storage); 
    } catch (UnknownEx ue) { 
        // Provide exception handling code here when 
        // <getExtension> fails to return <IPersistence>. 
    } 

Variants 
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Extension Object [PLoPD3]. In this variant there is no need for a component factory because 
each component is responsible for returning interface references to clients. Extension 
objects are well-suited for components that are built using a single object-oriented 
programming language, such as C++ or Java, where components derive from all interfaces 
they implement. Type-safe downcasting can be used to retrieve component interfaces. In 
these language-specific implementations component factories are not needed because 
component classes map directly to language classes, which are themselves responsible for 
instance creation. 

Distributed Extension Interface. This variant features an additional type of participant, 
servers, which host the implementations of components. Each server contains the factory as 
well as the implementation of all supported extension interfaces. A single server can host 
more than one component type. In distributed systems, clients and servers do not share the 
same address space. It is the task of the server to register and unregister its components 
with a locator service, so that clients or factory finders can retrieve remote components. 

In distributed systems there is a physical separation of interfaces and implementations. 
Client proxies can be introduced to attach clients to remote extension interfaces 
transparently [POSA1] [GoF95]. Client-side proxies implement the same extension 
interfaces as the components they represent. They also shield clients from tedious and 
error-prone communication mechanisms by forwarding method invocations over the network 
to remote components. Proxies can be defined so that clients can leverage the Extension 
Object variant outlined above. To enhance performance, client proxies can provide co-
located [WSV99] local implementations of general-purpose extension interfaces to reduce 
network traffic, in accordance with the Half Object plus Protocol pattern [Mes95]. 

In distributed object computing middleware [OMG98c], proxies can be implemented 
automatically via an interface definition language (IDL) compiler. An IDL compiler parses 
files containing interface definitions and generates source code that performs various 
network programming tasks, such as marshaling, demarshaling, and error-checking [GS98]. 
The use of interface definition languages simplifies the connection of components and 
clients written in different programming languages. To ensure this degree of distribution and 
location transparency, the underlying component infrastructure can instantiate the Broker 
architectural pattern [POSA1]. 

Extension Interface with Access Control. In this variant the client must authenticate itself to 
the extension interface. Client access to an extension interface can be restricted by this 
method. For example, an administrator might be granted access to all interfaces of a 
component, whereas another client would be allowed to invoke methods on a subset of 
interfaces that provided specific functionality. 

Asymmetric Extension Interface. This variant specifies one distinguished interface that is 
responsible for providing access to all other interfaces. In contrast to the symmetric case, 
clients are not capable of navigating from an extension interface to any other extension 
interface. They must instead use the distinguished extension interface to navigate to any 
other extension interface. This interface may be provided by the component itself, as defined 
by the Extension Object variant. 

Known Uses 

Microsoft's COM/COM+ technology is based upon extension interfaces [Box97]. Each COM 
class implementation must provide a factory interface called IClassFactory that defines 
the functionality to instantiate new instances of the class. When the COM run-time activates 
the component implementation, it receives a pointer to the associated factory interface. 
Using this interface, clients can to create new component instances. 
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Each COM class implements one or more interfaces that are derived from a common root 
interface called IUnknown. The IUnknown interface contains the method 
QueryInterface(REFIID, void**), which allows clients to retrieve particular extension 
interfaces exported by a component. The first parameter to QueryInterface() is a unique 
identifier that determines which extension interface to return to a client. If the component 
implements the interface requested by a client, it returns an interface pointer in the second 
parameter, otherwise an error is returned. 

This activity is called interface negotiation, because clients can interrogate components to 
determine whether they support particular extension interfaces. COM/COM+ implements the 
Distributed Extension Interface variant and allows clients and components to be developed 
in any programming language supported by Microsoft, including Visual Basic, C, C++ and 
Java. 

CORBA 3 [Vin98] introduces a CORBA Component Model (CCM) [OMG99a] in which each 
component may provide more than one interface. Clients first retrieve a distinguished 
interface, the component's so-called 'equivalent' interface. They then use specific 'provide' 
methods to navigate to one of the extension interfaces, called 'facets' in CCM. Every CCM 
interface must implement the method get_component(), which is similar to COM's 
QueryInterface() method described above. It is therefore always possible to navigate 
from a facet back to the component's equivalent interface. 

To obtain a reference to an existing component, or to create a new component, clients 
access a so-called 'home' interface, which is associated with a single component type. This 
interface represents the component factory interface, as defined by CORBA components 
and Enterprise JavaBeans. The factory finder within CCM is implemented by the 
ComponentHomeFinder, whereas EJB relies on the Java Naming and Directory Interface 
(JNDI) for the same purpose. CORBA components and the Java-centric subset Enterprise 
JavaBeans (EJB) [MaHa99] use the Asymmetric Extension Interface variant. 

OpenDoc [OHE96] introduces the concept of adding functionality to objects using 
extensions. Functionality is provided to retrieve extensions in the root interface, as well as 
for reference counting. OpenDoc implements the Extension Object variant of Extension 
Interface. 

Consequences 

The Extension Interface pattern offers the following benefits: 

Extensibility. Extending the functionality of a component should only require adding new 
extension interfaces. Existing interfaces remain unchanged, so existing clients should not be 
affected adversely. Developers can prevent interface bloating by using multiple extension 
interfaces rather than merging all methods into a single base interface. 

Separation of concerns. Semantically-related functionality can be grouped together into 
separate extension interfaces. A component can play different roles for the same or different 
clients by defining a separate extension interface for each role. 

Polymorphism is supported without requiring inheritance from a common interface. If two 
components implement the same extension interface, a client of that particular extension 
interface need not know which component actually provides the functionality. Similarly, 
multiple components can implement the same set of interfaces, thereby allowing them to 
exchange component implementations transparent. 

Decoupling of components and their clients. Clients access extension interfaces rather than 
component implementations. There is therefore no (tight) coupling between a component 
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implementation and its clients. New implementations of extension interfaces can thus be 
provided without breaking existing client code. It is even possible to separate the 
implementation of a component from its interfaces by using proxies [POSA1] [GoF95]. 

Support for interface aggregation and delegation. Components can aggregate other 
components and offer the aggregated interfaces as their own. The aggregate interfaces 
delegate all client requests to the aggregated component that implements the interface. This 
allows the aggregate interfaces to assume the identity of every aggregated component and 
to reuse their code. However, a pre-condition for this design is that the aggregate interface 
component and its constituent aggregated components collaborate via the 
getExtension() method. 

However, the Extension Interface pattern also can incur the following liabilities: 

Increased component design and implementation effort. The effort required to develop and 
deploy components can be non-trivial. The component programming effort is particularly 
tedious when the Extension Interface pattern is not integrated transparently in a particular 
programming language. For example, it is relatively straightforward to instantiate the pattern 
using Java or C++. Implementing it in C is extremely complex, however, due to the lack of 
key language features such as inheritance or polymorphism. 

Increased client programming complexity. The Extension Interface pattern makes clients 
responsible for determining which interfaces are suitable for their particular use case. Clients 
must therefore perform a multi-step protocol to obtain a reference to an extension interface 
before using it. A client must also keep track of a variety of bookkeeping details, such as 
interface or instance identifiers and reference counts, that can obscure the client's core 
application logic. 

Additional indirection and run-time overhead. Clients never access components directly, 
which may reduce run-time efficiency slightly. Similarly, run-time reference counting of 
initialized components is complex and potentially inefficient in multi-threaded or distributed 
environments. In certain cases, however, this additional indirection is negligible, particularly 
when accessing components across highlatency networks. 

See Also 

Components and clients may not reside in the same address space, be written in the same 
programming language or be deployed in binary form, but it still may be necessary to 
interconnect them. The Proxy pattern [POSA1] [GoF95] can be applied in this context to 
decouple a component's interface from its implementation. For a more sophisticated and 
flexible solution, the Broker pattern [POSA1] can be applied. In this pattern components act 
as servers and the broker, among its other responsibilities, provides a globally-available 
factory finder service. 

The Extension Object variant of the Extension Interface pattern is introduced in [PLoPD3]. 
This variant is applicable whenever the object model of the underlying programming 
language can be used to implement a non-distributed component extension mechanism. In 
this case, 
§ Components and component factories map directly to programming language classes 
§ Component interfaces map to programming language interfaces and 
§ The retrieval of component interfaces is implemented using typesafe downcasting 
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Microsoft COM paradigm, and for identifying the fiduciary benefits of networking and 
distributed object computing in the days when he was Doug Schmidt's office-mate in 
graduate school at the University of California, Irvine. 

[7]Note that a component may provide interfaces, such as IManagedObject, that are 
accessed locally by the client, while their actual implementation resides on a remote network 
node. By using the Proxy pattern [POSA1] [GoF95], distribution can be transparent to 
clients. For clarity we assume that all interfaces have local implementations in this example. 
For information on how proxies can be introduced to support distributed environments, refer 
to the Distributed Extension Interface variant. 

[8]Typically a component is loaded into the address space of a run-time environment that 
provides resources such as CPU time and memory to its components. This runtime 
environment is often called a container, because it shields components from the details of 
their underlying infrastructure, such as an operating system. In non-distributed use cases, 
clients can contain components and therefore act as containers. 
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Chapter 3: Event Handling Patterns 
Overview 

"The power to guess the unseen from the seen, to trace the implications of 
things, to judge the whole piece by the pattern ... this cluster of gifts may 

almost be said to constitute experience."  

Henry James, Jr. (1843–1916) — English Author  

This chapter presents four patterns that describe how to initiate, receive, demultiplex, 
dispatch, and process events in networked systems: Reactor, Proactor, Asynchronous 
Completion Token, and Acceptor-Connector.  

Event-driven architectures are becoming pervasive in networked software applications. The 
four patterns in this chapter help to simplify the development of flexible and efficient event-
driven applications. The first pattern can be applied to develop synchronous service 
providers: 
§ The Reactor architectural pattern (179) allows event-driven applications to demultiplex 

and dispatch service requests that are delivered to an application from one or more 
clients. The structure introduced by the Reactor pattern 'inverts' the flow of control within 
an application, which is known as the Hollywood Principle— 'Don't call us, we'll call you' 
[Vlis98a]. 

It is the responsibility of a designated component, called reactor, not an application, to 
wait for indication events synchronously, demultiplex them to associated event handlers 
that are responsible for processing these events, and then dispatch the appropriate 
hook method on the event handler. In particular, a reactor dispatches event handlers 
that react to the occurrence of a specific event. Application developers are therefore 
only responsible for implementing concrete event handlers and can reuse the reactor's 
demultiplexing and dispatching mechanisms. 

Although the Reactor pattern is relatively straightforward to program and use, it has several 
constraints that can limit its applicability. In particular it does not scale to support a large 
number of simultaneous clients and/or long-duration client requests well, because it 
serializes all event handler processing at the event demultiplexing layer. The second pattern 
in this chapter can help alleviate these limitations for event-driven applications that run on 
platforms that support asynchronous I/O efficiently: 
§ The Proactor architectural pattern (215) allows event-driven applications to efficiently 

demultiplex and dispatch service requests triggered by the completion of asynchronous 
operations. It offers the performance benefits of concurrency without incurring some of 
its liabilities. 

In the Proactor pattern, application components—represented by clients and completion 
handlers—are proactive entities. Unlike the Reactor pattern (179), which waits passively 
for indication events to arrive and then reacts, clients and completion handlers in the 
Proactor pattern instigate the control and data flow within an application by initiating one 
or more asynchronous operation requests proactively on an asynchronous operation 
processor. 

When these asynchronous operations complete, the asynchronous operation processor 
and and a designated proactor component collaborate to demultiplex the resulting 
completion events to their associated completion handlers and dispatch these handlers' 
hook methods. After processing a completion event, a completion handler may initiate 
new asynchronous operation requests proactively. 
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The remaining two design patterns in this chapter can be applied in conjunction with the first 
two architectural patterns to cover a broader range of event-driven application concerns. 

The next pattern is particularly useful for optimizing the demultiplexing tasks of a Proactor 
(215) implementation, because it addresses an important aspect of asynchronous 
application design: 
§ The Asynchronous Completion Token design pattern (261) allows an application to 

demultiplex and process efficiently the responses of asynchronous operations it invokes 
on services. 

The final pattern in this chapter is often used in conjunction with the Reactor (179) pattern for 
networking applications: 
§ The Acceptor-Connector design pattern (285) decouples the connection and 

initialization of cooperating peer services in a networked system from the processing 
they perform once connected and initialized. Acceptor-Connector allows applications to 
configure their connection topologies in a manner largely independent of the services 
they provide. The pattern can be layered on top of Reactor to handle events associated 
with establishing connectivity between services. 

All four patterns presented in this chapter are often applied in conjunction with the patterns 
presented in Chapter 5, Concurrency Patterns. Other patterns in the literature that address 
event handling include Event Notification [Rie96], Observer [GoF95], and Publisher-
Subscriber [POSA1]. 

 
Reactor 
The Reactor architectural pattern allows event-driven applications to demultiplex and 
dispatch service requests that are delivered to an application from one or more clients. 

Also known as 

Dispatcher, Notifier 

Example 

Consider an event-driven server for a distributed logging service. Remote client applications 
use this logging service to record information about their status within a distributed system. 
This status information commonly includes error notifications, debugging traces, and 
performance diagnostics. Logging records are sent to a central logging server, which can 
write the records to various output devices, such as a console, a printer, a file, or a network 
management database. 
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Clients communicate with the logging server using a connection-oriented protocol, such as 
TCP [Ste98]. Clients and the logging service are thus bound to transport endpoints 
designated by full associations consisting of the IP addresses and TCP port numbers that 
uniquely identify clients and the logging service. 

The logging service can be accessed simultaneously by multiple clients, each of which 
maintains its own connection with the logging server. A new client connection request is 
indicated to the server by a CONNECT event. A request to process logging records within the 
logging service is indicated by a READ event, which instructs the logging service to read new 
input from one of its client connections. The logging records and connection requests issued 
by clients can arrive concurrently at the logging server. 

One way to implement a logging server is to use some type of multi-threading model. For 
example, the server could use a 'thread-per-connection' model that allocates a dedicated 
thread of control for each connection and processes logging records as they arrive from 
clients. Using multi-threading can incur the following liabilities, however: 
§ Threading may be inefficient and non-scalable due to context switching, 

synchronization, and data movement among CPUs. 
§ Threading may require the use of complex concurrency control schemes throughout 

server code. 
§ Threading is not available on all operating systems, nor do all operating systems 

provide portable threading semantics. 
§ A concurrent server may be better optimized by aligning its threading strategy to 

available resources, such as the number of CPUs, rather than to the number of clients 
is services concurrently. 

These drawbacks can make multi-threading an inefficient and overly-complex solution for 
developing a logging server. To ensure adequate quality of service for all connected clients, 
however, a logging server must handle requests efficiently and fairly. In particular, it should 
not service just one client and starve the others. 

Context 

An event-driven application that receives multiple service requests simultaneously, but 
processes them synchronously and serially. 

Problem 

Event-driven applications in a distributed system, particularly servers,[1] must be prepared to 
handle multiple service requests simultaneously, even if those requests are ultimately 
processed serially within the application. The arrival of each request is identified by a 
specific indication event, such as the CONNECT and READ events in our logging example. 
Before executing specific services serially, therefore, an event-driven application must 
demultiplex and dispatch the concurrently-arriving indication events to the corresponding 
service implementations.  

Resolving this problem effectively requires the resolution of four forces: 
§ To improve scalability and latency, an application should not block on any single 

source of indication events and exclude other event sources, because blocking on one 
event source can degrade the server's responsiveness to clients. 

§ To maximize throughput, any unnecessary context switching, synchronization, and 
data movement among CPUs should be avoided, as outlined in the Example section. 

§ Integrating new or improved services with existing indication event demultiplexing and 
dispatching mechanisms should require minimal effort. 

§ Application code should largely be shielded from the complexity of multi-threading and 
synchronization mechanisms. 
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Solution 

Synchronously wait for the arrival of indication events on one or more event sources, such 
as connected socket handles. Integrate the mechanisms that demultiplex and dispatch the 
events to services that process them. Decouple these event demultiplexing and dispatching 
mechanisms from the application-specific processing of indication events within the services. 

In detail: for each service an application offers, introduce a separate event handler that 
processes certain types of events from certain event sources. Event handlers register with a 
reactor, which uses a synchronous event demultiplexer to wait for indication events to occur 
on one or more event sources. When indication events occur, the synchronous event 
demultiplexer notifies the reactor, which then synchronously dispatches the event handler 
associated with the event so that it can perform the requested service. 

Structure 

There are five key participants in the Reactor pattern: 

Handles are provided by operating systems to identify event sources, such as network 
connections or open files, that can generate and queue indication events. Indication events 
can originate from external sources, such as CONNECT events or READ events sent to a 
service from clients, or internal sources, such as time-outs. When an indication event occurs 
on an event source, the event is queued on its associated handle and the handle is marked 
as 'ready'. At this point, an operation, such as an accept() or read(), can be performed 
on the handle without blocking the calling thread. 

 

Socket handles are used in the logging server to identify transport endpoints that receive 
CONNECT and READ indication events. A passive-mode transport endpoint and its 
associated socket handle listen for CONNECT indications events. The logging server then 
maintains a separate connection, and thus a separate socket handle, for each 
connected client. 
 

 

A synchronous event demultiplexer is a function called to wait for one or more indication 
events to occur on a set of handles—a handle set. This call blocks until indication events on 
its handle set inform the synchronous event demultiplexer that one or more handles in the 
set have become 'ready', meaning that an operation can be initiated on them without 
blocking. 

 

select() is a common synchronous event demultiplexer function for I/O events [Ste98] 
supported by many operating systems, including UNIX and Win32 platforms. The 
select() call indicates which handles in its handle set have indication events pending. 
Operations can be invoked on these handles synchronously without blocking the calling 
thread. 
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An event handler specifies an interface consisting of one or more hook methods [Pree95] 
[GoF95]. These methods represent the set of operations available to process application-
specific indication events that occur on handle(s) associated with an event handler. 

Concrete event handlers specialize the event handler and implement a specific service that 
the application offers. Each concrete event handler is associated with a handle that identifies 
this service within the application. In particular, concrete event handlers implement the hook 
method(s) responsible for processing indication events received through their associated 
handle. Any results of the service can be returned to its caller by writing output to the handle. 

 

The logging server contains two types of concrete event handlers: logging acceptor and 
logging handler. The logging acceptor uses the Acceptor-Connector pattern (285) to 
create and connect logging handlers. Each logging handler is responsible for receiving 
and processing logging records sent from its connected client. 
 

 

 

A reactor defines an interface that allows applications to register or remove event handlers 
and their associated handles, and run the application's event loop. A reactor uses its 
synchronous event demultiplexer to wait for indication events to occur on its handle set. 
When this occurs, the reactor first demultiplexes each indication event from the handle on 
which it occurs to its associated event handler, then it dispatches the appropriate hook 
method on the handler to process the event. 
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Note how the structure introduced by the Reactor pattern 'inverts' the flow of control within 
an application. It is the responsibility of a reactor, not an application, to wait for indication 
events, demultiplex these events to their concrete event handlers, and dispatch the 
appropriate hook method on the concrete event handler. In particular, a reactor is not called 
by a concrete event handler, but instead a reactor dispatches concrete event handlers, 
which react to the occurrence of a specific event. This 'inversion of control' is known as the 
Hollywood principle [Vlis98a]. 

Application developers are thus only responsible for implementing the concrete event 
handlers and registering them with the reactor. Applications can simply reuse the reactor's 
demultiplexing and dispatching mechanisms. 

The structure of the participants in the Reactor pattern is illustrated in the following class 
diagram: 

 

Dynamics 

The collaborations in the Reactor pattern illustrate how the flow of control oscillates between 
the reactor and event handler components: 
§ An application registers a concrete event handler with the reactor. At this point, the 

application also indicates the type of indication event(s) the event handler wants the 
reactor to notify it about, when such event(s) occur on the associated handle. 

§ The reactor instructs each event handler to provide its internal handle, in our example 
by invoking their get_handle() method. This handle identifies the source of indication 
events to the synchronous event demultiplexer and the operating system. 

§ After all event handlers are registered, the application starts the reactor's event loop, 
which we call handle_events(). At this point the reactor combines the handles from 
each registered event handler into a handle set. It then calls the synchronous event 
demultiplexer to wait for indication events to occur on the handle set. 
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§ The synchronous event demultiplexer function returns to the reactor when one or more 
handles corresponding to event sources becomes 'ready', for example when a Socket 
becomes 'ready to read'. 

§ The reactor then uses the ready handles as 'keys' to locate the appropriate event 
handler(s) and dispatch the corresponding hook method(s). The type of indication event 
that occurred can be passed as a parameter to the hook method. This method can use 
this type information to perform any additional application-specific demultiplexing and 
dispatching operations.[2]  

§ After the appropriate hook method within the event handler is dispatched, it processes 
the invoked service. This service can write the results of its processing, if any, to the 
handle associated with the event handler so that they can be returned to the client that 
originally requested the service. 

 

Implementation 

The participants in the Reactor pattern decompose into two layers: 
§ Demultiplexing/dispatching infrastructure layer components. This layer performs 

generic, application-independent strategies for demultiplexing indication events to event 
handlers and then dispatching the associated event handler hook methods. 

§ Application layer components. This layer defines concrete event handlers that perform 
application-specific processing in their hook methods. 

The implementation activities in this section start with the generic demultiplexing/dispatching 
infrastructure components and then cover the application components. We focus on a 
reactor implementation that is designed to demultiplex handle sets and dispatch hook 
methods on event handlers within a single thread of control. The Variants section describes 
the activities associated with developing concurrent reactor implementations. 

1. Define the event handler interface. Event handlers specify an interface consisting of 
one or more hook methods [Pree95]. These hook methods represent the set of 
services that are available to process indication events received and dispatched by 
the reactor. As described in implementation activity 5 (196), concrete event handlers 
are created by application developers to perform specific services in response to 
particular indication events. Defining an event handler interface consists two sub-
activities: 

1. Determine the type of the dispatching target. Two types of event handlers can 
be associated with a handle to serve as the target of a reactor's dispatching 
strategy: 
§ Event handler objects. In object-oriented applications a common way 

to associate an event handler with a handle is to create an event handler 
object. For example, the Reactor pattern implementation shown in the 
Structure section dispatches concrete event handler objects. Using an 
object as the dispatching target makes it convenient to subclass event 
handlers to reuse and extend existing components. Similarly, objects 
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make it easy to integrate the state and methods of a service into a single 
component. 

§ Event handler functions. Another strategy for associating an event 
handler with a handle is to register a pointer to a function with a reactor 
rather than an object. Using a pointer to a function as the dispatching 
target makes it convenient to register callbacks without having to define a 
new subclass that inherits from an event handler base class. 

The Adapter pattern [GoF95] can be employed to support both objects and 
pointers to functions simultaneously. For example, an adapter could be 
defined using an event handler object that holds a pointer to an event handler 
function. When the hook method was invoked on the event handler adapter 
object it could automatically forward the call to the event handler function that 
it encapsulates. 

2. Determine the event handling dispatch interface strategy. We must next define 
the type of interface supported by the event handlers for processing events. 
Assuming that we use event handler objects rather than pointers to functions, 
there are two general strategies: 
§ Single-method dispatch interface strategy. The class diagram in the 

Structure section illustrates an implementation of the Event_Handler 
base class interface that contains a single event handling method, which 
is used by a reactor to dispatch events. In this case, the type of the event 
that has occurred is passed as a parameter to the method. 

 

§ We specify a C++ abstract base class that illustrates the single-
method interface. We start by defining a useful type definition and 
enumeration literals that can be used by both the single-method and 
multi-method dispatch interface strategies: 

§   typedef unsigned int Event_Type; 
§   enum { 
§       // Types of indication events. 
§       READ_EVENT = 01,   // ACCEPT_EVENT aliases 

READ_EVENT 
§       ACCEPT_EVENT = 01, // due to <select> 

semantics. 
§       WRITE_EVENT = 02, TIMEOUT_EVENT = 04, 
§       SIGNAL_EVENT = 010, CLOSE_EVENT = 020 
§       // These values are powers of two so 
§       // their bits can be "or'd" together 

efficiently. 
§   }; 

§ Next, we implement the Event_Handler class: 
§   class Event_Handler { // Single-method interface. 
§   public: 
§       // Hook method dispatched by <Reactor> to 

handle 
§       // events of a particular type. 
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§       virtual void handle_event (HANDLE handle, 
§                                  Event_Type et) = 0; 
§       // Hook method that returns the I/O <HANDLE>. 
§       virtual HANDLE get_handle () const = 0; 
§   protected: 
§       // Virtual destructor is protected to ensure 
§       // dynamic allocation. 
§       virtual ~Event_Handler (); 
§   }; 

 
 

§ The single-method dispatch interface strategy makes it possible to 
support new types of indication events without changing the class 
interface. However, this strategy encourages the use of C++ switch and 
if statements in the concrete event handler's handle_event() method 
implementation to handle a specific event, which degrades its 
extensibility. 

§ Multi-method dispatch interface strategy. A different strategy for 
defining the Event_Handler dispatch interface is to create separate 
hook methods for handling each type of event, such as input events, 
output events, or time-out events. This strategy can be more extensible 
than the single-method dispatch interface because the demultiplexing is 
performed by a reactor implementation, rather than by a concrete event 
handler's handle_event() method implementation. 

 

§ The following C++ abstract base class illustrates the multi-method 
interface: 

§   class Event_Handler { 
§   public: 
§       // Hook methods dispatched by a <Reactor> to 

handle 
§       // particular types of events. 
§       virtual void handle_input (HANDLE handle) = 0; 
§       virtual void handle_output (HANDLE handle) = 

0; 
§       virtual void handle_timeout (const Time_Value 

&) = 0; 
§       virtual void handle_close (HANDLE handle, 
§                                  Event_Type et) = 0; 
§       // Hook method that returns the I/O <HANDLE>. 
§       virtual HANDLE get_handle () const = 0; 
§   }; 
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§ The multi-method dispatch interface strategy makes it easy to override 
methods in the base class selectively, which avoids additional 
demultiplexing via switch or if statements in the hook method 
implementation. However, this strategy requires pattern implementors to 
anticipate the event handler methods in advance. The various 
handle_*() methods in the Event_Handler dispatch interface above 
are tailored for I/O and time-out indication events supported by the 
select() function. This function does not encompass all the types of 
indication events, such as synchronization events that can be handled via 
the Win32 WaitForMultipleObjects() function [SchSt95]. 

3. Both the single-method and multi-method dispatch interface strategies are 
implementations of the Hook Method [Pree95] and Template Method [GoF95] 
patterns. Their intent is to provide well-defined hooks that can be specialized 
by applications and called back by lower-level dispatching code. This allows 
application programmers to define concrete event handlers using inheritance 
and polymorphism. 

2. Define the reactor interface. The reactor's interface is used by applications to register 
or remove event handlers and their associated handles, as well as to invoke the 
application's event loop. The reactor interface is often accessed via a Singleton 
[GoF95] because a single reactor is often sufficient for each application process. 

To shield applications from complex and non-portable demultiplexing and dispatching 
operating system platform mechanisms, the Reactor pattern can use the Bridge 
pattern [GoF95]. The reactor interface corresponds to the abstraction participant in 
the Bridge pattern, whereas a platform-specific reactor instance is accessed internally 
via a pointer, in accordance with the implementation hierarchy in the Bridge pattern. 

 

The reactor interface in our logging server defines an abstraction for registering 
and removing event handlers, and running the application's event loop reactively: 
    class Reactor { 
    public: 
        // Methods that register and remove <Event_Handler>s 
        // of particular <Event_Type>s on a <HANDLE>. 
        virtual void register_handler 
             (Event_Handler *eh, Event_Type et) = 0; 
        virtual void register_handler 
             (HANDLE h, Event_Handler *eh, Event_Type et) = 
0; 
        virtual void remove_handler 
             (Event_Handler *eh, Event_Type et) = 0; 
        virtual void remove_handler 
             (HANDLE h, Event_Type et) = 0; 
 
        // Entry point into the reactive event loop. The 
        // <timeout> can bound time waiting for events. 
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        void handle_events (Time_Value *timeout = 0); 
        // Define a singleton access point. 
        static Reactor *instance (); 
    private: 
        // Use the Bridge pattern to hold a pointer to 
        // the <Reactor_Implementation>. 
        Reactor_Implementation *reactor_impl_; 
    }; 
 

 

A typical reactor interface also defines a pair of overloaded methods, which we call 
register_handler(), that allow applications to register handles and event 
handlers at run-time with the reactor's internal demultiplexing table described in 
implementation activity 3.3 (193). In general, the method for registering event 
handlers can be defined using either or both of the following signatures: 
§ Two parameters. In this design, one parameter identifies the event handler and 

another that indicates the type of indication event(s) the event handler has 
registered to process. The method's implementation uses 'double-dispatching' 
[GoF95] to obtain a handle by calling back to an event handler method 
get_handle(). The advantage of this design is that the 'wrong' handle cannot 
be associated with an event handler accidentally. 

 

§ The following code fragment illustrates how double-dispatching is used in the 
register_handler() implementation: 

§   void Select_Reactor_Implementation::register_handler 
§            (Event_Handler *event_handler, 
§             Event_Type event_type) { 
§       // Double-dispatch to obtain the <HANDLE>. 
§       HANDLE handle = event_handler->get_handle (); 
§       // ... 
§   } 

 
 

§ Three parameters. In this design a third parameter is used to pass the handle 
explicitly. Although this design can be more error-prone than the two-parameter 
signature, it allows an application to register the same event handler for multiple 
handles, which may help to conserve memory. 

Both types of registration methods store their parameters into the appropriate 
demultiplexing table, as indicated by the handle. 

The reactor interface also defines two other overloaded methods, which we call 
remove_handler(), that can be used to remove an event handler from a reactor. 
For example, an application may no longer want to process one or more types of 
indication events on a particular handle. These methods remove the event handler 
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from a reactor's internal demultiplexing table so that it is no longer registered for any 
types of indication events. The signatures of the methods that remove an event 
handler can be passed either a handle or an event handler in the same way as the 
event handler registration methods. 

The reactor interface also defines its main entry point method, which we call 
handle_events(), that applications can use to run their reactive event loop. This 
method calls the synchronous event demultiplexer to wait for indication events to 
occur on its handle set. An application can use the timeout parameter to bound the 
time it spends waiting for indication events, so that the application will not block 
indefinitely if events never arrive. 

When one or more indication events occur on the handle set, the synchronous event 
demultiplexer function returns. At this point the handle_events() method 'reacts' 
by demultiplexing to the event handler associated with each handle that is now ready. 
It then dispatches the handler's hook method to process the event. 

3. Implement the reactor interface. Four sub-activities help implement the reactor 
interface defined in implementation activity 2 (189): 

0. Develop a reactor implementation hierarchy. The reactor interface abstraction 
illustrated in implementation activity 2 (189) delegates all its demultiplexing 
and dispatching processing to a reactor implementation, which plays the role 
of the implementation hierarchy in the Bridge pattern [GoF95]. This design 
makes it possible to implement and configure multiple types of reactors 
transparently. For example, a concrete reactor implementation can be created 
using different types of synchronous event demultiplexers, such as select() 
[Ste98], poll() [Rago93], or WaitForMultipleObjects() [Sol98], each 
of which provides the features and limitations described in implementation 
activity 3.2 (192). 

 

1. In our example the base class of the reactor implementation hierarchy is 
defined by the class Reactor_Implementation. We omit its declaration 
here because this class has essentially the same interface as the 
Reactor interface in implementation activity 2 (189). The primary 
difference is that its methods are pure virtual, because it forms the base of 
a hierarchy of concrete reactor implementations. 
 

 

3. Choose a synchronous event demultiplexer mechanism. The reactor 
implementation calls a synchronous event demultiplexer to wait for one or 
more indication events to occur on the reactor's handle set. This call returns 
when any handle(s) in the set are 'ready', meaning that operations can be 
invoked on the handles without blocking the application process. The 
synchronous event demultiplexer, as well as the handles and handle sets, are 
often existing operating system mechanisms, so they need not be developed 
by reactor implementors. 

 

4. For our logging server, we choose the select() function, which is a 
synchronous event demultiplexer that allows event-driven reactive 
applications to wait for an application-specified amount of time for various 
types of I/O events to occur on multiple I/O handles: 

5.     int select (u_int max_handle_plus_1, 
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6.                  fd_set *read_fds, fd_set *write_fds, 
7.                  fd_set *except_fds,timeval *timeout); 

8. The select() function examines the three 'file descriptor set' (fd_set) 
parameters whose addresses are passed in read_fds, write_fds, 
and except_fds to see if any of their handles are 'ready for reading', 
'reading for writing', or have an 'exceptional condition', respectively. 
Collectively, the handle values in these three file descriptor set parameters 
constitute the handle set participant in the Reactor pattern. 

9. The select() function can return multiple 'ready' handles to its caller in a 
single invocation. It cannot be called concurrently on the same handle set 
by multiple threads of control, however, because the operating system will 
erroneously notify more than one thread calling select() when I/O 
events are pending on the same subset of handles [Ste98]. In addition, 
select() does not scale up well when used with a large set of handles 
[BaMo98]. 
 

 

11. Two other synchronous event demultiplexers that are available on some 
operating systems are the poll() and WaitForMultipleObjects() 
functions. These two functions have similar scalability problems as select(). 
They are also less portable, because they are only available on platforms 
compatible with Win32 and System V Release 4 UNIX, respectively. The 
Variants section describes a unique feature of 
WaitForMultipleObjects() that allows it to be called concurrently on the 
same handle set by multiple threads of control. 

12. Implement a demultiplexing table. In addition to calling the synchronous event 
demultiplexer to wait for indication events to occur on its handle set, a reactor 
implementation maintains a demultiplexing table. This table is a manager 
[Som97] that contain a set of <handle, event handler, indication event types> 
tuples. Each handle serves as a 'key' that the reactor implementation uses to 
associate handles with event handlers in its demultiplexing table. This table 
also stores the type of indication event(s), such as CONNECT and READ, that 
each event handler has registered on its handle. 

The demultiplexing table can be implemented using various search strategies, 
such as direct indexing, linear search, or dynamic hashing. If handles are 
represented as a continuous range of integers, as they are on UNIX platforms, 
direct indexing is most efficient, because demultiplexing table tuple entries can 
be located in constant O(1) time. 

On platforms like Win32 where handles are non-contiguous pointers, direct 
indexing is infeasible. Some type of linear search or hashing must therefore be 
used to implement a demultiplexing table. 

 

I/O handles in UNIX are contiguous integer values, which allows our 
demultiplexing table to be implemented as a fixed-size array of structs. 
In this design, the handle values themselves index directly into the 
demultiplexing table's array to locate event handlers or event registration 
types in constant time. The following class illustrates such an 
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implementation that maps HANDLEs to Event_Handlers and 
Event_Types: 
    class Demux_Table { 
    public: 
        // Convert <Tuple> array to <fd_set>s. 
        void convert_to_fd_sets (fd_set &read_fds, 
                              fd_set &write_fds, 
                              fd_set &except_fds); 
 
        struct Tuple { 
            // Pointer to <Event_Handler> that 
processes 
            // the indication events arriving on the 
handle. 
            Event_Handler *event_handler_; 
 
            // Bit-mask that tracks which types of 
indication 
            // events <Event_Handler> is registered 
for. 
            Event_Type event_type_; 
        }; 
            // Table of <Tuple>s indexed by Handle 
values. The 
            // macro FD_SETSIZE is typically defined 
in the 
            // <sys/socket.h> system header file. 
            Tuple table_[FD_SETSIZE]; 
    }; 

In this simple implementation, the Demux_Table's table_ array is 
indexed by UNIX I/O handle values, which are unsigned integers ranging 
from 0 to FD_SETSIZE-1. Naturally, a more portable solution should 
encapsulate the UNIX-specific implementation details with a wrapper 
facade (47). 
 

 

13. Define the concrete reactor implementation. As shown in implementation 
activity 2 (189), the reactor interface holds a pointer to a concrete reactor 
implementation and forwards all method calls to it. 

 

14. Our concrete reactor implementation uses select() as its synchronous 
event demultiplexer and the Demux_Table class as its demultiplexing 
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table. It inherits from the Reactor_Implementation class and 
overrides its pure virtual methods: 

15.     class Select_Reactor_Implementation : 
16.         public Reactor_Implementation { 
17.     public: 

18. The handle_events() method defines the entry point into the reactive 
event loop of our Select_Reactor_Implementation: 

19.         void 
Select_Reactor_Implementation::handle_events 

20.             (Time_Value *timeout = 0) { 

21. This method first converts the Demux_Table tuples into fd_set handle 
sets that can be passed to select(): 

22.              fd_set read_fds, write_fds, except_fds; 
23.  
24.              demux_table.convert_to_fd_sets 
25.                   (read_fds,write_fds,except_fds); 

26. Next, select() is called to wait for up to timeout amount of time for 
indication events to occur on the handle sets: 

27.              HANDLE max_handle = // Max value in 
<fd_set>s. 

28.              int result = select 
29.                   (max_handle + 1, 
30.                    &read_fds, &write_fds, &except_fds, 
31.                    timeout); 
32.  
33.              if (result <= 0) 
34.                  throw /* handle error or timeout 

cases */; 

35. Finally, we iterate over the handle sets and dispatch the hook method(s) 
on event handlers whose handles have become 'ready' due to the 
occurrence of indication events: 

36.              for (HANDLE h = 0; h <= max_handle; ++h) 
{ 

37.                  // This check covers READ_ + 
ACCEPT_EVENTs 

38.                  // because they have the same enum 
value. 

39.                  if (FD_ISSET (&read_fds, h)) 
40.                      

demux_table.table_[h].event_handler_-> 
41.                          handle_event (h, READ_EVENT); 
42.  
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43.                  // ... perform the same dispatching 
logic for 

44.                  // WRITE_EVENTs and EXCEPT_EVENTs ... 
45.              } 

46. For brevity, we omit implementations of other methods in our reactor, for 
example those for registering and unregistering event handlers. 

47. The private portion of our reactor class maintains the event handler 
demultiplexing table: 

48.     private: 
49.         // Demultiplexing table that maps <HANDLE>s to 
50.         // <Event_Handler>s and <Event_Type>s. 
51.         Demux_Table demux_table_; 
52.     }; 

53. Note that this implementation only works on operating system platforms 
where I/O handles are implemented as contiguous unsigned integers, 
such as UNIX. Implementing this pattern on platforms where handles are 
non-contiguous pointers, such as Win32, therefore requires an additional 
data structure to keep track of which handles are in use. 
 

 

4. Determine the number of reactors needed in an application. Many applications can be 
structured using a single instance of the Reactor pattern. In this case the reactor can 
be implemented using the Singleton pattern [GoF95], as shown in implementation 
activity 2 (189). This pattern is useful for centralizing event demultiplexing and 
dispatching in one reactor instance within an application. 

However, some operating systems limit the number of handles that it is possible to 
wait for within a single thread of control. Win32, for example, allows 
WaitForMultipleObjects() to wait for a maximum of 64 handles in a single 
thread. To develop a scalable application in this case, it may be necessary to create 
multiple threads, each of which runs its own instance of the Reactor pattern.  

Allocating a separate reactor to each of the multiple threads can also be useful for 
certain types of real-time applications [SMFG00]. For example, different reactors can 
be associated with threads running at different priorities. This design provides 
different quality of service levels to process indication events for different types of 
synchronous operations. 

Note that event handlers are only serialized within an instance of the Reactor pattern. 
Multiple event handlers in multiple threads can therefore run in parallel. This 
configuration may necessitate the use of additional synchronization mechanisms if 
event handlers in different threads access shared state concurrently. The Variants 
section describes techniques for adding concurrency control to reactor and event 
handler implementations. 

5. Implement the concrete event handlers. Concrete event handlers derive from the event 
handler interface described in implementation activity 1 (186) to define application-
specific functionality. Three sub-activities must be addressed when implementing 
concrete event handlers. 



 169

0. Determine policies for maintaining state in concrete event handlers. An event 
handler may need to maintain state information associated with a particular 
request. In our example, this could occur when an operating system notifies 
the logging server that only part of a logging record was read from a Socket, 
due to the occurrence of transport-level flow control. As a result, a concrete 
event handler may need to buffer the logging record fragment and return to the 
reactor's event loop to await notification that the remainder of the record has 
arrived. The concrete event handler must therefore keep track of the number 
of bytes read so that it can append subsequent data correctly. 

1. Implement a strategy to configure each concrete event handler with a handle. 
A concrete event handler performs operations on a handle. The two general 
strategies for configuring handles with event handlers are: 
§ Hard-coded. This strategy hard-codes handles, or wrapper facades 

(47) for handles, into the concrete event handler. This strategy is 
straightforward to implement, but is less reusable if different types of 
handles or IPC mechanisms must be configured into an event handler for 
different use cases.  

 

§ The Example Resolved section illustrates the SOCK_Acceptor and 
SOCK_Stream classes, which are hard-coded into the logging server 
components. These two classes are wrapper facades that are defined 
in the Implementation section of the Wrapper Facade pattern (47). 
They encapsulate the stream Socket semantics of socket handles 
within a portable and type-secure object-oriented interface. In the 
Internet domain, stream Sockets are implemented using TCP. 
 

 

§ Generic. A more generic strategy is to instantiate wrapper facades 
(47) via parameterized types in a templatized event handler class. This 
strategy creates more flexible and reusable event handlers, although it 
may be unnecessarily general if a single type of handle or IPC 
mechanism is always used. 

 

§ The Acceptor, Connector, and Service_Handler classes 
shown in the Implementation section of the Acceptor-Connector 
pattern (285) are templates instantiated with wrapper facades. 
 

 

2. Implement concrete event handler functionality. Application developers must 
decide the processing actions to be performed to implement a service when its 
corresponding hook method is invoked by a reactor implementation. To 
separate connection-establishment functionality from subsequent service 
processing, concrete event handlers can be divided into several categories in 
accordance with the Acceptor-Connector pattern (285). In particular, service 
handlers implement application-specific services, whereas the reusable 
acceptors and connectors establish connections on behalf of these service 
handlers passively and actively, respectively. 

Example Resolved 
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Our logging server uses a singleton reactor implemented via the select() synchronous 
event demultiplexer along with two concrete event handlers—logging acceptor and logging 
handler—that accept connections and handle logging requests from clients, respectively. 
Before we discuss the implementation of the two concrete event handlers, which are based 
on the single-method dispatch interface strategy, we first illustrate the general behavior of 
the logging server using two scenarios.  

The first scenario depicts the sequence of steps performed when a client connects to the 
logging server: 

 

§ The logging server first registers the logging acceptor with the reactor (1) to handle 
indication events corresponding to client connection requests. The logging server next 
invokes the event loop method of the reactor singleton (2). 

§ The reactor singleton invokes the synchronous event demultiplexing select() 
operation to wait for connection indication events or logging data indication events to 
arrive (3). At this point, all further processing on the server is driven by the reactive 
demultiplexing and dispatching of event handlers. 

§ A client sends a connection request to the logging server (4), which causes the reactor 
singleton to dispatch the logging acceptor's handle_event() hook method (5) to 
notify it that a new connection indication event has arrived. 

§ The logging acceptor accepts the new connection (6) and creates a logging handler to 
service the new client (7). 

§ The logging handler registers its socket handle with the reactor singleton (8) and 
instructs the reactor to notify it when the reactor receives an indication event signaling 
that the Socket is now 'ready for reading'. 

After the client is connected, it can send logging records to the server using the socket 
handle that was connected in step 6.  

The second scenario therefore depicts the sequence of steps performed by the reactive 
logging server to service a logging record: 
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§ A client sends a logging record request (1), which causes the server's operating 
system to notify the reactor singleton that an indication event is pending on a handle it is 
select()'ing on. 

§ The reactor singleton dispatches the handle_event() method of the logging handler 
associated with this handle (2), to notify it that the new indication event is intended for it. 

§ The logging handler reads the record from the Socket in a non-blocking manner (3). 
Steps 2 and 3 are repeated until the logging record has been completely received from 
the socket handle. 

§ The logging handler processes the logging record and writes it to the standard output 
of the logging server (4), from which it can be redirected to the appropriate output 
device. 

§ The logging handler returns control back to the reactor's event loop (5), which 
continues to wait for subsequent indication events. 

The following code implements the concrete event handlers for our logging server example. 
A Logging_Acceptor class provides passive connection establishment and a 
Logging_Handler class provides application-specific data reception and processing. 

The Logging_Acceptor class is an example of the acceptor component in the Acceptor-
Connector pattern (285). It decouples the task of connection establishment and service 
initialization from the tasks performed after a connection is established and a service is 
initialized. The pattern enables the application-specific portion of a service, such as the 
Logging_Handler, to vary independently of the mechanism used to establish the 
connection and initialize the handler. 

A Logging_Acceptor object accepts connection requests from client applications 
passively and creates client-specific Logging_Handler objects, which receive and process 
logging records from clients. Note that Logging_Handler objects maintain sessions with 
their connected clients. A new connection is therefore not established for every logging 
record. 

The Logging_Acceptor class inherits from the 'single-method' dispatch interface variant 
of the Event_Handler base class that was defined in implementation activity 1.2 (187). 
The Logging_Acceptor constructor registers itself with a reactor for ACCEPT events: 
    class Logging_Acceptor : public Event_Handler { 
    public: 
        Logging_Acceptor (const INET_Addr &addr, 
                          Reactor *reactor): 
            acceptor_ (addr), reactor_ (reactor) { 
            reactor_->register_handler (this, ACCEPT_EVENT); 
        } 

Note that the register_handler() method 'double dispatches' to the 
Logging_Acceptor's get_handle() method to obtain its passive-mode socket handle. 
From this point, whenever a connection indication arrives the reactor dispatches the 
Logging_Acceptor's handle_event() method, which is a factory method [GoF95]: 
        virtual void handle_event 
            (HANDLE, Event_Type event_type) { 
            // Can only be called for an ACCEPT event. 
            if (event_type == ACCEPT_EVENT) { 
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                SOCK_Stream client_connection; 
 
                // Accept the connection. 
                acceptor_.accept (client_connection); 
 
                // Create a new <Logging_Handler>. 
                Logging_Handler *handler = new 
                    Logging_Handler (client_connection, 
                                      reactor_); 
            } 
        } 

The handle_event() hook method invokes the accept() method of the 
SOCK_Acceptor, which initializes a SOCK_Stream. After the SOCK_Stream is connected 
with the new client passively, a Logging_Handler object is allocated dynamically in the 
logging server to process the logging requests. 

The final method in this class returns the I/O handle of the underlying passive-mode socket: 
         virtual HANDLE get_handle () const { 
             return acceptor_.get_handle (); 
         } 

This method is called by the reactor singleton when the Logging_Acceptor is registered. 
The private portion of the Logging_Acceptor class is hard-coded to contain a 
SOCK_Acceptor wrapper facade (47): 
     private: 
         // Socket factory that accepts client connections. 
         SOCK_Acceptor acceptor_; 
 
         // Cached <Reactor>. 
         Reactor *reactor_; 
     }; 

The SOCK_Acceptor handle factory enables a Logging_Acceptor object to accept 
connection indications on a passive-mode socket handle that is listening on a transport 
endpoint. When a connection arrives from a client, the SOCK_Acceptor accepts the 
connection passively and produces an initialized SOCK_Stream. The SOCK_Stream is then 
uses TCP to transfer data reliably between the client and the logging server. 

The Logging_Handler class receives and processes logging records sent by a client 
application. As with the Logging_Acceptor class shown above, the Logging_Handler 
inherits from Event_Handler so that its constructor can register itself with a reactor to be 
dispatched when READ events occur: 
    class Logging_Handler : public Event_Handler { 
    public: 
        Logging_Handler (const SOCK_Stream &stream, 
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                          Reactor *reactor): 
            peer_stream_ (stream) { 
            reactor->register_handler (this, READ_EVENT); 
    } 

Subsequently, when a logging record arrives at a connected Socket and the operating 
system generates a corresponding READ indication event, the reactor dispatches the 
handle_event() method of the associated Logging_Handler automatically: 
         virtual void handle_event (HANDLE, 
                                Event_Type event_type) { 
             if (event_type == READ_EVENT) { 
                 Log_Record log_record; 
 
                 // Code to handle "short-reads" omitted. 
                 peer_stream_.recv (&log_record, 
                                    sizeof log_record); 
 
                 // Write logging record to standard output. 
                 log_record.write (STDOUT); 
             } 
             else if (event_type == CLOSE_EVENT) { 
                 peer_stream_.close (); 
 
                 // Deallocate ourselves. 
                 delete this; 
             } 
         } 

The handle_event() method receives, processes, and writes the logging record[3] to the 
standard output (STDOUT). Similarly, when the client closes down the connection, the reactor 
passes the CLOSE event flag, which informs the Logging_Handler to shut down its 
SOCK_Stream and delete itself. The final method in this class returns the handle of the 
underlying data-mode stream socket: 
         virtual HANDLE get_handle () const { 
             return peer_stream_.get_handle (); 
         } 

This method is called by the reactor when the Logging_Handler is registered. The private 
portion of the Logging_Handler class is hard-coded to contain a SOCK_Stream wrapper 
facade (47): 
    private: 
        // Receives logging records from a connected client. 
        SOCK_Stream peer_stream_; 
    }; 
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The logging server contains a single main() function that implements a single-threaded 
logging server that waits in the reactor singleton's handle_events() event loop: 
    // Logging server port number. 
    const u_short PORT = 10000; 
 
    int main () { 
        // Logging server address. 
        INET_Addr addr (PORT); 
 
        // Initialize logging server endpoint and register 
        // with reactor singleton. 
        Logging_Acceptor la (addr, Reactor::instance ()); 
 
        // Event loop that processes client connection 
        // requests and log records reactively. 
        for (;;) 
            Reactor::instance ()->handle_events (); 
        /* NOTREACHED */ 
    } 

As requests arrive from clients and are converted into indication events by the operating 
system, the reactor singleton invokes the hook methods on the Logging_Acceptor and 
Logging_Handler concrete event handlers to accept connections, and receive and 
process logging records, respectively.  

The sequence diagram below illustrates the behavior in the logging server: 

 

Variants 
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The Implementation section described the activities involved in implementing a reactor that 
demultiplexes indication events from a set of I/O handles within a single thread of control. 
The following are variations of the Reactor pattern that are needed to support concurrency, 
re-entrancy, or timer-based events. 

Thread-safe Reactor. A reactor that drives the main event loop of a single-threaded 
application requires no locks, because it serializes the dispatching of event handler 
handle_event() hook methods implicitly within its application process.  

However, a reactor also can serve as a single-threaded demultiplexer/dispatcher in multi-
threaded applications. In this case, although only one thread runs the reactor's 
handle_events() event loop method, multiple application threads may register and 
remove event handlers from the reactor. In addition, an event handler called by the reactor 
may share state with other threads and work on that state concurrently with them. Three 
issues must be addressed when designing a thread-safe reactor: 
§ Preventing race conditions. Critical sections within a reactor must be serialized to 

prevent race conditions from occurring when multiple application threads modify the 
reactor's internal shared state. A common technique for preventing race conditions is to 
use mutual exclusion mechanisms, such as semaphores or mutexes, to protect internal 
state shared by multiple threads. 

For example, a mutex can be added to the reactor's demultiplexing table, and the 
Scoped Locking idiom (325) can be used in the reactor's methods for registering and 
removing event handlers to acquire and release this lock automatically. This 
enhancement helps ensure that multiple threads cannot corrupt the reactor's 
demultiplexing table by registering or removing handles and event handlers 
simultaneously. 

To ensure the reactor implementation is not penalized when used in single-threaded 
applications, the Strategized Locking pattern (333) can be applied to parameterize the 
locking mechanism. 

§ Preventing self-deadlock. In multi-threaded reactors, the reactor implementation 
described in implementation activity 3.4 (194) must be serialized, to prevent race 
conditions when registering, removing, and demultiplexing event handlers. However, if 
this serialization is not added carefully, self-deadlock can occur when the reactor's 
handle_events() method calls back on application-specific concrete event handlers 
that then subsequently re-enter the reactor via its event handler registration and 
removal methods. 

To prevent self-deadlock, mutual exclusion mechanisms can use recursive locks 
[Sch95], which can be re-acquired by the thread that owns the lock without incurring 
self-deadlock on the thread. In the Reactor pattern, recursive locks help prevent 
deadlock when locks are held by the same thread across event handler hook methods 
dispatched by a reactor. 

§ Explicitly notify a waiting reactor event loop thread. The thread running a reactor's 
event loop often spends much of its time waiting on its synchronous event demultiplexer 
for indication events to occur on its handle set. The reactor event loop thread may 
therefore need to be notified explicitly when other threads change the contents of its 
demultiplexing table by calling its methods for registering and removing event handlers. 
It may not otherwise find out about these changes until much later, which may impede 
its responsiveness to important events. 

An efficient way for an application thread to notify the reactor thread is to pre-establish a 
pair of 'writer/reader' IPC handles when a reactor is initialized, such as a UNIX pipe or a 
'loopback' TCP Socket connection. The reader handle is registered with the reactor 
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along with a special 'notification event handler', whose purpose is simply to wake up the 
reactor whenever a byte is sent to it via its connected writer handle. 

When any application thread calls the reactor's methods for registering and removing 
event handlers, they update the demultiplexing table and then send a byte to the writer 
handle. This wakes up the reactor's event loop thread and allows it to reconstruct its 
updated handle set before waiting on its synchronous event demultiplexer again. 

Concurrent Event Handlers. The Implementation section described a single-threaded 
reactive dispatching design in which event handlers borrow the thread of control of a reactor. 
Event handlers can also run in their own thread of control. This allows a reactor to 
demultiplex and dispatch new indication events concurrently with the processing of hook 
methods dispatched previously to its event handlers. The Active Object (369), 
Leader/Followers (447), and Half-Sync/Half-Async (423) patterns can be used to implement 
concurrent concrete event handlers. 

Concurrent Synchronous Event Demultiplexer. The synchronous event demultiplexer 
described in the Implementation section is called serially by a reactor in a single thread of 
control. However, other types of synchronous event demultiplexers, such as the 
WaitForMultiple Objects() function, can be called concurrently on the same handle 
set by multiple threads. 

When it is possible to initiate an operation on one handle without the operation blocking, the 
concurrent synchronous event demultiplexer returns a handle to one of its calling threads. 
This can then dispatch the appropriate hook method on the associated event handler. 

Calling the synchronous event demultiplexer concurrently can improve application 
throughput, by allowing multiple threads to simultaneously demultiplex and dispatch events 
to their event handlers. However, the reactor implementation can become much more 
complex and much less portable. 

For example, it may be necessary to perform a reference count of the dispatching of event 
handler hook methods. It may also be necessary to queue calls to the reactor's methods for 
registering and removing event handlers, by using the Command pattern [GoF95] to defer 
changes until no threads are dispatching hook methods on an event handler. Applications 
may also become more complex if concrete event handlers must be made thread-safe. 

Re-entrant Reactors. In general, concrete event handlers just react when called by a reactor 
and do not invoke the reactor's event loop themselves. However, certain situations may 
require concrete event handlers to retrieve specific events by invoking a reactor's 
handle_events() method to run its event loop. For example, the CORBA asynchronous 
method invocation (AMI) feature [ARSK00] requires an ORB Core to support nested 
work_pending()/perform_work() ORB event loops. If the ORB Core uses the Reactor 
pattern [SC99], therefore, its reactor implementation must be re-entrant. 

A common strategy for making a reactor re-entrant is to copy the handle set state 
information residing in its demultiplexing table to the run-time stack before calling the 
synchronous event demultiplexer. This strategy ensures that any changes to the handle set 
will be local to that particular nesting level of the reactor. 

Integrated Demultiplexing of Timer and I/O Events. The reactor described in the 
Implementation section focuses primarily on demultiplexing and dispatching features 
necessary to support our logging server example. It therefore only demultiplexes indication 
events on handle sets. A more general reactor implementation can integrate the 
demultiplexing of timer events and I/O events. 



 177

A reactor's timer mechanism should allow applications to register time-based concrete event 
handlers. This mechanism then invokes the handle_timeout() methods of the event 
handlers at an application-specified future time. The timer mechanism in a reactor can be 
implemented using various strategies, including heaps [BaLee98], delta-lists [CoSte91], or 
timing wheels [VaLa97]: 
§ A heap is a 'partially-ordered, almost-complete binary tree' that ensures the average- 

and worst-case time complexity for inserting or deleting a concrete event handler is 
O(log n). 

§ Delta-lists store time in 'relative' units represented as offsets or 'deltas' from the earliest 
timer value at the front of the list. 

§ Timing wheels use a circular buffer that makes it possible to start, stop, and maintain 
timers within the range of the wheel in constant O(1) time. 
 

Several changes are required to the Reactor interface defined in implementation 
activity 2 (189) to enable applications to schedule, cancel, and invoke timer-based event 
handlers: 
    class Reactor { 
    public: 
        // ... same as in implementation activity 2 ... 
 
        // Schedule a <handler> to be dispatched at 
        // the <future_time>.  Returns a timer id that can 
        // be used to cancel the timer. 
        timer_id schedule (Event_Handler *handler, 
                           const void *act, 
                           const Time_Value &future_time); 
 
        // Cancel the <Event_Handler> matching the <timer_id> 
        // value returned from <schedule>. 
        void cancel (timer_id id, const void **act = 0); 
 
        // Expire all timers <= <expire_time>.  This 
        // method must be called manually since it 
        // is not invoked asynchronously. 
        void expire (const Time_Value &expire_time); 
    private: 
        // ... 
    }; 

An application uses the schedule() method to schedule a concrete event handler to 
expire after future_time. An asynchronous completion token (ACT) (261) can be 
passed to schedule(). If the timer expires the ACT is passed as the value to the event 
handler's handle_timeout() hook method. The schedule() method returns a timer 
id value that identifies each event handler's registration in the reactor's timer queue 
uniquely. This timer id can be passed to the cancel() method to remove an event 
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handler before it expires. If a non-NULL act parameter is passed to cancel(), it will be 
assigned the ACT passed by the application when the timer was scheduled originally, 
which makes it possible to delete dynamically-allocated ACTs to avoid memory leaks. 

To complete the integration of timer and I/O event demultiplexing, the reactor 
implementation must be enhanced to allow for both the timer queue's scheduled event 
handler deadlines and the timeout parameter passed to the handle_events() 
method. This method is typically generalized to wait for the closest deadline, which is 
either the timeout parameter or the earliest deadline in the timer queue. 
 

 

Known uses 

InterViews [LC87]. The Reactor pattern is implemented by the InterViews windowing 
system, where it is known as the Dispatcher. The InterViews Dispatcher is used to define an 
application's main event loop and to manage connections to one or more physical GUI 
displays. InterViews therefore illustrates how the Reactor pattern can be used to implement 
reactive event handling for graphical user interface systems that play the role of both client 
and server. 

The Xt toolkit from the X Windows distribution uses the Reactor pattern to implement its 
main event loop. Unlike the Reactor pattern implementation described in the Implementation 
section, callbacks in the Xt toolkit use C function pointers rather than event handler objects. 
The Xt toolkit is another example of how the Reactor pattern can be used to implement 
reactive event handling for graphical user interface systems that play the role of both client 
and server. 

ACE Reactor Framework [Sch97]. The ACE framework uses an object-oriented framework 
implementation of the Reactor pattern as its core event demultiplexer and dispatcher. ACE 
provides a class, called ACE_Reactor, that defines a common interface to a variety of 
reactor implementations, such as the ACE_Select_Reactor and the 
ACE_WFMO_Reactor. These two reactor implementations can be created using different 
synchronous event demultiplexers, such as WaitForMultipleObjects() and 
select(), respectively. 

The ORB Core component in many implementations of CORBA [OMG98a], such as TAO 
[SC99] and ORBacus, use the Reactor pattern to demultiplex and dispatch client requests to 
servants that process the requests. 

Call Center Management System. The Reactor pattern has been used to manage events 
routed by Event Servers [SchSu94] between PBXs and supervisors in a Call Center 
Management system. 

Project Spectrum. The high-speed I/O transfer subsystem of Project Spectrum [PHS96] 
uses the Reactor pattern to demultiplex and dispatch events in an electronic medical 
imaging system. 

Receiving phone calls. The Reactor pattern occurs frequently in everyday life, for example 
in telephony. Consider yourself as an event handler that registers with a reactor—a 
telecommunication network—to 'handle' calls received on a particular phone number—the 
handle. When somebody calls your phone number, the network notifies you that a 'call 
request' event is pending by ringing your phone. After you pick up the phone, you react to 
this request and 'process' it by carrying out a conversation with the connected party. 
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Consequences 

The Reactor pattern offers the following benefits: 

Separation of concerns. The Reactor pattern decouples application-independent 
demultiplexing and dispatching mechanisms from application-specific hook method 
functionality. The application-independent mechanisms can be designed as reusable 
components that know how to demultiplex indication events and dispatch the appropriate 
hook methods defined by event handlers. Conversely, the application-specific functionality in 
a hook method knows how to perform a particular type of service. 

Modularity, reusability, and configurability. The pattern decouples event-driven application 
functionality into several components. For example, connection-oriented services can be 
decomposed into two components: one for establishing connections and another for 
receiving and processing data.  

This decoupling enables the development and configuration of generic event handler 
components, such as acceptors, connectors, and service handlers, that are loosely 
integrated together through a reactor. This modularity helps promote greater software 
component reuse, because modifying or extending the functionality of the service handlers 
need not affect the implementation of the acceptor and connector components. 

 

In our logging server, the Logging_Acceptor class can easily be generalized to create 
the acceptor component described in the Acceptor-Connector pattern (285). This 
generic acceptor can be reused for many different connection-oriented services, such as 
file transfer, remote log-in, and video-on-demand. It is thus straightforward to add new 
functionality to the Logging_Handler class without affecting the reusable acceptor 
component. 
 

 

Portability. UNIX platforms offer two synchronous event demultiplexing functions, select() 
[Ste98] and poll() [Rago93], whereas on Win32 platforms the 
WaitForMultipleObjects() [Sol98] or select() functions can be used to demultiplex 
events synchronously. Although these demultiplexing calls all detect and report the 
occurrence of one or more indication events that may occur simultaneously on multiple event 
sources, their APIs are subtly different. By decoupling the reactor's interface from the lower-
level operating system synchronous event demultiplexing functions used in its 
implementation, the Reactor pattern therefore enables applications to be ported more readily 
across platforms. 

Coarse-grained concurrency control. Reactor pattern implementations serialize the 
invocation of event handlers at the level of event demultiplexing and dispatching within an 
application process or thread. This coarse-grained concurrency control can eliminate the 
need for more complicated synchronization within an application process. 

The Reactor pattern can also incur the following liabilities: 

Restricted applicability. The Reactor pattern can be applied most efficiently if the operating 
system supports synchronous event demultiplexing on handle sets. If the operating system 
does not provide this support, however, it is possible to emulate the semantics of the 
Reactor pattern using multiple threads within the reactor implementation. This is possible, for 
example, by associating one thread to process each handle. 
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Whenever events are available on a handle, its associated thread reads the event and 
places it on a queue that is processed sequentially by the reactor implementation. This 
design can be inefficient, however, because it serializes all the event handler threads. Thus, 
synchronization and context switching overhead increases without enhancing application-
level parallelism. 

Non-pre-emptive. In a single-threaded application, concrete event handlers that borrow the 
thread of their reactor can run to completion and prevent the reactor from dispatching other 
event handlers. In general, therefore, an event handler should not perform long duration 
operations, such as blocking I/O on an individual handle, because this can block the entire 
process and impede the reactor's responsiveness to clients connected to other handles. 

To handle long-duration operations, such as transferring multimegabyte images [PHS96], it 
may be more effective to process event handlers in separate threads. This design can be 
achieved via an Active Object (369) or Half-Sync/Half-Async (423) pattern variant that 
performs services concurrently to the reactor's main event loop. 

Complexity of debugging and testing. It can be hard to debug applications structured using 
the Reactor pattern due to its inverted flow of control. In this pattern control oscillates 
between the framework infrastructure and the method call-backs on application-specific 
event handlers. The Reactor's inversion of control increases the difficulty of 'single-stepping' 
through the run-time behavior of a reactive framework within a debugger, because 
application developers may not understand or have access to the framework code. 

These challenges are similar to the problems encountered trying to debug a compiler's 
lexical analyzer and parser written with lex and yacc. In such applications, debugging is 
straightforward when the thread of control is within user-defined semantic action routines. 
After the thread of control returns to the generated Deterministic Finite Automata (DFA) 
skeleton, however, it is hard to follow the program's logic. 

See Also 

The Reactor pattern is related to the Observer [GoF95] and Publisher-Subscriber [POSA1] 
patterns, where all dependents are informed when a single subject changes. In the Reactor 
pattern, however, a single handler is informed when an event of interest to the handler 
occurs on a source of events. In general, the Reactor pattern is used to demultiplex 
indication events from multiple event sources to their associated event handlers. In contrast, 
an observer or subscriber is often associated with only a single source of events. 

The Reactor pattern is related to the Chain of Responsibility pattern [GoF95], where a 
request is delegated to the responsible service handler. The Reactor pattern differs from the 
Chain of Responsibility because the Reactor associates a specific event handler with a 
particular source of events. In contrast, the Chain of Responsibility pattern searches the 
chain to locate the first matching event handler. 

The Reactor pattern can be considered a synchronous variant of the asynchronous Proactor 
pattern (215). The Proactor supports the demultiplexing and dispatching of multiple event 
handlers that are triggered by the completion of asynchronous operations. In contrast, the 
Reactor pattern is responsible for demultiplexing and dispatching multiple event handlers 
that are triggered when indication events signal that it is possible to initiate an operation 
synchronously without blocking. 

The Active Object pattern (369) decouples method execution from method invocation to 
simplify synchronized access to shared state by methods invoked in different threads. The 
Reactor pattern is often used in lieu of the Active Object pattern when threads are 
unavailable or the overhead and complexity of threading is undesirable. 
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The Reactor pattern can be used as the underlying synchronous event demultiplexer for the 
Leader/Followers (447) and Half-Sync/Half-Async (423) pattern implementations. Moreover, 
if the events processed by a reactor's event handlers are all short-lived, it may be possible to 
use the Reactor pattern in lieu of these other two patterns. This simplification can reduce 
application programming effort significantly and potentially improve performance, as well. 

Java does not offer a synchronous demultiplexer for network events. In particular, it does not 
encapsulate select() due to the challenges of supporting synchronous demultiplexing in a 
portable way. It is therefore hard to implement the Reactor pattern directly in Java. However, 
Java's event handling in AWT, particularly the listener or delegation-based model, resembles 
the Reactor pattern in the following way: 
§ Typically, application developers reuse prefabricated graphical components, such as 

different kinds of buttons. Developers typically write event handlers that encode the 
application-specific logic to process certain events, such as a mouse-click on a button. 
Before receiving button-related events on a button, an event handler must register itself 
with this button for all events of this type, which are called ActionEvents. 

§ When the underlying native code is called by the Java virtual machine (JVM), it notifies 
the button's peer, which is the first Java layer on top of the native code. The button peer 
is platform-specific and posts a new ActionEvent to be executed in the event handler 
thread, which is a specific-purpose thread created by the JVM. 

§ Events are then entered into a queue and an EventDispatchThread object runs a 
loop to 'pump' events further up the AWT widget hierarchy, which ultimately dispatches 
the event to all registered listeners stored in a recursive data structure called 
AWTEventMulticaster. 

All pumping, dispatching, and subsequent event processing runs synchronously in the same 
thread, which resembles the synchronous processing of events by a reactor. 

Credits 

John Vlissides, the shepherd of the [PLoPD1] version of Reactor, Ralph Johnson, Doug Lea, 
Roger Whitney, and Uwe Zdun provided many useful suggestions for documenting the 
original Reactor concept in pattern form. 

[1]The Known Uses section lists examples in which the Reactor pattern is used to implement 
event handling for applications that play both client and server roles. 

[2]An alternative dispatching approach is described in the Implementation section. 

[3]Log_Record's memory layout is identical to a conventional C-style struct. Thus, there 
are no virtual functions, pointers, or references, and all its values are stored contiguously. 

Proactor 
The Proactor architectural pattern allows event-driven applications to efficiently demultiplex 
and dispatch service requests triggered by the completion of asynchronous operations, to 
achieve the performance benefits of concurrency without incurring certain of its liabilities. 

Example 

Consider a networking application that must perform multiple operations simultaneously, 
such as a high-performance Web server that processes HTTP requests sent from multiple 
remote Web browsers [HPS99]. When a user wants to download content from a URL four 
steps occur: 
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1. The browser establishes a connection to the Web server designated in the URL and 
then sends it an HTTP GET request. 

2. The Web server receives the browser's CONNECT indication event, accepts the 
connection, reads and then parses the request. 

3. The server opens and reads the specified file. 
4. Finally, the server sends the contents of the file back to the Web browser and closes 

the connection. 

 

One way to implement a Web server is to use a reactive event demultiplexing model in 
accordance with the Reactor pattern (179). In this design, whenever a Web browser 
connects to a Web server, a new event handler is created to read, parse, and process the 
request and transfer the contents of the file back to the browser. This handler is registered 
with a reactor that coordinates the synchronous demultiplexing and dispatching of each 
indication event to its associated event handler.  

Although a reactive Web server design is straightforward to program, it does not scale up to 
support many simultaneous users and/or long-duration user requests, because it serializes 
all HTTP processing at the event demultiplexing layer. As a result, only one GET request can 
be dispatched and processed iteratively at any given time. 

A potentially more scalable way to implement a Web server is to use some form of 
synchronous multi-threading. In this model a separate server thread processes each 
browser's HTTP GET request [HS98]. For example, a new thread can be spawned 
dynamically for each request, or a pool of threads can be pre-spawned and managed using 
the Leader/Followers (447) or Half-Sync/Half-Async (423) patterns. In either case each 
thread performs connection establishment, HTTP request reading, request parsing, and file 
transfer operations synchronously—that is, server processing operations block until they 
complete. 

Synchronous multi-threading is a common concurrency model. However, problems with 
efficiency, scalability, programming complexity, and portability may occur, as discussed in 
the Example section of the Reactor pattern (179). 

On operating systems that support asynchronous I/O efficiently, our Web server can 
therefore invoke operations asynchronously to improve its scalability further. For example, 
on Windows NT the Web server can be implemented to invoke asynchronous Win32 
operations that process externally-generated indication events, such as TCP CONNECT and 
HTTP GET requests, and transmit requested files to Web browsers asynchronously. 

When these asynchronous operations complete, the operating system returns the 
associated completion events containing their results to the Web server, which processes 
these events and performs the appropriate actions before returning to its event loop. Building 
software that achieves the potential performance of this asynchronous event processing 
model is hard due to the separation in time and space of asynchronous invocations and their 
subsequent completion events. Thus, asynchronous programming requires a sophisticated 
yet comprehensible event demultiplexing and dispatching mechanism. 

Context 
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An event-driven application that receives and processes multiple service requests 
asynchronously. 

Problem 

The performance of event-driven applications, particularly servers, in a distributed system 
can often be improved by processing multiple service requests asynchronously. When 
asynchronous service processing completes, the application must handle the corresponding 
completion events delivered by the operating system to indicate the end of the asynchronous 
computations. 

For example, an application must demultiplex and dispatch each completion event to an 
internal component that processes the results of an asynchronous operation. This 
component can reply to external clients, such as a Web browser client, or to internal clients, 
such as the Web server component that initiated the asynchronous operation originally. To 
support this asynchronous computation model effectively requires the resolution of four 
forces: 
§ To improve scalability and latency, an application should process multiple completion 

events simultaneously without allowing long-duration operations to delay other 
operation processing unduly. 

§ To maximize throughput, any unnecessary context switching, synchronization, and 
data movement among CPUs should be avoided, as outlined in the Example section. 

§ Integrating new or improved services with existing completion event demultiplexing 
and dispatching mechanisms should require minimal effort. 

§ Application code should largely be shielded from the complexity of multi-threading and 
synchronization mechanisms. 

Solution 

Split application services into two parts: long-duration operations that execute 
asynchronously and completion handlers that process the results of these operations when 
they finish. Integrate the demultiplexing of completion events, which are delivered when 
asynchronous operations finish, with their dispatch to the completion handlers that process 
them. Decouple these completion event demultiplexing and dispatching mechanisms from 
the application-specific processing of completion events within completion handlers. 

In detail: for every service offered by an application, introduce asynchronous operations that 
initiate the processing of service requests 'proactively' via a handle, together with completion 
handlers that process completion events containing the results of these asynchronous 
operations. An asynchronous operation is invoked within an application by an initiator, for 
example, to accept incoming connection requests from remote applications. It is executed by 
an asynchronous operation processor. When an operation finishes executing, the 
asynchronous operation processor inserts a completion event containing that operation's 
results into a completion event queue. 

This queue is waited on by an asynchronous event demultiplexer called by a proactor. When 
the asynchronous event demultiplexer removes a completion event from its queue, the 
proactor demultiplexes and dispatches this event to the application-specific completion 
handler associated with the asynchronous operation. This completion handler then 
processes the results of the asynchronous operation, potentially invoking additional 
asynchronous operations that follow the same chain of activities outlined above. 

Structure 

The Proactor pattern includes nine participants: 
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Handles are provided by operating systems to identify entities, such as network connections 
or open files, that can generate completion events. Completion events are generated either 
in response to external service requests, such as connection or data requests arriving from 
remote applications, or in response to operations an application generates internally, such 
as time-outs or asynchronous I/O system calls. 

 

Our Web server creates a separate socket handle for each Web browser connection. In 
Win32 each socket handle is created in 'overlapped I/O' mode, which means that 
operations invoked on the handles run asynchronously. The Windows NT I/O subsystem 
also generates completion events when asynchronously-executed operations complete. 
 

