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Foreword

Middleware is the set of services, protocols, and support utilities providing the 'plumbing' that
makes modern distributed systems and applications possible—the infrastructure that
underlies web services, distributed objects, collaborative applications, e-commerce systems,
and other important platforms. Not long ago, the term middleware was rarely heard, and
middleware developers were rarer still. But over the past decade, the term, the research and
practice, and its impact have become ubiquitous. Yet, until now, there has not been a book
describing how to construct networked and concurrent object-oriented (OO) middleware, so
its design has remained something of a black art. This book demystifies middleware
construction, replacing the need to have an expert looking over your shoulder with well-
reasoned, empirically-guided accounts of common design problems, forces, successful
solutions, and consequences.

As is true for most concepts, nailing down the boundaries of middleware is hard.
Conventionally, it consists of the software needed to build systems and applications, yet is
not otherwise an intrinsic part of an operating system kernel. But it is not always possible to
find middleware where you first look for it: middleware can appear in libraries and
frameworks, operating systems and their add-ons, Java virtual machines and other run-time
systems, large-grained software components, and in portions of end-products such as web
services themselves.

This book is not a textbook surveying middleware or the types of applications and distributed
system architectures you can devise using middleware. It instead presents a pattern
language that captures the design steps leading to the construction of the OO
communication support involved in most middleware. Many of the patterns described in this
book also have utility in both higher-level and lower-level systems and applications that are
not based directly upon middleware.

This book emphasizes practical solutions over theoretical formalisms. The basic ideas
behind many presented patterns are well-known to experienced system developers—for
example, dispatching, demultiplexing, callbacks, and configuration—and are sometimes
variants of more general OO patterns—for example, proxies, adapters, and facades. This
book's main contribution centers on in-depth engineering solutions based upon these ideas.
Middleware developers must resolve a wide range of forces including throughput,
responsiveness, dependability, interoperability, portability, extensibility, and accommodating
legacy software. The diversity and severity of these forces accounts for the complexity of
middleware patterns, as opposed to those seen in smaller-scale OO applications and
concurrent programming.

The multitude of such forces, combined with years of engineering experience, often lead to a
multitude of design considerations and engineering trade-offs separating an idea from its
expression in middleware frameworks. The pattern description format used in this book
helps to simplify this process by presenting solutions as series of concrete design steps.
Many of these steps in turn invoke additional patterns. Together they form a pattern
language, enabling developers to traverse from pattern to pattern while designing services
and applications.

As mentioned by the authors, some of the ideas and techniques discussed in this book are
complementary to those seen for example in W. Richard Stevens's pioneering books (e.g.,
[Ste98]) on network programming. The main point of departure is the unrelenting focus on
higher-level design issues. Rather than, for example, discussing the ins and outs of the Unix
sel ect () call, this book explains how to build a composable and flexible framework—a
Reactor—based on sel ect () and other operating system calls.
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One of the implicit themes of this book is how to apply the bits and pieces of functionality
dealing with 1/O, threading, synchronization, and event demultiplexing offered by
contemporary platforms as the foundation for constructing higher-level frameworks and
components. The primary emphasis on C/C++ on Unix and Microsoft operating systems
does not detract from this theme. For example, Java programmers will find a few minor
disconnects in cases where Java already directly implements some of the patterns
discussed in this book, for example, Scoped Locking, or provides frameworks structured in
accord with particular implementations of patterns, such as the JavaBeans framework's
support of configurable components, as well as a few where Java lacks access to underlying
system mechanisms, such as synchronous event demultiplexing.

However, readers most familiar with Java, Smalltalk, and other OO programming languages
will still profit from the central ideas conveyed by the patterns, can better appreciate how and
why some became directly supported in language features and libraries, and will be able to
construct useful components based upon other patterns. As an example, until the advent of

j ava. ni o, Java did not provide access to system constructs useful for asynchronous 1/O.
However, after referring to a description of the Proactor pattern described in this book, | once
put together a Java version that simulated the demultiplexing step via a simple spin-loop
thread that checked for 1/0O availability across multiple channels. This was less efficient, but
was perfectly adequate within its intended usage context.

