
 1

Pattern-Oriented Software Architecture, Patterns for Concurrent and
Networked Objects, Volume 2
by Douglas Schmidt, Michael Stal, Hans Rohnert and Frank Buschmann

ISBN: 0471606952
John Wiley & Sons © 2000 (633 pages)

An examination of 17 essential design patterns used to build modern object-
oriented middleware systems.

 2

Table of Contents

Pattern-Oriented Software Architecture—Patterns for
Concurrent and Networked Objects, Volume 2

 Foreword

 About this Book

 Guide to the Reader

 Chapter 1 - Concurrent and Networked Objects

 Chapter 2 - Service Access and Configuration Patterns

 Chapter 3 - Event Handling Patterns

 Chapter 4 - Synchronization Patterns

 Chapter 5 - Concurrency Patterns

 Chapter 6 - Weaving the Patterns Together

 Chapter 7 - The Past, Present, and Future of Patterns

 Chapter 8 - Concluding Remarks

 Glossary

 Notations

 References

 Index of Patterns

 Index

 Index of Names

 3

Pattern-Oriented Software
Architecture—Patterns for
Concurrent and Networked Objects,
Volume 2
Douglas Schmidt
University of California, Irvine

Michael Stal
Siemens AG, Corporate Technology

Hans Rohnert
Siemens AG, Germany

Frank Buschmann
Siemens AG, Corporate Technology

John Wiley & Sons, Ltd

Chichester · New York · Weinheim · Brisbane · Singapore · Toronto

Copyright © 2000 by John Wiley & Sons, Ltd

Baffins Lane, Chichester,

West Sussex PO19 1UD, England

National 01243 779777

International (+44) 1243 779777

e-mail (for orders and customer service enquiries):

<cs-books@wiley.co.uk>

Visit our Home Page on http://www.wiley.co.uk or http://www.wiley.com

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency,
90 Tottenham Court Road, London, UK W1P 9HE, without the permission in writing of the
publisher, with the exception of any material supplied specifically for the purpose of being
entered and executed on a computer system for exclusive use by the purchaser of the
publication.

mailto:cs-books@wiley.co.uk
http://www.wiley.co.uk
http://www.wiley.com

 4

Neither the author nor John Wiley & Sons, Ltd accept any responsibility or liability for loss or
damage occasioned to any person or property through using the material, instructions,
methods or ideas contained herein, or acting or refraining from acting as a result of such
use. The author and publisher expressly disclaim all implied warranties, including
merchantability or fitness for any particular purpose.

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Ltd is aware of a claim, the product
names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue,

New York, NY 10158-0012, USA

Weinheim • Brisbane • Singapore • Toronto

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.
ISBN 0-471-60695-2

For Sonja, Mom, and Dad

Douglas C. Schmidt

For Gisela

Michael Stal

For Regine, Anja, Sandro, and Nicolas

Hans Rohnert

For Bebé[1] and Martina

Frank Buschmann

About The Authors

Douglas C. Schmidt

Dr. Douglas Schmidt is an Associate Professor in the Electrical and Computer Engineering
department at the University of California, Irvine, USA. He is also serving as a Program
Manager in the Information Technology Office (ITO) at DARPA, leading the national
research effort on middleware. Before this he was an Associate Professor and Director of
the Center for Distributed Object Computing in the Department of Computer Science at
Washington University in St. Louis, Missouri. His research focuses on design patterns,
optimization principles, and empirical analyses of object-oriented techniques that facilitate
the development of high-performance and real-time distributed object computing middleware
running over high-speed networks and embedded system interconnects.

Doug is an internationally-recognized expert on distributed object computing patterns,
middleware frameworks, real-time CORBA, and open-source development. He has
published widely in top technical journals, conferences, and books. He was editor of the C++

 5

Report magazine for several years and has co-edited several popular books on patterns
[PLoPD1] and frameworks [FJS99a] [FJS99b]. In addition to his academic research, Doug
has led the development of ACE and TAO, which are widely-used open-source middleware
frameworks that contain a rich set of reusable components implemented using the patterns
presented in this book.

In his 'spare' time, he enjoys ballroom dancing with his wife Sonja, weight-lifting, guitar
playing, world history, and Chevrolet Corvettes.

Michael Stal

Michael Stal joined the Corporate Technology department of Siemens AG in Munich,
Germany in 1991. In his previous work he gained extensive experience developing software
for compilers and computer graphics. He worked on runtime type information for C++ and
served on the C++ standardization group X3J16. Since 1992 Michael's work has focused on
the development of concurrent and distributed object-oriented systems using Sockets,
CORBA, COM, and Java. Michael is Siemens' primary contact on CORBA at the OMG and
is head of the Distributed Object Computing Group at Siemens's Corporate Technology
department. He co-authored the first POSA volume A System of Patterns.

Michael's main research interests focus on methods for developing distributed systems
efficiently and on patterns for describing the architecture of middleware platforms. In this
context he has published articles in many magazines and given talks at many conferences.
In addition, he is Editor-in-Chief of Java Spektrum, the major German magazine on the Java
platform, as well as a columnist and member of the advisory board for Objektspektrum, the
major German magazine on object technology.

In his spare time Michael attends soccer matches, supports his favorite team Bayern
München, visits Munich beer gardens, tries to prevent his cats from destroying his
apartment, watches movies, and reads books on physics, philosophy and humor. He is fan
of Douglas Adams, Scott Adams, and Terry Pratchett.

Hans Rohnert

Dr. Hans Rohnert is a Senior Software Engineer at the Communication Devices business
unit of Siemens AG in Munich, Germany. His primary aims are exploiting promising software
technologies and introducing them into new products, such as next-generation mobile
phones. His professional interests are software architecture, design patterns, and real-world
programming. He has presented numerous talks on subjects ranging from dynamic graph
algorithms to embedded Java virtual machines.

Hans is currently a member of the expert groups defining the small footprint KVM Java
virtual machine and its libraries for use in small devices. His programming projects have
included server-side modules for embedded servers, work flow in C++, base support for
ATM switching, Java GUI front-ends for CORBA clients, and HTTP clients. He is also a co-
author of the first POSA volume A System of Patterns and a co-editor of the fourth book in
the PLoPD series [PLoPD4]. As a graduate student he performed original research on
combinatorial algorithms, publishing and lecturing on them early in his career.

Hans is an ambitious tennis player, with more matches lost than won. He also enjoys
exploring the nearby mountains, rock-climbing, and cross-country skiing. His most important
'hobby', however, is his family, most notably a new baby born during the hectic final phase of
writing this book.

Frank Buschmann

 6

Frank Buschmann is Principal Senior Software Engineer at Siemens Corporate Technology
in Munich, Germany. His research interests include object technology, software architecture,
frameworks, and patterns. He has published widely in all these areas, most visibly in his co-
authorship of the first POSA volume A System of Patterns. Frank was a member of the ANSI
C++ standardization committee X3J16 from 1992 to 1996. Frank initiated and organized the
first conference on patterns held in Europe, EuroPLoP 1996, and is also a co-editor of the
third book in the PLoPD series [PLoPD3]. In his development work Frank has led design and
implementation efforts for several large-scale industrial software projects, including business
information, industrial automation, and telecommunication systems.

When not at work Frank spends most of his time enjoying life with his wife Martina, watching
the time go by in Munich beer gardens, having fun biking, skiing, and horse-riding, getting
excited when watching his favorite soccer team Borussia Dortmund, dreaming when
listening to a performance at the Munich opera, and relaxing with rare Scotch single malts
before bedtime.

This book has been written by the award-winning team responsible for the first POSA
volume A System of Patterns, joined in this volume by Douglas C. Schmidt from University of
California, Irvine (UCI), USA.

[1]Bebé, July 3, 1999

 7

Pattern-Oriented Software Architecture—Patterns for Concurrent and Networked
Objects, Volume 2 .. 3
Foreword.. 10
About this Book .. 12

Intended Audience ... 13
Structure and Content ... 13
Acknowledgments .. 14

Guide to the Reader .. 17
Introduction to Patterns ... 17
Structure and Content ... 17
Pattern Form ... 18
Background Reading ... 19

Chapter 1: Concurrent and Networked Objects 20
Overview.. 20
1.1 Motivation... 20
1.2 Challenges of Concurrent and Networked Software 22

Challenge 1: Service Access and Configuration ... 24
Challenge 2: Event Handling .. 27
Challenge 3: Concurrency .. 29
Challenge 4: Synchronization .. 31
Other Challenges for Networked Software .. 32

1.3 A Case Study: Designing a Concurrent Web Server......................... 33
Overview of the JAWS Framework ... 35
Applying Patterns to Resolve Common Design Challenges in JAWS 36
Encapsulating Low-level Operating System APIs... 36
Decoupling Event Demultiplexing and Connection Management from
Protocol Processing ... 37
Scaling Up Server Performance via Multi-threading .. 38
Implementing a Synchronized Request Queue... 40
Minimizing Server Threading Overhead ... 40
Leveraging Asynchronous I/O Effectively .. 42
Enhancing Server Configurability .. 44
Other Patterns Used to Implement JAWS.. 45

1.4 Wrapping Up... 46
Chapter 2: Service Access and Configuration Patterns
... 47

Overview.. 47
Wrapper Facade... 48

Example ... 48
Context... 52

 8

Problem.. 52
Component Configurator ... 76
Interceptor ... 101
Extension Interface .. 125

Chapter 3: Event Handling Patterns .. 153
Overview.. 153
Reactor... 154
Proactor.. 181
Asynchronous Completion Token .. 218
Acceptor-Connector .. 235

Chapter 4: Synchronization Patterns .. 268
Overview.. 268
Scoped Locking .. 268
Strategized Locking ... 276
Thread-Safe Interface... 287
The LegacyFacade EJB Component Deployment Descriptor............. 293

Deployment Descriptors for the EJB 2.0 Specification 294
Deployment Descriptors for the EJB 1.1 Specification 300
Deploying the EJB JAR into the Application Server 305

Double-Checked Locking Optimization.. 306

Chapter 5: Concurrency Patterns... 317
Overview.. 317
Active Object .. 318
Monitor Object ... 343
Half-Sync/Half-Async .. 363
Leader/Followers .. 379
Thread-Specific Storage.. 400

Chapter 6: Weaving the Patterns Together........................ 426
6.1 From Individual Patterns to Pattern Languages................................ 426

No Pattern is an Island .. 426
Towards Pattern Languages .. 427

6.2 A Pattern Language for Middleware and Applications.................... 428
The Pattern Language in Detail ... 429
A Discussion of the Pattern Language ... 435

6.3 Beyond Concurrency and Networking .. 436
Graphical User Interfaces ... 436
Components .. 437
General Programming ... 437

6.4 Pattern Languages versus Pattern Systems 437
Chapter 7: The Past, Present, and Future of Patterns
... 441

 9

7.1 What Has Happened in the Past Four Years 441
Patterns.. 441
Pattern Systems and Pattern Languages .. 442
Methods and Tools .. 442
Algorithms and Data Structures ... 443
Formalizing Patterns .. 443

7.2 Where Patterns are Now.. 443
7.3 Where Patterns are Going... 444

Patterns.. 444
Pattern Languages... 446
Experience Reports, Methods, and Tools .. 447
Pattern Documentation.. 447
Formalizing Patterns and Pattern Languages ... 448
Software Development Processes and Organizations 448
Education... 448
Our Long-Term Vision ... 449

7.4 A Parting Thought on Predicting the Future 449
Chapter 8: Concluding Remarks ... 451

Notations ... 452
Class-Responsibility-Collaborator Cards.. 452
UML Class Diagrams... 452
UML Sequence Diagrams... 454
UML Statechart Diagrams... 455

References .. 457

 10

Foreword
Middleware is the set of services, protocols, and support utilities providing the 'plumbing' that
makes modern distributed systems and applications possible—the infrastructure that
underlies web services, distributed objects, collaborative applications, e-commerce systems,
and other important platforms. Not long ago, the term middleware was rarely heard, and
middleware developers were rarer still. But over the past decade, the term, the research and
practice, and its impact have become ubiquitous. Yet, until now, there has not been a book
describing how to construct networked and concurrent object-oriented (OO) middleware, so
its design has remained something of a black art. This book demystifies middleware
construction, replacing the need to have an expert looking over your shoulder with well-
reasoned, empirically-guided accounts of common design problems, forces, successful
solutions, and consequences.

As is true for most concepts, nailing down the boundaries of middleware is hard.
Conventionally, it consists of the software needed to build systems and applications, yet is
not otherwise an intrinsic part of an operating system kernel. But it is not always possible to
find middleware where you first look for it: middleware can appear in libraries and
frameworks, operating systems and their add-ons, Java virtual machines and other run-time
systems, large-grained software components, and in portions of end-products such as web
services themselves.

This book is not a textbook surveying middleware or the types of applications and distributed
system architectures you can devise using middleware. It instead presents a pattern
language that captures the design steps leading to the construction of the OO
communication support involved in most middleware. Many of the patterns described in this
book also have utility in both higher-level and lower-level systems and applications that are
not based directly upon middleware.

This book emphasizes practical solutions over theoretical formalisms. The basic ideas
behind many presented patterns are well-known to experienced system developers—for
example, dispatching, demultiplexing, callbacks, and configuration—and are sometimes
variants of more general OO patterns—for example, proxies, adapters, and facades. This
book's main contribution centers on in-depth engineering solutions based upon these ideas.
Middleware developers must resolve a wide range of forces including throughput,
responsiveness, dependability, interoperability, portability, extensibility, and accommodating
legacy software. The diversity and severity of these forces accounts for the complexity of
middleware patterns, as opposed to those seen in smaller-scale OO applications and
concurrent programming.

The multitude of such forces, combined with years of engineering experience, often lead to a
multitude of design considerations and engineering trade-offs separating an idea from its
expression in middleware frameworks. The pattern description format used in this book
helps to simplify this process by presenting solutions as series of concrete design steps.
Many of these steps in turn invoke additional patterns. Together they form a pattern
language, enabling developers to traverse from pattern to pattern while designing services
and applications.

As mentioned by the authors, some of the ideas and techniques discussed in this book are
complementary to those seen for example in W. Richard Stevens's pioneering books (e.g.,
[Ste98]) on network programming. The main point of departure is the unrelenting focus on
higher-level design issues. Rather than, for example, discussing the ins and outs of the Unix
select () call, this book explains how to build a composable and flexible framework—a
Reactor—based on select () and other operating system calls.

 11

One of the implicit themes of this book is how to apply the bits and pieces of functionality
dealing with I/O, threading, synchronization, and event demultiplexing offered by
contemporary platforms as the foundation for constructing higher-level frameworks and
components. The primary emphasis on C/C++ on Unix and Microsoft operating systems
does not detract from this theme. For example, Java programmers will find a few minor
disconnects in cases where Java already directly implements some of the patterns
discussed in this book, for example, Scoped Locking, or provides frameworks structured in
accord with particular implementations of patterns, such as the JavaBeans framework's
support of configurable components, as well as a few where Java lacks access to underlying
system mechanisms, such as synchronous event demultiplexing.

However, readers most familiar with Java, Smalltalk, and other OO programming languages
will still profit from the central ideas conveyed by the patterns, can better appreciate how and
why some became directly supported in language features and libraries, and will be able to
construct useful components based upon other patterns. As an example, until the advent of
java.nio, Java did not provide access to system constructs useful for asynchronous I/O.
However, after referring to a description of the Proactor pattern described in this book, I once
put together a Java version that simulated the demultiplexing step via a simple spin-loop
thread that checked for I/O availability across multiple channels. This was less efficient, but
was perfectly adequate within its intended usage context.

Over the years, some of the accounts in this book, such as Reactor, have evolved from
descriptions of design inventions to design patterns. Everyone constructing portable OO
middleware has written or used at least one Wrapper Facade. But early presentations of
several other patterns now contained in this book also discussed novel contributions about
their design. It was at first a bit uncertain whether such descriptions should be considered as
patterns, which must be time-proven, independently (re)discovered solutions. However, over
time, the authors and the OO middleware community have become more and more
confident that the patterns in this book do indeed capture the essence of key forces and
design issues, and have witnessed the described solutions being used over and over again
across diverse usage contexts.

I invite you to share in this phenomenon. By reading—and especially, using—the material in
this book, you'll see why pattern names such as Reactor and Proactor have become as
common among OO middleware developers as have Decorator and Observer among OO
GUI developers.

Doug Lea

State University of New York at Oswego

 12

About this Book
Patterns have taken the software development community by storm. Software developers
have been enthusiastic about patterns ever since the seminal work Design Patterns -
Elements of Reusable Object-Oriented Software [GoF95]. Its successors, such as the
Pattern Languages of Programming Design (PLoPD) series [PLoPD1] [PLoPD2] [PLoPD3]
[PLoPD4] and A System of Patterns [POSA1][1] have further fanned the burning interest in
patterns kindled originally by earlier work on software idioms [Cope92], patterns for building
architectures [Ale79] [AIS77], and patterns for cultural anthropology [Bat97].

This book, Patterns for Concurrent and Networked Objects, is the second volume in the
Pattern-Oriented Software Architecture (POSA) series. Like its predecessor, A System of
Patterns [POSA1], it documents patterns and best practices that represent concrete, well-
proven and useful techniques for building industrial-strength software systems. These
patterns and best practices can and have been applied to applications in a wide range of
domains, including telecommunications and data communications, financial services,
medical engineering, aerospace, manufacturing process control, and scientific computing.
They also form the basis of popular distributed object computing middleware, such as
CORBA [OMG98c], COM+ [Box97], Java RMI [WRW96], and Jini [Sun99a].

Moreover, all the patterns in this book build on the same solid conceptual foundation as
those in the first POSA volume. For example, we use the same pattern categorization
schema, the same pattern description format, and present examples and known uses in
multiple programming languages, including C++, Java, and C.

Patterns for Concurrent and Networked Objects thus follows the same philosophy and path
as A System of Patterns and has the same 'look and feel'.

In contrast to A System of Patterns, however, which covered a broad spectrum of general-
purpose patterns, this book has a more specific focus: concurrency and networking. All the
patterns in this book center on these two areas, allowing us to discuss many topics related to
concurrency and networking in more depth than would be possible if the book contained
patterns from many unrelated domains. The patterns in this book therefore complement the
general-purpose patterns from A System of Patterns in these increasingly important areas of
software development.

Yet we focus on general, domain-independent patterns for concurrent and networked
applications and middleware. Our goal is to increase the likelihood that the patterns in this
book will help projects in your daily work. Therefore, we do not cover patterns in this book
that are specific to a particular application domain, such as those in [DeBr95] [Mes96]
[ACGH+96], which address networking aspects that pertain to the telecommunication
domain.

By focusing on general domain-independent patterns for concurrency and networking, this
book also complements existing literature in concurrent network programming and object-
oriented design:
§ Literature on concurrent network programming generally focuses on the syntax and

semantics of operating system APIs, such as Sockets [Ste98], POSIX Pthreads
[Lew95], or Win32 threads [Ric97], that mediate access to kernel-level communication
frameworks, such as System V STREAMS [Ris98] [Rago93], available on popular
operating systems. In contrast, this book describes how to use these APIs effectively in
the design and programming of high-quality concurrent and networked systems.

§ Literature that addresses higher-level software design and quality factors [Boo94]
[Mey97] [DLF93] generally has not focused on the development of concurrent and
networked applications. Bridging this gap is the topic of this book.

 13

Another way in which Patterns for Concurrent and Distributed Objects differs from A System
of Patterns is that its patterns constitute more than just a catalog or system of patterns.
Instead, they augment each other synergistically, providing the foundation of a pattern
language for concurrent and networked software. When combined with patterns from other
patterns literature, we describe how this pattern language can and has been used to build
sophisticated concurrent and networked software systems and applications, web services,
and distributed object computing middleware, as well as the underlying operating system
networking protocols and mechanisms.

Yet we separate the description of the individual patterns from the discussion of how they
form a pattern language. The patterns themselves are first described in a self-contained
manner, so that they can be applied in the context that is most useful. A subsequent chapter
then describes how the patterns interact and how they are complemented by other patterns.

It is important to note, however, that many patterns in this book can be applied outside the
context of concurrency and networking. To illustrate the breadth of their applicability we
present known uses from other domains, such as component-based or interactive software
systems. In addition, we give examples of how these patterns apply to situations
experienced in everyday life.

Some patterns may be familiar, because preliminary versions of them were published in the
PLoP book series [PLoPD1] [PLoPD2] [PLoPD3] [PLoPD4], and the C++ Report magazine.
In this book, however, we have improved upon the earlier versions considerably:
§ This is the first time they have been woven into a single document, which helps to

emphasize the pattern language they express.
§ We have rewritten and revised these patterns substantially based on many

suggestions for improvement we received at conferences and workshops, via e-mail, as
well as from intensive internal reviewing and reviews provided by our shepherds.

§ The patterns have been converted to the POSA pattern format and have a consistent
writing style.

Intended Audience

Like our earlier book A System of Patterns, this volume is intended for professional software
developers, particularly those who are building concurrent and networked systems. It helps
these software professionals to think about software architecture in a new way and supports
them in the design and programming of large-scale and complex middleware and
applications.

This book is also suitable for advanced undergraduates or graduate students who have a
solid grasp of networking and operating systems, and who want to learn the core principles,
patterns, and techniques needed to design and implement such systems effectively.

[1]We reference A System of Patterns as [POSA1] rather than by author. The same is true for
this book, which we reference as [POSA2]. We use this convention to avoid a particular
POSA volume being associated with a single author in reader's minds, in particular the first
name on the book's cover.

Structure and Content

Patterns for Concurrent and Distributed Objects can be used as a text book and read from
cover to cover, or used as a reference guide for exploring the nuances of specific patterns in
detail.

 14

The first chapter, Concurrent and Networked Objects, presents an overview of the
challenges facing developers of concurrent and networked object-oriented applications and
middleware. We use a real example, a concurrent Web server, to illustrate key aspects of
these domains, including service access and configuration, event handling, synchronization,
and concurrency.

Chapters 2 through 5 form the main part of the book. They contain patterns, the 'real things'
[U2], that codify well-established principles and techniques for developing high-quality
concurrent and networked systems. We hope these patterns will be useful role models for
developing your own concurrent and networked applications, and for documenting patterns
that you discover.

Chapter 6, Weaving the Patterns Together, discusses how the patterns in Chapters 2
through 5 are interconnected. We also show how they can be connected with other patterns
in the literature to form a pattern language for concurrent networked systems and
middleware. As mentioned earlier, some patterns are also applicable outside the context of
concurrent and networked systems. For these patterns we summarize the scope of their
applicability.

Chapter 7, The Past, Present, and Future of Patterns, revisits our 1996 forecast on 'where
patterns will go', published in the first volume of the Pattern-Oriented Software Architecture
series. We discuss the directions that patterns actually took during the past four years and
analyze where patterns and the patterns community are now. Based on this retrospection,
we revise our vision about future research and the application of patterns and pattern
languages.

The book ends with a general reflection on the patterns we present, a glossary of frequently
used terms, an appendix of notations, an extensive list of references to work in the field, a
pattern index, a general subject index, and an index of names that lists all persons who
helped us shaping this book

Supplementary material related to this book is available on-line at
http://www.posa.uci.edu/. This URL also contains links to the ACE and TAO source
code that contains C++ and some Java examples for all the patterns in this book.

There are undoubtedly aspects of concurrent and networked object systems that we have
omitted, or which will emerge over time when applying and extending our pattern language
in practice. If you have comments, constructive criticism, or suggestions for improving the
style and content of this book, please send them to us via electronic mail to
<patterns@mchp.siemens.de>. We also welcome public discussion of our entire work
on patterns. Please use our mailing list, <siemens-patterns@cs.uiuc.edu>, to send us
feedback, comments, and suggestions. Guidelines for subscription can be found on the
patterns home page. Its URL is http://hillside.net/patterns/. This link also
provides an important source of information on many aspects of patterns, such as available
and forthcoming books, conferences on patterns, papers on patterns, and so on.

Acknowledgments

It is a pleasure for us to thank the many people who supported us in creating this book,
either by sharing their knowledge with us or by reviewing earlier drafts of its parts and
providing useful feedback.

Champion review honors go to Regine Meunier, Christa Schwanninger, Martin Botzler, Lutz
Dominick, Prashant Jain, Michael Kircher, Karl Pröse, and Dietmar Schütz, our esteemed

http://www.posa.uci.edu/
mailto:patterns@mchp.siemens.de
mailto:siemens-patterns@cs.uiuc.edu
http://hillside.net/patterns/

 15

colleagues. They spent much of their valuable time helping to review the manuscript in the
countless writer's workshops we ran, thus helping us to polish and shape the final content of
this book. Similarly, we are grateful to members of the Distributed Object Computing (DOC)
group—Tim Harrison, Prashant Jain, Carlos O'Ryan, and Irfan Pyarali—who co-authored
initial versions of six patterns in this book. Together with the four lead authors, these
researchers form the POSA team at Siemens in Munich, Washington University in St. Louis,
and the University of California, Irvine.

We also owe most grateful thanks to Peter Sommerlad, Chris Cleeland, Kevlin Henney, and
Paul McKenney, Peter, our shepherd, reviewed all our material in depth, focusing on its
correctness, completeness, consistency, and quality. Chris, Kevlin, and Paul, our peer
reviewers, provided us with additional detailed feedback. All four contributed significantly to
improving Patterns for Concurrent and Networked Objects.

We are also grateful to the Software Architecture Group at University of Illinois at Urbana
Champain, including Federico Balaguer, John Brant, Brian Foote, Alejandra Garrido, Peter
Hatch, Ralph Johnson, Dragos Manolescu, Brian Marick, Hiroaki Nakamura, Reza Razavi,
Don Roberts, Les Tyrrell, Joseph W. Yoder, Wanghong Yuan, Weerasak Witthawaskul, and
Bosko Zivaljevic, who ran writer's workshops on many POSA2 patterns. They sent
comments that helped us improve the correctness and comprehensibility of the book.

Many others from around the world provided feedback on earlier versions of the book,
including Giorgio Angiolini, Brad Appleton, Paul Asman, David Barkken, John Basrai, Joe
Bergin, Rainer Blome, Don Box, Martina Buschmann, Tom Cargill, Chuck and Lorrie Cranor,
James O. Coplien, Ward Cunningham, Gisela Ebner, Ed Fernandez, Erich Gamma, Sonja
Gary, Luciano Gerber, Bob Hanmer, Neil Harrison, Michi Henning, David Holmes, Tom
Jordan, Fabio Kon, Bob Laferriere, Greg Lavender, Doug Lea, John MacMillan, Mittal
Monani, Duane Murphy, Jaco van der Merwe, Michael Ogg, Bill Pugh, Dirk Riehle, Linda
Rising, Wolfgang Schroeder, Richard Toren, Siva Vaddepuri, John Vlissides, Roger
Whitney, and Uwe Zdun. The Credits section of our patterns outline how their valuable
contributions helped us polish this book.

We are also heavily indebted to all members, past and present, of the DOC group at
Washington University in St. Louis, the University of California, Irvine, Object Computing
Inc., and Riverace, who reified, refined, and optimized all the patterns presented in this book
into components and frameworks in the ACE and TAO middleware projects. This
inspirational group includes Everett Anderson, Alex Arulanthu, Shawn Atkins, Darrell
Brunsch, Luther Baker, Matt Braun, Chris Cleeland, Angelo Corsaro, Sergio Flores-Gaitan,
Chris Gill, Pradeep Gore, Andy Gokhale, Priyanka Gontla, Myrna Harbison, Tim Harrison,
Shawn Hannan, John Heitmann, Joe Hoffert, James Hu, Steve Huston, Prashant Jain,
Vishal Kachroo, Ray Klefstad, Yamuna Krishnamurthy, Michael Kircher, Fred Kuhns, David
Levine, Ebrahim Moshiri, Michael Moran, Sumedh Mungee, Bala Natarjan, Ossama Othman,
Jeff Parsons, Kirthika Parameswaran, Krish Pathayapura, Irfan Pyarali, Carlos O'Ryan,
Malcolm Spence, Marina Spivak, Naga Surendran, Selcuk Uelker, Nanbor Wang, Seth
Widoff, and Torben Worm. We would also like to acknowledge the substantial contribution of
the thousands of ACE and TAO users around the world who have applied and enhanced the
patterns and framework components described in this book over the past decade. Without
their support, constant feedback, and encouragement we would never have written this
book.

Special thanks go to Johannes Nierwetberg, Lothar Borrmann, and Monika Gonauser for
their managerial support and backing at the software engineering labs of Corporate
Technology of Siemens AG, Munich, Germany. We also thank Calinel Pasteanu at the
Communication Devices business unit of Siemens AG in Munich for understanding the
conflict between the chores of writing this book and the pressures of delivering products in
'Internet time'.

 16

We are also grateful for the support from colleagues and sponsors of our research on
patterns and the ACE and TAO middleware frameworks, notably the contributions of Ron
Akers (Motorola), Al Aho (Lucent), Steve Bachinsky (SAIC), Detlef Becker (Siemens), Jim
Blaine (Washington University), John Buttitto (Motorola), Becky Callison (Boeing), Wei
Chiang (Nokia), Russ Claus (NASA), Joe Cross (Lockheed Martin), Bryan Doerr (Boeing),
Karlheinz Dorn (Siemens), Sylvester Fernandez (Lockheed Martin), Andreas Geisler
(Siemens), Helen Gill (DARPA), Trey Grubbs (Raytheon), Jody Hagins (ATD), Andy Harvey
(Cisco), Thomas Heimke (Siemens), Kalai Kalaichelvan (Nortel), Arvind Kaushal (Motorola),
Steve Kay (Tellabs), Chandra Kintala (Lucent), Gary Koob (DARPA), Sean Landis
(Motorola), Rick Lett (Sprint), Joe Loyall (BBN), Mike Masters (NSWC), Ed Mays (US Marine
Corps), John Mellby (Raytheon), Dave Meyer (Virtual Technology), Eileen Miller (Lucent),
Stan Moyer (Telcordia), Russ Noseworthy (Object Sciences), Guru Parulkar (Cisco), Dan
Paulish (Siemens), James Plamondon (Microsoft), Dieter Quehl (Siemens), Lucie Robillard
(US Air Force), Allyn Romanow (Cisco), Rick Schantz (BBN), Steve Shaffer (Kodak), Dave
Sharp (Boeing), Naval Sodha (Ericsson), Brian Stacey (Nortel), Paul Stephenson (Ericsson),
Umar Syyid (Hughes), Dave Thomas (OTI), Lothar Werzinger (Krones), Shalini Yajnik
(Lucent), and Tom Ziomek (Motorola).

Very special thanks go to Steve Rickaby, our copy editor, for enhancing our written material.
In addition, we thank our editor, Gaynor Redvers-Mutton, and everyone else at John Wiley &
Sons who made it possible to publish this book. This is the second book fostered by Gaynor
and Steve. Their support has been superb and we look forward to working with them on
forthcoming POSA volumes.

Finally, we would like to express our deepest gratitude to the late Richard Stevens, whose
seminal books inspired us to explore the wonders of network programming so many years
ago. His spirit pervades this book.

 17

Guide to the Reader
"Cheshire-Puss will you tell me, please, which way I ought to go from here?"

"That depends a good deal on where you want to get to," said the Cat.

"I don't much care where—," said Alice.

"Then it doesn't matter which way you go," said that cat.

"—so long as I get somewhere" Alice added as an explanation.

"Oh, you're sure to do that," said the Cat, "if you only walk long enough."

Louis Carroll, "Alice in Wonderland"

This book is structured so you can read it cover-to-cover. If you know where you want to get
to, however, you may want to choose your own route through the book. In this case, the
following hints can help you decide which topics to focus upon and the order in which to read
them.

Introduction to Patterns

If this book is your initial exposure to patterns, we suggest you first read the introduction to
patterns in [POSA1] and [GoF95], which explore the concepts and terminology related to
patterns for software architectures and designs. In particular, all the patterns presented in
this book build upon the conceptual foundation for patterns specified in [POSA1]:
§ The definition of patterns for software architectures
§ The categorization of these patterns into architectural patterns, design patterns, and

idioms[1] and
§ The pattern description format

Moreover, the implementations of many patterns in this book are enhanced by using
patterns from [POSA1] and [GoF95]. To guide the application of the patterns in production
software development projects we therefore suggest you keep all three books handy.

[1]See the Glossary for a definition of these pattern categories.

Structure and Content

The first chapter in this book, Concurrent and Networked Objects, describes the key
challenges of designing concurrent and networked systems. It also outlines the scope and
context for the patterns we present. Finally, it presents a case study that applies eight
patterns in this book to develop a concurrent Web server.

Sixteen pattern descriptions and one idiom form the main part of this book. We group them
into four chapters, corresponding to key problem areas—service access and configuration,
event handling, synchronization and concurrency—in the development of concurrent and
networked middleware and applications. The order in which you read this material is up to
you. One approach is to read important core patterns first:
§ The Wrapper Facade design pattern (47)[2]
§ The Reactor architectural pattern (179)
§ The Acceptor-Connector design pattern (285)

 18

§ The Active Object design pattern (369)

The other twelve patterns and one idiom in the book are arranged to minimize forward
references. You can read them in any order of course, and we provide page numbers for
following references to other patterns within the book. This material completes and
complements the concepts defined by the four patterns listed above and covers a range of
issues relevant to designing and implementing concurrent and networked objects effectively.

You can also use this book to find solutions to problems you encounter in your projects. Use
the overview of our patterns in Chapter 6, Weaving the Patterns Together, to guide your
search, then locate in Chapters 2 through 5 the detailed descriptions of the patterns you
select as potential solutions.

No pattern is an island, completely separated from other patterns. Therefore, Chapter 6,
Weaving the Patterns Together, also describes how all the patterns in this book can be
woven together to form a pattern language for building networked applications and
middleware. If you want an overall perspective of the patterns in this book before delving into
the individual patterns, we recommend you skim the pattern language presentation in
Chapter 6 before reading the patterns in Chapters 2 through 5 in depth.

Chapter 7, The Past, Present, and Future of Patterns and Chapter 8, Concluding Remarks
complete the main content of this book. The remainder of the book consists of a glossary of
technical terms, an overview of the notations used in the figures, references to related work,
and an index of patterns, topics, and names.

[2]We adopt the page number notation introduced by [GoF95]. (47) means that the
corresponding pattern description starts on page 47.

Pattern Form

All patterns presented in this book are self-contained, following the [POSA1] pattern form.
This form allows us to present both the essence and the key details of a pattern. Our goal is
to serve readers who simply want an overview of the pattern's fundamental ideas, as well as
those who want to know how the patterns work in depth.

Each section in our pattern form sets the stage for the subsequent section. For instance, the
Example section introduces the Context, Problem, and Solution sections, which summarize
a pattern's essence. The Solution section foreshadows the Structure and Dynamics section,
which then present more detailed information about how a pattern works, preparing readers
for the Implementation section.

The Example Resolved, Variants, Known Uses, Consequences and See Also sections
complete each pattern description. We include extensive cross-references to help you to
understand the relationships between the patterns in this book and other published patterns.

To anchor the presentation of a pattern's implementation activities to production software
systems, much of the sample code is influenced by components provided in the ACE
framework [Sch97]. If you first want to get an overview of all the patterns you may therefore
want to skip over the Implementation sections on your initial pass through the book and
come back to them when you need to know a particular pattern's implementation details.

Although the pattern form we use in this book incurs some repetition within the pattern
descriptions, we have found that this repetition helps readers navigate through the
descriptions more effectively by minimizing 'back-tracking'.

 19

In the diagrams that explain the structure and behavior of our patterns we tried to follow
standard UML whenever possible. In few cases, however, UML did not allow us to express
ourselves precisely enough. Thus we 'extended' the standard notation slightly, as specified
in the Notations chapter.

Background Reading

Many patterns, particularly Reactor (179), Proactor (215), Half-Sync/Half-Async (423), and
Leader/Followers (447), assume you are familiar with the following topics:
§ Object-oriented design techniques, such as patterns [GoF95] [POSA1] and idioms

[Cope92], UML notation [BRJ98], and the principles of structured programming,
specifically encapsulation and modularity [Mey97].

§ Object-oriented programming language features, such as classes [Str97], inheritance
and polymorphism [AG98], and parameterized types [Aus98]. Many examples in this
book are written in C++, though we present Java known uses for most of the patterns.

§ Systems programming concepts and mechanisms, such as process and thread
management [Lew95] [Lea99a] [Ric97], synchronization [Ste98], and interprocess
communication [Ste99].

§ Network services and protocols, such as client-server computing [CoSte92] and the
Internet protocols [Ste93] [SW94].

This book contains an extensive glossary and bibliography to clarify unfamiliar terminology,
and suggest sources for information on topics you may want to learn more about. It is not,
however, an introductory tutorial on concurrency and network programming. Thus, if you are
not familiar with certain topics listed above, we encourage you to do some background
reading on the material we recommend in conjunction with reading this book.

 20

Chapter 1: Concurrent and Networked Objects
Overview

"With the exception of music, we have been trained to think of patterns as
fixed affairs. It's easier and lazier that way, but, of course, all nonsense. The

right way to begin to think of the pattern which connects is to think of a
dance of interacting parts, pegged down by various sorts of limits."

Gregory Bateson — Cultural Anthropologist

This chapter introduces topics related to concurrent and networked objects. We first motivate
the need for advanced software development techniques in this area. Next, we present an
overview of key design challenges faced by developers of concurrent and networked object-
oriented applications and middleware. To illustrate how patterns can be applied to resolve
these problems, we examine a case study of an object-oriented framework and a high-
performance Web server implemented using this framework. In the case study we focus on
key patterns presented in this book that help to simplify four important aspects of concurrent
and networked applications:
§ Service access and configuration
§ Event handling
§ Synchronization and
§ Concurrency

1.1 Motivation
During the past decade advances in VLSI technology and fiber-optics have increased
computer processing power by 3–4 orders of magnitude and network link speeds by 6–7
orders of magnitude. Assuming that these trends continue, by the end of this decade
§ Desktop computer clock speeds will run at ~100 Gigahertz
§ Local area network link speeds will run at ~100 Gigabits/second
§ Wireless link speeds will run at ~100 Megabits/second and
§ The Internet backbone link speeds will run at ~10 Terabits/second

Moreover, there will be billions of interactive and embedded computing and communication
devices in operation throughout the world. These powerful computers and networks will be
available largely at commodity prices, built mostly with robust common-off-the-shelf (COTS)
components, and will inter-operate over an increasingly convergent and pervasive Internet
infrastructure.

To maximize the benefit from these advances in hardware technology, the quality and
productivity of technologies for developing concurrent and networked middleware and
application software must also increase. Historically, hardware has tended to become
smaller, faster, and more reliable. It has also become cheaper and more predictable to
develop and innovate, as evidenced by 'Moore's Law'. In contrast, concurrent and networked
software has often grown larger, slower, and more error-prone. It has also become very
expensive and time-consuming to develop, validate, maintain, and enhance.

Although hardware improvements have alleviated the need for some low-level software
optimizations, the lifecycle cost [Boe81] and effort required to develop software—particularly
mission-critical concurrent and networked applications—continues to rise. The disparity
between the rapid rate of hardware advances versus the slower software progress stems
from a number of factors, including:

 21

§ Inherent and accidental complexities. There are vexing problems with concurrent and
networked software that result from inherent and accidental complexities. Inherent
complexities arise from fundamental domain challenges, such as dealing with partial
failures, distributed deadlock, and end-to-end quality of service (QoS) requirements. As
networked systems have grown in scale and functionality they must now cope with a
much broader and harder set of these complexities.

Accidental complexities arise from limitations with software tools and development
techniques, such as non-portable programming APIs and poor distributed debuggers.
Ironically, many accidental complexities stem from deliberate choices made by
developers who favor low-level languages and tools that scale up poorly when applied
to complex concurrent and networked software.

§ Inadequate methods and techniques. Popular software analysis methods [SM88]
[CY91] [RBPEL91] and design techniques [Boo94] [BRJ98] have focused on
constructing single-process, single-threaded applications with 'best-effort' QoS
requirements. The development of high-quality concurrent and networked systems—
particularly those with stringent QoS requirements, such as video-conferencing—has
been left to the intuition and expertise of skilled software architects and engineers.
Moreover, it has been hard to gain experience with concurrent and networked software
techniques without spending considerable time learning via trial and error, and wrestling
with platform-specific details.

§ Continuous re-invention and re-discovery of core concepts and techniques. The
software industry has a long history of recreating incompatible solutions to problems
that are already solved. For example, there are dozens of non-standard general-
purpose and real-time operating systems that manage the same hardware resources.
Similarly, there are dozens of incompatible operating system encapsulation libraries that
provide slightly different APIs that implement essentially the same features and
services.

If effort had instead been focused on enhancing and optimizing a small number of
solutions, developers of concurrent and networked software would be reaping the
benefits available to developers of hardware. These developers innovate rapidly by
using and applying common CAD tools and standard instruction sets, buses, and
network protocols.

No single silver bullet can slay all the demons plaguing concurrent and networked software
[Broo87]. Over the past decade, however, it has become clear that patterns and pattern
languages help to alleviate many inherent and accidental software complexities.

A pattern is a recurring solution schema to a standard problem in a particular context
[POSA1]. Patterns help to capture and reuse the static and dynamic structure and
collaboration of key participants in software designs. They are useful for documenting
recurring micro-architectures, which are abstractions of software components that
experienced developers apply to resolve common design and implementation problems
[GoF95].

When related patterns are woven together, they form a 'language' that helps to both
§ Define a vocabulary for talking about software development problems [SFJ96] and
§ Provide a process for the orderly resolution of these problems [Ale79] [AIS77]

By studying and applying patterns and pattern languages, developers can often escape
traps and pitfalls that have been avoided traditionally only via long and costly apprenticeship
[PLoPD1].

 22

Until recently [Lea99a] patterns for developing concurrent and networked software existed
only in programming folklore, the heads of expert researchers and developers, or were
buried deep in complex source code. These locations are not ideal, for three reasons:
§ Re-discovering patterns opportunistically from source code is expensive and time-

consuming, because it is hard to separate the essential design decisions from the
implementation details.

§ If the insights and rationale of experienced designers are not documented, they will be
lost over time and thus cannot help guide subsequent software maintenance and
enhancement activities.

§ Without guidance from earlier work, developers of concurrent and networked software
face the Herculean task [SeSch70] of engineering complex systems from the ground up,
rather than reusing proven solutions.

As a result many concurrent and networked software systems are developed from scratch.
In today's competitive, time-to-market-driven environments, however, this often yields non-
optimal ad hoc solutions. These solutions are hard to customize and tune, because so much
effort is spent just trying to make the software operational. Moreover, as requirements
change over time, evolving ad hoc software solutions becomes prohibitively expensive. Yet,
end-users expect—or at least desire—software to be affordable, robust, efficient, and agile,
which is hard to achieve without solid architectural underpinnings.

To help rectify these problems, this book documents key architectural and design patterns
for concurrent and networked software. These patterns can and have been applied to solve
many common problems that arise when developing object-oriented middleware frameworks
and applications. When used as a documentation aid, these patterns preserve vital design
information that helps developers evolve existing software more robustly. When used as a
design aid, the patterns help guide developers to create new software more effectively.

Of course, patterns, objects, components, and frameworks are no panacea. They cannot, for
example, absolve developers from responsibility for solving all complex concurrent and
networked software analysis, design, implementation, validation, and optimization problems.
Ultimately there is no substitute for human creativity, experience, discipline, diligence, and
judgement.

When used properly, however, the patterns described in this book help alleviate many of the
complexities enumerated earlier. In particular, the patterns
§ Direct developer focus towards higher-level software application architecture and

design concerns, such as the specification of suitable service access and configuration,
event processing, and threading models. These are some of the key strategic aspects
of concurrent and networked software. If they are addressed properly, the impact of
many vexing complexities can be alleviated greatly.

§ Redirect developer focus away from a preoccupation with low-level operating system
and networking protocols and mechanisms. While having a solid grasp of these topics is
important, they are tactical in scope and must be placed in the proper context within the
overall software architecture and development effort.

1.2 Challenges of Concurrent and Networked Software
In theory, developing software applications that use concurrent and networked services can
improve system performance, reliability, scalability, and cost-effectiveness. In practice,
however, developing efficient, robust, extensible, and affordable concurrent and networked
applications is hard, due to key differences between stand-alone and networked application
architectures.

In stand-alone application architectures, user interface, application service processing, and
persistent data resources reside within one computer, with the peripherals attached directly

 23

to it. In contrast, in networked application architectures, interactive presentation, application
service processing, and data resources may reside in multiple loosely-coupled host
computers and service tiers connected together by local area or wide area networks.

A network of X-terminals and 'thin client NetPCs' is an example of a networked system
architecture. In this environment, user interface presentation is handled by a display service
on end-user hosts. The processing capabilities are provided by host computer(s) on which
all or part of application services run. Access to persistent resources is mediated by one or
more network file servers. Other services, such as naming and directory services, time
services, HTTP servers, and caches and network management services, can run in the
network and provide additional capabilities to applications.

There are three common reasons to adopt a networked architecture:
§ Collaboration and connectivity. The explosive growth of the Web and e-commerce

exemplify one of the most common reasons for networking: the ability to connect to and
access vast quantities of geographically-distributed information and services. The
popularity of the instant messaging and 'chat rooms' available on the Internet
underscores another common networking motivation: staying connected to family,
friends, collaborators, and customers.

§ Enhanced performance, scalability, and fault tolerance. The performance and
scalability of a networked architecture may be enhanced by taking advantage of the
parallel processing capabilities that are available in a network. For example, multiple
computation and communication service processing tasks can be run in parallel on
different hosts. Similarly, various application services can be replicated across multiple
hosts. Replication can minimize single points of failure, thereby improving the system's
reliability in the face of partial failures.

§ Cost effectiveness. Networked architectures yield decentralized and modular
applications that can share expensive peripherals, such as high-capacity file servers
and high-resolution printers. Similarly, selected application components and services
can be delegated to run on hosts with specialized processing attributes, such as high-
performance disk controllers, large amounts of memory, or enhanced floating-point
performance.

Although networked applications offer many potential benefits, they are harder to design,
implement, debug, optimize, and manage than stand-alone applications. For example,
developers must address topics that are either not relevant or are less problematic for stand-
alone applications in order to handle the requirements of networked applications. These
topics include:
§ Connection establishment and service initialization
§ Event demultiplexing and event handler dispatching
§ Interprocess communication (IPC) and network protocols
§ Primary and secondary storage management and caching
§ Static and dynamic component configuration
§ Concurrency and synchronization

 24

These topics are generally independent of specific application requirements, so learning to
master them helps to address a wide range of software development problems. Moreover, in
the context of these topics many design and programming challenges arise due to several
inherent and accidental complexities associated with concurrent and networked systems:
§ Common inherent complexities associated with concurrent and networked systems

include managing bandwidth [ZBS97], minimizing delays (latency) [SC99] and delay
variation (jitter) [PRS+99], detecting and recovering from partial failures [CRSS+98],
determining appropriate service partitioning and load balancing strategies [IEEE95], and
ensuring causal ordering of events [BR94]. Similarly, common inherent complexities
found in concurrent programming include eliminating race conditions and avoiding
deadlocks [Lea99a], determining suitable thread scheduling strategies [SKT96], and
optimizing end-system protocol processing performance [SchSu95].

§ Common accidental complexities associated with concurrent and networked systems
include lack of portable operating system APIs [Sch97], inadequate debugging support
and lack of tools for analyzing concurrent and networked applications [LT93],
widespread use of algorithmic—rather than object-oriented—decomposition [Boo94],
and continual rediscovery and reinvention of core concepts and common components
[Kar95].

In this section, we therefore discuss many of the design and programming challenges
associated with building concurrent and networked systems. Yet the patterns in this book do
not address all the aspects associated with concurrency and networking. Therefore, Chapter
6, Weaving the Patterns Together, relates the patterns in this book with others from the
literature that handle many of these aspects. The remaining challenges constitute open
issues for future patterns research, as described in Chapter 7, The Past, Present, and
Future of Patterns.

Challenge 1: Service Access and Configuration

Components in a stand-alone application can collaborate within a single address space by
passing parameters via function calls and by accessing global variables. In contrast,
components in networked applications can collaborate using:
§ Interprocess communication (IPC) mechanisms, for example shared memory, pipes,

and Sockets [Ste98],[1] which are based on network protocols like TCP, UDP and IP
[Ste93], or ATM [CFFT97].

§ Communication protocols [Ste93], such as TELNET, FTP, SMTP, HTTP, and LDAP,
which are used by many types of services, for example remote log-in, file transfer,
email, Web content delivery, and distributed directories, to export cohesive software
components and functionality to applications.

§ Remote operations on application-level service components using high-level
communication middleware, such as COM+ [Box97] and CORBA [OMG98c].

Applications and software components can access these communication mechanisms via
programming APIs defined at all levels of abstraction in a networked system:

 25

Designing effective APIs for accessing these communication mechanisms is important,
because these are the interfaces programmed directly by application, component, and
service developers.

For infrastructure networking or systems programs, such as TELNET or FTP, service access
traditionally involved calling
§ Concurrency service access APIs, such as UNIX processes [Ste99], POSIX Pthreads

[IEEE96], or Win32 threads [Sol98], to manage concurrency and
§ IPC service access APIs, such as UNIX- and Internet-domain Sockets [Ste98], to

configure connections and communicate between processes co-located on a single host
and on different hosts, respectively.

Several accidental complexities arise, however, when accessing networking and host
services via low-level operating system C APIs:
§ Excessive low-level details. Building networked applications using operating system

APIs requires developers to have intimate knowledge of many low-level details. For
instance, developers must carefully track which error codes are returned by each
system call and handle these problems in the application code itself. UNIX server
developers, for example, who use the wait() system call must distinguish between
return errors due to no child processes being present and errors from signal interrupts.
In the latter case, the wait() must be reissued. Forcing application developers to
address these details diverts their attention from more strategic issues, such as a
server's semantics and its software architecture.

§ Continuous rediscovery and reinvention of incompatible higher-level programming
abstractions. A common remedy for the excessive level of detail with operating system
APIs is to define higher-level programming abstractions. For example, many Web
servers create a file cache component to avoid accessing the file system for each client
request [HPS99]. However, these types of abstractions are often re-discovered and re-
invented independently by each developer or team. This ad hoc software programming
process can actually hamper productivity if it diverts application developers from
meeting their customer's requirements. It can also create a plethora of incompatible
components that are inadequately documented and debugged, and therefore not readily
reusable within and across projects.

§ High potential for errors. Programming to operating system APIs is tedious and error-
prone due to their lack of type-safety and their subtlety. For example, many networked
applications are programmed with the Socket API [MBKQ96], which is defined in C.
However, socket endpoints are represented as untyped handles. These handles
increase the potential for subtle programming mistakes and run-time errors [Sch92]. In
particular, operations can be applied incorrectly, such as invoking a data transfer
operation on a passive-mode handle that is only supposed to establish connections.

§ Lack of portability. Operating system APIs are notoriously non-portable, even across
releases of the same platform. Implementations of the Socket API on Win32 platforms
(WinSock), for example, are subtly different than on UNIX platforms. Advanced Socket
operations, such as multicast and broadcast, are not portable across these platforms as
a result. Even WinSock implementations on different versions of Windows possess

 26

incompatible timing-related bugs that cause sporadic failures when performing non-
blocking connections.

§ Steep learning curve. Due to the excessive level of detail, the effort required to master
operating system APIs can be very high. For example, it is hard to learn how to program
with POSIX asynchronous I/O [POSIX95] correctly. It is even harder to learn how to
write a portable application using asynchronous I/O mechanisms, because they differ so
widely across operating system platforms.

§ Inability to scale up to handle increasing complexity. Operating system APIs define
basic interfaces to mechanisms, such as process and thread management, interprocess
communication, file systems, and memory management. However, these basic
interfaces do not scale up gracefully as applications grow in size and complexity. For
example, a typical UNIX process allows a backlog of only ~7 pending connections
[Ste98]. This number is completely inadequate for heavily accessed e-commerce
servers that must handle hundreds or thousands of simultaneous clients.

Key design challenges for infrastructure networking or system programs thus center on
minimizing the accidental complexities outlined above without sacrificing performance.

For higher-level distributed object computing applications, service access often involves
invoking remote operations on reusable components that define common services, such as
naming [OMG97a], trading [OMG98b], and event notification [OMG99c]. Many component
models, such as Enterprise JavaBeans [MaHa99], COM+ [Box97], and the CORBA
component model [OMG99a], allow components to export different service roles to different
clients, depending on factors, such as the version expected by the client or the authorization
level of the client. A key design challenge at this level therefore centers on ensuring that
clients do not access invalid or unauthorized component service roles.

Resolving this challenge is important: networked applications are more vulnerable to security
breaches than stand-alone applications, because there are more access points for an
intruder to attack [YB99]. For example, many shared-media networks, such as Ethernet,
Token Ring, and FDDI, provide limited built-in protection against cable tapping and 'packet
snooping' tools [Ste93]. Similarly, networked applications must guard against one host
masquerading as another to access unauthorized information. Although some network
software libraries, such as OpenSSL [OSSL00], support authentication, authorization, and
data encryption, a single API to access these security services has not been adopted
universally.

Supporting the static and dynamic evolution of services and applications is another key
challenge in networked software systems. Evolution can occur in two ways:
§ Interfaces to and connectivity between component service roles can change, often at

run-time, and new service roles can be implemented and installed into existing
components.

§ Distributed system performance can be improved by reconfiguring service load to
harness the processing power of multiple hosts.

Ideally these component configuration and reconfiguration changes should be transparent to
client applications that access the various services. Another design challenge therefore is to
ensure that an entire system need not be shut down, recompiled, relinked, and restarted
simply because a particular service role in a component is reconfigured or its load is
redistributed.

It is even more challenging to determine how to access services that are configured into a
system 'on-demand' and whose implementations are unknown when the system was
designed originally.

 27

Many modern operating systems and run-time environments provide explicit dynamic linking
APIs [WHO91] that enable the configuration of applications on-demand:
§ UNIX defines the dlopen(), dlsym(), and dlclose() API that can be used to

load a designated dynamically linked library (DLL) into an application process explicitly,
extract a designated factory function from the DLL, and unlink/unload the DLL,
respectively [Ste98].

§ Win32 provides the LoadLibrary(), GetProcAddr(), and CloseHandle() API
that perform the same functionality as the UNIX DLL API [Sol98].

§ Java's Java.applet.Applet class defines init(), start(), stop(), and
destroy() hook methods that support the initializing, starting, stopping, and
terminating of applets loaded dynamically.

However, configuring services into applications on-demand requires more than dynamic
linking mechanisms—it requires patterns for coordinating (re)configuration policies. Here the
design challenges are two-fold. First, an application must export new services, even though
it may not know their detailed interfaces. Second, an application must integrate these
services into its own control flow and processing sequence transparently and robustly, even
at run-time.

Chapter 2, Service Access and Configuration Patterns, presents four patterns for designing
effective programming APIs to access and configure services and components in stand-
alone and networked software systems and applications. These patterns are Wrapper
Facade (47), Component Configurator (75), Interceptor (109), and Extension Interface (141).

Challenge 2: Event Handling

As systems become increasingly networked, software development techniques that support
event-driven applications have become increasingly pervasive. Three characteristics
differentiate event-driven applications from those with the traditional 'self-directed' flow of
control [PLoPD1]:
§ Application behavior is triggered by external or internal events that occur

asynchronously. Common sources of events include device drivers, I/O ports, sensors,
keyboards or mice, signals, timers, or other asynchronous software components.

§ Most events must be handled promptly to prevent CPU starvation, improve perceived
response time, and keep hardware devices with real-time constraints from failing or
corrupting data.

§ Finite state machines [SGWSM94] may be needed to control event processing and
detect illegal transitions, because event-driven applications generally have little or no
control over the order in which events arrive.

Therefore, event-driven applications are often structured as layered architectures [POSA1]
with so-called 'inversion of control' [John97]:

 28

§ At the bottom layer are event sources, which detect and retrieve events from various
hardware devices or low-level software device drivers that reside within an operating
system.

§ At the next layer is an event demultiplexer, such as select() [Ste98], which waits for
events to arrive on the various event sources and then dispatches events to their
corresponding event handler callbacks.

§ The event handlers, together with the application code, form yet another layer that
performs application-specific processing in response to callbacks—hence the term
'inversion of control'.

The separation of concerns in this event-driven architecture allows developers to
concentrate on application layer functionality, rather than rewriting the event source and
demultiplexer layers repeatedly for each new system or application.

In many networked systems, applications communicate via peer-to-peer protocols, such as
TCP/IP [Ste93], and are implemented using the layered event-driven architecture outlined
above. The events that are exchanged between peers in this architecture play four different
roles [Bl91]:

§ PEER1, the client initiator application, invokes a send operation to pass a request event
to PEER2, the service provider application. The event can contain data necessary for
PEER1 and PEER2 to collaborate. For example, a PEER1 request may contain a CONNECT
event to initiate a bidirectional connection, or a DATA event to pass an operation and its
parameters to be executed remotely at PEER2.

§ The PEER2 service provider application is notified of the request event arrival via an
indication event. PEER2 can then invoke a receive operation to obtain and use the
indication event data to perform its processing. The demultiplexing layer of PEER2 often
waits for a set of indication events to arrive from multiple peers.

§ After the PEER2 service provider application finishes processing the indication event, it
invokes a send operation to pass a response event to PEER1, acknowledging the

 29

original event and returning any results. For example, PEER2 could acknowledge the
CONNECT event as part of an initialization 'handshake', or it could acknowledge the
DATA event in a reliable two-way remote method invocation.

§ The PEER1 client initiator application is notified of a response event arrival via a
completion event. At this point it can use a receive operation to obtain the results of the
request event it sent to the PEER2 service provider earlier.

If after sending a request event the PEER1 application blocks to receive the completion event
containing PEER2's response, it is termed a synchronous client.[2] In contrast, if PEER1 does
not block after sending a request it is termed an asynchronous client. Asynchronous clients
can receive completion events via asynchrony mechanisms, such as UNIX signal handlers
[Ste99] or Win32 I/O completion ports [Sol98].

Traditional networked applications detect, demultiplex, and dispatch various types of control
and data events using low-level operating system APIs, such as Sockets [Ste98], select()
[Ste98], poll() [Rago93], WaitForMultipleObjects(), and I/O completion ports
[Sol98]. However, using these low-level APIs increases the accidental complexity of event-
driven programming. Programming with these low-level APIs also increases code duplication
and maintenance effort by coupling the I/O and demultiplexing aspects of an application with
its connection and concurrency mechanisms.

Chapter 3, Event Handling Patterns, presents four patterns that describe how to initiate,
receive, demultiplex, dispatch, and process various types of events effectively in networked
software frameworks. The patterns are Reactor (179), Proactor (215), Asynchronous
Completion Token (261), and Acceptor-Connector (285).

Challenge 3: Concurrency

Concurrency is a term that refers to a family of policies and mechanisms that enable one or
more threads or processes to execute their service processing tasks simultaneously
[Ben90]. Many networked applications, particularly servers, must handle requests from
multiple clients concurrently. Therefore, developers of concurrent networked software often
need to become proficient with various process and thread management mechanisms.

A process is a collection of resources, such as virtual memory, I/O handles, and signal
handlers, that provide the context for executing program instructions. In earlier-generation
operating systems, for example BSD UNIX [MBKQ96], processes had a single thread of
control.

A thread is a single sequence of instruction steps executed in the context of a process
[Lew95]. In addition to an instruction pointer, a thread consists of resources, such as a run-
time stack of function activation records, a set of registers, and thread-specific data.

The use of single-threaded processes simplified certain types of concurrent applications,
such as remote logins, because separate processes could not interfere with each other
without explicit programmer intervention. It is hard, however, to use single-threaded
processes to develop networked applications. For example, single-threaded BSD UNIX
servers cannot block for extended periods while handling one client request without
degrading their responsiveness to other clients. Although it is possible to use techniques like
signal-driven Socket I/O or forking multiple processes to work around these limitations, the
resulting programs are complex and inefficient.

Modern operating systems overcome the limitations of single-threaded processes by
providing multi-threaded concurrency mechanisms that support the creation of multiple
processes, each of which may contain multiple concurrent threads. In these operating

 30

systems the processes serve as units of protection and resource allocation within hardware-
protected address spaces. Similarly, the threads serve as units of execution that run within a
process address space shared by other threads:

Popular thread programming models, such as POSIX Pthreads [IEEE96] and Win32 threads
[Sol98], offer four benefits:
§ They improve performance transparently by using the parallel processing capabilities

of hardware and software platforms.
§ They improve performance explicitly by allowing programmers to overlap computation

and communication service processing.
§ They improve perceived response time for interactive applications, such as graphical

user interfaces, by associating separate threads with different service processing tasks
in an application.

§ They simplify application design by allowing multiple service processing tasks to run
independently using synchronous programming abstractions, for example two-way
method invocations.

It is remarkably hard, however, to develop efficient, predictable, scalable, and robust
concurrent applications [Lea99a]. One source of complexity arises from common multi-
threading hazards, for example race conditions and deadlocks [Lea99a]. Another source of
complexity arises from limitations with existing development methods, tools, and operating
system platforms. In particular, the heterogeneity of contemporary hardware and software
platforms complicates the development of concurrent applications and tools that must run on
multiple operating systems.

For example, shutting down multi-threaded programs gracefully and portably is hard. The
problem stems from inconsistent thread cancellation semantics [Lew95] across operating
systems, such as POSIX/UNIX, Win32, and real-time embedded systems like VxWorks or
LynxOS. Similarly, support for advanced threading features, for example thread-specific
storage (475), 'detached' threads [Lew95], real-time scheduling [Kan92], and scheduler
activations [ABLL92] varies widely across operating systems. It is therefore infeasible to
write portable concurrent applications by programming directly to the operating system APIs.

General-purpose design patterns, such as Adapter [GoF95] and Wrapper Facade (47), can
be applied to shield concurrent software from the accidental complexities of the APIs
outlined above. In addition, off-the-shelf 'infrastructure' middleware [SFJ96], such as ACE
[Sch97] and JVMs, is now widely available and has reified these patterns into efficient and
reusable object-oriented operating system encapsulation layers. However, even after
adopting this level of middleware many challenges remain, due to inherent complexities
associated with concurrent application development, including:
§ Determining an efficient application concurrency architecture that minimizes context

switching, synchronization, and data copying/movement overhead in concurrent
applications [SchSu95] [SKT96].

§ Designing complex concurrent systems containing synchronous and asynchronous
service processing tasks to simplify programming without degrading execution efficiency
[Sch96].

 31

§ Selecting appropriate synchronization primitives to increase performance, prevent race
conditions, and reduce the maintenance costs of concurrent applications on multi-
processors [McK95].

§ Eliminating unnecessary threads and locks in concurrent [HPS99] or real-time [HLS97]
applications to enhance performance or simplify resource management without
compromising correctness, incurring deadlocks, or blocking application progress unduly.

Resolving these inherent complexities requires more than general-purpose design patterns
and portable infrastructure middleware threading APIs. Instead, it requires developers to
learn and internalize the successful patterns for developing concurrent applications,
components, frameworks, and system architectures.

Chapter 5, Concurrency Patterns, includes five patterns that define various types of
concurrency architectures for components, subsystems, and entire applications. These are
Active Object (369), Monitor Object (399), Half-Sync/Half-Async (423), Leader/Followers
(447), and Thread-Specific Storage (475).

Challenge 4: Synchronization

The efficiency, responsiveness, and design of many networked applications can benefit from
the use of the concurrency mechanisms and patterns outlined above. For example, objects
in an application can run concurrently in different threads to simplify program structure. If
multiple processors are available, threads can be programmed to exploit true hardware
parallelism and thus improve performance.

In addition to the complexities outlined in Challenge 3: Concurrency, concurrent
programming is also harder than sequential programming due to the need to synchronize
access to shared resources. For example, threads that run concurrently can access the
same objects or variables simultaneously, and potentially corrupt their internal states. To
prevent this problem, code that should not execute concurrently in objects or functions can
be synchronized within a critical section. A critical section is a sequence of instructions that
obeys the following invariant: while one thread or process is executing in the critical section,
no other thread or process can execute in the same critical section [Tan95]:

A common way to implement a critical section in object-oriented programs is to hard-code
some type of lock object into a class or component. For example, a mutual exclusion (mutex)
object is a type of lock that must be acquired and released serially. If multiple threads
attempt to acquire the mutex simultaneously, only one thread will succeed. The others must
wait until the mutex is released, after which all waiting threads will compete again for the lock
[Tan92]. Other types of locks, such as semaphores and readers/writer locks, use a similar
acquire/release protocol [McK95].

Unfortunately, programming these locking techniques using low-level operating system APIs
yields two drawbacks:
§ Error-prone. Explicitly acquiring a lock before entering a critical section and explicitly

releasing it when exiting a critical section is surprisingly hard. In particular, if a critical
section has multiple return paths, the lock must be released explicitly in all of them. This

 32

usage is a common source of subtle programming errors, because it is easy to forget to
release a lock in one of the return paths, particularly if exceptions are thrown in the
block. If the lock is not released, deadlock will occur when subsequent threads enter the
critical section and they will then block indefinitely.

§ Inflexible and inefficient. Depending on the context where an application runs,
performance requirements may necessitate that different lock types be used to
implement critical sections. For example, if an application that used a mutex originally is
run on a large-scale multi-processor platform, performance may be improved by
changing the locking mechanism to a readers/writer lock. This type of lock allows
multiple reader threads to access a shared resource in parallel [McK95]. If the locking
primitives are hard-coded into the software at every point of use, however, changing the
primitives becomes unnecessarily hard and time-consuming.

Chapter 4, Synchronization Patterns, describes four patterns that alleviate the problems
described above to simplify serialization and locking in concurrent systems. These patterns
are Scoped Locking (325), Strategized Locking (333), Thread-Safe Interface (345), and
Double-Checked Locking Optimization (353).

Other Challenges for Networked Software

The four topic areas covered above—service access and configuration, event handling,
concurrency, and synchronization—represent the core networked software development
challenges addressed by the patterns in this book. However, developers of networked
application software must address issues in other topic areas, such as dependability, service
naming, and location selection. Although these topics are beyond the scope of this book, we
outline the important challenges below to illustrate the scope of the field.

Dependability. One of the reasons for adopting a networked architecture is to improve
reliability and prevent single points of failure. Ironically, networked applications often require
substantial effort to achieve levels of dependability equivalent to those provided by stand-
alone applications. Detecting service failures in a stand-alone application is relatively easy,
because the operating system has global knowledge of the health and status of system
services and peripheral devices. Thus if a resource is unavailable the operating system can
notify the application quickly. Similarly, if a service or device fails, the operating system can
terminate an application, leaving no doubt about its exit status.

In contrast, detecting errors in networked applications is harder, due to incomplete
knowledge of global system state. For example, networked applications are designed to
tolerate some amount of latency jitter and non-determinism. As a result, a client may not
detect an abnormal server termination until after valuable information has been lost.
Similarly, server responses may get lost in the network, causing clients to retransmit
duplicate requests.

There are several techniques for improving application dependability:
§ Reactivation. Applications and services can be run under control of a monitor daemon

that detects and automatically restarts servers if they terminate unexpectedly [HK93].
Servers report their current status to their associated monitor daemon periodically via
'heart-beat' messages. If a message does not arrive within a designated interval, the
monitor daemon assumes that the server has terminated abnormally and reactivates it.

§ Replication. Applications and services can be run under control of a replica manager at
multiple locations throughout a network [GS97]. Replica managers can update service
replicas continuously using 'active replication', or just when a primary service fails using
'passive replication'. Replication frameworks [FGS98] provide various monitoring,
membership, consensus, and messaging mechanisms to help enhance application
dependability.

 33

A large body of research literature and tools focuses on improving the dependability of
processes [GS97] [BR94] [HK93] or distributed objects [CRSS+98] [FGS98]. Some work has
been documented in pattern form [IM96] [Maf96] [SPM98] [ACGH+96] [Sta100], though
much research remains to be done. With the adoption of the Fault Tolerant CORBA
specification [OMG99g] and ORBs that implement it, more application developers will be
able to document their experience with the patterns of fault-tolerant distributed object
computing.

Service Naming and Location Selection. Stand-alone applications generally identify their
constituent services via object and function memory addresses. In contrast, networked
applications require more elaborate mechanisms to name, locate, and select their remote
services. IP host addresses and TCP port numbers are a common remote service
addressing scheme used by CORBA, DCOM, Java RMI, DCE, and SunRPC. These low-
level mechanisms are often inadequate for large-scale networked systems, however,
because they are hard to administer in a portable and unambiguous manner. For example,
TCP port 5000 need not refer to the same service on host machines configured by different
vendors or network administrators.

Distributed object computing and RPC middleware therefore provide location brokers that
allow clients to access services via higher-level names rather than by their low-level IP
addresses and TCP port numbers. Location brokers simplify networked system
administration and promote more flexible and dynamic placement of services throughout a
network by automating the following tasks:
§ Name binding. This task binds service names onto their current host/process locations.

For example, the SunRPC rpcbind facility performs the port mapping task on a single
end-system [Sun88]. More general name binding mechanisms, such as the DCE Cell
Directory Service (CDS) [RKF92]. LDAP [HSGH99], X.500 [SS99], and the CORBA
Naming Service [OMG97a], are also available. These services implement a global
name-space within an administrative domain, such as a local area network or intranet.

§ Service location. A service or resource may often run at several locations throughout a
network to improve reliability via replication. In this case applications may use a location
broker to determine which service provider is most appropriate. For example, the
CORBA Trading Service allows clients to select remote objects via a set of properties
associated with services [OMG98b]. A client can select an appropriate resource by
using these properties, such as choosing a printer by determining which printers in a
building have Postscript support, color printing, 1200 dpi resolution, and sufficient
paper.

Patterns related to name binding and service location have appeared in [POSA1 [Doble96]
[JK00].

[1]In the remainder of this chapter we refer to and use concrete UNIX and Win32 operating
system APIs in our discussion. You may want to keep copies of references such as [Ste99]
[Ste98] [Lew95] [Ric97] handy to clarify some topics or terms if they are unfamiliar.

[2]While reading the patterns in this book it is important to recognize that the terms 'client' and
'service' are not immutable properties of particular software or hardware components.
Instead, they are roles [RG98] played during a particular request/response interaction. For
example, in a symmetric peer-to-peer system PEER1 and PEER2 could play both the roles of
client initiator and service provider at various times during their interactions.

1.3 A Case Study: Designing a Concurrent Web Server
The volume of Web traffic is growing rapidly due to the proliferation of Web browsers that
allow end-users easy access to a wide range of content [PQ00]. Similarly, Web technology is

 34

being increasingly applied to computationally-expensive tasks, such as medical image
processing servers [PHS96] and database search engines. To keep pace with increasing
demand, it is essential to develop concurrent Web servers that can provide efficient caching
and content delivery services to Internet and intranet users.

The figure below presents an overview of a typical Web system and its components:

These Web system components interact as follows when an HTTP client retrieves an HTML
file from an HTTP server.

1. Through GUI interactions via a Web browser, an end-user instructs the HTTP client to
download a particular file.

2. The requester is the active component of the HTTP client that communicates over a
TCP/IP network. It uses the appropriate transfer protocol syntax, such as HTTP 1.0
[Ste96], to send TCP connection events and HTTP GET request events, which are
strings that inform the server to download a particular file.

3. Events arriving at an HTTP server are received by the event dispatcher. This is the
server's demultiplexing engine that accepts TCP connection events and coordinates
the socket handles and threads used to receive and process HTTP GET request
events.

4. Each HTTP GET request event is processed by a protocol handler, which parses and
logs the request, fetches file status information, updates the file cache, transmits the
file back to the HTTP client, and cleans up any resources it allocated.

5. When a requested file is returned to the client it is parsed by an HTML parser, which
interprets and renders the file. At this point, the requester may issue other requests
on behalf of the client, such as updating a client-side cache or downloading
embedded images.

Developers must avoid common problems when creating and optimizing Web servers.
These problems include wrestling with low-level programming details and portability
constraints, committing to a particular server configuration prematurely, and being
overwhelmed by the breadth of design alternatives, including:
§ Concurrency models, such as thread-per-request or thread pool variants
§ Event demultiplexing models, such as synchronous or asynchronous event

demultiplexing
§ File caching models, such as least-recently used (LRU) or least-frequently used (LFU)
§ Content delivery protocols, such as HTTP/1.0 [BFF96], HTTP/1.1 [FGMFB97], or

HTTP-NG [W3C98]

The reason there are so many alternatives is to help ensure that Web servers can be
tailored to different end-user needs and traffic workloads. However, no single set of
configuration choices is optimal for all hardware/software platforms and workloads [HPS99]

 35

[HMS98]. Moreover, without proper guidance it is time-consuming and error-prone to
navigate through all these design alternatives.

The remainder of this section illustrates how eight patterns in this book have been applied to
produce a flexible and efficient Web server called JAWS [HPS99]. JAWS is both a Web
server and a framework from which other types of servers can be built [HS98].

We selected JAWS as our example application for four reasons:
§ It is a production-quality Web server [ENTERA00] that is representative of challenges

that arise when developing concurrent and networked software.
§ JAWS' throughput and scalability are high and its latency and jitter are low [HPS99]

[HMS98], demonstrating that pattern- and framework-oriented software architectures
can be efficient.

§ The JAWS framework itself is developed using the ACE framework [Sch97], which
provides object-oriented implementations of most patterns in this book.

§ ACE and JAWS are open-source,[3] so you can see first-hand how patterns are applied
to avoid rediscovering and reinventing solutions to concurrent and networked software
design problems.

Overview of the JAWS Framework

There are three main framework components in JAWS:

§ Event Dispatcher. This accepts client connection request events, receives HTTP GET
requests, and coordinates JAWS' event demultiplexing strategy with its concurrency
strategy. As events are processed they are dispatched to the appropriate Protocol
Handler.

§ Protocol Handler. This implements the parsing and protocol processing of HTTP
request events. JAWS Protocol Handler design allows multiple Web protocols, such as
HTTP/1.0, HTTP/1.1, and HTTP-NG, to be incorporated into a Web server. To add a
new protocol, developers just have to write a new Protocol Handler component and
configure it into the JAWS framework.

§ Cached Virtual Filesystem. This improves Web server performance by reducing the
overhead of file system accesses when processing HTTP GET requests. Various
caching strategies, such as least-recently used (LRU) or least-frequently used (LFU),
can be selected according to the actual or anticipated workload and configured statically
or dynamically.

 36

Applying Patterns to Resolve Common Design Challenges in
JAWS

The overview of the JAWS framework architecture above describes how JAWS is structured,
but does not explain why it is structured in this way. Understanding why the JAWS
framework contains these particular components—and why the components are designed
the way they are—requires a deeper knowledge of the patterns underlying the domain of
concurrent and networked software in general, and concurrent Web servers in particular.

Eight patterns are used to implement the main components in JAWS:

These patterns help resolve the following seven common challenges that arise when
developing concurrent servers:
§ Encapsulating low-level operating system APIs
§ Decoupling event demultiplexing and connection management from protocol

processing
§ Scaling up server performance via multi-threading
§ Implementing a synchronized request queue
§ Minimizing server threading overhead
§ Using asynchronous I/O effectively
§ Enhancing server configurability

In addition to describing the patterns using a minimal 'context/problem/solution' form, we
note the trade-offs between certain patterns and show how these patterns are applied to
develop the concurrent JAWS Web server. Chapters 2 through 5 describe these patterns
both more generally and in more detail.

Encapsulating Low-level Operating System APIs

Context

A Web server must manage a variety of operating system services, including processes,
threads, Socket connections, virtual memory, and files. Most operating systems, such as
Win32 or POSIX, provide low-level APIs written in C to access these services.

Problem

The diversity of hardware and operating systems makes it hard to build portable and robust
Web server software by programming to low-level operating system APIs directly. These
APIs are tedious, error-prone, and non-portable, which makes them an ineffective way to
develop Web servers or other networked applications.

Solution

 37

Apply the Wrapper Facade pattern (47) to avoid accessing low-level operating system APIs
directly. This design pattern encapsulates the functions and data provided by existing non-
object-oriented APIs, for example low-level operating system APIs, within more concise,
robust, portable, maintainable, and cohesive object-oriented class interfaces.

Use in JAWS

JAWS uses the wrapper facades defined by ACE to ensure its framework components can
run on many operating systems, including Windows, UNIX, and many real-time operating
systems.

For example, JAWS uses the ACE Thread_Mutex wrapper facade to provide a portable
interface to operating system mutual exclusion mechanisms.

The Thread_Mutex wrapper shown in the diagram is implemented using the Solaris
threading API [EKBF+92]. However, the ACE Thread_Mutex wrapper facade is also
available for other threading APIs, for example Win32 threads or POSIX Pthreads. Other
ACE wrapper facades used in JAWS encapsulate Sockets, process and thread
management, memory-mapped files, explicit dynamic linking, and time operations [Sch97].

Decoupling Event Demultiplexing and Connection Management
from Protocol Processing

Context

A Web server can be accessed simultaneously by multiple clients, each of which has its own
connection to the server. A Web server must therefore be able to demultiplex and process
multiple types of indication events that can arrive from different clients concurrently:
§ A connection request, which the server receives via a CONNECT indication event that

instructs it to accept the client connection
§ An HTTP GET request to download a file, which the server receives via a READ

indication event that instructs it to receive a request from one of its client connections

A common way to demultiplex events in a Web server is to use select() [Ste98]. This
function reports which socket handles have indication events pending so that Socket
operations, such as accept() for accepting a client connection request or recv() for
receiving a client request, can be invoked without blocking the server.

Problem

Developers often tightly couple a Web server's event-demultiplexing and connection-
management code with its protocol-handling code that performs HTTP 1.0 processing. In
such a design, however, the demultiplexing and connection-management code cannot be
reused as black-box components by other HTTP protocols, or by other middleware and
applications, such as ORBs [SC99] and imaging servers [PHS96]. Moreover, changes to the
event-demultiplexing and connection-management code, such as porting it to use TLI

 38

[Rago93] or WaitForMultipleObjects() [Sol98], will affect the Web server protocol
code directly and may introduce subtle bugs.

Solution

Apply the Reactor pattern (179) and the Acceptor-Connector pattern (285) to separate the
generic event-demultiplexing and connection-management code from the HTTP protocol
code. The Reactor architectural pattern decouples the synchronous event demultiplexing
and dispatching logic of server applications from the service(s), such as HTTP protocol
processing, performed in response to events. The Acceptor-Connector design pattern can
build on the Reactor pattern to decouple the connection and initialization of co-operating
peer services, for example an HTTP client and server, from the processing activities
performed by these peer services once they are connected and initialized.

Use in JAWS

JAWS uses the Reactor pattern to process multiple synchronous events from multiple
sources of events without polling all its event sources or blocking indefinitely on any single
source of events. Similarly, it uses the Acceptor-Connector pattern to vary its protocol-
processing code independently from its connection-management code.

In this design, the select() synchronous event demultiplexer waits for events to occur on
a set of handles. When an event arrives, select() notifies a reactor, which then
demultiplexes and dispatches this event to a designated event handler for further
processing.

There are two types of event handlers in JAWS:
§ The HTTP_Acceptor registers itself with the Reactor for CONNECT events. When

these events occur the Reactor invokes the handle_event() hook method of the
HTTP_Acceptor, which then creates, connects, and activates an HTTP_Handler.

§ Each HTTP_Handler is a Protocol Handler whose handle_event() hook method is
responsible for receiving and processing the HTTP GET request sent by its connected
client.

By using the Reactor and Acceptor-Connector patterns, the protocol-specific processing
code in the HTTP_Handler is decoupled from the protocol-independent event
demultiplexing and connection-management code in the Event Dispatcher. This design
makes it easier to maintain and reuse the various components in JAWS.

Scaling Up Server Performance via Multi-threading

Context

 39

HTTP runs over TCP, which uses flow control to ensure that senders do not produce data
more rapidly than slow receivers or congested networks can buffer and process [Ste93].
Achieving efficient end-to-end quality of service (QoS) is important to handle heavy Web
traffic loads [PQ00]. A Web server must therefore scale up efficiently as its number of clients
increases.

Problem

Processing all HTTP GET requests reactively within a single-threaded process does not
scale up efficiently, because each Web server CPU time-slice spends much of its time
blocked waiting for I/O operations to complete. Similarly, to improve Qos for all its connected
clients, an entire Web server process must not block while waiting for connection flow control
to abate so it can finish sending a file to a client.

Solution

Apply the Half-Sync/Half-Async pattern (423) to scale up server performance by processing
different HTTP requests concurrently in multiple threads. This architectural pattern defines
two service processing layers—one asynchronous and one synchronous—along with a
queueing layer that allows services to exchange messages between the two layers. The
pattern allows synchronous services, such as HTTP protocol processing, to run concurrently,
relative both to each other and to asynchronous services, such as event demultiplexing.

This solution yields two benefits:
§ Threads can be mapped to separate CPUs to scale up server performance via multi-

processing.
§ Each thread blocks independently, which prevents one flow-controlled connection from

degrading the QoS other clients receive.

Use in JAWS

JAWS can use the Half-Sync/Half-Async pattern to process HTTP GET requests
synchronously from multiple clients, but concurrently in separate threads of control:

The Reactor's HTTP_Handlers constitute the services in JAWS' 'asynchronous' layer.
Although the Reactor is not truly asynchronous, it shares key properties with asynchronous
services. For example, an HTTP_Handler dispatched by the Reactor cannot block for long
without starving other clients. Therefore, in this design an HTTP_Handler just reads an
incoming HTTP GET request and inserts it into a request queue serviced by a pool of worker
threads.

The worker thread that removes the request performs HTTP protocol processing
synchronously. It then transfers the file back to the client. If flow control occurs on its client
connection this thread can block without degrading the QoS experienced by clients serviced
by other worker threads in the pool.

 40

Implementing a Synchronized Request Queue

Context

At the center of the Half-Sync/Half-Async pattern is a queueing layer. In JAWS, the
Reactor thread is a 'producer' that inserts HTTP GET requests into a queue. The worker
threads in the pool are 'consumers' that remove and process requests from the queue.

Problem

A naive implementation of a request queue will incur race conditions or 'busy waiting' when
multiple threads insert and remove requests. For example, multiple concurrent producer and
consumer threads can corrupt the queue's internal state if it is not synchronized properly.
Similarly, these threads will 'busy wait' when the queue is empty or full, which wastes CPU
cycles unnecessarily.

Solution

Apply the Monitor Object pattern (399) to implement a synchronized request queue. This
design pattern synchronizes method execution to ensure only one method at a time runs
within an object, such as the Web server's request queue. In addition, it allows an object's
methods to schedule their execution sequences co-operatively. For example, a monitor
object can be used to prevent threads from 'busy waiting' when the request queue is empty
or full.

Use in JAWS

The JAWS synchronized request queue uses a pair of POSIX condition variables to
implement the queue's not-empty and not-full monitor conditions. This synchronized request
queue can be integrated into the Half-Sync/Half-Async thread pool implementation in JAWS'
Event Dispatcher:

When a worker thread attempts to dequeue an HTTP GET request from an empty queue, the
request queue's get() method atomically releases the monitor lock and the worker thread
suspends itself on the not-empty monitor condition. It remains suspended until the queue is
no longer empty, which happens when an HTTP_Handler running in the Reactor thread
inserts a request into the queue.

Minimizing Server Threading Overhead

Context

Socket implementations in certain multi-threaded operating systems, such as Windows NT
and Solaris, provide a concurrent accept() optimization [Ste98] to accept client connection

 41

requests. This optimization improves the performance of Web servers that implement the
HTTP 1.0 protocol in three ways:
§ The operating system allows a pool of threads in a Web server to call accept() on

the same passive-mode socket handle.
§ When a connection request arrives, the operating system's transport layer creates a

new connected transport endpoint, encapsulates this new endpoint with a data-mode
socket handle and passes the handle as the return value from accept().

§ The operating system then schedules one of the threads in the pool to receive this
data-mode handle, which it uses to communicate with its connected client.

Problem

The Half-Sync/Half-Async threading model described in the discussion on Scaling Up Server
Performance via Multi-threading (31) is more scalable than the purely reactive model
described in the sub-section on Decoupling Event Demultiplexing and Connection
Management from Protocol Processing (29). It is not necessarily the most efficient design,
however. For example, it incurs a dynamic memory allocation, multiple synchronization
operations, a context switch, and cache updates to pass a request between the Reactor
thread and a worker thread. This overhead makes JAWS' latency unnecessarily high,
particularly on operating systems that support the concurrent accept() optimization
outlined in the Context discussion.

Solution

Apply the Leader/Followers pattern (447) to minimize server threading overhead. This
architectural pattern provides an efficient concurrency model where multiple threads take
turns to share event sources, such as a passive-mode socket handle, in order to detect,
demultiplex, dispatch, and process service requests that occur on the event sources. This
pattern eliminates the need for—and the overhead of—a separate Reactor thread and
synchronized request queue.

Use in JAWS

JAWS' Event Dispatcher and Protocol Handler can be implemented via a Leader/Followers
thread pool design, as follows:

In this design, multiple worker threads in a pool share the same passive-mode socket
handle. There are two variants to consider:
§ If the operating system supports the concurrent accept() optimization described in

the Context paragraph, all worker threads can simply call accept(). The operating
system thread scheduler then determines the order in which client HTTP GET requests
are dispatched to HTTP_Handlers by applying the steps outlined above. Each
HTTP_Handler now runs in its own thread of control, so it can perform its I/O

 42

operations synchronously without blocking other threads that are processing their client
requests.

§ If the operating system does not support the accept() optimization a different
Leader/Followers implementation can be used to share the passive-mode socket
handle. In this design, one thread at a time—the leader thread—calls the Reactor's
handle_events() method to wait for a connection to arrive on the passive-mode
socket handle. The other threads—the followers—queue waiting their turn to become
the leader.

After the current leader thread receives a newly-connected socket handle, it promotes a
follower thread to become the new leader. It then plays the role of a processing thread,
using the Reactor to demultiplex and dispatch the event to an HTTP_Handler that
performs all HTTP protocol processing for that client's request. Multiple processing
threads can run concurrently while the new leader thread waits for new connections to
arrive via the Reactor.

After handling its HTTP GET request, a processing thread reverts to a follower role and
waits to become the leader thread again.

The Leader/Followers thread pool design is highly efficient [SMFG00]. If there are
requirements besides just raw performance, however, the Half-Sync/Half-Async (423) design
may still be a more appropriate concurrency model for a Web server:
§ The Half-Sync/Half-Async design can reorder and prioritize client requests more

flexibly, because it has a synchronized request queue implemented using the Monitor
Object pattern (399).

§ It may be more scalable, because it queues requests in Web server virtual memory,
rather than the operating system kernel [Sch97].

We cover both thread pool alternatives here to illustrate how the use of patterns helps to
make these design trade-offs explicit.

Leveraging Asynchronous I/O Effectively

Context

Synchronous multi-threading may not be the most scalable way to implement a Web server
on operating system platforms that support asynchronous I/O more efficiently than
synchronous multi-threading. For example, highly-efficient Web servers can be implemented
on Windows NT [Sol98] by invoking asynchronous Win32 operations that perform the
following activities:
§ Processing indication events, such as TCP CONNECT and HTTP GET requests, via

AcceptEx() and ReadFile(), respectively
§ Transmitting requested files to clients asynchronously via WriteFile() or

TransmitFile() [HPS99]

When these asynchronous operations complete, the operating system delivers the
associated completion events containing their results to the Web server. It then processes
these events and performs the appropriate actions before returning to its event loop.

Problem

Developing software that achieves the potential efficiency and scalability of asynchronous
I/O is hard. The challenge is due largely to the separation in time and space of
asynchronous operation invocations and their subsequent completion events.

 43

Solution

Apply the Proactor pattern (215) to make efficient use of asynchronous I/O. This
architectural pattern structures event-driven concurrent server applications that receive and
process requests from multiple clients asynchronously. Application services are split into two
parts:
§ Operations that execute asynchronously, for example to accept connections and

receive client HTTP GET requests
§ The corresponding completion handlers that process the asynchronous operation

results, for example to transmit a file back to a client after an asynchronous connection
operation completes

As with the Reactor pattern, the Proactor pattern decouples the event demultiplexing and
event-handler dispatching logic of server applications from the service(s) performed in
response to events. The primary difference is that the Proactor handles completion events
resulting from asynchronous operations, whereas the Reactor handles indication events that
trigger synchronous operations.

Use in JAWS

JAWS can use the Proactor pattern to perform its Protocol Handler processing, such as
parsing the headers of an HTTP GET request, while processing other connection- and I/O-
related events asynchronously. JAWS can thus implement its Event Dispatcher and Protocol
Handler components efficiently on Windows NT:

In this design, JAWS initiates asynchronous Win32 operations via socket handles to process
service requests 'proactively'. For example, AcceptEx() can accept incoming connection
requests from clients and TransmitFile() can send a file back to the client. These
operations are executed asynchronously by the Windows NT kernel.

When an asynchronous operation finishes, the kernel inserts a completion event containing
that operation's results into an I/O completion port, which queues the completion events.
Completion events are removed from this port via the GetQueuedCompletionStatus()
Win32 function, which is called by the Proactor that runs JAWS' event loop. The
Proactor demultiplexes and dispatches completion events to the appropriate
HTTP_Acceptor or HTTP_Handler that is associated with the asynchronous operation.

Completion handlers process the results of asynchronous operations, potentially invoking
additional asynchronous operations. For example, the completion handler for an

 44

asynchronous AcceptEx() operation typically initiates an asynchronous WriteFile() or
TransmitFile() operation to download a requested file to the client.

On platforms that support asynchronous I/O efficiently, Proactor pattern implementations of
Web servers are often substantially more efficient than Half-Sync/Half-Async (423) and
Leader/Followers (447) pattern implementations [HPS99]. However, the Proactor pattern can
be more complex to implement than the other two concurrency architectures:
§ It has more participants than the other two patterns, which requires more effort to

understand and implement.
§ The combination of 'inversion of control' and asynchrony in Proactor requires a great

deal of experience to program and debug.

As discussed in the section Minimizing Server Threading Overhead, (34) the use of patterns
enables us to evaluate the pros and cons of various Web server architectures without being
distracted by nonessential implementation details, such as the syntax of a platform's
threading, demultiplexing, or connection-management APIs.

Enhancing Server Configurability

Context

The implementation of certain Web server strategies depends on a variety of factors. Certain
factors are static, such as the number of available CPUs and operating system support for
asynchronous I/O. Other factors are dynamic, such as Web workload characteristics.

Problem

No single Web server configuration is optimal for all use cases. In addition, some design
decisions cannot be made efficiently until runtime. Prematurely committing to a particular
Web server configuration is therefore inflexible and inefficient. For example, it is undesirable
to include unused Protocol Handler or Cached Virtual Filesystem components in a Web
server, because this increases its memory footprint and can degrade its performance.

Solution

Apply the Component Configurator pattern (75) to enhance the configurability of a Web
server. This design pattern allows an application to link and unlink its component
implementations at runtime. New and enhanced services can therefore be added without
having to modify, recompile, statically relink, or shut down and restart a running application.

Use in JAWS

JAWS uses the Component Configurator pattern to dynamically optimize, control, and
reconfigure the behavior of its Web server strategies at installation-time or during run-time.
For example, JAWS applies the Component Configurator pattern to configure its various
Cached Virtual Filesystem strategies, such as least-recently used (LRU) or least-frequently
used (LFU):

 45

The Component class defines a uniform interface for configuring and controlling a particular
application service that it provides. Concrete components, which include the
LRU_File_Caching_Strategy class and the LFU_File_Caching_Strategy class,
then implement this interface. Web server administrators can use the Component interface
to initiate, suspend, resume, and terminate the concrete components dynamically,
depending on anticipated or actual workload.

Concrete components can be packaged into a suitable unit of configuration, such as a
dynamically linked library (DLL). Only the components that are currently in use need to be
configured into the Web server. These components can be linked/unlinked into and out of an
application dynamically under the control of a Component Configurator. In turn, this
object uses a Component Repository, which is a memory-resident database that
manages all concrete components configured into the Web server.

Other Patterns Used to Implement JAWS

The implementation of JAWS applies other design patterns to improve its flexibility and
modularity. For example, two other design patterns and an idiom in this book are used in
JAWS:
§ The Thread-Safe Interface (345) and Strategized Locking (333) patterns help minimize

locking overhead in the JAWS' Cached Virtual Filesystem file cache strategies. They
also ensure that intra-component method calls do not incur 'self-deadlock' by trying to
reacquire a lock that a file cache already holds.

§ The Scoped Locking C++ idiom (325) is used throughout JAWS to ensure that a lock is
acquired when control enters a scope and the lock is released automatically when
control leaves the scope, regardless of the path out of the scope.

Three patterns from [GoF95] are also used in JAWS:
§ The Singleton pattern ensures that a class has only one instance and provides a global

point of access to it. JAWS uses a Singleton to ensure that only one instance of its
Cached Virtual Filesystem exists in a Web server process.

§ The State pattern defines a composite object whose behavior depends upon its state.
The Event Dispatcher in JAWS uses the State pattern to support both different
concurrency strategies and synchronous and asynchronous I/O seamlessly [HPS99].

§ The Strategy pattern defines a family of algorithms, encapsulates each one, and
makes them interchangeable. JAWS uses this pattern extensively, for example to select
different HTTP protocols without affecting its Protocol Handler software architecture.

Other design patterns from [GoF95], such as Adapter, Bridge, Factory Method, Iterator and
Template Method, and from [POSA1], such as Proxy, are used in JAWS to implement the
eight patterns we presented above. The pattern descriptions presented in Chapters 2
through 5 describe the relationships between all these patterns in full detail.

In contrast to the four architectural patterns—Reactor, Proactor, Half-Sync/Half-Async, and
Leader/Followers—described in section Applying Patterns to Resolve Common Design

 46

Challenges in JAWS, these design patterns have a relatively localized impact on JAWS. For
example, although the Strategized Locking pattern is domain-independent and widely
applicable, the problem it addresses does not impact JAWS' Web server software
architecture as pervasively as the Proactor or Leader/Followers patterns. A thorough
understanding of design patterns is essential, however, to implement highly-flexible software
that is resilient to changes in application requirements and platform characteristics.

[3]The source for JAWS and ACE can be downloaded at http://www.posa.uci.edu/.

1.4 Wrapping Up
Computing power and network bandwidth will continue to increase dramatically during this
decade. However, the requirements, scale, and complexity of the concurrent and networked
application software that builds on these hardware advances will also increase at a similar
pace. Without corresponding advances in software techniques, it will be hard to manage
lifecycle costs and develop quality software within a reasonable time and level of effort.

Much of the cost and effort of concurrent and networked software stems from the continual
rediscovery and reinvention of fundamental patterns and framework components that reify
these patterns. Patterns and pattern languages help reduce this cost and improve the quality
of software by using proven architectures and designs to produce applications and
application frameworks. These frameworks can be customized to meet existing application
requirements, as well as extended to meet future requirements.

The JAWS example presented in this chapter demonstrates how the effort required to
develop concurrent and networked software can be reduced significantly by applying
patterns and framework components judiciously. Rather than rediscovering solutions to
complex concurrent and networked software problems and reinventing the corresponding
software from scratch, developers can instead focus on achieving their strategic technical
and business objectives. Even when changes to technologies or tools preclude the direct
use of existing components, algorithms, detailed designs, and implementations, the core
architectural and design patterns that underlie these artifacts often can still be reused.

The JAWS example also illustrates the importance of understanding how groups of patterns
collaborate to help resolve complex concurrent and networked application design problems.
Problems and forces are often inter-related, and these relationships should be considered
when addressing key design issues and implementation trade-offs. Regardless of their
individual utility, therefore, no single pattern is an island. Instead, patterns must be
understood in the larger software architecture context in which they apply.

http://www.posa.uci.edu/

 47

Chapter 2: Service Access and Configuration
Patterns
Overview

There once was a man who went to a computer trade show. Each day as he
entered the man told the guard at the door: "I am a great thief, renowned for
my feats of shoplifting. Be forewarned, for this trade show shall not escape

unplundered."

This speech disturbed the guard greatly, because there were millions of
dollars of computer equipment inside, so he watched the man carefully. But

the man merely wandered from booth to booth, asking questions and
humming quietly to himself.

When the man left, the guard took him aside and searched his clothes, but
nothing was to be found. On the next day of the trade show, the man

returned and chided the guard saying: "I escaped with a vast booty
yesterday, but today will be even better." So the guard watched him ever

more closely, but to no avail.

On the final day of the trade show, the guard could restrain his curiosity no
longer. "Sir Thief", he said, "I am so perplexed, I cannot live in peace.

Please enlighten me. What is it that you are stealing?"

The man smiled. "I am stealing patterns", he said.

Adapted from "The TAO Of Programming" [JH98] by Geoffrey James and
Duke Hillard

This chapter presents four patterns for designing effective application programming
interfaces (APIs) to access and configure services and components in stand-alone and
networked systems: Wrapper Facade, Component Configurator, Interceptor, and Extension
Interface.

Networked systems are inherently heterogeneous [HV99]. Therefore, a key challenge
confronting researchers and developers is how to effectively design and configure
application access to the interfaces and implementations of evolving service components.
This chapter presents four patterns that address various aspects of service access and
configuration:
§ The Wrapper Facade design pattern (47) encapsulates the functions and data

provided by existing non-object-oriented APIs within more concise, robust, portable,
maintainable, and cohesive object-oriented class interfaces. Wrapper Facade is often
applied to improve application portability by 'wrapping' lower-level operating system
APIs. It can also alleviate the accidental complexity associated with programming using
low-level APIs.

To minimize redundancy in other patterns in the book, the Implementation section of the
Wrapper Facade pattern contains detailed coverage of wrapper facades for threads,
mutex locks, condition variables, and Sockets. Subsequent patterns, such as Reactor
(179), Proactor (215), Acceptor-Connector (285), Strategized Locking (333), Active
Object (369), and Monitor Object (399), use these wrapper facades in their own
implementations. Therefore, we recommend you read Wrapper Facade first.

 48

§ The Component Configurator design pattern (75) allows an application to link and
unlink its component implementations at run-time without having to modify, recompile,
or relink the application statically. Applications with high availability requirements, such
as mission-critical systems that perform online transaction processing or real-time
industrial process automation, often require such flexible configuration capabilities.
Component Configurator therefore addresses aspects of service configuration and
service evolution.

Other patterns in this section, particularly Extension Interface (141) and Interceptor
(109), can use the Component Configurator pattern to (re)configure various service
roles into components in application processes without having to shut down and restart
running application processes.

§ The Interceptor architectural pattern (109) allows services to be added to a framework
transparently and to be triggered automatically when certain events occur. Interceptor
therefore prepares a framework for its own evolution to accommodate services that are
not configured or not even known during the framework's original development.
Interceptor also allows other applications to integrate components and services with
instances of the framework. Such services are often 'out-of-band' or application-specific
from the perspective of the framework instance, but are important for the productive and
proper operation of applications that use the framework.

§ The Extension Interface design pattern (141) prevents the 'bloating' of interfaces and
breakage of client code when developers extend or modify the service functionality of
existing components. Multiple extension interfaces can be attached to the same
component. Extension Interface addresses both the challenge of component and
service evolution and the provision of clients with an authorized and role-specific access
to a component's functionality.

The topics of service access and configuration involve more challenges than are addressed
by the patterns in this section. These challenges include:
§ Mediating access to remote services via local proxies
§ Managing the lifecycle of services, locating services in a distributed system and
§ Controlling the operating system and computing resources a server can provide to the

service implementations it hosts

Other patterns in the literature address these issues, such as Activator [Sta100], Evictor
[HV99], Half Object plus Protocol [Mes95], Locator [JK00], Object Lifetime Manager
[LGS99], and Proxy [POSA1] [GoF95]. These patterns complement those presented in this
section and together describe key principles that well-structured distributed systems should
apply to configure and provide access to the services they offer.

Wrapper Facade
The Wrapper Facade design pattern encapsulates the functions and data provided by
existing non-object-oriented APIs within more concise, robust, portable, maintainable, and
cohesive object-oriented class interfaces.

Example

Consider a server for a distributed logging service that handles multiple clients concurrently
using the connection-oriented TCP protocol [Ste98]. To log data a client must send a
connection request to a server transport address, which consists of a TCP port number and
IP address. In the logging server, a passive-mode socket handle factory listens on this
address for connection requests. The socket handle factory accepts the connection request
and creates a data-mode socket handle that identifies this client's transport address. This

 49

handle is passed to the server, which spawns a logging handler thread that processes client
logging requests.

After a client is connected it sends logging requests to the server. The logging handler
thread receives these requests via its connected socket handle. It then processes the
requests in the logging handler thread and writes the requests to a log file.

A common way to develop this logging server is to use low-level C language APIs, such as
Solaris threads [EKBF+92] and Sockets [Ste98], to program the server's threading,
synchronization, and network communication functionality. If the logging server runs on
multiple platforms, however, there will be differences between functions and data in the low-
level APIs, as well as different operating system and compiler features and defects.
Developers commonly handle these differences by inserting conditional compilation
directives, such as C/C++ #ifdefs, throughout their code. For instance, the following code
illustrates a logging server that has been implemented using #ifdefs to run on Solaris and
Windows NT:

#if defined (_WIN32)
 #include <windows.h>
 typedef int ssize_t;
#else
 typedef unsigned int
UINT32;
 #include <thread.h>
 #include <unistd.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <memory.h>
#endif /* _WIN32 */

// Keep track of number of
logging requests.
static int request_count;

// Lock that serializes
concurrent access to
request_count.
#if defined (_WIN32)
 static CRITICAL_SECTION
lock;
#else

#if defined (_WIN32)
 EnterCriticalSection (&lock);
#else
 mutex_lock (&lock);
#endif /* _WIN32 */
 // Execute following two
statements in a critical
 // section to avoid ace conditions
and scrambled
 // output, respectively.
 ++request_count;
 // A return value of -1 signifies
failure.
 if (write_record (log_record, len)
== -1)
 break;
#if defined (_WIN32)
 LeaveCriticalSection (&lock);
#else
 mutex_unlock (&lock);
#endif /* _WIN32 */
 }
#if defined (_WIN32)

 50

 static mutex_t lock;
#endif /* _WIN32 */

// Maximum size of a logging
record.
static const int
LOG_RECORD_MAX = 1024;

// Port number to listen on
for requests.
static const int
LOGGING_PORT = 10000;

// Entry point that writes
logging records.
int write_record (char
log_record[], int len) {
 /* ... */
 return 0;
}

// Entry point that
processes logging records
for
// one client connection.
#if defined (_WIN32)
 u_long
#else
 void *
#endif /* _WIN32 */
logging_handler (void *arg)
{
 // Handle UNIX/Win32
portability.
#if defined (_WIN32)
 SOCKET h =
reinterpret_cast <SOCKET>
(arg);
#else
 int h = reinterpret_cast
<int> (arg);
#endif /* _WIN32 */

 closesocket (h);
#else
 close (h);
#endif /* _WIN32 */
 return 0;
}

// Main driver function for the server.
int main (int argc, char *argv[]) {
 struct sockaddr_in sock_addr;
 // Handle UNIX/Win32 portability.
#if defined (_WIN32)
 SOCKET acceptor;
 WORD version_requested = MAKEWORD(2,
0);
 WSADATA wsa_data;
 int error =
WSAStartup(version_requested, &wsa_data);
 if (error != 0) return -1;
#else
 int acceptor;
#endif /* _WIN32 */
 // Create a local endpoint of
communication.
 acceptor = socket (AF_INET,
SOCK_STREAM, 0);
 // Set up the address to become a
server.
 memset (&sock_addr, 0, sizeof
sock_addr);
 sock_addr.sin_family = PF_INET;
 sock_addr.sin_port = htons
(LOGGING_PORT);
 sock_addr.sin_addr.s_addr = htonl
(INADDR_ANY);
 // Associate address with endpoint.
 bind (acceptor,
reinterpret_cast<struct sockaddr *>
 (&sock_addr), sizeof
sock_addr);
 // Make endpoint listen for
connections.
 listen (acceptor, 5);

 51

 for (;;) {
#if defined (_WIN32)
 ULONG len;
#else
 UINT32 len;
#endif /* _WIN32 */
 // Ensure a 32-bit
quantity.
 char
log_record[LOG_RECORD_MAX];
 // The first <recv>
reads the length
 // (stored as a 32-
bit integer) of
 // adjacent logging
record. This code
 // does not handle
"short-<recv>s".
 ssize_t n = recv (h,

reinterpret_cast <char *>
(&len),
 sizeof len,
0);
 // Bail out if we're
shutdown or
 // errors occur
unexpectedly.
 if (n <= sizeof len)
break;
 len = ntohl (len);
 if (len >
LOG_RECORD_MAX) break;

 // The second <recv>
then reads <len>
 // bytes to obtain
the actual record.
 // This code handles
"short-<recv>s".
 for (size_t nread =
0; nread < len; nread += n)
{
 n = recv (h,
log_record + nread,

 // Main server event loop.
 for (;;) {
 // Handle UNIX/Win32 portability.
#if defined (_WIN32)
 SOCKET h;
 DWORD t_id;
#else
 int h;
 thread_t t_id;
#endif /* _WIN32 */
 // Block waiting for clients to
connect.
 h = accept (acceptor, 0, 0);
 // Spawn a new thread that runs
the <server>
 // entry point.
#if defined (_WIN32)
 CreateThread (0, 0,

LPTHREAD_START_ROUTINE(&logging_handler),
 reinterpret_cast <void *>
(h), 0, &t_id);
#else
 thr_create
 (0, 0, logging_handler,
 reinterpret_cast <void *> (h),
 THR_DETACHED, &t_id);
#endif /* _WIN32 */
 }
 return 0;
}

 52

 len -
nread, 0);
 // Bail out if an
error occurs.
 if (n <= 0) return
0;
 }

The design shown above may work for short-lived, 'throw-away' prototypes [FoYo99]. It is
inadequate, however, for software that must be maintained and enhanced over time. The
use of conditional compilation directives and direct programming of low-level APIs makes the
code unnecessarily hard to understand, debug, port, maintain, and evolve.

Certain problems can be alleviated by moving platform-specific declarations, such as the
mutex and socket types, into separate configuration header files. This solution is incomplete,
however, because the #ifdefs that separate the use of platform-specific APIs, such as
thread creation calls, will still pollute application code. Supporting new platforms will also
require modifications to platform-specific declarations, irrespective of whether they are
included directly into application code or separated into configuration files.

Several well-known patterns address similar problems, but unfortunately do not help to
resolve the problems outlined above. For example, Facade [GoF95] encapsulates object-
oriented subsystems rather than lower-level non-object-oriented APIs. Decorator [GoF95]
extends an object dynamically by attaching additional responsibilities transparently, which
incurs unnecessary performance overhead. Bridge and Adapter [GoF95] also introduce an
additional layer of indirection that can incur overhead. In general, therefore, these patterns
are not well suited to encapsulate existing lower-level non-object oriented APIs, where it may
be more important that the solution be efficient than be dynamically extensible.

Context

Maintainable and evolvable applications that access mechanisms or services provided by
existing non-object-oriented APIs.

Problem

Applications are often written using non-object-oriented operating system APIs or system
libraries. These APIs access network and thread programming mechanisms, as well as user
interface or database programming libraries. Although this design is common, it causes
problems for application developers by not resolving the following forces:
§ Concise code is often more robust than verbose code because it is easier to develop

and maintain. Using object-oriented languages that support higher-level features, such
as constructors, destructors, exceptions, and garbage collection, reduces the likelihood
of common programming errors. However, developers who program using lower-level
function-based APIs directly tend to rewrite a great deal of verbose and error-prone
software repeatedly.

§ The code for creating and initializing an acceptor socket in the main() function of our
logging server example is error-prone. Moreover, these errors are subtle, such as
failing to initialize the sock_addr to zero or not using the htons() macro to
convert the LOGGING_PORT number into network byte order [Sch92]. The lack of
constructors and destructors in C also makes it hard to ensure that resources are

 53

allocated and released properly. For example, note how the lock that serializes
access to request_count will not be released correctly if the write_record()
function returns -1.

§ Software that is portable or can be ported easily to different operating systems,
compilers, and hardware platforms helps increase product market-share. Although
reusing existing lower-level APIs may reduce some of the software development effort,
applications programmed directed with lower-level APIs are often non-portable.
Programming using lower-level APIs across different versions of the same operating
system or compiler also may be non-portable due to the lack of source-level or binary-
level compatibility across software releases [Box97].

§ Our logging server example has hard-coded dependencies on several non-portable
operating system threading and network programming C APIs. For example, the
Solaris thr_create(), mutex_lock(), and mutex_unlock() functions are
not portable to Win32 platforms. Although the code is quasi-portable—it also
compiles and runs on Win32 platforms—there are various subtle portability
problems. In particular, there will be resource leaks on Win32 platforms because
there is no equivalent to the Solaris THR_DETACHED feature, which spawns a
'detached' thread whose exit status is not retained by the threading library [Lew95].

§ Improving software maintainability helps reduce lifecycle costs. Programs written
directly to low-level non-object-oriented APIs are often hard to maintain, however. For
example, C and C++ developers often address portability issues by embedding
conditional compilation directives into their application source. Unfortunately,
addressing platform-specific variations via conditional compilation at all points of use
increases the software's physical design complexity [Lak95]. For instance, platform-
specific details become scattered throughout the application source files.

§ Maintenance of our logging server is impeded by the #ifdefs that handle Win32 and
Solaris portability, for example the differences in the type of a socket on Win32 and
Solaris. In general, developers who program to low-level C APIs like these must
have intimate knowledge of many operating system idiosyncrasies to maintain and
evolve their code.

§ Cohesive components are easier to learn, maintain, and enhance. However, low-level
APIs are rarely grouped into cohesive components because languages like C lack
features such as classes, namespaces, or packages. It is hard, therefore, to recognize
the extent of low-level APIs. Programming with non-cohesive stand-alone function APIs
also scatters common code throughout an application, making it hard to 'plug in' new
components that support different policies and mechanisms.

§ The Socket API is particularly hard to learn because the several dozen C functions in
the Socket library lack a uniform naming convention. For example, it is not obvious

 54

that socket(), bind(), listen(), connect() , and accept() are related.
Other low-level network programming APIs, such as TLI, address this problem by
prepending a common function prefix, such as the t_ prefixed before each function
in the TLI API. However, the use of a common prefix does not by itself make the TLI
API more 'pluggable' than Sockets. It remains a low-level function-based API rather
than a more cohesive object-oriented class interface.

In general, developing applications by programming to non-object-oriented APIs directly is a
poor design choice for software that must be maintained and evolved over time.

Solution

Avoid accessing non-object-oriented APIs directly. For each set of related functions and data
in a non-object-oriented API, create one or more wrapper facade classes that encapsulate
these functions and data within the more concise, robust, portable, and maintainable
methods provided by the object-oriented wrapper facade(s).

Structure

There are two participants in the Wrapper Facade pattern:

Functions are the building blocks of existing non-object-oriented APIs. They provide a stand-
alone service or mechanism and manipulate data passed as parameters or accessed
through global variables.

A wrapper facade is a set of one or more object-oriented classes that encapsulate existing
functions and their associated data. These class(es) export a cohesive abstraction that
provides a specific type of functionality. Each class represents a specific role in this
abstraction.

The methods in the wrapper facade class(es) generally forward application invocations to
one or more of the functions, passing the data as parameters. The data is often hidden
within the private portion of the wrapper facade and is not accessible to client applications.
Compilers can then enforce type safety because primitive data types, such as pointers or
integers, are encapsulated within strongly-typed wrapper facades.