 

Asynchronous operations represent potentially long-duration operations that are used in the 
implementation of services, such as reading and writing data asynchronously via a socket 
handle. After an asynchronous operation is invoked, it executes without blocking its caller's 
thread of control. Thus, the caller can perform other operations. If an operation must wait for 
the occurrence of an event, such as a connection request generated by a remote 
application, its execution will be deferred until the event arrives.  

 

Our proactive Web server invokes the Win32 AcceptEx() operation to accept 
connections from Web browsers asynchronously. After accepting connections the Web 
server invokes the Win32 asynchronous ReadFile() and WriteFile() operations to 
communicate with its connected browsers. 
 

 

 

A completion handler specifies an interface that consists of one or more hook methods 
[Pree95] [GHJV95]. These methods represent the set of operations available for processing 
information returned in the application-specific completion events that are generated when 
asynchronous operations finish executing. 

Concrete completion handlers specialize the completion handler to define a particular 
application service by implementing the inherited hook method(s). These hook methods 
process the results contained in the completion events they receive when the asynchronous 
operations associated with the completion handler finish executing. A concrete completion 
handler is associated with a handle that it can use to invoke asynchronous operations itself. 
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For example, a concrete completion handler can itself receive data from an asynchronous 
read operation it invoked on a handle earlier. When this occurs, the concrete completion 
handler can process the data it received and then invoke an asynchronous write operation to 
return the results to its connected remote peer application. 

 

Our Web server's two concrete completion handlers—HTTP acceptor and HTTP 
handler—perform completion processing on the results of asynchronous AcceptEx(), 
ReadFile(), and WriteFile() operations. The HTTP acceptor is the completion 
handler for the asynchronous AcceptEx() operation—it creates and connects HTTP 
handlers in response to connection request events from remote Web browsers. The 
HTTP handlers then use asynchronous ReadFile() and WriteFile() operations to 
process subsequent requests from remote Web browsers. 
 

 

 

Asynchronous operations are invoked on a particular handle and run to completion by an 
asynchronous operation processor, which is often implemented by an operating system 
kernel. When an asynchronous operation finishes executing the asynchronous operation 
processor generates the corresponding completion event. It inserts this event into the 
completion event queue associated with the handle upon which the operation was invoked. 
This queue buffers completion events while they wait to be demultiplexed to their associated 
completion handler. 

 

 

In our Web server example, the Windows NT operating system is the asynchronous 
operation processor. Similarly, the completion event queue is a Win32 completion port 
[Sol98], which is a queue of completion events maintained by the Windows NT kernel on 
behalf of an application. When an asynchronous operation finishes the Windows NT 
kernel queues the completion event on the completion port associated with the handle 
on which the asynchronous operation was originally invoked. 
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An asynchronous event demultiplexer is a function that waits for completion events to be 
inserted into a completion event queue when an asynchronous operation has finished 
executing. The asynchronous event demultiplexer function then removes one or more 
completion event results from the queue and returns to its caller. 

 

One asynchronous event demultiplexer in Windows NT is 
GetQueuedCompletionStatus(). This Win32 function allows event-driven proactive 
applications to wait up to an application-specified amount of time to retrieve the next 
available completion event. 
 

 

A proactor provides an event loop for an application process or thread. In this event loop, a 
proactor calls an asynchronous event demultiplexer to wait for completion events to occur. 
When an event arrives the asynchronous event demultiplexer returns. The proactor then 
demultiplexes the event to its associated completion handler and dispatches the appropriate 
hook method on the handler to process the results of the completion event. 

 

 

Our Web server application calls the proactor's event loop method. This method calls the 
GetQueuedCompletionStatus() Win32 function, which is an asynchronous event 
demultiplexer that waits until it can dequeue the next available completion event from 
the proactor's completion port. The proactor's event loop method uses information in the 
completion event to demultiplex the next event to the appropriate concrete completion 
handler and dispatch its hook method. 
 

 

An initiator is an entity local to an application that invokes asynchronous operations on an 
asynchronous operation processor. The initiator often processes the results of the 
asynchronous operations it invokes, in which case it also plays the role of a concrete 
completion handler. 

 

In our example HTTP acceptors and HTTP handlers play the role of both initiators and 
concrete completion handlers within the Web server's internal thread of control. For 
example, an HTTP acceptor invokes AcceptEx() operations that accept connection 
indication events asynchronously from remote Web browsers. When a connection 
indication event occurs, an HTTP acceptor creates an HTTP handler, which then 
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invokes an asynchronous ReadFile() operation to retrieve and process HTTP GET 
requests from a connected Web browser. 
 

 

 

Note how in the Proactor pattern the application components, represented by initiators and 
concrete completion handlers, are proactive entities. They instigate the control and data flow 
within an application by invoking asynchronous operations proactively on an asynchronous 
operation processor. 

When these asynchronous operations complete, the asynchronous operation processor and 
proactor collaborate via a completion event queue. They use this queue to demultiplex the 
resulting completion events back to their associated concrete completion handlers and 
dispatch these handlers' hook methods. After processing a completion event, a completion 
handler may invoke new asynchronous operations proactively. 

The structure of the participants in the Proactor pattern is illustrated in the following class 
diagram: 

 

Dynamics 

The following collaborations occur in the Proactor pattern: 
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§ An application component playing the role of an initiator invokes an asynchronous 
operation on an asynchronous operation processor via a particular handle. In addition to 
passing data parameters to the asynchronous operation, the initiator also passes 
certain completion processing parameters, such as the completion handler or a handle 
to the completion event queue. The asynchronous operation processor stores these 
parameters internally for later use. 

 

§ The HTTP handler in our Web server can instruct the operating system to read a new 
HTTP GET request by invoking the ReadFile() operation asynchronously on a 
particular socket handle. When initiating this operation on the handle, the HTTP 
handler passes itself as the completion handler so that it can process the results of 
an asynchronous operation. 
 

 

§ After an initiator invokes an operation on the asynchronous operation processor, the 
operation and initiator can run independently. In particular, the initiator can invoke new 
asynchronous operations while others continue to execute concurrently.[4] If the 
asynchronous operation is intended to receive a service request from a remote 
application, the asynchronous operation processor defers the operation until this 
request arrives. When the event corresponding to the expected request arrives, the 
asynchronous operation will finish executing. 

 

§ The Windows NT operating system defers the asynchronous ReadFile() operation 
used to read an HTTP GET request until this request arrives from a remote Web 
browser. 
 

 

§ When an asynchronous operation finishes executing, the asynchronous operation 
processor generates a completion event. This event contains the results of the 
asynchronous operation. The asynchronous operation processor then inserts this event 
into the completion event queue associated with the handle upon with the asynchronous 
operation was originally invoked. 

 

§ If an HTTP handler invoked an asynchronous ReadFile() operation to read an HTTP 
GET request, the Windows NT operating system will report the completion status in 
the completion event, such as its success or failure and the number of bytes read. 
 

 

§ When an application is ready to process the completion events resulting from its 
asynchronous operations, it invokes the proactor's event loop entry-point method, which 
we call handle_events(). This method calls an asynchronous event demultiplexer[5] 
to wait on its completion event queue for completion events to be inserted by the 
asynchronous operation processor. After removing a completion event from the queue 
the proactor's handle_events() method demultiplexes the event to its associated 
completion handler. It then dispatches the appropriate hook method on the completion 
handler, passing it the results of the asynchronous operation.  
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§ The proactor in our Web server example uses a Win32 completion port as its 
completion event queue. Similarly, it uses the Win32 
GetQueuedCompletionStatus() function [Sol98] as its asynchronous event 
demultiplexer to remove completion events from a completion port. 
 

 

§ The concrete completion handler then processes the completion results it receives. If 
the completion handler returns a result to its caller, two situations are possible. First, the 
completion handler that processes the results of the asynchronous operations also can 
be the initiator that invoked the operation originally. In this case the completion handler 
need not perform additional work to return the result to its caller, because it is the caller. 

Second, a remote application or an application internal component may have requested 
the asynchronous operation. In this case, the completion handler can invoke an 
asynchronous write operation on its transport handle to return results to the remote 
application. 

 

In response to an HTTP GET request from a remote Web browser, an HTTP 
handler might instruct the Windows NT operating system to transmit a large file 
across a network by calling WriteFile() asynchronously. After the operating 
system completes the asynchronous operation successfully the resulting completion 
event indicates the number of bytes transferred to the HTTP handler. The entire file 
may not be transferred in one WriteFile() operation due to transport-layer flow 
control. In this case the HTTP handler can invoke another asynchronous 
WriteFile() operation at the appropriate file offset. 
 

 

§ After the completion handler finishes its processing it can invoke other asynchronous 
operations, in which case the whole cycle outlined in this section begins again. 
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Implementation 

The participants in the Proactor pattern can be decomposed into two layers: 
§ Demultiplexing/dispatching infrastructure layer components. This layer performs 

generic, application-independent strategies for executing asynchronous operations. It 
also demultiplexes and dispatches completion events from these asynchronous 
operations to their associated completion handlers. 

§ Application layer components. This layer defines asynchronous operations and 
concrete completion handlers that perform application-specific service processing. 

The implementation activities in this section start with the generic demultiplexing/dispatching 
infrastructure components and then cover the application components. We focus on a 
proactor implementation that is designed to invoke asynchronous operations and dispatch 
hook methods on their associated completion handlers using a single thread of control. The 
Variants section describes the activities associated with developing multi-threaded proactor 
implementations. 

1. Separate application services into asynchronous operations and completion handlers. 
To implement the Proactor pattern, application services must be designed to separate 
the initiation of asynchronous operations via a handle from the processing of these 
operations' results. Asynchronous operations are often long-duration and/or 
concerned with I/O, such as reading and writing data via a socket handle or 
communicating with a database. The results of asynchronous operations are 
processed by completion handlers. In addition to processing results, completion 
handlers can play the role of initiators, that is, they invoke asynchronous operations 
themselves. 

The products of this activity are a set of asynchronous operations, a set of completion 
handlers, and a set of associations between each asynchronous operation and its 
completion handler. 

2. Define the completion handler interface. Completion handlers specify an interface 
consisting of one or more hook methods [Pree95]. These hook methods represent the 
completion handling for application-specific completion events generated when 
asynchronous operations finish executing. The implementation of completion 
handlers consists of three sub-activities: 

1. Define a type to convey the results of asynchronous operation. When an 
asynchronous operation completes or is canceled its completion event results 
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must be conveyed to its completion handler. These results indicate its success 
or failure and the number of bytes that were transmitted successfully. The 
Adapter pattern [GoF95] is often used to convert information stored in a 
completion event into a form used to dispatch to its associated concrete 
completion handler. 

 

2. The following C++ class conveys the results of an asynchronous Win32 
operation back to a concrete completion handler: 

3.     class Async_Result : public OVERLAPPED { 
4.         // The Win32 OVERLAPPED struct stores the file 

offset 
5.         // returned when an asynchronous operation 

completes. 
6.     public: 
7.         // Dispatch to completion handler hook method. 
8.         virtual void complete () = 0; 
9.         // Set/get number of bytes transferred by an 
10.         // asynchronous operation. 
11.         void bytes_transferred (u_long); 
12.         u_long bytes_transferred () const; 
13.  
14.         // Set/get the status of the asynchronous 

operation, 
15.         // i.e., whether it succeeded or failed. 
16.         void status (u_long); 
17.         u_long status () const; 
18.  
19.         // Set/get error value if the asynchronous 

operation 
20.         // failed or was canceled by the initiator. 
21.         void error (u_long); 
22.         u_long error () const; 
23.     private: 
24.         // ... data members omitted for brevity ... 
25.     }; 

26. Deriving Async_Result from the OVERLAPPED struct allows 
applications to add custom state and methods to the results of 
asynchronous operations. C++ inheritance is used because the Win32 API 
does not provide a more direct way to pass a per-operation result object to 
the operating system when an asynchronous operation is invoked. 
 

 



 192

28. Determine the type of the dispatching target. Two types of completion handlers 
can be associated with a handle to serve as the target of a proactor's 
dispatching mechanism, objects and pointers to functions. Implementations of 
the Proactor pattern can choose the type of dispatching target based on the 
same criteria described in implementation activity 1.1 of the Reactor (179) 
pattern. 

29. Define the completion handler dispatch interface strategy. We next define the 
type of interface supported by the completion handler to process completion 
events. As with the Reactor pattern (179), assuming that we use completion 
handler objects rather than pointers to functions, two general strategies exist: 
§ Single-method dispatch interface strategy. The class diagram in the 

Structure section illustrates an implementation of the 
Completion_Handler interface that contains a single event handling 
method, which we call handle_event(). A proactor uses this method to 
dispatch completion events to their associated completion handlers. In 
this case the type of completion event that has occurred is passed as a 
parameter to the method. The second parameter is the base class for all 
asynchronous results, which, depending on the completion event, can be 
further downcast to the correct type. 

 

§ The following C++ abstract base class illustrates the single-method 
dispatch interface strategy. We start by defining useful type 
definitions and enumeration literals that can be used by both the 
single-method and multi-method dispatch interface strategies: 

§   typedef unsigned int Event_Type; 
§   enum { 
§        // Types of indication events. 
§        READ_EVENT = 01, 
§        ACCEPT_EVENT = 01, // An "alias" for 

READ_EVENT. 
§        WRITE_EVENT = 02, TIMEOUT_EVENT = 04, 
§        SIGNAL_EVENT = 010, CLOSE_EVENT = 020 
§        // These values are powers of two so 
§        // their bits can be "or'd" together 

efficiently. 
§   }; 

§ Next, we implement the Completion_Handler class: 
§   class Completion_Handler { 
§   public: 
§        // Cache the <proactor> so that hook methods 

can 
§        // invoke asynchronous operations on 

<proactor>. 
§        Completion_Handler (Proactor *proactor): 
§            proactor_ (proactor) { } 
§  
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§        // Virtual destruction. 
§        virtual ~Completion_Handler (); 
§  
§        // Hook method dispatched by cached 

<proactor_> to 
§        // handle completion events of a particular 

type that 
§        // occur on the <handle>. <Async_Result> 

reports the 
§        // results of the completed asynchronous 

operation. 
§        virtual void handle_event 
§             (HANDLE handle, Event_Type et, 
§              const Async_Result &result) = 0; 
§  
§        // Returns underlying I/O <HANDLE>. 
§        virtual HANDLE get_handle () const = 0; 
§   private: 
§        // Cached <Proactor>. 
§        Proactor *proactor_; 
§   }; 

 
 

§ The single-method dispatch interface strategy makes it possible to add 
new types of events without changing the class interface. However, to 
handle a specific event, this strategy encourages the use of C++ switch 
and if statements in the concrete event handler's handle_event() 
method implementation, which degrades its internal extensibility. 

§ Multi-method dispatch interface strategy. A different strategy for 
implementing the Completion_Handler interface is to define separate 
hook methods for handling each type of event, such as 
handle_read(), handle_write(), or handle_accept(). This 
strategy can be more extensible than the single-method dispatch interface 
because the demultiplexing is performed by a proactor implementation, 
rather than by a concrete event handler's handle_event() method 
implementation. 

 

§ The following C++ abstract base class illustrates a multi-method 
interface used by a proactor for network events in our Windows NT-
based Web server example: 

§   class Completion_Handler { 
§   public: 
§        // The <proactor> is cached to allow hook 

methods to 
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§        // invoke asynchronous operations on 
<proactor>. 

§        Completion_Handler (Proactor *proactor): 
§            proactor_ (proactor) { } 
§  
§        // Virtual destruction. 
§        virtual ~Completion_Handler (); 
§  
§        // The next 3 methods use <Async_Result> to 

report 
§        // results of completed asynchronous 

operation. 
§        // Dispatched by <proactor_> when an 

asynchronous 
§        // read operation completes. 
§        virtual void handle_read 
§             (HANDLE handle, const Async_Result 

&result) = 0; 
§        // Dispatched by <proactor_> when an 

asynchronous 
§        // write operation completes. 
§        virtual void handle_write 
§             (HANDLE handle, const Async_Result 

&result) = 0; 
§        // Dispached by <proactor_> when an 

asynchronous 
§        // <accept> operation completes. 
§        virtual void handle_accept 
§             (HANDLE handle, const Async_Result 

&result) = 0; 
§  
§        // Dispatched by <proactor_> when a timeout 

expires. 
§        virtual void handle_timeout 
§             (const Time_Value &tv, const void *act) 

= 0; 
§  
§        // Returns underlying I/O <HANDLE>. 
§        virtual HANDLE get_handle () const = 0; 
§   private: 
§        // Cached <Proactor>. 
§        Proactor *proactor_; 
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§   }; 
 

 

§ The multi-method dispatch interface strategy makes it easy to override 
methods in the base class selectively, which avoids further demultiplexing 
via switch or if statements in the hook method implementation. 
However, this strategy requires pattern implementors to anticipate the 
hook methods in advance. The various handle_*() hook methods in the 
Completion_Handler interface above are tailored for networking 
events. However, these methods do not encompass all the types of 
events handled via the Win32 WaitForMultipleObjects() 
mechanism, such as synchronization object events [SchSt95]. 

30. Both the single-method and multiple-method dispatch interface strategies are 
implementations of the Hook Method [Pree95] and Template Method [GoF95] 
patterns. The intent of these patterns is to provide well-defined hooks that can 
be specialized by applications and called back by lower-level dispatching 
code. 

31. Completion handlers are often designed to act both as a target of a proactor's 
completion dispatching and an initiator that invokes asynchronous operations, 
as shown by the HTTP_Handler class in the Example Resolved section. 
Therefore, the constructor of class Completion_Handler associates a 
Completion_Handler object with a pointer to a proactor. This design allows 
a Completion_Handler's hook methods to invoke new asynchronous 
operations whose completion processing will be dispatched ultimately by the 
same proactor. 

3. Implement the asynchronous operation processor. An asynchronous operation 
processor executes operations asynchronously on behalf of initiators. Its primary 
responsibilities therefore include: 
§ Defining the asynchronous operation interface 
§ Implementing a mechanism to execute operations asynchronously and 

generating and 
§ Queueing completion events when an operation finishes 

4. Define the asynchronous operation interface. Asynchronous operations can be 
passed various parameters, such as a handle,[6] data buffers, buffer lengths, 
and information used to perform completion processing when the operation 
finishes. Two issues must be addressed when designing a programming 
interface that initiators use to invoke asynchronous operations on an 
asynchronous operation processor: 
§ Maximizing portability and flexibility. Asynchronous operations can be 

used to read and write data on multiple types of I/O devices, such as 
networks and files, and on multiple operating systems, such as Windows 
NT, VMS, Solaris, and Linux. The Wrapper Facade (47) and Bridge 
[GoF95] patterns can be applied to decouple the asynchronous operation 
interface from underlying operating system dependencies and ensure the 
interface works for multiple types of I/O devices. 

§ Handling multiple completion handlers, proactors, and completion 
event queues efficiently and concisely. More than one completion 
handler, proactor, and completion event queue can be used 
simultaneously within an application. For example, different proactors can 
be associated with threads running at different priorities, to provide 
different quality of service levels for processing different completion 
handlers. In addition to its data parameters, an asynchronous operation 
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must then indicate which handle, concrete completion handler, proactor, 
and completion event queue to use when processing the completion of 
asynchronous operations. 

A common strategy to consolidate all this completion processing 
information efficiently is to apply the Asynchronous Completion Token 
pattern (261). When an initiator invokes an asynchronous operation on a 
handle, an asynchronous completion token (ACT) can then be passed to 
the asynchronous operation processor, which can store this ACT for later 
use. Each ACT contains information that identifies a particular operation 
and guides its subsequent completion processing.  

When an asynchronous operation finishes executing, the asynchronous 
operation processor locates the operation's ACT it stored earlier and 
associates it with the completion event it generates. It then inserts this 
updated completion event into the appropriate completion event queue. 
Ultimately, the proactor that runs the application's event loop will use an 
asynchronous event demultiplexer to remove the completion event results 
and ACT from its completion event queue. The proactor will then use this 
ACT to complete its demultiplexing and dispatching of the completion 
event results to the completion handler designated by the ACT. 

 

Although our Web server is implemented using Win32 asynchronous 
Socket operations, we apply the Wrapper Facade pattern (47) to 
generalize this class and make it platform-independent. It can 
therefore be used for other types of I/O devices supported by an 
asynchronous operation processor. 

The following Async_Stream class interface is used by HTTP 
handlers in our Web server example to invoke asynchronous 
operations: 
    class Async_Stream { 
    public: 
         // Constructor 'zeros out' the data 
members. 
         Async_Stream (); 
 
         // Initialization method. 
         void open (Completion_Handler *handler, 
                   HANDLE handle, Proactor 
*proactor); 
 
         // Invoke an asynchronous read operation. 
         void async_read (void *buf, u_long 
n_bytes); 
 
         // Invoke an asynchronous write operation. 
         void async_write (const void *buf, u_long 
n_bytes); 
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    private: 
         // Cache parameters passed in <open>. 
         Completion_Handler *completion_handler_; 
         HANDLE handle_; 
         Proactor *proactor_; 
    }; 

A concrete completion handler, such as an HTTP handler, can pass 
itself to open(), together with the handle on which the 
Async_Stream's async_read() and async_write() methods 
are invoked: 
    void Async_Stream::open (Completion_Handler 
*handler, 
                               HANDLE handle, 
                               Proactor *proactor) 
{ 
        completion_handler_ =  handler; 
        handle_ = handle; 
        proactor_ = proactor; 
 
        // Associate handle with <proactor>'s 
completion 
        // port, as shown in implementation 
activity 4. 
        proactor->register_handle (handle); 
    } 

To illustrate the use of asynchronous completion tokens (ACTs), 
consider the following implementation of the 
Async_Stream::async_read() method. It uses the Win32 
ReadFile() function to read up to n_bytes asynchronously and 
store them in its buf parameter: 
    void Async_Stream::read (void *buf, u_long 
n_bytes) { 
        u_long bytes_read; 
 
        OVERLAPPED *act = new // Create the ACT. 
            Async_Stream_Read_Result 
(completion_handler_); 
 
        ReadFile (handle_, buf, n_bytes, 
&bytes_read, act); 
    } 
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The ACT passed as a pointer to ReadFile() is a dynamically 
allocated instance of the Async_Stream_Read_Result class 
below: 
    class Async_Stream_Read_Result : public 
Async_Result { 
    public: 
        // Constructor caches the completion 
handler. 
        Async_Stream_Read_Result 
             (Completion_Handler 
*completion_handler): 
              completion_handler_ 
(completion_handler) { } 
 
        // Adapter that dispatches the 
<handle_event> 
        // hook method on cached completion 
handler. 
        virtual void complete (); 
    private: 
        // Cache a pointer to a completion handler. 
        Completion_Handler *completion_handler_; 
    }; 

This class plays the role of an ACT and an adapter [GoF95]. It inherits 
from Async_Result, which itself inherits from the Win32 
OVERLAPPED struct, as shown in implementation activity 2.1 (227). 
The ACT can be passed as the lpOverlapped parameter to the 
ReadFile() asynchronous function. ReadFile() forwards the ACT 
to the Windows NT operating system, which stores it for later use. 

When the asynchronous ReadFile() operation finishes it generates 
a completion event that contains the ACT it received when this 
operation was invoked. When the proactor's handle_events() 
method removes this event from its completion event queue, it 
invokes the complete() method on the 
Async_Stream_Read_Result. This adapter method then 
dispatches the completion handler's handle_event() hook method 
to pass the event, as shown in implementation activity 5.4 (240). 
 

 

5. Choose the asynchronous operation processing mechanism. When an initiator 
invokes an asynchronous operation, an asynchronous operation processor 
executes the operation without blocking the initiator's thread of control. An 
asynchronous operation processor provides mechanisms for managing ACTs 
and executing operations asynchronously. It also generates completion events 
when operations finish and queues the events into the appropriate completion 
event queue. 
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Some asynchronous operation processors allow initiators to cancel 
asynchronous operations. However, completion events are still generated. 
Thus, ACTs and other resources can be reclaimed properly by completion 
handlers. 

Certain operating environments provide these asynchronous operation 
execution and completion event generation mechanisms, such as Real-time 
POSIX [POSIX95] and Windows NT [Sol98]. In this case implementing the 
asynchronous completion processor participant simply requires mapping 
existing operating system APIs onto the asynchronous operation wrapper 
facade (47) interfaces described in implementation activity 3.1 (232). The 
Variants section describes techniques for emulating an asynchronous 
operation processor on operating system platforms that do not support this 
feature natively. 

4. Define the proactor interface. The proactor's interface is used by applications to invoke 
an event loop that removes completion events from a completion event queue, 
demultiplexes them to their designated completion handlers, and dispatches their 
associated hook method. The proactor interface is often accessed via a singleton 
[GoF95] because a single proactor is often sufficient for each application process. 

The Proactor pattern can use the Bridge pattern [GoF95] to shield applications from 
complex and non-portable completion event demultiplexing and dispatching 
mechanisms. The proactor interface corresponds to the abstraction participant in the 
Bridge pattern, whereas a platform-specific proactor instance is accessed internally 
via a pointer, in accordance with the implementation hierarchy in the Bridge pattern. 

 

The proactor interface in our Web server defines an abstraction for associating 
handles with completion ports and running the application's event loop 
proactively: 
    class Proactor { 
    public: 
        // Associate <handle> with the <Proactor>'s 
        // completion event queue. 
        void register_handle (HANDLE handle); 
 
        // Entry point into the proactive event loop. The 
        // <timeout> can bound time waiting for events. 
        void handle_events (Time_Value *wait_time = 0); 
 
        // Define a singleton access point. 
        static Proactor *instance (); 
    private: 
        // Use the Bridge pattern to hold a pointer to 
        // the <Proactor_Implementation>. 
        Proactor_Implementation *proactor_impl_; 
    }; 
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A proactor interface also defines a method, which we call register_handle(), 
that associates a handle with the proactors completion event queue, as described in 
implementation activity 5.5 (240). This association ensures that the completion events 
generated when asynchronous operations finish executing will be inserted into a 
particular proactor's completion event queue. 

The proactor interface also defines the main entry point method, we call it 
handle_events(), that applications use to run their proactive event loop.[7] This 
method calls the asynchronous event demultiplexer, which waits for completion 
events to arrive on its completion event queue, as discussed in implementation 
activity 3.1 (232). An application can use the timeout parameter to bound the time it 
spends waiting for completion events. Thus, the application need not block 
indefinitely if events never arrive. 

After the asynchronous operation processor inserts a completion event into the 
proactor's completion event queue, the asynchronous event demultiplexer function 
returns. At this point the proactor's handle_events() method dequeues the 
completion event and uses its associated ACT to demultiplex to the asynchronous 
operation's completion handler and dispatch the handler's hook method. 

5. Implement the proactor interface. Five sub-activities can be used to implement the 
proactor interface: 

0. Develop a proactor implementation hierarchy. The proactor interface 
abstraction illustrated in implementation activity 4 (235) delegates all its 
demultiplexing and dispatching processing to a proactor implementation. This 
plays the role of the implementation hierarchy in the Bridge pattern [GoF95]. 
This design allows multiple types of proactors to be implemented and 
configured transparently. For example, a concrete proactor implementation 
can be created using different types of asynchronous event demultiplexers, 
such as POSIX aio_suspend() [POSIX95], or the Win32 
GetQueuedCompletionStatus() or WaitForMultipleObjects() 
functions [Sol98]. 

 

1. In our example the base class of the proactor implementation hierarchy is 
defined by the class Proactor_Implementation. We omit its 
declaration here because this class has essentially the same interface as 
the Proactor interface in implementation activity 4 (235). The primary 
difference is that its methods are purely virtual, because it forms the base 
of a hierarchy of concrete proactor implementations. 
 

 

3. Choose the completion event queue and asynchronous event demultiplexer 
mechanisms. The handle_events() method of the proactor implementation 
calls an asynchronous event demultiplexer function, which waits on the 
completion event queue for the asynchronous operation processor to insert 
completion events. This function returns whenever there is a completion event 
in the queue. Asynchronous event demultiplexers can be distinguished by the 
types of semantics they support, which include one of the following: 
§ FIFO demultiplexing. This type of asynchronous event demultiplexer 

function waits for completion events corresponding to any asynchronous 
operations that are associated with its completion event queue. The 



 201

events are removed from the queue in the order in which they are 
inserted. 

 

§ The Win32 GetQueuedCompletionStatus() function allows event-
driven proactive applications to wait up to an application-specified 
amount of time for any completion events to occur on a completion 
port. Events are removed in FIFO order [Sol98]. 
 

 

§ Selective demultiplexing. This type of asynchronous event 
demultiplexer function waits selectively for a particular subset of 
completion events that must be passed explicitly when the function is 
called. 

 

§ The POSIX aio_suspend() function [POSIX95] and the Win32 
WaitForMultipleObjects() function [Sol98] are passed an array 
parameter designating asynchronous operations explicitly. They 
suspend their callers for an application-specified amount of time until 
at least one of these asynchronous operations has completed. 
 

 

4. The completion event queue and asynchronous event demultiplexer are often 
existing operating system mechanisms that need not be developed by 
Proactor pattern implementors. 

5. The primary difference between GetQueuedCompletionStatus(), 
aio_suspend(), and WaitForMultipleObjects() is that the latter two 
functions can wait selectively for completion events specified via an array 
parameter. Conversely, GetQueuedCompletionStatus() just waits for the 
next completion event enqueued on its completion port. Moreover, the POSIX 
aio_*() functions can only demultiplex asynchronous I/O operations, such 
as aio_read() or aio_write(), whereas 
GetQueuedCompletionStatus() and WaitForMultipleObjects() can 
demultiplex other Win32 asynchronous operations, such as timers and 
synchronization objects.  

 

6. Our Web server uses a Win32 completion port as the completion event 
queue and the GetQueuedCompletionStatus() function as its 
asynchronous event demultiplexer: 

7.     BOOL GetQueuedCompletionStatus 
8.         (HANDLE CompletionPort, 
9.         LPDWORD lpNumberOfBytesTransferred, 
10.         LPDWORD lpCompletionKey, 
11.         LPOVERLAPPED *lpOverlapped, 
12.         DWORD dwMilliseconds); 
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13. As shown in implementation activity 5.5 (240), our proactor 
implementation's handle_events() method uses this function to 
dequeue a completion event from the specified CompletionPort. The 
number of bytes transferred is returned as an 'out' parameter. The 
lpOverlapped parameter points to the ACT passed by the original 
asynchronous operation, such as the ReadFile() call in the 
Async_Stream::async_read() method shown in implementation 
activity 3.1 (232). 

14. If there are no completion event results queued on the port, the function 
blocks the calling thread, waiting for asynchronous operations associated 
with the completion port to finish. The 
GetQueuedCompletionStatus() function returns when it is able to 
dequeue a completion event result or when the dwMilliseconds 
timeout expires. 
 

 

16. Determine how to demultiplex completion events to completion handlers. An 
efficient and concise strategy for demultiplexing completion events to 
completion handlers is to use the Asynchronous Completion Token pattern 
(261), as described in implementation activity 3.1 (232). In this strategy, when 
an asynchronous operation is invoked by an initiator the asynchronous 
operation processor is passed information used to guide subsequent 
completion processing. For example, a handle can be passed to identify a 
particular socket endpoint and completion event queue, and an ACT can be 
passed to identify a particular completion handler. 

When the asynchronous operation completes, the asynchronous operation 
processor generates the corresponding completion event, associates it with its 
ACT and inserts the updated completion event into the appropriate completion 
event queue. After an asynchronous event demultiplexer removes the 
completion event from its completion event queue, the proactor 
implementation can use the completion event's ACT to demultiplex to the 
designated completion handler in constant O(1) time. 

 

As shown in implementation activity 3.1 (232), when an async_read() 
or async_write() method is invoked on an Async_Stream, they 
create a new Async_Stream_Read_Result or 
Async_Stream_Write_Result ACT, respectively and pass it to the 
corresponding Win32 asynchronous operation. When this asynchronous 
operation finishes, the Windows NT kernel queues the completion event 
on the completion port designated by the handle that was passed during 
the original asynchronous operation invocation. The ACT is used by the 
proactor to demultiplex the completion event to the completion handler 
designated in the original call. 
 

 

17. Determine how to dispatch the hook method on the designated completion 
handler. After the proactor's handle_events() method demultiplexes to the 
completion handler it must dispatch the appropriate hook method on the 
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completion handler. An efficient strategy for performing this dispatching 
operation is to combine the Adapter pattern [GoF95] with the Asynchronous 
Completion Token pattern (261), as shown at the end of implementation 
activity 3.1 (232). 

 

18. An Async_Stream_Read_Result is an adapter, whose complete() 
method can dispatch the appropriate hook method on the completion 
handler that it has cached in the state of its ACT: 

19.     void Async_Stream_Read_Result::complete () { 
20.         completion_handler_->handle_event 
21.              (completion_handler_->get_handle (), 
22.               READ_EVENT, *this); 
23.     } 

24. Note how the handle_event() dispatch hook method is passed a 
reference to the Async_Stream_Read_Result object that invoked it. 
This double-dispatching interaction [GoF95] allows the completion handler 
to access the asynchronous operation results, such as the number of 
bytes transferred and its success or failure status. 
 

 

26. Define the concrete proactor implementation. The proactor interface holds a 
pointer to a concrete proactor implementation and forwards all method calls to 
it, as shown in implementation activity 4 (235).  

 

27. Our concrete proactor implementation overrides the pure virtual methods it 
inherits from class Proactor_Implementation:  

28.     class Win32_Proactor_Implementation : 
29.         public Proactor_Implementation { 
30.     public: 

31. The Win32_Proactor_Implementation constructor creates the 
completion port and caches it in the completion_port_ data member: 

32.         Win32_Proactor_Implementation:: 
33.             Win32_Proactor_Implementation ()  { 
34.                  completion_port_ = 

CreateIoCompletionPort 
35.                       (INVALID_HANDLE, 0, 0, 0); 
36.         } 

37. The register_handle() method associates a HANDLE with the 
completion port: 

38.         void 
Win32_Proactor_Implementation::register_handle 

39.              (HANDLE h) { 
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40.              CreateIoCompletionPort (h, 
completion_port_,0,0); 

41.         } 

42. All subsequent completion events hat result from asynchronous 
operations invoked via the HANDLE will be inserted into this proactor's 
completion port by the Windows NT operating system. 

43. The next code fragment shows how to implement the handle_events() 
method: 

44.         void 
Win32_Proactor_Implementation::handle_events 

45.              (Time_Value *wait_time = 0) { 
46.              u_long num_bytes; 
47.              OVERLAPPED *act; 

48. This method first calls the GetQueuedCompletionStatus() 
asynchronous event demultiplexing function to dequeue the next 
completion event from the completion port: 

49.             BOOL status = GetQueuedCompletionStatus 
50.                  (completion_port_,  &num_bytes, 
51.                   0, &act, 
52.                   wait_time == 0 ? 0 : wait_time->msec 

()); 

53. When this function returns, the ACT returns, the ACT received from the 
Windows NT operating system is downcast to become an Async_Result 
*: 

54.             Async_Result *async_result = 
55.                 static_cast <Async_Result *> (act); 

56. The completion event that GetQueuedCompletionStatus() returned 
updates the completion result data members in async_result:  

57.               async_result-> status (status); 
58.               if (!status) 
59.                   async_result->error 

(GetLastError()); 
60.               else 
61.                   async_result-

>bytes_transferred(num_bytes); 

62. The proactor implementation's handle_events() method then invokes 
the complete() method on the async_result adapter: 

63.               async_result->complete (); 

64. Implementation activity 5.4 (240) illustrates how the complete() method 
in the Async_Stream_Read_Result adapter dispatches to the concrete 
completion handler's handle_event() hook method. 
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65. Finally, the proactor deletes the async_result pointer, which was 
allocated dynamically by an asynchronous operation interface method, as 
shown in implementation activity 3.1 (232). 

66.               delete async_result; 
67.          } 

68. The private portion of our proactor implementation caches the handle to its 
Windows NT completion port: 

69.     private: 
70.          // Store a HANDLE to a Windows NT completion 

port. 
71.          HANDLE completion_port_; 
72.     }; 

 
 

6. Determine the number of proactors in an application. Many applications can be 
structured using just one instance of the Proactor pattern. In this case the proactor 
can be implemented using the Singleton pattern [GoF95], as shown in 
implementation activity 4 (235). This design is useful for centralizing event 
demultiplexing and dispatching of completion events to a single location in an 
application. 

It can be useful to run multiple proactors simultaneously within the same application 
process, however. For example, different proactors can be associated with threads 
running at different priorities. This design provides different quality of service levels to 
process completion handlers for asynchronous operations. 

Note that completion handlers are only serialized per thread within an instance of the 
proactor. Multiple completion handlers in multiple threads can therefore run in 
parallel. This configuration may necessitate the use of additional synchronization 
mechanisms if completion handlers in different threads access shared state 
concurrently. Mutexes and synchronization idioms such as Scoped Locking (325) are 
suitable. 

7. Implement the concrete completion handlers. Concrete completion handlers specialize 
the completion handler interface described in implementation activity 2.3 (228) to 
define application-specific functionality. Three sub-activities must be addressed when 
implementing concrete completion handlers: 

0. Determine policies for maintaining state in concrete completion handlers. A 
concrete completion handler may need to maintain state information 
associated with a particular request. For example, an operating system may 
notify a server that only part of a file was written to a Socket asynchronously, 
due to the occurrence of transport-level flow control. A concrete completion 
handler must then send the remaining data, until the file is fully transferred or 
the connection becomes invalid. It must therefore know which file was 
originally specified, how many bytes remain to be sent, and the position of the 
file at the start of the previous request. 

1. Select a mechanism to configure concrete completion handlers with a handle. 
Concrete completion handlers perform operations on handles. The same two 
strategies described in implementation activity 6.2 of the Reactor (179) 
pattern—hard-coded and generic—can be applied to configure handles with 
event handlers in the Proactor pattern. In both strategies wrapper facades (47) 
can encapsulate handles used by completion handler classes. 
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2. Implement completion handler functionality. Application developers must 
decide the processing actions that should be performed to implement a 
service when its corresponding hook method is invoked by a proactor. To 
separate connection establishment functionality from subsequent service 
processing, concrete completion handlers can be divided into several 
categories in accordance with the Acceptor-Connector pattern (285). In 
particular, service handlers implement application-specific services. In 
contrast, acceptors and connectors establish connections passively and 
actively, respectively, on behalf of these service handlers. 

8. Implement the initiators. In many proactive applications, such as our Web server 
example, the concrete completion handlers are the initiators. In this case this 
implementation activity can be skipped. Initiators that are not completion handlers, 
however, are often used to initiate asynchronous service processing during an 
application's start-up phase. 

Example Resolved 

Our Web server uses Windows NT features, such as overlapped I/O, completion ports, and 
GetQueuedCompletionStatus(), to implement proactive event demultiplexing. It 
employs a single-method completion handler dispatch interface strategy that can process 
multiple Web browser service requests asynchronously. HTTP acceptors asynchronously 
connect and create HTTP handlers using a variant of the Acceptor-Connector pattern (285). 
Each HTTP handler is responsible for asynchronously receiving, processing, and replying to 
a Web browser GET request delivered to the Web server's proactor via a completion event. 
The example shown here uses a single thread to invoke asynchronous operations and 
handle completion event processing. It is straightforward to enhance this example to take 
advantage of multiple threads, however, as described in the Variants section. 

The Web server's main() function starts by performing its initialization activities, such as 
creating a proactor singleton, a Windows NT completion port, and an HTTP acceptor. This 
acceptor associates its passive-mode acceptor handle with the proactor singleton's 
completion port. The Web server next performs the following scenario during its connection 
processing: 

 

§ The Web server invokes the HTTP acceptor's accept() method (1). This method 
creates an ACT containing itself as the concrete completion handler. 

§ Acting in the role of an initiator, the HTTP acceptor's accept() method then invokes 
the Win32 AcceptEx() operation asynchronously. It passes the ACT to AcceptEx(), 
together with a HANDLE that identifies both the passive-mode socket endpoint to accept 
connections and the completion port that Windows NT[8] should use to queue the 
completion event when AcceptEx() finishes accepting a connection. 

§ The Web server's main() function then invokes the proactor's (3) handle_events() 
method. This method runs the proactor's event loop, which calls the 
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GetQueuedCompletionStatus() asynchronous event demultiplexer. This function 
waits on its completion port for the operating system to queue completion events when 
asynchronous operations finish executing. 

§ A remote Web browser subsequently connects to the Web server (4), which causes 
the asynchronous AcceptEx() operation to accept the connection and generate an 
accept completion event. The operating system then locates this operation's ACT and 
associates it with the completion event. At this point it queues the updated completion 
event on the appropriate completion port (5). 

§ The GetQueuedCompletionStatus() function running in the application's event 
loop thread then dequeues the completion event from the completion port. The proactor 
uses the ACT associated with this completion event to dispatch the handle_event() 
hook method on the HTTP acceptor completion handler (6), passing it the 
ACCEPT_EVENT event type. 

§ To process the completion event, the HTTP acceptor creates an HTTP handler (7) that 
associates its I/O handle with the proactor's completion port. This HTTP handler then 
immediately invokes an asynchronous ReadFile() operation (8) to obtain the GET 
request data sent by the Web browser. The HTTP handler passes itself as the 
completion handler in the ACT to ReadFile() together with the I/O handle. The 
operating system uses the completion port associated with this handle to notify the 
proactor's handle_events() method when the asynchronous ReadFile() operation 
finishes executing. 

§ Control of the Web server then returns to the proactor's event loop (9), which calls the 
GetQueuedCompletionStatus() function to continue waiting for completion events. 

After the connection is established and the HTTP handler is created, the following diagram 
illustrates the subsequent scenario used by a proactive Web server to service an HTTP GET 
request: 

 

§ The Web browser sends an HTTP GET request (1). 
§ The asynchronous ReadFile() operation invoked in the previous scenario then 

finishes executing and the operating system queues the read completion event onto the 
completion port (2). This event is then dequeued by 
GetQueuedCompletionStatus(), which returns to the proactor's 
handle_events() method. This method demultiplexes the completion event's ACT to 
the designated HTTP handler and dispatches the handler's handle_event() hook 
method, passing the READ_EVENT event type (3). 

§ The HTTP handler parses the request (4). Steps (2) through (4) then repeat as 
necessary until the entire GET request has been received asynchronously. 

§ After the GET request has been completely received and validated, the HTTP handler 
memory-maps the requested file (5) and invokes an asynchronous WriteFile() 
operation to transfer the file data via the connection (6). The HTTP handler passes an 
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ACT that identifies itself as a completion handler to WriteFile(), so that the proactor 
can notify it after the asynchronous WriteFile() operation finishes. 

§ After the asynchronous WriteFile() operation finishes the operating system inserts 
a write completion event into the completion port. The proactor uses 
GetQueuedCompletionStatus() again to dequeue the completion event (7). It uses 
its associated ACT to demultiplex to the HTTP handler, then dispatches its 
handle_event() hook method (8) to process the write completion event results. 
Steps (6) through (8) continue asynchronously until the entire file has been delivered to 
the Web browser. 

Below we illustrate how the HTTP handler in our Web server can be written using the 
Completion_Handler class defined in the Implementation section. 
    class HTTP_Handler : public Completion_Handler   { 
         // Implements HTTP using asynchronous operations. 

HTTP_Handler inherits from the 'single-method' dispatch interface variant of the 
Completion_Handler base class defined in implementation activity 2.3 (228). This design 
enables the proactor singleton to dispatch its handle_events() hook method when 
asynchronous ReadFile() and WriteFile() operations finish. The following data 
members are contained in each HTTP_Handler object: 
    private: 
        // Cached <Proactor>. 
        Proactor *proactor_; 
        // Memory-mapped file_; 
        Mem_Map file_; 
        // Socket endpoint, initialized into "async-mode."  
        SOCK_Stream *sock_; 
        // Hold the HTTP Request while its being processed. 
        HTTP_Request request_; 
        // Read/write asynchronous socket I/O. 
        Async_Stream stream_; 

The constructor caches a pointer to the proactor used by the HTTP_Handler:  
    public: 
        HTTP_Handler (Proactor *proactor): 
            proactor_ (proactor) { } 

When a Web browser connects to the Web server the following open() method of the 
HTTP handler is called by the HTTP acceptor: 
        virtual void open (SOCK_Stream *sock) { 
            // Initialize state for request. 
            request_.state_ = INCOMPLETE; 
 
            // Store pointer to the socket. 
            sock_ = sock; 
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            // Initialize <Async_Stream>. 
            stream_.open 
                 (this, // This completion handler. 
                  sock_->handle (), proactor_); 
 
            // Start asynchronous read operation on socket. 
            stream_.async_read 
             (request_.buffer (), request_.buffer_size ()); 
        } 

In open(), the Async_Stream is initialized with the completion handler, handle, and 
proactor to use when asynchronous ReadFile() and WriteFile() operations finish. It 
then invokes an async_read() operation and returns to the proactor that dispatched it. 
When the call stack unwinds the Web server will continue running its handle_events() 
event loop method on its proactor singleton. 

After the asynchronous ReadFile() operation completes, the proactor singleton 
demultiplexes to the HTTP_Handler completion handler and dispatches its subsequent 
handle_event() method: 
         virtual void handle_event 
             (HANDLE, 
              Event_Type event_type, 
              const Async_Result &async_result) { 
             if (event_type == READ_EVENT) { 
                 if (!request_.done 
                     (async_result.bytes_transferred ())) 
                     // Didn't get entire request, so start a 
                     // new asynchronous read operation. 
                     stream_.async_read (request_.buffer (), 
                                   request_.buffer_size ()); 
                 else 
                     parse_request (); 
             } 
             // ... 
         } 

If the entire request has not arrived, another asynchronous ReadFile() operation is 
invoked and the Web server returns once again to its event loop. After a complete GET 
request has been received from a Web browser, however, the following parse_request() 
method maps the requested file into memory and writes the file data to the Web browser 
asynchronously: 
        void parse_request () { 
             // Switch on the HTTP command type. 
             switch (request_.command ()) { 
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             // Web browser is requesting a file. 
             case HTTP_Request::GET: 
                   // Memory map the requested file. 
                   file_.map (request_.filename ()); 
                   // Invoke asynchronous write operation. 
                   stream_.async_write (file_.buffer (), 
                                        file_.buffer_size ()); 
                   break; 
             // Web browser is storing file at the Web server. 
             case HTTP_Request::PUT: 
                  // ... 
             } 
        } 

This sample implementation of parse_request() uses a C++ switch statement for 
simplicity and clarity. A more extensible implementation could apply the Command pattern 
[GoF95] or Command Processor pattern [POSA1] instead. 

When the asynchronous WriteFile() operation completes, the proactor singleton 
dispatches the handle_event() hook method of the HTTP_Handler:  
        virtual void handle_event 
             (HANDLE, Event_Type event_type, 
              const Async_Result &async_result) { 
             // ... see READ_EVENT case above ... 
             else if (event_type == WRITE_EVENT) { 
                 if (!file_.done 
                      (async_result.bytes_transferred ())) 
                      // Didn't send entire data, so start 
                      // another asynchronous write. 
                      stream_.async_write 
                       (file_.buffer (),file_.buffer_size ()); 
                 else 
                      // Success, so free up resources... 
             } 
        } 

After all the data has been received the HTTP handler frees resources that were allocated 
dynamically.  

The Web server contains a main() function that implements a single-threaded server. This 
server first calls an asynchronous accept operation and the waits in the proactor singleton's 
handle_events() event loop: 
    // HTTP server port number. 
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    const u_short PORT = 80; 
 
    int main () { 
        // HTTP server address. 
        INET_Addr addr (PORT); 
 
        // Initialize HTTP server endpoint, which associates 
        // the <HTTP_Acceptor>'s passive-mode socket handle 
        // with the <Proactor> singleton's completion port. 
        HTTP_Acceptor acceptor (addr, Proactor::instance ()); 
 
        // Invoke an asynchronous <accept> operation to 
        // Invoke the Web server processing. 
        acceptor.accept (); 
 
        // Event loop processes client connection requests 
        // and HTTP requests proactively. 
        for (;;) 
            Proactor::instance ()->handle_events (); 
        /* NOTREACHED */ 
    } 

As service requests arrive from Web browsers and are converted into indication events by 
the operating system, the proactor singleton invokes the event handling hook methods on 
the HTTP_Acceptor and HTTP_Handler concrete event handlers to accept connections 
and receive and process logging records asynchronously. The sequence diagram below 
illustrates the behavior in the proactive Web server. 

The proactive processing model shown in this diagram can scale when multiple HTTP 
handlers and HTTP acceptors process requests from remote Web browsers simultaneously. 
For example, each handler/acceptor can invoke asynchronous ReadFile(), 
WriteFile(), and AcceptEx() operations that run concurrently. If the underlying 
asynchronous operation processor supports asynchronous I/O operations efficiently the 
overall performance of the Web server will scale accordingly.  
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Variants 

Asynchronous Completion Handlers. The Implementation section describes activities used to 
implement a proactor that dispatches completion events to completion handlers within a 
single proactor event loop thread. When a concrete completion handler is dispatched, it 
borrows the proactor's thread to perform its completion processing. However, this design 
may restrict the concrete completion handler to perform short-duration synchronous 
processing to avoid decreasing the overall responsiveness of the application significantly. 

To resolve this restriction, all completion handlers could be required to act as initiators and 
invoke long-duration asynchronous operations immediately, rather than performing the 
completion processing synchronously. Some operating systems, such as Windows NT, 
explicitly support asynchronous procedure calls (APCs). An APC is a function that executes 
asynchronously in the context of its calling thread. When an APC is invoked the operating 
system queues it within the thread context. The next time the thread is idle, such as when it 
blocks on an I/O operation, it can run the queued APCs. 

Concurrent Asynchronous Event Demultiplexer. One downside to using APCs is that they 
may not use multiple CPUs effectively. This is because each APC runs in a single thread 
context. A more scalable strategy therefore may be to create a pool of threads that share an 
asynchronous event demultiplexer, so that a proactor can demultiplex and dispatch 
completion handlers concurrently. This strategy is particularly scalable on operating system 
platforms that implement asynchronous I/O efficiently. 

For example, a Windows NT completion port [Sol98] is optimized to run efficiently when 
accessed by GetQueuedCompletionStatus() from multiple threads simultaneously 
[HPS99]. In particular, the Windows NT kernel schedules threads waiting on a completion 
port in 'last-in first-out' (LIFO) order. This LIFO protocol maximizes CPU cache affinity 
[Mog95] by ensuring that the thread waiting the shortest time is scheduled first, which is an 
example of the Fresh Work Before Stale pattern [Mes96]. 

Shared Completion Handlers. Iinitiators can invoke multiple asynchronous operations 
simultaneously, all of which share the same concrete completion handler [ARSK00]. To 
behave correctly, however, each shared handler may need to determine unambiguously 
which asynchronous operation has completed. In this case, the initiator and proactor must 
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collaborate to shepherd operation-specific state information throughout the entire 
asynchronous processing life-cycle. 

As with implementation activity 3.1 (232), the Asynchronous Completion Token pattern (261) 
can be re-applied to disambiguate each asynchronous operation—an initiator can create an 
asynchronous completion token (ACT) that identifies each asynchronous operation uniquely. 
It then 'piggy-backs' this initiator-ACT onto the ACT passed when an asynchronous 
operation is invoked on an asynchronous operation processor. When the operation finishes 
executing and is being processed by the proactor, the 'initiator-ACT can be passed 
unchanged to the shared concrete completion handler's hook method. This initiator-ACT 
allows the concrete completion handler to control its subsequent processing after it receives 
an asynchronous operation's completion results. 

 

To share a concrete completion handler we first add an initiator-ACT data member and a 
pair of set/get methods to the Async_Result class: 
    class Async_Result : public OVERLAPPED { 
    private: 
        const void *initiator_act_; 
        // .... 
    public: 
        // Set/get initiator's ACT. 
        void initiator_act (const void *); 
        const void *initiator_act (); 
        // ... 

We next modify the Async_Stream I/O methods to 'piggy-back' the initiator-ACT with its 
existing ACT: 
    int Async_Stream::async_read (void *buf, 
                                   u_long n_bytes, 
                                   const void *initiator_act) 
    { 
        u_long bytes_read; 
        OVERLAPPED *act = new // Create the ACT. 
            Async_Stream_Read_Result (completion_handler_); 
 
        // Set <initiator_act> in existing ACT. 
        act->initiator_act (initiator_act); 
 
        ReadFile (handle_, buf, n_bytes, &bytes_read, act); 
    } 

Finally, we can retrieve this initiator-ACT in a concrete event handler's 
handle_event() method via the Async_Result parameter: 
    virtual void handle_event 
                  (HANDLE, Event_Type event_type, 
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                   const Async_Result &async_result) { 
        const  void *initiator_act = 
             async_result.initiator_act (); 
        // ... 
    } 

The handle_event() method can use this initiator_act to disambiguate its 
subsequent processing. 
 

 

Asynchronous Operation Processor Emulation. Many operating system platforms, including 
the traditional versions of UNIX [MBKQ96] and the Java Virtual Machine (JVM), do not 
export asynchronous operations to applications. There are several techniques that can be 
used to emulate an asynchronous operation processor on such platforms, however. A 
common solution is to employ a concurrency mechanism to execute operations without 
blocking initiators, such as the Active Object pattern (369) or some type of threading model. 
Three activities must be addressed when implementing a multi-threaded asynchronous 
operation processor: 
§ Operation invocation. When an operation is invoked the asynchronous operation 

processor must first store its associated ACT in an internal table. This can be 
implemented using the Manager pattern [Som97]. 

§ Asynchronous operation execution. The operation will next be executed in a different 
thread of control than the invoking initiator thread. One strategy is to spawn a thread for 
each operation. A more scalable strategy is for the asynchronous operation processor 
to maintain a pool of threads using the Active Object pattern (369) Thread Pool variant. 
This strategy requires the initiator thread to queue the operation request before 
continuing with its other computations. 

Each operation will subsequently be dequeued and executed in a thread internal to the 
asynchronous operation processor. For example, to implement asynchronous read 
operations an internal thread can block while reading from socket or file handles. 
Operations thus appear to execute asynchronously to initiators that invoke them, even 
though the operations block internally within the asynchronous operation processor in 
their own thread of control. 

§ Operation completion handling. When an asynchronous operation completes the 
asynchronous operation processor generates a completion event and associates it with 
the appropriate ACT it had cached during the original invocation. It then queues the 
updated completion event into the appropriate completion event queue. 

Other variants. Several variants of the Proactor pattern are similar to variants in the Reactor 
pattern (179), such as integrating the demultiplexing of timer and I/O events, and supporting 
concurrent concrete completion handlers. 

Known uses 

Completion ports in Windows NT. The Windows NT operating system provides the 
mechanisms to implement the Proactor pattern efficiently [Sol98]. Various asynchronous 
operations are supported by Windows NT, such as time-outs, accepting new network 
connections, reading and writing to files and Sockets, and transmitting entire files across a 
Socket connection. The operating system itself is thus the asynchronous operation 
processor. Results of the operations are queued as completion events on Windows NT 
completion ports, which are then dequeued and dispatched by an application-provided 
proactor. 
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The POSIX AIO family of asynchronous I/O operations. On some real-time POSIX 
platforms the Proactor pattern is implemented by the aio_*() family of APIs [POSIX95]. 
These operating system features are similar to those described above for Windows NT. One 
difference is that UNIX signals can be used to implement a pre-emptively asynchronous 
proactor in which a signal handler can interrupt an application's thread of control. In contrast, 
the Windows NT API is not pre-emptively asynchronous, because application threads are 
not interrupted. Instead, the asynchronous completion routines are called back at well-
defined Win32 function points. 

ACE Proactor Framework. The ADAPTIVE Communication Environment (ACE) [Sch97] 
provides a portable object-oriented Proactor framework that encapsulates the overlapped I/O 
and completion port mechanisms on Windows NT and the aio_*() family of asynchronous 
I/O APIs on POSIX platforms. ACE provides an abstraction class, ACE_Proactor, that 
defines a common interface to a variety of proactor implementations, such as 
ACE_Win32_Proactor and ACE_POSIX_Proactor. These proactor implementations can 
be created using different asynchronous event demultiplexers, such as 
GetQueuedCompletionStatus() and aio_suspend(), respectively. 

Operating system device driver interrupt-handling mechanisms. The Proactor pattern is 
often used to enhance the structure of operating system kernels that invoke I/O operations 
on hardware devices driven by asynchronous interrupts. For example, a packet of data can 
be written from an application to a kernel-resident device driver, which then passes it to the 
hardware device that transmits the data asynchronously. When the device finishes its 
transmission it generates a hardware interrupt that notifies the appropriate handler in the 
device driver. The device driver then processes the interrupt to completion, potentially 
initiating another asynchronous transfer if more data is available from the application. 

Phone call initiation via voice mail. A real-life application of the Proactor pattern is the 
scenario in which you telephone a friend, who is currently away from her phone, but who 
returns calls reliably when she comes home. You therefore leave a message on her voice 
mail to ask her to call you back. In terms of the Proactor pattern, you are a initiator who 
invokes an asynchronous operation on an asynchronous operation processor—your friend's 
voice mail—to inform your friend that you called. While waiting for your friend's 'call-back' 
you can do other things, such as re-read chapters in POSA2. After your friend has listened 
to her voice mail, which corresponds to the completion of the asynchronous operation, she 
plays the proactor role and calls you back. While talking with her, you are the completion 
handler that 'processes' her 'callback'. 

Consequences 

The Proactor pattern offers a variety of benefits: 

Separation of concerns. The Proactor pattern decouples application-independent 
asynchronous mechanisms from application-specific functionality. The application-
independent mechanisms become reusable components that know how to demultiplex the 
completion events associated with asynchronous operations and dispatch the appropriate 
callback methods defined by concrete completion handlers. Similarly, the application-specific 
functionality in concrete completion handlers know how to perform particular types of 
service, such as HTTP processing. 

Portability. The Proactor pattern improves application portability by allowing its interface to 
be reused independently of the underlying operating system calls that perform event 
demultiplexing. These system calls detect and report the events that may occur 
simultaneously on multiple event sources. Event sources may include I/O ports, timers, 
synchronization objects, signals, and so on. For example, on real-time POSIX platforms the 
asynchronous I/O functions are provided by the aio_*() family of APIs [POSIX95]. 
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Similarly, on Windows NT, completion ports and overlapped I/O are used to implement 
asynchronous I/O [MDS96]. 

Encapsulation of concurrency mechanisms. A benefit of decoupling the proactor from the 
asynchronous operation processor is that applications can configure proactors with various 
concurrency strategies without affecting other application components and services. 

Decoupling of threading from concurrency. The asynchronous operation processor executes 
potentially long-duration operations on behalf of initiators. Applications therefore do not need 
to spawn many threads to increase concurrency. This allows an application to vary its 
concurrency policy independently of its threading policy. For instance, a Web server may 
only want to allot one thread per CPU, but may want to service a higher number of clients 
simultaneously via asynchronous I/O. 

Performance. Multi-threaded operating systems use context switching to cycle through 
multiple threads of control. While the time to perform a context switch remains fairly 
constant, the total time to cycle through a large number of threads can degrade application 
performance significantly if the operating system switches context to an idle thread.[9] For 
example, threads may poll the operating system for completion status, which is inefficient. 
The Proactor pattern can avoid the cost of context switching by activating only those logical 
threads of control that have events to process. If no GET request is pending, for example, a 
Web server need not activate an HTTP Handler. 

Simplification of application synchronization. As long as concrete completion handlers do not 
spawn additional threads of control, application logic can be written with little or no concern 
for synchronization issues. Concrete completion handlers can be written as if they existed in 
a conventional single-threaded environment. For example, a Web server's HTTP handler 
can access the disk through an asynchronous operation, such as the Windows NT 
TransmitFile() function [HPS99], hence no additional threads need to be spawned.  

The Proactor pattern has the following liabilities: 

Restricted applicability. The Proactor pattern can be applied most efficiently if the operating 
system supports asynchronous operations natively. If the operating system does not provide 
this support, however, it is possible to emulate the semantics of the Proactor pattern using 
multiple threads within the proactor implementation. This can be achieved, for example, by 
allocating a pool of threads to process asynchronous operations. This design is not as 
efficient as native operating system support, however, because it increases synchronization 
and context switching overhead without necessarily enhancing application-level parallelism. 

Complexity of programming, debugging and testing. It is hard to program applications and 
higher-level system services using asynchrony mechanisms, due to the separation in time 
and space between operation invocation and completion. Similarly, operations are not 
necessarily constrained to run at well-defined points in the processing sequence—they may 
execute in non-deterministic orderings that are hard for many developers to understand. 

Applications written with the Proactor pattern can also be hard to debug and test because 
the inverted flow of control oscillates between the proactive framework infrastructure and the 
method callbacks on application-specific handlers. This increases the difficulty of 'single-
stepping' through the run-time behavior of a framework within a debugger, because 
application developers may not understand or have access to the proactive framework code. 

Scheduling, controlling, and canceling asynchronously running operations. Initiators may be 
unable to control the scheduling order in which asynchronous operations are executed by an 
asynchronous operation processor. If possible, therefore, an asynchronous operation 
processor should employ the Strategy pattern [GoF95] to allow initiators to prioritize and 
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cancel asynchronous operations. Devising a completely reliable and efficient means of 
canceling all asynchronous operations is hard, however, because asynchronous operations 
may complete before they can be cancelled. 

See Also 

The Proactor pattern is related to the Observer [GoF95] and Publisher-Subscriber [POSA1] 
patterns, in which all dependents are informed when a single subject changes. In the 
Proactor pattern, however, completion handlers are informed automatically when completion 
events from multiple sources occur. In general, the Proactor pattern is used to demultiplex 
multiple sources of asynchronously delivered completion events to their associated 
completion handlers, whereas an observer or subscriber is usually associated with a single 
source of events. 

The Proactor pattern can be considered an asynchronous variant of the synchronous 
Reactor pattern (179). The Reactor pattern is responsible for demultiplexing and dispatching 
multiple event handlers that are triggered when it is possible to invoke an operation 
synchronously without blocking. In contrast, the Proactor pattern supports the demultiplexing 
and dispatching of multiple completion handlers that are triggered by the completion of 
operations that execute asynchronously. 

Leader/Followers (447) and Half-Sync/Half-Async (423) are two other patterns that 
demultiplex and process various types of events synchronously. On platforms that support 
asynchronous I/O efficiently, the Proactor pattern can often be implemented more efficiently 
than these patterns. However, the Proactor pattern may be harder to implement because it 
has more participants, which require more effort to understand. The Proactor's combination 
of 'inversion of control' and asynchrony may also require application developers to have 
more experience to use and debug it effectively. 

The Active Object pattern (369) decouples method execution from method invocation. The 
Proactor pattern is similar, because an asynchronous operation processor performs 
operations asynchronously on behalf of initiators. Both patterns can therefore be used to 
implement asynchronous operations. The Proactor pattern is often used instead of the Active 
Object pattern on operating systems that support asynchronous I/O efficiently. 

The Chain of Responsibility [GoF95] pattern decouples event handlers from event sources. 
The Proactor pattern is similar in its segregation of initiators and completion handlers. In the 
Chain of Responsibility pattern, however, the event source has no prior knowledge of which 
handler will be executed, if any. In Proactor, initiators have full control over the target 
completion handler. The two patterns can be combined by establishing a completion handler 
that is the entry point into a responsibility chain dynamically configured by an external 
factory. 

Current Java implementations do not support Proactor-like event processing schemes, 
because java.io does not support asynchronous I/O. In basic Java implementations 
blocking I/O operations can even block the whole Java Virtual Machine (JVM)—the I/O 
operation blocks the current thread and, as multi-threading may be implemented in user 
space, the operating system considers the task running the JVM as blocked and schedules 
other operating system processes instead of other JVM threads. 

More sophisticated Java implementations work around this problem by implementing 
asynchronous I/O internally on the native code level—the thread doing the blocking call is 
blocked, but other threads are able to run. The blocked thread is subsequently called back, 
or may explicitly wait for the blocking call to return. Applications cannot make use of this 
directly, however, because current JDK libraries do not expose asynchronous I/O. This will 
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change with the next generation of the Java I/O system, which is under development and will 
appear as a package called java.nio or something similar [JSR51]. 

Certain programming languages, such as Scheme, support continuations. Continuations can 
be used in single-threaded programs to enable a sequence of function calls to relinquish its 
runtime call stack when blocked without losing the execution history of the call stack. In the 
context of the Proactor pattern, the indirect transfer of control from an asynchronous 
operation invocation to the subsequent processing by its completion handler can be modeled 
as a continuation. 

Credits 

Tim Harrison, Thomas D. Jordan, and Irfan Pyarali are co-authors of the original version of 
the Proactor pattern. Irfan also provided helpful comments on this version. Thanks to Ralph 
Johnson for suggestions that helped improve this pattern and for pointing out how this 
pattern relates to the programming language feature continuations. 

[4]For simplicity this case is not illustrated in the sequence diagram on page 226. 

[5]Due to space limitations in the sequence diagram shown on page 226 we assume that the 
asynchronous event demultiplexer is integrated with the proactor component. 

[6]The handles themselves are often provided by the operating system and need not be 
implemented. 

[7]Multiple threads can call handle_events() on the same proactor simultaneously, as 
described in the Variants section. This design is well-suited for I/O bound applications 
[HPS99]. 

[8]For conciseness we refer to 'Windows NT' or simply 'the operating system' rather than 
'asynchronous operation processor' in the remainder of this section. 

[9]Some older operating system exhibit this behavior, though most modern operating systems 
do not. 

Asynchronous Completion Token 
The Asynchronous Completion Token design pattern allows an application to demultiplex 
and process efficiently the responses of asynchronous operations it invokes on services. 

Also Known As 

Active Demultiplexing [PRS+99], 'Magic Cookie' 

Example 

Consider a large-scale distributed e-commerce system consisting of clusters of Web servers. 
These servers store and retrieve various types of content in response to requests from Web 
browsers. The performance and reliability of such e-commerce systems has become 
increasingly crucial to many businesses. 

For example, in a web-based stock trading system, it is important that the current stock 
quotes, as well as subsequent buy and sell orders, are transmitted efficiently and reliably. 
The Web servers in the e-commerce system must therefore be monitored carefully to ensure 
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they are providing the necessary quality of service to users. Autonomous management 
agents can address this need by propagating management events from e-commerce system 
Web servers back to management applications: 

 

System administrators can use these management agents, applications, and events to 
monitor, visualize, and control the status and performance of Web servers in the e-
commerce system [PSK+97]. 

Typically, a management application uses the Publisher-Subscriber pattern [POSA1] to 
subscribe with one or more management agents to receive various types of events, such as 
events that report when Web browsers establish new connections with Web servers. When a 
management agent detects activities of interest to a management application, it sends 
completion events to the management application, which then processes these events. 

In large-scale e-commerce systems, however, management applications may invoke 
subscription operations on many management agents, requesting notification of the 
occurrence of many different types of events. Moreover, each type of event may be 
processed differently in a management application using specialized completion handlers. 
These handlers determine the application's response to events, such as updating a display, 
logging events to a database, or automatically detecting performance bottlenecks and 
system failures. 

One way in which a management application could match its subscription operations to their 
subsequent completion events would be to spawn a separate thread for each event 
subscription operation it invoked on a management agent. Each thread would then block 
synchronously, waiting for completion event(s) from its agent to arrive in response to its 
original subscription operation. In this synchronous design, a completion handler that 
processed management agent event responses could be stored implicitly in each thread's 
run-time stack. 

Unfortunately this synchronous multi-threaded design incurs the same context-switching, 
synchronization, and data-movement performance overhead drawbacks described in the 
Example section of the Reactor pattern (179). Therefore, management applications may 
instead opt to initiate subscription operations asynchronously. In this case, management 
applications must be designed to demultiplex management agent completion events to their 
associate completion handlers efficiently and scalably, thereby allowing management 
applications to react promptly when notified by their agents. 

Context 

An event-driven system in which applications invoke operations asynchronously on services 
and subsequently process the associated service completion event responses. 

Problem 
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When a client application invokes an operation request on one or more services 
asynchronously, each service returns its response to the application via a completion event. 
The application must then demultiplex this event to the appropriate handler, such as a 
function or object, that it uses to process the asynchronous operation response contained in 
the completion event. To address this problem effectively, we must resolve three forces: 
§ A service may not know the original context in which a client application invoked its 

operations asynchronously. For example, one client might dedicate a separate thread 
for each operation, whereas another might handle all operations in a single thread. This 
lack of context makes it hard for a service to know what information its clients need in 
order to demultiplex and process completion events. Therefore the client application, 
not the service, should be responsible for determining how completion events are 
demultiplexed to the handler designated to process them. 

 

§ Management agent services in our e-commerce system example do not, and should 
not, know how a management application will demultiplex and process the various 
completion events it receives from the agents in response to its asynchronous 
subscription operations. 
 

 

§ As little communication overhead as possible should be incurred between a client 
application and a service to determine how the client will demultiplex and process 
completion events after asynchronous operations finish executing. Minimizing 
communication overhead is important for client applications that are latency-constrained 
and those that interact with services over bandwidth-limited communication links. 

 

§ In our e-commerce system a management application and an agent service should 
have a minimal number of interactions, such as one to invoke the asynchronous 
subscription operation and one for each completion event response. Moreover, the 
data transferred to help demultiplex completion events to their handlers should add 
minimal extra bytes beyond an operation's input parameters and return values. 
 

 

§ When a service response arrives at a client application, the application should spend 
as little time as possible demultiplexing the completion event to the handler that will 
process the asynchronous operation's response. 

 

§ A large-scale e-commerce application may have hundreds of Web servers and 
management agents, millions of simultaneous Web browser connections and a 
correspondingly large number of asynchronous subscription operations and 
completion events. Searching a large table to associate a completion event 
response with its original asynchronous operation request could thus degrade the 
performance of management applications significantly. 
 

 

Solution 



 221

Together with each asynchronous operation that a client initiator invokes on a service, 
transmit information that identifies how the initiator should process the service's response. 
Return this information to the initiator when the operation finishes, so that it can be used to 
demultiplex the response efficiently, allowing the initiator to process it accordingly. 

In detail: for every asynchronous operation that a client initiator invokes on a service, create 
an asynchronous completion token (ACT). An ACT contains information that uniquely 
identifies the completion handler, which is the function or object responsible for processing 
the operation's response. Pass this ACT to the service together with the operation, which 
holds but does not modify the ACT. When the service replies to the initiator, its response 
includes the ACT that was sent originally. The initiator can then use the ACT to identify the 
completion handler that will process the response from the original asynchronous operation. 

Structure 

Four participants form the structure of the Asynchronous Completion Token pattern: 

A service provides some type of functionality that can be accessed asynchronously. 
 

Management agents provide a distributed management and monitoring service to our e-
commerce system. 
 

 

A client initiator invokes operations on a service asynchronously. It also demultiplexes the 
response returned by these operations to a designated completion handler, which is a 
function or object within an application that is responsible for processing service responses. 

 

In our e-commerce system management applications invoke asynchronous operations 
on management agents to subscribe to various types of events. The management 
agents then send completion event responses to the management applications 
asynchronously when events for which they have registered occur. Completion handlers 
in management applications process these completion events to update their GUI 
display and perform other actions. 
 

 

 

An asynchronous completion token (ACT) contains information that identifies a particular 
initiator's completion handler. The initiator passes the ACT to the service when it invokes an 
operation; the service returns the ACT to the initiator unchanged when the asynchronous 
operation completes. The initiator then uses this ACT to efficiently demultiplex to the 
completion handler that processes the response from the original asynchronous operation. 
Services can hold a collection of ACTs to handle multiple asynchronous operations invoked 
by initiators simultaneously. 
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In our e-commerce system a management application initiator can create ACTs that are 
indices into a table of completion handlers, or are simply direct pointers to completion 
handlers. To a management agent service, however, the ACT is simply an opaque value 
that it returns unchanged to the management application initiator. 
 

 

The following class diagram illustrates the participants of the Asynchronous Completion 
Token pattern and the relationships between these participants: 

 

Dynamics 

The following interactions occur in the Asynchronous Completion Token pattern: 
§ Before invoking an asynchronous operation on a service, the initiator creates the ACT 

that identifies the completion handler it associates with the operation. 
§ When invoking an operation on the service, the initiator passes the ACT to the service. 
§ The initiator can continue invoking other operations or processing responses while the 

service executes its asynchronous operation. 
§ When the asynchronous operation completes, the service sends a response to the 

initiator that contains the original ACT. The initiator uses the ACT to demultiplex to a 
completion handler that performs application-specific processing upon the response of 
the asynchronous operation. 

 

Implementation 

There are six activities involved in implementing the Asynchronous Completion Token 
pattern. These activities are largely orthogonal to the implementations of initiators, services, 
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and completion handlers, which are covered by other patterns, such as Proxy [GoF95] 
[POSA1], Proactor, or Reactor (179). This section therefore focuses mainly on implementing 
ACTs, the protocol for exchanging ACTs between initiators and services, and the steps used 
to demultiplex ACTs efficiently to their associated completion handlers. 

1. Define the ACT representation. The representation of an ACT should be meaningful for 
an initiator and its completion handler, but opaque to a service. Three common ACT 
representations: 
§ Pointer ACTs. ACTs are often represented as pointers to programming 

language constructs, such as pointers to completion handler objects in C++ or 
references to completion handler objects in Java. In C++, for example, when an 
initiator initiates an operation on a service, it can create a completion handler 
ACT object and cast its address to a void pointer. This pointer is then passed to 
the service via the asynchronous operation call. Pointer ACTs are used primarily 
to pass ACTs among initiators and services running on relatively homogeneous 
platforms, such as those on which pointers have the same number of bytes. It 
may be necessary therefore to use portability features, such as typedefs or 
macros, to ensure a uniform representation of pointers throughout 
heterogeneous distributed systems. 