Over the years, some of the accounts in this book, such as Reactor, have evolved from
descriptions of design inventions to design patterns. Everyone constructing portable OO
middleware has written or used at least one Wrapper Facade. But early presentations of
several other patterns now contained in this book also discussed novel contributions about
their design. It was at first a bit uncertain whether such descriptions should be considered as
patterns, which must be time-proven, independently (re)discovered solutions. However, over
time, the authors and the OO middleware community have become more and more
confident that the patterns in this book do indeed capture the essence of key forces and
design issues, and have witnessed the described solutions being used over and over again
across diverse usage contexts.

| invite you to share in this phenomenon. By reading—and especially, using—the material in
this book, you'll see why pattern names such as Reactor and Proactor have become as
common among OO middleware developers as have Decorator and Observer among OO
GUI developers.

Doug Lea

State University of New York at Oswego
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About this Book

Patterns have taken the software development community by storm. Software developers
have been enthusiastic about patterns ever since the seminal work Design Patterns -
Elements of Reusable Object-Oriented Software [GoF95]. Its successors, such as the
Pattern Languages of Programming Design (PLoPD) series [PLoPD1] [PLoPD2] [PLoPD3]
[PLoPD4] and A System of Patterns [POSA1 & have further fanned the burning interest in
patterns kindled originally by earlier work on software idioms [Cope92], patterns for building
architectures [Ale79] [AIS77], and patterns for cultural anthropology [Bat97].

This book, Patterns for Concurrent and Networked Objects, is the second volume in the
Pattern-Oriented Software Architecture (POSA) series. Like its predecessor, A System of
Patterns [POSA1], it documents patterns and best practices that represent concrete, well-
proven and useful techniques for building industrial-strength software systems. These
patterns and best practices can and have been applied to applications in a wide range of
domains, including telecommunications and data communications, financial services,
medical engineering, aerospace, manufacturing process control, and scientific computing.
They also form the basis of popular distributed object computing middleware, such as

CORBA [OMG98c], COM+ [Box97], Java RMI [WRW96], and Jini [Sun99a].

Moreover, all the patterns in this book build on the same solid conceptual foundation as
those in the first POSA volume. For example, we use the same pattern categorization
schema, the same pattern description format, and present examples and known uses in
multiple programming languages, including C++, Java, and C.

Patterns for Concurrent and Networked Objects thus follows the same philosophy and path
as A System of Patterns and has the same 'look and feel'.

In contrast to A System of Patterns, however, which covered a broad spectrum of general-
purpose patterns, this book has a more specific focus: concurrency and networking. All the
patterns in this book center on these two areas, allowing us to discuss many topics related to
concurrency and networking in more depth than would be possible if the book contained
patterns from many unrelated domains. The patterns in this book therefore complement the
general-purpose patterns from A System of Patterns in these increasingly important areas of
software development.

Yet we focus on general, domain-independent patterns for concurrent and networked
applications and middleware. Our goal is to increase the likelihood that the patterns in this
book will help projects in your daily work. Therefore, we do not cover patterns in this book
that are specific to a particular application domain, such as those in [DeBr95] [Mes96]
[ACGH+96], which address networking aspects that pertain to the telecommunication
domain.

By focusing on general domain-independent patterns for concurrency and networking, this
book also complements existing literature in concurrent network programming and object-
oriented design:

8 Literature on concurrent network programming generally focuses on the syntax and
semantics of operating system APIs, such as Sockets [Ste98], POSIX Pthreads
[Lew95], or Win32 threads [Ric97], that mediate access to kernel-level communication
frameworks, such as System V STREAMS [Ris98] [Rago93], available on popular
operating systems. In contrast, this book describes how to use these APlIs effectively in
the design and programming of high-quality concurrent and networked systems.

8 Literature that addresses higher-level software design and quality factors [Boo94
[Mey97] [DLE93] generally has not focused on the development of concurrent and
networked applications. Bridging this gap is the topic of this book.
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Another way in which Patterns for Concurrent and Distributed Objects differs from A System
of Patterns is that its patterns constitute more than just a catalog or system of patterns.
Instead, they augment each other synergistically, providing the foundation of a pattern
language for concurrent and networked software. When combined with patterns from other
patterns literature, we describe how this pattern language can and has been used to build
sophisticated concurrent and networked software systems and applications, web services,
and distributed object computing middleware, as well as the underlying operating system
networking protocols and mechanisms.