The following class diagram illustrates the structure of Wrapper Facade:

 55

Dynamics

Collaborations in the Wrapper Facade pattern are often straightforward:
§ The application code invokes a method on an instance of the wrapper facade.
§ The wrapper facade method forwards the request and its parameters to one or more of

the lower-level API functions that it encapsulates, passing along any internal data
needed by the underlying function(s).

Implementation

This section describes the activities involved in implementing the Wrapper Facade pattern.
Certain activities may require multiple iterations to identify and implement suitable wrapper
facade abstractions. To reduce repetition elsewhere in the book, we present an in-depth
discussion of concrete wrapper facades for mutexes, condition variables, Sockets, and
threads in this section. Although this lengthens the current section somewhat, the
implementation examples of other patterns in this book, including Acceptor-Connector (285),
Strategized Locking (333), Thread-Specific Storage (475), and Monitor Object (399), are
simplified by using these wrapper facades.

1. Identify the cohesive abstractions and relationships among existing low-level APIs.
Mature low-level APIs contain functions and data structures that define many
cohesive abstractions and map cleanly onto object-oriented classes and methods.
Common examples include the C APIs for Win32 synchronization and threading,
POSIX network programming, and X Windows GUI event dispatching. Due to the lack
of data abstraction in languages like C, however, it may not be clear how functions in
these existing APIs relate to each other. The first activity in implementing the
Wrapper Facade pattern is therefore to identify the cohesive abstractions and
relations among existing APIs.

2. The original implementation of our logging server carefully uses many low-level
functions that provide several cohesive operating system mechanisms, such as
synchronization and network communication. The Solaris mutex_lock() and
mutex_unlock() functions, for example, are associated with a mutex
synchronization abstraction. Similarly, the socket(), bind(), listen(),
and accept() functions play various roles in a network programming
abstraction.

 56

4. If existing functions and data structures have been developed as throw-away code or
via piecemeal growth [FoYo99], they may exhibit little or no cohesive abstractions. In
this case the code should be refactored [Opd92] [FBBOR99], if possible, before
proceeding with the implementation of the Wrapper Facade pattern.

5. Cluster cohesive groups of functions into wrapper facade classes and methods. This
activity defines one or more class abstractions that shield applications from low-level
data representations, arbitrary variations in function syntax, and other implementation
details. It can be decomposed into five sub-activities:

1. Create cohesive classes. We start by defining one or more wrapper facade
classes for each group of existing non-object-oriented APIs that are related to
a particular abstraction. Common criteria used to create cohesive classes
include the following:
§ Coalesce functions and data with high cohesion into individual

classes, while minimizing unnecessary coupling between classes.
Examples of cohesive functions are those that manipulate common data
structures, such as a Socket, a file, or a signal set [Ste98].

§ Identify the common and variable aspects in the underlying functions
and data [Cope98]. Common aspects include mechanisms for
synchronization, threading, memory management, addressing, and
operating system platform APIs. Variable aspects often include the
implementations of these mechanisms. Whenever possible variation in
functions and data should be factored into classes that isolate variation
behind uniform interfaces to enhance extensibility.

In general, if the original API contains a wide range of related functions, it may
be necessary to create several wrapper facade classes to separate concerns
properly.

2. Coalesce multiple individual functions into a single method. In addition to
grouping existing functions into classes, it may be useful to coalesce multiple
individual functions into a smaller number of methods in each wrapper facade
class. Coalescing can be used to ensure that a group of lower-level functions
are called in the appropriate order, as with the Template Method pattern
[GoF95].

3. Automate creation and destruction operations, if possible. Lower-level APIs
often require programmers to call functions explicitly to create and destroy
data structures that implement instances of the API. This procedure is error-
prone, however, because developers may forget to call these functions in one
or more paths through their code. A more robust approach therefore is to
leverage the implicit creation and destruction operation capabilities provided
by object-oriented languages, such as C++ and Java. In fact, the ability to
create and destroy objects automatically often justifies the use of the Wrapper
Facade pattern, even if the wrapper facade methods do nothing but forward
control to the lower-level function calls.

4. Select the level of indirection. Most wrapper facade classes simply forward
their method calls to the underlying low-level functions, as mentioned above. If
wrapper facade methods can be inlined implicitly or explicitly, there need be
no run-time indirection overhead when compared to invoking the low-level
functions directly. It is also possible to add another level of indirection by
dispatching wrapper facade implementations using dynamically bound
methods or some other form of polymorphism. In this case the wrapper facade
classes play the role of the abstraction class in the Bridge pattern [GoF95].

 57

5. Determine where to encapsulate any platform-specific variation. A common
use of the Wrapper Facade pattern is to minimize platform-specific variation in
application code. Although wrapper facade method implementations may differ
across different operating system platforms, they should provide uniform,
platform-independent interfaces. Where platform-specific variation exists it can
be encapsulated via conditional compilation or separate directories:
§ Conditional compilation can be used to select among different wrapper

facade class method implementations. The use of conditional compilation
is inelegant and tedious when #ifdefs are scattered throughout
application code. Conditional compilation may be acceptable, however, if
it is localized in a few platform-specific wrapper facade classes or files
that are not accessed directly by application developers. When
conditional compilation is used in conjunction with auto-configuration
tools, such as GNU autoconf, platform-independent wrapper facades
can be created within a single source file. As long as the number of
variations supported in this file is not unwieldy therefore, conditional
compilation can help localize variation and simplify maintenance.

§ Separate directories can be used to factor out different wrapper facade
implementations, thereby minimizing conditional compilation or avoiding it
altogether. For example, each operating system platform can have its
own directory containing implementations of platform-specific wrapper
facades. Language processing tools can be used to include the
appropriate wrapper facade class from the relevant directory at
compilation. To obtain a different implementation, a different include path
could be provided to the compiler. This strategy avoids the problems with
conditional compilation described above because it physically decouples
the various alternative implementations into separate directories.

Choosing a strategy depends on how often wrapper facade interfaces and
implementations change. If changes occur frequently it may be time-
consuming to update the conditional compilation sections for each platform.
Similarly, all files that depend on the affected files will be recompiled even if
the change is only necessary for one platform. Therefore the use of condition
compilation becomes increasingly complex as a larger number of different
platforms are supported. Regardless of which strategy is selected, however,
the burden of maintaining wrapper facade implementations should be the
responsibility of wrapper facade developers rather than application
developers.

To simplify our logging server implementation, we define wrapper facades
that encapsulate existing low-level C APIs for mutexes, Sockets, and
threads. Each wrapper facade illustrates how various design issues
outlined above can be addressed systematically. We focus on defining
wrapper facades for C functions because C is used to define popular
operating system APIs, such as POSIX or Win32. However, the same
design principles and techniques can be applied to other non-object-
oriented languages, such as FORTRAN, Ada 83, Scheme, or Pascal, as
well as to non-operating system APIs, such as X Windows or ODBC
database toolkits [San98].

Mutex wrapper facades. We first define a Thread_Mutex abstraction that
encapsulates the Solaris mutex functions with a uniform and portable
class interface:[1]
 class Thread_Mutex {

 58

 public:
 Thread_Mutex ()
 { mutex_init (&mutex_, USYNC_THREAD, 0); }
 ~Thread_Mutex () { mutex_destroy (&mutex_); }

 void acquire () { mutex_lock (&mutex_); }
 void release () { mutex_unlock (&mutex_); }
 private:
 // Solaris-specific Mutex mechanism.
 mutex_t mutex_;

 // Disallow copying and assignment.
 Thread_Mutex (const Thread_Mutex &);
 void operator= (const Thread_Mutex &);

 // Define a <Thread_Condition> as a friend so
it can
 // access <mutex_>.
 friend class Thread_Condition;
 };

Note how we define the copy constructor and assignment operator as
private methods in the Thread_Mutex class. This C++ idiom ensures that
application programmers cannot copy or assign one Thread_Mutex to
another accidentally [Mey98] [Str97]. Copying mutexes is a semantically-
invalid operation that is erroneously permitted by the less strongly-typed C
programming API. Our Thread_Mutex wrapper facade therefore provides
a mutex interface that is less error-prone than programming directly to the
lower-level Solaris synchronization functions.

By defining a Thread_Mutex class interface and then writing applications
to use it, rather than lower-level native operating system C APIs, we can
port our wrapper facade to other platforms more easily. For example, the
identical Thread_Mutex interface can be implemented to run on Win32:
 class Thread_Mutex {
 public:
 Thread_Mutex ()
 { InitializeCriticalSection (&mutex_); }
 ~Thread_Mutex ()
 { DeleteCriticalSection (&mutex_); }

 void acquire () { EnterCriticalSection
(&mutex_); }
 void release () { LeaveCriticalSection
(&mutex_); }

 59

 private:
 // Win32-specific Mutex mechanism.
 CRITICAL_SECTION mutex_;

 // Disallow copying and assignment.
 Thread_Mutex (const Thread_Mutex &);
 void operator= (const Thread_Mutex &);
 };

Naturally, a complete implementation of Thread_Mutex would map the
platform-specific error handling return values from the various mutex_t
and CRITICAL_SECTION functions to portable C++ exceptions.

As described earlier, we can support multiple operating systems
simultaneously by using conditional compilation and #ifdef'ing the
Thread_Mutex method implementations. If conditional compilation is
unwieldy due to the number of supported platforms, it is possible to factor
out the different Thread_Mutex implementations into separate
directories. In this case, language processing tools such as compilers and
preprocessors can be instructed to include the appropriate platform-
specific variant into the application during compilation.

Condition variable wrapper facade. A condition variable is a
synchronization mechanism used by collaborating threads to suspend
themselves temporarily until condition expressions involving data shared
between the threads attain desired states [IEEE96]. We describe the
wrapper facade for condition variables at this point because they are often
used in conjunction with the Thread_Mutex wrapper facade described
above. Although our logging server example does not use condition
variables, they are used by other patterns throughout the book, such as
Strategized Locking (333), Leader/Followers (447), and Monitor Object
(399).

As mentioned above, a condition variable is always used in conjunction
with a mutex that the client thread must acquire before evaluating the
condition expression. If the condition expression is false the client
suspends itself on the condition variable and releases the mutex
atomically, so that other threads can change the shared data. When a
cooperating thread changes this data it can notify the condition variable,
which resumes a thread atomically that had suspended itself previously on
the condition variable. The thread then re-acquires the mutex associated
with the condition variable.

After re-acquiring its mutex a newly-resumed thread next re-evaluates its
condition expression. If the shared data has attained the desired state, the
thread continues. Otherwise it suspends itself on the condition variable
again until it is resumed. This process can repeat until the condition
expression becomes true.

In general, when complex condition expressions or scheduling behaviors
are required, combining a mutex with a condition variable is more
appropriate than just using a mutex. For example, condition variables can
be used to implement synchronized message queues, as shown in the

 60

Monitor Object pattern example (399). In this situation a pair of condition
variables are employed to block supplier threads cooperatively when a
message queue is full, and to block consumer threads when the queue is
empty.

The following Thread_Condition class is a wrapper facade that is
implemented using the Solaris condition variable API:
 class Thread_Condition {
 public:
 // Initialize the condition variable and
 // associate it with the <mutex_>.
 Thread_Condition (const Thread_Mutex &m) :
mutex_ (m)
 { cond_init (&cond_, USYNC_THREAD, 0); }

 // Destroy the condition variable.
 ~Thread_Condition () { cond_destroy (&cond_);
}

 // Wait for the <Thread_Condition> to be
notified
 // or until <timeout> has elapsed. If
<timeout> == 0
 // then wait indefinitely.
 void wait (Time_Value *timeout = 0) {
 cond_timedwait (&cond_, &mutex_.mutex_,
 timeout == 0
 ? 0 : timeout->msec ());
 }
 // Notify one thread waiting on
<Thread_Condition>.
 void notify () { cond_signal (&cond_); }

 // Notify all threads waiting on
<Thread_Condition>.
 void notify_all () { cond_broadcast (&cond_);
}
 private:
 // Solaris condition variable.
 cond_t cond_;

 // Reference to mutex lock.
 const Thread_Mutex &mutex_;
 };

 61

The constructor initializes the condition variable and associates it with the
Thread_Mutex passed as a parameter. The destructor destroys the
condition variable, which releases allocated resources. Note that the
mutex is not owned by the Thread_Condition so it is not destroyed in
the destructor.

When called by a client thread the wait() method performs the following
two steps atomically:
§ It releases the associated mutex and
§ It suspends itself atomically for up to a timeout amount of time,

waiting for the Thread_Condition object to be notified by another
thread.

The notify() method resumes one thread waiting on a
Thread_Condition. Similarly the notify_all() method notifies all
threads that are currently waiting on a Thread_Condition. The mutex_
lock is reacquired by the wait() method before it returns to its client
thread, either because the condition variable was notified or because its
timeout expired.

Socket wrapper facades. Our next wrapper facade encapsulates the
Socket API. This API is much larger and more expressive than the Solaris
mutex API [Sch92]. We must therefore define a group of related wrapper
facade classes to encapsulate Sockets. We start by defining a typedef
and a macro that hide some of the UNIX/POSIX and Win32 portability
differences:
 typedef int SOCKET;
 const int INVALID_HANDLE_VALUE = -1;

Both SOCKET and INVALID_HANDLE_VALUE are defined in the Win32
API already. Therefore, we could either integrate them using #ifdefs or
using separate platform-specific directories, as discussed earlier in
implementation activity 2.5 (55).

Next, we define an INET_Addr class that encapsulates the internet
domain address struct:
 class INET_Addr {
 public:
 INET_Addr (u_short port, u_long addr) {
 // Set up the address to become a server.
 memset (&addr_, 0, sizeof addr_);
 addr_.sin_family = AF_INET;
 addr_.sin_port = htons (port);
 addr_.sin_addr.s_addr = htonl (addr);
 }

 u_short get_port () const { return
addr_.sin_port; }

 62

 u_long get_ip_addr () const
 { return addr_.sin_addr.s_addr; }

 sockaddr *addr () const
 { return reinterpret_cast <sockaddr *>
(&addr_);}

 size_t size () const { return sizeof (addr_);
}

 // ...
 private:
 sockaddr_in addr_;
 };

Note how the INET_Addr constructor eliminates several common Socket
programming errors. For example, it initializes the sockaddr_in field to
zero, and ensures the TCP port number and IP address are converted into
network byte order by applying the ntons() and ntonl() macros
automatically [Ste98].

The next wrapper facade class, SOCK_Stream, encapsulates the I/O
operations, such as recv() and send(), that an application can invoke
on a connected socket handle:
 class SOCK_Stream {
 public:
 // Default and copy constructor.
 SOCK_Stream () : handle_
(INVALID_HANDLE_VALUE) { }
 SOCK_Stream (SOCKET h): handle_ (h) { }

 // Automatically close the handle on
destruction.
 ~SOCK_Stream () { close (handle_); }
 // Set/get the underlying SOCKET handle.
 void set_handle (SOCKET h) { handle_ = h; }
 SOCKET get_handle () const { return handle_; }

 // Regular I/O operations.
 ssize_t recv (void *buf, size_t len, int
flags);
 ssize_t send (const char *buf, size_t len, int
flags);

 63

 // I/O operations for "short" receives and
sends.
 ssize_t recv_n (char *buf, size_t len, int
flags);
 ssize_t send_n (const char *buf, size_t len,
 int flags);

 // ... other methods omitted.
 private:
 // Socket handle for exchanging socket data.
 SOCKET handle_;
 };

As discussed in implementation activity 2.3 (55), this class leverages the
semantics of C++ destructors to ensure that a socket handle is closed
automatically when a SOCK_Stream object goes out of scope. In addition,
the send_n() and recv_n() methods can handle networking
idiosyncrasies, for example 'short' send and receive operations.

SOCK_Stream objects can be created via a connection factory, called
SOCK_Acceptor, which encapsulates passive establishment of Socket
connections. The SOCK_Acceptor constructor initializes the passive-
mode acceptor socket to listen at the sock_addr address. The
SOCK_Acceptor's accept() method is a factory that initializes the
SOCK_Stream parameter with a socket handle to a new connection:
 class SOCK_Acceptor {
 public:
 // Initialize a passive-mode acceptor socket.
 SOCK_Acceptor (const INET_Addr &addr) {
 // Create a local endpoint of
communication.
 handle_ = socket (PF_INET, SOCK_STREAM,
0);
 // Associate address with endpoint.
 bind (handle_, addr.addr (), addr.size
());
 // Make endpoint listen for connections.
 listen (handle_, 5);
 };

 // A second method to initialize a passive-
mode
 // acceptor socket, analogously to the
constructor.
 void open (const INET_Addr &sock_addr) { /*
... */ };

 64

 // Accept a connection and initialize the
<stream>.
 void accept (SOCK_Stream &s) {
 s.set_handle (accept (handle_, 0, 0));
 }
 private:
 SOCKET handle_; // Socket handle factory.
 };

Note how the constructor for the SOCK_Acceptor applies the strategy
discussed in implementation activity 2.2 (55) to ensure that the low-level
socket(), bind(), and listen() functions are always called
together and in the correct order.

A complete set of Socket [Sch97] wrapper facades would also include a
SOCK_Connector that encapsulates the logic for establishing
connections actively. The SOCK_Acceptor and SOCK_Connector
classes are concrete IPC mechanisms that can be used to instantiate the
generic acceptor and connector classes described in the Acceptor-
Connector pattern (285) to perform connection establishment.

Thread wrapper facade. Our final wrapper facade encapsulates operating
system threading APIs that are available on different operating system
platforms, including Solaris threads, POSIX Pthreads, and Win32 threads.
These APIs exhibit subtle syntactic and semantic differences. For
example, Solaris and POSIX threads can be spawned in 'detached' mode,
whereas Win32 threads cannot. It is possible, however, to provide a
Thread_Manager wrapper facade that encapsulates these differences in
a uniform manner. The Thread_Manager wrapper facade below, which is
a Singleton [GoF95], illustrates the spawn method implemented for Solaris
threads:
 class Thread_Manager {
 public:
 // Singleton access point.
 Thread_Manager *instance ();

 // Spawn a thread.
 void spawn (void *(*entry_point_function)
(void *),
 void *arg = 0, long flags = 0,
 long stack_size = 0,
 void *stack_pointer = 0,
 thread_t *t_id = 0) {
 thread_t t;
 if (t_id == 0)
 t_id = &t;
 thr_create

 65

 (stack_size, stack_pointer,
 entry_point_function, arg, flags,
t_id);
 }

 // ... Other methods omitted.
 };

The Thread_Manager class also provides methods for joining and
canceling threads that can be ported to other operating systems.

6. Consider allowing applications controlled access to implementation details. One
benefit of defining a wrapper facade is to make it hard to write incorrect or non-
portable applications. For example, wrapper facades can shield applications from
error-prone or platform-specific implementation details, such as whether a socket is
represented as a pointer or an integer. Cases may arise, however, where the extra
abstraction and type safety actually prevent programmers from using a wrapper
facade in useful ways not anticipated by its designer. This experience can be
frustrating and may discourage programmers from leveraging other benefits of
wrapper facades.

A common solution to the problem of 'too much' abstraction is to provide an 'escape
hatch' mechanism or open implementation technique, such as AOP [KLM+97]. This
design allows applications to access implementation details in a controlled manner.

The SOCK_Stream class defines a pair of methods that set and get the
underlying SOCKET handle:
 class SOCK_Stream {
 public:
 // Set/get the underlying SOCKET handle.
 void set_handle (SOCKET h) { handle_ = h; }
 SOCKET get_handle () const { return handle_; }

These methods can be used to set and get certain Socket options, such as
support for 'out-of-band' data [Ste98], that were not defined by the original Socket
wrapper facades.

Escape-hatch mechanisms should be used sparingly of course, because they
decrease portability and increase the potential for errors, thereby nullifying key
benefits of the Wrapper Facade pattern. If applications use certain escape hatches
repeatedly in similar situations, it may indicate that explicit methods should be added
to the public interface of the wrapper facade. The Extension Interface pattern (141)
defines techniques for adding these new methods without disrupting existing clients.

7. Develop an error-handling mechanism. Low-level C operating system function APIs
often use return values and integer codes, such as errno, to return errors to their

 66

calling code. This technique can be error-prone, however, if callers do not check the
return status of their function calls.

A more elegant way of reporting errors is to use exception handling. Many
programming languages, such as C++ and Java, support exception handling as a
fundamental error-reporting mechanism. It is also used in some operating systems,
for example Win32 [Sol98]. There are several benefits of using exception handling as
the error-handling mechanism for wrapper facade classes:
§ It is extensible, for example by defining hierarchies of exception classes in C++

and Java.
§ It cleanly decouples error handling from normal processing. Error handling

information is neither passed to an operation explicitly, nor can an application
accidentally ignore an exception by failing to check function return values.

§ It can be type-safe. In languages like C++ and Java, exceptions can be thrown
and caught in a strongly-typed manner.

We can define the following exception class to keep track of which operating
system error or condition has occurred:
 class System_Ex : public exception {
 public:
 // Map <os_status> into a platform-independent error
 // or condition status and store it into <error_>.
 System_Ex (int os_status) { /* ... */ }

 // Platform-independent error or condition status.
 int status () const { return status_; }
 // ...
 private:
 // Store platform-independent error/condition
status.
 int status_;
 };

Platform-independent errors and conditions could be defined via macros or
constants that map onto unique values across all operating systems. For
instance, the Solaris implementation of the Thread_Mutex::acquire()
method shown on page 57 could be written as follows:
 void Thread_Mutex::acquire () {
 int result = mutex_lock (&mutex);
 if (result != 0) { throw System_Ex (result); }
 }

Unfortunately, there are several drawbacks to the use of exception handling for
wrapper facade classes:

 67

§ Not all languages or implementations provide exception handling. For
example, C does not define an exception model and some C++ compilers do not
implement exceptions.

§ Languages implement exceptions in different ways. It can thus be hard to
integrate components written in different languages when they throw exceptions.
Using proprietary exception handling mechanisms, such as Windows NT's
structured exception handling [Sol98], can also reduce the portability of
applications that use these mechanisms.

§ Resource management can be complicated if there are multiple exit paths from
a block of C++ or Java code [Mue96]. If garbage collection is not supported by
the language or programming environment, care must be taken to ensure that
dynamically-allocated objects are deleted when an exception is thrown.

§ Poor exception handling implementations incur time or space over-heads even
when exceptions are not thrown [Mue96]. This overhead is problematic for
embedded systems that must be efficient and have small memory footprints
[GS98].

The drawbacks of exception handling are particularly problematic for wrapper facades
that encapsulate kernel-level device drivers or low-level operating system APIs that
must run on many platforms [Sch92], such as the mutex, Socket and thread wrapper
facades described above. A common error handling mechanism for system-level
wrapper facades [Sch97] is based on the Thread-Specific Storage pattern (475) in
conjunction with errno. This solution is efficient, portable, and thread-safe, though
more obtrusive and potentially error-prone than using C++ exceptions.

8. Define related helper classes (optional). After lower-level APIs are encapsulated within
wrapper facade classes it often becomes possible to create other helper classes that
further simplify application development. The benefits of these helper classes are
often apparent only after the Wrapper Facade pattern has been applied to cluster
lower-level functions and their associated data into classes.

9. In our logging example we can leverage the Guard template class defined in the
Strategized Locking pattern (333) [Str97]. This class ensures that a
Thread_Mutex is acquired and released properly within a scope regardless of
how the method's flow of control leaves the scope. The Guard class constructor
acquires the mutex and the destructor releases it within a scope automatically:

10. {
11. // Constructor of <guard> automatically
12. // acquires the <mutex> lock.
13. Guard<Thread_Mutex> guard (mutex);
14. // ... operations that must be serialized.
15.
16. // Destructor of <guard> automatically
17. // releases the <mutex> lock.
18. }

19. We can easily substitute a different type of locking mechanism while still using
the Guard's automatic locking and unlocking protocol because we used a class
as the Thread_Mutex wrapper facade. For example, we can replace the
Thread_Mutex class with a Process_Mutex class:

20. // Acquire a process-wide mutex.

 68

21. Guard<Process_Mutex> guard (mutex);

22. It is much harder to achieve this degree of 'pluggability' using lower-level C
functions and data structures instead of C++ classes. The main problem is that
the functions and data lack language support for cohesion, whereas the C++
classes provide this support naturally.

Example Resolved

The code below illustrates the logging_handler() function of our logging server after it
has been rewritten to use the wrapper facades for mutexes, Sockets, and threads described
in the Implementation section. To ease comparison with the original code, we present it in a
two-column table with the original code from the example section in the left-hand column and
the new code in the right-hand column

#if defined (_WIN32)
 #include <windows.h>
 typedef int ssize_t;
#else
 typedef unsigned int UINT32;
 #include <thread.h>
 #include <unistd.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <memory.h>
#endif /* _WIN32 */

// Keep track of number of logging
requests.
static int request_count;

// Lock to protect request_count.
#if defined (_WIN32)
 static CRITICAL_SECTION lock;
#else
 static mutex_t lock;
#endif /* _WIN32 */

// Maximum size of a logging
record.
static const int LOG_RECORD_MAX =
1024;

#include "ThreadManager.h"
#include "ThreadMutex.h"
#include "Guard.h"
#include "INET_Addr.h"
#include "SOCKET.h"
#include "SOCK_Acceptor.h"
#include "SOCK_Stream.h"

// Keep track of number of logging
requests.
static int request_count;

// Maximum size of a logging
record.
static const int LOG_RECORD_MAX =
1024;

// Port number to listen on for
requests.

 69

// Port number to listen on for
requests.
static const int LOGGING_PORT =
10000;

// Entry point that writes logging
records.
int write_record (const char
log_record[], size_t len) {
 /* ... */ return 0;
}

// Entry point that processes
logging records for
// one client connection.
#if defined (_WIN32)
 u_long
#else
 void *
#endif /* _WIN32 */
logging_handler (void *arg) {
#if defined (_WIN32)
 SOCKET h = reinterpret_cast
<SOCKET> (arg);
#else
 int h = reinterpret_cast <int>
(arg);
#endif /* _WIN32 */

 for (;;) {
 // Ensure a 32-bit
quantify;
#if defined (_WIN32)
 ULONG len;
#else
 UINT32 len;
#endif /* _WIN32 */
 char
log_record[LOG_RECORD_MAX];

 // The first <recv> reads
the length

static const int LOGGING_PORT =
10000;

// Entry point that writes logging
records.
int write_record (const char
log_record[], size_t len) {
 /* ... */ return 0;
}

// Entry point that processes
logging records for
// one client connection.

void *logging_handler (void *arg)
{

 SOCKET h = reinterpret_cast
<SOCKET> (arg);

 // Create a <SOCK_Stream>
object.
 SOCK_Stream stream (h);
 for (;;) {
 // Ensure a 32-bit quantity.
 UINT_32 len;

 char
log_record[LOG_RECORD_MAX];

 // The first <recv_n> reads
the length
 // (stored as a 32-bit
integer) of

 70

 // (stored as a 32-bit
integer) of
 // adjacent logging record.
 ssize_t n = recv (h, &len,
sizeof len, 0);

 if (n <= sizeof len) break;
// Bailout on error.
 len = ntohl (len);
 if (len > LOG_RECORD_MAX)
break;
 // Loop to <recv> the data.
 for (size_t nread = 0;
nread < len; nread += n) {
 n = recv (h, log_record
+ nread,
 len - nread, 0);
 if (n <= 0) return 0;
 }
#if defined (_WIN32)
 EnterCriticalSection
(&lock);
#else
 mutex_lock (&lock);
#endif /* _WIN32 */
 ++request_count;
 // A -1 return value
signifies failure.
 if (write_record
(log_record, len) == -1)
 break;
#if defined (_WIN32)
 LeaveCriticalSection
(&lock);
#else
 mutex_unlock (&lock);
#endif /* _WIN32 */
 }
#if defined (_WIN32)
 closesocket (h);
#else
 close (h);

 // adjacent logging record.
 ssize_t n = stream.recv_n
(&len, sizeof len);

 if (n <= 0) break; //
Bailout on error.
 len = ntohl (len);
 if (len > LOG_RECORD_MAX)
break;
 // Second <recv_n> reads the
data.
 n = stream.recv_n
(log_record, len);

 if (n <= 0) break;
 {
 // Constructor acquires
the lock.
 Guard<Thread_Mutex> mon
(lock);

 ++request_count;
 // A -1 return value
signifies failure.
 if (write_record
(log_record, len) == -1)
 break;

 // Destructor releases
the lock.
 }
 }

 return 0;
 // Destructor of <stream>
closes down <h>.
}

 71

#endif /* _WIN32 */
 return 0;
}

The code in the right-hand column addresses the problems with the code shown in the left-
hand column. For example, the destructors of SOCK_Stream and Guard will close the
socket handle and release the Thread_Mutex, respectively, regardless of how the code
blocks are exited. This code is also easier to understand, maintain, and port because it is
more concise and uses no platform-specific APIs.

Analogously to the logging_handler() function, we present a two-column table below
that compares the original code for the main() function with the new code using wrapper
facades:

// Main driver function for the server.
int main (int argc, char *argv[]) {
 struct sockaddr_in sock_addr;
 // Handle UNIX/Win32 portability.
#if defined (_WIN32)
 SOCKET acceptor;
 WORD version_requested = MAKEWORD(2, 0);
 WSADATA wsa_data;
 int error = WSAStartup(version_requested,
&wsa_data);
 if (error != 0) return -1;
#else
 int acceptor;
#endif /* _WIN32 */
 // Create a local endpoint of
communication.
 acceptor = socket (AF_INET, SOCK_STREAM,
0);
 // Set up the address to become a server.
 memset (reinterpret_cast<void *>
(&sock_addr),
 0, sizeof sock_addr);
 sock_addr.sin_family = PF_INET;
 sock_addr.sin_port = htons
(LOGGING_PORT);
 sock_addr.sin_addr.s_addr = htonl
(INADDR_ANY);
 // Associate address with endpoint.
 bind (acceptor, reinterpret_cast<struct
sockaddr *>
 (&sock_addr), sizeof sock_addr);

// Main driver function
for the server.
int main (int argc, char
*argv[]) {
 INET_Addr addr (port);

 // Passive-mode
acceptor object.
 SOCK_Acceptor server
(addr);
 SOCK_Stream
new_stream;
 // Main server event
loop.

 72

 // Make endpoint listen for connections.
 listen (acceptor, 5);
 // Main server event loop.
 for (;;) {
 // Handle UNIX/Win32 portability.
#if defined (_WIN32)
 SOCKET h;
 DWORD t_id;
#else
 int h;
 thread_t t_id;
#endif /* _WIN32 */
 // Block waiting for clients to
connect.
 h = accept (acceptor, 0, 0);

 // Spawn a new thread that runs the
<server>
 // entry point.
#if defined (_WIN32)
 CreateThread (0, 0,

LPTHREAD_START_ROUTINE(&logging_handler),
 reinterpret_cast <void *> (h), 0,
&t_id);
#else
 thr_create
 (0, 0, logging_handler,
 reinterpret_cast <void *> (h),
 THR_DETACHED, &t_id);
#endif /* _WIN32 */
 }
 return 0;
}

 for (;;) {

 // Accept a
connection from a client.
 server.accept
(new_stream);

 // Get the
underlying handle.
 SOCKET h =
new_stream.get_handle ();

 // Spawn off a
thread-per-connection.

 thr_mgr.spawn

(logging_handler

reinterpret_cast <void *>
(h),
 THR_DETACHED);
 }

 return 0;
}

 73

Note how literally dozens of lines of low-level, conditionally compiled code disappear in the
right-hand column version that uses the Wrapper Facade pattern.

Known Uses

Microsoft Foundation Classes (MFC). MFC [Pro99] provides a set of wrapper facades that
encapsulate many lower-level C Win32 APIs. It focuses largely on providing GUI
components that implement the Microsoft Document-View architecture, which is a variant of
the Document-View architecture described in [POSA1].

ACE. The Socket, thread, and mutex wrapper facades described in the Implementation
section are abstractions of ACE framework [Sch97] components, such as the ACE_SOCK*,
ACE_Thread_Manager and ACE_ Thread_Mutex classes, respectively.

Rogue Wave. Rogue Wave's Net.h++ and Threads.h++ class libraries implement
wrapper facades for Sockets, threads, and synchronization mechanisms on a number of
operating system platforms.

ObjectSpace. The ObjectSpace System<Toolkit> also implements platform-independent
wrapper facades for Sockets, threads, and synchronization mechanisms.

Java Virtual Machine and Java class libraries. The Java Virtual Machine (JVM) and
various Java class libraries, such as AWT and Swing [RBV99], provide a set of wrapper
facades that encapsulate many low-level native operating system calls and GUI APIs.

Siemens REFORM. The REFORM framework [BGHS98] for hot rolling mill process
automation uses the Wrapper Facade pattern to shield the object-oriented parts of the
system, such as material tracking and setpoint transmission, from a neural network for the
actual process control. This neural network is programmed in C due to its algorithmic nature
and contains mathematical models that characterize the physics of the automation process.

The wrapper facades defined in the REFORM framework differ from wrapper facades for
operating system mechanisms because the process-control APIs they encapsulate are at a
higher level of abstraction. In fact the neural network is part of the REFORM system itself.
However, its function-based C APIs are lower-level compared to the complex object-oriented
high-level structure and logic of the hot rolling mill framework. The REFORM wrapper
facades therefore have similar goals and properties as the lower-level operating system
wrapper facades:
§ They provide the views and abstractions that the object-oriented parts of the

framework need of the process control neural network. There is a separate wrapper
facade for every component using the neural network.

§ They hide API variations. For different customer-specific instances of the framework
there may be (slightly) different implementations of the neural network. As a result,
semantically identical functions in these neural network implementations may have
different signatures. These differences do not affect the framework implementation,
however.

§ They ensure lower-level C functions are invoked in the right order.

Books consisting of edited collections of papers. A real-life example of the Wrapper
Facade pattern are books consisting of edited collections of papers that are organized into
one or more 'themes'. For example, the PLoPD series [PLoPD1] [PLoPD2] [PLoPD3]
[PLoPD4] consist of individual papers that are organized into cohesive sections, such as
event handling, fault tolerance, application framework design, or concurrency. Thus, readers
who are interested in a particular topic area or domain can focus their attention on these
sections, rather than having to locate each paper individually.

 74

Consequences

The Wrapper Facade pattern provides the following benefits:

Concise, cohesive and robust higher-level object-oriented programming interfaces. The
Wrapper Facade pattern can be used to encapsulate lower-level APIs within a more concise
and cohesive set of higher-level object-oriented classes. These abstractions reduce the
tedium of developing applications, thereby decreasing the potential for certain types of
programming error. In addition, the use of encapsulation eliminates programming errors that
occur when using untyped data structures incorrectly, such as socket or file handles.
Application code can therefore use wrapper facades to access lower-level APIs correctly and
uniformly.

Portability and maintainability. Wrapper facades can be implemented to shield application
developers from non-portable aspects of lower-level APIs. The Wrapper Facade pattern also
improves software structure by replacing an application configuration strategy based on
physical design entities, such as files and #ifdefs, with logical design entities, such as
base classes, subclasses, and their relationships. It is often much easier to understand,
maintain, and enhance applications in terms of their logical design rather than their physical
design [Lak95].

Modularity, reusability and configurability. The Wrapper Facade pattern creates cohesive
and reusable class components that can be 'plugged' into other components in a wholesale
fashion, using object-oriented language features like inheritance and parameterized types. In
contrast, it is harder to replace groups of functions without resorting to coarse-grained
operating system tools such as linkers or file systems.

The Wrapper Facade pattern incurs several liabilities:

Loss of functionality. Whenever an abstraction is layered on top of an existing abstraction it
is possible to lose functionality. In particular, situations can occur in which the new
abstraction prevents developers from accessing certain capabilities of the underlying
abstraction. It is hard to define a suitable high-level abstraction that covers all these use
cases without becoming bloated. One useful heuristic to follow is to design wrapper facades
so that they are easy to use correctly, hard to use incorrectly, but not impossible to use in
ways that the original designers did not anticipate. An 'escape-hatch' mechanism or open
implementation [KLM+97] technique can often help reconcile these design forces cleanly.

Performance degradation. The Wrapper Facade pattern can degrade performance. For
example, if wrapper facade classes are implemented with the Bridge pattern [GoF95], or if
they make several forwarding function calls per method, the additional indirection may be
more costly than programming to the lower-level APIs directly. However, languages that
support inlining, such as C++ or certain C compilers, can implement the Wrapper Facade
pattern with no significant overhead, because compilers can inline the method calls used to
implement the wrapper facades. The overhead is therefore the same as calling lower-level
functions directly.

Programming language and compiler limitations. Defining C++ wrapper facades for well-
designed C APIs is relatively straightforward, because the C++ language and C++ compilers
define features that facilitate cross-language integration. It may be hard to define wrapper
facades for other languages, however, due to a lack of language support or limitations with
compilers. For example, there is no universally accepted standard for integrating C functions
into languages like Ada, Smalltalk, and Java. Programmers may therefore need to use to
non-portable mechanisms to develop wrapper facades.

See Also

 75

The Wrapper Facade pattern is related to several of the structural patterns in [GoF95],
including Facade, Bridge, Adapter, and Decorator.

Facade. The intent of Facade is to provide a unified interface that simplifies client access to
subsystem interfaces. The intent of Wrapper Facade is more specific: it provides concise,
robust, portable, maintainable, and cohesive class interfaces that encapsulate lower-level
APIs such as operating system mutex, Socket, thread, and GUI C APIs. In general, facades
hide complex class relationships behind a simpler API, whereas wrapper facades hide
complex function and data structure API relationships behind richer object-oriented classes.
Wrapper facades also provide building-block components that can be 'plugged' into higher-
level objects or components.

Bridge. The intent of Bridge is to decouple an abstraction from its implementation, so the two
can vary independently and dynamically via polymorphism. Wrapper Facade has a similar
intent: minimizing the overhead of indirection and polymorphism. Wrapper Facade
implementations rarely vary dynamically, however, due to the nature of the systems
programming mechanisms that they encapsulate.

Adapter. The intent of Adapter is to convert the interface of a class into another interface that
is expected by a client. A common application of Wrapper Facade is to create a set of
classes that 'adapt' low-level operating system APIs to create a portable set of wrapper
facades that appear the same for all applications. Although the structure of this solution is
not identical to either the object or class form of Adapter in [GoF95], the wrapper facades
play a similar role as an adapter by exporting an object-oriented interface that is common
across platforms.

Decorator. The intent of Decorator is to extend an object dynamically by attaching
responsibilities transparently. In contrast, Wrapper Facade statically encapsulates lower-
level functions and data with object-oriented class interfaces.

In general, Wrapper Facade should be applied in lieu of these other patterns when there are
existing lower-level, non-object-oriented APIs to encapsulate, and when it is more important
that the solution be efficient than be dynamically extensible.

The Layers pattern [POSA1] helps organize multiple wrapper facades into a separate
component layer. This layer resides directly on top of the operating system and shields
applications from all the low-level APIs they use.

Credits

Thanks to Brad Appleton, Luciano Gerber, Ralph Johnson, Bob Hanmer, Roger Whitney,
and Joe Yoder for extensive comments that improved the form and content of the Wrapper
Facade pattern description substantially.

During the public review of Wrapper Facade we debated the best name for this pattern.
Several reviewers suggested to call it Wrapper because the Wrapper Facade pattern
describes what is often referred to as a 'wrapper' by software developers. Unfortunately the
term 'wrapper' is already overloaded in the patterns community. For example, Wrapper is
listed in the Also Known As sections of the Adapter and Decorator patterns [GoF95],
However, the pattern in this book differs from these patterns. We therefore decided to use a
non-overloaded name for the pattern we present here.

[1]To conserve space and focus on the essential design issues, many of our method
implementations in this book do not check for errors, nor do they always return values from
functions with non-void return types or throw exceptions. Naturally, production software
should always check for and propagate errors consistently and correctly.

 76

Component Configurator
The Component Configurator design pattern allows an application to link and unlink its
component implementations at run-time without having to modify, recompile, or statically
relink the application. Component Configurator further supports the reconfiguration of
components into different application processes without having to shut down and re-start
running processes.

Also Known As

Service Configurator [JS97b]

Example

A distributed time service [Mil88] [OMG97c] provides accurate clock synchronization for
computers that collaborate in local-area or wide-area networks. Its architecture contains
three types of components:
§ Time server components answer queries about the current time.
§ Clerk components query one or more time servers to sample their notion of the current

time, calculate the 'approximate' correct time, and update their own local system time
accordingly.

§ Client application components use the globally-consistent time information maintained
by their clerks to synchronize their behavior with clients on other hosts.

The conventional way to implement this distributed time service is to configure the
functionality of the time server, clerk, and client components statically at compile-time into
separate processes running on hosts in the network:

In such a configuration, one or more hosts run processes containing time service
components that handle requests for time updates. A clerk component runs in a process on
each host on which applications require global time synchronization. Client components in
application processes perform computations using the synchronized time reported by their
local clerk component.

Although a distributed time service design can be implemented in this way, two general
types of problems arise:
§ The choice of component implementation can depend on the environment in which

applications run. For example, if a WWV receiver is available,[2] the Cristian time service
algorithm [Cris89] is most appropriate. Otherwise the Berkeley algorithm [GZ89] is the
better choice.

Changing the environment in which applications run may therefore also require a
change to the implementation of time service components. A design in which the
implementation of a particular component is fixed statically within a process at compile-
time, however, makes it hard to exchange this component's implementation. In addition,
as each component is coupled statically with a process, existing applications must be
modified, recompiled, and statically relinked when changes occur.

 77

§ Components may also need to be reconfigured to enhance key quality-of-service
(QoS) properties, such as latency and throughput. For example, we can reconfigure the
clerk and the time server components in our distributed time service so they are
collocated [WSV99] on the same host. In this case, communication overhead can be
minimized by allowing the clerk to access the time server's notion of time via shared
memory, rather than exchanging data through a pipe or 'loopback' Socket connection.

However, if components are configured statically into processes, making the changes
outlined above requires terminating, reconfiguring, and restarting running time service
processes. These activities are not only inefficient, they are potentially infeasible for
systems with high availability requirements.

Unfortunately patterns such as Bridge and Strategy [GoF95] are not sufficient by
themselves to solve these types of problems. For example, Bridge and Strategy are
often used to alleviate unnecessary coupling between components. When these
patterns are applied to our example application in isolation, however, all possible
implementations of time service components must be configured at compile-time in
order to support the selection of different strategies at run-time. This constraint may be
excessively inflexible or costly for certain applications.

For example, if a time service runs on a personal computing device with stringent
memory and power limitations, components that are not currently in use should be
unlinked to minimize resource consumption. This 'dynamic reconfiguration' aspect is not
addressed directly by patterns such as Bridge and Strategy.

Context

An application or system in which components must be initiated, suspended, resumed, and
terminated as flexibly and transparently as possible.

Problem

Applications that are composed of components must provide a mechanism to configure
these components into one or more processes. The solution to this problem is influenced by
three forces:
§ Changes to component functionality or implementation details are common in many

systems and applications. For example, better algorithms or architectures may be
discovered as an application matures. It should be possible therefore to modify
component implementations at any point during an application's development and
deployment lifecycle.

Modifications to one component should have minimal impact on the implementation of
other components that use it. Similarly, it should be possible to initiate, suspend,
resume, terminate, or exchange a component dynamically within an application at
runtime. These activities should have minimal impact on other components that are
configured into the application.

§ Developers often may not know the most effective way to collocate or distribute
multiple component components into processes and hosts at the time an application is
developed. If developers commit prematurely to a particular configuration of
components it may impede flexibility, reduce overall system performance and
functionality, and unnecessarily increase resource utilization.

In addition, initial component configuration decisions may prove to be sub-optimal over
time. For example, platform upgrades or increased workloads may require the
redistribution of certain components to other processes and hosts. In such cases, it may
be helpful to make these component configuration decisions as late as possible in an

 78

application's development or deployment cycle, without having to modify or shut down
an application obtrusively.

§ Performing common administrative tasks such as configuring, initializing, and
controlling components should be straightforward and component-independent. These
tasks can often be managed most effectively by a central administrator rather than
being distributed throughout an application or system. They should be automated
whenever possible, for example by using some type of scripting mechanism [MGG00].

Solution

Decouple component interfaces from their implementations and make applications
independent of the point(s) in time at which component implementations are configured into
application processes.

In detail: a component defines a uniform interface for configuring and controlling a particular
type of application service or functionality that it provides. Concrete components implement
this interface in an application-specific manner. Applications or administrators can use
component interfaces to initiate, suspend, resume, and terminate their concrete components
dynamically, as well as to obtain run-time information about each configured concrete
component. Concrete components are packaged into a suitable unit of configuration, such
as a dynamically linked library (DLL). This DLL can be dynamically linked and unlinked into
and out of an application under the control of a component configurator, which uses a
component repository to manage all concrete components configured into an application.

Structure

The Component Configurator pattern includes four participants:

A component defines a uniform interface that can be used to configure and control the type
of application service or functionality provided by a component implementation. Common
control operations include initializing, suspending, resuming, and terminating a component.

Concrete components implement the component control interface to provide a specific type
of component. A concrete component also implements methods to provide application-
specific functionality, such as processing data exchanged with other connected peer
components. Concrete components are packaged in a form that can be dynamically linked
and unlinked into or out of an application at run-time, such as a DLL.

Two types of concrete components are used in our distributed time service: time server
and clerk. Each of these concrete components provides specific functionality to the
distributed time service. The time server component receives and processes requests
for time updates from clerks. The clerk component queries one or more time servers to
determine the 'approximate' correct time and uses this value to update its own local
system time. Two time server implementations are available in our example, one for the
Cristian algorithm and one for the Berkeley algorithm.

 79

A component repository manages all concrete components that are configured currently into
an application. This repository allows system management applications or administrators to
control the behavior of configured concrete components via a central administrative
mechanism.

A component configurator uses the component repository to coordinate the (re)configuration
of concrete components. It implements a mechanism that interprets and executes a script
specifying which of the available concrete components to (re)configure into the application
via dynamic linking and unlinking from DLLs.

The class diagram for the Component Configurator pattern is as follows:

Dynamics

The behavior of the Component Configurator pattern can be characterized by three phases:
§ Component initialization. The component configurator dynamically links a component

into an application and initializes it.[3] After a component has been initialized
successfully the component configurator adds it to its component repository. This
repository manages all configured components at run-time.

§ Component processing. After being configured into an application, a component
performs its processing tasks, such as exchanging messages with peer components
and performing service requests. The component configurator can suspend and resume
existing components temporarily, for example when (re)configuring other components.

§ Component termination. The component configurator shuts down components after
they are no longer needed, allowing them the opportunity to clean up their resources
before terminating. When terminating a component, the component configurator
removes it from the component repository and unlinks it from the application's address
space.

 80

The following state chart diagram illustrates how a component configurator controls the
lifecycle of a single concrete component:

This diagram illustrates the event-driven 'inversion of control' [Vlis98a] behavior of a
component configurator. For example, in response to the occurrence of events like
CONFIGURE and TERMINATE, the component configurator invokes the component's
corresponding method, in this case init() and fini(), respectively.

Implementation

The participants in the Component Configurator pattern can be decomposed into two layers:
§ Configuration management layer components. This layer performs general-purpose,

application-independent strategies that install, initialize, control, and terminate
components.

§ Application layer components. This layer implements the concrete components that
perform application-specific processing.

The implementation activities in this section start at the 'bottom' with the configuration
management layer and work upwards to components in the application layer.

1. Define the component configuration and control interface. Components should support
the following operations so that they can be configured and controlled by a
component configurator:
§ Component initialization. Initialize or re-initialize a component.
§ Component finalization. Shut down a component and clean up its resources.

 81

§ Component suspension. Suspend component execution temporarily.
§ Component resumption. Resume execution of a suspended component.
§ Component information. Report information describing the static or dynamic

directives of a component.

The interface used to configure and control a component can be based on either an
inheritance or a message passing strategy:
§ Inheritance-based interface. In this strategy, each component inherits from a

common base class that contains pure virtual hook methods [Pree95] for each
component configuration and control operation.

§ The following abstract Component class is based on the ACE framework
[SchSu94]:

§ class Component : public Event_Handler {
§ public:
§ // Initialization and termination hooks.
§ virtual void init (int argc, const char *argv[]) =

0;
§ virtual void fini () = 0;
§
§ // Scheduling hooks.
§ virtual void suspend ();
§ virtual void resume ();
§
§ // Status information hook.
§ virtual void info (string &status) const = 0;
§ };

§ The component execution mechanism for our time service example is based
on a reactive event handling model within a single thread of control, as
described by the Reactor pattern (179). By inheriting from the Reactor
pattern's Event_Handler participant, a Component implementation can
register itself with a reactor, which then demultiplexes and dispatches events
to the component.

§ Message-based interface. Another strategy for configuring and controlling
components is to program them to respond to a set of messages, such as INIT,
SUSPEND, RESUME, and FINI, sent to the component from the component
configurator. Component developers must write code to process these
messages, in this case to initialize, suspend, resume, and terminate a
component, respectively. Using messages rather than inheritance makes it
possible to implement the Component Configurator pattern in non-object-
oriented programming languages that lack inheritance, such as C or Ada 83.

2. Implement a component repository. All concrete component implementations that are
linked into an application via DLLs are managed by a component repository. A
component configurator uses this repository to control a component when it is

 82

configured into or out of an application. Each component's current status, such as
whether it is active or suspended, can be maintained in the repository.

A component repository can be a reusable container, for example a Java
java.util.Hashtable [Sun00a] or a C++ standard template library map [Aus98].
Conversely it can be implemented as a container in accordance with the Manager
pattern [Som97]. This container can be stored in main memory, a file system, or
shared memory. Depending on where it resides, a component repository can be
managed within the application or by a separate process.

The interface of our Component_Repository class is also based on the ACE
framework [SchSu94]:
 class Component_Repository {
 public:
 // Initialize and close down the repository.
 Component_Repository ();
 ~Component_Repository ();

 // Insert a new <Component> with <component_name>.
 void insert (const string &component_name,
 Component *);

 // Find <Component> associated with
<component_name>.
 Component *find (const string &component_name);

 // Remove <Component> associated with
 // <component_name>.
 void remove (const string &component_name);

 // Suspend/resume <Component> associated with
 // <component_name>.
 void suspend (const string &component_name);
 void resume (const string &component_name);
 private:
 // ...
 };

3. Implement the component (re)configuration mechanism. A component must be
configured into an application's address space before it can be executed. The
component configurator defines a mechanism to control the static and/or dynamic

 83

(re)configuration of components into application processes. The implementation of a
component configurator involves five sub-activities:

1. Define the component configurator interface. The component configurator is
often implemented as a singleton facade [GoF95]. This can mediate access to
other Component Configurator pattern components, such as the component
repository described in implementation activity 2 (84) and the mechanism for
interpreting the component configuration directives described in
implementation activity 3.3 (88).

2. The following C++ interface, which is also based on ACE, is the singleton
facade used for our distributed time server example:

3. class Component_Configurator {
4. public:
5. // Initialize the component configurator.
6. Component_Configurator ();
7.
8. // Close down the component configurator and

free up
9. // dynamically allocated resources.
10. ~Component_Configurator ();
11.
12. // Process the directives specified in the
13. // <script_name>.
14. void process_directives (const string

&script_name);
15.
16. // Process a single directive specified as a

string.
17. void process_directive
18. (const string &directive_string);
19.
20. // Accessor to the <Component_Repository>.
21. Component_Repository *component_repository ();
22.
23. // Singleton accessor.
24. static Component_Configurator *instance ();
25. private:
26. // ...
27. };

29. Define a language for specifying component configuration directives. These
directives supply the component configurator with the information it needs to

 84

locate and initialize a component's implementation at run-time, as well as to
suspend, resume, re-initialize, and/or terminate a component after it has been
initialized. Component configuration directives can be specified in various
ways, such as via the command line, environment variables, a graphical user
interface, or a configuration script.

30. To simplify installation and administration, the component configurator in
our distributed time server example uses a component scripting
mechanism similar to the one provided by ACE [SchSu94]. A script file,
which we call comp.conf, consolidates component configuration
directives into a single location that can be managed centrally by
applications, developers, or administrators. Every component to be
(re)configured into an application is specified by a directive in the
comp.conf script.

31. The following comp.conf script illustrates how a time server can be
configured dynamically into an application:

32. # Configure a Time Server.
33. dynamic Time_Server Component *
34. cristian.dll:make_Time_Server()
35. "-p $TIME_SERVER_PORT"

36. The directive in this comp.conf script contains a dynamic command,
which instructs the interpreter to perform two actions:
§ Dynamically link the cristian.dll DLL into the application's

address space and
§ Invoke the make_Time_Server() factory function automatically. This

function allocates a new time server instance dynamically:
§ // Keep C++ compiler from non-portably mangling

name!
§ extern "C"
§ Component *make_Time_Server () {
§ // <Time_Server> inherits from the

<Component>
§ // class.
§ return new Time_Server;
§ }

The string parameter "-p $TIME_SERVER_PORT" at the end of the
directive contains an environment variable that specifies the port number
on which the time server component listens to receive connections from
clerks. The component configurator converts this string into an
'argc/argv'-style array and passes it to the init() hook method of the
time server component. If the init() method initializes the component
successfully, a pointer to the component is stored in the component
repository under the name 'Time_Server'. This name identifies the
newly-configured component so that it can be controlled dynamically by
the component configurator on behalf of an application or an
administrator.

 85

The directives in a comp.conf script are processed by the component
configurator's directive interpreter, as described in implementation activity
3.3(88). Each directive begins with a command that instructs the
interpreter how to configure, reconfigure, or control a component:

Command Description

dynamic Dynamically link and initialize a component

static Initialize a statically linked component

remove Remove a component from the component repository and
unlink it

suspend Suspend a component temporarily without removing it

resume Resume a previously suspended component

Directives can be written using a simple configuration scripting language
defined by the following BNF grammar:
 <directive>::= <dynamic> | <static> | <suspend>
 | <resume> | <remove>
 <dynamic> ::= dynamic <comp-location> <parameters-
opt>
 <static> ::= static <comp-name> <parameters-opt>
 <suspend> ::= suspend <comp-name>
 <resume> ::= resume <comp-name>
 <remove> ::= remove <comp-name>
 <comp-location> ::= <comp-name> <type> <function-
name>
 <type> ::= Component '*' | NULL
 <function-name> ::= STRING ':' STRING '(' ')'
 <parameters-opt> ::= '"' STRING '"'| NULL
 <comp-name> ::= STRING

37. Implement a mechanism for parsing and processing component configuration
directives. This mechanism is often implemented as a directive interpreter that
decouples the configuration-related aspects of a component from its run-time
aspects. A directive interpreter can be implemented using the Interpreter
pattern [GoF95], or standard parser-generator tools, such as lex and yacc
[SchSu94].

38. The Component_Configurator facade class defines two methods that
allow applications to invoke a component configurator's directive
interpreter. The process_directives() method can process a
sequence of (re)configuration and control directives that are stored in a
designated script file. This method allows multiple directives to be stored
persistently and processed iteratively. Conversely, the

 86

process_directive() method can process a single directive passed
as a string parameter. This method allows directives to be created
dynamically and/or processed interactively.

40. A simple directive interpreter executes each component configuration directive
in the order in which they are specified. In this case, application developers
are responsible for ensuring this execution sequence satisfies any ordering
dependencies among components being configured. A more complex
interpreter and scripting language could of course be devised to allow the
directive interpreter to handle ordering dependencies automatically, for
example by using topological sorting.

41. Implement the dynamic configuration mechanism. A component configurator
uses this mechanism to link and unlink components into and out of an
application process dynamically. Modern operating systems, such as System
V Release 4 (SVR4) UNIX and Win32, support this feature via explicit dynamic
linking mechanisms [WHO91].

SVR4 UNIX, for example, defines the dlopen(), dlsym(), and
dlclose() API to link a designated DLL dynamically into an application
process explicitly, extract a designated factory function from the DLL, and
unlink the DLL, respectively. Microsoft's Win32 operating systems support the
LoadLibrary(), GetProcAddr(), and CloseHandle() APIs to perform
the same functionality. As the component configurator's directive interpreter
parses and processes directives, it uses these APIs to link and unlink DLLs
dynamically into the application's address space.

Our Component_Configurator implementation uses the following
explicit dynamic linking API, based on the wrapper facade (47) defined in
ACE [Sch97]:
 class DLL {
 // This wrapper facade defines a portable
interface to
 // program various DLL operations. The <OS::*>
 // methods are lower-level wrapper facades
that
 // encapsulate the variation among explicit
dynamic
 // linking APIs defined on different operating
 // systems.
 public:
 // Opens and dynamically links the DLL
<dll_name>.
 DLL (const string &dll_name) {
 handle_ = OS::dlopen (dll_name.c_str ());
 }

 87

 // Unlinks the DLL opened in the constructor.
 ~DLL () { OS::dlclose (handle_); }

 // If <symbol_name> is in the symbol table of
the DLL
 // return a pointer to it, else return 0.
 void *symbol (const string &symbol_name) {
 return OS::dlsym (handle_,
symbol_name.c_str ();
 }
 private:
 // Handle to the dynamically linked DLL.
 HANDLE handle_;
 };

To illustrate how a component configurator can use this API, consider the
directive used to configure a Time_Server component shown in
implementation activity 3.2 (86). In this example the component configurator
performs seven steps:

1. It creates a DLL object and passes the 'cristian.dll' string to its
constructor.

2. The cristian.dll DLL is then linked into the application's address
space dynamically via the OS::dlopen() method called in the DLL
class constructor.

3. The component configurator next passes the string
'make_Time_Server()' to the symbol() method of the DLL object.

4. This method uses the OS::dlsym() method to locate the
make_Time_Server entry in the symbol table of the cristian.dll
DLL and returns a pointer to this factory function.

5. Assuming the first four steps succeed, the component configurator
invokes the factory function, which returns a pointer to a Time_Server
component.

6. The component configurator then calls the init() method of this
component, passing the string '-p $TIME_SERVER_PORT' as an
'argc/argv'-style array. The init() method is a hook that the
Time_Server component uses to initialize itself.

7. Finally, the component configurator stores the initialized Time_Server
component into its component repository.

42. Implement the dynamic reconfiguration mechanism. This mechanism builds on
the dynamic configuration mechanism described above to trigger dynamic
reconfiguration of component implementations. Component reconfiguration
should have minimal impact on the execution of other components in an
application process. The following two aspects should therefore be addressed
when implementing a dynamic reconfiguration mechanism:

Define the reconfiguration triggering strategy. There are two strategies for
triggering component reconfiguration, in-band and out-of-band:

 88

§ An in-band strategy initiates reconfigurations synchronously by using
an IPC mechanism, such as a Socket connection or a CORBA operation.
The application and/or component configurator is responsible for checking
for such a reconfiguration event at designated 'reconfiguration points'.

§ An out-of-band strategy generates an asynchronous event, such as a
UNIX SIGHUP signal, that can interrupt a running application process or
thread to initiate reconfiguration. In either case, on receiving a
reconfiguration event the component configurator will interpret a new set
of component configuration directives.

An in-band strategy for triggering reconfiguration is generally easier to
implement, because there is less potential for race conditions. In-band
triggering may, however, be less responsive, because reconfiguration can only
occur at designated reconfiguration points. In contrast, out-of-band
reconfiguration triggering is more responsive. However, it is harder to use out-
of-band reconfiguration to implement robust protocols for determining when
configuration can occur.

Define protocols for ensuring robust reconfiguration. Another important aspect
to consider when implementing a reconfiguration mechanism is robustness.
For example, if other components in an application are using a component that
is being reconfigured, a component configurator may not be able to execute
requests to remove or suspend this component immediately. Instead, certain
components must be allowed to finish their computation before reconfiguration
can be performed.

If a new component is configured into an application, other components may
want to be notified, so that they can interact with the new component.
Similarly, when a suspended component is resumed, other components may
want to be notified so that they can resume their computations.

The Component Configurator pattern focuses on (re)configuration
mechanisms, such as how to interpret a script containing component
configuration directives to link and unlink components dynamically. It is
therefore beyond the scope of Component Configurator to ensure robust
dynamic component reconfiguration unilaterally. Supporting robust
reconfiguration requires collaboration between a component configurator and
component/configuration-specific protocols. These protocols determine when
to trigger a reconfiguration and which components to link and interact with to
configure particular application processes.

One way to implement a robust reconfiguration mechanism is to apply the
Observer pattern [GoF95]. Client components that want to access a particular
component are observers. These observers register with the component
configurator, which contains a notifier that plays the role of the Observer
pattern's subject participant.

When a component is scheduled for termination, the component configurator
implements a two-phase protocol. The first phase notifies its registered client
component 'observers' to finish their computations. In the second phase, the
component configurator removes the component after all client components
acknowledge this notification. When a new component is initialized, the
component configurator re-notifies its registered client components to indicate
that they can connect to the new component.

 89

Similarly, client components can register with the component configurator and
be notified when a particular component's execution is suspended and
resumed.

For example, the following changes could be made to the Component and
Component_Configurator classes to support the Observer-based
reconfiguration mechanism:
 class Component : public Event_Handler {
 public:
 // Hook method called back when
<observed_component>
 // receives a configuration-related event.
 virtual void handle_update
 (Component *observed_component,
 Configuration_Event_Type
event);
 // ...
 };

 class Component_Configurator {
 public:
 // Type of configuration-related events.
 enum Event_Type { INIT, SUSPEND, RESUME, FINI
};

 // Register <notified_component> to receive
 // notifications when <observed_component> is
 // reconfigured or suspended/resumed.
 void register_observer
 (Component *notified_component,
 Component *observed_component);
 // ...
 };

4. Implement the concrete components. Concrete component classes can be derived
from a common base class such as the Component class specified in implementation
activity 1 (82). They can also be implemented via a message-passing mechanism
that allows them to receive and process component control messages. Components
often implement other methods, such as establishing connections with remote peer
components and processing service requests received from clients. Component
implementations typically reside in DLLs, though they can also be linked statically
with the application.

 90

Implementing concrete components involves three sub-activities:
0. Implement the concrete component concurrency model. An important aspect

of implementing a concrete component involves selecting the component's
concurrency strategy. For example, a component configured into an
application by a component configurator can be executed using event
demultiplexing patterns such as Reactor (179) or Proactor (215), or
concurrency patterns, such as Active Object (369), Monitor Object (399), Half-
Sync/Half-Async (423), or Leader/Followers (447):
§ Reactive/proactive execution. Using these strategies, one thread of

control can be used to process all components reactively or proactively.
Components implemented using the Reactor pattern are relatively
straightforward to (re)configure and control, because race conditions are
minimized or eliminated. However, reactive components may not scale as
well as other strategies because they are single-threaded.

Conversely, components using the Proactor pattern may be more efficient
than reactive implementations on platforms that support asynchronous I/O
efficiently. However, it may be more complicated to reconfigure and
control proactive components, due to the subtleties of canceling
asynchronous operations. See the Proactor pattern's liability discussion
on page 258 for more details.

§ Multi-threaded or multi-process concurrent execution. Using these
strategies, the configured components execute in their own threads or
processes after being initialized by a component configurator. For
instance, components can run concurrently using the Active Object
pattern (369), or execute within a pre-spawned pool of threads or
processes in accordance with the Leader/Followers (447) or Half-
Sync/Half-Async (423) patterns.

In general, executing components in one or more threads within the same
process as the component configurator may be more efficient than
running the components in separate processes. Conversely, configuring
components into separate processes may be more robust and secure,
because each component can be isolated from accidental corruption via
operating system and hardware protection mechanisms [Sch94].

1. Implement a mechanism for inter-component communication. Some
components run in complete isolation, whereas other components must
communicate with one another. In the latter case, component developers must
select a mechanism for inter-component communication.

The choice of mechanism is often guided by whether the communicating
components will be collocated or distributed:
§ When components are collocated, the choice is typically between

hard-coding pointer relationships between components, which is inflexible
and can defeat the benefits of dynamic component configuration, versus
accessing components 'by name' using a component repository.

§ Applications in our time service example use a template to retrieve
concrete components from a singleton
Component_Configurator's Component_Repository in a type-
safe manner:

§ template <class COMPONENT>
§ class Concrete_Component {

 91

§ public:
§ // Return a pointer to the <COMPONENT>

instance
§ // in the singleton

<Component_Configurator>'s
§ // <Component_Repository> associated with

<name>.
§ static COMPONENT *instance (const string

&name) ;
§ };

§ The instance() method is implemented as follows:
§ template <class COMPONENT>
§ COMPONENT *Concrete_Component<COMPONENT>::instance
§ (const string &name) {
§ // Find the <Component> associated with

<name>,
§ // and downcast to ensure type-safety.
§ Component *comp = Component_Configurator::
§ instance ()->component_repository ()-

>find(name) ;
§ return dynamic_cast<COMPONENT *> (comp) ;
§ }

§ This template is used to retrieve components from the component
repository:

§ Time_Server *time_server =
§ Concrete_Component<Time_Server>::instance
§ ("Time_Server") ;
§ // Invoke methods on the <time_server>

component...

§ When components are distributed, the typical choice is between low-
level IPC mechanisms, such as TCP/IP connections programmed using
Sockets [Ste98] or TLI [Rago93], and higher-level mechanisms, such as
CORBA [OMG98a]. One of the benefits of using CORBA is that the ORB
can transparently optimize for the fastest IPC mechanism, by determining
automatically whether the component is collocated or distributed
[WSV99].

2. Implement a mechanism to re-establish component relationships. As outlined
in implementation activity 4.2 (93), components can use other components, or
even other objects in an application, to perform the services they offer.
Replacing one component implementation with another at run-time therefore
requires the component configurator to reconnect the new component
automatically with components used by the removed component.

 92

One strategy for implementing this mechanism is to checkpoint a component's
references to its related components and store it in a Memento [GoF95]. This
memento can be passed to the component configurator before shutting down
the component. Similarly, the memento may contain additional state
information passed from the old to the new component. After the new
component is installed, the component configurator can pass the memento to
the new component. This component then re-installs the connections and
state information that were saved in the memento.

Implementing a mechanism to save and re-establish component
relationships would require three changes to our
Component_Configurator and Component classes:
§ Define a Memento hierarchy. For every concrete component type,

define a memento that saves the references that the component type
can maintain to other components. A reference can be denoted either
by a component's name or by a pointer, as outlined in implementation
activity 4.2 (93). All mementos derive from an abstract memento. This
allows the Component_Configurator to handle arbitrary
mementos using polymorphism.

§ Implement a mechanism for maintaining mementos in the component
configurator. During a component's reconfiguration, the memento
containing references to other components is stored in the
Component_Configurator. The corresponding infrastructure for
handling this memento within the Component_Configurator can
contain a reference to the memento, as well as the component type
whose references the memento stores.

§ Change the component interface and implementation. To pass a
memento from a component to the Component_Configurator and
vice versa, we must change the Component interface. For example,
the memento can be passed to a Component as a parameter to its
init() method, and back to the Component_Configurator via a
parameter in the Component's fini() method. Within the init()
and fini() method implementations of concrete components, the
memento is then used to retrieve and save the component's
relationships to other components and objects.

In addition to component references, the memento could maintain other
state information that is passed to the new component. For example,
Clerk components could pass the frequency at which they poll time
servers, so that new Clerk components can update their local system
time at the same frequency.

In the remainder of this section, we show how the implementation activity 4
(92) and its sub-activities can be applied to guide the implementation of
concrete component participants in our distributed time service example.

There are two types of concrete components in a distributed time service:
Time_Server and Clerk. The Time_Server component receives and
processes requests for time updates from Clerks. Both Time_Server

 93

and Clerk components are designed using the Acceptor-Connector
pattern (285). As outlined in implementation activity 1 (82), the component
execution mechanism for the Time_Server and Clerk is based on a
reactive event-handling model within a single thread of control, in
accordance with the Reactor pattern (179).

The Time_Server inherits from the Component class:
 class Time_Server : public Component {
 public:
 // Initialize and terminate a <Time_Server>.
 virtual void init (int argc, const char
*argv[]) ;
 virtual void fini () ;

 // Other methods (e.g., <info>, <suspend>, and
 // <resume>) omitted.
 private:
 // The <Time_Server_Acceptor> that creates,
accepts,
 // and initializes <Time_Server_Handler>s.
 Time_Server_Acceptor acceptor_;

 // A C++ standard library <list> of
 // <Time_Server_Handler>s.
 list<Time_Server_Handler *> handler_list_;
 };

By inheriting from Component, Time_Server objects can be linked and
unlinked by the Component_Configurator dynamically. This design
decouples the implementation of the Time_Server from the time or
context when it is configured, allowing developers to switch readily
between different Time_Server algorithms.

Before storing the Time_Server component in its component repository,
the application's component configurator singleton invokes the
component's init() hook method. This allows the Time_Server
component to initialize itself.

Internally, the Time_Server contains a Time_Server_Acceptor that
listens for connection requests to arrive from Clerks. It also contains a
C++ standard template library [Aus98] list of Time_Server_Handlers
that process time update requests. The Time_Server_Acceptor is
created and registered with a reactor when the Time_Server's init()
method is called.

When a new connection request arrives from a Clerk, the acceptor
creates a new Time_Server_Handler, which processes subsequent
time update requests from the Clerk. When its init() method is

 94

invoked by the Time_Server_Acceptor, each handler registers itself
with the singleton reactor, which subsequently dispatches the handler's
handle_event() method when time update requests arrive.

When a component configurator terminates a Time_Server, it calls the
Time_Server's fini() method. This method unregisters the
Time_Server_Acceptor and all of its associated
Time_Server_Handlers from the reactor and destroys them.

We provide two Time_Server component implementations:
§ The first component implements Cristian's algorithm [Cris89]. In this

algorithm each Time_Server is a passive entity that responds to
queries made by Clerks. In particular, a Time_Server does not
query other machines actively to determine its own notion of time.

§ The second component implements the Berkeley algorithm [GZ89]. In
this algorithm, the Time_Server is an active component that polls
every machine in the network periodically to determine its local time.
Based on the responses it receives, the Time_Server computes an
aggregate notion of the correct time.

As with the Time_Server above, the Clerk inherits from the
Component class:
 class Clerk : public Component {
 public:
 // Initialize and terminate a <Clerk>.
 virtual void init (int argc, const char
*argv[]);
 virtual void fini () ;

 // <info>, <suspend>, and <resume> methods
omitted.

 // Hook method invoked by a <Reactor> when a
timeout
 // occurs periodically. This method contacts
several
 // <Time_Server>s to compute its local notion
of time.
 virtual void handle_event (HANDLE, Event_Type)
;
 private:
 // The <Clerk_Connector> that connects and
 // initializes <Clerk_Handler>s.
 Clerk_Connector connector_;

 // A C++ standard library <list> of
<Clerk_Handler>s.

 95

 list<Clerk_Handler *> handler_list_ ;
 };

By inheriting from Component, the Clerk can be linked and unlinked
dynamically by a component configurator. Similarly, a component
configurator can configure, control and reconfigure the Clerk it manages
by calling its init(), suspend(), resume(), and fini() hook
methods.

Our Clerk component establishes and maintains connections with
Time_Servers and queries them to calculate the current time. The
Clerk's init() method dynamically allocates Clerk_Handlers that
send time update requests to Time_Servers connected via a
Clerk_Connector. It also registers the Clerk with a reactor to receive
timeout events periodically, such as every five minutes.

When the timeout period elapses, the reactor notifies the Clerk's
handle_event() hook method. This method instructs the Clerk's
Clerk_Handlers to request the current time at the time servers to which
they are connected. The Clerk receives and processes these server
replies, then updates its local system time accordingly. When Clients
ask the Clerk component for the current time, they receive a locally-
cached time value that has been synchronized with the global notion of
time. The Clerk's fini() method shuts down and cleans up its
connector and handlers.

The two alternative implementations of the time services are provided
within two DLLs. The cristian.dll contains a factory that creates
components that run the Cristian algorithm. Likewise, the berkeley.dll
contains a factory that creates components that run the Berkeley
algorithm.

Example Resolved

In this section, we show how our example distributed time server implementation applies the
Component Configurator pattern using a configuration mechanism based on explicit dynamic
linking [SchSu94] and a comp.conf configuration script. The example is presented as
follows:
§ We first show how the configuration mechanism supports the dynamic configuration of

Clerk and Time_Server components into application processes via scripting.
§ We then show how these features allow Clerk components to change the algorithms

used to compute local system time. In particular, after a new algorithm has been
selected, a singleton Component_Configurator can reconfigure the Clerk
component dynamically without affecting the execution of other types of components
controlled by the component configurator.

There are two general strategies for configuring a distributed time component application:
collocated and distributed. We outline each strategy to illustrate how a component
configurator-enabled application can be dynamically (re)configured and run.

 96

Collocated configuration. This configuration uses a comp.conf script to collocate the
Time_Server and the Clerk within the same process.

A generic main() program configures components dynamically using the
process_directives() method of the Component_Configurator object and then
runs the application's event loop. This event loop is based on the Reactor pattern (179):
 int main (int argc, char *argv[]) {
 Component_Configurator server;

 // Interpret the comp.conf file specified in argv[1].
 server.process_directives (argv[1]);

 // Reactor singleton perform component processing and
 // any reconfiguration updates.
 for (;;)
 Reactor::instance ()->handle_events ();
 /* NOTREACHED */
 }

The process_directives() method configures components into the server process
dynamically as it interprets the following comp.conf configuration script:
 # Configure a Time Server.
 dynamic Time_Server Component *
 cristian.dll:make_Time_Server()
 "-p $TIME_SERVER_PORT"

 # Configure a Clerk.
 dynamic Clerk Component *
 cristian.dll:make_Clerk()
 "-h tango.cs:$TIME_SERVER_PORT"
 "-h perdita.wuerl:$TIME_SERVER_PORT"
 "-h atomic-clock.lanl.gov:$TIME_SERVER_PORT"
 "-P 10" # polling frequency

The directives in comp.conf specify to the Component_Configurator how to configure
a collocated Time_Server and Clerk dynamically in the same application process using
the Cristian algorithm. The Component_Configurator links the cristian.dll DLL into
the application's address space dynamically and invokes the appropriate factory function to
create new component instances. In our example, these factory functions are called
make_Time_Server() and make_Clerk(), which are defined as follows:
 Component *make_Time_Server () { return new Time_Server; }
 Component *make_Clerk () { return new Clerk; }

After each factory function returns its new allocated component, the designated initialization
parameters in the comp.conf script are passed to the respective init() hook methods.

 97

These perform the corresponding component-specific initialization, as illustrated in
implementation activity 4 (92).

Distributed configuration. To reduce the memory footprint of an application, we may want to
collocate the Time_Server and the Clerk in different processes. Due to the flexibility of
the Component Configurator pattern, all that is required to distribute these components is to
split the comp.conf script into two parts and run them in separate processes or hosts. One
process contains the Time_ Server component and the other process contains the Clerk
component.

The figure below shows what the configuration looks like with the Time_Server and Clerk
collocated in the same process, as well as the new configuration after the reconfiguration
split. Note that the components themselves need not change, because the Component
Configurator pattern decouples their processing behavior from the point in time when they
are configured.

Reconfiguring an application's components. Now consider what happens if we decide to
change the algorithms that implement components in the distributed time service. For
example, we may need to switch from Cristian's algorithm to the Berkeley algorithm to take
advantage of new features in the environment. For example, if the machine on which the
Time_Server resides has a WWV receiver, the Time_Server can act as a passive entity
and the Cristian algorithm may be appropriate. Conversely, if the machine on which the
Time_Server resides does not have a WWV receiver, an implementation of the Berkeley
algorithm may be more appropriate.

Ideally, we should be able to change Time_Server algorithm implementations without
affecting the execution of other components of the distributed time service. Accomplishing
this using the Component Configurator pattern simply requires minor modifications to our
distributed time service configuration activities:

1. Modify the existing comp.conf script. We start by making the following change to the
comp.conf script:

2. # Shut down <Time_Server>.
3. remove Time_Server

This directive instructs the Component_Configurator to shut down the
Time_Server component, remove it from the Component_Repository, and unlink
the cristian.dll if there are no more references to it.

4. Notify the component configurator to reinterpret the comp.conf script. Next we must
instruct the Component_Configurator to process the updated comp.conf script.
This can be triggered either in-band, such as via a Socket connection or a CORBA
operation, or out-of-band, such as via a UNIX SIGHUP signal. Regardless of which
triggering strategy is used, after the Component_Configurator receives a

 98

reconfiguration event, it consults its comp.conf script again and shuts down the
Time_Server component by calling its fini() method. During this step the
execution of other components should be unaffected.

5. Initiate reconfiguration. We can now repeat steps 1 and 2 to reconfigure the Berkeley
Time_Server component implementation into an application. The comp.conf script
must be modified with a new directive to specify that the Berkeley Time_Server
component be linked dynamically from the berkeley.dll DLL:

6. # Configure a Time Server.
7. dynamic Time_Server Component *
8. berkeley.dll:make_Time_Server()
9. "-p $TIME_SERVER_PORT"

Finally, an event is generated to trigger the Component_Configurator in the
process to reread its comp.conf script and add the updated Time_Server
component to the Component_Repository. This component starts executing
immediately after its init() method is invoked successfully.

The ease with which new component implementations can be replaced dynamically
exemplifies the flexibility and extensibility provided by the Component Configurator pattern.
In particular, no other configured components in an application should be affected when the
Component_Configurator removes or reconfigures the Time_Server component.

Known Uses

The Windows NT Service Control Manager (SCM). The SCM allows a master SCM process
to initiate and control administrator-installed service components automatically using the
message-based strategy described in the Implementation section. The master SCM process
initiates and manages system service components by passing them various control
messages, such as PAUSE, RESUME, and TERMINATE, that must be handled by each
service component. SCM-based service components run as separate threads within either a
single-service or a multi-service server process. Each installed service component is
responsible for configuring itself and monitoring any communication endpoints, which can be
more general than socket ports. For instance, the SCM can control named pipes and shared
memory.

Modern operating system device drivers. Most modern operating systems, such as Solaris,
Linux, and Windows NT, provide support for dynamically-configured kernel-level device
drivers. These drivers can be linked into and unlinked out of the system dynamically via
hooks, such as the init(), fini(), and info() functions defined in SVR4 UNIX
[Rago93]. These operating systems apply the Component Configurator pattern to allow
administrators to reconfigure the operating system kernel without having to shut it down,
recompile, and statically relink new drivers and restart it.

Java applets. The applet mechanism in Java supports dynamic downloading, initializing,
starting, stopping, and terminating of Java applets. Web browsers implement the
infrastructure software to actually download applets and prepare them for execution. The
class java.applet.Applet provides empty methods init(), start(), stop(), and
destroy(), to be overridden in application-specific subclasses. Java therefore uses the
inheritance-based strategy described in the Implementation section. The four life-cycle hook
methods mentioned above are called by the browser at the correct time. They give the
applet a chance to provide custom behavior that will be called at appropriate times.

 99

For example, the init() hook will be called by the browser once the applet is loaded. The
start() hook will be called once set-up is complete and the applet should start its
application logic. The stop() hook will be called when the user leaves the Web site. Note
that start() and stop() can be called repeatedly, for example when the user visits and
leaves a Web site multiple times. The destroy() hook is called once the applet is
reclaimed and should free all resources. Finer-grained life-cycle behavior inside an applet
can be achieved by creating multiple threads inside the applet and having them scheduled
as in ordinary Java applications. Additional examples of how the Component Configurator
pattern is used for Java applets are presented in [JS97b].

The dynamicTAO reflective ORB [KRL+00] implements a collection of component
configurators that allow the transfer of components across a distributed system, loading and
unloading modules into the ORB run-time system, and inspecting and modifying the ORB
configuration state. Each component configurator is responsible for handling the
(re)configuration of a particular aspect of dynamicTAO. For example, its TAOConfigurator
component configurator contains hooks to which implementations of concurrency and
scheduling strategies, as well as security and monitoring interceptors (109), can be attached.
In addition, a DomainConfigurator provides common services for loading and unloading
components into dynamicTAO. It is the base class from which all other component
configurators derive, such as TAOConfigurator.

ACE [Sch97]. The ADAPTIVE Communication Environment (ACE) framework provides a set
of C++ mechanisms for configuring and controlling components dynamically using the
inheritance-based strategy described in the Implementation section. The ACE Service
Configurator framework [SchSu94] extends the mechanisms provided by Inetd, Listen,
and SCM to support automatic dynamic linking and unlinking of communication service
components.

The Service Configurator framework provided by ACE was influenced by the mechanisms
and patterns used to configure and control device drivers in modern operating systems.
Rather than targeting kernel-level device drivers, however, ACE focuses on dynamic
configuration and control of application-level components. These ACE components are often
used in conjunction with the Reactor (179), Acceptor-Connector (285), and Active Object
(369) patterns to implement communication services.

In football, which Americans call soccer, each team's coach can substitute a limited number
of players during a match. The coach is the component configurator who decides which
players to substitute, and the players embody the role of components. All players obey the
same protocol with respect to substitution, which occurs dynamically, that is, the game does
not stop during the substitutions. When players see a sign waved with their numbers, they
leave the field and new players join the game immediately. The coach's list of the current 11
players corresponds to the Component Repository. Just as the reconfiguration script is not
always written by the coach: some home crowds are renowned for asking and shouting for
specific players to be put into the game—and for firing the coach.

Consequences

The Component Configurator pattern offers the following benefits:

Uniformity. The Component Configurator pattern imposes a uniform configuration and
control interface for managing components. This uniformity allows components to be treated
as building blocks that can be integrated as components into a larger application. Enforcing
a common interface across all components makes them 'look and feel' the same with
respect to their configuration activities, which simplifies application development by
promoting the 'principle of least surprise'.

 100

Centralized administration. The Component Configurator pattern groups one or more
components into a single administrative unit. This consolidation simplifies development by
enabling common component initialization and termination activities, such as
opening/closing files and acquiring/releasing locks, to be performed automatically. In
addition, the pattern centralizes the administration of components by ensuring that each
component supports the same configuration management operations, such as init(),
suspend(), resume(), and fini().

Modularity, testability, and reusability. The Component Configurator pattern improves
application modularity and reusability by decoupling the implementation of components from
the manner in which the components are configured into processes. Because all
components have a uniform configuration and control interface, monolithic applications can
be decomposed more easily into reusable components that can be developed and tested
independently. This separation of concerns encourages greater reuse and simplifies
development of subsequent components.

Configuration dynamism and control. The Component Configurator pattern enables a
component to be dynamically reconfigured without modifying, recompiling, or statically
relinking existing code. In addition, (re)configuration of a component can often be performed
without restarting the component or other active components with which it is collocated.
These features help create an infrastructure for application-defined component configuration
frameworks.

Tuning and optimization. The Component Configurator pattern increases the range of
component configuration alternatives available to developers by decoupling component
functionality from component execution mechanisms. For instance, developers can tune
server concurrency strategies adaptively to match client demands and available operating
system processing resources. Common execution alternatives include spawning a thread or
process upon the arrival of a client request or pre-spawning a thread or process at
component creation time.

The Component Configurator pattern has several liabilities:

Lack of determinism and ordering dependencies. The Component Configurator pattern
makes it hard to determine or analyze the behavior of an application until its components are
configured at runtime. This can be problematic for certain types of system, particularly real-
time systems, because a dynamically-configured component may not behave predictably
when run with certain other components. For example, a newly configured component may
consume excessive CPU cycles, thereby starving other components of processing time and
causing them to miss deadlines.

Reduced security or reliability. An application that uses the Component Configurator pattern
may be less secure or reliable than an equivalent statically-configured application. It may be
less secure because impostors can masquerade as components in DLLs. It may be less
reliable because a particular component configuration may adversely affect component
execution. A faulty component may crash, for example, corrupting state information it shares
with other components configured into the same process.

Increased run-time overhead and infrastructure complexity. The Component Configurator
pattern adds levels of abstraction and indirection when executing components. For example,
the component configurator first initializes components and then links them into the
component repository, which may incur excessive overhead in time-critical applications. In
addition, when dynamic linking is used to implement components many compilers add extra
levels of indirection to invoke methods and access global variables [GLDW87].

 101

Overly narrow common interfaces. The initialization or termination of a component may be
too complicated or too tightly coupled with its context to be performed in a uniform manner
via common component control interfaces, such as init() and fini().

See Also

The intent of the Component Configurator pattern is similar to the Configuration pattern
[CMP95]. The Configuration pattern decouples structural issues related to configuring
protocols and services in distributed applications from the execution of the protocols and
services themselves. The Configuration pattern has been used in frameworks that support
the construction of distributed systems out of building-block components.

In a similar way, the Component Configurator pattern decouples component initialization
from component processing. The primary difference is that the Configuration pattern focuses
on the active composition of chains of related protocols and services. In contrast, the
Component Configurator pattern focuses on the dynamic initialization of components that
process requests exchanged between transport endpoints.

Credit

Thanks to Giorgio Angiolini, who provided us with feedback on an earlier version of this
pattern. In addition, thanks to Prashant Jain, who was the co-author of the original version of
the Service Configurator pattern, which formed the basis for the Component Configurator
pattern described here. Fabio Kon contributed the description of the dynamicTAO known
use.

[2]A WWV receiver intercepts the short pulses broadcast by the US National Institute of
Standard Time (NIST) to provide Universal Coordinated Time (UTC) to the public.

[3]The Implementation section describes how parameters can be passed into the component,
as well as different options for activating the component.

Interceptor
The Interceptor architectural pattern allows services to be added transparently to a
framework and triggered automatically when certain events occur.

Example

MiddleSoft Inc. is developing an object request broker (ORB) middleware framework called
MiddleORB, which is an implementation of the Broker pattern [POSA1]. MiddleORB provides
communication services that simplify the development of distributed applications. In addition
to core communication services, such as connection management and transport protocols,
applications using MiddleORB may require other services, such as transactions and security,
load balancing and fault tolerance, auditing, and logging, non-standard communication
mechanisms like shared memory, and monitoring and debugging tools.

 102

To satisfy a wide-range of application demands, the MiddleORB architecture must support
the integration of these extended services. One strategy for coping [Cope98] with this
requirement is to integrate as many services as possible into the default MiddleORB
configuration. This strategy is often infeasible, however, because not all ORB services can
be anticipated at its development time. As distributed applications evolved, the ORB
framework would inevitably expand to include new features. Such piecemeal growth can
complicate ORB design and maintenance, as well as increase its memory footprint, even
though many of these features are not used by all applications all the time.

An alternative strategy is to keep the MiddleORB framework as simple and concise as
possible. In this model, if application developers require services not available in the
framework, they would implement them along with their own client and server code.
However, this strategy would require developers to implement much code that was unrelated
to their application logic.

In addition, certain services cannot be implemented solely at the application client and object
level, because they must interact intimately with core ORB features. For example, a security
service should be integrated with the ORB infrastructure. Otherwise, applications can
masquerade as privileged users and gain unauthorized access to protected system
resources.

Clearly, neither strategy outlined above is entirely satisfactory. With the first strategy
MiddleORB will be too large and inflexible, whereas with the second, applications will
become overly complex and potentially insecure or error-prone. We must therefore devise a
better strategy for integrating application-specific services into MiddleORB.

Context

Developing frameworks that can be extended transparently.

Problem

Frameworks, such as ORBs, application servers, and domain-specific software architectures
[SG96], cannot anticipate all the services they must offer to users. It may also not be feasible
to extend certain types of frameworks, particularly black-box frameworks [HJE95], with new
services that they were not originally designed to support. Similarly, it is often undesirable to
rely upon applications to implement all the necessary services themselves, because this
defeats many benefits of reuse. Framework developers must therefore address the following
three forces:
§ A framework should allow integration of additional services without requiring

modifications to its core architecture.

 103

§ For example, it should be possible to extend MiddleORB to support security services,
such as Kerberos or SSL [OSSL00], without modifying the structure of its internal
design [OMG98d].

§ The integration of application-specific services into a framework should not affect
existing framework components, nor should it require changes to the design or
implementation of existing applications that use the framework.

§ For instance, adding load balancing to MiddleORB should be unobtrusive to existing
MiddleORB client and server applications.

§ Applications using a framework may need to monitor and control its behavior.

§ For example, some applications may want to control MiddleORB's fault tolerance
strategies [OMG99g] via the Reflection pattern [POSA1] to direct its responses to
failure conditions.

Solution

Allow applications to extend a framework transparently by registering 'out-of-band' services
with the framework via predefined interfaces, then let the framework trigger these services
automatically when certain events occur.[4] In addition, open the framework's implementation
[Kic92] so that the out-of-band services can access and control certain aspects of the
framework's behavior.

In detail: for a designated set of events processed by a framework, specify and expose an
interceptor callback interface. Applications can derive concrete interceptors from this
interface to implement out-of-band services that process occurrences of these events in an
application-specific manner. Provide a dispatcher for each interceptor that allows
applications to register their concrete interceptors with the framework. When the designated
events occur, the framework notifies the appropriate dispatchers to invoke the callbacks of
the registered concrete interceptors.

Define context objects to allow a concrete interceptor to introspect and control certain
aspects of the framework's internal state and behavior in response to events. Context
objects provide methods to access and modify a framework's internal state, thus opening its
implementation. Context objects can be passed to concrete interceptors when they are
dispatched by the framework.

Structure

A concrete framework instantiates a generic and extensible architecture to define the
services provided by a particular system, such as an ORB, a Web server, or an application
server.

 104

Two types of concrete frameworks are available in MiddleORB, one for the client and
one for the server:[5]
§ Client applications use the client concrete ORB framework's programming interface to

access remote objects. This concrete framework provides common services, such
as binding to a remote object, sending requests to the object, waiting for replies,
and returning them to the client.

§ The server concrete ORB framework provides complementary services, including
registering and managing object implementations, listening on transport endpoints,
receiving requests, dispatching these requests to object implementations, and
returning replies to clients.

Interceptors are associated with a particular event or set of events exposed by a concrete
framework. An interceptor defines the signatures of hook methods [Pree95] [GHJV95] that
the concrete framework will invoke automatically via a designated dispatching mechanism
when the corresponding events occur. Concrete interceptors specialize interceptor interfaces
and implement their hook methods to handle these events in an application-specific manner.

In our MiddleORB example, we specify an interceptor interface containing several hook
methods that the client and server concrete ORB frameworks dispatch automatically
when a client application invokes a remote operation and the corresponding server
receives the new request, respectively.

 105

To allow interceptors to handle the occurrence of particular events, a concrete framework
defines dispatchers for configuring and triggering concrete interceptors. Typically there is a
dispatcher for each interceptor. A dispatcher defines registration and removal methods that
applications use to subscribe and un-subscribe concrete interceptors with the concrete
framework.

A dispatcher also defines another interface that the concrete framework calls when specific
events occur for which concrete interceptors have registered. When the concrete framework
notifies a dispatcher that such an event has occurred, the dispatcher invokes all the concrete
interceptor callbacks that have registered for it. A dispatcher maintains all its registered
interceptors in a container.

In our MiddleORB example, the client concrete ORB framework implements a dispatcher
that allows client applications to intercept certain events, such as outgoing requests to
remote objects and incoming object replies. Servers use a corresponding dispatcher in
the server concrete ORB framework to intercept related events, such as incoming client
requests and outgoing object replies. Other dispatchers can be defined at different
layers in the ORB to intercept other types of events such as connection and message
transport events.

Concrete interceptors can use context objects to access and control certain aspects of a
concrete framework. Context objects can provide accessor methods to obtain information
from the concrete framework and mutator methods to control the behavior of the concrete
framework. A context object can be instantiated by a concrete framework and passed to a
concrete interceptor with each callback invocation. In this case the context object can
contain information related to the event that triggered its creation.

Conversely, a context object can be passed to an interceptor when it registers with a
dispatcher. This design provides less information but also incurs less overhead.

In our MiddleORB example, the interceptor interface defines methods that the client
concrete ORB framework dispatches automatically when it processes an outgoing
request. These methods are passed a context object parameter containing information
about the current request. Each context object defines accessor and mutator methods
that allow a concrete interceptor to query and change ORB state and behavior,
respectively.

For example, an accessor method in a context object can return the arguments for a
remote operation. Using the context object's mutator methods, a client application's

 106

concrete interceptor can redirect an operation to a different object. This feature can be
used to implement custom load balancing and fault tolerance services [ZBS97].

An application runs on top of a concrete framework and reuses the services it provides. An
application can also implement concrete interceptors and register them with the concrete
framework to handle certain events. When these events occur, they trigger the concrete
framework and its dispatchers to invoke concrete interceptor callbacks that perform
application-specific event processing.

The class diagram below illustrates the structure of participants in the Interceptor pattern.

Dynamics

A typical scenario for the Interceptor pattern illustrates how an application implements a
concrete interceptor and registers it with the corresponding dispatcher. The dispatcher then

 107

invokes the interceptor callback when the concrete framework notifies it that an event of
interest has occurred:
§ An application instantiates a concrete interceptor that implements a specific interceptor

interface. The application registers this concrete interceptor with the appropriate
dispatcher.

§ The concrete framework subsequently receives an event that is subject to interception.
In this scenario a special context object is available for each kind of event. The concrete
framework therefore instantiates an event-specific context object that contains
information related to the event, as well as functionality to access and potentially control
the concrete framework.

§ The concrete framework notifies the appropriate dispatcher about the occurrence of
the event, passing the context object as a parameter.

§ The dispatcher iterates through its container of registered concrete interceptors and
invokes their callback hook methods, passing the context object as an argument.

§ Each concrete interceptor can use its context object to retrieve information about the
event or the concrete framework. After processing this information, a concrete
interceptor can optionally call method(s) on the context object to control the behavior of
the concrete framework and its subsequent event processing.

§ After all concrete interceptor callback methods have returned, the concrete framework
continues with its normal operation.

Implementation

Seven implementation activities describe a common approach for implementing the
Interceptor pattern.

1. Model the internal behavior of the concrete framework using a state machine or an
equivalent notation, if such a model is not available already. This modeling need not
capture all abstractions of the concrete framework, but should document the aspects
that are related to interception. To minimize the complexity of any given state
machine, the modeled parts of the concrete framework can be composed from
smaller state machines that together form a composite state machine.[6]

Each smaller state machine represents a particular aspect of the concrete framework.
Once the dynamic aspects of the concrete framework are modeled as a state
machine, use this model to determine where and when certain events can be
intercepted.

In ORB middleware and many other component-based systems at least two types of
concrete frameworks exist, one for the role of client and one for the role of server. In
this case the concrete frameworks should be modeled as separate state machines. In

 108

general, state machine modeling helps identify where to place interceptors and how
to define their behavior in a concrete framework.

Consider the client concrete ORB framework defined by MiddleORB. During ORB
start-up this framework is initialized to continue processing client requests until it
is shut down. The client concrete ORB framework provides two types of service
to clients:
§ When a client binds to a new remote object, the concrete framework creates a

proxy that connects to the object.
§ If the bind operation is successful the client can send requests to the remote

object. Each request is marshaled and delivered to the remote object using a
pre-established connection. After successful delivery, the concrete
framework waits for the object's response message, demarshals it upon
arrival, returns the result to the client, and transitions to the idle state.

Additional error states denote situations in which problems are encountered, such
as communication errors or marshaling errors, are shown in the following figure.
Note that this figure illustrates only a portion of the client concrete ORB
framework's internal composite state machine.

2. Identify and model interception points. This implementation activity can be divided into
four sub-activities:

1. Identify concrete framework state transitions that may not be visible to external
applications, but are subject to interception. For example, a client may want to
intercept outgoing requests so it can add functionality, such as logging or
changing certain request parameters, dynamically. We call these state
transitions 'interception points'.

2. Partition interception points into reader and writer sets. The reader set includes
all state transitions in which applications only access information from the
concrete framework. Conversely the writer set includes all state transitions in
which applications can modify the behavior of the concrete framework.

3. Integrate interception points into the state machine model. Interception points
can be modeled in the state machine by introducing intermediary states. If a
state transition is subject to interception, place a new interception state
between the source state and the sink state of the original transition. This
interception state triggers the corresponding interceptors. For interception
points that belong to the writer set, introduce additional state transitions in
which the following properties apply:

 109

§ The interception state is the start node and
§ The target nodes are states that represent the subsequent behavior of

the concrete framework after the interception.

Many component-based distributed systems define peer concrete frameworks,
such as client and server ORBs, that are organized in accordance with the
Layers pattern [POSA1]. When identifying interception points in one of these
concrete frameworks, introduce a related interception point in the other peer
concrete framework at the same logical layer. For example, if a client ORB
intercepts outgoing requests, it is likely that the server ORB should also
intercept incoming requests. When integrating layered services, such as
adding security tokens on the client-side and encrypting outgoing request
data, a corresponding interceptor is therefore required on the server to extract
the security token and decrypt the incoming data.

By applying the state machine model of the client concrete ORB
framework shown above, we can identify the potential interception points
shown in the following table:

Interception Point Description Reader
/ Writer

Shut-down The concrete framework is
shutting down its operation.
Clients may need to perform
certain cleanup work, such as
freeing resources they have
allocated previously.

Reader

Binding The client application is binding
to a remote object. The
concrete framework instantiates
a new proxy and establishes a
communication channel. A
monitoring service might
intercept this event to visualize
new client/object relationships.

Reader

PreMarshalOutRequest The client application sends a
request to the remote object.
Interceptors might be used to
change the target object or the
parameter values to support
load balancing, validate certain
preconditions, or encrypt
parameters.

Reader
+ Writer

PostMarshalOutRequest The client concrete ORB
framework has marshaled the
data but not yet delivered it. A
client may be interested in
monitoring activities, such as
starting a timer to measure the
round-trip latency.

Reader

PreMarshalInReply The reply just arrived and the Reader

 110

Interception Point Description Reader
/ Writer

concrete framework has not yet
demarshaled the data. A client
may be interested in monitoring
this event or stopping a round-
trip latency timer.

PostMarshalInReply The client concrete ORB
framework has marshaled the
reply. An interceptor might
evaluate post-conditions or
change the result. For example,
it could decrypt the result if it
was encrypted by a server-side
interceptor.

Reader
+ Writer

Additional interception points may be required if a client intercepts
exceptions, such as failed connection events. The server concrete ORB
framework can also define peer interception points.

4. Partition interception points into disjoint interception groups. To process
events, concrete frameworks often perform a series of related activities, each
of which may be associated with an interception point. To emphasize the
relationship between each activity, it may be useful to coalesce a series of
semantically-related interception points into an interception group.

For example, all interception points associated with sending a request can
form one interception group, whereas all interception points associated with
receiving a request can form another group. These interception groups help to
minimize the number of necessary interceptors and dispatchers as shown in
implementation activity 4 (123).

To identify interception groups, analyze the state machine for interception
points that are located in the same area of the state machine and participate in
the same activity. For example, interception points that are triggered by
transitions originating from a particular state, ending in a particular state, or
ending in a particular set of neighbor states may be candidates for
consideration as part of the same interception group.

In MiddleORB, both the PreMarshalOutRequest and
PostMarshalOutRequest interception points participate in sending a
request. These interception points can therefore constitute the
OutRequest interception group. This interception group coalesces all
events related to the activities of sending a request in order to differentiate
these events from other interception groups, such as InRequest,
OutReply, or InReply.

 111

3. Specify the context objects. Context objects allow interceptors to access and control
aspects of the framework's internal state and behavior in response to certain events.
Three sub-activities can be applied to specify context objects:

0. Determine the context object semantics. Context objects provide information
about an interception point and may also define services to control the
framework's subsequent behavior. Concrete interceptors use the information
and services to handle interception points in an application-specific manner.
The accessor and mutator methods defined for context objects can be based
on information that a concrete framework provides to interceptors, as well as
the degree to which a framework is 'open':
§ If an interception point belongs to the reader set, determine what

information the concrete framework should provide the interceptor for
each event it handles. For example, if a context object provides
information about a particular remote operation invocation, it may contain
the reference of the target object being called as well as the operation's
name and parameter values.

§ If the interception point belongs to the writer set, determine how to
'open' the concrete framework's implementation so that concrete
interceptors can control selected aspects of its behavior [Kic92]. For
example, if a context object provides information about a particular
remote operation invocation, it may contain methods that can modify the
operation's parameter values. The design force to balance here, of
course, is 'open extensibility' versus 'errorprone interception code'.

Although concrete frameworks with open implementations can ha ve
powerful interceptors, they are also more vulnerable to interceptors that
maliciously or accidentally corrupt the concrete framework's robustness
and security. Some interception designs therefore disallow mutator
functionality within context objects.

1. Determine the number of context object types. Here are two strategies for
selecting the number and types of context objects:
§ Multiple interfaces. If the interception points in a concrete framework

cover a diverse set of requirements, different types of context objects can
be defined for different interception points. This strategy is flexible,
because it allows fine-grained control of particular interception points.
However it increases the number of interfaces that developers of concrete
interceptors must understand.

§ Single interface. It is possible to specify a generic context object with a
single interface. Using a single interface reduces the number of context
object interfaces, but may yield a bloated and complex context object
interface.

In general, multiple interfaces are useful when client applications intercept a
wide variety of different framework events. In other cases, however, the single
interface strategy may be preferable due to its simplicity.

When the MiddleORB client ORB framework intercepts outgoing client
requests, applications may want to access and/or control the following
aspects:
§ Reading and changing the target object reference to implement fault

tolerance or load balancing.
§ Reading and modifying parameter values to encrypt data, validate

selected arguments, or change behavior reflectively [POSA1].
§ Adding new data to the request to send out-of-band information, such

as security tokens or transaction contexts.

 112

§ Integrating custom parameter marshalers and demarshalers.

These activities correspond to those specified by the
PreMarshalOutRequest and PostMarshalOutRequest interception points
outlined in the table in implementation activity 2.3 (118). We therefore
introduce two corresponding context object types,
UnmarshaledRequest and MarshaledRequest. The interface
UnmarshaledRequest is structured as follows:
 public interface UnmarshaledRequest {
 public String getHost (); // get host
 public void setHost (String host); // set host
 public long getPort (); // get server port
 public void setPort (long newPort); // set new
port
 public String getObjName (); // get object
name
 public void setObjName (String newName); //
set name
 public String getMethod (); // get method name
 public void setMethod (String name); // set
method
 public Enumeration getParameters ();// get
parameters
 public Object getArg (long i); // get i_th arg
 public void setArg (long i, Object o); // set
i_th arg
 public void addInfo (Object info); // add
extra info.
 // ...
 }

2. Define how to pass context objects to concrete interceptors. Context objects
are instantiated by the concrete framework. They are passed to a concrete
interceptor using one of the following two strategies:
§ Per-registration. In this strategy a context object is passed to an

interceptor once when it registers with a dispatcher.
§ Per-event. In this strategy a context object is passed to a concrete

interceptor with every callback invocation.

The per-event strategy allows a concrete framework to provide finegrained
information about the occurrence of a particular event. In contrast, the per-
registration strategy only provides general information common to all
occurrences of a particular event type. The per-event strategy may incur
higher overhead, however, due to repeated creation and deletion of context
objects.

4. Specify the interceptors. An interceptor defines a generic interface that a concrete
framework uses to invoke concrete interceptors, via dispatchers, when interception

 113

points are triggered. An interceptor is defined for each interception group identified in
implementation activity 2.4 (120). Consequently each concrete interceptor that
derives from a particular interceptor is responsible for handling all the interception
points of a specific interception group.

For each interception point in an interception group, an interceptor defines a
designated callback hook method. There is thus a one-to-one relationship between
an interception point and an interceptor hook method. In general the interceptor
corresponds to the observer participant in the Observer pattern [GoF95], where its
callback hook methods play the role of event-specific update methods. If the
'perevent' context object strategy described in implementation activity 3 (121) is
applied, context objects can be passed as parameters to the concrete interceptor
callback hook methods. These methods can return results or raise exceptions, in
accordance with the policies described in implementation activity 6 (126).

In implementation activity 2.4 (120) we identified the interception group
OutRequest. Below we illustrate a common interceptor interface for this
interception group:
 public interface ClientRequestInterceptor {
 public void onPreMarshalRequest
 (UnmarshaledRequest context);
 public void onPostMarshalRequest
 (MarshaledRequest context);
 }

For each interception point associated with the OutRequest interception group,
the ClientRequestInterceptor defines a separate hook method that is
called back by the dispatcher at the appropriate interception point.

5. Specify the dispatchers. For each interceptor, define a dispatcher interface that
applications can use to register and remove concrete interceptors with the concrete
framework. In addition, this interface is used by the framework to dispatch concrete
interceptors registered at interception points. Two sub-activities are involved:

0. Specify the interceptor registration interface. A dispatcher corresponds to the
Observer pattern's [GoF95] subject role. It implements a registration interface
for interceptors, which correspond to the observer role. Applications pass a
reference to a concrete interceptor to the registration method, which stores the
reference in a container in accordance with the Manager pattern [Som97].

To implement different callback policies, an application can pass a dispatcher
additional parameters. For example, it can pass a priority value that
determines the invocation order when multiple interceptors are registered for
the same interception point, as described in implementation activity 6 (126).
The dispatcher returns a key to the application that identifies the registered
interceptor uniquely. An application passes this key to the dispatcher when it
removes an interceptor it registered previously.

To automate interceptor registration, and to hide its implementation, a
concrete framework can implement helper classes that provide 'noop'
implementations of interceptor interfaces. The constructors of these classes

 114

register instances automatically with the concrete framework. Applications
derive their concrete interceptor implementations from the appropriate helper
class, override its methods and call the base class constructor to register their
interceptors implicitly.

In general, a specific dispatcher can forward every occurrence of its
corresponding event types from the concrete framework to the concrete
interceptors that registered for these events. Dispatchers are therefore often
implemented using the Singleton pattern [GoF95].

The methods defined in the following ClientRequestDispatcher class
allow applications to register and remove ClientRequestInterceptor
instances with the MiddleORB concrete framework:
 public class ClientRequestDispatcher {
 // Interceptors are stored in a Java vector
and called
 // in FIFO order.
 Vector interceptors_;

 synchronized public void
 registerClientRequestInterceptor
 (ClientRequestInterceptor i) {
 interceptors_.addElement (i); // Add
interceptor.
 }

 synchronized public void
 removeClientRequestInterceptor
 (ClientRequestInterceptor i) {
 // Remove interceptor.
 interceptors_.removeElement (i);
 }
 // ...
 }

1. Specify the dispatcher callback interface. When an interception event occurs
the concrete framework notifies its dispatcher. When notified, a dispatcher
invokes the corresponding hook methods of its registered concrete
interceptors. A dispatcher often provides the same interface to the concrete
framework that its associated interceptor provides to the dispatcher.

There are two reasons for this similarity:

 115

§ It streamlines performance, by allowing a dispatcher to delegate event
notifications to its registered interceptors efficiently, without transforming
any parameters.

§ It localizes and minimizes the modifications required if the public
interface of the dispatcher changes. An example of such a modification
might be the addition of a new interception point to the interception group
associated with the dispatcher callback interface. In this case an
additional hook method would be added to the callback interface.

In MiddleORB the internal dispatcher ClientRequestDispatcher also
implements the interface ClientRequestInterceptor:
 public class ClientRequestDispatcher
 implements ClientRequestInterceptor { /* ...
*/ }

The MiddleORB client concrete ORB framework can thus use the callback
hook methods in this interface to notify the dispatcher about all events
related to client requests.

6. Implement the callback mechanisms in the concrete framework. When an interception
event occurs the concrete framework notifies the corresponding dispatcher. The
dispatcher then invokes the hook methods of all registered concrete interceptor
callbacks in turn. A mechanism is therefore needed to propagate events from the
concrete framework to its dispatchers and from the dispatchers to the registered
interceptors. This mechanism can be implemented by applying the Observer pattern
[GoF95] twice.

The first application of the Observer pattern occurs whenever the concrete framework
reaches an interception point. At this point it creates the appropriate context object
and notifies the dispatcher about the occurrence of the event. In terms of the
Observer pattern, the concrete framework is a subject that is observed by a
dispatcher.

When the concrete framework notifies the dispatcher, it can either pass the context
object as a parameter, or it can use a pre-allocated singleton context object that acts
as an interface to the concrete framework. In the first strategy, all event-related
information is encapsulated in the context object, while the second strategy requires
the concrete framework to store all of the necessary information. The choice of
strategy depends on the design of the concrete framework, as described in
implementation activity 3.3 (123).

The second application of the Observer pattern occurs after the dispatcher is notified.
At this point it iterates over all interceptors that have registered at this interception
point and invokes the appropriate callback method in their interface, passing the
context object as a parameter. The dispatcher is thus also a subject that is observed
by concrete interceptors.

The dispatcher's internal callback mechanism can be implemented with the Iterator
pattern [GoF95]. Similarly, a dispatcher can apply the Strategy pattern [GoF95] to
allow applications to select from among several interceptor callback orderings:

 116

§ Simple invocation strategies include 'first-in first-out' (FIFO) or 'last-in first-out'
(LIFO) ordering strategies, where interceptors are invoked in the order they were
registered or vice-versa. When using the Interceptor pattern to implement a
particular 'interceptor stack', a combined FIFO/LIFO approach can be used to
process messages traversing the stack. On the client a FIFO strategy can be
used to pass messages down the stack. On the server a LIFO strategy can be
used to pass messages up the stack.

§ A more sophisticated ordering callback strategy dispatches concrete
interceptors in priority order. In this strategy an application passes a priority
parameter when registering a concrete interceptor with a dispatcher. When
propagating an event, the dispatcher invokes interceptors with higher priorities
first.

§ Another sophisticated callback strategy is based on the Chain of Responsibility
pattern [GoF95]. If a concrete interceptor can handle the event that its dispatcher
delivers, it returns the corresponding result. Otherwise it can return a special
value or raise an exception to indicate it is not interested in intercepting the
event. In this case the callback dispatching mechanism asks the next interceptor
in the chain to handle the event. This progression stops after one of the
interceptors handles the event.

If an interceptor encounters error conditions that prevent it from completing its work
successfully, it can invoke exceptions or return failure values to propagate these
errors to handlers. In this case the concrete framework must be prepared to handle
these errors.

When a client concrete ORB framework processes a request it instantiates a
context object, and notifies the corresponding dispatcher to iterate through the
registered interceptors to call their appropriate event handling hook methods,
such as onPreMarshalRequest():
 public class ClientRequestDispatcher {
 // ...
 public void
 dispatchClientRequestInterceptorPreMarshal
 (UnmarshaledRequest context) {
 Vector interceptors;
 synchronized (this) { // Clone vector.
 interceptors = (Vector)
 interceptors.clone ();
 }
 for (int i = 0; i < interceptors.size (); ++i) {
 ClientRequestInterceptor ic =
 (ClientRequestInterceptor)
 interceptors.elementAt (i);
 // Dispatch callback hook method.
 ic.onPreMarshalRequest (context);
 }
 }

 117

 // ...
 }

7. Implement the concrete interceptors. Concrete interceptors can derive from and
implement the corresponding interceptor interface in application-specific ways. A
concrete interceptor can use the context object it receives as a parameter to either:
§ Obtain additional information about the event that occurred or
§ Control the subsequent behavior of the concrete framework, as described in

implementation activity 3 (121)

The Extension Interface pattern (141) can be applied to minimize the number of
different interceptor types in an application. Each interception interface becomes an
extension interface of a single interceptor object. The same 'physical' object can thus
be used to implement different 'logical' interceptors.