§ Object reference ACTs. To simplify the use of ACTs in heterogeneous 
systems, ACTs can be represented as object references defined in distributed 
object computing middleware, such as CORBA [OMG98c]. CORBA object 
references provide a standard, portable, and inter-operable means to 
communicate ACTs between distributed initiators and services. Upon receiving 
an object reference ACT from a service, an initiator can use the CORBA 
_narrow() operation to downcast the ACT to a completion handler type that is 
meaningful to it. Naturally, object references may not be a feasible ACT 
representation if middleware is not used. 

§ Index ACTs. ACTs also can be represented as indices into a table of 
completion handlers accessible to the initiator. When a response arrives from the 
service, the initiator simply uses the ACT to index into the table and access the 
corresponding completion handler. This representation is particularly useful for 
languages, such as FORTRAN, that do not support object references or pointers. 
Database identifiers or offsets into memory-mapped files are useful to associate 
ACTs with persistent completion handlers whose life-cycle extends beyond the 
life-time of a particular process. Index ACTs are also useful for improving initiator 
robustness, as described in implementation activity 2 (269). 

Another aspect to consider when defining an ACT representation is the support it 
offers the initiator for demultiplexing to the appropriate completion handlers. By using 
common patterns such as Command or Adapter [GoF95], ACTs can provide a 
uniform interface to initiators. Concrete ACT implementations then map this interface 
to the specific interface of a particular completion handler, as described in 
implementation activity 6 (271). 

 

The following abstract class defines a C++ interface that can be used as the base 
for a wide range of pointer ACTs. It defines a pure virtual handle_event() 
method, which an initiator can use to dispatch a specific completion handler that 
processes the response from an asynchronous operation: 
    class Completion_Handler_ACT { 
    public: 
        virtual void handle_event 
             (const Completion_Event &event) = 0; 
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    }; 

Application developers can define new types of completion handlers by 
subclassing from Completion_Handler_ACT and overriding its 
handle_event() hook method to call a specific completion handler. The e-
commerce system presented in the Example Resolved section illustrates this 
implementation strategy. 
 

 

2. Select a strategy for holding the ACT at the initiator. An initiator can invoke more than 
one service asynchronously. Supporting this behavior requires initiators to select one 
of the following strategies for holding the ACT: 
§ Implicit ACTs. In this strategy the ACT is held 'implicitly' by simply defining it to 

be the address of an initiator completion handler object. This strategy is often 
used with pointer or object reference ACTs. The Example Resolved section 
illustrates the use of implicit ACTs. The benefits of implicit ACTs are their 
efficient time and space utilization because they are simply memory addresses 
that point directly to the associated completion handler. However, implicit ACTs 
may not be as robust or secure as the explicit ACT strategy described next. 

§ Explicit ACTs. In this strategy the initiator holds its ACTs in an explicit data 
structure, for example a table of completion handlers organized using the 
Manager pattern [Som97] or an active demultiplexing table [PRS+99]. This 
strategy is well suited for index ACTs. Two benefits of using an explicit data 
structure to maintain ACTs in the initiator are increased robustness and 
authenticity. For example, if services do not return responses due to crash or 
hang failures, the corresponding ACTs can be located in the table and released 
wholesale. 

In addition, if the initiator cannot trust the service to return the original ACT 
unchanged, the explicit data structure can store additional information to 
authenticate whether the returned ACT really exists within the initiator. This 
authentication check, however, can increase the overhead of locating the ACT 
and demultiplexing it to the completion handler within the initiator. 

3. Regardless of which strategy is used, initiators are responsible for freeing any 
resources associated with ACTs after they are no longer needed. The Object Lifetime 
Manager pattern [LGS99] is a useful way to manage the deletion of ACT resources 
robustly. 

4. Determine how to pass the ACT from the initiator to the service. Initiators can use two 
strategies to pass ACTs along with asynchronous service operation requests: 
§ Implicit parameters are often stored in a context or environment that is passed 

to the service transparently. The CORBA context parameters and GIOP service 
context fields [OMG98c] are examples of implicit parameters. 

§ Explicit parameters are defined in the signature of the asynchronous 
operations. The Example Resolved section illustrates how an ACT can be 
passed as an explicit parameter to service operations. 

5. Determine a strategy for holding the ACT in the service. After an ACT is received by a 
service it must hold the ACT while performing the operation invoked by the initiator. 
There are the two general strategies for holding ACTs in a service: 
§ If a service executes synchronously, the ACT can simply reside in the service's 

run-time stack while the service processes the operation. If a service runs in a 
different thread or process than its initiator, its operations can execute 
synchronously while still providing an asynchronous programming model to 
initiators [SV98b]. 
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§ If a service processes initiator operations asynchronously, it may need to 
handle multiple requests simultaneously. In this case the service must maintain 
the ACTs in a data structure that resides outside the scope of any service's run-
time stack. The Manager pattern [Som97] can be used to organize this collection 
of ACTs. 

6. Determine the number of times an ACT can be used. Both an initiator and a service 
can use the same ACT multiple times: 
§ Typically, an initiator passes a separate ACT for each asynchronous 

invocation. However, an initiator can invoke a particular asynchronous operation 
on a service multiple times. For each invocation, it can designate the same 
completion handler to process the operation's responses, thereby minimizing the 
cost of ACT creation and destruction. Similarly, an initiator can invoke the same 
operation on multiple service instances and designate the same completion 
handler to process the responses returned from all instances. 

§ A service may return an ACT just once along with the response from an 
asynchronous operation. However, a service can also issue a series of 
responses using the same ACT whenever a particular event occurs. In this case 
an ACT from a single asynchronous operation invocation can be returned to the 
initiator multiple times. 
 

7. In our e-commerce system example the management application initiator can 
subscribe the same ACT with multiple agent services and use it to demultiplex 
and dispatch these management agents' responses, such as 'connection 
established' completion events. Moreover, each agent can return this ACT 
multiple times, for example whenever it detects the establishment of a new 
connection. 
 

 

9. Determine the initiator strategy for demultiplexing ACTs to completion handler hook 
methods. Initiators are responsible for demultiplexing asynchronous operation 
completion events to their completion handlers efficiently. Two strategies can be used 
to demultiplex an ACT to its associated completion handler when an asynchronous 
operation finishes: 
§ Queued completion events. In this strategy, ACTs can be placed in a 

completion event queue by a service, or by a local service proxy if the service is 
remote. An initiator can remove the ACT from a completion event queue at its 
discretion and then use the information encapsulated in the ACT to control its 
subsequent processing. Windows NT features, such as overlapped I/O, 
completion ports, and the GetQueuedCompletionStatus() function, use this 
strategy, as described in the Known Uses section [Sol98]. 

After a completion event and its corresponding ACT are retrieved from the 
completion event queue, the initiator can use the ACT to demultiplex to the 
appropriate completion handler. At this point, it can dispatch the ACT's hook 
method, such as the handle_event() method illustrated in implementation 
activity 1 (267). This hook method processes the completion event containing the 
asynchronous operation's response. Implementation activity 5.2 in the Proactor 
pattern (215) illustrates this strategy. 

§ Callbacks. In this strategy an initiator passes a callback function or object[10] to 
the service. When an asynchronous operation completes, the callback can be 
invoked by the service or by a local service proxy. The ACT can be returned as a 
parameter to the callback function or object and downcast to identify the 
completion handler used for subsequent processing efficiently. For example, the 
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ACT's handle_event() method can be called and passed the completion 
event, as described above. 

In general, a single callback handler object can be used to demultiplex and 
process different types of completion events efficiently. A callback handler can 
therefore be implemented using the Singleton pattern [GoF95] within the initiator 
application. 

Callbacks can be delivered to an initiator asynchronously or synchronously. In 
the asynchronous strategy the callback is invoked via an interrupt or signal 
handler [POSIX95]. Initiators need not therefore explicitly wait for notifications by 
blocking in an event loop. In the synchronous strategy, the application that hosts 
the initiator often waits in a reactive or proactive event loop. When the response 
returns from the service, it is dispatched to the appropriate callback. 

 

Our e-commerce system example illustrates how the synchronous callback 
object strategy can be implemented using pointer ACTs. We define a generic 
callback handler class that uses the Callback_Handler_ACT defined in 
implementation activity 1 (267). 

The completion_event() method of this class initiates the appropriate 
management application completion handler processing when completion 
events are returned from management agents: 
  class Callback_Handler { 
  public: 
       // Callback method. 
       virtual void completion_event 
            (const Completion_Event &event, 
             Completion_Handler_ACT *act) { 
            act->handle_event (event); 
       }; 
  }; 

When invoking an asynchronous operation on a service, the initiator passes 
a reference to the callback handler instance as a parameter to the service in 
addition to the ACT. When an asynchronous operation finishes, the service 
or its local service proxy dispatches the callback handler's 
completion_event() method synchronously to pass the completion 
event and ACT from the management agent service to the management 
application. 

The completion_event() method then demultiplexes to the 
handle_event() hook method on the ACT it receives. In turn this method 
performs the completion handler processing on the asynchronous 
operation's response. 
 

 

10. Note how both demultiplexing strategies described above allow initiators to process 
many different types of completion events efficiently. In particular the ACT 
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demultiplexing step requires constant O(1) time, regardless of the number of 
completion handlers represented by subclasses of Completion_Handler_ACT. 

Example Resolved 

In our example scenario, system administrators employ the management application in 
conjunction with management agents to display and log all connections established between 
Web browsers and Web servers. In addition, the management application displays and logs 
each file transfer, because the HTTP 1.1 protocol can multiplex multiple GET requests over a 
single connection [Mog95]. 

We first define a management agent proxy that management applications can use to 
subscribe asynchronously for completion events. We next illustrate how to define a concrete 
ACT that is tailored to the types of completion events that occur in our e-commerce system. 
Finally we implement the main() function that combines all these components to create the 
management application. 

The management agent proxy [GoF95]. This class defines the types of events that 
management applications can subscribe to, as well as a method that allows management 
applications to subscribe a callback with a management agent asynchronously: 
    class Management_Agent_Proxy { 
    public: 
         enum Event_Type { NEW_CONNECTIONS, FILE_TRANSFERS }; 
 
         void subscribe (Callback_Handler *handler, 
                           Event_Type type, 
                          Completion_Handler_ACT *act); 
         // ... 
    }; 

This proxy class is implemented using the Half-Object plus Protocol [PLoPD1] pattern, which 
defines an object interface that encapsulates the protocol between the proxy and a 
management agent. When an event of a particular Event_Type occurs, the management 
agent returns the corresponding completion event to the Management_Agent_Proxy. This 
proxy then invokes the method completion_event() on the Callback_Handler. This 
method returns a pointer to the Completion_Handler_ACT that the management 
application passed to subscribe() originally, as shown in implementation activity 6 (271). 

The concrete ACT. Management applications playing the role of initiators and management 
agent services in our e-commerce system exchange pointers to 
Completion_Handler_ACT subclass objects, such as the following 
Management_Completion_Handler: 
    class Management_Completion_Handler : 
        public Completion_Handler_ACT { 
    private: 
        Window *window_; // Used to display and 
        Logger *logger_; // to log completion events. 
    public: 
        Management_Completion_Handler (Window *w, Logger *l): 
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             window_ (w), logger_ (1) { } 
 
        virtual void handle_event 
             (const Completion_Event &event) { 
             window_->update (event); 
             logger_->update (event); 
        } 
    }; 

The parameters passed to the Management_Completion_Handler constructor identify 
the concrete completion handler state used by the management application to process 
completion events. These two parameters are cached in internal data members in the class, 
which point to the database logger and the GUI window that will be updated when 
completion events arrive from management agents via the handle_event() hook method. 
This hook method is dispatched by the Callback_Hander's completion_event() 
method, as shown in implementation activity 6 (271). 

The main() function. The following main() function shows how a management application 
invokes asynchronous subscription operations on a management agent proxy and then 
processes the subsequent connection and file transfer completion event responses. To 
simplify and optimize the demultiplexing and processing of completion handlers, the 
management application passes a pointer ACT to a Management_Completion_Handler 
when it subscribes to a management agent proxy. Generalizing this example to work with 
multiple management agents and other types of completion events is straightforward. 
    int main () { 

The application starts by creating a single instance of the Callback_Handler class 
defined in implementation activity 6 (271): 
         Callback_Handler callback_handler; 

This Callback_Handler is shared by all asynchronous subscription operations and is 
used to demultiplex all types of incoming completion events. 

The application next creates an instance of the Management_Agent proxy described 
above: 
         Management_Agent_Proxy agent_proxy = // ... 

This agent will call back to the callback_handler when connection and file transfer 
completion events occur. 

The application then creates several objects to handle logging and display completion 
processing: 
         Logger database_logger (DATABASE); 
         Logger console_logger (CONSOLE); 
         Window main_window (200, 200); 
         Window topology window (100, 20); 

Some completion events will be logged to a database, whereas others will be written to a 
console window. Depending on the event type, different graphical displays may need to be 
updated. For example, a topology window might show an iconic view of the system. 
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The main() function creates two Management_Completion_Handler objects that 
uniquely identify the concrete completion handlers that process connection establishment 
and file transfer completion events, respectively: 
         Management_Completion_Handler connection_act 
              (&topology_window, &database_logger); 
         Management_Completion_Handler file_transfer_act 
              (&main_window, &console_logger); 

The Management_Completion_Handler objects are initialized with pointers to the 
appropriate Window and Logger objects. Pointer ACTs to these two 
Management_Completion_Handler objects are passed explicitly when the management 
application asynchronously subscribes the callback_handler with 
Management_Agent_Proxy for each type of event: 
         agent_proxy.subscribe 
              (&callback_handler, 
               Management_Agent_Proxy::NEW_CONNECTIONS, 
               &connection_act); 
 
         agent_proxy.subscribe 
              (&callback_handler, 
               Management_Agent_Proxy::FILE_TRANSFERS, 
               &file_transfer_act); 

Note that the Management_Completion_Handlers are held 'implicitly' in the address 
space of the initiator, as described in implementation activity 2 (269). 

Once these subscriptions are complete the application enters its event loop, in which all 
subsequent processing is driven by callbacks from completion events. 
         run_event_loop (); 
      } 

Whenever a management agent detects a new connection or file transfer, it sends the 
associated completion event to the Management_Agent_Proxy. This proxy then extracts 
the Management_Completion_Handler ACT from the completion event and uses the 
Callback_Handler's completion_event() method to dispatch the 
Management_Completion_Handler's handle_events() hook method, which 
processes each completion event. For example, file transfer events can be displayed on a 
GUI window and logged to the console, whereas new connection establishment events could 
be displayed on a system topology window and logged to a database. 

The following sequence diagram illustrates the key collaborations between components in 
the management application. For simplicity we omit the creation of the agent, callback 
handler, window, and logging handlers, and focus on using only one window and one 
logging handler.  
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Variations 

Chain of Service ACTs. A chain of services can occur when intermediate services also play 
the role of initiators that invoke asynchronous operations on other services to process the 
original initiator's operation. 

 

For example, consider a management application that invokes operation requests on an 
agent, which in turn invokes other requests on a timer mechanism. In this scenario the 
management application initiator uses a chain of services. All intermediate services in 
the chain—except the two ends—are both initiators and services, because they both 
receive and initiate asynchronous operations. 
 

 

A chain of services must decide which service ultimately responds to the initiator. Moreover, 
if each service in a chain uses the Asynchronous Completion Token pattern, four issues 
related to passing, storing, and returning ACTs must be considered: 
§ If no service in the chain created new ACTs, then the last service in the chain can 

simply notify the initiator. This design can optimize ACT processing because it makes it 
unnecessary to 'unwind' the chain of services.  

 

§ If an intermediate service does not associate any completion processing with the 
asynchronous operation(s) it initiates, it can simply forward the original ACT it received 
from its previous initiator. 
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§ When completion processing must be associated with an asynchronous operation and 
an intermediate service can be sure that its initiators' ACT values are unique, the 
service can use initiator ACT values to index into a data structure that maps each ACT 
to completion processing actions and state: 

 

§ If an intermediate service cannot assume uniqueness of initiator ACTs, the original 
ACT cannot be reused to reference intermediate completion actions and state. In this 
case an intermediate service must create a new ACT and maintain a table that stores 
these ACTs so they can be mapped back to their original ACTs when the chain 
'unwinds'.  

 

Non-opaque ACTs. In some implementations of the Asynchronous Completion Token 
pattern, services do not treat the ACT as purely opaque. For example, Win32 OVERLAPPED 
structures are non-opaque ACTs, because certain fields can be modified by the operating 
system kernel. One solution to this problem is to pass subclasses of the OVERLAPPED 
structure that contain additional ACT state, as shown in implementation activity 1.1 in the 
Proactor pattern (215). 

Synchronous ACTs. ACTs can also be used for operations that result in synchronous 
callbacks. In this case the ACT is not really an asynchronous completion token but rather a 
synchronous one. Using ACTs for synchronous callback operations provides a well-
structured means of passing state related to an operation through to a service. In addition 
this approach decouples concurrency policies, so that the code receiving an ACT can be 
used for either synchronous or asynchronous operations. 

Known Uses 

HTTP-Cookies. Web servers can use the Asynchronous Completion Token pattern if they 
expect responses from Web browsers. For example, a Web server may expect a user to 
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transmit data they filled into a form that was downloaded from the server to the browser in 
response to a previous HTTP GET request. Due to the 'sessionless' design of the HTTP 
protocol, and because users need not complete forms immediately, the Web server, acting 
in the role of a 'initiator', transmits a cookie (the ACT) to the Web browser along with the 
form. This cookie allows the server to associate the user's response with his or her original 
request for the form. Web browsers need not interpret the cookie, but simply return it 
unchanged to the Web server along with the completed form.  

Operating system asynchronous I/O mechanisms. The Asynchronous Completion Token 
pattern is used by operating systems that support asynchronous I/O. For instance, the 
following techniques are used by Windows NT and POSIX: 
§ Windows NT. ACTs are used in conjunction with handles, Overlapped I/O, Win32 I/O 

completion ports on Windows NT [Sol98]. When Win32 handles[11] are created they can 
be associated with completion ports using the CreateIoCompletionPort() function. 
Completion ports provide a location for kernel-level services to queue completion 
events. These events can be dequeued and processed subsequently by initiators that 
invoked the asynchronous operations originally. 

For example, when initiators initiate asynchronous reads and writes via ReadFile() or 
WriteFile(), they can specify OVERLAPPED struct ACTs that will be queued at a 
completion port when the operations finish. Initiators can then use the 
GetQueuedCompletionStatus() function to dequeue completion events that return 
the original OVERLAPPED struct as an ACT. Implementation activity 5.5 in the Proactor 
pattern (215) illustrates this design in more detail. 

§ POSIX. The POSIX Asynchronous I/O API [POSIX95] can be programmed to pass 
ACTs to its asynchronous I/O operations. This can be accomplished by subclassing 
the ACT from the aiocb struct, which then can be passed to aio_read() or 
aio_write(). These ACTs can be retrieved subsequently via the aio_suspend() 
asynchronous event demultiplexing function and downcast to the appropriate 
completion handlers. In addition, initiators can specify that completion events for 
asynchronous I/O operations be returned via asynchronous UNIX 'real-time' signals or 
synchronously via the sigtimedwait() or sigwaitinfo() functions. 

CORBA demultiplexing. The TAO CORBA Object Request Broker [SC99] uses the 
Asynchronous Completion Token pattern to demultiplex various types of GIOP requests and 
responses efficiently, scalably, and predictably in both the client initiator and server.  

In a multi-threaded client initiator, for example, TAO uses ACTs to associate GIOP 
responses from a server with the appropriate client thread that initiated the request over a 
single multiplexed TCP/IP connection to the server process. Each TAO client request carries 
a unique opaque sequence number, the ACT, represented as a 32-bit integer. When an 
operation is invoked the client-side TAO ORB assigns its sequence number to be an index 
into an internal connection table managed using the Leader/Followers pattern (447). 

Each table entry keeps track of a client thread that is waiting for a response from its server 
over the multiplexed connection. When the server replies, it returns the sequence number 
ACT sent by the client. TAO's client-side ORB uses the ACT to index into its connection 
table to determine which client thread to awaken and pass the reply. 

In the server, TAO uses the Asynchronous Completion Token pattern to provide low-
overhead demultiplexing throughout the various layers of features in an Object Adapter 
[SC99]. For example, when a server creates an object reference, TAO Object Adapter stores 
special object ID and POA ID values in its object key, which is ultimately passed to clients as 
an ACT contained in an object reference. 
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When the client passes back the object key with its request, TAO's Object Adapter extracts 
the special values from the ACT and uses them to index directly into tables it manages. This 
so-called 'active demultiplexing' scheme [PRS+99] uses an ACT to ensure constant-time 
O(1) lookup regardless of the number of objects in a POA or the number of nested POAs in 
an Object Adapter. 

Electronic medical imaging system management. The management example described 
in this pattern is derived from a distributed electronic medical imaging system developed at 
Washington University for Project Spectrum [BBC94]. In this system, management 
applications monitor the performance and status of multiple distributed components in the 
medical imaging system, including image servers, modalities, hierarchical storage 
management systems, and radiologist diagnostic workstations. Management agents provide 
an asynchronous service that notifies management application of events, such as 
connection establishment events and image transfer events. This system uses the 
Asynchronous Completion Token pattern so that management applications can associate 
state efficiently with the arrival of events from management agents received asynchronous 
subscription operations earlier. 

Jini. The handback object in Jini [Sun99a] distributed event specification [Sun99b] is a Java-
based example of the Asynchronous Completion Token pattern. When a consumer registers 
with an event source to receive notifications, it can pass a handback object to this event 
source. This object is a java.rmi.MarshalledObject, which is therefore not 
demarshaled at the event source, but is simply 'handed back' to the consumer as part of the 
event notification. 

The consumer can then use the getRegistrationObject() method of the event 
notification to retrieve the handback object that was passed to the event source when the 
consumer registered with it. Thus, consumers can recover the context rapidly in which to 
process the event notification. This design is particularly useful when a third party registered 
the consumer to receive event notifications. 

FedEx inventory tracking. An intriguing real-life example of the Asynchronous Completion 
Token pattern is implemented by the inventory tracking mechanism used by the US Federal 
Express postal services. A FedEx Airbill contains a section labeled: 'Your Internal Billing 
Reference Information (Optional: First 24 characters will appear on invoice).' 

The sender of a package uses this field as an ACT. This ACT is returned by FedEx (the 
service) to you (the initiator) with the invoice that notifies the sender that the transaction has 
completed. FedEx deliberately defines this field very loosely: it is a maximum of 24 
characters, which are otherwise 'untyped.' Therefore, senders can use the field in a variety 
of ways. For example, a sender can populate this field with the index of a record for an 
internal database or with a name of a file containing a 'to-do list' to be performed after the 
acknowledgment of the FedEx package delivery has been received. 

Consequences 

There are several benefits to using the Asynchronous Completion Token pattern: 

Simplified initiator data structures. Initiators need not maintain complex data structures to 
associate service responses with completion handlers. The ACT returned by the service can 
be downcast or reinterpreted to convey all the information the initiator needs to demultiplex 
to its appropriate completion action.  

Efficient state acquisition. ACTs are time efficient because they need not require complex 
parsing of data returned with the service response. All relevant information necessary to 
associate the response with the original request can be stored either in the ACT or in an 
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object referenced by the ACT. Alternatively, ACTs can be used as indices or pointers to 
operation state for highly efficient access, thereby eliminating costly table searches. 

Space efficiency. ACTs can consume minimal data space yet can still provide applications 
with sufficient information to associate large amounts of state to process asynchronous 
operation completion actions. For example, in C and C++, void pointer ACTs can reference 
arbitrarily large objects held in the initiator application. 

Flexibility. User-defined ACTs are not forced to inherit from an interface to use the service's 
ACTs. This allows applications to pass as ACTs objects for which a change of type is 
undesirable or even impossible. The generic nature of ACTs can be used to associate an 
object of any type with an asynchronous operation. For example, when ACTs are 
implemented as CORBA object references they can be narrowed to the appropriate concrete 
interface. 

Non-dictatorial concurrency policies. Long duration operations can be executed 
asynchronously because operation state can be recovered from an ACT efficiently. Initiators 
can therefore be single-threaded or multi-threaded depending on application requirements. 
In contrast, a service that does not provide ACTs may force delay-sensitive initiators to 
perform operations synchronously within threads to handle operation completions properly. 

There are several liabilities to avoid when using the Asynchronous Completion Token 
pattern. 

Memory leaks. Memory leaks can result if initiators use ACTs as pointers to dynamically 
allocated memory and services fail to return the ACTs, for example if the service crashes. As 
described in implementation activity 2 (269), initiators wary of this possibility should maintain 
separate ACT repositories or tables. These can be used for explicit garbage collection if 
services fail or if they corrupt the ACT. 

Authentication. When an ACT is returned to an initiator on completion of an asynchronous 
event, the initiator may need to authenticate the ACT before using it. This is necessary if the 
server cannot be trusted to have treated the ACT opaquely and may have changed its value. 
Implementation activity 2 (269) describes a strategy for addressing this liability. 

Application re-mapping. If ACTs are used as direct pointers to memory, errors can occur if 
part of the application is re-mapped in virtual memory. This situation can occur in persistent 
applications that are restarted after crashes, as well as for objects allocated from a memory-
mapped address space. To protect against these errors, indices to a repository can be used 
as ACTs, as described in implementation activities 1 (267) and 2 (269). The extra level of 
indirection provided by these 'index ACTs' protects against re-mappings, because indices 
can remain valid across re-mappings, whereas pointers to direct memory may not. 

See Also 

The Asynchronous Completion Token and Memento patterns [GoF95] are similar with 
respect to their participants. In the Memento pattern, originators give mementos to 
caretakers who treat the Memento as 'opaque' objects. In the Asynchronous Completion 
Token pattern, initiators give ACTs to services that treat the ACTs as 'opaque' objects. 

These patterns differ in motivation and applicability however. The Memento pattern takes 
'snapshots' of object states, whereas the Asynchronous Completion Token pattern 
associates state with the completion of asynchronous operations. Another difference is in 
their dynamics. In the Asynchronous Completion Token pattern, the initiator—which 
corresponds to the originator in Memento—creates the ACT proactively and passes it to the 
service. In Memento, the caretaker—which is the initiator in terms of Asynchronous 
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Completion Token pattern—requests the creation of a memento from an originator, which is 
reactive. 

Credits 

Irfan Pyarali and Timothy Harrison were co-authors on the original version of the 
Asynchronous Completion Token pattern. Thanks to Paul McKenney and Richard Toren for 
their insightful comments and contributions, and to Michael Ogg for supplying the Jini known 
use. 

[10]Implementation activity 1.1 in the Reactor pattern (179) outlines the pros and cons of 
callback functions versus callback objects. 

[11]Win32 handles are similar to UNIX file descriptors. For Win32 overlapped I/O, handles are 
used to identify network transport endpoints or open files. 

Acceptor-Connector 
The Acceptor-Connector design pattern decouples the connection and initialization of 
cooperating peer services in a networked system from the processing performed by the peer 
services after they are connected and initialized. 

Example 

Consider a large-scale distributed system management application consisting that monitors 
and controls a satellite constellation [Sch96]. Such a management application typically 
consists of a multi-service, application-level gateway that routes data between transport 
endpoints connecting remote peer hosts. 

 

Each service in the peer hosts uses the gateway to send and receive several types of data, 
including status information, bulk data, and commands, that control the satellites. The peer 
hosts can be distributed throughout local area and wide-area networks. 

The gateway transmits data between its peer hosts using the connection-oriented TCP/IP 
protocol [Ste93]. Each service in the system is bound to a particular transport address, which 
is designated by a tuple consisting of an IP host address and a TCP port number. Different 
port numbers uniquely identify different types of service. 

Unlike the binding of services to specific TCP/IP host/port tuples, which can be selected 
early in the distributed system's lifecycle, it may be premature to designate the connection 
establishment and service initialization roles a priori. Instead, the services in the gateway 
and peer hosts should be able to change their connection roles flexibly to support the 
following run-time behavior: 
§ Services in a gateway may actively initiate connection requests to services located in 

remote peer hosts, then route data to them. 
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§ Services in a gateway may passively accept connection requests from services within 
the peer hosts, which then route data through the gateway to a service on another peer 
host. 

§ Services residing in peer hosts may be active connection initiators in one situation and 
passive connection acceptors in another. 

§ Hybrid configurations that combine passive and active connection behavior in the 
same gateway or peer host may also occur. 

In general, the inherent flexibility required to support such a runtime behavior demands 
communication software that allows the connection establishment, initialization, and 
processing of peer services to evolve gracefully and to vary independently. 

Context 

A networked system or application in which connection-oriented protocols are used to 
communicate between peer services connected via transport endpoints. 

Problem 

Applications in connection-oriented networked systems often contain a significant amount of 
configuration code that establishes connections and initializes services. This configuration 
code is largely independent of the processing that services perform on data exchanged 
between their connected transport endpoints. Tightly coupling the configuration code with 
the service processing code is therefore undesirable, because it fails to resolve four forces: 
§ It should be easy to change connection roles to support different application behavior, 

as discussed in the Example section. Connection roles determine whether an 
application actively initiates or passively accepts a connection. In contrast, 
communication roles determine whether an application plays the role of a client, a 
server, or both client and server in a peer-to-peer configuration. 

§ It should be easy to add new types of services, service implementations, and 
communication protocols without affecting existing connection establishment and 
service initialization configuration code.  

 

§ The gateway from our example may require integration with a directory service that 
runs over the TP4 or SPX transport protocols rather than TCP. Ideally, this 
integration should have little or no effect on the implementation of the gateway 
services themselves. 
 

 

§ In general, connection establishment and service initialization strategies change less 
frequently than the communication protocols and services implemented by an 
application. 

 

§ FTP, TELNET, HTTP and CORBA IIOP services all use different application-level 
communication protocols. However, they can all be configured using the same 
connection and initialization mechanisms. 
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§ For large-scale networked systems it should be possible to reduce connection 
establishment latency by using advanced operating system features, such as 
asynchronous connection mechanisms. 

 

§ Applications with a large number of peers may need to establish many connections 
asynchronously and concurrently. Efficient and scalable connection establishment is 
particularly important for applications, such as our gateway example, that 
communicate over long-latency wide area networks. 
 

 

Solution 

Decouple the connection and initialization of peer services in a networked application from 
the processing these peer services perform after they are connected and initialized. 

In detail: encapsulate application services within peer service handlers. Each service handler 
implements one half of an end-to-end service in a networked application. Connect and 
initialize peer service handlers using two factories: acceptor and connector. Both factories 
cooperate to create a full association [Ste93] between two peer service handlers and their 
two connected transport endpoints, each encapsulated by a transport handle. 

The acceptor factory establishes connections passively on behalf of an associated peer 
service handler upon the arrival of connection request events[12] issued by remote peer 
service handlers. Likewise, the connector factory establishes connections actively to 
designated remote peer service handlers on behalf of peer service handlers. 

After a connection is established, the acceptor and connector factories initialize their 
associated peer service handlers and pass them their respective transport handles. The 
peer service handlers then perform application-specific processing, using their transport 
handles to exchange data via their connected transport endpoints. In general, service 
handlers do not interact with the acceptor and connector factories after they are connected 
and initialized. 

Structure 

There are six key participants in the Acceptor-Connector pattern: 

A passive-mode transport endpoint is a factory that listens for connection requests to arrive, 
accepts those connection requests, and creates transport handles that encapsulate the 
newly connected transport endpoints. Data can be exchanged via connected transport 
endpoints by reading and writing to their associated transport handles. 
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In the gateway example, we use socket handles to encapsulate transport endpoints. In 
this case, a passive-mode transport endpoint is a passive-mode socket handle [Ste98] 
that is bound to a TCP port number and IP address. It creates connected transport 
endpoints that are encapsulated by data-mode socket handles. Standard Socket API 
operations, such as recv() and send(), can use these connected data-mode socket 
handles to read and write data. 
 

 

A service handler defines one half of an end-to-end service in a networked system. A 
concrete service handler often plays either the client role or server role in this end-to-end 
service. In peer-to-peer use cases it can even play both roles simultaneously. A service 
handler provides an activation hook method that is used to initialize it after it is connected to 
its peer service handler. In addition, the service handler contains a transport handle, such as 
a data-mode socket handle, that encapsulates a transport endpoint. Once connected, this 
transport handle can be used by a service handler to exchange data with its peer service 
handler via their connected transport endpoints. 

 

 

In our example the service handlers are both cooperating components within the 
gateway and peer hosts that communicate over TCP/IP via their connected socket 
handles. Service handlers are responsible for processing status information, bulk data, 
and commands that monitor and control a satellite constellation. 
 

 

An acceptor is a factory that implements a strategy for passively establishing a connected 
transport endpoint, and creating and initializing its associated transport handle and service 
handler. An acceptor provides two methods, connection initialization and connection 
completion, that perform these steps with the help of a passive-mode transport endpoint. 

When its initialization method is called, an acceptor binds its passive-mode transport 
endpoint to a particular transport address, such as a TCP port number and IP host address, 
that listens passively for the arrival of connection requests. 

When a connection request arrives, the acceptor's connection completion method performs 
three steps: 
§ Firstly, it uses its passive-mode transport endpoint to create a connected transport 

endpoint and encapsulate the endpoint with a transport handle. 
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§ Secondly, it creates a service handler that will process data requests emanating from 
its peer service handler via their connected transport endpoints. 

§ Thirdly, it stores the transport handle in its associated service handler and invokes the 
service handler's activation hook method, which allows the service handler to finish 
initializing itself. 

A connector[13] is a factory that implements the strategy for actively establishing a connected 
transport endpoint and initializing its associated transport handle and service handler. It 
provides two methods, connection initiation and connection completion, that perform these 
steps. 

The connection initiation method is passed an existing service handler and establishes a 
connected transport endpoint for it with an acceptor. This acceptor must be listening for 
connection requests to arrive on a particular transport address, as described above. 

Separating the connector's connection initiation method from its completion method allows a 
connector to support both synchronous and asynchronous connection establishment 
transparently: 
§ In the synchronous case, the connector initiating the connection request blocks its 

caller until the transport endpoints are connected. At this point, the connector calls the 
service handler's activation hook method directly. 

§ In the asynchronous case, the connection request runs asynchronously and the 
connector's initiation method returns immediately. The service handler is activated by 
the connection completion method only after the connector is notified that the transport 
endpoint has finished connecting asynchronously. 

 

Regardless of whether a transport endpoint is connected synchronously or asynchronously, 
both acceptors and connectors initialize a service handler by calling its activation hook 
method after a transport endpoint is connected. From this point service handlers generally 
do not interact with their acceptor and connector factories. 

A dispatcher is responsible for demultiplexing indication events that represent various types 
of service requests, such as connection requests and data requests. 
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§ For the acceptor, the dispatcher demultiplexes connection indication events received 
on one or more transport handles that encapsulate transport endpoints. Multiple 
acceptors can register with a dispatcher, which listens on their behalf for connection 
requests to arrive from peer connectors. 

§ For the connector, the dispatcher demultiplexes completion events that arrive in 
response to connections that were initiated asynchronously. To handle this situation, a 
connector registers itself with a dispatcher to receive these connection completion 
events. The dispatcher then runs its event loop. When a completion event arrives it 
notifies the corresponding connector. The connector can then invoke the designated 
service handler's activation hook method to allow the service handler to initialize itself. A 
single dispatcher and connector can therefore initiate and complete connections 
asynchronously on behalf of multiple service handlers. 

Note that a dispatcher is not necessary for synchronous connection establishment, 
because the thread that initiates the connection will block awaiting the connection 
completion event. As a result this thread can activate the service handler directly. 

§ Service handlers can register their transport handles with a dispatcher, which will notify 
the service handlers when indication events occur on those handles. 

Networked applications and services can be built by subclassing and instantiating the 
generic participants of the Acceptor-Connector pattern described above to create the 
following concrete components. 

Concrete service handlers define the application-specific portions of end-to-end services. 
They are activated by concrete acceptors or concrete connectors. Concrete acceptors 
instantiate generic acceptors with concrete service handlers, transport endpoints, and 
transport handles used by these service handlers. Similarly, concrete connectors instantiate 
generic connectors. 

Concrete service handlers, acceptors, and connectors are also instantiated with a specific 
type of interprocess communication (IPC) mechanism, such as Sockets [Ste98] or TLI 
[Rago93]. These IPC mechanisms are used to create the transport endpoints and transport 
handles that connected peer service handlers use to exchange data. 

The class diagram of the Acceptor-Connector pattern is shown in the following figure: 
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Dynamics 

To illustrate the collaborations performed by participants in the Acceptor-Connector pattern, 
we examine three canonical scenarios: 
§ Scenario I shows passive connection establishment 
§ Scenario II shows synchronous active connection establishment 
§ Scenario III shows asynchronous active connection establishment 

Scenario I: This scenario illustrates the collaboration between acceptor and service handler 
participants and is divided into three phases: 
§ Passive-mode transport endpoint initialization phase. An application that plays a 

passive connection role first calls the acceptor's connection initialization method. This 
method initializes a passive-mode transport endpoint and binds it to a transport 
address, such as the local host's IP address and a TCP port number. The acceptor then 
listens on this transport address for connection requests initiated by peer connectors.[14]  

Next, the acceptor's initialization method registers itself with a dispatcher, which will 
notify the acceptor when connection indication events arrive from peer connectors. After 
the acceptor's initialization method returns, the application initiates the dispatcher's 
event loop. This loop waits for connection requests and other types of indication events 
to arrive from peer connectors. 

§ Service handler initialization phase. When a connection request arrives for a particular 
transport address, the dispatcher notifies the associated acceptor. This acceptor uses 
its passive-mode transport endpoint to create a new connected transport endpoint and 
encapsulate it with a transport handle. It next creates a new service handler, stores the 
transport handle into the service handler, and calls the service handler's activation hook 
method. 

This hook method performs service handler-specific initialization, for example allocating 
locks, spawning threads, or establishing a session with a logging service. A service 
handler may elect to register itself with a dispatcher, which will notify the handler 
automatically when indication events containing data requests arrive for it. 

§ Service processing phase. After a transport endpoint has been connected and the 
associated service handler has been initialized, the service processing phase begins. In 
this phase an application-level communication protocol such as TELNET, FTP, HTTP 
or CORBA IIOP can be used to exchange data between the peer service handlers via 
their connected transport endpoints. When all exchanges are complete, the transport 
endpoints, transport handles, and service handlers can be shut down and their 
resources released. 
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A connector can initialize its service handler using two general strategies: synchronous and 
asynchronous. Synchronous service initialization is useful: 
§ If connection establishment latency is very low, for example establishing a connection 

with a server on the same host via a 'loopback network' device 
§ If multiple threads of control are available and it is efficient to use a thread-per-

connection model [Sch97] to connect each service handler synchronously or 
§ If the services must be initialized in a fixed order and the client cannot perform useful 

work until all connections are established. 

Asynchronous service initialization is useful in different situations, such as establishing 
connections over high latency links, using single-threaded applications, or initializing a large 
number of peers that can be connected in an arbitrary order. 

Scenario II: The collaborations among participants in the synchronous connector scenario 
can be divided into three phases: 
§ Connection initiation phase. To establish a connection synchronously between a 

service handler and its peer, an application can invoke the connector's connection 
initiation method. Using the transport handle associated with the service handler, this 
method actively establishes the connection by blocking the application's thread until the 
connection completes synchronously. 

§ Service handler initialization phase. After a connection completes synchronously, the 
connection initiation method calls the associated service handler's activation hook 
method directly. This hook method performs service handler-specific initializations. 

§ Service processing phase. After a service handler is initialized, it performs application-
specific service processing using data exchanged with its connected peer service 
handler. This phase is similar to the service processing phase performed by service 
handlers that are created and initialized by acceptors. 

 

In the synchronous scenario, the connector combines the connection initiation and service 
initialization phases into a single blocking operation. Only one connection is established per 
thread for every invocation of a connector's connection initiation method. 

Scenario III: The collaborations among participants in the asynchronous connector scenario 
are also divided into three phases: 
§ Connection initiation phase. To connect a service handler and its peer service handler 

asynchronously, an application invokes the connector's connection initiation method. As 
with the synchronous Scenario II, the connector initiates the connection actively. 

Unlike Scenario II, however, the connection initiation request executes asynchronously. 
The application thread therefore does not block while waiting for the connection to 
complete. To receive a notification when a connection completes, the connector 
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registers itself and the service handler's transport handle with the dispatcher and returns 
control back to the application. 

§ Service handler initialization phase. After a connection completes asynchronously, the 
dispatcher notifies the connector's connection completion method. This method cleans 
up any resources allocated to manage the pending connection, then it calls the service 
handler's activation hook method to perform service-specific initialization. 

§ Service processing phase. After a service handler is activated, it performs application-
specific service processing using data exchanged with its connected peer service 
handler. This phase is similar to the service processing phases described in Scenarios I 
and II. 

Note in the following figure how the connection initiation phase in Scenario III is separated 
temporally from the service handler initialization phase. This decoupling enables multiple 
connection initiations and completions to proceed concurrently, thereby maximizing the 
parallelism inherent in networks and hosts.  

 

Implementation 

The participants in the Acceptor-Connector pattern can be decomposed into three layers: 
§ Demultiplexing/dispatching infrastructure layer components. This layer performs 

generic, application-independent strategies for dispatching events. 
§ Connection management layer components. This layer performs generic, application-

independent connection and initialization services. 
§ Application layer components. This layer then customizes the generic strategies 

performed by the other two layers via subclassing, object composition, and/or 
parameterized type instantiation, to create concrete components that establish 
connections, exchange data, and perform service-specific processing. 

Our coverage of the Acceptor-Connector implementation starts with the 
demultiplexing/dispatching component layer and progresses upwards through the 
connection management and application component layers.  

1. Implement the demultiplexing/dispatching infrastructure component layer. This layer 
handles events that occur on transport endpoints and consists of transport 
mechanisms and dispatching mechanisms. This implementation activity can be 
divided into two sub-activities: 
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1. Select the transport mechanisms. These mechanisms consist of: 
§ Passive-mode transport endpoint components 
§ Connected transport endpoint components 
§ Transport address components 
§ Transport handle components 

A passive-mode transport endpoint is a factory that listens on an advertised 
transport address for connection requests to arrive. When such a request 
arrives, a passive-mode transport endpoint creates a connected transport 
endpoint and encapsulates this new endpoint with a transport handle. An 
application can use this transport handle to exchange data with its peer-
connected transport endpoint. The transport mechanism components are often 
provided by the underlying operating system platform and may be accessed 
via wrapper facades (47), as shown in implementation activity 3 (311). 

 

For our gateway example we implement the transport mechanism 
components using the Sockets API [Ste98]. The passive-mode transport 
endpoints and connected transport endpoints are implemented by 
passive-mode and data-mode sockets, respectively. Transport handles 
are implemented by socket handles. Transport addresses are 
implemented using IP host addresses and TCP port numbers. 
 

 

2. Implement the dispatching mechanisms. These mechanisms consist of 
dispatcher and event handler components. A dispatcher is responsible for 
associating requests to their corresponding acceptors, connectors, and service 
handlers. An event handler defines the event processing interface provided by 
a service of an event-driven application. 

To implement the dispatching mechanisms, follow the guidelines described in 
the Reactor (179) or Proactor (215) event demultiplexing patterns. These 
patterns handle synchronous and asynchronous event demultiplexing, 
respectively. A dispatcher can also be implemented as a separate thread or 
process using the Active Object pattern (369) or Leader/Followers (447) 
thread pools.  

 

For our gateway example, we implement the dispatcher and event handler 
using components from the Reactor pattern (179). This enables efficient 
synchronous demultiplexing of multiple types of events from multiple 
sources within a single thread of control. The dispatcher, which we call 
'reactor' in accordance with Reactor pattern terminology, uses a reactive 
model to demultiplex and dispatch concrete event handlers. 

We use a reactor Singleton [GoF95] because only one instance of it is 
needed in the entire application process. The event handler class, which 
we call Event_Handler in our example, implements methods needed by 
the reactor to notify its service handlers, connectors, and acceptors when 
events they have registered for occur. To collaborate with the reactor, 
therefore, these components must subclass from class Event_Handler, 
as shown in implementation activity 2 (299). 
 



 245

 

2. Implement the connection management component layer. This layer creates service 
handlers, passively or actively connects service handlers to their remote peer service 
handlers, and activates service handlers after they are connected. All components in 
this layer are generic and delegate to concrete IPC mechanisms, concrete service 
handlers, concrete acceptors, and concrete connectors. These are instantiated by the 
application layer described in implementation activity 3 (311). There are three primary 
components in the connection management layer: service handler, acceptor, and 
connector. 

1. Define a generic service handler interface. A service handler provides a 
generic interface for processing services defined by clients, servers, or both 
client and server roles in peer-to-peer services. This interface includes 
methods for initializing a service handler, executing the service it defines, and 
for maintaining the IPC mechanism it uses for communication. To create a 
concrete service handler, applications must customize this component using 
subclassing, object composition, or parameterized type instantiation. 

Applications must also configure a service handler component with a concrete 
IPC mechanism that encapsulates a transport handle and its corresponding 
transport endpoint. These IPC mechanisms are often implemented as wrapper 
facades (47). Concrete service handlers can use these IPC mechanisms to 
communicate with their remote peer service handlers.  

 

In our gateway example we define a Service_Handler abstract base 
class that inherits from the Event_Handler class defined in 
implementation activity 1 of the Reactor pattern (179): 
    template <class IPC_STREAM> 
         // <IPC_STREAM> is the type of concrete IPC 
data 
         // transfer mechanism. 
    class Service_Handler : public Event_Handler { 
    public: 
         typedef typename IPC_STREAM::PEER_ADDR Addr; 
 
         // Pure virtual method (defined by a 
subclass). 
         virtual void open () = 0; 
 
         // Access method used by <Acceptor> and 
<Connector>. 
         IPC_STREAM &peer () { return ipc_stream_; } 
 
         // Return the address we are connected to. 
         Addr &remote_addr () { 
             return ipc_stream_.remote_addr (); 
         } 
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         // Set the <handle> used by this 
<Service_Handler>. 
         void set_handle (HANDLE handle){ 
             return ipc_stream_.set_handle (handle); 
         } 
    private: 
         // Template 'placeholder' for a concrete IPC 
         // mechanism wrapper facade, which 
encapsulates a 
         // data-mode transport endpoint and transport 
handle. 
         IPC_STREAM ipc_stream_; 
    }; 

This design allows a Reactor to dispatch the service handler's event 
handling method it inherits from class Event_Handler. In addition, the 
Service_Handler class defines methods to access its IPC mechanism, 
which is configured into the class using parameterized types. Finally this 
class includes an activation hook that acceptors and connectors can use 
to initialize a Service_Handler object once a connection is established. 
This pure virtual method, which we call open(), must be overridden by a 
concrete service handler to perform service-specific initialization. 
 

 

2. Define the generic acceptor interface. The acceptor component implements 
the generic strategy for establishing connections passively and creating and 
initializing the concrete service handlers that exchange data with peer service 
handlers over these connections. An acceptor also defines an initialization 
method that an application can call to advertise its passive-mode transport 
endpoint address to other applications on the network. 

A generic acceptor is customized by the components in the application layer, 
as described in implementation activity 3 (311) to establish connections 
passively on behalf of a particular service handler using a designated IPC 
mechanism. To support this customization an acceptor implementation can 
use two general strategies, polymorphism or parameterized types: 
§ Polymorphism. In this strategy, illustrated in the Structure section, 

concrete acceptors are specified by subclassing from a generic acceptor. 
The acceptor method, which we call accept(), responsible for accepting 
connection requests from remote clients is a template method [GoF95]. It 
performs the generic processing that constitutes the acceptor's passive 
connection establishment and service initialization logic. 

The behavior of the individual steps in this process are delegated to hook 
methods [Pree95] that are also declared in the acceptor's interface. 
These hook methods can be overridden by concrete acceptors to perform 
application-specific strategies, for example to use a particular concrete 
IPC mechanism to establish connections passively. The concrete service 
handler created by a concrete acceptor can be manufactured via a factory 
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method [GoF95] called as one of the steps in the acceptor's accept() 
template method. 

§ Parameterized types. This strategy encapsulates IPC mechanisms for 
passive connection establishment within wrapper facades (47) and 
configures them into an acceptor component via parameterized types. As 
with the polymorphic strategy outlined above, the acceptor's accept() 
method is a template method [GoF95] whose hook methods delegate to 
the particular IPC mechanism configured into the acceptor. The type of 
concrete service handler used to instantiate a concrete acceptor can also 
be supplied as a template parameter to the generic acceptor. 

One advantage of using parameterized types is that they allow the IPC 
connection mechanisms and service handlers associated with an acceptor to 
be changed easily and efficiently. This flexibility simplifies porting an 
acceptor's connection establishment code to platforms with different IPC 
mechanisms. It also allows the same connection establishment and service 
initialization code to be reused for different types of concrete service handlers. 

Inheritance and parameterized types have the following trade-offs: 
§ Parameterized types may incur additional compile and link-time 

overhead, but generally compile into faster code [CarEl95] 
§ Inheritance may incur additional run-time overhead due to the 

indirection of dynamic binding [HLS97], but is generally faster to compile 
and link 

Different applications and application services have different needs that are 
best served by one or the other strategies. 

 

In our gateway example we use parameterized types to configure the 
acceptor with its designated service handler and a concrete IPC 
mechanism that establishes connections passively. The acceptor inherits 
from Event_Handler to receive events from a reactor singleton, which 
pays the role of the dispatcher in this example: 
    template <class SERVICE_HANDLER, class 
IPC_ACCEPTOR> 
         // The <SERVICE_HANDLER> is the type of 
concrete 
         // service handler created/accepted/activated 
when a 
         // connection request arrives. 
         // The <IPC_ACCEPTOR> provides the concrete 
IPC 
         // passive connection mechanism. 
    class Acceptor : public Event_Handler { 
    public: 
         typedef typename IPC_ACCEPTOR::PEER_ADDR 
Addr; 
 
         // Constructor initializes <local_addr> 
transport 
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         // endpoint and register with the <Reactor>. 
         Acceptor (const Addr &local_addr, Reactor 
*r); 
 
         // Template method that creates, connects, 
         // and activates <SERVICE_HANDLER>'s. 
         virtual void accept (); 
    protected: 
         // Factory method hook for creation strategy. 
         virtual SERVICE_HANDLER *make_service_handler 
(); 
 
         // Hook method for connection strategy. 
         virtual void accept_service_handler 
                      (SERVICE_HANDLER *); 
 
         // Hook method for activation strategy. 
         virtual void activate_service_handler 
                      (SERVICE_HANDLER *); 
         // Hook method that returns the I/O <HANDLE>. 
         virtual HANDLE get_handle () const; 
 
         // Hook method invoked by <Reactor> when a 
         // connection request arrives. 
         virtual void handle_event (HANDLE, 
Event_Type); 
 
    private: 
         // Template 'placeholder' for a concrete IPC 
         // mechanism that establishes connections 
passively. 
         IPC_ACCEPTOR peer_acceptor_; 
    }; 

The Acceptor template is parameterized by concrete types of 
IPC_ACCEPTOR and SERVICE_HANDLER. The IPC_ACCEPTOR is a 
placeholder for the concrete IPC mechanism used by an acceptor to 
passively establish connections initiated by peer connectors. The 
SERVICE_HANDLER is a placeholder for the concrete service handler that 
processes data exchanged with its peer connected service handler. Both 
of these concrete types are provided by the components in the application 
layer. 
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3. Implement the generic acceptor methods. Applications initialize an acceptor by 
calling its initialization method with a parameter specifying a transport address, 
such as the local host's IP name and TCP port number. The acceptor uses 
this address to listen for connections initiated by peer connectors. It forwards 
this address to the concrete IPC connection mechanism configured into the 
generic acceptor, either by an acceptor's concrete acceptor subclasses or by a 
parameterized type. This IPC connection mechanism then initializes the 
acceptor's passive-mode transport endpoint, which advertises its address to 
remote applications who are interested in connecting to the acceptor. 

The behavior of the acceptor's passive-mode transport endpoint is determined 
by the type of concrete IPC mechanism used to customize the generic 
acceptor. This IPC mechanism is often accessed via a wrapper facade (47), 
such as the ACE wrapper facades [Sch92] for Sockets [Ste98], TLI [Rago93], 
STREAM pipes [PR90], or Win32 Named Pipes [Ric97]. 

The acceptor's initialization method also registers itself with a dispatcher. This 
dispatcher then performs a 'double dispatch' [GoF95] back to the acceptor to 
obtain a handle to the passive-mode transport endpoint of its underlying 
concrete IPC mechanism. This handle allows the dispatcher to notify the 
acceptor when connection requests arrive from peer connectors. 

 

The Acceptor from our example implements its constructor initialization 
method as follows: 
    template <class SERVICE_HANDLER, class 
IPC_ACCEPTOR> 
    void Acceptor<SERVICE_HANDLER, 
IPC_ACCEPTOR>::Acceptor 
         (const Addr &local_addr, Reactor *reactor) { 
         // Initialize the IPC_ACCEPTOR. 
         peer_acceptor_.open (local_addr); 
 
         // Register with <reactor>, which uses 
<get_handle> 
         // to get handle via 'double-dispatching.' 
         reactor->register_handler (this, 
ACCEPT_MASK); 
    } 
 

 

When a connection request arrives from a remote peer, the dispatcher 
automatically calls back to the acceptor's accept() template method 
[GoF95]. This template method implements the acceptor's strategies for 
creating a new concrete service handler, accepting a connection into it, and 
activating the handler. The details of the acceptor's implementation are 
delegated to hook methods. These hook methods represent the set of 
operations available to perform customized service handler connection and 
initialization strategies. 
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If polymorphism is used to specify concrete acceptors, the hook methods are 
dispatched to their corresponding implementations within the concrete 
acceptor subclass. When using parameterized types, the hook methods 
invoke corresponding methods on the template parameters used to instantiate 
the generic acceptor. In both cases, concrete acceptors can modify the 
generic acceptor's strategies transparently without changing its accept() 
method's interface. This flexibility makes it possible to design concrete service 
handlers whose behavior can be decoupled from their passive connection and 
initialization.  

 

The Acceptor class in our gateway example implements the following 
accept() method: 
    template <class SERVICE_HANDLER, class 
IPC_ACCEPTOR> 
    void Acceptor<SERVICE_HANDLER, 
IPC_ACCEPTOR>::accept () { 
         // The following methods comprise the core 
         // strategies of the <accept> template 
method. 
 
         // Factory method creates a new 
<SERVICE_HANDLER>. 
         SERVICE_HANDLER *service_handler = 
             make_service_handler (); 
 
         // Hook method that accepts a connection 
passively. 
         accept_service_handler (service_handler); 
 
         // Hook method that activates the 
<SERVICE_HANDLER> 
         // by invoking its <open> activation hook 
method. 
         activate_service_handler (service_handler); 
    } 

The make_service_handler() factory method [GoF95] is a hook used 
by the generic acceptor template method to create new concrete service 
handlers. Its connection acceptance strategy is defined by the 
accept_service_handler() hook method. By default this method 
delegates connection establishment to the accept() method of the 
IPC_ACCEPTOR, which defines a concrete passive IPC connection 
mechanism. The acceptor's service handler activation strategy is defined 
by the activate_service_handler() method. This method can be 
used by a concrete service handler to initialize itself and to select its 
concurrency strategy. 
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In our gateway example the dispatcher is a reactor that notifies the 
acceptor's accept() method indirectly via the handle_event() method 
that the acceptor inherits from class Event_Handler. The 
handle_event() method is an adapter [GoF95] that transforms the 
general-purpose event handling interface of the reactor to notify the 
acceptor's accept() method. 
 

 

When an acceptor terminates, due to errors or due to its application process 
shutting down, the dispatcher notifies the acceptor to release any resources it 
acquired dynamically. 

 

In our gateway, the reactor calls the acceptor's handle_close() hook 
method, which closes its passive-mode socket. 
 

 

4. Define the generic connector interface. The connector component implements 
the generic strategy for actively establishing connections and initializing the 
associated service handlers that process request and response events on the 
connections. 

A connector contains a map of concrete service handlers that manage the 
completion of pending asynchronous connections. Service handlers whose 
connections are initiated asynchronously are inserted into this map. This 
allows their dispatcher and connector to activate the handlers after the 
connections complete. 

As with the generic acceptors described in implementation activity 2.2 (300), 
components in the application layer described in implementation activity 3 
(311) customizes generic connectors with particular concrete service handlers 
and IPC mechanisms. We must therefore select the strategy—polymorphism 
or parameterized types—for customizing concrete connectors. Implementation 
activity 2.2 (300) discusses both strategies and their trade-offs. 

As with the acceptor's accept() method, a connector's connection initiation 
and completion methods are template methods [GoF95], which we call 
connect() and complete(). These methods implement the generic 
strategy for establishing connections actively and initializing service handlers. 
Specific steps in these strategies are delegated to hook methods [Pree95]. 

 

We define the following interface for the connector used to implement our 
gateway example. It uses C++ templates to configure the connector with a 
concrete service handler and the concrete IPC connection mechanism. It 
inherits from class Event_Handler to receive asynchronous completion 
event notifications from the reactor dispatcher: 
    template <class SERVICE_HANDLER, class 
IPC_CONNECTOR> 
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         // The <SERVICE_HANDLER> is the type of 
concrete 
         // service handler activated when a 
connection 
         // request completes. The <IPC_CONNECTOR> 
provides 
         // the concrete IPC active connection 
mechanism. 
    class Connector : public Event_Handler { 
    public: 
         enum Connection_Mode { 
             SYNC, // Initiate connection 
synchronously. 
             ASYNC // Initiate connection 
asynchronously. 
         }; 
         typedef typename IPC_CONNECTOR::PEER_ADDR 
Addr; 
 
         // Initialization method that caches a 
<Reactor> to 
         // use for asynchronous notification. 
         Connector (Reactor *reactor): reactor_ 
(reactor) { } 
 
         // Template method that actively connects a 
service to 
         // a <remote_addr>. 
         void connect (SERVICE_HANDLER *sh, 
                       const Addr &remote_addr, 
                       Connection_Mode mode); 
    protected: 
         // Hook method for the active connection 
strategy. 
         virtual void connect_service_handler 
              (const Addr &addr, Connection_Mode 
mode); 
 
         // Register the <SERVICE_HANDLER> so that it 
can be 
         // activated when the connection completes. 
         int register_handler (SERVICE_HANDLER *sh, 
                               Connection_Mode mode); 
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         // Hook method for the activation strategy. 
         virtual void activate_service_handler 
             (SERVICE_HANDLER *sh); 
 
         // Template method that activates a 
<SERVICE_HANDLER> 
         // whose non-blocking connection completed. 
This 
         // method is called by <connect> in the 
synchronous 
         // case or by <handle_event> in the 
asynchronous case. 
         virtual void complete (HANDLE handle); 
    private: 
         // Template 'placeholder' for a concrete IPC 
         // mechanism that establishes connections 
actively. 
         IPC_CONNECTOR connector_; 
 
         typedef map<HANDLE, SERVICE_HANDLER*> 
Connection_Map; 
 
         // C++ standard library map that associates 
<HANDLE>s 
         // with <SERVICE_HANDLER> *s for pending 
connections. 
         Connection_Map connection_map_; 
 
         // <Reactor> used for asynchronous connection 
         // completion event notifications. 
         Reactor *reactor_; 
 
         // Inherited from <Event_Handler> to allow 
the 
         // <Reactor> to notify the <Connector> when 
events 
         // complete asynchronously. 
         virtual void handle_event (HANDLE, 
Event_Type); 
    }; 

The Connector template is parameterized by a concrete 
IPC_CONNECTOR and SERVICE_HANDLER. The IPC_CONNECTOR is a 
concrete IPC mechanism used by a connector to synchronously or 
asynchronously establish connections actively to remote acceptors. The 
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SERVICE_HANDLER template argument defines one-half of a service that 
processes data exchanged with its connected peer service handler. Both 
concrete types are provided by components in the application layer. 
 

 

5. Implement the generic connector methods. The connector's connect() 
method is used by an application to initiate a connection. This template 
method [GoF95] allows concrete connectors to modify the active connection 
strategy transparently, without changing the connector's interface or 
implementation. Therefore, connect() delegates individual steps of its 
connection strategy to hook methods that concrete connectors can over-ride to 
perform custom operations. 

When connect() establishes a connection asynchronously on behalf of a 
service handler, the connector inserts that handler into an internal container—
in our example a C++ standard template library map [Aus98]—that keeps track 
of pending connections. When an asynchronously-initiated connection 
completes, its dispatcher notifies the connector. The connector uses the 
pending connection map to finish activating the service handler associated 
with the connection. 

If connect() establishes a connection synchronously, the connector can call 
the concrete service handler's activation hook directly, without calling 
complete(). This short-cut reduces unnecessary dynamic resource 
management and processing for synchronous connection establishment and 
service handler initialization. 

 

The code fragment below shows the connect() method of our 
Connector. If a SYNC value of the Connection_Mode parameter is 
passed to this method, the concrete service handler will be activated after 
the connection completes synchronously. Conversely, connections can be 
initiated asynchronously by passing the Connection_Mode value ASYNC 
to the connect() method: 
    template <class SERVICE_HANDLER, class 
IPC_CONNECTOR> 
    void 
Connector<SERVICE_HANDLER,IPC_CONNECTOR>::connect 
             (SERVICE_HANDLER *service_handler, 
              const Addr &addr, Connection_Mode mode) 
{ 
        // Hook method delegates connection 
initiation. 
        connect_service_handler (service_handler, 
addr,mode); 
    } 

The template method connect() delegates the initiation of a connection 
to its connect_service_handler() hook method. This method 
defines a default implementation of the connector's connection strategy. 
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This strategy uses the concrete IPC mechanism provided by the 
IPC_CONNECTOR template parameter to establish connections, either 
synchronously or asynchronously. 
    template <class SERVICE_HANDLER, class 
IPC_CONNECTOR> 
    void Connector<SERVICE_HANDLER, 
                 
IPC_CONNECTOR>::connect_service_handler 
             (SERVICE_HANDLER *svc_handler, 
              const Addr &addr, 
              Connection_Mode mode) { 
         try { 
             // Concrete IPC_CONNECTOR establishes 
connection. 
             connector_.connect (*svc_handler, addr, 
mode); 
 
             // Activate if we connect synchronously. 
             activate_service_handler (svc_handler); 
         } catch (System_Ex &ex) { 
             if (ex.status () == EWOULDBLOCK && mode 
== ASYNC) 
             { 
                  // Connection did not complete 
immediately, 
                  // so register with <reactor_>, 
which 
                  // notifies <Connector> when the 
connection 
                  // completes. 
                  reactor_ ()->register_handler (this, 
                                             
WRITE_MASK); 
 
                  // Store <SERVICE_HANDLER *> in map. 
                  connection_map_ 
[connector_.get_handle ()] 
                      = svc_handler; 
             } 
         } 
    } 

Note how connect() will activate the concrete service handler directly if 
the connection happens to complete synchronously. This may occur, for 
example, if the peer acceptor is co-located in the same host or process. 
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The complete() method activates the concrete service handler after its 
initiated connection completes. For connections initiated synchronously, 
complete() need not be called if the connect() method activates the 
service handler directly. For connections initiated asynchronously, however, 
complete() is called by the dispatcher when the connection completes. The 
complete() method examines the map of concrete service handlers to find 
the service handler whose connection just completed. It removes this service 
handler from the map and invokes its activation hook method. In addition, 
complete() unregisters the connector from the dispatcher to prevent it from 
trying to notify the connector accidentally. 

Note that the service handler's open() activation hook method is called 
regardless of whether connections are established synchronously or 
asynchronously, or even if they are connected actively or passively. This 
uniformity makes it possible to define concrete service handlers whose 
processing can be completely decoupled from the time and manner in which 
they are connected and initialized. 

 

When a connection is initiated synchronously in our gateway, the concrete 
service handler associated with it is activated by the Connector's 
connect_service_handler() method, rather than by its complete() 
method, as described above. For asynchronous connections, conversely, 
the reactor notifies the handle_event() method inherited by the 
Connector from the Event_Handler class. 

We implement this method as an adapter [GoF95] that converts the 
reactor's event handling interface to forward the call to the connector's 
complete() method. The complete() method then invokes the 
activation hook of the concrete service handler whose asynchronously 
initiated connection completed successfully most recently. 

The complete() method shown below finds and removes the connected 
service handler from its internal map of pending connections and transfers 
the socket handle to the service handler. 
    template <class SERVICE_HANDLER, class 
IPC_CONNECTOR> 
    void Connector<SERVICE_HANDLER, 
                 IPC_CONNECTOR>::complete(HANDLE 
handle) { 
        // Find <service_handler> associated with 
<handle> in 
        // the map of pending connections. 
        Connection_Map::iterator i = 
            connection_map_.find (handle); 
 
        if (i == connection_map_.end ()) 
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            throw /* ...some type of error... */; 
 
        // We just want the value part of the <key, 
value> 
        // pair in the map 
        SERVICE_HANDLER *svc_handler = (*i).second; 
 
        // Transfer I/O handle to <service_handler>. 
        svc_handler->set_handle (handle); 
        // Remove handle from <Reactor> and . 
        // from the pending connection map. 
        reactor_->remove_handler (handle, WRITE_MASK); 
        connection_map_.erase (i); 
 
        // Connection is complete, so activate 
handler. 
        activate_service_handler (svc_handler); 
    } 

Note how the complete() method initializes the service handler by 
invoking its activate_service_handler() method. This method 
delegates to the initialization strategy designated in the concrete service 
handler's open() activation hook method. 
 

 

3. Implement the components in the application layer. This layer defines the concrete 
service handlers, concrete acceptors, and concrete connectors that Acceptor-
Connector pattern specifies in the Structure section. Components in the application 
layer instantiate the generic service handler, acceptor, and connector components 
described in implementation activity 2 (299) to create custom concrete components. 

Concrete service handlers define the application's services. When implementing an 
end-to-end service in a networked system that consists of multiple peer service 
handlers, the Half Object plus Protocol pattern [Mes95] can help structure the 
implementation of these service handlers. In particular, Half Object plus Protocol 
helps decompose the responsibilities of an end-to-end service into service handler 
interfaces and the protocol used to collaborate between them. 

Concrete service handlers can also define a service's concurrency strategy. For 
example, a service handler may inherit from the event handler and employ the 
Reactor pattern (179) to process data from peers in a single thread of control. 
Conversely, a service handler may use the Active Object (369) or Monitor Object 
(399) patterns to process incoming data in a different thread of control than the one 
used by the acceptor that connects it. 

In the Example Resolved section, we illustrate how several different concurrency 
strategies can be configured flexibly into concrete service handlers for our gateway 
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example without affecting the structure or behavior of the Acceptor-Connector 
pattern.  

Concrete connectors and concrete acceptors are factories that create concrete 
service handlers. They generally derive from their corresponding generic classes and 
implement these in an application-specific manner, potentially overriding the various 
hook methods called by the accept() and connect() template methods [GoF95]. 

Another way to specify a concrete acceptor is to parameterize the generic acceptor 
with a concrete service handler and concrete IPC passive connection mechanism, as 
discussed in previous implementation activities and as outlined in the Example 
Resolved section. Similarly, we can specify concrete connectors by parameterizing 
the generic connector with a concrete service handler and concrete IPC active 
connection mechanism. 

Components in the application layer can also provide custom IPC mechanisms for 
configuring concrete service handlers, concrete connectors, and concrete acceptors. 
IPC mechanisms can be encapsulated in separate classes according to the Wrapper 
Facade pattern (47). These wrapper facades create and use the transport endpoints 
and transport handles that exchange data with connected peer service handlers 
transparently. 

The use of the Wrapper Facade pattern simplifies programming, enhances reuse, 
and enables wholesale replacement of concrete IPC mechanisms via generic 
programming techniques. For example, the SOCK_Connector, SOCK_Acceptor, 
and SOCK_Stream classes used in the Example Resolved section are provided by 
the ACE C++ Socket wrapper facade library [Sch92]. 

Example Resolved 

Peer host and gateway components in our satellite constellation management example use 
the Acceptor-Connector pattern to simplify their connection establishment and service 
initialization tasks: 
§ First we illustrate how to implement the peer host components, which play a passive 

role in our example. 
§ Second we illustrate how to implement the gateway, which plays an active role in 

establishing connections with the passive peer hosts. 

By using the Acceptor-Connector pattern, we can also reverse or combine these roles with 
minimal impact on the service handlers that implement the peer hosts and gateway services.  

Implement the peer host application. Each peer host contains Status_Handler, 
Bulk_Data_Handler, and Command_Handler components, which are concrete service 
handlers that process routing messages exchanged with a gateway. 
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Each of these concrete service handlers inherit from the Service_Handler class defined 
in implementation activity 2.4 (306), enabling them to be initialized passively by an acceptor. 
For each type of concrete service handler, there is a corresponding concrete acceptor that 
creates, connects, and initializes instances of the concrete service handler. 

To demonstrate the flexibility of the Acceptor-Connector pattern, each concrete service 
handler's open() hook method in our example implements a different concurrency strategy. 
For example, when a Status_Handler is activated it runs in a separate thread, a 
Bulk_Data_Handler runs as a separate process, and a Command_Handler runs in the 
same thread as the Reactor that demultiplexes connection requests to concrete acceptors. 
Note that changing these concurrency strategies does not affect the implementation of the 
Acceptor class. 

We start by defining a type definition called Peer_Handler:  
    typedef Service_Handler <SOCK_Stream> Peer_Handler; 

This type definition instantiates the Service_Handler generic template class with a 
SOCK_Stream wrapper facade (47). This wrapper facade[15]defines a concrete IPC 
mechanism for transmitting data between connected transport endpoints using TCP. The 
PEER_HANDLER type definition is the basis for all the subsequent concrete service handlers 
used in our example. For example, the following Status_Handler class inherits from 
Peer_Handler and processes status data, such as telemetry streams, exchanged with a 
gateway: 
    class Status_Handler : public Peer_Handler { 
    public: 
        // Performs handler activation. 
        virtual void open () { 
             // Make this handler run in separate thread (note 
             // that <Thread::spawn> requires a pointer to 
             // a static method as the thread entry point). 
             Thread_Manager::instance ()->spawn 
                  (&Status_Handler::svc_run, this) ; 
        } 
 
        // Static entry point into thread. This method can 
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        // block on the handle_event() call because it 
        // runs in its own thread. 
        static void *svc_run (Status_Handler *this_obj) { 
            for (;;) 
                this_obj->run (); 
        } 
 
        // Receive and process status data from Gateway. 
        virtual void run () { 
            char buf[BUFSIZ] ; 
            peer () .recv (buf, sizeof buf); 
            // ... 
        } 
        // ... 
    }; 

The other concrete service handlers in our example, Bulk_Data_Handler and 
Command_Handler, also subclass from Peer_Handler. The primary differences between 
these classes are localized in the implementation of their open () and handle_event () 
methods, which vary according to their selected concurrency mechanisms. 

The Status_Acceptor, Bulk_Data_Acceptor , and Command_Acceptor type 
definitions shown below are template instantiations of concrete acceptor factories that 
create, connect, and activate the Status_Handlers, Bulk_Data_Handlers , and 
Command_Handlers concrete service handlers, respectively.  
    // Accept connection requests from the gateway and 
    // activate a <Status_Handler> to process status data. 
    typedef Acceptor<Status_Handler, SOCK_Acceptor> 
             Status_Acceptor; 
 
    // Accept connection requests from a gateway and activate 
    // a <Bulk_Data_Handler> to process bulk data requests. 
    typedef Acceptor<Bulk_Data_Handler, SOCK_Acceptor> 
             Bulk_Data_Acceptor ; 
 
    // Accept connection requests from a gateway and 
    // activate a <Command_Handler> to process commands. 
    typedef Acceptor<Command_Handler, SOCK_Acceptor> 
             Command_Acceptor ; 

The type definitions above are defined by instantiating the generic Acceptor template class 
defined in implementation activity 2.2 (300) with a SOCK_Acceptor wrapper facade (47), 
which is a concrete IPC mechanism that establishes connections passively.[16]  
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Note how the use of C++ templates and dynamic binding permits specific details of concrete 
acceptors and concrete service handlers to change flexibly. In particular, no changes to the 
acceptor component are required if the concurrency strategies of Status_Handlers, 
Bulk_Data_Handlers, and/or Command_Handlers change. The flexibility of this design 
stems from the separation of concerns enforced by the Acceptor-Connector pattern. In 
particular, concurrency strategies have been factored out into concrete service handlers 
rather than being tightly coupled with the acceptors. 

The main peer host application function initializes the concrete acceptors by passing their 
constructors the TCP ports used to advertise each service to peer connectors. Each 
concrete acceptor registers itself automatically with an instance of the Reactor passed as a 
parameter to its constructor, as shown in the implementation activity 2.3(303). 
    // Main program run on a peer host. 
    int main () { 
        // Initialize concrete acceptors to listen for 
        // connections on their well-known ports. 
        Status_Acceptor s_acceptor (STATUS_PORT, 
                                   Reactor: : instance ()); 
        Bulk_Data_Acceptor bd_acceptor (BULK_DATA_PORT, 
                                       Reactor::instance ()) ; 
 
        Command_Acceptor c_acceptor (COMMAND_PORT, 
                                   Reactor::instance ()) ; 
 
        // Event loop that accepts connection request 
        // events and processes data from a gateway. 
        for (;;) 
             Reactor::instance ()->handle_events (); 
        /* NOTREACHED */ 
   } 

After all three concrete acceptors are initialized, the main peer host application enters an 
event loop that uses the reactor singleton to detect connection requests from the gateway. 
When such requests arrive, the reactor notifies the appropriate concrete acceptor. The 
acceptor then creates the appropriate concrete service handler, accepts the connection into 
the handler, and activates the handler so that it can exchange routing messages with the 
gateway. 