Yet we separate the description of the individual patterns from the discussion of how they
form a pattern language. The patterns themselves are first described in a self-contained
manner, so that they can be applied in the context that is most useful. A subsequent chapter
then describes how the patterns interact and how they are complemented by other patterns.

It is important to note, however, that many patterns in this book can be applied outside the
context of concurrency and networking. To illustrate the breadth of their applicability we
present known uses from other domains, such as component-based or interactive software
systems. In addition, we give examples of how these patterns apply to situations
experienced in everyday life.

Some patterns may be familiar, because preliminary versions of them were published in the
PLoP book series [PLoPD1] [PLoPD2] [PLoPD3] [PLoPD4], and the C++ Report magazine.
In this book, however, we have improved upon the earlier versions considerably:

8 This is the first time they have been woven into a single document, which helps to
emphasize the pattern language they express.

§  We have rewritten and revised these patterns substantially based on many
suggestions for improvement we received at conferences and workshops, via e-mail, as
well as from intensive internal reviewing and reviews provided by our shepherds.

§ The patterns have been converted to the POSA pattern format and have a consistent
writing style.

Intended Audience

Like our earlier book A System of Patterns, this volume is intended for professional software
developers, particularly those who are building concurrent and networked systems. It helps
these software professionals to think about software architecture in a new way and supports
them in the design and programming of large-scale and complex middleware and
applications.

This book is also suitable for advanced undergraduates or graduate students who have a
solid grasp of networking and operating systems, and who want to learn the core principles,
patterns, and techniques needed to design and implement such systems effectively.

Ewe reference A System of Patterns as [POSA1] rather than by author. The same is true for
this book, which we reference as [POSAZ2]. We use this convention to avoid a particular
POSA volume being associated with a single author in reader's minds, in particular the first
name on the book's cover.

Structure and Content

Patterns for Concurrent and Distributed Objects can be used as a text book and read from
cover to cover, or used as a reference guide for exploring the nuances of specific patterns in
detail.

13



The first chapter, Concurrent and Networked Objects, presents an overview of the
challenges facing developers of concurrent and networked object-oriented applications and
middleware. We use a real example, a concurrent Web server, to illustrate key aspects of
these domains, including service access and configuration, event handling, synchronization,
and concurrency.

Chapters 2 through 5 form the main part of the book. They contain patterns, the 'real things'
[U2], that codify well-established principles and techniques for developing high-quality
concurrent and networked systems. We hope these patterns will be useful role models for
developing your own concurrent and networked applications, and for documenting patterns
that you discover.

Chapter 6, Weaving the Patterns Together, discusses how the patterns in Chapters 2
through 5 are interconnected. We also show how they can be connected with other patterns
in the literature to form a pattern language for concurrent networked systems and
middleware. As mentioned earlier, some patterns are also applicable outside the context of
concurrent and networked systems. For these patterns we summarize the scope of their
applicability.

Chapter 7, The Past, Present, and Future of Patterns, revisits our 1996 forecast on ‘where
patterns will go', published in the first volume of the Pattern-Oriented Software Architecture
series. We discuss the directions that patterns actually took during the past four years and
analyze where patterns and the patterns community are now. Based on this retrospection,
we revise our vision about future research and the application of patterns and pattern
languages.

The book ends with a general reflection on the patterns we present, a glossary of frequently
used terms, an appendix of notations, an extensive list of references to work in the field, a
pattern index, a general subject index, and an index of names that lists all persons who
helped us shaping this book

Supplementary material related to this book is available on-line at
http://ww. posa. uci . edu/ . This URL also contains links to the ACE and TAO source
code that contains C++ and some Java examples for all the patterns in this book.