A client application can provide its own ClientRequestInterceptor class:
 public class Client {
 static final void main (String args[]) {
 ClientRequestInterceptor myInterceptor =
 // Use an anonymous inner class.
 new ClientRequestInterceptor () {
 public void onPreMarshalRequest
 (UnmarshaledRequest context) {
 System.out.println
 (context.getObj () + " called");
 // ...
 }
 public void onPostMarshalRequest
 (MarshaledRequest context) { /* ... */ }
 };
 ClientRequestDispatcher.theInstance ().
 registerClientRequestInterceptor
 (myInterceptor);
 // Do normal work.
 }
 }

In this implementation the client's main() method creates an instance of an
anonymous ClientRequestInterceptor inner class and registers it with the
singleton instance of the ClientRequestDispatcher class. Whenever the
client concrete ORB framework encounters a client request event it notifies the
dispatcher, which then calls back the appropriate hook method of the registered

 118

interceptor. In this example the interceptor just prints a message on the screen
after a method is invoked but before it is marshaled.

Example Resolved

Applications can use the Interceptor pattern to integrate a customized load-balancing
mechanism into MiddleORB. By using interceptors, this mechanism is transparent to the
client application, the server application, and the ORB infrastructure itself. In this example a
pair of concrete interceptors are interposed by the client application:
§ Bind interceptor. When a client binds to a remote object, the bind interceptor

determines whether subsequent invocations on the CORBA object should be load
balanced. All such 'load balancing' objects can be replicated [GS97] automatically on
predefined server machines. Information on load balancing, servers, and available
replicated objects can be maintained in the ORB's Implementation Repository [Hen98]
and cached within memory-resident tables. Information on the current system load can
reside in separate tables.

§ Client request interceptor. When a client invokes an operation on a remote object, the
client request concrete interceptor is dispatched. This interceptor checks whether the
object is replicated. If it is, the interceptor finds a server machine with a light load and
forwards the request to the appropriate target object. The algorithm for measuring the
current load can be configured using the Strategy pattern [GoF95]. Client developers
can thus substitute their own algorithms transparently without affecting the ORB
infrastructure or the client/server application logic.

The following diagram illustrates the scenario executed by the client request interceptor after
the bind interceptor has replicated an object that is load balanced on multiple servers:

This scenario involves three steps:
§ A client invokes an operation on a replicated object (1).
§ The client request interceptor intercepts this request (2). It then consults a table

containing the object's replicas to identify a server with a lightest load (3). The bind
interceptor created this table earlier when the object was replicated.

§ The client ORB forwards the request to the server with a light load (4). The server's
ORB then delivers it to the object implementation residing on this server (5) and
dispatches its operation (6).

Variants

Interceptor Proxy variant (also known as Delegator). This variant is often used on the server-
side of a distributed system to intercept remote operations. The server concrete framework

 119

automatically instantiates a proxy [POSA1] to a local object implementation residing on the
server. This proxy implements the same interfaces as the object. When the proxy is
instantiated it receives a reference to the actual server object.

When a client issues a request, the server's proxy intercepts the incoming request and
performs certain pre-processing functionality, such as starting a new transaction or validating
a security tokens. The proxy then forwards the request to the local server object, which
performs its process operations in the context established by the proxy:

After the object processing is finished, the proxy performs any post-processing that is
needed and returns the result, if any, to the client. Both the client and the server object are
oblivious to the existence of the interceptor proxy.

Single Interceptor-per-Dispatcher. This variant allows only one interceptor to register with a
specific dispatcher. This restriction can simplify the pattern's implementation when it makes
no sense to have more than one interceptor, in which case there is no need for the concrete
framework to retain a whole collection of interceptors.

In MiddleORB there could be an interceptor interface for changing the concrete
framework's transport protocol dynamically [Naka00]. At most there should be one
interceptor that changes the default behavior of the concrete framework. Thus, there is
no reason to register a chain of different interceptors that are each responsible for
changing the transport protocol.

Interceptor Factory. This variant is applicable when the concrete framework instantiates the
same class multiple times and each instance of the class is subject to interception. Instead
of registering an interceptor for each object with the dispatcher explicitly, applications
register interceptor factories with the concrete framework. Thus, for every object the
concrete framework instantiates, it also instantiates a concrete interceptor using the supplied
factory.

In MiddleORB there could be a different interceptor for each object implementation
created by the server concrete ORB framework. In addition the client concrete ORB
framework could use a factory to instantiate a separate client interceptor for each proxy.

 120

Implicit Interceptor Registration. Rather than registering interceptors via dispatchers
explicitly, a concrete framework can load interceptors dynamically. There are two ways to
implement this strategy:
§ The concrete framework searches for interceptor libraries in predefined locations. It

then loads these libraries into the concrete framework and ensures that they support the
required interceptor interfaces before installing and dispatching events to them.

§ The concrete framework can link interceptors dynamically using a run-time
configuration mechanism, such as the one defined by the Component Configurator
pattern (75). In this design a component configurator component within the concrete
framework interprets a script that specifies which interceptors to link, where to find the
dynamically linked libraries (DLLs) that contain these interceptors, and how to initialize
them. The component configurator then links the specified DLLs and registers the
interceptors contained within them with the concrete framework.

Known Uses

Component-based application servers for server-side components, such as EJB
[MaHa99], CORBA Components [OMG99a], or COM+ [Box97], implement the Interceptor
Proxy variant. To help developers focus on their application-specific business logic, special
concrete frameworks—often denoted as 'containers' in this context—are introduced to shield
components from the system-specific run-time environment. Components need not
implement all their infrastructural services, such as transactions, security, or persistence, but
instead declare their requirements using configuration-specific attributes. The diagram below
illustrates this container architecture:

After a new component is instantiated, the concrete framework also instantiates an
interceptor proxy and associates it with that particular component, for example, by providing
the proxy with a component reference during its initialization. After any client request arrives
the proxy checks the configuration-specific attributes of the component and performs the
services it expects, such as initiating new transactions.

Application servers often provide an instantiation of the standard Interceptor pattern to notify
components about lifecycle events, such as connection initiation and termination, component
activation and passivation, or transaction-specific events.

CORBA implementations [OMG98c] such as TAO [SLM98] and Orbix [Bak97] apply the
Interceptor pattern so that application developers can integrate additional services to handle
specific types of events. Interceptors enhance ORB flexibility by separating request
processing from the traditional ORB communication mechanisms required to send and
receive requests and replies.

 121

For example, Orbix defines the concept of filters that are based on the concept of 'flexible
bindings' [Shap93]. By deriving from a predefined base class, developers can intercept
events. Common events include client-initiated transmission and arrival of remote
operations, as well as the object implementation-initiated transmission and arrival of replies.
Developers can choose whether to intercept the request or result before or after marshaling.
Orbix programmers can leverage the same filtering mechanism to build multi-threaded
servers [SV96a] [SV96b] [SV96c]. Other ORBs, such as Visibroker, implement the
Interceptor Factory variant of the Interceptor pattern.

The OMG has introduced a CORBA Portable Interceptor specification [OMG99f] to
standardize the use of interceptors for CORBA-compliant implementations. Portable
Interceptors are intimately tied into the communication between a client and server. They
can thus affect the contents of CORBA requests and replies as they are exchanged, as
outlined in the following two examples:
§ A client-side security interceptor can add authorization information to a request

transparently before it leaves the client process. The matching server-side security
interceptor in the receiving server could then verify that the client is authorized to invoke
requests on the target object before the request is dispatched. If authorization fails the
request should be rejected.

§ A transaction interceptor is another example of a Portable Interceptor. This interceptor
adds a transaction ID to a request before it leaves the client. The corresponding server-
side transaction interceptor then ensures the request is dispatched to the target object
within the context of that particular transaction.

Fault-tolerant ORB frameworks. The Interceptor pattern has been applied in a number of
fault-tolerant ORB frameworks, such as the Eternal system [NMM99] [MMN99] and the
CORBA Fault-Tolerance specification [OMG99g]. Eternal intercepts system calls made by
clients through the lower-level I/O subsystem and maps these system calls to a reliable
multicast subsystem. Eternal does not modify the ORB or the CORBA language mapping,
thereby ensuring the transparency of fault tolerance from applications.

The AQuA framework [CRSS+98] also provides a variant of the Interceptor pattern. The
AQuA gateway acts as an intermediary between the CORBA objects and the Ensemble
group communication subsystem, and translates GIOP messages to group communication
primitives. AQuA uses the Quality Objects (QuO) [ZBS97] framework to allow applications to
specify their dependability requirements.

COM [Box97] [HS99a] programmers can use the Interceptor pattern to implement the
standard interface IMarshal in their components. IMarshal provides custom marshaling
functionality rather than standard marshaling, which is useful for several reasons. For
example, custom marshaling can be used to send complex data such as graph structures
across a network efficiently.

When the COM run-time system transfers an interface pointer from a component to a client
residing in another execution environment, it queries the corresponding component for an
implementation of the interceptor interface IMarshal. If the component actually implements
IMarshal, the COM run-time uses the methods of this interceptor interface to ask the
component for specific information to allow it to externalize the data to a stream object.

Web browsers. Web browsers implement the Interceptor pattern to help third-party vendors
and users integrate their own tools and plug-ins. For example, Netscape Communicator and
Internet Explorer allow browsers to register plug-ins for handling specific media types. When
a media stream arrives from a Web server the browser extracts the content type. If the
browser does not support the content type natively, it checks whether a plug-in has
registered for it. The browser then invokes the appropriate plug-in automatically to handle
the data.

 122

The dynamicTAO reflective ORB [KRL+00] supports interceptors for monitoring and
security. Particular interceptor implementations are loaded into dynamicTAO using
component configurators (75). Using component configurators to install interceptors in
dynamicTAO allows applications to exchange monitoring and security strategies at run-time.

Change of address surface mail forwarding. A real-life example of the Interceptor pattern
arises when people move from one house to another. The post office can be instructed to
intercept surface mail addressed to the original house and have it transparently forwarded to
the new house. In this case, the contents of the mail is not modified and only the destination
address is changed.

Consequences

The Interceptor pattern offers the following benefits:

Extensibility and flexibility. By customizing and configuring Interceptor and dispatcher
interfaces, users of a concrete framework can add, change, and remove services without
changing the concrete framework architecture or implementation.

Separation of concerns. Interceptors can be added transparently without affecting existing
application code because interceptors are decoupled from application behavior. Interceptors
can be viewed as aspects [KLM+97] that are woven into an application, so that programmers
can focus on application logic rather than on infrastructure services. The Interceptor pattern
also helps to decouple programmers who write interceptor code from programmers who are
responsible for developing and deploying application logic.

Support for monitoring and control of frameworks. Interceptors and context objects help to
obtain information from the concrete framework dynamically, as well as to control its
behavior. These capabilities help developers build administration tools, debuggers, and
other advanced services, such as load balancing and fault tolerance.

When a client invokes a remote operation, an interceptor can be notified automatically. By
using the context object the interceptor can change the target object specified in the method
invocation from the original destination to another server that provides the requested service.
The choice of server can depend on various dynamic factors, such as current server load or
availability. If a framework cannot complete a request successfully, another interceptor can
be activated to re-send the request to a replicated server that provides the same service,
thereby enhancing fault tolerance via replication [OMG99a].

Layer symmetry. To implement layered services, developers can introduce symmetrical
interceptors for related events exposed by the concrete framework. For example, in a
CORBA environment developers could write a client-side interceptor that creates security
tokens and automatically adds these tokens to outgoing requests. Similarly, they could write
a symmetrical server-side interceptor that extracts these tokens before the incoming request
is forwarded to the actual object implementation.

Reusability. By separating interceptor code from other application code, interceptors can be
reused across applications. For example, an interceptor used to write information into a log
file may be reused in other applications that require the same type of logging functionality.

The Interceptor pattern also incurs the following liabilities:

Complex design issues. Anticipating the requirements of applications that use a specific
concrete framework is non-trivial, which makes it hard to decide which interceptor
dispatchers to provide. In general, providing insufficient dispatchers reduces the flexibility

 123

and extensibility of the concrete framework. Conversely, providing too many dispatchers can
yield large, inefficient systems that are complex to implement, use and optimize.

A similar problem arises when a concrete framework defines many different interceptor
interfaces and dispatchers. In this case interceptor implementors must address all these
heterogeneous extensibility mechanisms. If there are too many different mechanisms it is
hard to learn and use them. In contrast, providing only one generic interceptor and one
generic dispatcher can lead to bloated interfaces or complex method signatures. In general,
it is hard to find the right balance without knowledge of common application usages.

Malicious or erroneous interceptors. If a concrete framework invokes an interceptor that fails
to return, the entire application may block. To prevent blocking, concrete frameworks can
use configurable time-out values. If the interceptor does not return control after a specified
time, a separate thread can interrupt the execution of the interceptor. This approach can
complicate concrete framework design, however.

For example, complex functionality may be required to help concrete frameworks recover
from time-outs without leaking resources or corrupting important data structures. Interceptors
can also perform unanticipated activities or cause run-time errors. It is hard to prevent these
problems because concrete frameworks and interceptors generally execute in the same
address space.

Potential interception cascades. If an interceptor leverages a context object to change the
behavior of the concrete framework it may trigger new events, thereby initiating state
transitions in the underlying state machine. These state transitions may cause the concrete
framework to invoke a cascade of interceptors that trigger new events, and so on.
Interception cascades can lead to severe performance bottlenecks or deadlocks. The more
interceptor dispatchers that a concrete framework provides, the greater the risk of
interception cascades.

See Also

The Template Method pattern [GoF95] specifies a skeleton for an algorithm—called the
'template method'—where different steps in the algorithm can vary. The execution of these
variants is delegated to hook methods, which can be overridden in subclasses provided by
clients. The template method can therefore be viewed as a lightweight concrete framework,
and the hook methods as lightweight interceptors. The Template Method pattern can be
used to leverage interception locally at a particular level of abstraction, whereas the
Interceptor pattern promotes interception as a fundamental design aspect that cuts across
multiple layers in a framework architecture.

The Chain-of-Responsibility pattern [GoF95] defines different handlers that can be
interposed between the sender and the receiver of a request. As with the Interceptor pattern,
these handlers can be used to integrate additional services between senders and receivers.
In the Chain-of-Responsibility pattern, however, requests are forwarded until one of the
intermediary handlers processes the request. In contrast, a dispatcher in the Interceptor
pattern usually forwards events to all concrete interceptors that have registered for it.

To emulate the Interceptor pattern, each intermediary handler in a chain of responsibility
must therefore both handle and forward the request. Interceptor and Chain of Responsibility
differ in two other aspects, however. Event handlers in a chain of responsibility are chained
together, as the name of the pattern implies. In contrast, concrete interceptors in a
framework need not be chained together, but can instead be associated at various levels of
abstraction in a layered architecture [POSA1]. Event handlers in a chain of responsibility
also cannot control the subsequent behavior of other event handlers or application

 124

components. Conversely, a key aspect of the Interceptor pattern is its ability to control a
concrete framework's subsequent behavior when a specific event occurs.

The Pipes and Filters pattern [POSA1] defines an architecture for processing a stream of
data in which each processing step is encapsulated in a filter component. Data is passed
through pipes between adjacent filters. If a concrete framework is structured as a Pipes and
Filters architecture with clients and objects being the endpoints, each pipe in the Pipes and
Filter chain defines a potential location at which interceptors can be interposed between
adjacent filters. In this case, registration of interceptors consists of reconfiguring the Pipes
and Filters chain.

The context object is the information passed from the source filter to the interceptor. The
interceptor is responsible for sending information to the sink filter in the appropriate format.
However, in the Pipes and Filters pattern, filters are chained via pipes, whereas in the
Interceptor pattern concrete interceptors at different layers are often independent. In
addition, Pipes and Filters defines a fundamental computational model for a complete
application 'pipeline', whereas interceptors are used to implement 'out-of-band' services in
any type of concrete framework.

The Proxy pattern [GoF95] [POSA1] provides a surrogate or placeholder for an object to
control access to itself. Although proxies can be used to integrate additional functionality to a
system, their use is restricted to objects that are already visible in a system. In contrast,
interceptors allow external components to access and control internal and otherwise
'invisible' components. As described in the Variants section, to instantiate the Interceptor
Proxy variant, we can instantiate the Proxy pattern with enhancements such as context
objects.

The Observer [GoF95] and Publisher-Subscriber [POSA1] patterns help synchronize the
state of cooperating components. These patterns perform a one-way propagation of
changes in which a publisher can notify one or more observers/subscribers when the state of
a subject changes. In contrast to the Interceptor pattern, the Observer and Publisher-
Subscriber patterns do not specify how observers/subscribers should access the
functionality of publishers because they define only one-way communication from the
publishers to the subscribers. These patterns also emphasize event notifications, whereas
the Interceptor pattern focuses on the integration of services into a framework.

These differences are also illustrated by the difference between event objects and context
objects. While event objects often contain values related to the current event, context objects
provide an additional programming interface to access and control concrete frameworks.
The Observer and Publisher-Subscriber patterns can therefore be viewed as variants of the
Interceptor pattern, in which context objects correspond to event types that are transferred
from concrete frameworks playing the subject role to interceptors playing the
observer/subscribe roles.

The Reflection pattern [POSA1] provides a mechanism for changing structure and behavior
of software systems. A layer of base-level objects includes the application logic. An
additional layer, the meta-level, provides information about system properties and allows
developers to control the semantics of the base level. The relationship between the
Reflection pattern and the Interceptor pattern is twofold:
§ Interception provides a means to implement reflective mechanisms. For example, to

instantiate the Reflection pattern we can introduce dispatchers that help developers
introduce new behavior by registering interceptors with the meta-level. Interception can
thus be viewed as a lightweight reflective approach that is easier to implement and less
consumptive of CPU and memory. Moreover, interception only exposes certain of the
internals of the underlying system, whereas reflection often covers a broader scope.

 125

§ Reflection can define a type of interception mechanism. The main intent of reflection is
to allow applications to observe their own state so that they can change their own
behavior dynamically. In contrast, the main intent of Interceptor is to allow other
applications to extend and control the behavior of a concrete framework.

The Reactor pattern (179) demultiplexes and dispatches service requests that are delivered
concurrently to an application from one or more clients. While the Reactor pattern focuses
on handling system-specific events, the Interceptor pattern helps to intercept application-
specific events. The Reactor pattern is often instantiated to handle system events occurring
in the lower layers of a communication framework, whereas the Interceptor pattern is used in
multiple layers between the framework and the application.

Credits

Thanks to Fabio Kon who contributed the dynamicTAO known use.

[4]In this context, events denotes application-level events such as the delivery of requests
and responses within an ORB framework. These events are often visible only within the
framework implementation.

[5]ORBs support peer-to-peer communication. Thus 'client' and 'server' are relative terms
corresponding to roles played during a particular request/response interaction, rather than
being fundamental properties of particular system components.

[6]More details on composite state machines is available in the UML User Guide [BRJ98].

Extension Interface
The Extension Interface design pattern allows multiple interfaces to be exported by a
component, to prevent bloating of interfaces and breaking of client code when developers
extend or modify the functionality of the component.

Example

Consider a telecommunication management network (TMN) [ITUT92] framework that can be
customized to monitor and control remote network elements such as IP routers and ATM
switches. Each type of network element is modeled as a multi-part framework component in
accordance with the Model-View-Controller pattern [POSA1]. A view and a controller are
located on a management application console. The view renders the current state of a
network element on the console and the controller allows network administrators to manage
the network element.

A model resides on the network element and communicates with the view and controller to
receive and process commands, such as commands to send state information about the
network element to the management application console. All components in the TMN
framework are organized in a hierarchy. The UniversalComponent interface shown in the
following figure provides the common functionality needed by every component, such as
displaying key properties of a network element and accessing its neighbors.

 126

In theory, this design might be appropriate if the UniversalComponent interface shown
above is never changed, because it would allow client applications to access a wide range of
network elements via a uniform interface. In practice, however, as the TMN framework
becomes increasingly popular, management application developers will request that new
functionality and new methods, such as dump () and persist (), be added to the
UniversalComponent interface.

Over time the addition of these requests can bloat the interface with functionality not
anticipated in the initial framework design. If new methods are added to the
UniversalComponent interface directly, all client code must be updated and recompiled.
This is tedious and error-prone. A key design challenge is therefore to ensure that
evolutionary extensions to the TMN framework do not bloat its interfaces or break its client
code.

Context

An application environment in which component interfaces may evolve over time.

Problem

Coping with changing application requirements often necessitates modifications and
extensions to component functionality. Sometimes all interface changes can be anticipated
before components are released to application developers. In this case it may be possible to
apply the 'Liskov Substitution Principle' [Mar95]. This principle defines stable base interfaces
whose methods can be extended solely via subclassing and polymorphism.

In other cases, however, it is hard to design stable interfaces, because requirements can
change in unanticipated ways after components have been delivered and integrated into
applications. When not handled carefully, these changes can break existing client code that
uses the components. In addition, if the new functionality is used by only few applications, all
other applications must incur unnecessary time and space overhead to support component
services they do not need.

To avoid these problems, it may be necessary to design components to support evolution,
both anticipated and unanticipated. This requires the resolution of four forces:
§ When component interfaces do not change, modifications to component

implementations should not break existing client code.

§ If implementations of our UniversalComponent interface store their state
persistently in external storage, clients should not be affected if this functionality is
re-implemented differently, as long as the component's interface is unchanged.

 127

§ Existing client code should not break when developers extend a component with new
services that are visible externally. Ideally it should not be necessary to re-compile client
code.

§ It may be necessary to add a logging service to the UniversalComponent interface
so that management applications and network elements can log information to a
central repository. Existing clients that are aware of the original version of
UniversalComponent should not be affected by this change, whereas new
clients should be able to take advantage of the new logging functionality.

§ Changing or extending a component's functionality should be relatively straightforward,
neither bloating existing component interfaces nor destabilizing the internal architecture
of existing components.

§ When adding the logging service outlined above, we should minimize changes to
existing implementations of the UniversalComponent interface.

§ It should be possible to access components remotely or locally using the same
interface. If components and their clients are distributed across network nodes, the
interfaces and implementations of a component should be decoupled.

§ Management applications can benefit from location-transparent access to remote
network elements in our TMN system. It should therefore be possible to separate
the interfaces of network element management components from their physical
implementations. These can be distributed throughout the network.

Solution

Program clients to access components via separate interfaces, one for each role a
component plays, rather than programming clients to use a single component that merges all
its roles into a single interface or implementation.

In detail: export component functionality via extension interfaces, one for each semantically-
related set of operations. A component must implement at least one extension interface. To
add new functionality to a component, or to modify existing component functionality, export
new extension interfaces rather than modify existing ones. Moreover, program clients to
access a component via its extension interfaces instead of its implementation. Hence, clients
only have dependencies on the different roles of a component, each of which is represented
by a separate extension interface.

To enable clients to create component instances and retrieve component extension
interfaces, introduce additional indirection. For example, introduce an associated component
factory for each component type that creates component instances. Ensure that it returns an
initial interface reference that clients can use to retrieve other component extension

 128

interfaces. Similarly, ensure that each interface inherits from a root interface that defines
functionality common to all components, such as the mechanism for retrieving a particular
extension interface. All other extension interfaces derive from the root interface. This
ensures that at minimum they offer the functionality it exports.

Structure

The structure of the Extension interface pattern includes four participants:

Components aggregate and implement various types of service-specific functionality. This
functionality can often be partitioned into several independent roles, each of which defines a
set of semantically-related operations.

Components in our TMN framework play various roles, such as storing and retrieving the
state of a network element or managing the persistence of a component's internal state.

Extension interfaces export selected facets of a component's implementation. There is one
extension interface for each role [RG98] that a component implements. In addition, an
extension interface implicitly specifies a contract that describes how clients should use the
component's functionality. This contract defines the protocol for invoking the methods of the
extension interface, such as the acceptable parameter types and the order in which methods
must be called.

The components in the TMN framework can implement the IStateMemory interface,
which allows them to maintain their state in memory. A persistence manager, such as
the CORBA Persistent State Service [OMG99e] can use the IStateMemory interface to
manage component persistence without requiring components to expose their
representational details.

If new network element components are added that also implement IStateMemory, the
persistence manager can manage their persistence without requiring any changes. The
IStateMemory interface contains methods to prepare the component for reading and

 129

writing its state, as well as its read and write operations. The implicit contract between
the interface and its users therefore prescribes that the prepare() method must be
called before either readState() or writeState().

The root interface is a special extension interface that provides three types of functionality:
§ Core functionality that all extension interfaces must support, for example functionality

that allows clients to retrieve the interfaces they request. This functionality defines the
basic mechanisms a component must implement to allow clients to retrieve and
navigate among its interfaces.

§ Domain-independent functionality, such as methods that manage component life-
cycles.

§ Domain-specific functionality that should be provided by all components within a
particular domain.

Although the root interface must implement core functionality, it need not support domain-
independent or domain-specific functionality. However, all extension interfaces must support
the functionality defined by the root interface. Each extension interface can thus play the role
of the root interface, which guarantees that every extension interface can return any other
extension interface on behalf of a client request.

A UniversalComponent interface can be defined as the root interface in our TMN
framework. Unlike the multi-faceted—and increasingly bloated—
UniversalComponent interface outlined in the Example section, however, this root
interface only defines the minimum set of methods that are common to all components
in the TMN framework.

Clients access the functionality provided by components only via extension interfaces. After
a client retrieves a reference to an initial extension interface, it can use this reference to
retrieve any other extension interface supported by a component.

A management application console client can use components in the TMN framework to
render the state of network elements and their relations visually on the screen, as well
as to store and retrieve their state using persistent storage.

 130

To retrieve an initial reference, clients interact with a component factory associated with a
particular component type. This component factory separates the creation and initialization
aspects of a component from its processing aspects. When a client creates a new
component instance, it delegates this task to the appropriate component factory.

After a component is created successfully, the component factory returns a reference to an
extension interface to the client. A component factory may allow clients to request a specific
type of initial extension interface. Factories may also provide functionality to locate and
return references to existing component instances.

The class diagram below illustrates the participants in the Extension Interface pattern. This
diagram emphasizes logical rather than physical relationships between components. For
example, extension interfaces could be implemented using multiple inheritance or nested
classes, as described in implementation activity 6.1 (155). Such implementation details are
transparent to clients.

Dynamics

We illustrate the key collaborations in the Extension Interface pattern using two scenarios.
Scenario I depicts how clients create new components and retrieve an initial extension
interface:
§ The client requests a component factory to create a new component and return a

reference to a particular extension interface.

 131

§ The component factory creates a new component and retrieves a reference to its root
interface.

§ The component factory asks the root interface for the requested extension interface,
then returns a reference to the extension interface to the client.

Note that the factory could return any interface to the client, instead of retrieving a specific
extension one. Such a design can incur additional round-trips in a distributed system,
however, which increases the overhead of accessing the required interface.

Scenario II depicts the collaboration between clients and extension interfaces. Note that the
component implementation itself is not visible to the client, because it only deals with
extension interfaces:
§ The client invokes a method on extension interface A, which can either be the root

interface or an extension interface.
§ The implementation of extension interface A within the component executes the

requested method and returns the results, if any, to the client.
§ The client calls the getExtension() method on extension interface A and passes it a

parameter that specifies the extension interface in which the client is interested. The
getExtension() method is defined in the root interface, so it is supported by all
extension interfaces. The implementation of extension interface A within the component
locates the requested extension interface B and returns the client a reference to it.

§ The client invokes a method on extension interface B, which is then executed within
the component implementation.

Implementation

This section describes the activities associated with implementing the Extension Interface
pattern. This pattern should be familiar to anyone who has programmed with Microsoft's
Component Object Model (COM) [Box97], Enterprise JavaBeans (EJB) [MaHa99], or the

 132

CORBA Component Model (CCM) [OMG99a], because it captures and generalizes the core
concepts underlying these component technologies.

1. Determine the stability of the design and the long-term application requirements.
Before applying the Extension Interface pattern, it is important to determine whether it
is really needed. Although this pattern is a powerful solution to a particular set of
forces, it is nontrivial to implement. It can also complicate a software design
significantly if applied unnecessarily.

We therefore recommend that the forces outlined in the Problem section are
considered carefully. You should ensure that these issues are faced in your software
system before applying this pattern. For example, it may turn out that the complete
set of methods an interface requires can be determined during system development,
and that the interface will not change over time as application requirements evolve. In
this case, it may be simpler to use the Liskov Substitution Principle [Mar95] rather
than the Extension Interface pattern.

2. Analyze the domain and specify a domain-specific component model. Assuming that
the Extension Interface pattern is necessary, the next activity involves analyzing
domain-specific application requirements. In particular, this activity focuses on
identifying application-specific entities, such as the network elements in our TMN
example, the roles a particular entity provides to the system, and the functionality that
supports the different roles. The result is a domain model that identifies which
components to implement, as well as the functionality they must provide.

3. For the management application console, every type of entity to be controlled is
implemented as a separate managed object [ITUT92], which is an abstraction
used to represent hardware units, such as routers, computers, bridges, or
switches. Managed objects can also represent software elements, such as
applications, ports, or connections. Management applications use managed
objects to control and monitor the state of network elements, display debugging
information, or visualize system behavior on a management console.

5. After devising a domain model, it is necessary to specify a component model to
implement the identified components:
§ If the components are restricted to a single application domain or a small set of

related domains, consider specifying a domainspecific component model that is
tailored for the application or family of applications being developed.

§ Conversely, if the components must be applied to a wide range of applications,
or even across multiple domains, consider using an existing component
technology, such as Microsoft COM [Box97], EJB [MaHa99], or the CORBA
Component Model [OMG99a].

In the latter case, the next implementation activity can be skipped, because these
component models define the infrastructure it specifies.

6. Specify the root interface. Determine if each type of functionality identified in
implementation activity 2 above should form part of the root interface, or be separated
into an extension interface.

With this criteria in mind, iterate through three sub-activities:
1. Specify core functionality. Several issues must be addressed when defining

the core functionality of the root interface:
§ Extension interface retrieval. At minimum, the root interface must

include a method that returns extension interface references to clients.

 133

The type of information returned from this method depends largely on the
programming language. For example, Java clients expect to retrieve an
object reference, whereas pointers are an appropriate choice for C++.

§ Unique naming. Extension interfaces must be named using integer
values or strings. Strings can be read more easily by programmers and
simple management tools, but integer values can be smaller and
processed more efficiently. To prevent name clashes, interface identifiers
can be generated algorithmically. For instance, Microsoft COM uses 128
bit globally unique identifiers (GUIDs) based on the address of the
network interface, the date, and the time.

§ Error handling. Component developers must determine what a
component should do when a client requests an extension interface that
is not supported. For example, a component could either return an error
value or raise an exception. The Implementation section of the Wrapper
Facade pattern (47) discusses several strategies for implementing an
error-handling mechanism and evaluates their trade-offs.

2. Specify domain-independent services. In addition to defining a method for
retrieving extension interfaces, the root interface can provide methods for
various domain-independent services. Here are two possibilities:
§ Reference counting. In programming languages that do not provide

automatic garbage collection, such as C or C++, clients are responsible
for deleting extension interfaces they no longer need. However, multiple
clients may share the same extension interface. Components can thus
provide a reference counting mechanism to prevent the accidental
deletion of resources used to implement extension interfaces.

Reference counting enables components to track the number of clients
accessing specific extension interfaces. After an extension interface is no
longer referenced by any clients, the resources used by the component's
implementation of the interface can be released automatically. The
Counted Pointer idiom [POSA1] [Cope92] presents several options for
implementing a reference counting mechanism.

§ Run-time reflection. Another example of a domain-independent service
is a run-time reflection mechanism. This mechanism allows components
to publish information about the specific roles, extension interfaces, and
methods they support. Using this knowledge, clients can construct and
send method invocations dynamically [GS96]. This enables scripting
languages to integrate components into existing client applications at run-
time. Reflection mechanisms can be instantiated using the Reflection
architectural pattern [POSA1].

3. Specify domain-specific functionality. The root interface can also export
domain-specific functionality if all components implementing the root interface
provide this functionality.

4. In our management application console, the drawing functionality could be
moved to the root interface.

6. The decision about which domain-specific services to specify in the root
interface should normally be deferred until after implementation activity 4
(153). Ideally, all domain-specific functionality should reside in separate
extension interfaces. If all components end up implementing a particular

 134

extension interface, refactor the current solution [Opd92] [FBBOR99] and
move the methods of that particular extension interface to the root interface.

7. In our TMN framework example, extension interfaces are identified by
unique integer constants. We use Java as the implementation language
because it provides automatic garbage collection, which simplifies
memory management. The only common functionality therefore required
in the root interface—which we call IRoot—is a method that allows client
to retrieve any interface they need.

8. // Definition of IRoot:
9. public interface IRoot {
10. IRoot getExtension (int ID) throws UnknownEx;
11. }

12. IRoot serves as a generic base interface for all extension interfaces, If a
component does not support a particular interface, it throws an
UnknownEx exception:

13. // Definition of UnknownEx:
14. public class UnknownEx extends Exception {
15. protected int ID;
16. public UnknownEx (int ID) { this.ID = ID; }
17. public int getID () { return ID; }
18. }

19. The unique identifier of the requested interface is passed as an argument
to the UnknownEx constructor. This allows a client to determine which
interface caused the exception.

21. Another potential candidate for inclusion in the root interface is a persistence
mechanism. However, there are many different strategies and policies for
handling persistence, such as managing component state in databases or flat
files, which makes it hard to anticipate all possible use cases. Therefore,
components can choose to support whatever persistence mechanism they
consider appropriate by implementing specific extension interfaces.

7. Introduce general-purpose ext3ension interfaces. General-purpose extension
interfaces contain functional roles that must be provided by more than one
component and that are not included in the root interface. A separate extension
interface should be defined for each role. For example, extension interfaces can be
defined to handle persistence aspects of components, as discussed at the end of
implementation activity 3 (150).

8. Our management application console helps to control and monitor remote
network entities via managed objects. Managed objects are implemented as
components that send information to the management application console and
receive commands from it.

 135

9. Every managed object therefore implements the following interface,
IManagedObject:[7]

10. // Definition of IManagedObject:
11. import java.util.*;
12.
13. public interface IManagedObject extends IRoot {
14. public void setValue (String key, Object

value) ;
15. public Object getValue (String key) throws
16. WrongKeyEx;
17. public void setMultipleValues
18. (Vector keys, Vector values);
19. public Vector getMultipleValues
20. (Vector keys) throws WrongKeyEx;
21. public long addNotificationListener
22. (INotificationSink sink) ;
23. public void removeNotificationListener (long

handle) ;
24. public void setFilter (String expr) ;
25. }

26. This example illustrates managed objects that are visualized on a management
console. We therefore introduce two additional extension interfaces, IDump and
IRender, which are implemented by all components that print debug information
on the console or draw themselves.

27. // Definition of IDump:
28. public interface IDump extends IRoot {
29. public String dump () ;
30. }
31.
32. // File IDraw.java.
33. public interface IRender extends IRoot {
34. public void render () ;
35. }

37. If a particular general-purpose extension interface must be supported by all
components, it may be feasible to refactor the root interface specified in
implementation activity 3 (150) and integrate this functionality there. Note, however,
that refactoring the root interface may bloat it with functionality or break existing
applications, thereby defeating the benefits of the Extension Interface pattern.

38. Define component-specific extension interfaces. The extension interfaces needed to
export generic component functionality were specified in implementation activities 3
(150) and 4 (153). This implementation activity defines additional interfaces that are

 136

specific to a particular component or that are applicable to a limited range of
components.

39. For our TMN framework, we specify the extension interfaces IPort and
IConnection. Managed objects that represent ports on a particular host
implement IPort:

40. // Definition of IPort:
41. public interface IPort extends IRoot {
42. public void setHost (String host) ;
43. public String getHost ();
44. public void setPort (long port);
45. public long getPort ();
46. }

47. Likewise, objects that represent the connection between two ports implement
IConnection:

48. // Definition of IConnection:
49. public interface IConnection extends IRoot {
50. public void setPort1 (IPort p1) ;
51. public IPort getPort1 () ;
52. public void setPort2 (IPort p2);
53. public IPort getPort2 ();
54. public void openConnection () throws

CommErrorEx;
55. public void closeConnection () throws

CommErrorEx;
56. }

58. Implement the components. The implementation of components involves five sub-
activities:

0. Specify the component implementation strategy. This activity determines how
extension interface implementations should be linked, in accordance with the
following three strategies:
§ Multiple inheritance. In this strategy a component class inherits from

all of its extension interfaces.
§ Nested classes. In this strategy extension interfaces can be

implemented as nested classes within the component class. The
component class instantiates a singleton instance [GoF95] of each nested
class. Whenever the client asks for a particular extension interface, the
getExtension() method implementation returns the appropriate nested
class object.

§ Separate interface classes. Extension interfaces can use the Bridge or
Adapter patterns [GoF95] to implement separate classes that are
independent of the component itself. This strategy is particularly useful

 137

when applying the Extension Interface pattern to refactor an existing
component that does not implement the pattern.

The 'tie' adapter [SV98a] defined in the CORBA IDL mappings for Java
and C++ is an example of this component implementation strategy. In
CORBA a tie adapter inherits from an automatically-generated servant
class, overrides all its pure virtual methods, and delegates these methods
to another C++ object, the so-called 'tied object'. A server application
developer defines the tied object.

1. Regardless of which component implementation strategy is selected, the client
is unaffected, because it only accesses the component via references to
extension interfaces.

2. Implement the mechanism to retrieve extension interfaces. When
implementing the generic method that retrieves extension interfaces on behalf
of clients, ensure that the method implementation conforms to three
conventions:
§ Reflexivity. When clients query extension interface A for the same

extension interface A, they must always receive the same reference A.
§ Symmetry. If a client can retrieve extension interface B from extension

interface A, it also must be able to retrieve extension interface A from
extension interface B.

§ Transitivity. If a client can retrieve extension interface B from extension
interface A and extension interface C from extension interface B, it must
be possible to retrieve extension interface C directly from extension
interface A.

Following the conventions above ensures that a client can always navigate
from a specific extension interface of a component to any other extension
interface of the same component. In other words, each extension interface can
be connected with every other extension interface via navigation.

3. Implement a reference counting mechanism (optional). If the root interface
requires the reference counting mechanism discussed in implementation
activity 3.2 (151), specify the resources in the component implementation that
must be managed by this mechanism. There are two common options for
implementing a reference counting mechanism:
§ If each interface implementation requires or uses separate resources,

or if there are separate implementations for each interface, introduce a
separate reference counter for each extension interface. If a particular
reference counter drops to zero, release all resources used by the
corresponding extension interface. After the last reference counter has
fallen to zero, all resources associated with the component can be
released.

§ If all interface implementations share the same resources, introduce a
global reference counter for the entire component. After this global
reference counter reaches zero, release the component's resources.

The first option can optimize resource management more effectively than the
second option, because in the second option all resources must always be
available. In the first option, in contrast, extension interfaces and their required
resources may be activated and deactivated on demand. Only those extension
interfaces and resources actually used by clients are activated. The
disadvantage of maintaining extension interface-specific reference counters,
however, is their complex implementation within the component.

 138

We can apply reference counting to activate and deactivate extension
interface implementations on-demand in our TMN framework. This avoids
the unnecessary commitment of resources such as memory or socket
handles. For example, when a management application client accesses
an extension interface whose reference counter is zero, the component
can activate the interface implementation and its resources transparently.
When no clients access the extension interface, the corresponding
implementation and resources can be deactivated and released
selectively. The COM [Box97] component model implements this strategy.

4. Select a concurrency strategy. In concurrent or networked systems, multiple
clients can access a particular extension interface simultaneously.
Implementations of different extension interfaces may share state and
resources within the component. Critical sections and state within the
component's implementation must be serialized therefore to provide corruption
from concurrent access by clients.

The Active Object (369) and Monitor Object (399) concurrency patterns, as
well as the Scoped Locking (325), Strategized Locking (333), and Thread-Safe
Interface (345) synchronization patterns, define various strategies and
mechanisms for protecting critical sections and state within components.

5. Implement the extension interface functionality using the selected component
implementation strategy. This implementation activity is largely domain- or
application-specific, so there are no general issues to address.

6. In our TMN framework example we implement components using multiple
interface inheritance. Our components do not require explicit reference
counting, because Java provides automatic garbage collection.

7. For simplicity, we do not illustrate the component concurrency strategy. To
identify different extension interfaces uniquely, we define an
InterfaceID class that enumerates all interface identifiers. These are
defined to be integers via the following types:

8. // Definition of InterfaceID:
9. public class InterfaceID {
10. public final static int ID_ROOT = 0;
11. public final static int ID_MANOBJ= 1;
12. public final static int ID_DUMP = 2;
13. public final static int ID_RENDER= 3;
14. public final static int ID_PORT = 4;
15. public final static int ID_CONN = 5;
16. }

17. A more sophisticated implementation could use a repository of interface
identifiers. In this case, unique identifiers could be generated automatically
by tools to prevent name clashes when different component providers
define different interfaces. We could also use a String as the identifier
type rather than an int. This might improve the readability and

 139

debuggability of the component system, but at the expense of larger
memory footprint and slower lookup time.

18. One of the component types in the management application console
represents a connection between two ports. This component supports the
extension interfaces IManagedObject, IRender, IConnection , and
IDump. We implement all extension interfaces using Java interface
inheritance:

19. // Definition of ConnectionComponent:
20. public class ConnectionComponent implements
21. IManagedObject, IRender, IDump, IConnection {
22. // <table> contains all properties.
23. private Hashtable table = new Hashtable ();
24.
25. // <listener> contains event sinks.
26. private Hashtable listeners = new Hashtable

();
27. private long nListeners = 0;
28.
29. private IPort port1, port2;
30. private String filterExpression;
31.
32. // <IRoot> method.
33. public IRoot getExtension (int ID)
34. throws UnknownEx {
35. switch (ID) {
36. case InterfaceID.ID_ROOT:
37. case InterfaceID.ID_MANOBJ:
38. case InterfaceID.ID_DUMP:
39. case InterfaceID.ID_RENDER:
40. case InterfaceID.ID_CONNECT:
41. return this;
42. default:
43. throw new UnknownEx (ID);
44. }
45. }

46. Note how the getExtension() interface uses a switch statement to
determine which interface is supported by the component. Had the
identifier type been defined as a String rather than an int, we would
have used a different type of lookup strategy such as linear search,
dynamic hashing, or perfect hashing [Sch98a].

47. // Definition of IManagedObject:

 140

48. public void setValue (String key, Object
value) {

49. table.put (key, value);
50. }
51. public Object getValue (String key)
52. throws WrongKeyEx {
53. WrongKeyEx wkEx = new WrongKeyEx ();
54. if (!table.containsKey (key)) {
55. wkEx.addKey (key); throw wkEx;
56. }
57. return table.get (key);
58. }
59.
60. // Additional methods from <IManagedObject>.
61. public void setMultipleValues
62. (Vector keys, Vector values) { /* ... */

}
63. public Vector getMultipleValues
64. (Vector keys) throws WrongKeyEx { /* ...

*/ }
65. public long addNotificationListener
66. (INotificationSink sink) { /* ... */

}
67. public void removeNotificationListener
68. (long handle) { /* ... */ }
69. public void setFilter (String expr) { /* ...

*/ }
70.
71. // <IDump> and <IRender> methods.
72. public String dump () { /* ... */ }
73. public void render () { /* ... */ }
74.
75. // <IConnection> methods.
76. public void setPort1 (IPort p1) { port1 = p1;

}
77. public IPort getPort1 () { return port1; }
78. public void setPort2 (IPort p2) { port2 = p2;

}
79. public IPort getPort2 () { return port2; }
80. public void openConnection () throws

CommErrorEx { }
81. public void closeConnection () throws

CommErrorEx { }

 141

82. }

59. Implement component factories. Every component type must implement a factory that
clients can use to obtain instances of the component type. This involves three sub-
activities:

0. Define the association between component factories and components. For
every component type, a singleton [GoF95] component factory can be defined
to create instances of this component type. Two strategies can be applied to
implement this association:
§ One component factory interface per component type. In this strategy

a separate factory interface is defined for every component type and used
to instantiate the component type. One component type could offer a
component factory interface with a single method create(). Another
component type could offer a selection of different methods for creating
components. The Factory Method pattern [GoF95] can be used to
implement this strategy. It requires clients to handle many different
component factory interfaces, however.

§ One component factory interface for all component types. In this
strategy there is only one component factory interface that all concrete
component factories must implement. This design enables clients to
create different components in a uniform manner. For example, when a
client creates a new component, it only must know how to invoke the
generic component factory interface. The Abstract Factory design pattern
[GoF95] can be used to implement this strategy.

1. Decide which functionality the factory will export. Regardless of the strategy
selected in implementation activity 7.1 (160), the following issues must be
addressed when specifying the interface of a particular component factory:
§ There could be one or more different methods for creating new

components. These creation methods are similar to constructors in
object-oriented programming languages, such as C++ or Java, in that
they instantiate and initialize component types. Different types of
initialization information might be necessary to construct a new
component instance. For each of these alternatives, a separate create
method is introduced with its own, possibly empty, set of initialization
parameters.

§ Methods could be available for finding existing components rather than
creating them for each invocation. If component instances are already
available and if they can be identified uniquely, a factory can be
implemented using the Manager pattern [Som97]. In this case, its find()
methods are passed a set of conditions as arguments, such as the
primary key associated with each component. It then retrieves one or
more components that adhere to the condition arguments.

§ Clients can specify component usage policies. For example, one
policy could provide a singleton implementation for a particular
component type. Another policy could determine whether a specific
component is expected to maintain its state persistently.

§ Life-cycle management support for components is another candidate
for the component factory interface. For example, methods to release
existing components might be included in the component factory.

2. For every managed object in our TMN framework, we provide a separate
component factory, implemented as a singleton. The interface IFactory

 142

is generic and is supported by all concrete component factory
implementations. It contains the create() method that clients use to
instantiate a new component and to return the IRoot interface to the
caller:

3. // Definition of Factory:
4. public interface Factory {
5. IRoot create ();
6. }

7. Every concrete component factory must implement this factory interface:
8. // Definition of ConnectionFactory:
9. public class ConnectionFactory implements Factory

{
10. // Implement the Singleton pattern.
11. private static ConnectionFactory theInstance;
12.
13. private ConnectionFactory () { }
14.
15. public static ConnectionFactory getInstance ()

{
16. if (theInstance == null)
17. theInstance = new ConnectionFactory

();
18. return theInstance;
19. }
20.
21. // Component creation method.
22. public IRoot create () {
23. return new ConnectionComponent ();
24. }
25. }

27. Introduce a component factory finder. As the number of component types
increases, the problem of how to find the associated component factories
arises. One way to resolve this is to define a global component factory finder.
This finder could maintain the associations between component types and
their component factories, as specified in implementation activity 7.1 (160).

To obtain the component factory for a particular component type, clients must
indicate to the component factory finder which component type they require.
Component types must therefore be identified uniquely. A common way to
implement this identification mechanism is to introduce a primary key type for
every component type. This key type helps to associate component instances
with instances of the primary key type uniquely.

 143

For example, each component instance might be associated uniquely with an
integer value. This integer value might be passed as an argument to a
particular find() method of the component factory, which uses the primary
key to obtain the associated component instance. For this purpose, the
component factory can apply the Manager pattern [Som97] and map from
primary key values to component instances. To simplify client programming,
the same primary key type can be used to identify both component instances
and extension interfaces, as shown in implementation activity 3.1 (151). In
Microsoft COM, for example, globally-unique identifiers (GUIDs) identify both
extension interfaces and component types.

When clients request a specific component factory from the component factory
finder, the factory finder returns the interface of the component factory. By
using this interface, clients can instantiate the components they need. If there
is only one global component factory finder in the system, use the Singleton
pattern [GoF95] to implement it.

The component factory finder can optionally provide a trading mechanism
[OMG98b]. In this case, clients do not pass a concrete component type to the
component factory finder. Instead, they specify properties that can be used by
the component factory finder to retrieve an appropriate component factory. For
example, a client might specify certain properties of extension interfaces in
which it is interested to a component factory finder. The component factory
finder then locates a component type that implements all the requested
interfaces.

Management application clients in our TMN system need not know all
component factories. We therefore introduce a component factory finder
that is responsible for managing a hash table with component-to-factory
associations. Clients need only know where the single component factory
finder is located. To identify components uniquely, we apply the same
strategy used for interfaces in implementation activity 6.5 (158).

A class ComponentID is introduced that contains integer values, each
associated with a single component factory:
 // Definition of ComponentID:
 public class ComponentID {
 public final static int CID_PORT = 0;
 public final static int CID_CONN = 1;
 }

The component factory finder is implemented as a singleton. It contains
two methods that are publicly accessible. The registerFactory()
method must be called—either by clients or by components—to register
component factories with the component factory finder. The
findFactory() method is used to search for existing component
factories.
 // Definition of FactoryFinder:
 import java.util.*;

 public class FactoryFinder {

 144

 // ID/factory associations are stored in a
hash table.
 Hashtable table = null;
 // Implement the Singleton pattern.
 private static FactoryFinder theInstance;

 public static FactoryFinder getInstance () {
 if (theInstance == null) {
 theInstance = new FactoryFinder ();
 }
 return theInstance;
 }

 private FactoryFinder () {
 table = new Hashtable ();
 }

 // Component factory is registered with the
finder.
 public void registerFactory (int ID, Factory
f) {
 table.put (new Integer (ID), f);
 }

 // Finder is asked for a specific component
factory.
 public Factory findFactory (int ID)
 throws UnknownEx {
 Factory f = (Factory) table.get
 (new Integer (ID));
 if (f == null) throw new UnknownEx (ID);
 else return f;
 }
 }

60. Implement the clients. Clients use functionality provided by components. They may
also act as containers[8] for these components. To implement clients apply the
following steps:
§ First determine which component functionality they require. For example,

determine if there are existing components that cover some or all of the
functionality the clients are expected to provide.

 145

§ Identify which components should be composed together and determine which
components can use other components.

§ Determine if there are any subsystems within the client application that might
be used in other applications and separate these into new component types.

After evaluating these issues, integrate the client application using the components
identified via the analysis outlined in the implementation activities above.

In our example, to localize the initialization of our TMN system we provide a class
ComponentInstaller within a client that creates all the necessary component
factories and registers them with the component factory finder:
 class ComponentInstaller {
 static public void install () {
 // First, get the global factory finder
instance.
 FactoryFinder finder =
 FactoryFinder.getInstance ();
 // Ask the factory finder for the comp.
factories
 PortFactory pFactory =
 PortFactory.getInstance ();
 ConnectionFactory cFactory =
 ConnectionFactory.getInstance ();

 // Register both component factories.
 finder.registerFactory
 (componentID.CID_PORT, pFactory);
 finder.registerFactory
 (componentID.CID_CONN, cFactory);
 }
 }

The main class of the client application defines the methods dumpAll() and
drawAll(). Both methods are passed an array of components as a parameter.
They then iterate through the array querying each component for the extension
interface IDump and IRender, respectively, calling the methods dump() and
render() if the query succeeds. This example shows that polymorphism can be
supported by using interface inheritance rather than implementation inheritance.
 // This client instantiates three components: two ports
 // and a connection between them.
 public class Client {
 private static void dumpAll (IRoot components[])
 throws UnknownEx {
 for (int i = 0; i < components.length; ++i) {

 146

 IDump d = (IDump)
 components[i].getExtension
 (InterfaceID.ID_DUMP);
 System.out.println (d.dump ());
 }
 }

 private static void drawAll (IRoot components[])
 throws UnknownEx {
 for (int i = 0; i < components.length; ++i) {
 IRender r = (IRender)
 components[i].getExtension
 (InterfaceID.ID_RENDER);
 r.render ();
 }
 }

The main() method is the entry point into the client application. It first initializes
the TMN system using the initialization component introduced above, then it
retrieves the required component factories representing ports and connections
between ports:
 public static void main (String args[]) {
 Factory pFactory = null;
 Factory cFactory = null;

 // Register components with the factory finder.
 ComponentInstaller.install ();

 // access factory finder.
 FactoryFinder finder =
 FactoryFinder.getInstance ();
 try {
 // Get factories.
 pFactory = finder.findFactory
 (componentID.CID_PORT);
 cFactory = finder.findFactory
 (componentID.CID_CONN);
 }
 catch (UnknownEx ex) {
 System.out.println (ex.getID () +
 "not found!");

 147

 System.exit (1);
 }

 // Create two ports and a connection.
 IRoot port1Root = pFactory.create ();
 IRoot port2Root = pFactory.create ();
 IRoot connectionRoot = cFactory.create ();

Note that a client could type cast port1Root and port2Root below instead of
calling the getExtension() method, because the components use interface
inheritance to implement the extension interfaces. However, this design would
tightly couple the client implementation and the component implementation. If we
later restructured the components to use Java inner classes rather than multiple
interface inheritance, for example, all the client code would break.
 try {
 // Initialize port 1.
 IPort p1 = (IPort) port1Root.getExtension
 (InterfaceID.ID_PORT);
 p1.setHost ("Machine A");
 p1.setPort (PORT_NUMBER);
 // ...Initialize port 2 and connection...

 // Build array of components.
 IRoot components[] = { c, p1, p2 };
 // Dump all components.
 dumpAll (components);
 // Draw all components.
 drawAll (components);
 } catch (UnknownEx error) {
 System.out.println ("Interface "
 +error.getID () + " not supported!");
 } catch (CommErrorEx commError) {
 System.out.println ("Connection problem");
 }
 }
 }

Example Resolved

Shortly after delivering the component-based management application console to their
customers, the TMN framework developers receive two change requests. The first request
requires each component in the TMN framework to load and store its state from a persistent

 148

database. The second request requires a new component with a star connection topology.
This topology denotes a set of network elements that are all connected to a central element,
yielding a star-like shape.

To satisfy these change requests, the TMN framework developers can apply the Extension
Interface pattern:
§ To support loading and storing component state from a persistent database, a new

extension interface called IPersistence is defined:
§ public interface IPersistence extends IRoot {
§ public PersistenceId store ();
§ public load (PersistenceId persistenceId);
§ }

Every existing component is then enhanced to implement this interface. In detail, a
component implementor must add all methods defined in the new interface to the
component implementation. The amount of work necessary to extend a component with
a new extension interface directly depends on the particular extension interface added
to the component. The persistence example requires just a few database calls to
implement the new interface.

§ To support star connection topologies, we define an IConnectionStar interface:
§ public interface IConnectionStar extends IRoot {
§ public void setAllPorts (IPort ports []);
§ public void setPort (long whichPort, IPort port);
§ public IPort getPort (long whichPort);
§ }

All TMN framework components must then implement the IRender, IDump,
IConnectionStar, IManagedObject and IPersistence interfaces.

The InterfaceID class defined in implementation activity 6.5 (158) is extended with
identifiers for the new interfaces.

If a client needs to access the new functionality, it can retrieve any extension interface from
the component, query the component for a new extension interface and use the new service:
 IRoot iRoot = /* ... */; // use any component interface
 try {
 PersistenceId storage = /* ... */;
 IPersistence iPersistence =
 iRoot.getExtension (InterfaceID.ID_PERSISTENCE);
 PersistenceId id = iPersistence.load (storage);
 } catch (UnknownEx ue) {
 // Provide exception handling code here when
 // <getExtension> fails to return <IPersistence>.
 }

Variants

 149

Extension Object [PLoPD3]. In this variant there is no need for a component factory because
each component is responsible for returning interface references to clients. Extension
objects are well-suited for components that are built using a single object-oriented
programming language, such as C++ or Java, where components derive from all interfaces
they implement. Type-safe downcasting can be used to retrieve component interfaces. In
these language-specific implementations component factories are not needed because
component classes map directly to language classes, which are themselves responsible for
instance creation.

Distributed Extension Interface. This variant features an additional type of participant,
servers, which host the implementations of components. Each server contains the factory as
well as the implementation of all supported extension interfaces. A single server can host
more than one component type. In distributed systems, clients and servers do not share the
same address space. It is the task of the server to register and unregister its components
with a locator service, so that clients or factory finders can retrieve remote components.

In distributed systems there is a physical separation of interfaces and implementations.
Client proxies can be introduced to attach clients to remote extension interfaces
transparently [POSA1] [GoF95]. Client-side proxies implement the same extension
interfaces as the components they represent. They also shield clients from tedious and
error-prone communication mechanisms by forwarding method invocations over the network
to remote components. Proxies can be defined so that clients can leverage the Extension
Object variant outlined above. To enhance performance, client proxies can provide co-
located [WSV99] local implementations of general-purpose extension interfaces to reduce
network traffic, in accordance with the Half Object plus Protocol pattern [Mes95].

In distributed object computing middleware [OMG98c], proxies can be implemented
automatically via an interface definition language (IDL) compiler. An IDL compiler parses
files containing interface definitions and generates source code that performs various
network programming tasks, such as marshaling, demarshaling, and error-checking [GS98].
The use of interface definition languages simplifies the connection of components and
clients written in different programming languages. To ensure this degree of distribution and
location transparency, the underlying component infrastructure can instantiate the Broker
architectural pattern [POSA1].

Extension Interface with Access Control. In this variant the client must authenticate itself to
the extension interface. Client access to an extension interface can be restricted by this
method. For example, an administrator might be granted access to all interfaces of a
component, whereas another client would be allowed to invoke methods on a subset of
interfaces that provided specific functionality.

Asymmetric Extension Interface. This variant specifies one distinguished interface that is
responsible for providing access to all other interfaces. In contrast to the symmetric case,
clients are not capable of navigating from an extension interface to any other extension
interface. They must instead use the distinguished extension interface to navigate to any
other extension interface. This interface may be provided by the component itself, as defined
by the Extension Object variant.

Known Uses

Microsoft's COM/COM+ technology is based upon extension interfaces [Box97]. Each COM
class implementation must provide a factory interface called IClassFactory that defines
the functionality to instantiate new instances of the class. When the COM run-time activates
the component implementation, it receives a pointer to the associated factory interface.
Using this interface, clients can to create new component instances.

 150

Each COM class implements one or more interfaces that are derived from a common root
interface called IUnknown. The IUnknown interface contains the method
QueryInterface(REFIID, void**), which allows clients to retrieve particular extension
interfaces exported by a component. The first parameter to QueryInterface() is a unique
identifier that determines which extension interface to return to a client. If the component
implements the interface requested by a client, it returns an interface pointer in the second
parameter, otherwise an error is returned.

This activity is called interface negotiation, because clients can interrogate components to
determine whether they support particular extension interfaces. COM/COM+ implements the
Distributed Extension Interface variant and allows clients and components to be developed
in any programming language supported by Microsoft, including Visual Basic, C, C++ and
Java.

CORBA 3 [Vin98] introduces a CORBA Component Model (CCM) [OMG99a] in which each
component may provide more than one interface. Clients first retrieve a distinguished
interface, the component's so-called 'equivalent' interface. They then use specific 'provide'
methods to navigate to one of the extension interfaces, called 'facets' in CCM. Every CCM
interface must implement the method get_component(), which is similar to COM's
QueryInterface() method described above. It is therefore always possible to navigate
from a facet back to the component's equivalent interface.

To obtain a reference to an existing component, or to create a new component, clients
access a so-called 'home' interface, which is associated with a single component type. This
interface represents the component factory interface, as defined by CORBA components
and Enterprise JavaBeans. The factory finder within CCM is implemented by the
ComponentHomeFinder, whereas EJB relies on the Java Naming and Directory Interface
(JNDI) for the same purpose. CORBA components and the Java-centric subset Enterprise
JavaBeans (EJB) [MaHa99] use the Asymmetric Extension Interface variant.

OpenDoc [OHE96] introduces the concept of adding functionality to objects using
extensions. Functionality is provided to retrieve extensions in the root interface, as well as
for reference counting. OpenDoc implements the Extension Object variant of Extension
Interface.

Consequences

The Extension Interface pattern offers the following benefits:

Extensibility. Extending the functionality of a component should only require adding new
extension interfaces. Existing interfaces remain unchanged, so existing clients should not be
affected adversely. Developers can prevent interface bloating by using multiple extension
interfaces rather than merging all methods into a single base interface.

Separation of concerns. Semantically-related functionality can be grouped together into
separate extension interfaces. A component can play different roles for the same or different
clients by defining a separate extension interface for each role.

Polymorphism is supported without requiring inheritance from a common interface. If two
components implement the same extension interface, a client of that particular extension
interface need not know which component actually provides the functionality. Similarly,
multiple components can implement the same set of interfaces, thereby allowing them to
exchange component implementations transparent.

Decoupling of components and their clients. Clients access extension interfaces rather than
component implementations. There is therefore no (tight) coupling between a component

 151

implementation and its clients. New implementations of extension interfaces can thus be
provided without breaking existing client code. It is even possible to separate the
implementation of a component from its interfaces by using proxies [POSA1] [GoF95].

Support for interface aggregation and delegation. Components can aggregate other
components and offer the aggregated interfaces as their own. The aggregate interfaces
delegate all client requests to the aggregated component that implements the interface. This
allows the aggregate interfaces to assume the identity of every aggregated component and
to reuse their code. However, a pre-condition for this design is that the aggregate interface
component and its constituent aggregated components collaborate via the
getExtension() method.

However, the Extension Interface pattern also can incur the following liabilities:

Increased component design and implementation effort. The effort required to develop and
deploy components can be non-trivial. The component programming effort is particularly
tedious when the Extension Interface pattern is not integrated transparently in a particular
programming language. For example, it is relatively straightforward to instantiate the pattern
using Java or C++. Implementing it in C is extremely complex, however, due to the lack of
key language features such as inheritance or polymorphism.

Increased client programming complexity. The Extension Interface pattern makes clients
responsible for determining which interfaces are suitable for their particular use case. Clients
must therefore perform a multi-step protocol to obtain a reference to an extension interface
before using it. A client must also keep track of a variety of bookkeeping details, such as
interface or instance identifiers and reference counts, that can obscure the client's core
application logic.

Additional indirection and run-time overhead. Clients never access components directly,
which may reduce run-time efficiency slightly. Similarly, run-time reference counting of
initialized components is complex and potentially inefficient in multi-threaded or distributed
environments. In certain cases, however, this additional indirection is negligible, particularly
when accessing components across highlatency networks.

See Also

Components and clients may not reside in the same address space, be written in the same
programming language or be deployed in binary form, but it still may be necessary to
interconnect them. The Proxy pattern [POSA1] [GoF95] can be applied in this context to
decouple a component's interface from its implementation. For a more sophisticated and
flexible solution, the Broker pattern [POSA1] can be applied. In this pattern components act
as servers and the broker, among its other responsibilities, provides a globally-available
factory finder service.

The Extension Object variant of the Extension Interface pattern is introduced in [PLoPD3].
This variant is applicable whenever the object model of the underlying programming
language can be used to implement a non-distributed component extension mechanism. In
this case,
§ Components and component factories map directly to programming language classes
§ Component interfaces map to programming language interfaces and
§ The retrieval of component interfaces is implemented using typesafe downcasting

Credits

We were pleased to co-operate with Erich Gamma on this pattern description. Erich
published the Extension Object variant in [PLoPD3] and provided our inspiration for

 152

documenting the more general Extension Interface pattern described here. We would also
like to thank Don Box, aka the 'COM guy' [Box97], for providing many insights into the
Microsoft COM paradigm, and for identifying the fiduciary benefits of networking and
distributed object computing in the days when he was Doug Schmidt's office-mate in
graduate school at the University of California, Irvine.

[7]Note that a component may provide interfaces, such as IManagedObject, that are
accessed locally by the client, while their actual implementation resides on a remote network
node. By using the Proxy pattern [POSA1] [GoF95], distribution can be transparent to
clients. For clarity we assume that all interfaces have local implementations in this example.
For information on how proxies can be introduced to support distributed environments, refer
to the Distributed Extension Interface variant.

[8]Typically a component is loaded into the address space of a run-time environment that
provides resources such as CPU time and memory to its components. This runtime
environment is often called a container, because it shields components from the details of
their underlying infrastructure, such as an operating system. In non-distributed use cases,
clients can contain components and therefore act as containers.

 153

Chapter 3: Event Handling Patterns
Overview

"The power to guess the unseen from the seen, to trace the implications of
things, to judge the whole piece by the pattern ... this cluster of gifts may

almost be said to constitute experience."

Henry James, Jr. (1843–1916) — English Author

This chapter presents four patterns that describe how to initiate, receive, demultiplex,
dispatch, and process events in networked systems: Reactor, Proactor, Asynchronous
Completion Token, and Acceptor-Connector.

Event-driven architectures are becoming pervasive in networked software applications. The
four patterns in this chapter help to simplify the development of flexible and efficient event-
driven applications. The first pattern can be applied to develop synchronous service
providers:
§ The Reactor architectural pattern (179) allows event-driven applications to demultiplex

and dispatch service requests that are delivered to an application from one or more
clients. The structure introduced by the Reactor pattern 'inverts' the flow of control within
an application, which is known as the Hollywood Principle— 'Don't call us, we'll call you'
[Vlis98a].

It is the responsibility of a designated component, called reactor, not an application, to
wait for indication events synchronously, demultiplex them to associated event handlers
that are responsible for processing these events, and then dispatch the appropriate
hook method on the event handler. In particular, a reactor dispatches event handlers
that react to the occurrence of a specific event. Application developers are therefore
only responsible for implementing concrete event handlers and can reuse the reactor's
demultiplexing and dispatching mechanisms.

Although the Reactor pattern is relatively straightforward to program and use, it has several
constraints that can limit its applicability. In particular it does not scale to support a large
number of simultaneous clients and/or long-duration client requests well, because it
serializes all event handler processing at the event demultiplexing layer. The second pattern
in this chapter can help alleviate these limitations for event-driven applications that run on
platforms that support asynchronous I/O efficiently:
§ The Proactor architectural pattern (215) allows event-driven applications to efficiently

demultiplex and dispatch service requests triggered by the completion of asynchronous
operations. It offers the performance benefits of concurrency without incurring some of
its liabilities.

In the Proactor pattern, application components—represented by clients and completion
handlers—are proactive entities. Unlike the Reactor pattern (179), which waits passively
for indication events to arrive and then reacts, clients and completion handlers in the
Proactor pattern instigate the control and data flow within an application by initiating one
or more asynchronous operation requests proactively on an asynchronous operation
processor.

When these asynchronous operations complete, the asynchronous operation processor
and and a designated proactor component collaborate to demultiplex the resulting
completion events to their associated completion handlers and dispatch these handlers'
hook methods. After processing a completion event, a completion handler may initiate
new asynchronous operation requests proactively.

 154

The remaining two design patterns in this chapter can be applied in conjunction with the first
two architectural patterns to cover a broader range of event-driven application concerns.

The next pattern is particularly useful for optimizing the demultiplexing tasks of a Proactor
(215) implementation, because it addresses an important aspect of asynchronous
application design:
§ The Asynchronous Completion Token design pattern (261) allows an application to

demultiplex and process efficiently the responses of asynchronous operations it invokes
on services.

The final pattern in this chapter is often used in conjunction with the Reactor (179) pattern for
networking applications:
§ The Acceptor-Connector design pattern (285) decouples the connection and

initialization of cooperating peer services in a networked system from the processing
they perform once connected and initialized. Acceptor-Connector allows applications to
configure their connection topologies in a manner largely independent of the services
they provide. The pattern can be layered on top of Reactor to handle events associated
with establishing connectivity between services.

All four patterns presented in this chapter are often applied in conjunction with the patterns
presented in Chapter 5, Concurrency Patterns. Other patterns in the literature that address
event handling include Event Notification [Rie96], Observer [GoF95], and Publisher-
Subscriber [POSA1].

Reactor
The Reactor architectural pattern allows event-driven applications to demultiplex and
dispatch service requests that are delivered to an application from one or more clients.

Also known as

Dispatcher, Notifier

Example

Consider an event-driven server for a distributed logging service. Remote client applications
use this logging service to record information about their status within a distributed system.
This status information commonly includes error notifications, debugging traces, and
performance diagnostics. Logging records are sent to a central logging server, which can
write the records to various output devices, such as a console, a printer, a file, or a network
management database.

 155

Clients communicate with the logging server using a connection-oriented protocol, such as
TCP [Ste98]. Clients and the logging service are thus bound to transport endpoints
designated by full associations consisting of the IP addresses and TCP port numbers that
uniquely identify clients and the logging service.

The logging service can be accessed simultaneously by multiple clients, each of which
maintains its own connection with the logging server. A new client connection request is
indicated to the server by a CONNECT event. A request to process logging records within the
logging service is indicated by a READ event, which instructs the logging service to read new
input from one of its client connections. The logging records and connection requests issued
by clients can arrive concurrently at the logging server.

One way to implement a logging server is to use some type of multi-threading model. For
example, the server could use a 'thread-per-connection' model that allocates a dedicated
thread of control for each connection and processes logging records as they arrive from
clients. Using multi-threading can incur the following liabilities, however:
§ Threading may be inefficient and non-scalable due to context switching,

synchronization, and data movement among CPUs.
§ Threading may require the use of complex concurrency control schemes throughout

server code.
§ Threading is not available on all operating systems, nor do all operating systems

provide portable threading semantics.
§ A concurrent server may be better optimized by aligning its threading strategy to

available resources, such as the number of CPUs, rather than to the number of clients
is services concurrently.

These drawbacks can make multi-threading an inefficient and overly-complex solution for
developing a logging server. To ensure adequate quality of service for all connected clients,
however, a logging server must handle requests efficiently and fairly. In particular, it should
not service just one client and starve the others.

Context

An event-driven application that receives multiple service requests simultaneously, but
processes them synchronously and serially.

Problem

Event-driven applications in a distributed system, particularly servers,[1] must be prepared to
handle multiple service requests simultaneously, even if those requests are ultimately
processed serially within the application. The arrival of each request is identified by a
specific indication event, such as the CONNECT and READ events in our logging example.
Before executing specific services serially, therefore, an event-driven application must
demultiplex and dispatch the concurrently-arriving indication events to the corresponding
service implementations.

Resolving this problem effectively requires the resolution of four forces:
§ To improve scalability and latency, an application should not block on any single

source of indication events and exclude other event sources, because blocking on one
event source can degrade the server's responsiveness to clients.

§ To maximize throughput, any unnecessary context switching, synchronization, and
data movement among CPUs should be avoided, as outlined in the Example section.

§ Integrating new or improved services with existing indication event demultiplexing and
dispatching mechanisms should require minimal effort.

§ Application code should largely be shielded from the complexity of multi-threading and
synchronization mechanisms.

 156

Solution

Synchronously wait for the arrival of indication events on one or more event sources, such
as connected socket handles. Integrate the mechanisms that demultiplex and dispatch the
events to services that process them. Decouple these event demultiplexing and dispatching
mechanisms from the application-specific processing of indication events within the services.

In detail: for each service an application offers, introduce a separate event handler that
processes certain types of events from certain event sources. Event handlers register with a
reactor, which uses a synchronous event demultiplexer to wait for indication events to occur
on one or more event sources. When indication events occur, the synchronous event
demultiplexer notifies the reactor, which then synchronously dispatches the event handler
associated with the event so that it can perform the requested service.

Structure

There are five key participants in the Reactor pattern:

Handles are provided by operating systems to identify event sources, such as network
connections or open files, that can generate and queue indication events. Indication events
can originate from external sources, such as CONNECT events or READ events sent to a
service from clients, or internal sources, such as time-outs. When an indication event occurs
on an event source, the event is queued on its associated handle and the handle is marked
as 'ready'. At this point, an operation, such as an accept() or read(), can be performed
on the handle without blocking the calling thread.

Socket handles are used in the logging server to identify transport endpoints that receive
CONNECT and READ indication events. A passive-mode transport endpoint and its
associated socket handle listen for CONNECT indications events. The logging server then
maintains a separate connection, and thus a separate socket handle, for each
connected client.

A synchronous event demultiplexer is a function called to wait for one or more indication
events to occur on a set of handles—a handle set. This call blocks until indication events on
its handle set inform the synchronous event demultiplexer that one or more handles in the
set have become 'ready', meaning that an operation can be initiated on them without
blocking.

select() is a common synchronous event demultiplexer function for I/O events [Ste98]
supported by many operating systems, including UNIX and Win32 platforms. The
select() call indicates which handles in its handle set have indication events pending.
Operations can be invoked on these handles synchronously without blocking the calling
thread.

 157

An event handler specifies an interface consisting of one or more hook methods [Pree95]
[GoF95]. These methods represent the set of operations available to process application-
specific indication events that occur on handle(s) associated with an event handler.

Concrete event handlers specialize the event handler and implement a specific service that
the application offers. Each concrete event handler is associated with a handle that identifies
this service within the application. In particular, concrete event handlers implement the hook
method(s) responsible for processing indication events received through their associated
handle. Any results of the service can be returned to its caller by writing output to the handle.

The logging server contains two types of concrete event handlers: logging acceptor and
logging handler. The logging acceptor uses the Acceptor-Connector pattern (285) to
create and connect logging handlers. Each logging handler is responsible for receiving
and processing logging records sent from its connected client.

A reactor defines an interface that allows applications to register or remove event handlers
and their associated handles, and run the application's event loop. A reactor uses its
synchronous event demultiplexer to wait for indication events to occur on its handle set.
When this occurs, the reactor first demultiplexes each indication event from the handle on
which it occurs to its associated event handler, then it dispatches the appropriate hook
method on the handler to process the event.

 158

Note how the structure introduced by the Reactor pattern 'inverts' the flow of control within
an application. It is the responsibility of a reactor, not an application, to wait for indication
events, demultiplex these events to their concrete event handlers, and dispatch the
appropriate hook method on the concrete event handler. In particular, a reactor is not called
by a concrete event handler, but instead a reactor dispatches concrete event handlers,
which react to the occurrence of a specific event. This 'inversion of control' is known as the
Hollywood principle [Vlis98a].

Application developers are thus only responsible for implementing the concrete event
handlers and registering them with the reactor. Applications can simply reuse the reactor's
demultiplexing and dispatching mechanisms.

The structure of the participants in the Reactor pattern is illustrated in the following class
diagram:

Dynamics

The collaborations in the Reactor pattern illustrate how the flow of control oscillates between
the reactor and event handler components:
§ An application registers a concrete event handler with the reactor. At this point, the

application also indicates the type of indication event(s) the event handler wants the
reactor to notify it about, when such event(s) occur on the associated handle.

§ The reactor instructs each event handler to provide its internal handle, in our example
by invoking their get_handle() method. This handle identifies the source of indication
events to the synchronous event demultiplexer and the operating system.

§ After all event handlers are registered, the application starts the reactor's event loop,
which we call handle_events(). At this point the reactor combines the handles from
each registered event handler into a handle set. It then calls the synchronous event
demultiplexer to wait for indication events to occur on the handle set.

 159

§ The synchronous event demultiplexer function returns to the reactor when one or more
handles corresponding to event sources becomes 'ready', for example when a Socket
becomes 'ready to read'.

§ The reactor then uses the ready handles as 'keys' to locate the appropriate event
handler(s) and dispatch the corresponding hook method(s). The type of indication event
that occurred can be passed as a parameter to the hook method. This method can use
this type information to perform any additional application-specific demultiplexing and
dispatching operations.[2]

§ After the appropriate hook method within the event handler is dispatched, it processes
the invoked service. This service can write the results of its processing, if any, to the
handle associated with the event handler so that they can be returned to the client that
originally requested the service.

Implementation

The participants in the Reactor pattern decompose into two layers:
§ Demultiplexing/dispatching infrastructure layer components. This layer performs

generic, application-independent strategies for demultiplexing indication events to event
handlers and then dispatching the associated event handler hook methods.

§ Application layer components. This layer defines concrete event handlers that perform
application-specific processing in their hook methods.

The implementation activities in this section start with the generic demultiplexing/dispatching
infrastructure components and then cover the application components. We focus on a
reactor implementation that is designed to demultiplex handle sets and dispatch hook
methods on event handlers within a single thread of control. The Variants section describes
the activities associated with developing concurrent reactor implementations.

1. Define the event handler interface. Event handlers specify an interface consisting of
one or more hook methods [Pree95]. These hook methods represent the set of
services that are available to process indication events received and dispatched by
the reactor. As described in implementation activity 5 (196), concrete event handlers
are created by application developers to perform specific services in response to
particular indication events. Defining an event handler interface consists two sub-
activities:

1. Determine the type of the dispatching target. Two types of event handlers can
be associated with a handle to serve as the target of a reactor's dispatching
strategy:
§ Event handler objects. In object-oriented applications a common way

to associate an event handler with a handle is to create an event handler
object. For example, the Reactor pattern implementation shown in the
Structure section dispatches concrete event handler objects. Using an
object as the dispatching target makes it convenient to subclass event
handlers to reuse and extend existing components. Similarly, objects

 160

make it easy to integrate the state and methods of a service into a single
component.

§ Event handler functions. Another strategy for associating an event
handler with a handle is to register a pointer to a function with a reactor
rather than an object. Using a pointer to a function as the dispatching
target makes it convenient to register callbacks without having to define a
new subclass that inherits from an event handler base class.

The Adapter pattern [GoF95] can be employed to support both objects and
pointers to functions simultaneously. For example, an adapter could be
defined using an event handler object that holds a pointer to an event handler
function. When the hook method was invoked on the event handler adapter
object it could automatically forward the call to the event handler function that
it encapsulates.

2. Determine the event handling dispatch interface strategy. We must next define
the type of interface supported by the event handlers for processing events.
Assuming that we use event handler objects rather than pointers to functions,
there are two general strategies:
§ Single-method dispatch interface strategy. The class diagram in the

Structure section illustrates an implementation of the Event_Handler
base class interface that contains a single event handling method, which
is used by a reactor to dispatch events. In this case, the type of the event
that has occurred is passed as a parameter to the method.

§ We specify a C++ abstract base class that illustrates the single-
method interface. We start by defining a useful type definition and
enumeration literals that can be used by both the single-method and
multi-method dispatch interface strategies:

§ typedef unsigned int Event_Type;
§ enum {
§ // Types of indication events.
§ READ_EVENT = 01, // ACCEPT_EVENT aliases

READ_EVENT
§ ACCEPT_EVENT = 01, // due to <select>

semantics.
§ WRITE_EVENT = 02, TIMEOUT_EVENT = 04,
§ SIGNAL_EVENT = 010, CLOSE_EVENT = 020
§ // These values are powers of two so
§ // their bits can be "or'd" together

efficiently.
§ };

§ Next, we implement the Event_Handler class:
§ class Event_Handler { // Single-method interface.
§ public:
§ // Hook method dispatched by <Reactor> to

handle
§ // events of a particular type.

 161

§ virtual void handle_event (HANDLE handle,
§ Event_Type et) = 0;
§ // Hook method that returns the I/O <HANDLE>.
§ virtual HANDLE get_handle () const = 0;
§ protected:
§ // Virtual destructor is protected to ensure
§ // dynamic allocation.
§ virtual ~Event_Handler ();
§ };

§ The single-method dispatch interface strategy makes it possible to
support new types of indication events without changing the class
interface. However, this strategy encourages the use of C++ switch and
if statements in the concrete event handler's handle_event() method
implementation to handle a specific event, which degrades its
extensibility.

§ Multi-method dispatch interface strategy. A different strategy for
defining the Event_Handler dispatch interface is to create separate
hook methods for handling each type of event, such as input events,
output events, or time-out events. This strategy can be more extensible
than the single-method dispatch interface because the demultiplexing is
performed by a reactor implementation, rather than by a concrete event
handler's handle_event() method implementation.

§ The following C++ abstract base class illustrates the multi-method
interface:

§ class Event_Handler {
§ public:
§ // Hook methods dispatched by a <Reactor> to

handle
§ // particular types of events.
§ virtual void handle_input (HANDLE handle) = 0;
§ virtual void handle_output (HANDLE handle) =

0;
§ virtual void handle_timeout (const Time_Value

&) = 0;
§ virtual void handle_close (HANDLE handle,
§ Event_Type et) = 0;
§ // Hook method that returns the I/O <HANDLE>.
§ virtual HANDLE get_handle () const = 0;
§ };

 162

§ The multi-method dispatch interface strategy makes it easy to override
methods in the base class selectively, which avoids additional
demultiplexing via switch or if statements in the hook method
implementation. However, this strategy requires pattern implementors to
anticipate the event handler methods in advance. The various
handle_*() methods in the Event_Handler dispatch interface above
are tailored for I/O and time-out indication events supported by the
select() function. This function does not encompass all the types of
indication events, such as synchronization events that can be handled via
the Win32 WaitForMultipleObjects() function [SchSt95].

3. Both the single-method and multi-method dispatch interface strategies are
implementations of the Hook Method [Pree95] and Template Method [GoF95]
patterns. Their intent is to provide well-defined hooks that can be specialized
by applications and called back by lower-level dispatching code. This allows
application programmers to define concrete event handlers using inheritance
and polymorphism.

2. Define the reactor interface. The reactor's interface is used by applications to register
or remove event handlers and their associated handles, as well as to invoke the
application's event loop. The reactor interface is often accessed via a Singleton
[GoF95] because a single reactor is often sufficient for each application process.

To shield applications from complex and non-portable demultiplexing and dispatching
operating system platform mechanisms, the Reactor pattern can use the Bridge
pattern [GoF95]. The reactor interface corresponds to the abstraction participant in
the Bridge pattern, whereas a platform-specific reactor instance is accessed internally
via a pointer, in accordance with the implementation hierarchy in the Bridge pattern.

The reactor interface in our logging server defines an abstraction for registering
and removing event handlers, and running the application's event loop reactively:
 class Reactor {
 public:
 // Methods that register and remove <Event_Handler>s
 // of particular <Event_Type>s on a <HANDLE>.
 virtual void register_handler
 (Event_Handler *eh, Event_Type et) = 0;
 virtual void register_handler
 (HANDLE h, Event_Handler *eh, Event_Type et) =
0;
 virtual void remove_handler
 (Event_Handler *eh, Event_Type et) = 0;
 virtual void remove_handler
 (HANDLE h, Event_Type et) = 0;

 // Entry point into the reactive event loop. The
 // <timeout> can bound time waiting for events.

 163

 void handle_events (Time_Value *timeout = 0);
 // Define a singleton access point.
 static Reactor *instance ();
 private:
 // Use the Bridge pattern to hold a pointer to
 // the <Reactor_Implementation>.
 Reactor_Implementation *reactor_impl_;
 };

A typical reactor interface also defines a pair of overloaded methods, which we call
register_handler(), that allow applications to register handles and event
handlers at run-time with the reactor's internal demultiplexing table described in
implementation activity 3.3 (193). In general, the method for registering event
handlers can be defined using either or both of the following signatures:
§ Two parameters. In this design, one parameter identifies the event handler and

another that indicates the type of indication event(s) the event handler has
registered to process. The method's implementation uses 'double-dispatching'
[GoF95] to obtain a handle by calling back to an event handler method
get_handle(). The advantage of this design is that the 'wrong' handle cannot
be associated with an event handler accidentally.

§ The following code fragment illustrates how double-dispatching is used in the
register_handler() implementation:

§ void Select_Reactor_Implementation::register_handler
§ (Event_Handler *event_handler,
§ Event_Type event_type) {
§ // Double-dispatch to obtain the <HANDLE>.
§ HANDLE handle = event_handler->get_handle ();
§ // ...
§ }

§ Three parameters. In this design a third parameter is used to pass the handle
explicitly. Although this design can be more error-prone than the two-parameter
signature, it allows an application to register the same event handler for multiple
handles, which may help to conserve memory.

Both types of registration methods store their parameters into the appropriate
demultiplexing table, as indicated by the handle.

The reactor interface also defines two other overloaded methods, which we call
remove_handler(), that can be used to remove an event handler from a reactor.
For example, an application may no longer want to process one or more types of
indication events on a particular handle. These methods remove the event handler

 164

from a reactor's internal demultiplexing table so that it is no longer registered for any
types of indication events. The signatures of the methods that remove an event
handler can be passed either a handle or an event handler in the same way as the
event handler registration methods.

The reactor interface also defines its main entry point method, which we call
handle_events(), that applications can use to run their reactive event loop. This
method calls the synchronous event demultiplexer to wait for indication events to
occur on its handle set. An application can use the timeout parameter to bound the
time it spends waiting for indication events, so that the application will not block
indefinitely if events never arrive.

When one or more indication events occur on the handle set, the synchronous event
demultiplexer function returns. At this point the handle_events() method 'reacts'
by demultiplexing to the event handler associated with each handle that is now ready.
It then dispatches the handler's hook method to process the event.

3. Implement the reactor interface. Four sub-activities help implement the reactor
interface defined in implementation activity 2 (189):

0. Develop a reactor implementation hierarchy. The reactor interface abstraction
illustrated in implementation activity 2 (189) delegates all its demultiplexing
and dispatching processing to a reactor implementation, which plays the role
of the implementation hierarchy in the Bridge pattern [GoF95]. This design
makes it possible to implement and configure multiple types of reactors
transparently. For example, a concrete reactor implementation can be created
using different types of synchronous event demultiplexers, such as select()
[Ste98], poll() [Rago93], or WaitForMultipleObjects() [Sol98], each
of which provides the features and limitations described in implementation
activity 3.2 (192).

1. In our example the base class of the reactor implementation hierarchy is
defined by the class Reactor_Implementation. We omit its declaration
here because this class has essentially the same interface as the
Reactor interface in implementation activity 2 (189). The primary
difference is that its methods are pure virtual, because it forms the base of
a hierarchy of concrete reactor implementations.

3. Choose a synchronous event demultiplexer mechanism. The reactor
implementation calls a synchronous event demultiplexer to wait for one or
more indication events to occur on the reactor's handle set. This call returns
when any handle(s) in the set are 'ready', meaning that operations can be
invoked on the handles without blocking the application process. The
synchronous event demultiplexer, as well as the handles and handle sets, are
often existing operating system mechanisms, so they need not be developed
by reactor implementors.

4. For our logging server, we choose the select() function, which is a
synchronous event demultiplexer that allows event-driven reactive
applications to wait for an application-specified amount of time for various
types of I/O events to occur on multiple I/O handles:

5. int select (u_int max_handle_plus_1,

 165

6. fd_set *read_fds, fd_set *write_fds,
7. fd_set *except_fds,timeval *timeout);

8. The select() function examines the three 'file descriptor set' (fd_set)
parameters whose addresses are passed in read_fds, write_fds,
and except_fds to see if any of their handles are 'ready for reading',
'reading for writing', or have an 'exceptional condition', respectively.
Collectively, the handle values in these three file descriptor set parameters
constitute the handle set participant in the Reactor pattern.

9. The select() function can return multiple 'ready' handles to its caller in a
single invocation. It cannot be called concurrently on the same handle set
by multiple threads of control, however, because the operating system will
erroneously notify more than one thread calling select() when I/O
events are pending on the same subset of handles [Ste98]. In addition,
select() does not scale up well when used with a large set of handles
[BaMo98].

11. Two other synchronous event demultiplexers that are available on some
operating systems are the poll() and WaitForMultipleObjects()
functions. These two functions have similar scalability problems as select().
They are also less portable, because they are only available on platforms
compatible with Win32 and System V Release 4 UNIX, respectively. The
Variants section describes a unique feature of
WaitForMultipleObjects() that allows it to be called concurrently on the
same handle set by multiple threads of control.

12. Implement a demultiplexing table. In addition to calling the synchronous event
demultiplexer to wait for indication events to occur on its handle set, a reactor
implementation maintains a demultiplexing table. This table is a manager
[Som97] that contain a set of <handle, event handler, indication event types>
tuples. Each handle serves as a 'key' that the reactor implementation uses to
associate handles with event handlers in its demultiplexing table. This table
also stores the type of indication event(s), such as CONNECT and READ, that
each event handler has registered on its handle.

The demultiplexing table can be implemented using various search strategies,
such as direct indexing, linear search, or dynamic hashing. If handles are
represented as a continuous range of integers, as they are on UNIX platforms,
direct indexing is most efficient, because demultiplexing table tuple entries can
be located in constant O(1) time.

On platforms like Win32 where handles are non-contiguous pointers, direct
indexing is infeasible. Some type of linear search or hashing must therefore be
used to implement a demultiplexing table.

I/O handles in UNIX are contiguous integer values, which allows our
demultiplexing table to be implemented as a fixed-size array of structs.
In this design, the handle values themselves index directly into the
demultiplexing table's array to locate event handlers or event registration
types in constant time. The following class illustrates such an

 166

implementation that maps HANDLEs to Event_Handlers and
Event_Types:
 class Demux_Table {
 public:
 // Convert <Tuple> array to <fd_set>s.
 void convert_to_fd_sets (fd_set &read_fds,
 fd_set &write_fds,
 fd_set &except_fds);

 struct Tuple {
 // Pointer to <Event_Handler> that
processes
 // the indication events arriving on the
handle.
 Event_Handler *event_handler_;

 // Bit-mask that tracks which types of
indication
 // events <Event_Handler> is registered
for.
 Event_Type event_type_;
 };
 // Table of <Tuple>s indexed by Handle
values. The
 // macro FD_SETSIZE is typically defined
in the
 // <sys/socket.h> system header file.
 Tuple table_[FD_SETSIZE];
 };

In this simple implementation, the Demux_Table's table_ array is
indexed by UNIX I/O handle values, which are unsigned integers ranging
from 0 to FD_SETSIZE-1. Naturally, a more portable solution should
encapsulate the UNIX-specific implementation details with a wrapper
facade (47).

13. Define the concrete reactor implementation. As shown in implementation
activity 2 (189), the reactor interface holds a pointer to a concrete reactor
implementation and forwards all method calls to it.

14. Our concrete reactor implementation uses select() as its synchronous
event demultiplexer and the Demux_Table class as its demultiplexing

 167

table. It inherits from the Reactor_Implementation class and
overrides its pure virtual methods:

15. class Select_Reactor_Implementation :
16. public Reactor_Implementation {
17. public:

18. The handle_events() method defines the entry point into the reactive
event loop of our Select_Reactor_Implementation:

19. void
Select_Reactor_Implementation::handle_events

20. (Time_Value *timeout = 0) {

21. This method first converts the Demux_Table tuples into fd_set handle
sets that can be passed to select():

22. fd_set read_fds, write_fds, except_fds;
23.
24. demux_table.convert_to_fd_sets
25. (read_fds,write_fds,except_fds);

26. Next, select() is called to wait for up to timeout amount of time for
indication events to occur on the handle sets:

27. HANDLE max_handle = // Max value in
<fd_set>s.

28. int result = select
29. (max_handle + 1,
30. &read_fds, &write_fds, &except_fds,
31. timeout);
32.
33. if (result <= 0)
34. throw /* handle error or timeout

cases */;

35. Finally, we iterate over the handle sets and dispatch the hook method(s)
on event handlers whose handles have become 'ready' due to the
occurrence of indication events:

36. for (HANDLE h = 0; h <= max_handle; ++h)
{

37. // This check covers READ_ +
ACCEPT_EVENTs

38. // because they have the same enum
value.

39. if (FD_ISSET (&read_fds, h))
40.

demux_table.table_[h].event_handler_->
41. handle_event (h, READ_EVENT);
42.

 168

43. // ... perform the same dispatching
logic for

44. // WRITE_EVENTs and EXCEPT_EVENTs ...
45. }

46. For brevity, we omit implementations of other methods in our reactor, for
example those for registering and unregistering event handlers.

47. The private portion of our reactor class maintains the event handler
demultiplexing table:

48. private:
49. // Demultiplexing table that maps <HANDLE>s to
50. // <Event_Handler>s and <Event_Type>s.
51. Demux_Table demux_table_;
52. };

53. Note that this implementation only works on operating system platforms
where I/O handles are implemented as contiguous unsigned integers,
such as UNIX. Implementing this pattern on platforms where handles are
non-contiguous pointers, such as Win32, therefore requires an additional
data structure to keep track of which handles are in use.

4. Determine the number of reactors needed in an application. Many applications can be
structured using a single instance of the Reactor pattern. In this case the reactor can
be implemented using the Singleton pattern [GoF95], as shown in implementation
activity 2 (189). This pattern is useful for centralizing event demultiplexing and
dispatching in one reactor instance within an application.

However, some operating systems limit the number of handles that it is possible to
wait for within a single thread of control. Win32, for example, allows
WaitForMultipleObjects() to wait for a maximum of 64 handles in a single
thread. To develop a scalable application in this case, it may be necessary to create
multiple threads, each of which runs its own instance of the Reactor pattern.

Allocating a separate reactor to each of the multiple threads can also be useful for
certain types of real-time applications [SMFG00]. For example, different reactors can
be associated with threads running at different priorities. This design provides
different quality of service levels to process indication events for different types of
synchronous operations.

Note that event handlers are only serialized within an instance of the Reactor pattern.
Multiple event handlers in multiple threads can therefore run in parallel. This
configuration may necessitate the use of additional synchronization mechanisms if
event handlers in different threads access shared state concurrently. The Variants
section describes techniques for adding concurrency control to reactor and event
handler implementations.

5. Implement the concrete event handlers. Concrete event handlers derive from the event
handler interface described in implementation activity 1 (186) to define application-
specific functionality. Three sub-activities must be addressed when implementing
concrete event handlers.

 169

0. Determine policies for maintaining state in concrete event handlers. An event
handler may need to maintain state information associated with a particular
request. In our example, this could occur when an operating system notifies
the logging server that only part of a logging record was read from a Socket,
due to the occurrence of transport-level flow control. As a result, a concrete
event handler may need to buffer the logging record fragment and return to the
reactor's event loop to await notification that the remainder of the record has
arrived. The concrete event handler must therefore keep track of the number
of bytes read so that it can append subsequent data correctly.

1. Implement a strategy to configure each concrete event handler with a handle.
A concrete event handler performs operations on a handle. The two general
strategies for configuring handles with event handlers are:
§ Hard-coded. This strategy hard-codes handles, or wrapper facades

(47) for handles, into the concrete event handler. This strategy is
straightforward to implement, but is less reusable if different types of
handles or IPC mechanisms must be configured into an event handler for
different use cases.

§ The Example Resolved section illustrates the SOCK_Acceptor and
SOCK_Stream classes, which are hard-coded into the logging server
components. These two classes are wrapper facades that are defined
in the Implementation section of the Wrapper Facade pattern (47).
They encapsulate the stream Socket semantics of socket handles
within a portable and type-secure object-oriented interface. In the
Internet domain, stream Sockets are implemented using TCP.

§ Generic. A more generic strategy is to instantiate wrapper facades
(47) via parameterized types in a templatized event handler class. This
strategy creates more flexible and reusable event handlers, although it
may be unnecessarily general if a single type of handle or IPC
mechanism is always used.

§ The Acceptor, Connector, and Service_Handler classes
shown in the Implementation section of the Acceptor-Connector
pattern (285) are templates instantiated with wrapper facades.

2. Implement concrete event handler functionality. Application developers must
decide the processing actions to be performed to implement a service when its
corresponding hook method is invoked by a reactor implementation. To
separate connection-establishment functionality from subsequent service
processing, concrete event handlers can be divided into several categories in
accordance with the Acceptor-Connector pattern (285). In particular, service
handlers implement application-specific services, whereas the reusable
acceptors and connectors establish connections on behalf of these service
handlers passively and actively, respectively.

Example Resolved

 170

Our logging server uses a singleton reactor implemented via the select() synchronous
event demultiplexer along with two concrete event handlers—logging acceptor and logging
handler—that accept connections and handle logging requests from clients, respectively.
Before we discuss the implementation of the two concrete event handlers, which are based
on the single-method dispatch interface strategy, we first illustrate the general behavior of
the logging server using two scenarios.

The first scenario depicts the sequence of steps performed when a client connects to the
logging server:

§ The logging server first registers the logging acceptor with the reactor (1) to handle
indication events corresponding to client connection requests. The logging server next
invokes the event loop method of the reactor singleton (2).

§ The reactor singleton invokes the synchronous event demultiplexing select()
operation to wait for connection indication events or logging data indication events to
arrive (3). At this point, all further processing on the server is driven by the reactive
demultiplexing and dispatching of event handlers.

§ A client sends a connection request to the logging server (4), which causes the reactor
singleton to dispatch the logging acceptor's handle_event() hook method (5) to
notify it that a new connection indication event has arrived.

§ The logging acceptor accepts the new connection (6) and creates a logging handler to
service the new client (7).

§ The logging handler registers its socket handle with the reactor singleton (8) and
instructs the reactor to notify it when the reactor receives an indication event signaling
that the Socket is now 'ready for reading'.

After the client is connected, it can send logging records to the server using the socket
handle that was connected in step 6.

The second scenario therefore depicts the sequence of steps performed by the reactive
logging server to service a logging record:

 171

§ A client sends a logging record request (1), which causes the server's operating
system to notify the reactor singleton that an indication event is pending on a handle it is
select()'ing on.

§ The reactor singleton dispatches the handle_event() method of the logging handler
associated with this handle (2), to notify it that the new indication event is intended for it.

§ The logging handler reads the record from the Socket in a non-blocking manner (3).
Steps 2 and 3 are repeated until the logging record has been completely received from
the socket handle.

§ The logging handler processes the logging record and writes it to the standard output
of the logging server (4), from which it can be redirected to the appropriate output
device.

§ The logging handler returns control back to the reactor's event loop (5), which
continues to wait for subsequent indication events.

The following code implements the concrete event handlers for our logging server example.
A Logging_Acceptor class provides passive connection establishment and a
Logging_Handler class provides application-specific data reception and processing.

The Logging_Acceptor class is an example of the acceptor component in the Acceptor-
Connector pattern (285). It decouples the task of connection establishment and service
initialization from the tasks performed after a connection is established and a service is
initialized. The pattern enables the application-specific portion of a service, such as the
Logging_Handler, to vary independently of the mechanism used to establish the
connection and initialize the handler.

A Logging_Acceptor object accepts connection requests from client applications
passively and creates client-specific Logging_Handler objects, which receive and process
logging records from clients. Note that Logging_Handler objects maintain sessions with
their connected clients. A new connection is therefore not established for every logging
record.

The Logging_Acceptor class inherits from the 'single-method' dispatch interface variant
of the Event_Handler base class that was defined in implementation activity 1.2 (187).
The Logging_Acceptor constructor registers itself with a reactor for ACCEPT events:
 class Logging_Acceptor : public Event_Handler {
 public:
 Logging_Acceptor (const INET_Addr &addr,
 Reactor *reactor):
 acceptor_ (addr), reactor_ (reactor) {
 reactor_->register_handler (this, ACCEPT_EVENT);
 }

Note that the register_handler() method 'double dispatches' to the
Logging_Acceptor's get_handle() method to obtain its passive-mode socket handle.
From this point, whenever a connection indication arrives the reactor dispatches the
Logging_Acceptor's handle_event() method, which is a factory method [GoF95]:
 virtual void handle_event
 (HANDLE, Event_Type event_type) {
 // Can only be called for an ACCEPT event.
 if (event_type == ACCEPT_EVENT) {

 172

 SOCK_Stream client_connection;

 // Accept the connection.
 acceptor_.accept (client_connection);

 // Create a new <Logging_Handler>.
 Logging_Handler *handler = new
 Logging_Handler (client_connection,
 reactor_);
 }
 }

The handle_event() hook method invokes the accept() method of the
SOCK_Acceptor, which initializes a SOCK_Stream. After the SOCK_Stream is connected
with the new client passively, a Logging_Handler object is allocated dynamically in the
logging server to process the logging requests.

The final method in this class returns the I/O handle of the underlying passive-mode socket:
 virtual HANDLE get_handle () const {
 return acceptor_.get_handle ();
 }

This method is called by the reactor singleton when the Logging_Acceptor is registered.
The private portion of the Logging_Acceptor class is hard-coded to contain a
SOCK_Acceptor wrapper facade (47):
 private:
 // Socket factory that accepts client connections.
 SOCK_Acceptor acceptor_;

 // Cached <Reactor>.
 Reactor *reactor_;
 };

The SOCK_Acceptor handle factory enables a Logging_Acceptor object to accept
connection indications on a passive-mode socket handle that is listening on a transport
endpoint. When a connection arrives from a client, the SOCK_Acceptor accepts the
connection passively and produces an initialized SOCK_Stream. The SOCK_Stream is then
uses TCP to transfer data reliably between the client and the logging server.

The Logging_Handler class receives and processes logging records sent by a client
application. As with the Logging_Acceptor class shown above, the Logging_Handler
inherits from Event_Handler so that its constructor can register itself with a reactor to be
dispatched when READ events occur:
 class Logging_Handler : public Event_Handler {
 public:
 Logging_Handler (const SOCK_Stream &stream,

 173

 Reactor *reactor):
 peer_stream_ (stream) {
 reactor->register_handler (this, READ_EVENT);
 }

Subsequently, when a logging record arrives at a connected Socket and the operating
system generates a corresponding READ indication event, the reactor dispatches the
handle_event() method of the associated Logging_Handler automatically:
 virtual void handle_event (HANDLE,
 Event_Type event_type) {
 if (event_type == READ_EVENT) {
 Log_Record log_record;

 // Code to handle "short-reads" omitted.
 peer_stream_.recv (&log_record,
 sizeof log_record);

 // Write logging record to standard output.
 log_record.write (STDOUT);
 }
 else if (event_type == CLOSE_EVENT) {
 peer_stream_.close ();

 // Deallocate ourselves.
 delete this;
 }
 }

The handle_event() method receives, processes, and writes the logging record[3] to the
standard output (STDOUT). Similarly, when the client closes down the connection, the reactor
passes the CLOSE event flag, which informs the Logging_Handler to shut down its
SOCK_Stream and delete itself. The final method in this class returns the handle of the
underlying data-mode stream socket:
 virtual HANDLE get_handle () const {
 return peer_stream_.get_handle ();
 }

This method is called by the reactor when the Logging_Handler is registered. The private
portion of the Logging_Handler class is hard-coded to contain a SOCK_Stream wrapper
facade (47):
 private:
 // Receives logging records from a connected client.
 SOCK_Stream peer_stream_;
 };

 174

The logging server contains a single main() function that implements a single-threaded
logging server that waits in the reactor singleton's handle_events() event loop:
 // Logging server port number.
 const u_short PORT = 10000;

 int main () {
 // Logging server address.
 INET_Addr addr (PORT);

 // Initialize logging server endpoint and register
 // with reactor singleton.
 Logging_Acceptor la (addr, Reactor::instance ());

 // Event loop that processes client connection
 // requests and log records reactively.
 for (;;)
 Reactor::instance ()->handle_events ();
 /* NOTREACHED */
 }

As requests arrive from clients and are converted into indication events by the operating
system, the reactor singleton invokes the hook methods on the Logging_Acceptor and
Logging_Handler concrete event handlers to accept connections, and receive and
process logging records, respectively.

The sequence diagram below illustrates the behavior in the logging server:

Variants

 175

The Implementation section described the activities involved in implementing a reactor that
demultiplexes indication events from a set of I/O handles within a single thread of control.
The following are variations of the Reactor pattern that are needed to support concurrency,
re-entrancy, or timer-based events.

Thread-safe Reactor. A reactor that drives the main event loop of a single-threaded
application requires no locks, because it serializes the dispatching of event handler
handle_event() hook methods implicitly within its application process.

However, a reactor also can serve as a single-threaded demultiplexer/dispatcher in multi-
threaded applications. In this case, although only one thread runs the reactor's
handle_events() event loop method, multiple application threads may register and
remove event handlers from the reactor. In addition, an event handler called by the reactor
may share state with other threads and work on that state concurrently with them. Three
issues must be addressed when designing a thread-safe reactor:
§ Preventing race conditions. Critical sections within a reactor must be serialized to

prevent race conditions from occurring when multiple application threads modify the
reactor's internal shared state. A common technique for preventing race conditions is to
use mutual exclusion mechanisms, such as semaphores or mutexes, to protect internal
state shared by multiple threads.

For example, a mutex can be added to the reactor's demultiplexing table, and the
Scoped Locking idiom (325) can be used in the reactor's methods for registering and
removing event handlers to acquire and release this lock automatically. This
enhancement helps ensure that multiple threads cannot corrupt the reactor's
demultiplexing table by registering or removing handles and event handlers
simultaneously.

To ensure the reactor implementation is not penalized when used in single-threaded
applications, the Strategized Locking pattern (333) can be applied to parameterize the
locking mechanism.

§ Preventing self-deadlock. In multi-threaded reactors, the reactor implementation
described in implementation activity 3.4 (194) must be serialized, to prevent race
conditions when registering, removing, and demultiplexing event handlers. However, if
this serialization is not added carefully, self-deadlock can occur when the reactor's
handle_events() method calls back on application-specific concrete event handlers
that then subsequently re-enter the reactor via its event handler registration and
removal methods.

To prevent self-deadlock, mutual exclusion mechanisms can use recursive locks
[Sch95], which can be re-acquired by the thread that owns the lock without incurring
self-deadlock on the thread. In the Reactor pattern, recursive locks help prevent
deadlock when locks are held by the same thread across event handler hook methods
dispatched by a reactor.

§ Explicitly notify a waiting reactor event loop thread. The thread running a reactor's
event loop often spends much of its time waiting on its synchronous event demultiplexer
for indication events to occur on its handle set. The reactor event loop thread may
therefore need to be notified explicitly when other threads change the contents of its
demultiplexing table by calling its methods for registering and removing event handlers.
It may not otherwise find out about these changes until much later, which may impede
its responsiveness to important events.

An efficient way for an application thread to notify the reactor thread is to pre-establish a
pair of 'writer/reader' IPC handles when a reactor is initialized, such as a UNIX pipe or a
'loopback' TCP Socket connection. The reader handle is registered with the reactor

 176

along with a special 'notification event handler', whose purpose is simply to wake up the
reactor whenever a byte is sent to it via its connected writer handle.

When any application thread calls the reactor's methods for registering and removing
event handlers, they update the demultiplexing table and then send a byte to the writer
handle. This wakes up the reactor's event loop thread and allows it to reconstruct its
updated handle set before waiting on its synchronous event demultiplexer again.

Concurrent Event Handlers. The Implementation section described a single-threaded
reactive dispatching design in which event handlers borrow the thread of control of a reactor.
Event handlers can also run in their own thread of control. This allows a reactor to
demultiplex and dispatch new indication events concurrently with the processing of hook
methods dispatched previously to its event handlers. The Active Object (369),
Leader/Followers (447), and Half-Sync/Half-Async (423) patterns can be used to implement
concurrent concrete event handlers.

Concurrent Synchronous Event Demultiplexer. The synchronous event demultiplexer
described in the Implementation section is called serially by a reactor in a single thread of
control. However, other types of synchronous event demultiplexers, such as the
WaitForMultiple Objects() function, can be called concurrently on the same handle
set by multiple threads.

When it is possible to initiate an operation on one handle without the operation blocking, the
concurrent synchronous event demultiplexer returns a handle to one of its calling threads.
This can then dispatch the appropriate hook method on the associated event handler.

Calling the synchronous event demultiplexer concurrently can improve application
throughput, by allowing multiple threads to simultaneously demultiplex and dispatch events
to their event handlers. However, the reactor implementation can become much more
complex and much less portable.

For example, it may be necessary to perform a reference count of the dispatching of event
handler hook methods. It may also be necessary to queue calls to the reactor's methods for
registering and removing event handlers, by using the Command pattern [GoF95] to defer
changes until no threads are dispatching hook methods on an event handler. Applications
may also become more complex if concrete event handlers must be made thread-safe.

Re-entrant Reactors. In general, concrete event handlers just react when called by a reactor
and do not invoke the reactor's event loop themselves. However, certain situations may
require concrete event handlers to retrieve specific events by invoking a reactor's
handle_events() method to run its event loop. For example, the CORBA asynchronous
method invocation (AMI) feature [ARSK00] requires an ORB Core to support nested
work_pending()/perform_work() ORB event loops. If the ORB Core uses the Reactor
pattern [SC99], therefore, its reactor implementation must be re-entrant.

A common strategy for making a reactor re-entrant is to copy the handle set state
information residing in its demultiplexing table to the run-time stack before calling the
synchronous event demultiplexer. This strategy ensures that any changes to the handle set
will be local to that particular nesting level of the reactor.

Integrated Demultiplexing of Timer and I/O Events. The reactor described in the
Implementation section focuses primarily on demultiplexing and dispatching features
necessary to support our logging server example. It therefore only demultiplexes indication
events on handle sets. A more general reactor implementation can integrate the
demultiplexing of timer events and I/O events.

 177

A reactor's timer mechanism should allow applications to register time-based concrete event
handlers. This mechanism then invokes the handle_timeout() methods of the event
handlers at an application-specified future time. The timer mechanism in a reactor can be
implemented using various strategies, including heaps [BaLee98], delta-lists [CoSte91], or
timing wheels [VaLa97]:
§ A heap is a 'partially-ordered, almost-complete binary tree' that ensures the average-

and worst-case time complexity for inserting or deleting a concrete event handler is
O(log n).

§ Delta-lists store time in 'relative' units represented as offsets or 'deltas' from the earliest
timer value at the front of the list.

§ Timing wheels use a circular buffer that makes it possible to start, stop, and maintain
timers within the range of the wheel in constant O(1) time.

Several changes are required to the Reactor interface defined in implementation
activity 2 (189) to enable applications to schedule, cancel, and invoke timer-based event
handlers:
 class Reactor {
 public:
 // ... same as in implementation activity 2 ...

 // Schedule a <handler> to be dispatched at
 // the <future_time>. Returns a timer id that can
 // be used to cancel the timer.
 timer_id schedule (Event_Handler *handler,
 const void *act,
 const Time_Value &future_time);

 // Cancel the <Event_Handler> matching the <timer_id>
 // value returned from <schedule>.
 void cancel (timer_id id, const void **act = 0);

 // Expire all timers <= <expire_time>. This
 // method must be called manually since it
 // is not invoked asynchronously.
 void expire (const Time_Value &expire_time);
 private:
 // ...
 };

An application uses the schedule() method to schedule a concrete event handler to
expire after future_time. An asynchronous completion token (ACT) (261) can be
passed to schedule(). If the timer expires the ACT is passed as the value to the event
handler's handle_timeout() hook method. The schedule() method returns a timer
id value that identifies each event handler's registration in the reactor's timer queue
uniquely. This timer id can be passed to the cancel() method to remove an event

 178

handler before it expires. If a non-NULL act parameter is passed to cancel(), it will be
assigned the ACT passed by the application when the timer was scheduled originally,
which makes it possible to delete dynamically-allocated ACTs to avoid memory leaks.

To complete the integration of timer and I/O event demultiplexing, the reactor
implementation must be enhanced to allow for both the timer queue's scheduled event
handler deadlines and the timeout parameter passed to the handle_events()
method. This method is typically generalized to wait for the closest deadline, which is
either the timeout parameter or the earliest deadline in the timer queue.

Known uses

InterViews [LC87]. The Reactor pattern is implemented by the InterViews windowing
system, where it is known as the Dispatcher. The InterViews Dispatcher is used to define an
application's main event loop and to manage connections to one or more physical GUI
displays. InterViews therefore illustrates how the Reactor pattern can be used to implement
reactive event handling for graphical user interface systems that play the role of both client
and server.

The Xt toolkit from the X Windows distribution uses the Reactor pattern to implement its
main event loop. Unlike the Reactor pattern implementation described in the Implementation
section, callbacks in the Xt toolkit use C function pointers rather than event handler objects.
The Xt toolkit is another example of how the Reactor pattern can be used to implement
reactive event handling for graphical user interface systems that play the role of both client
and server.

ACE Reactor Framework [Sch97]. The ACE framework uses an object-oriented framework
implementation of the Reactor pattern as its core event demultiplexer and dispatcher. ACE
provides a class, called ACE_Reactor, that defines a common interface to a variety of
reactor implementations, such as the ACE_Select_Reactor and the
ACE_WFMO_Reactor. These two reactor implementations can be created using different
synchronous event demultiplexers, such as WaitForMultipleObjects() and
select(), respectively.