Implement the gateway application. The main () function above illustrates how to define 
the concrete acceptors and their concrete service handlers for the peer host application in 
our satellite constellation management example. We now illustrate how to implement the 
concrete connectors and corresponding concrete service handlers used within a gateway 
application. 
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A gateway contains multiple instances of Status_Router, Bulk_Data_Router, and 
Command_Router concrete service handlers, which route data they receive from a peer 
host source to one or more peer host destinations. These concrete service handlers inherit 
from the Service_Handler class, which enables them to be connected actively and 
initialized automatically by a connector. 

Each open() hook method in a concrete service handler implements a different 
concurrency strategy. This is analogous to the handlers defined for the peer host application. 
As before, changes to these concurrency strategies need not affect the Connector's 
implementation, which is highly flexible and reusable. 

We start by defining a concrete service handler that is specialized for TCP/IP data transfer. 
We instantiate it with the appropriate IPC mechanism encapsulated by the SOCK_Stream 
wrapper facade (47): 
    typedef Service_Handler <SOCK_Stream> Peer_Router; 

This type definition is used as the base class for all other routing services in a gateway. For 
example, the Bulk_Data_Router exchanges bulk data with peer hosts as follows: 
    class Bulk_Data_Router : public Peer_Router { 
    public: 
        // Activates router in separate process. 
        virtual void open () { 
            if (fork () == 0) // In child process. 
                // This method can block because it runs in 
                // its own process. 
                for (;;) 
                    run (); 
            // ... 
        } 
        // Receive and route bulk data from/to Peers. 
        virtual void run () { 
            char buf[BUFSIZ]; 
            peer ().recv (buf, sizeof buf) ; 
            // Routing takes place here... 
        } 
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    }; 

Unlike the Status_Handler defined in the peer host application, which ran in its own 
thread, the Bulk_Data_Router runs in its own process. We can define similar subclasses 
to form the Status_Router and Command_Router. As before, all these subclasses differ 
primarily in their open() and handle_event () method implementations, which vary 
according to the concurrency mechanisms they select. 

The following type definition defines a connector specialized for Peer_Routers: 
    typedef Connector<Peer_Router, SOCK_Connector> 
             Peer_Connector; 

This type definition instantiates the Connector class defined in implementation activity 2.4 
(306) with a SOCK_Connector wrapper facade (47). This wrapper facade is a concrete IPC 
mechanism that establishes connections actively to remote peer transport endpoints. The 
gateway application requires just one concrete connector, because the concrete service 
handlers passed to its connect() method are created and initialized externally to the 
concrete connector. The gateway's concrete service handlers, such as its 
Bulk_Data_Routers or Command_Routers, can therefore be treated uniformly as 
Peer_Routers. 

In contrast, peer host applications require a concrete acceptor for each type of concrete 
service handler, such as a Bulk_Data_Handler or a Command_Handler, because the 
concrete type of service handler must be specified a priori in the signature of the concrete 
Acceptor's template instantiation. 

In the main function of the gateway application, the concrete service handlers 
Status_Router, Bulk_Data_Router, and Command_Router are created by the 
function get_peer_addrs(). This function, whose implementation we omit, reads a list of 
peer addresses from a configuration file or naming service. Each peer address consists of 
an IP host address and a port number. Once these concrete service handlers are initialized, 
all connections are initiated asynchronously by passing the ASYNC flag to the concrete 
connector's connect() method. 
    // Obtain a C++ standary library vector of 
    // <Status_Router>s, <Bulk_Data_Router>s, and 
    // <Command_Router>s from a configuration file. 
    void get_peer_addrs (vector<Peer_Router> &peers) ; 
 
    // The gateway application's main entry point. 
    int main () { 
         // Concrete connector that serves as a factory 
         // for <Peer_Router>s. 
         Peer_Connector peer_connector (Reactor::instance ()); 
         // A vector of <Peer_Router>s that perform 
         // the gateway's routing services. 
         vector<Peer_Router> peers; 
 
         // Get vector of peers to connect with. 
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         get_peer_addrs (peers) ; 
 
         // Iterate through all the <Peer_Router>s and 
         // initiate connections asynchronously. 
         typedef vector<Peer_Router>::iterator Peer_Iterator; 
         for (Peer_Iterator peer = peers.begin (); 
             peer != peers.end (); 
             ++peer) { 
             peer_connector.connect (*peer, 
                                   peer->remote_addr (), 
                                   Peer_Connector::ASYNC) ; 
         } 
 
         // Event loop that handles connection indication 
         // events and routes data from peer hosts. 
         for (;;) 
             Reactor::instance ()->handle_events () ; 
         /* NOTREACHED */ 
     } 

All connections are invoked asynchronously and complete concurrently via the 
peer_connector's complete () method, which the reactor notifies via a callback within 
the context of its event loop. The reactor's event loop also demultiplexes and dispatches 
routing events for Command_Router objects. These run in the same thread of control as the 
reactor. Conversely, instances of Status_Router and Bulk_Data_Router execute in 
separate threads and processes, respectively. 

Known Uses 

UNIX network superservers. Superserver implementations, for example Inetd [Ste98], 
Listen [Rago93], and the Service Configurator [JS97b] from the ACE framework, use a 
master acceptor process that listens for connections on a set of communication ports. In 
Inetd, for example, each port is associated with a service, such as the standard Internet 
services FTP, TELNET, DAYTIME, and ECHO. The acceptor process decouples the 
functionality of the Inetd superserver into two separate parts: one for establishing 
connections and another for receiving and processing requests from peers. When a service 
request arrives on a port monitored by Inetd, it accepts the request and dispatches an 
appropriate pre-registered handler to perform the service.  

CORBA Object Request Brokers (ORB) [OMG98a]. The ORB Core layer in many 
implementations of CORBA uses the Acceptor-Connector pattern to passively and actively 
initialize connection handlers when clients request ORB services. [SC99] describes how the 
Acceptor-Connector pattern is used to implement the ORB Core portion in The ACE ORB 
(TAO), which is a real-time implementation of CORBA. 

Web Browsers. The HTML parsing components in Web browsers, such as Netscape and 
Internet Explorer, use the asynchronous version of the connector component to establish 
connections with servers associated with images embedded in HTML pages. This pattern 
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allows multiple HTTP connections to be initiated asynchronously. This avoids the possibility 
of the browser's main event loop blocking. 

Ericsson EOS Call Center Management System. This system uses the Acceptor-
Connector pattern to allow application-level. Call Center Manager event servers [SchSu94] 
to establish connections actively with passive supervisors in a networked center 
management system. 

Project Spectrum. The high-speed medical image transfer subsystem of project Spectrum 
[BBC94] uses the Acceptor-Connector pattern to establish connections passively and 
initialize application services for storing large medical images. Once connections are 
established, applications send and receive multi-megabyte medical images to and from the 
image stores. 

ACE [Sch97]. Implementations of the generic Service_Handler, Connector, and 
Acceptor components described in the Implementation section are provided as reusable 
C++ classes in the ADAPTIVE Communication Environment (ACE) concurrent object-
oriented network programming framework. 

Java ACE [JACE99] is a version of ACE implemented in Java. It provides the 
JACE.Connection.SvcHandler, JACE.Connection.Acceptor , and 
JACE.Connection.Connector components. These correspond to the service handler, 
acceptor, and connector participants of the Acceptor-Connector pattern. 

Managers and secretaries. A real-life implementation of the Acceptor-Connector pattern is 
often found in organizations that provide secretaries for their managers. A manager wishing 
to make a phone call to another manager asks her secretary to establish the call rather than 
doing it herself. However, the call is not received by the called manager directly, but by his 
secretary. Once the connection is established it is then passed to the managers. In terms of 
the Acceptor-Connector pattern, the secretary that initiates the phone call is the connector, 
the secretary that receives the call is the acceptor and the two managers are peer service 
handlers. 

Consequences 

The Acceptor-Connector pattern provides three benefits: 

Reusability, portability, and extensibility. The Acceptor-Connector pattern decouples 
mechanisms for connecting and initializing service handlers from the service processing 
performed after service handlers are connected and initialized. Application-independent 
mechanisms in acceptors and connectors are reusable components that know how to 
establish connections and initialize the associated service handler when the connection is 
established. Similarly, service handlers know how to perform application-specific service 
processing. 

This strict separation of concerns is achieved by decoupling the connection and initialization 
strategies from the service handling strategy. Each strategy can therefore evolve 
independently. The strategies for connection and initialization can be written once, placed in 
a class library or framework and reused via inheritance, object composition or template 
instantiation. The same connection and initialization code therefore need not be rewritten for 
each application. 

Service handlers, in contrast, may vary according to different application requirements. By 
parameterizing the acceptor and connector components with a particular type of service 
handler, the impact of this variation is localized to a small number of components in the 
software. 
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Robustness. The Acceptor-Connector pattern strongly decouples the service handler from 
the acceptor. This decoupling ensures that a passive-mode transport endpoint—the 
PEER_ACCEPTOR in our gateway example—cannot be used to read or write data 
accidentally. This added degree of type-safety eliminates a class of errors that often arise 
when programming with weakly-typed network programming interfaces, such as Sockets or 
TLI [SHS95]. 

Efficiency. The Acceptor-Connector pattern can establish connections actively with a large 
number of hosts asynchronously and efficiently over long-latency wide area networks. 
Asynchrony is important in this situation because a large networked system may have 
hundreds or thousands of host that must be connected. 

One way to connect all these peers to the gateway is to use the synchronous mechanisms 
described in the Implementation section. However, the round-trip delay for a 3-way TCP 
connection handshake over a long-latency wide area network, such as a geosynchronous 
satellite or trans-atlantic fiber cable, may be several seconds per handshake. In this case 
asynchronous connection mechanisms may perform better, because they can utilize the 
inherent parallelism of the network and hosts in the wide area network. 

The Acceptor-Connector pattern has the following liabilities: 

Additional indirection. The Acceptor-Connector pattern can incur additional indirection 
compared to using the underlying network programming interfaces directly. However, 
languages that support parameterized types, such as C++, Ada, or Eiffel, can implement 
these patterns with no significant overhead when compilers inline the method calls used to 
implement the patterns. 

Additional complexity. The Acceptor-Connector pattern may add unnecessary complexity for 
simple client applications that connect with only one server and perform one service using a 
single network programming interface. However, the use of generic acceptor and connector 
wrapper facades may simplify even these applications by shielding developers from tedious, 
error-prone, and non-portable low-level network programming mechanisms. 

See also 

The intent of the Acceptor-Connector pattern is similar to that of the Client-Dispatcher-Server 
pattern [POSA1] in that both are concerned with the separation of active connection 
establishment from subsequent service processing. The primary difference is that the 
Acceptor-Connector pattern addresses passive and active connection establishment and 
initialization of both synchronous and asynchronous connections. In contrast, the Client-
Dispatcher-Server pattern focuses on synchronous connection establishment. 

[12]Henceforth, we refer to connection request events and data request events as simply 
connection requests and data requests. 

[13]Note that the notion of connector in the Acceptor-Connector pattern differs from the notion 
of connector in [SG96]. There, a connector is a software architecture specification concept 
that denotes the collaborations among components in a system. 

[14]For simplicity we omit the creation and use of the passive-mode transport endpoint in the 
sequence diagram for this scenario. 

[15]The complete SOCK_Stream interface is presented on page 61 in the Implementation 
section of the Wrapper Facade (47) pattern. 
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[16]The complete SOCK_Acceptor interface is presented on page 62 in the Implementation 
section of the Wrapper Facade (47) pattern. 
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Chapter 4: Synchronization Patterns 
Overview 

"I will be the pattern of all patience."  

William Shakespeare  

This chapter describes three patterns and one idiom that simplify locking in concurrent 
systems: Scoped Locking, Strategized Locking, Thread-Safe Interface, and Double-Checked 
Locking Optimization.  

Developing multi-threaded applications is harder than developing sequential programs 
because an object can be manipulated concurrently by multiple threads, which may corrupt 
its internal state. Synchronization mechanisms, such as mutexes or semaphores [McK95], 
can help ensure objects are serialized correctly. This chapter presents three patterns and an 
idiom that provide solutions to problems related to synchronizing concurrent objects. 

The first idiom and pattern address lock acquisition/release and locking strategies: 
§ The Scoped Locking C++ idiom (325) ensures that a lock is acquired automatically 

when control enters a scope and released automatically when control leaves the scope, 
regardless of the return path from the scope. 

§ The Strategized Locking design pattern (333) is a specialization of the Strategy pattern 
[GoF95] that parameterizes the synchronization mechanisms used in a component that 
protect its critical sections from concurrent access. 

When implemented in C++ the Strategized Locking pattern often applies the Scoped Locking 
idiom. The other two patterns help improve the robustness and efficiency of synchronization 
mechanisms: 
§ The Thread-Safe Interface design pattern (345) minimizes locking overhead and 

ensures that intra-component method calls do not incur 'self-deadlock' by trying to 
reacquire a lock that a component already holds. 

§ The Double-Checked Locking Optimization design pattern (353) reduces contention 
and synchronization overhead whenever critical sections of code must acquire locks in 
a thread-safe manner only once during program execution. 

All four patterns and idioms can be used to enhance the implementations of the patterns 
presented in Chapter 5, Concurrency Patterns. 

Other patterns related to synchronization include Code Locking and Data Locking [McK95], 
Reader/Writer Locking [McK95] [Lea99a], Object Synchronizer [SPM99], as well as Balking 
and Guarded Suspension [Lea99a]. 

 
Scoped Locking 
The Scoped Locking C++ idiom ensures that a lock is acquired when control enters a scope 
and released automatically when control leaves the scope, regardless of the return path from 
the scope. 

Also Known As 

Synchronized Block, Resource-Acquisition-is-Initialization [Str97],[1]Guard, Execute Around 
Object [Hen00] 
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Example 

Commercial Web servers often maintain a 'hit count' that records how many times each URL 
is accessed by clients over a period of time. To reduce latency a Web server process 
maintains the hit counts in a memory-resident component rather than in a disk file. 

Web server processes are often multi-threaded [HS98] to increase throughput. Public 
methods in the hit-count component must therefore be serialized to prevent threads from 
corrupting its internal state when hit counts are updated concurrently. 

One way to serialize access to a hit-count component is to acquire and release a lock 
explicitly in each public method. The following C++ example uses the Thread_Mutex 
defined in the Wrapper Facade pattern (47) to serialize access to critical sections: 
    class Hit_Counter { 
    public: 
        // Increment the hit count for a URL <path> name. 
        bool increment (const string &path) { 
            // Acquire lock to enter critical section. 
            lock_.acquire (); 
            Table_Entry *entry = lookup_or_create (path); 
            if (entry == 0) { 
                // Something's gone wrong, so bail out. 
                lock_.release (); 
                return false; // Return a 'failure' value. 
            } 
            else  { // Increment hit count for <path> name. 
                 entry->increment_hit_count (); 
                 // Release lock to leave critical section. 
                 lock_.release (); 
                 return true; 
            } 
        } 
 
        // Other public methods omitted... 
    private: 
        // Lookup the table entry that maintains the hit count 
        // associated with <path> name, creating the entry if 
        // it doesn't exist. 
        Table_Entry *lookup_or_create (const string &path); 
 
        // Serialize access to the critical section. 
        Thread_Mutex lock_; 
    }; 
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Although this code works, the Hit_Counter implementation is unnecessarily hard to 
develop and maintain. For instance, maintenance programmers may forget to release the 
lock_ on some return paths out of the increment() method, such as when modifying its 
else branch to check for a new failure condition: 
    else if (entry->increment_hit_count () == SOME_FAILURE) 
        return false; // Return a 'failure' value. 

In addition, the implementation is not exception-safe. Thus, lock_ will not be released if a 
later version of the increment() method throws an exception or calls a helper method that 
throws an exception [Mue96]. 

Both of these modifications will cause the increment() method to return without releasing 
the lock_. If the lock_ is not released, however, the Web server process will hang when 
other threads block indefinitely while trying to acquire the lock_. Moreover, if these error 
cases are rare, the problems with this code may not show up during system testing. 

Context 

A concurrent application containing shared resources that are manipulated by multiple 
threads concurrently. 

Problem 

Code that should not execute concurrently must be protected by some type of lock that is 
acquired and released when control enters and leaves a critical section, respectively. If 
programmers must acquire and release locks explicitly, however, it is hard to ensure that the 
locks are released in all paths through the code. For example, in C++ control can leave a 
scope due to a return, break, continue, or goto statement, as well as from an 
unhandled exception being propagated out of the scope. 

Solution 

Define a guard class whose constructor automatically acquires a lock when control enters a 
scope and whose destructor automatically releases the lock when control leaves the scope. 
Instantiate instances of the guard class to acquire/release locks in method or block scopes 
that define critical sections. 

Implementation 

The implementation of the Scoped Locking idiom is straightforward. 
1. Define a guard class that acquires and releases a particular type of lock in its 

constructor and destructor, respectively. The constructor of the guard class stores a 
pointer or reference to the lock and then acquires the lock. The destructor of the 
guard class uses the pointer or reference stored by the constructor to release the 
lock. 

 

2. The following class illustrates a guard designed for the Thread_Mutex wrapper 
facade (47): 

3.     class Thread_Mutex_Guard { 
4.     public: 
5.         // Store a pointer to the lock and acquire the 

lock. 
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6.         Thread_Mutex_Guard (Thread_Mutex &lock) 
7.             : lock_ (&lock), owner_ (false) { 
8.             lock_->acquire (); 
9.  
10.             // Only set to true if <acquire> succeeds. 
11.             owner_ = true; 
12.         } 
13.  
14.         // Release the lock when the guard goes out of 

scope. 
15.         ~Thread_Mutex_Guard () { 
16.             // Only release the lock if it was 

acquired 
17.             // successfully, i.e., <false> indicates 

that 
18.             // <acquire> failed.. 
19.             if (owner_) lock_->release (); 
20.         } 
21.     private: 
22.         Thread_Mutex *lock_; // Pointer to our lock. 
23.         bool owner_; // Is <lock_> held by this 

object? 
24.  
25.         // Disallow copying or assignment. 
26.         Thread_Mutex_Guard (const Thread_Mutex_Guard 

&); 
27.         void operator= (const Thread_Mutex_Guard &); 
28.     }; 

 
 

30. A pointer to a lock, rather than a lock object, should be used in a guard class 
implementation to prevent copying or assigning a lock, which is erroneous, as 
discussed in the Wrapper Facade pattern (47). 

31. In addition, it is useful to add a flag, such as the owner_ flag in the 
Thread_Mutex_Guard example above, that indicates whether or not a guard 
acquired the lock successfully. The flag can also indicate failures that arise from 
'order of initialization bugs' if static/global locks are used erroneously [LGS99]. By 
checking this flag in the guard's destructor, a subtle run-time error can be avoided 
that would otherwise occur if the lock was released when it was not held by the 
guard. 

32. Let critical sections correspond to the scope and lifetime of a guard object. To protect 
a critical region from concurrent access, scope it—if this has not already been done—
and create a guard object on the stack as the first statement within the scope. The 
constructor of the guard class acquires the lock automatically. When leaving the 
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scope of the critical section, the guard's destructor is called automatically, which 
releases the lock. Due to the semantics of C++ destructors, guarded locks will be 
released even if C++ exceptions are thrown from within the critical section. 

 

33. The Scoped Locking idiom resolves the original problems with the Hit_Counter 
class in our multi-threaded Web server: 

34.     class Hit_Counter { 
35.     public: 
36.         // Increment the hit count for a URL <path> 

name. 
37.         bool increment (const string &path) { 
38.              // Use Scoped Locking to acquire and 

release 
39.              // the <lock_> automatically. 
40.              Thread_Mutex_Guard guard (lock_); 
41.  
42.              Table_Entry *entry = lookup_or_create 

(path); 
43.              if (entry == 0) 
44.                   return false; // Destructor releases 

<lock_> 
45.              else { 
46.                  // Increment hit count for this 

<path> name. 
47.                  entry->increment_hit_count (); 
48.                  return true; // Destructor releases 

<lock_> 
49.         } 
50.  
51.         // Other public methods omitted. 
52.     private: 
53.         // Serialize access to the critical section. 
54.         Thread_Mutex lock_; 
55.     }; 

56. In this solution the guard ensures that the lock_ is acquired and released 
automatically as control enters and leaves the increment() method, 
respectively. 
 

 

Variants 



 273

Explicit Accessors. One drawback with the Thread_Mutex_Guard interface described in 
the Implementation section is that it is not possible to release the lock explicitly without 
leaving the method or block scope. 

 

For example, the following code fragment illustrates a situation where the lock could be 
released twice, depending on whether or not the condition in the if statement evaluates 
to true: 
    { 
        Thread_Mutex_Guard guard (lock); 
        // Do some work ... 
        if (/* a certain condition holds */) 
            lock->release () 
        // Do some more work ... 
        // Leave the scope, which releases the lock again. 
    } 
 

 

To prevent this erroneous use, programmers should not access the lock directly. Instead, 
explicit accessor methods to the underlying lock can be defined in the in the lock's guard 
class: 

 

We revise the Thread_Mutex_Guard class as follows: 
    class Thread_Mutex_Guard { 
    public: 
        // Store a pointer to the lock and acquire the lock. 
        Thread_Mutex_Guard (Thread_Mutex &lock) 
            : lock_ (&lock), owner_ (false) { 
            acquire (); 
        } 
 
        void acquire () { 
             lock_->acquire (); 
             // Only set to <true> if <acquire> succeeds. 
             owner_ = true; 
        } 
        void release () { 
             // Only release <lock_> if it was acquired 
             // successfully and we haven't released it yet! 
             if (owner_) { 
                 owner_ = false; 
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                 lock_->release (); 
             } 
        } 
 
        // Release the lock when the guard goes out of scope. 
        ~Thread_Mutex_Guard () { release (); } 
    private: 
        Thread_Mutex *lock_; // Pointer to our lock. 
        bool owner_; // Is <lock_> held by this object? 
 
        // ... disallow copying and assignment ... 
    }; 
 

 

The acquire() and release() accessor methods track whether the lock has been 
already released, and if so, the lock will not be released in the guard's destructor. 

 

Using the revised Thread_Mutex_Guard our code will work correctly: 
    { 
        Thread_Mutex_Guard guard (lock); 
        // Do some work ... 
        if (/* a certain condition holds */) 
            guard.release (); 
        // Do some more work ... 
        // Leave the scope, lock is not released again. 
    } 
 

 

Strategized Scoped Locking. Defining a different guard for each type of lock is tedious, error-
prone, and excessive, because it may increase the memory footprint of applications or 
components. Therefore, a common variant of the Scoped Locking idiom is to apply either the 
parameterized type or polymorphic version of the Strategized Locking pattern (333). 

Known Uses 

Booch Components. The Booch Components [BV93] were one of the first C++ class 
libraries to use the Scoped Locking idiom for multi-threaded C++ programs. 

ACE [Sch97]. The Scoped Locking idiom is used extensively throughout the ADAPTIVE 
Communication Environment framework, which defines an ACE_Guard implementation 
similar to the Thread_Mutex_Guard class described in the Implementation and Variants 
sections. 
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Threads.h++. The Rogue Wave Threads.h++ library defines a set of guard classes that are 
modeled after the ACE Scoped Locking designs. 

Java defines a programming feature called a synchronized block that implements the 
Scoped Locking idiom in that language. Java compilers generate a corresponding block of 
bytecode instructions where a monitorenter and a monitorexit bracket this block. To 
ensure that the lock is always released, the compiler also generates an exception handler to 
catch all exceptions thrown in the synchronized block [Eng99. 

Consequences 

The Scoped Locking idiom offers the following benefit: 

Increased robustness. By applying this idiom, locks are acquired and released automatically 
when control enters and leaves critical sections defined by C++ method and block scopes. 
This idiom increases the robustness of concurrent applications by eliminating common 
programming errors related to synchronization and multi-threading. 

There are two liabilities of applying the Scoped Locking idiom to concurrent applications 
and components: 

Potential for deadlock when used recursively. If a method that uses the Scoped Locking 
idiom calls itself recursively, 'self-deadlock' will occur if the lock is not a 'recursive' mutex. 
The Thread-Safe Interface pattern (345) describes a technique that avoids this problem. This 
pattern ensures that only interface methods apply the Scoped Locking idiom, whereas 
implementation methods do not apply it. 

Limitations with language-specific semantics. The Scoped Locking idiom is based on a C++ 
language feature and therefore will not be integrated with operating system-specific system 
calls. Thus, locks may not be released automatically when threads or processes abort or exit 
inside a guarded critical section. Likewise, they will not be released properly if the standard 
C longjmp() function is called because this function does not call the destructors of C++ 
objects as the run-time stack unwinds.  

 

The following modification to increment() will prevent the Scoped Locking idiom from 
working: 
    Thread_Mutex_Guard guard (&lock_); 
    Table_Entry *entry = lookup_or_create (path); 
    if (entry == 0) 
        // Something's gone wrong, so exit the thread. 
        thread_exit (); 
        // Destructor will not be called so the 
        // <lock_> will not be released! 
 

 

In general, therefore, it is inappropriate to abort or exit a thread or process within a 
component. Instead, an exception-handling mechanism or error-propagation pattern should 
be used [Mue96]. 
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Excessive compiler warnings. The Scoped Locking idiom defines a guard object that is not 
used explicitly within the scope, because its destructor releases the lock implicitly. 
Unfortunately, some C++ compilers print 'statement has no effect' warnings when guards are 
defined but not used explicitly within a scope. At best these warnings are distracting—at 
worst, they encourage developers to disable certain compiler warnings, which may mask 
other warnings that indicate actual problems with the code. An effective way to handle this 
problem is to define a macro that eliminates the warnings without generating additional code. 

 

The following macro is defined in ACE [Sch97]: 
#define UNUSED_ARG(arg) { if (&arg) /* null */; } 

This macro can be placed after a guard to keep many C++ compilers from generating 
spurious warnings: 
    { // New scope. 
         Thread_Mutex_Guard guard (lock_); 
         UNUSED_ARG (guard); 
         // ... 
 

 

See Also 

The Scoped Locking idiom is a special case of a more general C++ idiom [Str97] and the 
Execute Around Object [Hen00] idiom, in which a constructor acquires a resource and a 
destructor releases the resource when a scope is entered and exited, respectively. When 
these idioms are applied to concurrent applications, the resource that is acquired and 
released is some type of lock. 

Credits 

Thanks to Brad Appleton for comments on the Scoped Locking idiom. 

[1]The Scoped Locking idiom is a specialization of Stroustrup's 'Resource-Acquisition-is-
Initialization' idiom [Str97]. We include this idiom here to make the book self-contained and 
to illustrate how Stroustrup's idiom can be applied to concurrent programs. 

Strategized Locking 
The Strategized Locking design pattern parameterizes synchronization mechanisms that 
protect a component's critical sections from concurrent access. 

Example 

A key component for implementing high-performance Web servers is a file cache, which 
maps URL path names to memory-mapped files or open file handles [HS98]. When a client 
requests a URL that is in the cache, the Web server can transfer the file contents to the 
client immediately without accessing slower secondary storage via multiple read() and 
write() operations. 
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A file cache implementation for a portable high-performance should run efficiently on a range 
of multi-threaded and single-threaded operating systems. One way to achieve this portability 
is to develop multiple file cache classes: 

// A single-threaded file cache 
implementation. 
class File_Cache_ST { 
public: 
   // Return a pointer to the 
memory-mapped file 
   // associated with <path> 
name. 
   const void *lookup (const 
string &path) const { 
       // No locking required 
because we're 
       // single-threaded. 
       const void *file_pointer = 
0; 
 
       // ... look up the file in 
the cache, mapping it 
       // into memory if it is 
not currently in the cache. 
       return file_pointer; 
   } 
   // ... 
private: 
   //File cache implementation... 
 
   // No lock required because we 
are 
   // single-threaded. 
}; 

// A multi-threaded file cache 
implementation. 
class File_Cache_Thread_Mutex { 
public: 
   // Return a pointer to the 
memory-mapped file 
   // associated with <path> name. 
   const void lookup (const string 
&path) const { 
       // Use the Scoped Locking 
idiom to serialize 
       // access to the file cache. 
       Thread_Mutex_Guard guard 
(lock_); 
       const void *file_pointer = 0; 
 
       // ... look up the file in 
the cache, mapping it 
       // into memory if it is not 
currently in the cache. 
       return file_pointer; 
   } 
   // ... 
private: 
   //File cache implementation... 
 
   // Synchronization strategy. 
   mutable Thread_Mutex lock_; 
}; 

These two implementations form part of a component family whose classes differ only in 
their synchronization strategy. One component in the family—class File_Cache_ST—
implements a single-threaded file cache with no locking. The other component—class 
File_Cache_Thread_Mutex—implements a file cache that uses a mutex to serialize 
multiple threads that access the cache concurrently. Maintaining separate implementations 
of these file cache components can be tedious, however. In particular, future enhancements 
and fixes must be added consistently in each component's implementation. 

Context 

An application or system where components must run efficiently in a variety of different 
concurrency architectures. 
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Problem 

Components that run in multi-threaded environments must protect their critical sections from 
concurrent client access. When integrating synchronization mechanisms with component 
functionality two forces must be resolved: 
§ Different applications may require different synchronization strategies, such as 

mutexes, readers/writer locks, or semaphores [McK95]. It should therefore be possible 
to customize a component's synchronization mechanisms according to the requirements 
of particular applications. 

 

§ In our example the synchronization strategy is hard-coded. To increase performance 
on large-scale multi-processor platforms, a new class must therefore be written to 
support a file cache implementation that uses a readers/writer lock instead of a 
thread mutex. It is time-consuming, however, to customize an existing file cache 
class to support new more efficient synchronization strategies. 
 

 

§ Adding new enhancements and bug fixes should be straightforward. In particular, to 
avoid 'version-skew', changes should apply consistently and automatically to all 
members in a component family. 

 

§ If there are multiple copies of the same basic file cache component, version-skew will 
likely to occur because changes to one component may be applied inconsistently to 
other component implementations. Applying each change manually is also error-
prone and non-scalable. 
 

 

Solution 

Parameterize a component's synchronization aspects by making them 'pluggable' types. 
Each type objectifies a particular synchronization strategy, such as a mutex, readers/writer 
lock, semaphore, or 'null' lock. Define instances of these pluggable types as objects 
contained within a component that can use the objects to synchronize its method 
implementations efficiently. 

Implementation 

The Strategized Locking pattern can be implemented via five activities. 
1. Define the component interface and implementation without concern for the 

component's synchronization aspects. 
 

2. The following class defines the File_Cache interface and implementation: 
3.     class File_Cache { 
4.     public: 
5.         const void *lookup (const string &path) const; 
6.         // ... 
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7.     private: 
8.         // data members and private methods go here... 
9.     }; 

 
 

11. Strategize the locking mechanisms. Many components have relatively simple 
synchronization aspects that can be implemented using common locking strategies, 
such as mutexes and semaphores. These synchronization aspects can be 
strategized uniformly using either polymorphism or parameterized types. In general, 
polymorphism should be used when the locking strategy is not known until runtime. 
Conversely, parameterized types should be used when the locking strategy is known 
at compile-time. As usual the trade-off is between the efficient run-time performance 
of parameterized types versus the potential for run-time extensibility with 
polymorphism. 

Assuming the Scoped Locking idiom (325) is applied, the strategization of locks 
involves two sub-activities: 

1. Define an abstract interface for the locking mechanisms. To configure a 
component with alternative locking mechanisms, all concrete implementations 
of these mechanisms must employ an abstract interface with common 
signatures for acquiring and releasing locks based on either polymorphism or 
parameterized types. 
§ Polymorphism. In this strategy, define a polymorphic lock object that 

contains dynamically-bound acquire() and release() methods. 
Derive all concrete locks from this base class and override its methods to 
define a concrete locking strategy, as outlined in implementation activity 5 
(339).  

 

§ To implement a polymorphic lock object for our file cache example, we 
first define an abstract locking class with virtual acquire() and 
release() methods: 

§   class Lock { 
§   public: 
§        // Acquire and release the lock. 
§        virtual void acquire () = 0; 
§        virtual void release () = 0; 
§  
§        // ... 
§   }; 

 
 

§ Parameterized types. In this strategy, we must ensure that all concrete 
locks employ the same signature for acquiring and releasing locks. The 
usual way to ensure this is to implement concrete locks using the 
Wrapper Facade pattern (47). 

2. Use the Scoped Locking Idiom (325) to define a guard class that is strategized 
by its synchronization aspect. This design follows the Strategy Pattern 
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[GHJV95], in which the guard class serves as the context that holds a 
particular lock and the concrete locks provide the strategies. The Scoped 
Locking idiom can be implemented either with polymorphism or with 
parameterized types. 
§ Polymorphism. In this approach, pass a polymorphic lock object to the 

guard's constructor and define an instance of this lock object as a private 
data member. To acquire and release the lock with which it is configured, 
the implementation of the guard class can use the interface of the 
polymorphic Lock base class defined in implementation sub-activity 2.1 
(335). 

 

§ A Guard class that controls a polymorphic lock can be defined as 
follows: 

§   class Guard { 
§   public: 
§        // Store a pointer to the lock and acquire 

the lock. 
§        Guard (Lock &lock) 
§            : lock_ (&lock), owner_ (false) 
§            { lock_->acquire (); owner_ = true; } 
§  
§        // Release the lock when the guard goes out 

of scope. 
§        ~Guard () { 
§            // Only release lock if it <acquire> 

succeeded. 
§            if (owner_) lock_->release (); 
§        } 
§   private: 
§        // Pointer to the lock we're managing. 
§        Lock *lock_; 
§        // Records if the lock was acquired 

successfully. 
§        bool owner_; 
§   }; 

 
 

§ Parameterized types. In this approach, define a template guard class 
that is parameterized by the type of lock that will be acquired and 
released automatically. 

 

§ The following illustrates a Guard class that is strategized by a LOCK 
template parameter: 
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§   template <class LOCK> 
§   class Guard { 
§   public: 
§       // Store a pointer to the lock and acquire the 

lock. 
§       Guard (LOCK &lock) 
§           : lock_ (&lock), owner_ (false) 
§           { lock_->acquire (); owner_ = true; } 
§  
§       // Release the lock when the guard goes out of 

scope, 
§       // but only if <acquire> succeeded. 
§       ~Guard () { if (owner_) lock_->release (); } 
§   private: 
§       // Pointer to the lock we're managing. 
§       LOCK *lock_; 
§  
§       // Records if the lock is held by this object. 
§       bool owner_; 
§  
§       // ... disallow copying and assignment ... 
§   }; 

 
 

12. Update the component interface and implementation. After synchronization 
mechanisms are strategized, components can use these mechanisms to protect their 
critical sections, either by acquiring or releasing a lock explicitly or by using the guard 
class defined in implementation activity 2.2 (336). The latter approach follows the 
Scoped Locking idiom (325). Depending on whether the polymorphic or 
parameterized type strategy is used, the lock can be passed to the component either 
as a parameter in its constructor or by adding a lock template parameter to the 
component declaration. In either case, the lock passed to a component must follow 
the signature expected by the guard class, as discussed in implementation activity 
2.2 (336).  

 

13. This version of our file cache component is passed a polymorphic lock 
parameter: 

14.     class File_Cache { 
15.     public: 
16.         // Constructor. 
17.         File_Cache (Lock &l) : lock_ (&l) { } 
18.  
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19.         // A method. 
20.         const void *lookup (const string &path) const 

{ 
21.              // Use the Scoped Locking idiom to 

acquire 
22.              // and release the <lock_> automatically. 
23.              Guard guard (*lock_); 
24.              // Implement the <lookup> method. 
25.         } 
26.  
27.         // ... 
28.     private: 
29.         // The polymorphic strategized locking object. 
30.         mutable Lock *lock_; 
31.         // Other data members and methods go here... 
32.     }; 

33. Similarly, we can define a templatized version of the file cache: 
34.     template <class LOCK> 
35.     class File_Cache { 
36.     public: 
37.         // A method. 
38.         const void *lookup (const string &path) const 

{ 
39.              // Use the Scoped Locking idiom to 

acquire 
40.              // and release the <lock_> automatically. 
41.              Guard<LOCK> guard (lock_); 
42.              // Implement the <lookup> method. 
43.         } 
44.  
45.         // ... 
46.     private: 
47.         // The parameterized type strategized locking 

object. 
48.         mutable LOCK lock_; 
49.  
50.         // Other data members and methods go here... 
51.     }; 

52. If a C++ compiler supports default template arguments, it may be useful to add a 
default LOCK to handle the most common use case. For example, we can define 
the default LOCK as a readers/writer lock: 
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53.     template <class LOCK = RW_Lock> 
54.     class File_Cache { /* ... */ } 

 
 

56. Revise the component implementation to avoid deadlock and remove unnecessary 
locking overhead. If intra-component method invocations occur, developers must 
design their component implementation carefully to avoid self-deadlock and 
unnecessary synchronization overhead. The Thread-Safe Interface pattern (345) 
provides a straightforward technique that prevents these problems. 

57. Define a family of locking strategies with uniform interfaces that can support various 
application-specific concurrency designs. Common locking strategies include 
recursive and non-recursive mutexes, readers/writer locks, semaphores, and file 
locks. 

When applying the polymorphic approach, implement the locking strategies as 
subclasses of the abstract class Lock, as discussed in implementation activity 2 
(335). If parameterized types are used, ensure that all concrete lock implementations 
follow the signature for locks defined in implementation activity 2 (335). 

 

In addition to the Thread_Mutex locking strategy defined in Wrapper Facade 
(47), the Null_Mutex is surprisingly useful. This class defines an efficient 
locking strategy for single-threaded applications and components: 
    class Null_Mutex { 
    public: 
        Null_Mutex () { } 
        ~Null_Mutex () { } 
        void acquire () { } 
        void release () { } 
    }; 

All methods in Null_Mutex are empty C++ inline functions that can be removed 
completely by optimizing compilers. This class is an example of the Null Object 
pattern [PLoPD3], which simplifies applications by defining a 'no-op' placeholder 
that removes conditional statements in the component's implementation. A use of 
Null_Mutex and other locking strategies appears in the Example Resolved 
section. 
 

 

If existing locking mechanisms have incompatible interfaces, use the Wrapper Facade (47) 
or Adapter [GoF95] patterns to ensure the interfaces conform to the signatures expected by 
the component's synchronization aspects.  

 

The following class wraps the Thread_Mutex from the Implementation section of the 
Wrapper Facade pattern (47), thereby connecting it to our polymorphic lock hierarchy: 
    class Thread_Mutex_Lock : public Lock { 
    public: 
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        // Acquire and release the lock. 
        virtual void acquire () { lock_.acquire (); } 
        virtual void release () { lock_.release (); } 
    private: 
        // Concrete lock type. 
        Thread_Mutex lock_; 
    }; 
 

 

Example Resolved 

We can apply the parameterized type form of the Strategized Locking pattern to implement a 
file cache for Web server content that is tuned for various single-threaded and multi-
threaded concurrency models: 
§ Single-threaded file cache. 
§   typedef File_Cache<Null_Mutex> Content_Cache; 
§ Multi-threaded file cache using a thread mutex. 
§   typedef File_Cache<Thread_Mutex> Content_Cache; 
§ Multi-threaded file cache using a readers/writer lock. 
§   typedef File_Cache<RW_Lock> Content_Cache; 
§ Multi-threaded file cache using a C++ compiler that supports default template 

parameters, with the lock defaulting to a readers/writer lock, as declared in 
implementation activity 3 (337). 

§   typedef File_Cache<> Content_Cache; 

Note how in each configuration the Content_Cache interface and implementation require 
no changes. This flexibility stems from the Strategized Locking pattern, which abstracts 
synchronization aspects into 'pluggable' parameterized types. Moreover, the details of 
locking have been Strategized via a C++ typedef. It is therefore straightforward to define a 
Content_Cache object that does not expose synchronization aspects to applications: 
    Content_Cache cache; 

Variants 

Bridge strategy. Unfortunately, configuring the polymorphic file cache in implementation 
activity 3 (337) differs from configuring the templatized file cache, because a polymorphic 
lock implemented as a pointer cannot be passed as a parameter to the templatized 
File_Cache and Guard classes. Instead, we need a 'real' object, rather than a pointer to 
an object. Fortunately, the Bridge pattern [GoF95] can help us implement a family of locking 
strategies that is applicable to both polymorphic and parameterized type approaches. To 
apply this bridge strategy variant we simply define an additional abstraction class that 
encapsulates, and can be configured with, a polymorphic lock. An instance of this 
abstraction class then can be passed uniformly to both polymorphic and templatized 
components. 

 

Consider the hierarchy of polymorphic locks defined in implementation activity 2 (335) as 
being a Bridge implementation class hierarchy. The following abstraction class then can 
be used to encapsulate this hierarchy: 
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    class Lock_Abstraction { 
    public: 
        // Constructor stores a reference to the base class. 
        Lock_Abstraction (Lock &1): lock_ (1) { }; 
 
        // Acquire the lock by forwarding to the 
        // polymorphic acquire() method. 
        void acquire () { lock_.acquire (); } 
 
        // Release the lock by forwarding to the 
        // polymorphic release() method. 
        void release () { lock_.release (); } 
    private: 
        // Maintain a reference to the polymorphic lock. 
        Lock &lock_; 
    }; 

Note how this design allows us to initialize both our polymorphic and parameterized 
File_Cache and Guard classes with a single Lock_Abstraction class that can be 
configured with a concrete lock from our hierarchy of locking mechanisms. 
 

 

As a result of using this variation of Strategized Locking, the family of locking mechanisms 
becomes more reusable and easier to apply across applications. Be aware however that 
while this scheme is flexible, it is also more complicated to implement. It should therefore be 
used with care. 

Known Uses 

ACE [Sch97]. The Strategized Locking pattern is used extensively throughout the 
ADAPTIVE Communication Environment framework. Most synchronization aspects of ACE 
containers components, such as ACE_Hash_Map_Manager, can be strategized via 
parameterized types. 

Booch Components. The Booch Components [BV93] were one of the first C++ class 
libraries to parameterize locking strategizes via templates. 

The Dynix/PTX operating system applies the Strategized Locking pattern extensively 
throughout its kernel. 

ATL Wizards. The Microsoft ATL Wizard in Visual Studio uses the parameterized type 
implementation of Strategized Locking, completed with default template parameters. In 
addition, it implements a class similar to the Null_Mutex. If a COM class is implemented as 
a single-threaded apartment a no-op lock class is used, whereas in multi-threaded 
apartments a 'real' recursive mutex is used. 

Consequences 
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There are three benefits of applying the Strategized Locking pattern: 

Enhanced flexibility and customization. It is straightforward to configure and customize a 
component for certain concurrency models because the synchronization aspects of 
components are strategized. If no suitable locking strategy is available for a new 
concurrency model, the family of locking strategies can be extended without affecting 
existing code. 

Decreased maintenance effort for components. It is straightforward to add enhancements 
and bug fixes to a component because there is only one implementation, rather than a 
separate implementation for each concurrency model. This centralization of concerns helps 
minimize version-skew. 

Improved reuse. Components implemented using this pattern become less dependent on 
specific synchronization mechanisms. They therefore become more reusable, because their 
locking strategies can be configured orthogonally to their behavior. 

There are two liabilities of applying the Strategized Locking pattern: 

Obtrusive locking. If templates are used to parameterize locking aspects this will expose the 
locking strategies to application code. Although this design is flexible, it also can be 
obtrusive, particularly for compilers that do not support templates efficiently or correctly. One 
way to avoid this problem is to apply the polymorphic strategy to vary component locking 
behavior. 

Over-engineering. Externalizing a locking mechanism by placing it in a component's 
interface may actually provide too much flexibility in certain situations. For example, 
inexperienced developers may try to parameterize a component with the wrong type of lock, 
resulting in improper compile- or run-time behavior. Similarly, only a single type of 
synchronization mechanism may be needed for a particular type of component. In this case 
the flexibility of Strategized Locking is unnecessary. In general this pattern is most effective 
when practical experience reveals a component's behavior to be orthogonal to its locking 
strategy, and that locking strategies do indeed vary in semantically meaningful and efficient 
ways. 

See Also 

The main synchronization mechanism in Java is the monitor. The Java language does not 
provide 'conventional' concurrency control mechanisms, such as mutexes and semaphores, 
to application developers. The Strategized Locking pattern therefore need not be applied to 
Java directly. 

It is possible, however, to implement different concurrency primitives, such as mutexes, 
semaphores, and readers/writer locks in Java. For example, the util.concurrent 
package in [Lea99a] defines various types of locks, such as readers/writer locks. The 
implementation of these primitives then can be used as locking strategies to support various 
application-specific concurrency use cases. Due to the lack of parameterized types in Java 
specifications to date, only the polymorphic approach of Strategized Locking pattern could 
be used to configure different synchronization strategies. In this case, Java implementations 
of this pattern will be similar to the C++ versions described in this pattern. 

Credits 

Thanks to Brad Appleton for comments on this pattern and Prashant Jain for his contribution 
explaining how this pattern applies to Java. 
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Thread-Safe Interface 
The Thread-Safe Interface design pattern minimizes locking overhead and ensures that 
intra-component method calls do not incur 'self-deadlock' by trying to reacquire a lock that is 
held by the component already. 

Example 

When designing thread-safe components when intra-component method calls, developers 
must be careful to avoid self-deadlock and unnecessary locking overhead. For example, 
consider a more complete implementation of the File_Cache component outlined in the 
Strategized Locking pattern (333): 
     template <class LOCK> 
     class File_Cache { 
     public: 
         // Return a pointer to the memory-mapped file 
         // associated with <path> name, adding 
         // it to the cache if it doesn't exist. 
         const void *lookup (const string &path) const { 
             // Use the Scoped Locking idiom to acquire 
             // and release the <lock_> automatically. 
             Guard<LOCK> guard (lock_); 
             const void *file_pointer = check_cache (path); 
             if (file_pointer == 0) { 
                 // Insert the <path> name into the cache. 
                 // Note the intra-class <insert> call. 
                 insert (path); 
                 file_pointer = check_cache (path); 
             } 
             return file_pointer; 
         } 
         // Add <path> name to the cache. 
         void insert (const string &path) { 
             // Use the Scoped Locking idiom to acquire 
             // and release the <lock_> automatically. 
             Guard<LOCK> guard (lock_); 
             // ... insert <path> into the cache... 
         } 
     private: 
         mutable LOCK lock_; 
         const void *check_cache (const string &) const; 
         // ... other private methods and data omitted... 
     }; 
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This implementation of File_Cache works efficiently only when strategized by a 'null' lock 
such as the Null_Mutex described in the Strategized Locking pattern (333). If the 
File_Cache implementation is strategized with a recursive mutex, however, it will incur 
unnecessary overhead when it reacquires the mutex in the insert() method. Even worse, 
if it is strategized with a non-recursive mutex, the code will 'self-deadlock' when the 
lookup() method calls the insert() method. This self-deadlock occurs because 
insert() tries to reacquire the LOCK that has been acquired by lookup() already. 

It is therefore counter-productive to apply the Strategized Locking pattern to the 
implementation of File_Cache shown above, because there are so many restrictions and 
subtle problems that can arise. Yet the File_Cache abstraction can still benefit from the 
flexibility and customization provided by Strategized Locking. 

Context 

Components in multi-threaded applications that contain intra-component method calls. 

Problem 

Multi-threaded components often contain multiple publicly-accessible interface methods and 
private implementation methods that can alter the component states. To prevent race 
conditions, a lock internal to the component can be used to serialize interface method 
invocations that access its state. Although this design works well if each method is self-
contained, component methods may call each other to carry out their computations. If this 
occurs, the following forces will be unresolved in multi-threaded components that use 
improper intra-component method invocation designs: 
§ Thread-safe components should be designed to avoid 'self-deadlock'. Self-deadlock 

can occur if one component method acquires a non-recursive lock in the component 
and then calls another component method that tries to reacquire the same lock. 

§ Thread-safe components should be designed to incur only minimal locking overhead, 
for example to prevent race conditions on component state. If a recursive component 
lock is selected to avoid the self-deadlock problem outlined above, however, 
unnecessary overhead will be incurred to acquire and release the lock multiple times 
across intra-component method calls. 

Solution 

Structure all components that process intra-component method invocations according two 
design conventions: 
§ Interface methods check. All interface methods, such as C++ public methods, should 

only acquire/release component lock(s), thereby performing synchronization checks at 
the 'border' of the component. After the lock is acquired, the interface method should 
forward immediately to an implementation method, which performs the actual method 
functionality. After the implementation method returns, the interface method should 
release the lock(s) before returning control to the caller. 

§ Implementation methods trust. Implementation methods, such as C++ private and 
protected methods, should only perform work when called by interface methods. They 
therefore trust that they are called with the necessary lock(s) held and should never 
acquire or release lock(s). Implementation methods should also never call 'up' to 
interface methods, because these methods acquire lock(s). 

Implementation 

The Thread-Safe Interface pattern can be implemented using two activities: 
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1. Determine the interface and corresponding implementation methods. The interface 
methods define the public API of the component. For each interface method, define a 
corresponding implementation method. 

 

2. The interface and implementation methods for File_Cache can be defined as 
follows: 

3.     template <class LOCK> 
4.     class File_Cache { 
5.     public: 
6.         // The following two interface methods just 
7.         // acquire/release the <LOCK> and forward to 
8.         // their corresponding implementation methods. 
9.         const void *lookup (const string &path) const; 
10.         void insert (const string &path); 
11.     private: 
12.         // The following two implementation methods do 

not 
13.         // acquire/release the <LOCK> and perform the 

actual 
14.         // work associated with managing the 

<File_Cache>. 
15.         const void *lookup_i (const string &path) 

const; 
16.         void insert_i (const string &path); 
17.         // ... Other implementation methods omitted 

... 
18.     }; 

 
 

20. Program the interface and implementation methods. The bodies of the interface and 
implementation methods are programmed according to the design conventions 
described in the Solution section. 

 

21. Our File_Cache implementation applies Thread-Safe Interface to minimize 
locking overhead and prevent self-deadlock in class methods: 

22.     template <class LOCK> 
23.     class File_Cache { 
24.     public: 
25.         // Return a pointer to the memory-mapped file 
26.         // associated with <path> name, adding it to 
27.         // the cache if it doesn't exist. 
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28.         const void *lookup (const string &path) const 
{ 

29.             // Use the Scoped Locking idiom to acquire 
30.             // and release the <lock_> automatically. 
31.             Guard<LOCK> guard (lock_); 
32.             return lookup_i (path); 
33.         } 
34.  
35.         // Add <path> name to the file cache. 
36.         void insert (const string &path) { 
37.             // Use the Scoped Locking idiom to acquire 
38.             // and release the <lock_> automatically. 
39.             Guard<LOCK> guard (lock_); 
40.             insert_i (path); 
41.         } 
42.     private: 
43.         mutable LOCK lock_; // The strategized locking 

object 
44.  
45.         // The following implementation methods do not 
46.         // acquire or release <lock_> and perform 

their 
47.         // work without calling any interface methods. 
48.         const void *lookup_i (const string &path) 

const { 
49.             const void *file_pointer = check_cache_i 

(path); 
50.             if (file_pointer == 0) { 
51.                 // If <path> name isn't in the cache 

then 
52.                 // insert it and look it up again. 
53.                 insert_i (path); 
54.                 file_pointer = check_cache_i (path); 
55.                 // The calls to implementation methods 
56.                 // <insert_i> and <check_cache_i> 

assume 
57.                 // that the lock is held and perform 

work. 
58.             } 
59.             return file_pointer; 
60.         } 
61.         const void *check_cache_i (const string &) 

const 
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62.             { /* */ } 
63.  
64.         void insert_i (const string &) { /* ... */ } 
65.  
66.         // ... other private methods and data omitted 

... 
67.     }; 

 
 

Variants 

Thread-Safe Facade. This variant can be used if access to a whole subsystem or coarse-
grained component must be synchronized. A facade [GoF95] can be introduced as the entry 
point for all client requests. The facade's methods correspond to the interface methods. The 
classes that belong to the subsystem or component provide the implementation methods. If 
these classes have their own internal concurrency strategies, refactoring may be needed to 
avoid nested monitor lockout[2] [JS97a]. 

Nested monitor lockup occurs when a thread acquires object X's monitor lock without 
relinquishing the lock already held on monitor Y, thereby preventing a second thread from 
acquiring the monitor lock for Y. This can lead to deadlock because, after acquiring monitor 
X, the first thread may wait for a condition to become true that can only change as a result of 
actions by the second thread after it has acquired monitor Y. It may not be possible to 
refactor the code properly to avoid nested monitor lockouts if the subsystem or component 
cannot be modified, for example if it is a third-party product or legacy system. In this case, 
Thread-Safe Facade should not be applied. 

Thread-Safe Wrapper Facade. This variant helps synchronize access to a non-synchronized 
class or function API that cannot be modified. A wrapper facade (47) provides the interface 
methods, which encapsulate the corresponding implementation calls on the class or function 
API with actions that acquire and release a lock. The wrapper facade thus provides a 
synchronization proxy [POSA1] [GoF95] that serializes access to the methods of the class or 
function API. 

Known Uses 

ACE [Sch97]. The Thread-Safe Interface pattern is used throughout the ADAPTIVE 
Communication Environment framework, for example in its ACE_Message_Queue class.  

The Dynix/PTX operating system applies the Thread-Safe Interface pattern in portions of its 
kernel. 

Java. The hash table implementation in java.util.Hashtable uses the Thread-Safe 
Interface design pattern. Hashtable's interface methods, such as put(Object key, 
Object value), acquire a lock before changing the underlying data structure, which 
consists of an array of linked lists. The implementation method rehash() is called when the 
load threshold is exceeded. A new larger hash table is created, all elements are moved from 
the old to the new hash table and the old table is left to the garbage collector. Note that the 
rehash() method is not protected by a lock, in contrast to the publicly accessible methods 
such as put(Object key, Object value). Protecting rehash() by a lock would not 
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deadlock the program due to Java's reentrant monitors. It would, however diminish its 
performance due to the locking overhead. 

A more sophisticated use case was introduced in JDK 1.2 with the Collection classes, 
which applies the Thread-Safe Wrapper Facade variant to make collection data structures 
thread-safe. The java.util.Collections takes any class implementing the Map 
interface and returns a SynchronizedMap, which is a different class implementing Map. 
The methods of SynchronizedMap do no more than synchronize on an internal monitor 
and then forward to the method of the original object. Developers can therefore choose 
between fast or thread-safe variants of data structures, which only need be implemented 
once. 

Security checkpoints. You may encounter a real-life variation of the Thread-Safe Interface 
pattern when entering a country or commercial office building that has a security guard at the 
border or entrance. To be admitted, you must sign in. After being admitted, other people that 
you interact with typically trust that you are supposed to be there. 

Consequences 

There are three benefits of applying the Thread-Safe Interface pattern: 

Increased robustness. This pattern ensures that self-deadlock does not occur due to intra-
component method calls. 

Enhanced performance. This pattern ensures that locks are not acquired or released 
unnecessarily.  

Simplification of software. Separating the locking and functionality concerns can help to 
simplify both aspects. 

However, there are also four liabilities when applying the Thread-Safe Interface pattern: 

Additional indirection and extra methods. Each interface method requires at least one 
implementation method, which increases the footprint of the component and may also add 
an extra level of methodcall indirection for each invocation. One way to minimize this 
overhead is to inline the interface and/or implementation methods. 

Potential deadlock. By itself, the Thread-Safe Interface pattern does not resolve the problem 
of self-deadlock completely. For example, consider a client that calls an interface method on 
component A, which then delegates to an implementation method that calls an interface 
method on another component B. If the implementation of component B's method calls back 
on an interface method of component A, deadlock will occur when trying to reacquire the 
lock that was acquired by the first call in this chain. 

Potential for misuse. Object-oriented programming languages, such as C++ and Java, 
support class-level rather than object-level access control. As a result, an object can bypass 
the public interface to call a private method on another object of the same class, thus 
bypassing that object's lock. Therefore, programmer's should be careful to avoid invoking 
private methods on any object of their class other than themselves. 

Potential overhead. The Thread-Safe Interface pattern prevents multiple components from 
sharing the same lock. Therefore synchronization overhead may increase because multiple 
locks must be acquired, which also makes it harder to detect and avoid deadlocks. 
Moreover, the pattern prevents locking at a finer granularity than the component, which can 
increase lock contention, thereby reducing performance. 
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See Also 

The Thread-Safe Interface pattern is related to the Decorator pattern [GoF95], which 
extends an object transparently by attaching additional responsibilities dynamically. The 
intention of the Thread-Safe Interface pattern is similar, in that it attaches robust and efficient 
locking strategies to make components thread-safe. The primary difference is that the 
Decorator pattern focuses on attaching additional responsibilities to objects dynamically, 
whereas the Thread-Safe Interface pattern focuses on the static partitioning of method 
responsibilities in component classes. 

Components designed according to the Strategized Locking pattern (333) should employ the 
Thread-Safe Interface pattern to ensure that the component will function robustly and 
efficiently, regardless of the type of locking strategy that is selected. 

Java implements locking at the method level via monitor objects (399) designated by the 
synchronized keyword. In Java, monitors are recursive. The problem of self-deadlock 
therefore cannot occur as long as developers reuse the same monitor, that is, synchronize 
on the same object. However, the problem of nested monitor lockout [JS97a] [Lea99a] can 
occur in Java if multiple nested monitors are used carelessly. 

The problem of locking overhead depends on which Java Virtual Machine (JVM) is used. If a 
specific JVM implements monitors inefficiently and monitors are acquired recursively, the 
Thread-Safe Interface pattern may be able to help improve component run-time 
performance. 

Credits 

Thanks to Brad Appleton for comments on this pattern. Prashant Jain provided the Thread-
Safe Interface variants and the Java nested monitor lockout discussion. 

[2]See the Consequences Section of the Monitor Object pattern (399) for a more detailed 
discussion of the nested monitor lockout problem. 

The LegacyFacade EJB Component Deployment Descriptor 
The communication structure of the LegacyFacadeBean class is shown in Figure 10-8. 
Because the EJB connects to a relational database, it needs a reference to a configured 
data source. The EJB configuration files must therefore set up specifications, including JNDI 
bindings for the following items: 
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Figure 10-8: The communication between the LegacyFacadeBean object and the 
database is handled by the EJB container and its data source.  

§ The LegacyFacade EJB component 
§ The data source used by the bean 
§ The relationship between the LegacyFacade and the data source 

The three components are configured in the ejb-jar.xml and the application server-
specific configuration file. The EJB configuration specification contains only definitions for 
how to describe the EJB component configurations, including its relation to the data source, 
but neither any actual JNDI name nor the specification for the data source are standardized. 
Therefore, these entities must be configured in an application server-dependent way. 

This example shows the standard ejb-jar.xml file and custom configuration settings for 
two different application servers, which were chosen more or less arbitrarily from the 
commonly used ones. The application servers used in this example are as follows: 
§ WebLogic Application Server, version 6.0, using EJB descriptors for the EJB 2.0 

specification, and 
§ Inprise Application Server, version 4.1, using EJB descriptors for the EJB 1.1 

specification. 

As you shall see, the descriptors for stateful session EJB components have not altered much 
between the two EJB specifications. Moreover, many application servers use a similar—but 
not identical—format for describing the nonstandard settings for each EJB component. 
These nonstandard settings frequently include all JNDI mappings, security specifications, 
and resource definitions. 

Deployment Descriptors for the EJB 2.0 Specification 

Aside from the standard ejb-jar.xml deployment descriptor file, the WebLogic 6.0 server 
uses an XML document called weblogic-ejb-jar.xml for its nonstandard deployment 
settings. Both the ejb-jar.xml and the weblogic-ejb-jar.xml documents are 
deployed in the META-INF directory of the EJB JAR file, as shown in Figure 10-9. 
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Figure 10-9: The relevant content of the LegacyFacade application directory consists 
of two groups of files: where the configuration settings are deployed in the META-INF 
directory and the class files are deployed in the se/jguru/webdb/proxy directory.  

Using the XML DTD for the EJB 2.0 specification, you arrive at the standard ejb-jar.xml 
file shown in Listing 10-10. 

Listing 10-10: The ejb-jar.xml deployment descriptor  
 
<?xml version="1.0"?> 
 
<!DOCTYPE ejb-jar PUBLIC 
    '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN' 
    'http://java.sun.com/dtd/ejb-jar_2_0.dtd'> 
 
<ejb-jar> 
     <enterprise-beans> 
          <session> 
               <description> 
               This is the Session EJB Facade which hides all 
               data mining from the Legacy Tier. 
               </description> 
               <ejb-name>LegacyFacadeBean</ejb-name> 
               <home>se.jguru.webdb.proxy.LegacyFacadeHome</home> 
               <remote>se.jguru.webdb.proxy.LegacyFacade</remote> 
               <ejb-
class>se.jguru.webdb.proxy.LegacyFacadeBean</ejb-class> 
               <session-type>Stateful</session-type> 
               <transaction-type>Container</transaction-type> 
               <resource-ref> 
                    <description> 
                    This is the DataSource which connects to the 
                    relational database where the actual data is 
stored. 

http://java.sun.com/dtd/ejb-jar_2_0.dtd
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                    </description> 
                    <res-ref-name>localDataSource</res-ref-name> 
                    <res-type>javax.sql.DataSource</res-type> 
                    <res-auth>Container</res-auth> 
                     </resource-ref> 
          </session> 
     </enterprise-beans> 
 
     <assembly-descriptor> 
          <container-transaction> 
               <method> 
                    <ejb-name>LegacyFacadeBean</ejb-name> 
                    <method-name>*</method-name> 
               </method> 
               <trans-attribute>Required</trans-attribute> 
          </container-transaction> 
     </assembly-descriptor> 
 
</ejb-jar> 
 
 

The ejb-jar.xml file has three distinct parts, defining the session bean, the data source 
resources it uses, and the transaction requirements on the methods of the session Bean 
EJB component. 

The first part of the <session> ... </session> container element describes the basic 
attributes of the LegacyFacadeBean EJB component, such as its name and concrete types 
for the Home, Remote, and Bean classes. Note that this session EJB component is stateful, 
which means that the implementation object cannot be altered between method calls, as is 
the case for a stateless EJB component. 

The last subelement of the <session> ... </session> container is the <resource-
ref> ... </resource-ref> element, which declares a data source for use by the 
session EJB component. The javax.sql.DataSource has the logical reference key 
(similar to a variable name) localDataSource, and it is configured to surrender its 
transaction management to the EJB container. Note that local resources must be obtained 
through the local environment for the EJB, which is accessed through the JNDI prefix 
java:comp/env. Therefore, the lookup name for the localDataSource reference in the 
EJB Bean implementation class is java:comp/env/localDataSource. 

The final part of the ejb-jar.xml file is the <assembly-descriptor> ... 
</assembly-descriptor> element, which simply states that all methods of the 
LegacyFacadeBean component must be executed within a transaction. Identical to the 
DataSource, the session EJB component has surrendered its transaction control to the 
EJB container, so no extra coding is required in the EJB Bean class to manage the required 
transactions. 
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The weblogic-ejb-jar.xml deployment descriptor document uses a small subset of its 
DTD. The main function of the XML document is to specify JNDI bindings for the Home 
interface of the LegacyFacadeBean and the DataSource used by it. 

Listing 10-11 displays the content of the weblogic-ejb-jar.xml. 

Listing 10-11: The weblogic-ejb-jar.xml deployment descriptor  
 
<?xml version="1.0"?> 
 
<!DOCTYPE weblogic-ejb-jar PUBLIC 
    '-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN' 
    'http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd'> 
 
<weblogic-ejb-jar> 
     <weblogic-enterprise-bean> 
          <ejb-name>LegacyFacadeBean</ejb-name> 
          <stateful-session-descriptor> 
               <stateful-session-cache> 
                    <max-beans-in-cache>10</max-beans-in-cache> 
               </stateful-session-cache> 
          </stateful-session-descriptor> 
 
          <reference-descriptor> 
               <resource-description> 
                    <res-ref-name>localDataSource</res-ref-name> 
                    <jndi-name>legacyDataSource</jndi-name> 
               </resource-description> 
          </reference-descriptor> 
 
          <jndi-name>theLegacyFacade</jndi-name> 
 
     </weblogic-enterprise-bean> 
</weblogic-ejb-jar> 
 
 

The most important task of the weblogic-ejb-jar.xml file is binding the EJB component 
to a JNDI name in the application server InitialContext. However, the weblogic-ejb-
jar.xml file configures three settings:  
§ The cache of stateful session EJB implementation objects is set to a maximum of ten 

beans. Therefore, a mere ten parallel connections may be attempted through the 
stateful EJB component in the WebLogic application server before it needs to swap an 
active bean to disk. 

http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd
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§ The DataSource reference localDataSource is mapped to the name 
legacyDataSource which is bound in the context. 

§ Finally, the EJB component Home interface is given a JNDI lookup name, 
theLegacyFacade. Therefore, clients should use this string when acquiring a 
reference to the Home interface of the EJB component. 

The JNDI registry of the WebLogic Application Server is shown in Figure 10-10. The two 
entries bound in the context are theLegacyFacade (which maps to the Home interface of 
the EJB component) and legacyDataSource (which maps to the database factory whose 
connections maps to the database shown in Figure 10-4). 

 
 
Figure 10-10: Visualization of the relevant parts of the JNDI registry of the running 
WebLogic 6.0 Application Server. Note the two bound references, having the lookup 
names theLegacyFacade and legacyDataSource.  

The WebLogic Application Server automatically compiles stub and skeleton classes for all 
EJB components it finds deployed in its applications directory. The generated stubs and 
skeletons are found in the 
<WebLogic_Root>/tmp_ejb<applicationServerName><port>/<componentName>  
directory, as shown in Figure 10-11. Should you want to create a specialized JAR for 
deployment with an EJB client application, the *_WLStub classes are required. 



 299

 
 
Figure 10-11: The structure of automatically generated skeleton and stub classes in a 
WebLogic 6.0 Application Server. Note that all generated .java files are kept in this 
configuration.  

You have now fully deployed the LegacyFacadeBean EJB in an EJB 2.0-compliant 
application server. Before being able to run the WebSearch application, however, we must 
deploy the Web application structure and required classes, as well as create the 
DataSource factory, bound in the context using the name legacyDataSource, as shown 
in Figure 10-11. These steps cover what you need to do to connect to a database resource 
reference, bound in the application server JNDI context by the server administrator. 

In fact, you could stop describing this example here, as all other configuration settings are 
unique for a particular application server type. No part of the J2EE specification provides 
information on how to configure a DataSource factory connecting to a database. This is left 
to the application server vendors. 

 

WebLogic Application Server DataSource Configuration 

DataSource factory definitions for the JNDI context is unique per application server. 
The WebLogic Application Server management console provides a simple GUI way of 
entering this information. Eventually, all information will end up in an XML file called 
config.xml, but the management console gracefully hides the internal structure of the 
config.xml file and presents a user-friendly way to provide the same information. 
Figure 10-12 shows a DataSource definition that maps a JNDI name 
(legacyDataSource) to a particular JDBC ConnectionPool (cloudscapePool). 
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Figure 10-12: The DataSource definition webpageDataSource maps a particular 
JDBC ConnectionPool definition to the JNDI name legacyDataSource.  

The cloudscapePool entity, shown in the left pane of Figure 10-12, is a DataSource 
factory resource connected to a locally running Cloudscape database containing all 
legacy data. Figure 10-4 shows the contents of the small database, and Figure 10-13 
shows the configuration settings that are required to obtain a JDBC connection to the 
database. 

 
 
Figure 10-13: The configuration settings for the cloudscapePool provides all of 
the needed properties to connect to the Cloudscape database holding all data 
shown in Figure 10-4.  

 
 

The configuration and deployment process for application servers running the EJB 1.1 
specification is almost identical to the one just described for an EJB 2.0-compliant 
application server. One must, of course, remember that a great part of EJB deployment is 
done using proprietary methods and tools; only the structure and content of the ejb-
jar.xml files are part of the J2EE specification. 

Deployment Descriptors for the EJB 1.1 Specification 

The Inprise Application Server is used to illustrate deployment of beans that comply to the 
EJB 1.1 specification. As shown in Chapter 8, the differences between the 1.1 and 2.0 EJB 
specifications are great for Entity EJB beans using CMP persistence. The 
LegacyFacadeBean is a stateful session EJB component, and the differences between the 
deployment descriptor files of the Inprise and the WebLogic application servers are therefore 
relatively minor. 

The Inprise Application Server uses two XML documents to describe a deployed EJB 
component: the standard ejb-jar.xml and the Inprise Application Server-specific 
configuration file ejb-inprise.xml. Both the configuration files are deployed in the META-
INF directory, as shown in Figure 10-14. The class files deployed to the Inprise Application 
Server are identical to the ones deployed to the WebLogic Application Server. 
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Figure 10-14: The relevant content of the LegacyFacade.jar file consists of two 
groups of files, where the configuration settings are deployed in the META-INF directory 
and the bytecode files are deployed in the se/jguru/webdb/proxy directory.  

Start with the standard ejb-jar.xml file, which contains deployment settings that can be 
used by any EJB 1.1-compliant application server. Listing 10-12 displays the code for the 
ejb-jar.xml for EJB version 1.1.  

Listing 10-12: The standard ejb-jar.xml file  

 
<?xml version="1.0" encoding="Cp1252"?> 
 
<!DOCTYPE ejb-jar PUBLIC 
    '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN' 
    'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'> 
 
<ejb-jar> 
  <enterprise-beans> 
    <session> 
      <description> 
            This is the Session EJB Facade which hides all 
            data mining from the Legacy Tier. 
      </description> 
      <ejb-name>LegacyFacadeBean</ejb-name> 
      <home>se.jguru.webdb.proxy.LegacyFacadeHome</home> 
      <remote>se.jguru.webdb.proxy.LegacyFacade</remote> 
      <ejb-class>se.jguru.webdb.proxy.LegacyFacadeBean</ejb-class> 
      <session-type>Stateless</session-type> 
      <transaction-type>Container</transaction-type> 
 
<resource-ref> 
     <description> 
          This is the DataSource which connects to the relational 
          database where the actual data is stored. 

http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd
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     </description> 
     <res-ref-name>localDataSource</res-ref-name> 
     <res-type>javax.sql.DataSource</res-type> 
     <res-auth>Container</res-auth> 
      </resource-ref> 
 
    </session> 
  </enterprise-beans> 
 
     <assembly-descriptor> 
          <container-transaction> 
               <method> 
                    <ejb-name>LegacyFacadeBean</ejb-name> 
                    <method-name>*</method-name> 
               </method> 
               <trans-attribute>Required</trans-attribute> 
          </container-transaction> 
     </assembly-descriptor> 
 
</ejb-jar> 
 
 

The only difference between the ejb-jar.xml for EJB version 2.0 and that of version 1.1 is 
its DOCTYPE definition. This is intentional; standard EJB 1.1 deployment descriptors should 
be readable by any EJB 2.0-compliant application server. Because the three different 
sections of the deployment descriptor file (defining the basic attributes for the EJB 
component, its data source reference, and its assembly descriptor) are identical to the ones 
presented for the EJB 1.1 case, they will not be covered in detail here. 

As always, the ejb-jar.xml deployment descriptor needs additional complements to 
provide deployment descriptor settings for a particular application server. The DTD of the 
custom configuration file for the Inprise Application Server version 4.1 is illustrated in Figure 
10-15. 
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Figure 10-15: Partial XML DTD structure of the ejb-inprise.xml configuration file  
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Our ejb-inprise.xml deployment descriptor (shown in Listing 10-13) uses a small subset 
of the DTD shown in Figure 10-15. The XML document specifies JNDI bindings for the Home 
interface of the LegacyFacadeBean and the data source used by it. 

Listing 10-13: The ejb-inprise.xml deployment descriptor  
 
 
<?xml version="1.0"?> 
 
<!DOCTYPE inprise-specific PUBLIC 
   '-//Inprise Corporation//DTD Enterprise JavaBeans 1.1//EN' 
   'http://www.borland.com/devsupport/appserver/dtds/ejb-
inprise.dtd'> 
 
<inprise-specific> 
  <enterprise-beans> 
    <session> 
      <ejb-name>LegacyFacadeBean</ejb-name> 
      <bean-home-name>theLegacyFacade</bean-home-name> 
      <timeout>0</timeout> 
 
      <resource-ref> 
          <res-ref-name>localDataSource</res-ref-name> 
          <jndi-name>legacyDataSource</jndi-name> 
          <cmp-resource>True</cmp-resource> 
      </resource-ref> 
 
    </session> 
  </enterprise-beans> 
 
  <datasource-definitions> 
    <datasource> 
      <jndi-name>legacyDataSource</jndi-name> 
      <url>jdbc:cloudscape:webpageDb</url> 
      <username>none</username> 
      <password>none</password> 
      <isolation-level>TRANSACTION_SERIALIZABLE</isolation-level> 
      <driver-class-name>COM.cloudscape.core.JDBCDriver</driver-
class-name> 
    </datasource> 
  </datasource-definitions> 
 

http://www.borland.com/devsupport/appserver/dtds/ejb-
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</inprise-specific> 
 
 

The Inprise-specific configuration file has three distinct definition sections: 
§ The first part of the <session> ... </session> container element defines the 

JNDI name and session timeout length for the LegacyFacadeBean EJB component. 
§ The second part of the <session> ... </session> container element defines a 

named reference to a resource, known under the JNDI alias localDataSource for the 
LegacyFacadeBean EJB. Its reference is a data source whose JNDI name is 
legacyDataSource, and its transactions are managed by the EJB container. 