There are undoubtedly aspects of concurrent and networked object systems that we have
omitted, or which will emerge over time when applying and extending our pattern language
in practice. If you have comments, constructive criticism, or suggestions for improving the
style and content of this book, please send them to us via electronic mail to
<patterns@mchp. si enens. de>. We also welcome public discussion of our entire work
on patterns. Please use our mailing list, <si enens- patterns@s. ui uc. edu>, to send us
feedback, comments, and suggestions. Guidelines for subscription can be found on the
patterns home page. Its URL ishtt p: // hil |l si de. net/ patterns/ . This link also
provides an important source of information on many aspects of patterns, such as available
and forthcoming books, conferences on patterns, papers on patterns, and so on.
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Guide to the Reader

"Cheshire-Puss will you tell me, please, which way | ought to go from here?"
"That depends a good deal on where you want to get to," said the Cat.
"l don't much care where—," said Alice.

"Then it doesn't matter which way you go," said that cat.

"—so long as | get somewhere" Alice added as an explanation.
"Oh, you're sure to do that," said the Cat, "if you only walk long enough."
Louis Carroll, "Alice in Wonderland"

This book is structured so you can read it cover-to-cover. If you know where you want to get
to, however, you may want to choose your own route through the book. In this case, the
following hints can help you decide which topics to focus upon and the order in which to read
them.

Introduction to Patterns

If this book is your initial exposure to patterns, we suggest you first read the introduction to

patterns in [POSA1] and [GoF95], which explore the concepts and terminology related to

patterns for software architectures and designs. In particular, all the patterns presented in

this book build upon the conceptual foundation for patterns specified in [POSA1]:

8 The definition of patterns for software architectures

8 The categorization of these patterns into architectural patterns, design patterns, and
idioms™ and

§ The pattern description format

Moreover, the implementations of many patterns in this book are enhanced by using
patterns from [POSA1] and [GoF95]. To guide the application of the patterns in production
software development projects we therefore suggest you keep all three books handy.

Wsee the Glossary for a definition of these pattern categories.

Structure and Content

The first chapter in this book, Concurrent and Networked Objects, describes the key
challenges of designing concurrent and networked systems. It also outlines the scope and
context for the patterns we present. Finally, it presents a case study that applies eight
patterns in this book to develop a concurrent Web server.

Sixteen pattern descriptions and one idiom form the main part of this book. We group them
into four chapters, corresponding to key problem areas—service access and configuration,

event handling, synchronization and concurrency—in the development of concurrent and
networked middleware and applications. The order in which you read this material is up to
you. One approach is to read important core patterns first:

8 The Wrapper Facade design pattern (ﬂ)@

8 The Reactor architectural pattern (179)

8 The Acceptor-Connector design pattern (285)



§ The Active Object design pattern (369)

The other twelve patterns and one idiom in the book are arranged to minimize forward
references. You can read them in any order of course, and we provide page numbers for
following references to other patterns within the book. This material completes and
complements the concepts defined by the four patterns listed above and covers a range of
issues relevant to designing and implementing concurrent and networked objects effectively.

You can also use this book to find solutions to problems you encounter in your projects. Use
the overview of our patterns in Chapter 6, Weaving the Patterns Together, to guide your
search, then locate in Chapters 2 through 5 the detailed descriptions of the patterns you
select as potential solutions.

No pattern is an island, completely separated from other patterns. Therefore, Chapter 6,
Weaving the Patterns Together, also describes how all the patterns in this book can be
woven together to form a pattern language for building networked applications and
middleware. If you want an overall perspective of the patterns in this book before delving into
the individual patterns, we recommend you skim the pattern language presentation in
Chapter 6 before reading the patterns in Chapters 2 through 5 in depth.

Chapter 7, The Past, Present, and Future of Patterns and Chapter 8, Concluding Remarks
complete the main content of this book. The remainder of the book consists of a glossary of
technical terms, an overview of the notations used in the figures, references to related work,
and an index of patterns, topics, and names.

Eywe adopt the page number notation introduced by [GoF95]. (47) means that the
corresponding pattern description starts on page 47.

Pattern Form

All patterns presented in this book are self-contained, following the [POSA1] pattern form.
This form allows us to present both the essence and the key details of a pattern. Our goal is
to serve readers who simply want an overview of the pattern's fundamental ideas, as well as
those who want to know how the patterns work in depth.

Each section in our pattern form sets the stage for the subsequent section. For instance, the
Example section introduces the Context, Problem, and Solution sections, which summarize
a pattern's essence. The Solution section foreshadows the Structure and Dynamics section,
which then present more detailed information about how a pattern works, preparing readers
for the Implementation section.