The ORB Core component in many implementations of CORBA [OMG98a], such as TAO
[SC99] and ORBacus, use the Reactor pattern to demultiplex and dispatch client requests to
servants that process the requests.

Call Center Management System. The Reactor pattern has been used to manage events
routed by Event Servers [SchSu94] between PBXs and supervisors in a Call Center
Management system.

Project Spectrum. The high-speed I/O transfer subsystem of Project Spectrum [PHS96]
uses the Reactor pattern to demultiplex and dispatch events in an electronic medical
imaging system.

Receiving phone calls. The Reactor pattern occurs frequently in everyday life, for example
in telephony. Consider yourself as an event handler that registers with a reactor—a
telecommunication network—to 'handle' calls received on a particular phone number—the
handle. When somebody calls your phone number, the network notifies you that a 'call
request' event is pending by ringing your phone. After you pick up the phone, you react to
this request and 'process' it by carrying out a conversation with the connected party.

 179

Consequences

The Reactor pattern offers the following benefits:

Separation of concerns. The Reactor pattern decouples application-independent
demultiplexing and dispatching mechanisms from application-specific hook method
functionality. The application-independent mechanisms can be designed as reusable
components that know how to demultiplex indication events and dispatch the appropriate
hook methods defined by event handlers. Conversely, the application-specific functionality in
a hook method knows how to perform a particular type of service.

Modularity, reusability, and configurability. The pattern decouples event-driven application
functionality into several components. For example, connection-oriented services can be
decomposed into two components: one for establishing connections and another for
receiving and processing data.

This decoupling enables the development and configuration of generic event handler
components, such as acceptors, connectors, and service handlers, that are loosely
integrated together through a reactor. This modularity helps promote greater software
component reuse, because modifying or extending the functionality of the service handlers
need not affect the implementation of the acceptor and connector components.

In our logging server, the Logging_Acceptor class can easily be generalized to create
the acceptor component described in the Acceptor-Connector pattern (285). This
generic acceptor can be reused for many different connection-oriented services, such as
file transfer, remote log-in, and video-on-demand. It is thus straightforward to add new
functionality to the Logging_Handler class without affecting the reusable acceptor
component.

Portability. UNIX platforms offer two synchronous event demultiplexing functions, select()
[Ste98] and poll() [Rago93], whereas on Win32 platforms the
WaitForMultipleObjects() [Sol98] or select() functions can be used to demultiplex
events synchronously. Although these demultiplexing calls all detect and report the
occurrence of one or more indication events that may occur simultaneously on multiple event
sources, their APIs are subtly different. By decoupling the reactor's interface from the lower-
level operating system synchronous event demultiplexing functions used in its
implementation, the Reactor pattern therefore enables applications to be ported more readily
across platforms.

Coarse-grained concurrency control. Reactor pattern implementations serialize the
invocation of event handlers at the level of event demultiplexing and dispatching within an
application process or thread. This coarse-grained concurrency control can eliminate the
need for more complicated synchronization within an application process.

The Reactor pattern can also incur the following liabilities:

Restricted applicability. The Reactor pattern can be applied most efficiently if the operating
system supports synchronous event demultiplexing on handle sets. If the operating system
does not provide this support, however, it is possible to emulate the semantics of the
Reactor pattern using multiple threads within the reactor implementation. This is possible, for
example, by associating one thread to process each handle.

 180

Whenever events are available on a handle, its associated thread reads the event and
places it on a queue that is processed sequentially by the reactor implementation. This
design can be inefficient, however, because it serializes all the event handler threads. Thus,
synchronization and context switching overhead increases without enhancing application-
level parallelism.

Non-pre-emptive. In a single-threaded application, concrete event handlers that borrow the
thread of their reactor can run to completion and prevent the reactor from dispatching other
event handlers. In general, therefore, an event handler should not perform long duration
operations, such as blocking I/O on an individual handle, because this can block the entire
process and impede the reactor's responsiveness to clients connected to other handles.

To handle long-duration operations, such as transferring multimegabyte images [PHS96], it
may be more effective to process event handlers in separate threads. This design can be
achieved via an Active Object (369) or Half-Sync/Half-Async (423) pattern variant that
performs services concurrently to the reactor's main event loop.

Complexity of debugging and testing. It can be hard to debug applications structured using
the Reactor pattern due to its inverted flow of control. In this pattern control oscillates
between the framework infrastructure and the method call-backs on application-specific
event handlers. The Reactor's inversion of control increases the difficulty of 'single-stepping'
through the run-time behavior of a reactive framework within a debugger, because
application developers may not understand or have access to the framework code.

These challenges are similar to the problems encountered trying to debug a compiler's
lexical analyzer and parser written with lex and yacc. In such applications, debugging is
straightforward when the thread of control is within user-defined semantic action routines.
After the thread of control returns to the generated Deterministic Finite Automata (DFA)
skeleton, however, it is hard to follow the program's logic.

See Also

The Reactor pattern is related to the Observer [GoF95] and Publisher-Subscriber [POSA1]
patterns, where all dependents are informed when a single subject changes. In the Reactor
pattern, however, a single handler is informed when an event of interest to the handler
occurs on a source of events. In general, the Reactor pattern is used to demultiplex
indication events from multiple event sources to their associated event handlers. In contrast,
an observer or subscriber is often associated with only a single source of events.

The Reactor pattern is related to the Chain of Responsibility pattern [GoF95], where a
request is delegated to the responsible service handler. The Reactor pattern differs from the
Chain of Responsibility because the Reactor associates a specific event handler with a
particular source of events. In contrast, the Chain of Responsibility pattern searches the
chain to locate the first matching event handler.

The Reactor pattern can be considered a synchronous variant of the asynchronous Proactor
pattern (215). The Proactor supports the demultiplexing and dispatching of multiple event
handlers that are triggered by the completion of asynchronous operations. In contrast, the
Reactor pattern is responsible for demultiplexing and dispatching multiple event handlers
that are triggered when indication events signal that it is possible to initiate an operation
synchronously without blocking.

The Active Object pattern (369) decouples method execution from method invocation to
simplify synchronized access to shared state by methods invoked in different threads. The
Reactor pattern is often used in lieu of the Active Object pattern when threads are
unavailable or the overhead and complexity of threading is undesirable.

 181

The Reactor pattern can be used as the underlying synchronous event demultiplexer for the
Leader/Followers (447) and Half-Sync/Half-Async (423) pattern implementations. Moreover,
if the events processed by a reactor's event handlers are all short-lived, it may be possible to
use the Reactor pattern in lieu of these other two patterns. This simplification can reduce
application programming effort significantly and potentially improve performance, as well.

Java does not offer a synchronous demultiplexer for network events. In particular, it does not
encapsulate select() due to the challenges of supporting synchronous demultiplexing in a
portable way. It is therefore hard to implement the Reactor pattern directly in Java. However,
Java's event handling in AWT, particularly the listener or delegation-based model, resembles
the Reactor pattern in the following way:
§ Typically, application developers reuse prefabricated graphical components, such as

different kinds of buttons. Developers typically write event handlers that encode the
application-specific logic to process certain events, such as a mouse-click on a button.
Before receiving button-related events on a button, an event handler must register itself
with this button for all events of this type, which are called ActionEvents.

§ When the underlying native code is called by the Java virtual machine (JVM), it notifies
the button's peer, which is the first Java layer on top of the native code. The button peer
is platform-specific and posts a new ActionEvent to be executed in the event handler
thread, which is a specific-purpose thread created by the JVM.

§ Events are then entered into a queue and an EventDispatchThread object runs a
loop to 'pump' events further up the AWT widget hierarchy, which ultimately dispatches
the event to all registered listeners stored in a recursive data structure called
AWTEventMulticaster.

All pumping, dispatching, and subsequent event processing runs synchronously in the same
thread, which resembles the synchronous processing of events by a reactor.

Credits

John Vlissides, the shepherd of the [PLoPD1] version of Reactor, Ralph Johnson, Doug Lea,
Roger Whitney, and Uwe Zdun provided many useful suggestions for documenting the
original Reactor concept in pattern form.

[1]The Known Uses section lists examples in which the Reactor pattern is used to implement
event handling for applications that play both client and server roles.

[2]An alternative dispatching approach is described in the Implementation section.

[3]Log_Record's memory layout is identical to a conventional C-style struct. Thus, there
are no virtual functions, pointers, or references, and all its values are stored contiguously.

Proactor
The Proactor architectural pattern allows event-driven applications to efficiently demultiplex
and dispatch service requests triggered by the completion of asynchronous operations, to
achieve the performance benefits of concurrency without incurring certain of its liabilities.

Example

Consider a networking application that must perform multiple operations simultaneously,
such as a high-performance Web server that processes HTTP requests sent from multiple
remote Web browsers [HPS99]. When a user wants to download content from a URL four
steps occur:

 182

1. The browser establishes a connection to the Web server designated in the URL and
then sends it an HTTP GET request.

2. The Web server receives the browser's CONNECT indication event, accepts the
connection, reads and then parses the request.

3. The server opens and reads the specified file.
4. Finally, the server sends the contents of the file back to the Web browser and closes

the connection.

One way to implement a Web server is to use a reactive event demultiplexing model in
accordance with the Reactor pattern (179). In this design, whenever a Web browser
connects to a Web server, a new event handler is created to read, parse, and process the
request and transfer the contents of the file back to the browser. This handler is registered
with a reactor that coordinates the synchronous demultiplexing and dispatching of each
indication event to its associated event handler.

Although a reactive Web server design is straightforward to program, it does not scale up to
support many simultaneous users and/or long-duration user requests, because it serializes
all HTTP processing at the event demultiplexing layer. As a result, only one GET request can
be dispatched and processed iteratively at any given time.

A potentially more scalable way to implement a Web server is to use some form of
synchronous multi-threading. In this model a separate server thread processes each
browser's HTTP GET request [HS98]. For example, a new thread can be spawned
dynamically for each request, or a pool of threads can be pre-spawned and managed using
the Leader/Followers (447) or Half-Sync/Half-Async (423) patterns. In either case each
thread performs connection establishment, HTTP request reading, request parsing, and file
transfer operations synchronously—that is, server processing operations block until they
complete.

Synchronous multi-threading is a common concurrency model. However, problems with
efficiency, scalability, programming complexity, and portability may occur, as discussed in
the Example section of the Reactor pattern (179).

On operating systems that support asynchronous I/O efficiently, our Web server can
therefore invoke operations asynchronously to improve its scalability further. For example,
on Windows NT the Web server can be implemented to invoke asynchronous Win32
operations that process externally-generated indication events, such as TCP CONNECT and
HTTP GET requests, and transmit requested files to Web browsers asynchronously.

When these asynchronous operations complete, the operating system returns the
associated completion events containing their results to the Web server, which processes
these events and performs the appropriate actions before returning to its event loop. Building
software that achieves the potential performance of this asynchronous event processing
model is hard due to the separation in time and space of asynchronous invocations and their
subsequent completion events. Thus, asynchronous programming requires a sophisticated
yet comprehensible event demultiplexing and dispatching mechanism.

Context

 183

An event-driven application that receives and processes multiple service requests
asynchronously.

Problem

The performance of event-driven applications, particularly servers, in a distributed system
can often be improved by processing multiple service requests asynchronously. When
asynchronous service processing completes, the application must handle the corresponding
completion events delivered by the operating system to indicate the end of the asynchronous
computations.

For example, an application must demultiplex and dispatch each completion event to an
internal component that processes the results of an asynchronous operation. This
component can reply to external clients, such as a Web browser client, or to internal clients,
such as the Web server component that initiated the asynchronous operation originally. To
support this asynchronous computation model effectively requires the resolution of four
forces:
§ To improve scalability and latency, an application should process multiple completion

events simultaneously without allowing long-duration operations to delay other
operation processing unduly.

§ To maximize throughput, any unnecessary context switching, synchronization, and
data movement among CPUs should be avoided, as outlined in the Example section.

§ Integrating new or improved services with existing completion event demultiplexing
and dispatching mechanisms should require minimal effort.

§ Application code should largely be shielded from the complexity of multi-threading and
synchronization mechanisms.

Solution

Split application services into two parts: long-duration operations that execute
asynchronously and completion handlers that process the results of these operations when
they finish. Integrate the demultiplexing of completion events, which are delivered when
asynchronous operations finish, with their dispatch to the completion handlers that process
them. Decouple these completion event demultiplexing and dispatching mechanisms from
the application-specific processing of completion events within completion handlers.

In detail: for every service offered by an application, introduce asynchronous operations that
initiate the processing of service requests 'proactively' via a handle, together with completion
handlers that process completion events containing the results of these asynchronous
operations. An asynchronous operation is invoked within an application by an initiator, for
example, to accept incoming connection requests from remote applications. It is executed by
an asynchronous operation processor. When an operation finishes executing, the
asynchronous operation processor inserts a completion event containing that operation's
results into a completion event queue.

This queue is waited on by an asynchronous event demultiplexer called by a proactor. When
the asynchronous event demultiplexer removes a completion event from its queue, the
proactor demultiplexes and dispatches this event to the application-specific completion
handler associated with the asynchronous operation. This completion handler then
processes the results of the asynchronous operation, potentially invoking additional
asynchronous operations that follow the same chain of activities outlined above.

Structure

The Proactor pattern includes nine participants:

 184

Handles are provided by operating systems to identify entities, such as network connections
or open files, that can generate completion events. Completion events are generated either
in response to external service requests, such as connection or data requests arriving from
remote applications, or in response to operations an application generates internally, such
as time-outs or asynchronous I/O system calls.

Our Web server creates a separate socket handle for each Web browser connection. In
Win32 each socket handle is created in 'overlapped I/O' mode, which means that
operations invoked on the handles run asynchronously. The Windows NT I/O subsystem
also generates completion events when asynchronously-executed operations complete.

Asynchronous operations represent potentially long-duration operations that are used in the
implementation of services, such as reading and writing data asynchronously via a socket
handle. After an asynchronous operation is invoked, it executes without blocking its caller's
thread of control. Thus, the caller can perform other operations. If an operation must wait for
the occurrence of an event, such as a connection request generated by a remote
application, its execution will be deferred until the event arrives.

Our proactive Web server invokes the Win32 AcceptEx() operation to accept
connections from Web browsers asynchronously. After accepting connections the Web
server invokes the Win32 asynchronous ReadFile() and WriteFile() operations to
communicate with its connected browsers.

A completion handler specifies an interface that consists of one or more hook methods
[Pree95] [GHJV95]. These methods represent the set of operations available for processing
information returned in the application-specific completion events that are generated when
asynchronous operations finish executing.

Concrete completion handlers specialize the completion handler to define a particular
application service by implementing the inherited hook method(s). These hook methods
process the results contained in the completion events they receive when the asynchronous
operations associated with the completion handler finish executing. A concrete completion
handler is associated with a handle that it can use to invoke asynchronous operations itself.

 185

For example, a concrete completion handler can itself receive data from an asynchronous
read operation it invoked on a handle earlier. When this occurs, the concrete completion
handler can process the data it received and then invoke an asynchronous write operation to
return the results to its connected remote peer application.

Our Web server's two concrete completion handlers—HTTP acceptor and HTTP
handler—perform completion processing on the results of asynchronous AcceptEx(),
ReadFile(), and WriteFile() operations. The HTTP acceptor is the completion
handler for the asynchronous AcceptEx() operation—it creates and connects HTTP
handlers in response to connection request events from remote Web browsers. The
HTTP handlers then use asynchronous ReadFile() and WriteFile() operations to
process subsequent requests from remote Web browsers.

Asynchronous operations are invoked on a particular handle and run to completion by an
asynchronous operation processor, which is often implemented by an operating system
kernel. When an asynchronous operation finishes executing the asynchronous operation
processor generates the corresponding completion event. It inserts this event into the
completion event queue associated with the handle upon which the operation was invoked.
This queue buffers completion events while they wait to be demultiplexed to their associated
completion handler.

In our Web server example, the Windows NT operating system is the asynchronous
operation processor. Similarly, the completion event queue is a Win32 completion port
[Sol98], which is a queue of completion events maintained by the Windows NT kernel on
behalf of an application. When an asynchronous operation finishes the Windows NT
kernel queues the completion event on the completion port associated with the handle
on which the asynchronous operation was originally invoked.

 186

An asynchronous event demultiplexer is a function that waits for completion events to be
inserted into a completion event queue when an asynchronous operation has finished
executing. The asynchronous event demultiplexer function then removes one or more
completion event results from the queue and returns to its caller.

One asynchronous event demultiplexer in Windows NT is
GetQueuedCompletionStatus(). This Win32 function allows event-driven proactive
applications to wait up to an application-specified amount of time to retrieve the next
available completion event.

A proactor provides an event loop for an application process or thread. In this event loop, a
proactor calls an asynchronous event demultiplexer to wait for completion events to occur.
When an event arrives the asynchronous event demultiplexer returns. The proactor then
demultiplexes the event to its associated completion handler and dispatches the appropriate
hook method on the handler to process the results of the completion event.

Our Web server application calls the proactor's event loop method. This method calls the
GetQueuedCompletionStatus() Win32 function, which is an asynchronous event
demultiplexer that waits until it can dequeue the next available completion event from
the proactor's completion port. The proactor's event loop method uses information in the
completion event to demultiplex the next event to the appropriate concrete completion
handler and dispatch its hook method.

An initiator is an entity local to an application that invokes asynchronous operations on an
asynchronous operation processor. The initiator often processes the results of the
asynchronous operations it invokes, in which case it also plays the role of a concrete
completion handler.

In our example HTTP acceptors and HTTP handlers play the role of both initiators and
concrete completion handlers within the Web server's internal thread of control. For
example, an HTTP acceptor invokes AcceptEx() operations that accept connection
indication events asynchronously from remote Web browsers. When a connection
indication event occurs, an HTTP acceptor creates an HTTP handler, which then

 187

invokes an asynchronous ReadFile() operation to retrieve and process HTTP GET
requests from a connected Web browser.

Note how in the Proactor pattern the application components, represented by initiators and
concrete completion handlers, are proactive entities. They instigate the control and data flow
within an application by invoking asynchronous operations proactively on an asynchronous
operation processor.

When these asynchronous operations complete, the asynchronous operation processor and
proactor collaborate via a completion event queue. They use this queue to demultiplex the
resulting completion events back to their associated concrete completion handlers and
dispatch these handlers' hook methods. After processing a completion event, a completion
handler may invoke new asynchronous operations proactively.

The structure of the participants in the Proactor pattern is illustrated in the following class
diagram:

Dynamics

The following collaborations occur in the Proactor pattern:

 188

§ An application component playing the role of an initiator invokes an asynchronous
operation on an asynchronous operation processor via a particular handle. In addition to
passing data parameters to the asynchronous operation, the initiator also passes
certain completion processing parameters, such as the completion handler or a handle
to the completion event queue. The asynchronous operation processor stores these
parameters internally for later use.

§ The HTTP handler in our Web server can instruct the operating system to read a new
HTTP GET request by invoking the ReadFile() operation asynchronously on a
particular socket handle. When initiating this operation on the handle, the HTTP
handler passes itself as the completion handler so that it can process the results of
an asynchronous operation.

§ After an initiator invokes an operation on the asynchronous operation processor, the
operation and initiator can run independently. In particular, the initiator can invoke new
asynchronous operations while others continue to execute concurrently.[4] If the
asynchronous operation is intended to receive a service request from a remote
application, the asynchronous operation processor defers the operation until this
request arrives. When the event corresponding to the expected request arrives, the
asynchronous operation will finish executing.

§ The Windows NT operating system defers the asynchronous ReadFile() operation
used to read an HTTP GET request until this request arrives from a remote Web
browser.

§ When an asynchronous operation finishes executing, the asynchronous operation
processor generates a completion event. This event contains the results of the
asynchronous operation. The asynchronous operation processor then inserts this event
into the completion event queue associated with the handle upon with the asynchronous
operation was originally invoked.

§ If an HTTP handler invoked an asynchronous ReadFile() operation to read an HTTP
GET request, the Windows NT operating system will report the completion status in
the completion event, such as its success or failure and the number of bytes read.

§ When an application is ready to process the completion events resulting from its
asynchronous operations, it invokes the proactor's event loop entry-point method, which
we call handle_events(). This method calls an asynchronous event demultiplexer[5]
to wait on its completion event queue for completion events to be inserted by the
asynchronous operation processor. After removing a completion event from the queue
the proactor's handle_events() method demultiplexes the event to its associated
completion handler. It then dispatches the appropriate hook method on the completion
handler, passing it the results of the asynchronous operation.

 189

§ The proactor in our Web server example uses a Win32 completion port as its
completion event queue. Similarly, it uses the Win32
GetQueuedCompletionStatus() function [Sol98] as its asynchronous event
demultiplexer to remove completion events from a completion port.

§ The concrete completion handler then processes the completion results it receives. If
the completion handler returns a result to its caller, two situations are possible. First, the
completion handler that processes the results of the asynchronous operations also can
be the initiator that invoked the operation originally. In this case the completion handler
need not perform additional work to return the result to its caller, because it is the caller.

Second, a remote application or an application internal component may have requested
the asynchronous operation. In this case, the completion handler can invoke an
asynchronous write operation on its transport handle to return results to the remote
application.

In response to an HTTP GET request from a remote Web browser, an HTTP
handler might instruct the Windows NT operating system to transmit a large file
across a network by calling WriteFile() asynchronously. After the operating
system completes the asynchronous operation successfully the resulting completion
event indicates the number of bytes transferred to the HTTP handler. The entire file
may not be transferred in one WriteFile() operation due to transport-layer flow
control. In this case the HTTP handler can invoke another asynchronous
WriteFile() operation at the appropriate file offset.

§ After the completion handler finishes its processing it can invoke other asynchronous
operations, in which case the whole cycle outlined in this section begins again.

 190

Implementation

The participants in the Proactor pattern can be decomposed into two layers:
§ Demultiplexing/dispatching infrastructure layer components. This layer performs

generic, application-independent strategies for executing asynchronous operations. It
also demultiplexes and dispatches completion events from these asynchronous
operations to their associated completion handlers.

§ Application layer components. This layer defines asynchronous operations and
concrete completion handlers that perform application-specific service processing.

The implementation activities in this section start with the generic demultiplexing/dispatching
infrastructure components and then cover the application components. We focus on a
proactor implementation that is designed to invoke asynchronous operations and dispatch
hook methods on their associated completion handlers using a single thread of control. The
Variants section describes the activities associated with developing multi-threaded proactor
implementations.

1. Separate application services into asynchronous operations and completion handlers.
To implement the Proactor pattern, application services must be designed to separate
the initiation of asynchronous operations via a handle from the processing of these
operations' results. Asynchronous operations are often long-duration and/or
concerned with I/O, such as reading and writing data via a socket handle or
communicating with a database. The results of asynchronous operations are
processed by completion handlers. In addition to processing results, completion
handlers can play the role of initiators, that is, they invoke asynchronous operations
themselves.

The products of this activity are a set of asynchronous operations, a set of completion
handlers, and a set of associations between each asynchronous operation and its
completion handler.

2. Define the completion handler interface. Completion handlers specify an interface
consisting of one or more hook methods [Pree95]. These hook methods represent the
completion handling for application-specific completion events generated when
asynchronous operations finish executing. The implementation of completion
handlers consists of three sub-activities:

1. Define a type to convey the results of asynchronous operation. When an
asynchronous operation completes or is canceled its completion event results

 191

must be conveyed to its completion handler. These results indicate its success
or failure and the number of bytes that were transmitted successfully. The
Adapter pattern [GoF95] is often used to convert information stored in a
completion event into a form used to dispatch to its associated concrete
completion handler.

2. The following C++ class conveys the results of an asynchronous Win32
operation back to a concrete completion handler:

3. class Async_Result : public OVERLAPPED {
4. // The Win32 OVERLAPPED struct stores the file

offset
5. // returned when an asynchronous operation

completes.
6. public:
7. // Dispatch to completion handler hook method.
8. virtual void complete () = 0;
9. // Set/get number of bytes transferred by an
10. // asynchronous operation.
11. void bytes_transferred (u_long);
12. u_long bytes_transferred () const;
13.
14. // Set/get the status of the asynchronous

operation,
15. // i.e., whether it succeeded or failed.
16. void status (u_long);
17. u_long status () const;
18.
19. // Set/get error value if the asynchronous

operation
20. // failed or was canceled by the initiator.
21. void error (u_long);
22. u_long error () const;
23. private:
24. // ... data members omitted for brevity ...
25. };

26. Deriving Async_Result from the OVERLAPPED struct allows
applications to add custom state and methods to the results of
asynchronous operations. C++ inheritance is used because the Win32 API
does not provide a more direct way to pass a per-operation result object to
the operating system when an asynchronous operation is invoked.

 192

28. Determine the type of the dispatching target. Two types of completion handlers
can be associated with a handle to serve as the target of a proactor's
dispatching mechanism, objects and pointers to functions. Implementations of
the Proactor pattern can choose the type of dispatching target based on the
same criteria described in implementation activity 1.1 of the Reactor (179)
pattern.

29. Define the completion handler dispatch interface strategy. We next define the
type of interface supported by the completion handler to process completion
events. As with the Reactor pattern (179), assuming that we use completion
handler objects rather than pointers to functions, two general strategies exist:
§ Single-method dispatch interface strategy. The class diagram in the

Structure section illustrates an implementation of the
Completion_Handler interface that contains a single event handling
method, which we call handle_event(). A proactor uses this method to
dispatch completion events to their associated completion handlers. In
this case the type of completion event that has occurred is passed as a
parameter to the method. The second parameter is the base class for all
asynchronous results, which, depending on the completion event, can be
further downcast to the correct type.

§ The following C++ abstract base class illustrates the single-method
dispatch interface strategy. We start by defining useful type
definitions and enumeration literals that can be used by both the
single-method and multi-method dispatch interface strategies:

§ typedef unsigned int Event_Type;
§ enum {
§ // Types of indication events.
§ READ_EVENT = 01,
§ ACCEPT_EVENT = 01, // An "alias" for

READ_EVENT.
§ WRITE_EVENT = 02, TIMEOUT_EVENT = 04,
§ SIGNAL_EVENT = 010, CLOSE_EVENT = 020
§ // These values are powers of two so
§ // their bits can be "or'd" together

efficiently.
§ };

§ Next, we implement the Completion_Handler class:
§ class Completion_Handler {
§ public:
§ // Cache the <proactor> so that hook methods

can
§ // invoke asynchronous operations on

<proactor>.
§ Completion_Handler (Proactor *proactor):
§ proactor_ (proactor) { }
§

 193

§ // Virtual destruction.
§ virtual ~Completion_Handler ();
§
§ // Hook method dispatched by cached

<proactor_> to
§ // handle completion events of a particular

type that
§ // occur on the <handle>. <Async_Result>

reports the
§ // results of the completed asynchronous

operation.
§ virtual void handle_event
§ (HANDLE handle, Event_Type et,
§ const Async_Result &result) = 0;
§
§ // Returns underlying I/O <HANDLE>.
§ virtual HANDLE get_handle () const = 0;
§ private:
§ // Cached <Proactor>.
§ Proactor *proactor_;
§ };

§ The single-method dispatch interface strategy makes it possible to add
new types of events without changing the class interface. However, to
handle a specific event, this strategy encourages the use of C++ switch
and if statements in the concrete event handler's handle_event()
method implementation, which degrades its internal extensibility.

§ Multi-method dispatch interface strategy. A different strategy for
implementing the Completion_Handler interface is to define separate
hook methods for handling each type of event, such as
handle_read(), handle_write(), or handle_accept(). This
strategy can be more extensible than the single-method dispatch interface
because the demultiplexing is performed by a proactor implementation,
rather than by a concrete event handler's handle_event() method
implementation.

§ The following C++ abstract base class illustrates a multi-method
interface used by a proactor for network events in our Windows NT-
based Web server example:

§ class Completion_Handler {
§ public:
§ // The <proactor> is cached to allow hook

methods to

 194

§ // invoke asynchronous operations on
<proactor>.

§ Completion_Handler (Proactor *proactor):
§ proactor_ (proactor) { }
§
§ // Virtual destruction.
§ virtual ~Completion_Handler ();
§
§ // The next 3 methods use <Async_Result> to

report
§ // results of completed asynchronous

operation.
§ // Dispatched by <proactor_> when an

asynchronous
§ // read operation completes.
§ virtual void handle_read
§ (HANDLE handle, const Async_Result

&result) = 0;
§ // Dispatched by <proactor_> when an

asynchronous
§ // write operation completes.
§ virtual void handle_write
§ (HANDLE handle, const Async_Result

&result) = 0;
§ // Dispached by <proactor_> when an

asynchronous
§ // <accept> operation completes.
§ virtual void handle_accept
§ (HANDLE handle, const Async_Result

&result) = 0;
§
§ // Dispatched by <proactor_> when a timeout

expires.
§ virtual void handle_timeout
§ (const Time_Value &tv, const void *act)

= 0;
§
§ // Returns underlying I/O <HANDLE>.
§ virtual HANDLE get_handle () const = 0;
§ private:
§ // Cached <Proactor>.
§ Proactor *proactor_;

 195

§ };

§ The multi-method dispatch interface strategy makes it easy to override
methods in the base class selectively, which avoids further demultiplexing
via switch or if statements in the hook method implementation.
However, this strategy requires pattern implementors to anticipate the
hook methods in advance. The various handle_*() hook methods in the
Completion_Handler interface above are tailored for networking
events. However, these methods do not encompass all the types of
events handled via the Win32 WaitForMultipleObjects()
mechanism, such as synchronization object events [SchSt95].

30. Both the single-method and multiple-method dispatch interface strategies are
implementations of the Hook Method [Pree95] and Template Method [GoF95]
patterns. The intent of these patterns is to provide well-defined hooks that can
be specialized by applications and called back by lower-level dispatching
code.

31. Completion handlers are often designed to act both as a target of a proactor's
completion dispatching and an initiator that invokes asynchronous operations,
as shown by the HTTP_Handler class in the Example Resolved section.
Therefore, the constructor of class Completion_Handler associates a
Completion_Handler object with a pointer to a proactor. This design allows
a Completion_Handler's hook methods to invoke new asynchronous
operations whose completion processing will be dispatched ultimately by the
same proactor.

3. Implement the asynchronous operation processor. An asynchronous operation
processor executes operations asynchronously on behalf of initiators. Its primary
responsibilities therefore include:
§ Defining the asynchronous operation interface
§ Implementing a mechanism to execute operations asynchronously and

generating and
§ Queueing completion events when an operation finishes

4. Define the asynchronous operation interface. Asynchronous operations can be
passed various parameters, such as a handle,[6] data buffers, buffer lengths,
and information used to perform completion processing when the operation
finishes. Two issues must be addressed when designing a programming
interface that initiators use to invoke asynchronous operations on an
asynchronous operation processor:
§ Maximizing portability and flexibility. Asynchronous operations can be

used to read and write data on multiple types of I/O devices, such as
networks and files, and on multiple operating systems, such as Windows
NT, VMS, Solaris, and Linux. The Wrapper Facade (47) and Bridge
[GoF95] patterns can be applied to decouple the asynchronous operation
interface from underlying operating system dependencies and ensure the
interface works for multiple types of I/O devices.

§ Handling multiple completion handlers, proactors, and completion
event queues efficiently and concisely. More than one completion
handler, proactor, and completion event queue can be used
simultaneously within an application. For example, different proactors can
be associated with threads running at different priorities, to provide
different quality of service levels for processing different completion
handlers. In addition to its data parameters, an asynchronous operation

 196

must then indicate which handle, concrete completion handler, proactor,
and completion event queue to use when processing the completion of
asynchronous operations.

A common strategy to consolidate all this completion processing
information efficiently is to apply the Asynchronous Completion Token
pattern (261). When an initiator invokes an asynchronous operation on a
handle, an asynchronous completion token (ACT) can then be passed to
the asynchronous operation processor, which can store this ACT for later
use. Each ACT contains information that identifies a particular operation
and guides its subsequent completion processing.

When an asynchronous operation finishes executing, the asynchronous
operation processor locates the operation's ACT it stored earlier and
associates it with the completion event it generates. It then inserts this
updated completion event into the appropriate completion event queue.
Ultimately, the proactor that runs the application's event loop will use an
asynchronous event demultiplexer to remove the completion event results
and ACT from its completion event queue. The proactor will then use this
ACT to complete its demultiplexing and dispatching of the completion
event results to the completion handler designated by the ACT.

Although our Web server is implemented using Win32 asynchronous
Socket operations, we apply the Wrapper Facade pattern (47) to
generalize this class and make it platform-independent. It can
therefore be used for other types of I/O devices supported by an
asynchronous operation processor.

The following Async_Stream class interface is used by HTTP
handlers in our Web server example to invoke asynchronous
operations:
 class Async_Stream {
 public:
 // Constructor 'zeros out' the data
members.
 Async_Stream ();

 // Initialization method.
 void open (Completion_Handler *handler,
 HANDLE handle, Proactor
*proactor);

 // Invoke an asynchronous read operation.
 void async_read (void *buf, u_long
n_bytes);

 // Invoke an asynchronous write operation.
 void async_write (const void *buf, u_long
n_bytes);

 197

 private:
 // Cache parameters passed in <open>.
 Completion_Handler *completion_handler_;
 HANDLE handle_;
 Proactor *proactor_;
 };

A concrete completion handler, such as an HTTP handler, can pass
itself to open(), together with the handle on which the
Async_Stream's async_read() and async_write() methods
are invoked:
 void Async_Stream::open (Completion_Handler
*handler,
 HANDLE handle,
 Proactor *proactor)
{
 completion_handler_ = handler;
 handle_ = handle;
 proactor_ = proactor;

 // Associate handle with <proactor>'s
completion
 // port, as shown in implementation
activity 4.
 proactor->register_handle (handle);
 }

To illustrate the use of asynchronous completion tokens (ACTs),
consider the following implementation of the
Async_Stream::async_read() method. It uses the Win32
ReadFile() function to read up to n_bytes asynchronously and
store them in its buf parameter:
 void Async_Stream::read (void *buf, u_long
n_bytes) {
 u_long bytes_read;

 OVERLAPPED *act = new // Create the ACT.
 Async_Stream_Read_Result
(completion_handler_);

 ReadFile (handle_, buf, n_bytes,
&bytes_read, act);
 }

 198

The ACT passed as a pointer to ReadFile() is a dynamically
allocated instance of the Async_Stream_Read_Result class
below:
 class Async_Stream_Read_Result : public
Async_Result {
 public:
 // Constructor caches the completion
handler.
 Async_Stream_Read_Result
 (Completion_Handler
*completion_handler):
 completion_handler_
(completion_handler) { }

 // Adapter that dispatches the
<handle_event>
 // hook method on cached completion
handler.
 virtual void complete ();
 private:
 // Cache a pointer to a completion handler.
 Completion_Handler *completion_handler_;
 };

This class plays the role of an ACT and an adapter [GoF95]. It inherits
from Async_Result, which itself inherits from the Win32
OVERLAPPED struct, as shown in implementation activity 2.1 (227).
The ACT can be passed as the lpOverlapped parameter to the
ReadFile() asynchronous function. ReadFile() forwards the ACT
to the Windows NT operating system, which stores it for later use.

When the asynchronous ReadFile() operation finishes it generates
a completion event that contains the ACT it received when this
operation was invoked. When the proactor's handle_events()
method removes this event from its completion event queue, it
invokes the complete() method on the
Async_Stream_Read_Result. This adapter method then
dispatches the completion handler's handle_event() hook method
to pass the event, as shown in implementation activity 5.4 (240).

5. Choose the asynchronous operation processing mechanism. When an initiator
invokes an asynchronous operation, an asynchronous operation processor
executes the operation without blocking the initiator's thread of control. An
asynchronous operation processor provides mechanisms for managing ACTs
and executing operations asynchronously. It also generates completion events
when operations finish and queues the events into the appropriate completion
event queue.

 199

Some asynchronous operation processors allow initiators to cancel
asynchronous operations. However, completion events are still generated.
Thus, ACTs and other resources can be reclaimed properly by completion
handlers.

Certain operating environments provide these asynchronous operation
execution and completion event generation mechanisms, such as Real-time
POSIX [POSIX95] and Windows NT [Sol98]. In this case implementing the
asynchronous completion processor participant simply requires mapping
existing operating system APIs onto the asynchronous operation wrapper
facade (47) interfaces described in implementation activity 3.1 (232). The
Variants section describes techniques for emulating an asynchronous
operation processor on operating system platforms that do not support this
feature natively.

4. Define the proactor interface. The proactor's interface is used by applications to invoke
an event loop that removes completion events from a completion event queue,
demultiplexes them to their designated completion handlers, and dispatches their
associated hook method. The proactor interface is often accessed via a singleton
[GoF95] because a single proactor is often sufficient for each application process.

The Proactor pattern can use the Bridge pattern [GoF95] to shield applications from
complex and non-portable completion event demultiplexing and dispatching
mechanisms. The proactor interface corresponds to the abstraction participant in the
Bridge pattern, whereas a platform-specific proactor instance is accessed internally
via a pointer, in accordance with the implementation hierarchy in the Bridge pattern.

The proactor interface in our Web server defines an abstraction for associating
handles with completion ports and running the application's event loop
proactively:
 class Proactor {
 public:
 // Associate <handle> with the <Proactor>'s
 // completion event queue.
 void register_handle (HANDLE handle);

 // Entry point into the proactive event loop. The
 // <timeout> can bound time waiting for events.
 void handle_events (Time_Value *wait_time = 0);

 // Define a singleton access point.
 static Proactor *instance ();
 private:
 // Use the Bridge pattern to hold a pointer to
 // the <Proactor_Implementation>.
 Proactor_Implementation *proactor_impl_;
 };

 200

A proactor interface also defines a method, which we call register_handle(),
that associates a handle with the proactors completion event queue, as described in
implementation activity 5.5 (240). This association ensures that the completion events
generated when asynchronous operations finish executing will be inserted into a
particular proactor's completion event queue.

The proactor interface also defines the main entry point method, we call it
handle_events(), that applications use to run their proactive event loop.[7] This
method calls the asynchronous event demultiplexer, which waits for completion
events to arrive on its completion event queue, as discussed in implementation
activity 3.1 (232). An application can use the timeout parameter to bound the time it
spends waiting for completion events. Thus, the application need not block
indefinitely if events never arrive.

After the asynchronous operation processor inserts a completion event into the
proactor's completion event queue, the asynchronous event demultiplexer function
returns. At this point the proactor's handle_events() method dequeues the
completion event and uses its associated ACT to demultiplex to the asynchronous
operation's completion handler and dispatch the handler's hook method.

5. Implement the proactor interface. Five sub-activities can be used to implement the
proactor interface:

0. Develop a proactor implementation hierarchy. The proactor interface
abstraction illustrated in implementation activity 4 (235) delegates all its
demultiplexing and dispatching processing to a proactor implementation. This
plays the role of the implementation hierarchy in the Bridge pattern [GoF95].
This design allows multiple types of proactors to be implemented and
configured transparently. For example, a concrete proactor implementation
can be created using different types of asynchronous event demultiplexers,
such as POSIX aio_suspend() [POSIX95], or the Win32
GetQueuedCompletionStatus() or WaitForMultipleObjects()
functions [Sol98].

1. In our example the base class of the proactor implementation hierarchy is
defined by the class Proactor_Implementation. We omit its
declaration here because this class has essentially the same interface as
the Proactor interface in implementation activity 4 (235). The primary
difference is that its methods are purely virtual, because it forms the base
of a hierarchy of concrete proactor implementations.

3. Choose the completion event queue and asynchronous event demultiplexer
mechanisms. The handle_events() method of the proactor implementation
calls an asynchronous event demultiplexer function, which waits on the
completion event queue for the asynchronous operation processor to insert
completion events. This function returns whenever there is a completion event
in the queue. Asynchronous event demultiplexers can be distinguished by the
types of semantics they support, which include one of the following:
§ FIFO demultiplexing. This type of asynchronous event demultiplexer

function waits for completion events corresponding to any asynchronous
operations that are associated with its completion event queue. The

 201

events are removed from the queue in the order in which they are
inserted.

§ The Win32 GetQueuedCompletionStatus() function allows event-
driven proactive applications to wait up to an application-specified
amount of time for any completion events to occur on a completion
port. Events are removed in FIFO order [Sol98].

§ Selective demultiplexing. This type of asynchronous event
demultiplexer function waits selectively for a particular subset of
completion events that must be passed explicitly when the function is
called.

§ The POSIX aio_suspend() function [POSIX95] and the Win32
WaitForMultipleObjects() function [Sol98] are passed an array
parameter designating asynchronous operations explicitly. They
suspend their callers for an application-specified amount of time until
at least one of these asynchronous operations has completed.

4. The completion event queue and asynchronous event demultiplexer are often
existing operating system mechanisms that need not be developed by
Proactor pattern implementors.

5. The primary difference between GetQueuedCompletionStatus(),
aio_suspend(), and WaitForMultipleObjects() is that the latter two
functions can wait selectively for completion events specified via an array
parameter. Conversely, GetQueuedCompletionStatus() just waits for the
next completion event enqueued on its completion port. Moreover, the POSIX
aio_*() functions can only demultiplex asynchronous I/O operations, such
as aio_read() or aio_write(), whereas
GetQueuedCompletionStatus() and WaitForMultipleObjects() can
demultiplex other Win32 asynchronous operations, such as timers and
synchronization objects.

6. Our Web server uses a Win32 completion port as the completion event
queue and the GetQueuedCompletionStatus() function as its
asynchronous event demultiplexer:

7. BOOL GetQueuedCompletionStatus
8. (HANDLE CompletionPort,
9. LPDWORD lpNumberOfBytesTransferred,
10. LPDWORD lpCompletionKey,
11. LPOVERLAPPED *lpOverlapped,
12. DWORD dwMilliseconds);

 202

13. As shown in implementation activity 5.5 (240), our proactor
implementation's handle_events() method uses this function to
dequeue a completion event from the specified CompletionPort. The
number of bytes transferred is returned as an 'out' parameter. The
lpOverlapped parameter points to the ACT passed by the original
asynchronous operation, such as the ReadFile() call in the
Async_Stream::async_read() method shown in implementation
activity 3.1 (232).

14. If there are no completion event results queued on the port, the function
blocks the calling thread, waiting for asynchronous operations associated
with the completion port to finish. The
GetQueuedCompletionStatus() function returns when it is able to
dequeue a completion event result or when the dwMilliseconds
timeout expires.

16. Determine how to demultiplex completion events to completion handlers. An
efficient and concise strategy for demultiplexing completion events to
completion handlers is to use the Asynchronous Completion Token pattern
(261), as described in implementation activity 3.1 (232). In this strategy, when
an asynchronous operation is invoked by an initiator the asynchronous
operation processor is passed information used to guide subsequent
completion processing. For example, a handle can be passed to identify a
particular socket endpoint and completion event queue, and an ACT can be
passed to identify a particular completion handler.

When the asynchronous operation completes, the asynchronous operation
processor generates the corresponding completion event, associates it with its
ACT and inserts the updated completion event into the appropriate completion
event queue. After an asynchronous event demultiplexer removes the
completion event from its completion event queue, the proactor
implementation can use the completion event's ACT to demultiplex to the
designated completion handler in constant O(1) time.

As shown in implementation activity 3.1 (232), when an async_read()
or async_write() method is invoked on an Async_Stream, they
create a new Async_Stream_Read_Result or
Async_Stream_Write_Result ACT, respectively and pass it to the
corresponding Win32 asynchronous operation. When this asynchronous
operation finishes, the Windows NT kernel queues the completion event
on the completion port designated by the handle that was passed during
the original asynchronous operation invocation. The ACT is used by the
proactor to demultiplex the completion event to the completion handler
designated in the original call.

17. Determine how to dispatch the hook method on the designated completion
handler. After the proactor's handle_events() method demultiplexes to the
completion handler it must dispatch the appropriate hook method on the

 203

completion handler. An efficient strategy for performing this dispatching
operation is to combine the Adapter pattern [GoF95] with the Asynchronous
Completion Token pattern (261), as shown at the end of implementation
activity 3.1 (232).

18. An Async_Stream_Read_Result is an adapter, whose complete()
method can dispatch the appropriate hook method on the completion
handler that it has cached in the state of its ACT:

19. void Async_Stream_Read_Result::complete () {
20. completion_handler_->handle_event
21. (completion_handler_->get_handle (),
22. READ_EVENT, *this);
23. }

24. Note how the handle_event() dispatch hook method is passed a
reference to the Async_Stream_Read_Result object that invoked it.
This double-dispatching interaction [GoF95] allows the completion handler
to access the asynchronous operation results, such as the number of
bytes transferred and its success or failure status.

26. Define the concrete proactor implementation. The proactor interface holds a
pointer to a concrete proactor implementation and forwards all method calls to
it, as shown in implementation activity 4 (235).

27. Our concrete proactor implementation overrides the pure virtual methods it
inherits from class Proactor_Implementation:

28. class Win32_Proactor_Implementation :
29. public Proactor_Implementation {
30. public:

31. The Win32_Proactor_Implementation constructor creates the
completion port and caches it in the completion_port_ data member:

32. Win32_Proactor_Implementation::
33. Win32_Proactor_Implementation () {
34. completion_port_ =

CreateIoCompletionPort
35. (INVALID_HANDLE, 0, 0, 0);
36. }

37. The register_handle() method associates a HANDLE with the
completion port:

38. void
Win32_Proactor_Implementation::register_handle

39. (HANDLE h) {

 204

40. CreateIoCompletionPort (h,
completion_port_,0,0);

41. }

42. All subsequent completion events hat result from asynchronous
operations invoked via the HANDLE will be inserted into this proactor's
completion port by the Windows NT operating system.

43. The next code fragment shows how to implement the handle_events()
method:

44. void
Win32_Proactor_Implementation::handle_events

45. (Time_Value *wait_time = 0) {
46. u_long num_bytes;
47. OVERLAPPED *act;

48. This method first calls the GetQueuedCompletionStatus()
asynchronous event demultiplexing function to dequeue the next
completion event from the completion port:

49. BOOL status = GetQueuedCompletionStatus
50. (completion_port_, &num_bytes,
51. 0, &act,
52. wait_time == 0 ? 0 : wait_time->msec

());

53. When this function returns, the ACT returns, the ACT received from the
Windows NT operating system is downcast to become an Async_Result
*:

54. Async_Result *async_result =
55. static_cast <Async_Result *> (act);

56. The completion event that GetQueuedCompletionStatus() returned
updates the completion result data members in async_result:

57. async_result-> status (status);
58. if (!status)
59. async_result->error

(GetLastError());
60. else
61. async_result-

>bytes_transferred(num_bytes);

62. The proactor implementation's handle_events() method then invokes
the complete() method on the async_result adapter:

63. async_result->complete ();

64. Implementation activity 5.4 (240) illustrates how the complete() method
in the Async_Stream_Read_Result adapter dispatches to the concrete
completion handler's handle_event() hook method.

 205

65. Finally, the proactor deletes the async_result pointer, which was
allocated dynamically by an asynchronous operation interface method, as
shown in implementation activity 3.1 (232).

66. delete async_result;
67. }

68. The private portion of our proactor implementation caches the handle to its
Windows NT completion port:

69. private:
70. // Store a HANDLE to a Windows NT completion

port.
71. HANDLE completion_port_;
72. };

6. Determine the number of proactors in an application. Many applications can be
structured using just one instance of the Proactor pattern. In this case the proactor
can be implemented using the Singleton pattern [GoF95], as shown in
implementation activity 4 (235). This design is useful for centralizing event
demultiplexing and dispatching of completion events to a single location in an
application.

It can be useful to run multiple proactors simultaneously within the same application
process, however. For example, different proactors can be associated with threads
running at different priorities. This design provides different quality of service levels to
process completion handlers for asynchronous operations.

Note that completion handlers are only serialized per thread within an instance of the
proactor. Multiple completion handlers in multiple threads can therefore run in
parallel. This configuration may necessitate the use of additional synchronization
mechanisms if completion handlers in different threads access shared state
concurrently. Mutexes and synchronization idioms such as Scoped Locking (325) are
suitable.

7. Implement the concrete completion handlers. Concrete completion handlers specialize
the completion handler interface described in implementation activity 2.3 (228) to
define application-specific functionality. Three sub-activities must be addressed when
implementing concrete completion handlers:

0. Determine policies for maintaining state in concrete completion handlers. A
concrete completion handler may need to maintain state information
associated with a particular request. For example, an operating system may
notify a server that only part of a file was written to a Socket asynchronously,
due to the occurrence of transport-level flow control. A concrete completion
handler must then send the remaining data, until the file is fully transferred or
the connection becomes invalid. It must therefore know which file was
originally specified, how many bytes remain to be sent, and the position of the
file at the start of the previous request.

1. Select a mechanism to configure concrete completion handlers with a handle.
Concrete completion handlers perform operations on handles. The same two
strategies described in implementation activity 6.2 of the Reactor (179)
pattern—hard-coded and generic—can be applied to configure handles with
event handlers in the Proactor pattern. In both strategies wrapper facades (47)
can encapsulate handles used by completion handler classes.

 206

2. Implement completion handler functionality. Application developers must
decide the processing actions that should be performed to implement a
service when its corresponding hook method is invoked by a proactor. To
separate connection establishment functionality from subsequent service
processing, concrete completion handlers can be divided into several
categories in accordance with the Acceptor-Connector pattern (285). In
particular, service handlers implement application-specific services. In
contrast, acceptors and connectors establish connections passively and
actively, respectively, on behalf of these service handlers.

8. Implement the initiators. In many proactive applications, such as our Web server
example, the concrete completion handlers are the initiators. In this case this
implementation activity can be skipped. Initiators that are not completion handlers,
however, are often used to initiate asynchronous service processing during an
application's start-up phase.

Example Resolved

Our Web server uses Windows NT features, such as overlapped I/O, completion ports, and
GetQueuedCompletionStatus(), to implement proactive event demultiplexing. It
employs a single-method completion handler dispatch interface strategy that can process
multiple Web browser service requests asynchronously. HTTP acceptors asynchronously
connect and create HTTP handlers using a variant of the Acceptor-Connector pattern (285).
Each HTTP handler is responsible for asynchronously receiving, processing, and replying to
a Web browser GET request delivered to the Web server's proactor via a completion event.
The example shown here uses a single thread to invoke asynchronous operations and
handle completion event processing. It is straightforward to enhance this example to take
advantage of multiple threads, however, as described in the Variants section.

The Web server's main() function starts by performing its initialization activities, such as
creating a proactor singleton, a Windows NT completion port, and an HTTP acceptor. This
acceptor associates its passive-mode acceptor handle with the proactor singleton's
completion port. The Web server next performs the following scenario during its connection
processing:

§ The Web server invokes the HTTP acceptor's accept() method (1). This method
creates an ACT containing itself as the concrete completion handler.

§ Acting in the role of an initiator, the HTTP acceptor's accept() method then invokes
the Win32 AcceptEx() operation asynchronously. It passes the ACT to AcceptEx(),
together with a HANDLE that identifies both the passive-mode socket endpoint to accept
connections and the completion port that Windows NT[8] should use to queue the
completion event when AcceptEx() finishes accepting a connection.

§ The Web server's main() function then invokes the proactor's (3) handle_events()
method. This method runs the proactor's event loop, which calls the

 207

GetQueuedCompletionStatus() asynchronous event demultiplexer. This function
waits on its completion port for the operating system to queue completion events when
asynchronous operations finish executing.

§ A remote Web browser subsequently connects to the Web server (4), which causes
the asynchronous AcceptEx() operation to accept the connection and generate an
accept completion event. The operating system then locates this operation's ACT and
associates it with the completion event. At this point it queues the updated completion
event on the appropriate completion port (5).

§ The GetQueuedCompletionStatus() function running in the application's event
loop thread then dequeues the completion event from the completion port. The proactor
uses the ACT associated with this completion event to dispatch the handle_event()
hook method on the HTTP acceptor completion handler (6), passing it the
ACCEPT_EVENT event type.

§ To process the completion event, the HTTP acceptor creates an HTTP handler (7) that
associates its I/O handle with the proactor's completion port. This HTTP handler then
immediately invokes an asynchronous ReadFile() operation (8) to obtain the GET
request data sent by the Web browser. The HTTP handler passes itself as the
completion handler in the ACT to ReadFile() together with the I/O handle. The
operating system uses the completion port associated with this handle to notify the
proactor's handle_events() method when the asynchronous ReadFile() operation
finishes executing.

§ Control of the Web server then returns to the proactor's event loop (9), which calls the
GetQueuedCompletionStatus() function to continue waiting for completion events.

After the connection is established and the HTTP handler is created, the following diagram
illustrates the subsequent scenario used by a proactive Web server to service an HTTP GET
request:

§ The Web browser sends an HTTP GET request (1).
§ The asynchronous ReadFile() operation invoked in the previous scenario then

finishes executing and the operating system queues the read completion event onto the
completion port (2). This event is then dequeued by
GetQueuedCompletionStatus(), which returns to the proactor's
handle_events() method. This method demultiplexes the completion event's ACT to
the designated HTTP handler and dispatches the handler's handle_event() hook
method, passing the READ_EVENT event type (3).

§ The HTTP handler parses the request (4). Steps (2) through (4) then repeat as
necessary until the entire GET request has been received asynchronously.

§ After the GET request has been completely received and validated, the HTTP handler
memory-maps the requested file (5) and invokes an asynchronous WriteFile()
operation to transfer the file data via the connection (6). The HTTP handler passes an

 208

ACT that identifies itself as a completion handler to WriteFile(), so that the proactor
can notify it after the asynchronous WriteFile() operation finishes.

§ After the asynchronous WriteFile() operation finishes the operating system inserts
a write completion event into the completion port. The proactor uses
GetQueuedCompletionStatus() again to dequeue the completion event (7). It uses
its associated ACT to demultiplex to the HTTP handler, then dispatches its
handle_event() hook method (8) to process the write completion event results.
Steps (6) through (8) continue asynchronously until the entire file has been delivered to
the Web browser.

Below we illustrate how the HTTP handler in our Web server can be written using the
Completion_Handler class defined in the Implementation section.
 class HTTP_Handler : public Completion_Handler {
 // Implements HTTP using asynchronous operations.

HTTP_Handler inherits from the 'single-method' dispatch interface variant of the
Completion_Handler base class defined in implementation activity 2.3 (228). This design
enables the proactor singleton to dispatch its handle_events() hook method when
asynchronous ReadFile() and WriteFile() operations finish. The following data
members are contained in each HTTP_Handler object:
 private:
 // Cached <Proactor>.
 Proactor *proactor_;
 // Memory-mapped file_;
 Mem_Map file_;
 // Socket endpoint, initialized into "async-mode."
 SOCK_Stream *sock_;
 // Hold the HTTP Request while its being processed.
 HTTP_Request request_;
 // Read/write asynchronous socket I/O.
 Async_Stream stream_;

The constructor caches a pointer to the proactor used by the HTTP_Handler:
 public:
 HTTP_Handler (Proactor *proactor):
 proactor_ (proactor) { }

When a Web browser connects to the Web server the following open() method of the
HTTP handler is called by the HTTP acceptor:
 virtual void open (SOCK_Stream *sock) {
 // Initialize state for request.
 request_.state_ = INCOMPLETE;

 // Store pointer to the socket.
 sock_ = sock;

 209

 // Initialize <Async_Stream>.
 stream_.open
 (this, // This completion handler.
 sock_->handle (), proactor_);

 // Start asynchronous read operation on socket.
 stream_.async_read
 (request_.buffer (), request_.buffer_size ());
 }

In open(), the Async_Stream is initialized with the completion handler, handle, and
proactor to use when asynchronous ReadFile() and WriteFile() operations finish. It
then invokes an async_read() operation and returns to the proactor that dispatched it.
When the call stack unwinds the Web server will continue running its handle_events()
event loop method on its proactor singleton.

After the asynchronous ReadFile() operation completes, the proactor singleton
demultiplexes to the HTTP_Handler completion handler and dispatches its subsequent
handle_event() method:
 virtual void handle_event
 (HANDLE,
 Event_Type event_type,
 const Async_Result &async_result) {
 if (event_type == READ_EVENT) {
 if (!request_.done
 (async_result.bytes_transferred ()))
 // Didn't get entire request, so start a
 // new asynchronous read operation.
 stream_.async_read (request_.buffer (),
 request_.buffer_size ());
 else
 parse_request ();
 }
 // ...
 }

If the entire request has not arrived, another asynchronous ReadFile() operation is
invoked and the Web server returns once again to its event loop. After a complete GET
request has been received from a Web browser, however, the following parse_request()
method maps the requested file into memory and writes the file data to the Web browser
asynchronously:
 void parse_request () {
 // Switch on the HTTP command type.
 switch (request_.command ()) {

 210

 // Web browser is requesting a file.
 case HTTP_Request::GET:
 // Memory map the requested file.
 file_.map (request_.filename ());
 // Invoke asynchronous write operation.
 stream_.async_write (file_.buffer (),
 file_.buffer_size ());
 break;
 // Web browser is storing file at the Web server.
 case HTTP_Request::PUT:
 // ...
 }
 }

This sample implementation of parse_request() uses a C++ switch statement for
simplicity and clarity. A more extensible implementation could apply the Command pattern
[GoF95] or Command Processor pattern [POSA1] instead.

When the asynchronous WriteFile() operation completes, the proactor singleton
dispatches the handle_event() hook method of the HTTP_Handler:
 virtual void handle_event
 (HANDLE, Event_Type event_type,
 const Async_Result &async_result) {
 // ... see READ_EVENT case above ...
 else if (event_type == WRITE_EVENT) {
 if (!file_.done
 (async_result.bytes_transferred ()))
 // Didn't send entire data, so start
 // another asynchronous write.
 stream_.async_write
 (file_.buffer (),file_.buffer_size ());
 else
 // Success, so free up resources...
 }
 }

After all the data has been received the HTTP handler frees resources that were allocated
dynamically.

The Web server contains a main() function that implements a single-threaded server. This
server first calls an asynchronous accept operation and the waits in the proactor singleton's
handle_events() event loop:
 // HTTP server port number.

 211

 const u_short PORT = 80;

 int main () {
 // HTTP server address.
 INET_Addr addr (PORT);

 // Initialize HTTP server endpoint, which associates
 // the <HTTP_Acceptor>'s passive-mode socket handle
 // with the <Proactor> singleton's completion port.
 HTTP_Acceptor acceptor (addr, Proactor::instance ());

 // Invoke an asynchronous <accept> operation to
 // Invoke the Web server processing.
 acceptor.accept ();

 // Event loop processes client connection requests
 // and HTTP requests proactively.
 for (;;)
 Proactor::instance ()->handle_events ();
 /* NOTREACHED */
 }

As service requests arrive from Web browsers and are converted into indication events by
the operating system, the proactor singleton invokes the event handling hook methods on
the HTTP_Acceptor and HTTP_Handler concrete event handlers to accept connections
and receive and process logging records asynchronously. The sequence diagram below
illustrates the behavior in the proactive Web server.

The proactive processing model shown in this diagram can scale when multiple HTTP
handlers and HTTP acceptors process requests from remote Web browsers simultaneously.
For example, each handler/acceptor can invoke asynchronous ReadFile(),
WriteFile(), and AcceptEx() operations that run concurrently. If the underlying
asynchronous operation processor supports asynchronous I/O operations efficiently the
overall performance of the Web server will scale accordingly.

 212

Variants

Asynchronous Completion Handlers. The Implementation section describes activities used to
implement a proactor that dispatches completion events to completion handlers within a
single proactor event loop thread. When a concrete completion handler is dispatched, it
borrows the proactor's thread to perform its completion processing. However, this design
may restrict the concrete completion handler to perform short-duration synchronous
processing to avoid decreasing the overall responsiveness of the application significantly.

To resolve this restriction, all completion handlers could be required to act as initiators and
invoke long-duration asynchronous operations immediately, rather than performing the
completion processing synchronously. Some operating systems, such as Windows NT,
explicitly support asynchronous procedure calls (APCs). An APC is a function that executes
asynchronously in the context of its calling thread. When an APC is invoked the operating
system queues it within the thread context. The next time the thread is idle, such as when it
blocks on an I/O operation, it can run the queued APCs.

Concurrent Asynchronous Event Demultiplexer. One downside to using APCs is that they
may not use multiple CPUs effectively. This is because each APC runs in a single thread
context. A more scalable strategy therefore may be to create a pool of threads that share an
asynchronous event demultiplexer, so that a proactor can demultiplex and dispatch
completion handlers concurrently. This strategy is particularly scalable on operating system
platforms that implement asynchronous I/O efficiently.

For example, a Windows NT completion port [Sol98] is optimized to run efficiently when
accessed by GetQueuedCompletionStatus() from multiple threads simultaneously
[HPS99]. In particular, the Windows NT kernel schedules threads waiting on a completion
port in 'last-in first-out' (LIFO) order. This LIFO protocol maximizes CPU cache affinity
[Mog95] by ensuring that the thread waiting the shortest time is scheduled first, which is an
example of the Fresh Work Before Stale pattern [Mes96].

Shared Completion Handlers. Iinitiators can invoke multiple asynchronous operations
simultaneously, all of which share the same concrete completion handler [ARSK00]. To
behave correctly, however, each shared handler may need to determine unambiguously
which asynchronous operation has completed. In this case, the initiator and proactor must

 213

collaborate to shepherd operation-specific state information throughout the entire
asynchronous processing life-cycle.

As with implementation activity 3.1 (232), the Asynchronous Completion Token pattern (261)
can be re-applied to disambiguate each asynchronous operation—an initiator can create an
asynchronous completion token (ACT) that identifies each asynchronous operation uniquely.
It then 'piggy-backs' this initiator-ACT onto the ACT passed when an asynchronous
operation is invoked on an asynchronous operation processor. When the operation finishes
executing and is being processed by the proactor, the 'initiator-ACT can be passed
unchanged to the shared concrete completion handler's hook method. This initiator-ACT
allows the concrete completion handler to control its subsequent processing after it receives
an asynchronous operation's completion results.

To share a concrete completion handler we first add an initiator-ACT data member and a
pair of set/get methods to the Async_Result class:
 class Async_Result : public OVERLAPPED {
 private:
 const void *initiator_act_;
 //
 public:
 // Set/get initiator's ACT.
 void initiator_act (const void *);
 const void *initiator_act ();
 // ...

We next modify the Async_Stream I/O methods to 'piggy-back' the initiator-ACT with its
existing ACT:
 int Async_Stream::async_read (void *buf,
 u_long n_bytes,
 const void *initiator_act)
 {
 u_long bytes_read;
 OVERLAPPED *act = new // Create the ACT.
 Async_Stream_Read_Result (completion_handler_);

 // Set <initiator_act> in existing ACT.
 act->initiator_act (initiator_act);

 ReadFile (handle_, buf, n_bytes, &bytes_read, act);
 }

Finally, we can retrieve this initiator-ACT in a concrete event handler's
handle_event() method via the Async_Result parameter:
 virtual void handle_event
 (HANDLE, Event_Type event_type,

 214

 const Async_Result &async_result) {
 const void *initiator_act =
 async_result.initiator_act ();
 // ...
 }

The handle_event() method can use this initiator_act to disambiguate its
subsequent processing.

Asynchronous Operation Processor Emulation. Many operating system platforms, including
the traditional versions of UNIX [MBKQ96] and the Java Virtual Machine (JVM), do not
export asynchronous operations to applications. There are several techniques that can be
used to emulate an asynchronous operation processor on such platforms, however. A
common solution is to employ a concurrency mechanism to execute operations without
blocking initiators, such as the Active Object pattern (369) or some type of threading model.
Three activities must be addressed when implementing a multi-threaded asynchronous
operation processor:
§ Operation invocation. When an operation is invoked the asynchronous operation

processor must first store its associated ACT in an internal table. This can be
implemented using the Manager pattern [Som97].

§ Asynchronous operation execution. The operation will next be executed in a different
thread of control than the invoking initiator thread. One strategy is to spawn a thread for
each operation. A more scalable strategy is for the asynchronous operation processor
to maintain a pool of threads using the Active Object pattern (369) Thread Pool variant.
This strategy requires the initiator thread to queue the operation request before
continuing with its other computations.

Each operation will subsequently be dequeued and executed in a thread internal to the
asynchronous operation processor. For example, to implement asynchronous read
operations an internal thread can block while reading from socket or file handles.
Operations thus appear to execute asynchronously to initiators that invoke them, even
though the operations block internally within the asynchronous operation processor in
their own thread of control.

§ Operation completion handling. When an asynchronous operation completes the
asynchronous operation processor generates a completion event and associates it with
the appropriate ACT it had cached during the original invocation. It then queues the
updated completion event into the appropriate completion event queue.

Other variants. Several variants of the Proactor pattern are similar to variants in the Reactor
pattern (179), such as integrating the demultiplexing of timer and I/O events, and supporting
concurrent concrete completion handlers.

Known uses

Completion ports in Windows NT. The Windows NT operating system provides the
mechanisms to implement the Proactor pattern efficiently [Sol98]. Various asynchronous
operations are supported by Windows NT, such as time-outs, accepting new network
connections, reading and writing to files and Sockets, and transmitting entire files across a
Socket connection. The operating system itself is thus the asynchronous operation
processor. Results of the operations are queued as completion events on Windows NT
completion ports, which are then dequeued and dispatched by an application-provided
proactor.

 215

The POSIX AIO family of asynchronous I/O operations. On some real-time POSIX
platforms the Proactor pattern is implemented by the aio_*() family of APIs [POSIX95].
These operating system features are similar to those described above for Windows NT. One
difference is that UNIX signals can be used to implement a pre-emptively asynchronous
proactor in which a signal handler can interrupt an application's thread of control. In contrast,
the Windows NT API is not pre-emptively asynchronous, because application threads are
not interrupted. Instead, the asynchronous completion routines are called back at well-
defined Win32 function points.

ACE Proactor Framework. The ADAPTIVE Communication Environment (ACE) [Sch97]
provides a portable object-oriented Proactor framework that encapsulates the overlapped I/O
and completion port mechanisms on Windows NT and the aio_*() family of asynchronous
I/O APIs on POSIX platforms. ACE provides an abstraction class, ACE_Proactor, that
defines a common interface to a variety of proactor implementations, such as
ACE_Win32_Proactor and ACE_POSIX_Proactor. These proactor implementations can
be created using different asynchronous event demultiplexers, such as
GetQueuedCompletionStatus() and aio_suspend(), respectively.

Operating system device driver interrupt-handling mechanisms. The Proactor pattern is
often used to enhance the structure of operating system kernels that invoke I/O operations
on hardware devices driven by asynchronous interrupts. For example, a packet of data can
be written from an application to a kernel-resident device driver, which then passes it to the
hardware device that transmits the data asynchronously. When the device finishes its
transmission it generates a hardware interrupt that notifies the appropriate handler in the
device driver. The device driver then processes the interrupt to completion, potentially
initiating another asynchronous transfer if more data is available from the application.

Phone call initiation via voice mail. A real-life application of the Proactor pattern is the
scenario in which you telephone a friend, who is currently away from her phone, but who
returns calls reliably when she comes home. You therefore leave a message on her voice
mail to ask her to call you back. In terms of the Proactor pattern, you are a initiator who
invokes an asynchronous operation on an asynchronous operation processor—your friend's
voice mail—to inform your friend that you called. While waiting for your friend's 'call-back'
you can do other things, such as re-read chapters in POSA2. After your friend has listened
to her voice mail, which corresponds to the completion of the asynchronous operation, she
plays the proactor role and calls you back. While talking with her, you are the completion
handler that 'processes' her 'callback'.

Consequences

The Proactor pattern offers a variety of benefits:

Separation of concerns. The Proactor pattern decouples application-independent
asynchronous mechanisms from application-specific functionality. The application-
independent mechanisms become reusable components that know how to demultiplex the
completion events associated with asynchronous operations and dispatch the appropriate
callback methods defined by concrete completion handlers. Similarly, the application-specific
functionality in concrete completion handlers know how to perform particular types of
service, such as HTTP processing.

Portability. The Proactor pattern improves application portability by allowing its interface to
be reused independently of the underlying operating system calls that perform event
demultiplexing. These system calls detect and report the events that may occur
simultaneously on multiple event sources. Event sources may include I/O ports, timers,
synchronization objects, signals, and so on. For example, on real-time POSIX platforms the
asynchronous I/O functions are provided by the aio_*() family of APIs [POSIX95].

 216

Similarly, on Windows NT, completion ports and overlapped I/O are used to implement
asynchronous I/O [MDS96].

Encapsulation of concurrency mechanisms. A benefit of decoupling the proactor from the
asynchronous operation processor is that applications can configure proactors with various
concurrency strategies without affecting other application components and services.

Decoupling of threading from concurrency. The asynchronous operation processor executes
potentially long-duration operations on behalf of initiators. Applications therefore do not need
to spawn many threads to increase concurrency. This allows an application to vary its
concurrency policy independently of its threading policy. For instance, a Web server may
only want to allot one thread per CPU, but may want to service a higher number of clients
simultaneously via asynchronous I/O.

Performance. Multi-threaded operating systems use context switching to cycle through
multiple threads of control. While the time to perform a context switch remains fairly
constant, the total time to cycle through a large number of threads can degrade application
performance significantly if the operating system switches context to an idle thread.[9] For
example, threads may poll the operating system for completion status, which is inefficient.
The Proactor pattern can avoid the cost of context switching by activating only those logical
threads of control that have events to process. If no GET request is pending, for example, a
Web server need not activate an HTTP Handler.

Simplification of application synchronization. As long as concrete completion handlers do not
spawn additional threads of control, application logic can be written with little or no concern
for synchronization issues. Concrete completion handlers can be written as if they existed in
a conventional single-threaded environment. For example, a Web server's HTTP handler
can access the disk through an asynchronous operation, such as the Windows NT
TransmitFile() function [HPS99], hence no additional threads need to be spawned.

The Proactor pattern has the following liabilities:

Restricted applicability. The Proactor pattern can be applied most efficiently if the operating
system supports asynchronous operations natively. If the operating system does not provide
this support, however, it is possible to emulate the semantics of the Proactor pattern using
multiple threads within the proactor implementation. This can be achieved, for example, by
allocating a pool of threads to process asynchronous operations. This design is not as
efficient as native operating system support, however, because it increases synchronization
and context switching overhead without necessarily enhancing application-level parallelism.

Complexity of programming, debugging and testing. It is hard to program applications and
higher-level system services using asynchrony mechanisms, due to the separation in time
and space between operation invocation and completion. Similarly, operations are not
necessarily constrained to run at well-defined points in the processing sequence—they may
execute in non-deterministic orderings that are hard for many developers to understand.

Applications written with the Proactor pattern can also be hard to debug and test because
the inverted flow of control oscillates between the proactive framework infrastructure and the
method callbacks on application-specific handlers. This increases the difficulty of 'single-
stepping' through the run-time behavior of a framework within a debugger, because
application developers may not understand or have access to the proactive framework code.

Scheduling, controlling, and canceling asynchronously running operations. Initiators may be
unable to control the scheduling order in which asynchronous operations are executed by an
asynchronous operation processor. If possible, therefore, an asynchronous operation
processor should employ the Strategy pattern [GoF95] to allow initiators to prioritize and

 217

cancel asynchronous operations. Devising a completely reliable and efficient means of
canceling all asynchronous operations is hard, however, because asynchronous operations
may complete before they can be cancelled.

See Also

The Proactor pattern is related to the Observer [GoF95] and Publisher-Subscriber [POSA1]
patterns, in which all dependents are informed when a single subject changes. In the
Proactor pattern, however, completion handlers are informed automatically when completion
events from multiple sources occur. In general, the Proactor pattern is used to demultiplex
multiple sources of asynchronously delivered completion events to their associated
completion handlers, whereas an observer or subscriber is usually associated with a single
source of events.

The Proactor pattern can be considered an asynchronous variant of the synchronous
Reactor pattern (179). The Reactor pattern is responsible for demultiplexing and dispatching
multiple event handlers that are triggered when it is possible to invoke an operation
synchronously without blocking. In contrast, the Proactor pattern supports the demultiplexing
and dispatching of multiple completion handlers that are triggered by the completion of
operations that execute asynchronously.

Leader/Followers (447) and Half-Sync/Half-Async (423) are two other patterns that
demultiplex and process various types of events synchronously. On platforms that support
asynchronous I/O efficiently, the Proactor pattern can often be implemented more efficiently
than these patterns. However, the Proactor pattern may be harder to implement because it
has more participants, which require more effort to understand. The Proactor's combination
of 'inversion of control' and asynchrony may also require application developers to have
more experience to use and debug it effectively.

The Active Object pattern (369) decouples method execution from method invocation. The
Proactor pattern is similar, because an asynchronous operation processor performs
operations asynchronously on behalf of initiators. Both patterns can therefore be used to
implement asynchronous operations. The Proactor pattern is often used instead of the Active
Object pattern on operating systems that support asynchronous I/O efficiently.

The Chain of Responsibility [GoF95] pattern decouples event handlers from event sources.
The Proactor pattern is similar in its segregation of initiators and completion handlers. In the
Chain of Responsibility pattern, however, the event source has no prior knowledge of which
handler will be executed, if any. In Proactor, initiators have full control over the target
completion handler. The two patterns can be combined by establishing a completion handler
that is the entry point into a responsibility chain dynamically configured by an external
factory.

Current Java implementations do not support Proactor-like event processing schemes,
because java.io does not support asynchronous I/O. In basic Java implementations
blocking I/O operations can even block the whole Java Virtual Machine (JVM)—the I/O
operation blocks the current thread and, as multi-threading may be implemented in user
space, the operating system considers the task running the JVM as blocked and schedules
other operating system processes instead of other JVM threads.

More sophisticated Java implementations work around this problem by implementing
asynchronous I/O internally on the native code level—the thread doing the blocking call is
blocked, but other threads are able to run. The blocked thread is subsequently called back,
or may explicitly wait for the blocking call to return. Applications cannot make use of this
directly, however, because current JDK libraries do not expose asynchronous I/O. This will

 218

change with the next generation of the Java I/O system, which is under development and will
appear as a package called java.nio or something similar [JSR51].

Certain programming languages, such as Scheme, support continuations. Continuations can
be used in single-threaded programs to enable a sequence of function calls to relinquish its
runtime call stack when blocked without losing the execution history of the call stack. In the
context of the Proactor pattern, the indirect transfer of control from an asynchronous
operation invocation to the subsequent processing by its completion handler can be modeled
as a continuation.

Credits

Tim Harrison, Thomas D. Jordan, and Irfan Pyarali are co-authors of the original version of
the Proactor pattern. Irfan also provided helpful comments on this version. Thanks to Ralph
Johnson for suggestions that helped improve this pattern and for pointing out how this
pattern relates to the programming language feature continuations.

[4]For simplicity this case is not illustrated in the sequence diagram on page 226.

[5]Due to space limitations in the sequence diagram shown on page 226 we assume that the
asynchronous event demultiplexer is integrated with the proactor component.

[6]The handles themselves are often provided by the operating system and need not be
implemented.

[7]Multiple threads can call handle_events() on the same proactor simultaneously, as
described in the Variants section. This design is well-suited for I/O bound applications
[HPS99].

[8]For conciseness we refer to 'Windows NT' or simply 'the operating system' rather than
'asynchronous operation processor' in the remainder of this section.

[9]Some older operating system exhibit this behavior, though most modern operating systems
do not.

Asynchronous Completion Token
The Asynchronous Completion Token design pattern allows an application to demultiplex
and process efficiently the responses of asynchronous operations it invokes on services.

Also Known As

Active Demultiplexing [PRS+99], 'Magic Cookie'

Example

Consider a large-scale distributed e-commerce system consisting of clusters of Web servers.
These servers store and retrieve various types of content in response to requests from Web
browsers. The performance and reliability of such e-commerce systems has become
increasingly crucial to many businesses.

For example, in a web-based stock trading system, it is important that the current stock
quotes, as well as subsequent buy and sell orders, are transmitted efficiently and reliably.
The Web servers in the e-commerce system must therefore be monitored carefully to ensure

 219

they are providing the necessary quality of service to users. Autonomous management
agents can address this need by propagating management events from e-commerce system
Web servers back to management applications:

System administrators can use these management agents, applications, and events to
monitor, visualize, and control the status and performance of Web servers in the e-
commerce system [PSK+97].

Typically, a management application uses the Publisher-Subscriber pattern [POSA1] to
subscribe with one or more management agents to receive various types of events, such as
events that report when Web browsers establish new connections with Web servers. When a
management agent detects activities of interest to a management application, it sends
completion events to the management application, which then processes these events.

In large-scale e-commerce systems, however, management applications may invoke
subscription operations on many management agents, requesting notification of the
occurrence of many different types of events. Moreover, each type of event may be
processed differently in a management application using specialized completion handlers.
These handlers determine the application's response to events, such as updating a display,
logging events to a database, or automatically detecting performance bottlenecks and
system failures.

One way in which a management application could match its subscription operations to their
subsequent completion events would be to spawn a separate thread for each event
subscription operation it invoked on a management agent. Each thread would then block
synchronously, waiting for completion event(s) from its agent to arrive in response to its
original subscription operation. In this synchronous design, a completion handler that
processed management agent event responses could be stored implicitly in each thread's
run-time stack.

Unfortunately this synchronous multi-threaded design incurs the same context-switching,
synchronization, and data-movement performance overhead drawbacks described in the
Example section of the Reactor pattern (179). Therefore, management applications may
instead opt to initiate subscription operations asynchronously. In this case, management
applications must be designed to demultiplex management agent completion events to their
associate completion handlers efficiently and scalably, thereby allowing management
applications to react promptly when notified by their agents.

Context

An event-driven system in which applications invoke operations asynchronously on services
and subsequently process the associated service completion event responses.

Problem

 220

When a client application invokes an operation request on one or more services
asynchronously, each service returns its response to the application via a completion event.
The application must then demultiplex this event to the appropriate handler, such as a
function or object, that it uses to process the asynchronous operation response contained in
the completion event. To address this problem effectively, we must resolve three forces:
§ A service may not know the original context in which a client application invoked its

operations asynchronously. For example, one client might dedicate a separate thread
for each operation, whereas another might handle all operations in a single thread. This
lack of context makes it hard for a service to know what information its clients need in
order to demultiplex and process completion events. Therefore the client application,
not the service, should be responsible for determining how completion events are
demultiplexed to the handler designated to process them.

§ Management agent services in our e-commerce system example do not, and should
not, know how a management application will demultiplex and process the various
completion events it receives from the agents in response to its asynchronous
subscription operations.

§ As little communication overhead as possible should be incurred between a client
application and a service to determine how the client will demultiplex and process
completion events after asynchronous operations finish executing. Minimizing
communication overhead is important for client applications that are latency-constrained
and those that interact with services over bandwidth-limited communication links.

§ In our e-commerce system a management application and an agent service should
have a minimal number of interactions, such as one to invoke the asynchronous
subscription operation and one for each completion event response. Moreover, the
data transferred to help demultiplex completion events to their handlers should add
minimal extra bytes beyond an operation's input parameters and return values.

§ When a service response arrives at a client application, the application should spend
as little time as possible demultiplexing the completion event to the handler that will
process the asynchronous operation's response.

§ A large-scale e-commerce application may have hundreds of Web servers and
management agents, millions of simultaneous Web browser connections and a
correspondingly large number of asynchronous subscription operations and
completion events. Searching a large table to associate a completion event
response with its original asynchronous operation request could thus degrade the
performance of management applications significantly.

Solution

 221

Together with each asynchronous operation that a client initiator invokes on a service,
transmit information that identifies how the initiator should process the service's response.
Return this information to the initiator when the operation finishes, so that it can be used to
demultiplex the response efficiently, allowing the initiator to process it accordingly.

In detail: for every asynchronous operation that a client initiator invokes on a service, create
an asynchronous completion token (ACT). An ACT contains information that uniquely
identifies the completion handler, which is the function or object responsible for processing
the operation's response. Pass this ACT to the service together with the operation, which
holds but does not modify the ACT. When the service replies to the initiator, its response
includes the ACT that was sent originally. The initiator can then use the ACT to identify the
completion handler that will process the response from the original asynchronous operation.

Structure

Four participants form the structure of the Asynchronous Completion Token pattern:

A service provides some type of functionality that can be accessed asynchronously.

Management agents provide a distributed management and monitoring service to our e-
commerce system.

A client initiator invokes operations on a service asynchronously. It also demultiplexes the
response returned by these operations to a designated completion handler, which is a
function or object within an application that is responsible for processing service responses.

In our e-commerce system management applications invoke asynchronous operations
on management agents to subscribe to various types of events. The management
agents then send completion event responses to the management applications
asynchronously when events for which they have registered occur. Completion handlers
in management applications process these completion events to update their GUI
display and perform other actions.

An asynchronous completion token (ACT) contains information that identifies a particular
initiator's completion handler. The initiator passes the ACT to the service when it invokes an
operation; the service returns the ACT to the initiator unchanged when the asynchronous
operation completes. The initiator then uses this ACT to efficiently demultiplex to the
completion handler that processes the response from the original asynchronous operation.
Services can hold a collection of ACTs to handle multiple asynchronous operations invoked
by initiators simultaneously.

 222

In our e-commerce system a management application initiator can create ACTs that are
indices into a table of completion handlers, or are simply direct pointers to completion
handlers. To a management agent service, however, the ACT is simply an opaque value
that it returns unchanged to the management application initiator.

The following class diagram illustrates the participants of the Asynchronous Completion
Token pattern and the relationships between these participants:

Dynamics

The following interactions occur in the Asynchronous Completion Token pattern:
§ Before invoking an asynchronous operation on a service, the initiator creates the ACT

that identifies the completion handler it associates with the operation.
§ When invoking an operation on the service, the initiator passes the ACT to the service.
§ The initiator can continue invoking other operations or processing responses while the

service executes its asynchronous operation.
§ When the asynchronous operation completes, the service sends a response to the

initiator that contains the original ACT. The initiator uses the ACT to demultiplex to a
completion handler that performs application-specific processing upon the response of
the asynchronous operation.

Implementation

There are six activities involved in implementing the Asynchronous Completion Token
pattern. These activities are largely orthogonal to the implementations of initiators, services,

 223

and completion handlers, which are covered by other patterns, such as Proxy [GoF95]
[POSA1], Proactor, or Reactor (179). This section therefore focuses mainly on implementing
ACTs, the protocol for exchanging ACTs between initiators and services, and the steps used
to demultiplex ACTs efficiently to their associated completion handlers.

1. Define the ACT representation. The representation of an ACT should be meaningful for
an initiator and its completion handler, but opaque to a service. Three common ACT
representations:
§ Pointer ACTs. ACTs are often represented as pointers to programming

language constructs, such as pointers to completion handler objects in C++ or
references to completion handler objects in Java. In C++, for example, when an
initiator initiates an operation on a service, it can create a completion handler
ACT object and cast its address to a void pointer. This pointer is then passed to
the service via the asynchronous operation call. Pointer ACTs are used primarily
to pass ACTs among initiators and services running on relatively homogeneous
platforms, such as those on which pointers have the same number of bytes. It
may be necessary therefore to use portability features, such as typedefs or
macros, to ensure a uniform representation of pointers throughout
heterogeneous distributed systems.

§ Object reference ACTs. To simplify the use of ACTs in heterogeneous
systems, ACTs can be represented as object references defined in distributed
object computing middleware, such as CORBA [OMG98c]. CORBA object
references provide a standard, portable, and inter-operable means to
communicate ACTs between distributed initiators and services. Upon receiving
an object reference ACT from a service, an initiator can use the CORBA
_narrow() operation to downcast the ACT to a completion handler type that is
meaningful to it. Naturally, object references may not be a feasible ACT
representation if middleware is not used.

§ Index ACTs. ACTs also can be represented as indices into a table of
completion handlers accessible to the initiator. When a response arrives from the
service, the initiator simply uses the ACT to index into the table and access the
corresponding completion handler. This representation is particularly useful for
languages, such as FORTRAN, that do not support object references or pointers.
Database identifiers or offsets into memory-mapped files are useful to associate
ACTs with persistent completion handlers whose life-cycle extends beyond the
life-time of a particular process. Index ACTs are also useful for improving initiator
robustness, as described in implementation activity 2 (269).

Another aspect to consider when defining an ACT representation is the support it
offers the initiator for demultiplexing to the appropriate completion handlers. By using
common patterns such as Command or Adapter [GoF95], ACTs can provide a
uniform interface to initiators. Concrete ACT implementations then map this interface
to the specific interface of a particular completion handler, as described in
implementation activity 6 (271).

The following abstract class defines a C++ interface that can be used as the base
for a wide range of pointer ACTs. It defines a pure virtual handle_event()
method, which an initiator can use to dispatch a specific completion handler that
processes the response from an asynchronous operation:
 class Completion_Handler_ACT {
 public:
 virtual void handle_event
 (const Completion_Event &event) = 0;

 224

 };

Application developers can define new types of completion handlers by
subclassing from Completion_Handler_ACT and overriding its
handle_event() hook method to call a specific completion handler. The e-
commerce system presented in the Example Resolved section illustrates this
implementation strategy.

2. Select a strategy for holding the ACT at the initiator. An initiator can invoke more than
one service asynchronously. Supporting this behavior requires initiators to select one
of the following strategies for holding the ACT:
§ Implicit ACTs. In this strategy the ACT is held 'implicitly' by simply defining it to

be the address of an initiator completion handler object. This strategy is often
used with pointer or object reference ACTs. The Example Resolved section
illustrates the use of implicit ACTs. The benefits of implicit ACTs are their
efficient time and space utilization because they are simply memory addresses
that point directly to the associated completion handler. However, implicit ACTs
may not be as robust or secure as the explicit ACT strategy described next.

§ Explicit ACTs. In this strategy the initiator holds its ACTs in an explicit data
structure, for example a table of completion handlers organized using the
Manager pattern [Som97] or an active demultiplexing table [PRS+99]. This
strategy is well suited for index ACTs. Two benefits of using an explicit data
structure to maintain ACTs in the initiator are increased robustness and
authenticity. For example, if services do not return responses due to crash or
hang failures, the corresponding ACTs can be located in the table and released
wholesale.

In addition, if the initiator cannot trust the service to return the original ACT
unchanged, the explicit data structure can store additional information to
authenticate whether the returned ACT really exists within the initiator. This
authentication check, however, can increase the overhead of locating the ACT
and demultiplexing it to the completion handler within the initiator.

3. Regardless of which strategy is used, initiators are responsible for freeing any
resources associated with ACTs after they are no longer needed. The Object Lifetime
Manager pattern [LGS99] is a useful way to manage the deletion of ACT resources
robustly.

4. Determine how to pass the ACT from the initiator to the service. Initiators can use two
strategies to pass ACTs along with asynchronous service operation requests:
§ Implicit parameters are often stored in a context or environment that is passed

to the service transparently. The CORBA context parameters and GIOP service
context fields [OMG98c] are examples of implicit parameters.

§ Explicit parameters are defined in the signature of the asynchronous
operations. The Example Resolved section illustrates how an ACT can be
passed as an explicit parameter to service operations.

5. Determine a strategy for holding the ACT in the service. After an ACT is received by a
service it must hold the ACT while performing the operation invoked by the initiator.
There are the two general strategies for holding ACTs in a service:
§ If a service executes synchronously, the ACT can simply reside in the service's

run-time stack while the service processes the operation. If a service runs in a
different thread or process than its initiator, its operations can execute
synchronously while still providing an asynchronous programming model to
initiators [SV98b].

 225

§ If a service processes initiator operations asynchronously, it may need to
handle multiple requests simultaneously. In this case the service must maintain
the ACTs in a data structure that resides outside the scope of any service's run-
time stack. The Manager pattern [Som97] can be used to organize this collection
of ACTs.

6. Determine the number of times an ACT can be used. Both an initiator and a service
can use the same ACT multiple times:
§ Typically, an initiator passes a separate ACT for each asynchronous

invocation. However, an initiator can invoke a particular asynchronous operation
on a service multiple times. For each invocation, it can designate the same
completion handler to process the operation's responses, thereby minimizing the
cost of ACT creation and destruction. Similarly, an initiator can invoke the same
operation on multiple service instances and designate the same completion
handler to process the responses returned from all instances.

§ A service may return an ACT just once along with the response from an
asynchronous operation. However, a service can also issue a series of
responses using the same ACT whenever a particular event occurs. In this case
an ACT from a single asynchronous operation invocation can be returned to the
initiator multiple times.

7. In our e-commerce system example the management application initiator can
subscribe the same ACT with multiple agent services and use it to demultiplex
and dispatch these management agents' responses, such as 'connection
established' completion events. Moreover, each agent can return this ACT
multiple times, for example whenever it detects the establishment of a new
connection.

9. Determine the initiator strategy for demultiplexing ACTs to completion handler hook
methods. Initiators are responsible for demultiplexing asynchronous operation
completion events to their completion handlers efficiently. Two strategies can be used
to demultiplex an ACT to its associated completion handler when an asynchronous
operation finishes:
§ Queued completion events. In this strategy, ACTs can be placed in a

completion event queue by a service, or by a local service proxy if the service is
remote. An initiator can remove the ACT from a completion event queue at its
discretion and then use the information encapsulated in the ACT to control its
subsequent processing. Windows NT features, such as overlapped I/O,
completion ports, and the GetQueuedCompletionStatus() function, use this
strategy, as described in the Known Uses section [Sol98].

After a completion event and its corresponding ACT are retrieved from the
completion event queue, the initiator can use the ACT to demultiplex to the
appropriate completion handler. At this point, it can dispatch the ACT's hook
method, such as the handle_event() method illustrated in implementation
activity 1 (267). This hook method processes the completion event containing the
asynchronous operation's response. Implementation activity 5.2 in the Proactor
pattern (215) illustrates this strategy.

§ Callbacks. In this strategy an initiator passes a callback function or object[10] to
the service. When an asynchronous operation completes, the callback can be
invoked by the service or by a local service proxy. The ACT can be returned as a
parameter to the callback function or object and downcast to identify the
completion handler used for subsequent processing efficiently. For example, the

 226

ACT's handle_event() method can be called and passed the completion
event, as described above.

In general, a single callback handler object can be used to demultiplex and
process different types of completion events efficiently. A callback handler can
therefore be implemented using the Singleton pattern [GoF95] within the initiator
application.

Callbacks can be delivered to an initiator asynchronously or synchronously. In
the asynchronous strategy the callback is invoked via an interrupt or signal
handler [POSIX95]. Initiators need not therefore explicitly wait for notifications by
blocking in an event loop. In the synchronous strategy, the application that hosts
the initiator often waits in a reactive or proactive event loop. When the response
returns from the service, it is dispatched to the appropriate callback.

Our e-commerce system example illustrates how the synchronous callback
object strategy can be implemented using pointer ACTs. We define a generic
callback handler class that uses the Callback_Handler_ACT defined in
implementation activity 1 (267).

The completion_event() method of this class initiates the appropriate
management application completion handler processing when completion
events are returned from management agents:
 class Callback_Handler {
 public:
 // Callback method.
 virtual void completion_event
 (const Completion_Event &event,
 Completion_Handler_ACT *act) {
 act->handle_event (event);
 };
 };

When invoking an asynchronous operation on a service, the initiator passes
a reference to the callback handler instance as a parameter to the service in
addition to the ACT. When an asynchronous operation finishes, the service
or its local service proxy dispatches the callback handler's
completion_event() method synchronously to pass the completion
event and ACT from the management agent service to the management
application.

The completion_event() method then demultiplexes to the
handle_event() hook method on the ACT it receives. In turn this method
performs the completion handler processing on the asynchronous
operation's response.

10. Note how both demultiplexing strategies described above allow initiators to process
many different types of completion events efficiently. In particular the ACT

 227

demultiplexing step requires constant O(1) time, regardless of the number of
completion handlers represented by subclasses of Completion_Handler_ACT.

Example Resolved

In our example scenario, system administrators employ the management application in
conjunction with management agents to display and log all connections established between
Web browsers and Web servers. In addition, the management application displays and logs
each file transfer, because the HTTP 1.1 protocol can multiplex multiple GET requests over a
single connection [Mog95].

We first define a management agent proxy that management applications can use to
subscribe asynchronously for completion events. We next illustrate how to define a concrete
ACT that is tailored to the types of completion events that occur in our e-commerce system.
Finally we implement the main() function that combines all these components to create the
management application.

The management agent proxy [GoF95]. This class defines the types of events that
management applications can subscribe to, as well as a method that allows management
applications to subscribe a callback with a management agent asynchronously:
 class Management_Agent_Proxy {
 public:
 enum Event_Type { NEW_CONNECTIONS, FILE_TRANSFERS };

 void subscribe (Callback_Handler *handler,
 Event_Type type,
 Completion_Handler_ACT *act);
 // ...
 };

This proxy class is implemented using the Half-Object plus Protocol [PLoPD1] pattern, which
defines an object interface that encapsulates the protocol between the proxy and a
management agent. When an event of a particular Event_Type occurs, the management
agent returns the corresponding completion event to the Management_Agent_Proxy. This
proxy then invokes the method completion_event() on the Callback_Handler. This
method returns a pointer to the Completion_Handler_ACT that the management
application passed to subscribe() originally, as shown in implementation activity 6 (271).

The concrete ACT. Management applications playing the role of initiators and management
agent services in our e-commerce system exchange pointers to
Completion_Handler_ACT subclass objects, such as the following
Management_Completion_Handler:
 class Management_Completion_Handler :
 public Completion_Handler_ACT {
 private:
 Window *window_; // Used to display and
 Logger *logger_; // to log completion events.
 public:
 Management_Completion_Handler (Window *w, Logger *l):

 228

 window_ (w), logger_ (1) { }

 virtual void handle_event
 (const Completion_Event &event) {
 window_->update (event);
 logger_->update (event);
 }
 };

The parameters passed to the Management_Completion_Handler constructor identify
the concrete completion handler state used by the management application to process
completion events. These two parameters are cached in internal data members in the class,
which point to the database logger and the GUI window that will be updated when
completion events arrive from management agents via the handle_event() hook method.
This hook method is dispatched by the Callback_Hander's completion_event()
method, as shown in implementation activity 6 (271).

The main() function. The following main() function shows how a management application
invokes asynchronous subscription operations on a management agent proxy and then
processes the subsequent connection and file transfer completion event responses. To
simplify and optimize the demultiplexing and processing of completion handlers, the
management application passes a pointer ACT to a Management_Completion_Handler
when it subscribes to a management agent proxy. Generalizing this example to work with
multiple management agents and other types of completion events is straightforward.
 int main () {

The application starts by creating a single instance of the Callback_Handler class
defined in implementation activity 6 (271):
 Callback_Handler callback_handler;

This Callback_Handler is shared by all asynchronous subscription operations and is
used to demultiplex all types of incoming completion events.

The application next creates an instance of the Management_Agent proxy described
above:
 Management_Agent_Proxy agent_proxy = // ...

This agent will call back to the callback_handler when connection and file transfer
completion events occur.

The application then creates several objects to handle logging and display completion
processing:
 Logger database_logger (DATABASE);
 Logger console_logger (CONSOLE);
 Window main_window (200, 200);
 Window topology window (100, 20);

Some completion events will be logged to a database, whereas others will be written to a
console window. Depending on the event type, different graphical displays may need to be
updated. For example, a topology window might show an iconic view of the system.

 229

The main() function creates two Management_Completion_Handler objects that
uniquely identify the concrete completion handlers that process connection establishment
and file transfer completion events, respectively:
 Management_Completion_Handler connection_act
 (&topology_window, &database_logger);
 Management_Completion_Handler file_transfer_act
 (&main_window, &console_logger);

The Management_Completion_Handler objects are initialized with pointers to the
appropriate Window and Logger objects. Pointer ACTs to these two
Management_Completion_Handler objects are passed explicitly when the management
application asynchronously subscribes the callback_handler with
Management_Agent_Proxy for each type of event:
 agent_proxy.subscribe
 (&callback_handler,
 Management_Agent_Proxy::NEW_CONNECTIONS,
 &connection_act);

 agent_proxy.subscribe
 (&callback_handler,
 Management_Agent_Proxy::FILE_TRANSFERS,
 &file_transfer_act);

Note that the Management_Completion_Handlers are held 'implicitly' in the address
space of the initiator, as described in implementation activity 2 (269).

Once these subscriptions are complete the application enters its event loop, in which all
subsequent processing is driven by callbacks from completion events.
 run_event_loop ();
 }

Whenever a management agent detects a new connection or file transfer, it sends the
associated completion event to the Management_Agent_Proxy. This proxy then extracts
the Management_Completion_Handler ACT from the completion event and uses the
Callback_Handler's completion_event() method to dispatch the
Management_Completion_Handler's handle_events() hook method, which
processes each completion event. For example, file transfer events can be displayed on a
GUI window and logged to the console, whereas new connection establishment events could
be displayed on a system topology window and logged to a database.

The following sequence diagram illustrates the key collaborations between components in
the management application. For simplicity we omit the creation of the agent, callback
handler, window, and logging handlers, and focus on using only one window and one
logging handler.

 230

Variations

Chain of Service ACTs. A chain of services can occur when intermediate services also play
the role of initiators that invoke asynchronous operations on other services to process the
original initiator's operation.

For example, consider a management application that invokes operation requests on an
agent, which in turn invokes other requests on a timer mechanism. In this scenario the
management application initiator uses a chain of services. All intermediate services in
the chain—except the two ends—are both initiators and services, because they both
receive and initiate asynchronous operations.

A chain of services must decide which service ultimately responds to the initiator. Moreover,
if each service in a chain uses the Asynchronous Completion Token pattern, four issues
related to passing, storing, and returning ACTs must be considered:
§ If no service in the chain created new ACTs, then the last service in the chain can

simply notify the initiator. This design can optimize ACT processing because it makes it
unnecessary to 'unwind' the chain of services.

§ If an intermediate service does not associate any completion processing with the
asynchronous operation(s) it initiates, it can simply forward the original ACT it received
from its previous initiator.

 231

§ When completion processing must be associated with an asynchronous operation and
an intermediate service can be sure that its initiators' ACT values are unique, the
service can use initiator ACT values to index into a data structure that maps each ACT
to completion processing actions and state:

§ If an intermediate service cannot assume uniqueness of initiator ACTs, the original
ACT cannot be reused to reference intermediate completion actions and state. In this
case an intermediate service must create a new ACT and maintain a table that stores
these ACTs so they can be mapped back to their original ACTs when the chain
'unwinds'.

Non-opaque ACTs. In some implementations of the Asynchronous Completion Token
pattern, services do not treat the ACT as purely opaque. For example, Win32 OVERLAPPED
structures are non-opaque ACTs, because certain fields can be modified by the operating
system kernel. One solution to this problem is to pass subclasses of the OVERLAPPED
structure that contain additional ACT state, as shown in implementation activity 1.1 in the
Proactor pattern (215).

Synchronous ACTs. ACTs can also be used for operations that result in synchronous
callbacks. In this case the ACT is not really an asynchronous completion token but rather a
synchronous one. Using ACTs for synchronous callback operations provides a well-
structured means of passing state related to an operation through to a service. In addition
this approach decouples concurrency policies, so that the code receiving an ACT can be
used for either synchronous or asynchronous operations.

Known Uses

HTTP-Cookies. Web servers can use the Asynchronous Completion Token pattern if they
expect responses from Web browsers. For example, a Web server may expect a user to

 232

transmit data they filled into a form that was downloaded from the server to the browser in
response to a previous HTTP GET request. Due to the 'sessionless' design of the HTTP
protocol, and because users need not complete forms immediately, the Web server, acting
in the role of a 'initiator', transmits a cookie (the ACT) to the Web browser along with the
form. This cookie allows the server to associate the user's response with his or her original
request for the form. Web browsers need not interpret the cookie, but simply return it
unchanged to the Web server along with the completed form.

Operating system asynchronous I/O mechanisms. The Asynchronous Completion Token
pattern is used by operating systems that support asynchronous I/O. For instance, the
following techniques are used by Windows NT and POSIX:
§ Windows NT. ACTs are used in conjunction with handles, Overlapped I/O, Win32 I/O

completion ports on Windows NT [Sol98]. When Win32 handles[11] are created they can
be associated with completion ports using the CreateIoCompletionPort() function.
Completion ports provide a location for kernel-level services to queue completion
events. These events can be dequeued and processed subsequently by initiators that
invoked the asynchronous operations originally.

For example, when initiators initiate asynchronous reads and writes via ReadFile() or
WriteFile(), they can specify OVERLAPPED struct ACTs that will be queued at a
completion port when the operations finish. Initiators can then use the
GetQueuedCompletionStatus() function to dequeue completion events that return
the original OVERLAPPED struct as an ACT. Implementation activity 5.5 in the Proactor
pattern (215) illustrates this design in more detail.

§ POSIX. The POSIX Asynchronous I/O API [POSIX95] can be programmed to pass
ACTs to its asynchronous I/O operations. This can be accomplished by subclassing
the ACT from the aiocb struct, which then can be passed to aio_read() or
aio_write(). These ACTs can be retrieved subsequently via the aio_suspend()
asynchronous event demultiplexing function and downcast to the appropriate
completion handlers. In addition, initiators can specify that completion events for
asynchronous I/O operations be returned via asynchronous UNIX 'real-time' signals or
synchronously via the sigtimedwait() or sigwaitinfo() functions.

CORBA demultiplexing. The TAO CORBA Object Request Broker [SC99] uses the
Asynchronous Completion Token pattern to demultiplex various types of GIOP requests and
responses efficiently, scalably, and predictably in both the client initiator and server.

In a multi-threaded client initiator, for example, TAO uses ACTs to associate GIOP
responses from a server with the appropriate client thread that initiated the request over a
single multiplexed TCP/IP connection to the server process. Each TAO client request carries
a unique opaque sequence number, the ACT, represented as a 32-bit integer. When an
operation is invoked the client-side TAO ORB assigns its sequence number to be an index
into an internal connection table managed using the Leader/Followers pattern (447).

Each table entry keeps track of a client thread that is waiting for a response from its server
over the multiplexed connection. When the server replies, it returns the sequence number
ACT sent by the client. TAO's client-side ORB uses the ACT to index into its connection
table to determine which client thread to awaken and pass the reply.

In the server, TAO uses the Asynchronous Completion Token pattern to provide low-
overhead demultiplexing throughout the various layers of features in an Object Adapter
[SC99]. For example, when a server creates an object reference, TAO Object Adapter stores
special object ID and POA ID values in its object key, which is ultimately passed to clients as
an ACT contained in an object reference.

 233

When the client passes back the object key with its request, TAO's Object Adapter extracts
the special values from the ACT and uses them to index directly into tables it manages. This
so-called 'active demultiplexing' scheme [PRS+99] uses an ACT to ensure constant-time
O(1) lookup regardless of the number of objects in a POA or the number of nested POAs in
an Object Adapter.

Electronic medical imaging system management. The management example described
in this pattern is derived from a distributed electronic medical imaging system developed at
Washington University for Project Spectrum [BBC94]. In this system, management
applications monitor the performance and status of multiple distributed components in the
medical imaging system, including image servers, modalities, hierarchical storage
management systems, and radiologist diagnostic workstations. Management agents provide
an asynchronous service that notifies management application of events, such as
connection establishment events and image transfer events. This system uses the
Asynchronous Completion Token pattern so that management applications can associate
state efficiently with the arrival of events from management agents received asynchronous
subscription operations earlier.

Jini. The handback object in Jini [Sun99a] distributed event specification [Sun99b] is a Java-
based example of the Asynchronous Completion Token pattern. When a consumer registers
with an event source to receive notifications, it can pass a handback object to this event
source. This object is a java.rmi.MarshalledObject, which is therefore not
demarshaled at the event source, but is simply 'handed back' to the consumer as part of the
event notification.

The consumer can then use the getRegistrationObject() method of the event
notification to retrieve the handback object that was passed to the event source when the
consumer registered with it. Thus, consumers can recover the context rapidly in which to
process the event notification. This design is particularly useful when a third party registered
the consumer to receive event notifications.

FedEx inventory tracking. An intriguing real-life example of the Asynchronous Completion
Token pattern is implemented by the inventory tracking mechanism used by the US Federal
Express postal services. A FedEx Airbill contains a section labeled: 'Your Internal Billing
Reference Information (Optional: First 24 characters will appear on invoice).'

The sender of a package uses this field as an ACT. This ACT is returned by FedEx (the
service) to you (the initiator) with the invoice that notifies the sender that the transaction has
completed. FedEx deliberately defines this field very loosely: it is a maximum of 24
characters, which are otherwise 'untyped.' Therefore, senders can use the field in a variety
of ways. For example, a sender can populate this field with the index of a record for an
internal database or with a name of a file containing a 'to-do list' to be performed after the
acknowledgment of the FedEx package delivery has been received.

Consequences

There are several benefits to using the Asynchronous Completion Token pattern:

Simplified initiator data structures. Initiators need not maintain complex data structures to
associate service responses with completion handlers. The ACT returned by the service can
be downcast or reinterpreted to convey all the information the initiator needs to demultiplex
to its appropriate completion action.

Efficient state acquisition. ACTs are time efficient because they need not require complex
parsing of data returned with the service response. All relevant information necessary to
associate the response with the original request can be stored either in the ACT or in an

 234

object referenced by the ACT. Alternatively, ACTs can be used as indices or pointers to
operation state for highly efficient access, thereby eliminating costly table searches.

Space efficiency. ACTs can consume minimal data space yet can still provide applications
with sufficient information to associate large amounts of state to process asynchronous
operation completion actions. For example, in C and C++, void pointer ACTs can reference
arbitrarily large objects held in the initiator application.

Flexibility. User-defined ACTs are not forced to inherit from an interface to use the service's
ACTs. This allows applications to pass as ACTs objects for which a change of type is
undesirable or even impossible. The generic nature of ACTs can be used to associate an
object of any type with an asynchronous operation. For example, when ACTs are
implemented as CORBA object references they can be narrowed to the appropriate concrete
interface.

Non-dictatorial concurrency policies. Long duration operations can be executed
asynchronously because operation state can be recovered from an ACT efficiently. Initiators
can therefore be single-threaded or multi-threaded depending on application requirements.
In contrast, a service that does not provide ACTs may force delay-sensitive initiators to
perform operations synchronously within threads to handle operation completions properly.

There are several liabilities to avoid when using the Asynchronous Completion Token
pattern.

Memory leaks. Memory leaks can result if initiators use ACTs as pointers to dynamically
allocated memory and services fail to return the ACTs, for example if the service crashes. As
described in implementation activity 2 (269), initiators wary of this possibility should maintain
separate ACT repositories or tables. These can be used for explicit garbage collection if
services fail or if they corrupt the ACT.

Authentication. When an ACT is returned to an initiator on completion of an asynchronous
event, the initiator may need to authenticate the ACT before using it. This is necessary if the
server cannot be trusted to have treated the ACT opaquely and may have changed its value.
Implementation activity 2 (269) describes a strategy for addressing this liability.

Application re-mapping. If ACTs are used as direct pointers to memory, errors can occur if
part of the application is re-mapped in virtual memory. This situation can occur in persistent
applications that are restarted after crashes, as well as for objects allocated from a memory-
mapped address space. To protect against these errors, indices to a repository can be used
as ACTs, as described in implementation activities 1 (267) and 2 (269). The extra level of
indirection provided by these 'index ACTs' protects against re-mappings, because indices
can remain valid across re-mappings, whereas pointers to direct memory may not.

See Also

The Asynchronous Completion Token and Memento patterns [GoF95] are similar with
respect to their participants. In the Memento pattern, originators give mementos to
caretakers who treat the Memento as 'opaque' objects. In the Asynchronous Completion
Token pattern, initiators give ACTs to services that treat the ACTs as 'opaque' objects.

These patterns differ in motivation and applicability however. The Memento pattern takes
'snapshots' of object states, whereas the Asynchronous Completion Token pattern
associates state with the completion of asynchronous operations. Another difference is in
their dynamics. In the Asynchronous Completion Token pattern, the initiator—which
corresponds to the originator in Memento—creates the ACT proactively and passes it to the
service. In Memento, the caretaker—which is the initiator in terms of Asynchronous

 235

Completion Token pattern—requests the creation of a memento from an originator, which is
reactive.

Credits

Irfan Pyarali and Timothy Harrison were co-authors on the original version of the
Asynchronous Completion Token pattern. Thanks to Paul McKenney and Richard Toren for
their insightful comments and contributions, and to Michael Ogg for supplying the Jini known
use.

[10]Implementation activity 1.1 in the Reactor pattern (179) outlines the pros and cons of
callback functions versus callback objects.

[11]Win32 handles are similar to UNIX file descriptors. For Win32 overlapped I/O, handles are
used to identify network transport endpoints or open files.

Acceptor-Connector
The Acceptor-Connector design pattern decouples the connection and initialization of
cooperating peer services in a networked system from the processing performed by the peer
services after they are connected and initialized.

Example

Consider a large-scale distributed system management application consisting that monitors
and controls a satellite constellation [Sch96]. Such a management application typically
consists of a multi-service, application-level gateway that routes data between transport
endpoints connecting remote peer hosts.

Each service in the peer hosts uses the gateway to send and receive several types of data,
including status information, bulk data, and commands, that control the satellites. The peer
hosts can be distributed throughout local area and wide-area networks.

The gateway transmits data between its peer hosts using the connection-oriented TCP/IP
protocol [Ste93]. Each service in the system is bound to a particular transport address, which
is designated by a tuple consisting of an IP host address and a TCP port number. Different
port numbers uniquely identify different types of service.

Unlike the binding of services to specific TCP/IP host/port tuples, which can be selected
early in the distributed system's lifecycle, it may be premature to designate the connection
establishment and service initialization roles a priori. Instead, the services in the gateway
and peer hosts should be able to change their connection roles flexibly to support the
following run-time behavior:
§ Services in a gateway may actively initiate connection requests to services located in

remote peer hosts, then route data to them.

 236

§ Services in a gateway may passively accept connection requests from services within
the peer hosts, which then route data through the gateway to a service on another peer
host.

§ Services residing in peer hosts may be active connection initiators in one situation and
passive connection acceptors in another.

§ Hybrid configurations that combine passive and active connection behavior in the
same gateway or peer host may also occur.

In general, the inherent flexibility required to support such a runtime behavior demands
communication software that allows the connection establishment, initialization, and
processing of peer services to evolve gracefully and to vary independently.

Context

A networked system or application in which connection-oriented protocols are used to
communicate between peer services connected via transport endpoints.

Problem

Applications in connection-oriented networked systems often contain a significant amount of
configuration code that establishes connections and initializes services. This configuration
code is largely independent of the processing that services perform on data exchanged
between their connected transport endpoints. Tightly coupling the configuration code with
the service processing code is therefore undesirable, because it fails to resolve four forces:
§ It should be easy to change connection roles to support different application behavior,

as discussed in the Example section. Connection roles determine whether an
application actively initiates or passively accepts a connection. In contrast,
communication roles determine whether an application plays the role of a client, a
server, or both client and server in a peer-to-peer configuration.

§ It should be easy to add new types of services, service implementations, and
communication protocols without affecting existing connection establishment and
service initialization configuration code.

§ The gateway from our example may require integration with a directory service that
runs over the TP4 or SPX transport protocols rather than TCP. Ideally, this
integration should have little or no effect on the implementation of the gateway
services themselves.

§ In general, connection establishment and service initialization strategies change less
frequently than the communication protocols and services implemented by an
application.