§ The <datasource-definitions > ... </datasource-definitions>  
container element defines a named data source that connects to a JDBC database 
using the jdbcDriver, jdbcUrl, username, password, and transaction isolation 
settings provided. Note that the JNDI name of the data source is legacyDataSource. 

Before you can run the application inside the Inprise Application Server, the stub and 
skeleton classes of the LegacyFacadeBean EJB component must be generated and the 
application-server specific JAR file deployed. 

Deploying the EJB JAR into the Application Server 

The deployment process of the Inprise Application Server is simple, quick, and reliable; 
using a GUI-enabled wizard, the generic JAR file is introspected, the required stubs and 
skeleton classes are generated, and the application server-specific JAR file is generated and 
deployed. The two steps are shown in Figures 10-16 and 10-17. 

 
 
Figure 10-16: The first step of the EJB deployment wizard allows you to choose the JAR 
containing the bytecode files and XML configuration documents for the EJB component, 
as well as the EJB container where they should be deployed. Note the Regenerate stubs 
checkbox.  
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Figure 10-17: The state of the deployment is monitored in the last step of the 
deployment wizard. As indicated, the stub classes were regenerated, and the resulting 
JAR was installed into the application server.  

In the process of deploying the LegacyFacade EJB component, the server-specific JAR file 
has been created and copied to the <InstallDir>/ejb_jars/ejbcontainer. 
Examining the content of the LegacyFacade.jar file reveals a series of CORBA stub and 
skeleton classes (shown in Figure 10-18), which leads to the conclusion that the Inprise 
Application Server is implemented on top of a CORBA-compliant ORB. 

 
 
Figure 10-18: The content of the application server-specific JAR file for the Inprise 
Application Server. Note the POA, Holder, and Helper classes, which are typical for 
CORBA-compliant stubs and skeletons.  

Having examined the deployment process for application servers that are compliant with the 
EJB 2.0 and EJB 1.1 specifications, we should proceed to deploy the Web application. 

 
Double-Checked Locking Optimization 
The Double-Checked Locking Optimization design pattern reduces contention and 
synchronization overhead whenever critical sections of code must acquire locks in a thread-
safe manner just once during program execution. 

Also Known As 

Lock Hint [Bir91] 

Example 
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The Singleton pattern ensures a class has only one instance and provides a global access 
point to that instance. The following C++ code shows the canonical implementation of 
Singleton from [GoF95]: 
     class Singleton { 
     public: 
         static Singleton *instance () { 
             if (instance_ == 0) { 
                 // Enter critical section. 
                 instance_ = new Singleton (); 
                 // Leave critical section. 
             } 
             return instance_; 
         } 
         void method_1 (); // Other methods omitted. 
     private: 
         static Singleton *instance_; 
         // Initialized to 0 by the compiler/linker. 
     }; 

Applications use the static instance() method to retrieve a pointer to the Singleton and 
then invoke public methods: 
     Singleton::instance ()->method_1 (); 

Unfortunately the canonical implementation of the Singleton pattern shown above is 
problematic on platforms with preemptive multi-tasking or true hardware parallelism. In 
particular, the Singleton constructor can be called multiple times if 
§ Multiple pre-emptive threads invoke Singleton::instance() simultaneously 

before it is initialized and 
§ Multiple threads execute the dynamic initialization of the Singleton constructor within 

the critical section. 

At best calling the Singleton constructor multiple times will cause a memory leak. At worst 
it can have disastrous consequences if singleton initialization is not idempotent. 

To protect the critical section from concurrent access we could apply the Scoped Locking 
idiom (345) to acquire and release a mutex lock automatically: 
    class Singleton { 
    public: 
        static Singleton *instance () { 
            // Scoped Locking acquires <singleton_lock_>. 
            Guard<Thread_Mutex> guard (singleton_lock_); 
            if (instance_ == 0) 
                instance_ = new Singleton; 
            return instance_; 
            // Destructor releases lock automatically. 
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        } 
    private: 
        static Singleton *instance_; 
        static Thread_Mutex singleton_lock_; 
    }; 

Assuming singleton_lock_ is initialized correctly, Singleton is now thread-safe. The 
additional locking overhead may be excessive, however. In particular every call to 
instance() now acquires and releases the lock, even though the critical section should be 
executed just once. By placing the guard inside the conditional check, we can remove the 
locking overhead: 
    static Singleton *instance () { 
        if (instance_ == 0) { 
            Guard<Thread_Mutex> guard (singleton_lock_); 
            // Only come here if <instance_> 
            // has not been initialized yet. 
            instance_ = new Singleton; 
        } 
        return instance_; 
    } 

Unfortunately, this solution does not provide thread-safe initialization because a race 
condition in multi-threaded applications can cause multiple initializations of Singleton. For 
example, consider two threads that simultaneously check for instance_ == 0. Both will 
succeed, one will acquire the lock via the guard and the other will block. After the first 
thread initializes Singleton and releases the lock, the blocked thread will obtain the lock 
and erroneously initialize Singleton a second time. 

Context 

A application containing shared resources accessed concurrently by multiple threads. 

Problem 

Concurrent applications must ensure that certain portions of their code execute serially to 
avoid race conditions when accessing and modifying shared resources. A common way of 
avoiding race conditions is to serialize access to the shared resources' critical sections via 
locks, such as mutexes. Every thread that wants to enter a critical section must first acquire 
a lock. If this lock is already owned by another thread, the thread will block until the lock is 
released and the lock can be acquired. 

The serialization approach outlined above can be inappropriate for objects or components 
that require 'just once' initialization. For example, the critical section code in our Singleton 
example must be executed just once during its initialization. However, every method call on 
the singleton acquires and releases the mutex lock, which can incur excessive overhead 
[PLoPD3]. To avoid this overhead, programmers of concurrent applications may revert to 
using global variables rather than applying the Singleton pattern. Unfortunately, this 'solution' 
has two drawbacks [LGS99]: 
§ It is non-portable because the order in which global objects defined in different files are 

constructed is often not specified. 
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§ It is overly resource consumptive because global variables will be created even if they 
are not used. 

Solution 

Introduce a flag that provides a 'hint' about whether it is necessary to execute a critical 
section before acquiring the lock that guards it. If this code need not be executed the critical 
section is skipped, thereby avoiding unnecessary locking overhead. The general pseudo-
code design of this code is shown below: 
     // Perform first-check to evaluate 'hint'. 
     if (first_time_in_flag is FALSE) { 
          acquire the mutex 
          // Perform double-check to avoid race condition. 
          if (first_time_in_flag is FALSE) { 
               execute the critical section 
               set first_time_in_flag to TRUE 
          } 
          release the mutex 
     } 

Implementation 

The Double-Checked Locking Optimization pattern can be implemented via three activities: 
1. Identify the critical section to be executed just once. This critical section performs 

operations, such as initialization logic, that are executed just once in a program. 
 

2. For example, a singleton is initialized just once in a program. The call to the 
singleton's constructor is thus executed only once in a critical section, regardless 
of the number of times the accessor method Singleton::instance() is 
called. 
 

 

4. Implement the locking logic. The locking logic serializes access to the critical section of 
code that is executed just once. To implement this locking logic we can employ the 
Scoped Locking idiom (345) to ensure that the lock is acquired automatically when 
the appropriate scope is entered and released automatically when it goes out of 
scope. 

 

5. In accordance with the Scoped Locking idiom (345) a Thread_Mutex 
singleton_lock_ is used to ensure that the singleton's constructor does not 
execute concurrently. 
 

 

7. This lock must be initialized prior to the first call to the code that is executed just once. 
In C++, one way to ensure that a lock is initialized prior to its first use is to define it 
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as a static object, as shown in the Example section. Unfortunately the C++ language 
specification does not guarantee the order of initialization of static objects that are 
defined in separate compilation units. As a result, different C++ compiler and linker 
platforms may behave inconsistently and the lock may not be initialized when it is first 
accessed. 

8. A better way to avoid this problem is to use the Object Lifetime Manager pattern 
[LGS99]. This pattern defines a portable object manager component that governs the 
entire lifetime of global or static objects as follows: 
§ The object manager creates these objects prior to their first use and 
§ It ensures they are destroyed properly at program termination 

For example, the lock can be placed under the control of an object manager that will 
ensure it is initialized before any singleton attempts to use the lock to serialize its 
initialization. The object manager can also delete the singleton when the program 
terminates, thereby preventing the memory and resource leaks that can otherwise 
occur with the Singleton pattern [Vlis98a]. 

9. Implement the first-time-in flag. This flag indicates whether the critical section has been 
executed already. 

 

10. The Singleton::instance_ pointer is used as the first-time-in flag. If the flag 
evaluates to true the critical section is skipped. If the flag also has a particular 
application-specific purpose, as our Singleton::instance_ pointer is used, it 
must be an atomic type that can be set without a partial read or write. The 
following code for the Singleton example is thread-safe, but avoids 
unnecessary locking overhead by placing the call to new within another 
conditional test: 

11.     class Singleton { 
12.     public: 
13.         static Singleton *instance () { 
14.             // First check 
15.             if (instance_ == 0) { 
16.                 // Use Scoped Locking to acquire and 
17.                 // release <singleton_lock_> 

automatically. 
18.                 Guard<Thread_Mutex> guard 

(singleton_lock_); 
19.                 // Double check. 
20.                 if (instance_ == 0) 
21.                     instance_ = new Singleton; 
22.             } 
23.             return instance_; 
24.         } 
25.    private: 
26.        static Singleton *instance_; 
27.        static Thread_Mutex singleton_lock_; 
28.     }; 



 311

29. The first thread that acquires the singleton_lock_ will construct the 
Singleton object and assign the pointer to instance_, which serves as the 
first-time-in flag in this example. All threads that call instance() subsequently 
will find instance_ is not equal to zero and will thus skip the initialization step. 

30. The second check prevents a race condition if multiple threads try to initialize 
Singleton simultaneously. This handles the case in which multiple threads 
execute in parallel. In the code above these threads will queue up at the 
singleton_lock_ mutex. When the queued threads finally obtain the mutex 
singleton_lock_ they will find instance_ is not equal to zero and will then 
skip the Singleton initialization. 

31. This implementation of the Singleton::instance() method only incurs 
locking overhead for threads that are active inside instance() when the 
Singleton is first initialized. In subsequent calls to instance() the 
instance_ pointer is not zero and thus singleton_lock_ is neither acquired 
nor released. 
 

 

Variants 

Volatile Data. The Double-Checked Locking Optimization pattern implementation may 
require modifications if a compiler optimizes the first-time-in flag by caching it in some way, 
such as storing it in a CPU register. In this case, cache coherency may become a problem. 
For example, copies of the first-time-in flag held simultaneously in registers by multiple 
threads may become inconsistent if one thread's setting of the value is not reflected in other 
threads' copies. 

A related problem is that a highly optimizing compiler may consider the second check of 
flag == 0 to be superfluous and optimize it away. A solution to both these problems is to 
declare the flag as volatile data, which ensures the compiler will not perform aggressive 
optimizations that change the program's semantics. 

 

For our Singleton example, this results in the following code: 
class Singleton { 
    // ... 
private: 
    static Singleton *volatile instance_; 
    // instance_ is volatile. 
}; 

The use of volatile ensures that a compiler will not place the instance_ pointer into 
a register, nor will it optimize away the second check in instance(). 
 

 

The downside of using volatile is that all access to will be through memory rather than 
through registers, which may degrade performance. 
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Template Adapter. Another variation for the Double-Checked Locking Optimization pattern is 
applicable when the pattern is implemented in C++. In this case, create a template adapter 
that transforms classes to have singleton-like behavior and performs the Double-Checked 
Locking Optimization pattern automatically.  

 

The following code illustrates how to write this template in C++: 
template <class TYPE> 
class Singleton { 
public: 
    static TYPE *instance () { 
        // First check 
        if (instance_ == 0) { 
            // Scoped Locking acquires and release lock. 
            Guard<Thread_Mutex> guard (singleton_lock_); 
            // Double check instance_. 
            if (instance_ == 0) 
                instance_ = new TYPE; 
        } 
        return instance_; 
    } 
private: 
    static TYPE *instance_; 
    static Thread_Mutex singleton_lock_; 
}; 

The Singleton template is parameterized by the TYPE that will be accessed as a 
singleton. The Double-Checked Locking Optimization pattern is applied automatically on 
the singleton_lock_ within the instance() method. 

The Singleton template adapter can also be integrated with the Object Lifetime 
Manager pattern [LGS99], which ensures that dynamically allocated singletons are 
deallocated automatically when an application process exits. This pattern can also 
ensure that the static singleton_lock_ data member is initialized properly before its 
first use. 
 

 

Pre-initialization of Singletons. This variation is an alternative that may alleviate the need for 
Double-Checked Locking Optimization. It does this by initializing all objects explicitly at 
program start-up, for example in a program's main() function. Thus, there are no race 
conditions because the initialization is constrained to occur within a single thread. 

This solution is inappropriate, however, when expensive calculations must be performed that 
may be unnecessary in certain situations. For instance, if a singleton is never actually 
created during program execution, initializing it during program start-up will simply waste 
resources. Pre-initialization can also break encapsulation by forcing application components 



 313

with singletons in their implementation to expose this information so the singletons can be 
initialized explicitly. Likewise, pre-initialization makes it hard to compose applications using 
components that are configured dynamically using the Component Configurator pattern (75). 

Known Uses 

ACE [Sch97]. The Double-Checked Locking Optimization pattern is used extensively 
throughout the ACE framework. To reduce code duplication, ACE defines a reusable adapter 
template called ACE_Singleton that is similar to the one shown in the Variants section and 
is used to transform 'normal' classes into singletons. Although singletons are not the only 
use of the Double-Checked Locking Optimization pattern in the ACE framework, they are a 
common example that demonstrates the utility of the pattern. 

Sequent Dynix/PTX. The Doubled-Checked Locking Optimization pattern is used in the 
Sequent Dynix/PTX operating system. 

POSIX and Linux. The Double-Checked Locking Optimization pattern can be used to 
implement POSIX 'once' variables [IEEE96], which ensure that functions are invoked just 
once in a program. This pattern has been used in the LinuxThreads pthread_once() 
implementation to ensure its function-pointer parameter init_routine() is called only 
once—on its first call—and not subsequently. 

Andrew Birrell describes the use of the Double-Checked Locking Optimization pattern in 
[Bir91]. Birrell refers to the first check of the flag as a 'lock hint'. 

The Solaris 2.x documentation for pthread_key_create(3T), which is shown in the 
Thread-Specific Storage pattern (475) Known Uses section, illustrates how to use the 
Double-Checked Locking Optimization to initialize thread-specific data. 

Consequences 

There are two benefits of using the Double-Checked Locking Optimization pattern: 

Minimized locking overhead. By performing two first-time-in flag checks, the Double-
Checked Locking Optimization pattern minimizes overhead for the common case. After the 
flag is set the first check ensures that subsequent accesses require no further locking. 

Prevents race conditions. The second check of the first-time-in flag ensures that the critical 
section is executed just once.  

However, there are three liabilities of using the Double-Checked Locking Optimization 
pattern that can arise if the pattern is used in software that is ported to certain types of 
operating system, hardware, or compiler/linker platforms. However, because this pattern is 
applicable to a large class of platforms, we outline techniques for overcoming these 
limitations. 

Non-atomic pointer or integral assignment semantics. If an instance_ pointer is used as 
the flag in a singleton implementation, all bits of the singleton instance_ pointer must be 
read and written atomically in a single operation. If the write to memory after the call to new 
is not atomic, other threads may try to read an invalid pointer. This can result in sporadic 
illegal memory accesses. 

These scenarios are possible on systems where memory addresses straddle word alignment 
boundaries, such as 32-bit pointers used on a computer with a 16 bit word bus, which 
requires two fetches from memory for each pointer access. In this case it may be necessary 
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to use a separate, word-aligned integral flag—assuming that the hardware supports atomic 
word-based reads and writes—rather than using an instance_ pointer. 

Multi-processor cache coherency. Certain multi-processor platforms, such as the COMPAQ 
Alpha and Intel Itanium, perform aggressive memory caching optimizations in which read 
and write operations can execute 'out of order' across multiple CPU caches. On these 
platforms, it may not be possible to use the Double-Checked Locking Optimization pattern 
without further modifications because CPU cache lines will not be flushed properly if shared 
data is accessed without locks held. 

To use the Double-Checked Locking Optimization pattern correctly on these types of 
hardware platforms, CPU-specific instructions, such as memory barriers to flush cache lines, 
must be inserted into the Double-Checked Locking Optimization implementation. Note that a 
serendipitous side-effect of using the template adapter variation of the Double-Checked 
Locking Optimization pattern is that it centralizes the placement of these CPU-specific cache 
instructions.  

 

For example, a memory barrier instruction can be located within the instance() 
method of the Singleton template adapter class: 
     template <class TYPE> 
     TYPE *Singleton<TYPE>::instance () { 
         TYPE *tmp = instance_; 
 
     #if defined (ALPHA_MP) 
         // Insert the CPU-specific memory barrier instruction 
         // to synchronize the cache lines on multi-processor. 
         asm ("mb"); 
     #endif /* ALPHA_MP */ 
 
         // First check 
         if (tmp == 0) { 
             // Scoped Locking acquires and releases lock. 
             Guard<Thread_Mutex> guard (singleton_lock_); 
 
             // Double check. 
             if (tmp == 0) { 
                 tmp = new TYPE; 
 
     #if defined (ALPHA_MP) 
                  // Insert a second CPU-specific memory 
                  // barrier instruction. 
                  asm ("mb"); 
     #endif /* ALPHA_MP */ 
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                  instance_ = tmp; 
              } 
         } 
         return tmp; 
     } 

As long as the Singleton template adapter is used uniformly, it is straightforward to 
localize the placement of CPU-specific code without affecting applications. Conversely, if 
the Double-Checked Locking Optimization pattern is hand-crafted into singletons at each 
point of use much more effort is required to add this CPU-specific code. 
 

 

Unfortunately, the need for CPU-specific code in implementations of the Double-Checked 
Locking Optimization pattern makes this pattern inapplicable for Java applications. Java's 
bytecodes are designed to be cross-platform and therefore its JVMs lack a memory barrier 
instruction that can resolve the problem outlined in this liability. 

Additional mutex usage. Regardless of whether a singleton is allocated on-demand, some 
type of lock, such as the Thread_Mutex used in our examples, is allocated and retained for 
the lifetime of the program. One technique for minimizing this overhead is to pre-allocate a 
singleton lock within an object manager [LGS99] and use this lock to serialize all singleton 
initialization. Although this may increase lock contention, it may not affect program 
performance because each singleton will most likely acquire and release the lock only once 
when its initialized. 

See Also 

The Double-Checked Locking Optimization pattern is a thread-safe variant of the Lazy 
Evaluation pattern [Mey98] [Beck97]. This pattern is often used in programming languages 
such as C that lack constructors in order to ensure components are initialized before their 
state is accessed. 

 

For example the following C code initializes a stack: 
static const int STACK_SIZE = 1000; 
static Type *stack_; 
static int top_; 
 
void push (Type *item) { 
    // First-time-in-check. 
    if (stack_ == 0) { 
        // Allocate the pointer, which implicitly 
        // indicates that initialization was performed. 
        stack_ = malloc (STACK_SIZE * sizeof Type); 
        top_ = 0; 
    } 
    stack_[top_++] = item; 
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    // ... 
} 

The first time that push() is called, stack_ is 0, which triggers its implicit initialization 
via malloc(). 
 

 

Credits 

The co-author of the original version [PLoPD3] of this pattern was Tim Harrison. Thanks to 
John Basrai, James Coplien, Ralph Johnson, Jaco van der Merwe, Duane Murphy, Paul 
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Double-Checked Locking Optimization pattern. 
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Chapter 5: Concurrency Patterns 
Overview 

"You look at where you're going and where you are and it never makes 
sense, but then you look back at where you've been and a pattern seems to 

emerge. And if you project forward from that pattern, then sometimes you 
can come up with something."  

Robert M. Pirsig  

This chapter presents five patterns that address various types of concurrency architecture 
and design issues for components, subsystems, and applications: Active Object, Monitor 
Object, Half-Sync/Half-Async, Leader/Followers, and Thread-Specific Storage.  

The choice of concurrency architecture has a significant impact on the design and 
performance of multi-threaded networking middleware and applications. No single 
concurrency architecture is suitable for all workload conditions and hardware and software 
platforms. The patterns in this chapter therefore collectively provide solutions to a variety of 
concurrency problems. 

The first two patterns in this chapter specify designs for sharing resources among multiple 
threads or processes: 
§ The Active Object design pattern (369)decouples method execution from method 

invocation. Its purpose is to enhance concurrency and simplify synchronized access to 
objects that reside in their own threads of control 

§ The Monitor Object design pattern (399) synchronizes concurrent method execution to 
ensure that only one method at a time runs within an object. It also allows an object's 
methods to schedule their execution sequences cooperatively. 

Both patterns can synchronize and schedule methods invoked concurrently on objects. The 
main difference is that an active object executes its methods in a different thread than its 
clients, whereas a monitor object executes its methods by borrowing the thread of its clients. 
As a result active objects can perform more sophisticated—albeit expensive—scheduling to 
determine the order in which their methods execute. 

The next two patterns in this chapter define higher-level concurrency architectures: 
§ The Half-Sync/Half-Async architectural pattern (423) decouples asynchronous and 

synchronous processing in concurrent systems, to simplify programming without 
reducing performance undudly. The pattern introduces two intercommunicating layers, 
one for asynchronous and one for synchronous service processing. A further queuing 
layer mediates communication between services in the asynchronous and synchronous 
layers. 

§ The Leader/Followers architectural pattern (447) provides an efficient concurrency 
model where multiple threads take turns to share a set of event sources to detect, 
demultiplex, dispatch, and process service requests that occur on the event sources. 
The Leader/Followers pattern can be used in lieu of the Half-Sync/Half-Async and 
Active Object patterns to improve performance when there are no synchronization or 
ordering constraints on the processing of requests by pooled threads. 

Implementors of the Half-Sync/Half-Async and Leader/Followers patterns can use the Active 
Object and Monitor Object patterns to coordinate access to shared objects efficiently. 

The final pattern in this chapter offers a different strategy for addressing certain inherent 
complexities of concurrency: 
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§ The Thread-Specific Storage design pattern (475) allows multiple threads to use one 
'logically global' access point to retrieve an object that is local to a thread, without 
incurring locking overhead on each access to the object. To some extent this pattern 
can be viewed as the 'antithesis' of the other patterns in this section, because it 
addresses several inherent complexities of concurrency by preventing the sharing of 
resources among threads. 

Implementations of all patterns in this chapter can use the patterns from Chapter 4, 
Synchronization Patterns, to protect critical regions from concurrent access. 

Other patterns in the literature that address concurrency-related issues include Master-Slave 
[POSA1], Producer-Consumer [Grand98], Scheduler [Lea99a], and Two-phase Termination 
[Grand98]. 

 
Active Object 
The Active Object design pattern decouples method execution from method invocation to 
enhance concurrency and simplify synchronized access to objects that reside in their own 
threads of control. 

Also Known As 

Concurrent Object 

Example 

Consider the design of a communication gateway,[1] which decouples cooperating 
components and allows them to interact without having direct dependencies on each other. 
As shown below, the gateway may route messages from one or more supplier processes to 
one or more consumer processes in a distributed system. 

 

The suppliers, consumers, and gateway communicate using TCP [Ste93], which is a 
connection-oriented protocol. The gateway may therefore encounter flow control from the 
TCP transport layer when it tries to send data to a remote consumer. TCP uses flow control 
to ensure that fast suppliers or gateways do not produce data more rapidly than slow 
consumers or congested networks can buffer and process the data. To improve end-to-end 
quality of service (QoS) for all suppliers and consumers, the entire gateway process must 
not block while waiting for flow control to abate over any one connection to a consumer. In 
addition the gateway must scale up efficiently as the number of suppliers and consumers 
increase. 

An effective way to prevent blocking and improve performance is to introduce concurrency 
into the gateway design, for example by associating a different thread of control for each 
TCP connection. This design enables threads whose TCP connections are flow controlled to 
block without impeding the progress of threads whose connections are not flow controlled. 
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We thus need to determine how to program the gateway threads and how these threads 
interact with supplier and consumer handlers. 

Context 

Clients that access objects running in separate threads of control. 

Problem 

Many applications benefit from using concurrent objects to improve their quality of service, 
for example by allowing an application to handle multiple client requests simultaneously. 
Instead of using a single-threaded passive object, which executes its methods in the thread 
of control of the client that invoked the methods, a concurrent object resides in its own 
thread of control. If objects run concurrently, however, we must synchronize access to their 
methods and data if these objects are shared and modified by multiple client threads, in 
which case three forces arise: 
§ Processing-intensive methods invoked on an object concurrently should not block the 

entire process indefinitely, thereby degrading the quality of service of other concurrent 
objects. 

 

§ For example, if one outgoing TCP connection in our gateway example is blocked due 
to flow control, the gateway process still should be able to run other threads that 
can queue new messages while waiting for flow control to abate. Similarly, if other 
outgoing TCP connections are not flow controlled, it should be possible for other 
threads in the gateway to send messages to their consumers independently of any 
blocked connections. 
 

 

§ Synchronized access to shared objects should be straightforward to program. In 
particular, client method invocations on a shared object that are subject to 
synchronization constraints should be serialized and scheduled transparently. 

 

§ Applications like our gateway can be hard to program if developers use low-level 
synchronization mechanisms, such as acquiring and releasing mutual exclusion 
(mutex) locks explicitly. Methods that are subject to synchronization constraints, 
such as enqueueing and dequeueing messages from TCP connections, should be 
serialized transparently when objects are accessed by multiple threads. 
 

 

§ Applications should be designed to leverage the parallelism available on a 
hardware/software platform transparently. 

 

§ In our gateway example, messages destined for different consumers should be sent 
concurrently by a gateway over different TCP connections. If the entire gateway is 
programmed to only run in a single thread of control, however, performance 
bottlenecks cannot be alleviated transparently by running the gateway on a multi-
processor platform. 
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Solution 

For each object exposed to the forces above, decouple method invocation on the object from 
method execution. Method invocation should occur in the client's thread of control, whereas 
method execution should occur in a separate thread. Moreover, design the decoupling so 
the client thread appears to invoke an ordinary method. 

In detail: A proxy [POSA1] [GoF95] represents the interface of an active object and a servant 
[OMG98a] provides the active object's implementation. Both the proxy and the servant run in 
separate threads so that method invocations and method executions can run concurrently. 
The proxy runs in the client thread, while the servant runs in a different thread. 

At run-time the proxy transforms the client's method invocations into method requests, which 
are stored in an activation list by a scheduler. The scheduler's event loop runs continuously 
in the same thread as the servant, dequeueing method requests from the activation list and 
dispatching them on the servant. Clients can obtain the result of a method's execution via a 
future returned by the proxy. 

Structure 

An active object consists of six components: 

A proxy [POSA1] [GoF95] provides an interface that allows clients to invoke publicly-
accessible methods on an active object. The use of a proxy permits applications to program 
using standard strongly-typed language features, rather than passing loosely-typed 
messages between threads. The proxy resides in the client's thread. 

When a client invokes a method defined by the proxy it triggers the construction of a method 
request object. A method request contains the context information, such as a method's 
parameters, necessary to execute a specific method invocation and return any result to the 
client. A method request class defines an interface for executing the methods of an active 
object. This interface also contains guard methods that can be used to determine when a 
method request can be executed. For every public method offered by a proxy that requires 
synchronized access in the active object, the method request class is subclassed to create a 
concrete method request class. 
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A proxy inserts the concrete method request it creates into an activation list. This list 
maintains a bounded buffer of pending method requests created by the proxy and keeps 
track of which method requests can execute. The activation list decouples the client thread 
where the proxy resides from the thread where the servant method is executed, so the two 
threads can run concurrently. The internal state of the activation list must therefore be 
serialized to protect it from concurrent access. 

A scheduler runs in a different thread than its client proxies, namely in the active object's 
thread. It decides which method request to execute next on an active object. This scheduling 
decision is based on various criteria, such as ordering—the order in which methods are 
called on the active object—or certain properties of an active object, such as its state. A 
scheduler can evaluate these properties using the method requests' guards, which 
determine when it is possible to execute the method request [Lea99a]. A scheduler uses an 
activation list to manage method requests that are pending execution. Method requests are 
inserted in an activation list by a proxy when clients invoke one of its methods. 

 

A servant defines the behavior and state that is modeled as an active object. The methods a 
servant implements correspond to the interface of the proxy and method requests the proxy 
creates. It may also contain other predicate methods that method requests can use to 
implement their guards. A servant method is invoked when its associated method request is 
executed by a scheduler. Thus, it executes in its scheduler's thread. 

When a client invokes a method on a proxy it receives a future [Hal85] [LS88]. This future 
allows the client to obtain the result of the method invocation after the servant finishes 
executing the method. Each future reserves space for the invoked method to store its result. 
When a client wants to obtain this result, it can rendezvous with the future, either blocking or 
polling until the result is computed and stored into the future. 

 

The class diagram for the Active Object pattern is shown below: 
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Dynamic 

The behavior of the Active Object pattern can be divided into three phases: 
§ Method request construction and scheduling. A client invokes a method on the proxy. 

This triggers the creation of a method request, which maintains the argument bindings 
to the method as well as any other bindings required to execute the method and return 
its result. The proxy then passes the method request to its scheduler, which enqueues it 
on the activation list. If the method is defined as a two-way invocation [OMG98a], a 
future is returned to the client. No future is returned if a method is a one-way, which 
means it has no return values. 

§ Method request execution. The active object's scheduler runs continuously in a 
different thread than its clients. The scheduler monitors its activation list and determines 
which method request(s) have become runnable by calling their guard method. When a 
method request becomes runnable the scheduler removes it, binds the request to its 
servant, and dispatches the appropriate method on the servant. When this method is 
called, it can access and update the state of its servant and create its result if it is a two-
way method invocation. 

§ Completion. In this phase the result, if any, is stored in the future and the active 
object's scheduler returns to monitor the activation list for runnable method requests. 
After a two-way method completes, clients can retrieve its result via the future. In 
general, any clients that rendezvous with the future can obtain its result. The method 
request and future can be deleted explicitly or garbage collected when they are no 
longer referenced. 
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Implementation 

Five activities show how to implement the Active Object pattern. 
1. Implement the servant. A servant defines the behavior and state being modeled as an 

active object. In addition, a servant may contain predicate methods used to determine 
when to execute method requests. 

 

2. For each remote consumer in our gateway example there is a consumer handler 
containing a TCP connection to a consumer process running on a remote 
machine. Each consumer handler contains a message queue modeled as an 
active object and implemented with an MQ_Servant. This active object stores 
messages passed from suppliers to the gateway while they are waiting to be sent 
to the remote consumer.[2] The following C++ class illustrates the MQ_Servant 
class: 

3.     class MQ_Servant { 
4.     public: 
5.         // Constructor and destructor. 
6.         MQ_Servant (size_t mq_size); 
7.         ~MQ_Servant (); 
8.  
9.         // Message queue implementation operations. 
10.         void put (const Message &msg); 
11.         Message get (); 
12.  
13.         // Predicates. 
14.         bool empty () const; 
15.         bool full () const; 
16.     private: 
17.         // Internal queue representation, e.g., a 

circular 
18.         // array or a linked list, that does not use 

any 
19.         // internal synchronization mechanism. 
20.     }; 

21. The put() and get() methods implement the message insertion and removal 
operations on the queue, respectively. The servant defines two predicates, 
empty() and full(), that distinguish three internal states: empty, full, and 
neither empty nor full. These predicates are used to determine when put() and 
get() methods can be called on the servant. 
 

 

23. In general, the synchronization mechanisms that protect a servant's critical sections 
from concurrent access should not be tightly coupled with the servant, which should 
just implement application functionality. Instead, the synchronization mechanisms 
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should be associated with the method requests. This design avoids the inheritance 
anomaly problem [MWY91], which inhibits the reuse of servant implementations if 
subclasses require different synchronization policies than base classes. Thus, a 
change to the synchronization constraints of the active object need not affect its 
servant implementation. 

 

24. The MQ_Servant class is designed to omit synchronization mechanisms from a 
servant. The method implementations in the MQ_Servant class, which are 
omitted for brevity, therefore need not contain any synchronization mechanisms. 
 

 

26. Implement the invocation infrastructure. In this activity, we describe the infrastructure 
necessary for clients to invoke methods on an active object. This infrastructure 
consists of a proxy that creates method requests, which can be implemented via two 
sub-activities. 

1. Implement the proxy. The proxy provides clients with an interface to the 
servant's methods. For each method invocation by a client, the proxy creates 
a concrete method request. Each method request is an abstraction for the 
method's context, which is also called the closure of the method. Typically, this 
context includes the method parameters, a binding to the servant the method 
will be applied to, a future for the result, and the code that executes the 
method request. 

 

2. In our gateway the MQ_Proxy provides the following interface to the 
MQ_Servant defined in implementation activity 1 (375): 

3.     class MQ_Proxy { 
4.     public: 
5.         // Bound the message queue size. 
6.         enum { MQ_MAX_SIZE = /* ... */ }; 
7.         MQ_Proxy (size_t size = MQ_MAX_SIZE): 
8.             scheduler_ (size), servant_ (size) { } 
9.  
10.         // Schedule <put> to execute on the active 

object. 
11.         void put (const Message &msg) { 
12.             Method_Request *mr = new Put (servant_, 

msg); 
13.             scheduler_.insert (mr); 
14.         } 
15.  
16.         // Return a <Message_Future> as the "future" 

result of 
17.         // an asynchronous <get> method on the active 

object. 
18.         Message_Future get () { 
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19.             Message_Future result; 
20.             Method_Request *mr = new Get (servant_, 

result); 
21.             scheduler_.insert (mr); 
22.             return result; 
23.         } 
24.  
25.         // empty() and full() predicate 

implementations ... 
26.     private: 
27.         // The servant that implements the active 

object 
28.         // methods and a scheduler for the message 

queue. 
29.         MQ_Servant servant_; 
30.         MQ_Scheduler scheduler_; 
31.     }; 

32. The MP_Proxy is a factory [GoF95] that constructs instances of method 
requests and passes them to a scheduler, which queues them for 
subsequent execution in a separate thread. 
 

 

34. Multiple client threads in a process can share the same proxy. A proxy method 
need not be serialized because it does not change state after it is created. Its 
scheduler and activation list are responsible for any necessary internal 
serialization. 

 

35. Our gateway example contains many supplier handlers that receive and 
route messages to peers via many consumer handlers. Several supplier 
handlers can invoke methods using the proxy that belongs to a single 
consumer handler without the need for any explicit synchronization. 
 

 

37. Implement the method requests. Method requests can be considered as 
command objects [GoF95]. A method request class declares an interface used 
by all concrete method requests. It provides schedulers with a uniform 
interface that allows them to be decoupled from specific knowledge about how 
to evaluate synchronization constraints or trigger the execution of concrete 
method requests. Typically, this interface declares a can_run() method that 
defines a hook method guard that checks when it is possible to execute the 
method request. It also declares a call() method that defines a hook for 
executing a method request on the servant. 

The methods in a method request class must be defined by subclasses. There 
should be one concrete method request class for each method defined in the 
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proxy. The can_run() method is often implemented with the help of the 
servant's predicates. 

 

In our gateway example a Method_Request base class defines two 
virtual hook methods, which we call can_run() and call(): 
    class Method_Request { 
    public: 
        // Evaluate the synchronization constraint. 
        virtual bool can_run () const = 0 
 
        // Execute the method. 
        virtual void call () = 0; 
    }; 

We then define two subclasses of Method_Request: class Put 
corresponds to the put() method call on a proxy and class Get 
corresponds to the get() method call. Both classes contain a pointer to 
the MQ_Servant. The Get class can be implemented as follows: 
    class Get : public Method_Request { 
    public: 
        Get (MQ_Servant *rep, const Message_Future &f) 
            : servant_ (rep), result_ (f) { } 
 
        virtual bool can_run () const { 
            // Synchronization constraint: cannot call 
a 
            // <get> method until queue is not empty. 
            return !servant_->empty (); 
        } 
 
        virtual void call () { 
            // Bind dequeued message to the future 
result. 
            result_ = servant_->get (); 
        } 
    private: 
        MQ_Servant *servant_; 
        Message_Future result_; 
    }; 

Note how the can_run() method uses the MQ_Servant's empty() 
predicate to allow a scheduler to determine when the Get method request 
can execute. When the method request does execute, the active object's 
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scheduler invokes its call() hook method. This call() hook uses the 
Get method request's run-time binding to MQ_Servant to invoke the 
servant's get() method, which is executed in the context of that servant. 
It does not require any explicit serialization mechanisms, however, 
because the active object's scheduler enforces all the necessary 
synchronization constraints via the method request can_run() methods. 
 

 

The proxy passes a future to the constructors of the corresponding method 
request classes for each of its public two-way methods in the proxy that 
returns a value, such as the get() method in our gateway example. This 
future is returned to the client thread that calls the method, as discussed in 
implementation activity 5 (384). 

27. Implement the activation list. Each method request is inserted into an activation list. 
This list can be implemented as a synchronized bounded buffer that is shared 
between the client threads and the thread in which the active object's scheduler and 
servant run. An activation list can also provide a robust iterator [Kof93] [CarEl95] that 
allows its scheduler to traverse and remove its elements.  

The activation list is often designed using concurrency control patterns, such as 
Monitor Object (399), that use common synchronization mechanisms like condition 
variables and mutexes [Ste98]. When these are used in conjunction with a timer 
mechanism, a scheduler thread can determine how long to wait for certain operations 
to complete. For example, timed waits can be used to bound the time spent trying to 
remove a method request from an empty activation list or to insert into a full activation 
list.[3] If the timeout expires, control returns to the calling thread and the method 
request is not executed. 

 

For our gateway example we specify a class Activation_List as follows: 
    class Activation_List { 
    public: 
        // Block for an "infinite" amount of time waiting 
        // for <insert> and <remove> methods to complete. 
        enum { INFINITE = -1 }; 
 
        // Define a "trait". 
        typedef Activation_List_Iterator iterator; 
 
        // Constructor creates the list with the specified 
        // high water mark that determines its capacity. 
        Activation_List (size_t high_water_mark); 
 
        // Insert <method_request> into the list, waiting up 
        // to <timeout> amount of time for space to become 
        // available in the queue. Throws the <System_Ex> 
        // exception if <timeout> expires. 
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        void insert (Method_Request *method_request, 
                     Time_Value *timeout = 0); 
 
        // Remove <method_request> from the list, waiting up 
        // to <timeout> amount of time for a 
<method_request> 
        // to be inserted into the list. Throws the 
        // <System_Ex> exception if <timeout> expires. 
        void remove (Method_Request *&method_request, 
                     Time_Value *timeout = 0); 
    private: 
        // Synchronization mechanisms, e.g., condition 
        // variables and mutexes, and the queue implemen- 
        // tation, e.g., an array or a linked list, go here. 
    }; 

The insert() and remove() methods provide a 'bounded-buffer' 
producer/consumer [Grand98] synchronization model. This design allows a 
scheduler thread and multiple client threads to remove and insert 
Method_Requests simultaneously without corrupting the internal state of an 
Activation_List. Client threads play the role of producers and insert 
Method_Requests via a proxy. A scheduler thread plays the role of a consumer. 
It removes Method_Requests from the Activation_List when their guards 
evaluate to 'true'. It then invokes their call() hooks to execute servant 
methods. 
 

 

28. Implement the active object's scheduler. A scheduler is a command processor 
[POSA1] that manages the activation list and executes pending method requests 
whose synchronization constraints have been met. The public interface of a 
scheduler often provides one method for the proxy to insert method requests into the 
activation list and another method that dispatches method requests to the servant. 

 

29. We define the following MQ_Scheduler class for our gateway: 
30.     class MQ_Scheduler { 
31.     public: 
32.         // Initialize the <Activation_List> to have 
33.         // the specified capacity and make 

<MQ_Scheduler> 
34.         // run in its own thread of control. 
35.         MQ_Scheduler (size_t high_water_mark); 
36.  
37.         // ... Other constructors/destructors, etc. 
38.  
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39.         // Put <Method_Request> into 
<Activation_List>. This 

40.         // method runs in the thread of its client, 
i.e. 

41.         // in the proxy's thread. 
42.         void insert (Method_Request *mr) { 
43.             act_list_.insert (mr); 
44.         } 
45.  
46.         // Dispatch the method requests on their 

servant 
47.         // in its scheduler's thread of control. 
48.         virtual void dispatch (); 
49.     private: 
50.         // List of pending Method_Requests. 
51.         Activation_List act_list_; 
52.  
53.         // Entry point into the new thread. 
54.         static void *svc_run (void *arg); 
55.     }; 

 
 

57. A scheduler executes its dispatch() method in a different thread of control than its 
client threads. Each client thread uses a proxy to insert method requests in an active 
object scheduler's activation list. This scheduler monitors the activation list in its own 
thread, selecting a method request whose guard evaluates to 'true,' that is, whose 
synchronization constraints are met. This method request is then removed from the 
activation list and executed by invoking its call() hook method. 

 

58. In our gateway example the constructor of MQ_Scheduler initializes the 
Activation_List and uses the Thread_Manager wrapper facade (47) to 
spawn a new thread of control: 

59.     MQ_Scheduler::MQ_Scheduler (size_t 
high_water_mark): 

60.         act_queue_ (high_water_mark) { 
61.         // Spawn separate thread to dispatch method 

requests. 
62.         Thread_Manager::instance ()->spawn (&svc_run, 

this); 
63.     } 

64. The Thread_Manager::spawn() method is passed a pointer to a static 
MQ_Scheduler::svc_run() method and a pointer to the MQ_Scheduler 
object. The svc_run() static method is the entry point into a newly created 
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thread of control, which runs the svc_run() method. This method is simply an 
adapter [GoF95] that calls the MQ_Scheduler::dispatch() method on the 
this parameter: 

65.     void *MQ_Scheduler::svc_run (void *args) { 
66.         MQ_Scheduler *this_obj = 
67.             static_cast<MQ_Scheduler *> (args); 
68.  
69.         this_obj->dispatch (); 
70.     } 

71. The dispatch() method determines the order in which Put and Get method 
requests are processed based on the underlying MQ_Servant predicates 
empty() and full(). These predicates reflect the state of the servant, such as 
whether the message queue is empty, full, or neither.  

72. By evaluating these predicate constraints via the method request can_run() 
methods, a scheduler can ensure fair access to the MQ_Servant:  

73.     virtual void MQ_Scheduler::dispatch () { 
74.         // Iterate continuously in a separate thread. 
75.         for (;;) { 
76.             Activation_List::iterator request; 
77.             // The iterator's <begin> method blocks 
78.             // when the <Activation_List> is empty. 
79.             for (request = act_list_.begin (); 
80.                 request != act_list_.end (); 
81.                 ++request) { 
82.                 // Select a method request whose 
83.                 // guard evaluates to true. 
84.                 if ((*request).can_run ()) { 
85.                     // Take <request> off the list. 
86.                     act_list_.remove (*request); 
87.                     (*request).call () ; 
88.                     delete *request; 
89.                 } 
90.                 // Other scheduling activities can go 

here, 
91.                 // e.g., to handle when no 

<Method_Request>s 
92.                 // in the <Activation_List> have 

<can_run> 
93.                 // methods that evaluate to true. 
94.             } 
95.         } 
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96.     } 
 

 

98. In our example the MQ_Scheduler::dispatch() implementation iterates 
continuously, executing the next method request whose can_run() method 
evaluates to true. Scheduler implementations can be more sophisticated, however, 
and may contain variables that represent the servant's synchronization state. 

99. For example, to implement a multiple-readers/single-writer synchronization policy a 
prospective writer will call 'write' on the proxy, passing the data to write. Similarly, 
readers will call 'read' and obtain a future as their return value. The active object's 
scheduler maintains several counter variables that keep track of the synchronization 
state, such as the number of read and write requests. The scheduler also maintains 
knowledge about the identity of the prospective writers. 

100. The active object's scheduler can use these synchronization state counters to 
determine when a single writer can proceed, that is, when the current number of 
readers is zero and no write request from a different writer is currently pending 
execution. When such a write request arrives, a scheduler may choose to dispatch 
the writer to ensure fairness. In contrast, when read requests arrive and the servant 
can satisfy them because it is not empty, its scheduler can block all writing activity 
and dispatch read requests first. 

101. The synchronization state counter variable values described above are 
independent of the servant's state because they are only used by its scheduler to 
enforce the correct synchronization policy on behalf of the servant. The servant 
focuses solely on its task to temporarily store client-specific application data. In 
contrast, its scheduler focuses on coordinating multiple readers and writers. This 
design enhances modularity and reusability. 

102. A scheduler can support multiple synchronization policies by using the 
Strategy pattern [GoF95]. Each synchronization policy is encapsulated in a separate 
strategy class. The scheduler, which plays the context role in the Strategy pattern, is 
then configured with a particular synchronization strategy it uses to execute all 
subsequent scheduling decisions. 

103. Determine rendezvous and return value policy. The rendezvous policy 
determines how clients obtain return values from methods invoked on active objects. 
A rendezvous occurs when an active object servant executing in one thread passes a 
return value to the client that invoke the method running in another thread. 
Implementations of the Active Object pattern often choose from the following 
rendezvous and return value policies: 
§ Synchronous waiting. Block the client thread synchronously in the proxy until 

the scheduler dispatches the method request and the result is computed and 
stored in the future. 

§ Synchronous timed wait. Block for a bounded amount of time and fail if the 
active object's scheduler does not dispatch the method request within that time 
period. If the timeout is zero the client thread 'polls', that is, it returns to the caller 
without queueing the method request if its scheduler cannot dispatch it 
immediately. 

§ Asynchronous. Queue the method call and return control to the client 
immediately. If the method is a two-way invocation that produces a result then 
some form of future must be used to provide synchronized access to the value, 
or to the error status if the method call fails. 
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The future construct allows two-way asynchronous invocations [ARSK00] that return 
a value to the client. When a servant completes the method execution, it acquires a 
write lock on the future and updates the future with its result. Any client threads that 
are blocked waiting for the result are awakened and can access the result 
concurrently. A future can be garbage-collected after the writer and all readers 
threads no longer reference it. In languages like C++, which do not support garbage 
collection, futures can be reclaimed when they are no longer in use via idioms like 
Counted Pointer [POSA1]. 

 

In our gateway example the get() method invoked on the MQ_Proxy ultimately 
results in the Get::call() method being dispatched by the MQ_Scheduler, as 
shown in implementation activity 2 (378). The MQ_Proxy::get() method 
returns a value, therefore a Message_Future is returned to the client that calls 
it: 
    class Message_Future { 
    public: 
        // Binds <this> and <f> to the same 
<Msg._Future_Imp.> 
        Message_Future (const Message_Future &f); 
 
        // Initializes <Message_Future_Implementation> to 
        // point to <message> m immediately. 
        Message_Future (const Message &message); 
 
        // Creates a <Msg._Future_Imp.> 
        Message_Future (); 
 
        // Binds <this> and <f> to the same 
        // <Msg._Future_Imp.>, which is created if 
necessary. 
        void operator= (const Message_Future &f); 
 
        // Block upto <timeout>time waiting to obtain result 
        // of an asynchronous method invocation. Throws 
        // <System_Ex> exception if <timeout> expires. 
        Message result (Time_Value *timeout = 0) const; 
    private: 
        // <Message_Future_Implementation> uses the Counted 
        // Pointer idiom. 
        Message_Future_Implementation *future_impl_; 
    }; 

The Message_Future is implemented using the Counted Pointer idiom 
[POSA1]. This idiom simplifies memory management for dynamically allocated 
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C++ objects by using a reference counted 
Message_Future_Implementation body that is accessed solely through the 
Message_Future handle. 
 

 

In general a client may choose to evaluate the result value from a future immediately, 
in which case the client blocks until the scheduler executes the method request. 
Conversely, the evaluation of a return result from a method invocation on an active 
object can be deferred. In this case the client thread and the thread executing the 
method can both proceed asynchronously. 

 

In our gateway example a consumer handler running in a separate thread may 
choose to block until new messages arrive from suppliers: 
    MQ_Proxy message_queue; 
 
    // Obtain future and block thread until message arrives. 
    Message_Future future = message_queue.get (); 
    Message msg = future.result (); 
 
    // Transmit message to the consumer. 
    send (msg); 

Conversely, if messages are not available immediately, a consumer handler can 
store the Message_Future return value from message_queue and perform 
other 'book-keeping' tasks, such as exchanging keep-alive messages to ensure 
its consumer is still active. When the consumer handler is finished with these 
tasks, it can block until a message arrives from suppliers: 
    // Obtain a future (does not block the client). 
    Message_Future future = message_queue.get (); 
 
    // Do something else here... 
 
    // Evaluate future and block if result is not available. 
    Message msg = future.result (); 
    send (msg); 
 

 

Example Resolved 

In our gateway example, the gateway's supplier and consumer handlers are local proxies 
[POSA1] [GoF95] for remote suppliers and consumers, respectively. Supplier handlers 
receive messages from remote suppliers and inspect address fields in the messages. The 
address is used as a key into a routing table that identifies which remote consumer will 
receive the message.  



 334

The routing table maintains a map of consumer handlers, each of which is responsible for 
delivering messages to its remote consumer over a separate TCP connection. To handle 
flow control over various TCP connections, each consumer handler contains a message 
queue implemented using the Active Object pattern. This design decouples supplier and 
consumer handlers so that they can run concurrently and block independently. 

 

The Consumer_Handler class is defined as follows: 
    class Consumer_Handler { 
    public: 
        // Constructor spawns the active object's thread. 
        Consumer_Handler (); 
 
        // Put the message into the queue. 
        void put (const Message &msg) { msg_q_.put (msg); } 
    private: 
        MQ_Proxy msg_q_; // Proxy to the Active Object. 
        SOCK_Stream connection_; // Connection to consumer. 
 
        // Entry point into the new thread. 
        static void *svc_run (void *arg); 
    }; 

Supplier_Handlers running in their own threads can put messages in the appropriate 
Consumer_Handler's message queue active object: 
    void Supplier_Handler::route_message (const Message &msg) 
    { 
         // Locate the appropriate consumer based on the 
         // address information in <Message>. 
         Consumer_Handler *consumer_handler = 
             routing_table_.find (msg.address ()); 
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         // Put the Message into the Consumer Handler's queue. 
         consumer_handler->put (msg); 
    } 

To process the messages inserted into its queue, each Consumer_Handler uses the 
Thread_Manager wrapper facade (47) to spawn a separate thread of control in its 
constructor: 
    Consumer_Handler::Consumer_Handler () { 
        // Spawn a separate thread to get messages from the 
        // message queue and send them to the consumer. 
        Thread_Manager::instance ()->spawn (&svc_run, this); 
        // ... 
    } 

This new thread executes the svc_run() method entry point, which gets the messages 
placed into the queue by supplier handler threads, and sends them to the consumer over the 
TCP connection: 
    void *Consumer_Handler::svc_run (void *args) { 
        Consumer_Handler *this_obj = 
            static_cast<Consumer_Handler *> (args); 
        for (;;) { 
            // Block thread until a <Message> is available. 
            Message msg = this_obj->msg_q_.get ().result (); 
            // Transmit <Message> to the consumer over the 
            // TCP connection. 
            this_obj->connection_.send (msg, msg.length ()); 
        } 
    } 

Every Consumer_Handler object uses the message queue that is implemented as an 
active object and runs in its own thread. Therefore its send() operation can block without 
affecting the quality of service of other Consumer_Handler objects. 

Variants 

Multiple Roles. If an active object implements multiple roles, each used by particular types of 
client, a separate proxy can be introduced for each role. By using the Extension Interface 
pattern (141), clients can obtain the proxies they need. This design helps separate concerns 
because a client only sees the particular methods of an active object it needs for its own 
operation, which further simplifies an active object's evolution. For example, new services 
can be added to the active object by providing new extension interface proxies without 
changing existing ones. Clients that do not need access to the new services are unaffected 
by the extension and need not even be recompiled. 

Integrated Scheduler. To reduce the number of components needed to implement the Active 
Object pattern, the roles of the proxy and servant can be integrated into its scheduler 
component. Likewise, the transformation of a method call on a proxy into a method request 
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can also be integrated into the scheduler. However, servants still execute in a different 
thread than proxies. 

 

Here is an implementation of the message queue using an integrated scheduler: 
    class MQ_Scheduler { 
    public: 
        MQ_Scheduler (size_t size) 
            : servant_ (size), act_list_ (size) { } 
        // ... other constructors/destructors, etc. 
 
        void put (const Message m) { 
             Method_Request *mr = new Put (&servant_, m); 
             act_list_.insert (mr); 
        } 
 
        Message_Future get () { 
            Message_Future result; 
            Method_Request *mr = new Get (&servant_, result); 
            act_list_.insert (mr); 
            return result; 
        } 
 
        // Other methods ... 
    private: 
        MQ_Servant servant_; 
        Activation_List act_list_; 
        // ... 
    }; 
 

 

By centralizing the point at which method requests are generated, the Active Object pattern 
implementation can be simplified because it has fewer components. The drawback, of 
course, is that a scheduler must know the type of the servant and proxy, which makes it hard 
to reuse the same scheduler for different types of active objects. 

Message Passing. A further refinement of the integrated scheduler variant is to remove the 
proxy and servant altogether and use direct message passing between the client thread and 
the active object's scheduler thread. 

 

For example, consider the following scheduler implementation: 
    class Scheduler { 
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    public: 
        Scheduler (size_t size): act_list_ (size) { } 
        // ... other constructors/destructors, etc. 
 
        void insert (Message_Request *message_request) { 
            act_list_.insert (message_request); 
        } 
 
        virtual void dispatch () { 
            for (;;) { 
                Message_Request *mr; 
                // Block waiting for next request to arrive. 
                act_list_.remove (mr); 
                // Process the message request <mr>... 
            } 
        } 
 
        // ... 
    private: 
        Activation_List act_list_; 
        // ... 
    }; 

In this variant, there is no proxy, so clients create an appropriate type of message 
request directly and call insert() themselves, which enqueues the request into the 
activation list. Likewise, there is no servant, so the dispatch() method running in a 
scheduler's thread simply dequeues the next message request and processes the 
request according to its type. 
 

 

In general it is easier to develop a message-passing mechanism than it is to develop an 
active object because there are fewer components. Message passing can be more tedious 
and error-prone, however, because application developers, not active object developers, 
must program the proxy and servant logic. As a result, message passing implementations 
are less type-safe than active object implementations because their interfaces are implicit 
rather than explicit. In addition, it is harder for application developers to distribute clients and 
servers via message passing because there is no proxy to encapsulate the marshaling and 
demarshaling of data. 

Polymorphic Futures [LK95]. A polymorphic future allows parameterization of the eventual 
result type represented by the future and enforces the necessary synchronization. In 
particular, a polymorphic future describes a typed future that client threads can use to 
retrieve a method request's result. Whether a client blocks on a future depends on whether 
or not a result has been computed. 
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The following class is a polymorphic future template for C++: 
    template <class TYPE> 
    class Future { 
        // This class can be used to return results from 
        // two-way asynchronous method invocations. 
    public: 
        // Constructor and copy constructor that binds <this> 
        // and <r> to the same <Future> representation. 
        Future (); 
        Future (const Future<TYPE> &r); 
 
        // Destructor. 
        ~Future (); 
 
        // Assignment operator that binds <this> and <r> to 
        // the same <Future> representation. 
        void operator = (const Future<TYPE> &r); 
 
        // Cancel a <Future> and reinitialize it. 
        void cancel () ; 
 
        // Block upto <timeout> time waiting to obtain result 
        // of an asynchronous method invocation. Throws 
        // <System_Ex> exception if <timeout> expires. 
        TYPE result (Time_Value *timeout = 0) const; 
    private: 
        // ... 
    }; 

A client can use a polymorphic future as follows: 
    try { 
        // Obtain a future (does not block the client). 
        Future<Message> future = message_queue.get (); 
        // Do something else here... 
 
        // Evaluate future and block for up to 1 second 
        // waiting for the result to become available. 
        Time_Value timeout (1); 
        Message msg = future.result (&timeout); 
 
        // Do something with the result ... 
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    } catch (System_Ex &ex) { 
        if (ex.status () == ETIMEDOUT) /* handle timeout */ 
    } 
 

 

Timed method invocations. The activation list illustrated in implementation activity 3 (379) 
defines a mechanism that can bound the amount of time a scheduler waits to insert or 
remove a method request. Although the examples we showed earlier in the pattern do not 
use this feature, many applications can benefit from timed method invocations. To 
implement this feature we can simply export the timeout mechanism via schedulers and 
proxies. 

 

In our gateway example, the MQ_Proxy can be modified so that its methods allow 
clients to bound the amount of time they are willing to wait to execute: 
    class MQ_Proxy { 
    public: 
        // Schedule <put> to execute, but do not block longer 
        // than <timeout> time. Throws <System_Ex> 
        // exception if <timeout> expires. 
        void put (const Message &msg, 
                  Time_Value *timeout = 0); 
 
        // Return a <Message_Future> as the "future" result of 
        // an asynchronous <get> method on the active object, 
        // but do not block longer than <timeout> amount of 
        // time. Throws the <System_Ex> exception if 
        // <timeout> expires. 
        Message_Future get (Time_Value *timeout = 0); 
    }; 

If timeout is 0 both get() and put() will block indefinitely until Message is either 
removed from or inserted into the scheduler's activation list, respectively. If timeout 
expires, the System_Ex exception defined in the Wrapper Facade pattern (47) is thrown 
with a status() value of ETIMEDOUT and the client must catch it. 

To complete our support for timed method invocations, we also must add timeout 
support to the MQ_Scheduler: 
    class MQ_Scheduler { 
    public: 
        // Insert a method request into the <Activation_List> 
        // This method runs in the thread of its client, i.e. 
        // in the proxy's thread, but does not block longer 
        // than <timeout> amount of time. Throws the 
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        // <System_Ex> exception if the <timeout> expires. 
        void insert (Method_Request *method_request, 
                     Time_Value *timeout) { 
            act_list_.insert (method_request, timeout); 
        } 
    } 
 

 

Distributed Active Object. In this variant a distribution boundary exists between a proxy and 
a scheduler, rather than just a threading boundary. This pattern variant introduces two new 
participants: 
§ A client-side proxy plays the role of a stub, which marshals method parameters into a 

method request that is sent across a network and executed by a servant in a separate 
server address space. 

§ A server-side skeleton, which demarshals method request parameters before they are 
passed to a server's servant method. 

The Distributed Active Object pattern variant is therefore similar to the Broker pattern 
[POSA1]. The primary difference is that a Broker usually coordinates the processing of many 
objects, whereas a distributed active object just handles a single object. 

Thread Pool Active Object. This generalization of the Active Object pattern supports multiple 
servant threads per active object to increase throughput and responsiveness. When not 
processing requests, each servant thread in a thread pool active object blocks on a single 
activation list. The active object scheduler assigns a new method request to an available 
servant thread in the pool as soon as one is ready to be executed. 

A single servant implementation is shared by all the servant threads in the pool. This design 
cannot therefore be used if the servant methods do not protect their internal state via some 
type of synchronization mechanism, such as a mutex.  

Additional variants of active objects can be found in [Lea99a], Chapter 5: Concurrency 
Control and Chapter 6: Services in Threads. 

Known Uses 

ACE Framework [Sch97]. Reusable implementations of the method request, activation list, 
and future components in the Active Object pattern are provided in the ACE framework. The 
corresponding classes in ACE are called ACE_Method_Request, 
ACE_Activation_Queue, and ACE_Future. These components have been used to 
implement many production concurrent and networked systems [Sch96]. 

Siemens MedCom. The Active Object pattern is used in the Siemens MedCom framework, 
which provides a black-box component-based framework for electronic medical imaging 
systems. MedCom employs the Active Object pattern in conjunction with the Command 
Processor pattern [POSA1] to simplify client windowing applications that access patient 
information on various medical servers [JWS98]. 

Siemens FlexRouting - Automatic Call Distribution [Flex98]. This call center 
management system uses the Thread Pool variant of the Active Object pattern. Services that 
a call center offers are implemented as applications of their own. For example, there may be 
a hot-line application, an ordering application, and a product information application, 
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depending on the types of service offered. These applications support operator personnel 
that serve various customer requests. Each instance of these applications is a separate 
servant component. A 'FlexRouter' component, which corresponds to the scheduler, 
dispatches incoming customer requests automatically to operator applications that can 
service these requests. 

Java JDK 1.3 introduced a mechanism for executing timer-based tasks concurrently in the 
classes java.util.Timer and java.util.TimerTask. Whenever the scheduled 
execution time of a task occurs it is executed. Specifically, Timer offers different scheduling 
functions to clients that allow them to specify when and how often a task should be 
executed. One-shot tasks are straightforward and recurring tasks can be scheduled at 
periodic intervals. The scheduling calls are executed in the client's thread, while the tasks 
themselves are executed in a thread owned by the Timer object. A Timer internal task 
queue is protected by locks because the two threads outlined above operate on it 
concurrently.  

The task queue is implemented as a priority queue so that the next TimerTask to expire 
can be identified efficiently. The timer thread simply waits until this expiration. There are no 
explicit guard methods and predicates because determining when a task is 'ready for 
execution' simply depends on the arrival of the scheduled time. 

Tasks are implemented as subclasses of TimerTask that override its run() hook method. 
The TimerTask subclasses unify the concepts behind method requests and servants by 
offering just one class and one interface method via TimerTask.run(). 

The scheme described above simplifies the Active Object machinery for the purpose of 
timed execution. There is no proxy and clients call the scheduler—the Timer object—
directly. Clients do not invoke an ordinary method and therefore the concurrency is not 
transparent. Moreover, there are no return value or future objects linked to the run() 
method. An application can employ several active objects by constructing several Timer 
objects, each with its own thread and task queue. 

Chef in a restaurant. A real-life example of the Active Object pattern is found in restaurants. 
Waiters and waitresses drop off customer food requests with the chef and continue to 
service requests from other customers asynchronously while the food is being prepared. The 
chef keeps track of the customer food requests via some type of worklist. However, the chef 
may cook the food requests in a different order than they arrived to use available resources, 
such as stove tops, pots, or pans, most efficiently. When the food is cooked, the chef places 
the results on top of a counter along with the original request so the waiters and waitresses 
can rendezvous to pick up the food and serve their customers. 

Consequences 

The Active Object pattern provides the following benefits: 

Enhances application concurrency and simplifies synchronization complexity. Concurrency is 
enhanced by allowing client threads and asynchronous method executions to run 
simultaneously. Synchronization complexity is simplified by using a scheduler that evaluates 
synchronization constraints to guarantee serialized access to servants, in accordance with 
their state. 

Transparently leverages available parallelism. If the hardware and software platforms 
support multiple CPUs efficiently, this pattern can allow multiple active objects to execute in 
parallel, subject only to their synchronization constraints. 
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Method execution order can differ from method invocation order. Methods invoked 
asynchronously are executed according to the synchronization constraints defined by their 
guards and by scheduling policies. Thus, the order of method execution can differ from the 
order of method invocation order. This decoupling can help improve application performance 
and flexibility. 

However, the Active Object pattern encounters several liabilities: 

Performance overhead. Depending on how an active object's scheduler is implemented—for 
example in user-space versus kernel-space [SchSu95]—context switching, synchronization, 
and data movement overhead may occur when scheduling and executing active object 
method invocations. In general the Active Object pattern is most applicable for relatively 
coarse-grained objects. In contrast, if the objects are fine-grained, the performance 
overhead of active objects can be excessive, compared with related concurrency patterns, 
such as Monitor Object (399). 

Complicated debugging. It is hard to debug programs that use the Active Object pattern due 
to the concurrency and non-determinism of the various active object schedulers and the 
underlying operating system thread scheduler. In particular, method request guards 
determine the order of execution. However, the behavior of these guards may be hard to 
understand and debug. Improperly defined guards can cause starvation, which is a condition 
where certain method requests never execute. In addition, program debuggers may not 
support multi-threaded applications adequately. 

See Also 

The Monitor Object pattern (399) ensures that only one method at a time executes within a 
thread-safe passive object, regardless of the number of threads that invoke the object's 
methods concurrently. In general, monitor objects are more efficient than active objects 
because they incur less context switching and data movement overhead. However, it is 
harder to add a distribution boundary between client and server threads using the Monitor 
Object pattern. 

It is instructive to compare the Active Object pattern solution in the Example Resolved 
section with the solution presented in the Monitor Object pattern. Both solutions have similar 
overall application architectures. In particular, the Supplier_Handler and 
Consumer_Handler implementations are almost identical. 

The primary difference is that the Message_Queue in the Active Object pattern supports 
sophisticated method request queueing and scheduling strategies. Similarly, because active 
objects execute in different threads than their clients, there are situations where active 
objects can improve overall application concurrency by executing multiple operations 
asynchronously. When these operations complete, clients can obtain their results via futures 
[Ha185] [LS88]. 

On the other hand, the Message_Queue itself is easier to program and often more efficient 
when implemented using the Monitor Object pattern than the Active Object pattern. 

The Reactor pattern (179) is responsible for demultiplexing and dispatching multiple event 
handlers that are triggered when it is possible to initiate an operation without blocking. This 
pattern is often used in lieu of the Active Object pattern to schedule callback operations to 
passive objects. Active Object also can be used in conjunction with the Reactor pattern to 
form the Half-Sync/Half-Async pattern (423). 

The Half-Sync/Half-Async pattern (423) decouples synchronous I/O from asynchronous I/O 
in a system to simplify concurrent programming effort without degrading execution efficiency. 
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Variants of this pattern use the Active Object pattern to implement its synchronous task 
layer, the Reactor pattern (179) to implement the asynchronous task layer, and a Producer-
Consumer pattern [Lea99a], such as a variant of the Pipes and Filters pattern [POSA1] or 
the Monitor Object pattern (399), to implement the queueing layer. 

The Command Processor pattern [POSA1] separates issuing requests from their execution. 
A command processor, which corresponds to the Active Object pattern's scheduler, 
maintains pending service requests that are implemented as commands [GoF95], 
Commands are executed on suppliers, which correspond to servants. The Command 
Processor pattern does not focus on concurrency, however. In fact, clients, the command 
processor, and suppliers often reside in the same thread of control. Likewise, there are no 
proxies that represent the servants to clients. Clients create commands and pass them 
directly to the command processor.  

The Broker pattern [POSA1] defines many of the same components as the Active Object 
pattern. In particular, clients access brokers via proxies and servers implement remote 
objects via servants. One difference between Broker and Active Object is that there is a 
distribution boundary between proxies and servants in the Broker pattern, as opposed to a 
threading boundary between proxies and servants in the Active Object pattern. Another 
difference is that active objects typically have just one servant, whereas a broker can have 
many servants. 

Credits 

The genesis for documenting Active Object as a pattern originated with Greg Lavender 
[PLoPD2]. Ward Cunningham helped shape this version of the Active Object pattern. Bob 
Laferriere and Rainer Blome provided useful suggestions that improved the clarity of the 
pattern's Implementation section. Thanks to Doug Lea for providing many additional insights 
in [Lea99a]. 

[1]See the Acceptor-Connector pattern (285) for further details of this example. 

[2]The active object message queue in this example is an implementation mechanism that 
buffers messages to avoid blocking the gateway when flow control occurs on TCP 
connections. It is not related to the activation list, which is an Active Object pattern 
participant that stores method requests pending execution. See the Example Resolved 
section and the Monitor Object pattern (399) for further discussion of the example. 

[3]A list is considered 'full' when its current method request count equals its high-water mark. 

Monitor Object 
The Monitor Object design pattern synchronizes concurrent method execution to ensure that 
only one method at a time runs within an object. It also allows an object's methods to 
cooperatively schedule their execution sequences. 

Also Known As 

Thread-safe Passive Object 

Example 

Let us reconsider the design of the communication gateway described in the Active Object 
pattern (369).[4]  
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The gateway process is a mediator [GoF95] that contains multiple supplier and consumer 
handler objects. These objects run in separate threads and route messages from one or 
more remote suppliers to one or more remote consumers. When a supplier handler thread 
receives a message from a remote supplier, it uses an address field in the message to 
determine the corresponding consumer handler. The handler's thread then delivers the 
message to its remote consumer.  

When suppliers and consumers reside on separate hosts, the gateway uses a connection-
oriented protocol, such as TCP [Ste93], to provide reliable message delivery and end-to-end 
flow control. Flow control is a protocol mechanism that blocks senders when they produce 
messages more rapidly than receivers can process them. The entire gateway should not 
block while waiting for flow control to abate on outgoing TCP connections, however. In 
particular, incoming TCP connections should continue to be processed and messages 
should continue to be sent over any non-flow-controlled TCP connections. 

To minimize blocking, each consumer handler can contain a thread-safe message queue. 
Each queue buffers new routing messages it receives from its supplier handler threads. This 
design decouples supplier handler threads in the gateway process from consumer handler 
threads, so that all threads can run concurrently and block independently when flow control 
occurs on various TCP connections. 

One way to implement a thread-safe message queue is to apply the Active Object pattern 
(369) to decouple the thread used to invoke a method from the thread used to execute the 
method. Active Object may be inappropriate, however, if the entire infrastructure introduced 
by this pattern is unnecessary. For example, a message queue's enqueue and dequeue 
methods may not require sophisticated scheduling strategies. In this case, Implementing the 
Active Object pattern's method request, scheduler and activation list participants incurs 
unnecessary performance overhead, and programming effort. 

Instead, the implementation of the thread-safe message queue must be efficient to avoid 
degrading performance unnecessarily. To avoid tight coupling of supplier and consumer 
handler implementations, the mechanism should also be transparent to implementors of 
supplier handlers. Varying either implementation independently would otherwise become 
prohibitively complex. 

Context 

Multiple threads of control accessing the same object concurrently. 

Problem 

Many applications contain objects whose methods are invoked concurrently by multiple 
client threads. These methods often modify the state of their objects. For such concurrent 
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applications to execute correctly, therefore, it is necessary to synchronize and schedule 
access to the objects.  

In the presence of this problem four forces must be addressed: 
§ To separate concerns and protect object state from uncontrolled changes, object-

oriented programmers are accustomed to accessing objects only through their interface 
methods. It is relatively straightforward to extend this object-oriented programming 
model to protect an object's data from uncontrolled concurrent changes, known as race 
conditions. An object's interface methods should therefore define its synchronization 
boundaries, and only one method at a time should be active within the same object. 

§ Concurrent applications are harder to program if clients must explicitly acquire and 
release low-level synchronization mechanisms, such as semaphores, mutexes, or 
condition variables [IEEE96]. Objects should therefore be responsible for ensuring that 
any of their methods that require synchronization are serialized transparently, without 
requiring explicit client intervention. 

§ If an object's methods must block during their execution, they should be able to 
relinquish their thread of control voluntarily, so that methods called from other client 
threads can access the object. This property helps prevent deadlock and makes it 
possible to take advantage of concurrency mechanisms available on hardware and 
software platforms. 

§ When a method relinquishes its thread of control voluntarily, it must leave its object in a 
stable state, that is, object-specific invariants must hold. Similarly, a method must 
resume its execution within an object only when the object is in a stable state. 

Solution 

Synchronize the access to an object's methods so that only one method can execute at any 
one time. 

In detail: for each object accessed concurrently by multiple client threads, define it as a 
monitor object. Clients can access the functions defined by a monitor object only through its 
synchronized methods. To prevent race conditions on its internal state, only one 
synchronized method at a time can run within a monitor object. To serialize concurrent 
access to an object's state, each monitor object contains a monitor lock. Synchronized 
methods can determine the circumstances under which they suspend and resume their 
execution, based on one or more monitor conditions associated with a monitor object. 

Structure 

There are four participants in the Monitor Object pattern: 

A monitor object exports one or more methods. To protect the internal state of the monitor 
object from uncontrolled changes and race conditions, all clients must access the monitor 
object only through these methods. Each method executes in the thread of the client that 
invokes it, because a monitor object does not have its own thread of control.[5]  

Synchronized methods implement the thread-safe functions exported by a monitor object. To 
prevent race conditions, only one synchronized method can execute within a monitor object 
at any one time. This rule applies regardless of the number of threads that invoke the 
object's synchronized methods concurrently, or the number of synchronized methods in the 
object's class. 

 

A consumer handler's message queue in the gateway application can be implemented 
as a monitor object by converting its put() and get() operations into synchronized 
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methods. This design ensures that routing messages can be inserted and removed 
concurrently by multiple threads without corrupting the queue's internal state. 
 

 

 

Each monitor object contains its own monitor lock. Synchronized methods use this lock to 
serialize method invocations on a per-object basis. Each synchronized method must acquire 
and release an object's monitor lock when entering or exiting the object. This protocol 
ensures the monitor lock is held whenever a synchronized method performs operations that 
access or modify the state of its object.  

Monitor condition. Multiple synchronized methods running in separate threads can schedule 
their execution sequences cooperatively by waiting for and notifying each other via monitor 
conditions associated with their monitor object. Synchronized methods use their monitor lock 
in conjunction with their monitor condition(s) to determine the circumstances under which 
they should suspend or resume their processing. 

 

 

In the gateway application a POSIX mutex [IEEE96] can be used to implement the 
message queue's monitor lock. A pair of POSIX condition variables can be used to 
implement the message queue's not-empty and not-full monitor conditions: 
§ When a consumer handler thread attempts to dequeue a routing message from an 

empty message queue, the queue's get() method must atomically release the 
monitor lock and suspend itself on the not-empty monitor condition. It remains 
suspended until the queue is no longer empty, which happens when a supplier 
handler thread inserts a message into the queue. 