The Example Resolved, Variants, Known Uses, Consequences and See Also sections
complete each pattern description. We include extensive cross-references to help you to
understand the relationships between the patterns in this book and other published patterns.

To anchor the presentation of a pattern's implementation activities to production software
systems, much of the sample code is influenced by components provided in the ACE
framework [Sch97]. If you first want to get an overview of all the patterns you may therefore
want to skip over the Implementation sections on your initial pass through the book and
come back to them when you need to know a particular pattern's implementation details.

Although the pattern form we use in this book incurs some repetition within the pattern
descriptions, we have found that this repetition helps readers navigate through the
descriptions more effectively by minimizing 'back-tracking'.
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In the diagrams that explain the structure and behavior of our patterns we tried to follow
standard UML whenever possible. In few cases, however, UML did not allow us to express
ourselves precisely enough. Thus we 'extended' the standard notation slightly, as specified
in the Notations chapter.

Background Reading

Many patterns, particularly Reactor (179), Proactor (215), Half-Sync/Half-Async (423), and

Leader/Followers (447), assume you are familiar with the following topics:

§  Object-oriented design techniques, such as patterns [GoF95] [POSA1] and idioms
[Cope92], UML notation [BRJ98], and the principles of structured programming,
specifically encapsulation and modularity [Mey97].

8 Object-oriented programming language features, such as classes [Str97], inheritance
and polymorphism [AG98], and parameterized types [Aus98]. Many examples in this
book are written in C++, though we present Java known uses for most of the patterns.

8 Systems programming concepts and mechanisms, such as process and thread
management [Lew95] [Lea99a] [Ric97], synchronization [Ste98], and interprocess
communication [Ste99].

§ Network services and protocols, such as client-server computing [CoSte92] and the

Internet protocols [Ste93] [SW94].

This book contains an extensive glossary and bibliography to clarify unfamiliar terminology,
and suggest sources for information on topics you may want to learn more about. It is not,
however, an introductory tutorial on concurrency and network programming. Thus, if you are
not familiar with certain topics listed above, we encourage you to do some background
reading on the material we recommend in conjunction with reading this book.
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Chapter 1. Concurrent and Networked Objects

Overview

"With the exception of music, we have been trained to think of patterns as
fixed affairs. It's easier and lazier that way, but, of course, all nonsense. The
right way to begin to think of the pattern which connects is to think of a
dance of interacting parts, pegged down by various sorts of limits."

Gregory Bateson — Cultural Anthropologist

This chapter introduces topics related to concurrent and networked objects. We first motivate
the need for advanced software development techniques in this area. Next, we present an
overview of key design challenges faced by developers of concurrent and networked object-
oriented applications and middleware. To illustrate how patterns can be applied to resolve
these problems, we examine a case study of an object-oriented framework and a high-
performance Web server implemented using this framework. In the case study we focus on
key patterns presented in this book that help to simplify four important aspects of concurrent
and networked applications:

§ Service access and configuration

8 Event handling

8 Synchronization and

8 Concurrency

1.1 Motivation

During the past decade advances in VLSI technology and fiber-optics have increased
computer processing power by 3—4 orders of magnitude and network link speeds by 6—7
orders of magnitude. Assuming that these trends continue, by the end of this decade

8 Desktop computer clock speeds will run at ~100 Gigahertz

8 Local area network link speeds will run at ~100 Gigabits/second

§  Wireless link speeds will run at ~100 Megabits/second and

§ The Internet backbone link speeds will run at ~10 Terabits/second

Moreover, there will be billions of interactive and embedded computing and communication
devices in operation throughout the world. These powerful computers and networks will be
available largely at commodity prices, built mostly with robust common-off-the-shelf (COTS)
components, and will inter-operate over an increasingly convergent and pervasive Internet
infrastructure.

To maximize the benefit from these advances in hardware technology, the quality and
productivity of technologies for developing concurrent and networked middleware and
application software must also increase. Historically, hardware has tended to become
smaller, faster, and more reliable. It has also become cheaper and more predictable to
develop and innovate, as evidenced by 'Moore's Law'. In contrast, concurrent and networked
software has often grown larger, slower, and more error-prone. It has also become very
expensive and time-consuming to develop, validate, maintain, and enhance.