§ FTP, TELNET, HTTP and CORBA IIOP services all use different application-level
communication protocols. However, they can all be configured using the same
connection and initialization mechanisms.

 237

§ For large-scale networked systems it should be possible to reduce connection
establishment latency by using advanced operating system features, such as
asynchronous connection mechanisms.

§ Applications with a large number of peers may need to establish many connections
asynchronously and concurrently. Efficient and scalable connection establishment is
particularly important for applications, such as our gateway example, that
communicate over long-latency wide area networks.

Solution

Decouple the connection and initialization of peer services in a networked application from
the processing these peer services perform after they are connected and initialized.

In detail: encapsulate application services within peer service handlers. Each service handler
implements one half of an end-to-end service in a networked application. Connect and
initialize peer service handlers using two factories: acceptor and connector. Both factories
cooperate to create a full association [Ste93] between two peer service handlers and their
two connected transport endpoints, each encapsulated by a transport handle.

The acceptor factory establishes connections passively on behalf of an associated peer
service handler upon the arrival of connection request events[12] issued by remote peer
service handlers. Likewise, the connector factory establishes connections actively to
designated remote peer service handlers on behalf of peer service handlers.

After a connection is established, the acceptor and connector factories initialize their
associated peer service handlers and pass them their respective transport handles. The
peer service handlers then perform application-specific processing, using their transport
handles to exchange data via their connected transport endpoints. In general, service
handlers do not interact with the acceptor and connector factories after they are connected
and initialized.

Structure

There are six key participants in the Acceptor-Connector pattern:

A passive-mode transport endpoint is a factory that listens for connection requests to arrive,
accepts those connection requests, and creates transport handles that encapsulate the
newly connected transport endpoints. Data can be exchanged via connected transport
endpoints by reading and writing to their associated transport handles.

 238

In the gateway example, we use socket handles to encapsulate transport endpoints. In
this case, a passive-mode transport endpoint is a passive-mode socket handle [Ste98]
that is bound to a TCP port number and IP address. It creates connected transport
endpoints that are encapsulated by data-mode socket handles. Standard Socket API
operations, such as recv() and send(), can use these connected data-mode socket
handles to read and write data.

A service handler defines one half of an end-to-end service in a networked system. A
concrete service handler often plays either the client role or server role in this end-to-end
service. In peer-to-peer use cases it can even play both roles simultaneously. A service
handler provides an activation hook method that is used to initialize it after it is connected to
its peer service handler. In addition, the service handler contains a transport handle, such as
a data-mode socket handle, that encapsulates a transport endpoint. Once connected, this
transport handle can be used by a service handler to exchange data with its peer service
handler via their connected transport endpoints.

In our example the service handlers are both cooperating components within the
gateway and peer hosts that communicate over TCP/IP via their connected socket
handles. Service handlers are responsible for processing status information, bulk data,
and commands that monitor and control a satellite constellation.

An acceptor is a factory that implements a strategy for passively establishing a connected
transport endpoint, and creating and initializing its associated transport handle and service
handler. An acceptor provides two methods, connection initialization and connection
completion, that perform these steps with the help of a passive-mode transport endpoint.

When its initialization method is called, an acceptor binds its passive-mode transport
endpoint to a particular transport address, such as a TCP port number and IP host address,
that listens passively for the arrival of connection requests.

When a connection request arrives, the acceptor's connection completion method performs
three steps:
§ Firstly, it uses its passive-mode transport endpoint to create a connected transport

endpoint and encapsulate the endpoint with a transport handle.

 239

§ Secondly, it creates a service handler that will process data requests emanating from
its peer service handler via their connected transport endpoints.

§ Thirdly, it stores the transport handle in its associated service handler and invokes the
service handler's activation hook method, which allows the service handler to finish
initializing itself.

A connector[13] is a factory that implements the strategy for actively establishing a connected
transport endpoint and initializing its associated transport handle and service handler. It
provides two methods, connection initiation and connection completion, that perform these
steps.

The connection initiation method is passed an existing service handler and establishes a
connected transport endpoint for it with an acceptor. This acceptor must be listening for
connection requests to arrive on a particular transport address, as described above.

Separating the connector's connection initiation method from its completion method allows a
connector to support both synchronous and asynchronous connection establishment
transparently:
§ In the synchronous case, the connector initiating the connection request blocks its

caller until the transport endpoints are connected. At this point, the connector calls the
service handler's activation hook method directly.

§ In the asynchronous case, the connection request runs asynchronously and the
connector's initiation method returns immediately. The service handler is activated by
the connection completion method only after the connector is notified that the transport
endpoint has finished connecting asynchronously.

Regardless of whether a transport endpoint is connected synchronously or asynchronously,
both acceptors and connectors initialize a service handler by calling its activation hook
method after a transport endpoint is connected. From this point service handlers generally
do not interact with their acceptor and connector factories.

A dispatcher is responsible for demultiplexing indication events that represent various types
of service requests, such as connection requests and data requests.

 240

§ For the acceptor, the dispatcher demultiplexes connection indication events received
on one or more transport handles that encapsulate transport endpoints. Multiple
acceptors can register with a dispatcher, which listens on their behalf for connection
requests to arrive from peer connectors.

§ For the connector, the dispatcher demultiplexes completion events that arrive in
response to connections that were initiated asynchronously. To handle this situation, a
connector registers itself with a dispatcher to receive these connection completion
events. The dispatcher then runs its event loop. When a completion event arrives it
notifies the corresponding connector. The connector can then invoke the designated
service handler's activation hook method to allow the service handler to initialize itself. A
single dispatcher and connector can therefore initiate and complete connections
asynchronously on behalf of multiple service handlers.

Note that a dispatcher is not necessary for synchronous connection establishment,
because the thread that initiates the connection will block awaiting the connection
completion event. As a result this thread can activate the service handler directly.

§ Service handlers can register their transport handles with a dispatcher, which will notify
the service handlers when indication events occur on those handles.

Networked applications and services can be built by subclassing and instantiating the
generic participants of the Acceptor-Connector pattern described above to create the
following concrete components.

Concrete service handlers define the application-specific portions of end-to-end services.
They are activated by concrete acceptors or concrete connectors. Concrete acceptors
instantiate generic acceptors with concrete service handlers, transport endpoints, and
transport handles used by these service handlers. Similarly, concrete connectors instantiate
generic connectors.

Concrete service handlers, acceptors, and connectors are also instantiated with a specific
type of interprocess communication (IPC) mechanism, such as Sockets [Ste98] or TLI
[Rago93]. These IPC mechanisms are used to create the transport endpoints and transport
handles that connected peer service handlers use to exchange data.

The class diagram of the Acceptor-Connector pattern is shown in the following figure:

 241

Dynamics

To illustrate the collaborations performed by participants in the Acceptor-Connector pattern,
we examine three canonical scenarios:
§ Scenario I shows passive connection establishment
§ Scenario II shows synchronous active connection establishment
§ Scenario III shows asynchronous active connection establishment

Scenario I: This scenario illustrates the collaboration between acceptor and service handler
participants and is divided into three phases:
§ Passive-mode transport endpoint initialization phase. An application that plays a

passive connection role first calls the acceptor's connection initialization method. This
method initializes a passive-mode transport endpoint and binds it to a transport
address, such as the local host's IP address and a TCP port number. The acceptor then
listens on this transport address for connection requests initiated by peer connectors.[14]

Next, the acceptor's initialization method registers itself with a dispatcher, which will
notify the acceptor when connection indication events arrive from peer connectors. After
the acceptor's initialization method returns, the application initiates the dispatcher's
event loop. This loop waits for connection requests and other types of indication events
to arrive from peer connectors.

§ Service handler initialization phase. When a connection request arrives for a particular
transport address, the dispatcher notifies the associated acceptor. This acceptor uses
its passive-mode transport endpoint to create a new connected transport endpoint and
encapsulate it with a transport handle. It next creates a new service handler, stores the
transport handle into the service handler, and calls the service handler's activation hook
method.

This hook method performs service handler-specific initialization, for example allocating
locks, spawning threads, or establishing a session with a logging service. A service
handler may elect to register itself with a dispatcher, which will notify the handler
automatically when indication events containing data requests arrive for it.

§ Service processing phase. After a transport endpoint has been connected and the
associated service handler has been initialized, the service processing phase begins. In
this phase an application-level communication protocol such as TELNET, FTP, HTTP
or CORBA IIOP can be used to exchange data between the peer service handlers via
their connected transport endpoints. When all exchanges are complete, the transport
endpoints, transport handles, and service handlers can be shut down and their
resources released.

 242

A connector can initialize its service handler using two general strategies: synchronous and
asynchronous. Synchronous service initialization is useful:
§ If connection establishment latency is very low, for example establishing a connection

with a server on the same host via a 'loopback network' device
§ If multiple threads of control are available and it is efficient to use a thread-per-

connection model [Sch97] to connect each service handler synchronously or
§ If the services must be initialized in a fixed order and the client cannot perform useful

work until all connections are established.

Asynchronous service initialization is useful in different situations, such as establishing
connections over high latency links, using single-threaded applications, or initializing a large
number of peers that can be connected in an arbitrary order.

Scenario II: The collaborations among participants in the synchronous connector scenario
can be divided into three phases:
§ Connection initiation phase. To establish a connection synchronously between a

service handler and its peer, an application can invoke the connector's connection
initiation method. Using the transport handle associated with the service handler, this
method actively establishes the connection by blocking the application's thread until the
connection completes synchronously.

§ Service handler initialization phase. After a connection completes synchronously, the
connection initiation method calls the associated service handler's activation hook
method directly. This hook method performs service handler-specific initializations.

§ Service processing phase. After a service handler is initialized, it performs application-
specific service processing using data exchanged with its connected peer service
handler. This phase is similar to the service processing phase performed by service
handlers that are created and initialized by acceptors.

In the synchronous scenario, the connector combines the connection initiation and service
initialization phases into a single blocking operation. Only one connection is established per
thread for every invocation of a connector's connection initiation method.

Scenario III: The collaborations among participants in the asynchronous connector scenario
are also divided into three phases:
§ Connection initiation phase. To connect a service handler and its peer service handler

asynchronously, an application invokes the connector's connection initiation method. As
with the synchronous Scenario II, the connector initiates the connection actively.

Unlike Scenario II, however, the connection initiation request executes asynchronously.
The application thread therefore does not block while waiting for the connection to
complete. To receive a notification when a connection completes, the connector

 243

registers itself and the service handler's transport handle with the dispatcher and returns
control back to the application.

§ Service handler initialization phase. After a connection completes asynchronously, the
dispatcher notifies the connector's connection completion method. This method cleans
up any resources allocated to manage the pending connection, then it calls the service
handler's activation hook method to perform service-specific initialization.

§ Service processing phase. After a service handler is activated, it performs application-
specific service processing using data exchanged with its connected peer service
handler. This phase is similar to the service processing phases described in Scenarios I
and II.

Note in the following figure how the connection initiation phase in Scenario III is separated
temporally from the service handler initialization phase. This decoupling enables multiple
connection initiations and completions to proceed concurrently, thereby maximizing the
parallelism inherent in networks and hosts.

Implementation

The participants in the Acceptor-Connector pattern can be decomposed into three layers:
§ Demultiplexing/dispatching infrastructure layer components. This layer performs

generic, application-independent strategies for dispatching events.
§ Connection management layer components. This layer performs generic, application-

independent connection and initialization services.
§ Application layer components. This layer then customizes the generic strategies

performed by the other two layers via subclassing, object composition, and/or
parameterized type instantiation, to create concrete components that establish
connections, exchange data, and perform service-specific processing.

Our coverage of the Acceptor-Connector implementation starts with the
demultiplexing/dispatching component layer and progresses upwards through the
connection management and application component layers.

1. Implement the demultiplexing/dispatching infrastructure component layer. This layer
handles events that occur on transport endpoints and consists of transport
mechanisms and dispatching mechanisms. This implementation activity can be
divided into two sub-activities:

 244

1. Select the transport mechanisms. These mechanisms consist of:
§ Passive-mode transport endpoint components
§ Connected transport endpoint components
§ Transport address components
§ Transport handle components

A passive-mode transport endpoint is a factory that listens on an advertised
transport address for connection requests to arrive. When such a request
arrives, a passive-mode transport endpoint creates a connected transport
endpoint and encapsulates this new endpoint with a transport handle. An
application can use this transport handle to exchange data with its peer-
connected transport endpoint. The transport mechanism components are often
provided by the underlying operating system platform and may be accessed
via wrapper facades (47), as shown in implementation activity 3 (311).

For our gateway example we implement the transport mechanism
components using the Sockets API [Ste98]. The passive-mode transport
endpoints and connected transport endpoints are implemented by
passive-mode and data-mode sockets, respectively. Transport handles
are implemented by socket handles. Transport addresses are
implemented using IP host addresses and TCP port numbers.

2. Implement the dispatching mechanisms. These mechanisms consist of
dispatcher and event handler components. A dispatcher is responsible for
associating requests to their corresponding acceptors, connectors, and service
handlers. An event handler defines the event processing interface provided by
a service of an event-driven application.

To implement the dispatching mechanisms, follow the guidelines described in
the Reactor (179) or Proactor (215) event demultiplexing patterns. These
patterns handle synchronous and asynchronous event demultiplexing,
respectively. A dispatcher can also be implemented as a separate thread or
process using the Active Object pattern (369) or Leader/Followers (447)
thread pools.

For our gateway example, we implement the dispatcher and event handler
using components from the Reactor pattern (179). This enables efficient
synchronous demultiplexing of multiple types of events from multiple
sources within a single thread of control. The dispatcher, which we call
'reactor' in accordance with Reactor pattern terminology, uses a reactive
model to demultiplex and dispatch concrete event handlers.

We use a reactor Singleton [GoF95] because only one instance of it is
needed in the entire application process. The event handler class, which
we call Event_Handler in our example, implements methods needed by
the reactor to notify its service handlers, connectors, and acceptors when
events they have registered for occur. To collaborate with the reactor,
therefore, these components must subclass from class Event_Handler,
as shown in implementation activity 2 (299).

 245

2. Implement the connection management component layer. This layer creates service
handlers, passively or actively connects service handlers to their remote peer service
handlers, and activates service handlers after they are connected. All components in
this layer are generic and delegate to concrete IPC mechanisms, concrete service
handlers, concrete acceptors, and concrete connectors. These are instantiated by the
application layer described in implementation activity 3 (311). There are three primary
components in the connection management layer: service handler, acceptor, and
connector.

1. Define a generic service handler interface. A service handler provides a
generic interface for processing services defined by clients, servers, or both
client and server roles in peer-to-peer services. This interface includes
methods for initializing a service handler, executing the service it defines, and
for maintaining the IPC mechanism it uses for communication. To create a
concrete service handler, applications must customize this component using
subclassing, object composition, or parameterized type instantiation.

Applications must also configure a service handler component with a concrete
IPC mechanism that encapsulates a transport handle and its corresponding
transport endpoint. These IPC mechanisms are often implemented as wrapper
facades (47). Concrete service handlers can use these IPC mechanisms to
communicate with their remote peer service handlers.

In our gateway example we define a Service_Handler abstract base
class that inherits from the Event_Handler class defined in
implementation activity 1 of the Reactor pattern (179):
 template <class IPC_STREAM>
 // <IPC_STREAM> is the type of concrete IPC
data
 // transfer mechanism.
 class Service_Handler : public Event_Handler {
 public:
 typedef typename IPC_STREAM::PEER_ADDR Addr;

 // Pure virtual method (defined by a
subclass).
 virtual void open () = 0;

 // Access method used by <Acceptor> and
<Connector>.
 IPC_STREAM &peer () { return ipc_stream_; }

 // Return the address we are connected to.
 Addr &remote_addr () {
 return ipc_stream_.remote_addr ();
 }

 246

 // Set the <handle> used by this
<Service_Handler>.
 void set_handle (HANDLE handle){
 return ipc_stream_.set_handle (handle);
 }
 private:
 // Template 'placeholder' for a concrete IPC
 // mechanism wrapper facade, which
encapsulates a
 // data-mode transport endpoint and transport
handle.
 IPC_STREAM ipc_stream_;
 };

This design allows a Reactor to dispatch the service handler's event
handling method it inherits from class Event_Handler. In addition, the
Service_Handler class defines methods to access its IPC mechanism,
which is configured into the class using parameterized types. Finally this
class includes an activation hook that acceptors and connectors can use
to initialize a Service_Handler object once a connection is established.
This pure virtual method, which we call open(), must be overridden by a
concrete service handler to perform service-specific initialization.

2. Define the generic acceptor interface. The acceptor component implements
the generic strategy for establishing connections passively and creating and
initializing the concrete service handlers that exchange data with peer service
handlers over these connections. An acceptor also defines an initialization
method that an application can call to advertise its passive-mode transport
endpoint address to other applications on the network.

A generic acceptor is customized by the components in the application layer,
as described in implementation activity 3 (311) to establish connections
passively on behalf of a particular service handler using a designated IPC
mechanism. To support this customization an acceptor implementation can
use two general strategies, polymorphism or parameterized types:
§ Polymorphism. In this strategy, illustrated in the Structure section,

concrete acceptors are specified by subclassing from a generic acceptor.
The acceptor method, which we call accept(), responsible for accepting
connection requests from remote clients is a template method [GoF95]. It
performs the generic processing that constitutes the acceptor's passive
connection establishment and service initialization logic.

The behavior of the individual steps in this process are delegated to hook
methods [Pree95] that are also declared in the acceptor's interface.
These hook methods can be overridden by concrete acceptors to perform
application-specific strategies, for example to use a particular concrete
IPC mechanism to establish connections passively. The concrete service
handler created by a concrete acceptor can be manufactured via a factory

 247

method [GoF95] called as one of the steps in the acceptor's accept()
template method.

§ Parameterized types. This strategy encapsulates IPC mechanisms for
passive connection establishment within wrapper facades (47) and
configures them into an acceptor component via parameterized types. As
with the polymorphic strategy outlined above, the acceptor's accept()
method is a template method [GoF95] whose hook methods delegate to
the particular IPC mechanism configured into the acceptor. The type of
concrete service handler used to instantiate a concrete acceptor can also
be supplied as a template parameter to the generic acceptor.

One advantage of using parameterized types is that they allow the IPC
connection mechanisms and service handlers associated with an acceptor to
be changed easily and efficiently. This flexibility simplifies porting an
acceptor's connection establishment code to platforms with different IPC
mechanisms. It also allows the same connection establishment and service
initialization code to be reused for different types of concrete service handlers.

Inheritance and parameterized types have the following trade-offs:
§ Parameterized types may incur additional compile and link-time

overhead, but generally compile into faster code [CarEl95]
§ Inheritance may incur additional run-time overhead due to the

indirection of dynamic binding [HLS97], but is generally faster to compile
and link

Different applications and application services have different needs that are
best served by one or the other strategies.

In our gateway example we use parameterized types to configure the
acceptor with its designated service handler and a concrete IPC
mechanism that establishes connections passively. The acceptor inherits
from Event_Handler to receive events from a reactor singleton, which
pays the role of the dispatcher in this example:
 template <class SERVICE_HANDLER, class
IPC_ACCEPTOR>
 // The <SERVICE_HANDLER> is the type of
concrete
 // service handler created/accepted/activated
when a
 // connection request arrives.
 // The <IPC_ACCEPTOR> provides the concrete
IPC
 // passive connection mechanism.
 class Acceptor : public Event_Handler {
 public:
 typedef typename IPC_ACCEPTOR::PEER_ADDR
Addr;

 // Constructor initializes <local_addr>
transport

 248

 // endpoint and register with the <Reactor>.
 Acceptor (const Addr &local_addr, Reactor
*r);

 // Template method that creates, connects,
 // and activates <SERVICE_HANDLER>'s.
 virtual void accept ();
 protected:
 // Factory method hook for creation strategy.
 virtual SERVICE_HANDLER *make_service_handler
();

 // Hook method for connection strategy.
 virtual void accept_service_handler
 (SERVICE_HANDLER *);

 // Hook method for activation strategy.
 virtual void activate_service_handler
 (SERVICE_HANDLER *);
 // Hook method that returns the I/O <HANDLE>.
 virtual HANDLE get_handle () const;

 // Hook method invoked by <Reactor> when a
 // connection request arrives.
 virtual void handle_event (HANDLE,
Event_Type);

 private:
 // Template 'placeholder' for a concrete IPC
 // mechanism that establishes connections
passively.
 IPC_ACCEPTOR peer_acceptor_;
 };

The Acceptor template is parameterized by concrete types of
IPC_ACCEPTOR and SERVICE_HANDLER. The IPC_ACCEPTOR is a
placeholder for the concrete IPC mechanism used by an acceptor to
passively establish connections initiated by peer connectors. The
SERVICE_HANDLER is a placeholder for the concrete service handler that
processes data exchanged with its peer connected service handler. Both
of these concrete types are provided by the components in the application
layer.

 249

3. Implement the generic acceptor methods. Applications initialize an acceptor by
calling its initialization method with a parameter specifying a transport address,
such as the local host's IP name and TCP port number. The acceptor uses
this address to listen for connections initiated by peer connectors. It forwards
this address to the concrete IPC connection mechanism configured into the
generic acceptor, either by an acceptor's concrete acceptor subclasses or by a
parameterized type. This IPC connection mechanism then initializes the
acceptor's passive-mode transport endpoint, which advertises its address to
remote applications who are interested in connecting to the acceptor.

The behavior of the acceptor's passive-mode transport endpoint is determined
by the type of concrete IPC mechanism used to customize the generic
acceptor. This IPC mechanism is often accessed via a wrapper facade (47),
such as the ACE wrapper facades [Sch92] for Sockets [Ste98], TLI [Rago93],
STREAM pipes [PR90], or Win32 Named Pipes [Ric97].

The acceptor's initialization method also registers itself with a dispatcher. This
dispatcher then performs a 'double dispatch' [GoF95] back to the acceptor to
obtain a handle to the passive-mode transport endpoint of its underlying
concrete IPC mechanism. This handle allows the dispatcher to notify the
acceptor when connection requests arrive from peer connectors.

The Acceptor from our example implements its constructor initialization
method as follows:
 template <class SERVICE_HANDLER, class
IPC_ACCEPTOR>
 void Acceptor<SERVICE_HANDLER,
IPC_ACCEPTOR>::Acceptor
 (const Addr &local_addr, Reactor *reactor) {
 // Initialize the IPC_ACCEPTOR.
 peer_acceptor_.open (local_addr);

 // Register with <reactor>, which uses
<get_handle>
 // to get handle via 'double-dispatching.'
 reactor->register_handler (this,
ACCEPT_MASK);
 }

When a connection request arrives from a remote peer, the dispatcher
automatically calls back to the acceptor's accept() template method
[GoF95]. This template method implements the acceptor's strategies for
creating a new concrete service handler, accepting a connection into it, and
activating the handler. The details of the acceptor's implementation are
delegated to hook methods. These hook methods represent the set of
operations available to perform customized service handler connection and
initialization strategies.

 250

If polymorphism is used to specify concrete acceptors, the hook methods are
dispatched to their corresponding implementations within the concrete
acceptor subclass. When using parameterized types, the hook methods
invoke corresponding methods on the template parameters used to instantiate
the generic acceptor. In both cases, concrete acceptors can modify the
generic acceptor's strategies transparently without changing its accept()
method's interface. This flexibility makes it possible to design concrete service
handlers whose behavior can be decoupled from their passive connection and
initialization.

The Acceptor class in our gateway example implements the following
accept() method:
 template <class SERVICE_HANDLER, class
IPC_ACCEPTOR>
 void Acceptor<SERVICE_HANDLER,
IPC_ACCEPTOR>::accept () {
 // The following methods comprise the core
 // strategies of the <accept> template
method.

 // Factory method creates a new
<SERVICE_HANDLER>.
 SERVICE_HANDLER *service_handler =
 make_service_handler ();

 // Hook method that accepts a connection
passively.
 accept_service_handler (service_handler);

 // Hook method that activates the
<SERVICE_HANDLER>
 // by invoking its <open> activation hook
method.
 activate_service_handler (service_handler);
 }

The make_service_handler() factory method [GoF95] is a hook used
by the generic acceptor template method to create new concrete service
handlers. Its connection acceptance strategy is defined by the
accept_service_handler() hook method. By default this method
delegates connection establishment to the accept() method of the
IPC_ACCEPTOR, which defines a concrete passive IPC connection
mechanism. The acceptor's service handler activation strategy is defined
by the activate_service_handler() method. This method can be
used by a concrete service handler to initialize itself and to select its
concurrency strategy.

 251

In our gateway example the dispatcher is a reactor that notifies the
acceptor's accept() method indirectly via the handle_event() method
that the acceptor inherits from class Event_Handler. The
handle_event() method is an adapter [GoF95] that transforms the
general-purpose event handling interface of the reactor to notify the
acceptor's accept() method.

When an acceptor terminates, due to errors or due to its application process
shutting down, the dispatcher notifies the acceptor to release any resources it
acquired dynamically.

In our gateway, the reactor calls the acceptor's handle_close() hook
method, which closes its passive-mode socket.

4. Define the generic connector interface. The connector component implements
the generic strategy for actively establishing connections and initializing the
associated service handlers that process request and response events on the
connections.

A connector contains a map of concrete service handlers that manage the
completion of pending asynchronous connections. Service handlers whose
connections are initiated asynchronously are inserted into this map. This
allows their dispatcher and connector to activate the handlers after the
connections complete.

As with the generic acceptors described in implementation activity 2.2 (300),
components in the application layer described in implementation activity 3
(311) customizes generic connectors with particular concrete service handlers
and IPC mechanisms. We must therefore select the strategy—polymorphism
or parameterized types—for customizing concrete connectors. Implementation
activity 2.2 (300) discusses both strategies and their trade-offs.

As with the acceptor's accept() method, a connector's connection initiation
and completion methods are template methods [GoF95], which we call
connect() and complete(). These methods implement the generic
strategy for establishing connections actively and initializing service handlers.
Specific steps in these strategies are delegated to hook methods [Pree95].

We define the following interface for the connector used to implement our
gateway example. It uses C++ templates to configure the connector with a
concrete service handler and the concrete IPC connection mechanism. It
inherits from class Event_Handler to receive asynchronous completion
event notifications from the reactor dispatcher:
 template <class SERVICE_HANDLER, class
IPC_CONNECTOR>

 252

 // The <SERVICE_HANDLER> is the type of
concrete
 // service handler activated when a
connection
 // request completes. The <IPC_CONNECTOR>
provides
 // the concrete IPC active connection
mechanism.
 class Connector : public Event_Handler {
 public:
 enum Connection_Mode {
 SYNC, // Initiate connection
synchronously.
 ASYNC // Initiate connection
asynchronously.
 };
 typedef typename IPC_CONNECTOR::PEER_ADDR
Addr;

 // Initialization method that caches a
<Reactor> to
 // use for asynchronous notification.
 Connector (Reactor *reactor): reactor_
(reactor) { }

 // Template method that actively connects a
service to
 // a <remote_addr>.
 void connect (SERVICE_HANDLER *sh,
 const Addr &remote_addr,
 Connection_Mode mode);
 protected:
 // Hook method for the active connection
strategy.
 virtual void connect_service_handler
 (const Addr &addr, Connection_Mode
mode);

 // Register the <SERVICE_HANDLER> so that it
can be
 // activated when the connection completes.
 int register_handler (SERVICE_HANDLER *sh,
 Connection_Mode mode);

 253

 // Hook method for the activation strategy.
 virtual void activate_service_handler
 (SERVICE_HANDLER *sh);

 // Template method that activates a
<SERVICE_HANDLER>
 // whose non-blocking connection completed.
This
 // method is called by <connect> in the
synchronous
 // case or by <handle_event> in the
asynchronous case.
 virtual void complete (HANDLE handle);
 private:
 // Template 'placeholder' for a concrete IPC
 // mechanism that establishes connections
actively.
 IPC_CONNECTOR connector_;

 typedef map<HANDLE, SERVICE_HANDLER*>
Connection_Map;

 // C++ standard library map that associates
<HANDLE>s
 // with <SERVICE_HANDLER> *s for pending
connections.
 Connection_Map connection_map_;

 // <Reactor> used for asynchronous connection
 // completion event notifications.
 Reactor *reactor_;

 // Inherited from <Event_Handler> to allow
the
 // <Reactor> to notify the <Connector> when
events
 // complete asynchronously.
 virtual void handle_event (HANDLE,
Event_Type);
 };

The Connector template is parameterized by a concrete
IPC_CONNECTOR and SERVICE_HANDLER. The IPC_CONNECTOR is a
concrete IPC mechanism used by a connector to synchronously or
asynchronously establish connections actively to remote acceptors. The

 254

SERVICE_HANDLER template argument defines one-half of a service that
processes data exchanged with its connected peer service handler. Both
concrete types are provided by components in the application layer.

5. Implement the generic connector methods. The connector's connect()
method is used by an application to initiate a connection. This template
method [GoF95] allows concrete connectors to modify the active connection
strategy transparently, without changing the connector's interface or
implementation. Therefore, connect() delegates individual steps of its
connection strategy to hook methods that concrete connectors can over-ride to
perform custom operations.

When connect() establishes a connection asynchronously on behalf of a
service handler, the connector inserts that handler into an internal container—
in our example a C++ standard template library map [Aus98]—that keeps track
of pending connections. When an asynchronously-initiated connection
completes, its dispatcher notifies the connector. The connector uses the
pending connection map to finish activating the service handler associated
with the connection.

If connect() establishes a connection synchronously, the connector can call
the concrete service handler's activation hook directly, without calling
complete(). This short-cut reduces unnecessary dynamic resource
management and processing for synchronous connection establishment and
service handler initialization.

The code fragment below shows the connect() method of our
Connector. If a SYNC value of the Connection_Mode parameter is
passed to this method, the concrete service handler will be activated after
the connection completes synchronously. Conversely, connections can be
initiated asynchronously by passing the Connection_Mode value ASYNC
to the connect() method:
 template <class SERVICE_HANDLER, class
IPC_CONNECTOR>
 void
Connector<SERVICE_HANDLER,IPC_CONNECTOR>::connect
 (SERVICE_HANDLER *service_handler,
 const Addr &addr, Connection_Mode mode)
{
 // Hook method delegates connection
initiation.
 connect_service_handler (service_handler,
addr,mode);
 }

The template method connect() delegates the initiation of a connection
to its connect_service_handler() hook method. This method
defines a default implementation of the connector's connection strategy.

 255

This strategy uses the concrete IPC mechanism provided by the
IPC_CONNECTOR template parameter to establish connections, either
synchronously or asynchronously.
 template <class SERVICE_HANDLER, class
IPC_CONNECTOR>
 void Connector<SERVICE_HANDLER,

IPC_CONNECTOR>::connect_service_handler
 (SERVICE_HANDLER *svc_handler,
 const Addr &addr,
 Connection_Mode mode) {
 try {
 // Concrete IPC_CONNECTOR establishes
connection.
 connector_.connect (*svc_handler, addr,
mode);

 // Activate if we connect synchronously.
 activate_service_handler (svc_handler);
 } catch (System_Ex &ex) {
 if (ex.status () == EWOULDBLOCK && mode
== ASYNC)
 {
 // Connection did not complete
immediately,
 // so register with <reactor_>,
which
 // notifies <Connector> when the
connection
 // completes.
 reactor_ ()->register_handler (this,

WRITE_MASK);

 // Store <SERVICE_HANDLER *> in map.
 connection_map_
[connector_.get_handle ()]
 = svc_handler;
 }
 }
 }

Note how connect() will activate the concrete service handler directly if
the connection happens to complete synchronously. This may occur, for
example, if the peer acceptor is co-located in the same host or process.

 256

The complete() method activates the concrete service handler after its
initiated connection completes. For connections initiated synchronously,
complete() need not be called if the connect() method activates the
service handler directly. For connections initiated asynchronously, however,
complete() is called by the dispatcher when the connection completes. The
complete() method examines the map of concrete service handlers to find
the service handler whose connection just completed. It removes this service
handler from the map and invokes its activation hook method. In addition,
complete() unregisters the connector from the dispatcher to prevent it from
trying to notify the connector accidentally.

Note that the service handler's open() activation hook method is called
regardless of whether connections are established synchronously or
asynchronously, or even if they are connected actively or passively. This
uniformity makes it possible to define concrete service handlers whose
processing can be completely decoupled from the time and manner in which
they are connected and initialized.

When a connection is initiated synchronously in our gateway, the concrete
service handler associated with it is activated by the Connector's
connect_service_handler() method, rather than by its complete()
method, as described above. For asynchronous connections, conversely,
the reactor notifies the handle_event() method inherited by the
Connector from the Event_Handler class.

We implement this method as an adapter [GoF95] that converts the
reactor's event handling interface to forward the call to the connector's
complete() method. The complete() method then invokes the
activation hook of the concrete service handler whose asynchronously
initiated connection completed successfully most recently.

The complete() method shown below finds and removes the connected
service handler from its internal map of pending connections and transfers
the socket handle to the service handler.
 template <class SERVICE_HANDLER, class
IPC_CONNECTOR>
 void Connector<SERVICE_HANDLER,
 IPC_CONNECTOR>::complete(HANDLE
handle) {
 // Find <service_handler> associated with
<handle> in
 // the map of pending connections.
 Connection_Map::iterator i =
 connection_map_.find (handle);

 if (i == connection_map_.end ())

 257

 throw /* ...some type of error... */;

 // We just want the value part of the <key,
value>
 // pair in the map
 SERVICE_HANDLER *svc_handler = (*i).second;

 // Transfer I/O handle to <service_handler>.
 svc_handler->set_handle (handle);
 // Remove handle from <Reactor> and .
 // from the pending connection map.
 reactor_->remove_handler (handle, WRITE_MASK);
 connection_map_.erase (i);

 // Connection is complete, so activate
handler.
 activate_service_handler (svc_handler);
 }

Note how the complete() method initializes the service handler by
invoking its activate_service_handler() method. This method
delegates to the initialization strategy designated in the concrete service
handler's open() activation hook method.

3. Implement the components in the application layer. This layer defines the concrete
service handlers, concrete acceptors, and concrete connectors that Acceptor-
Connector pattern specifies in the Structure section. Components in the application
layer instantiate the generic service handler, acceptor, and connector components
described in implementation activity 2 (299) to create custom concrete components.

Concrete service handlers define the application's services. When implementing an
end-to-end service in a networked system that consists of multiple peer service
handlers, the Half Object plus Protocol pattern [Mes95] can help structure the
implementation of these service handlers. In particular, Half Object plus Protocol
helps decompose the responsibilities of an end-to-end service into service handler
interfaces and the protocol used to collaborate between them.

Concrete service handlers can also define a service's concurrency strategy. For
example, a service handler may inherit from the event handler and employ the
Reactor pattern (179) to process data from peers in a single thread of control.
Conversely, a service handler may use the Active Object (369) or Monitor Object
(399) patterns to process incoming data in a different thread of control than the one
used by the acceptor that connects it.

In the Example Resolved section, we illustrate how several different concurrency
strategies can be configured flexibly into concrete service handlers for our gateway

 258

example without affecting the structure or behavior of the Acceptor-Connector
pattern.

Concrete connectors and concrete acceptors are factories that create concrete
service handlers. They generally derive from their corresponding generic classes and
implement these in an application-specific manner, potentially overriding the various
hook methods called by the accept() and connect() template methods [GoF95].

Another way to specify a concrete acceptor is to parameterize the generic acceptor
with a concrete service handler and concrete IPC passive connection mechanism, as
discussed in previous implementation activities and as outlined in the Example
Resolved section. Similarly, we can specify concrete connectors by parameterizing
the generic connector with a concrete service handler and concrete IPC active
connection mechanism.

Components in the application layer can also provide custom IPC mechanisms for
configuring concrete service handlers, concrete connectors, and concrete acceptors.
IPC mechanisms can be encapsulated in separate classes according to the Wrapper
Facade pattern (47). These wrapper facades create and use the transport endpoints
and transport handles that exchange data with connected peer service handlers
transparently.

The use of the Wrapper Facade pattern simplifies programming, enhances reuse,
and enables wholesale replacement of concrete IPC mechanisms via generic
programming techniques. For example, the SOCK_Connector, SOCK_Acceptor,
and SOCK_Stream classes used in the Example Resolved section are provided by
the ACE C++ Socket wrapper facade library [Sch92].

Example Resolved

Peer host and gateway components in our satellite constellation management example use
the Acceptor-Connector pattern to simplify their connection establishment and service
initialization tasks:
§ First we illustrate how to implement the peer host components, which play a passive

role in our example.
§ Second we illustrate how to implement the gateway, which plays an active role in

establishing connections with the passive peer hosts.

By using the Acceptor-Connector pattern, we can also reverse or combine these roles with
minimal impact on the service handlers that implement the peer hosts and gateway services.

Implement the peer host application. Each peer host contains Status_Handler,
Bulk_Data_Handler, and Command_Handler components, which are concrete service
handlers that process routing messages exchanged with a gateway.

 259

Each of these concrete service handlers inherit from the Service_Handler class defined
in implementation activity 2.4 (306), enabling them to be initialized passively by an acceptor.
For each type of concrete service handler, there is a corresponding concrete acceptor that
creates, connects, and initializes instances of the concrete service handler.

To demonstrate the flexibility of the Acceptor-Connector pattern, each concrete service
handler's open() hook method in our example implements a different concurrency strategy.
For example, when a Status_Handler is activated it runs in a separate thread, a
Bulk_Data_Handler runs as a separate process, and a Command_Handler runs in the
same thread as the Reactor that demultiplexes connection requests to concrete acceptors.
Note that changing these concurrency strategies does not affect the implementation of the
Acceptor class.

We start by defining a type definition called Peer_Handler:
 typedef Service_Handler <SOCK_Stream> Peer_Handler;

This type definition instantiates the Service_Handler generic template class with a
SOCK_Stream wrapper facade (47). This wrapper facade[15]defines a concrete IPC
mechanism for transmitting data between connected transport endpoints using TCP. The
PEER_HANDLER type definition is the basis for all the subsequent concrete service handlers
used in our example. For example, the following Status_Handler class inherits from
Peer_Handler and processes status data, such as telemetry streams, exchanged with a
gateway:
 class Status_Handler : public Peer_Handler {
 public:
 // Performs handler activation.
 virtual void open () {
 // Make this handler run in separate thread (note
 // that <Thread::spawn> requires a pointer to
 // a static method as the thread entry point).
 Thread_Manager::instance ()->spawn
 (&Status_Handler::svc_run, this) ;
 }

 // Static entry point into thread. This method can

 260

 // block on the handle_event() call because it
 // runs in its own thread.
 static void *svc_run (Status_Handler *this_obj) {
 for (;;)
 this_obj->run ();
 }

 // Receive and process status data from Gateway.
 virtual void run () {
 char buf[BUFSIZ] ;
 peer () .recv (buf, sizeof buf);
 // ...
 }
 // ...
 };

The other concrete service handlers in our example, Bulk_Data_Handler and
Command_Handler, also subclass from Peer_Handler. The primary differences between
these classes are localized in the implementation of their open () and handle_event ()
methods, which vary according to their selected concurrency mechanisms.

The Status_Acceptor, Bulk_Data_Acceptor , and Command_Acceptor type
definitions shown below are template instantiations of concrete acceptor factories that
create, connect, and activate the Status_Handlers, Bulk_Data_Handlers , and
Command_Handlers concrete service handlers, respectively.
 // Accept connection requests from the gateway and
 // activate a <Status_Handler> to process status data.
 typedef Acceptor<Status_Handler, SOCK_Acceptor>
 Status_Acceptor;

 // Accept connection requests from a gateway and activate
 // a <Bulk_Data_Handler> to process bulk data requests.
 typedef Acceptor<Bulk_Data_Handler, SOCK_Acceptor>
 Bulk_Data_Acceptor ;

 // Accept connection requests from a gateway and
 // activate a <Command_Handler> to process commands.
 typedef Acceptor<Command_Handler, SOCK_Acceptor>
 Command_Acceptor ;

The type definitions above are defined by instantiating the generic Acceptor template class
defined in implementation activity 2.2 (300) with a SOCK_Acceptor wrapper facade (47),
which is a concrete IPC mechanism that establishes connections passively.[16]

 261

Note how the use of C++ templates and dynamic binding permits specific details of concrete
acceptors and concrete service handlers to change flexibly. In particular, no changes to the
acceptor component are required if the concurrency strategies of Status_Handlers,
Bulk_Data_Handlers, and/or Command_Handlers change. The flexibility of this design
stems from the separation of concerns enforced by the Acceptor-Connector pattern. In
particular, concurrency strategies have been factored out into concrete service handlers
rather than being tightly coupled with the acceptors.

The main peer host application function initializes the concrete acceptors by passing their
constructors the TCP ports used to advertise each service to peer connectors. Each
concrete acceptor registers itself automatically with an instance of the Reactor passed as a
parameter to its constructor, as shown in the implementation activity 2.3(303).
 // Main program run on a peer host.
 int main () {
 // Initialize concrete acceptors to listen for
 // connections on their well-known ports.
 Status_Acceptor s_acceptor (STATUS_PORT,
 Reactor: : instance ());
 Bulk_Data_Acceptor bd_acceptor (BULK_DATA_PORT,
 Reactor::instance ()) ;

 Command_Acceptor c_acceptor (COMMAND_PORT,
 Reactor::instance ()) ;

 // Event loop that accepts connection request
 // events and processes data from a gateway.
 for (;;)
 Reactor::instance ()->handle_events ();
 /* NOTREACHED */
 }

After all three concrete acceptors are initialized, the main peer host application enters an
event loop that uses the reactor singleton to detect connection requests from the gateway.
When such requests arrive, the reactor notifies the appropriate concrete acceptor. The
acceptor then creates the appropriate concrete service handler, accepts the connection into
the handler, and activates the handler so that it can exchange routing messages with the
gateway.

Implement the gateway application. The main () function above illustrates how to define
the concrete acceptors and their concrete service handlers for the peer host application in
our satellite constellation management example. We now illustrate how to implement the
concrete connectors and corresponding concrete service handlers used within a gateway
application.

 262

A gateway contains multiple instances of Status_Router, Bulk_Data_Router, and
Command_Router concrete service handlers, which route data they receive from a peer
host source to one or more peer host destinations. These concrete service handlers inherit
from the Service_Handler class, which enables them to be connected actively and
initialized automatically by a connector.

Each open() hook method in a concrete service handler implements a different
concurrency strategy. This is analogous to the handlers defined for the peer host application.
As before, changes to these concurrency strategies need not affect the Connector's
implementation, which is highly flexible and reusable.

We start by defining a concrete service handler that is specialized for TCP/IP data transfer.
We instantiate it with the appropriate IPC mechanism encapsulated by the SOCK_Stream
wrapper facade (47):
 typedef Service_Handler <SOCK_Stream> Peer_Router;

This type definition is used as the base class for all other routing services in a gateway. For
example, the Bulk_Data_Router exchanges bulk data with peer hosts as follows:
 class Bulk_Data_Router : public Peer_Router {
 public:
 // Activates router in separate process.
 virtual void open () {
 if (fork () == 0) // In child process.
 // This method can block because it runs in
 // its own process.
 for (;;)
 run ();
 // ...
 }
 // Receive and route bulk data from/to Peers.
 virtual void run () {
 char buf[BUFSIZ];
 peer ().recv (buf, sizeof buf) ;
 // Routing takes place here...
 }

 263

 };

Unlike the Status_Handler defined in the peer host application, which ran in its own
thread, the Bulk_Data_Router runs in its own process. We can define similar subclasses
to form the Status_Router and Command_Router. As before, all these subclasses differ
primarily in their open() and handle_event () method implementations, which vary
according to the concurrency mechanisms they select.

The following type definition defines a connector specialized for Peer_Routers:
 typedef Connector<Peer_Router, SOCK_Connector>
 Peer_Connector;

This type definition instantiates the Connector class defined in implementation activity 2.4
(306) with a SOCK_Connector wrapper facade (47). This wrapper facade is a concrete IPC
mechanism that establishes connections actively to remote peer transport endpoints. The
gateway application requires just one concrete connector, because the concrete service
handlers passed to its connect() method are created and initialized externally to the
concrete connector. The gateway's concrete service handlers, such as its
Bulk_Data_Routers or Command_Routers, can therefore be treated uniformly as
Peer_Routers.

In contrast, peer host applications require a concrete acceptor for each type of concrete
service handler, such as a Bulk_Data_Handler or a Command_Handler, because the
concrete type of service handler must be specified a priori in the signature of the concrete
Acceptor's template instantiation.

In the main function of the gateway application, the concrete service handlers
Status_Router, Bulk_Data_Router, and Command_Router are created by the
function get_peer_addrs(). This function, whose implementation we omit, reads a list of
peer addresses from a configuration file or naming service. Each peer address consists of
an IP host address and a port number. Once these concrete service handlers are initialized,
all connections are initiated asynchronously by passing the ASYNC flag to the concrete
connector's connect() method.
 // Obtain a C++ standary library vector of
 // <Status_Router>s, <Bulk_Data_Router>s, and
 // <Command_Router>s from a configuration file.
 void get_peer_addrs (vector<Peer_Router> &peers) ;

 // The gateway application's main entry point.
 int main () {
 // Concrete connector that serves as a factory
 // for <Peer_Router>s.
 Peer_Connector peer_connector (Reactor::instance ());
 // A vector of <Peer_Router>s that perform
 // the gateway's routing services.
 vector<Peer_Router> peers;

 // Get vector of peers to connect with.

 264

 get_peer_addrs (peers) ;

 // Iterate through all the <Peer_Router>s and
 // initiate connections asynchronously.
 typedef vector<Peer_Router>::iterator Peer_Iterator;
 for (Peer_Iterator peer = peers.begin ();
 peer != peers.end ();
 ++peer) {
 peer_connector.connect (*peer,
 peer->remote_addr (),
 Peer_Connector::ASYNC) ;
 }

 // Event loop that handles connection indication
 // events and routes data from peer hosts.
 for (;;)
 Reactor::instance ()->handle_events () ;
 /* NOTREACHED */
 }

All connections are invoked asynchronously and complete concurrently via the
peer_connector's complete () method, which the reactor notifies via a callback within
the context of its event loop. The reactor's event loop also demultiplexes and dispatches
routing events for Command_Router objects. These run in the same thread of control as the
reactor. Conversely, instances of Status_Router and Bulk_Data_Router execute in
separate threads and processes, respectively.

Known Uses

UNIX network superservers. Superserver implementations, for example Inetd [Ste98],
Listen [Rago93], and the Service Configurator [JS97b] from the ACE framework, use a
master acceptor process that listens for connections on a set of communication ports. In
Inetd, for example, each port is associated with a service, such as the standard Internet
services FTP, TELNET, DAYTIME, and ECHO. The acceptor process decouples the
functionality of the Inetd superserver into two separate parts: one for establishing
connections and another for receiving and processing requests from peers. When a service
request arrives on a port monitored by Inetd, it accepts the request and dispatches an
appropriate pre-registered handler to perform the service.

CORBA Object Request Brokers (ORB) [OMG98a]. The ORB Core layer in many
implementations of CORBA uses the Acceptor-Connector pattern to passively and actively
initialize connection handlers when clients request ORB services. [SC99] describes how the
Acceptor-Connector pattern is used to implement the ORB Core portion in The ACE ORB
(TAO), which is a real-time implementation of CORBA.

Web Browsers. The HTML parsing components in Web browsers, such as Netscape and
Internet Explorer, use the asynchronous version of the connector component to establish
connections with servers associated with images embedded in HTML pages. This pattern

 265

allows multiple HTTP connections to be initiated asynchronously. This avoids the possibility
of the browser's main event loop blocking.

Ericsson EOS Call Center Management System. This system uses the Acceptor-
Connector pattern to allow application-level. Call Center Manager event servers [SchSu94]
to establish connections actively with passive supervisors in a networked center
management system.

Project Spectrum. The high-speed medical image transfer subsystem of project Spectrum
[BBC94] uses the Acceptor-Connector pattern to establish connections passively and
initialize application services for storing large medical images. Once connections are
established, applications send and receive multi-megabyte medical images to and from the
image stores.

ACE [Sch97]. Implementations of the generic Service_Handler, Connector, and
Acceptor components described in the Implementation section are provided as reusable
C++ classes in the ADAPTIVE Communication Environment (ACE) concurrent object-
oriented network programming framework.

Java ACE [JACE99] is a version of ACE implemented in Java. It provides the
JACE.Connection.SvcHandler, JACE.Connection.Acceptor , and
JACE.Connection.Connector components. These correspond to the service handler,
acceptor, and connector participants of the Acceptor-Connector pattern.

Managers and secretaries. A real-life implementation of the Acceptor-Connector pattern is
often found in organizations that provide secretaries for their managers. A manager wishing
to make a phone call to another manager asks her secretary to establish the call rather than
doing it herself. However, the call is not received by the called manager directly, but by his
secretary. Once the connection is established it is then passed to the managers. In terms of
the Acceptor-Connector pattern, the secretary that initiates the phone call is the connector,
the secretary that receives the call is the acceptor and the two managers are peer service
handlers.

Consequences

The Acceptor-Connector pattern provides three benefits:

Reusability, portability, and extensibility. The Acceptor-Connector pattern decouples
mechanisms for connecting and initializing service handlers from the service processing
performed after service handlers are connected and initialized. Application-independent
mechanisms in acceptors and connectors are reusable components that know how to
establish connections and initialize the associated service handler when the connection is
established. Similarly, service handlers know how to perform application-specific service
processing.

This strict separation of concerns is achieved by decoupling the connection and initialization
strategies from the service handling strategy. Each strategy can therefore evolve
independently. The strategies for connection and initialization can be written once, placed in
a class library or framework and reused via inheritance, object composition or template
instantiation. The same connection and initialization code therefore need not be rewritten for
each application.

Service handlers, in contrast, may vary according to different application requirements. By
parameterizing the acceptor and connector components with a particular type of service
handler, the impact of this variation is localized to a small number of components in the
software.

 266

Robustness. The Acceptor-Connector pattern strongly decouples the service handler from
the acceptor. This decoupling ensures that a passive-mode transport endpoint—the
PEER_ACCEPTOR in our gateway example—cannot be used to read or write data
accidentally. This added degree of type-safety eliminates a class of errors that often arise
when programming with weakly-typed network programming interfaces, such as Sockets or
TLI [SHS95].

Efficiency. The Acceptor-Connector pattern can establish connections actively with a large
number of hosts asynchronously and efficiently over long-latency wide area networks.
Asynchrony is important in this situation because a large networked system may have
hundreds or thousands of host that must be connected.

One way to connect all these peers to the gateway is to use the synchronous mechanisms
described in the Implementation section. However, the round-trip delay for a 3-way TCP
connection handshake over a long-latency wide area network, such as a geosynchronous
satellite or trans-atlantic fiber cable, may be several seconds per handshake. In this case
asynchronous connection mechanisms may perform better, because they can utilize the
inherent parallelism of the network and hosts in the wide area network.

The Acceptor-Connector pattern has the following liabilities:

Additional indirection. The Acceptor-Connector pattern can incur additional indirection
compared to using the underlying network programming interfaces directly. However,
languages that support parameterized types, such as C++, Ada, or Eiffel, can implement
these patterns with no significant overhead when compilers inline the method calls used to
implement the patterns.

Additional complexity. The Acceptor-Connector pattern may add unnecessary complexity for
simple client applications that connect with only one server and perform one service using a
single network programming interface. However, the use of generic acceptor and connector
wrapper facades may simplify even these applications by shielding developers from tedious,
error-prone, and non-portable low-level network programming mechanisms.

See also

The intent of the Acceptor-Connector pattern is similar to that of the Client-Dispatcher-Server
pattern [POSA1] in that both are concerned with the separation of active connection
establishment from subsequent service processing. The primary difference is that the
Acceptor-Connector pattern addresses passive and active connection establishment and
initialization of both synchronous and asynchronous connections. In contrast, the Client-
Dispatcher-Server pattern focuses on synchronous connection establishment.

[12]Henceforth, we refer to connection request events and data request events as simply
connection requests and data requests.

[13]Note that the notion of connector in the Acceptor-Connector pattern differs from the notion
of connector in [SG96]. There, a connector is a software architecture specification concept
that denotes the collaborations among components in a system.

[14]For simplicity we omit the creation and use of the passive-mode transport endpoint in the
sequence diagram for this scenario.

[15]The complete SOCK_Stream interface is presented on page 61 in the Implementation
section of the Wrapper Facade (47) pattern.

 267

[16]The complete SOCK_Acceptor interface is presented on page 62 in the Implementation
section of the Wrapper Facade (47) pattern.

 268

Chapter 4: Synchronization Patterns
Overview

"I will be the pattern of all patience."

William Shakespeare

This chapter describes three patterns and one idiom that simplify locking in concurrent
systems: Scoped Locking, Strategized Locking, Thread-Safe Interface, and Double-Checked
Locking Optimization.

Developing multi-threaded applications is harder than developing sequential programs
because an object can be manipulated concurrently by multiple threads, which may corrupt
its internal state. Synchronization mechanisms, such as mutexes or semaphores [McK95],
can help ensure objects are serialized correctly. This chapter presents three patterns and an
idiom that provide solutions to problems related to synchronizing concurrent objects.

The first idiom and pattern address lock acquisition/release and locking strategies:
§ The Scoped Locking C++ idiom (325) ensures that a lock is acquired automatically

when control enters a scope and released automatically when control leaves the scope,
regardless of the return path from the scope.

§ The Strategized Locking design pattern (333) is a specialization of the Strategy pattern
[GoF95] that parameterizes the synchronization mechanisms used in a component that
protect its critical sections from concurrent access.

When implemented in C++ the Strategized Locking pattern often applies the Scoped Locking
idiom. The other two patterns help improve the robustness and efficiency of synchronization
mechanisms:
§ The Thread-Safe Interface design pattern (345) minimizes locking overhead and

ensures that intra-component method calls do not incur 'self-deadlock' by trying to
reacquire a lock that a component already holds.

§ The Double-Checked Locking Optimization design pattern (353) reduces contention
and synchronization overhead whenever critical sections of code must acquire locks in
a thread-safe manner only once during program execution.

All four patterns and idioms can be used to enhance the implementations of the patterns
presented in Chapter 5, Concurrency Patterns.

Other patterns related to synchronization include Code Locking and Data Locking [McK95],
Reader/Writer Locking [McK95] [Lea99a], Object Synchronizer [SPM99], as well as Balking
and Guarded Suspension [Lea99a].

Scoped Locking
The Scoped Locking C++ idiom ensures that a lock is acquired when control enters a scope
and released automatically when control leaves the scope, regardless of the return path from
the scope.

Also Known As

Synchronized Block, Resource-Acquisition-is-Initialization [Str97],[1]Guard, Execute Around
Object [Hen00]

 269

Example

Commercial Web servers often maintain a 'hit count' that records how many times each URL
is accessed by clients over a period of time. To reduce latency a Web server process
maintains the hit counts in a memory-resident component rather than in a disk file.

Web server processes are often multi-threaded [HS98] to increase throughput. Public
methods in the hit-count component must therefore be serialized to prevent threads from
corrupting its internal state when hit counts are updated concurrently.

One way to serialize access to a hit-count component is to acquire and release a lock
explicitly in each public method. The following C++ example uses the Thread_Mutex
defined in the Wrapper Facade pattern (47) to serialize access to critical sections:
 class Hit_Counter {
 public:
 // Increment the hit count for a URL <path> name.
 bool increment (const string &path) {
 // Acquire lock to enter critical section.
 lock_.acquire ();
 Table_Entry *entry = lookup_or_create (path);
 if (entry == 0) {
 // Something's gone wrong, so bail out.
 lock_.release ();
 return false; // Return a 'failure' value.
 }
 else { // Increment hit count for <path> name.
 entry->increment_hit_count ();
 // Release lock to leave critical section.
 lock_.release ();
 return true;
 }
 }

 // Other public methods omitted...
 private:
 // Lookup the table entry that maintains the hit count
 // associated with <path> name, creating the entry if
 // it doesn't exist.
 Table_Entry *lookup_or_create (const string &path);

 // Serialize access to the critical section.
 Thread_Mutex lock_;
 };

 270

Although this code works, the Hit_Counter implementation is unnecessarily hard to
develop and maintain. For instance, maintenance programmers may forget to release the
lock_ on some return paths out of the increment() method, such as when modifying its
else branch to check for a new failure condition:
 else if (entry->increment_hit_count () == SOME_FAILURE)
 return false; // Return a 'failure' value.

In addition, the implementation is not exception-safe. Thus, lock_ will not be released if a
later version of the increment() method throws an exception or calls a helper method that
throws an exception [Mue96].

Both of these modifications will cause the increment() method to return without releasing
the lock_. If the lock_ is not released, however, the Web server process will hang when
other threads block indefinitely while trying to acquire the lock_. Moreover, if these error
cases are rare, the problems with this code may not show up during system testing.

Context

A concurrent application containing shared resources that are manipulated by multiple
threads concurrently.

Problem

Code that should not execute concurrently must be protected by some type of lock that is
acquired and released when control enters and leaves a critical section, respectively. If
programmers must acquire and release locks explicitly, however, it is hard to ensure that the
locks are released in all paths through the code. For example, in C++ control can leave a
scope due to a return, break, continue, or goto statement, as well as from an
unhandled exception being propagated out of the scope.

Solution

Define a guard class whose constructor automatically acquires a lock when control enters a
scope and whose destructor automatically releases the lock when control leaves the scope.
Instantiate instances of the guard class to acquire/release locks in method or block scopes
that define critical sections.

Implementation

The implementation of the Scoped Locking idiom is straightforward.
1. Define a guard class that acquires and releases a particular type of lock in its

constructor and destructor, respectively. The constructor of the guard class stores a
pointer or reference to the lock and then acquires the lock. The destructor of the
guard class uses the pointer or reference stored by the constructor to release the
lock.

2. The following class illustrates a guard designed for the Thread_Mutex wrapper
facade (47):

3. class Thread_Mutex_Guard {
4. public:
5. // Store a pointer to the lock and acquire the

lock.

 271

6. Thread_Mutex_Guard (Thread_Mutex &lock)
7. : lock_ (&lock), owner_ (false) {
8. lock_->acquire ();
9.
10. // Only set to true if <acquire> succeeds.
11. owner_ = true;
12. }
13.
14. // Release the lock when the guard goes out of

scope.
15. ~Thread_Mutex_Guard () {
16. // Only release the lock if it was

acquired
17. // successfully, i.e., <false> indicates

that
18. // <acquire> failed..
19. if (owner_) lock_->release ();
20. }
21. private:
22. Thread_Mutex *lock_; // Pointer to our lock.
23. bool owner_; // Is <lock_> held by this

object?
24.
25. // Disallow copying or assignment.
26. Thread_Mutex_Guard (const Thread_Mutex_Guard

&);
27. void operator= (const Thread_Mutex_Guard &);
28. };

30. A pointer to a lock, rather than a lock object, should be used in a guard class
implementation to prevent copying or assigning a lock, which is erroneous, as
discussed in the Wrapper Facade pattern (47).

31. In addition, it is useful to add a flag, such as the owner_ flag in the
Thread_Mutex_Guard example above, that indicates whether or not a guard
acquired the lock successfully. The flag can also indicate failures that arise from
'order of initialization bugs' if static/global locks are used erroneously [LGS99]. By
checking this flag in the guard's destructor, a subtle run-time error can be avoided
that would otherwise occur if the lock was released when it was not held by the
guard.

32. Let critical sections correspond to the scope and lifetime of a guard object. To protect
a critical region from concurrent access, scope it—if this has not already been done—
and create a guard object on the stack as the first statement within the scope. The
constructor of the guard class acquires the lock automatically. When leaving the

 272

scope of the critical section, the guard's destructor is called automatically, which
releases the lock. Due to the semantics of C++ destructors, guarded locks will be
released even if C++ exceptions are thrown from within the critical section.

33. The Scoped Locking idiom resolves the original problems with the Hit_Counter
class in our multi-threaded Web server:

34. class Hit_Counter {
35. public:
36. // Increment the hit count for a URL <path>

name.
37. bool increment (const string &path) {
38. // Use Scoped Locking to acquire and

release
39. // the <lock_> automatically.
40. Thread_Mutex_Guard guard (lock_);
41.
42. Table_Entry *entry = lookup_or_create

(path);
43. if (entry == 0)
44. return false; // Destructor releases

<lock_>
45. else {
46. // Increment hit count for this

<path> name.
47. entry->increment_hit_count ();
48. return true; // Destructor releases

<lock_>
49. }
50.
51. // Other public methods omitted.
52. private:
53. // Serialize access to the critical section.
54. Thread_Mutex lock_;
55. };

56. In this solution the guard ensures that the lock_ is acquired and released
automatically as control enters and leaves the increment() method,
respectively.

Variants

 273

Explicit Accessors. One drawback with the Thread_Mutex_Guard interface described in
the Implementation section is that it is not possible to release the lock explicitly without
leaving the method or block scope.

For example, the following code fragment illustrates a situation where the lock could be
released twice, depending on whether or not the condition in the if statement evaluates
to true:
 {
 Thread_Mutex_Guard guard (lock);
 // Do some work ...
 if (/* a certain condition holds */)
 lock->release ()
 // Do some more work ...
 // Leave the scope, which releases the lock again.
 }

To prevent this erroneous use, programmers should not access the lock directly. Instead,
explicit accessor methods to the underlying lock can be defined in the in the lock's guard
class:

We revise the Thread_Mutex_Guard class as follows:
 class Thread_Mutex_Guard {
 public:
 // Store a pointer to the lock and acquire the lock.
 Thread_Mutex_Guard (Thread_Mutex &lock)
 : lock_ (&lock), owner_ (false) {
 acquire ();
 }

 void acquire () {
 lock_->acquire ();
 // Only set to <true> if <acquire> succeeds.
 owner_ = true;
 }
 void release () {
 // Only release <lock_> if it was acquired
 // successfully and we haven't released it yet!
 if (owner_) {
 owner_ = false;

 274

 lock_->release ();
 }
 }

 // Release the lock when the guard goes out of scope.
 ~Thread_Mutex_Guard () { release (); }
 private:
 Thread_Mutex *lock_; // Pointer to our lock.
 bool owner_; // Is <lock_> held by this object?

 // ... disallow copying and assignment ...
 };

The acquire() and release() accessor methods track whether the lock has been
already released, and if so, the lock will not be released in the guard's destructor.

Using the revised Thread_Mutex_Guard our code will work correctly:
 {
 Thread_Mutex_Guard guard (lock);
 // Do some work ...
 if (/* a certain condition holds */)
 guard.release ();
 // Do some more work ...
 // Leave the scope, lock is not released again.
 }

Strategized Scoped Locking. Defining a different guard for each type of lock is tedious, error-
prone, and excessive, because it may increase the memory footprint of applications or
components. Therefore, a common variant of the Scoped Locking idiom is to apply either the
parameterized type or polymorphic version of the Strategized Locking pattern (333).

Known Uses

Booch Components. The Booch Components [BV93] were one of the first C++ class
libraries to use the Scoped Locking idiom for multi-threaded C++ programs.

ACE [Sch97]. The Scoped Locking idiom is used extensively throughout the ADAPTIVE
Communication Environment framework, which defines an ACE_Guard implementation
similar to the Thread_Mutex_Guard class described in the Implementation and Variants
sections.

 275

Threads.h++. The Rogue Wave Threads.h++ library defines a set of guard classes that are
modeled after the ACE Scoped Locking designs.

Java defines a programming feature called a synchronized block that implements the
Scoped Locking idiom in that language. Java compilers generate a corresponding block of
bytecode instructions where a monitorenter and a monitorexit bracket this block. To
ensure that the lock is always released, the compiler also generates an exception handler to
catch all exceptions thrown in the synchronized block [Eng99.

Consequences

The Scoped Locking idiom offers the following benefit:

Increased robustness. By applying this idiom, locks are acquired and released automatically
when control enters and leaves critical sections defined by C++ method and block scopes.
This idiom increases the robustness of concurrent applications by eliminating common
programming errors related to synchronization and multi-threading.

There are two liabilities of applying the Scoped Locking idiom to concurrent applications
and components:

Potential for deadlock when used recursively. If a method that uses the Scoped Locking
idiom calls itself recursively, 'self-deadlock' will occur if the lock is not a 'recursive' mutex.
The Thread-Safe Interface pattern (345) describes a technique that avoids this problem. This
pattern ensures that only interface methods apply the Scoped Locking idiom, whereas
implementation methods do not apply it.

Limitations with language-specific semantics. The Scoped Locking idiom is based on a C++
language feature and therefore will not be integrated with operating system-specific system
calls. Thus, locks may not be released automatically when threads or processes abort or exit
inside a guarded critical section. Likewise, they will not be released properly if the standard
C longjmp() function is called because this function does not call the destructors of C++
objects as the run-time stack unwinds.

The following modification to increment() will prevent the Scoped Locking idiom from
working:
 Thread_Mutex_Guard guard (&lock_);
 Table_Entry *entry = lookup_or_create (path);
 if (entry == 0)
 // Something's gone wrong, so exit the thread.
 thread_exit ();
 // Destructor will not be called so the
 // <lock_> will not be released!

In general, therefore, it is inappropriate to abort or exit a thread or process within a
component. Instead, an exception-handling mechanism or error-propagation pattern should
be used [Mue96].

 276

Excessive compiler warnings. The Scoped Locking idiom defines a guard object that is not
used explicitly within the scope, because its destructor releases the lock implicitly.
Unfortunately, some C++ compilers print 'statement has no effect' warnings when guards are
defined but not used explicitly within a scope. At best these warnings are distracting—at
worst, they encourage developers to disable certain compiler warnings, which may mask
other warnings that indicate actual problems with the code. An effective way to handle this
problem is to define a macro that eliminates the warnings without generating additional code.

The following macro is defined in ACE [Sch97]:
#define UNUSED_ARG(arg) { if (&arg) /* null */; }

This macro can be placed after a guard to keep many C++ compilers from generating
spurious warnings:
 { // New scope.
 Thread_Mutex_Guard guard (lock_);
 UNUSED_ARG (guard);
 // ...

See Also

The Scoped Locking idiom is a special case of a more general C++ idiom [Str97] and the
Execute Around Object [Hen00] idiom, in which a constructor acquires a resource and a
destructor releases the resource when a scope is entered and exited, respectively. When
these idioms are applied to concurrent applications, the resource that is acquired and
released is some type of lock.

Credits

Thanks to Brad Appleton for comments on the Scoped Locking idiom.

[1]The Scoped Locking idiom is a specialization of Stroustrup's 'Resource-Acquisition-is-
Initialization' idiom [Str97]. We include this idiom here to make the book self-contained and
to illustrate how Stroustrup's idiom can be applied to concurrent programs.

Strategized Locking
The Strategized Locking design pattern parameterizes synchronization mechanisms that
protect a component's critical sections from concurrent access.

Example

A key component for implementing high-performance Web servers is a file cache, which
maps URL path names to memory-mapped files or open file handles [HS98]. When a client
requests a URL that is in the cache, the Web server can transfer the file contents to the
client immediately without accessing slower secondary storage via multiple read() and
write() operations.

 277

A file cache implementation for a portable high-performance should run efficiently on a range
of multi-threaded and single-threaded operating systems. One way to achieve this portability
is to develop multiple file cache classes:

// A single-threaded file cache
implementation.
class File_Cache_ST {
public:
 // Return a pointer to the
memory-mapped file
 // associated with <path>
name.
 const void *lookup (const
string &path) const {
 // No locking required
because we're
 // single-threaded.
 const void *file_pointer =
0;

 // ... look up the file in
the cache, mapping it
 // into memory if it is
not currently in the cache.
 return file_pointer;
 }
 // ...
private:
 //File cache implementation...

 // No lock required because we
are
 // single-threaded.
};

// A multi-threaded file cache
implementation.
class File_Cache_Thread_Mutex {
public:
 // Return a pointer to the
memory-mapped file
 // associated with <path> name.
 const void lookup (const string
&path) const {
 // Use the Scoped Locking
idiom to serialize
 // access to the file cache.
 Thread_Mutex_Guard guard
(lock_);
 const void *file_pointer = 0;

 // ... look up the file in
the cache, mapping it
 // into memory if it is not
currently in the cache.
 return file_pointer;
 }
 // ...
private:
 //File cache implementation...

 // Synchronization strategy.
 mutable Thread_Mutex lock_;
};

These two implementations form part of a component family whose classes differ only in
their synchronization strategy. One component in the family—class File_Cache_ST—
implements a single-threaded file cache with no locking. The other component—class
File_Cache_Thread_Mutex—implements a file cache that uses a mutex to serialize
multiple threads that access the cache concurrently. Maintaining separate implementations
of these file cache components can be tedious, however. In particular, future enhancements
and fixes must be added consistently in each component's implementation.

Context

An application or system where components must run efficiently in a variety of different
concurrency architectures.

 278

Problem

Components that run in multi-threaded environments must protect their critical sections from
concurrent client access. When integrating synchronization mechanisms with component
functionality two forces must be resolved:
§ Different applications may require different synchronization strategies, such as

mutexes, readers/writer locks, or semaphores [McK95]. It should therefore be possible
to customize a component's synchronization mechanisms according to the requirements
of particular applications.

§ In our example the synchronization strategy is hard-coded. To increase performance
on large-scale multi-processor platforms, a new class must therefore be written to
support a file cache implementation that uses a readers/writer lock instead of a
thread mutex. It is time-consuming, however, to customize an existing file cache
class to support new more efficient synchronization strategies.

§ Adding new enhancements and bug fixes should be straightforward. In particular, to
avoid 'version-skew', changes should apply consistently and automatically to all
members in a component family.

§ If there are multiple copies of the same basic file cache component, version-skew will
likely to occur because changes to one component may be applied inconsistently to
other component implementations. Applying each change manually is also error-
prone and non-scalable.

Solution

Parameterize a component's synchronization aspects by making them 'pluggable' types.
Each type objectifies a particular synchronization strategy, such as a mutex, readers/writer
lock, semaphore, or 'null' lock. Define instances of these pluggable types as objects
contained within a component that can use the objects to synchronize its method
implementations efficiently.

Implementation

The Strategized Locking pattern can be implemented via five activities.
1. Define the component interface and implementation without concern for the

component's synchronization aspects.

2. The following class defines the File_Cache interface and implementation:
3. class File_Cache {
4. public:
5. const void *lookup (const string &path) const;
6. // ...

 279

7. private:
8. // data members and private methods go here...
9. };

11. Strategize the locking mechanisms. Many components have relatively simple
synchronization aspects that can be implemented using common locking strategies,
such as mutexes and semaphores. These synchronization aspects can be
strategized uniformly using either polymorphism or parameterized types. In general,
polymorphism should be used when the locking strategy is not known until runtime.
Conversely, parameterized types should be used when the locking strategy is known
at compile-time. As usual the trade-off is between the efficient run-time performance
of parameterized types versus the potential for run-time extensibility with
polymorphism.

Assuming the Scoped Locking idiom (325) is applied, the strategization of locks
involves two sub-activities:

1. Define an abstract interface for the locking mechanisms. To configure a
component with alternative locking mechanisms, all concrete implementations
of these mechanisms must employ an abstract interface with common
signatures for acquiring and releasing locks based on either polymorphism or
parameterized types.
§ Polymorphism. In this strategy, define a polymorphic lock object that

contains dynamically-bound acquire() and release() methods.
Derive all concrete locks from this base class and override its methods to
define a concrete locking strategy, as outlined in implementation activity 5
(339).

§ To implement a polymorphic lock object for our file cache example, we
first define an abstract locking class with virtual acquire() and
release() methods:

§ class Lock {
§ public:
§ // Acquire and release the lock.
§ virtual void acquire () = 0;
§ virtual void release () = 0;
§
§ // ...
§ };

§ Parameterized types. In this strategy, we must ensure that all concrete
locks employ the same signature for acquiring and releasing locks. The
usual way to ensure this is to implement concrete locks using the
Wrapper Facade pattern (47).

2. Use the Scoped Locking Idiom (325) to define a guard class that is strategized
by its synchronization aspect. This design follows the Strategy Pattern

 280

[GHJV95], in which the guard class serves as the context that holds a
particular lock and the concrete locks provide the strategies. The Scoped
Locking idiom can be implemented either with polymorphism or with
parameterized types.
§ Polymorphism. In this approach, pass a polymorphic lock object to the

guard's constructor and define an instance of this lock object as a private
data member. To acquire and release the lock with which it is configured,
the implementation of the guard class can use the interface of the
polymorphic Lock base class defined in implementation sub-activity 2.1
(335).

§ A Guard class that controls a polymorphic lock can be defined as
follows:

§ class Guard {
§ public:
§ // Store a pointer to the lock and acquire

the lock.
§ Guard (Lock &lock)
§ : lock_ (&lock), owner_ (false)
§ { lock_->acquire (); owner_ = true; }
§
§ // Release the lock when the guard goes out

of scope.
§ ~Guard () {
§ // Only release lock if it <acquire>

succeeded.
§ if (owner_) lock_->release ();
§ }
§ private:
§ // Pointer to the lock we're managing.
§ Lock *lock_;
§ // Records if the lock was acquired

successfully.
§ bool owner_;
§ };

§ Parameterized types. In this approach, define a template guard class
that is parameterized by the type of lock that will be acquired and
released automatically.

§ The following illustrates a Guard class that is strategized by a LOCK
template parameter:

 281

§ template <class LOCK>
§ class Guard {
§ public:
§ // Store a pointer to the lock and acquire the

lock.
§ Guard (LOCK &lock)
§ : lock_ (&lock), owner_ (false)
§ { lock_->acquire (); owner_ = true; }
§
§ // Release the lock when the guard goes out of

scope,
§ // but only if <acquire> succeeded.
§ ~Guard () { if (owner_) lock_->release (); }
§ private:
§ // Pointer to the lock we're managing.
§ LOCK *lock_;
§
§ // Records if the lock is held by this object.
§ bool owner_;
§
§ // ... disallow copying and assignment ...
§ };

12. Update the component interface and implementation. After synchronization
mechanisms are strategized, components can use these mechanisms to protect their
critical sections, either by acquiring or releasing a lock explicitly or by using the guard
class defined in implementation activity 2.2 (336). The latter approach follows the
Scoped Locking idiom (325). Depending on whether the polymorphic or
parameterized type strategy is used, the lock can be passed to the component either
as a parameter in its constructor or by adding a lock template parameter to the
component declaration. In either case, the lock passed to a component must follow
the signature expected by the guard class, as discussed in implementation activity
2.2 (336).

13. This version of our file cache component is passed a polymorphic lock
parameter:

14. class File_Cache {
15. public:
16. // Constructor.
17. File_Cache (Lock &l) : lock_ (&l) { }
18.

 282

19. // A method.
20. const void *lookup (const string &path) const

{
21. // Use the Scoped Locking idiom to

acquire
22. // and release the <lock_> automatically.
23. Guard guard (*lock_);
24. // Implement the <lookup> method.
25. }
26.
27. // ...
28. private:
29. // The polymorphic strategized locking object.
30. mutable Lock *lock_;
31. // Other data members and methods go here...
32. };

33. Similarly, we can define a templatized version of the file cache:
34. template <class LOCK>
35. class File_Cache {
36. public:
37. // A method.
38. const void *lookup (const string &path) const

{
39. // Use the Scoped Locking idiom to

acquire
40. // and release the <lock_> automatically.
41. Guard<LOCK> guard (lock_);
42. // Implement the <lookup> method.
43. }
44.
45. // ...
46. private:
47. // The parameterized type strategized locking

object.
48. mutable LOCK lock_;
49.
50. // Other data members and methods go here...
51. };

52. If a C++ compiler supports default template arguments, it may be useful to add a
default LOCK to handle the most common use case. For example, we can define
the default LOCK as a readers/writer lock:

 283

53. template <class LOCK = RW_Lock>
54. class File_Cache { /* ... */ }

56. Revise the component implementation to avoid deadlock and remove unnecessary
locking overhead. If intra-component method invocations occur, developers must
design their component implementation carefully to avoid self-deadlock and
unnecessary synchronization overhead. The Thread-Safe Interface pattern (345)
provides a straightforward technique that prevents these problems.

57. Define a family of locking strategies with uniform interfaces that can support various
application-specific concurrency designs. Common locking strategies include
recursive and non-recursive mutexes, readers/writer locks, semaphores, and file
locks.

When applying the polymorphic approach, implement the locking strategies as
subclasses of the abstract class Lock, as discussed in implementation activity 2
(335). If parameterized types are used, ensure that all concrete lock implementations
follow the signature for locks defined in implementation activity 2 (335).

In addition to the Thread_Mutex locking strategy defined in Wrapper Facade
(47), the Null_Mutex is surprisingly useful. This class defines an efficient
locking strategy for single-threaded applications and components:
 class Null_Mutex {
 public:
 Null_Mutex () { }
 ~Null_Mutex () { }
 void acquire () { }
 void release () { }
 };

All methods in Null_Mutex are empty C++ inline functions that can be removed
completely by optimizing compilers. This class is an example of the Null Object
pattern [PLoPD3], which simplifies applications by defining a 'no-op' placeholder
that removes conditional statements in the component's implementation. A use of
Null_Mutex and other locking strategies appears in the Example Resolved
section.

If existing locking mechanisms have incompatible interfaces, use the Wrapper Facade (47)
or Adapter [GoF95] patterns to ensure the interfaces conform to the signatures expected by
the component's synchronization aspects.

The following class wraps the Thread_Mutex from the Implementation section of the
Wrapper Facade pattern (47), thereby connecting it to our polymorphic lock hierarchy:
 class Thread_Mutex_Lock : public Lock {
 public:

 284

 // Acquire and release the lock.
 virtual void acquire () { lock_.acquire (); }
 virtual void release () { lock_.release (); }
 private:
 // Concrete lock type.
 Thread_Mutex lock_;
 };

Example Resolved

We can apply the parameterized type form of the Strategized Locking pattern to implement a
file cache for Web server content that is tuned for various single-threaded and multi-
threaded concurrency models:
§ Single-threaded file cache.
§ typedef File_Cache<Null_Mutex> Content_Cache;
§ Multi-threaded file cache using a thread mutex.
§ typedef File_Cache<Thread_Mutex> Content_Cache;
§ Multi-threaded file cache using a readers/writer lock.
§ typedef File_Cache<RW_Lock> Content_Cache;
§ Multi-threaded file cache using a C++ compiler that supports default template

parameters, with the lock defaulting to a readers/writer lock, as declared in
implementation activity 3 (337).

§ typedef File_Cache<> Content_Cache;

Note how in each configuration the Content_Cache interface and implementation require
no changes. This flexibility stems from the Strategized Locking pattern, which abstracts
synchronization aspects into 'pluggable' parameterized types. Moreover, the details of
locking have been Strategized via a C++ typedef. It is therefore straightforward to define a
Content_Cache object that does not expose synchronization aspects to applications:
 Content_Cache cache;

Variants

Bridge strategy. Unfortunately, configuring the polymorphic file cache in implementation
activity 3 (337) differs from configuring the templatized file cache, because a polymorphic
lock implemented as a pointer cannot be passed as a parameter to the templatized
File_Cache and Guard classes. Instead, we need a 'real' object, rather than a pointer to
an object. Fortunately, the Bridge pattern [GoF95] can help us implement a family of locking
strategies that is applicable to both polymorphic and parameterized type approaches. To
apply this bridge strategy variant we simply define an additional abstraction class that
encapsulates, and can be configured with, a polymorphic lock. An instance of this
abstraction class then can be passed uniformly to both polymorphic and templatized
components.

Consider the hierarchy of polymorphic locks defined in implementation activity 2 (335) as
being a Bridge implementation class hierarchy. The following abstraction class then can
be used to encapsulate this hierarchy:

 285

 class Lock_Abstraction {
 public:
 // Constructor stores a reference to the base class.
 Lock_Abstraction (Lock &1): lock_ (1) { };

 // Acquire the lock by forwarding to the
 // polymorphic acquire() method.
 void acquire () { lock_.acquire (); }

 // Release the lock by forwarding to the
 // polymorphic release() method.
 void release () { lock_.release (); }
 private:
 // Maintain a reference to the polymorphic lock.
 Lock &lock_;
 };

Note how this design allows us to initialize both our polymorphic and parameterized
File_Cache and Guard classes with a single Lock_Abstraction class that can be
configured with a concrete lock from our hierarchy of locking mechanisms.

As a result of using this variation of Strategized Locking, the family of locking mechanisms
becomes more reusable and easier to apply across applications. Be aware however that
while this scheme is flexible, it is also more complicated to implement. It should therefore be
used with care.

Known Uses

ACE [Sch97]. The Strategized Locking pattern is used extensively throughout the
ADAPTIVE Communication Environment framework. Most synchronization aspects of ACE
containers components, such as ACE_Hash_Map_Manager, can be strategized via
parameterized types.

Booch Components. The Booch Components [BV93] were one of the first C++ class
libraries to parameterize locking strategizes via templates.

The Dynix/PTX operating system applies the Strategized Locking pattern extensively
throughout its kernel.

ATL Wizards. The Microsoft ATL Wizard in Visual Studio uses the parameterized type
implementation of Strategized Locking, completed with default template parameters. In
addition, it implements a class similar to the Null_Mutex. If a COM class is implemented as
a single-threaded apartment a no-op lock class is used, whereas in multi-threaded
apartments a 'real' recursive mutex is used.

Consequences

 286

There are three benefits of applying the Strategized Locking pattern:

Enhanced flexibility and customization. It is straightforward to configure and customize a
component for certain concurrency models because the synchronization aspects of
components are strategized. If no suitable locking strategy is available for a new
concurrency model, the family of locking strategies can be extended without affecting
existing code.

Decreased maintenance effort for components. It is straightforward to add enhancements
and bug fixes to a component because there is only one implementation, rather than a
separate implementation for each concurrency model. This centralization of concerns helps
minimize version-skew.

Improved reuse. Components implemented using this pattern become less dependent on
specific synchronization mechanisms. They therefore become more reusable, because their
locking strategies can be configured orthogonally to their behavior.

There are two liabilities of applying the Strategized Locking pattern:

Obtrusive locking. If templates are used to parameterize locking aspects this will expose the
locking strategies to application code. Although this design is flexible, it also can be
obtrusive, particularly for compilers that do not support templates efficiently or correctly. One
way to avoid this problem is to apply the polymorphic strategy to vary component locking
behavior.

Over-engineering. Externalizing a locking mechanism by placing it in a component's
interface may actually provide too much flexibility in certain situations. For example,
inexperienced developers may try to parameterize a component with the wrong type of lock,
resulting in improper compile- or run-time behavior. Similarly, only a single type of
synchronization mechanism may be needed for a particular type of component. In this case
the flexibility of Strategized Locking is unnecessary. In general this pattern is most effective
when practical experience reveals a component's behavior to be orthogonal to its locking
strategy, and that locking strategies do indeed vary in semantically meaningful and efficient
ways.

See Also

The main synchronization mechanism in Java is the monitor. The Java language does not
provide 'conventional' concurrency control mechanisms, such as mutexes and semaphores,
to application developers. The Strategized Locking pattern therefore need not be applied to
Java directly.

It is possible, however, to implement different concurrency primitives, such as mutexes,
semaphores, and readers/writer locks in Java. For example, the util.concurrent
package in [Lea99a] defines various types of locks, such as readers/writer locks. The
implementation of these primitives then can be used as locking strategies to support various
application-specific concurrency use cases. Due to the lack of parameterized types in Java
specifications to date, only the polymorphic approach of Strategized Locking pattern could
be used to configure different synchronization strategies. In this case, Java implementations
of this pattern will be similar to the C++ versions described in this pattern.

Credits

Thanks to Brad Appleton for comments on this pattern and Prashant Jain for his contribution
explaining how this pattern applies to Java.

 287

Thread-Safe Interface
The Thread-Safe Interface design pattern minimizes locking overhead and ensures that
intra-component method calls do not incur 'self-deadlock' by trying to reacquire a lock that is
held by the component already.

Example

When designing thread-safe components when intra-component method calls, developers
must be careful to avoid self-deadlock and unnecessary locking overhead. For example,
consider a more complete implementation of the File_Cache component outlined in the
Strategized Locking pattern (333):
 template <class LOCK>
 class File_Cache {
 public:
 // Return a pointer to the memory-mapped file
 // associated with <path> name, adding
 // it to the cache if it doesn't exist.
 const void *lookup (const string &path) const {
 // Use the Scoped Locking idiom to acquire
 // and release the <lock_> automatically.
 Guard<LOCK> guard (lock_);
 const void *file_pointer = check_cache (path);
 if (file_pointer == 0) {
 // Insert the <path> name into the cache.
 // Note the intra-class <insert> call.
 insert (path);
 file_pointer = check_cache (path);
 }
 return file_pointer;
 }
 // Add <path> name to the cache.
 void insert (const string &path) {
 // Use the Scoped Locking idiom to acquire
 // and release the <lock_> automatically.
 Guard<LOCK> guard (lock_);
 // ... insert <path> into the cache...
 }
 private:
 mutable LOCK lock_;
 const void *check_cache (const string &) const;
 // ... other private methods and data omitted...
 };

 288

This implementation of File_Cache works efficiently only when strategized by a 'null' lock
such as the Null_Mutex described in the Strategized Locking pattern (333). If the
File_Cache implementation is strategized with a recursive mutex, however, it will incur
unnecessary overhead when it reacquires the mutex in the insert() method. Even worse,
if it is strategized with a non-recursive mutex, the code will 'self-deadlock' when the
lookup() method calls the insert() method. This self-deadlock occurs because
insert() tries to reacquire the LOCK that has been acquired by lookup() already.

It is therefore counter-productive to apply the Strategized Locking pattern to the
implementation of File_Cache shown above, because there are so many restrictions and
subtle problems that can arise. Yet the File_Cache abstraction can still benefit from the
flexibility and customization provided by Strategized Locking.

Context

Components in multi-threaded applications that contain intra-component method calls.

Problem

Multi-threaded components often contain multiple publicly-accessible interface methods and
private implementation methods that can alter the component states. To prevent race
conditions, a lock internal to the component can be used to serialize interface method
invocations that access its state. Although this design works well if each method is self-
contained, component methods may call each other to carry out their computations. If this
occurs, the following forces will be unresolved in multi-threaded components that use
improper intra-component method invocation designs:
§ Thread-safe components should be designed to avoid 'self-deadlock'. Self-deadlock

can occur if one component method acquires a non-recursive lock in the component
and then calls another component method that tries to reacquire the same lock.

§ Thread-safe components should be designed to incur only minimal locking overhead,
for example to prevent race conditions on component state. If a recursive component
lock is selected to avoid the self-deadlock problem outlined above, however,
unnecessary overhead will be incurred to acquire and release the lock multiple times
across intra-component method calls.

Solution

Structure all components that process intra-component method invocations according two
design conventions:
§ Interface methods check. All interface methods, such as C++ public methods, should

only acquire/release component lock(s), thereby performing synchronization checks at
the 'border' of the component. After the lock is acquired, the interface method should
forward immediately to an implementation method, which performs the actual method
functionality. After the implementation method returns, the interface method should
release the lock(s) before returning control to the caller.

§ Implementation methods trust. Implementation methods, such as C++ private and
protected methods, should only perform work when called by interface methods. They
therefore trust that they are called with the necessary lock(s) held and should never
acquire or release lock(s). Implementation methods should also never call 'up' to
interface methods, because these methods acquire lock(s).

Implementation

The Thread-Safe Interface pattern can be implemented using two activities:

 289

1. Determine the interface and corresponding implementation methods. The interface
methods define the public API of the component. For each interface method, define a
corresponding implementation method.

2. The interface and implementation methods for File_Cache can be defined as
follows:

3. template <class LOCK>
4. class File_Cache {
5. public:
6. // The following two interface methods just
7. // acquire/release the <LOCK> and forward to
8. // their corresponding implementation methods.
9. const void *lookup (const string &path) const;
10. void insert (const string &path);
11. private:
12. // The following two implementation methods do

not
13. // acquire/release the <LOCK> and perform the

actual
14. // work associated with managing the

<File_Cache>.
15. const void *lookup_i (const string &path)

const;
16. void insert_i (const string &path);
17. // ... Other implementation methods omitted

...
18. };

20. Program the interface and implementation methods. The bodies of the interface and
implementation methods are programmed according to the design conventions
described in the Solution section.

21. Our File_Cache implementation applies Thread-Safe Interface to minimize
locking overhead and prevent self-deadlock in class methods:

22. template <class LOCK>
23. class File_Cache {
24. public:
25. // Return a pointer to the memory-mapped file
26. // associated with <path> name, adding it to
27. // the cache if it doesn't exist.

 290

28. const void *lookup (const string &path) const
{

29. // Use the Scoped Locking idiom to acquire
30. // and release the <lock_> automatically.
31. Guard<LOCK> guard (lock_);
32. return lookup_i (path);
33. }
34.
35. // Add <path> name to the file cache.
36. void insert (const string &path) {
37. // Use the Scoped Locking idiom to acquire
38. // and release the <lock_> automatically.
39. Guard<LOCK> guard (lock_);
40. insert_i (path);
41. }
42. private:
43. mutable LOCK lock_; // The strategized locking

object
44.
45. // The following implementation methods do not
46. // acquire or release <lock_> and perform

their
47. // work without calling any interface methods.
48. const void *lookup_i (const string &path)

const {
49. const void *file_pointer = check_cache_i

(path);
50. if (file_pointer == 0) {
51. // If <path> name isn't in the cache

then
52. // insert it and look it up again.
53. insert_i (path);
54. file_pointer = check_cache_i (path);
55. // The calls to implementation methods
56. // <insert_i> and <check_cache_i>

assume
57. // that the lock is held and perform

work.
58. }
59. return file_pointer;
60. }
61. const void *check_cache_i (const string &)

const

 291

62. { /* */ }
63.
64. void insert_i (const string &) { /* ... */ }
65.
66. // ... other private methods and data omitted

...
67. };

Variants

Thread-Safe Facade. This variant can be used if access to a whole subsystem or coarse-
grained component must be synchronized. A facade [GoF95] can be introduced as the entry
point for all client requests. The facade's methods correspond to the interface methods. The
classes that belong to the subsystem or component provide the implementation methods. If
these classes have their own internal concurrency strategies, refactoring may be needed to
avoid nested monitor lockout[2] [JS97a].

Nested monitor lockup occurs when a thread acquires object X's monitor lock without
relinquishing the lock already held on monitor Y, thereby preventing a second thread from
acquiring the monitor lock for Y. This can lead to deadlock because, after acquiring monitor
X, the first thread may wait for a condition to become true that can only change as a result of
actions by the second thread after it has acquired monitor Y. It may not be possible to
refactor the code properly to avoid nested monitor lockouts if the subsystem or component
cannot be modified, for example if it is a third-party product or legacy system. In this case,
Thread-Safe Facade should not be applied.

Thread-Safe Wrapper Facade. This variant helps synchronize access to a non-synchronized
class or function API that cannot be modified. A wrapper facade (47) provides the interface
methods, which encapsulate the corresponding implementation calls on the class or function
API with actions that acquire and release a lock. The wrapper facade thus provides a
synchronization proxy [POSA1] [GoF95] that serializes access to the methods of the class or
function API.

Known Uses

ACE [Sch97]. The Thread-Safe Interface pattern is used throughout the ADAPTIVE
Communication Environment framework, for example in its ACE_Message_Queue class.

The Dynix/PTX operating system applies the Thread-Safe Interface pattern in portions of its
kernel.

Java. The hash table implementation in java.util.Hashtable uses the Thread-Safe
Interface design pattern. Hashtable's interface methods, such as put(Object key,
Object value), acquire a lock before changing the underlying data structure, which
consists of an array of linked lists. The implementation method rehash() is called when the
load threshold is exceeded. A new larger hash table is created, all elements are moved from
the old to the new hash table and the old table is left to the garbage collector. Note that the
rehash() method is not protected by a lock, in contrast to the publicly accessible methods
such as put(Object key, Object value). Protecting rehash() by a lock would not

 292

deadlock the program due to Java's reentrant monitors. It would, however diminish its
performance due to the locking overhead.

A more sophisticated use case was introduced in JDK 1.2 with the Collection classes,
which applies the Thread-Safe Wrapper Facade variant to make collection data structures
thread-safe. The java.util.Collections takes any class implementing the Map
interface and returns a SynchronizedMap, which is a different class implementing Map.
The methods of SynchronizedMap do no more than synchronize on an internal monitor
and then forward to the method of the original object. Developers can therefore choose
between fast or thread-safe variants of data structures, which only need be implemented
once.

Security checkpoints. You may encounter a real-life variation of the Thread-Safe Interface
pattern when entering a country or commercial office building that has a security guard at the
border or entrance. To be admitted, you must sign in. After being admitted, other people that
you interact with typically trust that you are supposed to be there.

Consequences

There are three benefits of applying the Thread-Safe Interface pattern:

Increased robustness. This pattern ensures that self-deadlock does not occur due to intra-
component method calls.

Enhanced performance. This pattern ensures that locks are not acquired or released
unnecessarily.

Simplification of software. Separating the locking and functionality concerns can help to
simplify both aspects.

However, there are also four liabilities when applying the Thread-Safe Interface pattern:

Additional indirection and extra methods. Each interface method requires at least one
implementation method, which increases the footprint of the component and may also add
an extra level of methodcall indirection for each invocation. One way to minimize this
overhead is to inline the interface and/or implementation methods.

Potential deadlock. By itself, the Thread-Safe Interface pattern does not resolve the problem
of self-deadlock completely. For example, consider a client that calls an interface method on
component A, which then delegates to an implementation method that calls an interface
method on another component B. If the implementation of component B's method calls back
on an interface method of component A, deadlock will occur when trying to reacquire the
lock that was acquired by the first call in this chain.

Potential for misuse. Object-oriented programming languages, such as C++ and Java,
support class-level rather than object-level access control. As a result, an object can bypass
the public interface to call a private method on another object of the same class, thus
bypassing that object's lock. Therefore, programmer's should be careful to avoid invoking
private methods on any object of their class other than themselves.

Potential overhead. The Thread-Safe Interface pattern prevents multiple components from
sharing the same lock. Therefore synchronization overhead may increase because multiple
locks must be acquired, which also makes it harder to detect and avoid deadlocks.
Moreover, the pattern prevents locking at a finer granularity than the component, which can
increase lock contention, thereby reducing performance.

 293

See Also

The Thread-Safe Interface pattern is related to the Decorator pattern [GoF95], which
extends an object transparently by attaching additional responsibilities dynamically. The
intention of the Thread-Safe Interface pattern is similar, in that it attaches robust and efficient
locking strategies to make components thread-safe. The primary difference is that the
Decorator pattern focuses on attaching additional responsibilities to objects dynamically,
whereas the Thread-Safe Interface pattern focuses on the static partitioning of method
responsibilities in component classes.

Components designed according to the Strategized Locking pattern (333) should employ the
Thread-Safe Interface pattern to ensure that the component will function robustly and
efficiently, regardless of the type of locking strategy that is selected.

Java implements locking at the method level via monitor objects (399) designated by the
synchronized keyword. In Java, monitors are recursive. The problem of self-deadlock
therefore cannot occur as long as developers reuse the same monitor, that is, synchronize
on the same object. However, the problem of nested monitor lockout [JS97a] [Lea99a] can
occur in Java if multiple nested monitors are used carelessly.

The problem of locking overhead depends on which Java Virtual Machine (JVM) is used. If a
specific JVM implements monitors inefficiently and monitors are acquired recursively, the
Thread-Safe Interface pattern may be able to help improve component run-time
performance.

Credits

Thanks to Brad Appleton for comments on this pattern. Prashant Jain provided the Thread-
Safe Interface variants and the Java nested monitor lockout discussion.

[2]See the Consequences Section of the Monitor Object pattern (399) for a more detailed
discussion of the nested monitor lockout problem.

The LegacyFacade EJB Component Deployment Descriptor
The communication structure of the LegacyFacadeBean class is shown in Figure 10-8.
Because the EJB connects to a relational database, it needs a reference to a configured
data source. The EJB configuration files must therefore set up specifications, including JNDI
bindings for the following items:

 294

Figure 10-8: The communication between the LegacyFacadeBean object and the
database is handled by the EJB container and its data source.

§ The LegacyFacade EJB component
§ The data source used by the bean
§ The relationship between the LegacyFacade and the data source

The three components are configured in the ejb-jar.xml and the application server-
specific configuration file. The EJB configuration specification contains only definitions for
how to describe the EJB component configurations, including its relation to the data source,
but neither any actual JNDI name nor the specification for the data source are standardized.
Therefore, these entities must be configured in an application server-dependent way.

This example shows the standard ejb-jar.xml file and custom configuration settings for
two different application servers, which were chosen more or less arbitrarily from the
commonly used ones. The application servers used in this example are as follows:
§ WebLogic Application Server, version 6.0, using EJB descriptors for the EJB 2.0

specification, and
§ Inprise Application Server, version 4.1, using EJB descriptors for the EJB 1.1

specification.

As you shall see, the descriptors for stateful session EJB components have not altered much
between the two EJB specifications. Moreover, many application servers use a similar—but
not identical—format for describing the nonstandard settings for each EJB component.
These nonstandard settings frequently include all JNDI mappings, security specifications,
and resource definitions.

Deployment Descriptors for the EJB 2.0 Specification

Aside from the standard ejb-jar.xml deployment descriptor file, the WebLogic 6.0 server
uses an XML document called weblogic-ejb-jar.xml for its nonstandard deployment
settings. Both the ejb-jar.xml and the weblogic-ejb-jar.xml documents are
deployed in the META-INF directory of the EJB JAR file, as shown in Figure 10-9.

 295

Figure 10-9: The relevant content of the LegacyFacade application directory consists
of two groups of files: where the configuration settings are deployed in the META-INF
directory and the class files are deployed in the se/jguru/webdb/proxy directory.

Using the XML DTD for the EJB 2.0 specification, you arrive at the standard ejb-jar.xml
file shown in Listing 10-10.

Listing 10-10: The ejb-jar.xml deployment descriptor

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC
 '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
 'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

<ejb-jar>
 <enterprise-beans>
 <session>
 <description>
 This is the Session EJB Facade which hides all
 data mining from the Legacy Tier.
 </description>
 <ejb-name>LegacyFacadeBean</ejb-name>
 <home>se.jguru.webdb.proxy.LegacyFacadeHome</home>
 <remote>se.jguru.webdb.proxy.LegacyFacade</remote>
 <ejb-
class>se.jguru.webdb.proxy.LegacyFacadeBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 <resource-ref>
 <description>
 This is the DataSource which connects to the
 relational database where the actual data is
stored.

http://java.sun.com/dtd/ejb-jar_2_0.dtd

 296

 </description>
 <res-ref-name>localDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>LegacyFacadeBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

</ejb-jar>

The ejb-jar.xml file has three distinct parts, defining the session bean, the data source
resources it uses, and the transaction requirements on the methods of the session Bean
EJB component.

The first part of the <session> ... </session> container element describes the basic
attributes of the LegacyFacadeBean EJB component, such as its name and concrete types
for the Home, Remote, and Bean classes. Note that this session EJB component is stateful,
which means that the implementation object cannot be altered between method calls, as is
the case for a stateless EJB component.

The last subelement of the <session> ... </session> container is the <resource-
ref> ... </resource-ref> element, which declares a data source for use by the
session EJB component. The javax.sql.DataSource has the logical reference key
(similar to a variable name) localDataSource, and it is configured to surrender its
transaction management to the EJB container. Note that local resources must be obtained
through the local environment for the EJB, which is accessed through the JNDI prefix
java:comp/env. Therefore, the lookup name for the localDataSource reference in the
EJB Bean implementation class is java:comp/env/localDataSource.

The final part of the ejb-jar.xml file is the <assembly-descriptor> ...
</assembly-descriptor> element, which simply states that all methods of the
LegacyFacadeBean component must be executed within a transaction. Identical to the
DataSource, the session EJB component has surrendered its transaction control to the
EJB container, so no extra coding is required in the EJB Bean class to manage the required
transactions.

 297

The weblogic-ejb-jar.xml deployment descriptor document uses a small subset of its
DTD. The main function of the XML document is to specify JNDI bindings for the Home
interface of the LegacyFacadeBean and the DataSource used by it.

Listing 10-11 displays the content of the weblogic-ejb-jar.xml.

Listing 10-11: The weblogic-ejb-jar.xml deployment descriptor

<?xml version="1.0"?>

<!DOCTYPE weblogic-ejb-jar PUBLIC
 '-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN'
 'http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd'>

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>LegacyFacadeBean</ejb-name>
 <stateful-session-descriptor>
 <stateful-session-cache>
 <max-beans-in-cache>10</max-beans-in-cache>
 </stateful-session-cache>
 </stateful-session-descriptor>

 <reference-descriptor>
 <resource-description>
 <res-ref-name>localDataSource</res-ref-name>
 <jndi-name>legacyDataSource</jndi-name>
 </resource-description>
 </reference-descriptor>

 <jndi-name>theLegacyFacade</jndi-name>

 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

The most important task of the weblogic-ejb-jar.xml file is binding the EJB component
to a JNDI name in the application server InitialContext. However, the weblogic-ejb-
jar.xml file configures three settings:
§ The cache of stateful session EJB implementation objects is set to a maximum of ten

beans. Therefore, a mere ten parallel connections may be attempted through the
stateful EJB component in the WebLogic application server before it needs to swap an
active bean to disk.

http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd

 298

§ The DataSource reference localDataSource is mapped to the name
legacyDataSource which is bound in the context.

§ Finally, the EJB component Home interface is given a JNDI lookup name,
theLegacyFacade. Therefore, clients should use this string when acquiring a
reference to the Home interface of the EJB component.

The JNDI registry of the WebLogic Application Server is shown in Figure 10-10. The two
entries bound in the context are theLegacyFacade (which maps to the Home interface of
the EJB component) and legacyDataSource (which maps to the database factory whose
connections maps to the database shown in Figure 10-4).

Figure 10-10: Visualization of the relevant parts of the JNDI registry of the running
WebLogic 6.0 Application Server. Note the two bound references, having the lookup
names theLegacyFacade and legacyDataSource.

The WebLogic Application Server automatically compiles stub and skeleton classes for all
EJB components it finds deployed in its applications directory. The generated stubs and
skeletons are found in the
<WebLogic_Root>/tmp_ejb<applicationServerName><port>/<componentName>
directory, as shown in Figure 10-11. Should you want to create a specialized JAR for
deployment with an EJB client application, the *_WLStub classes are required.

 299

Figure 10-11: The structure of automatically generated skeleton and stub classes in a
WebLogic 6.0 Application Server. Note that all generated .java files are kept in this
configuration.

You have now fully deployed the LegacyFacadeBean EJB in an EJB 2.0-compliant
application server. Before being able to run the WebSearch application, however, we must
deploy the Web application structure and required classes, as well as create the
DataSource factory, bound in the context using the name legacyDataSource, as shown
in Figure 10-11. These steps cover what you need to do to connect to a database resource
reference, bound in the application server JNDI context by the server administrator.

In fact, you could stop describing this example here, as all other configuration settings are
unique for a particular application server type. No part of the J2EE specification provides
information on how to configure a DataSource factory connecting to a database. This is left
to the application server vendors.

WebLogic Application Server DataSource Configuration

DataSource factory definitions for the JNDI context is unique per application server.
The WebLogic Application Server management console provides a simple GUI way of
entering this information. Eventually, all information will end up in an XML file called
config.xml, but the management console gracefully hides the internal structure of the
config.xml file and presents a user-friendly way to provide the same information.
Figure 10-12 shows a DataSource definition that maps a JNDI name
(legacyDataSource) to a particular JDBC ConnectionPool (cloudscapePool).

 300

Figure 10-12: The DataSource definition webpageDataSource maps a particular
JDBC ConnectionPool definition to the JNDI name legacyDataSource.

The cloudscapePool entity, shown in the left pane of Figure 10-12, is a DataSource
factory resource connected to a locally running Cloudscape database containing all
legacy data. Figure 10-4 shows the contents of the small database, and Figure 10-13
shows the configuration settings that are required to obtain a JDBC connection to the
database.

Figure 10-13: The configuration settings for the cloudscapePool provides all of
the needed properties to connect to the Cloudscape database holding all data
shown in Figure 10-4.

The configuration and deployment process for application servers running the EJB 1.1
specification is almost identical to the one just described for an EJB 2.0-compliant
application server. One must, of course, remember that a great part of EJB deployment is
done using proprietary methods and tools; only the structure and content of the ejb-
jar.xml files are part of the J2EE specification.

Deployment Descriptors for the EJB 1.1 Specification

The Inprise Application Server is used to illustrate deployment of beans that comply to the
EJB 1.1 specification. As shown in Chapter 8, the differences between the 1.1 and 2.0 EJB
specifications are great for Entity EJB beans using CMP persistence. The
LegacyFacadeBean is a stateful session EJB component, and the differences between the
deployment descriptor files of the Inprise and the WebLogic application servers are therefore
relatively minor.

The Inprise Application Server uses two XML documents to describe a deployed EJB
component: the standard ejb-jar.xml and the Inprise Application Server-specific
configuration file ejb-inprise.xml. Both the configuration files are deployed in the META-
INF directory, as shown in Figure 10-14. The class files deployed to the Inprise Application
Server are identical to the ones deployed to the WebLogic Application Server.

 301

Figure 10-14: The relevant content of the LegacyFacade.jar file consists of two
groups of files, where the configuration settings are deployed in the META-INF directory
and the bytecode files are deployed in the se/jguru/webdb/proxy directory.

Start with the standard ejb-jar.xml file, which contains deployment settings that can be
used by any EJB 1.1-compliant application server. Listing 10-12 displays the code for the
ejb-jar.xml for EJB version 1.1.

Listing 10-12: The standard ejb-jar.xml file

<?xml version="1.0" encoding="Cp1252"?>

<!DOCTYPE ejb-jar PUBLIC
 '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'
 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>
 <enterprise-beans>
 <session>
 <description>
 This is the Session EJB Facade which hides all
 data mining from the Legacy Tier.
 </description>
 <ejb-name>LegacyFacadeBean</ejb-name>
 <home>se.jguru.webdb.proxy.LegacyFacadeHome</home>
 <remote>se.jguru.webdb.proxy.LegacyFacade</remote>
 <ejb-class>se.jguru.webdb.proxy.LegacyFacadeBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

<resource-ref>
 <description>
 This is the DataSource which connects to the relational
 database where the actual data is stored.

http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd

 302

 </description>
 <res-ref-name>localDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>LegacyFacadeBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

</ejb-jar>

The only difference between the ejb-jar.xml for EJB version 2.0 and that of version 1.1 is
its DOCTYPE definition. This is intentional; standard EJB 1.1 deployment descriptors should
be readable by any EJB 2.0-compliant application server. Because the three different
sections of the deployment descriptor file (defining the basic attributes for the EJB
component, its data source reference, and its assembly descriptor) are identical to the ones
presented for the EJB 1.1 case, they will not be covered in detail here.

As always, the ejb-jar.xml deployment descriptor needs additional complements to
provide deployment descriptor settings for a particular application server. The DTD of the
custom configuration file for the Inprise Application Server version 4.1 is illustrated in Figure
10-15.

 303

Figure 10-15: Partial XML DTD structure of the ejb-inprise.xml configuration file

 304

Our ejb-inprise.xml deployment descriptor (shown in Listing 10-13) uses a small subset
of the DTD shown in Figure 10-15. The XML document specifies JNDI bindings for the Home
interface of the LegacyFacadeBean and the data source used by it.

Listing 10-13: The ejb-inprise.xml deployment descriptor

<?xml version="1.0"?>

<!DOCTYPE inprise-specific PUBLIC
 '-//Inprise Corporation//DTD Enterprise JavaBeans 1.1//EN'
 'http://www.borland.com/devsupport/appserver/dtds/ejb-
inprise.dtd'>

<inprise-specific>
 <enterprise-beans>
 <session>
 <ejb-name>LegacyFacadeBean</ejb-name>
 <bean-home-name>theLegacyFacade</bean-home-name>
 <timeout>0</timeout>

 <resource-ref>
 <res-ref-name>localDataSource</res-ref-name>
 <jndi-name>legacyDataSource</jndi-name>
 <cmp-resource>True</cmp-resource>
 </resource-ref>

 </session>
 </enterprise-beans>

 <datasource-definitions>
 <datasource>
 <jndi-name>legacyDataSource</jndi-name>
 <url>jdbc:cloudscape:webpageDb</url>
 <username>none</username>
 <password>none</password>
 <isolation-level>TRANSACTION_SERIALIZABLE</isolation-level>
 <driver-class-name>COM.cloudscape.core.JDBCDriver</driver-
class-name>
 </datasource>
 </datasource-definitions>

http://www.borland.com/devsupport/appserver/dtds/ejb-

 305

</inprise-specific>

The Inprise-specific configuration file has three distinct definition sections:
§ The first part of the <session> ... </session> container element defines the

JNDI name and session timeout length for the LegacyFacadeBean EJB component.
§ The second part of the <session> ... </session> container element defines a

named reference to a resource, known under the JNDI alias localDataSource for the
LegacyFacadeBean EJB. Its reference is a data source whose JNDI name is
legacyDataSource, and its transactions are managed by the EJB container.

§ The <datasource-definitions > ... </datasource-definitions>
container element defines a named data source that connects to a JDBC database
using the jdbcDriver, jdbcUrl, username, password, and transaction isolation
settings provided. Note that the JNDI name of the data source is legacyDataSource.

Before you can run the application inside the Inprise Application Server, the stub and
skeleton classes of the LegacyFacadeBean EJB component must be generated and the
application-server specific JAR file deployed.

Deploying the EJB JAR into the Application Server

The deployment process of the Inprise Application Server is simple, quick, and reliable;
using a GUI-enabled wizard, the generic JAR file is introspected, the required stubs and
skeleton classes are generated, and the application server-specific JAR file is generated and
deployed. The two steps are shown in Figures 10-16 and 10-17.

Figure 10-16: The first step of the EJB deployment wizard allows you to choose the JAR
containing the bytecode files and XML configuration documents for the EJB component,
as well as the EJB container where they should be deployed. Note the Regenerate stubs
checkbox.

 306

Figure 10-17: The state of the deployment is monitored in the last step of the
deployment wizard. As indicated, the stub classes were regenerated, and the resulting
JAR was installed into the application server.

In the process of deploying the LegacyFacade EJB component, the server-specific JAR file
has been created and copied to the <InstallDir>/ejb_jars/ejbcontainer.
Examining the content of the LegacyFacade.jar file reveals a series of CORBA stub and
skeleton classes (shown in Figure 10-18), which leads to the conclusion that the Inprise
Application Server is implemented on top of a CORBA-compliant ORB.

Figure 10-18: The content of the application server-specific JAR file for the Inprise
Application Server. Note the POA, Holder, and Helper classes, which are typical for
CORBA-compliant stubs and skeletons.

Having examined the deployment process for application servers that are compliant with the
EJB 2.0 and EJB 1.1 specifications, we should proceed to deploy the Web application.

Double-Checked Locking Optimization
The Double-Checked Locking Optimization design pattern reduces contention and
synchronization overhead whenever critical sections of code must acquire locks in a thread-
safe manner just once during program execution.