§ When a supplier handler thread attempts to enqueue a message into a full queue, the 
queue's put() method must atomically release the monitor lock and suspend itself 
on the not-full monitor condition. It remains suspended until the queue is no longer 
full, which happens when a consumer handler removes a message from the 
message queue. 

Note that the not-empty and not-full monitor conditions both share the same monitor 
lock. 
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The structure of the Monitor Object pattern is illustrated in the following class diagram: 

 

Dynamics 

The collaborations between participants in the Monitor Object pattern divide into four 
phases: 
§ Synchronized method invocation and serialization. When client thread T1 invokes a 

synchronized method on a monitor object, the method must first acquire the object's 
monitor lock. A monitor lock cannot be acquired as long as another synchronized 
method in thread T2 is executing within the monitor object. In this case, client thread T1 
will block until the synchronized method acquires the lock. Once the synchronized 
method called by T1 has finished executing, the monitor lock is released so that other 
synchronized methods called by other threads can access the monitor object. 

§ Synchronized method thread suspension. If a synchronized method must block or 
cannot otherwise make immediate progress, it can wait on one of its monitor conditions. 
This causes it to 'leave' the monitor object temporarily [Hoare74]. The monitor object 
implementation is responsible for ensuring that it is in a stable state before switching to 
another thread. When a synchronized method leaves the monitor object, the client's 
thread is suspended on that monitor condition and the monitor lock is released 
atomically by the operating system's thread scheduler. Another synchronized method in 
another thread can now execute within the monitor object. 

§ Monitor condition notification. A synchronized method can notify a monitor condition. 
This operation awakens the thread of a synchronized method that had suspended itself 
on the monitor condition earlier. A synchronized method can also notify all other 
synchronized methods that suspended their threads earlier on a monitor condition. In 
this case all the threads are awakened and one of them at a time can acquire the 
monitor lock and run within the monitor object. 

§ Synchronized method thread resumption. Once a suspended synchronized method 
thread is notified, its execution can resume at the point where it waited on the monitor 
condition. The operating system thread scheduler performs this resumption implicitly. 
The monitor lock is reacquired atomically before the notified thread 're-enters' the 
monitor object and resumes its execution in the synchronized method. 
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Implementation 

Four activities illustrate how to implement the Monitor Object pattern. 
1. Define the monitor object's interface methods. The interface of a monitor object exports 

a set of methods to clients. Interface methods are often synchronized, that is, only 
one of them at a time can be executed by a thread within a particular monitor object. 

 

2. In our gateway example, each consumer handler contains a message queue and 
a TCP connection. The message queue can be implemented as a monitor object 
that buffers messages it receives from supplier handler threads. This buffering 
helps prevent the entire gateway process from blocking whenever consumer 
handler threads encounter flow control on TCP connections to their remote 
consumers. The following C++ class defines the interface for our message queue 
monitor object: 

3.     class Message_Queue { 
4.     public: 
5.         enum { MAX_MESSAGES = /* ... */; }; 
6.  
7.         // The constructor defines the maximum number 
8.         // of messages in the queue. This determines 
9.         // when the queue is 'full.' 
10.         Message_Queue (size_t max_messages = 

MAX_MESSAGES); 
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11.  
12.         // Put the <Message> at the tail of the queue. 
13.         // If the queue is full, block until the queue 
14.         // is not full. 
15.         /* synchronized */ void put (const Message 

&msg); 
16.  
17.         // Get the <Message> from the head of the 

queue 
18.         // and remove it. If the queue is empty, 
19.         // block until the queue is not empty. 
20.         /* synchronized */ Message get (); 
21.  
22.         // True if the queue is empty, else false. 
23.         /* synchronized */ bool empty () const; 
24.  
25.         // True if the queue is full, else false. 
26.         /* synchronized */ bool full () const; 
27.     private: 
28.         // ... described later ... 
29.     }; 

30. The Message_Queue monitor object interface exports four synchronized 
methods. The empty() and full() methods are predicates that clients can use 
to distinguish three internal queue states: empty, full, and neither empty nor full. 
The put() and get() methods enqueue and dequeue messages into and from 
the queue, respectively, and will block if the queue is full or empty. 
 

 

32. Define the monitor object's implementation methods. A monitor object often contains 
internal implementation methods that synchronized interface methods use to perform 
the object's functionality. This design helps decouple the core monitor object 
functionality from its synchronization and scheduling logic. It also helps avoid intra-
object deadlock and unnecessary locking overhead. 

Two conventions, based on the Thread-Safe Interface pattern (345), can be used to 
structure the separation of concerns between interface and implementation methods 
in a monitor object: 
§ Interface methods only acquire and release monitor locks and wait upon or 

notify certain monitor conditions. They otherwise forward control to 
implementation methods that perform the monitor object's functionality. 

§ Implementation methods only perform work when called by interface methods. 
They do not acquire and release the monitor lock, nor do they wait upon or notify 
monitor conditions explicitly. 

Similarly, in accordance with the Thread-Safe Interface pattern, implementation 
methods should not call any synchronized methods defined in the class interface. 
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This restriction helps to avoid intra-object method deadlock or unnecessary 
synchronization overhead. 

 

In our gateway, the Message_Queue class defines four implementation methods: 
put_i(), get_i(), empty_i(), and full_ i():  
    class Message_Queue { 
    public: 
        // ... See above ... 
    private: 
        // Put the <Message> at the tail of the queue, and 
        // get the <Message> at its head, respectively. 
        void put_i (const Message &msg); 
        Message get_i (); 
 
        // True if the queue is empty, else false. 
        bool empty_i () const; 
 
        // True if the queue is full, else false. 
        bool full_i () const; 
    }; 
 

 

Implementation methods are often non-synchronized. They must be careful when 
invoking blocking calls, because the interface method that called the implementation 
method may have acquired the monitor lock. A blocking thread that owned a lock 
could therefore delay overall program progress indefinitely. 

33. Define the monitor object's internal state and synchronization mechanisms. A monitor 
object contains data members that define its internal state. This state must be 
protected from corruption by race conditions resulting from unsynchronized 
concurrent access. A monitor object therefore contains a monitor lock that serializes 
the execution of its synchronized methods, as well as one or more monitor conditions 
used to schedule the execution of synchronized method within a monitor object. 
Typically there is a separate monitor condition for each of the following situations: 
§ Cases in which synchronized methods must suspend their processing to wait 

for the occurrence of some event of state change; or 
§ Cases in which synchronized methods must resume other threads whose 

synchronized methods have suspended themselves on the monitor condition. 

A monitor object method implementation is responsible for ensuring that it is in a 
stable state before releasing its lock. Stable states can be described by invariants, 
such as the need for all elements in a message queue to be linked together via valid 
pointers. The invariant must hold whenever a monitor object method waits on the 
corresponding condition variable. 

Similarly, when the monitor object is notified and the operating system thread 
scheduler decides to resume its thread, the monitor object method implementation is 
responsible for ensuring that the invariant is indeed satisfied before proceeding. This 
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check is necessary because other threads may have changed the state of the object 
between the notification and the resumption. A a result, the monitor object must 
ensure that the invariant is satisfied before allowing a synchronized method to 
resume its execution. 

A monitor lock can be implemented using a mutex. A mutex makes collaborating 
threads wait while the thread holding the mutex executes code in a critical section. 
Monitor conditions can be implemented using condition variables [IEEE96]. A 
condition variable can be used by a thread to make itself wait until a particular event 
occurs or an arbitrarily complex condition expression attains a particular stable state. 
Condition expressions typically access objects or state variables shared between 
threads. They can be used to implement the Guarded Suspension pattern [Lea99a]. 

 

In our gateway example, the Message_Queue defines its internal state, as 
illustrated below: 
    class Message_Queue { 
        // ... See above .... 
    private: 
        // ... See above ... 
 
        // Internal Queue representation omitted, could be a 
        // circular array or a linked list, etc.. ... 
 
        // Current number of <Message>s in the queue. 
        size_t message_count_; 
 
        // The maximum number <Message>s that can be 
        // in a queue before it's considered 'full.' 
        size_t max_messages_; 
 
        // Mutex wrapper facade that protects the queue's 
        // internal state from race conditions during 
        // concurrent access. 
        mutable Thread_Mutex monitor_lock_; 
 
        // Condition variable wrapper facade used in 
        // conjunction with <monitor_lock_> to make 
        // synchronized method threads wait until the queue 
        // is no longer empty. 
        Thread_Condition not_empty_; 
 
        // Condition variable wrapper facade used in 
        // conjunction with <monitor_lock_> to make 
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        // synchronized method threads wait until the queue 
        // is no longer full. 
        Thread_Condition not_full_; 
    }; 

A Message_Queue monitor object defines three types of internal state: 
§ Queue representation data members. These data members define the internal 

queue representation. This representation stores the contents of the queue 
in a circular array or linked list, together with book-keeping information 
needed to determine whether the queue is empty, full, or neither. The 
internal queue representation is manipulated only by the put_i(), 
get_i(), empty_i(), and full_i() implementation methods. 

§ Monitor lock data member. The monitor_lock_ is used by a 
Message_Queue's synchronized methods to serialize their access to the 
state of the queue's internal representation. A monitor object's lock must be 
held whenever its state is being changed to ensure that its invariants are 
satisfied. This monitor lock is implemented using the platform-independent 
Thread_Mutex class defined in the Wrapper Facade pattern (47). 

§ Monitor condition data members. The monitor conditions is_full_ and 
is_empty_ are used by the put() and get() synchronized methods to 
suspend and resume themselves when a Message_Queue leaves its full 
and empty boundary conditions, respectively. These monitor conditions are 
implemented using the platform-independent Thread_Condition class 
defined in the Wrapper Facade pattern (47). 

 
 

34. Implement all the monitor object's methods and data members. The following two 
sub-activities can be used to implement all the monitor object methods and internal 
state defined above. 

1. Initialize the data members. This sub-activity initializes object-specific data 
members, as well as the monitor lock and any monitor conditions. 

 

2. The constructor of Message_Queue creates an empty queue and 
initializes the monitor conditions not_empty_ and not_full_: 

3.     Message_Queue::Message_Queue (size_t max_messages) 
4.         :    not_full_ (monitor_lock_), 
5.              not_empty_ (monitor_lock_), 
6.              max_messages_ (max_messages), 
7.              message_count_ (0) { /* ... */ } 

8. In this example, both monitor conditions share the same 
monitor_lock_. This design ensures that Message_Queue state, such 
as the message_count_, is serialized properly to prevent race conditions 
from violating invariants when multiple threads try to put() and get() 
messages on a queue simultaneously. 
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10. Apply the Thread-Safe Interface pattern. In this sub-activity, the interface and 
implementation methods are implemented according to the Thread-Safe 
Interface pattern (345). 

 

11. In our Message_Queue implementation two pairs of interface and 
implementation methods check if a queue is empty, which means it 
contains no messages, or full, which means it contains max_messages_. 
We show the interface methods first: 

12.     bool Message_Queue::empty () const { 
13.         Guard<Thread_Mutex> guard (monitor_lock_); 
14.         return empty_i (); 
15.     } 
16.  
17.     bool Message_Queue::full () const { 
18.         Guard<Thread_Mutex> guard (monitor_lock_); 
19.         return full_i (); 
20.     } 

21. These methods illustrate a simple example of the Thread-Safe Interface 
pattern (345). They use the Scoped Locking idiom (325) to acquire and 
release the monitor lock, then forward immediately to their corresponding 
implementation methods: 

22.     bool Message_Queue::empty_i () const { 
23.          return message_count_ == 0; 
24.     } 
25.  
26.     bool Message_Queue::full_i () const { 
27.          return message_count_ == max_messages_; 
28.     } 

29. In accordance with the Thread-Safe Interface pattern, these 
implementation methods assume the monitor_lock_ is held, so they 
just check for the boundary conditions in the queue. 

30. The put() method inserts a new Message, which is a class defined in 
the Active Object pattern (369), at the tail of a queue. It is a synchronized 
method that illustrates a more sophisticated use of the Thread-Safe 
Interface pattern (345): 

31.     void Message_Queue::put (const Message &msg) { 
32.         // Use the Scoped Locking idiom to 
33.         // acquire/release the <monitor_lock_> upon 
34.         // entry/exit to the synchronized method. 
35.         Guard<Thread_Mutex> guard (monitor_lock_); 
36.         // Wait while the queue is full. 
37.         while (full_i ()) { 
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38.             // Release <monitor_lock_> and suspend the 
39.             // calling thread waiting for space in the 

queue. 
40.             // The <monitor_lock_> is reacquired 
41.             // automatically when <wait> returns. 
42.             not_full_.wait (); 
43.         } 
44.  
45.         // Enqueue the <Message> at the tail. 
46.         put_i (msg); 
47.  
48.         // Notify any thread waiting in <get> that 
49.         // the queue has at least one <Message>. 
50.         not_empty_.notify (); 
51.  
52.     } // Destructor of <guard> releases 

<monitor_lock_>. 

53. Note how this public synchronized put() method only performs the 
synchronization and scheduling logic needed to serialize access to the 
monitor object and wait while the queue is full. Once there is room in the 
queue, put() forwards to the put_i() implementation method. This 
inserts the message into the queue and updates its book-keeping 
information. Moreover, the put_i() is not synchronized because the 
put() method never calls it without first acquiring the monitor_lock_. 
Likewise, the put_i() method need not check to see if the queue is full 
because it is not called as long as full_i() returns true. 

54. The get() method removes the message at the front of the queue and 
returns it to the caller: 

55.     Message Message_Queue::get () { 
56.         // Use the Scoped Locking idiom to 
57.         // acquire/release the <monitor_lock_> upon 
58.         // entry/exit to the synchronized method. 
59.         Guard<Thread_Mutex> guard (monitor_lock_); 
60.  
61.         // Wait while the queue is empty. 
62.         while (empty_i ()) { 
63.             // Release <monitor_lock_> and suspend the 
64.             // calling thread waiting for a new 

<Message> to 
65.             // be put into the queue. The 

<monitor_lock_> is 
66.             // reacquired automatically when <wait> 

returns. 



 355

67.             not_empty_.wait (); 
68.         } 
69.  
70.         // Dequeue the first <Message> in the queue 
71.         // and update the <message_count_>. 
72.         Message m = get_i (); 
73.         // Notify any thread waiting in <put> that the 
74.         // queue has room for at least one <Message>. 
75.         not_full_.notify (); 
76.         return m; 
77.  
78.         // Destructor of <guard> releases 

<monitor_lock_>. 
79.     } 

80. As before, note how the synchronized get() interface method performs 
the synchronization and scheduling logic, while forwarding the dequeueing 
functionality to the get_i() implementation method. 
 

 

Example Resolved 

Internally, our gateway contains instances of two classes, Supplier_Handler and 
Consumer_Handler. These act as local proxies [GoF95] [POSA1] for remote suppliers and 
consumers, respectively. Each Consumer_Handler contains a thread-safe 
Message_Queue object implemented using the Monitor Object pattern. This design 
decouples supplier handler and consumer handler threads so that they run concurrently and 
block independently. Moreover, by embedding and automating synchronization inside 
message queue monitor objects, we can protect their internal state from corruption, maintain 
invariants, and shield clients from low-level synchronization concerns. 

The Consumer_Handler is defined below: 
    class Consumer_Handler { 
    public: 
        // Constructor spawns a thread and calls <svc_run>. 
        Consumer_Handler (); 
 
        // Put <Message> into the queue monitor object, 
        // blocking until there's room in the queue. 
        void put (const Message &msg) { 
            message_queue_.put (msg); 
        } 
    private: 
        // Message queue implemented as a monitor object. 
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        Message_Queue message_queue_; 
 
        // Connection to the remote consumer. 
        SOCK_Stream connection_; 
 
        // Entry point to a distinct consumer handler thread. 
        static void *svc_run (void *arg); 
    }; 

Each Supplier_Handler runs in its own thread, receives messages from its remote 
supplier and routes the messages to the designated remote consumers. Routing is 
performed by inspecting an address field in each message, which is used as a key into a 
routing table that maps keys to Consumer_Handlers. 

 

Each Consumer_Handler is responsible for receiving messages from suppliers via its 
put() method and storing each message in its Message_Queue monitor object: 
    void Supplier_Handler::route_message (const Message &msg) 
    { 
        // Locate the appropriate <Consumer_Handler> based 
        // on address information in the <Message>. 
        Consumer_Handler *consumer_handler = 
             routing_table_.find (msg.address ()); 
 
        // Put <Message> into the <Consumer Handler>, which 
        // stores it in its <Message Queue> monitor object. 
        consumer_handler->put (msg); 
    } 

To process the messages placed into its message queue by Supplier_Handlers, each 
Consumer_Handler spawns a separate thread of control in its constructor using the 
Thread_Manager class defined in the Wrapper Facade pattern (47), as follows: 
    Consumer_Handler::Consumer_Handler () { 
        // Spawn a separate thread to get messages from the 
        // message queue and send them to the remote consumer. 
        Thread_Manager::instance ()->spawn (&svc_run, this); 
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    } 

This new Consumer_Handler thread executes the svc_run() entry point. This is a static 
method that retrieves routing messages placed into its message queue by 
Supplier_Handler threads and sends them over its TCP connection to the remote 
consumer: 
    void *Consumer_Handler::svc_run (void *args) { 
         Consumer_Handler *this_obj = 
             static_cast<Consumer_Handler *> (args); 
         for (;;) { 
             // Blocks on <get> until next <Message> arrives. 
             Message msg = this_obj->message_queue_.get (); 
             // Transmit message to the consumer. 
             this_obj->connection_.send (msg, msg.length ()); 
         } 
    } 

The SOCK_Stream's send() method can block in a Consumer_Handler thread. It will not 
affect the quality of service of other Consumer_Handler or Supplier_Handler threads, 
because it does not share any data with the other threads. Similarly, 
Message_Queue::get() can block without affecting the quality of service of other threads, 
because the Message_Queue is a monitor object. Supplier_Handlers can thus insert 
new messages into the Consumer_Handler's Message_Queue via its put() method 
without blocking indefinitely. 

Variants 

Timed Synchronized Method Invocations. Certain applications require 'timed' synchronized 
method invocations. This feature allows them to set bounds on the time they are willing to 
wait for a synchronized method to enter its monitor object's critical section. The Balking 
pattern described in [Lea99a] can be implemented using timed synchronized method 
invocations. 

 

The Message_Queue monitor object interface defined earlier can be modified to support 
timed synchronized method invocations: 
    class Message_Queue { 
    public: 
        // Wait up to the <timeout> period to put <Message> 
        // at the tail of the queue. 
        void put 
             (const Message &msg, Time_Value *timeout =0); 
 
        // Wait up to the <timeout> period to get <Message> 
        // from the head of the queue. 
        Message get (Time_Value *timeout = 0); 
    }; 
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If timeout is 0 then both get() and put() will block indefinitely until a message is 
either inserted into or removed from a Message_Queue monitor object. If the time-out 
period is non-zero and it expires, the Timedout exception is thrown. The client must be 
prepared to handle this exception. 

The following illustrates how the put() method can be implemented using the timed 
wait feature of the Thread_Condition condition variable wrapper outlined in 
implementation activity 3 (408): 
    void Message_Queue::put 
         (const Message &msg, Time_Value *timeout) 
             /* throw (Timedout) */ { 
         // ... Same as before ... 
         while (full_i ()) 
             not_full_.wait (timeout); 
         // ... Same as before ... 
    } 

While the queue is full this 'timed' put() method releases monitor_lock_ and 
suspends the calling thread, to wait for space to become available in the queue or for 
the timeout period to elapse. The monitor_lock_ will be re-acquired automatically 
when wait() returns, regardless of whether a time-out occurred or not. 
 

 

Strategized Locking. The Strategized Locking pattern (333) can be applied to make a 
monitor object implementation more flexible, efficient, reusable, and robust. Strategized 
Locking can be used, for example, to configure a monitor object with various types of 
monitor locks and monitor conditions. 

 

The following template class uses generic programming techniques [Aus98] to 
parameterize the synchronization aspects of a Message_Queue:  
    template <class SYNCH_STRATEGY> class Message_Queue { 
    private: 
        typename SYNCH_STRATEGY::Mutex monitor_lock_; 
        typename SYNCH_STRATEGY::Condition not_empty_; 
        typename SYNCH_STRATEGY::Condition not_full_; 
        // ... 
    }; 

Each synchronized method is then modified as shown by the following empty() 
method: 
    template <class SYNCH_STRATEGY> 
    bool Message_Queue<SYNCH_STRATEGY>::empty () const { 
        Guard<SYNCH_STRATEGY::Mutex> guard (monitor_lock_) ; 
        return empty_i (); 
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    } 

To parameterize the synchronization aspects associated with a Message_Queue, we 
can define a pair of classes, MT_Synch and NULL_SYNCH that typedef the appropriate 
C++ traits: 
    class MT_Synch { 
    public: 
        // Synchronization traits. 
        typedef Thread_Mutex Mutex; 
        typedef Thread_Condition Condition; 
    }; 
 
    class Null_Synch { 
    public: 
        // Synchronization traits. 
        typedef Null_Mutex Mutex; 
        typedef Null_Thread_Condition Condition; 
    }; 

To define a thread-safe Message_Queue, therefore, we simply parameterize it with the 
MT_Synch strategy: 
    Message_Queue<MT_Synch> message_queue; 

Similarly, to create a non-thread-safe Message_Queue, we can parameterize it with the 
following Null_Synch strategy: 
    Message_Queue<Null_Synch> message_queue; 
 

 

Note that when using the Strategized Locking pattern in C++ it may not be possible for a 
generic component class to know what type of synchronization strategy will be configured for 
a particular application. It is important therefore to apply the Thread-Safe Interface pattern 
(345) as described in implementation activity 4.2 (411), to ensure that intra-object method 
calls, such as put() calling full_i(), and put_i() , avoid self-deadlock and minimize 
locking overhead. 

Multiple Roles. If a monitor object implements multiple roles, each of which is used by 
different types of clients, an interface can be introduced for each role. Applying the 
Extension Interface pattern (141) allows clients to obtain the interface they need. This design 
helps separate concerns, because a client only sees the particular methods of a monitor 
object it needs for its own operation. This design further simplifies a monitor object's 
evolution. For example, new services can be added to the active object by providing new 
extension interface without changing existing ones. Clients that do not need access to the 
new services are thus unaffected by the extension. 

Known Uses 

Dijkstra and Hoare-style Monitors. Dijkstra [Dij68] and Hoare [Hoare74] defined 
programming language features called monitors that encapsulate functions and their internal 
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variables into thread-safe modules. To prevent race conditions a monitor contains a lock that 
allows only one function at a time to be active within the monitor. Functions that want to 
leave the monitor temporarily can block on a condition variable. It is the responsibility of the 
programming language compiler to generate run-time code that implements and manages a 
monitor's lock and its condition variables. 

Java Objects. The main synchronization mechanism in Java is based on Dijkstra/Hoare-
style monitors. Each Java object can be a monitor object containing a monitor lock and a 
single monitor condition. Java's monitors are simple to use for common use cases, because 
they allow threads to serialize their execution implicitly via method-call interfaces and to 
coordinate their activities via calls to wait(), notify(), and notifyAll() methods 
defined on all objects. 

For more complex use cases, however, the simplicity of the Java language constructs may 
mislead developers into thinking that concurrency is easier to program than it actually is in 
practice. In particular, heavy use of inter-dependent Java threads can yield complicated 
inter-relationships, starvation, deadlock, and overhead. [Lea99a] describes many patterns 
for handling simple and complex concurrency use cases in Java. 

The Java language synchronization constructs outlined above can be implemented in 
several ways inside a compliant Java virtual machine (JVM). JVM implementors must 
choose between two implementation decisions: 
§ Implement Java threads internally in the JVM. If threads are implemented internally, 

the JVM appears as one monolithic task to the operating system. In this case, the JVM 
is free to decide when to suspend and resume threads and how to implement thread 
scheduling, as long as it stays within the bounds of the Java language specification. 

§ Map Java threads them to native operating system threads. In this case Java monitors 
can take advantage of synchronization primitives and scheduling behavior of the 
underlying platform. 

The advantage of an internal threads implementation is its platform-independence. However, 
one of its disadvantages is its inability to take advantage of parallelism in the hardware. As a 
result, an increasing number of JVMs are implemented by mapping Java threads to native 
operating system threads. 

ACE Gateway. The example from the Example Resolved section is based on a 
communication gateway application contained in the ACE framework [Sch96], which uses 
monitor objects to simplify concurrent programming and improve performance on 
multiprocessors. Unlike the Dijkstra/Hoare and Java monitors, which are programming 
language features, the Message_Queues used by Consumer_Handlers in the gateway 
are reusable ACE C++ components implemented using the Monitor Object pattern. Although 
C++ does not support monitor objects directly as a language feature, ACE implements the 
Monitor Object pattern by applying other patterns and idioms, such as the Guarded 
Suspension pattern [Lea99a] and the Scoped Locking (325) idiom, as described in the 
Implementation section. 

Fast food restaurant. A real-life example of the Monitor Object pattern occurs when 
ordering a meal at a busy fast food restaurant. Customers are the clients who wait to place 
their order with a cashier. Only one customer at a time interacts with a cashier. If the order 
cannot be serviced immediately, a customer temporarily steps aside so that other customers 
can place their orders. When the order is ready the customer re-enters at the front of the line 
and can pick up the meal from the cashier. 

Consequences 

The Monitor Object pattern provides two benefits: 
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Simplification of concurrency control. The Monitor Object pattern presents a concise 
programming model for sharing an object among cooperating threads. For example, object 
synchronization corresponds to method invocations. Similarly clients need not be concerned 
with concurrency control when invoking methods on a monitor object. It is relatively 
straightforward to create a monitor object out of most so-called passive objects, which are 
objects that borrow the thread of control of its caller to execute its methods. 

Simplification of scheduling method execution. Synchronized methods use their monitor 
conditions to determine the circumstances under which they should suspend or resume their 
execution and that of collaborating monitor objects. For example, methods can suspend 
themselves and wait to be notified when arbitrarily complex conditions occur, without using 
inefficient polling. This feature makes it possible for monitor objects to schedule their 
methods cooperatively in separate threads. 

The Monitor Object pattern has the following four liabilities: 

The use of a single monitor lock can limit scalability due to increased contention when 
multiple threads serialize on a monitor object. 

Complicated extensibility semantics resulting from the coupling between a monitor object's 
functionality and its synchronization mechanisms. It is relatively straightforward to decouple 
an active object's (369) functionality from its synchronization policies via its separate 
scheduler participant. However, a monitor object's synchronization and scheduling logic is 
often tightly coupled with its methods' functionality. This coupling often makes monitor 
objects more efficient than active objects. Yet it also makes it hard to change their 
synchronization policies or mechanisms without modifying the monitor object's method 
implementations. 

It is also hard to inherit from a monitor object transparently, due to the inheritance anomaly 
problem [MWY91]. This problem inhibits reuse of synchronized method implementations 
when subclasses require different synchronization mechanisms. One way to reduce the 
coupling of synchronization and functionality in monitor objects is to use Aspect-Oriented 
Programming [KLM+97] or the Strategized Locking (333) and Thread-Safe Interface (345) 
patterns, as shown in the Implementation and Variants section. 

Nested monitor lockout. This problem is similar to the preceding liability. It can occur when a 
monitor object is nested within another monitor object.  

Consider the following two Java classes: 
    class Inner { 
        protected boolean cond_ = false; 
 
        public synchronized void awaitCondition () { 
            While (!cond) 
                try { wait (); } 
                catch (InterruptedException e) { } 
                // Any other code. 
        } 
 
        public synchronized void notifyCondition (boolean c){ 
            cond_ = c; 
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            notifyAll () ; 
        } 
 
    class Outer { 
        protected Inner inner_ = new Inner () ; 
 
        public synchronized void process () { 
            inner_.awaitCondition () ; 
        } 
        public synchronized void set (boolean c) { 
            inner_.notifyCondition (c) ; 
        } 
    } 

This code illustrates the canonical form of the nested monitor lockout problem in Java 
[JS97a]. When a Java thread blocks in the monitor's wait queue, all its locks are held except 
the lock of the object placed in the queue. 

Consider what would happen if thread T1 made a call to Outer.process() and as a result 
blocked in the wait() call in Inner.awaitCondition(). In Java, the Inner and Outer 
classes do not share their monitor locks. The wait() statement in waitCondition() call 
would therefore release the Inner monitor while retaining the Outer monitor. Another 
thread T2 cannot then acquire the Outer monitor, because it is locked by the synchronized 
process() method. As a result Outer.set cannot set Inner.cond_ to true and T1 will 
continue to block in wait() forever. 

Nested monitor lockout can be avoided by sharing a monitor lock between multiple monitor 
conditions. This is straightforward in Monitor Object pattern implementations based on 
POSIX condition variables [IEEE96]. It is surprisingly hard in Java due to its simple 
concurrency and synchronization model, which tightly couples a monitor lock with each 
monitor object. Java idioms for avoiding nested monitor lockout in Java are described in 
[Lea99a] [JS97a]. 

See Also 

The Monitor Object pattern is an object-oriented analog of the Code Locking pattern 
[McK95], which ensures that a region of code is serialized. In the Monitor Object pattern, the 
region of code is the synchronized method implementation. 

The Monitor Object pattern has several properties in common with the Active Object pattern 
(369). Both patterns can synchronize and schedule methods invoked concurrently on 
objects, for example. There are two key differences, however: 
§ An active object executes its methods in a different thread than its client(s), whereas a 

monitor object executes its methods in its client threads. As a result, active objects can 
perform more sophisticated, albeit more expensive, scheduling to rearrange the order in 
which their methods execute. 

§ Monitor objects often couple their synchronization logic more closely to their methods' 
functionality. In contrast, it is easier to decouple an active object's functionality from its 
synchronization policies, because it has a separate scheduler. 
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It is instructive to compare the Monitor Object pattern solution in the Example Resolved 
section with the solution presented in the Active Object pattern. Both solutions have similar 
overall application architectures. In particular, the Supplier_Handler and 
Consumer_Handler implementations are almost identical. The primary difference is that 
the Message_Queue itself is easier to program and often more efficient when implemented 
using the Monitor Object pattern than the Active Object pattern. 

If a more sophisticated queueing strategy is necessary, however, the Active Object pattern 
may be more appropriate. Similarly, because active objects execute in different threads than 
their clients, there are situations where active objects can improve overall application 
concurrency by executing multiple operations asynchronously. When these operations 
complete, clients can obtain their results via futures [Hal85] [LS88]. 

[4]For an in-depth discussion of the gateway and its associated components, we recommend 
reading the Active Object pattern (369) before reading this pattern. 

[5]An active object, in contrast, does have its own thread of control. 

Half-Sync/Half-Async 
The Half-Sync/Half-Async architectural pattern decouples asynchronous and synchronous 
service processing in concurrent systems, to simplify programming without unduly reducing 
performance. The pattern introduces two intercommunicating layers, one for asynchronous 
and one for synchronous service processing. 

Example 

Performance-sensitive concurrent applications, such as telecommunications switching 
systems and avionics mission computers, perform a mixture of synchronous and 
asynchronous processing to coordinate different types of applications, system services, and 
hardware. Similar characteristics hold for system-level software, such as operating systems. 

The BSD UNIX operating system [MBKQ96] [Ste98] is an example of a concurrent system 
that coordinates the communication between standard Internet application services, such as 
FTP, INETD, DNS, TELNET, SMTP, and HTTPD, and hardware I/O devices, such as 
network interfaces, disk controllers, end-user terminals, and printers. 

 

The BSD UNIX operating system processes certain services asynchronously to maximize 
performance. Protocol processing within the BSD UNIX kernel, for example, runs 
asynchronously, because I/O devices are driven by interrupts triggered by network interface 
hardware. If the kernel does not handle these asynchronous interrupts immediately, 
hardware devices may malfunction and drop packets or corrupt memory buffers. 
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Although the BSD operating system kernel is driven by asynchronous interrupts, it is hard to 
develop applications and higher-level system services using asynchrony mechanisms, such 
as interrupts or signals. In particular, the effort required to program, validate, debug, and 
maintain asynchronous programs can be prohibitive. For example, asynchrony can cause 
subtle timing problems and race conditions when an interrupt preempts a running 
computation unexpectedly. 

To avoid the complexities of asynchronous programming, higher-level services in BSD UNIX 
run synchronously in multiple processes. For example, FTP or TELNET Internet services that 
use synchronous read() and write() system calls can block awaiting the completion of 
I/O operations. Blocking I/O, in turn, enables developers to maintain state information and 
execution history implicitly in the run-time stacks of their threads, rather than in separate 
data structures that must be managed explicitly by developers. 

Within the context of an operating system, however, synchronous and asynchronous 
processing is not wholly independent. In particular, application-level Internet services that 
execute synchronously within BSD UNIX must cooperate with kernel-level protocol 
processing that runs asynchronously. For example, the synchronous read() system call 
invoked by an HTTP server cooperates indirectly with the asynchronous reception and 
protocol processing of data arriving on the Ethernet network interface. 

A key challenge in the development of BSD UNIX was the structuring of asynchronous and 
synchronous processing, to enhance both programming simplicity and system performance. 
In particular, developers of synchronous application programs must be shielded from the 
complex details of asynchronous programming. Yet, the overall performance of the system 
must not be degraded by using inefficient synchronous processing mechanisms in the BSD 
UNIX kernel. 

Context 

A concurrent system that performs both asynchronous and synchronous processing services 
that must intercommunicate. 

Problem 

Concurrent systems often contain a mixture of asynchronous and synchronous processing 
services. There is a strong incentive for system programmers to use asynchrony to improve 
performance. Asynchronous programs are generally more efficient, because services can be 
mapped directly onto asynchrony mechanisms, such as hardware interrupt handlers or 
software signal handlers. 

Conversely, there is a strong incentive for application developers to use synchronous 
processing to simplify their programming effort. Synchronous programs are usually less 
complex, because certain services can be constrained to run at well-defined points in the 
processing sequence. 

Two forces must therefore be resolved when specifying a software architecture that 
executes services both synchronously and asynchronously: 
§ The architecture should be designed so that application developers who want the 

simplicity of synchronous processing need not address the complexities of asynchrony. 
Similarly, system developers who must maximize performance should not need to 
address the inefficiencies of synchronous processing. 

§ The architecture should enable the synchronous and asynchronous processing 
services to communicate without complicating their programming model or unduly 
degrading their performance. 
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Although the need for both programming simplicity and high performance may seem 
contradictory, it is essential that both these forces be resolved in certain types of concurrent 
systems, particularly large-scale or complex ones. 

Solution 

Decompose the services in the system into two layers [POSA1], synchronous and 
asynchronous, and add a queueing layer between them to mediate the communication 
between services in the asynchronous and synchronous layers. 

In detail: process higher-layer services, such as long-duration database queries or file 
transfers, synchronously in separate threads or processes, to simplify concurrent 
programming. Conversely, process lower-layer services, such as short-lived protocol 
handlers driven by interrupts from network interface hardware, asynchronously to enhance 
performance. If services residing in separate synchronous and asynchronous layers must 
communicate or synchronize their processing, allow them to pass messages to each other 
via a queueing layer. 

Structure 

The structure of the Half-Sync/Half-Async pattern follows the Layers pattern [POSA1] and 
includes four participants: 

The synchronous service layer performs high-level processing services. Services in the 
synchronous layer run in separate threads or processes that can block while performing 
operations. 

 

The Internet services in our operating system example run in separate application 
processes. These processes invoke read() and write() operations to perform I/O 
synchronously on behalf of their Internet services. 
 

 

The asynchronous service layer performs lower-level processing services, which typically 
emanate from one or more external event sources. Services in the asynchronous layer 
cannot block while performing operations without unduly degrading the performance of other 
services. 

 

The processing of I/O devices and protocols in the BSD UNIX operating system kernel is 
performed asynchronously in interrupt handlers. These handlers run to completion, that 
is, they do not block or synchronize their execution with other threads until they are 
finished. 
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The queueing layer provides the mechanism for communicating between services in the 
synchronous and asynchronous layers. For example, messages containing data and control 
information are produced by asynchronous services, then buffered at the queueing layer for 
subsequent retrieval by synchronous services, and vice versa. The queueing layer is 
responsible for notifying services in one layer when messages are passed to them from the 
other layer. The queueing layer therefore enables the asynchronous and synchronous layers 
to interact in a 'producer/consumer' manner, similar to the structure defined by the Pipes and 
Filters pattern [POSA1]. 

 

The BSD UNIX operating system provides a Socket layer [Ste98]. This layer serves as 
the buffering and notification point between the synchronous Internet service application 
processes and the asynchronous, interrupt-driven I/O hardware services in the BSD 
UNIX kernel. 
 

 

External event sources generate events that are received and processed by the 
asynchronous service layer. Common sources of external events for operating systems 
include network interfaces, disk controllers, and end-user terminals. 

 

The following class diagram illustrates the structure and relationships between these 
participants: 

 

Dynamics 

Asynchronous and synchronous layers in the Half-Sync/Half-Async pattern interact by 
passing messages via a queueing layer. We describe three phases of interactions that occur 
when input arrives 'bottom-up' from external event sources: 
§ Asynchronous phase. In this phase external sources of input interact with the 

asynchronous service layer via an asynchronous event notification, such as an interrupt 
or signal. When asynchronous services have finished processing the input, they can 
communicate their results to the designated services in the synchronous layer via the 
queueing layer. 
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§ Queueing phase. In this phase the queueing layer buffers input passed from the 
asynchronous layer to the synchronous layer and notifies the synchronous layer that 
input is available. 

§ Synchronous phase. In this phase the appropriate service(s) in the synchronous layer 
retrieve and process the input placed into the queueing layer by service(s) in the 
asynchronous layer. 

 

The interactions between layers and pattern participants is reversed to form a 'top-down' 
sequence when output arrives from services running in the synchronous layer. 

Implementation 

This section describes the activities used to implement the Half-Sync/Half-Async pattern and 
apply it to structure the concurrency architecture of higher-level applications, such as Web 
servers [Sch97] and database servers, as well as to lower-level systems, such as the BSD 
UNIX operating system. We therefore present examples from several different domains. 

1. Decompose the overall system into three layers: synchronous, asynchronous, and 
queueing. Three sub-activities can be used to determine how to decompose a system 
architecture designed in accordance with the Half-Sync/Half-Async pattern. 

1. Identify higher-level and/or long-duration services and configure them into the 
synchronous layer. Many services in a concurrent system are easier to 
implement when they are programmed using synchronous processing. These 
services often perform relatively high-level or long-duration application 
processing, such as transferring large streams of content in a Web server or 
performing complex queries in a database. Services in the synchronous layer 
should therefore run in separate processes or threads. If data is not available 
the services can block at the queueing layer awaiting responses, under the 
control of peer-to-peer application communication protocols. 

 

2. Each Internet service shown in our BSD UNIX operating system example 
runs in a separate application process. Each application process 
communicates with its clients using the protocol associated with the 
Internet service it implements. I/O operations within these processes can 
be performed by blocking synchronously on TCP Sockets and waiting for 
the BSD UNIX kernel to complete the I/O operations asynchronously. 
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4. Identify lower-level and/or short-duration services and configure them into the 
asynchronous layer. Certain services in a system cannot block for prolonged 
amounts of time. Such services typically perform lower-level or short-duration 
system processing that interacts with external sources of events, such as end-
user terminals or interrupt-driven hardware network interfaces. To maximize 
responsiveness and efficiency, these sources of events must be handled 
rapidly and must not block the thread that services them. Their services should 
be triggered by asynchronous notifications or interrupts from external event 
sources and run to completion, at which point they can insert messages 
containing their results into the queueing layer.  

 

5. In our operating system example, processing of I/O device drivers and 
communication protocols in the BSD UNIX kernel occurs in response to 
asynchronous hardware interrupts. Each asynchronous operation in the 
kernel runs to completion, inserting messages containing data and/or 
control information into the Socket layer if it must communicate with an 
application process running an Internet service in the synchronous layer. 
 

 

7. Identify inter-layer communication strategies and configure them into the 
queueing layer. The queueing layer is a mediator [GoF95] that decouples the 
communication between services in the asynchronous and synchronous 
layers. Thus these services do not access each other directly, but only via the 
queueing layer. The communication-related strategies performed by the 
queueing layer involve (de)multiplexing, buffering, notification, and flow 
control. Services in the asynchronous and synchronous layers use these 
queueing strategies to implement protocols for passing messages between the 
synchronous and asynchronous layers [SC96]. 

 

8. In our BSD UNIX operating system example, the Sockets mechanism 
[Ste98] defines the queueing layer between the synchronous Internet 
service application processes and the asynchronous operating system 
kernel. Each Internet service uses one or more Sockets, which are queues 
maintained by BSD UNIX to buffer messages exchanged between 
application processes, and the TCP/IP protocol stack and networking 
hardware devices in the kernel. 
 

 

2. Implement the services in the synchronous layer. High-level and/or long-duration 
services in the synchronous layer are often implemented using either multi-threading 
or multi-processing. Compared to a thread, a process maintains more state 
information and requires more overhead to spawn, synchronize, schedule, and inter-
communicate. Implementing synchronous services in separate threads, rather than 
separate processes, can therefore yield simpler and more efficient applications. 

Multi-threading can reduce application robustness, however, because separate 
threads within a process are not protected from one another. For instance, one faulty 
thread can corrupt data shared with other threads in the process, which may produce 
incorrect results, crash the process, or cause the process to hang indefinitely. To 
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increase robustness, therefore, application services can be implemented in separate 
processes. 

 

The Internet services in our BSD UNIX example are implemented in separate 
processes. This design increases their robustness and prevents unauthorized 
access to certain resources, such as files owned by other users. 
 

 

3. Implement the services in the asynchronous layer. Lower-level and/or shorter-duration 
services in the asynchronous layer often do not have their own dedicated thread of 
control. Instead, they must borrow a thread from elsewhere, such as the operating 
system kernel's 'idle thread' or a separate interrupt stack. To ensure adequate 
response time for other system services, such as high-priority hardware interrupts, 
these services must run asynchronously and cannot block for long periods of time. 

The following are two strategies that can be used to trigger the execution of 
asynchronous services: 
§ Asynchronous interrupts. This strategy is often used when developing 

asynchronous services that are triggered directly by hardware interrupts from 
external event sources, such as network interfaces or disk controllers. In this 
strategy, when an event occurs on an external event source, an interrupt notifies 
the handler associated with the event, which then processes the event to 
completion. 

In complex concurrent systems, it may be necessary to define a hierarchy of 
interrupts to allow less critical handlers to be preempted by higher-priority ones. 
To prevent interrupt handlers from corrupting shared state while they are being 
accessed, data structures used by the asynchronous layer must be protected, for 
example by raising the interrupt priority [WS95]. 

 

The BSD UNIX kernel uses a two-level interrupt scheme to handle network 
packet processing [MBKQ96]. Time-critical processing is done at a high 
priority and less critical software processing is done at a lower priority. This 
two-level interrupt scheme prevents the overhead of software protocol 
processing from delaying the servicing of high-priority hardware interrupts. 
 

 

§ Proactive I/O. This strategy is often used when developing asynchronous 
services based on higher-level operating system APIs, such as the Windows NT 
overlapped I/O and I/O completion ports [So198] or the POSIX aio_* family of 
asynchronous I/O system calls [POSIX95]. In this strategy, I/O operations are 
executed by an asynchronous operation processor. When an asynchronous 
operation finishes, the asynchronous operation processor generates a 
completion event. This event is then dispatched to the handler associated with 
the event, which processes the event to completion. 

 

§ For example, the Web server in the Proactor pattern (215) illustrates an 
application that uses the proactive I/O mechanisms defined by the Windows 
NT system call API. This example underscores the fact that asynchronous 
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processing and the Half-Sync/Half-Async pattern can be used for higher-
level applications that do not access hardware devices directly. 
 

 

Both of these asynchronous processing strategies share the constraint that a handler 
cannot block for a long period of time without disrupting the processing of events from 
other external event sources. 

4. Implement the queueing layer. After services in the asynchronous layer finish 
processing input arriving from external event sources, they typically insert the 
resulting messages into the queueing layer. The appropriate service in the 
synchronous layer will subsequently remove these messages from the queueing layer 
and process them. These roles are reversed for output processing. Two 
communication-related strategies must be defined when implementing the queueing 
layer: 

0. Implement the buffering strategy. Services in the asynchronous and 
synchronous layers do not access each other's memory directly—instead, they 
exchange messages via a queueing layer. This queueing layer buffers 
messages so that synchronous and asynchronous services can run 
concurrently, rather than running in lockstep via a 'stop-and-wait' flow control 
protocol. The buffering strategy must therefore implement an ordering, 
serialization, notification, and flow-control strategy. Note that the Strategy 
pattern [GoF95] can be applied to simplify the configuration of alternative 
strategies. 
§ Implement the ordering strategy. Simple queueing layers store their 

messages in the order they arrive, that is, 'first-in, first-out' (FIFO). The 
first message that was placed in the queue by a service in one layer is 
thus the first message to be removed by a service in the other layer. FIFO 
ordering is easy to implement, but may result in priority inversions 
[SMFG00] if high-priority messages are queued behind lower-priority 
messages. Therefore, more sophisticated queueing strategies can be 
used to store and retrieve messages in 'priority' order. 

§ Implement the serialization strategy. Services in the asynchronous and 
synchronous layer can execute concurrently. A queue must therefore be 
serialized to avoid race conditions when messages are inserted and 
removed concurrently. This serialization is often implemented using 
lightweight synchronization mechanisms, such as mutexes [Lew95]. Such 
mechanisms ensure that messages can be inserted into and removed 
from the queueing layer's message buffers without corrupting its internal 
data structures. 

§ Implement the notification strategy. It may be necessary to notify a 
service in one layer when messages addressed to it arrive from another 
layer. The notification strategy provided by the queueing layer is often 
implemented using more sophisticated and heavyweight synchronization 
mechanisms, such as semaphores or condition variables [Lew95]. These 
synchronization mechanisms can notify the appropriate services in the 
synchronous or asynchronous layers when data arrives for them in the 
queueing layer. The Variations section outlines several other notification 
strategies based on asynchronous signals and interrupts. 

§ Implement the flow-control strategy. Systems cannot devote an 
unlimited amount of resource to buffer messages in the queueing layer. It 
may therefore be necessary to regulate the amount of data passed 
between the synchronous and asynchronous layers. Flow control is a 
technique that prevents synchronous services from flooding the 
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asynchronous layer at a rate greater than that at which messages can be 
transmitted and queued on network interfaces [SchSu93]. 

Services in the synchronous layer can block. A common flow control 
policy simply puts a synchronous service to sleep if it produces and 
queues more than a certain number of messages. After the asynchronous 
service layer empties the queue to below a certain level, the queueing 
layer can awaken the synchronous service to continue its processing.  

In contrast, services in the asynchronous layer cannot block. If they can 
produce an excessive number of messages, a common flow-control policy 
allows the queueing layer to discard messages until the synchronous 
service layer finishes processing the messages in its queue. If the 
messages are associated with a reliable connection-oriented transport 
protocol, such as TCP [Ste93], senders will time-out eventually and 
retransmit discarded messages. 

1. Implement the (de)multiplexing mechanism. In simple implementations of the 
Half-Sync/Half-Async pattern, such as the OLTP servers described in the 
Example section of the Leader/Followers pattern (447), there is only one 
queue in the queueing layer. This queue is shared by all services in the 
asynchronous and synchronous layers and any service can process any 
request. This configuration alleviates the need for a sophisticated 
(de)multiplexing mechanism. In this case, a common implementation is to 
define a singleton [GoF95] queue that all services use to insert and remove 
messages. 

In more complex implementations of the Half-Sync/Half-Async pattern, 
services in one layer may need to send and receive certain messages to 
particular services in another layer. A queueing layer may therefore need 
multiple queues, for example one queue per service. With multiple queues, 
more sophisticated demultiplexing mechanism are needed to ensure 
messages exchanged between services in different layers are placed in the 
appropriate queue. A common implementation is to use some type of 
(de)multiplexing mechanism, such as a hash table [HMPT89] [MD91], to place 
messages into the appropriate queue(s). 

 

The Message_Queue components defined in the Monitor Object (399) 
and Active Object (369) patterns illustrate various strategies for 
implementing a queueing layer: 
§ The Monitor Object pattern ensures that only one method at a time 

executes within a queue, regardless of the number of threads that 
invoke the queue's methods concurrently, by using mutexes and 
condition variables. The queue executes its methods in its client 
threads, that is, in the threads that run the synchronous and 
asynchronous services. 

§ The Active Object pattern decouples method invocations on the queue 
from method execution. Multiple synchronous and asynchronous 
services can therefore invoke methods on the queue concurrently. 
Methods are executed in a different thread than the threads that run 
the synchronous and asynchronous services. 

The See Also sections of the Active Object (369) and Monitor Object (399) 
patterns discuss the pros and cons of using these patterns to implement a 
queueing layer. 
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Example Resolved 

Chapter 1, Concurrent and Networked Objects, and other patterns in this book, such as 
Proactor (215), Scoped Locking (325), Strategized Locking (333), and Thread-Safe Interface 
(345), illustrate various aspects of the design of a Web server application. In this section, we 
explore the broader system context in which Web servers execute, by outlining how the BSD 
UNIX operating system [MBKQ96] [Ste93] applies the Half-Sync/Half-Async pattern to 
receive an HTTP GET request via its TCP/IP protocol stack over Ethernet. 

BSD UNIX is an example of an operating system that does not support asynchronous I/O 
efficiently. It is therefore not feasible to implement the Web server using the Proactor pattern 
(215). We instead outline how BSD UNIX coordinates the services and communication 
between synchronous application processes and the asynchronous operating system kernel. 

In particular, we describe:[6]  
§ The synchronous invocation of a read() system call by a Web server application (the 

HTTPD process). 
§ The asynchronous reception and protocol processing of data arriving on the Ethernet 

network interface. 
§ The synchronous completion of the read() call, which returns control and the GET 

request data back to the HTTPD process. 

These steps are shown in the following figure: 

 

As shown in this figure, the HTTPD process invokes a read() system call on a connected 
socket handle to receive an HTTP GET request encapsulated in a TCP packet. From the 
perspective of the HTTPD process, the read() system call is synchronous, because the 
process invokes read() and blocks until the GET request data is returned. If data is not 
available immediately, however, the BSD UNIX kernel puts the HTTPD process to sleep until 
the data arrives from the network. 

Many asynchronous steps occur to implement the synchronous read() system call, 
however. Although the HTTPD process can sleep while waiting for data, the BSD UNIX 
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kernel cannot sleep, because other application processes, such as the FTP and TELNET 
services and I/O devices in the kernel, require its services to run concurrently and efficiently. 

After the read() system call is issued the application process switches to 'kernel mode' and 
starts running privileged instructions, which direct it synchronously into the BSD UNIX 
networking subsystem. Ultimately, the thread of control from the application process ends in 
the kernel's soreceive() function. This function processes input for various types of 
sockets, such as datagram sockets and stream sockets, by transferring data from the socket 
queue to the application process. The soreceive() function thus defines the boundary 
between the synchronous application process layer and the asynchronous kernel layer for 
outgoing packets. 

There are two ways in which the HTTPD process's read() system call can be handled by 
soreceive(), depending on the characteristics of the Socket and the amount of data in the 
socket queue: 
§ Completely synchronous. If the data requested by the HTTPD process is in the socket 

queue, the soreceive() function can copy it immediately and the read() system call 
will complete synchronously. 

§ Half-synchronous and half-asynchronous. If the data requested by the HTTPD process 
is not yet available, the kernel calls the sbwait() function to put the process to sleep 
until the requested data arrives. 

After sbwait() puts the process to sleep, the BSD UNIX scheduler will switch to another 
process context that is ready to run. From the perspective of the HTTPD process, however, 
the read() system call appears to execute synchronously. When packet(s) containing the 
requested data arrive, the kernel will process them asynchronously, as described below. 
When enough data has been placed in the socket queue to satisfy the HTTPD process' 
request, the kernel will wake this process and complete its read() system call. This call 
then returns synchronously so that the HTTPD process can parse and execute the GET 
request. 

To maximize performance within the BSD UNIX kernel, all protocol processing is executed 
asynchronously, because I/O devices are driven by hardware interrupts. For example, 
packets arriving at the Ethernet network interface are delivered to the kernel via interrupt 
handlers initiated asynchronously by the Ethernet hardware. These handlers receive packets 
from devices and trigger subsequent asynchronous processing of higher-layer protocols, 
such as IP and TCP. Ultimately, valid packets containing application data are queued at the 
Socket layer, where the BSD UNIX kernel schedules and dispatches the waiting HTTPD 
process to consume this data synchronously. 

For example, the 'half-async' processing associated with an HTTPD process's read() 
system call starts when a packet arrives at an Ethernet network interface, which triggers an 
asynchronous hardware interrupt. All incoming packet processing is performed in the context 
of an interrupt handler. During an interrupt, the BSD UNIX kernel cannot sleep or block, 
because there is no application process context and no dedicated thread of control. The 
Ethernet interrupt handler therefore 'borrows' the kernel's thread of control. Similarly, the 
BSD UNIX kernel borrows the threads of control of application processes when they invoke 
system calls. 

If the packet is destined for an application process, it is passed up to the transport layer, 
which performs additional protocol processing, such as TCP segment reassembly and 
acknowledgments. Eventually, the transport layer appends the data to the receive socket 
queue and calls sbwakeup(), which represents the boundary between the asynchronous 
and synchronous layers for incoming packets. This call wakes up the HTTPD process that 
was sleeping in soreceive() waiting for data on that socket queue. If all the data 
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requested by the HTTPD process has arrived, soreceive() will copy it to the buffer 
supplied by HTTPD, allowing the system call to return control to the Web server. The 
read() call thus appears to be synchronous from the perspective of the HTTPD process, 
even though asynchronous processing and context switching were performed while this 
process was asleep. 

Variants 

Asynchronous Control with Synchronous Data I/O. The HTTPD Web server described in the 
Implementation section 'pulls' messages synchronously from the queueing layer at its 
discretion, thereby combining control and data activities. On some operating system 
platforms, however, it is possible to decouple control and data so that services in the 
synchronous layer can be notified asynchronously when messages are inserted into the 
queueing layer. The primary benefit of this variant is that higher-level 'synchronous' services 
may be more responsive, because they can be notified asynchronously. 

 

The UNIX signal-driven I/O mechanism [Ste98] implements this variant of the Half-
Sync/Half-Async pattern. The UNIX kernel uses the SIGIO signal to 'push' control to a 
higher-level application process when data arrives on one of its Sockets. When a 
process receives this control notification asynchronously, it can then 'pull' the data 
synchronously from socket queueing layer via read(). 
 

 

The disadvantage of using asynchronous control, of course, is that developers of higher-
level services must now face many of the asynchrony complexities outlined in the Problem 
section. 

Half-Async/Half-Async. This variant extends the previous variant by propagating 
asynchronous control notifications and data operations all the way up to higher-level 
services in the 'synchronous' layer. These higher-level services may therefore be able to 
take advantage of the efficiency of the lower-level asynchrony mechanisms. 

 

For example, the real-time signal interface defined in the POSIX real-time programming 
specification [POSIX95] supports this variant. In particular, a buffer pointer can be 
passed to the signal handler function dispatched by the operating system when a real-
time signal occurs. Windows NT supports a similar mechanism using overlapped I/O and 
I/O completion ports [Sol98]. In this case, when an asynchronous operation completes, 
its associated overlapped I/O structure indicates which operation has completed and 
passes any data along. The Proactor pattern (215) and Asynchronous Completion 
Token pattern (261) describe how to structure applications to take advantage of 
asynchronous operations and overlapped I/O. 
 

 

The disadvantage of this variant is similar to that of the previous variant. If most or all 
services can be driven by asynchronous operations, the design may be modeled better by 
applying the Proactor pattern (215) rather than the Half-Sync/Half-Async pattern. 

Half-Sync/Half-Sync. This variant provides synchronous processing to lower-level services. If 
the asynchronous layer is multi-threaded, its services can run autonomously and use the 
queueing layer to pass messages to the synchronous service layer. The benefits of this 
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variant are that services in the asynchronous layer may be simplified, because they can 
block without affecting other services in this layer. 

 

Microkernel operating systems, such as Mach [B190] or Amoeba [Tan95], typically use 
this variant. The microkernel runs as a separate multi-threaded 'process' that exchanges 
messages with application processes. Similarly, multi-threaded operating system 
macrokernels, such as Solaris [EKBF+92], can support multiple synchronous I/O 
operations in the kernel. 
 

 

Multi-threading the kernel can be used to implement polled interrupts, which reduce the 
amount of context switching for high-performance continuous media systems by dedicating a 
kernel thread to poll a field in shared memory at regular intervals [CP95]. In contrast, single-
threaded operating system kernels, such as BSD UNIX, restrict lower-level kernel services to 
use asynchronous I/O and only support synchronous multi-programming for higher-level 
application processes. 

The drawback to providing synchronous processing to lower-level services, of course, is that 
it may increase overhead, thereby degrading overall system performance significantly. 

Half-Sync/Half-Reactive. In object-oriented applications, the Half-Sync/Half-Async pattern 
can be implemented as a composite architectural pattern that combines the Reactor pattern 
(179) with the Thread Pool variant of the Active Object pattern (369). In this common variant, 
the reactor's event handlers constitute the services in the 'asynchronous' layer[7] and the 
queueing layer can be implemented by an active object's activation list. The servants 
dispatched by the scheduler in the active object's thread pool constitute the services in the 
synchronous layer. The primary benefit of this variant is the simplification it affords. This 
simplicity is achieved by performing event demultiplexing and dispatching in a single-
threaded reactor that is decoupled from the concurrent processing of events in the active 
object's thread pool. 

 

The OLTP servers described in the Example section of the Leader/Followers pattern 
(447) apply this variant. The 'asynchronous' service layer uses the Reactor pattern (179) 
to demultiplex transaction requests from multiple clients and dispatch event handlers. 
The handlers insert requests into the queueing layer, which is an activation list 
implemented using the Monitor Object pattern (399). Similarly, the synchronous service 
layer uses the thread pool variant of the Active Object pattern (369) to disseminate 
requests from the activation list to a pool of worker threads that service transaction 
requests from clients. Each thread in the active object's thread pool can block 
synchronously because it has its own run-time stack. 
 

 

The drawback with this variant is that the queueing layer incurs additional context switching, 
synchronization, data allocation, and data copying overhead that may be unnecessary for 
certain applications. In such cases the Leader/Followers pattern (447) may be a more 
efficient, predictable, and scalable way to structure a concurrent application than the Half-
Sync/Half-Async pattern. 

Known Uses 
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UNIX Networking Subsystems. The BSD UNIX networking subsystem [MBKQ96] and the 
UNIX STREAMS communication framework [Ris98] use the Half-Sync/Half-Async pattern to 
structure the concurrent I/O architecture of application processes and the operating system 
kernel. I/O in these kernels is asynchronous and triggered by interrupts. The queueing layer 
is implemented by the Socket layer in BSD UNIX [Ste98] and by Stream Heads in UNIX 
STREAMS [Rago93]. I/O for application processes is synchronous. 

Most UNIX network daemons, such as TELNETD and FTPD, are developed as application 
processes that invoke read() and write() system calls synchronously [Ste98]. This 
design shields application developers from the complexity of asynchronous I/O processed by 
the kernel. However, there are hybrid mechanisms, such as the UNIX SIGIO signal, that can 
be used to trigger synchronous I/O processing via asynchronous control notifications. 

CORBA ORBs. MT-Orbix [Bak97] uses a variation of the Half-Sync/Half-Async pattern to 
dispatch CORBA remote operations in a concurrent server. In MT-Orbix's ORB Core a 
separate thread is associated with each socket handle that is connected to a client. Each 
thread blocks synchronously, reading CORBA requests from the client. When a request is 
received it is demultiplexed and inserted into the queueing layer. An active object thread in 
the synchronous layer then wakes up, dequeues the request, and processes it to completion 
by performing an upcall to the CORBA servant. 

ACE. The ACE framework [Sch97] applies the 'Half-Sync/Half-Reactive' variant of the Half-
Sync/Half-Async pattern in an application-level gateway that routes messages between 
peers in a distributed system [Sch96]. The ACE_Reactor is the ACE implementation of the 
Reactor pattern (179) that demultiplexes indication events to their associated event handlers 
in the 'asynchronous' layer. The ACE Message_Queue class implements the queueing 
layer, while the ACE Task class implements the thread pool variant of the Active Object 
pattern (369) in the synchronous service layer. 

Conduit. The Conduit communication framework [Zweig90] from the Choices operating 
system project [CIRM93] implements an object-oriented version of the Half-Sync/Half-Async 
pattern. Application processes are synchronous active objects, an Adapter Conduit serves 
as the queueing layer, and the Conduit micro-kernel operates asynchronously, 
communicating with hardware devices via interrupts. 

Restaurants. Many restaurants use a variant of the Half-Sync/Half-Async pattern. For 
example, restaurants often employ a host or hostess who is responsible for greeting patrons 
and keeping track of the order in which they will be seated if the restaurant is busy and it is 
necessary to queue them waiting for an available table. The host or hostess is 'shared' by all 
the patrons and thus cannot spend much time with any given party. After patrons are seated 
at a table, a waiter or waitress is dedicated to service that table. 

Consequences 

The Half-Sync/Half-Async pattern has the following benefits: 

Simplification and performance. The programming of higher-level synchronous processing 
services are simplified without degrading the performance of lower-level system services. 
Concurrent systems often have a greater number and variety of high-level processing 
services than lower-level services. Decoupling higher-level synchronous services from 
lower-level asynchronous processing services can simplify application programming, 
because complex concurrency control, interrupt handling, and timing services can be 
localized within the asynchronous service layer. The asynchronous layer can also handle 
low-level details that may be hard for application developers to program robustly, such as 
interrupt handling. In addition, the asynchronous layer can manage the interaction with 
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hardware-specific components, such as DMA, memory management, and I/O device 
registers. 

The use of synchronous I/O can also simplify programming, and may improve performance 
on multi-processor platforms. For example, long-duration data transfers, such as 
downloading a large medical image from a hierarchical storage management system 
[PHS96], can be simplified and performed efficiently using synchronous I/O. In particular, 
one processor can be dedicated to the thread that is transferring the data. This enables the 
instruction and data cache of that CPU to be associated with the entire image transfer 
operation. 

Separation of concerns. Synchronization policies in each layer are decoupled. Each layer 
therefore need not use the same concurrency control strategies. In the single-threaded BSD 
UNIX kernel, for example, the asynchronous service layer implements synchronization via 
low-level mechanisms, such as raising and lowering CPU interrupt levels. In contrast, 
application processes in the synchronous service layer implement synchronization via 
higher-level mechanisms, such as monitor objects (399) and synchronized message queues. 

 

Legacy libraries, such as X Windows and older RPC toolkits, are often not re-entrant. 
Multiple threads of control cannot therefore invoke these library functions concurrently 
within incurring race conditions. To improve performance or to take advantage of 
multiple CPUs, however, it may be necessary to perform bulk data transfers or database 
queries in separate threads. In this case, the Half-Sync/Half-Reactive variant of the Half-
Sync/Half-Async pattern can be applied to decouple the single-threaded portions of an 
application from its multi-threaded portions. 

For example, an application's X Windows GUI processing could run under the control of 
a reactor. Similarly, long data transfers could run under the control of an active object 
thread pool. By decoupling the synchronization policies in each layer of the application 
via the Half-Sync/Half-Async pattern, non-re-entrant functions can continue to work 
correctly without requiring changes to existing code. 
 

 

Centralization of inter-layer communication. Inter-layer communication is centralized at a 
single access point, because all interaction is mediated by the queueing layer. The queueing 
layer buffers messages passed between the other two layers. This eliminates the 
complexities of locking and serialization that would otherwise be necessary if the 
synchronous and asynchronous service layers accessed objects in each other's memory 
directly. 

The Half-Sync/Half-Async pattern also has the following liabilities: 

A boundary-crossing penalty may be incurred from context switching, synchronization, and 
data copying overhead when data is transferred between the synchronous and 
asynchronous service layers via the queueing layer. For example, most operating systems 
implement the Half-Sync/Half-Async pattern by placing the queueing layer at the boundary 
between the user-level and kernel-level protection domains. A significant performance 
penalty can be incurred when crossing this boundary [HP91]. 

One way of reducing this overhead is to share a region of memory between the synchronous 
service layer and the asynchronous service layer [DP93]. This 'zero-copy' design allows the 
two layers to exchange data directly, without copying data into and out of the queueing layer. 
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[CP95] presents a set of extensions to the BSD UNIX I/O subsystem that minimizes 
boundary-crossing penalties by using polled interrupts to improve the handling of 
continuous media I/O streams. This approach defines a buffer management system that 
allows efficient page re-mapping and shared memory mechanisms to be used between 
application processes, the kernel, and its devices. 
 

 

Higher-level application services may not benefit from the efficiency of asynchronous I/O. 
Depending on the design of operating system or application framework interfaces, it may not 
be possible for higher-level services to use low-level asynchronous I/O devices effectively. 
The BSD UNIX operating system, for example, prevents applications from using certain 
types of hardware efficiently, even if external sources of I/O support asynchronous 
overlapping of computation and communication. 

Complexity of debugging and testing. Applications written using the Half-Sync/Half-Async 
pattern can incur the same debugging and testing challenges described in Consequences 
sections of the Proactor (215) and Reactor (179) patterns. 

See Also 

The Proactor pattern (215) can be viewed as an extension of the Half-Sync/Half-Async 
pattern that propagates asynchronous control and data operations all the way up to higher-
level services. In general, the Proactor pattern should be applied if an operating system 
platform supports asynchronous I/O efficiently and application developers are comfortable 
with the asynchronous I/O programming model. 

The Reactor pattern (179) can be used in conjunction with the Active Object pattern (369) to 
implement the Half-Sync/Half-Reactive variant of the Half-Sync/Half-Async pattern. Similarly, 
the Leader/Followers (447) pattern can be used in lieu of the Half-Sync/Half-Async pattern if 
there is no need for a queueing layer between the asynchronous and synchronous layers. 

The Pipes and Filters pattern [POSA1] describes several general principles for implementing 
producer-consumer communication between components in a software system. Certain 
configurations of the Half-Sync/Half-Async pattern can therefore be viewed as instances of 
the Pipes and Filters pattern, where filters contain entire layers of many finer-grained 
services. Moreover, a filter could contain active objects, which could yield the Half-Sync/Half-
Reactive or Half-Sync/Half-Sync variants. 

The Layers [POSA1] pattern describes the general principle of separating services into 
separate layers. The Half-Sync/Half-Async pattern can thus be seen as a specialization of 
the Layers pattern whose purpose is to separate synchronous processing from 
asynchronous processing in a concurrent system by introducing two designated layers for 
each type of service. 

Credits 

Chuck Cranor was the co-author of the original version of this pattern [PLoPD2]. We would 
also like to thank Lorrie Cranor and Paul McKenney for comments and suggestions for 
improving the pattern. 

[6]An in-depth code walk-through showing how the Half-Sync/Half-Asyne pattern is applied in 
the BSD UNIX networking and file systems is described in [PLoPD2]. 
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[7]Although this reactive layer is not truly asynchronous, it shares key properties with 
asynchronous services. In particular, event handlers dispatched by a reactor cannot block 
for long without starving other sources of events. 

Leader/Followers 
The Leader/Followers architectural pattern provides an efficient concurrency model where 
multiple threads take turns sharing a set of event sources in order to detect, demultiplex, 
dispatch, and process service requests that occur on the event sources. 

Example 

Consider the design of a multi-tier, high-volume, on-line transaction processing (OLTP) 
system [GR93]. In this design, front-end communication servers route transaction requests 
from remote clients, such as travel agents, claims processing centers, or point-of-sales 
terminals, to back-end database servers that process the requests transactionally. After a 
transaction commits, the database server returns its results to the associated communication 
server, which then forwards the results back to the originating remote client. This multi-tier 
architecture is used to improve overall system throughput and reliability via load balancing 
and redundancy, respectively. It also relieves back-end servers from the burden of managing 
different communication protocols with remote clients. 

 

One way to implement OLTP servers is to use a single-threaded event processing model 
based on the Reactor pattern (179). However, this model serializes event processing, which 
degrades the overall server performance when handling long-running or blocking client 
request events. Likewise, single-threaded servers cannot benefit transparently from multi-
processor platforms.  

A common strategy for improving OLTP server performance is to use a multi-threaded 
concurrency model that processes requests from different clients and corresponding results 
simultaneously [HPS99]. For example, we could multi-thread an OLTP back-end server by 
creating a thread pool based on the Half-Sync/Half-Reactive variant of the Half-Sync/Half-
Async pattern (423). In this design, the OLTP back-end server contains a dedicated network 
I/O thread that uses the select() [Ste98] event demultiplexer to wait for events to occur on 
a set of socket handles connected to front-end communication servers. 
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When activity occurs on handles in the set, select() returns control to the network I/O 
thread and indicates which socket handles in the set have events pending. The I/O thread 
then reads the transaction requests from the socket handles, stores them into dynamically 
allocated requests, and inserts these requests into a synchronized message queue 
implemented using the Monitor Object pattern (399). This message queue is serviced by a 
pool of worker threads. When a worker thread in the pool is available, it removes a request 
from the queue, performs the designated transaction, and then returns a response to the 
front-end communication server. 

Although the threading model described above is used in many concurrent applications, it 
can incur excessive overhead when used for high-volume servers, such as those in our 
OLTP example. For instance, even with a light workload, the Half-Sync/Half-Reactive thread 
pool design will incur a dynamic memory allocation, multiple synchronization operations, and 
a context switch to pass a request message between the network I/O thread and a worker 
thread. These overheads make even the best-case latency unnecessarily high [PRS+99]. 
Moreover, if the OLTP back-end server is run on a multi-processor, significant overhead can 
occur from processor cache coherency protocols required to transfer requests between 
threads [SKT96]. 

If the OLTP back-end servers run on an operating system platform that supports 
asynchronous I/O efficiently, the Half-Sync/Half-Reactive thread pool can be replaced with a 
purely asynchronous thread pool based on the Proactor pattern (215). This alternative will 
reduce much of the synchronization, context switching, and cache coherency overhead 
outlined above by eliminating the network I/O thread. Unfortunately, many operating systems 
do not support asynchronous I/O and those that do often support it inefficiently.[8] Yet, it is 
essential that high-volume OLTP servers demultiplex requests efficiently to threads that can 
process the results concurrently. 

Context 

An event-driven application where multiple service requests arriving on a set of event 
sources must be processed efficiently by multiple threads that share the event sources. 

Problem 

Multi-threading is a common technique to implement applications that process multiple 
events concurrently. However, it is hard to implement high-performance multi-threaded 
server applications. These applications often process a high volume of multiple types of 
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events, such as CONNECT, READ, and WRITE events in our OLTP example, that arrive 
simultaneously. To address this problem effectively, three forces must be resolved: 
§ Service requests can arrive from multiple event sources, such as multiple TCP/IP 

socket handles [Ste98], that are allocated for each connected client. A key design force, 
therefore, is determining efficient demultiplexing associations between threads and 
event sources. In particular, associating a thread for each event source may be 
infeasible due to the scalability limitations of applications or the underlying operating 
system and network platforms.  

 

§ For our OLTP server applications, it may not be practical to associate a separate 
thread with each socket handle. In particular, as the number of connections 
increase significantly, this design may not scale efficiently on many operating 
system platforms. 
 

 

§ To maximize performance, key sources of concurrency-related overhead, such as 
context switching, synchronization, and cache coherency management, must be 
minimized. In particular, concurrency models that allocate memory dynamically for each 
request passed between multiple threads will incur significant overhead on conventional 
multi-processor operating systems [SchSu95]. 

 

§ Implementing our OLTP servers using the Half-Sync/Half-Reactive thread pool variant 
(423) outlined in the Example section requires memory to be allocated dynamically 
in the network I/O thread to store incoming transaction requests into the message 
queue. This design incurs numerous synchronizations and context switches to 
insert the request into, or remove the request from, the message queue, as 
illustrated in the Monitor Object pattern (399). 
 

 

§ Multiple threads that demultiplex events on a shared set of event sources must 
coordinate to prevent race conditions. Race conditions can occur if multiple threads try 
to access or modify certain types of event sources simultaneously. 

 

§ For instance, a pool of threads cannot use select() concurrently to demultiplex a set 
of socket handles because the operating system will erroneously notify more than 
one thread calling select() when I/O events are pending on the same set of 
socket handles [Ste98]. Moreover, for bytestream-oriented protocols, such as TCP, 
having multiple threads invoking read() or write() on the same socket handle 
will corrupt or lose data. 
 

 

Solution 

Structure a pool of threads to share a set of event sources efficiently by taking turns 
demultiplexing events that arrive on these event sources and synchronously dispatching the 
events to application services that process them. 
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In detail: design a thread pool mechanism that allows multiple threads to coordinate 
themselves and protect critical sections while detecting, demultiplexing, dispatching, and 
processing events. In this mechanism, allow one thread at a time—the leader—to wait for an 
event to occur on a set of event sources. Meanwhile, other threads—the followers—can 
queue up waiting their turn to become the leader. After the current leader thread detects an 
event from the event source set, it first promotes a follower thread to become the new 
leader. It then plays the role of a processing thread, which demultiplexes and dispatches the 
event to a designated event handler that performs application-specific event handling in the 
processing thread. Multiple processing threads can handle events concurrently while the 
current leader thread waits for new events on the set of event sources shared by the 
threads. After handling its event, a processing thread reverts to a follower role and waits to 
become the leader thread again. 