Although hardware improvements have alleviated the need for some low-level software
optimizations, the lifecycle cost [Boe81] and effort required to develop software—particularly
mission-critical concurrent and networked applications—continues to rise. The disparity
between the rapid rate of hardware advances versus the slower software progress stems
from a number of factors, including:
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8 Inherent and accidental complexities. There are vexing problems with concurrent and
networked software that result from inherent and accidental complexities. Inherent
complexities arise from fundamental domain challenges, such as dealing with partial
failures, distributed deadlock, and end-to-end quality of service (QoS) requirements. As
networked systems have grown in scale and functionality they must now cope with a
much broader and harder set of these complexities.

Accidental complexities arise from limitations with software tools and development
techniques, such as non-portable programming APIs and poor distributed debuggers.
Ironically, many accidental complexities stem from deliberate choices made by
developers who favor low-level languages and tools that scale up poorly when applied
to complex concurrent and networked software.

8 Inadequate methods and techniques. Popular software analysis methods [SM88
[CY91] [RBPEL91] and design techniques [Boo94] [BRJ98] have focused on
constructing single-process, single-threaded applications with 'best-effort’ QoS
requirements. The development of high-quality concurrent and networked systems—
particularly those with stringent QoS requirements, such as video-conferencing—has
been left to the intuition and expertise of skilled software architects and engineers.
Moreover, it has been hard to gain experience with concurrent and networked software
techniques without spending considerable time learning via trial and error, and wrestling
with platform-specific details.

§ Continuous re-invention and re-discovery of core concepts and techniques. The
software industry has a long history of recreating incompatible solutions to problems
that are already solved. For example, there are dozens of non-standard general-
purpose and real-time operating systems that manage the same hardware resources.
Similarly, there are dozens of incompatible operating system encapsulation libraries that
provide slightly different APIs that implement essentially the same features and
services.

If effort had instead been focused on enhancing and optimizing a small number of
solutions, developers of concurrent and networked software would be reaping the
benefits available to developers of hardware. These developers innovate rapidly by
using and applying common CAD tools and standard instruction sets, buses, and
network protocols.

No single silver bullet can slay all the demons plaguing concurrent and networked software
[Broo87]. Over the past decade, however, it has become clear that patterns and pattern
languages help to alleviate many inherent and accidental software complexities.

A pattern is a recurring solution schema to a standard problem in a particular context
[POSA1]. Patterns help to capture and reuse the static and dynamic structure and
collaboration of key participants in software designs. They are useful for documenting
recurring micro-architectures, which are abstractions of software components that
experienced developers apply to resolve common design and implementation problems

[GoF95].

When related patterns are woven together, they form a 'language' that helps to both
8 Define a vocabulary for talking about software development problems [SEJ96] and
§ Provide a process for the orderly resolution of these problems [Ale79] [AIS77

By studying and applying patterns and pattern languages, developers can often escape
traps and pitfalls that have been avoided traditionally only via long and costly apprenticeship

[PLoPD1].
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Until recently [Lea99a] patterns for developing concurrent and networked software existed
only in programming folklore, the heads of expert researchers and developers, or were
buried deep in complex source code. These locations are not ideal, for three reasons:

8 Re-discovering patterns opportunistically from source code is expensive and time-
consuming, because it is hard to separate the essential design decisions from the
implementation details.

8 If the insights and rationale of experienced designers are not documented, they will be
lost over time and thus cannot help guide subsequent software maintenance and
enhancement activities.

§  Without guidance from earlier work, developers of concurrent and networked software
face the Herculean task [SeSch70] of engineering complex systems from the ground up,
rather than reusing proven solutions.

As a result many concurrent and networked software systems are developed from scratch.
In today's competitive, time-to-market-driven environments, however, this often yields non-
optimal ad hoc solutions. These solutions are hard to customize and tune, because so much
effort is spent just trying to make the software operational. Moreover, as requirements
change over time, evolving ad hoc software solutions becomes prohibitively expensive. Yet,
end-users expect—or at least desire—software to be affordable, robust, efficient, and agile,
which is hard to achieve without solid architectural underpinnings.