Also Known As

Lock Hint [Bir91]

Example

 307

The Singleton pattern ensures a class has only one instance and provides a global access
point to that instance. The following C++ code shows the canonical implementation of
Singleton from [GoF95]:
 class Singleton {
 public:
 static Singleton *instance () {
 if (instance_ == 0) {
 // Enter critical section.
 instance_ = new Singleton ();
 // Leave critical section.
 }
 return instance_;
 }
 void method_1 (); // Other methods omitted.
 private:
 static Singleton *instance_;
 // Initialized to 0 by the compiler/linker.
 };

Applications use the static instance() method to retrieve a pointer to the Singleton and
then invoke public methods:
 Singleton::instance ()->method_1 ();

Unfortunately the canonical implementation of the Singleton pattern shown above is
problematic on platforms with preemptive multi-tasking or true hardware parallelism. In
particular, the Singleton constructor can be called multiple times if
§ Multiple pre-emptive threads invoke Singleton::instance() simultaneously

before it is initialized and
§ Multiple threads execute the dynamic initialization of the Singleton constructor within

the critical section.

At best calling the Singleton constructor multiple times will cause a memory leak. At worst
it can have disastrous consequences if singleton initialization is not idempotent.

To protect the critical section from concurrent access we could apply the Scoped Locking
idiom (345) to acquire and release a mutex lock automatically:
 class Singleton {
 public:
 static Singleton *instance () {
 // Scoped Locking acquires <singleton_lock_>.
 Guard<Thread_Mutex> guard (singleton_lock_);
 if (instance_ == 0)
 instance_ = new Singleton;
 return instance_;
 // Destructor releases lock automatically.

 308

 }
 private:
 static Singleton *instance_;
 static Thread_Mutex singleton_lock_;
 };

Assuming singleton_lock_ is initialized correctly, Singleton is now thread-safe. The
additional locking overhead may be excessive, however. In particular every call to
instance() now acquires and releases the lock, even though the critical section should be
executed just once. By placing the guard inside the conditional check, we can remove the
locking overhead:
 static Singleton *instance () {
 if (instance_ == 0) {
 Guard<Thread_Mutex> guard (singleton_lock_);
 // Only come here if <instance_>
 // has not been initialized yet.
 instance_ = new Singleton;
 }
 return instance_;
 }

Unfortunately, this solution does not provide thread-safe initialization because a race
condition in multi-threaded applications can cause multiple initializations of Singleton. For
example, consider two threads that simultaneously check for instance_ == 0. Both will
succeed, one will acquire the lock via the guard and the other will block. After the first
thread initializes Singleton and releases the lock, the blocked thread will obtain the lock
and erroneously initialize Singleton a second time.

Context

A application containing shared resources accessed concurrently by multiple threads.

Problem

Concurrent applications must ensure that certain portions of their code execute serially to
avoid race conditions when accessing and modifying shared resources. A common way of
avoiding race conditions is to serialize access to the shared resources' critical sections via
locks, such as mutexes. Every thread that wants to enter a critical section must first acquire
a lock. If this lock is already owned by another thread, the thread will block until the lock is
released and the lock can be acquired.

The serialization approach outlined above can be inappropriate for objects or components
that require 'just once' initialization. For example, the critical section code in our Singleton
example must be executed just once during its initialization. However, every method call on
the singleton acquires and releases the mutex lock, which can incur excessive overhead
[PLoPD3]. To avoid this overhead, programmers of concurrent applications may revert to
using global variables rather than applying the Singleton pattern. Unfortunately, this 'solution'
has two drawbacks [LGS99]:
§ It is non-portable because the order in which global objects defined in different files are

constructed is often not specified.

 309

§ It is overly resource consumptive because global variables will be created even if they
are not used.

Solution

Introduce a flag that provides a 'hint' about whether it is necessary to execute a critical
section before acquiring the lock that guards it. If this code need not be executed the critical
section is skipped, thereby avoiding unnecessary locking overhead. The general pseudo-
code design of this code is shown below:
 // Perform first-check to evaluate 'hint'.
 if (first_time_in_flag is FALSE) {
 acquire the mutex
 // Perform double-check to avoid race condition.
 if (first_time_in_flag is FALSE) {
 execute the critical section
 set first_time_in_flag to TRUE
 }
 release the mutex
 }

Implementation

The Double-Checked Locking Optimization pattern can be implemented via three activities:
1. Identify the critical section to be executed just once. This critical section performs

operations, such as initialization logic, that are executed just once in a program.

2. For example, a singleton is initialized just once in a program. The call to the
singleton's constructor is thus executed only once in a critical section, regardless
of the number of times the accessor method Singleton::instance() is
called.

4. Implement the locking logic. The locking logic serializes access to the critical section of
code that is executed just once. To implement this locking logic we can employ the
Scoped Locking idiom (345) to ensure that the lock is acquired automatically when
the appropriate scope is entered and released automatically when it goes out of
scope.

5. In accordance with the Scoped Locking idiom (345) a Thread_Mutex
singleton_lock_ is used to ensure that the singleton's constructor does not
execute concurrently.

7. This lock must be initialized prior to the first call to the code that is executed just once.
In C++, one way to ensure that a lock is initialized prior to its first use is to define it

 310

as a static object, as shown in the Example section. Unfortunately the C++ language
specification does not guarantee the order of initialization of static objects that are
defined in separate compilation units. As a result, different C++ compiler and linker
platforms may behave inconsistently and the lock may not be initialized when it is first
accessed.

8. A better way to avoid this problem is to use the Object Lifetime Manager pattern
[LGS99]. This pattern defines a portable object manager component that governs the
entire lifetime of global or static objects as follows:
§ The object manager creates these objects prior to their first use and
§ It ensures they are destroyed properly at program termination

For example, the lock can be placed under the control of an object manager that will
ensure it is initialized before any singleton attempts to use the lock to serialize its
initialization. The object manager can also delete the singleton when the program
terminates, thereby preventing the memory and resource leaks that can otherwise
occur with the Singleton pattern [Vlis98a].

9. Implement the first-time-in flag. This flag indicates whether the critical section has been
executed already.

10. The Singleton::instance_ pointer is used as the first-time-in flag. If the flag
evaluates to true the critical section is skipped. If the flag also has a particular
application-specific purpose, as our Singleton::instance_ pointer is used, it
must be an atomic type that can be set without a partial read or write. The
following code for the Singleton example is thread-safe, but avoids
unnecessary locking overhead by placing the call to new within another
conditional test:

11. class Singleton {
12. public:
13. static Singleton *instance () {
14. // First check
15. if (instance_ == 0) {
16. // Use Scoped Locking to acquire and
17. // release <singleton_lock_>

automatically.
18. Guard<Thread_Mutex> guard

(singleton_lock_);
19. // Double check.
20. if (instance_ == 0)
21. instance_ = new Singleton;
22. }
23. return instance_;
24. }
25. private:
26. static Singleton *instance_;
27. static Thread_Mutex singleton_lock_;
28. };

 311

29. The first thread that acquires the singleton_lock_ will construct the
Singleton object and assign the pointer to instance_, which serves as the
first-time-in flag in this example. All threads that call instance() subsequently
will find instance_ is not equal to zero and will thus skip the initialization step.

30. The second check prevents a race condition if multiple threads try to initialize
Singleton simultaneously. This handles the case in which multiple threads
execute in parallel. In the code above these threads will queue up at the
singleton_lock_ mutex. When the queued threads finally obtain the mutex
singleton_lock_ they will find instance_ is not equal to zero and will then
skip the Singleton initialization.

31. This implementation of the Singleton::instance() method only incurs
locking overhead for threads that are active inside instance() when the
Singleton is first initialized. In subsequent calls to instance() the
instance_ pointer is not zero and thus singleton_lock_ is neither acquired
nor released.

Variants

Volatile Data. The Double-Checked Locking Optimization pattern implementation may
require modifications if a compiler optimizes the first-time-in flag by caching it in some way,
such as storing it in a CPU register. In this case, cache coherency may become a problem.
For example, copies of the first-time-in flag held simultaneously in registers by multiple
threads may become inconsistent if one thread's setting of the value is not reflected in other
threads' copies.

A related problem is that a highly optimizing compiler may consider the second check of
flag == 0 to be superfluous and optimize it away. A solution to both these problems is to
declare the flag as volatile data, which ensures the compiler will not perform aggressive
optimizations that change the program's semantics.

For our Singleton example, this results in the following code:
class Singleton {
 // ...
private:
 static Singleton *volatile instance_;
 // instance_ is volatile.
};

The use of volatile ensures that a compiler will not place the instance_ pointer into
a register, nor will it optimize away the second check in instance().

The downside of using volatile is that all access to will be through memory rather than
through registers, which may degrade performance.

 312

Template Adapter. Another variation for the Double-Checked Locking Optimization pattern is
applicable when the pattern is implemented in C++. In this case, create a template adapter
that transforms classes to have singleton-like behavior and performs the Double-Checked
Locking Optimization pattern automatically.

The following code illustrates how to write this template in C++:
template <class TYPE>
class Singleton {
public:
 static TYPE *instance () {
 // First check
 if (instance_ == 0) {
 // Scoped Locking acquires and release lock.
 Guard<Thread_Mutex> guard (singleton_lock_);
 // Double check instance_.
 if (instance_ == 0)
 instance_ = new TYPE;
 }
 return instance_;
 }
private:
 static TYPE *instance_;
 static Thread_Mutex singleton_lock_;
};

The Singleton template is parameterized by the TYPE that will be accessed as a
singleton. The Double-Checked Locking Optimization pattern is applied automatically on
the singleton_lock_ within the instance() method.

The Singleton template adapter can also be integrated with the Object Lifetime
Manager pattern [LGS99], which ensures that dynamically allocated singletons are
deallocated automatically when an application process exits. This pattern can also
ensure that the static singleton_lock_ data member is initialized properly before its
first use.

Pre-initialization of Singletons. This variation is an alternative that may alleviate the need for
Double-Checked Locking Optimization. It does this by initializing all objects explicitly at
program start-up, for example in a program's main() function. Thus, there are no race
conditions because the initialization is constrained to occur within a single thread.

This solution is inappropriate, however, when expensive calculations must be performed that
may be unnecessary in certain situations. For instance, if a singleton is never actually
created during program execution, initializing it during program start-up will simply waste
resources. Pre-initialization can also break encapsulation by forcing application components

 313

with singletons in their implementation to expose this information so the singletons can be
initialized explicitly. Likewise, pre-initialization makes it hard to compose applications using
components that are configured dynamically using the Component Configurator pattern (75).

Known Uses

ACE [Sch97]. The Double-Checked Locking Optimization pattern is used extensively
throughout the ACE framework. To reduce code duplication, ACE defines a reusable adapter
template called ACE_Singleton that is similar to the one shown in the Variants section and
is used to transform 'normal' classes into singletons. Although singletons are not the only
use of the Double-Checked Locking Optimization pattern in the ACE framework, they are a
common example that demonstrates the utility of the pattern.

Sequent Dynix/PTX. The Doubled-Checked Locking Optimization pattern is used in the
Sequent Dynix/PTX operating system.

POSIX and Linux. The Double-Checked Locking Optimization pattern can be used to
implement POSIX 'once' variables [IEEE96], which ensure that functions are invoked just
once in a program. This pattern has been used in the LinuxThreads pthread_once()
implementation to ensure its function-pointer parameter init_routine() is called only
once—on its first call—and not subsequently.

Andrew Birrell describes the use of the Double-Checked Locking Optimization pattern in
[Bir91]. Birrell refers to the first check of the flag as a 'lock hint'.

The Solaris 2.x documentation for pthread_key_create(3T), which is shown in the
Thread-Specific Storage pattern (475) Known Uses section, illustrates how to use the
Double-Checked Locking Optimization to initialize thread-specific data.

Consequences

There are two benefits of using the Double-Checked Locking Optimization pattern:

Minimized locking overhead. By performing two first-time-in flag checks, the Double-
Checked Locking Optimization pattern minimizes overhead for the common case. After the
flag is set the first check ensures that subsequent accesses require no further locking.

Prevents race conditions. The second check of the first-time-in flag ensures that the critical
section is executed just once.

However, there are three liabilities of using the Double-Checked Locking Optimization
pattern that can arise if the pattern is used in software that is ported to certain types of
operating system, hardware, or compiler/linker platforms. However, because this pattern is
applicable to a large class of platforms, we outline techniques for overcoming these
limitations.

Non-atomic pointer or integral assignment semantics. If an instance_ pointer is used as
the flag in a singleton implementation, all bits of the singleton instance_ pointer must be
read and written atomically in a single operation. If the write to memory after the call to new
is not atomic, other threads may try to read an invalid pointer. This can result in sporadic
illegal memory accesses.

These scenarios are possible on systems where memory addresses straddle word alignment
boundaries, such as 32-bit pointers used on a computer with a 16 bit word bus, which
requires two fetches from memory for each pointer access. In this case it may be necessary

 314

to use a separate, word-aligned integral flag—assuming that the hardware supports atomic
word-based reads and writes—rather than using an instance_ pointer.

Multi-processor cache coherency. Certain multi-processor platforms, such as the COMPAQ
Alpha and Intel Itanium, perform aggressive memory caching optimizations in which read
and write operations can execute 'out of order' across multiple CPU caches. On these
platforms, it may not be possible to use the Double-Checked Locking Optimization pattern
without further modifications because CPU cache lines will not be flushed properly if shared
data is accessed without locks held.

To use the Double-Checked Locking Optimization pattern correctly on these types of
hardware platforms, CPU-specific instructions, such as memory barriers to flush cache lines,
must be inserted into the Double-Checked Locking Optimization implementation. Note that a
serendipitous side-effect of using the template adapter variation of the Double-Checked
Locking Optimization pattern is that it centralizes the placement of these CPU-specific cache
instructions.

For example, a memory barrier instruction can be located within the instance()
method of the Singleton template adapter class:
 template <class TYPE>
 TYPE *Singleton<TYPE>::instance () {
 TYPE *tmp = instance_;

 #if defined (ALPHA_MP)
 // Insert the CPU-specific memory barrier instruction
 // to synchronize the cache lines on multi-processor.
 asm ("mb");
 #endif /* ALPHA_MP */

 // First check
 if (tmp == 0) {
 // Scoped Locking acquires and releases lock.
 Guard<Thread_Mutex> guard (singleton_lock_);

 // Double check.
 if (tmp == 0) {
 tmp = new TYPE;

 #if defined (ALPHA_MP)
 // Insert a second CPU-specific memory
 // barrier instruction.
 asm ("mb");
 #endif /* ALPHA_MP */

 315

 instance_ = tmp;
 }
 }
 return tmp;
 }

As long as the Singleton template adapter is used uniformly, it is straightforward to
localize the placement of CPU-specific code without affecting applications. Conversely, if
the Double-Checked Locking Optimization pattern is hand-crafted into singletons at each
point of use much more effort is required to add this CPU-specific code.

Unfortunately, the need for CPU-specific code in implementations of the Double-Checked
Locking Optimization pattern makes this pattern inapplicable for Java applications. Java's
bytecodes are designed to be cross-platform and therefore its JVMs lack a memory barrier
instruction that can resolve the problem outlined in this liability.

Additional mutex usage. Regardless of whether a singleton is allocated on-demand, some
type of lock, such as the Thread_Mutex used in our examples, is allocated and retained for
the lifetime of the program. One technique for minimizing this overhead is to pre-allocate a
singleton lock within an object manager [LGS99] and use this lock to serialize all singleton
initialization. Although this may increase lock contention, it may not affect program
performance because each singleton will most likely acquire and release the lock only once
when its initialized.

See Also

The Double-Checked Locking Optimization pattern is a thread-safe variant of the Lazy
Evaluation pattern [Mey98] [Beck97]. This pattern is often used in programming languages
such as C that lack constructors in order to ensure components are initialized before their
state is accessed.

For example the following C code initializes a stack:
static const int STACK_SIZE = 1000;
static Type *stack_;
static int top_;

void push (Type *item) {
 // First-time-in-check.
 if (stack_ == 0) {
 // Allocate the pointer, which implicitly
 // indicates that initialization was performed.
 stack_ = malloc (STACK_SIZE * sizeof Type);
 top_ = 0;
 }
 stack_[top_++] = item;

 316

 // ...
}

The first time that push() is called, stack_ is 0, which triggers its implicit initialization
via malloc().

Credits

The co-author of the original version [PLoPD3] of this pattern was Tim Harrison. Thanks to
John Basrai, James Coplien, Ralph Johnson, Jaco van der Merwe, Duane Murphy, Paul
McKenney, Bill Pugh, and Siva Vaddepuri for their suggestions and comments on the
Double-Checked Locking Optimization pattern.

 317

Chapter 5: Concurrency Patterns
Overview

"You look at where you're going and where you are and it never makes
sense, but then you look back at where you've been and a pattern seems to

emerge. And if you project forward from that pattern, then sometimes you
can come up with something."

Robert M. Pirsig

This chapter presents five patterns that address various types of concurrency architecture
and design issues for components, subsystems, and applications: Active Object, Monitor
Object, Half-Sync/Half-Async, Leader/Followers, and Thread-Specific Storage.

The choice of concurrency architecture has a significant impact on the design and
performance of multi-threaded networking middleware and applications. No single
concurrency architecture is suitable for all workload conditions and hardware and software
platforms. The patterns in this chapter therefore collectively provide solutions to a variety of
concurrency problems.

The first two patterns in this chapter specify designs for sharing resources among multiple
threads or processes:
§ The Active Object design pattern (369)decouples method execution from method

invocation. Its purpose is to enhance concurrency and simplify synchronized access to
objects that reside in their own threads of control

§ The Monitor Object design pattern (399) synchronizes concurrent method execution to
ensure that only one method at a time runs within an object. It also allows an object's
methods to schedule their execution sequences cooperatively.

Both patterns can synchronize and schedule methods invoked concurrently on objects. The
main difference is that an active object executes its methods in a different thread than its
clients, whereas a monitor object executes its methods by borrowing the thread of its clients.
As a result active objects can perform more sophisticated—albeit expensive—scheduling to
determine the order in which their methods execute.

The next two patterns in this chapter define higher-level concurrency architectures:
§ The Half-Sync/Half-Async architectural pattern (423) decouples asynchronous and

synchronous processing in concurrent systems, to simplify programming without
reducing performance undudly. The pattern introduces two intercommunicating layers,
one for asynchronous and one for synchronous service processing. A further queuing
layer mediates communication between services in the asynchronous and synchronous
layers.

§ The Leader/Followers architectural pattern (447) provides an efficient concurrency
model where multiple threads take turns to share a set of event sources to detect,
demultiplex, dispatch, and process service requests that occur on the event sources.
The Leader/Followers pattern can be used in lieu of the Half-Sync/Half-Async and
Active Object patterns to improve performance when there are no synchronization or
ordering constraints on the processing of requests by pooled threads.

Implementors of the Half-Sync/Half-Async and Leader/Followers patterns can use the Active
Object and Monitor Object patterns to coordinate access to shared objects efficiently.

The final pattern in this chapter offers a different strategy for addressing certain inherent
complexities of concurrency:

 318

§ The Thread-Specific Storage design pattern (475) allows multiple threads to use one
'logically global' access point to retrieve an object that is local to a thread, without
incurring locking overhead on each access to the object. To some extent this pattern
can be viewed as the 'antithesis' of the other patterns in this section, because it
addresses several inherent complexities of concurrency by preventing the sharing of
resources among threads.

Implementations of all patterns in this chapter can use the patterns from Chapter 4,
Synchronization Patterns, to protect critical regions from concurrent access.

Other patterns in the literature that address concurrency-related issues include Master-Slave
[POSA1], Producer-Consumer [Grand98], Scheduler [Lea99a], and Two-phase Termination
[Grand98].

Active Object
The Active Object design pattern decouples method execution from method invocation to
enhance concurrency and simplify synchronized access to objects that reside in their own
threads of control.

Also Known As

Concurrent Object

Example

Consider the design of a communication gateway,[1] which decouples cooperating
components and allows them to interact without having direct dependencies on each other.
As shown below, the gateway may route messages from one or more supplier processes to
one or more consumer processes in a distributed system.

The suppliers, consumers, and gateway communicate using TCP [Ste93], which is a
connection-oriented protocol. The gateway may therefore encounter flow control from the
TCP transport layer when it tries to send data to a remote consumer. TCP uses flow control
to ensure that fast suppliers or gateways do not produce data more rapidly than slow
consumers or congested networks can buffer and process the data. To improve end-to-end
quality of service (QoS) for all suppliers and consumers, the entire gateway process must
not block while waiting for flow control to abate over any one connection to a consumer. In
addition the gateway must scale up efficiently as the number of suppliers and consumers
increase.

An effective way to prevent blocking and improve performance is to introduce concurrency
into the gateway design, for example by associating a different thread of control for each
TCP connection. This design enables threads whose TCP connections are flow controlled to
block without impeding the progress of threads whose connections are not flow controlled.

 319

We thus need to determine how to program the gateway threads and how these threads
interact with supplier and consumer handlers.

Context

Clients that access objects running in separate threads of control.

Problem

Many applications benefit from using concurrent objects to improve their quality of service,
for example by allowing an application to handle multiple client requests simultaneously.
Instead of using a single-threaded passive object, which executes its methods in the thread
of control of the client that invoked the methods, a concurrent object resides in its own
thread of control. If objects run concurrently, however, we must synchronize access to their
methods and data if these objects are shared and modified by multiple client threads, in
which case three forces arise:
§ Processing-intensive methods invoked on an object concurrently should not block the

entire process indefinitely, thereby degrading the quality of service of other concurrent
objects.

§ For example, if one outgoing TCP connection in our gateway example is blocked due
to flow control, the gateway process still should be able to run other threads that
can queue new messages while waiting for flow control to abate. Similarly, if other
outgoing TCP connections are not flow controlled, it should be possible for other
threads in the gateway to send messages to their consumers independently of any
blocked connections.

§ Synchronized access to shared objects should be straightforward to program. In
particular, client method invocations on a shared object that are subject to
synchronization constraints should be serialized and scheduled transparently.

§ Applications like our gateway can be hard to program if developers use low-level
synchronization mechanisms, such as acquiring and releasing mutual exclusion
(mutex) locks explicitly. Methods that are subject to synchronization constraints,
such as enqueueing and dequeueing messages from TCP connections, should be
serialized transparently when objects are accessed by multiple threads.

§ Applications should be designed to leverage the parallelism available on a
hardware/software platform transparently.

§ In our gateway example, messages destined for different consumers should be sent
concurrently by a gateway over different TCP connections. If the entire gateway is
programmed to only run in a single thread of control, however, performance
bottlenecks cannot be alleviated transparently by running the gateway on a multi-
processor platform.

 320

Solution

For each object exposed to the forces above, decouple method invocation on the object from
method execution. Method invocation should occur in the client's thread of control, whereas
method execution should occur in a separate thread. Moreover, design the decoupling so
the client thread appears to invoke an ordinary method.

In detail: A proxy [POSA1] [GoF95] represents the interface of an active object and a servant
[OMG98a] provides the active object's implementation. Both the proxy and the servant run in
separate threads so that method invocations and method executions can run concurrently.
The proxy runs in the client thread, while the servant runs in a different thread.

At run-time the proxy transforms the client's method invocations into method requests, which
are stored in an activation list by a scheduler. The scheduler's event loop runs continuously
in the same thread as the servant, dequeueing method requests from the activation list and
dispatching them on the servant. Clients can obtain the result of a method's execution via a
future returned by the proxy.

Structure

An active object consists of six components:

A proxy [POSA1] [GoF95] provides an interface that allows clients to invoke publicly-
accessible methods on an active object. The use of a proxy permits applications to program
using standard strongly-typed language features, rather than passing loosely-typed
messages between threads. The proxy resides in the client's thread.

When a client invokes a method defined by the proxy it triggers the construction of a method
request object. A method request contains the context information, such as a method's
parameters, necessary to execute a specific method invocation and return any result to the
client. A method request class defines an interface for executing the methods of an active
object. This interface also contains guard methods that can be used to determine when a
method request can be executed. For every public method offered by a proxy that requires
synchronized access in the active object, the method request class is subclassed to create a
concrete method request class.

 321

A proxy inserts the concrete method request it creates into an activation list. This list
maintains a bounded buffer of pending method requests created by the proxy and keeps
track of which method requests can execute. The activation list decouples the client thread
where the proxy resides from the thread where the servant method is executed, so the two
threads can run concurrently. The internal state of the activation list must therefore be
serialized to protect it from concurrent access.

A scheduler runs in a different thread than its client proxies, namely in the active object's
thread. It decides which method request to execute next on an active object. This scheduling
decision is based on various criteria, such as ordering—the order in which methods are
called on the active object—or certain properties of an active object, such as its state. A
scheduler can evaluate these properties using the method requests' guards, which
determine when it is possible to execute the method request [Lea99a]. A scheduler uses an
activation list to manage method requests that are pending execution. Method requests are
inserted in an activation list by a proxy when clients invoke one of its methods.

A servant defines the behavior and state that is modeled as an active object. The methods a
servant implements correspond to the interface of the proxy and method requests the proxy
creates. It may also contain other predicate methods that method requests can use to
implement their guards. A servant method is invoked when its associated method request is
executed by a scheduler. Thus, it executes in its scheduler's thread.

When a client invokes a method on a proxy it receives a future [Hal85] [LS88]. This future
allows the client to obtain the result of the method invocation after the servant finishes
executing the method. Each future reserves space for the invoked method to store its result.
When a client wants to obtain this result, it can rendezvous with the future, either blocking or
polling until the result is computed and stored into the future.

The class diagram for the Active Object pattern is shown below:

 322

Dynamic

The behavior of the Active Object pattern can be divided into three phases:
§ Method request construction and scheduling. A client invokes a method on the proxy.

This triggers the creation of a method request, which maintains the argument bindings
to the method as well as any other bindings required to execute the method and return
its result. The proxy then passes the method request to its scheduler, which enqueues it
on the activation list. If the method is defined as a two-way invocation [OMG98a], a
future is returned to the client. No future is returned if a method is a one-way, which
means it has no return values.

§ Method request execution. The active object's scheduler runs continuously in a
different thread than its clients. The scheduler monitors its activation list and determines
which method request(s) have become runnable by calling their guard method. When a
method request becomes runnable the scheduler removes it, binds the request to its
servant, and dispatches the appropriate method on the servant. When this method is
called, it can access and update the state of its servant and create its result if it is a two-
way method invocation.

§ Completion. In this phase the result, if any, is stored in the future and the active
object's scheduler returns to monitor the activation list for runnable method requests.
After a two-way method completes, clients can retrieve its result via the future. In
general, any clients that rendezvous with the future can obtain its result. The method
request and future can be deleted explicitly or garbage collected when they are no
longer referenced.

 323

Implementation

Five activities show how to implement the Active Object pattern.
1. Implement the servant. A servant defines the behavior and state being modeled as an

active object. In addition, a servant may contain predicate methods used to determine
when to execute method requests.

2. For each remote consumer in our gateway example there is a consumer handler
containing a TCP connection to a consumer process running on a remote
machine. Each consumer handler contains a message queue modeled as an
active object and implemented with an MQ_Servant. This active object stores
messages passed from suppliers to the gateway while they are waiting to be sent
to the remote consumer.[2] The following C++ class illustrates the MQ_Servant
class:

3. class MQ_Servant {
4. public:
5. // Constructor and destructor.
6. MQ_Servant (size_t mq_size);
7. ~MQ_Servant ();
8.
9. // Message queue implementation operations.
10. void put (const Message &msg);
11. Message get ();
12.
13. // Predicates.
14. bool empty () const;
15. bool full () const;
16. private:
17. // Internal queue representation, e.g., a

circular
18. // array or a linked list, that does not use

any
19. // internal synchronization mechanism.
20. };

21. The put() and get() methods implement the message insertion and removal
operations on the queue, respectively. The servant defines two predicates,
empty() and full(), that distinguish three internal states: empty, full, and
neither empty nor full. These predicates are used to determine when put() and
get() methods can be called on the servant.

23. In general, the synchronization mechanisms that protect a servant's critical sections
from concurrent access should not be tightly coupled with the servant, which should
just implement application functionality. Instead, the synchronization mechanisms

 324

should be associated with the method requests. This design avoids the inheritance
anomaly problem [MWY91], which inhibits the reuse of servant implementations if
subclasses require different synchronization policies than base classes. Thus, a
change to the synchronization constraints of the active object need not affect its
servant implementation.

24. The MQ_Servant class is designed to omit synchronization mechanisms from a
servant. The method implementations in the MQ_Servant class, which are
omitted for brevity, therefore need not contain any synchronization mechanisms.

26. Implement the invocation infrastructure. In this activity, we describe the infrastructure
necessary for clients to invoke methods on an active object. This infrastructure
consists of a proxy that creates method requests, which can be implemented via two
sub-activities.

1. Implement the proxy. The proxy provides clients with an interface to the
servant's methods. For each method invocation by a client, the proxy creates
a concrete method request. Each method request is an abstraction for the
method's context, which is also called the closure of the method. Typically, this
context includes the method parameters, a binding to the servant the method
will be applied to, a future for the result, and the code that executes the
method request.

2. In our gateway the MQ_Proxy provides the following interface to the
MQ_Servant defined in implementation activity 1 (375):

3. class MQ_Proxy {
4. public:
5. // Bound the message queue size.
6. enum { MQ_MAX_SIZE = /* ... */ };
7. MQ_Proxy (size_t size = MQ_MAX_SIZE):
8. scheduler_ (size), servant_ (size) { }
9.
10. // Schedule <put> to execute on the active

object.
11. void put (const Message &msg) {
12. Method_Request *mr = new Put (servant_,

msg);
13. scheduler_.insert (mr);
14. }
15.
16. // Return a <Message_Future> as the "future"

result of
17. // an asynchronous <get> method on the active

object.
18. Message_Future get () {

 325

19. Message_Future result;
20. Method_Request *mr = new Get (servant_,

result);
21. scheduler_.insert (mr);
22. return result;
23. }
24.
25. // empty() and full() predicate

implementations ...
26. private:
27. // The servant that implements the active

object
28. // methods and a scheduler for the message

queue.
29. MQ_Servant servant_;
30. MQ_Scheduler scheduler_;
31. };

32. The MP_Proxy is a factory [GoF95] that constructs instances of method
requests and passes them to a scheduler, which queues them for
subsequent execution in a separate thread.

34. Multiple client threads in a process can share the same proxy. A proxy method
need not be serialized because it does not change state after it is created. Its
scheduler and activation list are responsible for any necessary internal
serialization.

35. Our gateway example contains many supplier handlers that receive and
route messages to peers via many consumer handlers. Several supplier
handlers can invoke methods using the proxy that belongs to a single
consumer handler without the need for any explicit synchronization.

37. Implement the method requests. Method requests can be considered as
command objects [GoF95]. A method request class declares an interface used
by all concrete method requests. It provides schedulers with a uniform
interface that allows them to be decoupled from specific knowledge about how
to evaluate synchronization constraints or trigger the execution of concrete
method requests. Typically, this interface declares a can_run() method that
defines a hook method guard that checks when it is possible to execute the
method request. It also declares a call() method that defines a hook for
executing a method request on the servant.

The methods in a method request class must be defined by subclasses. There
should be one concrete method request class for each method defined in the

 326

proxy. The can_run() method is often implemented with the help of the
servant's predicates.

In our gateway example a Method_Request base class defines two
virtual hook methods, which we call can_run() and call():
 class Method_Request {
 public:
 // Evaluate the synchronization constraint.
 virtual bool can_run () const = 0

 // Execute the method.
 virtual void call () = 0;
 };

We then define two subclasses of Method_Request: class Put
corresponds to the put() method call on a proxy and class Get
corresponds to the get() method call. Both classes contain a pointer to
the MQ_Servant. The Get class can be implemented as follows:
 class Get : public Method_Request {
 public:
 Get (MQ_Servant *rep, const Message_Future &f)
 : servant_ (rep), result_ (f) { }

 virtual bool can_run () const {
 // Synchronization constraint: cannot call
a
 // <get> method until queue is not empty.
 return !servant_->empty ();
 }

 virtual void call () {
 // Bind dequeued message to the future
result.
 result_ = servant_->get ();
 }
 private:
 MQ_Servant *servant_;
 Message_Future result_;
 };

Note how the can_run() method uses the MQ_Servant's empty()
predicate to allow a scheduler to determine when the Get method request
can execute. When the method request does execute, the active object's

 327

scheduler invokes its call() hook method. This call() hook uses the
Get method request's run-time binding to MQ_Servant to invoke the
servant's get() method, which is executed in the context of that servant.
It does not require any explicit serialization mechanisms, however,
because the active object's scheduler enforces all the necessary
synchronization constraints via the method request can_run() methods.

The proxy passes a future to the constructors of the corresponding method
request classes for each of its public two-way methods in the proxy that
returns a value, such as the get() method in our gateway example. This
future is returned to the client thread that calls the method, as discussed in
implementation activity 5 (384).

27. Implement the activation list. Each method request is inserted into an activation list.
This list can be implemented as a synchronized bounded buffer that is shared
between the client threads and the thread in which the active object's scheduler and
servant run. An activation list can also provide a robust iterator [Kof93] [CarEl95] that
allows its scheduler to traverse and remove its elements.

The activation list is often designed using concurrency control patterns, such as
Monitor Object (399), that use common synchronization mechanisms like condition
variables and mutexes [Ste98]. When these are used in conjunction with a timer
mechanism, a scheduler thread can determine how long to wait for certain operations
to complete. For example, timed waits can be used to bound the time spent trying to
remove a method request from an empty activation list or to insert into a full activation
list.[3] If the timeout expires, control returns to the calling thread and the method
request is not executed.

For our gateway example we specify a class Activation_List as follows:
 class Activation_List {
 public:
 // Block for an "infinite" amount of time waiting
 // for <insert> and <remove> methods to complete.
 enum { INFINITE = -1 };

 // Define a "trait".
 typedef Activation_List_Iterator iterator;

 // Constructor creates the list with the specified
 // high water mark that determines its capacity.
 Activation_List (size_t high_water_mark);

 // Insert <method_request> into the list, waiting up
 // to <timeout> amount of time for space to become
 // available in the queue. Throws the <System_Ex>
 // exception if <timeout> expires.

 328

 void insert (Method_Request *method_request,
 Time_Value *timeout = 0);

 // Remove <method_request> from the list, waiting up
 // to <timeout> amount of time for a
<method_request>
 // to be inserted into the list. Throws the
 // <System_Ex> exception if <timeout> expires.
 void remove (Method_Request *&method_request,
 Time_Value *timeout = 0);
 private:
 // Synchronization mechanisms, e.g., condition
 // variables and mutexes, and the queue implemen-
 // tation, e.g., an array or a linked list, go here.
 };

The insert() and remove() methods provide a 'bounded-buffer'
producer/consumer [Grand98] synchronization model. This design allows a
scheduler thread and multiple client threads to remove and insert
Method_Requests simultaneously without corrupting the internal state of an
Activation_List. Client threads play the role of producers and insert
Method_Requests via a proxy. A scheduler thread plays the role of a consumer.
It removes Method_Requests from the Activation_List when their guards
evaluate to 'true'. It then invokes their call() hooks to execute servant
methods.

28. Implement the active object's scheduler. A scheduler is a command processor
[POSA1] that manages the activation list and executes pending method requests
whose synchronization constraints have been met. The public interface of a
scheduler often provides one method for the proxy to insert method requests into the
activation list and another method that dispatches method requests to the servant.

29. We define the following MQ_Scheduler class for our gateway:
30. class MQ_Scheduler {
31. public:
32. // Initialize the <Activation_List> to have
33. // the specified capacity and make

<MQ_Scheduler>
34. // run in its own thread of control.
35. MQ_Scheduler (size_t high_water_mark);
36.
37. // ... Other constructors/destructors, etc.
38.

 329

39. // Put <Method_Request> into
<Activation_List>. This

40. // method runs in the thread of its client,
i.e.

41. // in the proxy's thread.
42. void insert (Method_Request *mr) {
43. act_list_.insert (mr);
44. }
45.
46. // Dispatch the method requests on their

servant
47. // in its scheduler's thread of control.
48. virtual void dispatch ();
49. private:
50. // List of pending Method_Requests.
51. Activation_List act_list_;
52.
53. // Entry point into the new thread.
54. static void *svc_run (void *arg);
55. };

57. A scheduler executes its dispatch() method in a different thread of control than its
client threads. Each client thread uses a proxy to insert method requests in an active
object scheduler's activation list. This scheduler monitors the activation list in its own
thread, selecting a method request whose guard evaluates to 'true,' that is, whose
synchronization constraints are met. This method request is then removed from the
activation list and executed by invoking its call() hook method.

58. In our gateway example the constructor of MQ_Scheduler initializes the
Activation_List and uses the Thread_Manager wrapper facade (47) to
spawn a new thread of control:

59. MQ_Scheduler::MQ_Scheduler (size_t
high_water_mark):

60. act_queue_ (high_water_mark) {
61. // Spawn separate thread to dispatch method

requests.
62. Thread_Manager::instance ()->spawn (&svc_run,

this);
63. }

64. The Thread_Manager::spawn() method is passed a pointer to a static
MQ_Scheduler::svc_run() method and a pointer to the MQ_Scheduler
object. The svc_run() static method is the entry point into a newly created

 330

thread of control, which runs the svc_run() method. This method is simply an
adapter [GoF95] that calls the MQ_Scheduler::dispatch() method on the
this parameter:

65. void *MQ_Scheduler::svc_run (void *args) {
66. MQ_Scheduler *this_obj =
67. static_cast<MQ_Scheduler *> (args);
68.
69. this_obj->dispatch ();
70. }

71. The dispatch() method determines the order in which Put and Get method
requests are processed based on the underlying MQ_Servant predicates
empty() and full(). These predicates reflect the state of the servant, such as
whether the message queue is empty, full, or neither.

72. By evaluating these predicate constraints via the method request can_run()
methods, a scheduler can ensure fair access to the MQ_Servant:

73. virtual void MQ_Scheduler::dispatch () {
74. // Iterate continuously in a separate thread.
75. for (;;) {
76. Activation_List::iterator request;
77. // The iterator's <begin> method blocks
78. // when the <Activation_List> is empty.
79. for (request = act_list_.begin ();
80. request != act_list_.end ();
81. ++request) {
82. // Select a method request whose
83. // guard evaluates to true.
84. if ((*request).can_run ()) {
85. // Take <request> off the list.
86. act_list_.remove (*request);
87. (*request).call () ;
88. delete *request;
89. }
90. // Other scheduling activities can go

here,
91. // e.g., to handle when no

<Method_Request>s
92. // in the <Activation_List> have

<can_run>
93. // methods that evaluate to true.
94. }
95. }

 331

96. }

98. In our example the MQ_Scheduler::dispatch() implementation iterates
continuously, executing the next method request whose can_run() method
evaluates to true. Scheduler implementations can be more sophisticated, however,
and may contain variables that represent the servant's synchronization state.

99. For example, to implement a multiple-readers/single-writer synchronization policy a
prospective writer will call 'write' on the proxy, passing the data to write. Similarly,
readers will call 'read' and obtain a future as their return value. The active object's
scheduler maintains several counter variables that keep track of the synchronization
state, such as the number of read and write requests. The scheduler also maintains
knowledge about the identity of the prospective writers.

100. The active object's scheduler can use these synchronization state counters to
determine when a single writer can proceed, that is, when the current number of
readers is zero and no write request from a different writer is currently pending
execution. When such a write request arrives, a scheduler may choose to dispatch
the writer to ensure fairness. In contrast, when read requests arrive and the servant
can satisfy them because it is not empty, its scheduler can block all writing activity
and dispatch read requests first.

101. The synchronization state counter variable values described above are
independent of the servant's state because they are only used by its scheduler to
enforce the correct synchronization policy on behalf of the servant. The servant
focuses solely on its task to temporarily store client-specific application data. In
contrast, its scheduler focuses on coordinating multiple readers and writers. This
design enhances modularity and reusability.

102. A scheduler can support multiple synchronization policies by using the
Strategy pattern [GoF95]. Each synchronization policy is encapsulated in a separate
strategy class. The scheduler, which plays the context role in the Strategy pattern, is
then configured with a particular synchronization strategy it uses to execute all
subsequent scheduling decisions.

103. Determine rendezvous and return value policy. The rendezvous policy
determines how clients obtain return values from methods invoked on active objects.
A rendezvous occurs when an active object servant executing in one thread passes a
return value to the client that invoke the method running in another thread.
Implementations of the Active Object pattern often choose from the following
rendezvous and return value policies:
§ Synchronous waiting. Block the client thread synchronously in the proxy until

the scheduler dispatches the method request and the result is computed and
stored in the future.

§ Synchronous timed wait. Block for a bounded amount of time and fail if the
active object's scheduler does not dispatch the method request within that time
period. If the timeout is zero the client thread 'polls', that is, it returns to the caller
without queueing the method request if its scheduler cannot dispatch it
immediately.

§ Asynchronous. Queue the method call and return control to the client
immediately. If the method is a two-way invocation that produces a result then
some form of future must be used to provide synchronized access to the value,
or to the error status if the method call fails.

 332

The future construct allows two-way asynchronous invocations [ARSK00] that return
a value to the client. When a servant completes the method execution, it acquires a
write lock on the future and updates the future with its result. Any client threads that
are blocked waiting for the result are awakened and can access the result
concurrently. A future can be garbage-collected after the writer and all readers
threads no longer reference it. In languages like C++, which do not support garbage
collection, futures can be reclaimed when they are no longer in use via idioms like
Counted Pointer [POSA1].

In our gateway example the get() method invoked on the MQ_Proxy ultimately
results in the Get::call() method being dispatched by the MQ_Scheduler, as
shown in implementation activity 2 (378). The MQ_Proxy::get() method
returns a value, therefore a Message_Future is returned to the client that calls
it:
 class Message_Future {
 public:
 // Binds <this> and <f> to the same
<Msg._Future_Imp.>
 Message_Future (const Message_Future &f);

 // Initializes <Message_Future_Implementation> to
 // point to <message> m immediately.
 Message_Future (const Message &message);

 // Creates a <Msg._Future_Imp.>
 Message_Future ();

 // Binds <this> and <f> to the same
 // <Msg._Future_Imp.>, which is created if
necessary.
 void operator= (const Message_Future &f);

 // Block upto <timeout>time waiting to obtain result
 // of an asynchronous method invocation. Throws
 // <System_Ex> exception if <timeout> expires.
 Message result (Time_Value *timeout = 0) const;
 private:
 // <Message_Future_Implementation> uses the Counted
 // Pointer idiom.
 Message_Future_Implementation *future_impl_;
 };

The Message_Future is implemented using the Counted Pointer idiom
[POSA1]. This idiom simplifies memory management for dynamically allocated

 333

C++ objects by using a reference counted
Message_Future_Implementation body that is accessed solely through the
Message_Future handle.

In general a client may choose to evaluate the result value from a future immediately,
in which case the client blocks until the scheduler executes the method request.
Conversely, the evaluation of a return result from a method invocation on an active
object can be deferred. In this case the client thread and the thread executing the
method can both proceed asynchronously.

In our gateway example a consumer handler running in a separate thread may
choose to block until new messages arrive from suppliers:
 MQ_Proxy message_queue;

 // Obtain future and block thread until message arrives.
 Message_Future future = message_queue.get ();
 Message msg = future.result ();

 // Transmit message to the consumer.
 send (msg);

Conversely, if messages are not available immediately, a consumer handler can
store the Message_Future return value from message_queue and perform
other 'book-keeping' tasks, such as exchanging keep-alive messages to ensure
its consumer is still active. When the consumer handler is finished with these
tasks, it can block until a message arrives from suppliers:
 // Obtain a future (does not block the client).
 Message_Future future = message_queue.get ();

 // Do something else here...

 // Evaluate future and block if result is not available.
 Message msg = future.result ();
 send (msg);

Example Resolved

In our gateway example, the gateway's supplier and consumer handlers are local proxies
[POSA1] [GoF95] for remote suppliers and consumers, respectively. Supplier handlers
receive messages from remote suppliers and inspect address fields in the messages. The
address is used as a key into a routing table that identifies which remote consumer will
receive the message.

 334

The routing table maintains a map of consumer handlers, each of which is responsible for
delivering messages to its remote consumer over a separate TCP connection. To handle
flow control over various TCP connections, each consumer handler contains a message
queue implemented using the Active Object pattern. This design decouples supplier and
consumer handlers so that they can run concurrently and block independently.

The Consumer_Handler class is defined as follows:
 class Consumer_Handler {
 public:
 // Constructor spawns the active object's thread.
 Consumer_Handler ();

 // Put the message into the queue.
 void put (const Message &msg) { msg_q_.put (msg); }
 private:
 MQ_Proxy msg_q_; // Proxy to the Active Object.
 SOCK_Stream connection_; // Connection to consumer.

 // Entry point into the new thread.
 static void *svc_run (void *arg);
 };

Supplier_Handlers running in their own threads can put messages in the appropriate
Consumer_Handler's message queue active object:
 void Supplier_Handler::route_message (const Message &msg)
 {
 // Locate the appropriate consumer based on the
 // address information in <Message>.
 Consumer_Handler *consumer_handler =
 routing_table_.find (msg.address ());

 335

 // Put the Message into the Consumer Handler's queue.
 consumer_handler->put (msg);
 }

To process the messages inserted into its queue, each Consumer_Handler uses the
Thread_Manager wrapper facade (47) to spawn a separate thread of control in its
constructor:
 Consumer_Handler::Consumer_Handler () {
 // Spawn a separate thread to get messages from the
 // message queue and send them to the consumer.
 Thread_Manager::instance ()->spawn (&svc_run, this);
 // ...
 }

This new thread executes the svc_run() method entry point, which gets the messages
placed into the queue by supplier handler threads, and sends them to the consumer over the
TCP connection:
 void *Consumer_Handler::svc_run (void *args) {
 Consumer_Handler *this_obj =
 static_cast<Consumer_Handler *> (args);
 for (;;) {
 // Block thread until a <Message> is available.
 Message msg = this_obj->msg_q_.get ().result ();
 // Transmit <Message> to the consumer over the
 // TCP connection.
 this_obj->connection_.send (msg, msg.length ());
 }
 }

Every Consumer_Handler object uses the message queue that is implemented as an
active object and runs in its own thread. Therefore its send() operation can block without
affecting the quality of service of other Consumer_Handler objects.

Variants

Multiple Roles. If an active object implements multiple roles, each used by particular types of
client, a separate proxy can be introduced for each role. By using the Extension Interface
pattern (141), clients can obtain the proxies they need. This design helps separate concerns
because a client only sees the particular methods of an active object it needs for its own
operation, which further simplifies an active object's evolution. For example, new services
can be added to the active object by providing new extension interface proxies without
changing existing ones. Clients that do not need access to the new services are unaffected
by the extension and need not even be recompiled.

Integrated Scheduler. To reduce the number of components needed to implement the Active
Object pattern, the roles of the proxy and servant can be integrated into its scheduler
component. Likewise, the transformation of a method call on a proxy into a method request

 336

can also be integrated into the scheduler. However, servants still execute in a different
thread than proxies.

Here is an implementation of the message queue using an integrated scheduler:
 class MQ_Scheduler {
 public:
 MQ_Scheduler (size_t size)
 : servant_ (size), act_list_ (size) { }
 // ... other constructors/destructors, etc.

 void put (const Message m) {
 Method_Request *mr = new Put (&servant_, m);
 act_list_.insert (mr);
 }

 Message_Future get () {
 Message_Future result;
 Method_Request *mr = new Get (&servant_, result);
 act_list_.insert (mr);
 return result;
 }

 // Other methods ...
 private:
 MQ_Servant servant_;
 Activation_List act_list_;
 // ...
 };

By centralizing the point at which method requests are generated, the Active Object pattern
implementation can be simplified because it has fewer components. The drawback, of
course, is that a scheduler must know the type of the servant and proxy, which makes it hard
to reuse the same scheduler for different types of active objects.

Message Passing. A further refinement of the integrated scheduler variant is to remove the
proxy and servant altogether and use direct message passing between the client thread and
the active object's scheduler thread.

For example, consider the following scheduler implementation:
 class Scheduler {

 337

 public:
 Scheduler (size_t size): act_list_ (size) { }
 // ... other constructors/destructors, etc.

 void insert (Message_Request *message_request) {
 act_list_.insert (message_request);
 }

 virtual void dispatch () {
 for (;;) {
 Message_Request *mr;
 // Block waiting for next request to arrive.
 act_list_.remove (mr);
 // Process the message request <mr>...
 }
 }

 // ...
 private:
 Activation_List act_list_;
 // ...
 };

In this variant, there is no proxy, so clients create an appropriate type of message
request directly and call insert() themselves, which enqueues the request into the
activation list. Likewise, there is no servant, so the dispatch() method running in a
scheduler's thread simply dequeues the next message request and processes the
request according to its type.

In general it is easier to develop a message-passing mechanism than it is to develop an
active object because there are fewer components. Message passing can be more tedious
and error-prone, however, because application developers, not active object developers,
must program the proxy and servant logic. As a result, message passing implementations
are less type-safe than active object implementations because their interfaces are implicit
rather than explicit. In addition, it is harder for application developers to distribute clients and
servers via message passing because there is no proxy to encapsulate the marshaling and
demarshaling of data.

Polymorphic Futures [LK95]. A polymorphic future allows parameterization of the eventual
result type represented by the future and enforces the necessary synchronization. In
particular, a polymorphic future describes a typed future that client threads can use to
retrieve a method request's result. Whether a client blocks on a future depends on whether
or not a result has been computed.

 338

The following class is a polymorphic future template for C++:
 template <class TYPE>
 class Future {
 // This class can be used to return results from
 // two-way asynchronous method invocations.
 public:
 // Constructor and copy constructor that binds <this>
 // and <r> to the same <Future> representation.
 Future ();
 Future (const Future<TYPE> &r);

 // Destructor.
 ~Future ();

 // Assignment operator that binds <this> and <r> to
 // the same <Future> representation.
 void operator = (const Future<TYPE> &r);

 // Cancel a <Future> and reinitialize it.
 void cancel () ;

 // Block upto <timeout> time waiting to obtain result
 // of an asynchronous method invocation. Throws
 // <System_Ex> exception if <timeout> expires.
 TYPE result (Time_Value *timeout = 0) const;
 private:
 // ...
 };

A client can use a polymorphic future as follows:
 try {
 // Obtain a future (does not block the client).
 Future<Message> future = message_queue.get ();
 // Do something else here...

 // Evaluate future and block for up to 1 second
 // waiting for the result to become available.
 Time_Value timeout (1);
 Message msg = future.result (&timeout);

 // Do something with the result ...

 339

 } catch (System_Ex &ex) {
 if (ex.status () == ETIMEDOUT) /* handle timeout */
 }

Timed method invocations. The activation list illustrated in implementation activity 3 (379)
defines a mechanism that can bound the amount of time a scheduler waits to insert or
remove a method request. Although the examples we showed earlier in the pattern do not
use this feature, many applications can benefit from timed method invocations. To
implement this feature we can simply export the timeout mechanism via schedulers and
proxies.

In our gateway example, the MQ_Proxy can be modified so that its methods allow
clients to bound the amount of time they are willing to wait to execute:
 class MQ_Proxy {
 public:
 // Schedule <put> to execute, but do not block longer
 // than <timeout> time. Throws <System_Ex>
 // exception if <timeout> expires.
 void put (const Message &msg,
 Time_Value *timeout = 0);

 // Return a <Message_Future> as the "future" result of
 // an asynchronous <get> method on the active object,
 // but do not block longer than <timeout> amount of
 // time. Throws the <System_Ex> exception if
 // <timeout> expires.
 Message_Future get (Time_Value *timeout = 0);
 };

If timeout is 0 both get() and put() will block indefinitely until Message is either
removed from or inserted into the scheduler's activation list, respectively. If timeout
expires, the System_Ex exception defined in the Wrapper Facade pattern (47) is thrown
with a status() value of ETIMEDOUT and the client must catch it.

To complete our support for timed method invocations, we also must add timeout
support to the MQ_Scheduler:
 class MQ_Scheduler {
 public:
 // Insert a method request into the <Activation_List>
 // This method runs in the thread of its client, i.e.
 // in the proxy's thread, but does not block longer
 // than <timeout> amount of time. Throws the

 340

 // <System_Ex> exception if the <timeout> expires.
 void insert (Method_Request *method_request,
 Time_Value *timeout) {
 act_list_.insert (method_request, timeout);
 }
 }

Distributed Active Object. In this variant a distribution boundary exists between a proxy and
a scheduler, rather than just a threading boundary. This pattern variant introduces two new
participants:
§ A client-side proxy plays the role of a stub, which marshals method parameters into a

method request that is sent across a network and executed by a servant in a separate
server address space.

§ A server-side skeleton, which demarshals method request parameters before they are
passed to a server's servant method.

The Distributed Active Object pattern variant is therefore similar to the Broker pattern
[POSA1]. The primary difference is that a Broker usually coordinates the processing of many
objects, whereas a distributed active object just handles a single object.

Thread Pool Active Object. This generalization of the Active Object pattern supports multiple
servant threads per active object to increase throughput and responsiveness. When not
processing requests, each servant thread in a thread pool active object blocks on a single
activation list. The active object scheduler assigns a new method request to an available
servant thread in the pool as soon as one is ready to be executed.

A single servant implementation is shared by all the servant threads in the pool. This design
cannot therefore be used if the servant methods do not protect their internal state via some
type of synchronization mechanism, such as a mutex.

Additional variants of active objects can be found in [Lea99a], Chapter 5: Concurrency
Control and Chapter 6: Services in Threads.

Known Uses

ACE Framework [Sch97]. Reusable implementations of the method request, activation list,
and future components in the Active Object pattern are provided in the ACE framework. The
corresponding classes in ACE are called ACE_Method_Request,
ACE_Activation_Queue, and ACE_Future. These components have been used to
implement many production concurrent and networked systems [Sch96].

Siemens MedCom. The Active Object pattern is used in the Siemens MedCom framework,
which provides a black-box component-based framework for electronic medical imaging
systems. MedCom employs the Active Object pattern in conjunction with the Command
Processor pattern [POSA1] to simplify client windowing applications that access patient
information on various medical servers [JWS98].

Siemens FlexRouting - Automatic Call Distribution [Flex98]. This call center
management system uses the Thread Pool variant of the Active Object pattern. Services that
a call center offers are implemented as applications of their own. For example, there may be
a hot-line application, an ordering application, and a product information application,

 341

depending on the types of service offered. These applications support operator personnel
that serve various customer requests. Each instance of these applications is a separate
servant component. A 'FlexRouter' component, which corresponds to the scheduler,
dispatches incoming customer requests automatically to operator applications that can
service these requests.

Java JDK 1.3 introduced a mechanism for executing timer-based tasks concurrently in the
classes java.util.Timer and java.util.TimerTask. Whenever the scheduled
execution time of a task occurs it is executed. Specifically, Timer offers different scheduling
functions to clients that allow them to specify when and how often a task should be
executed. One-shot tasks are straightforward and recurring tasks can be scheduled at
periodic intervals. The scheduling calls are executed in the client's thread, while the tasks
themselves are executed in a thread owned by the Timer object. A Timer internal task
queue is protected by locks because the two threads outlined above operate on it
concurrently.

The task queue is implemented as a priority queue so that the next TimerTask to expire
can be identified efficiently. The timer thread simply waits until this expiration. There are no
explicit guard methods and predicates because determining when a task is 'ready for
execution' simply depends on the arrival of the scheduled time.

Tasks are implemented as subclasses of TimerTask that override its run() hook method.
The TimerTask subclasses unify the concepts behind method requests and servants by
offering just one class and one interface method via TimerTask.run().

The scheme described above simplifies the Active Object machinery for the purpose of
timed execution. There is no proxy and clients call the scheduler—the Timer object—
directly. Clients do not invoke an ordinary method and therefore the concurrency is not
transparent. Moreover, there are no return value or future objects linked to the run()
method. An application can employ several active objects by constructing several Timer
objects, each with its own thread and task queue.

Chef in a restaurant. A real-life example of the Active Object pattern is found in restaurants.
Waiters and waitresses drop off customer food requests with the chef and continue to
service requests from other customers asynchronously while the food is being prepared. The
chef keeps track of the customer food requests via some type of worklist. However, the chef
may cook the food requests in a different order than they arrived to use available resources,
such as stove tops, pots, or pans, most efficiently. When the food is cooked, the chef places
the results on top of a counter along with the original request so the waiters and waitresses
can rendezvous to pick up the food and serve their customers.

Consequences

The Active Object pattern provides the following benefits:

Enhances application concurrency and simplifies synchronization complexity. Concurrency is
enhanced by allowing client threads and asynchronous method executions to run
simultaneously. Synchronization complexity is simplified by using a scheduler that evaluates
synchronization constraints to guarantee serialized access to servants, in accordance with
their state.

Transparently leverages available parallelism. If the hardware and software platforms
support multiple CPUs efficiently, this pattern can allow multiple active objects to execute in
parallel, subject only to their synchronization constraints.

 342

Method execution order can differ from method invocation order. Methods invoked
asynchronously are executed according to the synchronization constraints defined by their
guards and by scheduling policies. Thus, the order of method execution can differ from the
order of method invocation order. This decoupling can help improve application performance
and flexibility.

However, the Active Object pattern encounters several liabilities:

Performance overhead. Depending on how an active object's scheduler is implemented—for
example in user-space versus kernel-space [SchSu95]—context switching, synchronization,
and data movement overhead may occur when scheduling and executing active object
method invocations. In general the Active Object pattern is most applicable for relatively
coarse-grained objects. In contrast, if the objects are fine-grained, the performance
overhead of active objects can be excessive, compared with related concurrency patterns,
such as Monitor Object (399).

Complicated debugging. It is hard to debug programs that use the Active Object pattern due
to the concurrency and non-determinism of the various active object schedulers and the
underlying operating system thread scheduler. In particular, method request guards
determine the order of execution. However, the behavior of these guards may be hard to
understand and debug. Improperly defined guards can cause starvation, which is a condition
where certain method requests never execute. In addition, program debuggers may not
support multi-threaded applications adequately.

See Also

The Monitor Object pattern (399) ensures that only one method at a time executes within a
thread-safe passive object, regardless of the number of threads that invoke the object's
methods concurrently. In general, monitor objects are more efficient than active objects
because they incur less context switching and data movement overhead. However, it is
harder to add a distribution boundary between client and server threads using the Monitor
Object pattern.

It is instructive to compare the Active Object pattern solution in the Example Resolved
section with the solution presented in the Monitor Object pattern. Both solutions have similar
overall application architectures. In particular, the Supplier_Handler and
Consumer_Handler implementations are almost identical.

The primary difference is that the Message_Queue in the Active Object pattern supports
sophisticated method request queueing and scheduling strategies. Similarly, because active
objects execute in different threads than their clients, there are situations where active
objects can improve overall application concurrency by executing multiple operations
asynchronously. When these operations complete, clients can obtain their results via futures
[Ha185] [LS88].

On the other hand, the Message_Queue itself is easier to program and often more efficient
when implemented using the Monitor Object pattern than the Active Object pattern.

The Reactor pattern (179) is responsible for demultiplexing and dispatching multiple event
handlers that are triggered when it is possible to initiate an operation without blocking. This
pattern is often used in lieu of the Active Object pattern to schedule callback operations to
passive objects. Active Object also can be used in conjunction with the Reactor pattern to
form the Half-Sync/Half-Async pattern (423).

The Half-Sync/Half-Async pattern (423) decouples synchronous I/O from asynchronous I/O
in a system to simplify concurrent programming effort without degrading execution efficiency.

 343

Variants of this pattern use the Active Object pattern to implement its synchronous task
layer, the Reactor pattern (179) to implement the asynchronous task layer, and a Producer-
Consumer pattern [Lea99a], such as a variant of the Pipes and Filters pattern [POSA1] or
the Monitor Object pattern (399), to implement the queueing layer.

The Command Processor pattern [POSA1] separates issuing requests from their execution.
A command processor, which corresponds to the Active Object pattern's scheduler,
maintains pending service requests that are implemented as commands [GoF95],
Commands are executed on suppliers, which correspond to servants. The Command
Processor pattern does not focus on concurrency, however. In fact, clients, the command
processor, and suppliers often reside in the same thread of control. Likewise, there are no
proxies that represent the servants to clients. Clients create commands and pass them
directly to the command processor.

The Broker pattern [POSA1] defines many of the same components as the Active Object
pattern. In particular, clients access brokers via proxies and servers implement remote
objects via servants. One difference between Broker and Active Object is that there is a
distribution boundary between proxies and servants in the Broker pattern, as opposed to a
threading boundary between proxies and servants in the Active Object pattern. Another
difference is that active objects typically have just one servant, whereas a broker can have
many servants.

Credits

The genesis for documenting Active Object as a pattern originated with Greg Lavender
[PLoPD2]. Ward Cunningham helped shape this version of the Active Object pattern. Bob
Laferriere and Rainer Blome provided useful suggestions that improved the clarity of the
pattern's Implementation section. Thanks to Doug Lea for providing many additional insights
in [Lea99a].

[1]See the Acceptor-Connector pattern (285) for further details of this example.

[2]The active object message queue in this example is an implementation mechanism that
buffers messages to avoid blocking the gateway when flow control occurs on TCP
connections. It is not related to the activation list, which is an Active Object pattern
participant that stores method requests pending execution. See the Example Resolved
section and the Monitor Object pattern (399) for further discussion of the example.

[3]A list is considered 'full' when its current method request count equals its high-water mark.

Monitor Object
The Monitor Object design pattern synchronizes concurrent method execution to ensure that
only one method at a time runs within an object. It also allows an object's methods to
cooperatively schedule their execution sequences.

Also Known As

Thread-safe Passive Object

Example

Let us reconsider the design of the communication gateway described in the Active Object
pattern (369).[4]

 344

The gateway process is a mediator [GoF95] that contains multiple supplier and consumer
handler objects. These objects run in separate threads and route messages from one or
more remote suppliers to one or more remote consumers. When a supplier handler thread
receives a message from a remote supplier, it uses an address field in the message to
determine the corresponding consumer handler. The handler's thread then delivers the
message to its remote consumer.

When suppliers and consumers reside on separate hosts, the gateway uses a connection-
oriented protocol, such as TCP [Ste93], to provide reliable message delivery and end-to-end
flow control. Flow control is a protocol mechanism that blocks senders when they produce
messages more rapidly than receivers can process them. The entire gateway should not
block while waiting for flow control to abate on outgoing TCP connections, however. In
particular, incoming TCP connections should continue to be processed and messages
should continue to be sent over any non-flow-controlled TCP connections.

To minimize blocking, each consumer handler can contain a thread-safe message queue.
Each queue buffers new routing messages it receives from its supplier handler threads. This
design decouples supplier handler threads in the gateway process from consumer handler
threads, so that all threads can run concurrently and block independently when flow control
occurs on various TCP connections.

One way to implement a thread-safe message queue is to apply the Active Object pattern
(369) to decouple the thread used to invoke a method from the thread used to execute the
method. Active Object may be inappropriate, however, if the entire infrastructure introduced
by this pattern is unnecessary. For example, a message queue's enqueue and dequeue
methods may not require sophisticated scheduling strategies. In this case, Implementing the
Active Object pattern's method request, scheduler and activation list participants incurs
unnecessary performance overhead, and programming effort.

Instead, the implementation of the thread-safe message queue must be efficient to avoid
degrading performance unnecessarily. To avoid tight coupling of supplier and consumer
handler implementations, the mechanism should also be transparent to implementors of
supplier handlers. Varying either implementation independently would otherwise become
prohibitively complex.

Context

Multiple threads of control accessing the same object concurrently.

Problem

Many applications contain objects whose methods are invoked concurrently by multiple
client threads. These methods often modify the state of their objects. For such concurrent

 345

applications to execute correctly, therefore, it is necessary to synchronize and schedule
access to the objects.

In the presence of this problem four forces must be addressed:
§ To separate concerns and protect object state from uncontrolled changes, object-

oriented programmers are accustomed to accessing objects only through their interface
methods. It is relatively straightforward to extend this object-oriented programming
model to protect an object's data from uncontrolled concurrent changes, known as race
conditions. An object's interface methods should therefore define its synchronization
boundaries, and only one method at a time should be active within the same object.

§ Concurrent applications are harder to program if clients must explicitly acquire and
release low-level synchronization mechanisms, such as semaphores, mutexes, or
condition variables [IEEE96]. Objects should therefore be responsible for ensuring that
any of their methods that require synchronization are serialized transparently, without
requiring explicit client intervention.

§ If an object's methods must block during their execution, they should be able to
relinquish their thread of control voluntarily, so that methods called from other client
threads can access the object. This property helps prevent deadlock and makes it
possible to take advantage of concurrency mechanisms available on hardware and
software platforms.

§ When a method relinquishes its thread of control voluntarily, it must leave its object in a
stable state, that is, object-specific invariants must hold. Similarly, a method must
resume its execution within an object only when the object is in a stable state.

Solution

Synchronize the access to an object's methods so that only one method can execute at any
one time.

In detail: for each object accessed concurrently by multiple client threads, define it as a
monitor object. Clients can access the functions defined by a monitor object only through its
synchronized methods. To prevent race conditions on its internal state, only one
synchronized method at a time can run within a monitor object. To serialize concurrent
access to an object's state, each monitor object contains a monitor lock. Synchronized
methods can determine the circumstances under which they suspend and resume their
execution, based on one or more monitor conditions associated with a monitor object.

Structure

There are four participants in the Monitor Object pattern:

A monitor object exports one or more methods. To protect the internal state of the monitor
object from uncontrolled changes and race conditions, all clients must access the monitor
object only through these methods. Each method executes in the thread of the client that
invokes it, because a monitor object does not have its own thread of control.[5]

Synchronized methods implement the thread-safe functions exported by a monitor object. To
prevent race conditions, only one synchronized method can execute within a monitor object
at any one time. This rule applies regardless of the number of threads that invoke the
object's synchronized methods concurrently, or the number of synchronized methods in the
object's class.

A consumer handler's message queue in the gateway application can be implemented
as a monitor object by converting its put() and get() operations into synchronized

 346

methods. This design ensures that routing messages can be inserted and removed
concurrently by multiple threads without corrupting the queue's internal state.

Each monitor object contains its own monitor lock. Synchronized methods use this lock to
serialize method invocations on a per-object basis. Each synchronized method must acquire
and release an object's monitor lock when entering or exiting the object. This protocol
ensures the monitor lock is held whenever a synchronized method performs operations that
access or modify the state of its object.

Monitor condition. Multiple synchronized methods running in separate threads can schedule
their execution sequences cooperatively by waiting for and notifying each other via monitor
conditions associated with their monitor object. Synchronized methods use their monitor lock
in conjunction with their monitor condition(s) to determine the circumstances under which
they should suspend or resume their processing.

In the gateway application a POSIX mutex [IEEE96] can be used to implement the
message queue's monitor lock. A pair of POSIX condition variables can be used to
implement the message queue's not-empty and not-full monitor conditions:
§ When a consumer handler thread attempts to dequeue a routing message from an

empty message queue, the queue's get() method must atomically release the
monitor lock and suspend itself on the not-empty monitor condition. It remains
suspended until the queue is no longer empty, which happens when a supplier
handler thread inserts a message into the queue.

§ When a supplier handler thread attempts to enqueue a message into a full queue, the
queue's put() method must atomically release the monitor lock and suspend itself
on the not-full monitor condition. It remains suspended until the queue is no longer
full, which happens when a consumer handler removes a message from the
message queue.

Note that the not-empty and not-full monitor conditions both share the same monitor
lock.

 347

The structure of the Monitor Object pattern is illustrated in the following class diagram:

Dynamics

The collaborations between participants in the Monitor Object pattern divide into four
phases:
§ Synchronized method invocation and serialization. When client thread T1 invokes a

synchronized method on a monitor object, the method must first acquire the object's
monitor lock. A monitor lock cannot be acquired as long as another synchronized
method in thread T2 is executing within the monitor object. In this case, client thread T1
will block until the synchronized method acquires the lock. Once the synchronized
method called by T1 has finished executing, the monitor lock is released so that other
synchronized methods called by other threads can access the monitor object.

§ Synchronized method thread suspension. If a synchronized method must block or
cannot otherwise make immediate progress, it can wait on one of its monitor conditions.
This causes it to 'leave' the monitor object temporarily [Hoare74]. The monitor object
implementation is responsible for ensuring that it is in a stable state before switching to
another thread. When a synchronized method leaves the monitor object, the client's
thread is suspended on that monitor condition and the monitor lock is released
atomically by the operating system's thread scheduler. Another synchronized method in
another thread can now execute within the monitor object.

§ Monitor condition notification. A synchronized method can notify a monitor condition.
This operation awakens the thread of a synchronized method that had suspended itself
on the monitor condition earlier. A synchronized method can also notify all other
synchronized methods that suspended their threads earlier on a monitor condition. In
this case all the threads are awakened and one of them at a time can acquire the
monitor lock and run within the monitor object.

§ Synchronized method thread resumption. Once a suspended synchronized method
thread is notified, its execution can resume at the point where it waited on the monitor
condition. The operating system thread scheduler performs this resumption implicitly.
The monitor lock is reacquired atomically before the notified thread 're-enters' the
monitor object and resumes its execution in the synchronized method.

 348

Implementation

Four activities illustrate how to implement the Monitor Object pattern.
1. Define the monitor object's interface methods. The interface of a monitor object exports

a set of methods to clients. Interface methods are often synchronized, that is, only
one of them at a time can be executed by a thread within a particular monitor object.

2. In our gateway example, each consumer handler contains a message queue and
a TCP connection. The message queue can be implemented as a monitor object
that buffers messages it receives from supplier handler threads. This buffering
helps prevent the entire gateway process from blocking whenever consumer
handler threads encounter flow control on TCP connections to their remote
consumers. The following C++ class defines the interface for our message queue
monitor object:

3. class Message_Queue {
4. public:
5. enum { MAX_MESSAGES = /* ... */; };
6.
7. // The constructor defines the maximum number
8. // of messages in the queue. This determines
9. // when the queue is 'full.'
10. Message_Queue (size_t max_messages =

MAX_MESSAGES);

 349

11.
12. // Put the <Message> at the tail of the queue.
13. // If the queue is full, block until the queue
14. // is not full.
15. /* synchronized */ void put (const Message

&msg);
16.
17. // Get the <Message> from the head of the

queue
18. // and remove it. If the queue is empty,
19. // block until the queue is not empty.
20. /* synchronized */ Message get ();
21.
22. // True if the queue is empty, else false.
23. /* synchronized */ bool empty () const;
24.
25. // True if the queue is full, else false.
26. /* synchronized */ bool full () const;
27. private:
28. // ... described later ...
29. };

30. The Message_Queue monitor object interface exports four synchronized
methods. The empty() and full() methods are predicates that clients can use
to distinguish three internal queue states: empty, full, and neither empty nor full.
The put() and get() methods enqueue and dequeue messages into and from
the queue, respectively, and will block if the queue is full or empty.

32. Define the monitor object's implementation methods. A monitor object often contains
internal implementation methods that synchronized interface methods use to perform
the object's functionality. This design helps decouple the core monitor object
functionality from its synchronization and scheduling logic. It also helps avoid intra-
object deadlock and unnecessary locking overhead.

Two conventions, based on the Thread-Safe Interface pattern (345), can be used to
structure the separation of concerns between interface and implementation methods
in a monitor object:
§ Interface methods only acquire and release monitor locks and wait upon or

notify certain monitor conditions. They otherwise forward control to
implementation methods that perform the monitor object's functionality.

§ Implementation methods only perform work when called by interface methods.
They do not acquire and release the monitor lock, nor do they wait upon or notify
monitor conditions explicitly.

Similarly, in accordance with the Thread-Safe Interface pattern, implementation
methods should not call any synchronized methods defined in the class interface.

 350

This restriction helps to avoid intra-object method deadlock or unnecessary
synchronization overhead.

In our gateway, the Message_Queue class defines four implementation methods:
put_i(), get_i(), empty_i(), and full_ i():
 class Message_Queue {
 public:
 // ... See above ...
 private:
 // Put the <Message> at the tail of the queue, and
 // get the <Message> at its head, respectively.
 void put_i (const Message &msg);
 Message get_i ();

 // True if the queue is empty, else false.
 bool empty_i () const;

 // True if the queue is full, else false.
 bool full_i () const;
 };

Implementation methods are often non-synchronized. They must be careful when
invoking blocking calls, because the interface method that called the implementation
method may have acquired the monitor lock. A blocking thread that owned a lock
could therefore delay overall program progress indefinitely.

33. Define the monitor object's internal state and synchronization mechanisms. A monitor
object contains data members that define its internal state. This state must be
protected from corruption by race conditions resulting from unsynchronized
concurrent access. A monitor object therefore contains a monitor lock that serializes
the execution of its synchronized methods, as well as one or more monitor conditions
used to schedule the execution of synchronized method within a monitor object.
Typically there is a separate monitor condition for each of the following situations:
§ Cases in which synchronized methods must suspend their processing to wait

for the occurrence of some event of state change; or
§ Cases in which synchronized methods must resume other threads whose

synchronized methods have suspended themselves on the monitor condition.

A monitor object method implementation is responsible for ensuring that it is in a
stable state before releasing its lock. Stable states can be described by invariants,
such as the need for all elements in a message queue to be linked together via valid
pointers. The invariant must hold whenever a monitor object method waits on the
corresponding condition variable.

Similarly, when the monitor object is notified and the operating system thread
scheduler decides to resume its thread, the monitor object method implementation is
responsible for ensuring that the invariant is indeed satisfied before proceeding. This

 351

check is necessary because other threads may have changed the state of the object
between the notification and the resumption. A a result, the monitor object must
ensure that the invariant is satisfied before allowing a synchronized method to
resume its execution.

A monitor lock can be implemented using a mutex. A mutex makes collaborating
threads wait while the thread holding the mutex executes code in a critical section.
Monitor conditions can be implemented using condition variables [IEEE96]. A
condition variable can be used by a thread to make itself wait until a particular event
occurs or an arbitrarily complex condition expression attains a particular stable state.
Condition expressions typically access objects or state variables shared between
threads. They can be used to implement the Guarded Suspension pattern [Lea99a].

In our gateway example, the Message_Queue defines its internal state, as
illustrated below:
 class Message_Queue {
 // ... See above
 private:
 // ... See above ...

 // Internal Queue representation omitted, could be a
 // circular array or a linked list, etc.. ...

 // Current number of <Message>s in the queue.
 size_t message_count_;

 // The maximum number <Message>s that can be
 // in a queue before it's considered 'full.'
 size_t max_messages_;

 // Mutex wrapper facade that protects the queue's
 // internal state from race conditions during
 // concurrent access.
 mutable Thread_Mutex monitor_lock_;

 // Condition variable wrapper facade used in
 // conjunction with <monitor_lock_> to make
 // synchronized method threads wait until the queue
 // is no longer empty.
 Thread_Condition not_empty_;

 // Condition variable wrapper facade used in
 // conjunction with <monitor_lock_> to make

 352

 // synchronized method threads wait until the queue
 // is no longer full.
 Thread_Condition not_full_;
 };

A Message_Queue monitor object defines three types of internal state:
§ Queue representation data members. These data members define the internal

queue representation. This representation stores the contents of the queue
in a circular array or linked list, together with book-keeping information
needed to determine whether the queue is empty, full, or neither. The
internal queue representation is manipulated only by the put_i(),
get_i(), empty_i(), and full_i() implementation methods.

§ Monitor lock data member. The monitor_lock_ is used by a
Message_Queue's synchronized methods to serialize their access to the
state of the queue's internal representation. A monitor object's lock must be
held whenever its state is being changed to ensure that its invariants are
satisfied. This monitor lock is implemented using the platform-independent
Thread_Mutex class defined in the Wrapper Facade pattern (47).

§ Monitor condition data members. The monitor conditions is_full_ and
is_empty_ are used by the put() and get() synchronized methods to
suspend and resume themselves when a Message_Queue leaves its full
and empty boundary conditions, respectively. These monitor conditions are
implemented using the platform-independent Thread_Condition class
defined in the Wrapper Facade pattern (47).

34. Implement all the monitor object's methods and data members. The following two
sub-activities can be used to implement all the monitor object methods and internal
state defined above.

1. Initialize the data members. This sub-activity initializes object-specific data
members, as well as the monitor lock and any monitor conditions.

2. The constructor of Message_Queue creates an empty queue and
initializes the monitor conditions not_empty_ and not_full_:

3. Message_Queue::Message_Queue (size_t max_messages)
4. : not_full_ (monitor_lock_),
5. not_empty_ (monitor_lock_),
6. max_messages_ (max_messages),
7. message_count_ (0) { /* ... */ }

8. In this example, both monitor conditions share the same
monitor_lock_. This design ensures that Message_Queue state, such
as the message_count_, is serialized properly to prevent race conditions
from violating invariants when multiple threads try to put() and get()
messages on a queue simultaneously.

 353

10. Apply the Thread-Safe Interface pattern. In this sub-activity, the interface and
implementation methods are implemented according to the Thread-Safe
Interface pattern (345).

11. In our Message_Queue implementation two pairs of interface and
implementation methods check if a queue is empty, which means it
contains no messages, or full, which means it contains max_messages_.
We show the interface methods first:

12. bool Message_Queue::empty () const {
13. Guard<Thread_Mutex> guard (monitor_lock_);
14. return empty_i ();
15. }
16.
17. bool Message_Queue::full () const {
18. Guard<Thread_Mutex> guard (monitor_lock_);
19. return full_i ();
20. }

21. These methods illustrate a simple example of the Thread-Safe Interface
pattern (345). They use the Scoped Locking idiom (325) to acquire and
release the monitor lock, then forward immediately to their corresponding
implementation methods:

22. bool Message_Queue::empty_i () const {
23. return message_count_ == 0;
24. }
25.
26. bool Message_Queue::full_i () const {
27. return message_count_ == max_messages_;
28. }

29. In accordance with the Thread-Safe Interface pattern, these
implementation methods assume the monitor_lock_ is held, so they
just check for the boundary conditions in the queue.

30. The put() method inserts a new Message, which is a class defined in
the Active Object pattern (369), at the tail of a queue. It is a synchronized
method that illustrates a more sophisticated use of the Thread-Safe
Interface pattern (345):

31. void Message_Queue::put (const Message &msg) {
32. // Use the Scoped Locking idiom to
33. // acquire/release the <monitor_lock_> upon
34. // entry/exit to the synchronized method.
35. Guard<Thread_Mutex> guard (monitor_lock_);
36. // Wait while the queue is full.
37. while (full_i ()) {

 354

38. // Release <monitor_lock_> and suspend the
39. // calling thread waiting for space in the

queue.
40. // The <monitor_lock_> is reacquired
41. // automatically when <wait> returns.
42. not_full_.wait ();
43. }
44.
45. // Enqueue the <Message> at the tail.
46. put_i (msg);
47.
48. // Notify any thread waiting in <get> that
49. // the queue has at least one <Message>.
50. not_empty_.notify ();
51.
52. } // Destructor of <guard> releases

<monitor_lock_>.

53. Note how this public synchronized put() method only performs the
synchronization and scheduling logic needed to serialize access to the
monitor object and wait while the queue is full. Once there is room in the
queue, put() forwards to the put_i() implementation method. This
inserts the message into the queue and updates its book-keeping
information. Moreover, the put_i() is not synchronized because the
put() method never calls it without first acquiring the monitor_lock_.
Likewise, the put_i() method need not check to see if the queue is full
because it is not called as long as full_i() returns true.

54. The get() method removes the message at the front of the queue and
returns it to the caller:

55. Message Message_Queue::get () {
56. // Use the Scoped Locking idiom to
57. // acquire/release the <monitor_lock_> upon
58. // entry/exit to the synchronized method.
59. Guard<Thread_Mutex> guard (monitor_lock_);
60.
61. // Wait while the queue is empty.
62. while (empty_i ()) {
63. // Release <monitor_lock_> and suspend the
64. // calling thread waiting for a new

<Message> to
65. // be put into the queue. The

<monitor_lock_> is
66. // reacquired automatically when <wait>

returns.

 355

67. not_empty_.wait ();
68. }
69.
70. // Dequeue the first <Message> in the queue
71. // and update the <message_count_>.
72. Message m = get_i ();
73. // Notify any thread waiting in <put> that the
74. // queue has room for at least one <Message>.
75. not_full_.notify ();
76. return m;
77.
78. // Destructor of <guard> releases

<monitor_lock_>.
79. }

80. As before, note how the synchronized get() interface method performs
the synchronization and scheduling logic, while forwarding the dequeueing
functionality to the get_i() implementation method.

Example Resolved

Internally, our gateway contains instances of two classes, Supplier_Handler and
Consumer_Handler. These act as local proxies [GoF95] [POSA1] for remote suppliers and
consumers, respectively. Each Consumer_Handler contains a thread-safe
Message_Queue object implemented using the Monitor Object pattern. This design
decouples supplier handler and consumer handler threads so that they run concurrently and
block independently. Moreover, by embedding and automating synchronization inside
message queue monitor objects, we can protect their internal state from corruption, maintain
invariants, and shield clients from low-level synchronization concerns.

The Consumer_Handler is defined below:
 class Consumer_Handler {
 public:
 // Constructor spawns a thread and calls <svc_run>.
 Consumer_Handler ();

 // Put <Message> into the queue monitor object,
 // blocking until there's room in the queue.
 void put (const Message &msg) {
 message_queue_.put (msg);
 }
 private:
 // Message queue implemented as a monitor object.

 356

 Message_Queue message_queue_;

 // Connection to the remote consumer.
 SOCK_Stream connection_;

 // Entry point to a distinct consumer handler thread.
 static void *svc_run (void *arg);
 };

Each Supplier_Handler runs in its own thread, receives messages from its remote
supplier and routes the messages to the designated remote consumers. Routing is
performed by inspecting an address field in each message, which is used as a key into a
routing table that maps keys to Consumer_Handlers.

Each Consumer_Handler is responsible for receiving messages from suppliers via its
put() method and storing each message in its Message_Queue monitor object:
 void Supplier_Handler::route_message (const Message &msg)
 {
 // Locate the appropriate <Consumer_Handler> based
 // on address information in the <Message>.
 Consumer_Handler *consumer_handler =
 routing_table_.find (msg.address ());

 // Put <Message> into the <Consumer Handler>, which
 // stores it in its <Message Queue> monitor object.
 consumer_handler->put (msg);
 }

To process the messages placed into its message queue by Supplier_Handlers, each
Consumer_Handler spawns a separate thread of control in its constructor using the
Thread_Manager class defined in the Wrapper Facade pattern (47), as follows:
 Consumer_Handler::Consumer_Handler () {
 // Spawn a separate thread to get messages from the
 // message queue and send them to the remote consumer.
 Thread_Manager::instance ()->spawn (&svc_run, this);

 357

 }

This new Consumer_Handler thread executes the svc_run() entry point. This is a static
method that retrieves routing messages placed into its message queue by
Supplier_Handler threads and sends them over its TCP connection to the remote
consumer:
 void *Consumer_Handler::svc_run (void *args) {
 Consumer_Handler *this_obj =
 static_cast<Consumer_Handler *> (args);
 for (;;) {
 // Blocks on <get> until next <Message> arrives.
 Message msg = this_obj->message_queue_.get ();
 // Transmit message to the consumer.
 this_obj->connection_.send (msg, msg.length ());
 }
 }

The SOCK_Stream's send() method can block in a Consumer_Handler thread. It will not
affect the quality of service of other Consumer_Handler or Supplier_Handler threads,
because it does not share any data with the other threads. Similarly,
Message_Queue::get() can block without affecting the quality of service of other threads,
because the Message_Queue is a monitor object. Supplier_Handlers can thus insert
new messages into the Consumer_Handler's Message_Queue via its put() method
without blocking indefinitely.

Variants

Timed Synchronized Method Invocations. Certain applications require 'timed' synchronized
method invocations. This feature allows them to set bounds on the time they are willing to
wait for a synchronized method to enter its monitor object's critical section. The Balking
pattern described in [Lea99a] can be implemented using timed synchronized method
invocations.

The Message_Queue monitor object interface defined earlier can be modified to support
timed synchronized method invocations:
 class Message_Queue {
 public:
 // Wait up to the <timeout> period to put <Message>
 // at the tail of the queue.
 void put
 (const Message &msg, Time_Value *timeout =0);

 // Wait up to the <timeout> period to get <Message>
 // from the head of the queue.
 Message get (Time_Value *timeout = 0);
 };

 358

If timeout is 0 then both get() and put() will block indefinitely until a message is
either inserted into or removed from a Message_Queue monitor object. If the time-out
period is non-zero and it expires, the Timedout exception is thrown. The client must be
prepared to handle this exception.

The following illustrates how the put() method can be implemented using the timed
wait feature of the Thread_Condition condition variable wrapper outlined in
implementation activity 3 (408):
 void Message_Queue::put
 (const Message &msg, Time_Value *timeout)
 /* throw (Timedout) */ {
 // ... Same as before ...
 while (full_i ())
 not_full_.wait (timeout);
 // ... Same as before ...
 }

While the queue is full this 'timed' put() method releases monitor_lock_ and
suspends the calling thread, to wait for space to become available in the queue or for
the timeout period to elapse. The monitor_lock_ will be re-acquired automatically
when wait() returns, regardless of whether a time-out occurred or not.

Strategized Locking. The Strategized Locking pattern (333) can be applied to make a
monitor object implementation more flexible, efficient, reusable, and robust. Strategized
Locking can be used, for example, to configure a monitor object with various types of
monitor locks and monitor conditions.

The following template class uses generic programming techniques [Aus98] to
parameterize the synchronization aspects of a Message_Queue:
 template <class SYNCH_STRATEGY> class Message_Queue {
 private:
 typename SYNCH_STRATEGY::Mutex monitor_lock_;
 typename SYNCH_STRATEGY::Condition not_empty_;
 typename SYNCH_STRATEGY::Condition not_full_;
 // ...
 };

Each synchronized method is then modified as shown by the following empty()
method:
 template <class SYNCH_STRATEGY>
 bool Message_Queue<SYNCH_STRATEGY>::empty () const {
 Guard<SYNCH_STRATEGY::Mutex> guard (monitor_lock_) ;
 return empty_i ();

 359

 }

To parameterize the synchronization aspects associated with a Message_Queue, we
can define a pair of classes, MT_Synch and NULL_SYNCH that typedef the appropriate
C++ traits:
 class MT_Synch {
 public:
 // Synchronization traits.
 typedef Thread_Mutex Mutex;
 typedef Thread_Condition Condition;
 };

 class Null_Synch {
 public:
 // Synchronization traits.
 typedef Null_Mutex Mutex;
 typedef Null_Thread_Condition Condition;
 };

To define a thread-safe Message_Queue, therefore, we simply parameterize it with the
MT_Synch strategy:
 Message_Queue<MT_Synch> message_queue;

Similarly, to create a non-thread-safe Message_Queue, we can parameterize it with the
following Null_Synch strategy:
 Message_Queue<Null_Synch> message_queue;

Note that when using the Strategized Locking pattern in C++ it may not be possible for a
generic component class to know what type of synchronization strategy will be configured for
a particular application. It is important therefore to apply the Thread-Safe Interface pattern
(345) as described in implementation activity 4.2 (411), to ensure that intra-object method
calls, such as put() calling full_i(), and put_i() , avoid self-deadlock and minimize
locking overhead.

Multiple Roles. If a monitor object implements multiple roles, each of which is used by
different types of clients, an interface can be introduced for each role. Applying the
Extension Interface pattern (141) allows clients to obtain the interface they need. This design
helps separate concerns, because a client only sees the particular methods of a monitor
object it needs for its own operation. This design further simplifies a monitor object's
evolution. For example, new services can be added to the active object by providing new
extension interface without changing existing ones. Clients that do not need access to the
new services are thus unaffected by the extension.

Known Uses

Dijkstra and Hoare-style Monitors. Dijkstra [Dij68] and Hoare [Hoare74] defined
programming language features called monitors that encapsulate functions and their internal

 360

variables into thread-safe modules. To prevent race conditions a monitor contains a lock that
allows only one function at a time to be active within the monitor. Functions that want to
leave the monitor temporarily can block on a condition variable. It is the responsibility of the
programming language compiler to generate run-time code that implements and manages a
monitor's lock and its condition variables.

Java Objects. The main synchronization mechanism in Java is based on Dijkstra/Hoare-
style monitors. Each Java object can be a monitor object containing a monitor lock and a
single monitor condition. Java's monitors are simple to use for common use cases, because
they allow threads to serialize their execution implicitly via method-call interfaces and to
coordinate their activities via calls to wait(), notify(), and notifyAll() methods
defined on all objects.

For more complex use cases, however, the simplicity of the Java language constructs may
mislead developers into thinking that concurrency is easier to program than it actually is in
practice. In particular, heavy use of inter-dependent Java threads can yield complicated
inter-relationships, starvation, deadlock, and overhead. [Lea99a] describes many patterns
for handling simple and complex concurrency use cases in Java.

The Java language synchronization constructs outlined above can be implemented in
several ways inside a compliant Java virtual machine (JVM). JVM implementors must
choose between two implementation decisions:
§ Implement Java threads internally in the JVM. If threads are implemented internally,

the JVM appears as one monolithic task to the operating system. In this case, the JVM
is free to decide when to suspend and resume threads and how to implement thread
scheduling, as long as it stays within the bounds of the Java language specification.

§ Map Java threads them to native operating system threads. In this case Java monitors
can take advantage of synchronization primitives and scheduling behavior of the
underlying platform.

The advantage of an internal threads implementation is its platform-independence. However,
one of its disadvantages is its inability to take advantage of parallelism in the hardware. As a
result, an increasing number of JVMs are implemented by mapping Java threads to native
operating system threads.

ACE Gateway. The example from the Example Resolved section is based on a
communication gateway application contained in the ACE framework [Sch96], which uses
monitor objects to simplify concurrent programming and improve performance on
multiprocessors. Unlike the Dijkstra/Hoare and Java monitors, which are programming
language features, the Message_Queues used by Consumer_Handlers in the gateway
are reusable ACE C++ components implemented using the Monitor Object pattern. Although
C++ does not support monitor objects directly as a language feature, ACE implements the
Monitor Object pattern by applying other patterns and idioms, such as the Guarded
Suspension pattern [Lea99a] and the Scoped Locking (325) idiom, as described in the
Implementation section.

Fast food restaurant. A real-life example of the Monitor Object pattern occurs when
ordering a meal at a busy fast food restaurant. Customers are the clients who wait to place
their order with a cashier. Only one customer at a time interacts with a cashier. If the order
cannot be serviced immediately, a customer temporarily steps aside so that other customers
can place their orders. When the order is ready the customer re-enters at the front of the line
and can pick up the meal from the cashier.

Consequences

The Monitor Object pattern provides two benefits:

 361

Simplification of concurrency control. The Monitor Object pattern presents a concise
programming model for sharing an object among cooperating threads. For example, object
synchronization corresponds to method invocations. Similarly clients need not be concerned
with concurrency control when invoking methods on a monitor object. It is relatively
straightforward to create a monitor object out of most so-called passive objects, which are
objects that borrow the thread of control of its caller to execute its methods.

Simplification of scheduling method execution. Synchronized methods use their monitor
conditions to determine the circumstances under which they should suspend or resume their
execution and that of collaborating monitor objects. For example, methods can suspend
themselves and wait to be notified when arbitrarily complex conditions occur, without using
inefficient polling. This feature makes it possible for monitor objects to schedule their
methods cooperatively in separate threads.

The Monitor Object pattern has the following four liabilities:

The use of a single monitor lock can limit scalability due to increased contention when
multiple threads serialize on a monitor object.

Complicated extensibility semantics resulting from the coupling between a monitor object's
functionality and its synchronization mechanisms. It is relatively straightforward to decouple
an active object's (369) functionality from its synchronization policies via its separate
scheduler participant. However, a monitor object's synchronization and scheduling logic is
often tightly coupled with its methods' functionality. This coupling often makes monitor
objects more efficient than active objects. Yet it also makes it hard to change their
synchronization policies or mechanisms without modifying the monitor object's method
implementations.

It is also hard to inherit from a monitor object transparently, due to the inheritance anomaly
problem [MWY91]. This problem inhibits reuse of synchronized method implementations
when subclasses require different synchronization mechanisms. One way to reduce the
coupling of synchronization and functionality in monitor objects is to use Aspect-Oriented
Programming [KLM+97] or the Strategized Locking (333) and Thread-Safe Interface (345)
patterns, as shown in the Implementation and Variants section.

Nested monitor lockout. This problem is similar to the preceding liability. It can occur when a
monitor object is nested within another monitor object.

Consider the following two Java classes:
 class Inner {
 protected boolean cond_ = false;

 public synchronized void awaitCondition () {
 While (!cond)
 try { wait (); }
 catch (InterruptedException e) { }
 // Any other code.
 }

 public synchronized void notifyCondition (boolean c){
 cond_ = c;

 362

 notifyAll () ;
 }

 class Outer {
 protected Inner inner_ = new Inner () ;

 public synchronized void process () {
 inner_.awaitCondition () ;
 }
 public synchronized void set (boolean c) {
 inner_.notifyCondition (c) ;
 }
 }

This code illustrates the canonical form of the nested monitor lockout problem in Java
[JS97a]. When a Java thread blocks in the monitor's wait queue, all its locks are held except
the lock of the object placed in the queue.

Consider what would happen if thread T1 made a call to Outer.process() and as a result
blocked in the wait() call in Inner.awaitCondition(). In Java, the Inner and Outer
classes do not share their monitor locks. The wait() statement in waitCondition() call
would therefore release the Inner monitor while retaining the Outer monitor. Another
thread T2 cannot then acquire the Outer monitor, because it is locked by the synchronized
process() method. As a result Outer.set cannot set Inner.cond_ to true and T1 will
continue to block in wait() forever.

Nested monitor lockout can be avoided by sharing a monitor lock between multiple monitor
conditions. This is straightforward in Monitor Object pattern implementations based on
POSIX condition variables [IEEE96]. It is surprisingly hard in Java due to its simple
concurrency and synchronization model, which tightly couples a monitor lock with each
monitor object. Java idioms for avoiding nested monitor lockout in Java are described in
[Lea99a] [JS97a].

See Also

The Monitor Object pattern is an object-oriented analog of the Code Locking pattern
[McK95], which ensures that a region of code is serialized. In the Monitor Object pattern, the
region of code is the synchronized method implementation.

The Monitor Object pattern has several properties in common with the Active Object pattern
(369). Both patterns can synchronize and schedule methods invoked concurrently on
objects, for example. There are two key differences, however:
§ An active object executes its methods in a different thread than its client(s), whereas a

monitor object executes its methods in its client threads. As a result, active objects can
perform more sophisticated, albeit more expensive, scheduling to rearrange the order in
which their methods execute.

§ Monitor objects often couple their synchronization logic more closely to their methods'
functionality. In contrast, it is easier to decouple an active object's functionality from its
synchronization policies, because it has a separate scheduler.

 363

It is instructive to compare the Monitor Object pattern solution in the Example Resolved
section with the solution presented in the Active Object pattern. Both solutions have similar
overall application architectures. In particular, the Supplier_Handler and
Consumer_Handler implementations are almost identical. The primary difference is that
the Message_Queue itself is easier to program and often more efficient when implemented
using the Monitor Object pattern than the Active Object pattern.

If a more sophisticated queueing strategy is necessary, however, the Active Object pattern
may be more appropriate. Similarly, because active objects execute in different threads than
their clients, there are situations where active objects can improve overall application
concurrency by executing multiple operations asynchronously. When these operations
complete, clients can obtain their results via futures [Hal85] [LS88].

[4]For an in-depth discussion of the gateway and its associated components, we recommend
reading the Active Object pattern (369) before reading this pattern.

[5]An active object, in contrast, does have its own thread of control.

Half-Sync/Half-Async
The Half-Sync/Half-Async architectural pattern decouples asynchronous and synchronous
service processing in concurrent systems, to simplify programming without unduly reducing
performance. The pattern introduces two intercommunicating layers, one for asynchronous
and one for synchronous service processing.

Example

Performance-sensitive concurrent applications, such as telecommunications switching
systems and avionics mission computers, perform a mixture of synchronous and
asynchronous processing to coordinate different types of applications, system services, and
hardware. Similar characteristics hold for system-level software, such as operating systems.

The BSD UNIX operating system [MBKQ96] [Ste98] is an example of a concurrent system
that coordinates the communication between standard Internet application services, such as
FTP, INETD, DNS, TELNET, SMTP, and HTTPD, and hardware I/O devices, such as
network interfaces, disk controllers, end-user terminals, and printers.

The BSD UNIX operating system processes certain services asynchronously to maximize
performance. Protocol processing within the BSD UNIX kernel, for example, runs
asynchronously, because I/O devices are driven by interrupts triggered by network interface
hardware. If the kernel does not handle these asynchronous interrupts immediately,
hardware devices may malfunction and drop packets or corrupt memory buffers.

 364

Although the BSD operating system kernel is driven by asynchronous interrupts, it is hard to
develop applications and higher-level system services using asynchrony mechanisms, such
as interrupts or signals. In particular, the effort required to program, validate, debug, and
maintain asynchronous programs can be prohibitive. For example, asynchrony can cause
subtle timing problems and race conditions when an interrupt preempts a running
computation unexpectedly.

To avoid the complexities of asynchronous programming, higher-level services in BSD UNIX
run synchronously in multiple processes. For example, FTP or TELNET Internet services that
use synchronous read() and write() system calls can block awaiting the completion of
I/O operations. Blocking I/O, in turn, enables developers to maintain state information and
execution history implicitly in the run-time stacks of their threads, rather than in separate
data structures that must be managed explicitly by developers.

Within the context of an operating system, however, synchronous and asynchronous
processing is not wholly independent. In particular, application-level Internet services that
execute synchronously within BSD UNIX must cooperate with kernel-level protocol
processing that runs asynchronously. For example, the synchronous read() system call
invoked by an HTTP server cooperates indirectly with the asynchronous reception and
protocol processing of data arriving on the Ethernet network interface.

A key challenge in the development of BSD UNIX was the structuring of asynchronous and
synchronous processing, to enhance both programming simplicity and system performance.
In particular, developers of synchronous application programs must be shielded from the
complex details of asynchronous programming. Yet, the overall performance of the system
must not be degraded by using inefficient synchronous processing mechanisms in the BSD
UNIX kernel.

Context

A concurrent system that performs both asynchronous and synchronous processing services
that must intercommunicate.

Problem

Concurrent systems often contain a mixture of asynchronous and synchronous processing
services. There is a strong incentive for system programmers to use asynchrony to improve
performance. Asynchronous programs are generally more efficient, because services can be
mapped directly onto asynchrony mechanisms, such as hardware interrupt handlers or
software signal handlers.

Conversely, there is a strong incentive for application developers to use synchronous
processing to simplify their programming effort. Synchronous programs are usually less
complex, because certain services can be constrained to run at well-defined points in the
processing sequence.

Two forces must therefore be resolved when specifying a software architecture that
executes services both synchronously and asynchronously:
§ The architecture should be designed so that application developers who want the

simplicity of synchronous processing need not address the complexities of asynchrony.
Similarly, system developers who must maximize performance should not need to
address the inefficiencies of synchronous processing.

§ The architecture should enable the synchronous and asynchronous processing
services to communicate without complicating their programming model or unduly
degrading their performance.

 365

Although the need for both programming simplicity and high performance may seem
contradictory, it is essential that both these forces be resolved in certain types of concurrent
systems, particularly large-scale or complex ones.

Solution

Decompose the services in the system into two layers [POSA1], synchronous and
asynchronous, and add a queueing layer between them to mediate the communication
between services in the asynchronous and synchronous layers.

In detail: process higher-layer services, such as long-duration database queries or file
transfers, synchronously in separate threads or processes, to simplify concurrent
programming. Conversely, process lower-layer services, such as short-lived protocol
handlers driven by interrupts from network interface hardware, asynchronously to enhance
performance. If services residing in separate synchronous and asynchronous layers must
communicate or synchronize their processing, allow them to pass messages to each other
via a queueing layer.

Structure

The structure of the Half-Sync/Half-Async pattern follows the Layers pattern [POSA1] and
includes four participants:

The synchronous service layer performs high-level processing services. Services in the
synchronous layer run in separate threads or processes that can block while performing
operations.

The Internet services in our operating system example run in separate application
processes. These processes invoke read() and write() operations to perform I/O
synchronously on behalf of their Internet services.

The asynchronous service layer performs lower-level processing services, which typically
emanate from one or more external event sources. Services in the asynchronous layer
cannot block while performing operations without unduly degrading the performance of other
services.

The processing of I/O devices and protocols in the BSD UNIX operating system kernel is
performed asynchronously in interrupt handlers. These handlers run to completion, that
is, they do not block or synchronize their execution with other threads until they are
finished.

 366

The queueing layer provides the mechanism for communicating between services in the
synchronous and asynchronous layers. For example, messages containing data and control
information are produced by asynchronous services, then buffered at the queueing layer for
subsequent retrieval by synchronous services, and vice versa. The queueing layer is
responsible for notifying services in one layer when messages are passed to them from the
other layer. The queueing layer therefore enables the asynchronous and synchronous layers
to interact in a 'producer/consumer' manner, similar to the structure defined by the Pipes and
Filters pattern [POSA1].

The BSD UNIX operating system provides a Socket layer [Ste98]. This layer serves as
the buffering and notification point between the synchronous Internet service application
processes and the asynchronous, interrupt-driven I/O hardware services in the BSD
UNIX kernel.

External event sources generate events that are received and processed by the
asynchronous service layer. Common sources of external events for operating systems
include network interfaces, disk controllers, and end-user terminals.

The following class diagram illustrates the structure and relationships between these
participants:

Dynamics

Asynchronous and synchronous layers in the Half-Sync/Half-Async pattern interact by
passing messages via a queueing layer. We describe three phases of interactions that occur
when input arrives 'bottom-up' from external event sources:
§ Asynchronous phase. In this phase external sources of input interact with the

asynchronous service layer via an asynchronous event notification, such as an interrupt
or signal. When asynchronous services have finished processing the input, they can
communicate their results to the designated services in the synchronous layer via the
queueing layer.

 367

§ Queueing phase. In this phase the queueing layer buffers input passed from the
asynchronous layer to the synchronous layer and notifies the synchronous layer that
input is available.

§ Synchronous phase. In this phase the appropriate service(s) in the synchronous layer
retrieve and process the input placed into the queueing layer by service(s) in the
asynchronous layer.

The interactions between layers and pattern participants is reversed to form a 'top-down'
sequence when output arrives from services running in the synchronous layer.

Implementation

This section describes the activities used to implement the Half-Sync/Half-Async pattern and
apply it to structure the concurrency architecture of higher-level applications, such as Web
servers [Sch97] and database servers, as well as to lower-level systems, such as the BSD
UNIX operating system. We therefore present examples from several different domains.

1. Decompose the overall system into three layers: synchronous, asynchronous, and
queueing. Three sub-activities can be used to determine how to decompose a system
architecture designed in accordance with the Half-Sync/Half-Async pattern.

1. Identify higher-level and/or long-duration services and configure them into the
synchronous layer. Many services in a concurrent system are easier to
implement when they are programmed using synchronous processing. These
services often perform relatively high-level or long-duration application
processing, such as transferring large streams of content in a Web server or
performing complex queries in a database. Services in the synchronous layer
should therefore run in separate processes or threads. If data is not available
the services can block at the queueing layer awaiting responses, under the
control of peer-to-peer application communication protocols.

2. Each Internet service shown in our BSD UNIX operating system example
runs in a separate application process. Each application process
communicates with its clients using the protocol associated with the
Internet service it implements. I/O operations within these processes can
be performed by blocking synchronously on TCP Sockets and waiting for
the BSD UNIX kernel to complete the I/O operations asynchronously.

 368

4. Identify lower-level and/or short-duration services and configure them into the
asynchronous layer. Certain services in a system cannot block for prolonged
amounts of time. Such services typically perform lower-level or short-duration
system processing that interacts with external sources of events, such as end-
user terminals or interrupt-driven hardware network interfaces. To maximize
responsiveness and efficiency, these sources of events must be handled
rapidly and must not block the thread that services them. Their services should
be triggered by asynchronous notifications or interrupts from external event
sources and run to completion, at which point they can insert messages
containing their results into the queueing layer.

5. In our operating system example, processing of I/O device drivers and
communication protocols in the BSD UNIX kernel occurs in response to
asynchronous hardware interrupts. Each asynchronous operation in the
kernel runs to completion, inserting messages containing data and/or
control information into the Socket layer if it must communicate with an
application process running an Internet service in the synchronous layer.

7. Identify inter-layer communication strategies and configure them into the
queueing layer. The queueing layer is a mediator [GoF95] that decouples the
communication between services in the asynchronous and synchronous
layers. Thus these services do not access each other directly, but only via the
queueing layer. The communication-related strategies performed by the
queueing layer involve (de)multiplexing, buffering, notification, and flow
control. Services in the asynchronous and synchronous layers use these
queueing strategies to implement protocols for passing messages between the
synchronous and asynchronous layers [SC96].

8. In our BSD UNIX operating system example, the Sockets mechanism
[Ste98] defines the queueing layer between the synchronous Internet
service application processes and the asynchronous operating system
kernel. Each Internet service uses one or more Sockets, which are queues
maintained by BSD UNIX to buffer messages exchanged between
application processes, and the TCP/IP protocol stack and networking
hardware devices in the kernel.

2. Implement the services in the synchronous layer. High-level and/or long-duration
services in the synchronous layer are often implemented using either multi-threading
or multi-processing. Compared to a thread, a process maintains more state
information and requires more overhead to spawn, synchronize, schedule, and inter-
communicate. Implementing synchronous services in separate threads, rather than
separate processes, can therefore yield simpler and more efficient applications.

Multi-threading can reduce application robustness, however, because separate
threads within a process are not protected from one another. For instance, one faulty
thread can corrupt data shared with other threads in the process, which may produce
incorrect results, crash the process, or cause the process to hang indefinitely. To

 369

increase robustness, therefore, application services can be implemented in separate
processes.

The Internet services in our BSD UNIX example are implemented in separate
processes. This design increases their robustness and prevents unauthorized
access to certain resources, such as files owned by other users.

3. Implement the services in the asynchronous layer. Lower-level and/or shorter-duration
services in the asynchronous layer often do not have their own dedicated thread of
control. Instead, they must borrow a thread from elsewhere, such as the operating
system kernel's 'idle thread' or a separate interrupt stack. To ensure adequate
response time for other system services, such as high-priority hardware interrupts,
these services must run asynchronously and cannot block for long periods of time.

The following are two strategies that can be used to trigger the execution of
asynchronous services:
§ Asynchronous interrupts. This strategy is often used when developing

asynchronous services that are triggered directly by hardware interrupts from
external event sources, such as network interfaces or disk controllers. In this
strategy, when an event occurs on an external event source, an interrupt notifies
the handler associated with the event, which then processes the event to
completion.

In complex concurrent systems, it may be necessary to define a hierarchy of
interrupts to allow less critical handlers to be preempted by higher-priority ones.
To prevent interrupt handlers from corrupting shared state while they are being
accessed, data structures used by the asynchronous layer must be protected, for
example by raising the interrupt priority [WS95].

The BSD UNIX kernel uses a two-level interrupt scheme to handle network
packet processing [MBKQ96]. Time-critical processing is done at a high
priority and less critical software processing is done at a lower priority. This
two-level interrupt scheme prevents the overhead of software protocol
processing from delaying the servicing of high-priority hardware interrupts.

§ Proactive I/O. This strategy is often used when developing asynchronous
services based on higher-level operating system APIs, such as the Windows NT
overlapped I/O and I/O completion ports [So198] or the POSIX aio_* family of
asynchronous I/O system calls [POSIX95]. In this strategy, I/O operations are
executed by an asynchronous operation processor. When an asynchronous
operation finishes, the asynchronous operation processor generates a
completion event. This event is then dispatched to the handler associated with
the event, which processes the event to completion.

§ For example, the Web server in the Proactor pattern (215) illustrates an
application that uses the proactive I/O mechanisms defined by the Windows
NT system call API. This example underscores the fact that asynchronous

 370

processing and the Half-Sync/Half-Async pattern can be used for higher-
level applications that do not access hardware devices directly.

Both of these asynchronous processing strategies share the constraint that a handler
cannot block for a long period of time without disrupting the processing of events from
other external event sources.

4. Implement the queueing layer. After services in the asynchronous layer finish
processing input arriving from external event sources, they typically insert the
resulting messages into the queueing layer. The appropriate service in the
synchronous layer will subsequently remove these messages from the queueing layer
and process them. These roles are reversed for output processing. Two
communication-related strategies must be defined when implementing the queueing
layer:

0. Implement the buffering strategy. Services in the asynchronous and
synchronous layers do not access each other's memory directly—instead, they
exchange messages via a queueing layer. This queueing layer buffers
messages so that synchronous and asynchronous services can run
concurrently, rather than running in lockstep via a 'stop-and-wait' flow control
protocol. The buffering strategy must therefore implement an ordering,
serialization, notification, and flow-control strategy. Note that the Strategy
pattern [GoF95] can be applied to simplify the configuration of alternative
strategies.
§ Implement the ordering strategy. Simple queueing layers store their

messages in the order they arrive, that is, 'first-in, first-out' (FIFO). The
first message that was placed in the queue by a service in one layer is
thus the first message to be removed by a service in the other layer. FIFO
ordering is easy to implement, but may result in priority inversions
[SMFG00] if high-priority messages are queued behind lower-priority
messages. Therefore, more sophisticated queueing strategies can be
used to store and retrieve messages in 'priority' order.

§ Implement the serialization strategy. Services in the asynchronous and
synchronous layer can execute concurrently. A queue must therefore be
serialized to avoid race conditions when messages are inserted and
removed concurrently. This serialization is often implemented using
lightweight synchronization mechanisms, such as mutexes [Lew95]. Such
mechanisms ensure that messages can be inserted into and removed
from the queueing layer's message buffers without corrupting its internal
data structures.

§ Implement the notification strategy. It may be necessary to notify a
service in one layer when messages addressed to it arrive from another
layer. The notification strategy provided by the queueing layer is often
implemented using more sophisticated and heavyweight synchronization
mechanisms, such as semaphores or condition variables [Lew95]. These
synchronization mechanisms can notify the appropriate services in the
synchronous or asynchronous layers when data arrives for them in the
queueing layer. The Variations section outlines several other notification
strategies based on asynchronous signals and interrupts.

§ Implement the flow-control strategy. Systems cannot devote an
unlimited amount of resource to buffer messages in the queueing layer. It
may therefore be necessary to regulate the amount of data passed
between the synchronous and asynchronous layers. Flow control is a
technique that prevents synchronous services from flooding the

 371

asynchronous layer at a rate greater than that at which messages can be
transmitted and queued on network interfaces [SchSu93].

Services in the synchronous layer can block. A common flow control
policy simply puts a synchronous service to sleep if it produces and
queues more than a certain number of messages. After the asynchronous
service layer empties the queue to below a certain level, the queueing
layer can awaken the synchronous service to continue its processing.

In contrast, services in the asynchronous layer cannot block. If they can
produce an excessive number of messages, a common flow-control policy
allows the queueing layer to discard messages until the synchronous
service layer finishes processing the messages in its queue. If the
messages are associated with a reliable connection-oriented transport
protocol, such as TCP [Ste93], senders will time-out eventually and
retransmit discarded messages.

1. Implement the (de)multiplexing mechanism. In simple implementations of the
Half-Sync/Half-Async pattern, such as the OLTP servers described in the
Example section of the Leader/Followers pattern (447), there is only one
queue in the queueing layer. This queue is shared by all services in the
asynchronous and synchronous layers and any service can process any
request. This configuration alleviates the need for a sophisticated
(de)multiplexing mechanism. In this case, a common implementation is to
define a singleton [GoF95] queue that all services use to insert and remove
messages.