Structure 

There are four key participants in the Leader/Followers pattern: 

Handles are provided by operating systems to identify event sources, such as network 
connections or open files, that can generate and queue events. Events can originate from 
external sources, such as CONNECT events or READ events sent to a service from clients, or 
internal sources, such as time-outs. A handle set is a collection of handles that can be used 
to wait for one or more events to occur on handles in the set. A handle set returns to its 
caller when it is possible to initiate an operation on a handle in the set without the operation 
blocking. 

 

OLTP servers are interested in two types of events—CONNECT events and READ 
events—which represent incoming connections and transaction requests, respectively. 
Both front-end and back-end servers maintain a separate connection for each client, 
where clients of front-end servers are the so-called 'remote' clients and front-end servers 
themselves are clients of back-end servers. Each connection is a source of events that 
is represented in a server by a separate socket handle. Our OLTP servers use the 
select() event demultiplexer, which identifies handles whose event sources have 
pending events, so that applications can invoke I/O operations on these handles without 
blocking the calling threads. 
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An event handler specifies an interface consisting of one or more hook methods [Pree95] 
[GoF95]. These methods represent the set of operations available to process application-
specific events that occur on handle(s) serviced by an event handler. 

Concrete event handlers specialize the event handler and implement a specific service that 
the application offers. In particular, concrete event handlers implement the hook method(s) 
responsible for processing events received from a handle. 

 

 

For example, concrete event handlers in OLTP front-end communication servers receive 
and validate remote client requests, and then forward requests to back-end database 
servers. Likewise, concrete event handlers in back-end database servers receive 
transaction requests from front-end servers, read/write the appropriate database records 
to perform the transactions, and return the results to the front-end servers. All network 
I/O operations are performed via socket handles, which identify various sources of 
events. 
 

 

At the heart of the Leader/Followers pattern is a thread pool, which is a group of threads that 
share a synchronizer, such as a semaphore or condition variable, and implement a protocol 
for coordinating their transition between various roles. One or more threads play the follower 
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role and queue up on the thread pool synchronizer waiting to play the leader role. One of 
these threads is selected to be the leader, which waits for an event to occur on any handle in 
its handle set. When an event occurs, the current leader thread promotes a follower thread 
to become the new leader. The original leader then concurrently plays the role of a 
processing thread, which demultiplexes that event from the handle set to an appropriate 
event handler and dispatches the handler's hook method to handle the event. After a 
processing thread is finished handling an event, it returns to playing the role of a follower 
thread and waits on the thread pool synchronizer for its turn to become the leader thread 
again. 

 

 

Each OLTP server designed using the Leader/Followers pattern can have a pool of 
threads waiting to process transaction requests that arrive on event sources identified by 
a handle set. At any point in time, multiple threads in the pool can be processing 
transaction requests and sending results back to their clients. One thread in the pool is 
the current leader, which waits for a new CONNECT or READ event to arrive on the handle 
set shared by the threads. When this occurs, the leader thread becomes a processing 
thread and handles the event, while one of the follower threads in the pool is promoted 
to become the new leader. 
 

 

The following class diagram illustrates the structure of participants in the Leader/Followers 
pattern. In this structure, multiple threads share the same instances of thread pool, event 
handler, and handle set participants. The thread pool ensures the correct and efficient 
coordination of the threads: 
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Dynamics 

The collaborations in the Leader/Followers pattern divide into four phases: 
§ Leader thread demultiplexing. The leader thread waits for an event to occur on any 

handle in the handle set. If there is no current leader thread, for example, due to events 
arriving faster than the available threads can service them, the underlying operating 
system can queue events internally until a leader thread is available. 

§ Follower thread promotion. After the leader thread has detected a new event, it uses 
the thread pool to choose a follower thread to become the new leader. 

§ Event handler demultiplexing and event processing. After helping to promote a follower 
thread to become the new leader, the former leader thread then plays the role of a 
processing thread. This thread concurrently demultiplexes the event it detected to the 
event's associated handler and then dispatches the handler's hook method to process 
the event. A processing thread can execute concurrently with the leader thread and any 
other threads that are in the processing state. 

§ Rejoining the thread pool. After the processing thread has run its event handling to 
completion, it can rejoin the thread pool and wait to process another event. A 
processing thread can become the leader immediately if there is no current leader 
thread. Otherwise, the processing thread returns to playing the role of a follower thread 
and waits on the thread pool synchronizer until it is promoted by a leader thread. 

 

A thread's transitions between states can be visualized in the following diagram: 
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Implementation 

Six activities can be used to implement the Leader/Followers pattern: 
1. Choose the handle and handle set mechanisms. A handle set is a collection of handles 

that a leader thread can use to wait for an event to occur on a set of event sources. 
Developers often choose the handles and handle set mechanisms provided by the 
underlying operating system, rather than implementing them from scratch. Four sub-
activities help with choosing the handle and handle set mechanisms: 

1. Determine the type of handles. There are two general types of handles: 
§ Concurrent handles. This type allows multiple threads to access a 

handle to an event source concurrently without incurring race conditions 
that can corrupt, lose, or scramble the data [Ste98]. For instance, the 
Socket API for record-oriented protocols, such as UDP, allows multiple 
threads to invoke read() or write() operations on the same handle 
concurrently. 

§ Iterative handles. This type requires multiple threads to access a 
handle to an event source iteratively because concurrent access will incur 
race conditions. For instance, the Socket API for bytestream-oriented 
protocols, such as TCP, does not guarantee that read() or write() 
operations respect application-level message boundaries. Thus, 
corrupted or lost data can result if I/O operations on the Socket are not 
serialized properly. 

2. Determine the type of handle set. There are two general types of handle sets: 
§ Concurrent handle set. This type can be acted upon concurrently, for 

example, by a pool of threads. Each time it becomes possible to initiate 
an operation on a handle in the set without blocking the operation, a 
concurrent handle set returns that handle to one of its calling threads. For 
example, the Win32 WaitForMultipleObjects() function [Sol98] 
supports concurrent handle sets by allowing a pool of threads to wait on 
the same set of handles simultaneously. 

§ Iterative handle set. This type returns to its caller when it is possible to 
initiate an operation on one or more handles in the set without the 
operation(s) blocking. Although an iterative handle set can return multiple 
handles in a single call, it can only be called by one thread at a time. For 
example, the select() [Ste98] and poll() [Rago93] functions support 
iterative handle sets. Thus, a pool of threads cannot use select() or 
poll() to demultiplex events on the same handle set concurrently 
because multiple threads can be notified that the same I/O events are 
pending, which elicits erroneous behavior. 

The following table summarizes representative examples for each combination 
of concurrent and iterative handles and handle sets: 

Handle 
Sets  

Handles  Concurrent Handles  Iterative Handles  
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Handle 
Sets  

Handles  Concurrent Handles  Iterative Handles  

Concurrent Handle 
Sets  

UDP Sockets 
+ 

WaitForMultipleObjects()  

TCP Sockets 
+ 

WaitForMultipleObjects()  

Iterative Handle 
Sets  

UDP Sockets 
+ 

select().poll()  

TCP Sockets + 
select().poll()  

3. Determine the consequences of selecting certain handle and handle set 
mechanisms. In general, the Leader/Followers pattern is used to prevent 
multiple threads from corrupting or losing data erroneously, such as invoking 
read operations on a shared TCP bytestream socket handle concurrently or 
invoking select() on a shared handle set concurrently. However, some 
applications need not guard against these problems. In particular, if the handle 
and handle set mechanisms are both concurrent, many of the subsequent 
implementation activities can be skipped. 

As discussed in implementation activities 1.1 (456) and 1.2 (457), the 
semantics of certain combinations of protocols and network programming APIs 
support concurrent multiple I/O operations on a shared handle. For example, 
UDP support in the Socket API ensures a complete message is always read or 
written by one thread or another, without the risk of a partial read() or of data 
corruption from an interleaved write(). Likewise, certain handle set 
mechanisms, such as the Win32 WaitForMultipleObjects() function 
[Sol98], return a single handle per call, which allows them to be called 
concurrently by a pool of threads.[9]  

In these situations, it may be possible to implement the Leader/Followers 
pattern by simply using the operating system's thread scheduler to 
(de)multiplex threads, handle sets, and handles robustly, in which case, 
implementation activities 2 through 6 can be skipped. 

4. Implement an event handler demultiplexing mechanism. In addition to calling 
an event demultiplexer to wait for one or more events to occur on its handle 
set, such as select(), a Leader/Followers pattern implementation must 
demultiplex events to event handlers and dispatch their hook methods to 
process the events. In general, two alternative strategies can be used to 
implement this mechanism: 
§ Program to a low-level operating system event demultiplexing 

mechanism. In this strategy, the handle set demultiplexing mechanisms 
provided by the operating system are used directly. Thus, a 
Leader/Followers implementation must maintain a demultiplexing table 
that is a manager [Som97] containing a set of <handle, event handler, 
event types> tuples. Each handle serves as a 'key' that associates 
handles with event handlers in its demultiplexing table, which also stores 
the type of event(s), such as CONNECT and READ, that each event handler 
will process. The contents of this table are converted into handle sets 
passed to the native event demultiplexing mechanism, such as 
select() [Ste98] or WaitForMultipleObjects() [Sol98]. 
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§ Implementation activity 3.3 of the Reactor pattern (179) illustrates how 
to implement a demultiplexing table. 
 

 

§ Program to a higher-level event demultiplexing pattern. In this 
strategy, developers leverage higher-level patterns, such as Reactor 
(179), Proactor (215), and Wrapper Facade (47). These patterns help to 
simplify the Leader/Followers implementation and reduce the effort 
needed to address the accidental complexities of programming to native 
operating system handle set demultiplexing mechanisms directly. 
Moreover, applying higher-level patterns makes it easier to decouple the 
I/O and demultiplexing aspects of a system from its concurrency model, 
thereby reducing code duplication and maintenance effort. 

 

§ In our OLTP server example, an event must be demultiplexed to the 
concrete event handler associated with the socket handle that 
received the event. The Reactor pattern (179) supports this activity, 
therefore it can be applied to simplify the implementation of the 
Leader/Followers pattern. In the context of the Leader/Followers 
pattern, however, a reactor demultiplexes just one handle at a time to 
its associated concrete event handler, regardless of how many 
handles have events pending on them. Demultiplexing only one 
handle at a time can maximize the concurrency among a pool of 
threads and simplify a Leader/Followers pattern implementation by 
alleviating its need to manage a separate queue of pending events. 
 

 

2. Implement a protocol for temporarily (de)activating handles in a handle set. When an 
event arrives, the leader thread performs three steps: 
§ It deactivates the handle from consideration in the handle set temporarily 
§ It promotes a follower thread to become the new leader and 
§ It continues to process the event. 

Deactivating the handle from the handle set avoids race conditions that could occur 
between the time when a new leader is selected and the event is processed. If the 
new leader waits on the same handle in the handle set during this interval, it could 
demultiplex the event a second time, which is erroneous because the dispatch is 
already in progress. After the event is processed, the handle is reactivated in the 
handle set, which allows the leader thread to wait for an event to occur on it or any 
other activated handles in the set. 

 

In our OLTP example, a handle deactivation and reactivation protocol can be 
provided by extending the Reactor interface defined in implementation activity 2 
of the Reactor pattern (179): 
    class Reactor { 
    public: 
        // Temporarily deactivate the <HANDLE> 
        // from the internal handle set. 
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        void deactivate_handle (HANDLE, Event_Type); 
 
        // Reactivate a previously deactivated 
        // <Event_Handler> to the internal handle set. 
        void reactivate_handle (HANDLE, Event_Type); 
        // ... 
    }; 
 

 

3. Implement the thread pool. To promote a follower thread to the leader role, as well as 
to determine which thread is the current leader, an implementation of the 
Leader/Followers pattern must manage a pool of threads. A straightforward way to 
implement this is to have all the follower threads in the set simply wait on a single 
synchronizer, such as a semaphore or condition variable. In this design, it does not 
matter which thread processes an event, as long as all threads in the pool that share 
the handle set are serialized. 

 

4. For example, the LF_Thread_Pool class shown below can be used for the 
back-end database servers in our OLTP example: 

5.     class LF_Thread_Pool { 
6.     public: 
7.         // Constructor. 
8.         LF_Thread_Pool (Reactor *r): reactor_ (r) { } 
9.  
10.         // Threads call <join> to wait on a handle set 

and 
11.         // demultiplex events to their event handlers. 
12.         void join (Time_Value *timeout = 0); 
13.  
14.         // Promote a follower thread to become the 
15.         // leader thread. 
16.         void promote_new_leader (); 
17.         // Support the <HANDLE> (de)activation 

protocol. 
18.         void deactivate_handle (HANDLE, Event_Type 

et); 
19.         void reactivate_handle (HANDLE, Event_Type 

et); 
20.     private: 
21.         // Pointer to the event 

demultiplexer/dispatcher. 
22.         Reactor *reactor_; 
23.  
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24.         // The thread id of the leader thread, which 
is 

25.         // set to NO_CURRENT_LEADER if there is no 
leader. 

26.         Thread_Id leader_thread_; 
27.  
28.         // Follower threads wait on this condition 
29.         // variable until they are promoted to leader. 
30.         Thread_Condition followers_condition_; 
31.  
32.         // Serialize access to our internal state. 
33.         Thread_Mutex mutex_; 
34.     }; 

35. The constructor of LF_Thread_Pool caches the reactor passed to it. By default, 
this reactor implementation uses select(), which supports iterative handle 
sets. Therefore, LF_Thread_Pool is responsible for serializing multiple threads 
that take turns calling select() on the reactor's handle set. 

36. Application threads invoke join() to wait on a handle set and demultiplex new 
events to their associated event handlers. As shown in implementation activity 4 
(462), this method does not return to its caller until the application terminates or 
join() times out. The promote_new_leader() method promotes one of the 
follower threads in the set to become the new leader, as shown in implementation 
activity 5.2 (464). 

37. The deactivate_handle() method and the reactivate_handle() method 
deactivate and reactivate handles within a reactor's handle set. The 
implementations of these methods simply forward to the same methods defined 
in the Reactor interface shown in implementation activity 2 (459). 

38. Note that a single condition variable synchronizer followers_condition_ is 
shared by all threads in this thread pool. As shown in implementation activities 4 
(462) and 5 (463), the implementation of LF_Thread_Pool uses the Monitor 
Object pattern (399). 
 

 

40. Implement a protocol to allow threads to initially join (and later rejoin) the thread pool. 

This protocol is used in the following two cases: 
§ After the initial creation of a pool of threads that retrieve and process events; 

and 
§ After a processing thread completes and is available to handle another event. 

If no leader thread is available, a processing thread can become the leader 
immediately. If a leader thread is already available, a thread can become a follower 
by waiting on the thread pool's synchronizer. 
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Our back-end database servers can implement the following join() method of 
the LF_Thread_Pool to wait on a handle set and demultiplex new events to 
their associated event handlers: 
    void LF_Thread_Pool::join (Time_Value *timeout) { 
         // Use Scoped Locking idiom to acquire mutex 
         // automatically in the constructor. 
         Guard<Thread_Mutex> guard (mutex_); 
 
         for (;;) { 
             while (leader_thread_ != NO_CURRENT_LEADER) 
                 // Sleep and release <mutex> atomically. 
                 followers_condition_.wait (timeout); 
 
             // Assume the leader role. 
             leader_thread_ = Thread::self (); 
 
             // Leave monitor temporarily to allow other 
             // follower threads to join the pool. 
             guard.release (); 
 
             // After becoming the leader, the thread uses 
             // the reactor to wait for an event. 
             reactor_->handle_events ()' 
 
             // Reenter monitor to serialize the test 
             // for <leader_thread_> in the while loop. 
             guard.acquire (); 
         } 
    } 

Within the for loop, the calling thread alternates between its role as a leader, 
processing, and follower thread. In the first part of this loop, the thread waits 
until it can be a leader, at which point it uses the reactor to wait for an event on 
the shared handle set. When the reactor detects an event on a handle, it will 
demultiplex the event to its associated event handler and dispatch its 
handle_event() method to promote a new leader and process the event. After 
the reactor demultiplexes one event, the thread re-assumes its follower role. 
These steps continue looping until the application terminates or a timeout occurs. 
 

 

41. Implement the follower promotion protocol. Immediately after a leader thread detects 
an event, but before it demultiplexes the event to its event handler and processes the 
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event, it must promote a follower thread to become the new leader. Two sub-activities 
can be used to implement this protocol: 

0. Implement the handle set synchronization protocol. If the handle set is iterative 
and we blindly promote a new leader thread, it is possible that the new leader 
thread will attempt to handle the same event that was detected by the previous 
leader thread that is in the midst of processing the event. To avoid this race 
condition, we must remove the handle from consideration in the handle set 
before promoting a follower to new leader and dispatching the event to its 
concrete event handler. The handle must be reactivated in the handle set after 
the event has been dispatched and processed. 

 

1. An application can implement concrete event handlers that subclass from 
the Event_Handler class defined in implementation activity 1.2 of the 
Reactor pattern (179). Likewise, the Leader/Followers implementation can 
use the Decorator pattern [GoF95] to create an LF_Event_Handler 
class that decorates Event_Handler. This decorator promotes a new 
leader thread and activates/deactivates the handler in the reactor's handle 
set transparently to the concrete event handlers. 

2.     class LF_Event_Handler : public Event_Handler { 
3.     public: 
4.         LF_Event_Handler (Event_Handler *eh, 
5.                           LF_Thread_Pool *tp) 
6.             : concrete_event_handler_ (eh), 
7.               thread_pool_ (tp) { } 
8.  
9.         virtual void handle_event (HANDLE h, 

Event_Type et) { 
10.             // Temporarily deactivate the handler in 

the 
11.             // reactor to prevent race conditions. 
12.             thread_pool_->deactivate_handle (h, et); 
13.             // Promote a follower thread to become 

leader. 
14.             thread_pool_->promote_new_leader (); 
15.  
16.             // Dispatch application-specific event 
17.             // processing code. 
18.             concrete_event_handler_->handle_event (h, 

et); 
19.  
20.             // Reactivate the handle in the reactor. 
21.             thread_pool_->reactivate_handle (h, et); 
22.         } 
23.     private: 
24.         // This use of <Event_Handler> plays the 
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25.         // <ConcreteComponent> role in the Decorator 
26.         // pattern, which is used to implement 
27.         // the application-specific functionality. 
28.         Event_Handler *concrete_event_handler_; 
29.  
30.         // Instance of an <LF_Thread_Pool>. 
31.         LF_Thread_Pool *thread_pool_; 
32.     }; 

 
 

34. Determine the promotion protocol ordering. Several ordering strategies can be 
used to determine which follower thread to promote: 
§ LIFO order. In many applications, it does not matter which of the 

follower threads is promoted next because all threads are equivalent 
peers. In this case, the leader thread can promote follower threads in last-
in, first-out (LIFO) order. The LIFO protocol maximizes CPU cache affinity 
[SKT96] [MB91] by ensuring that the thread waiting the shortest time is 
promoted first [Sol98], which is an example of the Fresh Work Before 
Stale pattern [Mes96]. 

Cache affinity can improve system performance if the thread that blocked 
most recently executes essentially the same code and data when it is 
scheduled to run again. Implementing a LIFO promotion protocol requires 
an additional data structure, however, such as a stack of waiting threads, 
rather than just using a native operating system synchronization object, 
such as a semaphore. 

§ Priority order. In some applications, particularly real-time applications, 
threads may run at different priorities. In this case, therefore, it may be 
necessary to promote follower threads according to their priority. This 
protocol can be implemented using some type of priority queue, such as a 
heap [BaLee98]. Although this protocol is more complex than the LIFO 
protocol, it may be necessary to promote follower threads according to 
their priorities in order to minimize priority inversion [SMFG00]. 

§ Implementation-defined order. This ordering is most common when 
implementing handle sets using operating system synchronizers, such as 
semaphores or condition variables, which often dispatch waiting threads 
in an implementation-defined order. The advantage of this protocol is that 
it maps onto native operating system synchronizers efficiently. 

 

§ Our OLTP back-end database servers could use the following simple 
protocol to promote follower thread in whatever order they are 
queued by a native operating system condition variable: 

§   void LF_Thread_Pool::promote_new_leader () { 
§       // Use Scoped Locking idiom to acquire mutex 
§       // automatically in the constructor. 
§       Guard<Thread_Mutex> guard (mutex_); 
§  
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§       if (leader_thread_ != Thread::self ()) 
§           throw /* ...only leader thread can 

promote... */; 
§  
§       // Indicate that we are no longer the leader 
§       // and notify a <join> method to promote 
§       // the next follower. 
§       leader_thread_ = NO_CURRENT_LEADER; 
§       followers_condition_.notify (); 
§  
§       // Release mutex automatically in destructor. 
§   } 

§ As shown in implementation activity 5.1 (463), the 
promote_new_leader() method is invoked by a 
LF_Event_Handler decorator before it forwards to the concrete 
event handler that processes an event. 
 

 

42. Implement the event handlers. Application developers must decide what actions to 
perform when the hook method of a concrete event handler is invoked by a 
processing thread in the Leader/Followers pattern implementation. Implementation 
activity 5 in the Reactor pattern (179) describes various issues associated with 
implementing concrete event handlers. 

Example Resolved 

The OLTP back-end database servers described in the Example section can use the 
Leader/Followers pattern to implement a thread pool that demultiplexes I/O events from 
socket handles to their event handlers efficiently. In this design, there is no designated 
network I/O thread. Instead, a pool of threads is pre-allocated during database server 
initialization: 
    const int MAX_THREADS = /* ... */; 
 
    // Forward declaration. 
    void *worker_thread (void *); 
 
    int main () { 
        LF_Thread_Pool thread_pool (Reactor::instance ()); 
        // Code to set up a passive-mode Acceptor omitted. 
        for (int i = 0; i < MAX_THREADS - 1; ++i) 
            Thread_Manager::instance ()->spawn 
                 (worker_thread, &thread_pool); 
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        // The main thread participates in the thread pool. 
        thread_pool.join (); 
    }; 

These threads are not bound to any particular socket handle. Thus, all threads in this pool 
take turns playing the role of a network I/O thread by invoking the LF 
Thread_Pool::join() method: 
    void *worker_thread (void *arg) { 
        LF_Thread_Pool *thread_pool = 
            static_cast <LF_Thread_Pool *> (arg); 
 
        // Each worker thread participates in the thread pool. 
        thread_pool->join (); 
    }; 

As shown in implementation activity 4 (462), the join() method allows only the leader 
thread to use the Reactor singleton to select() on a shared handle set of Sockets 
connected to OLTP front-end communication servers. If requests arrive when all threads are 
busy, they will be queued in socket handles until threads in the pool are available to execute 
the requests. 

When a request event arrives, the leader thread deactivates the socket handle temporarily 
from consideration in select()'s handle set, promotes a follower thread to become the 
new leader, and continues to handle the request event as a processing thread. This 
processing thread then reads the request into a buffer that resides in the runtime stack or is 
allocated using the Thread-Specific Storage pattern (475).[10] All OLTP activities occur in the 
processing thread. Thus, no further context switching, synchronization, or data movement is 
necessary until the processing completes. When it finishes handling a request, the 
processing thread returns to playing the role of a follower and waits on the synchronizer in 
the thread pool. Moreover, the socket handle it was processing is reactivated in the 
Reactor singleton's handle set so that select() can wait for I/O events to occur on it, 
along with other Sockets in the handle set. 

Variants 

Bound Handle/Thread Associations. The earlier sections in this pattern describe unbound 
handle/thread associations, where there is no fixed association between threads and 
handles. Thus, any thread can process any event that occurs on any handle in a handle set. 
Unbound associations are often used when a pool of worker threads take turns 
demultiplexing a shared handle set. 

A variant of the Leader/Followers pattern uses bound handle/thread associations. In this 
variant, each thread is bound to its own handle, which it uses to process particular events. 
Bound associations are often used in the client-side of an application when a thread waits on 
a socket handle for a response to a two-way request it sent to a server. In this case, the 
client application thread expects to process the response event on this handle in the same 
thread that sent the original request. 

In the bound handle/thread association variant, therefore, the leader thread in the thread 
pool may need to hand-off an event to a follower thread if the leader does not have the 
necessary context to process the event. After the leader detects a new event, it checks the 
handle associated with the event to determine which thread is responsible for processing it. 
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If the leader thread discovers that it is responsible for the event, it promotes a follower thread 
to become the new leader Conversely, if the event is intended for another thread, the leader 
must hand-off the event to the designated follower thread. This follower thread can then 
temporally disable the handle and process the event. Meanwhile, the current leader thread 
continues to wait for another event to occur on the handle set. 

The following diagram illustrates the additional transition between the following state and the 
processing state: 

 

The leader/follower thread pool can be maintained implicitly, for example, using a 
synchronizer, such as a semaphore or condition variable, or explicitly, using a container and 
the Manager pattern [Som97]. The choice depends largely on whether the leader thread 
must notify a specific follower thread explicitly to perform event hand-offs. 

A detailed discussion of the bounded handle/thread association variant and its 
implementation appears in [SRPKB00]. 

Relaxing Serialization Constraints. There are operating systems where multiple leader 
threads can wait on a handle set simultaneously. For example, the Win32 function 
WaitForMultipleObjects() [Sol98] supports concurrent handle sets that allow a pool of 
threads to wait on the same set of handles concurrently. Thus, a thread pool designed using 
this function can take advantage of multi-processor hardware to handle multiple events 
concurrently while other threads wait for events. 

Two variations of the Leader/Followers pattern can be applied to allow multiple leader 
threads to be active simultaneously: 
§ Leader/followers per multiple handle sets. This variation applies the conventional 

Leader/Followers implementation to multiple handle sets separately. For instance, each 
thread is assigned a designated handle set. This variation is particularly useful in 
applications where multiple handle sets are available. However, this variant limits a 
thread to use a specific handle set. 

§ Multiple leaders and multiple followers. In this variation, the pattern is extended to 
support multiple simultaneous leader threads, where any of the leader threads can wait 
on any handle set. When a thread re-joins the thread pool it checks if a leader is 
associated with every handle set already. If there is a handle set without a leader, the 
re-joining thread can become the leader of that handle set immediately. 

Hybrid Thread Associations. Some applications use hybrid designs that implement both 
bound and unbound handle/thread associations simultaneously. Likewise, some handles in 
an application may have dedicated threads to handle certain events, whereas other handles 
can be processed by any thread. Thus, one variant of the Leader/Follower pattern uses its 
event hand-off mechanism to notify certain subsets of threads, according to the handle on 
which event activity occurs. 
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For example, the OLTP front-end communication server may have multiple threads 
using the Leader/Followers pattern to wait for new request events from clients. Likewise, 
it may also have threads waiting for responses to requests they invoked on back-end 
servers. In fact, threads play both roles over their lifetime, starting as threads that 
dispatch new incoming requests, then issuing requests to the back-end servers to satisfy 
the client application requirements, and finally waiting for responses to arrive from the 
back-end server. 
 

 

Hybrid Client/Servers. In complex systems, where peer applications play both client and 
server roles, it is important that the communication infrastructure processes incoming 
requests while waiting for one or more replies. Otherwise, the system can deadlock because 
one client dedicates all its threads to block waiting for responses. 

In this variant, the binding of threads and handles changes dynamically. For example, a 
thread may be unbound initially, yet while processing an incoming request the application 
discovers it requires a service provided by another peer in the distributed system. In this 
case, the unbound thread dispatches a new request while executing application code, 
effectively binding itself to the handle used to send the request. Later, when the response 
arrives and the thread completes the original request, it becomes unbound again.  

Alternative Event Sources and Sinks. Consider a system where events are obtained not only 
through handles but also from other sources, such as shared memory or message queues. 
For example, in UNIX there are no event demultiplexing functions that can wait for I/O 
events, semaphore events, and/or message queue events simultaneously. However, a 
thread can either block waiting for one type of event at the same time. Thus, the 
Leader/Followers pattern can be extended to wait for more than one type of events 
simultaneously: 
§ A leader thread is assigned to each source of events—as opposed to a single leader 

thread for the complete system. 
§ After the event is received, but before processing the event, a leader thread can select 

any follower thread to wait on this event source. 

A drawback with this variant, however, is that the number of participating threads must 
always be greater than the number of event sources. Therefore, this approach may not scale 
well as the number of event sources grows. 

Known Uses 

ACE Thread Pool Reactor framework [Sch97]. The ACE framework provides an object-
oriented framework implementation of the Leader/Followers pattern called the 'thread pool 
reactor' (ACE_TP_Reactor) that demultiplexes events to event handlers within a pool of 
threads. When using a thread pool reactor, an application pre-spawns a fixed number of 
threads. When these threads invoke the ACE_TP_Reactor's handle_events() method, 
one thread will become the leader and wait for an event. Threads are considered unbound 
by the ACE thread pool reactor framework. Thus, after the leader thread detects the event, it 
promotes an arbitrary thread to become the next leader and then demultiplexes the event to 
its associated event handler. 

CORBA ORBs and Web servers. Many CORBA implementations, including Chorus COOL 
ORB [SMFG00] and TAO [SC99], use the Leader/Followers pattern for both their client-side 
connection model and the server-side concurrency model. In addition, The JAWS Web 
server [HPS99] uses the Leader/Followers thread pool model for operating system platforms 
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that do not allow multiple threads to simultaneously call accept() on a passive-mode 
socket handle.  

Transaction monitors. Popular transaction monitors, such as Tuxedo, operate traditionally 
on a per-process basis, for example, transactions are always associated with a process. 
Contemporary OLTP systems demand high-performance and scalability, however, and 
performing transactions on a per-process basis may fail to meet these requirements. 
Therefore, next-generation transaction services, such as implementations of the CORBA 
Transaction Service [OMG97b], employ bound Leader/Followers associations between 
threads and transactions. 

Taxi stands. The Leader/Followers pattern is used in everyday life to organize many airport 
taxi stands. In this use case, taxi cabs play the role of the 'threads,' with the first taxi cab in 
line being the leader and the remaining taxi cabs being the followers. Likewise, passengers 
arriving at the taxi stand constitute the events that must be demultiplexed to the cabs, 
typically in FIFO order. In general, if any taxi cab can service any passenger, this scenario is 
equivalent to the unbound handle/thread association described in the main Implementation 
section. However, if only certain cabs can service certain passengers, this scenario is 
equivalent to the bound handle/thread association described in the Variants section. 

Consequences 

The Leader/Followers pattern provides several benefits: 

Performance enhancements. Compared with the Half-Sync/Half-Reactive thread pool 
approach described in the Example section, the Leader/Followers pattern can improve 
performance as follows: 
§ It enhances CPU cache affinity and eliminates the need for dynamic memory allocation 

and data buffer sharing between threads. For example, a processing thread can read 
the request into buffer space allocated on its run-time stack or by using the Thread-
Specific Storage pattern (475) to allocate memory. 

§ It minimizes locking overhead by not exchanging data between threads, thereby 
reducing thread synchronization. In bound handle/thread associations, the leader thread 
demultiplexes the event to its event handler based on the value of the handle. The 
request event is then read from the handle by the follower thread processing the event. 
In unbound associations, the leader thread itself reads the request event from the 
handle and processes it. 

§ It can minimize priority inversion because no extra queueing is introduced in the 
server. When combined with real-time I/O subsystems [KSL99], the Leader/Followers 
thread pool model can reduce sources of non-determinism in server request processing 
significantly. 

§ It does not require a context switch to handle each event, reducing the event 
dispatching latency. Note that promoting a follower thread to fulfill the leader role does 
require a context switch. If two events arrive simultaneously this increases the 
dispatching latency for the second event, but the performance is no worse than Half-
Sync/Half-Reactive thread pool implementations. 

Programming simplicity. The Leader/Follower pattern simplifies the programming of 
concurrency models where multiple threads can receive requests, process responses, and 
demultiplex connections using a shared handle set. 

However, the Leader/Followers pattern has the following liabilities: 

Implementation complexity. The advanced variants of the Leader/Followers pattern are 
harder to implement than Half-Sync/Half-Reactive thread pools. In particular, when used as 
a multi-threaded connection multiplexer, the Leader/Followers pattern must maintain a pool 
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of follower threads waiting to process requests. This set must be updated when a follower 
thread is promoted to a leader and when a thread rejoins the pool of follower threads. All 
these operations can happen concurrently, in an unpredictable order. Thus, the 
Leader/Follower pattern implementation must be efficient, while ensuring operation 
atomicity. 

Lack of flexibility. Thread pool models based on the Half-Sync/Half-Reactive variant of the 
Half-Sync/Half-Async pattern (423) allow events in the queueing layer to be discarded or re-
prioritized. Similarly, the system can maintain multiple separate queues serviced by threads 
at different priorities to reduce contention and priority inversion between events at different 
priorities. In the Leader/Followers model, however, it is harder to discard or reorder events 
because there is no explicit queue. One way to provide this functionality is to offer different 
levels of service by using multiple Leader/Followers groups in the application, each one 
serviced by threads at different priorities.  

Network I/O bottlenecks. The Leader/Followers pattern, as described in the Implementation 
section, serializes processing by allowing only a single thread at a time to wait on the handle 
set. In some environments, this design could become a bottleneck because only one thread 
at a time can demultiplex I/O events. In practice, however, this may not be a problem 
because most of the I/O-intensive processing is performed by the operating system kernel. 
Thus, application-level I/O operations can be performed rapidly. 

See Also 

The Reactor pattern (179) often forms the core of Leader/Followers pattern implementations. 
However, the Reactor pattern can be used in lieu of the Leader/Followers pattern when each 
event only requires a short amount of time to process. In this case, the additional scheduling 
complexity of the Leader/Followers pattern is unnecessary. 

The Proactor pattern (215) defines another model for demultiplexing asynchronous event 
completions concurrently. It can be used instead of the Leader/Followers pattern: 
§ When an operating system supports asynchronous I/O efficiently and 
§ When programmers are comfortable with the asynchronous inversion of control 

associated with the Proactor pattern 

The Half-Sync/Half-Async (423) and Active Object (369) patterns are two other alternatives 
to the Leader/Followers pattern. These patterns may be a more appropriate choice than the 
Leader/Followers pattern: 
§ When there are additional synchronization or ordering constraints that must be 

addressed by reordering requests in a queue before they can be processed by threads 
in the pool and/or 

§ When event sources cannot be waited for by a single event demultiplexer efficiently 

The Controlled Reactor pattern [DeFe99] includes a performance manager that controls the 
use of threads for event handlers according to a user's specification and may be an 
alternative when controlled performance is an important objective. 

Credits 

Michael Kircher, Carlos O'Ryan, and Irfan Pyarali are the co-authors of the original version 
of the Leader/Followers pattern. Thanks to Ed Fernandez for his comments that helped 
improve this version of the pattern. 

[8]For instance, some operating systems support asynchronous I/O by spawning a thread for 
each asynchronous operation, thereby defeating the potential performance benefits of 
asynchrony. 
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[9]However, WaitForMultipleObjects() does not by itself address the problem of 
notifying a particular thread when an event is available, which is necessary to support the 
bound thread/handle association discussed in the Variants section. 

[10]In contrast, the Half-Sync/Half-Reactive thread pool described in the Example section 
must allocate each request dynamically from a shared heap because the request is passed 
between threads. 

Thread-Specific Storage 
The Thread-Specific Storage design pattern allows multiple threads to use one 'logically 
global' access point to retrieve an object that is local to a thread, without incurring locking 
overhead on each object access. 

Also Known As 

Thread-Local Storage 

Example 

Consider the design of a multi-threaded network logging server that remote client 
applications use to record information about their status centrally within a distributed system. 
Unlike the logging server shown in the Reactor pattern example (179), which demultiplexed 
all client connections iteratively within a single thread, this logging server uses a thread-per-
connection [Sch97] concurrency model to process requests concurrently. 

 

In the thread-per-connection model a separate thread is created for each client connection. 
Each thread reads logging records from its associated TCP Socket, processes these records 
and writes them to the appropriate output device, such as a log file or a printer.  

Each logging server thread is also responsible for detecting and reporting any low-level 
network conditions or system errors that occur when performing I/O. Many operating 
systems, such as UNIX and Windows NT, report this low-level information to applications via 
a global access point, called errno. When an error or unusual condition occurs during 
system calls, such as read() or write(), the operating system sets errno to indicate 
what has happened and returns a specific status value, such as −1. Applications must test 
for these return values and then check errno to determine what type of error or unusual 
condition occurred. 
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Consider the following C code fragment that receives client logging records from a TCP 
socket handle set to non-blocking mode [Ste98]. 
    // One global <errno> per-process. 
    extern int errno; 
 
    void *logger (HANDLE socket) { 
        // Read logging records until connection is closed. 
        for (;;) { 
            char log_record[MAXREC]; 
            if (recv (socket, log_record, MAXREC, 0) == -1) { 
                // Check to see why <recv> failed. 
                if (errno == EWOULDBLOCK) 
                    sleep (1); // Try getting data later. 
                else // Display error result. 
                    cerr << "recv failed, errno=" << errno; 
            } else // Normal case ... 
        } 
    } 

If recv() returns −1 the logging server logger code checks errno to determine what 
happened and decide how to proceed. 

Although implementing errno at global scope works reasonably well for single-threaded 
applications, it can incur subtle problems for multi-threaded applications. In particular, race 
conditions in preemptive multi-threaded systems can cause an errno value set in one 
thread to be interpreted erroneously in other threads. If multiple threads execute the 
logger() function simultaneously erroneous interactions may occur. 

For example, assume that thread T1 invokes a non-blocking recv() call that returns −1 and 
sets errno to EWOULDBLOCK, which indicates that no data is currently queued on the 
Socket. Before T1 can check for this case, however, it is preempted and thread T2 starts 
running.  

Assuming that T2 is then interrupted by an asynchronous signal, such as SIGALRM, it sets 
errno to EINTR. If T2 is preempted immediately because its time-slice is finished, T1 will 
falsely assume its recv() call was interrupted and perform the wrong action: 
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One apparent solution to this problem is to apply the Wrapper Facade pattern (47) to 
encapsulate errno with an object wrapper that contains a lock. The Scoped Locking idiom 
(325) can then be used to acquire the lock before setting or checking errno and to release 
it afterwards. Unfortunately, this design will not solve the race condition problem, because 
setting and checking the global errno value is not atomic. Instead, it involves the following 
two activities: 

1. The recv() call sets errno. 
2. The application checks errno to determine what action to take. 

A more robust way to prevent race conditions is to improve the errno locking protocol. For 
example, the recv() system call could acquire a global errno_lock before it sets errno. 
Subsequently, when recv() returns, the application releases the errno_lock after it tests 
the value of errno. This solution is error-prone, however, because applications may forget 
to release errno_lock, causing starvation and deadlock. Also, because applications may 
need to check the status of errno frequently, the extra locking overhead will degrade 
performance significantly, particularly when an application happens to run in a single-
threaded configuration. 

What is needed therefore is mechanism that transparently gives each thread its own local 
copy of 'logically global' objects, such as errno. 

Context 

Multi-threaded applications that frequently access data or objects that are logically global but 
whose state should be physically local to each thread. 

Problem 

Multi-threaded applications can be hard to program due to the complex concurrency control 
protocols needed to avoid race conditions, starvation and deadlocks [Lea99a]. Due to 
locking overhead, multi-threaded applications also often perform no better than single-
threaded applications. In fact, they may perform worse, particularly on multi-processor 
platforms [SchSu95]. Two forces can arise in concurrent programs: 
§ Multi-threaded applications should be both easy to program and efficient. In particular, 

access to data that is logically global but physically local to a thread should be atomic 
without incurring locking overhead for each access.[11]  

 

§ As described in the Example section, operating systems often implement errno as a 
'logically global' variable that developers program as if it were an actual global 
variable. To avoid race conditions, however, the memory used to store errno is 
allocated locally, once per thread. 
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§ Many legacy libraries and applications were written originally assuming a single thread 
of control. They therefore often pass data implicitly between methods via global objects, 
such as errno, rather than passing parameters explicitly. When retrofitting such code 
to run in multiple threads it is often not feasible to change existing interfaces and code 
in legacy applications. 

 

§ Operating systems that return error status codes implicitly in errno cannot be 
changed easily to return these error codes explicitly without causing existing 
applications and library components to break. 
 

 

Solution 

Introduce a global access point for each thread-specific object, but maintain the 'real' object 
in storage that is local to each thread. Let applications manipulate these thread-specific 
objects only through their global access points. 

Structure 

The Thread-Specific Storage pattern is composed of six participants. 

A thread-specific object is an instance of an object that can be accessed only by a particular 
thread. 

 

For example, in operating systems that support multi-threaded processes, errno is an 
int that has a different instance in each thread. 
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A thread identifies a thread-specific object using a key that is allocated by a key factory. 
Keys generated by the key factory are assigned from a single range of values to ensure that 
each thread-specific object is 'logically' global. 

 

For example, a multi-threaded operating system implements errno by creating a 
globally-unique key. Each thread uses this key to access its own local instance of errno 
implicitly. 
 

 

 

A thread-specific object set contains the collection of thread-specific objects that are 
associated with a particular thread. Each thread has its own thread-specific object set. 
Internally, this thread-specific object set defines a pair of methods, which we call set() and 
get(), to map the globally-managed set of keys to the thread-specific objects stored in the 
set. Clients of a thread-specific object set can obtain a pointer to a particular thread-specific 
object by passing a key that identifies the object as a parameter to get(). The client can 
inspect or modify the object via the pointer returned by the get() method. Similarly, clients 
can add a pointer to a thread-specific object into the object set by passing the pointer to the 
object and its associated key as parameters to set(). 

 

An operating system's threads library typically implements the thread-specific object set. 
This set contains the errno data, among other thread-specific objects. 
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A thread-specific object proxy [GoF95] [POSA1] can be defined to enable clients to access a 
specific type of thread-specific object as if it were an ordinary object. If proxies are not used, 
clients must access thread-specific object sets directly and use keys explicitly, which is 
tedious and error-prone. Each proxy instance stores a key that identifies the thread-specific 
object uniquely. Thus, there is one thread-specific object per-key, per-thread. 

A thread-specific object proxy exposes the same interface as its associated thread-specific 
object. Internally, the interface methods of the proxy first use the set() and get() methods 
provided by its thread-specific object set to obtain a pointer to the thread-specific object 
designated by the key stored in the proxy. After a pointer to the appropriate thread-specific 
object has been obtained, the proxy then delegates the original method call to it. 

 

For example, errno is implemented as a preprocessor macro that plays the role of the 
proxy and shields applications from thread-specific operations. 
 

 

Application threads are clients that use thread-specific object proxies to access particular 
thread-specific objects that reside in thread-specific storage. To an application thread, the 
method appears to be invoked on an ordinary object, when in fact it is invoked on a thread-
specific object. Multiple application threads can use the same thread-specific object proxy to 
access their unique thread-specific objects. A proxy uses the identifier of the application 
thread that calls its interface methods to differentiate between the thread-specific objects it 
encapsulates. 

 

For example, the thread that runs the logger function in the Example section is an 
application thread. 
 

 

 

The following class diagram illustrates the general structure of the Thread-Specific Storage 
pattern: 
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The participants in the Thread-Specific Storage pattern can be modeled conceptually as a 
two-dimensional matrix that has one row per key and one column per thread. The matrix 
entry at row k and column t yields a pointer to the corresponding thread-specific object. 
Creating a key is analogous to adding a row to the matrix; creating a new thread is 
analogous to adding a column. 

A thread-specific object proxy works in conjunction with the thread-specific object set to 
provide application threads with a type-safe mechanism to access a particular object located 
at row k and column t. The key factory maintains a count of how many keys have been used. 
A thread-specific object set contains the entries in one column. 

 

Note that the model above is only an analogy. In practice, implementations of the Thread-
Specific Storage pattern do not use two-dimensional matrices, because keys are not 
necessarily consecutive integers. The entries in the thread-specific object set may also 
reside in their corresponding thread, rather than in a global two-dimensional matrix. It is 
helpful to visualize the structure of the Thread-Specific Storage pattern as a two-dimensional 
matrix, however. We therefore refer to this metaphor in the following sections. 

Dynamics 

There are two general scenarios in the Thread-Specific Storage pattern: creating and 
accessing a thread-specific object. Scenario I describes the creation of a thread-specific 
object: 
§ An application thread invokes a method defined in the interface of a thread-specific 

object proxy. 
§ If the proxy does not yet have an associated key it asks the key factory to create a new 

key. This key identifies the associated thread-specific object uniquely in each thread's 
object set. The proxy then stores the key, to optimize subsequent method invocations 
by application threads. 

§ The thread-specific object proxy creates a new object dynamically. It then uses the 
thread-specific object set's set() method to store a pointer to this object in the location 
designated by the key. 

§ The method that was invoked by the application thread is then executed, as shown in 
Scenario II. 
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Scenario II describes how an application thread accesses an existing thread-specific object: 
§ An application thread invokes a method on a thread-specific object proxy. 
§ The thread-specific object proxy passes its stored key to the get() method of the 

application thread's thread-specific object set. It then retrieves a pointer to the 
corresponding thread-specific object. 

§ The proxy uses this pointer to delegate the original method call to the thread-specific 
object. Note that no locking is necessary, because the object is referenced through a 
pointer that is accessed only within the client application thread itself. 

 

Implementation 

Implementing the Thread-Specific Storage pattern centers on implementing thread-specific 
object sets and thread-specific object proxies. These two components create the 
mechanisms for managing and accessing objects residing in thread-specific storage. We 
therefore describe their implementation—including potential alternatives—as two separate 
activities, starting with thread-specific object sets and then covering thread-specific object 
proxies. 

The thread-specific objects themselves, as well as the application code that accesses them, 
are defined by application developers. We therefore do not provide general implementation 
activities for these pattern participants. In the Example Resolved section, however, we use 
our multi-threaded logging server example to illustrate how applications can program the 
Thread-Specific Storage pattern effectively. 

1. Implement the thread-specific object sets. This activity is divided into six sub-activities: 
1. Determine the type of the thread-specific objects. In terms of our two-

dimensional matrix analogy, a thread-specific object is an entry in the matrix 
that has the following properties: 
§ Its row number corresponds to the key that uniquely identifies the 

'logically global' object. 
§ Its column number corresponds to a particular application thread 

identifier. 

To make implementations of the Thread-Specific Storage pattern more 
generic, a pointer to a thread-specific object is stored rather than storing the 
object itself. These pointers are often 'loosely typed', such as C/C++ void 
*'s, so that they can point to any type of object. Although loosely typed void 
*'s are highly flexible, they are hard to program correctly. Implementation 
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activity 2 (491) therefore describes several strategies to encapsulate void 
*'s with less error-prone, strongly-typed proxy classes. 

2. Determine where to store the thread-specific object sets. In terms of our two-
dimensional matrix analogy, the thread-specific object sets correspond to 
matrix columns, which are allocated one per application thread. Each 
application thread identifier therefore designates one column in our conceptual 
two-dimensional matrix. Each thread-specific object set can be stored either 
externally to all threads or internally to its own thread: 

 

There are pros and cons for each strategy: 
§ External to all threads. This strategy maps each application thread's 

identifier to a global table of thread-specific object sets that are stored 
externally to all threads. Note that an application thread can obtain its own 
thread identifier by calling an API in the threading library. Implementations 
of external thread-specific object sets can therefore readily determine 
which thread-specific object set is associated with a particular application 
thread. 

Depending on the implementation of the external table strategy, threads 
can access thread-specific object sets in other threads. At first, this 
design may appear to defeat the whole point of the Thread-Specific 
Storage pattern, because the objects and pointers themselves do not 
reside in thread-specific storage. It may be useful, however, if the thread-
specific storage implementation can recycle keys when they are no longer 
needed, for example if an application no longer needs to access a global 
object, such as errno, for some reason. 

A global table facilitates access to all thread-specific object sets from one 
'clean-up' thread, to remove the entries corresponding to the recycled 
key. Recycling keys is particularly useful for Thread-Specific Storage 
pattern implementations that support only a limited number of keys. For 
example, Windows NT has a limit of 64 keys per process. Real-time 
operating systems often support even fewer keys. 

One drawback of storing thread-specific object sets in a global table 
external to all threads is the increased overhead for accessing each 
thread-specific object. This overhead stems from the synchronization 
mechanisms needed to avoid race conditions every time the global table 
containing all the thread-specific object sets is modified. In particular, 
serialization is necessary when the key factory creates a new key, 
because other application threads may be creating keys concurrently. 
After the appropriate thread-specific object set is identified, however, the 
application thread need not perform any more locking operations to 
access a thread-specific object in the set. 

§ Internal to each thread. This strategy requires each thread to store a 
thread-specific object set with its other internal state, such as its run-time 
thread stack, program counter, general-purpose registers, and thread 
identifier. When a thread accesses a thread-specific object, the object is 
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retrieved by using its associated key as an index into the thread's internal 
thread-specific object set. Unlike the external strategy described above, 
no serialization is required when the thread-specific object set is stored 
internally to each thread. In this case all accesses to a thread's internal 
state occurs within the thread itself. 

Storing the thread-specific object set locally in each thread requires more 
state per-thread, however, though not necessarily more total memory 
consumption. As long as the growth in size does not increase the cost of 
thread creation, context switching or destruction significantly, the internal 
thread-specific object strategy can be more efficient than the external 
strategy. 

If an operating system provides an adequate thread-specific storage 
mechanism, thread-specific object sets can be implemented internally to each 
thread via the native operating system mechanism. If not, thread-specific 
object sets can be implemented externally using a two-level mapping strategy. 
In this strategy, one key in the native thread-specific storage mechanism is 
dedicated to point to a thread-specific object set implemented externally to 
each thread. 

3. Define a data structure to map application thread identifiers to thread-specific 
object sets. In terms of the two-dimensional matrix analogy, application thread 
identifiers map to the columns in the matrix that represent thread-specific 
object sets. 

Application thread identifiers can range in value from very small to very large. 
A large range in values presents no problem for object sets that reside 
internally to each thread. In this case the thread identifier is associated 
implicitly with the corresponding thread-specific object set contained within the 
thread's state. Thus, there is no need to implement a separate data structure 
to map application thread identifiers to thread-specific object sets. 

For thread-specific object sets residing externally to all threads, however, it 
may be impractical to have a fixed-size array with an entry for every possible 
thread identifier value. This is one reason why the two-dimensional matrix 
analogy is just a conceptual model rather than a realistic implementation 
strategy. In this case it may be more space efficient to use a dynamic data 
structure that maps thread identifiers to thread-specific object sets. 

For example, a common strategy is to compute a hash function using the 
thread identifier to obtain an offset to a hash table. The entry at this offset 
contains a chain of tuples that map thread identifiers to their corresponding 
thread-specific object sets. 

4. Define the data structure that maps keys to thread-specific objects within a 
thread-specific object set. In terms of the two-dimensional matrix analogy, this 
mapping identifies a particular matrix entry (the thread-specific object) 
according to its row (the key) at a particular column (the thread-specific object 
set associated with a particular application thread identifier). For both the 
external and internal thread-specific object set implementations, we must 
select either a fixed-sized or a variable-sized data structure for this mapping. 

The thread-specific object set can be stored in a fixed-size array if the range of 
thread-specific key values is relatively small and contiguous. The POSIX 
Pthreads standard [IEEE96], for example, defines a standard macro, 
_POSIX_THREAD_KEYS_MAX, that sets the maximum number of keys 
supported by a Pthreads implementation. If the size defined by this macro is 
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small and fixed, for example 64 keys, the lookup time can be O(1) by indexing 
into the thread-specific object set array directly using the key that identifies a 
thread-specific object. 

Some thread-specific storage implementations provide a range of thread-
specific keys that is large and nearly unbounded, however. Solaris threads, for 
example, have no predefined limit on the number of thread-specific storage 
keys in an application process. Solaris therefore uses a variable-sized data 
structure, such as a hash table to map keys to thread-specific objects. 
Although this data structure is more flexible than a fixed-size array, it can 
increase the overhead of managing the thread-specific object set when a 
many keys are allocated. 

 

The following code shows how thread-specific object sets can be 
implemented internally within each thread using a fixed-sized array of 
thread-specific objects that are stored as void *'s. Using this internal 
design means that it is not necessary to map application thread identifiers 
to thread-specific object sets. Instead, we need only provide a data 
structure that maps keys to thread-specific objects within a thread-specific 
object set. 

All the C code examples shown in this Implementation section are 
adapted from a publicly available user-level library implementation 
[Mue93] of POSIX Pthreads [IEEE96]. For example, the object_set_ 
data structure corresponding to implementation activity 1.4 (487) is 
contained within the following thread_state struct. This struct is 
used by the Pthreads library implementation to store the state of each 
thread: 
    struct thread_state { 
        // Thread-specific 'object' set implemented 
via 
        // void *'s. 
        void *object_set_[_POSIX_THREAD_KEYS_MAX]; 
        // ... Other thread state. 
    }; 

In addition to keeping track of the array of pointers to thread-specific 
storage objects, an instance of thread_state also includes other thread 
state. This includes a pointer to the thread's stack and space to store 
thread-specific registers that are saved and restored during a context 
switch. Our Pthreads implementation also defines several macros to 
simplify its internal programming: 
    // Note that <errno>'s key number is 0, i.e., 
    // it is in first slot of array object_set_. 
    #define ERRNO_KEY 0 
    // Define a macro that's used internally to the 
Pthreads 
    // implementation to set and get <errno> values. 
    #define INTERNAL_ERRNO \ 
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             (pthread_self ()->object_set_[ERRNO_KEY]) 

The pthread_self() function used by the INTERNAL_ERRNO macro is 
an internal implementation subroutine that returns a pointer to the context 
of the currently active thread. 
 

 

5. Define the key factory. In our two-dimensional matrix analogy, keys 
correspond to rows in the matrix. The key factory creates a new key that 
identifies a 'logically global' object (row) uniquely. The state of this object will 
physically reside in storage that is local to each thread. 

For a particular object that is logically global yet physically local to each 
thread, the same key value k is used by all threads to access their 
corresponding thread-specific object. The count of the number of keys 
currently in use can therefore be stored globally to all threads. 

 

The code below illustrates our Pthreads library implementation of the 
pthread_key_create() key factory. Keys are represented by integer 
values: 
    typedef int pthread_key_t; 

A static variable keeps track of the current key count within the thread-
specific storage implementation: 
    // All threads share the same key counter. 
    static pthread_key_t total_keys_ = 0; 

The total_keys_ variable is incremented automatically every time a 
new thread-specific key is required, which is equivalent to adding a new 
row to our conceptual two-dimensional matrix. Next, we define the key 
factory itself: 
    int pthread_key_create (pthread_key_t *key, 
                          void 
(*thread_exit_hook)(void *)) { 
        if (total_keys_ >= _POSIX_THREAD_KEYS_MAX) { 
            // Use our internal <errno> macro. 
            INTERNAL_ERRNO = ENOMEM; 
            return -1; 
        } 
        thread_exit_hook_[total_keys_] = 
thread_exit_hook; 
        *key = total_keys_++; 
        return 0; 
    } 

The pthread_key_create() function is a key factory. It allocates a 
new key that identifies a thread-specific data object uniquely. This function 
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requires no internal synchronization, because it must be called with an 
external lock held, as shown by the TS_Proxy in implementation activity 
2.1 (492). 

When a key is created, the pthread_key_create() function allows the 
calling thread to associate a thread_exit_hook with the new key. This 
hook is a pointer to a function that will be used to delete any dynamically 
allocated thread-specific objects that are associated with the key. When a 
thread exits, the Pthreads library calls this function pointer automatically 
for each key that has registered an exit hook. 

To implement this feature, an array of function pointers to 'thread exit 
hooks' can be stored as a static global variable in the Pthreads library: 
    // Array of exit hook function pointers that can 
be used 
    // to deallocate thread-specific data objects. 
    static void 
    (*thread_exit_hook_[_POSIX_THREAD_KEYS_MAX]) (void 
*); 

The pthread_exit() function shows how exit hook functions are called 
back just before a thread exits: 
    // Terminate the thread and call thread exit 
hooks. 
    void pthread_exit (void *status) { 
        // ... 
        for (i = 0; i < total_keys_; ++i) 
             if (pthread_self ()->object_set_[i] 
                 && thread_exit_hook_[i]) 
                 // Indirect pointer to function call. 
                 (*thread_exit_hook_[i]) 
                     (pthread_self ()-
>object_set_[i]); 
        // Terminate the thread and clean up internal 
        // resources... 
    } 

For each key, an application can either register the same function pointer, 
a different function pointer, or any combination of function pointers. When 
each thread exits, the Pthreads implementation calls the same function 
that was registered when each key was created. Applications often 
implement thread exit hooks as follows because deleting dynamically 
allocated thread-specific objects is common: 
    void cleanup_tss_object (void *ptr) { 
      // This cast is necessary to invoke the 
      // appropriate destructor (if one exists). 
      delete (Object_Foo *) ptr; 
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    } 
 

 

6. Define methods to store and retrieve thread-specific objects from a thread-
specific object set. In terms of the matrix analogy, these two methods set and 
get the value of matrix entries. The set() method stores a void* at matrix 
entry [k,t], whereas the get() method retrieves a void* at matrix entry 
[k,t]. In thread-specific storage implementations, k is passed as a key 
argument and t is the implicit thread identifier returned by a call to 
pthread_self().  

 

7. The pthread_setspecific() function is a set() method that stores a 
void* using the key passed by the client application thread that calls it: 

8.     int pthread_setspecific (pthread_key_t key, void 
*value) { 

9.         if (key < 0 || key >= total_keys) { 
10.              // Use our internal <errno> macro. 
11.              INTERNAL_ERRNO = EINVAL; 
12.              return -1; 
13.         } 
14.         // Store value into appropriate slot in the 

thread- 
15.         // specific object set. 
16.         pthread_self ()->object_set_[key] = value; 
17.         return 0; 
18.     } 

19. Similarly, the pthread_getspecific() function retrieves a void* 
using the key passed by the client application thread: 

20.     int pthread_getspecific (pthread_key_t key, void 
**value){ 

21.         if (key < 0 || key >= total_keys)  { 
22.              // Use our internal <errno> macro. 
23.              INTERNAL_ERRNO = EINVAL; 
24.              return -1; 
25.         } 
26.         *value = pthread_self ()->object_set_[key]; 
27.         return 0; 
28.     } 

29. In this implementation, neither function requires any locks to access its 
thread-specific object set, because the set resides internally within the 
state of each thread. 
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2. Implement thread-specific object proxies. In theory, the thread-specific object sets 
written in C above are sufficient to implement the Thread-Specific Storage pattern. In 
practice, however, it is undesirable to rely on such low-level C function APIs for two 
reasons: 
§ Although the thread-specific storage APIs of popular threading libraries, such 

as POSIX Pthreads, Solaris threads, and Win32 threads, are similar, their 
semantics differ subtly. For example, Win32 threads, unlike POSIX Pthreads and 
Solaris threads, do not provide a reliable way to deallocate objects allocated in 
thread-specific storage when a thread exits. In Solaris threads, conversely, there 
is no API to delete a key. These diverse semantics make it hard to write code 
that runs portably on all three platforms. 

§ The POSIX Pthreads, Solaris, and Win32 thread-specific storage APIs store 
pointers to thread-specific objects as void*'s. Although this approach provides 
maximal flexibility, it is error-prone because void*'s eliminate type-safety. 

To overcome these limitations the Thread-Specific Storage pattern defines a thread-
specific object proxy. Each proxy applies the Proxy pattern [GoF95] [POSA1] to 
define an object that acts as a 'surrogate' for a thread-specific object. Application 
threads that invoke methods on a proxy appear to access an ordinary object, when in 
fact the proxy forwards the methods to a thread-specific object. This design shields 
applications from knowing when or how thread-specific storage is being used. It also 
allows applications to use higher-level, type-safe, and platform-independent wrapper 
facades (47) to access thread-specific objects managed by lower-level C function 
APIs. 

The implementation of thread-specific object proxies can be divided into three sub-
activities: 

3. Define the thread-specific object proxy interfaces. For the thread-specific 
object there are two strategies for designing a proxy interface, polymorphism 
or parameterized types: 
§ Polymorphism. In this strategy an abstract proxy class declares and 

implements the data structures and methods that every proxy supports. 
Examples include the key that the thread-specific object set associates 
with a particular 'logically global' object, or the lock needed to avoid race 
conditions when creating this key. 

Access to the concrete methods offered by thread-specific objects is 
provided by subclasses of the general proxy, with one class for each type 
of thread-specific object. Before forwarding client application requests to 
the corresponding methods in the thread-specific object, a proxy first 
retrieves an object pointer from the thread-specific object set via the key 
stored in the proxy. 

Using polymorphism to implement a proxy is a common strategy 
[POSA1]. It can incur overhead, however, due to the extra level of 
indirection caused by dynamic binding. 

§ Parameterized types. In this strategy the proxy can be parameterized 
by the types of objects that will reside in thread-specific storage. As with 
the polymorphism strategy described above, the proxy mechanism only 
declares and implements the data structures and methods every proxy 
supports. It also performs all necessary operations on the thread-specific 
object set before invoking the designated method on the thread-specific 
object. Parameterization can remove the indirection associated with 
polymorphism, which can improve the proxy's performance. 
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A key design problem that arises when using the parameterized type 
strategy is selecting a convenient mechanism to access the methods of 
thread-specific objects encapsulated by a proxy. In particular, different 
types of thread-specific objects have different interfaces. The mechanism 
for accessing these objects cannot therefore define any concrete service 
methods. This differs from the polymorphism strategy described above. 

One way to address this problem is to use smart pointers [Mey95], such 
as operator->, also known as the C++ arrow operator [Str97]. This 
operator allow client application threads to access the proxy as if they 
were accessing the thread-specific object directly. The operator-> 
method receives special treatment from the C++ compiler. It first obtains a 
pointer to the appropriate type of thread-specific object, then delegates 
the original method invoked on it. 

Another generic way to access the methods of thread-specific objects is 
to apply the Extension Interface pattern (141). This solution introduces a 
generic method for the proxy that allows clients to retrieve the concrete 
interfaces supported by the configured thread-specific object. 
 

4. In our example we use C++ parameterized types to define a type-safe 
template that applications can use to instantiate thread-specific object 
proxies with concrete thread-specific objects: 

5.     template <class TYPE> 
6.     class TS_Proxy { 
7.     public: 
8.         // Constructor and destructor. 
9.         TS_Proxy (); 
10.         ~TS_Proxy (); 
11.  
12.         // Define the C++ '->' and '*' operators to 

access 
13.         // the thread-specific <TYPE> object. 
14.         TYPE *operator-> () const; 
15.         TYPE &operator* () const; 
16.     private: 
17.         // Key that uniquely identifies the 'logically 
18.         // global' object that 'physically' resides 

locally 
19.         // in thread-specific storage. 
20.         mutable pthread_key_t key_; 
21.  
22.         // "First time in" flag 
23.         mutable bool once_; 
24.  
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25.         // Avoid race conditions during 
initialization. 

26.         mutable Thread_Mutex keylock_; 
27.  
28.         // A static cleanup hook method that deletes 
29.         // dynamically allocated memory. 
30.         static void cleanup_hook (void *ptr); 
31.     }; 

32. This thread-specific proxy template is parameterized by the type of object 
that will be accessed via thread-specific storage. In addition, it defines the 
C++ smart pointer operator-> to access a thread-specific object of type 
TYPE. 
 

 

34. Implement the creation and destruction of the thread-specific object proxy. 
Regardless of whether we apply the polymorphism or parameterized type 
strategy to define the thread-specific object proxy, we must manage the 
creation and destruction of thread-specific object proxies.  

 

35. The constructor for our thread-specific object proxy template class is 
minimal, it simply initializes the object's data members: 

36.     template <class TYPE> 
37.     TS_Proxy<TYPE>::TS_Proxy (): once_ (false), key_ 

(0) { } 
 

 

39. In general, a proxy's constructor does not allocate the key or a new thread-
specific object instance in the constructor for two reasons: 
§ Thread-specific storage semantics. A thread-specific object proxy is 

often created by a thread, for example the application's main thread, that 
is different from thread(s) that use the proxy. Thus, there is no benefit 
from pre-initializing a new thread-specific object in its constructor because 
this instance will only be accessible by the thread that created it. 

§ Deferred creation. On some operating systems, keys are limited 
resources and should not be allocated until absolutely necessary. Their 
creation should therefore be deferred until the first time a method of the 
proxy is invoked. In our example implementation this point of time occurs 
in the operator-> method. 

The destructor for the thread-specific object proxy presents us with several 
tricky design issues. The 'obvious' solution is to release the key that was 
allocated by the key factory. There are several problems with this approach, 
however: 
§ Non-portability. It is hard to write a proxy destructor that releases keys 

portably. For example, Solaris threads, unlike Win32 and POSIX 
Pthreads, lacks an API to release keys that are not needed. 
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§ Race conditions. One reason that Solaris threads do not provide an 
API to release keys is that it hard to implement efficiently and correctly. 
The problem is that each thread maintains independent copies of the 
objects referenced by a key. Only after all threads have exited and the 
memory reclaimed can a key be released safely. 

As a result of these problems the proxy's destructor is generally a 'noop'. This 
means that we do not recycle keys in this implementation. In lieu of a 
destructor, therefore, we implement a thread-exit hook function, as discussed 
in implementation activity 1.5 (489). This hook is dispatched automatically by 
the thread-specific storage implementation when a thread exits. It deletes the 
thread-specific object, thereby ensuring that the destructor of the object is 
invoked.  

 

The destructor of our TS_Proxy class is a 'no-op': 
    template <class TYPE> 
    TS_Proxy<TYPE>::~TS_Proxy () { } 

To ensure the right destructor is called, the thread-exit hook casts its ptr 
argument to a pointer to the appropriate TYPE before deleting it: 
    template <class TYPE> 
    void TS_Proxy<TYPE>::cleanup_hook (void *ptr) { 
         // This cast invokes the destructor (if one 
exists). 
         delete (TYPE *) ptr; 
    } 

Note that the cleanup_hook() is defined as a static method in the 
TS_Proxy class. By defining this method as static, it can be passed as 
a pointer-to-function thread exit hook to pthread_key_create(). 
 

 

40. Implement the access to the thread-specific object. As we discussed earlier, 
there are two general strategies—polymorphism and parameterized types—for 
accessing the methods of a thread-specific object that is represented by a 
proxy. 

When using the polymorphism strategy, the interface of each concrete proxy 
must include all methods offered by the thread-specific object that is 
represented by this class. Method implementations in a concrete proxy 
generally perform four steps: 
§ Create a new key, if no such thread-specific object has been created 

yet. We must avoid race conditions by preventing multiple threads from 
creating a new key for the same TYPE of thread-specific object 
simultaneously. We can resolve this problem by applying the Double-
Checked Locking Optimization pattern (365). 

§ The method must next use the key stored by the proxy to get the 
thread-specific object via its thread-specific object set. 

§ If the object does not yet exist, it is created 'on-demand'. 
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§ The requested operation is forwarded to the thread-specific object. 
Any operation results are returned to the client application thread. 

To avoid repeating this code within each proxy method, we recommend 
introducing a helper method in the thread-specific object proxy base class that 
implements these general steps.  

When using parameterized types to instantiate a generic proxy, the smart 
pointer and Extension Interface pattern (365) strategies described in 
implementation activity 2.1 (492) can be applied to implement a general 
access mechanism for any thread-specific object's methods. Analogously to 
the polymorphism strategy, the general access mechanism must follow the 
implementation steps described above. 

 

By using the parameterized type strategy and overloading the C++ arrow 
operator, operator->, applications can invoke methods on instances of 
TS_Proxy as if they were invoking a method on an instance of the TYPE 
parameter. The C++ arrow operator controls all access to the thread-
specific object of class TYPE. It performs most of the work, as follows: 
    template <class TYPE> 
    TYPE *TS_Proxy<TYPE>::operator->() const { 
        TYPE *tss_data = 0; 
        // Use the Double-Checked Locking Optimization 
        // pattern to avoid excessive locking. 
        if (!once_) { 
            // Use Scoped Locking idiom to ensure 
<keylock_> 
            // is acquired to serialize critical 
section. 
            Guard <Thread_Mutex> guard (keylock_); 
            if (!once_) { 
                pthread_key_create (&key_, 
                                   &cleanup_hook); 
                // Must come last so that other 
threads 
                // don't use the key until it's 
created. 
                once_ = true; 
            } 
            // <Guard> destructor releases the lock. 
        } 
        // Get data from thread-specific storage. Note 
that no 
        // locks are required, because this thread's 
own copy 
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        // of the thread-specific object will be 
accessed. 
        pthread_getspecific (key_, (void **) 
&tss_data); 
 
        // Check if it's the first time in for this 
thread. 
        if (tss_data == 0) { 
            // Allocate memory dynamically off the 
heap, 
            tss_data = new TYPE; 
            // Store pointer in thread-specific 
storage. 
            pthread_setspecific (key_, (void *) 
tss_data); 
        } 
        return tss_data; 
    } 

The TS_Proxy template is a proxy that transforms ordinary C++ classes 
into type-safe classes whose instances reside in thread-specific storage. It 
combines the operator-> method with C++ features, such as templates, 
inlining, and overloading. In addition, it uses common concurrency control 
patterns and idioms, such as Double-Checked Locking Optimization (353), 
Scoped Locking (325), and Strategized Locking (333). 

The Double-Checked Locking Optimization pattern is used in operator-
> to test the once_ flag twice. Although multiple threads could access the 
same instance of TS_Proxy simultaneously, only one thread can validly 
create a key via the pthread_key_create() method. All threads then 
use this key to access their associated thread-specific object of the 
parameterized class TYPE. The operator-> method therefore uses a 
keylock_ of type Thread_Mutex to ensure that only one thread at a 
time executes pthread_key_create(). 

After key_ is created, no other locking is needed to access thread-specific 
objects, because the pthread_getspecific() and 
pthread_setspecific() functions both retrieve the thread-specific 
object of class TYPE from the state of the client application thread, which 
is independent from other threads. In addition to reducing locking 
overhead, the implementation of class TS_Proxy shown above shields 
application code from the fact that objects are local to the calling thread. 
 

 

The implementation of the extension interface and polymorphic proxy are 
similar to the generic smart pointer approach shown above. The polymorphic 
proxy approach simply forwards to a method of the thread-specific object and 
returns the result. Similarly, the extension interface approach returns an 
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extension interface from the thread-specific object and passes this back to the 
client. 

Example Resolved 

The following application is similar to our original logging server from the Example section. 
The logger() function shown below is the entry point to each thread that has its own 
unique connection to a remote client application. The main difference is that the logger() 
function uses the TS_Proxy template class defined in implementation activity 2.3 (496) to 
access the errno value.  

This template is instantiated by the following Error_Logger class: 
    class Error_Logger { // Define a simple logging API. 
    public: 
        // Return the most recent error residing in thread- 
        // specific storage. 
        int last_error (); 
 
        // Format and display a logging message. 
        void log (const char *format, ...); 
        // ... 
    }; 

The Error_Logger class defines the type of the 'logically' global, but 'physically' thread-
specific, logger object, which is created via the following TS_Proxy thread-specific object 
proxy template: 
    static TS_Proxy<Error_Logger> my_logger; 

The logger() function is called by each connection handling thread in the logging server. 
We use the SOCK_Stream class described in the Wrapper Facade pattern (47) to read data 
from the network connection, instead of accessing the lower-level C Socket API directly: 
    static void *logger (void *arg) { 
        // Network connection stream. 
        SOCK_Stream *stream = 
            static_cast <SOCK_Stream *> arg; 
 
        // Read a logging record from the network connection 
        // until the connection is closed. 
        for (;;) { 
            char log_record[MAXREC]; 
 
            // Check to see if the <recv> call failed, which 
            // is signified by a return value of -1. 
            if (stream->recv (log_record, MAXREC) == -1) { 
                if (my_logger->last_error () == EWOULDBLOCK) 
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                     // Sleep a bit and try again. 
                     sleep (1) ; 
                else // Record error result. 
                    my_logger->log 
                         ("recv failed, errno = %d", 
                          my_logger->last_error ()) ; 
            } else // Other processing. 
        } 
    } 

Consider the call to the my_logger->last_error() method above. The C++ compiler 
generates code that replaces this call with two method calls. The first is a call to the 
TS_Proxy::operator->, which returns the appropriate Error_Logger instance residing 
in thread-specific storage. The compiler then generates a second method call to the 
last_error() method of the Error_Logger object returned by the previous call. In this 
case, TS_Proxy behaves as a proxy that allows an application to access and manipulate 
the thread-specific error value as if it were an ordinary C++ object. 

Variants 

Starting with JDK 1.2, Java supports the Thread-Specific Storage pattern via class 
java.lang.ThreadLocal. An object of class java.lang.ThreadLocal is a thread-
specific object proxy, which corresponds to one row in our two-dimensional matrix analogy. 
ThreadLocal objects are often created as static variables in a central location so that they 
are broadly visible. A ThreadLocal internal hash table maintains the entries for the thread-
specific objects, one per-thread. These entries are of type Object, which means that the 
hash table does not know the concrete type of the objects it holds. Applications must 
therefore maintain that knowledge and perform the necessary downcasting, which has the 
pros and cons discussed in implementation activities 1.1 (484) and 2 (491). 

A Java application thread can set the value of a ThreadLocal object foo by calling 
foo.set(newValue). The foo object of type Thread-Local uses the thread identifier to 
return the thread's current object entry from the hash table. The hash table is a normal data 
structure, but by calling Collections.synchronizedMap(hashtable)  wraps a thread-
safe layer around hashtable. This feature combines the Decorator [GoF95] and Thread-
Safe Interface patterns (345) to ensure that an existing Java collection will be serialized 
correctly. 

The class java.lang.InheritableThreadLocal is an extension of the ThreadLocal 
class. This subclass allows a child thread to inherit all thread-specific objects from its parent 
thread, with values preset to its current parent's values. 