To help rectify these problems, this book documents key architectural and design patterns
for concurrent and networked software. These patterns can and have been applied to solve
many common problems that arise when developing object-oriented middleware frameworks
and applications. When used as a documentation aid, these patterns preserve vital design
information that helps developers evolve existing software more robustly. When used as a
design aid, the patterns help guide developers to create new software more effectively.

Of course, patterns, objects, components, and frameworks are no panacea. They cannot, for
example, absolve developers from responsibility for solving all complex concurrent and
networked software analysis, design, implementation, validation, and optimization problems.
Ultimately there is no substitute for human creativity, experience, discipline, diligence, and
judgement.

When used properly, however, the patterns described in this book help alleviate many of the

complexities enumerated earlier. In particular, the patterns

8 Direct developer focus towards higher-level software application architecture and
design concerns, such as the specification of suitable service access and configuration,
event processing, and threading models. These are some of the key strategic aspects
of concurrent and networked software. If they are addressed properly, the impact of
many vexing complexities can be alleviated greatly.

8 Redirect developer focus away from a preoccupation with low-level operating system
and networking protocols and mechanisms. While having a solid grasp of these topics is
important, they are tactical in scope and must be placed in the proper context within the
overall software architecture and development effort.

1.2 Challenges of Concurrent and Networked Software

In theory, developing software applications that use concurrent and networked services can
improve system performance, reliability, scalability, and cost-effectiveness. In practice,
however, developing efficient, robust, extensible, and affordable concurrent and networked
applications is hard, due to key differences between stand-alone and networked application
architectures.

In stand-alone application architectures, user interface, application service processing, and
persistent data resources reside within one computer, with the peripherals attached directly
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to it. In contrast, in networked application architectures, interactive presentation, application
service processing, and data resources may reside in multiple loosely-coupled host
computers and service tiers connected together by local area or wide area networks.

A network of X-terminals and 'thin client NetPCs' is an example of a networked system
architecture. In this environment, user interface presentation is handled by a display service
on end-user hosts. The processing capabilities are provided by host computer(s) on which
all or part of application services run. Access to persistent resources is mediated by one or
more network file servers. Other services, such as naming and directory services, time
services, HTTP servers, and caches and network management services, can run in the
network and provide additional capabilities to applications.

There are three common reasons to adopt a networked architecture:

§ Collaboration and connectivity. The explosive growth of the Web and e-commerce
exemplify one of the most common reasons for networking: the ability to connect to and
access vast quantities of geographically-distributed information and services. The
popularity of the instant messaging and 'chat rooms' available on the Internet
underscores another common networking motivation: staying connected to family,
friends, collaborators, and customers.

8 Enhanced performance, scalability, and fault tolerance. The performance and
scalability of a networked architecture may be enhanced by taking advantage of the
parallel processing capabilities that are available in a network. For example, multiple
computation and communication service processing tasks can be run in parallel on
different hosts. Similarly, various application services can be replicated across multiple
hosts. Replication can minimize single points of failure, thereby improving the system's
reliability in the face of partial failures.

§ Cost effectiveness. Networked architectures yield decentralized and modular
applications that can share expensive peripherals, such as high-capacity file servers
and high-resolution printers. Similarly, selected application components and services
can be delegated to run on hosts with specialized processing attributes, such as high-
performance disk controllers, large amounts of memory, or enhanced floating-point
performance.

Although networked applications offer many potential benefits, they are harder to design,
implement, debug, optimize, and manage than stand-alone applications. For example,
developers must address topics that are either not relevant or are less problematic for stand-
alone applications in order to handle the requirements of networked applications. These
topics include:

Connection establishment and service initialization

Event demultiplexing and event handler dispatching

Interprocess communication (IPC) and network protocols

Primary and secondary storage management and caching

Static and dynamic component configuration

Concurrency and synchronization

wn W W W W W

23



These topics are generally independent of specific application requirements, so learning to
master them helps to address a wide range of software development problems. Moreover, in
the context of these topics many design and programming challenges arise due to several
inherent and accidental complexities associated with concurrent and networked systems:

§ Common inherent complexities associated with concurrent and networked systems
include managing bandwidth [ZBS97], minimizing delays (latency) [SC99] and delay
variation (jitter) [PRS+99], detecting and recovering from partial failures [CRSS+98],
determining appropriate service partitioning and load balancing strategies [[EEE95], and
ensuring causal ordering of events [BR94]. Similarly, common inherent complexities
found in concurrent programming include eliminating race conditions and avoiding
deadlocks [Lea99a], determining suitable thread scheduling strategies [SKT96], and
optimizing end-system protocol processing performance [SchSu95].