In more complex implementations of the Half-Sync/Half-Async pattern,
services in one layer may need to send and receive certain messages to
particular services in another layer. A queueing layer may therefore need
multiple queues, for example one queue per service. With multiple queues,
more sophisticated demultiplexing mechanism are needed to ensure
messages exchanged between services in different layers are placed in the
appropriate queue. A common implementation is to use some type of
(de)multiplexing mechanism, such as a hash table [HMPT89] [MD91], to place
messages into the appropriate queue(s).

The Message_Queue components defined in the Monitor Object (399)
and Active Object (369) patterns illustrate various strategies for
implementing a queueing layer:
§ The Monitor Object pattern ensures that only one method at a time

executes within a queue, regardless of the number of threads that
invoke the queue's methods concurrently, by using mutexes and
condition variables. The queue executes its methods in its client
threads, that is, in the threads that run the synchronous and
asynchronous services.

§ The Active Object pattern decouples method invocations on the queue
from method execution. Multiple synchronous and asynchronous
services can therefore invoke methods on the queue concurrently.
Methods are executed in a different thread than the threads that run
the synchronous and asynchronous services.

The See Also sections of the Active Object (369) and Monitor Object (399)
patterns discuss the pros and cons of using these patterns to implement a
queueing layer.

 372

Example Resolved

Chapter 1, Concurrent and Networked Objects, and other patterns in this book, such as
Proactor (215), Scoped Locking (325), Strategized Locking (333), and Thread-Safe Interface
(345), illustrate various aspects of the design of a Web server application. In this section, we
explore the broader system context in which Web servers execute, by outlining how the BSD
UNIX operating system [MBKQ96] [Ste93] applies the Half-Sync/Half-Async pattern to
receive an HTTP GET request via its TCP/IP protocol stack over Ethernet.

BSD UNIX is an example of an operating system that does not support asynchronous I/O
efficiently. It is therefore not feasible to implement the Web server using the Proactor pattern
(215). We instead outline how BSD UNIX coordinates the services and communication
between synchronous application processes and the asynchronous operating system kernel.

In particular, we describe:[6]
§ The synchronous invocation of a read() system call by a Web server application (the

HTTPD process).
§ The asynchronous reception and protocol processing of data arriving on the Ethernet

network interface.
§ The synchronous completion of the read() call, which returns control and the GET

request data back to the HTTPD process.

These steps are shown in the following figure:

As shown in this figure, the HTTPD process invokes a read() system call on a connected
socket handle to receive an HTTP GET request encapsulated in a TCP packet. From the
perspective of the HTTPD process, the read() system call is synchronous, because the
process invokes read() and blocks until the GET request data is returned. If data is not
available immediately, however, the BSD UNIX kernel puts the HTTPD process to sleep until
the data arrives from the network.

Many asynchronous steps occur to implement the synchronous read() system call,
however. Although the HTTPD process can sleep while waiting for data, the BSD UNIX

 373

kernel cannot sleep, because other application processes, such as the FTP and TELNET
services and I/O devices in the kernel, require its services to run concurrently and efficiently.

After the read() system call is issued the application process switches to 'kernel mode' and
starts running privileged instructions, which direct it synchronously into the BSD UNIX
networking subsystem. Ultimately, the thread of control from the application process ends in
the kernel's soreceive() function. This function processes input for various types of
sockets, such as datagram sockets and stream sockets, by transferring data from the socket
queue to the application process. The soreceive() function thus defines the boundary
between the synchronous application process layer and the asynchronous kernel layer for
outgoing packets.

There are two ways in which the HTTPD process's read() system call can be handled by
soreceive(), depending on the characteristics of the Socket and the amount of data in the
socket queue:
§ Completely synchronous. If the data requested by the HTTPD process is in the socket

queue, the soreceive() function can copy it immediately and the read() system call
will complete synchronously.

§ Half-synchronous and half-asynchronous. If the data requested by the HTTPD process
is not yet available, the kernel calls the sbwait() function to put the process to sleep
until the requested data arrives.

After sbwait() puts the process to sleep, the BSD UNIX scheduler will switch to another
process context that is ready to run. From the perspective of the HTTPD process, however,
the read() system call appears to execute synchronously. When packet(s) containing the
requested data arrive, the kernel will process them asynchronously, as described below.
When enough data has been placed in the socket queue to satisfy the HTTPD process'
request, the kernel will wake this process and complete its read() system call. This call
then returns synchronously so that the HTTPD process can parse and execute the GET
request.

To maximize performance within the BSD UNIX kernel, all protocol processing is executed
asynchronously, because I/O devices are driven by hardware interrupts. For example,
packets arriving at the Ethernet network interface are delivered to the kernel via interrupt
handlers initiated asynchronously by the Ethernet hardware. These handlers receive packets
from devices and trigger subsequent asynchronous processing of higher-layer protocols,
such as IP and TCP. Ultimately, valid packets containing application data are queued at the
Socket layer, where the BSD UNIX kernel schedules and dispatches the waiting HTTPD
process to consume this data synchronously.

For example, the 'half-async' processing associated with an HTTPD process's read()
system call starts when a packet arrives at an Ethernet network interface, which triggers an
asynchronous hardware interrupt. All incoming packet processing is performed in the context
of an interrupt handler. During an interrupt, the BSD UNIX kernel cannot sleep or block,
because there is no application process context and no dedicated thread of control. The
Ethernet interrupt handler therefore 'borrows' the kernel's thread of control. Similarly, the
BSD UNIX kernel borrows the threads of control of application processes when they invoke
system calls.

If the packet is destined for an application process, it is passed up to the transport layer,
which performs additional protocol processing, such as TCP segment reassembly and
acknowledgments. Eventually, the transport layer appends the data to the receive socket
queue and calls sbwakeup(), which represents the boundary between the asynchronous
and synchronous layers for incoming packets. This call wakes up the HTTPD process that
was sleeping in soreceive() waiting for data on that socket queue. If all the data

 374

requested by the HTTPD process has arrived, soreceive() will copy it to the buffer
supplied by HTTPD, allowing the system call to return control to the Web server. The
read() call thus appears to be synchronous from the perspective of the HTTPD process,
even though asynchronous processing and context switching were performed while this
process was asleep.

Variants

Asynchronous Control with Synchronous Data I/O. The HTTPD Web server described in the
Implementation section 'pulls' messages synchronously from the queueing layer at its
discretion, thereby combining control and data activities. On some operating system
platforms, however, it is possible to decouple control and data so that services in the
synchronous layer can be notified asynchronously when messages are inserted into the
queueing layer. The primary benefit of this variant is that higher-level 'synchronous' services
may be more responsive, because they can be notified asynchronously.

The UNIX signal-driven I/O mechanism [Ste98] implements this variant of the Half-
Sync/Half-Async pattern. The UNIX kernel uses the SIGIO signal to 'push' control to a
higher-level application process when data arrives on one of its Sockets. When a
process receives this control notification asynchronously, it can then 'pull' the data
synchronously from socket queueing layer via read().

The disadvantage of using asynchronous control, of course, is that developers of higher-
level services must now face many of the asynchrony complexities outlined in the Problem
section.

Half-Async/Half-Async. This variant extends the previous variant by propagating
asynchronous control notifications and data operations all the way up to higher-level
services in the 'synchronous' layer. These higher-level services may therefore be able to
take advantage of the efficiency of the lower-level asynchrony mechanisms.

For example, the real-time signal interface defined in the POSIX real-time programming
specification [POSIX95] supports this variant. In particular, a buffer pointer can be
passed to the signal handler function dispatched by the operating system when a real-
time signal occurs. Windows NT supports a similar mechanism using overlapped I/O and
I/O completion ports [Sol98]. In this case, when an asynchronous operation completes,
its associated overlapped I/O structure indicates which operation has completed and
passes any data along. The Proactor pattern (215) and Asynchronous Completion
Token pattern (261) describe how to structure applications to take advantage of
asynchronous operations and overlapped I/O.

The disadvantage of this variant is similar to that of the previous variant. If most or all
services can be driven by asynchronous operations, the design may be modeled better by
applying the Proactor pattern (215) rather than the Half-Sync/Half-Async pattern.

Half-Sync/Half-Sync. This variant provides synchronous processing to lower-level services. If
the asynchronous layer is multi-threaded, its services can run autonomously and use the
queueing layer to pass messages to the synchronous service layer. The benefits of this

 375

variant are that services in the asynchronous layer may be simplified, because they can
block without affecting other services in this layer.

Microkernel operating systems, such as Mach [B190] or Amoeba [Tan95], typically use
this variant. The microkernel runs as a separate multi-threaded 'process' that exchanges
messages with application processes. Similarly, multi-threaded operating system
macrokernels, such as Solaris [EKBF+92], can support multiple synchronous I/O
operations in the kernel.

Multi-threading the kernel can be used to implement polled interrupts, which reduce the
amount of context switching for high-performance continuous media systems by dedicating a
kernel thread to poll a field in shared memory at regular intervals [CP95]. In contrast, single-
threaded operating system kernels, such as BSD UNIX, restrict lower-level kernel services to
use asynchronous I/O and only support synchronous multi-programming for higher-level
application processes.

The drawback to providing synchronous processing to lower-level services, of course, is that
it may increase overhead, thereby degrading overall system performance significantly.

Half-Sync/Half-Reactive. In object-oriented applications, the Half-Sync/Half-Async pattern
can be implemented as a composite architectural pattern that combines the Reactor pattern
(179) with the Thread Pool variant of the Active Object pattern (369). In this common variant,
the reactor's event handlers constitute the services in the 'asynchronous' layer[7] and the
queueing layer can be implemented by an active object's activation list. The servants
dispatched by the scheduler in the active object's thread pool constitute the services in the
synchronous layer. The primary benefit of this variant is the simplification it affords. This
simplicity is achieved by performing event demultiplexing and dispatching in a single-
threaded reactor that is decoupled from the concurrent processing of events in the active
object's thread pool.

The OLTP servers described in the Example section of the Leader/Followers pattern
(447) apply this variant. The 'asynchronous' service layer uses the Reactor pattern (179)
to demultiplex transaction requests from multiple clients and dispatch event handlers.
The handlers insert requests into the queueing layer, which is an activation list
implemented using the Monitor Object pattern (399). Similarly, the synchronous service
layer uses the thread pool variant of the Active Object pattern (369) to disseminate
requests from the activation list to a pool of worker threads that service transaction
requests from clients. Each thread in the active object's thread pool can block
synchronously because it has its own run-time stack.

The drawback with this variant is that the queueing layer incurs additional context switching,
synchronization, data allocation, and data copying overhead that may be unnecessary for
certain applications. In such cases the Leader/Followers pattern (447) may be a more
efficient, predictable, and scalable way to structure a concurrent application than the Half-
Sync/Half-Async pattern.

Known Uses

 376

UNIX Networking Subsystems. The BSD UNIX networking subsystem [MBKQ96] and the
UNIX STREAMS communication framework [Ris98] use the Half-Sync/Half-Async pattern to
structure the concurrent I/O architecture of application processes and the operating system
kernel. I/O in these kernels is asynchronous and triggered by interrupts. The queueing layer
is implemented by the Socket layer in BSD UNIX [Ste98] and by Stream Heads in UNIX
STREAMS [Rago93]. I/O for application processes is synchronous.

Most UNIX network daemons, such as TELNETD and FTPD, are developed as application
processes that invoke read() and write() system calls synchronously [Ste98]. This
design shields application developers from the complexity of asynchronous I/O processed by
the kernel. However, there are hybrid mechanisms, such as the UNIX SIGIO signal, that can
be used to trigger synchronous I/O processing via asynchronous control notifications.

CORBA ORBs. MT-Orbix [Bak97] uses a variation of the Half-Sync/Half-Async pattern to
dispatch CORBA remote operations in a concurrent server. In MT-Orbix's ORB Core a
separate thread is associated with each socket handle that is connected to a client. Each
thread blocks synchronously, reading CORBA requests from the client. When a request is
received it is demultiplexed and inserted into the queueing layer. An active object thread in
the synchronous layer then wakes up, dequeues the request, and processes it to completion
by performing an upcall to the CORBA servant.

ACE. The ACE framework [Sch97] applies the 'Half-Sync/Half-Reactive' variant of the Half-
Sync/Half-Async pattern in an application-level gateway that routes messages between
peers in a distributed system [Sch96]. The ACE_Reactor is the ACE implementation of the
Reactor pattern (179) that demultiplexes indication events to their associated event handlers
in the 'asynchronous' layer. The ACE Message_Queue class implements the queueing
layer, while the ACE Task class implements the thread pool variant of the Active Object
pattern (369) in the synchronous service layer.

Conduit. The Conduit communication framework [Zweig90] from the Choices operating
system project [CIRM93] implements an object-oriented version of the Half-Sync/Half-Async
pattern. Application processes are synchronous active objects, an Adapter Conduit serves
as the queueing layer, and the Conduit micro-kernel operates asynchronously,
communicating with hardware devices via interrupts.

Restaurants. Many restaurants use a variant of the Half-Sync/Half-Async pattern. For
example, restaurants often employ a host or hostess who is responsible for greeting patrons
and keeping track of the order in which they will be seated if the restaurant is busy and it is
necessary to queue them waiting for an available table. The host or hostess is 'shared' by all
the patrons and thus cannot spend much time with any given party. After patrons are seated
at a table, a waiter or waitress is dedicated to service that table.

Consequences

The Half-Sync/Half-Async pattern has the following benefits:

Simplification and performance. The programming of higher-level synchronous processing
services are simplified without degrading the performance of lower-level system services.
Concurrent systems often have a greater number and variety of high-level processing
services than lower-level services. Decoupling higher-level synchronous services from
lower-level asynchronous processing services can simplify application programming,
because complex concurrency control, interrupt handling, and timing services can be
localized within the asynchronous service layer. The asynchronous layer can also handle
low-level details that may be hard for application developers to program robustly, such as
interrupt handling. In addition, the asynchronous layer can manage the interaction with

 377

hardware-specific components, such as DMA, memory management, and I/O device
registers.

The use of synchronous I/O can also simplify programming, and may improve performance
on multi-processor platforms. For example, long-duration data transfers, such as
downloading a large medical image from a hierarchical storage management system
[PHS96], can be simplified and performed efficiently using synchronous I/O. In particular,
one processor can be dedicated to the thread that is transferring the data. This enables the
instruction and data cache of that CPU to be associated with the entire image transfer
operation.

Separation of concerns. Synchronization policies in each layer are decoupled. Each layer
therefore need not use the same concurrency control strategies. In the single-threaded BSD
UNIX kernel, for example, the asynchronous service layer implements synchronization via
low-level mechanisms, such as raising and lowering CPU interrupt levels. In contrast,
application processes in the synchronous service layer implement synchronization via
higher-level mechanisms, such as monitor objects (399) and synchronized message queues.

Legacy libraries, such as X Windows and older RPC toolkits, are often not re-entrant.
Multiple threads of control cannot therefore invoke these library functions concurrently
within incurring race conditions. To improve performance or to take advantage of
multiple CPUs, however, it may be necessary to perform bulk data transfers or database
queries in separate threads. In this case, the Half-Sync/Half-Reactive variant of the Half-
Sync/Half-Async pattern can be applied to decouple the single-threaded portions of an
application from its multi-threaded portions.

For example, an application's X Windows GUI processing could run under the control of
a reactor. Similarly, long data transfers could run under the control of an active object
thread pool. By decoupling the synchronization policies in each layer of the application
via the Half-Sync/Half-Async pattern, non-re-entrant functions can continue to work
correctly without requiring changes to existing code.

Centralization of inter-layer communication. Inter-layer communication is centralized at a
single access point, because all interaction is mediated by the queueing layer. The queueing
layer buffers messages passed between the other two layers. This eliminates the
complexities of locking and serialization that would otherwise be necessary if the
synchronous and asynchronous service layers accessed objects in each other's memory
directly.

The Half-Sync/Half-Async pattern also has the following liabilities:

A boundary-crossing penalty may be incurred from context switching, synchronization, and
data copying overhead when data is transferred between the synchronous and
asynchronous service layers via the queueing layer. For example, most operating systems
implement the Half-Sync/Half-Async pattern by placing the queueing layer at the boundary
between the user-level and kernel-level protection domains. A significant performance
penalty can be incurred when crossing this boundary [HP91].

One way of reducing this overhead is to share a region of memory between the synchronous
service layer and the asynchronous service layer [DP93]. This 'zero-copy' design allows the
two layers to exchange data directly, without copying data into and out of the queueing layer.

 378

[CP95] presents a set of extensions to the BSD UNIX I/O subsystem that minimizes
boundary-crossing penalties by using polled interrupts to improve the handling of
continuous media I/O streams. This approach defines a buffer management system that
allows efficient page re-mapping and shared memory mechanisms to be used between
application processes, the kernel, and its devices.

Higher-level application services may not benefit from the efficiency of asynchronous I/O.
Depending on the design of operating system or application framework interfaces, it may not
be possible for higher-level services to use low-level asynchronous I/O devices effectively.
The BSD UNIX operating system, for example, prevents applications from using certain
types of hardware efficiently, even if external sources of I/O support asynchronous
overlapping of computation and communication.

Complexity of debugging and testing. Applications written using the Half-Sync/Half-Async
pattern can incur the same debugging and testing challenges described in Consequences
sections of the Proactor (215) and Reactor (179) patterns.

See Also

The Proactor pattern (215) can be viewed as an extension of the Half-Sync/Half-Async
pattern that propagates asynchronous control and data operations all the way up to higher-
level services. In general, the Proactor pattern should be applied if an operating system
platform supports asynchronous I/O efficiently and application developers are comfortable
with the asynchronous I/O programming model.

The Reactor pattern (179) can be used in conjunction with the Active Object pattern (369) to
implement the Half-Sync/Half-Reactive variant of the Half-Sync/Half-Async pattern. Similarly,
the Leader/Followers (447) pattern can be used in lieu of the Half-Sync/Half-Async pattern if
there is no need for a queueing layer between the asynchronous and synchronous layers.

The Pipes and Filters pattern [POSA1] describes several general principles for implementing
producer-consumer communication between components in a software system. Certain
configurations of the Half-Sync/Half-Async pattern can therefore be viewed as instances of
the Pipes and Filters pattern, where filters contain entire layers of many finer-grained
services. Moreover, a filter could contain active objects, which could yield the Half-Sync/Half-
Reactive or Half-Sync/Half-Sync variants.

The Layers [POSA1] pattern describes the general principle of separating services into
separate layers. The Half-Sync/Half-Async pattern can thus be seen as a specialization of
the Layers pattern whose purpose is to separate synchronous processing from
asynchronous processing in a concurrent system by introducing two designated layers for
each type of service.

Credits

Chuck Cranor was the co-author of the original version of this pattern [PLoPD2]. We would
also like to thank Lorrie Cranor and Paul McKenney for comments and suggestions for
improving the pattern.

[6]An in-depth code walk-through showing how the Half-Sync/Half-Asyne pattern is applied in
the BSD UNIX networking and file systems is described in [PLoPD2].

 379

[7]Although this reactive layer is not truly asynchronous, it shares key properties with
asynchronous services. In particular, event handlers dispatched by a reactor cannot block
for long without starving other sources of events.

Leader/Followers
The Leader/Followers architectural pattern provides an efficient concurrency model where
multiple threads take turns sharing a set of event sources in order to detect, demultiplex,
dispatch, and process service requests that occur on the event sources.

Example

Consider the design of a multi-tier, high-volume, on-line transaction processing (OLTP)
system [GR93]. In this design, front-end communication servers route transaction requests
from remote clients, such as travel agents, claims processing centers, or point-of-sales
terminals, to back-end database servers that process the requests transactionally. After a
transaction commits, the database server returns its results to the associated communication
server, which then forwards the results back to the originating remote client. This multi-tier
architecture is used to improve overall system throughput and reliability via load balancing
and redundancy, respectively. It also relieves back-end servers from the burden of managing
different communication protocols with remote clients.

One way to implement OLTP servers is to use a single-threaded event processing model
based on the Reactor pattern (179). However, this model serializes event processing, which
degrades the overall server performance when handling long-running or blocking client
request events. Likewise, single-threaded servers cannot benefit transparently from multi-
processor platforms.

A common strategy for improving OLTP server performance is to use a multi-threaded
concurrency model that processes requests from different clients and corresponding results
simultaneously [HPS99]. For example, we could multi-thread an OLTP back-end server by
creating a thread pool based on the Half-Sync/Half-Reactive variant of the Half-Sync/Half-
Async pattern (423). In this design, the OLTP back-end server contains a dedicated network
I/O thread that uses the select() [Ste98] event demultiplexer to wait for events to occur on
a set of socket handles connected to front-end communication servers.

 380

When activity occurs on handles in the set, select() returns control to the network I/O
thread and indicates which socket handles in the set have events pending. The I/O thread
then reads the transaction requests from the socket handles, stores them into dynamically
allocated requests, and inserts these requests into a synchronized message queue
implemented using the Monitor Object pattern (399). This message queue is serviced by a
pool of worker threads. When a worker thread in the pool is available, it removes a request
from the queue, performs the designated transaction, and then returns a response to the
front-end communication server.

Although the threading model described above is used in many concurrent applications, it
can incur excessive overhead when used for high-volume servers, such as those in our
OLTP example. For instance, even with a light workload, the Half-Sync/Half-Reactive thread
pool design will incur a dynamic memory allocation, multiple synchronization operations, and
a context switch to pass a request message between the network I/O thread and a worker
thread. These overheads make even the best-case latency unnecessarily high [PRS+99].
Moreover, if the OLTP back-end server is run on a multi-processor, significant overhead can
occur from processor cache coherency protocols required to transfer requests between
threads [SKT96].

If the OLTP back-end servers run on an operating system platform that supports
asynchronous I/O efficiently, the Half-Sync/Half-Reactive thread pool can be replaced with a
purely asynchronous thread pool based on the Proactor pattern (215). This alternative will
reduce much of the synchronization, context switching, and cache coherency overhead
outlined above by eliminating the network I/O thread. Unfortunately, many operating systems
do not support asynchronous I/O and those that do often support it inefficiently.[8] Yet, it is
essential that high-volume OLTP servers demultiplex requests efficiently to threads that can
process the results concurrently.

Context

An event-driven application where multiple service requests arriving on a set of event
sources must be processed efficiently by multiple threads that share the event sources.

Problem

Multi-threading is a common technique to implement applications that process multiple
events concurrently. However, it is hard to implement high-performance multi-threaded
server applications. These applications often process a high volume of multiple types of

 381

events, such as CONNECT, READ, and WRITE events in our OLTP example, that arrive
simultaneously. To address this problem effectively, three forces must be resolved:
§ Service requests can arrive from multiple event sources, such as multiple TCP/IP

socket handles [Ste98], that are allocated for each connected client. A key design force,
therefore, is determining efficient demultiplexing associations between threads and
event sources. In particular, associating a thread for each event source may be
infeasible due to the scalability limitations of applications or the underlying operating
system and network platforms.

§ For our OLTP server applications, it may not be practical to associate a separate
thread with each socket handle. In particular, as the number of connections
increase significantly, this design may not scale efficiently on many operating
system platforms.

§ To maximize performance, key sources of concurrency-related overhead, such as
context switching, synchronization, and cache coherency management, must be
minimized. In particular, concurrency models that allocate memory dynamically for each
request passed between multiple threads will incur significant overhead on conventional
multi-processor operating systems [SchSu95].

§ Implementing our OLTP servers using the Half-Sync/Half-Reactive thread pool variant
(423) outlined in the Example section requires memory to be allocated dynamically
in the network I/O thread to store incoming transaction requests into the message
queue. This design incurs numerous synchronizations and context switches to
insert the request into, or remove the request from, the message queue, as
illustrated in the Monitor Object pattern (399).

§ Multiple threads that demultiplex events on a shared set of event sources must
coordinate to prevent race conditions. Race conditions can occur if multiple threads try
to access or modify certain types of event sources simultaneously.

§ For instance, a pool of threads cannot use select() concurrently to demultiplex a set
of socket handles because the operating system will erroneously notify more than
one thread calling select() when I/O events are pending on the same set of
socket handles [Ste98]. Moreover, for bytestream-oriented protocols, such as TCP,
having multiple threads invoking read() or write() on the same socket handle
will corrupt or lose data.

Solution

Structure a pool of threads to share a set of event sources efficiently by taking turns
demultiplexing events that arrive on these event sources and synchronously dispatching the
events to application services that process them.

 382

In detail: design a thread pool mechanism that allows multiple threads to coordinate
themselves and protect critical sections while detecting, demultiplexing, dispatching, and
processing events. In this mechanism, allow one thread at a time—the leader—to wait for an
event to occur on a set of event sources. Meanwhile, other threads—the followers—can
queue up waiting their turn to become the leader. After the current leader thread detects an
event from the event source set, it first promotes a follower thread to become the new
leader. It then plays the role of a processing thread, which demultiplexes and dispatches the
event to a designated event handler that performs application-specific event handling in the
processing thread. Multiple processing threads can handle events concurrently while the
current leader thread waits for new events on the set of event sources shared by the
threads. After handling its event, a processing thread reverts to a follower role and waits to
become the leader thread again.

Structure

There are four key participants in the Leader/Followers pattern:

Handles are provided by operating systems to identify event sources, such as network
connections or open files, that can generate and queue events. Events can originate from
external sources, such as CONNECT events or READ events sent to a service from clients, or
internal sources, such as time-outs. A handle set is a collection of handles that can be used
to wait for one or more events to occur on handles in the set. A handle set returns to its
caller when it is possible to initiate an operation on a handle in the set without the operation
blocking.

OLTP servers are interested in two types of events—CONNECT events and READ
events—which represent incoming connections and transaction requests, respectively.
Both front-end and back-end servers maintain a separate connection for each client,
where clients of front-end servers are the so-called 'remote' clients and front-end servers
themselves are clients of back-end servers. Each connection is a source of events that
is represented in a server by a separate socket handle. Our OLTP servers use the
select() event demultiplexer, which identifies handles whose event sources have
pending events, so that applications can invoke I/O operations on these handles without
blocking the calling threads.

 383

An event handler specifies an interface consisting of one or more hook methods [Pree95]
[GoF95]. These methods represent the set of operations available to process application-
specific events that occur on handle(s) serviced by an event handler.

Concrete event handlers specialize the event handler and implement a specific service that
the application offers. In particular, concrete event handlers implement the hook method(s)
responsible for processing events received from a handle.

For example, concrete event handlers in OLTP front-end communication servers receive
and validate remote client requests, and then forward requests to back-end database
servers. Likewise, concrete event handlers in back-end database servers receive
transaction requests from front-end servers, read/write the appropriate database records
to perform the transactions, and return the results to the front-end servers. All network
I/O operations are performed via socket handles, which identify various sources of
events.

At the heart of the Leader/Followers pattern is a thread pool, which is a group of threads that
share a synchronizer, such as a semaphore or condition variable, and implement a protocol
for coordinating their transition between various roles. One or more threads play the follower

 384

role and queue up on the thread pool synchronizer waiting to play the leader role. One of
these threads is selected to be the leader, which waits for an event to occur on any handle in
its handle set. When an event occurs, the current leader thread promotes a follower thread
to become the new leader. The original leader then concurrently plays the role of a
processing thread, which demultiplexes that event from the handle set to an appropriate
event handler and dispatches the handler's hook method to handle the event. After a
processing thread is finished handling an event, it returns to playing the role of a follower
thread and waits on the thread pool synchronizer for its turn to become the leader thread
again.

Each OLTP server designed using the Leader/Followers pattern can have a pool of
threads waiting to process transaction requests that arrive on event sources identified by
a handle set. At any point in time, multiple threads in the pool can be processing
transaction requests and sending results back to their clients. One thread in the pool is
the current leader, which waits for a new CONNECT or READ event to arrive on the handle
set shared by the threads. When this occurs, the leader thread becomes a processing
thread and handles the event, while one of the follower threads in the pool is promoted
to become the new leader.

The following class diagram illustrates the structure of participants in the Leader/Followers
pattern. In this structure, multiple threads share the same instances of thread pool, event
handler, and handle set participants. The thread pool ensures the correct and efficient
coordination of the threads:

 385

Dynamics

The collaborations in the Leader/Followers pattern divide into four phases:
§ Leader thread demultiplexing. The leader thread waits for an event to occur on any

handle in the handle set. If there is no current leader thread, for example, due to events
arriving faster than the available threads can service them, the underlying operating
system can queue events internally until a leader thread is available.

§ Follower thread promotion. After the leader thread has detected a new event, it uses
the thread pool to choose a follower thread to become the new leader.

§ Event handler demultiplexing and event processing. After helping to promote a follower
thread to become the new leader, the former leader thread then plays the role of a
processing thread. This thread concurrently demultiplexes the event it detected to the
event's associated handler and then dispatches the handler's hook method to process
the event. A processing thread can execute concurrently with the leader thread and any
other threads that are in the processing state.

§ Rejoining the thread pool. After the processing thread has run its event handling to
completion, it can rejoin the thread pool and wait to process another event. A
processing thread can become the leader immediately if there is no current leader
thread. Otherwise, the processing thread returns to playing the role of a follower thread
and waits on the thread pool synchronizer until it is promoted by a leader thread.

A thread's transitions between states can be visualized in the following diagram:

 386

Implementation

Six activities can be used to implement the Leader/Followers pattern:
1. Choose the handle and handle set mechanisms. A handle set is a collection of handles

that a leader thread can use to wait for an event to occur on a set of event sources.
Developers often choose the handles and handle set mechanisms provided by the
underlying operating system, rather than implementing them from scratch. Four sub-
activities help with choosing the handle and handle set mechanisms:

1. Determine the type of handles. There are two general types of handles:
§ Concurrent handles. This type allows multiple threads to access a

handle to an event source concurrently without incurring race conditions
that can corrupt, lose, or scramble the data [Ste98]. For instance, the
Socket API for record-oriented protocols, such as UDP, allows multiple
threads to invoke read() or write() operations on the same handle
concurrently.

§ Iterative handles. This type requires multiple threads to access a
handle to an event source iteratively because concurrent access will incur
race conditions. For instance, the Socket API for bytestream-oriented
protocols, such as TCP, does not guarantee that read() or write()
operations respect application-level message boundaries. Thus,
corrupted or lost data can result if I/O operations on the Socket are not
serialized properly.

2. Determine the type of handle set. There are two general types of handle sets:
§ Concurrent handle set. This type can be acted upon concurrently, for

example, by a pool of threads. Each time it becomes possible to initiate
an operation on a handle in the set without blocking the operation, a
concurrent handle set returns that handle to one of its calling threads. For
example, the Win32 WaitForMultipleObjects() function [Sol98]
supports concurrent handle sets by allowing a pool of threads to wait on
the same set of handles simultaneously.

§ Iterative handle set. This type returns to its caller when it is possible to
initiate an operation on one or more handles in the set without the
operation(s) blocking. Although an iterative handle set can return multiple
handles in a single call, it can only be called by one thread at a time. For
example, the select() [Ste98] and poll() [Rago93] functions support
iterative handle sets. Thus, a pool of threads cannot use select() or
poll() to demultiplex events on the same handle set concurrently
because multiple threads can be notified that the same I/O events are
pending, which elicits erroneous behavior.

The following table summarizes representative examples for each combination
of concurrent and iterative handles and handle sets:

Handle
Sets

Handles Concurrent Handles Iterative Handles

 387

Handle
Sets

Handles Concurrent Handles Iterative Handles

Concurrent Handle
Sets

UDP Sockets
+

WaitForMultipleObjects()

TCP Sockets
+

WaitForMultipleObjects()

Iterative Handle
Sets

UDP Sockets
+

select().poll()

TCP Sockets +
select().poll()

3. Determine the consequences of selecting certain handle and handle set
mechanisms. In general, the Leader/Followers pattern is used to prevent
multiple threads from corrupting or losing data erroneously, such as invoking
read operations on a shared TCP bytestream socket handle concurrently or
invoking select() on a shared handle set concurrently. However, some
applications need not guard against these problems. In particular, if the handle
and handle set mechanisms are both concurrent, many of the subsequent
implementation activities can be skipped.

As discussed in implementation activities 1.1 (456) and 1.2 (457), the
semantics of certain combinations of protocols and network programming APIs
support concurrent multiple I/O operations on a shared handle. For example,
UDP support in the Socket API ensures a complete message is always read or
written by one thread or another, without the risk of a partial read() or of data
corruption from an interleaved write(). Likewise, certain handle set
mechanisms, such as the Win32 WaitForMultipleObjects() function
[Sol98], return a single handle per call, which allows them to be called
concurrently by a pool of threads.[9]

In these situations, it may be possible to implement the Leader/Followers
pattern by simply using the operating system's thread scheduler to
(de)multiplex threads, handle sets, and handles robustly, in which case,
implementation activities 2 through 6 can be skipped.

4. Implement an event handler demultiplexing mechanism. In addition to calling
an event demultiplexer to wait for one or more events to occur on its handle
set, such as select(), a Leader/Followers pattern implementation must
demultiplex events to event handlers and dispatch their hook methods to
process the events. In general, two alternative strategies can be used to
implement this mechanism:
§ Program to a low-level operating system event demultiplexing

mechanism. In this strategy, the handle set demultiplexing mechanisms
provided by the operating system are used directly. Thus, a
Leader/Followers implementation must maintain a demultiplexing table
that is a manager [Som97] containing a set of <handle, event handler,
event types> tuples. Each handle serves as a 'key' that associates
handles with event handlers in its demultiplexing table, which also stores
the type of event(s), such as CONNECT and READ, that each event handler
will process. The contents of this table are converted into handle sets
passed to the native event demultiplexing mechanism, such as
select() [Ste98] or WaitForMultipleObjects() [Sol98].

 388

§ Implementation activity 3.3 of the Reactor pattern (179) illustrates how
to implement a demultiplexing table.

§ Program to a higher-level event demultiplexing pattern. In this
strategy, developers leverage higher-level patterns, such as Reactor
(179), Proactor (215), and Wrapper Facade (47). These patterns help to
simplify the Leader/Followers implementation and reduce the effort
needed to address the accidental complexities of programming to native
operating system handle set demultiplexing mechanisms directly.
Moreover, applying higher-level patterns makes it easier to decouple the
I/O and demultiplexing aspects of a system from its concurrency model,
thereby reducing code duplication and maintenance effort.

§ In our OLTP server example, an event must be demultiplexed to the
concrete event handler associated with the socket handle that
received the event. The Reactor pattern (179) supports this activity,
therefore it can be applied to simplify the implementation of the
Leader/Followers pattern. In the context of the Leader/Followers
pattern, however, a reactor demultiplexes just one handle at a time to
its associated concrete event handler, regardless of how many
handles have events pending on them. Demultiplexing only one
handle at a time can maximize the concurrency among a pool of
threads and simplify a Leader/Followers pattern implementation by
alleviating its need to manage a separate queue of pending events.

2. Implement a protocol for temporarily (de)activating handles in a handle set. When an
event arrives, the leader thread performs three steps:
§ It deactivates the handle from consideration in the handle set temporarily
§ It promotes a follower thread to become the new leader and
§ It continues to process the event.

Deactivating the handle from the handle set avoids race conditions that could occur
between the time when a new leader is selected and the event is processed. If the
new leader waits on the same handle in the handle set during this interval, it could
demultiplex the event a second time, which is erroneous because the dispatch is
already in progress. After the event is processed, the handle is reactivated in the
handle set, which allows the leader thread to wait for an event to occur on it or any
other activated handles in the set.

In our OLTP example, a handle deactivation and reactivation protocol can be
provided by extending the Reactor interface defined in implementation activity 2
of the Reactor pattern (179):
 class Reactor {
 public:
 // Temporarily deactivate the <HANDLE>
 // from the internal handle set.

 389

 void deactivate_handle (HANDLE, Event_Type);

 // Reactivate a previously deactivated
 // <Event_Handler> to the internal handle set.
 void reactivate_handle (HANDLE, Event_Type);
 // ...
 };

3. Implement the thread pool. To promote a follower thread to the leader role, as well as
to determine which thread is the current leader, an implementation of the
Leader/Followers pattern must manage a pool of threads. A straightforward way to
implement this is to have all the follower threads in the set simply wait on a single
synchronizer, such as a semaphore or condition variable. In this design, it does not
matter which thread processes an event, as long as all threads in the pool that share
the handle set are serialized.

4. For example, the LF_Thread_Pool class shown below can be used for the
back-end database servers in our OLTP example:

5. class LF_Thread_Pool {
6. public:
7. // Constructor.
8. LF_Thread_Pool (Reactor *r): reactor_ (r) { }
9.
10. // Threads call <join> to wait on a handle set

and
11. // demultiplex events to their event handlers.
12. void join (Time_Value *timeout = 0);
13.
14. // Promote a follower thread to become the
15. // leader thread.
16. void promote_new_leader ();
17. // Support the <HANDLE> (de)activation

protocol.
18. void deactivate_handle (HANDLE, Event_Type

et);
19. void reactivate_handle (HANDLE, Event_Type

et);
20. private:
21. // Pointer to the event

demultiplexer/dispatcher.
22. Reactor *reactor_;
23.

 390

24. // The thread id of the leader thread, which
is

25. // set to NO_CURRENT_LEADER if there is no
leader.

26. Thread_Id leader_thread_;
27.
28. // Follower threads wait on this condition
29. // variable until they are promoted to leader.
30. Thread_Condition followers_condition_;
31.
32. // Serialize access to our internal state.
33. Thread_Mutex mutex_;
34. };

35. The constructor of LF_Thread_Pool caches the reactor passed to it. By default,
this reactor implementation uses select(), which supports iterative handle
sets. Therefore, LF_Thread_Pool is responsible for serializing multiple threads
that take turns calling select() on the reactor's handle set.

36. Application threads invoke join() to wait on a handle set and demultiplex new
events to their associated event handlers. As shown in implementation activity 4
(462), this method does not return to its caller until the application terminates or
join() times out. The promote_new_leader() method promotes one of the
follower threads in the set to become the new leader, as shown in implementation
activity 5.2 (464).

37. The deactivate_handle() method and the reactivate_handle() method
deactivate and reactivate handles within a reactor's handle set. The
implementations of these methods simply forward to the same methods defined
in the Reactor interface shown in implementation activity 2 (459).

38. Note that a single condition variable synchronizer followers_condition_ is
shared by all threads in this thread pool. As shown in implementation activities 4
(462) and 5 (463), the implementation of LF_Thread_Pool uses the Monitor
Object pattern (399).

40. Implement a protocol to allow threads to initially join (and later rejoin) the thread pool.

This protocol is used in the following two cases:
§ After the initial creation of a pool of threads that retrieve and process events;

and
§ After a processing thread completes and is available to handle another event.

If no leader thread is available, a processing thread can become the leader
immediately. If a leader thread is already available, a thread can become a follower
by waiting on the thread pool's synchronizer.

 391

Our back-end database servers can implement the following join() method of
the LF_Thread_Pool to wait on a handle set and demultiplex new events to
their associated event handlers:
 void LF_Thread_Pool::join (Time_Value *timeout) {
 // Use Scoped Locking idiom to acquire mutex
 // automatically in the constructor.
 Guard<Thread_Mutex> guard (mutex_);

 for (;;) {
 while (leader_thread_ != NO_CURRENT_LEADER)
 // Sleep and release <mutex> atomically.
 followers_condition_.wait (timeout);

 // Assume the leader role.
 leader_thread_ = Thread::self ();

 // Leave monitor temporarily to allow other
 // follower threads to join the pool.
 guard.release ();

 // After becoming the leader, the thread uses
 // the reactor to wait for an event.
 reactor_->handle_events ()'

 // Reenter monitor to serialize the test
 // for <leader_thread_> in the while loop.
 guard.acquire ();
 }
 }

Within the for loop, the calling thread alternates between its role as a leader,
processing, and follower thread. In the first part of this loop, the thread waits
until it can be a leader, at which point it uses the reactor to wait for an event on
the shared handle set. When the reactor detects an event on a handle, it will
demultiplex the event to its associated event handler and dispatch its
handle_event() method to promote a new leader and process the event. After
the reactor demultiplexes one event, the thread re-assumes its follower role.
These steps continue looping until the application terminates or a timeout occurs.

41. Implement the follower promotion protocol. Immediately after a leader thread detects
an event, but before it demultiplexes the event to its event handler and processes the

 392

event, it must promote a follower thread to become the new leader. Two sub-activities
can be used to implement this protocol:

0. Implement the handle set synchronization protocol. If the handle set is iterative
and we blindly promote a new leader thread, it is possible that the new leader
thread will attempt to handle the same event that was detected by the previous
leader thread that is in the midst of processing the event. To avoid this race
condition, we must remove the handle from consideration in the handle set
before promoting a follower to new leader and dispatching the event to its
concrete event handler. The handle must be reactivated in the handle set after
the event has been dispatched and processed.

1. An application can implement concrete event handlers that subclass from
the Event_Handler class defined in implementation activity 1.2 of the
Reactor pattern (179). Likewise, the Leader/Followers implementation can
use the Decorator pattern [GoF95] to create an LF_Event_Handler
class that decorates Event_Handler. This decorator promotes a new
leader thread and activates/deactivates the handler in the reactor's handle
set transparently to the concrete event handlers.

2. class LF_Event_Handler : public Event_Handler {
3. public:
4. LF_Event_Handler (Event_Handler *eh,
5. LF_Thread_Pool *tp)
6. : concrete_event_handler_ (eh),
7. thread_pool_ (tp) { }
8.
9. virtual void handle_event (HANDLE h,

Event_Type et) {
10. // Temporarily deactivate the handler in

the
11. // reactor to prevent race conditions.
12. thread_pool_->deactivate_handle (h, et);
13. // Promote a follower thread to become

leader.
14. thread_pool_->promote_new_leader ();
15.
16. // Dispatch application-specific event
17. // processing code.
18. concrete_event_handler_->handle_event (h,

et);
19.
20. // Reactivate the handle in the reactor.
21. thread_pool_->reactivate_handle (h, et);
22. }
23. private:
24. // This use of <Event_Handler> plays the

 393

25. // <ConcreteComponent> role in the Decorator
26. // pattern, which is used to implement
27. // the application-specific functionality.
28. Event_Handler *concrete_event_handler_;
29.
30. // Instance of an <LF_Thread_Pool>.
31. LF_Thread_Pool *thread_pool_;
32. };

34. Determine the promotion protocol ordering. Several ordering strategies can be
used to determine which follower thread to promote:
§ LIFO order. In many applications, it does not matter which of the

follower threads is promoted next because all threads are equivalent
peers. In this case, the leader thread can promote follower threads in last-
in, first-out (LIFO) order. The LIFO protocol maximizes CPU cache affinity
[SKT96] [MB91] by ensuring that the thread waiting the shortest time is
promoted first [Sol98], which is an example of the Fresh Work Before
Stale pattern [Mes96].

Cache affinity can improve system performance if the thread that blocked
most recently executes essentially the same code and data when it is
scheduled to run again. Implementing a LIFO promotion protocol requires
an additional data structure, however, such as a stack of waiting threads,
rather than just using a native operating system synchronization object,
such as a semaphore.

§ Priority order. In some applications, particularly real-time applications,
threads may run at different priorities. In this case, therefore, it may be
necessary to promote follower threads according to their priority. This
protocol can be implemented using some type of priority queue, such as a
heap [BaLee98]. Although this protocol is more complex than the LIFO
protocol, it may be necessary to promote follower threads according to
their priorities in order to minimize priority inversion [SMFG00].

§ Implementation-defined order. This ordering is most common when
implementing handle sets using operating system synchronizers, such as
semaphores or condition variables, which often dispatch waiting threads
in an implementation-defined order. The advantage of this protocol is that
it maps onto native operating system synchronizers efficiently.

§ Our OLTP back-end database servers could use the following simple
protocol to promote follower thread in whatever order they are
queued by a native operating system condition variable:

§ void LF_Thread_Pool::promote_new_leader () {
§ // Use Scoped Locking idiom to acquire mutex
§ // automatically in the constructor.
§ Guard<Thread_Mutex> guard (mutex_);
§

 394

§ if (leader_thread_ != Thread::self ())
§ throw /* ...only leader thread can

promote... */;
§
§ // Indicate that we are no longer the leader
§ // and notify a <join> method to promote
§ // the next follower.
§ leader_thread_ = NO_CURRENT_LEADER;
§ followers_condition_.notify ();
§
§ // Release mutex automatically in destructor.
§ }

§ As shown in implementation activity 5.1 (463), the
promote_new_leader() method is invoked by a
LF_Event_Handler decorator before it forwards to the concrete
event handler that processes an event.

42. Implement the event handlers. Application developers must decide what actions to
perform when the hook method of a concrete event handler is invoked by a
processing thread in the Leader/Followers pattern implementation. Implementation
activity 5 in the Reactor pattern (179) describes various issues associated with
implementing concrete event handlers.

Example Resolved

The OLTP back-end database servers described in the Example section can use the
Leader/Followers pattern to implement a thread pool that demultiplexes I/O events from
socket handles to their event handlers efficiently. In this design, there is no designated
network I/O thread. Instead, a pool of threads is pre-allocated during database server
initialization:
 const int MAX_THREADS = /* ... */;

 // Forward declaration.
 void *worker_thread (void *);

 int main () {
 LF_Thread_Pool thread_pool (Reactor::instance ());
 // Code to set up a passive-mode Acceptor omitted.
 for (int i = 0; i < MAX_THREADS - 1; ++i)
 Thread_Manager::instance ()->spawn
 (worker_thread, &thread_pool);

 395

 // The main thread participates in the thread pool.
 thread_pool.join ();
 };

These threads are not bound to any particular socket handle. Thus, all threads in this pool
take turns playing the role of a network I/O thread by invoking the LF
Thread_Pool::join() method:
 void *worker_thread (void *arg) {
 LF_Thread_Pool *thread_pool =
 static_cast <LF_Thread_Pool *> (arg);

 // Each worker thread participates in the thread pool.
 thread_pool->join ();
 };

As shown in implementation activity 4 (462), the join() method allows only the leader
thread to use the Reactor singleton to select() on a shared handle set of Sockets
connected to OLTP front-end communication servers. If requests arrive when all threads are
busy, they will be queued in socket handles until threads in the pool are available to execute
the requests.

When a request event arrives, the leader thread deactivates the socket handle temporarily
from consideration in select()'s handle set, promotes a follower thread to become the
new leader, and continues to handle the request event as a processing thread. This
processing thread then reads the request into a buffer that resides in the runtime stack or is
allocated using the Thread-Specific Storage pattern (475).[10] All OLTP activities occur in the
processing thread. Thus, no further context switching, synchronization, or data movement is
necessary until the processing completes. When it finishes handling a request, the
processing thread returns to playing the role of a follower and waits on the synchronizer in
the thread pool. Moreover, the socket handle it was processing is reactivated in the
Reactor singleton's handle set so that select() can wait for I/O events to occur on it,
along with other Sockets in the handle set.

Variants

Bound Handle/Thread Associations. The earlier sections in this pattern describe unbound
handle/thread associations, where there is no fixed association between threads and
handles. Thus, any thread can process any event that occurs on any handle in a handle set.
Unbound associations are often used when a pool of worker threads take turns
demultiplexing a shared handle set.

A variant of the Leader/Followers pattern uses bound handle/thread associations. In this
variant, each thread is bound to its own handle, which it uses to process particular events.
Bound associations are often used in the client-side of an application when a thread waits on
a socket handle for a response to a two-way request it sent to a server. In this case, the
client application thread expects to process the response event on this handle in the same
thread that sent the original request.

In the bound handle/thread association variant, therefore, the leader thread in the thread
pool may need to hand-off an event to a follower thread if the leader does not have the
necessary context to process the event. After the leader detects a new event, it checks the
handle associated with the event to determine which thread is responsible for processing it.

 396

If the leader thread discovers that it is responsible for the event, it promotes a follower thread
to become the new leader Conversely, if the event is intended for another thread, the leader
must hand-off the event to the designated follower thread. This follower thread can then
temporally disable the handle and process the event. Meanwhile, the current leader thread
continues to wait for another event to occur on the handle set.

The following diagram illustrates the additional transition between the following state and the
processing state:

The leader/follower thread pool can be maintained implicitly, for example, using a
synchronizer, such as a semaphore or condition variable, or explicitly, using a container and
the Manager pattern [Som97]. The choice depends largely on whether the leader thread
must notify a specific follower thread explicitly to perform event hand-offs.

A detailed discussion of the bounded handle/thread association variant and its
implementation appears in [SRPKB00].

Relaxing Serialization Constraints. There are operating systems where multiple leader
threads can wait on a handle set simultaneously. For example, the Win32 function
WaitForMultipleObjects() [Sol98] supports concurrent handle sets that allow a pool of
threads to wait on the same set of handles concurrently. Thus, a thread pool designed using
this function can take advantage of multi-processor hardware to handle multiple events
concurrently while other threads wait for events.

Two variations of the Leader/Followers pattern can be applied to allow multiple leader
threads to be active simultaneously:
§ Leader/followers per multiple handle sets. This variation applies the conventional

Leader/Followers implementation to multiple handle sets separately. For instance, each
thread is assigned a designated handle set. This variation is particularly useful in
applications where multiple handle sets are available. However, this variant limits a
thread to use a specific handle set.

§ Multiple leaders and multiple followers. In this variation, the pattern is extended to
support multiple simultaneous leader threads, where any of the leader threads can wait
on any handle set. When a thread re-joins the thread pool it checks if a leader is
associated with every handle set already. If there is a handle set without a leader, the
re-joining thread can become the leader of that handle set immediately.

Hybrid Thread Associations. Some applications use hybrid designs that implement both
bound and unbound handle/thread associations simultaneously. Likewise, some handles in
an application may have dedicated threads to handle certain events, whereas other handles
can be processed by any thread. Thus, one variant of the Leader/Follower pattern uses its
event hand-off mechanism to notify certain subsets of threads, according to the handle on
which event activity occurs.

 397

For example, the OLTP front-end communication server may have multiple threads
using the Leader/Followers pattern to wait for new request events from clients. Likewise,
it may also have threads waiting for responses to requests they invoked on back-end
servers. In fact, threads play both roles over their lifetime, starting as threads that
dispatch new incoming requests, then issuing requests to the back-end servers to satisfy
the client application requirements, and finally waiting for responses to arrive from the
back-end server.

Hybrid Client/Servers. In complex systems, where peer applications play both client and
server roles, it is important that the communication infrastructure processes incoming
requests while waiting for one or more replies. Otherwise, the system can deadlock because
one client dedicates all its threads to block waiting for responses.

In this variant, the binding of threads and handles changes dynamically. For example, a
thread may be unbound initially, yet while processing an incoming request the application
discovers it requires a service provided by another peer in the distributed system. In this
case, the unbound thread dispatches a new request while executing application code,
effectively binding itself to the handle used to send the request. Later, when the response
arrives and the thread completes the original request, it becomes unbound again.

Alternative Event Sources and Sinks. Consider a system where events are obtained not only
through handles but also from other sources, such as shared memory or message queues.
For example, in UNIX there are no event demultiplexing functions that can wait for I/O
events, semaphore events, and/or message queue events simultaneously. However, a
thread can either block waiting for one type of event at the same time. Thus, the
Leader/Followers pattern can be extended to wait for more than one type of events
simultaneously:
§ A leader thread is assigned to each source of events—as opposed to a single leader

thread for the complete system.
§ After the event is received, but before processing the event, a leader thread can select

any follower thread to wait on this event source.

A drawback with this variant, however, is that the number of participating threads must
always be greater than the number of event sources. Therefore, this approach may not scale
well as the number of event sources grows.

Known Uses

ACE Thread Pool Reactor framework [Sch97]. The ACE framework provides an object-
oriented framework implementation of the Leader/Followers pattern called the 'thread pool
reactor' (ACE_TP_Reactor) that demultiplexes events to event handlers within a pool of
threads. When using a thread pool reactor, an application pre-spawns a fixed number of
threads. When these threads invoke the ACE_TP_Reactor's handle_events() method,
one thread will become the leader and wait for an event. Threads are considered unbound
by the ACE thread pool reactor framework. Thus, after the leader thread detects the event, it
promotes an arbitrary thread to become the next leader and then demultiplexes the event to
its associated event handler.

CORBA ORBs and Web servers. Many CORBA implementations, including Chorus COOL
ORB [SMFG00] and TAO [SC99], use the Leader/Followers pattern for both their client-side
connection model and the server-side concurrency model. In addition, The JAWS Web
server [HPS99] uses the Leader/Followers thread pool model for operating system platforms

 398

that do not allow multiple threads to simultaneously call accept() on a passive-mode
socket handle.

Transaction monitors. Popular transaction monitors, such as Tuxedo, operate traditionally
on a per-process basis, for example, transactions are always associated with a process.
Contemporary OLTP systems demand high-performance and scalability, however, and
performing transactions on a per-process basis may fail to meet these requirements.
Therefore, next-generation transaction services, such as implementations of the CORBA
Transaction Service [OMG97b], employ bound Leader/Followers associations between
threads and transactions.

Taxi stands. The Leader/Followers pattern is used in everyday life to organize many airport
taxi stands. In this use case, taxi cabs play the role of the 'threads,' with the first taxi cab in
line being the leader and the remaining taxi cabs being the followers. Likewise, passengers
arriving at the taxi stand constitute the events that must be demultiplexed to the cabs,
typically in FIFO order. In general, if any taxi cab can service any passenger, this scenario is
equivalent to the unbound handle/thread association described in the main Implementation
section. However, if only certain cabs can service certain passengers, this scenario is
equivalent to the bound handle/thread association described in the Variants section.

Consequences

The Leader/Followers pattern provides several benefits:

Performance enhancements. Compared with the Half-Sync/Half-Reactive thread pool
approach described in the Example section, the Leader/Followers pattern can improve
performance as follows:
§ It enhances CPU cache affinity and eliminates the need for dynamic memory allocation

and data buffer sharing between threads. For example, a processing thread can read
the request into buffer space allocated on its run-time stack or by using the Thread-
Specific Storage pattern (475) to allocate memory.

§ It minimizes locking overhead by not exchanging data between threads, thereby
reducing thread synchronization. In bound handle/thread associations, the leader thread
demultiplexes the event to its event handler based on the value of the handle. The
request event is then read from the handle by the follower thread processing the event.
In unbound associations, the leader thread itself reads the request event from the
handle and processes it.

§ It can minimize priority inversion because no extra queueing is introduced in the
server. When combined with real-time I/O subsystems [KSL99], the Leader/Followers
thread pool model can reduce sources of non-determinism in server request processing
significantly.

§ It does not require a context switch to handle each event, reducing the event
dispatching latency. Note that promoting a follower thread to fulfill the leader role does
require a context switch. If two events arrive simultaneously this increases the
dispatching latency for the second event, but the performance is no worse than Half-
Sync/Half-Reactive thread pool implementations.

Programming simplicity. The Leader/Follower pattern simplifies the programming of
concurrency models where multiple threads can receive requests, process responses, and
demultiplex connections using a shared handle set.

However, the Leader/Followers pattern has the following liabilities:

Implementation complexity. The advanced variants of the Leader/Followers pattern are
harder to implement than Half-Sync/Half-Reactive thread pools. In particular, when used as
a multi-threaded connection multiplexer, the Leader/Followers pattern must maintain a pool

 399

of follower threads waiting to process requests. This set must be updated when a follower
thread is promoted to a leader and when a thread rejoins the pool of follower threads. All
these operations can happen concurrently, in an unpredictable order. Thus, the
Leader/Follower pattern implementation must be efficient, while ensuring operation
atomicity.

Lack of flexibility. Thread pool models based on the Half-Sync/Half-Reactive variant of the
Half-Sync/Half-Async pattern (423) allow events in the queueing layer to be discarded or re-
prioritized. Similarly, the system can maintain multiple separate queues serviced by threads
at different priorities to reduce contention and priority inversion between events at different
priorities. In the Leader/Followers model, however, it is harder to discard or reorder events
because there is no explicit queue. One way to provide this functionality is to offer different
levels of service by using multiple Leader/Followers groups in the application, each one
serviced by threads at different priorities.

Network I/O bottlenecks. The Leader/Followers pattern, as described in the Implementation
section, serializes processing by allowing only a single thread at a time to wait on the handle
set. In some environments, this design could become a bottleneck because only one thread
at a time can demultiplex I/O events. In practice, however, this may not be a problem
because most of the I/O-intensive processing is performed by the operating system kernel.
Thus, application-level I/O operations can be performed rapidly.

See Also

The Reactor pattern (179) often forms the core of Leader/Followers pattern implementations.
However, the Reactor pattern can be used in lieu of the Leader/Followers pattern when each
event only requires a short amount of time to process. In this case, the additional scheduling
complexity of the Leader/Followers pattern is unnecessary.

The Proactor pattern (215) defines another model for demultiplexing asynchronous event
completions concurrently. It can be used instead of the Leader/Followers pattern:
§ When an operating system supports asynchronous I/O efficiently and
§ When programmers are comfortable with the asynchronous inversion of control

associated with the Proactor pattern

The Half-Sync/Half-Async (423) and Active Object (369) patterns are two other alternatives
to the Leader/Followers pattern. These patterns may be a more appropriate choice than the
Leader/Followers pattern:
§ When there are additional synchronization or ordering constraints that must be

addressed by reordering requests in a queue before they can be processed by threads
in the pool and/or

§ When event sources cannot be waited for by a single event demultiplexer efficiently

The Controlled Reactor pattern [DeFe99] includes a performance manager that controls the
use of threads for event handlers according to a user's specification and may be an
alternative when controlled performance is an important objective.

Credits

Michael Kircher, Carlos O'Ryan, and Irfan Pyarali are the co-authors of the original version
of the Leader/Followers pattern. Thanks to Ed Fernandez for his comments that helped
improve this version of the pattern.

[8]For instance, some operating systems support asynchronous I/O by spawning a thread for
each asynchronous operation, thereby defeating the potential performance benefits of
asynchrony.

 400

[9]However, WaitForMultipleObjects() does not by itself address the problem of
notifying a particular thread when an event is available, which is necessary to support the
bound thread/handle association discussed in the Variants section.

[10]In contrast, the Half-Sync/Half-Reactive thread pool described in the Example section
must allocate each request dynamically from a shared heap because the request is passed
between threads.

Thread-Specific Storage
The Thread-Specific Storage design pattern allows multiple threads to use one 'logically
global' access point to retrieve an object that is local to a thread, without incurring locking
overhead on each object access.

Also Known As

Thread-Local Storage

Example

Consider the design of a multi-threaded network logging server that remote client
applications use to record information about their status centrally within a distributed system.
Unlike the logging server shown in the Reactor pattern example (179), which demultiplexed
all client connections iteratively within a single thread, this logging server uses a thread-per-
connection [Sch97] concurrency model to process requests concurrently.

In the thread-per-connection model a separate thread is created for each client connection.
Each thread reads logging records from its associated TCP Socket, processes these records
and writes them to the appropriate output device, such as a log file or a printer.

Each logging server thread is also responsible for detecting and reporting any low-level
network conditions or system errors that occur when performing I/O. Many operating
systems, such as UNIX and Windows NT, report this low-level information to applications via
a global access point, called errno. When an error or unusual condition occurs during
system calls, such as read() or write(), the operating system sets errno to indicate
what has happened and returns a specific status value, such as −1. Applications must test
for these return values and then check errno to determine what type of error or unusual
condition occurred.

 401

Consider the following C code fragment that receives client logging records from a TCP
socket handle set to non-blocking mode [Ste98].
 // One global <errno> per-process.
 extern int errno;

 void *logger (HANDLE socket) {
 // Read logging records until connection is closed.
 for (;;) {
 char log_record[MAXREC];
 if (recv (socket, log_record, MAXREC, 0) == -1) {
 // Check to see why <recv> failed.
 if (errno == EWOULDBLOCK)
 sleep (1); // Try getting data later.
 else // Display error result.
 cerr << "recv failed, errno=" << errno;
 } else // Normal case ...
 }
 }

If recv() returns −1 the logging server logger code checks errno to determine what
happened and decide how to proceed.

Although implementing errno at global scope works reasonably well for single-threaded
applications, it can incur subtle problems for multi-threaded applications. In particular, race
conditions in preemptive multi-threaded systems can cause an errno value set in one
thread to be interpreted erroneously in other threads. If multiple threads execute the
logger() function simultaneously erroneous interactions may occur.

For example, assume that thread T1 invokes a non-blocking recv() call that returns −1 and
sets errno to EWOULDBLOCK, which indicates that no data is currently queued on the
Socket. Before T1 can check for this case, however, it is preempted and thread T2 starts
running.

Assuming that T2 is then interrupted by an asynchronous signal, such as SIGALRM, it sets
errno to EINTR. If T2 is preempted immediately because its time-slice is finished, T1 will
falsely assume its recv() call was interrupted and perform the wrong action:

 402

One apparent solution to this problem is to apply the Wrapper Facade pattern (47) to
encapsulate errno with an object wrapper that contains a lock. The Scoped Locking idiom
(325) can then be used to acquire the lock before setting or checking errno and to release
it afterwards. Unfortunately, this design will not solve the race condition problem, because
setting and checking the global errno value is not atomic. Instead, it involves the following
two activities:

1. The recv() call sets errno.
2. The application checks errno to determine what action to take.

A more robust way to prevent race conditions is to improve the errno locking protocol. For
example, the recv() system call could acquire a global errno_lock before it sets errno.
Subsequently, when recv() returns, the application releases the errno_lock after it tests
the value of errno. This solution is error-prone, however, because applications may forget
to release errno_lock, causing starvation and deadlock. Also, because applications may
need to check the status of errno frequently, the extra locking overhead will degrade
performance significantly, particularly when an application happens to run in a single-
threaded configuration.

What is needed therefore is mechanism that transparently gives each thread its own local
copy of 'logically global' objects, such as errno.

Context

Multi-threaded applications that frequently access data or objects that are logically global but
whose state should be physically local to each thread.

Problem

Multi-threaded applications can be hard to program due to the complex concurrency control
protocols needed to avoid race conditions, starvation and deadlocks [Lea99a]. Due to
locking overhead, multi-threaded applications also often perform no better than single-
threaded applications. In fact, they may perform worse, particularly on multi-processor
platforms [SchSu95]. Two forces can arise in concurrent programs:
§ Multi-threaded applications should be both easy to program and efficient. In particular,

access to data that is logically global but physically local to a thread should be atomic
without incurring locking overhead for each access.[11]

§ As described in the Example section, operating systems often implement errno as a
'logically global' variable that developers program as if it were an actual global
variable. To avoid race conditions, however, the memory used to store errno is
allocated locally, once per thread.

 403

§ Many legacy libraries and applications were written originally assuming a single thread
of control. They therefore often pass data implicitly between methods via global objects,
such as errno, rather than passing parameters explicitly. When retrofitting such code
to run in multiple threads it is often not feasible to change existing interfaces and code
in legacy applications.

§ Operating systems that return error status codes implicitly in errno cannot be
changed easily to return these error codes explicitly without causing existing
applications and library components to break.

Solution

Introduce a global access point for each thread-specific object, but maintain the 'real' object
in storage that is local to each thread. Let applications manipulate these thread-specific
objects only through their global access points.

Structure

The Thread-Specific Storage pattern is composed of six participants.

A thread-specific object is an instance of an object that can be accessed only by a particular
thread.

For example, in operating systems that support multi-threaded processes, errno is an
int that has a different instance in each thread.

 404

A thread identifies a thread-specific object using a key that is allocated by a key factory.
Keys generated by the key factory are assigned from a single range of values to ensure that
each thread-specific object is 'logically' global.

For example, a multi-threaded operating system implements errno by creating a
globally-unique key. Each thread uses this key to access its own local instance of errno
implicitly.

A thread-specific object set contains the collection of thread-specific objects that are
associated with a particular thread. Each thread has its own thread-specific object set.
Internally, this thread-specific object set defines a pair of methods, which we call set() and
get(), to map the globally-managed set of keys to the thread-specific objects stored in the
set. Clients of a thread-specific object set can obtain a pointer to a particular thread-specific
object by passing a key that identifies the object as a parameter to get(). The client can
inspect or modify the object via the pointer returned by the get() method. Similarly, clients
can add a pointer to a thread-specific object into the object set by passing the pointer to the
object and its associated key as parameters to set().

An operating system's threads library typically implements the thread-specific object set.
This set contains the errno data, among other thread-specific objects.

 405

A thread-specific object proxy [GoF95] [POSA1] can be defined to enable clients to access a
specific type of thread-specific object as if it were an ordinary object. If proxies are not used,
clients must access thread-specific object sets directly and use keys explicitly, which is
tedious and error-prone. Each proxy instance stores a key that identifies the thread-specific
object uniquely. Thus, there is one thread-specific object per-key, per-thread.

A thread-specific object proxy exposes the same interface as its associated thread-specific
object. Internally, the interface methods of the proxy first use the set() and get() methods
provided by its thread-specific object set to obtain a pointer to the thread-specific object
designated by the key stored in the proxy. After a pointer to the appropriate thread-specific
object has been obtained, the proxy then delegates the original method call to it.

For example, errno is implemented as a preprocessor macro that plays the role of the
proxy and shields applications from thread-specific operations.

Application threads are clients that use thread-specific object proxies to access particular
thread-specific objects that reside in thread-specific storage. To an application thread, the
method appears to be invoked on an ordinary object, when in fact it is invoked on a thread-
specific object. Multiple application threads can use the same thread-specific object proxy to
access their unique thread-specific objects. A proxy uses the identifier of the application
thread that calls its interface methods to differentiate between the thread-specific objects it
encapsulates.

For example, the thread that runs the logger function in the Example section is an
application thread.

The following class diagram illustrates the general structure of the Thread-Specific Storage
pattern:

 406

The participants in the Thread-Specific Storage pattern can be modeled conceptually as a
two-dimensional matrix that has one row per key and one column per thread. The matrix
entry at row k and column t yields a pointer to the corresponding thread-specific object.
Creating a key is analogous to adding a row to the matrix; creating a new thread is
analogous to adding a column.

A thread-specific object proxy works in conjunction with the thread-specific object set to
provide application threads with a type-safe mechanism to access a particular object located
at row k and column t. The key factory maintains a count of how many keys have been used.
A thread-specific object set contains the entries in one column.

Note that the model above is only an analogy. In practice, implementations of the Thread-
Specific Storage pattern do not use two-dimensional matrices, because keys are not
necessarily consecutive integers. The entries in the thread-specific object set may also
reside in their corresponding thread, rather than in a global two-dimensional matrix. It is
helpful to visualize the structure of the Thread-Specific Storage pattern as a two-dimensional
matrix, however. We therefore refer to this metaphor in the following sections.

Dynamics

There are two general scenarios in the Thread-Specific Storage pattern: creating and
accessing a thread-specific object. Scenario I describes the creation of a thread-specific
object:
§ An application thread invokes a method defined in the interface of a thread-specific

object proxy.
§ If the proxy does not yet have an associated key it asks the key factory to create a new

key. This key identifies the associated thread-specific object uniquely in each thread's
object set. The proxy then stores the key, to optimize subsequent method invocations
by application threads.

§ The thread-specific object proxy creates a new object dynamically. It then uses the
thread-specific object set's set() method to store a pointer to this object in the location
designated by the key.

§ The method that was invoked by the application thread is then executed, as shown in
Scenario II.

 407

Scenario II describes how an application thread accesses an existing thread-specific object:
§ An application thread invokes a method on a thread-specific object proxy.
§ The thread-specific object proxy passes its stored key to the get() method of the

application thread's thread-specific object set. It then retrieves a pointer to the
corresponding thread-specific object.

§ The proxy uses this pointer to delegate the original method call to the thread-specific
object. Note that no locking is necessary, because the object is referenced through a
pointer that is accessed only within the client application thread itself.

Implementation

Implementing the Thread-Specific Storage pattern centers on implementing thread-specific
object sets and thread-specific object proxies. These two components create the
mechanisms for managing and accessing objects residing in thread-specific storage. We
therefore describe their implementation—including potential alternatives—as two separate
activities, starting with thread-specific object sets and then covering thread-specific object
proxies.

The thread-specific objects themselves, as well as the application code that accesses them,
are defined by application developers. We therefore do not provide general implementation
activities for these pattern participants. In the Example Resolved section, however, we use
our multi-threaded logging server example to illustrate how applications can program the
Thread-Specific Storage pattern effectively.

1. Implement the thread-specific object sets. This activity is divided into six sub-activities:
1. Determine the type of the thread-specific objects. In terms of our two-

dimensional matrix analogy, a thread-specific object is an entry in the matrix
that has the following properties:
§ Its row number corresponds to the key that uniquely identifies the

'logically global' object.
§ Its column number corresponds to a particular application thread

identifier.

To make implementations of the Thread-Specific Storage pattern more
generic, a pointer to a thread-specific object is stored rather than storing the
object itself. These pointers are often 'loosely typed', such as C/C++ void
*'s, so that they can point to any type of object. Although loosely typed void
*'s are highly flexible, they are hard to program correctly. Implementation

 408

activity 2 (491) therefore describes several strategies to encapsulate void
*'s with less error-prone, strongly-typed proxy classes.

2. Determine where to store the thread-specific object sets. In terms of our two-
dimensional matrix analogy, the thread-specific object sets correspond to
matrix columns, which are allocated one per application thread. Each
application thread identifier therefore designates one column in our conceptual
two-dimensional matrix. Each thread-specific object set can be stored either
externally to all threads or internally to its own thread:

There are pros and cons for each strategy:
§ External to all threads. This strategy maps each application thread's

identifier to a global table of thread-specific object sets that are stored
externally to all threads. Note that an application thread can obtain its own
thread identifier by calling an API in the threading library. Implementations
of external thread-specific object sets can therefore readily determine
which thread-specific object set is associated with a particular application
thread.

Depending on the implementation of the external table strategy, threads
can access thread-specific object sets in other threads. At first, this
design may appear to defeat the whole point of the Thread-Specific
Storage pattern, because the objects and pointers themselves do not
reside in thread-specific storage. It may be useful, however, if the thread-
specific storage implementation can recycle keys when they are no longer
needed, for example if an application no longer needs to access a global
object, such as errno, for some reason.

A global table facilitates access to all thread-specific object sets from one
'clean-up' thread, to remove the entries corresponding to the recycled
key. Recycling keys is particularly useful for Thread-Specific Storage
pattern implementations that support only a limited number of keys. For
example, Windows NT has a limit of 64 keys per process. Real-time
operating systems often support even fewer keys.

One drawback of storing thread-specific object sets in a global table
external to all threads is the increased overhead for accessing each
thread-specific object. This overhead stems from the synchronization
mechanisms needed to avoid race conditions every time the global table
containing all the thread-specific object sets is modified. In particular,
serialization is necessary when the key factory creates a new key,
because other application threads may be creating keys concurrently.
After the appropriate thread-specific object set is identified, however, the
application thread need not perform any more locking operations to
access a thread-specific object in the set.

§ Internal to each thread. This strategy requires each thread to store a
thread-specific object set with its other internal state, such as its run-time
thread stack, program counter, general-purpose registers, and thread
identifier. When a thread accesses a thread-specific object, the object is

 409

retrieved by using its associated key as an index into the thread's internal
thread-specific object set. Unlike the external strategy described above,
no serialization is required when the thread-specific object set is stored
internally to each thread. In this case all accesses to a thread's internal
state occurs within the thread itself.

Storing the thread-specific object set locally in each thread requires more
state per-thread, however, though not necessarily more total memory
consumption. As long as the growth in size does not increase the cost of
thread creation, context switching or destruction significantly, the internal
thread-specific object strategy can be more efficient than the external
strategy.

If an operating system provides an adequate thread-specific storage
mechanism, thread-specific object sets can be implemented internally to each
thread via the native operating system mechanism. If not, thread-specific
object sets can be implemented externally using a two-level mapping strategy.
In this strategy, one key in the native thread-specific storage mechanism is
dedicated to point to a thread-specific object set implemented externally to
each thread.

3. Define a data structure to map application thread identifiers to thread-specific
object sets. In terms of the two-dimensional matrix analogy, application thread
identifiers map to the columns in the matrix that represent thread-specific
object sets.

Application thread identifiers can range in value from very small to very large.
A large range in values presents no problem for object sets that reside
internally to each thread. In this case the thread identifier is associated
implicitly with the corresponding thread-specific object set contained within the
thread's state. Thus, there is no need to implement a separate data structure
to map application thread identifiers to thread-specific object sets.

For thread-specific object sets residing externally to all threads, however, it
may be impractical to have a fixed-size array with an entry for every possible
thread identifier value. This is one reason why the two-dimensional matrix
analogy is just a conceptual model rather than a realistic implementation
strategy. In this case it may be more space efficient to use a dynamic data
structure that maps thread identifiers to thread-specific object sets.

For example, a common strategy is to compute a hash function using the
thread identifier to obtain an offset to a hash table. The entry at this offset
contains a chain of tuples that map thread identifiers to their corresponding
thread-specific object sets.

4. Define the data structure that maps keys to thread-specific objects within a
thread-specific object set. In terms of the two-dimensional matrix analogy, this
mapping identifies a particular matrix entry (the thread-specific object)
according to its row (the key) at a particular column (the thread-specific object
set associated with a particular application thread identifier). For both the
external and internal thread-specific object set implementations, we must
select either a fixed-sized or a variable-sized data structure for this mapping.

The thread-specific object set can be stored in a fixed-size array if the range of
thread-specific key values is relatively small and contiguous. The POSIX
Pthreads standard [IEEE96], for example, defines a standard macro,
_POSIX_THREAD_KEYS_MAX, that sets the maximum number of keys
supported by a Pthreads implementation. If the size defined by this macro is

 410

small and fixed, for example 64 keys, the lookup time can be O(1) by indexing
into the thread-specific object set array directly using the key that identifies a
thread-specific object.

Some thread-specific storage implementations provide a range of thread-
specific keys that is large and nearly unbounded, however. Solaris threads, for
example, have no predefined limit on the number of thread-specific storage
keys in an application process. Solaris therefore uses a variable-sized data
structure, such as a hash table to map keys to thread-specific objects.
Although this data structure is more flexible than a fixed-size array, it can
increase the overhead of managing the thread-specific object set when a
many keys are allocated.

The following code shows how thread-specific object sets can be
implemented internally within each thread using a fixed-sized array of
thread-specific objects that are stored as void *'s. Using this internal
design means that it is not necessary to map application thread identifiers
to thread-specific object sets. Instead, we need only provide a data
structure that maps keys to thread-specific objects within a thread-specific
object set.

All the C code examples shown in this Implementation section are
adapted from a publicly available user-level library implementation
[Mue93] of POSIX Pthreads [IEEE96]. For example, the object_set_
data structure corresponding to implementation activity 1.4 (487) is
contained within the following thread_state struct. This struct is
used by the Pthreads library implementation to store the state of each
thread:
 struct thread_state {
 // Thread-specific 'object' set implemented
via
 // void *'s.
 void *object_set_[_POSIX_THREAD_KEYS_MAX];
 // ... Other thread state.
 };

In addition to keeping track of the array of pointers to thread-specific
storage objects, an instance of thread_state also includes other thread
state. This includes a pointer to the thread's stack and space to store
thread-specific registers that are saved and restored during a context
switch. Our Pthreads implementation also defines several macros to
simplify its internal programming:
 // Note that <errno>'s key number is 0, i.e.,
 // it is in first slot of array object_set_.
 #define ERRNO_KEY 0
 // Define a macro that's used internally to the
Pthreads
 // implementation to set and get <errno> values.
 #define INTERNAL_ERRNO \

 411

 (pthread_self ()->object_set_[ERRNO_KEY])

The pthread_self() function used by the INTERNAL_ERRNO macro is
an internal implementation subroutine that returns a pointer to the context
of the currently active thread.

5. Define the key factory. In our two-dimensional matrix analogy, keys
correspond to rows in the matrix. The key factory creates a new key that
identifies a 'logically global' object (row) uniquely. The state of this object will
physically reside in storage that is local to each thread.

For a particular object that is logically global yet physically local to each
thread, the same key value k is used by all threads to access their
corresponding thread-specific object. The count of the number of keys
currently in use can therefore be stored globally to all threads.

The code below illustrates our Pthreads library implementation of the
pthread_key_create() key factory. Keys are represented by integer
values:
 typedef int pthread_key_t;

A static variable keeps track of the current key count within the thread-
specific storage implementation:
 // All threads share the same key counter.
 static pthread_key_t total_keys_ = 0;

The total_keys_ variable is incremented automatically every time a
new thread-specific key is required, which is equivalent to adding a new
row to our conceptual two-dimensional matrix. Next, we define the key
factory itself:
 int pthread_key_create (pthread_key_t *key,
 void
(*thread_exit_hook)(void *)) {
 if (total_keys_ >= _POSIX_THREAD_KEYS_MAX) {
 // Use our internal <errno> macro.
 INTERNAL_ERRNO = ENOMEM;
 return -1;
 }
 thread_exit_hook_[total_keys_] =
thread_exit_hook;
 *key = total_keys_++;
 return 0;
 }

The pthread_key_create() function is a key factory. It allocates a
new key that identifies a thread-specific data object uniquely. This function

 412

requires no internal synchronization, because it must be called with an
external lock held, as shown by the TS_Proxy in implementation activity
2.1 (492).

When a key is created, the pthread_key_create() function allows the
calling thread to associate a thread_exit_hook with the new key. This
hook is a pointer to a function that will be used to delete any dynamically
allocated thread-specific objects that are associated with the key. When a
thread exits, the Pthreads library calls this function pointer automatically
for each key that has registered an exit hook.

To implement this feature, an array of function pointers to 'thread exit
hooks' can be stored as a static global variable in the Pthreads library:
 // Array of exit hook function pointers that can
be used
 // to deallocate thread-specific data objects.
 static void
 (*thread_exit_hook_[_POSIX_THREAD_KEYS_MAX]) (void
*);

The pthread_exit() function shows how exit hook functions are called
back just before a thread exits:
 // Terminate the thread and call thread exit
hooks.
 void pthread_exit (void *status) {
 // ...
 for (i = 0; i < total_keys_; ++i)
 if (pthread_self ()->object_set_[i]
 && thread_exit_hook_[i])
 // Indirect pointer to function call.
 (*thread_exit_hook_[i])
 (pthread_self ()-
>object_set_[i]);
 // Terminate the thread and clean up internal
 // resources...
 }

For each key, an application can either register the same function pointer,
a different function pointer, or any combination of function pointers. When
each thread exits, the Pthreads implementation calls the same function
that was registered when each key was created. Applications often
implement thread exit hooks as follows because deleting dynamically
allocated thread-specific objects is common:
 void cleanup_tss_object (void *ptr) {
 // This cast is necessary to invoke the
 // appropriate destructor (if one exists).
 delete (Object_Foo *) ptr;

 413

 }

6. Define methods to store and retrieve thread-specific objects from a thread-
specific object set. In terms of the matrix analogy, these two methods set and
get the value of matrix entries. The set() method stores a void* at matrix
entry [k,t], whereas the get() method retrieves a void* at matrix entry
[k,t]. In thread-specific storage implementations, k is passed as a key
argument and t is the implicit thread identifier returned by a call to
pthread_self().

7. The pthread_setspecific() function is a set() method that stores a
void* using the key passed by the client application thread that calls it:

8. int pthread_setspecific (pthread_key_t key, void
*value) {

9. if (key < 0 || key >= total_keys) {
10. // Use our internal <errno> macro.
11. INTERNAL_ERRNO = EINVAL;
12. return -1;
13. }
14. // Store value into appropriate slot in the

thread-
15. // specific object set.
16. pthread_self ()->object_set_[key] = value;
17. return 0;
18. }

19. Similarly, the pthread_getspecific() function retrieves a void*
using the key passed by the client application thread:

20. int pthread_getspecific (pthread_key_t key, void
**value){

21. if (key < 0 || key >= total_keys) {
22. // Use our internal <errno> macro.
23. INTERNAL_ERRNO = EINVAL;
24. return -1;
25. }
26. *value = pthread_self ()->object_set_[key];
27. return 0;
28. }

29. In this implementation, neither function requires any locks to access its
thread-specific object set, because the set resides internally within the
state of each thread.

 414

2. Implement thread-specific object proxies. In theory, the thread-specific object sets
written in C above are sufficient to implement the Thread-Specific Storage pattern. In
practice, however, it is undesirable to rely on such low-level C function APIs for two
reasons:
§ Although the thread-specific storage APIs of popular threading libraries, such

as POSIX Pthreads, Solaris threads, and Win32 threads, are similar, their
semantics differ subtly. For example, Win32 threads, unlike POSIX Pthreads and
Solaris threads, do not provide a reliable way to deallocate objects allocated in
thread-specific storage when a thread exits. In Solaris threads, conversely, there
is no API to delete a key. These diverse semantics make it hard to write code
that runs portably on all three platforms.

§ The POSIX Pthreads, Solaris, and Win32 thread-specific storage APIs store
pointers to thread-specific objects as void*'s. Although this approach provides
maximal flexibility, it is error-prone because void*'s eliminate type-safety.

To overcome these limitations the Thread-Specific Storage pattern defines a thread-
specific object proxy. Each proxy applies the Proxy pattern [GoF95] [POSA1] to
define an object that acts as a 'surrogate' for a thread-specific object. Application
threads that invoke methods on a proxy appear to access an ordinary object, when in
fact the proxy forwards the methods to a thread-specific object. This design shields
applications from knowing when or how thread-specific storage is being used. It also
allows applications to use higher-level, type-safe, and platform-independent wrapper
facades (47) to access thread-specific objects managed by lower-level C function
APIs.

The implementation of thread-specific object proxies can be divided into three sub-
activities:

3. Define the thread-specific object proxy interfaces. For the thread-specific
object there are two strategies for designing a proxy interface, polymorphism
or parameterized types:
§ Polymorphism. In this strategy an abstract proxy class declares and

implements the data structures and methods that every proxy supports.
Examples include the key that the thread-specific object set associates
with a particular 'logically global' object, or the lock needed to avoid race
conditions when creating this key.

Access to the concrete methods offered by thread-specific objects is
provided by subclasses of the general proxy, with one class for each type
of thread-specific object. Before forwarding client application requests to
the corresponding methods in the thread-specific object, a proxy first
retrieves an object pointer from the thread-specific object set via the key
stored in the proxy.

Using polymorphism to implement a proxy is a common strategy
[POSA1]. It can incur overhead, however, due to the extra level of
indirection caused by dynamic binding.

§ Parameterized types. In this strategy the proxy can be parameterized
by the types of objects that will reside in thread-specific storage. As with
the polymorphism strategy described above, the proxy mechanism only
declares and implements the data structures and methods every proxy
supports. It also performs all necessary operations on the thread-specific
object set before invoking the designated method on the thread-specific
object. Parameterization can remove the indirection associated with
polymorphism, which can improve the proxy's performance.

 415

A key design problem that arises when using the parameterized type
strategy is selecting a convenient mechanism to access the methods of
thread-specific objects encapsulated by a proxy. In particular, different
types of thread-specific objects have different interfaces. The mechanism
for accessing these objects cannot therefore define any concrete service
methods. This differs from the polymorphism strategy described above.

One way to address this problem is to use smart pointers [Mey95], such
as operator->, also known as the C++ arrow operator [Str97]. This
operator allow client application threads to access the proxy as if they
were accessing the thread-specific object directly. The operator->
method receives special treatment from the C++ compiler. It first obtains a
pointer to the appropriate type of thread-specific object, then delegates
the original method invoked on it.

Another generic way to access the methods of thread-specific objects is
to apply the Extension Interface pattern (141). This solution introduces a
generic method for the proxy that allows clients to retrieve the concrete
interfaces supported by the configured thread-specific object.

4. In our example we use C++ parameterized types to define a type-safe
template that applications can use to instantiate thread-specific object
proxies with concrete thread-specific objects:

5. template <class TYPE>
6. class TS_Proxy {
7. public:
8. // Constructor and destructor.
9. TS_Proxy ();
10. ~TS_Proxy ();
11.
12. // Define the C++ '->' and '*' operators to

access
13. // the thread-specific <TYPE> object.
14. TYPE *operator-> () const;
15. TYPE &operator* () const;
16. private:
17. // Key that uniquely identifies the 'logically
18. // global' object that 'physically' resides

locally
19. // in thread-specific storage.
20. mutable pthread_key_t key_;
21.
22. // "First time in" flag
23. mutable bool once_;
24.

 416

25. // Avoid race conditions during
initialization.

26. mutable Thread_Mutex keylock_;
27.
28. // A static cleanup hook method that deletes
29. // dynamically allocated memory.
30. static void cleanup_hook (void *ptr);
31. };

32. This thread-specific proxy template is parameterized by the type of object
that will be accessed via thread-specific storage. In addition, it defines the
C++ smart pointer operator-> to access a thread-specific object of type
TYPE.

34. Implement the creation and destruction of the thread-specific object proxy.
Regardless of whether we apply the polymorphism or parameterized type
strategy to define the thread-specific object proxy, we must manage the
creation and destruction of thread-specific object proxies.

35. The constructor for our thread-specific object proxy template class is
minimal, it simply initializes the object's data members:

36. template <class TYPE>
37. TS_Proxy<TYPE>::TS_Proxy (): once_ (false), key_

(0) { }

39. In general, a proxy's constructor does not allocate the key or a new thread-
specific object instance in the constructor for two reasons:
§ Thread-specific storage semantics. A thread-specific object proxy is

often created by a thread, for example the application's main thread, that
is different from thread(s) that use the proxy. Thus, there is no benefit
from pre-initializing a new thread-specific object in its constructor because
this instance will only be accessible by the thread that created it.

§ Deferred creation. On some operating systems, keys are limited
resources and should not be allocated until absolutely necessary. Their
creation should therefore be deferred until the first time a method of the
proxy is invoked. In our example implementation this point of time occurs
in the operator-> method.

The destructor for the thread-specific object proxy presents us with several
tricky design issues. The 'obvious' solution is to release the key that was
allocated by the key factory. There are several problems with this approach,
however:
§ Non-portability. It is hard to write a proxy destructor that releases keys

portably. For example, Solaris threads, unlike Win32 and POSIX
Pthreads, lacks an API to release keys that are not needed.

 417

§ Race conditions. One reason that Solaris threads do not provide an
API to release keys is that it hard to implement efficiently and correctly.
The problem is that each thread maintains independent copies of the
objects referenced by a key. Only after all threads have exited and the
memory reclaimed can a key be released safely.

As a result of these problems the proxy's destructor is generally a 'noop'. This
means that we do not recycle keys in this implementation. In lieu of a
destructor, therefore, we implement a thread-exit hook function, as discussed
in implementation activity 1.5 (489). This hook is dispatched automatically by
the thread-specific storage implementation when a thread exits. It deletes the
thread-specific object, thereby ensuring that the destructor of the object is
invoked.

The destructor of our TS_Proxy class is a 'no-op':
 template <class TYPE>
 TS_Proxy<TYPE>::~TS_Proxy () { }

To ensure the right destructor is called, the thread-exit hook casts its ptr
argument to a pointer to the appropriate TYPE before deleting it:
 template <class TYPE>
 void TS_Proxy<TYPE>::cleanup_hook (void *ptr) {
 // This cast invokes the destructor (if one
exists).
 delete (TYPE *) ptr;
 }

Note that the cleanup_hook() is defined as a static method in the
TS_Proxy class. By defining this method as static, it can be passed as
a pointer-to-function thread exit hook to pthread_key_create().

40. Implement the access to the thread-specific object. As we discussed earlier,
there are two general strategies—polymorphism and parameterized types—for
accessing the methods of a thread-specific object that is represented by a
proxy.

When using the polymorphism strategy, the interface of each concrete proxy
must include all methods offered by the thread-specific object that is
represented by this class. Method implementations in a concrete proxy
generally perform four steps:
§ Create a new key, if no such thread-specific object has been created

yet. We must avoid race conditions by preventing multiple threads from
creating a new key for the same TYPE of thread-specific object
simultaneously. We can resolve this problem by applying the Double-
Checked Locking Optimization pattern (365).

§ The method must next use the key stored by the proxy to get the
thread-specific object via its thread-specific object set.

§ If the object does not yet exist, it is created 'on-demand'.

 418

§ The requested operation is forwarded to the thread-specific object.
Any operation results are returned to the client application thread.

To avoid repeating this code within each proxy method, we recommend
introducing a helper method in the thread-specific object proxy base class that
implements these general steps.

When using parameterized types to instantiate a generic proxy, the smart
pointer and Extension Interface pattern (365) strategies described in
implementation activity 2.1 (492) can be applied to implement a general
access mechanism for any thread-specific object's methods. Analogously to
the polymorphism strategy, the general access mechanism must follow the
implementation steps described above.

By using the parameterized type strategy and overloading the C++ arrow
operator, operator->, applications can invoke methods on instances of
TS_Proxy as if they were invoking a method on an instance of the TYPE
parameter. The C++ arrow operator controls all access to the thread-
specific object of class TYPE. It performs most of the work, as follows:
 template <class TYPE>
 TYPE *TS_Proxy<TYPE>::operator->() const {
 TYPE *tss_data = 0;
 // Use the Double-Checked Locking Optimization
 // pattern to avoid excessive locking.
 if (!once_) {
 // Use Scoped Locking idiom to ensure
<keylock_>
 // is acquired to serialize critical
section.
 Guard <Thread_Mutex> guard (keylock_);
 if (!once_) {
 pthread_key_create (&key_,
 &cleanup_hook);
 // Must come last so that other
threads
 // don't use the key until it's
created.
 once_ = true;
 }
 // <Guard> destructor releases the lock.
 }
 // Get data from thread-specific storage. Note
that no
 // locks are required, because this thread's
own copy

 419

 // of the thread-specific object will be
accessed.
 pthread_getspecific (key_, (void **)
&tss_data);

 // Check if it's the first time in for this
thread.
 if (tss_data == 0) {
 // Allocate memory dynamically off the
heap,
 tss_data = new TYPE;
 // Store pointer in thread-specific
storage.
 pthread_setspecific (key_, (void *)
tss_data);
 }
 return tss_data;
 }

The TS_Proxy template is a proxy that transforms ordinary C++ classes
into type-safe classes whose instances reside in thread-specific storage. It
combines the operator-> method with C++ features, such as templates,
inlining, and overloading. In addition, it uses common concurrency control
patterns and idioms, such as Double-Checked Locking Optimization (353),
Scoped Locking (325), and Strategized Locking (333).

The Double-Checked Locking Optimization pattern is used in operator-
> to test the once_ flag twice. Although multiple threads could access the
same instance of TS_Proxy simultaneously, only one thread can validly
create a key via the pthread_key_create() method. All threads then
use this key to access their associated thread-specific object of the
parameterized class TYPE. The operator-> method therefore uses a
keylock_ of type Thread_Mutex to ensure that only one thread at a
time executes pthread_key_create().

After key_ is created, no other locking is needed to access thread-specific
objects, because the pthread_getspecific() and
pthread_setspecific() functions both retrieve the thread-specific
object of class TYPE from the state of the client application thread, which
is independent from other threads. In addition to reducing locking
overhead, the implementation of class TS_Proxy shown above shields
application code from the fact that objects are local to the calling thread.

The implementation of the extension interface and polymorphic proxy are
similar to the generic smart pointer approach shown above. The polymorphic
proxy approach simply forwards to a method of the thread-specific object and
returns the result. Similarly, the extension interface approach returns an

 420

extension interface from the thread-specific object and passes this back to the
client.

Example Resolved

The following application is similar to our original logging server from the Example section.
The logger() function shown below is the entry point to each thread that has its own
unique connection to a remote client application. The main difference is that the logger()
function uses the TS_Proxy template class defined in implementation activity 2.3 (496) to
access the errno value.

This template is instantiated by the following Error_Logger class:
 class Error_Logger { // Define a simple logging API.
 public:
 // Return the most recent error residing in thread-
 // specific storage.
 int last_error ();

 // Format and display a logging message.
 void log (const char *format, ...);
 // ...
 };

The Error_Logger class defines the type of the 'logically' global, but 'physically' thread-
specific, logger object, which is created via the following TS_Proxy thread-specific object
proxy template:
 static TS_Proxy<Error_Logger> my_logger;

The logger() function is called by each connection handling thread in the logging server.
We use the SOCK_Stream class described in the Wrapper Facade pattern (47) to read data
from the network connection, instead of accessing the lower-level C Socket API directly:
 static void *logger (void *arg) {
 // Network connection stream.
 SOCK_Stream *stream =
 static_cast <SOCK_Stream *> arg;

 // Read a logging record from the network connection
 // until the connection is closed.
 for (;;) {
 char log_record[MAXREC];

 // Check to see if the <recv> call failed, which
 // is signified by a return value of -1.
 if (stream->recv (log_record, MAXREC) == -1) {
 if (my_logger->last_error () == EWOULDBLOCK)

 421

 // Sleep a bit and try again.
 sleep (1) ;
 else // Record error result.
 my_logger->log
 ("recv failed, errno = %d",
 my_logger->last_error ()) ;
 } else // Other processing.
 }
 }

Consider the call to the my_logger->last_error() method above. The C++ compiler
generates code that replaces this call with two method calls. The first is a call to the
TS_Proxy::operator->, which returns the appropriate Error_Logger instance residing
in thread-specific storage. The compiler then generates a second method call to the
last_error() method of the Error_Logger object returned by the previous call. In this
case, TS_Proxy behaves as a proxy that allows an application to access and manipulate
the thread-specific error value as if it were an ordinary C++ object.

Variants

Starting with JDK 1.2, Java supports the Thread-Specific Storage pattern via class
java.lang.ThreadLocal. An object of class java.lang.ThreadLocal is a thread-
specific object proxy, which corresponds to one row in our two-dimensional matrix analogy.
ThreadLocal objects are often created as static variables in a central location so that they
are broadly visible. A ThreadLocal internal hash table maintains the entries for the thread-
specific objects, one per-thread. These entries are of type Object, which means that the
hash table does not know the concrete type of the objects it holds. Applications must
therefore maintain that knowledge and perform the necessary downcasting, which has the
pros and cons discussed in implementation activities 1.1 (484) and 2 (491).

A Java application thread can set the value of a ThreadLocal object foo by calling
foo.set(newValue). The foo object of type Thread-Local uses the thread identifier to
return the thread's current object entry from the hash table. The hash table is a normal data
structure, but by calling Collections.synchronizedMap(hashtable) wraps a thread-
safe layer around hashtable. This feature combines the Decorator [GoF95] and Thread-
Safe Interface patterns (345) to ensure that an existing Java collection will be serialized
correctly.

The class java.lang.InheritableThreadLocal is an extension of the ThreadLocal
class. This subclass allows a child thread to inherit all thread-specific objects from its parent
thread, with values preset to its current parent's values.

Known Uses

Widely-used examples of the Thread-Specific Storage pattern are operating system
platforms, such as Win32 and Solaris, that support the errno mechanism. The following
definition of errno is defined by Solaris in <errno.h>:
 #define errno (*(___errno()))

 422

The ___errno() function invoked by this macro can be implemented as follows, based
upon the low-level C thread-specific storage functions we described in implementation
activity 1 (484):
 int *___errno () {
 // Solaris ensures that static synchronization
 // objects are always initialized properly.
 static pthread_mutex_t keylock;
 static pthread_key_t key;
 static int once;
 int *error_number = 0;

 if (once) {
 // Apply Double-Checked Locking Optimization.
 pthread_mutex_lock (&keylock);
 if (once) {
 // Note that we pass in the <free> function
 // so the <error_number> memory will be
 // deallocated when this thread exits!
 pthread_key_create (&key, free);
 once = 1;
 }
 pthread_mutex_unlock (&keylock);
 }
 // Use <key> to retrieve <error_number> from the
 // thread-specific object set.
 pthread_getspecific (key, &error_number);
 if (error_number == 0) {
 // If we get here, then <error_number> has not
 // been created in this thread yet. Thus, we'll
 // create it and store it into the appropriate
 // location in the thread-specific object set.
 error_number = (int *) malloc (sizeof (int));
 pthread_setspecific (key, error_number);
 }
 return error_number;
 }

The Win32 GetLastError() and SetLastError() functions implement the Thread-
Specific Storage pattern in a similar manner.

In the Win32 operating system API, windows are owned by threads [Pet95]. Each thread
that owns a window has a private message queue where the operating system enqueues

 423

user interface events. Event processing API calls then dequeue the next message on the
calling thread's message queue residing in thread-specific storage.

The Active Template Library from COM uses the Extension Interface approach to
implement the Thread-Specific Storage pattern.

OpenGL [NDW93] is a C API for rendering three-dimensional graphics. The program
renders graphics in terms of polygons that are described by making repeated calls to the
glVertex() function to pass each vertex of the polygon to the library. State variables set
before the vertices are passed to the library determine precisely what OpenGL draws as it
receives the vertices. This state is stored as encapsulated global variables within the
OpenGL library or on the graphics card itself. On the Win32 platform, the OpenGL library
maintains a unique set of state variables in thread-specific storage for each thread using the
library.

Thread-specific storage is used within the ACE framework [Sch97] to implement its error
handling scheme, which is similar to the approach described in the Example Resolved
section. In addition, ACE implements the type-safe thread-specific object proxy using C++
templates, as described in implementation activity 2 (491). The ACE thread-specific storage
template class is called ACE_TSS.

Local telephone directory services. A real-life example of the Thread-Specific Storage
pattern is found in telephone directory services. For example, in the United States, the
'logically global' number 411 can be used to connect with the local directory assistance
operator for a particular area code or region.

Consequences

There are four benefits of using the Thread-Specific Storage pattern:

Efficiency. The Thread-Specific Storage pattern can be implemented so that no locking is
necessary to access thread-specific data. For example, by placing errno into thread-
specific storage, each thread can reliably and efficiently set and test the completion status of
methods called within that thread, without using complex synchronization protocols. This
design eliminates locking overhead for data shared within a thread, which is faster than
acquiring and releasing a mutex [EKBF+92].

Reusability. Applying the Wrapper Facade pattern (47) and decoupling the reusable the
Thread-Specific Storage pattern code from application-specific classes can shield
developers from subtle and non-portable thread-specific key creation and allocation logic.
For example, the Double-Checked Locking Optimization pattern (365) can be integrated into
a reusable thread-specific object proxy component to prevent race conditions automatically.

Ease of use. When encapsulated with wrapper facades, thread-specific storage is relatively
straightforward for application programmers to use. For example, thread-specific storage can
be hidden completely at the source-code level by abstractions, such as the thread-specific
object proxy templates, or macros, such as errno. Changing a class to or from a thread-
specific class therefore simply requires changing the way in which an object of the class is
defined.

Portability. Thread-specific storage is available on most multi-threaded operating systems
platforms. It can be implemented conveniently on platforms that lack it, such as VxWorks or
pSoS. Furthermore, thread-specific object proxies can encapsulate platform-dependent
operations behind a uniform and portable interface. Porting an application to another thread
library, such as the TLS interfaces in Win32, therefore only requires changing the TS_Proxy
class, rather than application code that uses the class.

 424

However, the following are liabilities of using the Thread-Specific Storage pattern:

It encourages the use of (thread-specific) global objects. Many applications do not require
multiple threads to access thread-specific data via a common access point. In this case, data
should be stored so that only the thread owning the data can access it.

Consider our logging server that uses a pool of threads to handle incoming logging
records from clients. In addition to writing the logging records to persistent storage, each
thread can log the number and type of services it performs. This logging mechanism
could be accessed as a global Error_Logger object via thread-specific storage.
However, a simpler approach, though potentially less efficient and more obtrusive, is to
represent each logger thread as an active object (369), with an instance of the
Error_Logger stored as a data member rather than in thread-specific storage. In this
case, the Error_Logger can be accessed as a data member by active object methods
or passed as a parameter to all external methods or functions called by the active object.

It obscures the structure of the system. The use of thread-specific storage potentially makes
an application harder to understand, by obscuring the relationships between its components.
For example, it is not obvious from examining the source code of our logging server that
each thread has its own instance of Error_Logger, because my_logger resembles an
ordinary global object. In some cases it may be possible to eliminate the need for thread-
specific storage, by representing relationships between components explicitly via
containment or aggregation relationships.

It restricts implementation options. Not all languages support parameterized types or smart
pointers, and not all application classes offer Extension Interfaces (141). 'Elegant'
implementation solutions for the thread-specific object proxy therefore cannot be applied for
all systems. When this occurs, less elegant and less efficient solutions, such as
polymorphism or low-level functions, must be used to implement the Thread-Specific
Storage pattern.

See Also

Thread-specific objects such as errno are often used as per-thread singletons [GoF95]. Not
all uses of thread-specific storage are singletons, however, because a thread can have
multiple instances of a type allocated from thread-specific storage. For example, each
instance of an active object (369) implemented via an ACE_Task [Sch97] stores a thread-
specific cleanup hook.

The Thread-Specific Storage pattern is related to the Data Ownership pattern [McK95],
where a thread mediates client access to an object.

Credits

Tim Harrison and Nat Pryce were co-authors of the original version of the Thread-Specific
Storage pattern. Thanks to Tom Cargill for comments on the original version of this pattern.

[11]Note that this use case contrasts with the situation in which multiple threads collaborate
on a single task using global or shared data. In that case, the data is not thread-specific and
each thread's access to it must be controlled via a synchronization mechanism, such as a
mutex or semaphore.

 425

 426

Chapter 6: Weaving the Patterns Together
"The limits of my language are the limits of my world."

Ludwig Wittgenstein

"No pattern is an island, entire of itself; every pattern is a piece of the
continent, a part of the main."

Paraphrase of John Donne's 'Devotions'

The patterns in this book can be applied individually, each helping to resolve a particular set
of forces related to concurrency and networking. However, just using these patterns in a
stand-alone way limits their power unnecessarily, because real-world software systems
cannot be developed effectively by resolving problems in isolation.

To increase the power of this book, this chapter shows how the patterns presented in
Chapter 2 through 5 connect, complement, and complete each other to form the basis of a
pattern language for building high-quality distributed object computing middleware, and
concurrent and networked applications. In addition, we outline how many of these patterns
can be applied outside the context of concurrency and networking.

6.1 From Individual Patterns to Pattern Languages
The patterns presented in Chapter 2 are described in a self-contained manner, as are the
patterns in [POSA1]. For example, the patterns' contexts are expressed as generally as
possible, to avoid limiting their applicability to a particular configuration of other problems,
patterns, or designs. The patterns can therefore be applied whenever a problem arises that
they address. Moreover, neither the patterns' solution descriptions nor their implementation
guidelines focus on the solutions of similar problems described by other patterns. Each
pattern references only those patterns that help implement its own solution structure and
dynamics.

No Pattern is an Island

Unfortunately, focusing on individual patterns does not support the construction of real-world
software systems effectively. For example, many inter-related design problems and forces
must be resolved when developing concurrent and networked systems, as shown in the Web
server example described in Chapter 1, Concurrent and Networked Objects. These
relationships must be considered when addressing key design and implementation issues.
Regardless of their individual utility, therefore, stand-alone patterns can only resolve small
problems in isolation, as they do not consider the larger context in which they apply.

Even if stand-alone patterns were somehow connected, giving them the potential to solve
larger problems, it might be hard to extract these relationships from their descriptions. For
example, if two pattern descriptions reference each other, it may not be obvious when one
pattern should be applied before the other. When developing software applications and
systems with patterns, however, the order in which the patterns are applied may be crucial
for their successful integration [Bus00a].

The importance of proper ordering is particularly relevant for architectural patterns, which
introduce a structure that defines the base-line architecture for an entire software system.
Each component in such a structure is 'complex' by itself, and often these components can

 427

be implemented using other design patterns. It is therefore crucial to express the precise
relationships between such patterns to determine which pattern to apply first and which later.

For example, the Reactor architectural pattern (179) introduces a participant—event
handler—whose concrete implementations may define their own concurrency model. The
discussion of an event handler's implementation in the Variants section of the Reactor
pattern therefore references applicable concurrency patterns, including Active Object (369)
and Monitor Object (399).

Similarly, to illustrate which particular types of event handlers are useful for networked
applications, the Reactor's implementation guidelines reference the Acceptor-Connector
pattern (285). In turn, this pattern introduces a participant—the service handler—whose
concrete implementations may also define their own concurrency model. The
implementation guidelines for service handlers thus reference the Active Object and Monitor
Object patterns again. This somewhat convoluted set of inter-relationships among the
various patterns participants is illustrated in the figure below:

When reading the Reactor pattern description in isolation, however, it is not obvious how to
apply Active Object or Monitor Object effectively in the presence of Acceptor-Connector,
which may also use these patterns. For example, the Reactor pattern does not specify
whether or not a Reactor should apply Active Object to implement a particular type of event
handler. Nor does it specify whether an Acceptor-Connector that uses the Reactor should
use Monitor Object to implement its acceptors, connectors, and service handlers.

In general, not all possible combinations of these four patterns are useful. However, because
each pattern description is self-contained and independent of the others, it is hard to extract
the useful combinations from the individual pattern descriptions.

Towards Pattern Languages

To support the development a particular family of software systems or application
frameworks [POSA1], a broader viewpoint should be applied to the set of available patterns.
In particular, patterns should not be considered solely as islands. They should instead be
woven into networks of interrelated patterns that define a process for resolving software
development problems systematically [Cope96] [Gab96] [Cope97]. We call these pattern
languages.

Pattern languages are not formal languages, although they do provide a vocabulary for
talking about particular problems [SFJ96]. Together, patterns and pattern languages help
developers communicate architectural knowledge, learn a new design paradigm or
architectural style, and elude traps and pitfalls that have been avoided traditionally only
through costly experience [PLoPD1].

One or more patterns define the 'entry point' of a pattern language and address the
coarsest-grained problems that must be resolved when developing a particular type of
application or part of an application. When reading this book, you may identify the
architectural patterns as those addressing coarse-grained problems in software architecture.

 428

Each entry point pattern specifies which other patterns should be used to resolve sub-
problems of the original problem, as well as the order in which to apply these other patterns.

The referenced patterns therefore complete these 'larger' patterns, which in turn specify
useful combinations of the 'smaller' patterns in the presence of a particular problem. In
software architecture, these smaller patterns often correspond to design patterns. The
smaller patterns may then define how to apply other patterns in their own solutions to
resolve additional sub-problems. This iterative decomposition of larger into smaller patterns
continues until all problems in a given domain are addressed by a designated pattern.

As pattern writers become more familiar with their domain, therefore, they should strive to
connect patterns that can complement and 'complete' each other [AIS77]. By applying one
pattern at a time [Ale79] [Bus00b] and following the relationships between the patterns, it
becomes possible to generate high-quality software architectures and designs. The resulting
pattern language is 'synergistic', that is, it is more than the sum of its constituent patterns.
For example, the connected patterns help to produce better system architectures by
resolving groups of problems that arise during software development. Each solution builds
upon the solutions of related problems that are addressed by patterns in the language.

To illustrate this iterative decomposition process, the patterns from the Reactor (179)
example shown earlier in this chapter can be integrated to form a mini pattern language.
Rather than suggesting the Acceptor-Connector pattern (285) as an option to implement a
Reactor's event handlers, we could require that it be applied. In a Reactor's architectural
structure there could therefore be three types of event handlers—acceptors, connectors and
service handlers—where the latter can be implemented using a concurrency model, such as
Active Object (369) and Monitor Object (399):

Refactoring the relationships between these four patterns in this manner has two effects on
a Reactor implementation:
§ It ensures that implementors of the Reactor pattern specify the 'right' types of event

handlers—acceptors, connectors, and service handlers—associated with the Acceptor-
Connector pattern. Relating the Active Object and Monitor Object patterns with
Acceptor-Connector also clarifies which type of event handler—the service handlers—is
most useful for introducing concurrency.

§ The references to the concurrency patterns can be removed from the Reactor pattern
and need only appear in the Acceptor-Connector pattern. This simplifies the
relationships between the four patterns and emphasizes the important ones.

This mini pattern language we have created with the Reactor, Acceptor-Connector, Active
Object, and Monitor Object patterns helps to generate good software architectures, because
common implementation mistakes that might occur if the Reactor or one of the other
patterns was applied in isolation can be avoided. Refactoring the patterns' relationships also
helps to improve our collective understanding of how the four patterns connect to a broader
pattern language that can generate larger architectural structures.

6.2 A Pattern Language for Middleware and Applications
In this section we want to explore the relationships that exist between the patterns described
in this book. Our goal is to define the foundation of a pattern language that supports the

 429

development of concurrent and networked software systems more effectively than by merely
applying the patterns in isolation.

We apply a two-step process to connect the patterns in this book into a pattern language:
§ Identify pattern relationships. Firstly we examine the self-contained descriptions of

each pattern to determine which relationships listed in the patterns should be kept and
which should be ignored. In particular, we only consider the 'uses' relationship among
the patterns and ignore all others, such as the 'is used by' and transitive relationships.
We also include all optional uses of other patterns into our set of relationships.

§ Define pattern ordering. Secondly, based on the remaining relationships, we then
define the order of the patterns in the language, that is, which patterns are entry points,
which patterns follow, and which patterns are leafs. In our language, we define the
patterns with the broadest scope—the architectural patterns—as its entry points. The
'uses' relationships then define the ordering between the patterns.

The Pattern Language in Detail

By following the strategy outlined above, we connect the patterns described in this book to a
pattern language. This language is summarized in the following diagram. We recommend
that you refer back to this diagram as you are reading the pattern language entries.

If a pattern uses another pattern in its implementation, it points to the pattern with an arrow.
'Duplicate' entries for patterns that are frequently referenced by other patterns avoid having
too many crossed relationships. Architectural patterns are shaded to indicate where the
language 'begins'.

Half-Sync/Half-Async

The Half-Sync/Half-Async architectural pattern (423) structures concurrent systems that can
be implemented using a mixture of asynchronous and synchronous service processing.

 430

The pattern introduces two designated layers for asynchronous and synchronous service
processing, plus a queuing layer that allows services to exchange messages and data
between the other two layers.

If the operating system supports sophisticated asynchronous I/O operations, the Proactor
pattern (215) can be used to implement the asynchronous service processing layer. The
Active Object pattern (369) and Monitor Object pattern (399) can help implement the
queueing layer. The Half-Sync/Half-Reactive variant of the Half-Sync/Half-Async pattern can
be implemented by combining the Reactor pattern (179) with the Active Object pattern (369).

Leader/Followers

The Leader/Followers architectural pattern (447) provides a concurrency model that allows
multiple threads to take turns sharing a set of event sources, to detect, demultiplex, dispatch,
and process service requests that occur on the event sources.

At the heart of this pattern is a thread pool mechanism. It allows multiple threads to
coordinate themselves and protects critical sections involved with detecting, demultiplexing,
dispatching, and processing events. One thread at a time—the leader—is allowed to wait for
an event to occur on a set of event sources. Meanwhile other threads—the followers—can
queue awaiting their turn to become the leader.

When the current leader thread detects an event from the event source set, it first promotes
a follower thread to become the new leader. Then it plays the role of a processing thread,
demultiplexing and dispatching the event to a designated event handler. The event handler
in turn performs the required application-specific event processing. Multiple processing
threads can run concurrently while the leader thread waits for new events on the set of event
sources shared by the threads. After handling its event, a processing thread reverts to a
follower role and waits to become the leader thread again.

The Monitor Object pattern (399) can be used to implement the thread pool mechanism that
allows multiple threads to coordinate themselves. The Reactor (179) or Proactor (215)
patterns can be used to demultiplex and dispatch events from the set of event sources to
their designated event handlers.

Reactor

The Reactor architectural pattern (179) structures event-driven applications, particularly
servers, that receive requests from multiple clients concurrently but process them iteratively.