Known Uses 

Widely-used examples of the Thread-Specific Storage pattern are operating system 
platforms, such as Win32 and Solaris, that support the errno mechanism. The following 
definition of errno is defined by Solaris in <errno.h>: 
    #define errno (*(___errno())) 
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The ___errno() function invoked by this macro can be implemented as follows, based 
upon the low-level C thread-specific storage functions we described in implementation 
activity 1 (484): 
    int *___errno () { 
        // Solaris ensures that static synchronization 
        // objects are always initialized properly. 
        static pthread_mutex_t keylock; 
        static pthread_key_t key; 
        static int once; 
        int *error_number = 0; 
 
        if (once) { 
            // Apply Double-Checked Locking Optimization. 
            pthread_mutex_lock (&keylock); 
            if (once) { 
                // Note that we pass in the <free> function 
                // so the <error_number> memory will be 
                // deallocated when this thread exits! 
                pthread_key_create (&key, free); 
                once = 1; 
            } 
            pthread_mutex_unlock (&keylock); 
        } 
        // Use <key> to retrieve <error_number> from the 
        // thread-specific object set. 
        pthread_getspecific (key, &error_number); 
        if (error_number == 0) { 
            // If we get here, then <error_number> has not 
            // been created in this thread yet. Thus, we'll 
            // create it and store it into the appropriate 
            // location in the thread-specific object set. 
            error_number = (int *) malloc (sizeof (int)); 
            pthread_setspecific (key, error_number); 
        } 
        return error_number; 
    } 

The Win32 GetLastError() and SetLastError() functions implement the Thread-
Specific Storage pattern in a similar manner. 

In the Win32 operating system API, windows are owned by threads [Pet95]. Each thread 
that owns a window has a private message queue where the operating system enqueues 
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user interface events. Event processing API calls then dequeue the next message on the 
calling thread's message queue residing in thread-specific storage.  

The Active Template Library from COM uses the Extension Interface approach to 
implement the Thread-Specific Storage pattern. 

OpenGL [NDW93] is a C API for rendering three-dimensional graphics. The program 
renders graphics in terms of polygons that are described by making repeated calls to the 
glVertex() function to pass each vertex of the polygon to the library. State variables set 
before the vertices are passed to the library determine precisely what OpenGL draws as it 
receives the vertices. This state is stored as encapsulated global variables within the 
OpenGL library or on the graphics card itself. On the Win32 platform, the OpenGL library 
maintains a unique set of state variables in thread-specific storage for each thread using the 
library. 

Thread-specific storage is used within the ACE framework [Sch97] to implement its error 
handling scheme, which is similar to the approach described in the Example Resolved 
section. In addition, ACE implements the type-safe thread-specific object proxy using C++ 
templates, as described in implementation activity 2 (491). The ACE thread-specific storage 
template class is called ACE_TSS. 

Local telephone directory services. A real-life example of the Thread-Specific Storage 
pattern is found in telephone directory services. For example, in the United States, the 
'logically global' number 411 can be used to connect with the local directory assistance 
operator for a particular area code or region. 

Consequences 

There are four benefits of using the Thread-Specific Storage pattern: 

Efficiency. The Thread-Specific Storage pattern can be implemented so that no locking is 
necessary to access thread-specific data. For example, by placing errno into thread-
specific storage, each thread can reliably and efficiently set and test the completion status of 
methods called within that thread, without using complex synchronization protocols. This 
design eliminates locking overhead for data shared within a thread, which is faster than 
acquiring and releasing a mutex [EKBF+92]. 

Reusability. Applying the Wrapper Facade pattern (47) and decoupling the reusable the 
Thread-Specific Storage pattern code from application-specific classes can shield 
developers from subtle and non-portable thread-specific key creation and allocation logic. 
For example, the Double-Checked Locking Optimization pattern (365) can be integrated into 
a reusable thread-specific object proxy component to prevent race conditions automatically. 

Ease of use. When encapsulated with wrapper facades, thread-specific storage is relatively 
straightforward for application programmers to use. For example, thread-specific storage can 
be hidden completely at the source-code level by abstractions, such as the thread-specific 
object proxy templates, or macros, such as errno. Changing a class to or from a thread-
specific class therefore simply requires changing the way in which an object of the class is 
defined. 

Portability. Thread-specific storage is available on most multi-threaded operating systems 
platforms. It can be implemented conveniently on platforms that lack it, such as VxWorks or 
pSoS. Furthermore, thread-specific object proxies can encapsulate platform-dependent 
operations behind a uniform and portable interface. Porting an application to another thread 
library, such as the TLS interfaces in Win32, therefore only requires changing the TS_Proxy 
class, rather than application code that uses the class. 
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However, the following are liabilities of using the Thread-Specific Storage pattern: 

It encourages the use of (thread-specific) global objects. Many applications do not require 
multiple threads to access thread-specific data via a common access point. In this case, data 
should be stored so that only the thread owning the data can access it. 

 

Consider our logging server that uses a pool of threads to handle incoming logging 
records from clients. In addition to writing the logging records to persistent storage, each 
thread can log the number and type of services it performs. This logging mechanism 
could be accessed as a global Error_Logger object via thread-specific storage. 
However, a simpler approach, though potentially less efficient and more obtrusive, is to 
represent each logger thread as an active object (369), with an instance of the 
Error_Logger stored as a data member rather than in thread-specific storage. In this 
case, the Error_Logger can be accessed as a data member by active object methods 
or passed as a parameter to all external methods or functions called by the active object. 
 

 

It obscures the structure of the system. The use of thread-specific storage potentially makes 
an application harder to understand, by obscuring the relationships between its components. 
For example, it is not obvious from examining the source code of our logging server that 
each thread has its own instance of Error_Logger, because my_logger resembles an 
ordinary global object. In some cases it may be possible to eliminate the need for thread-
specific storage, by representing relationships between components explicitly via 
containment or aggregation relationships. 

It restricts implementation options. Not all languages support parameterized types or smart 
pointers, and not all application classes offer Extension Interfaces (141). 'Elegant' 
implementation solutions for the thread-specific object proxy therefore cannot be applied for 
all systems. When this occurs, less elegant and less efficient solutions, such as 
polymorphism or low-level functions, must be used to implement the Thread-Specific 
Storage pattern. 

See Also 

Thread-specific objects such as errno are often used as per-thread singletons [GoF95]. Not 
all uses of thread-specific storage are singletons, however, because a thread can have 
multiple instances of a type allocated from thread-specific storage. For example, each 
instance of an active object (369) implemented via an ACE_Task [Sch97] stores a thread-
specific cleanup hook. 

The Thread-Specific Storage pattern is related to the Data Ownership pattern [McK95], 
where a thread mediates client access to an object. 

Credits 

Tim Harrison and Nat Pryce were co-authors of the original version of the Thread-Specific 
Storage pattern. Thanks to Tom Cargill for comments on the original version of this pattern. 

[11]Note that this use case contrasts with the situation in which multiple threads collaborate 
on a single task using global or shared data. In that case, the data is not thread-specific and 
each thread's access to it must be controlled via a synchronization mechanism, such as a 
mutex or semaphore. 
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Chapter 6: Weaving the Patterns Together 
"The limits of my language are the limits of my world."  

Ludwig Wittgenstein  

"No pattern is an island, entire of itself; every pattern is a piece of the 
continent, a part of the main."  

Paraphrase of John Donne's 'Devotions'  

The patterns in this book can be applied individually, each helping to resolve a particular set 
of forces related to concurrency and networking. However, just using these patterns in a 
stand-alone way limits their power unnecessarily, because real-world software systems 
cannot be developed effectively by resolving problems in isolation. 

To increase the power of this book, this chapter shows how the patterns presented in 
Chapter 2 through 5 connect, complement, and complete each other to form the basis of a 
pattern language for building high-quality distributed object computing middleware, and 
concurrent and networked applications. In addition, we outline how many of these patterns 
can be applied outside the context of concurrency and networking. 

6.1 From Individual Patterns to Pattern Languages 
The patterns presented in Chapter 2 are described in a self-contained manner, as are the 
patterns in [POSA1]. For example, the patterns' contexts are expressed as generally as 
possible, to avoid limiting their applicability to a particular configuration of other problems, 
patterns, or designs. The patterns can therefore be applied whenever a problem arises that 
they address. Moreover, neither the patterns' solution descriptions nor their implementation 
guidelines focus on the solutions of similar problems described by other patterns. Each 
pattern references only those patterns that help implement its own solution structure and 
dynamics. 

No Pattern is an Island 

Unfortunately, focusing on individual patterns does not support the construction of real-world 
software systems effectively. For example, many inter-related design problems and forces 
must be resolved when developing concurrent and networked systems, as shown in the Web 
server example described in Chapter 1, Concurrent and Networked Objects. These 
relationships must be considered when addressing key design and implementation issues. 
Regardless of their individual utility, therefore, stand-alone patterns can only resolve small 
problems in isolation, as they do not consider the larger context in which they apply. 

Even if stand-alone patterns were somehow connected, giving them the potential to solve 
larger problems, it might be hard to extract these relationships from their descriptions. For 
example, if two pattern descriptions reference each other, it may not be obvious when one 
pattern should be applied before the other. When developing software applications and 
systems with patterns, however, the order in which the patterns are applied may be crucial 
for their successful integration [Bus00a]. 

The importance of proper ordering is particularly relevant for architectural patterns, which 
introduce a structure that defines the base-line architecture for an entire software system. 
Each component in such a structure is 'complex' by itself, and often these components can 
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be implemented using other design patterns. It is therefore crucial to express the precise 
relationships between such patterns to determine which pattern to apply first and which later. 

For example, the Reactor architectural pattern (179) introduces a participant—event 
handler—whose concrete implementations may define their own concurrency model. The 
discussion of an event handler's implementation in the Variants section of the Reactor 
pattern therefore references applicable concurrency patterns, including Active Object (369) 
and Monitor Object (399). 

Similarly, to illustrate which particular types of event handlers are useful for networked 
applications, the Reactor's implementation guidelines reference the Acceptor-Connector 
pattern (285). In turn, this pattern introduces a participant—the service handler—whose 
concrete implementations may also define their own concurrency model. The 
implementation guidelines for service handlers thus reference the Active Object and Monitor 
Object patterns again. This somewhat convoluted set of inter-relationships among the 
various patterns participants is illustrated in the figure below: 

 

When reading the Reactor pattern description in isolation, however, it is not obvious how to 
apply Active Object or Monitor Object effectively in the presence of Acceptor-Connector, 
which may also use these patterns. For example, the Reactor pattern does not specify 
whether or not a Reactor should apply Active Object to implement a particular type of event 
handler. Nor does it specify whether an Acceptor-Connector that uses the Reactor should 
use Monitor Object to implement its acceptors, connectors, and service handlers. 

In general, not all possible combinations of these four patterns are useful. However, because 
each pattern description is self-contained and independent of the others, it is hard to extract 
the useful combinations from the individual pattern descriptions. 

Towards Pattern Languages 

To support the development a particular family of software systems or application 
frameworks [POSA1], a broader viewpoint should be applied to the set of available patterns. 
In particular, patterns should not be considered solely as islands. They should instead be 
woven into networks of interrelated patterns that define a process for resolving software 
development problems systematically [Cope96] [Gab96] [Cope97]. We call these pattern 
languages. 

Pattern languages are not formal languages, although they do provide a vocabulary for 
talking about particular problems [SFJ96]. Together, patterns and pattern languages help 
developers communicate architectural knowledge, learn a new design paradigm or 
architectural style, and elude traps and pitfalls that have been avoided traditionally only 
through costly experience [PLoPD1]. 

One or more patterns define the 'entry point' of a pattern language and address the 
coarsest-grained problems that must be resolved when developing a particular type of 
application or part of an application. When reading this book, you may identify the 
architectural patterns as those addressing coarse-grained problems in software architecture. 
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Each entry point pattern specifies which other patterns should be used to resolve sub-
problems of the original problem, as well as the order in which to apply these other patterns. 

The referenced patterns therefore complete these 'larger' patterns, which in turn specify 
useful combinations of the 'smaller' patterns in the presence of a particular problem. In 
software architecture, these smaller patterns often correspond to design patterns. The 
smaller patterns may then define how to apply other patterns in their own solutions to 
resolve additional sub-problems. This iterative decomposition of larger into smaller patterns 
continues until all problems in a given domain are addressed by a designated pattern. 

As pattern writers become more familiar with their domain, therefore, they should strive to 
connect patterns that can complement and 'complete' each other [AIS77]. By applying one 
pattern at a time [Ale79] [Bus00b] and following the relationships between the patterns, it 
becomes possible to generate high-quality software architectures and designs. The resulting 
pattern language is 'synergistic', that is, it is more than the sum of its constituent patterns. 
For example, the connected patterns help to produce better system architectures by 
resolving groups of problems that arise during software development. Each solution builds 
upon the solutions of related problems that are addressed by patterns in the language. 

To illustrate this iterative decomposition process, the patterns from the Reactor (179) 
example shown earlier in this chapter can be integrated to form a mini pattern language. 
Rather than suggesting the Acceptor-Connector pattern (285) as an option to implement a 
Reactor's event handlers, we could require that it be applied. In a Reactor's architectural 
structure there could therefore be three types of event handlers—acceptors, connectors and 
service handlers—where the latter can be implemented using a concurrency model, such as 
Active Object (369) and Monitor Object (399): 

 

Refactoring the relationships between these four patterns in this manner has two effects on 
a Reactor implementation: 
§ It ensures that implementors of the Reactor pattern specify the 'right' types of event 

handlers—acceptors, connectors, and service handlers—associated with the Acceptor-
Connector pattern. Relating the Active Object and Monitor Object patterns with 
Acceptor-Connector also clarifies which type of event handler—the service handlers—is 
most useful for introducing concurrency. 

§ The references to the concurrency patterns can be removed from the Reactor pattern 
and need only appear in the Acceptor-Connector pattern. This simplifies the 
relationships between the four patterns and emphasizes the important ones. 

This mini pattern language we have created with the Reactor, Acceptor-Connector, Active 
Object, and Monitor Object patterns helps to generate good software architectures, because 
common implementation mistakes that might occur if the Reactor or one of the other 
patterns was applied in isolation can be avoided. Refactoring the patterns' relationships also 
helps to improve our collective understanding of how the four patterns connect to a broader 
pattern language that can generate larger architectural structures. 

 
6.2 A Pattern Language for Middleware and Applications 
In this section we want to explore the relationships that exist between the patterns described 
in this book. Our goal is to define the foundation of a pattern language that supports the 
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development of concurrent and networked software systems more effectively than by merely 
applying the patterns in isolation. 

We apply a two-step process to connect the patterns in this book into a pattern language: 
§ Identify pattern relationships. Firstly we examine the self-contained descriptions of 

each pattern to determine which relationships listed in the patterns should be kept and 
which should be ignored. In particular, we only consider the 'uses' relationship among 
the patterns and ignore all others, such as the 'is used by' and transitive relationships. 
We also include all optional uses of other patterns into our set of relationships. 

§ Define pattern ordering. Secondly, based on the remaining relationships, we then 
define the order of the patterns in the language, that is, which patterns are entry points, 
which patterns follow, and which patterns are leafs. In our language, we define the 
patterns with the broadest scope—the architectural patterns—as its entry points. The 
'uses' relationships then define the ordering between the patterns. 

The Pattern Language in Detail 

By following the strategy outlined above, we connect the patterns described in this book to a 
pattern language. This language is summarized in the following diagram. We recommend 
that you refer back to this diagram as you are reading the pattern language entries. 

If a pattern uses another pattern in its implementation, it points to the pattern with an arrow. 
'Duplicate' entries for patterns that are frequently referenced by other patterns avoid having 
too many crossed relationships. Architectural patterns are shaded to indicate where the 
language 'begins'.  

 

Half-Sync/Half-Async 

The Half-Sync/Half-Async architectural pattern (423) structures concurrent systems that can 
be implemented using a mixture of asynchronous and synchronous service processing. 
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The pattern introduces two designated layers for asynchronous and synchronous service 
processing, plus a queuing layer that allows services to exchange messages and data 
between the other two layers.  

If the operating system supports sophisticated asynchronous I/O operations, the Proactor 
pattern (215) can be used to implement the asynchronous service processing layer. The 
Active Object pattern (369) and Monitor Object pattern (399) can help implement the 
queueing layer. The Half-Sync/Half-Reactive variant of the Half-Sync/Half-Async pattern can 
be implemented by combining the Reactor pattern (179) with the Active Object pattern (369). 

Leader/Followers 

The Leader/Followers architectural pattern (447) provides a concurrency model that allows 
multiple threads to take turns sharing a set of event sources, to detect, demultiplex, dispatch, 
and process service requests that occur on the event sources. 

At the heart of this pattern is a thread pool mechanism. It allows multiple threads to 
coordinate themselves and protects critical sections involved with detecting, demultiplexing, 
dispatching, and processing events. One thread at a time—the leader—is allowed to wait for 
an event to occur on a set of event sources. Meanwhile other threads—the followers—can 
queue awaiting their turn to become the leader. 

When the current leader thread detects an event from the event source set, it first promotes 
a follower thread to become the new leader. Then it plays the role of a processing thread, 
demultiplexing and dispatching the event to a designated event handler. The event handler 
in turn performs the required application-specific event processing. Multiple processing 
threads can run concurrently while the leader thread waits for new events on the set of event 
sources shared by the threads. After handling its event, a processing thread reverts to a 
follower role and waits to become the leader thread again. 

The Monitor Object pattern (399) can be used to implement the thread pool mechanism that 
allows multiple threads to coordinate themselves. The Reactor (179) or Proactor (215) 
patterns can be used to demultiplex and dispatch events from the set of event sources to 
their designated event handlers. 

Reactor 

The Reactor architectural pattern (179) structures event-driven applications, particularly 
servers, that receive requests from multiple clients concurrently but process them iteratively. 

The pattern introduces two co-operating components, a reactor and a synchronous event 
demultiplexer. These demultiplex and dispatch incoming requests to a set of event handlers, 
which define the application's services that process these requests. Requests from clients 
are received and responses are sent through handles, which encapsulate transport 
endpoints in a networked system. 

In general there are three types of event handlers—acceptors, connectors, and service 
handlers—as specified by the Acceptor-Connector pattern (285). The handles that 
encapsulate the IPC mechanisms are often implemented according to the Wrapper Facade 
design pattern (47). A thread-safe reactor can be implemented using the Strategized Locking 
pattern (333). The timer queue mechanism of the Reactor pattern can use the Asynchronous 
Completion Token pattern (261) to identify which event handler has expired. 

Proactor 



 431

The Proactor architectural pattern (215) structures event-driven applications, particularly 
servers, that receive and process requests from multiple clients concurrently. 

Application services are split into two parts: 
§ Operations that execute asynchronously, for example to receive client requests. 
§ Corresponding completion handlers that process the results of these asynchronous 

operations, for example a particular client request. 

Asynchronous operations are executed by an asynchronous operation processor, which 
inserts the results of these asynchronous operations—the completion events—into a 
completion event queue. A proactor then removes the completion events from the 
completion event queue using an asynchronous event demultiplexer, then dispatches them 
on the appropriate completion handler to finish processing the service. Requests from clients 
are received and responses are sent via handles, which encapsulate transport endpoints in 
a networked system. 

To support an effective demultiplexing and dispatching of completion events from 
asynchronous operation to their designated completion handler, the asynchronous operation 
processor and the proactor can both use the Asynchronous Completion Token pattern (261) 
to identify which asynchronous operation has finished and which completion handler should 
process its results. As with the Reactor pattern, there are three general types of completion 
handlers—acceptors, connectors, and service handlers—as specified by the Acceptor-
Connector pattern (285). The asynchronous operation processor, as well as the handles that 
encapsulate the IPC mechanisms, can be implemented according to the Wrapper Facade 
pattern (47). A thread-safe proactor can be implemented using the Strategized Locking 
pattern (333). 

Interceptor 

The Interceptor architectural pattern (109) allows functionality to be added to an application 
framework transparently. This functionality is invoked automatically when framework-internal 
events occur. 

The Interceptor pattern specifies and exposes an interceptor interface callback for selected 
event types internal to a framework. Applications can derive concrete interceptors from this 
interface to implement out-of-band functionality that processes occurrences of the 
corresponding event type in an application-specific manner. A dispatcher is provided for 
every interceptor, so that applications can register their concrete interceptors with the 
framework. The framework calls back the concrete interceptors via their associated 
dispatchers whenever the designated event occurs. Concrete interceptors that must modify 
framework behavior during their event processing can leverage context objects, which 
provide controlled access to the framework's internal state. Context objects are passed to 
concrete interceptors when they are dispatched by the framework. 

The Extension Interface pattern (141) can be used to help avoid implementing multiple 
concrete interceptors. Instead, a single interceptor implements multiple interfaces, each 
corresponding to a particular concrete interceptor. Similarly, the Component Configurator 
pattern (75) can be used to link concrete interceptors into a concrete framework dynamically 
at run-time. 

Acceptor-Connector 

The Acceptor-Connector design pattern (285) decouples connection establishment and 
service initialization from service processing in a networked system. 

This pattern introduces three types of components: 
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§ Service handlers define one half of an end-to-end service in a networked system and 
process requests from their connected remote peer. 

§ Acceptors perform passive connection establishment, accept connection requests from 
remote peers, and initialize a service handler to process subsequent service requests 
from these peers. 

§ Connectors perform active connection establishment and initiate a connection to a 
remote component on behalf of a service handler. This then communicates with the 
remote component once the connection is established. 

Acceptors, connectors, and service handlers send and receive requests from peers via 
handles, which encapsulate transport endpoints in a networked system. 

To process multiple service requests simultaneously, service handlers can be implemented 
using the concurrency models defined by the Active Object (369) and Monitor Object (399) 
patterns. The handles used to access the underlying operating system IPC mechanisms can 
be implemented via the Wrapper Facade pattern (47). 

Component Configurator 

The Component Configurator design pattern (75) allows a system to link and unlink its 
component implementations at run-time without having to modify, recompile, or statically 
relink the application. It also supports the reconfiguration of components into different 
processes without having to shut down and re-start running processes. 

In this pattern a component defines a uniform interface for configuring and controlling a 
particular type of application service or functionality that it provides. Concrete components 
implement the interface in an application-specific manner. Applications or administrators can 
use component interfaces to initialize, suspend, resume, and terminate their concrete 
components dynamically, as well as to obtain run-time information about each configured 
concrete component. Concrete components are packaged into a suitable unit of 
configuration, such as a dynamically linked library (DLL) or shared library, that can be linked 
and unlinked in and out of an application dynamically under control of a component 
configurator. This uses a component repository to keep track of all concrete components 
configured into an application. 

Components configured into a networked system using Component Configurator can be 
acceptors, connectors, and service handlers as defined by the Acceptor-Connector pattern 
(285), or interceptors, as defined by the Interceptor pattern (109). 

Active Object 

The Active Object design pattern (369) decouples method execution from method invocation 
to enhance concurrency and simplify synchronized access to objects that reside in their own 
threads of control. 

A proxy represents the interface of an active object and a servant provides the object's 
implementation. Both the proxy and the servant run in separate threads, so that method 
invocations and method executions can run concurrently. At run-time the proxy transforms 
the client's method invocations into method requests, which are stored in an activation list by 
a scheduler. The scheduler's event loop runs continuously in the same thread as the 
servant, dequeueing method requests from the activation list and dispatching them on the 
servant. Clients can obtain the result of a method's execution via a future returned by the 
proxy when the method was invoked. 
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The Extension Interface pattern (141) helps provide role-specific proxies, so that clients 
access only those services of an active object that they require. The Monitor Object pattern 
(399) can be used to implement a thread-safe activation list. 

Monitor Object 

The Monitor Object design pattern (399) synchronizes concurrent method execution to 
ensure that only one method at a time runs within an object. It also allows an object's 
methods to schedule their execution sequences cooperatively. 

Clients can only access the functions defined by a monitor object via its synchronized 
methods. To prevent race conditions involving monitor object state, just one synchronized 
method at a time can run within a monitor object. Each monitored object contains a monitor 
lock that synchronized methods use to serialize their access to an object's behavior and 
state. In addition, synchronized methods can determine the circumstances under which they 
suspend and resume their execution, based on one or more monitor conditions associated 
with a monitor object. 

The Extension Interface pattern (141) helps export role-specific views on a monitor object, 
so that clients only access those services that they require. The Thread-Safe Interface 
pattern (345) helps prevent self-deadlock when a synchronized method of a monitor object 
calls another synchronized method on the same monitor object. 

Wrapper Facade 

The Wrapper Facade design pattern (47) encapsulates the functions and data provided by 
existing non-object-oriented APIs within more concise, robust, portable, maintainable, and 
cohesive object-oriented class interfaces. 

The Extension Interface pattern (141) can be used to allow clients to access certain 
implementation-related aspects of a wrapper facade. The Thread-Specific Storage pattern 
(475) may be useful when implementing the error-handling mechanism of a wrapper facade 
on platforms that do not support exception handling efficiently or portably. 

Extension Interface 

The Extension Interface design pattern (141) prevents bloating of interfaces and breaking of 
client code when developers extend or modify the functionality of components. Multiple 
extension interfaces can be attached to the same component, each defining a contract 
between the component and its clients. 

Using the Extension Interface pattern, a component's functionality is exported only via 
extension interfaces, one for each role it implements. Clients therefore access interfaces but 
never access component implementations directly. An associated factory is responsible for 
creating component instances and returning an initial interface reference to clients. Clients 
can use this interface to retrieve other extension interfaces. 

Implementations of the extension interface functionality within components can use the 
Active Object (369) and Monitor Object (399) patterns to run in their own thread of control. 

Asynchronous Completion Token 

The Asynchronous Completion Token design pattern (261) allows clients to invoke 
operations on services asynchronously and to dispatch their subsequent processing actions 
efficiently when the operations complete and return their results. 
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For every asynchronous operation that a client invokes on a service, the client creates an 
asynchronous completion token (ACT) that identifies the actions and state necessary to 
process the operation's completion. The client passes the ACT to the service together with 
the operation. When the service replies to the client, its response must include the ACT that 
was sent originally. The client then uses the ACT to identify the completion handler that 
processes the results of the asynchronous operation. 

Thread-Specific Storage 

The Thread-Specific Storage design pattern (475) allows multiple threads to use one 
'logically global' access point to retrieve an object that is local to a thread—called a 'thread-
specific object'—without incurring locking overhead for each access to the object. 

The thread-specific objects of a particular thread are maintained using a thread-specific 
object set. The global access point to a particular thread-specific object can be implemented 
by a thread-specific object proxy. This hides the details of the creation of the thread-specific 
object and retrieves it from the thread-specific object set when accessing its methods. 

An alternative to accessing the methods of a thread-specific object via the proxy is to use the 
Extension Interface pattern (141), in which the proxy returns an interface that the thread-
specific object implements. The Double-Checked Locking Optimization pattern (353) is often 
used to create a thread-specific object correctly and transparently in multithreaded 
applications. 

Thread-Safe Interface 

The Thread-Safe Interface design pattern (345) minimizes locking overhead and ensures 
that intra-component method calls do not incur 'self-deadlock' by trying to reacquire a lock 
that a component already holds. By using this pattern, a component's methods are divided 
into two categories, implementation and interface methods: 
§ Implementation methods, which are internal to the component and cannot be called by 

its clients, implement the component's functionality, if necessary by calling other 
implementation methods. Implementation methods 'trust' that they are called correctly 
and thus do not acquire/release locks. 

§ In contrast, interface methods export the component's functionality to clients. These 
methods first 'check' by acquiring a lock, delegating the method's execution to an 
appropriate implementation method, and finally releasing the lock when the 
implementation method finishes executing. Interface methods never call other interface 
methods on the same component. 

The Strategized Locking pattern (333) can be used to implement the acquisition and release 
of locks, as well as to parameterize the type of lock being used. 

Double-Checked Locking Optimization 

The Double-Checked Locking Optimization design pattern (353) reduces contention and 
synchronization overhead whenever critical sections of code must acquire locks in a thread-
safe manner only once during program execution. 

The pattern uses a flag to indicate whether it is necessary to execute a critical section before 
acquiring the lock that guards it. If the critical section code has already been initialized, it 
need not be executed again, thereby avoiding unnecessary locking overhead. 

The Strategized Locking pattern (333) is used to implement the acquisition and release of 
locks, as well as to parameterize the type of lock being used. 
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Strategized Locking 

The Strategized Locking design pattern (333) parameterizes synchronization mechanisms in 
a component that protect its critical sections from concurrent access. This allows a 
component's synchronization mechanisms to be implemented as 'pluggable' types. Each 
type objectifies a particular synchronization strategy, such as a mutex, readers/writer lock, or 
semaphore. Instances of these pluggable types can be defined as objects contained within a 
component, which can use these objects to synchronize its method implementations 
efficiently. 

The Scoped Locking idiom (325) can be used to acquire and release a particular type of lock 
that is parameterized into a component via the Strategized Locking pattern. Moreover, 
Strategized Locking can templatize guard classes that apply the Scoped Locking idiom, so 
that synchronization mechanisms can be parameterized transparently. 

Scoped Locking 

The Scoped Locking C++ idiom (325) ensures that a lock is acquired when control enters a 
scope and released automatically when control leaves the scope, regardless of the return 
path from the scope. 

The pattern defines a guard class whose constructor acquires a lock automatically when 
control enters a scope and whose destructor releases the lock automatically when control 
leaves the scope. Instances of the guard class are created to acquire and release locks in 
method or block scopes that define critical sections. 

A Discussion of the Pattern Language 

The condensed description of the patterns and the pattern relationship diagram above reveal 
how most of the patterns complement and complete each other in multiple ways to form a 
pattern language: 
§ Although each pattern is useful in isolation, the pattern language is even more 

powerful, because it integrates solutions to particular problems in important problem 
areas, such as event handling, connection management and service access, 
concurrency models, and synchronization strategies. Each problem in these problem 
areas must be resolved coherently and consistently when developing concurrent and 
networked systems. 

§ The pattern language also exposes the interdependencies of these general problem 
areas. For example, when selecting a particular event-handling pattern for a networked 
application, not all potentially-available concurrency patterns can be applied usefully. 

These two points become clear only when connecting patterns into a pattern language, 
because each pattern in isolation only focuses on itself. This makes it harder to recognize 
pattern inter-relationships and solve more complex system architecture problems effectively. 
In contrast, a pattern-based design can fulfill a software system's requirements more 
successfully by integrating the patterns consistently and synergistically. 

Our pattern language has been applied to many real-world applications, in particular, but not 
only to systems that are built using the ACE framework [Sch97]. This language is therefore 
an important tool for specifying and implementing middleware and applications. Note, 
however, that the pattern language is incomplete, providing the foundation for a larger 
language for developing distributed object computing middleware, and concurrent and 
networked applications. 
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Fortunately our pattern language can be completed by applying other patterns defined in the 
pattern literature. For example, the Interceptor pattern (109) is orthogonal to most other 
patterns presented in this book. The Broker architectural pattern [POSA1], however, defines 
a fundamental structure for distributed software systems that often uses the Interceptor 
pattern to support out-of-band extensions [NMM99] [HS99a], and the Half-Sync/Half-Async 
architectural pattern (423) or its Half-Sync/Half-Reactive variant [Sch98b] to structure its 
broker component. The Broker pattern therefore connects the Interceptor pattern with the 
other patterns in our pattern language and clarifies their inter-relationships explicitly. 

Other patterns from the literature help refine the patterns in our language. For example, peer 
service handlers defined by the Acceptor-Connector pattern (285) can be implemented using 
the Half Object plus Protocol pattern [Mes95] and/or the Abstract Session pattern [Pry99]. 
Similarly, the Remote Proxy variant of the Proxy pattern [GoF95] [POSA1] can be used to 
implement a particular Interceptor (109) variant. Other examples exist: the Forwarder-
Receiver pattern [POSA1] helps implement the Half-Sync/Half-Reactive variant of the Half-
Sync/Half-Async pattern (423). Similarly, the Broker [POSA1] and Object Synchronizer 
[SPM99] patterns can be used to implement variants of the Active Object pattern (369). 

Our pattern language can also integrate patterns motivated originally by examples from 
domains other than concurrency and networking. For example, the patterns described in this 
book reference many well-known general-purpose patterns, including Abstract Factory, 
Adapter, Bridge, Command, Decorator, Facade, Factory Method, Iterator, Mediator, 
Memento, Observer, Singleton, Strategy, and Template Method from [GoF95], Command 
Processor, Layers, Pipes and Filters, and Reflection from [POSA1], Manager and Null 
Object from [PLoPD3], and Hook Method from [Pree95]. 

The integration of all these connected patterns forms a broader pattern language for 
developing distributed object computing middleware, and concurrent and networked 
applications. This language can undoubtedly be extended with yet other published patterns 
or those that remain to be discovered and documented. With each extension the pattern 
language will become more powerful, complete, and expressive. In this way we can improve 
the integration of patterns for concurrent and networked software systems. 

 
6.3 Beyond Concurrency and Networking 
In the preceding sections we show how the patterns described in this book, together with 
patterns from other sources, define the basis of a pattern language for developing distributed 
object computing middleware, and concurrent and networked applications. While this pattern 
language accentuates the use of these patterns in this particular domain, many of the 
patterns also apply outside of it. 

Analyzing the Problem sections and Known Uses sections of the patterns reveals that the 
scope of many of them is broader than the focus of this book implies. Some patterns, for 
example Wrapper Facade (47), are generally applicable to any domain where it is necessary 
to encapsulate existing stand-alone functions and data with object-oriented class interfaces. 
Other patterns apply to particular types of problems that arise in many systems. Extension 
Interface (141), for example, addresses how to design extensible access to functionality 
provided by a multi-role component. 

In this section, therefore, we outline domains beyond concurrency and networking in which 
the patterns in this book can be applied. 

Graphical User Interfaces 
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Several of the patterns we describe have been used to design and implement a wide variety 
of graphical user interfaces: 
§ The Wrapper Facade pattern (47) is often used to encapsulate details of a particular 

GUI library to conceal its implementation details from application developers. Two 
prominent known uses of the pattern in the GUI library context are the Microsoft 
Foundation Classes (MFC) [Pro99] and the Java Swing library [RBV99]. 

§ Variants of the Reactor (179) pattern have been applied to organize event handling in 
systems with graphical user interfaces. For example, the Reactor pattern is 
implemented by the Interviews Dispatcher framework where it is used to define an 
application's main event loop and manage connections to one or more physical GUI 
displays [LC87]. The Reactor pattern is also used in the Xt toolkit from the X Windows 
distribution. 

Components 

Several patterns apply in the context of components and component-based development: 
§ The Wrapper Facade pattern (47) specifies how to implement collections of cohesive 

low-level components and apply them in various contexts, such as components for 
threading and interprocess communication [Sch97]. 

§ The Component Configurator pattern (75) supports the dynamic configuration and 
reconfiguration of component implementations. In addition to being used as the basis 
for installing operating system device drivers dynamically [Rago93], this pattern is also 
the basis for downloading and configuring Java applets dynamically [JS97b]. 

§ The Interceptor pattern (109) introduces a mechanism for building extensible 
components and applications. Its Known Uses section lists contemporary component 
models that apply this pattern, such as Microsoft's Component Object Model (COM) 
[Box97], Enterprise JavaBeans (EJB) [MaHa99], and the CORBA Component Model 
(CCM) [OMG99a]. 

§ The Extension Interface pattern (141) defines a general mechanism for designing 
components and allowing clients access to their services. All contemporary component 
standards, such as COM, EJB, and CCM, implement variants of this pattern. 

General Programming 

Some patterns or idioms in this book can be applied to programming in general: 
§ Scoped Locking (325) is a specialization of a general C++ programming technique for 

safe resource acquisition and release. This technique, described in a more general 
context by Bjarne Stroustrup in [Str97], is known as 'Object-Construction-is-Resource-
Acquisition'. 

§ Double-Checked Locking Optimization (353) can be used to protect code that should 
be executed just once, particularly initialization code. 

In summary, the seven distinct patterns and idioms discussed above—Wrapper Facade, 
Reactor, Component Configurator, Interceptor, Extension Interface, Scoped Locking, and 
Double-Checked Locking Optimization—are clearly applicable beyond the scope of 
concurrency and networking. If you analyze well-designed software systems you will 
probably discover other domains in which these or other POSA2 patterns apply. Although 
this book has presented the patterns primarily in the context of developing concurrent and 
networked systems, it is important to recognize these patterns can help resolve recurring 
problems in other domains. 

 
6.4 Pattern Languages versus Pattern Systems 
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The previous sections explore the pattern language aspects of the patterns presented in this 
book. In addition to defining the foundation of a pattern language for building distributed 
object computing middleware, and concurrent and networked applications, however, we can 
also organize the patterns in this book into a pattern system [POSA1]. For example, we can 
extend the pattern system defined in [POSA1] with the problem areas covered by patterns in 
this book: service access and configuration, event handling, synchronization, and 
concurrency. We can then reclassify the patterns accordingly. 

This classification scheme presents an interesting conceptual exercise for taxonomizing the 
pattern space. Each pattern can classified and assigned to a cell in a multi-dimensional 
matrix, with the dimension of each matrix denoting a particular pattern property. If isolated 
problems must be resolved, this taxonomy can enable rapid access to potentially useful 
pattern-based solutions. The following table shows one way to organize the patterns from 
this book, together with selected patterns from [GoF95] [POSA1] [PLoPD1] [PLoPD2] 
[PLoPD3] [PLoPD4], into a pattern system for concurrency and networking.[1]  

  Architectural 
Pattern  Design Pattern  Idiom  

Base-line 
Architecture  

Broker  
Layers  

Microkernel  

    

Communication  Pipes and Filters  

Abstract Session 
[Pry99] 

Command Processor  
Forwarder-Receiver  
Observer [GoF95] 
Remote Operation 

[KTB98] 
Serializer [RSB+97] 

  

Initialization    

Activator [Sta100] 
Client-Dispatcher-

Server  
Evictor [HV99] 
Locator [JK00] 
Object Lifetime 

Manager [LGS99] 

  

Service Access and 
Configuration  Interceptor  

Component 
Configurator  

Extension Interface  
Half Object plus 
Protocol [Mes95] 
Manager-Agent 

[KTB98] 
Proxy  

Wrapper Facade  

  

Event Handling  Proactor  Acceptor-Connector    
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  Architectural 
Pattern  Design Pattern  Idiom  

Reactor  Asynchronous 
Completion Token  
Event Notification 

[Rie96] 
Observer [GoF95] 

Publisher-Subscriber  

Synchronization  Object Synchronizer 
[SPM99] 

Balking [Lea99a] 
Code Locking [McK95] 
Data Locking [McK95] 
Guarded Suspension 

[Lea99a] 
Double-Checked 

Locking Optimization  
Reader/Writer Locking 

[McK95] 
Specific Notification 

[Lea99a] 
Strategized Locking  

Thread-Safe Interface  

Scoped 
Locking  

Concurrency  
Half-Sync/Half-

Async  
Leader/Followers  

Active Object  
Master-Slave  

Monitor Object  
Producer-Consumer 

[Grand98] 
Scheduler [Lea99a] 

Two-phase 
Termination [Grand98] 

Thread-Specific 
Storage  

  

Categorizing patterns according to certain specific areas or properties fails to capture the 
relationships and interdependencies that exist between a particular set of patterns to some 
extent, however. These relationships and interdependencies influence a pattern's 
applicability in the presence of other patterns, because not every pattern can be combined 
with ever other in a meaningful way.  

For example, Thread-Specific Storage (475) may be inappropriate for use with a 
Leader/Followers (447) thread pool design, because there may not be a fixed association 
between threads in the pool and events that are processed over time. In general, therefore, it 
is important to identify the 'right' pattern combinations when building real-world systems, 
because these systems exhibit dependencies between many problems that must be 
resolved. 
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Large pattern systems also tend to be complex, because the more problem areas a pattern 
system includes, the more likely a pattern is to be assigned to multiple categories. The 
Wrapper Facade pattern (47) is a good example of this phenomenon, because it can be 
used to build concurrent and networked systems, graphical user interfaces and components, 
as discussed in Section 6.3, Beyond Concurrency and Networking. It would appear at least 
three times in a pattern system that covered all these systems as a result. As the number of 
patterns increases, a pattern system may become bloated by these repeated pattern entries, 
making it hard to learn and use. 

One way to resolve this problem is to specify a number of smaller pattern systems for 
particular domains, rather than to specify a universal pattern system. Examples are our 
pattern system for concurrency and networking described earlier, or a pattern system for 
component construction. If you apply this approach to the patterns presented in this book, 
however, you will notice that the pattern system is structurally similar to the pattern language 
whose foundations we specified in Section 6.2, A Pattern Language for Middleware and 
Applications. 

Moreover, the resulting pattern system would not emphasize the relationships between the 
patterns as well as the pattern language we described, however. The patterns would instead 
remain as islands, and the pattern system would be less useful for a pattern-based 
development of complete software systems for concurrent and networked middleware and 
applications as a result. 

It has been our experience that organizing the patterns presented in this book as a pattern 
language is more effective than classifying them in a pattern system. Much research remains 
to be done, however, to identify, document and integrate all patterns that are necessary to 
complete this pattern language. 

[1]Patterns described in this book are in bold, patterns from [POSA1] are in italics, and other 
patterns from the literature are in regular font. 
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Chapter 7: The Past, Present, and Future of 
Patterns 

"Prediction is hard, especially about the future."  

Yogi Berra, Philosopher in the Baseball Hall of Fame  

Philosopher of science James Burke is fond of noting that history rarely happens in the right 
order or at the right time, but the job of a historian is to make it appear as if it did. One 
benefit of writing a series of Pattern-Oriented Software Architecture (POSA) books is we 
have the opportunity to revisit our earlier predictions, summarize what actually occurred, and 
examine why it occurred the way it did. 

This chapter revisits our 1996 forecasts on 'where patterns will go' that appeared in the first 
volume of the POSA series. A System of Patterns [POSA1]. We discuss the directions that 
patterns actually took during the past four years, analyze where patterns are now, and revise 
our vision about their future given the benefit of hindsight. 

7.1 What Has Happened in the Past Four Years 
In A System of Patterns [POSA1] we predicted how we thought patterns would evolve. Four 
years later we iterate through the same parts of the corresponding chapter in this book and 
summarize what actually transpired. We reference much of the relevant work during this 
period, although our list is not exhaustive. Additional references are available at 
http://hillside.net/patterns/. 

Patterns 

In 1996 we predicted that many patterns for many software development domains would be 
(re)discovered and documented during the next several years. We expected that these 
patterns would fill many gaps in the pattern literature. That part of our forecast has certainly 
come true, although gaps remain in the literature, particularly in distributed, fault-tolerant, 
transactional, real-time, and embedded systems, middleware, and applications. 

The body of pattern literature has grown significantly during the past four years. For 
example, the PLoP and EuroPLoP pattern conferences in the USA and Europe have 
prospered and expanded to several new venues, including ChiliPLoP in the USA and 
KoalaPLoP in Australia. These conferences are based on a 'writers workshop' format 
[POSA1] [CW99]. In a writers workshop authors read each others' patterns and pattern 
languages and discuss their pros and cons to help improve content and style. 

In the past fours years books have appeared containing patterns on a wide range of 
subjects, including: 
§ Edited collections of patterns from many areas of software development [PLoPD3] 

[PLoPD4] [Ris98] [Ris00a] [Ris00b]. 
§ A seminal book on analysis patterns for the health care and corporate finance domains 

from Martin Fowler [Fow97a]. 
§ This book—Patterns for Concurrent and Networked Objects—which focuses on the 

architecture and design patterns for concurrent and networked middleware frameworks 
and application software. 

§ Software development process patterns [Amb99a] [Amb99b] and patterns for 
configuration management [BMT99]. 

http://hillside.net/patterns/
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§ Patterns for particular programming languages, such as Smalltalk [Beck97] and Java 
[Grand98] [Grand99], or specific to particular middleware, such as CORBA [MM97]. 

§ So-called 'anti-patterns' [BMBMM98] [BMT99], which present common 'solutions' to 
software development problems that seem reasonable, but that fail to work for various 
reasons. 

It is important for us to note that these books differ in their focus and their quality. However, 
it is beyond the scope of this chapter to critique and review all these publications—we leave 
this to your judgement and on-line book reviews, such as those at amazon.com. 
Nevertheless, the volume of publications during the past four years reveals a growing 
interest in patterns in the software research and development communities 

Many of the most widely-applied patterns are derived from or used to document frameworks 
[GoF95] [POSA1] [Sch96] [RKSOP00]. These patterns can be viewed as abstract 
descriptions of frameworks that help developers reuse their software architectures [JML92]. 
Frameworks can be regarded from another perspective as reifications of patterns that enable 
direct design and code reuse [HJE95] [HS98]. Experience has shown that mature 
frameworks exhibit high pattern density [RBGM00]. 

Pattern Systems and Pattern Languages 

As the awareness of patterns has grown in the software community, an increasing amount of 
work has focused on pattern languages [Cope96] [Gab96] [Cope97]. As early as 1995 
leading authors in the pattern community began documenting collections of patterns for 
specific software development domains [PLoPD1], particularly telecommunications [DeBr95] 
[Mes96] [ACGH+96] [HS99b]. These patterns were more closely related than the stand-
alone patterns published earlier. In fact, some patterns were so closely related that they did 
not exist in isolation. The patterns were organized into pattern languages in which each 
pattern built upon and wove together other patterns in the language.  

Many of the published pattern languages appear in [Beck97] [PLoPD2] [PLoPD3] [PLoPD4]. 
As we demonstrate in Section 6.2, A Pattern Language for Middleware and Applications, the 
patterns in this book also form a pattern language, or more precisely the core of a pattern 
language, for developing distributed object computing middleware, applications, and 
services. Our prediction that work on pattern languages would expand has therefore also 
come true. Again, however, significant gaps remain in the literature, due in large part to the 
effort required to write comprehensive pattern languages. 

There has been work on classifying patterns and organizing them into categories [Tichy98], 
pattern systems [POSA1], and the comprehensive Pattern Almanac appearing in [Ris00a]. In 
general, however, pattern languages have become more popular than pattern systems and 
pattern catalogs during the past four years. The patterns community has found pattern 
languages to be the most promising way to document sets of closely-related patterns. 
Section 6.4, Pattern Languages versus Pattern Systems provides further justification and 
motivation for the gradual transition from pattern catalogs and systems to pattern languages. 

Methods and Tools 

In 1996 we predicted that work on methods and tools for using patterns effectively would 
expand, despite the scepticism of some experienced developers [POSA1]. The software 
research community has worked steadily on this topic, yielding methods for identifying 
patterns in existing systems [SMB96], as well as many tools for applying patterns to forward 
[BFVY96] [FMW97] [SRZ99] and reverse engineer software [Ban98] [PK98] [Mic00] [PC00] 
[PSJ00]. 
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Research on automating software tools for patterns has not ye impacted the software tools 
community significantly, however, though there has been some recent progress. For 
example, notations for documenting patterns have been integrated into UML [BRJ98]. 
Similarly, tools are emerging that generate code automatically from patterns described via 
meta-models [AONIX99] [MTOOL99]. 

Algorithms and Data Structures 

We predicted a growing interest in the application of patterns to the analysis of the 
relationships between algorithms, data structures, and patterns. We expected that this effort 
would be followed by the documentation of algorithms and data structures as patterns, using 
a specialized pattern form. 

To date there have been several papers [Nuy96] and textbooks [FF97] [Preiss98] that 
integrate patterns from [GoF95] into undergraduate algorithms and data structures courses. 
In general, however, the focus of this work has been on undergraduate education, rather 
than a direct contribution to the body of literature from the pattern research community. 

Formalizing Patterns 

Over the past four years, much research has been conducted to formalize patterns [LBG97] 
[MK97] [LS98] [Mik98] [BGJ99] [EGHY99]. This work has not yet impacted the pattern 
community or software practitioners directly, however. 

One reason for the lack of impact is that a pattern is a schema for solving a set of related 
problems, so it can be implemented repeatedly without necessarily being exactly the same 
each time. In contrast, formalisms aim to capture a particular concept as precisely as 
possible. Consequently, to capture the inherent variation in patterns, the formalisms used to 
specify patterns are often large and complex, which makes them hard to understand and 
use. Unfortunately this defeats many of the benefits of patterns, which are most effective 
when they enhance—rather than impede—communication among software development 
team members. 

 
7.2 Where Patterns are Now 
Today the pattern community has advanced significantly compared to where it was four 
years ago. In particular, the body of documented concrete patterns and pattern languages is 
larger and more diverse than it was four years ago—and it is still growing. 

However, different groups in the community prefer different pattern paradigms, including: 
§ The top-down theoretically-oriented approach inspired by Christopher Alexander's view 

of patterns [Ale79] and pattern languages [AIS77] [Cope96] [Cope97]. 
§ The more bottom-up engineering-oriented approach pioneered by the Gang-of-Four 

[GoF95] and POSA work [POSA1]. 
§ The approach advocated by authors of 'special-purpose' patterns, such as anti-

patterns [BMBMM98]. 

In addition to a better understanding of what patterns are in theory, the patterns community 
now has a better understanding of how patterns work in practice [Vlis98a] [Bus00b]. By 1996 
patterns had been applied opportunistically by isolated pockets of researchers and 
developers [GR96] [HJE95] [John92] [Cope95] [McK95] [SchSt95] [Maf96] [Sch96] 
[KCC+96]. In the intervening years patterns have been applied more systematically to 
production systems throughout a wide range of topics and domains in the software industry, 
including: 
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§ Application frameworks [FS97] [BGHS98] [FJS99a] [FJS99b] [FJ99]. 
§ Real-time CORBA middleware [SC99] [PRS00], high-performance Web servers 

[Sch97], network management [KTB98], concurrency control, and synchronization 
[SPM99]. 

§ Input and output processing [Har97] [HS99b] [Tow99]. 
§ Performance measurement [NLN+99] [GP97] and optimization [PRS+99]. 
§ Security [YB99] and dependability [Maf96] [SPM98] [ACGH+96]. 
§ Empirical studies that evaluate the pros and cons of applying patterns [PUPT97]. 
§ The Java programming language [AG98] [GJS96], its standard libraries [Sun00a] 

[FHA99] and third-party frameworks [IBM98], its virtual machine specification [LY99] 
and implementation [Sun00b], and its development community [GG99]. 

Further evidence of the growing impact of patterns is the extent to which developers today 
not only use them in their designs implicitly—which they did long before patterns were 
described in books—but how they now apply patterns explicitly in their daily work. Patterns 
provide a common vocabulary that researchers and developers now use to exchange ideas 
concisely in design reviews, problem resolutions, training on system-specific features, and 
documentation of software architectures. 

Naturally, it is important to guard against over-enthusiasm, where developers apply patterns 
blindly wherever possible. While patterns can improve design flexibility and (re-)usability, 
they may also incur additional costs. Implementing certain patterns may, for example, 
require more initial programming or design effort, or may yield more code to maintain. Some 
pattern implementations involve extra indirection that can yield performance overhead on 
certain platforms. Developers and managers must therefore always evaluate the benefits 
and liabilities of patterns carefully before using them, particularly if a simple class or function 
is sufficient to meet the requirements! 

 
7.3 Where Patterns are Going 
In the future we expect interest in patterns to grow substantially, as researchers and 
mainstream software projects continue adopting pattern-oriented paradigms, methods, and 
processes. This section describes our vision for each major topic area reviewed above, and 
outlines the key issues we foresee in future research. We also add several new categories—
software development processes and education—to reflect promising directions in the 
patterns community not covered in [POSA1].  

Patterns 

The patterns literature with the most impact in the past four years has focused on concrete 
patterns and pattern languages, often derived from object-oriented application frameworks 
[John97]. Looking ahead, we expect that future work in the pattern community will expand 
upon this tradition. For example, the next generation of object-oriented applications and 
frameworks will embody patterns explicitly. Patterns will also continue to be used to 
document the form and content of frameworks [SFJ96]. Other key topics and domains that 
will benefit from concrete pattern mining include the following: 
§ Distributed objects. Many patterns associated with middleware and applications for 

concurrent and networked objects have been documented during the past decade 
[SC99] [Lea99a], including those in this book. A key next step is to document the 
patterns for distributed objects, extending earlier work to focus on distribution topics, 
such as remote service location [JK00] and partitioning, naming and directory services, 
load balancing, dependability, and security. 

An increasing number of distributed object computing systems, for example, must 
provide high levels of dependability to client programs and end-users. With the adoption 
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of the CORBA Fault Tolerance specification [OMG99g] and ORBs that implement this 
specification, developers will have more opportunities to capture their experience in the 
form of patterns for fault-tolerant distributed object computing, than they had in the past 
[IM96] [ACGH+96] [NMM00]. 

§ Real-time and embedded systems. An increasing number of computing systems are 
embedded, including automotive control systems and car-based applications, control 
software for factory automation equipment [BGHS98], avionics mission computing 
[HLS97], and hand-held computing devices. Many of these systems are subject to 
stringent computing resource limitations, particularly memory footprint and time-
constraints. 

Developing high-quality real-time and embedded systems is hard and remains 
somewhat of a 'black art'. Relatively few patterns have been published in this area as a 
result [NW98] [Bus98] [Lan98] [Lea94]. We expect the body of patterns for real-time and 
embedded systems to grow in the future. A driving force will be the maturation of object 
technology, together with the development tools, methods, and techniques that make it 
successful (including patterns), that will be applied increasingly in these domains. 

§ Mobile systems. Wireless networks are becoming pervasive and embedded computing 
devices are become smaller, lighter, and more capable. Thus, mobile systems will soon 
support many consumer communication and computing needs. Application areas for 
mobile systems include ubiquitous computing, mobile agents, personal assistants, 
position-dependent information provision, remote medical diagnostics and teleradiology, 
and home and office automation. In addition, Internet services, ranging from Web 
browsing to on-line banking, will be accessed from mobile systems. 

Mobile systems present many challenges, such as managing low and variable 
bandwidth and power, adapting to frequent disruptions in connectivity and service 
quality, diverging protocols, and maintaining cache consistency across disconnected 
network nodes. We expect that experienced mobile systems developers will document 
their expertise in pattern form to help meet the growing demand for best software 
development practices in this area. 

§ Business transaction and e-commerce systems. Many business information systems, 
such as accounting, payroll, inventory, and billing systems, are based on transactions. 
The rules for processing transactions are complex and must be flexible to reflect new 
business practices and mergers. Business systems must also handle increasingly large 
volumes of transactions on-line, as discussed in the Example section of the 
Leader/Followers pattern (447). 

The advent of e-commerce on the Web is exposing many business-to-business systems 
directly to consumers. Despite the importance of these systems, relatively little has 
been written about their analysis, architecture, or design patterns. We expect the body 
of patterns on transactions and e-commerce to grow, based on the preliminary work of 
[John96] [Fow97a] [KC97]. 

§ Quality of service for commercial-off-the-shelf (COTS)-based distributed systems. 
Distributed systems, such as streaming video, Internet telephony, and large-scale 
interactive simulation systems [BHG00] [FJS99b], have increasingly stringent quality of 
service (QoS) requirements. Key QoS requirements include network bandwidth and 
latency, CPU speed, memory access time, and power levels. To reduce development 
cycle-time and cost, such distributed systems are increasingly being developed using 
multiple layers of COTS hardware, operating systems, and middleware components. 

Historically, however, it has been hard to configure COTS-based systems that can 
simultaneously satisfy multiple QoS properties, such as security, timeliness, and fault 
tolerance. As developers and integrators continue to master the complexities of 
providing end-to-end QoS guarantees, it is essential that they document the successful 
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patterns to help others configure, monitor, and control COTS-based distributed systems 
that possess a range of interdependent QoS properties [ZBS97]. 

§ Reflective middleware. This term describes a collection of technologies designed to 
manage and control system resources in autonomous or semi-autonomous distributed 
application and systems. Reflective middleware techniques enable dynamic changes in 
application behavior by adapting core software and hardware protocols, policies, and 
mechanisms with or without the knowledge of applications or end-users [KRL+00]. As 
with distributed system QoS, patterns will play a key role in documenting best practices 
that can help to ensure the effective application of reflective middleware-based 
applications. 

§ Optimization principle patterns. Much of the existing patterns literature has focused on 
software quality factors other than performance. Although this may be acceptable in 
domains where non-functional requirements, such as usability or extensibility, are 
paramount, other domains—particularly distributed and embedded real-time systems—
value efficiency, scalability, predictability, and dependability above many other software 
qualities. 

In these domains, therefore, we expect to see an increasing focus on optimization 
principle patterns that document rules for optimizing complex software systems 
[NLN+99] [PRS+99]. Yet there is some debate in the patterns community whether 
optimization principle patterns are really patterns, or just principles [Bus00b] 

In addition to the pattern mining activities described above, we expect to see increased 
publication of edited collections of concrete patterns related to particular application 
domains. For example, Linda Rising has edited a special issue of the IEEE Communication 
Magazine [IEEE99] and an edited book collection [Ris00b] that focus on the patterns and 
pattern languages in the telecommunication domain. 

Pattern Languages 

In addition to documenting stand-alone patterns, we expect to see continued codification of 
patterns into full-fledged pattern languages. We also expect to see existing stand-alone 
patterns [GoF95] [POSA1] and compound patterns [Vlis98c] integrated into current or new 
pattern languages, as discussed in Section 6.2, A Pattern Language for Middleware and 
Applications. 

Conversely, as more experience is gained implementing larger architectural patterns, such 
as Reactor (179) and Proactor (215), we expect that smaller patterns, such as 'Event 
Demultiplexor' or 'Continuation-passing Event-driven System', will emerge. These patterns 
can help to improve the concrete realization of the larger architectural patterns by 
'decomposing' them into smaller patterns. This decomposition process is yet another way to 
define pattern languages for the types of systems that follow the structure defined by 
architectural patterns that are being decomposed. 

The trend towards pattern languages stems from the confluence of two forces: 
§ As more patterns are documented, the coverage of patterns in certain domains is 

gradually becoming more complete. 
§ As the patterns in a domain become complete it is more likely that other patterns in 

these domains can build upon or expose relationships to existing patterns [Ris00a]. 

This synergism occurs because as new patterns are documented in a domain they often 
address issues or sub-problems related to existing patterns' problems. As these 
relationships become explicit, many patterns in a domain can be connected to form pattern 
languages. 
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The transition from patterns to pattern languages is ambitious and non trivial [Vlis98b]. A key 
impediment to the growth of pattern languages is the effort required to document them. 
Pattern languages are easier to read and apply than they are to write because their authors 
must both: 
§ Be experts on the technical topics in a particular domain and 
§ Devote considerable time to documenting their expertise in a comprehensible form that 

identifies all patterns in the language and integrates each individual pattern into the 
overall language 

Fortunately, individual patterns and compound patterns [Vlis98c] are increasingly being 
documented by the patterns community, based largely on abstractions from common 
frameworks [Rie97]. As a result, more material is becoming available to weave into pattern 
languages, alleviating the need to write everything from scratch. 

New generations of authors are also gradually emerging from the writers workshops held at 
venues, such as the PLoP family of conferences. Over time we hope that these authors will 
help fill key gaps in the existing pattern language literature. 

Experience Reports, Methods, and Tools 

As noted in Section 7.2, Where Patterns are Now, many reports on experiences using 
patterns for industrial software development have now been published. We expect the 
number of such reports still to grow, in particular in domains where no such reports are 
available today, including electronic medical imaging, real-time aerospace control systems, 
and global Internet e-commerce systems. 

This accumulation of documented experience will then allow researchers and developers to 
identify general, domain-independent core principles for using patterns effectively. Many of 
these principles have only been understood and applied implicitly in earlier projects. With a 
sufficient number of experience reports available, we expect the pattern community will distill 
and document these common core principles explicitly to help increase developers' potential 
for applying patterns successfully. 

We also expect these core principles will be woven together to form a 'method' or set of 
principles for pattern-based software development [Bus00a]. This method or set of principles 
will complement and complete existing software development methods, such as the Unified 
Software Development Process [JBR99], and documentation 'methods', such as UML 
[BRJ98]. The UML models of today largely denote the what and when of software designs. 
The pattern-oriented methods and principles of tomorrow will also help to justify why certain 
models are suitable for resolving key challenges in a particular domain. 

We believe the most successful pattern-oriented methods and principles will be created 
'bottom-up', by generalizing from the collective experience of expert pattern users and 
software architects. This inductive process has a better chance of success than approaches 
that try to define pattern-oriented methods and principles 'top-down'. Similarly, when 
experience-based methods and principles for pattern-based software development become 
available, we expect that they will be codified into software development tools. Such tools 
should see wider adoption than at present, because they will automate good practices that 
are derived from experience. 

Pattern Documentation 

We expect books will remain the primary media for disseminating concrete information on 
patterns. However, we anticipate increased use of the Web, and Web-based protocols and 
tools, such as HTML and XML, to make it easier to document patterns and connect them 
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into pattern languages. Prior efforts have had some success within isolated contexts, such 
as the Portland Pattern Repository in Ward Cunningham's WikiWikiWeb [PPR]. The state-of-
the-practice in this area may advance as a result of three trends: 
§ The growing ubiquity of Web access 
§ The advent of low-cost and high-quality electronic book viewers 
§ More effective e-commerce methods to remunerate authors 

Formalizing Patterns and Pattern Languages 

Research on formalizing the concept of patterns will certainly continue, and be extended by 
formalisms to capture more comprehensive pattern languages. It is unclear, however, 
whether such work will have greater impact in the future than it does currently. We do expect 
that useful work on formalizing particular instances of patterns in a given system or context 
will occur to document specific pattern implementations. 

Certain formal techniques, such as design-by-contract [Mey97], can help to prevent improper 
use of a pattern implementation within a particular application. Focusing on formalizing 
instances of patterns therefore can be of practical use in production software development, 
to help improve system design and implementation quality. 

Software Development Processes and Organizations 

Much work on pattern languages has focused on improving software development 
processes and organizations [Cope95] [Cock97] [Ris98] [Har96]. Some software 
development teams have applied these patterns to help improve the quality of their 
workplace [Gab96] and their productivity. This work is also beginning to influence the 
academic software process research community. We expect to see more integration 
between patterns and software development processes and organizations over the next few 
years. 

Patterns appear to be particularly useful for documenting 'lightweight' software development 
processes, such as open-source [OS99] and eXtreme Programming (XP) [Beck99] [KiLe00] 
processes. In addition, processes based on refactoring [Opd92] [FBBOR99] have been 
applying patterns successfully to help restructure existing software and enhance its 
modularity, maintainability, and reusability. 

Education 

In 1996 we did not foresee the significant effort that has arisen to document so-called 
'pedagogical patterns' [PPP00] [Bir00]. Pedagogical patterns aim at capturing the principles 
of educating people effectively. Moreover, patterns are now widely used to teach software 
design and programming in undergraduate curricula [Lea99b] [Sch99] [LG00] [TM00] 
[Wal00]. They are also used to train and retrain software professionals [Ant96]. 

In the short term we expect that many undergraduate courses will apply and teach patterns 
to convey key points of good practice and sound principles of software architecture and 
design [Ken98].  

Patterns are now commonplace in many professional software development organizations. 
Substantial experience has therefore accrued on how to apply patterns successfully. 
Academic institutions will hopefully codify this experience to help educate the next 
generation of software development professionals in patterns and their effective 
documentation and application. When these students graduate and start their professional 
careers, patterns will become even more pervasive than they are today. 
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Our Long-Term Vision 

Looking much further ahead, we believe that knowledge of patterns, pattern languages, and 
framework components will ultimately progress to the point where software developers will 
possess methods and tools similar to those of biologists. After centuries of experimentation 
and modeling, biologists have totally or partially deciphered the genetic code of some 
organisms. Guided by this knowledge, biologists are now beginning to understand those 
basic elements within DNA sequences that are shared between organisms, as well as those 
that make each one unique. 

Biologists are applying this information to develop new techniques for manipulating DNA, to 
provide cures for hereditary conditions, such as the desease Cystic Fibrosis. In this context 
scientists are both: 
§ Discovering core properties of DNA sequences and 
§ Inventing new techniques for manipulating these sequences safely and ethically 

Both biological systems and software systems are highly complex. When decomposed into 
their basic components, such as DNA sequences and genes or patterns and pattern 
languages, however, they can be understood and controlled more readily. We believe that 
as core software patterns and pattern languages are understood and reified in the form of 
reusable components and frameworks, larger scale complex software systems can be 
developed more predictably. 

We expect that contemporary research and development on patterns and pattern languages 
will ultimately yield breakthrough discoveries of core software properties. In turn, these 
'software DNA' discoveries will spur the invention of new processes, methods, tools, 
components, frameworks, architectures, and languages. These artifacts will enable us to 
engineer the complexity of large-scale software more effectively than is possible with the 
current state-of-the-art. 

 
7.4 A Parting Thought on Predicting the Future 
As the Baseball Hall of Fame's resident philosopher Yogi Berra so eloquently stated: 
'prediction is hard, especially about the future'. Not all of the predictions we made in 1996 
became true, particularly our forecast that use of pattern-oriented software tools would 
become widespread. Our revised predictions of the future in this chapter include a healthy 
dose of uncertainty. In particular, our current forecasts are based upon: 
§ Our knowledge of the pattern community 
§ Its ongoing and planned interests and research activities—insofar as we are aware of 

them and 
§ The future research directions we are guiding or that we consider fruitful 

We expect many of our predictions to come true. The future of patterns and pattern 
languages may take directions however, such as pattern-based model checking, that we 
have not imagined today. Consider the forecasts in this chapter as one possible vision 
among many in the ongoing dialogue on patterns and their future, and not as the prophesies 
of infallible oracles. 

When the next book in the POSA series is published in several years, we will revisit these 
forecasts, as we have revisited our 1996 forecasts from A System of Patterns [POSA1]. We 
will then know what really happened and will hopefully have the benefit of hindsight to 
explain why! 

Credits 
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Chapter 8: Concluding Remarks 
Writing is an adventure. To begin with, it is a toy and an amusement. Then it 

becomes a mistress, then it becomes a master, then it becomes a tyrant. 
The last phase is that just as you are about to be reconciled to your 

servitude, you kill the monster and fling him to the public. 

Winston Churchill  

This chapter calls on you, the reader, to snatch the baton from us and run the next leg in the 
race to create a more comprehensive pattern language for concurrent and networked object-
oriented applications and middleware. 

In this book we have documented the insights and patterns gained during dozens of years of 
developing and deploying these types of software systems. The resulting book represents 
much more than a catalog of our own experiences—it articulates the collective experience of 
the hundreds of researchers and developers we have worked with during the past two 
decades. Moreover, the patterns we present have been applied successfully in many 
systems we have not worked on directly, demonstrated by the extensive list of known uses 
presented throughout the book. 

Even so, as we discussed in Section 6.2, A Pattern Language for Middleware and 
Applications, the patterns in this book capture only the foundation of a pattern language that 
will ultimately encompass all aspects of concurrency and networking. As with all pattern 
literature, the patterns presented here are perennially 'works in progress'. We could only 
document the knowledge we possessed collectively when we wrote the book, working 
always within the limitations of a 'linear' literary form, maximum page counts, publishing 
deadlines, and occupational and familial commitments. There are undoubtedly topics that we 
did not address in certain patterns, or implementation activities, consequences, or known 
uses that we failed to include. 

We consider the current edition of this book to be an incremental step on our life-long 
journey to explore and map the fascinating realm of software development and capture the 
essence of 'software DNA'. Over the next decade we will continue to improve, complete, and 
complement the patterns and pattern language contained in POSA2 to form a related 
collection of books in the POSA series. 

In parting, we entreat you to join us in this activity so together we can shape and polish the 
patterns documented here. Only with your contribution can we ensure that these pattern 
descriptions codify the best practices and experience from the real world. In turn, this will 
help us all gain a broader and deeper understanding of solutions to the inherent and 
accidental complexities found in concurrent and networked software. 
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Notations 
Class-Responsibility-Collaborator Cards 

Class-Responsibility-Collaborators (CRC) cards [BeCu89] help to identify and specify 
objects or the components of an application in an informal way, especially in the early 
phases of software development. 

 

A CRC-card describes a component, an object, or a class of objects. The card consists of 
three fields that describe the name of the component, its responsibilities, and the names of 
other collaborating components. The use of the term 'class' is historical [Ree92]—we also 
use CRC cards for other types of components or even single objects. 

UML Class Diagrams 

The Unified Modeling Language (UML) [BRJ98] is a widely-used object-oriented analysis 
and design method. An important type of diagram within UML is the class diagram. A class 
diagram describes the types of objects in a system and the various types of static 
relationships that exist among them.  

As an extension to the standard UML notation we introduce a symbol to indicate that 
instances of a class run in separate threads. 
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Class. A rectangular box, denoting the name of the class and 
optionally its attributes and operations. Abstract classes names 
are labeled in italics along with their corresponding abstract 
methods. 

 

Operation. Operation names are written in the class boxes. 
They denote the methods of classes. Abstract operations, that 
is, those that only provide the interface for polymorphism, are 
denoted by italics. 

 

Attributes. Attribute names are written in the class boxes. They 
denote the instance variables of a class. 

 Association. A line that connects classes. Associations can be 
optional or multiple. A number at the end of an association 
denotes its cardinality. Association of classes is used to show 
any type of class relationship except aggregation, composition 
and inheritance. 

 Aggregation. A hollow diamond shape at the termination of an 
association line denotes that the class(es) at the other end of 
the association are used by the class. 

 Composition. A solid diamond shape at the termination of an 
association line denotes that the class(es) at the other end of 
the association are part of the class and have the same life-
time. 

 Navigability. Navigability denotes a directed association. 

 
Dependency. A dependency indicates that a class uses the 
interface of another class for some purpose. 

 
Realization. A realization represents the relationship between 
a specification and its implementation. 

 
Inheritance. Inheritance is denoted by a triangle at the top of 
an association line. The apex of the triangle points to the 
superclass. 
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Templates. Parameterized classes are declared by attaching a 
dashed rectangular box to a class box, which includes the 
class' template parameters. 

 

Thread. A wavy line attached to a class indicates that instances 
of this class run in separate threads. The thread symbol is an 
extension to the UML class diagram notation, which lacks an 
effective way to denote multi-threading. 

 

UML Sequence Diagrams 

UML sequence diagrams describe how groups of objects collaborate in some behavior 
[BRJ98]. The notation is based on the Object Message Sequencing Chart (OMSC) notation 
defined in [POSA1]. 

In addition to the standard UML notation, however, we also use the notation for illustrating 
parameter-passing that we specified in our original OMSC definition. This allows us to 
indicate when the responsibility for an object is passed from one object to another or when 
an object obtains a reference to another object. As a second extension to standard UML we 
introduce a special symbol that allows us to label activities initiated by a thread of control 
rather than a particular UML active object.  

 

 

Object. An object or component in a sequence diagram is 
drawn as a rectangular box. The box is labeled with the 
underlined name of the component in the pattern. An object that 
sends or receives messages in the sequence diagram has a 
vertical bar attached to the bottom of the box. Active objects are 
denoted by thicker lines for the rectangular box. 

  
Time. Time flows from top to bottom. The time axis is not 
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scaled. 

 

Messages. Messages between objects are denoted by arrows. 
These arrows are labeled with the method name at the head, if 
applicable. Synchronous messages are indicated by solid full-
arrowheads, asynchronous messages by solid half-arrowheads. 
Returns are indicated by dashed arrows with open arrowheads. 

 

Object Activity. To denote the activity of objects that perform a 
specific function, procedure or method, rectangular boxes are 
placed on the vertical bar attached to the object. An object may 
also send messages to itself to activate other methods. This 
situation is represented by nested boxes offset slightly to the 
right. 

 Parameter. Parameters are only noted explicitly when they are 
necessary to understand a sequence diagram. Parameters of a 
message are shown as a box on top of the arrow and return 
parameters below the returning arrow. If responsibility for a 
parameter object is passed along the arrow the name of the 
object is shown in boldface. If only a reference to the object is 
passed as a parameter, its name is shown in italics. This 
notation is an extension to UML sequence diagram. 

 

Object Lifecycle. In most cases we assume that all relevant 
objects already exist, so the corresponding boxes are drawn at 
the top of the sequence diagram. If a sequence diagram shows 
object creation, this is denoted by an arrow to a box placed 
within the sequence diagram. If an object ceases to exist, this is 
denoted by a cross that terminates the vertical bar. This 
notation corresponds to constructor and destructor calls in C++. 

 
Thread. A wavy line attached to a time line indicates a thread 
of control that sends or receives messages. A thread is labeled 
with the underlined identifier of the thread. The thread symbol is 
an extension to the UML sequence diagram notation, which 
allows us to denote activities  

 

UML Statechart Diagrams 

UML statechart diagrams specify the sequences of states that an object or an interaction 
goes through in response to events during its life, together with its responsive actions 
[BRJ98]. This book only uses basic state diagram notations.  
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State. A condition or situation in the life of an object during 
which it satisfies some condition, performs some activity, or 
waits for some event. States are denoted by rounded 
rectangular boxes, labeled with their names. There are two 
additional states: the initial state, denoted by a black circle, 
which indicates the entry point into a state machine and the 
final state, denoted by a hollow circle with a black circle 
enclosed, which indicates the completion of the state machine. 

 

Composite State. A state that consists itself of a sequence of 
disjoint substates. 

 

Transition. A relationship within a state machine between two 
states. A transition indicates that an object in the first state will 
enter the second state when a specified event such as an 
action occurs or a condition evaluates to true. If the source and 
target state are the same the transition is called a 'self-
transition'. 

 
Action. An executable computation, such as a method, that is 
conceptually atomic with respect to changing the current state. 

 
Condition. A condition is a guard that triggers a transition if it 
evaluates to true. 
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