The pattern introduces two co-operating components, a reactor and a synchronous event
demultiplexer. These demultiplex and dispatch incoming requests to a set of event handlers,
which define the application's services that process these requests. Requests from clients
are received and responses are sent through handles, which encapsulate transport
endpoints in a networked system.

In general there are three types of event handlers—acceptors, connectors, and service
handlers—as specified by the Acceptor-Connector pattern (285). The handles that
encapsulate the IPC mechanisms are often implemented according to the Wrapper Facade
design pattern (47). A thread-safe reactor can be implemented using the Strategized Locking
pattern (333). The timer queue mechanism of the Reactor pattern can use the Asynchronous
Completion Token pattern (261) to identify which event handler has expired.

Proactor

 431

The Proactor architectural pattern (215) structures event-driven applications, particularly
servers, that receive and process requests from multiple clients concurrently.

Application services are split into two parts:
§ Operations that execute asynchronously, for example to receive client requests.
§ Corresponding completion handlers that process the results of these asynchronous

operations, for example a particular client request.

Asynchronous operations are executed by an asynchronous operation processor, which
inserts the results of these asynchronous operations—the completion events—into a
completion event queue. A proactor then removes the completion events from the
completion event queue using an asynchronous event demultiplexer, then dispatches them
on the appropriate completion handler to finish processing the service. Requests from clients
are received and responses are sent via handles, which encapsulate transport endpoints in
a networked system.

To support an effective demultiplexing and dispatching of completion events from
asynchronous operation to their designated completion handler, the asynchronous operation
processor and the proactor can both use the Asynchronous Completion Token pattern (261)
to identify which asynchronous operation has finished and which completion handler should
process its results. As with the Reactor pattern, there are three general types of completion
handlers—acceptors, connectors, and service handlers—as specified by the Acceptor-
Connector pattern (285). The asynchronous operation processor, as well as the handles that
encapsulate the IPC mechanisms, can be implemented according to the Wrapper Facade
pattern (47). A thread-safe proactor can be implemented using the Strategized Locking
pattern (333).

Interceptor

The Interceptor architectural pattern (109) allows functionality to be added to an application
framework transparently. This functionality is invoked automatically when framework-internal
events occur.

The Interceptor pattern specifies and exposes an interceptor interface callback for selected
event types internal to a framework. Applications can derive concrete interceptors from this
interface to implement out-of-band functionality that processes occurrences of the
corresponding event type in an application-specific manner. A dispatcher is provided for
every interceptor, so that applications can register their concrete interceptors with the
framework. The framework calls back the concrete interceptors via their associated
dispatchers whenever the designated event occurs. Concrete interceptors that must modify
framework behavior during their event processing can leverage context objects, which
provide controlled access to the framework's internal state. Context objects are passed to
concrete interceptors when they are dispatched by the framework.

The Extension Interface pattern (141) can be used to help avoid implementing multiple
concrete interceptors. Instead, a single interceptor implements multiple interfaces, each
corresponding to a particular concrete interceptor. Similarly, the Component Configurator
pattern (75) can be used to link concrete interceptors into a concrete framework dynamically
at run-time.

Acceptor-Connector

The Acceptor-Connector design pattern (285) decouples connection establishment and
service initialization from service processing in a networked system.

This pattern introduces three types of components:

 432

§ Service handlers define one half of an end-to-end service in a networked system and
process requests from their connected remote peer.

§ Acceptors perform passive connection establishment, accept connection requests from
remote peers, and initialize a service handler to process subsequent service requests
from these peers.

§ Connectors perform active connection establishment and initiate a connection to a
remote component on behalf of a service handler. This then communicates with the
remote component once the connection is established.

Acceptors, connectors, and service handlers send and receive requests from peers via
handles, which encapsulate transport endpoints in a networked system.

To process multiple service requests simultaneously, service handlers can be implemented
using the concurrency models defined by the Active Object (369) and Monitor Object (399)
patterns. The handles used to access the underlying operating system IPC mechanisms can
be implemented via the Wrapper Facade pattern (47).

Component Configurator

The Component Configurator design pattern (75) allows a system to link and unlink its
component implementations at run-time without having to modify, recompile, or statically
relink the application. It also supports the reconfiguration of components into different
processes without having to shut down and re-start running processes.

In this pattern a component defines a uniform interface for configuring and controlling a
particular type of application service or functionality that it provides. Concrete components
implement the interface in an application-specific manner. Applications or administrators can
use component interfaces to initialize, suspend, resume, and terminate their concrete
components dynamically, as well as to obtain run-time information about each configured
concrete component. Concrete components are packaged into a suitable unit of
configuration, such as a dynamically linked library (DLL) or shared library, that can be linked
and unlinked in and out of an application dynamically under control of a component
configurator. This uses a component repository to keep track of all concrete components
configured into an application.

Components configured into a networked system using Component Configurator can be
acceptors, connectors, and service handlers as defined by the Acceptor-Connector pattern
(285), or interceptors, as defined by the Interceptor pattern (109).

Active Object

The Active Object design pattern (369) decouples method execution from method invocation
to enhance concurrency and simplify synchronized access to objects that reside in their own
threads of control.

A proxy represents the interface of an active object and a servant provides the object's
implementation. Both the proxy and the servant run in separate threads, so that method
invocations and method executions can run concurrently. At run-time the proxy transforms
the client's method invocations into method requests, which are stored in an activation list by
a scheduler. The scheduler's event loop runs continuously in the same thread as the
servant, dequeueing method requests from the activation list and dispatching them on the
servant. Clients can obtain the result of a method's execution via a future returned by the
proxy when the method was invoked.

 433

The Extension Interface pattern (141) helps provide role-specific proxies, so that clients
access only those services of an active object that they require. The Monitor Object pattern
(399) can be used to implement a thread-safe activation list.

Monitor Object

The Monitor Object design pattern (399) synchronizes concurrent method execution to
ensure that only one method at a time runs within an object. It also allows an object's
methods to schedule their execution sequences cooperatively.

Clients can only access the functions defined by a monitor object via its synchronized
methods. To prevent race conditions involving monitor object state, just one synchronized
method at a time can run within a monitor object. Each monitored object contains a monitor
lock that synchronized methods use to serialize their access to an object's behavior and
state. In addition, synchronized methods can determine the circumstances under which they
suspend and resume their execution, based on one or more monitor conditions associated
with a monitor object.

The Extension Interface pattern (141) helps export role-specific views on a monitor object,
so that clients only access those services that they require. The Thread-Safe Interface
pattern (345) helps prevent self-deadlock when a synchronized method of a monitor object
calls another synchronized method on the same monitor object.

Wrapper Facade

The Wrapper Facade design pattern (47) encapsulates the functions and data provided by
existing non-object-oriented APIs within more concise, robust, portable, maintainable, and
cohesive object-oriented class interfaces.

The Extension Interface pattern (141) can be used to allow clients to access certain
implementation-related aspects of a wrapper facade. The Thread-Specific Storage pattern
(475) may be useful when implementing the error-handling mechanism of a wrapper facade
on platforms that do not support exception handling efficiently or portably.

Extension Interface

The Extension Interface design pattern (141) prevents bloating of interfaces and breaking of
client code when developers extend or modify the functionality of components. Multiple
extension interfaces can be attached to the same component, each defining a contract
between the component and its clients.

Using the Extension Interface pattern, a component's functionality is exported only via
extension interfaces, one for each role it implements. Clients therefore access interfaces but
never access component implementations directly. An associated factory is responsible for
creating component instances and returning an initial interface reference to clients. Clients
can use this interface to retrieve other extension interfaces.

Implementations of the extension interface functionality within components can use the
Active Object (369) and Monitor Object (399) patterns to run in their own thread of control.

Asynchronous Completion Token

The Asynchronous Completion Token design pattern (261) allows clients to invoke
operations on services asynchronously and to dispatch their subsequent processing actions
efficiently when the operations complete and return their results.

 434

For every asynchronous operation that a client invokes on a service, the client creates an
asynchronous completion token (ACT) that identifies the actions and state necessary to
process the operation's completion. The client passes the ACT to the service together with
the operation. When the service replies to the client, its response must include the ACT that
was sent originally. The client then uses the ACT to identify the completion handler that
processes the results of the asynchronous operation.

Thread-Specific Storage

The Thread-Specific Storage design pattern (475) allows multiple threads to use one
'logically global' access point to retrieve an object that is local to a thread—called a 'thread-
specific object'—without incurring locking overhead for each access to the object.

The thread-specific objects of a particular thread are maintained using a thread-specific
object set. The global access point to a particular thread-specific object can be implemented
by a thread-specific object proxy. This hides the details of the creation of the thread-specific
object and retrieves it from the thread-specific object set when accessing its methods.

An alternative to accessing the methods of a thread-specific object via the proxy is to use the
Extension Interface pattern (141), in which the proxy returns an interface that the thread-
specific object implements. The Double-Checked Locking Optimization pattern (353) is often
used to create a thread-specific object correctly and transparently in multithreaded
applications.

Thread-Safe Interface

The Thread-Safe Interface design pattern (345) minimizes locking overhead and ensures
that intra-component method calls do not incur 'self-deadlock' by trying to reacquire a lock
that a component already holds. By using this pattern, a component's methods are divided
into two categories, implementation and interface methods:
§ Implementation methods, which are internal to the component and cannot be called by

its clients, implement the component's functionality, if necessary by calling other
implementation methods. Implementation methods 'trust' that they are called correctly
and thus do not acquire/release locks.

§ In contrast, interface methods export the component's functionality to clients. These
methods first 'check' by acquiring a lock, delegating the method's execution to an
appropriate implementation method, and finally releasing the lock when the
implementation method finishes executing. Interface methods never call other interface
methods on the same component.

The Strategized Locking pattern (333) can be used to implement the acquisition and release
of locks, as well as to parameterize the type of lock being used.

Double-Checked Locking Optimization

The Double-Checked Locking Optimization design pattern (353) reduces contention and
synchronization overhead whenever critical sections of code must acquire locks in a thread-
safe manner only once during program execution.

The pattern uses a flag to indicate whether it is necessary to execute a critical section before
acquiring the lock that guards it. If the critical section code has already been initialized, it
need not be executed again, thereby avoiding unnecessary locking overhead.

The Strategized Locking pattern (333) is used to implement the acquisition and release of
locks, as well as to parameterize the type of lock being used.

 435

Strategized Locking

The Strategized Locking design pattern (333) parameterizes synchronization mechanisms in
a component that protect its critical sections from concurrent access. This allows a
component's synchronization mechanisms to be implemented as 'pluggable' types. Each
type objectifies a particular synchronization strategy, such as a mutex, readers/writer lock, or
semaphore. Instances of these pluggable types can be defined as objects contained within a
component, which can use these objects to synchronize its method implementations
efficiently.

The Scoped Locking idiom (325) can be used to acquire and release a particular type of lock
that is parameterized into a component via the Strategized Locking pattern. Moreover,
Strategized Locking can templatize guard classes that apply the Scoped Locking idiom, so
that synchronization mechanisms can be parameterized transparently.

Scoped Locking

The Scoped Locking C++ idiom (325) ensures that a lock is acquired when control enters a
scope and released automatically when control leaves the scope, regardless of the return
path from the scope.

The pattern defines a guard class whose constructor acquires a lock automatically when
control enters a scope and whose destructor releases the lock automatically when control
leaves the scope. Instances of the guard class are created to acquire and release locks in
method or block scopes that define critical sections.

A Discussion of the Pattern Language

The condensed description of the patterns and the pattern relationship diagram above reveal
how most of the patterns complement and complete each other in multiple ways to form a
pattern language:
§ Although each pattern is useful in isolation, the pattern language is even more

powerful, because it integrates solutions to particular problems in important problem
areas, such as event handling, connection management and service access,
concurrency models, and synchronization strategies. Each problem in these problem
areas must be resolved coherently and consistently when developing concurrent and
networked systems.

§ The pattern language also exposes the interdependencies of these general problem
areas. For example, when selecting a particular event-handling pattern for a networked
application, not all potentially-available concurrency patterns can be applied usefully.

These two points become clear only when connecting patterns into a pattern language,
because each pattern in isolation only focuses on itself. This makes it harder to recognize
pattern inter-relationships and solve more complex system architecture problems effectively.
In contrast, a pattern-based design can fulfill a software system's requirements more
successfully by integrating the patterns consistently and synergistically.

Our pattern language has been applied to many real-world applications, in particular, but not
only to systems that are built using the ACE framework [Sch97]. This language is therefore
an important tool for specifying and implementing middleware and applications. Note,
however, that the pattern language is incomplete, providing the foundation for a larger
language for developing distributed object computing middleware, and concurrent and
networked applications.

 436

Fortunately our pattern language can be completed by applying other patterns defined in the
pattern literature. For example, the Interceptor pattern (109) is orthogonal to most other
patterns presented in this book. The Broker architectural pattern [POSA1], however, defines
a fundamental structure for distributed software systems that often uses the Interceptor
pattern to support out-of-band extensions [NMM99] [HS99a], and the Half-Sync/Half-Async
architectural pattern (423) or its Half-Sync/Half-Reactive variant [Sch98b] to structure its
broker component. The Broker pattern therefore connects the Interceptor pattern with the
other patterns in our pattern language and clarifies their inter-relationships explicitly.

Other patterns from the literature help refine the patterns in our language. For example, peer
service handlers defined by the Acceptor-Connector pattern (285) can be implemented using
the Half Object plus Protocol pattern [Mes95] and/or the Abstract Session pattern [Pry99].
Similarly, the Remote Proxy variant of the Proxy pattern [GoF95] [POSA1] can be used to
implement a particular Interceptor (109) variant. Other examples exist: the Forwarder-
Receiver pattern [POSA1] helps implement the Half-Sync/Half-Reactive variant of the Half-
Sync/Half-Async pattern (423). Similarly, the Broker [POSA1] and Object Synchronizer
[SPM99] patterns can be used to implement variants of the Active Object pattern (369).

Our pattern language can also integrate patterns motivated originally by examples from
domains other than concurrency and networking. For example, the patterns described in this
book reference many well-known general-purpose patterns, including Abstract Factory,
Adapter, Bridge, Command, Decorator, Facade, Factory Method, Iterator, Mediator,
Memento, Observer, Singleton, Strategy, and Template Method from [GoF95], Command
Processor, Layers, Pipes and Filters, and Reflection from [POSA1], Manager and Null
Object from [PLoPD3], and Hook Method from [Pree95].

The integration of all these connected patterns forms a broader pattern language for
developing distributed object computing middleware, and concurrent and networked
applications. This language can undoubtedly be extended with yet other published patterns
or those that remain to be discovered and documented. With each extension the pattern
language will become more powerful, complete, and expressive. In this way we can improve
the integration of patterns for concurrent and networked software systems.

6.3 Beyond Concurrency and Networking
In the preceding sections we show how the patterns described in this book, together with
patterns from other sources, define the basis of a pattern language for developing distributed
object computing middleware, and concurrent and networked applications. While this pattern
language accentuates the use of these patterns in this particular domain, many of the
patterns also apply outside of it.

Analyzing the Problem sections and Known Uses sections of the patterns reveals that the
scope of many of them is broader than the focus of this book implies. Some patterns, for
example Wrapper Facade (47), are generally applicable to any domain where it is necessary
to encapsulate existing stand-alone functions and data with object-oriented class interfaces.
Other patterns apply to particular types of problems that arise in many systems. Extension
Interface (141), for example, addresses how to design extensible access to functionality
provided by a multi-role component.

In this section, therefore, we outline domains beyond concurrency and networking in which
the patterns in this book can be applied.

Graphical User Interfaces

 437

Several of the patterns we describe have been used to design and implement a wide variety
of graphical user interfaces:
§ The Wrapper Facade pattern (47) is often used to encapsulate details of a particular

GUI library to conceal its implementation details from application developers. Two
prominent known uses of the pattern in the GUI library context are the Microsoft
Foundation Classes (MFC) [Pro99] and the Java Swing library [RBV99].

§ Variants of the Reactor (179) pattern have been applied to organize event handling in
systems with graphical user interfaces. For example, the Reactor pattern is
implemented by the Interviews Dispatcher framework where it is used to define an
application's main event loop and manage connections to one or more physical GUI
displays [LC87]. The Reactor pattern is also used in the Xt toolkit from the X Windows
distribution.

Components

Several patterns apply in the context of components and component-based development:
§ The Wrapper Facade pattern (47) specifies how to implement collections of cohesive

low-level components and apply them in various contexts, such as components for
threading and interprocess communication [Sch97].

§ The Component Configurator pattern (75) supports the dynamic configuration and
reconfiguration of component implementations. In addition to being used as the basis
for installing operating system device drivers dynamically [Rago93], this pattern is also
the basis for downloading and configuring Java applets dynamically [JS97b].

§ The Interceptor pattern (109) introduces a mechanism for building extensible
components and applications. Its Known Uses section lists contemporary component
models that apply this pattern, such as Microsoft's Component Object Model (COM)
[Box97], Enterprise JavaBeans (EJB) [MaHa99], and the CORBA Component Model
(CCM) [OMG99a].

§ The Extension Interface pattern (141) defines a general mechanism for designing
components and allowing clients access to their services. All contemporary component
standards, such as COM, EJB, and CCM, implement variants of this pattern.

General Programming

Some patterns or idioms in this book can be applied to programming in general:
§ Scoped Locking (325) is a specialization of a general C++ programming technique for

safe resource acquisition and release. This technique, described in a more general
context by Bjarne Stroustrup in [Str97], is known as 'Object-Construction-is-Resource-
Acquisition'.

§ Double-Checked Locking Optimization (353) can be used to protect code that should
be executed just once, particularly initialization code.

In summary, the seven distinct patterns and idioms discussed above—Wrapper Facade,
Reactor, Component Configurator, Interceptor, Extension Interface, Scoped Locking, and
Double-Checked Locking Optimization—are clearly applicable beyond the scope of
concurrency and networking. If you analyze well-designed software systems you will
probably discover other domains in which these or other POSA2 patterns apply. Although
this book has presented the patterns primarily in the context of developing concurrent and
networked systems, it is important to recognize these patterns can help resolve recurring
problems in other domains.

6.4 Pattern Languages versus Pattern Systems

 438

The previous sections explore the pattern language aspects of the patterns presented in this
book. In addition to defining the foundation of a pattern language for building distributed
object computing middleware, and concurrent and networked applications, however, we can
also organize the patterns in this book into a pattern system [POSA1]. For example, we can
extend the pattern system defined in [POSA1] with the problem areas covered by patterns in
this book: service access and configuration, event handling, synchronization, and
concurrency. We can then reclassify the patterns accordingly.

This classification scheme presents an interesting conceptual exercise for taxonomizing the
pattern space. Each pattern can classified and assigned to a cell in a multi-dimensional
matrix, with the dimension of each matrix denoting a particular pattern property. If isolated
problems must be resolved, this taxonomy can enable rapid access to potentially useful
pattern-based solutions. The following table shows one way to organize the patterns from
this book, together with selected patterns from [GoF95] [POSA1] [PLoPD1] [PLoPD2]
[PLoPD3] [PLoPD4], into a pattern system for concurrency and networking.[1]

 Architectural
Pattern Design Pattern Idiom

Base-line
Architecture

Broker
Layers

Microkernel

Communication Pipes and Filters

Abstract Session
[Pry99]

Command Processor
Forwarder-Receiver
Observer [GoF95]
Remote Operation

[KTB98]
Serializer [RSB+97]

Initialization

Activator [Sta100]
Client-Dispatcher-

Server
Evictor [HV99]
Locator [JK00]
Object Lifetime

Manager [LGS99]

Service Access and
Configuration Interceptor

Component
Configurator

Extension Interface
Half Object plus
Protocol [Mes95]
Manager-Agent

[KTB98]
Proxy

Wrapper Facade

Event Handling Proactor Acceptor-Connector

 439

 Architectural
Pattern Design Pattern Idiom

Reactor Asynchronous
Completion Token
Event Notification

[Rie96]
Observer [GoF95]

Publisher-Subscriber

Synchronization Object Synchronizer
[SPM99]

Balking [Lea99a]
Code Locking [McK95]
Data Locking [McK95]
Guarded Suspension

[Lea99a]
Double-Checked

Locking Optimization
Reader/Writer Locking

[McK95]
Specific Notification

[Lea99a]
Strategized Locking

Thread-Safe Interface

Scoped
Locking

Concurrency
Half-Sync/Half-

Async
Leader/Followers

Active Object
Master-Slave

Monitor Object
Producer-Consumer

[Grand98]
Scheduler [Lea99a]

Two-phase
Termination [Grand98]

Thread-Specific
Storage

Categorizing patterns according to certain specific areas or properties fails to capture the
relationships and interdependencies that exist between a particular set of patterns to some
extent, however. These relationships and interdependencies influence a pattern's
applicability in the presence of other patterns, because not every pattern can be combined
with ever other in a meaningful way.

For example, Thread-Specific Storage (475) may be inappropriate for use with a
Leader/Followers (447) thread pool design, because there may not be a fixed association
between threads in the pool and events that are processed over time. In general, therefore, it
is important to identify the 'right' pattern combinations when building real-world systems,
because these systems exhibit dependencies between many problems that must be
resolved.

 440

Large pattern systems also tend to be complex, because the more problem areas a pattern
system includes, the more likely a pattern is to be assigned to multiple categories. The
Wrapper Facade pattern (47) is a good example of this phenomenon, because it can be
used to build concurrent and networked systems, graphical user interfaces and components,
as discussed in Section 6.3, Beyond Concurrency and Networking. It would appear at least
three times in a pattern system that covered all these systems as a result. As the number of
patterns increases, a pattern system may become bloated by these repeated pattern entries,
making it hard to learn and use.

One way to resolve this problem is to specify a number of smaller pattern systems for
particular domains, rather than to specify a universal pattern system. Examples are our
pattern system for concurrency and networking described earlier, or a pattern system for
component construction. If you apply this approach to the patterns presented in this book,
however, you will notice that the pattern system is structurally similar to the pattern language
whose foundations we specified in Section 6.2, A Pattern Language for Middleware and
Applications.

Moreover, the resulting pattern system would not emphasize the relationships between the
patterns as well as the pattern language we described, however. The patterns would instead
remain as islands, and the pattern system would be less useful for a pattern-based
development of complete software systems for concurrent and networked middleware and
applications as a result.

It has been our experience that organizing the patterns presented in this book as a pattern
language is more effective than classifying them in a pattern system. Much research remains
to be done, however, to identify, document and integrate all patterns that are necessary to
complete this pattern language.

[1]Patterns described in this book are in bold, patterns from [POSA1] are in italics, and other
patterns from the literature are in regular font.

 441

Chapter 7: The Past, Present, and Future of
Patterns

"Prediction is hard, especially about the future."

Yogi Berra, Philosopher in the Baseball Hall of Fame

Philosopher of science James Burke is fond of noting that history rarely happens in the right
order or at the right time, but the job of a historian is to make it appear as if it did. One
benefit of writing a series of Pattern-Oriented Software Architecture (POSA) books is we
have the opportunity to revisit our earlier predictions, summarize what actually occurred, and
examine why it occurred the way it did.

This chapter revisits our 1996 forecasts on 'where patterns will go' that appeared in the first
volume of the POSA series. A System of Patterns [POSA1]. We discuss the directions that
patterns actually took during the past four years, analyze where patterns are now, and revise
our vision about their future given the benefit of hindsight.

7.1 What Has Happened in the Past Four Years
In A System of Patterns [POSA1] we predicted how we thought patterns would evolve. Four
years later we iterate through the same parts of the corresponding chapter in this book and
summarize what actually transpired. We reference much of the relevant work during this
period, although our list is not exhaustive. Additional references are available at
http://hillside.net/patterns/.

Patterns

In 1996 we predicted that many patterns for many software development domains would be
(re)discovered and documented during the next several years. We expected that these
patterns would fill many gaps in the pattern literature. That part of our forecast has certainly
come true, although gaps remain in the literature, particularly in distributed, fault-tolerant,
transactional, real-time, and embedded systems, middleware, and applications.

The body of pattern literature has grown significantly during the past four years. For
example, the PLoP and EuroPLoP pattern conferences in the USA and Europe have
prospered and expanded to several new venues, including ChiliPLoP in the USA and
KoalaPLoP in Australia. These conferences are based on a 'writers workshop' format
[POSA1] [CW99]. In a writers workshop authors read each others' patterns and pattern
languages and discuss their pros and cons to help improve content and style.

In the past fours years books have appeared containing patterns on a wide range of
subjects, including:
§ Edited collections of patterns from many areas of software development [PLoPD3]

[PLoPD4] [Ris98] [Ris00a] [Ris00b].
§ A seminal book on analysis patterns for the health care and corporate finance domains

from Martin Fowler [Fow97a].
§ This book—Patterns for Concurrent and Networked Objects—which focuses on the

architecture and design patterns for concurrent and networked middleware frameworks
and application software.

§ Software development process patterns [Amb99a] [Amb99b] and patterns for
configuration management [BMT99].

http://hillside.net/patterns/

 442

§ Patterns for particular programming languages, such as Smalltalk [Beck97] and Java
[Grand98] [Grand99], or specific to particular middleware, such as CORBA [MM97].

§ So-called 'anti-patterns' [BMBMM98] [BMT99], which present common 'solutions' to
software development problems that seem reasonable, but that fail to work for various
reasons.

It is important for us to note that these books differ in their focus and their quality. However,
it is beyond the scope of this chapter to critique and review all these publications—we leave
this to your judgement and on-line book reviews, such as those at amazon.com.
Nevertheless, the volume of publications during the past four years reveals a growing
interest in patterns in the software research and development communities

Many of the most widely-applied patterns are derived from or used to document frameworks
[GoF95] [POSA1] [Sch96] [RKSOP00]. These patterns can be viewed as abstract
descriptions of frameworks that help developers reuse their software architectures [JML92].
Frameworks can be regarded from another perspective as reifications of patterns that enable
direct design and code reuse [HJE95] [HS98]. Experience has shown that mature
frameworks exhibit high pattern density [RBGM00].

Pattern Systems and Pattern Languages

As the awareness of patterns has grown in the software community, an increasing amount of
work has focused on pattern languages [Cope96] [Gab96] [Cope97]. As early as 1995
leading authors in the pattern community began documenting collections of patterns for
specific software development domains [PLoPD1], particularly telecommunications [DeBr95]
[Mes96] [ACGH+96] [HS99b]. These patterns were more closely related than the stand-
alone patterns published earlier. In fact, some patterns were so closely related that they did
not exist in isolation. The patterns were organized into pattern languages in which each
pattern built upon and wove together other patterns in the language.

Many of the published pattern languages appear in [Beck97] [PLoPD2] [PLoPD3] [PLoPD4].
As we demonstrate in Section 6.2, A Pattern Language for Middleware and Applications, the
patterns in this book also form a pattern language, or more precisely the core of a pattern
language, for developing distributed object computing middleware, applications, and
services. Our prediction that work on pattern languages would expand has therefore also
come true. Again, however, significant gaps remain in the literature, due in large part to the
effort required to write comprehensive pattern languages.

There has been work on classifying patterns and organizing them into categories [Tichy98],
pattern systems [POSA1], and the comprehensive Pattern Almanac appearing in [Ris00a]. In
general, however, pattern languages have become more popular than pattern systems and
pattern catalogs during the past four years. The patterns community has found pattern
languages to be the most promising way to document sets of closely-related patterns.
Section 6.4, Pattern Languages versus Pattern Systems provides further justification and
motivation for the gradual transition from pattern catalogs and systems to pattern languages.

Methods and Tools

In 1996 we predicted that work on methods and tools for using patterns effectively would
expand, despite the scepticism of some experienced developers [POSA1]. The software
research community has worked steadily on this topic, yielding methods for identifying
patterns in existing systems [SMB96], as well as many tools for applying patterns to forward
[BFVY96] [FMW97] [SRZ99] and reverse engineer software [Ban98] [PK98] [Mic00] [PC00]
[PSJ00].

 443

Research on automating software tools for patterns has not ye impacted the software tools
community significantly, however, though there has been some recent progress. For
example, notations for documenting patterns have been integrated into UML [BRJ98].
Similarly, tools are emerging that generate code automatically from patterns described via
meta-models [AONIX99] [MTOOL99].

Algorithms and Data Structures

We predicted a growing interest in the application of patterns to the analysis of the
relationships between algorithms, data structures, and patterns. We expected that this effort
would be followed by the documentation of algorithms and data structures as patterns, using
a specialized pattern form.

To date there have been several papers [Nuy96] and textbooks [FF97] [Preiss98] that
integrate patterns from [GoF95] into undergraduate algorithms and data structures courses.
In general, however, the focus of this work has been on undergraduate education, rather
than a direct contribution to the body of literature from the pattern research community.

Formalizing Patterns

Over the past four years, much research has been conducted to formalize patterns [LBG97]
[MK97] [LS98] [Mik98] [BGJ99] [EGHY99]. This work has not yet impacted the pattern
community or software practitioners directly, however.

One reason for the lack of impact is that a pattern is a schema for solving a set of related
problems, so it can be implemented repeatedly without necessarily being exactly the same
each time. In contrast, formalisms aim to capture a particular concept as precisely as
possible. Consequently, to capture the inherent variation in patterns, the formalisms used to
specify patterns are often large and complex, which makes them hard to understand and
use. Unfortunately this defeats many of the benefits of patterns, which are most effective
when they enhance—rather than impede—communication among software development
team members.

7.2 Where Patterns are Now
Today the pattern community has advanced significantly compared to where it was four
years ago. In particular, the body of documented concrete patterns and pattern languages is
larger and more diverse than it was four years ago—and it is still growing.

However, different groups in the community prefer different pattern paradigms, including:
§ The top-down theoretically-oriented approach inspired by Christopher Alexander's view

of patterns [Ale79] and pattern languages [AIS77] [Cope96] [Cope97].
§ The more bottom-up engineering-oriented approach pioneered by the Gang-of-Four

[GoF95] and POSA work [POSA1].
§ The approach advocated by authors of 'special-purpose' patterns, such as anti-

patterns [BMBMM98].

In addition to a better understanding of what patterns are in theory, the patterns community
now has a better understanding of how patterns work in practice [Vlis98a] [Bus00b]. By 1996
patterns had been applied opportunistically by isolated pockets of researchers and
developers [GR96] [HJE95] [John92] [Cope95] [McK95] [SchSt95] [Maf96] [Sch96]
[KCC+96]. In the intervening years patterns have been applied more systematically to
production systems throughout a wide range of topics and domains in the software industry,
including:

 444

§ Application frameworks [FS97] [BGHS98] [FJS99a] [FJS99b] [FJ99].
§ Real-time CORBA middleware [SC99] [PRS00], high-performance Web servers

[Sch97], network management [KTB98], concurrency control, and synchronization
[SPM99].

§ Input and output processing [Har97] [HS99b] [Tow99].
§ Performance measurement [NLN+99] [GP97] and optimization [PRS+99].
§ Security [YB99] and dependability [Maf96] [SPM98] [ACGH+96].
§ Empirical studies that evaluate the pros and cons of applying patterns [PUPT97].
§ The Java programming language [AG98] [GJS96], its standard libraries [Sun00a]

[FHA99] and third-party frameworks [IBM98], its virtual machine specification [LY99]
and implementation [Sun00b], and its development community [GG99].

Further evidence of the growing impact of patterns is the extent to which developers today
not only use them in their designs implicitly—which they did long before patterns were
described in books—but how they now apply patterns explicitly in their daily work. Patterns
provide a common vocabulary that researchers and developers now use to exchange ideas
concisely in design reviews, problem resolutions, training on system-specific features, and
documentation of software architectures.

Naturally, it is important to guard against over-enthusiasm, where developers apply patterns
blindly wherever possible. While patterns can improve design flexibility and (re-)usability,
they may also incur additional costs. Implementing certain patterns may, for example,
require more initial programming or design effort, or may yield more code to maintain. Some
pattern implementations involve extra indirection that can yield performance overhead on
certain platforms. Developers and managers must therefore always evaluate the benefits
and liabilities of patterns carefully before using them, particularly if a simple class or function
is sufficient to meet the requirements!

7.3 Where Patterns are Going
In the future we expect interest in patterns to grow substantially, as researchers and
mainstream software projects continue adopting pattern-oriented paradigms, methods, and
processes. This section describes our vision for each major topic area reviewed above, and
outlines the key issues we foresee in future research. We also add several new categories—
software development processes and education—to reflect promising directions in the
patterns community not covered in [POSA1].

Patterns

The patterns literature with the most impact in the past four years has focused on concrete
patterns and pattern languages, often derived from object-oriented application frameworks
[John97]. Looking ahead, we expect that future work in the pattern community will expand
upon this tradition. For example, the next generation of object-oriented applications and
frameworks will embody patterns explicitly. Patterns will also continue to be used to
document the form and content of frameworks [SFJ96]. Other key topics and domains that
will benefit from concrete pattern mining include the following:
§ Distributed objects. Many patterns associated with middleware and applications for

concurrent and networked objects have been documented during the past decade
[SC99] [Lea99a], including those in this book. A key next step is to document the
patterns for distributed objects, extending earlier work to focus on distribution topics,
such as remote service location [JK00] and partitioning, naming and directory services,
load balancing, dependability, and security.

An increasing number of distributed object computing systems, for example, must
provide high levels of dependability to client programs and end-users. With the adoption

 445

of the CORBA Fault Tolerance specification [OMG99g] and ORBs that implement this
specification, developers will have more opportunities to capture their experience in the
form of patterns for fault-tolerant distributed object computing, than they had in the past
[IM96] [ACGH+96] [NMM00].

§ Real-time and embedded systems. An increasing number of computing systems are
embedded, including automotive control systems and car-based applications, control
software for factory automation equipment [BGHS98], avionics mission computing
[HLS97], and hand-held computing devices. Many of these systems are subject to
stringent computing resource limitations, particularly memory footprint and time-
constraints.

Developing high-quality real-time and embedded systems is hard and remains
somewhat of a 'black art'. Relatively few patterns have been published in this area as a
result [NW98] [Bus98] [Lan98] [Lea94]. We expect the body of patterns for real-time and
embedded systems to grow in the future. A driving force will be the maturation of object
technology, together with the development tools, methods, and techniques that make it
successful (including patterns), that will be applied increasingly in these domains.

§ Mobile systems. Wireless networks are becoming pervasive and embedded computing
devices are become smaller, lighter, and more capable. Thus, mobile systems will soon
support many consumer communication and computing needs. Application areas for
mobile systems include ubiquitous computing, mobile agents, personal assistants,
position-dependent information provision, remote medical diagnostics and teleradiology,
and home and office automation. In addition, Internet services, ranging from Web
browsing to on-line banking, will be accessed from mobile systems.

Mobile systems present many challenges, such as managing low and variable
bandwidth and power, adapting to frequent disruptions in connectivity and service
quality, diverging protocols, and maintaining cache consistency across disconnected
network nodes. We expect that experienced mobile systems developers will document
their expertise in pattern form to help meet the growing demand for best software
development practices in this area.

§ Business transaction and e-commerce systems. Many business information systems,
such as accounting, payroll, inventory, and billing systems, are based on transactions.
The rules for processing transactions are complex and must be flexible to reflect new
business practices and mergers. Business systems must also handle increasingly large
volumes of transactions on-line, as discussed in the Example section of the
Leader/Followers pattern (447).

The advent of e-commerce on the Web is exposing many business-to-business systems
directly to consumers. Despite the importance of these systems, relatively little has
been written about their analysis, architecture, or design patterns. We expect the body
of patterns on transactions and e-commerce to grow, based on the preliminary work of
[John96] [Fow97a] [KC97].

§ Quality of service for commercial-off-the-shelf (COTS)-based distributed systems.
Distributed systems, such as streaming video, Internet telephony, and large-scale
interactive simulation systems [BHG00] [FJS99b], have increasingly stringent quality of
service (QoS) requirements. Key QoS requirements include network bandwidth and
latency, CPU speed, memory access time, and power levels. To reduce development
cycle-time and cost, such distributed systems are increasingly being developed using
multiple layers of COTS hardware, operating systems, and middleware components.

Historically, however, it has been hard to configure COTS-based systems that can
simultaneously satisfy multiple QoS properties, such as security, timeliness, and fault
tolerance. As developers and integrators continue to master the complexities of
providing end-to-end QoS guarantees, it is essential that they document the successful

 446

patterns to help others configure, monitor, and control COTS-based distributed systems
that possess a range of interdependent QoS properties [ZBS97].

§ Reflective middleware. This term describes a collection of technologies designed to
manage and control system resources in autonomous or semi-autonomous distributed
application and systems. Reflective middleware techniques enable dynamic changes in
application behavior by adapting core software and hardware protocols, policies, and
mechanisms with or without the knowledge of applications or end-users [KRL+00]. As
with distributed system QoS, patterns will play a key role in documenting best practices
that can help to ensure the effective application of reflective middleware-based
applications.

§ Optimization principle patterns. Much of the existing patterns literature has focused on
software quality factors other than performance. Although this may be acceptable in
domains where non-functional requirements, such as usability or extensibility, are
paramount, other domains—particularly distributed and embedded real-time systems—
value efficiency, scalability, predictability, and dependability above many other software
qualities.

In these domains, therefore, we expect to see an increasing focus on optimization
principle patterns that document rules for optimizing complex software systems
[NLN+99] [PRS+99]. Yet there is some debate in the patterns community whether
optimization principle patterns are really patterns, or just principles [Bus00b]

In addition to the pattern mining activities described above, we expect to see increased
publication of edited collections of concrete patterns related to particular application
domains. For example, Linda Rising has edited a special issue of the IEEE Communication
Magazine [IEEE99] and an edited book collection [Ris00b] that focus on the patterns and
pattern languages in the telecommunication domain.

Pattern Languages

In addition to documenting stand-alone patterns, we expect to see continued codification of
patterns into full-fledged pattern languages. We also expect to see existing stand-alone
patterns [GoF95] [POSA1] and compound patterns [Vlis98c] integrated into current or new
pattern languages, as discussed in Section 6.2, A Pattern Language for Middleware and
Applications.

Conversely, as more experience is gained implementing larger architectural patterns, such
as Reactor (179) and Proactor (215), we expect that smaller patterns, such as 'Event
Demultiplexor' or 'Continuation-passing Event-driven System', will emerge. These patterns
can help to improve the concrete realization of the larger architectural patterns by
'decomposing' them into smaller patterns. This decomposition process is yet another way to
define pattern languages for the types of systems that follow the structure defined by
architectural patterns that are being decomposed.

The trend towards pattern languages stems from the confluence of two forces:
§ As more patterns are documented, the coverage of patterns in certain domains is

gradually becoming more complete.
§ As the patterns in a domain become complete it is more likely that other patterns in

these domains can build upon or expose relationships to existing patterns [Ris00a].

This synergism occurs because as new patterns are documented in a domain they often
address issues or sub-problems related to existing patterns' problems. As these
relationships become explicit, many patterns in a domain can be connected to form pattern
languages.

 447

The transition from patterns to pattern languages is ambitious and non trivial [Vlis98b]. A key
impediment to the growth of pattern languages is the effort required to document them.
Pattern languages are easier to read and apply than they are to write because their authors
must both:
§ Be experts on the technical topics in a particular domain and
§ Devote considerable time to documenting their expertise in a comprehensible form that

identifies all patterns in the language and integrates each individual pattern into the
overall language

Fortunately, individual patterns and compound patterns [Vlis98c] are increasingly being
documented by the patterns community, based largely on abstractions from common
frameworks [Rie97]. As a result, more material is becoming available to weave into pattern
languages, alleviating the need to write everything from scratch.

New generations of authors are also gradually emerging from the writers workshops held at
venues, such as the PLoP family of conferences. Over time we hope that these authors will
help fill key gaps in the existing pattern language literature.

Experience Reports, Methods, and Tools

As noted in Section 7.2, Where Patterns are Now, many reports on experiences using
patterns for industrial software development have now been published. We expect the
number of such reports still to grow, in particular in domains where no such reports are
available today, including electronic medical imaging, real-time aerospace control systems,
and global Internet e-commerce systems.

This accumulation of documented experience will then allow researchers and developers to
identify general, domain-independent core principles for using patterns effectively. Many of
these principles have only been understood and applied implicitly in earlier projects. With a
sufficient number of experience reports available, we expect the pattern community will distill
and document these common core principles explicitly to help increase developers' potential
for applying patterns successfully.

We also expect these core principles will be woven together to form a 'method' or set of
principles for pattern-based software development [Bus00a]. This method or set of principles
will complement and complete existing software development methods, such as the Unified
Software Development Process [JBR99], and documentation 'methods', such as UML
[BRJ98]. The UML models of today largely denote the what and when of software designs.
The pattern-oriented methods and principles of tomorrow will also help to justify why certain
models are suitable for resolving key challenges in a particular domain.

We believe the most successful pattern-oriented methods and principles will be created
'bottom-up', by generalizing from the collective experience of expert pattern users and
software architects. This inductive process has a better chance of success than approaches
that try to define pattern-oriented methods and principles 'top-down'. Similarly, when
experience-based methods and principles for pattern-based software development become
available, we expect that they will be codified into software development tools. Such tools
should see wider adoption than at present, because they will automate good practices that
are derived from experience.

Pattern Documentation

We expect books will remain the primary media for disseminating concrete information on
patterns. However, we anticipate increased use of the Web, and Web-based protocols and
tools, such as HTML and XML, to make it easier to document patterns and connect them

 448

into pattern languages. Prior efforts have had some success within isolated contexts, such
as the Portland Pattern Repository in Ward Cunningham's WikiWikiWeb [PPR]. The state-of-
the-practice in this area may advance as a result of three trends:
§ The growing ubiquity of Web access
§ The advent of low-cost and high-quality electronic book viewers
§ More effective e-commerce methods to remunerate authors

Formalizing Patterns and Pattern Languages

Research on formalizing the concept of patterns will certainly continue, and be extended by
formalisms to capture more comprehensive pattern languages. It is unclear, however,
whether such work will have greater impact in the future than it does currently. We do expect
that useful work on formalizing particular instances of patterns in a given system or context
will occur to document specific pattern implementations.

Certain formal techniques, such as design-by-contract [Mey97], can help to prevent improper
use of a pattern implementation within a particular application. Focusing on formalizing
instances of patterns therefore can be of practical use in production software development,
to help improve system design and implementation quality.

Software Development Processes and Organizations

Much work on pattern languages has focused on improving software development
processes and organizations [Cope95] [Cock97] [Ris98] [Har96]. Some software
development teams have applied these patterns to help improve the quality of their
workplace [Gab96] and their productivity. This work is also beginning to influence the
academic software process research community. We expect to see more integration
between patterns and software development processes and organizations over the next few
years.

Patterns appear to be particularly useful for documenting 'lightweight' software development
processes, such as open-source [OS99] and eXtreme Programming (XP) [Beck99] [KiLe00]
processes. In addition, processes based on refactoring [Opd92] [FBBOR99] have been
applying patterns successfully to help restructure existing software and enhance its
modularity, maintainability, and reusability.

Education

In 1996 we did not foresee the significant effort that has arisen to document so-called
'pedagogical patterns' [PPP00] [Bir00]. Pedagogical patterns aim at capturing the principles
of educating people effectively. Moreover, patterns are now widely used to teach software
design and programming in undergraduate curricula [Lea99b] [Sch99] [LG00] [TM00]
[Wal00]. They are also used to train and retrain software professionals [Ant96].

In the short term we expect that many undergraduate courses will apply and teach patterns
to convey key points of good practice and sound principles of software architecture and
design [Ken98].

Patterns are now commonplace in many professional software development organizations.
Substantial experience has therefore accrued on how to apply patterns successfully.
Academic institutions will hopefully codify this experience to help educate the next
generation of software development professionals in patterns and their effective
documentation and application. When these students graduate and start their professional
careers, patterns will become even more pervasive than they are today.

 449

Our Long-Term Vision

Looking much further ahead, we believe that knowledge of patterns, pattern languages, and
framework components will ultimately progress to the point where software developers will
possess methods and tools similar to those of biologists. After centuries of experimentation
and modeling, biologists have totally or partially deciphered the genetic code of some
organisms. Guided by this knowledge, biologists are now beginning to understand those
basic elements within DNA sequences that are shared between organisms, as well as those
that make each one unique.

Biologists are applying this information to develop new techniques for manipulating DNA, to
provide cures for hereditary conditions, such as the desease Cystic Fibrosis. In this context
scientists are both:
§ Discovering core properties of DNA sequences and
§ Inventing new techniques for manipulating these sequences safely and ethically

Both biological systems and software systems are highly complex. When decomposed into
their basic components, such as DNA sequences and genes or patterns and pattern
languages, however, they can be understood and controlled more readily. We believe that
as core software patterns and pattern languages are understood and reified in the form of
reusable components and frameworks, larger scale complex software systems can be
developed more predictably.

We expect that contemporary research and development on patterns and pattern languages
will ultimately yield breakthrough discoveries of core software properties. In turn, these
'software DNA' discoveries will spur the invention of new processes, methods, tools,
components, frameworks, architectures, and languages. These artifacts will enable us to
engineer the complexity of large-scale software more effectively than is possible with the
current state-of-the-art.

7.4 A Parting Thought on Predicting the Future
As the Baseball Hall of Fame's resident philosopher Yogi Berra so eloquently stated:
'prediction is hard, especially about the future'. Not all of the predictions we made in 1996
became true, particularly our forecast that use of pattern-oriented software tools would
become widespread. Our revised predictions of the future in this chapter include a healthy
dose of uncertainty. In particular, our current forecasts are based upon:
§ Our knowledge of the pattern community
§ Its ongoing and planned interests and research activities—insofar as we are aware of

them and
§ The future research directions we are guiding or that we consider fruitful

We expect many of our predictions to come true. The future of patterns and pattern
languages may take directions however, such as pattern-based model checking, that we
have not imagined today. Consider the forecasts in this chapter as one possible vision
among many in the ongoing dialogue on patterns and their future, and not as the prophesies
of infallible oracles.

When the next book in the POSA series is published in several years, we will revisit these
forecasts, as we have revisited our 1996 forecasts from A System of Patterns [POSA1]. We
will then know what really happened and will hopefully have the benefit of hindsight to
explain why!

Credits

 450

Thanks to the external reviewers who gave us comments on this section, including Joe
Bergin, Bob Hanmer, Neil Harrison, Doug Lea, Ossama Othman, Carlos O'Ryan, Dirk
Riehle, Linda Rising, John Vlissides, and Roger Whitney.

 451

Chapter 8: Concluding Remarks
Writing is an adventure. To begin with, it is a toy and an amusement. Then it

becomes a mistress, then it becomes a master, then it becomes a tyrant.
The last phase is that just as you are about to be reconciled to your

servitude, you kill the monster and fling him to the public.

Winston Churchill

This chapter calls on you, the reader, to snatch the baton from us and run the next leg in the
race to create a more comprehensive pattern language for concurrent and networked object-
oriented applications and middleware.

In this book we have documented the insights and patterns gained during dozens of years of
developing and deploying these types of software systems. The resulting book represents
much more than a catalog of our own experiences—it articulates the collective experience of
the hundreds of researchers and developers we have worked with during the past two
decades. Moreover, the patterns we present have been applied successfully in many
systems we have not worked on directly, demonstrated by the extensive list of known uses
presented throughout the book.

Even so, as we discussed in Section 6.2, A Pattern Language for Middleware and
Applications, the patterns in this book capture only the foundation of a pattern language that
will ultimately encompass all aspects of concurrency and networking. As with all pattern
literature, the patterns presented here are perennially 'works in progress'. We could only
document the knowledge we possessed collectively when we wrote the book, working
always within the limitations of a 'linear' literary form, maximum page counts, publishing
deadlines, and occupational and familial commitments. There are undoubtedly topics that we
did not address in certain patterns, or implementation activities, consequences, or known
uses that we failed to include.

We consider the current edition of this book to be an incremental step on our life-long
journey to explore and map the fascinating realm of software development and capture the
essence of 'software DNA'. Over the next decade we will continue to improve, complete, and
complement the patterns and pattern language contained in POSA2 to form a related
collection of books in the POSA series.

In parting, we entreat you to join us in this activity so together we can shape and polish the
patterns documented here. Only with your contribution can we ensure that these pattern
descriptions codify the best practices and experience from the real world. In turn, this will
help us all gain a broader and deeper understanding of solutions to the inherent and
accidental complexities found in concurrent and networked software.

 452

Notations
Class-Responsibility-Collaborator Cards

Class-Responsibility-Collaborators (CRC) cards [BeCu89] help to identify and specify
objects or the components of an application in an informal way, especially in the early
phases of software development.

A CRC-card describes a component, an object, or a class of objects. The card consists of
three fields that describe the name of the component, its responsibilities, and the names of
other collaborating components. The use of the term 'class' is historical [Ree92]—we also
use CRC cards for other types of components or even single objects.

UML Class Diagrams

The Unified Modeling Language (UML) [BRJ98] is a widely-used object-oriented analysis
and design method. An important type of diagram within UML is the class diagram. A class
diagram describes the types of objects in a system and the various types of static
relationships that exist among them.

As an extension to the standard UML notation we introduce a symbol to indicate that
instances of a class run in separate threads.

 453

Class. A rectangular box, denoting the name of the class and
optionally its attributes and operations. Abstract classes names
are labeled in italics along with their corresponding abstract
methods.

Operation. Operation names are written in the class boxes.
They denote the methods of classes. Abstract operations, that
is, those that only provide the interface for polymorphism, are
denoted by italics.

Attributes. Attribute names are written in the class boxes. They
denote the instance variables of a class.

 Association. A line that connects classes. Associations can be
optional or multiple. A number at the end of an association
denotes its cardinality. Association of classes is used to show
any type of class relationship except aggregation, composition
and inheritance.

 Aggregation. A hollow diamond shape at the termination of an
association line denotes that the class(es) at the other end of
the association are used by the class.

 Composition. A solid diamond shape at the termination of an
association line denotes that the class(es) at the other end of
the association are part of the class and have the same life-
time.

 Navigability. Navigability denotes a directed association.

Dependency. A dependency indicates that a class uses the
interface of another class for some purpose.

Realization. A realization represents the relationship between
a specification and its implementation.

Inheritance. Inheritance is denoted by a triangle at the top of
an association line. The apex of the triangle points to the
superclass.

 454

Templates. Parameterized classes are declared by attaching a
dashed rectangular box to a class box, which includes the
class' template parameters.

Thread. A wavy line attached to a class indicates that instances
of this class run in separate threads. The thread symbol is an
extension to the UML class diagram notation, which lacks an
effective way to denote multi-threading.

UML Sequence Diagrams

UML sequence diagrams describe how groups of objects collaborate in some behavior
[BRJ98]. The notation is based on the Object Message Sequencing Chart (OMSC) notation
defined in [POSA1].

In addition to the standard UML notation, however, we also use the notation for illustrating
parameter-passing that we specified in our original OMSC definition. This allows us to
indicate when the responsibility for an object is passed from one object to another or when
an object obtains a reference to another object. As a second extension to standard UML we
introduce a special symbol that allows us to label activities initiated by a thread of control
rather than a particular UML active object.

Object. An object or component in a sequence diagram is
drawn as a rectangular box. The box is labeled with the
underlined name of the component in the pattern. An object that
sends or receives messages in the sequence diagram has a
vertical bar attached to the bottom of the box. Active objects are
denoted by thicker lines for the rectangular box.

Time. Time flows from top to bottom. The time axis is not

 455

scaled.

Messages. Messages between objects are denoted by arrows.
These arrows are labeled with the method name at the head, if
applicable. Synchronous messages are indicated by solid full-
arrowheads, asynchronous messages by solid half-arrowheads.
Returns are indicated by dashed arrows with open arrowheads.

Object Activity. To denote the activity of objects that perform a
specific function, procedure or method, rectangular boxes are
placed on the vertical bar attached to the object. An object may
also send messages to itself to activate other methods. This
situation is represented by nested boxes offset slightly to the
right.

 Parameter. Parameters are only noted explicitly when they are
necessary to understand a sequence diagram. Parameters of a
message are shown as a box on top of the arrow and return
parameters below the returning arrow. If responsibility for a
parameter object is passed along the arrow the name of the
object is shown in boldface. If only a reference to the object is
passed as a parameter, its name is shown in italics. This
notation is an extension to UML sequence diagram.

Object Lifecycle. In most cases we assume that all relevant
objects already exist, so the corresponding boxes are drawn at
the top of the sequence diagram. If a sequence diagram shows
object creation, this is denoted by an arrow to a box placed
within the sequence diagram. If an object ceases to exist, this is
denoted by a cross that terminates the vertical bar. This
notation corresponds to constructor and destructor calls in C++.

Thread. A wavy line attached to a time line indicates a thread
of control that sends or receives messages. A thread is labeled
with the underlined identifier of the thread. The thread symbol is
an extension to the UML sequence diagram notation, which
allows us to denote activities

UML Statechart Diagrams

UML statechart diagrams specify the sequences of states that an object or an interaction
goes through in response to events during its life, together with its responsive actions
[BRJ98]. This book only uses basic state diagram notations.

 456

State. A condition or situation in the life of an object during
which it satisfies some condition, performs some activity, or
waits for some event. States are denoted by rounded
rectangular boxes, labeled with their names. There are two
additional states: the initial state, denoted by a black circle,
which indicates the entry point into a state machine and the
final state, denoted by a hollow circle with a black circle
enclosed, which indicates the completion of the state machine.

Composite State. A state that consists itself of a sequence of
disjoint substates.

Transition. A relationship within a state machine between two
states. A transition indicates that an object in the first state will
enter the second state when a specified event such as an
action occurs or a condition evaluates to true. If the source and
target state are the same the transition is called a 'self-
transition'.

Action. An executable computation, such as a method, that is
conceptually atomic with respect to changing the current state.

Condition. A condition is a guard that triggers a transition if it
evaluates to true.

 457

References

[ABLL92] T.E. Anderson. B.N. Bershad, E.D. Lazowska, H.M. Levy: Scheduler
Activation: Effective Kernel Support for the User-Level Management of
Parallelism, ACM Transactions on Computer Systems, pp. 53–79, February
1992

[ACGH+96] M. Adams, J. Coplien, R. Gamoke, R. Hanmer, F. Keeve, K. Nicodemus:
Fault-Tolerant Telecommunication System Patterns, in [PLoPD2], 1996

[Ada79] D. Adams: The Hitchhiker's Guide to the Galaxy, Pan Books Ltd.,
London, 1979

[AG98] K. Arnold, J. Gosling: The Java Programming Language (Java Series),
2nd edition, Addison-Wesley, 1998

[Agha86] G. Agha: A Model of Concurrent Computation in Distributed
Systems, MIT Press, 1986

[AIS77] C. Alexander, S. Ishikawa, M. Silverstein with M. Jacobson, I. Fiksdahl-King, S.
Angel: A Pattern Language - Towns∙Buildings∙Construction, Oxford
University Press, 1977

[Ale79] C. Alexander: The Timeless Way of Building, Oxford University Press,
1979

[Amb99a] S.W. Ambler: Process Patterns: Building Large-Scale Systems
Using Object Technology, Cambridge University Press, 1999

[Amb99b] S.W. Ambler: More Process Patterns: Delivering Large-Scale
Systems Using Object Technology, Cambridge University Press, 1999

[Ant96] D.L.G. Anthony: Patterns for Classroom Education, in [PLoPD2], 1996

[AONIX99] Aonix: Software Through Pictures, Aonix,
http://www.aonix.com/, 1999

[ARSK00] A.B. Arulanthu, C. O'Ryan, D.C. Schmidt, M. Kircher: The Design and
Performance of a Scalable ORB Architecture for CORBA Asynchronous
Messaging, in J. Sventek, G. Coulson (eds.): Middleware 2000,
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms, Springer, 2000, ACM/IFIP, Lecture Notes in Computer
Science, Springer, 2000

[Aus98] M.H. Austern: Generic Programming and the STL : Using and
Extending the C++ Standard, Addison-Wesley, 1998

http://www.aonix.com/

 458

[Bak97] S. Baker: CORBA Distributed Objects using Orbix, Addison-Wesley,
1997

[BaLee98] R.E. Barkley, T.P.Lee: A Heap-Based Callout Implementation to
Meet Real-Time Needs, Proceedings of the USENIX Summer Conference,
USENIX Association, pp. 213–222, June 1998

[BaMo98] G. Banga, J.C. Mogul: Scalable Kernel Performance for Internet
Servers Under Realistic Loads, Proceedings of the USENIX 1998 Annual
Technical Conference, USENIX, New Orleans, Louisiana, June 1998

[Ban98] J. Bansiya: Automating Design-Pattern Identification, Dr. Dobb's
Journal, June 1998

[Bat97] G. Bateson: Mind and Nature: A Necessary Unity, Bantam Books,
1997

[BBC94] G. Blaine, M. Boyd, S. Crider: Project Spectrum: Scalable Bandwidth
for the BJC Health System, HIMSS, Health Care Communications, pp. 71–
81, 1994

[Beck97] K. Beck: Smalltalk Best Practice Patterns, Prentice Hall, 1997

[Beck99] K. Beck: Extreme Programming Explained: Embrace Change,
Addison-Wesley, 1999

[BeCu89] K. Beck, W. Cunningham: A Laboratory For Teaching Object-Oriented
Thinking, Proceedings of OOPSLA '89, N. Meyrowitz (ed.), special issue of
SIGPLAN Notices, vol. 24, no. 10, pp. 1–6, October 1989

[Ben90] M. Ben-Ari: Principles of Concurrent and Distributed Programming,
Prentice Hall, 1990

[Ber95] S. Berczuk: A Pattern for Separating Assembly and Processing, in
[PLoPD1], 1995

[BGHS98] F. Buschmann, A. Geisler, T. Heimke, C. Schuderer: Framework-Based
Software Architectures for Process Automation Systems, Proceedings of
the 9th IFAC Symposium on Automation in Mining, Mineral and Metal
Processing (MMM '98), Cologne, Germany, 1998

[BGJ99] A. Berner, M. Glinz, S. Joos: A Classification of Stereotypes for Object-
Oriented Modeling Languages, Proceedings of •UML>>'99 - The Unified
Modeling Language, (eds.) R. France, B. Rumpe, Lecture Notes in
Computer Science, 1723, Springer, 1999

 459

[BFF96] T. Berners-Lee, R. T. Fielding, H. Frystyk: Hypertext Transfer Protocol -
HTTP/1.0, Network Working Group, RFC 1945, May 1996

[BFVY96] F.J. Budinsky, M.A. Finnie, J.M. Vlissides, P.S. Yu: Automatic code
generation from design patterns, IBM Systems Journal, vol. 35, no. 2,
1996

[BHG00] H. Berndt, T. Hamada, P. Graubmann: TINA: Its Achievements and
Future Directions, IEEE Communication Surveys, on-line publication,
http://www.comsoc.org/pubs/surveys, 2000

[Bir91] A.D. Birrell: An Introduction to Programming with Threads, Systems
Programming with Modula-3, Greg Nelson (ed.), Prentice Hall, 1991

[Bir00] J. Birgin: Fourteen Pedagogical Patterns,
http://csis.pace.edu/~bergin/PedPat1.3.html, 2000

[B190] D.L. Black: Scheduling Support for Concurrency Parallelism in the
Mach Operating System, IEEE Computer, vol. 23, pp. 23–33, May 1990

[B191] U.D. Black: OSI: A Model for Computer Communications Standards,
Prentice Hall, 1991

[BMBMM98] W.J. Brown, R.C. Malveau, W.H. Brown, H.W. McCormick, T.J. Mowbray:
Antipatterns: Refactoring Software, Architecture, and Projects in Crisis,
John Wiley & Sons, 1998

[BMT99] W.J. Brown, H.W. McCormick, S.W. Thomas: Anti-Patterns and Patterns
in Configuration Management, John Wiley & Sons, 1999

[Boe81] B.W. Boehm: Software Engineering Economics, Prentice Hall, 1991

[Boo94] G. Booch: Object-Oriented Analysis and Design With Applications,
Second Edition, Benjamin/Cummings, Redwood City, California, 1994

[Box97] D. Box: Essential COM, Addison-Wesley, 1997

[BR94] K. Birman, R. van Renesse: Reliable Distributed Computing with the Isis
Toolkit, IEEE Computer Society Press, 1994

[BRJ98] G. Booch, J. Rumbaugh, I. Jacobsen: The Unified Modeling language
User Guide. Addison-Wesley, 1998

[Broo87] F.P. Brooks: No Silver Bullet: Essence and Accidents of Software
Engineering, IEEE Computer, vol. 20, no. 4, pp. 10–19, April 1987

http://www.comsoc.org/pubs/surveys
http://csis.pace.edu/~bergin/PedPat1.3.html

 460

[Bus98] F. Buschmann: Real-Time Constraints as Strategies,
http://www.posa.uci.edu/, 1998

[Bus00a] F. Buschmann: Applying Patterns, http://www.posa.uci.edu/,
2000

[Bus00b] F. Buschmann: Inside Patterns, http://www.posa.uci.edu/, 2000

[BV93] G. Booch, M. Vilot: Simplifying the Booch Components, C++ Report,
vol. 5, June 1993

[CarE195] M.D. Carroll, M.A. Ellis (Contributor): Designing and Coding
Reusable C++, Addison Wesley , 1995

[CFFT97] T. Chaney, A. Fingerhut, M. Flucke, J. S. Turner: Design of a Gigabit ATM
Switch, IEEE INFOCOM '97, IEEE Computer Society Press, Kobe, Japan,
April 1997

[CIRM93] R. Campbell, N. Islam, D. Raila, P. Madany: Designing and Implementing
Choices: an Object-Oriented System in C++, Communications of the ACM,
vol. 36, pp. 117–126, September 1993

[Cla85] D.D. Clark: The Structuring of Systems Using Upcalls, Proceedings
of the 10th Symposium on Operating System Principles, 1985

[CMP95] S. Crane, J. Magee, N. Pryce: Design Patterns for Binding in
Distributed Systems, OOPSLA '95 workshop on Design Patterns for
Concurrent, Parallel, and Distributed Object-Oriented Systems, ACM,
October 1995

[Cock96] A. Cockburn: Prioritizing Forces in Software Design, in [PLoPD2],
1996

[Cock97] A. Cockburn: Surviving Object-Oriented Projects: A Manager's
Guide, Addison Wesley Object Technology Series, Addison-Wesley, 1997

[Cope92] J.O. Coplien: Advanced C++ - Programming Styles and Idioms,
Addison-Wesley, 1992

[Cope95] J.O. Coplien: A Development Process Generative Pattern
Language, in [PLoPD1], 1995

[Cope96] J.O. Coplien: Software Patterns, SIGS Books, New York, New York,
1996

[Cope97] J.O. Coplien: The Column Without a Name: Pattern Languages,
C++ Report, vol. 9, no. 1, pp. 15–21, January 1997

http://www.posa.uci.edu/
http://www.posa.uci.edu/
http://www.posa.uci.edu/

 461

[Cope98] J.O. Coplien: Multi-Paradigm Design with C++, Addison-Wesley,
1998

[CoSte91] D.E. Comer, D.L. Stevens: Internetworking with TCP/IP Volume II:
Design, Implementation, and Internals, Prentice Hall, 1991

[CoSte92] D.E. Comer, D.L. Stevens: Internetworking with TCP/IP Volume III:
Client-Server Programming and Applications, Prentice Hall, 1992

[CP95] C. Cranor, G. Parulkar: Design of Universal Continuous Media I/O,
Proceedings of the 5th International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV '95). pp. 83–86,
April 1995

[Cris89] F. Cristian: Probabilistic Clock Synchronization. Distributed
Computing, vol. 3, pp 146–158, 1989

[CRSS+98] M. Cukier, J. Ren, C. Sabnis, W.H. Sanders, D.E. Bakken, M.E. Berman, D.A.
Karr, R.E. Schantz: AQuA: An Adaptive Architecture that provides Dependable
Distributed Objects, IEEE Symposium on Reliable and Distributed Systems
(SRDS), West Lafayette, IN, October 1998

[CW99] J.O. Coplien with B. Woolf: A Pattern Language for Writers' Workshops,
in [PLoPD4], 1999

[CY91] P. Coad, E. Yourdon: Object-Oriented Analysis, Prentice Hall, second
edition, 1991

[DBRD91] R.P. Draves, B.N. Bershad, R.F. Rashid, R.W. Dean: Using Continuations
to Implement Thread Management and Communication in Operating
Systems, Proceedings of the 13th Symposium on Operating System
Principles (SOSP), October 1991

[DeBr95] D. DeBruler: A Generative Pattern Language for Distributed
Processing, in [PLoPD1], 1995

[DeFe99] A.Delarue and E.B. Fernandez: Extension and Java implementation of
the Reactor-Acceptor-Connector pattern combination. Proceedings of the
1999 Conference on Pattern Languages of Programming, 1999

[Dij68] E.W. Dijkstra: Cooperating Sequential Processes, in Programming
Languages (F. Genuys, ed.), Academic Press, 1968

[DLF93] D. de Champeaux, D. Lea, P. Faure: Object-Oriented System
Development, Addison-Wesley, 1993

[Doble96] J. Doble: Shopper, in [PLoPD2], 1996

 462

[DP93] P. Druschel, and L.L. Peterson: Fbufs: A High-Bandwidth Cross-Domain
Transfer Facility, Proceedings of the 14th Symposium on Operating System
Principles (SOSP), December 1993

[ECOOP95] W. Olthoff(ed.): ECOOP '95 - Object-Oriented Programming,
Proceedings of 9th European Conference on Object-Oriented Programming,
Aarhus, Denmark, August 1995, Lecture Notes in Computer Science 952,
Springer-Verlag, Berlin Heidelberg New York, 1995

[ECOOP97] M. Aksit, S. Matsuoka (eds.): ECOOP '97 - Object-Oriented
Programming, Proceedings of 11th European Conference on Object-
Oriented Programming, Jyväskylä, Finland, June 1997, Lecture Notes in
Computer Science 1241, Springer-Verlag, Berlin Heidelberg New York,
1997

[ECOOP98] E. Jul (ed.): ECOOP '98 - Object-Oriented Programming,
Proceedings of the 12th European Conference on Object-Oriented
Programming, Brussels, Belgium, July 1998, Lecture Notes in Computer
Science 1445, Springer-Verlag, Berlin Heidelberg New York, 1998

[EGHY99] A. H. Eden, J. Gil, Y. Hirshfeld, A. Yehudai: Motifs in Object Oriented
Architecture, IEEE Transactions on Software Engineering, 1999

[EKBF+92] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah, M. Smith, D.
Stein, J. Voll, M. Wecks, D. Williams: Beyond Multiprocessing... Multithreading the
SunOS Kernel, Proceedings of the Summer USENIX Conference, San
Antonio, TX, June 1992

[Eng99] J. Engel: Programming for the Java Virtual Machine, Addison-
Wesley, 1999

[ENTERAOO] Entera: Internet Content Delivery Techniques, Entera Inc.,
http://www.entera.com/, 2000

[FoYo99] B. Foote, J. Yoder: Big Ball of Mud, in [PLoPD4], 1999

[FBBOR99] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts: Refactoring:
Improving the Design of Existing Code, Addison-Wesley, 1999

[FF97] M. Felleisen, D.P. Friedman: A Little Java, A Few Patterns, MIT Press,
1997

[FGMFB97] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee: Hypertext
Transfer Protocol - HTTP/1.1, Network Working Group, RFC 2068, January
1997

http://www.entera.com/

 463

[FGS98] P. Felber, R. Guerraoui, A. Schiper: The Implementation of a CORBA
Object Group Service, Theory and Practice of Object Systems (TAPOS),
vol. 4, no. 2, pp. 93–105, February 1998

[FHA99] E. Freeman, S. Hupfer, K. Arnold: JavaSpaces Principles, Patterns and
Practice, Addison-Wesley, 1999

[FJ99] M. Fayad, R. Johnson (eds.): Domain-Specific Application
Frameworks: Frameworks Experience by Industry, John Wiley & Sons,
New York, NY, 1999

[FJS99a] M. Fayad, R. Johnson, D.C. Schmidt (eds.): Object-Oriented
Application Frameworks: Problems & Perspectives, John Wiley & Sons,
New York, NY, 1999

[FJS99b] M. Fayad, R. Johnson, D.C. Schmidt (eds.): Object-Oriented
Application Frameworks: Applications & Experiences, John Wiley & Sons,
New York, NY, 1999

[Flex98] Siemens AG, Geschäftsbereich Private Netze: FlexRouting und
BusinessView Produkte, Folien zur Akquisitionsunterstützung, Siemens AG,
1998

[FMW97] G. Florijn, M. Meijers, P. van Winsen: Tool support for object-oriented
patterns, in [ECOOP97], 1997

[Fow97a] M. Fowler: Analysis Patterns, Addison-Wesley, 1997

[Fow97b] M. Fowler: UML Distilled, Addison-Wesley, 1997

[FS97] M. Fayad, R. Johnson, D.C. Schmidt (eds.): Special Issue on
Object-Oriented Application Frameworks, Communications of the ACM,
vol. 40, no. 10, October 1997

[Gab96] R.P. Gabriel: Patterns of Software, Oxford University Press, 1996

[GG99] R.P. Gabriel, R. Goldman: Jini Community Pattern Language,
Proceedings of the 1999 conference on Pattern Languages of
Programming, 1999,
http://jerry.cs.uiuc.edu/~plop/plop99/proceedings/

[GJS96] J. Gosling, B. Joy, G. Steele: The Java Language Specification,
Addison-Wesley, 1996

[GLDW87] R. Gingell, M. Lee, X. Dang, M. Weeks: Shared Libraries in SunOS,
Proceedings of the Summer 19987 USENIX Technical Conference, 1987

http://jerry.cs.uiuc.edu/~plop/plop99/proceedings/

 464

[GoF95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns - Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995

[GP97] G. Somadder, D.C. Petri: A Pattern Language for Improving the
Capacity of Layered Client/Server Systems with Multi-Threaded Servers,
Proceedings of the 2nd European Conference on Pattern Languages of
Programming (EuroPLoP'97), pp. 179–189, Irsee, Germany, 1997

[GR93] J. Gray, A. Reuter: Transaction Processing: Concepts and Techniques,
Morgan Kaufman, 1993

[Grand98] M. Grand: Patterns in Java, Volume 1, John Wiley & Sons, 1998

[Grand99] M. Grand: Patterns in Java, Volume 2, John Wiley & Sons, 1999

[GR96] B. Goldfedder, L. Rising: A Training Experience with Patterns,
Communications of the ACM, vol. 39, no. 10, 1996

[GS96] A. Gokhale, D.C. Schmidt: Measuring the Performance of
Communication Middleware on High-Speed Networks, Proceedings of
SIGCOMM '96, Stanford, CA, ACM, pp. 306–317, August 1996

[GS97] R. Guerraoui, A. Schiper: Software-Based Replication for Fault
Tolerance, IEEE Computer, vol 30. no. 4, pp. 68–74, April 1997

[GS98] A. Gokhale, D.C. Schmidt: Optimizing a CORBA IIOP Protocol Engine for
Minimal Footprint Multimedia Systems, Journal on Selected Areas in
Communications, special issue on Service Enabling Platforms for
Networked Multimedia Systems, vol. 17, no. 9, September 1999

[GZ89] R. Gusella, S. Zatti: The Accuracy of the Clock Synchronization
Achieved by TEMPO in Berkeley UNIX 4.3 BSD, IEEE Transactions on
Software Engineering, vol. 15, pp. 847–853, July 1989

[Hal85] R.H. Halstead, Jr.: Multilisp: A Language for Concurrent Symbolic
Computation, ACM Transactions on Programming Languages and
Systems, vol. 7, pp. 501–538, October 1985

[Har96] N.B. Harrison: Organizational Patterns for Teams, in [PLoPD2], 1996

[Har97] N.B. Harrison: Patterns for Logging Diagnostic Messages, in
[PLoPD3], 1997

[Hen98] M. Henning: Binding, Migration and Scalability in CORBA, in
Communications of the ACM, special issue on CORBA, ed. K.
Seetharaman, vol. 41, no. 10, ACM, October 1998

 465

[Hen00] K. Henney: Executing Around Sequences, Proceedings of the 5th
European conference on Pattern Languages of Programming, EuroPLoP
2000, Irsee, July 2000

[HJE95] H. Hüni, R. Johnson, R. Engel: A Framework for Network Protocol
Software, Proceedings of OOPSLA '95, ACM, Austin, TX, October 15–19,
1995

[HK93] Y. Huang, C. Kintala: Software Implemented Fault Tolerance:
Technologies and Experience, Proceedings of the 23rd International
Symposium on Faulttolerance Computing (FTCS), pp. 2–10, Toulouse,
France, June 1993

[HLS97] T. Harrison, D. Levine, D.C. Schmidt: The Design and Performance of a
Real-Time CORBA Event Service, Proceedings of OOPSLA '97, ACM,
Atlanta, GA, October 6–7, 1997.

[HMPT89] N.C. Hutchinson, S. Mishra, L.L. Peterson, V.T. Thomas: Tools for
Implementing Network Protocols, Software Practice and Experience, vol.
19, no. 9, 1989

[HMS98] J. Hu, S. Mungee, Douglas C. Schmidt: Principles for Developing and
Measuring High-performance Web Servers over ATM, Proceedings of
INFOCOM '98, 1998

[Hoare74] C.A.R. Hoare: Monitors: An Operating System Structuring
Mechanism, Communications of the ACM, vol. 17, October 1974

[HP91] N.C. Hutchinson, L.L. Peterson: The x-kernel: An Architecture for
Implementing Network Protocols, IEEE Transactions on Software
Engineering, vol. 17, pp. 64–76, January 1991

[HPS99] J.C. Hu, I. Pyarali, D.C. Schmidt: The Object-Oriented Design and
Performance of JAWS: A High-performance Web Server Optimized for
Highspeed Networks, Parallel and Distributed Computing Practices
Journal, special issue on Distributed Object-Oriented Systems, 1999

[HS98] J.C. Hu, D.C. Schmidt: JAWS: A Framework for High-performance Web
Servers, in [FJ99], 1999

[HS99a] G.C. Hunt, M.L. Scott: Intercepting and Instrumenting COM
Application, Proceedings of the 5th Conference on Object-Oriented
Technologies and Systems, USENIX, San Diego, CA, May 1999

[HS99b] R. Hanmer, G. Stymfal: An Input and Output Pattern Language:
Lessons from Telecommunications, in [PLoPD4], 1999

 466

[HSGH99] T. Howes, M.C. Smith, G.S. Good, T.A. Howes: Understanding and
Deploying Ldap Directory Services, Macmillan Network Architecture and
Development Series), Macmillan Technical Publishing, 1999

[HV99] M. Henning, S. Vinoski: Advanced CORBA Programming with C++,
Addison-Wesley, 1999

[IBM98] IBM Corporation: San Francisco Patterns, http://www-
4.ibm.com/software/ad/sanfrancisco/concepts/ibmsf.sf.SFConcept
sAndFacilitiesPatterns.html, 1998

[IEEE95] IEEE: Scheduling and Load Balancing in Parallel and Distributed
Systems, (eds.) B.A. Shirazi, A.R. Hurson, K.M. Kavi, IEEE Computer
Society, 1995

[IEEE96] IEEE: Threads Extension for Portable Operating Systems, (Draft
10), February 1996

[IEEE99] IEEE: Design Patterns in Communications Software Architecture,
L. Rising (ed.), special issue of IEEE Communications Magazine, vol. 37,
no. 4, April 1999

[IM96] N. Islam, M.V. Devarakonda: An Essential Design Pattern for Fault-
Tolerant Distributed State Sharing, Communications of the ACM (CACM),
vol. 39, no. 10, pp. 55–74, 1996

[ITUT92] ITU-T: Principles for a Telecommunications Management
Network, (Recommendation M.3010), 1992

[JACE99] DOC Group at Washington University in St. Louis: Java ACE, An
Object-Oriented Network Programming Toolkit in Java, Washington
University, St. Louis, USA, 1999,
http://www.cs.wustl.edu/~schmidt/JACE.html

[JBR99] I. Jacobson, G. Booch, J. Rumbaugh: Unified Software Development
Process, Addison-Wesley, 1999

[JH98] G. James, D. Hillard: The TAO Of Programming, Book 3 - Design,
http://www.gnomehome.demon.nl/uddf/pages/zzztao.htm, 1998

[JK00] P. Jain, M. Kircher: The Lookup Design Pattern, Proceedings of the 5th
European Conference on Pattern Languages of Programming, EuroPLoP
2000, July 2000

[JML92] R. Johnson, C. McConnell, J.M. Lake: The RTL System: A Framework for
Code Optimization, in R. Giegerich, S. Graham (eds.): Code Generation -

http://www.cs.wustl.edu/~schmidt/JACE.html
http://www.gnomehome.demon.nl/uddf/pages/zzztao.htm

 467

Concepts, Tools, Techniques, pp. 255–274, Springer-Verlag, London,
1991

[John92] R. Johnson: Documenting Frameworks Using Patterns, in
Proceedings of the 1992 Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA '92), pp. 63–76, ACM
Press, 1992

[John96] R. Johnson: Transactions and Accounts, in [PLoPD2], 1996

[John97] R. Johnson: Frameworks = Patterns + Components,
Communications of the ACM, M. Fayad and D. C. Schmidt (eds.), vol. 40,
no. 10, October 1997

[JS97a] P. Jain, D.C. Schmidt: Experiences Converting a C++ Communication
Software Framework to Java, C++ Report, vol. 9, Issue 1, January 1997

[JS97b] P. Jain, D.C. Schmidt: Service Configurator: A Pattern for Dynamic
Configuration of Services, Proceedings of the 3rd Conference on Object-
Oriented Technologies and Systems, USENIX, June 1997

[JSR51] New I/O APIs for the Java Platform,
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_051_ioa
pis.html

[JWS98] P. Jain, S. Widoff, D.C. Schmidt: The Design and Performance of
MedJava - Experience Developing Performance-Sensitive Distributed
Applications with Java, IEE/BCS Distributed Systems Engineering Journal,
1998

[Kan92] S. Khanna: Real-Time Scheduling in SunOS 5.0, in Proceedings of
the 1992 USENIX Winter Conference, USENIX Association, pp. 375–390,
1992

[Kar95] E-A. Karlsson (Ed.): Software Reuse - A Holistic Approach, John
Wiley & Sons, 1995

[KC97] W. Keller, J. Coldewey: Accessing Relational Databases, in [PLoPD3],
1997

[KCC+96] K. Beck, R. Crocker, J.O. Coplien, L. Dominick, G. Meszaros, F. Paulich, J.
Vlissides: Industrial Experience with Design Patterns, Proceedings of the
International Conference on Software Engineering 1996 (ICSE '96),
Berlin, March 1996, also available in [Ris98]

[Ken98] E. Kendall: Utilizing Patterns and Pattern Languages in Software
Engineering Education, Annals of Software Engineering, vol. 6, Software
Engineering Education, 1998

http://java.sun.com/aboutJava/communityprocess/jsr/jsr_051_ioa

 468

[Kic92] G. Kiczales: Towards a New Model of Abstraction in Software
Engineering, in A. Yonezawa, B.C. Smith (eds.): Proceedings of the
International Workshop on New Models for Software Architecture '92 -
Reflection and Meta-Level Architecture, Tokyo, Japan, 1992

[KiLe00] M. Kircher and D.L. Levine: The XP of TAO - eXtreme Programming of
Large, Open-source Frameworks, in Proceedings of the 1st International
Conference on eXtreme Programming and Flexible Processes in Software
Engineering, Cagliari, Italy, June 2000

[KLM+97] G. Kiczales. J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M. Loingtier, J.
Irwin: Aspect-Oriented Programming, in [ECOOP97], 1997

[KML92] D. Kafura, M. Mukherji, G. Lavender: ACT++: A Class Library for
Concurrent Programming in C++ using Actors, Journal of Object-Oriented
Programming, pp. 47–56, October 1992

[Kof93] T. Kofler: Robust Iterators for {ET++}, Structured Programming,
vol. 14, no. 2, pp. 62–85, 1993

[KRL+00] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L.C. Magalhães, R.H. Campbell:
Monitoring, Security, and Dynamic Configuration with the dynamicTAO
Reflective ORB, in J. Sventek, G. Coulson (ed.): Middleware 2000,
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms, 2000, ACM/IFIP, Lecture Notes in Computer Science,
Springer, 2000

[KSL99] F. Kuhns, D.C. Schmidt, D.L. Levine: The Design and Performance of a
Real-Time I/O Subsystem, Proceedings of the IEEE Real-Time Technology
and Applications Symposium, IEEE, Vancouver, British Columbia, Canada,
pp. 154–163, June 1999

[KTB98] R.K. Keller, J. Tessier, G. von Bochmann: A Pattern System for Network
Management Interfaces, Communications of the ACM, vol. 41, no. 9. pp.
86–93, September 1998

[Lak95] J. Lakos: Large-Scale Software Development with C++, Addison-
Wesley, 1995

[Lan98] M. Lange: Time Patterns, Proceedings of the 1998 European
Conference on Pattern Languages of Programming, July 1998

[LBG97] K. Lano, J. Bicarregui, and S Goldsack: Formalising Design Patterns, in
1st BCS-FACS Northern Formal Methods Workshop, Electronic Workshops
in Computer Science, Springer-Verlag, 1997

 469

[LC87] M.A. Linton, P.R. Calder: The Design and Implementation of
InterViews, Proceedings of the USENIX C++ Workshop, November 1987

[Lea94] Doug Lea: Design Patterns for Avionics Control Systems, DSSA
ADAGE Technical Report ADAGE-OSW-94-01, Loral Federal Systems, 1994

[Lea99a] D. Lea: Concurrent Programming in Java, Design Principles and
Patterns, 2nd edition, Addison-Wesley, 1999

[Lea99b] D. Lea: Software Design, State University Of New York at
Oswego, class no. CSC 480, State University Of New York at Oswego,
Oswego, 1999

[Lew95] B. Lewis: Threads Primer: A Guide to Multithreaded Programming,
Prentice Hall, 1995

[LGS99] D.L. Levine, C.D. Gill, D.C. Schmidt: Object Lifetime Manager - A
Complementary Pattern for Controlling Object Creation and Destruction,
C++ Report, vol. 12, Number 1, January 2000,
http://www.cs.wustl.edu/~levine/research/ObjMan.ps.gz

[LG00] D.L. Levine, C.D. Gill: Object-Oriented Software Development
Laboratory, Washington University in St. Louis, Class no. CS E61 342S,
Washington University, St. Louis, 2000,
http://www.cs.wustl.edu/~levine/courses/cs342

[LK95] R.G. Lavender, D.G. Kafura: A Polymorphic Future and First-Class
Function Type for Concurrent Object-Oriented Programming in C++,
http://www.cs.utexas.edu/users/lavender/papers/future.ps, 1995

[LS88] B. Liskov, L. Shrira: Promises: Linguistic Support for Efficient
Asynchronous Procedure Calls in Distributed Systems, Proceedings of the
SIGPLAN '88 Conference on Programming Language Design and
Implementation, pp. 260–267, June 1988

[LS98] A. Lauder, S. Kent: Precise Visual Specification of Design Patterns, in
[ECOOP98], 1998

[LT93] D.L. Levine, R.N. Taylor: Metric-Driven Re-engineering for Static
Concurrency Analysis, Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA '93), ACM press,
1993

[LY99] T. Lindholm, F. Yellin: The Java Virtual Machine Specification, 2nd
Edition, Addison-Wesley, 1999

http://www.cs.wustl.edu/~levine/research/ObjMan.ps.gz
http://www.cs.wustl.edu/~levine/courses/cs342
http://www.cs.utexas.edu/users/lavender/papers/future.ps

 470

[Maf96] S. Maffeis: The Object Group Design Pattern, Proceedings of the
1996 USENIX Conference on Object-Oriented Technologies, USENIX,
Toronto, Canada, June 1996

[MaHa99] V. Matena, M Hapner: Enterprise JavaBeans, Version 1.1, Sun
Microsystems, 1999

[Mar95] R.C. Martin: Designing Object-Oriented C++ Applications Using the
Booch Method, Prentice Hall, 1995

[MB91] J.C. Mogul, A. Borg: The Effects of Context Switches on Cache
Performance, Proceedings of the 4th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), ACM, Santa Clara, CA, April 1991

[MBKQ96] M.K. McKusick, K. Bostic, M.J. Karels, J.S. Quarterman: The Design and
Implementation of the 4.4 BSD Operating System, Addison-Wesley 1996

[MD91] P.E. McKenney, K.F. Dove: Efficient Demultiplexing of Incoming TCP
Packets, Sequent Computer Systems, Inc., SQN TR92-01, December 1991

[McK95] P.E. McKenney: Selecting Locking Designs for Parallel Programs, in
[PLoPD2], 1996

[MDS96] Microsoft Developers Studio, Version 4.2 - Software
Development Kit, 1996

[Mey95] S. Meyers: More Effective C++ - 35 New Ways to Improve Your
Programs and Designs, Addison-Wesley, 1995

[Mey97] B. Meyer: Object-Oriented Software Construction, 2nd Edition,
Prentice Hall, Englewood Cliffs, NJ, 1997

[Mey98] S. Meyers: Effective C++, 2nd edition, Addison-Wesley, 1998

[Mes95] G. Meszaros: Half Object plus Protocol, in [PLoPD1], 1995

[Mes96] G. Meszaros: A Pattern Language for Improving the Capacity of
Reactive Systems, in [PLoPD2], 1996

[MGG00] P. Merle, C. Gransart, J.M. Geib: Using and Implementing CORBA
Objects with CorbaScript, in J.P. Bashoun, T. Baba, J.P. Briot, A.
Yonezawa (eds.): Object-Oriented Parallel and Distributed Programming,
Editions Hermes, Paris, France, January 2000

 471

[Mic00] A. Michail: Data Mining Library Reuse Patterns using Generalized
Association Rules, Proceedings of the 22nd International Conference on
Software Engineering, 2000

[Mik98] T. Mikkonen: Formalizing Design Patterns, Proceedings of the 1998
International Conference on Software Engineering, pp. 115–124, IEEE
Computer Society Press, 1998

[Mil88] D. Mills: The Network Time Protocol, University of Delaware,
Network, 1988

[MK97] A. Mester, H. Krumm: Formal behavioural patterns for the tool-
assisted design of distributed applications, IFIP WG 6.1 International
Working Conference on Distributed Applications and Interoperable
Systems (DAIS 97), Cottbus, Germany, Sep/Oct 1997, Chapman & Hall,
1997

[MM97] R.C. Malveau, T.J. Mowbray: CORBA Design Patterns, John Wiley &
Sons, 1997

[MMN99] L.E. Moser, P.M. Melliar-Smith, P. Narasimhan: A Fault Tolerance
Framework for CORBA, International Symposium on Fault Tolerant
Computing, Madison, WI, June 1999

[Mog95] J.C. Mogul: The Case for Persistent-connection HTTP, Proceedings
of the ACM SIGCOMM'95 Conference in Computer Communication Review,
ACM press, pp. 299–314, 1995

[MWY91] S. Matsuoka, K. Wakita, A. Yonezawa: Analysis of Inheritance Anomaly
in Concurrent Object-Oriented Languages, OOPS Messenger, 1991

[Mue93] F. Mueller: A Library Implementation of POSIX Threads Under
UNIX, Proceedings of the Winter USENIX Conference, San Diego, CA,
USA, 1993

[Mue96] H. Mueller: Patterns for Handling Exception Handling Successfully,
C++ Report vol. 8, January 1996

[Naka00] T. Nakajima: Dynamic Transport Protocol Selection in a CORBA
System, The 3rd IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, Newport Beach, California, USA, March 15–
17 2000

[NDW93] J. Neider, T. Davis, M. Woo: OpenGL Programming Guide: The Official
Guide to Learning OpenGL, Release 1, Addison-Wesley, 1993

 472

[NLN+99] S. Nimmagadda, C. Liyanaarchchi, D. Niehaus, A. Gopinath, A. Kaushal:
Performance Patterns: Automated Scenario Based ORB Performance
Evaluation, Proceedings of the 5th Conference on Object-Oriented
Technologies and Systems, USENIX, San Diego, CA, May 1999

[NMM99] P. Narasimhan, L.E. Moser, P.M. Melliar-Smith: Using Interceptors to
Enhance CORBA, IEEE Computer, vol. 32, no. 7, pp. 64–68, July 1999

[NMM00] P. Narasimhan, L.E. Moser, P.M. Melliar-Smith: Patterns for Building
Transparent Reliable Middleware, Theory and Practice of Object Systems,
vol. 6, 2000

[Nuy96] D. Nguyen: Design Patterns for Data Structures,
http://csis.pace.edu/~bergin/papers/nguyen/Despat4DatStruct.ht
ml, 1996

[NW98] J. Noble, C. Weir: Proceedings of the Memory Preservation Society,
Proceedings of the 1998 European Conference on Pattern Languages of
Programming, July 1998

[MTOOL99] microTOOL: objectiF - For the Development of Object-
Oriented and Component-Based Software Systems, microTOOL GmbH,
http://www.microtool.de, 1999

[OHE96] R. Orfali, D. Harkey, J. Edwards: The Essential Distributed Objects
Survival Guide, Wiley & Sons, 1996

[OMG97a] Object Management Group: CORBA Services - Naming Service,
TC Document formal/97-07-12, July 1997

[OMG97b] Object Management Group: CORBA Services - Transactions
Service, TC Document formal/97-12-17, 1997

[OMG97c] Object Management Group: CORBA Time Service Specification,
OMG TC Document orbos/97-12-21, December 1997

[OMG98a] Object Management Group: CORBA Messaging Specification,
OMG TC Document orbos/98-05-05, May 1998

[OMG98b] Object Management Group: CORBA Services: Common Object
Services Specification Updated Version: December 1998, Chapter 16: The
Trading Object Service Specification, formal/98-07-05, 1998

[OMG98c] Object Management Group: The Common Object Request
Broker: Architecture and Specification, 2.3 ed., December 1998

http://csis.pace.edu/~bergin/papers/nguyen/Despat4DatStruct.ht
http://www.microtool.de

 473

[OMG98d] Object Management Group: CORBA Security Service v1.2
Specification, OMG TC Document formal/98-12-17, December 1998

[OMG99a] Object Management Group: CORBA Components Final
Submission, OMG TC Document orbos/99-02-05, February 1999

[OMG99b] Object Management Group: Real-Time CORBA Joint Revised
Submission, OMG TC Document orbos/99-02-12, February 1999

[OMG99c] Object Management Group: Notification Service Specification,
OMG TC Document telecom/99-07-01, July 1999

[OMG99d] Object Management Group: minimumCORBA Joint Revised
Submission, OMG TC Document orbos/98-08-04, August 1999

[OMG99e] Object Management Group: Persistent State Service 2.0 Joint
Revised Submission, orbos/99-07-07, August 1999

[OMG99f] Object Management Group: Portable Interceptors, OMG TC
Document orbos/99-12-02, December 1999

[OMG99g] Object Management Group: Fault Tolerant CORBA Joint
Revised Submission, OMG TC Document orbos/99-12-08, December 1999

[Opd92] W.F. Opdyke: Refactoring Object-Oriented Frameworks, PhD Thesis,
University of Illinois at Urbana Champaign, 1992

[OS99] O'Reilly On-line Book: Open Sources: Voices from the Open
Source Revolution,
http://www.oreilly.com/catalog/opensources/book/toc.html,
O'Reilly, 1999

[OSSL00] OpenSSL: An Open Source toolkit implementing the Secure
Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1),
http://www.openssl.org/. 2000

[PC00] M.P. Plezbert, R.K. Cytron: Recognition and Verification of Design
Patterns, Technical Report WUCS-00-01, Washington University in St.
Louis, January 2000

[Pet95] C. Petzold: Programming Windows 95, Microsoft Press, 1995

[PHS96] I. Pyarali, T.H. Harrison, D.C. Schmidt: Design and Performance of an
Object-Oriented Framework for High-Performance Electronic Medical
Imaging, USENIX Computing Systems, vol. 9, November/December 1996

http://www.oreilly.com/catalog/opensources/book/toc.html
http://www.openssl.org/

 474

[PK98] L. Prechelt, C. Krämer: Functionality versus Practicality: Employing
Existing Tools for Recovering Structural Design Patterns, Journal of
Universal Computer Science, vol. 4, no. 12, pp. 866–882, December 1998

[PLoPD1] J.O. Coplien, D.C. Schmidt (eds.): Pattern Languages of
Program Design, Addison-Wesley, 1995 (a book publishing the reviewed
Proceedings of the First International Conference on Pattern Languages of
Programming, Monticello, Illinois, 1994)

[PLoPD2] J.O. Coplien, N. Kerth, J. Vlissides (eds.): Pattern Languages of
Program Design 2, Addison-Wesley, 1996 (a book publishing the reviewed
Proceedings of the Second International Conference on Pattern Languages
of Programming, Monticello, Illinois, 1995)

[PLoPD3] R.C. Martin, D. Riehle. D. Buschmann (eds.): Pattern Languages
of Program Design 3, Addison-Wesley, 1997 (a book publishing selected
papers from the Third International Conference on Pattern Languages of
Programming, Monticello, Illinois, USA. 1996. the First European
Conference on Pattern Languages of Programming, Irsee, Bavaria,
Germany. 1996, and the Telecommunication Pattern Workshop at OOPSLA
'96, San Jose, Monticello, Illinois, USA. 1996)

[PLoPD4] N. Harrison, B. Foote, H. Rohnert (eds.): Pattern Languages of
Program Design 4, Addison-Wesley, 1999 (a book publishing selected
papers from the Fourth and Fifth International Conference on Pattern
Languages of Programming, Monticello, Illinois, USA, 1997 and 1998, and
the Second and Third European Conference on Pattern Languages of
Programming, Monticello, Illinois, USA, 1997 and 1998)

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: Pattern-
Oriented Software Architecture - A System of Patterns, John Wiley &
Sons, 1996

[POSIX95] Information Technology - Portable Operating System Interface
(POSIX) - Part 1: System Application: Program Interface (API) [C
Language], 1995

[PPP00] The Pedagogical Patterns Project, http://www-
lifia.info.unlp.edu.ar/ppp/, 2000

[PPR] The Portland Pattern Repository, http://www.c2.com

[PR90] D.L. Presotto, D.M. Ritchie: Interprocess Communication in the Ninth
Edition UNIX System, UNIX Research System Papers, Tenth Edition, vol.
2, no. 8, pp. 523–530, 1990

http://www.c2.com

 475

[PQ00] V. N. Padmanabhan, L. Qiu: The Content and Access Dynamics of A
Busy Web Site: Findings and Interpretations, Proceedings of the ACM
SIGCOMM Conference, Stockholm, Sweden, August/September, 2000

[Pree95] W. Pree: Design Patterns for Object-Oriented Software
Development, Addison-Wesley, 1995

[Preiss98] B.R. Preiss: Data Structures and Algorithms with Object-Oriented
Design Patterns in C++, John Wiley & Sons, 1998

[Pro99] J. Prosise: Programming Windows With MFC, 2nd edition, Microsoft
Press, 1999

[PRS+99] I. Pyarali, C. O'Ryan, D.C. Schmidt, N. Wang, V. Kachroo, A. Gokhale:
Applying Optimization Patterns to the Design of Real-Time ORBs,
Proceedings of the 5th conference on Object-Oriented Technologies and
Systems, San Diego, CA, USENIX, 1999

[PRS00] I. Pyarali, C. O'Ryan, D.C. Schmidt: A Pattern Language for Efficient,
Predictable, Scalable, and Flexible Dispatching Mechanisms for Distributed
Object Computing Middleware, Proceedings of the International
Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC), IEEE/IFIP Newport Beach, CA, March 2000

[Pry99] N. Pryce: Abstract Session, in [PLoPD4], 1999

[PSJ00] D.C. Petriu, C. Shousha, A. Jalnapurkar: Architecture-Based Performance
Analysis Applied to a Telecommunication System, accepted for publication
in IEEE Transactions on Software Engineering, special issue on Software
and Performance, 2000

[PSK+97] G. Parulkar, D.C. Schmidt, E. Kraemer, J. Turner, A. Kantawala: An
Architecture for Monitoring, Visualizing and Control of Gigabit Networks,
IEEE Network vol. 11, Sept. 1997

[PUPT97] L. Prechelt, B. Unger, M. Philippsen, W.F. Tichy: Two Controlled
Experiments Assessing the Usefulness of Design Pattern Information
During Program Maintenance, Empirical Software Engineering - An
International Journal, December 1997

[Rago93] S. Rago: UNIX System V Network Programming, Addison-Wesley,
1993

[RBGM00] D. Riehle, R. Brudermann, T. Gross, K.U. Mätzel: Pattern Density and
Role Modeling of an Object Transport Service, ACM Computing Surveys,
March 2000.

 476

[RBPEL91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen: Object-
Oriented Modeling and Design, Prentice Hall, 1991

[RBV99] M. Robinson, K. Brown, P.A. Vorobiev: Swing, Manning Publications
Company, 1999

[Ree92] T. Reenskaug: Intermediate Smalltalk, Practical Design and
Implementation, Tutorial, TOOLS Europe '92, Dortmund, 1992

[RG98] D. Riehle, T. Gross: Role Model Based Framework Design and
Integration, Proceedings of the 1998 Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA '98), pp.
117–133, ACM Press, 1998

[Ric97] J. Richter: Advanced Windows, 3rd edition, Microsoft Press, 1997

[Rie96] D. Riehle: The Event Notification Pattern - Integrating Implicit
Invocation with Object-Orientation, Theory and Practice of Object
Systems vol. 2, no. 1, pp. 43–52, John Wiley & Sons, 1996

[Rie97] D. Riehle: Composite Design Patterns, Proceedings of the 1997
Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA '97). ACM Press, 1997

[Ris98] L. Rising (ed.): The Patterns Handbook, SIGS Publications,
Cambridge University Press, 1998

[Ris00a] L. Rising: The Pattern Almanac 2000, Addison-Wesley, 2000

[Ris00b] L. Rising: Design Patterns in Communications Software, Cambridge
University Press, 2000

[Rit84] D. Ritchie: A Stream Input-Output System, AT&T Bell Labs Technical
Journal, vol 63 pp. 311–324, October 1984

[RKF92] W. Rosenberr, D. Kenney, G. Fischer: Understanding DCE, O'Reilly and
Associates, Inc., 1992

[RKSOP00] C. O'Ryan, F. Kuhns, Douglas C. Schmidt, O. Othman, J. Parsons: The
Design and Performance of a Pluggable Protocols Framework for Real-
Time Distributed Object Computing Middleware, J. Sventek, G. Coulson
(eds.): Middleware 2000, Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms, 2000, ACM/IFIP, Lecture
Notes in Computer Science, Springer, 2000

[RSB+97] D. Riehle, W. Siberski, B. Bäumer, D. Megert, B. Fletcher: Serializer, in
[PLoPD3], 1997

 477

[San98] R.E. Sanders: ODBC 3.5 Developer's Guide, McGraw-Hill Series on
Data Warehousing and Data, 1998

[SC96] A. Sane, R. Campbell: Resource Exchanger: A Behavioral Pattern for
Low-Overhead Concurrent Resource Management, in [PLoPD2], 1996

[SC99] D.C. Schmidt, C. Cleeland: Applying Patterns to Develop Extensible ORB
Middleware, IEEE Communications Magazine, special issue on Design
Patterns, April 1999

[Sch92] D.C. Schmidt: IPC_SAP: An Object-Oriented Interface to
Interprocess Communication Services, C++ Report vol. 4,
November/December 1992

[Sch94] D.C. Schmidt: A Domain Analysis of Network Daemon Design
Dimensions, C++ Report, SIGS, vol. 6, no. 3, pp. 1–12, March/April 1994

[Sch95] D.C. Schmidt: An OO Encapsulation of Lightweight OS Concurrency
Mechanisms in the ACE Toolkit, Technical Report WUCS-95-31,
Washington University, St. Louis, September 1995,
http://www.cs.wustl.edu/~schmidt/Concurrency.ps.gz

[Sch96] D.C. Schmidt: A Family of Design Patterns for Application-level
Gateways, The Theory and Practice of Object Systems, special issue on
Patterns and Pattern Languages, vol. 2, no. 1, 1996

[Sch97] D.C. Schmidt: Applying Design Patterns and Frameworks to Develop
Object-Oriented Communication Software, Handbook of Programming
Languages, Peter Salus (ed.), MacMillan Computer Publishing, 1997

[Sch98a] D.C. Schmidt: GPERF: A Perfect Hash Function Generator, C++
Report, vol. 10, no. 10, November/December 1998

[Sch98b] D.C. Schmidt: Evaluating Architectures for Multi-threaded CORBA
Object Request Brokers, Communications of the ACM, special issue on
CORBA, Krishnan Seetharaman (ed.), vol 41., no. 10, ACM, October 1998

[Sch99] D.C. Schmidt: Developing Object-Oriented Software with Patterns
and Frameworks, Washington University in St. Louis, Class no. CS 242,
Washington University, St. Louis, 1999,
http://www.cs.wustl.edu/~schmidt/courses.html

[SchSt95] D.C. Schmidt, P. Stephenson: Experiences Using Design Patterns to
Evolve System Software Across Diverse OS Platforms, in [ECOOP95],
1995

http://www.cs.wustl.edu/~schmidt/Concurrency.ps.gz
http://www.cs.wustl.edu/~schmidt/courses.html

 478

[SchSu93] D.C. Schmidt, T. Suda: Transport System Architecture Services for
High-Performance Communications Systems, IEEE Journal on Selected
Areas in Communication, vol. 11, no. 4, pp. 489–506, IEEE, May 1993

[SchSu94] D.C. Schmidt, T. Suda: An Object-Oriented Framework for
Dynamically Configuring Extensible Distributed Communication Systems,
IEE/BCS Distributed Systems Engineering Journal, vol. 2, pp. 280–293,
December 1994

[SchSu95] D.C. Schmidt, T. Suda: Measuring the Performance of Parallel
Message-Based Process Architectures, Proceedings of the Conference on
Computer Communications (INFOCOM), pp. 624–633, IEEE, April 1995

[SeSch70] A. Seidelmann, A. Schwarzenegger: Hercules in New York, RAF
Industries, 1970

[SFJ96] D.C. Schmidt, M. Fayad. R.E. Johnson: Software Patterns,
Communications of the ACM (CACM), vol. 39, no. 10, pp. 36–39, 1996

[SG96] M. Shaw, D. Garlan: Software Architecture - Perspectives of an
Emerging Discipline, Prentice Hall, 1996

[SGWSM94] B. Selic, G.Gullekson, P.T. Ward, B. Selic, J. McGee: Real-Time Object-
Oriented Modeling, John Wiley & Sons, 1994

[Shap93] M. Shapiro: Flexible Bindings for Fine-Grain, Distributed Objects,
INRIA, Rapport de Recherche INRIA 2007, August 1993

[SHS95] D.C. Schmidt, T.H. Harrison, E. Al-Shaer, Object-Oriented Components
for High-Speed Networking Programming, Proceedings of the 1st
Conference on Object Technologies and Systems, USENIX, Monterey, CA,
June 1995

[SKT96] J.D. Salehi, J.F. Kurose, D. Towsley: The Effectiveness of Affinity-Based
Scheduling in Multiprocessor Networks, IEEE INFOCOM, IEEE Computer
Society Press, March, 1996

[SM88] S. Shlaer, S.J. Mellor: Object-Oriented Systems Analysis - Modeling
the World In Data, Yourdon Press, Prentice Hall, 1988

[SMB96] F. Shull, W. Melo, V. Basili: An Inductive Method for Discovering
Design Patterns from Object-Oriented Software Systems, University of
Maryland CSTR-3597, 1996

[SLM98] D.C. Schmidt, D.L. Levine, S. Mungee: The Design and Performance of
Real-Time Object Request Brokers, Computer Communications, vol. 21,
no. 4, pp. 294–324, Elsevier, April 1998

 479

[SMFG00] D.C. Schmidt, S. Mungee, S. Flores-Gaitan, A. Gokhale: Software
Architectures for Reducing Priority Inversion and Non-Determinism in
Real-Time Object Request Brokers, Journal of Real-Time Systems, special
issue on Real-Time Computing in the Age of the Web and the Internet,
Ed.: A. Stoyen, Kluwer, 2000

[Sol98] D.A. Solomon: Inside Windows NT, 2nd Edition, Microsoft Press, 1998

[Som97] P. Sommerlad: Manager, in [PLoPD3], 1997

[SPM98] A.R Silva, J.D. Pereira, J.A. Marques: Object Recovery, in [PLoPD3],
1998

[SPM99] A.R Silva, J.D. Pereira, J.A. Marques: Object Synchronizer, in [PLoPD4],
1998

[SRPKB00] D.C. Schmidt, C. O'Ryan, I. Pyarali, M. Kircher, and F. Buschmann,
Leader/Followers: A Design Pattern for Efficient Multi-Threaded Event
Demultiplexing and Dispatching, Proceedings of the 7th Pattern Language
of Programming Conference, PLoP, Allerton Park, Illinois, USA, August
2000

[SRZ99] M. Schütze, J.P. Riegel, G. Zimmermann: PSiGene - A Pattern-Based
Component Generator for Building Simulation, Theory and Practice of
Object Systems (TAPOS), vol. 5, no. 2, 1999

[SS99] D. Sheresh, B. Sheresh: Understanding Directory Services, New Riders
Publishing, 1999

[Stal00] M. Stal: The Activator Design Pattern,
http://www.posa.uci.edu/, 2000

[Ste93] W.R. Stevens: TCP/IP Illustrated, Volume 1, Addison-Wesley, 1993

[Ste96] W.R. Stevens: TCP/IP Illustrated, Volume 3, Addison-Wesley, 1996

[Ste98] W.R. Stevens: Unix Network Programming, Volume1: Networking
APIs: Sockets and XTI, Second Edition, Prentice Hall, 1998

[Ste99] W.R. Stevens: Unix Network Programming, Volume 2: Interprocess
Communications, 2nd Edition, Prentice Hall, 1999

[Str97] B. Stroustrup: The C++ Programming Language, 3rd Edition,
Addison-Wesley 1997

[Sun88] Sun Microsystems: Remote Procedure Call Protocol Specification,
Sun Microsystems, Inc., RFC-1057, June 1988

http://www.posa.uci.edu/

 480

[Sun99a] Sun Microsystems: The Jini Architecture Specification (AR),
Version 1.0.1, http://www.sun.com/jini/specs/jini101.html,
November 1999

[Sun99b] Sun Microsystems: The Jini Distributed Event Specification (EV),
Version 1.0.1, http://www.sun.com/jini/specs/event101.html,
November 1999

[Sun00a] Sun Microsystems: Java 2 Platform, Standard Edition
Documentation,
http://java.sun.com/products/jdk/1.3/docs/index.html, May 2000

[Sun00b] Sun Microsystems: Java 2 Platform, Sun Community Source
Licensing, http://www.sun.com/software/communitysource/java2/,
May 2000

[SV96a] D.C. Schmidt, S. Vinoski: Comparing Alternative Programming
Techniques for Multi-Threaded CORBA Servers: Thread-per-Request, C++
Report, vol. 8, no. 2, February 1996

[SV96b] D.C. Schmidt, S. Vinoski: Comparing Alternative Programming
Techniques for Multi-Threaded CORBA Servers: Thread Pool, C++ Report,
vol. 8, no. 4, February 1996

[SV96c] D.C. Schmidt, S. Vinoski: Comparing Alternative Programming
Techniques for Multi-Threaded CORBA Servers: Thread-per-Object, C++
Report, vol. 8, no. 7, July 1996

[SV98a] D.C. Schmidt, S. Vinoski: Using the Portable Object Adapter for
Transient and Persistent CORBA Objects, C++ Report, vol. 10, no. 4, April
1998

[SV98b] D.C. Schmidt, S. Vinoski: Introduction to CORBA Messaging, C++
Report, vol. 10, November/December 1998

[SW94] W.R. Stevens, G Wright: TCP/IP Illustrated, Volume 2, Addison-
Wesley, 1994

[Tan92] A.S. Tanenbaum: Modern Operating Systems, Prentice Hall, 1992

[Tan95] A.S. Tanenbaum: Distributed Operating Systems, Prentice Hall, 1995

[Tichy98] W.F. Tichy: A Catalogue of General-Purpose Design Patterns,
Proceedings of the 23rd conference on the Technology of Object-Oriented
Languages and Systems (TOOLS 23), IEEE Computer Society, 1998

http://www.sun.com/jini/specs/jini101.html
http://www.sun.com/jini/specs/event101.html
http://java.sun.com/products/jdk/1.3/docs/index.html
http://www.sun.com/software/communitysource/java2/

 481

[TM00] W.F Tichy, M. Müller: Ausgewählte Kapitel der Softwaretechnik,
Universität Karlsruhe, LV no. 24646, Universität Karlsruhe, 2000

[ToSi89] C. Tomlinson, V. Singh: Inheritance and Synchronization with
Enabled-Sets, OOPSLA '89 Conference Proceedings, pp. 103–112, October
1998

[Tow99] D. Towell: Display Maintenance: A Pattern Language, in [PLoPD4],
1999

[U2] U2: even BETTER than the REAL THING, Island Records Ltd., 1991

[VaLa97] G. Varghese, T. Lauck: Hashed and Hierarchical Timing Wheels: Data
Structures for the Efficient Implementation of a Timer Facility, IEEE
Transactions on Networking, December 1997

[Vin98] S. Vinoski: New Features for CORBA 3.0, Communications of the
ACM, vol. 41, no. 10, pp. 44–52, October 1998

[Vlis98a] J. Vlissides: Pattern Hatching - Design Patterns Applied, Addison-
Wesley, 1998

[Vlis98b] J. Vlissides: Composite Design Patterns (They Aren't What You
Think), C++ Report, June 1998

[Vlis98c] J. Vlissides: Pluggable Factory, Pt. 1, C++ Report,
November/December 1998

[Wal00] E. Wallingford: The Elementary Patterns Home Page,
http://www.cs.uni.edu/~wallingf/patterns/elementary/, 2000

[WHO91] W. Wilson Ho, R.A. Olsson: An Approach to Genuine Dynamic
Linking, Software: Practice and Experience, vol. 21, no. 4, pp. 375–390,
April 1991

[WRW96] A. Wollrath, R. Riggs, and J. Waldo: A Distributed Object Model for the
Java System, in Proceedings of the 1996 USENIX Conference on Object-
Oriented Technologies (COOTS), Toronto, Canada, 1996

[WS95] G.W Wright, W.R. Stevens: TCP/IP Illustrated, Volume 2, Addison-
Wesley, 1995

[WSV99] N. Wang, D.C. Schmidt, S, Vinoski: Collocation Optimizations for
CORBA, C++ Report, vol. 11, no. 9, October 1999

[W3C98] W3C HTTP-NG Working Group: W3C HTTP-NG Protocol,
www.w3.org/Protocols/HTTP-NG, 1998

http://www.cs.uni.edu/~wallingf/patterns/elementary/
http://www.w3.org/Protocols/HTTP-NG

 482

[YB99] J. Yoder, J. Barcalow: Architectural Patterns for Enabling Application
Security, in [PLoPD4], 1999

[ZBS97] J. A. Zinky, D.E. Bakken, R. Schantz: Architectural Support for Quality of
Service for CORBA Objects, Theory and Practice of Object Systems, vol. 3,
no. 1, John Wiley & Sons, 1997

[Zweig90] J.M. Zweig: The Conduit: a Communication Abstraction in C++,
Proceedings of the 2nd USENIC C++ Conference, pp. 191–203, USENIX
Association, April 1990