8 Common accidental complexities associated with concurrent and networked systems
include lack of portable operating system APIs [Sch97], inadequate debugging support
and lack of tools for analyzing concurrent and networked applications [LT93],
widespread use of algorithmic—rather than object-oriented—decomposition [Boo94],
and continual rediscovery and reinvention of core concepts and common components

[Kar95].

In this section, we therefore discuss many of the design and programming challenges
associated with building concurrent and networked systems. Yet the patterns in this book do
not address all the aspects associated with concurrency and networking. Therefore, Chapter
6, Weaving the Patterns Together, relates the patterns in this book with others from the
literature that handle many of these aspects. The remaining challenges constitute open
issues for future patterns research, as described in Chapter 7, The Past, Present, and
Future of Patterns.

Challenge 1: Service Access and Configuration

Components in a stand-alone application can collaborate within a single address space by
passing parameters via function calls and by accessing global variables. In contrast,
components in networked applications can collaborate using:

§ Interprocess communication (IPC) mechanisms, for example shared memory, pipes,
and Sockets Ste98|,m which are based on network protocols like TCP, UDP and IP
[Ste93], or ATM [CEETI7].

§ Communication protocols [Ste93], such as TELNET, FTP, SMIP, HTTP, and LDAP,
which are used by many types of services, for example remote log-in, file transfer,
email, Web content delivery, and distributed directories, to export cohesive software
components and functionality to applications.

§ Remote operations on application-level service components using high-level
communication middleware, such as COM+ [Box97] and CORBA [OMG98c].

Applications and software components can access these communication mechanisms via
programming APIs defined at all levels of abstraction in a networked system:
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Designing effective APIs for accessing these communication mechanisms is important,
because these are the interfaces programmed directly by application, component, and
service developers.

For infrastructure networking or systems programs, such as TELNET or FTP, service access

traditionally involved calling

8 Concurrency service access APIs, such as UNIX processes [Ste99], POSIX Pthreads
[[EEE96], or Win32 threads [Sol98], to manage concurrency and

8 IPC service access APIs, such as UNIX- and Internet-domain Sockets [Ste98], to
configure connections and communicate between processes co-located on a single host
and on different hosts, respectively.

Several accidental complexities arise, however, when accessing networking and host

services via low-level operating system C APIs:

8 Excessive low-level details. Building networked applications using operating system
APIs requires developers to have intimate knowledge of many low-level details. For
instance, developers must carefully track which error codes are returned by each
system call and handle these problems in the application code itself. UNIX server
developers, for example, who use the wai t () system call must distinguish between
return errors due to no child processes being present and errors from signal interrupts.
In the latter case, the wai t () must be reissued. Forcing application developers to
address these details diverts their attention from more strategic issues, such as a
server's semantics and its software architecture.

§ Continuous rediscovery and reinvention of incompatible higher-level programming
abstractions. A common remedy for the excessive level of detail with operating system
APIs is to define higher-level programming abstractions. For example, many Web
servers create a file cache component to avoid accessing the file system for each client
request [HPS99]. However, these types of abstractions are often re-discovered and re-
invented independently by each developer or team. This ad hoc software programming
process can actually hamper productivity if it diverts application developers from
meeting their customer's requirements. It can also create a plethora of incompatible
components that are inadequately documented and debugged, and therefore not readily
reusable within and across projects.

8 High potential for errors. Programming to operating system APIs is tedious and error-
prone due to their lack of type-safety and their subtlety. For example, many networked
applications are programmed with the Socket API [MBKQ96], which is defined in C.
However, socket endpoints are represented as untyped handles. These handles
increase the potential for subtle programming mistakes and run-time errors [Sch92]. In
particular, operations can be applied incorrectly, such as invoking a data transfer
operation on a passive-mode handle that is only supposed to establish connections.

8 Lack of portability. Operating system APIs are notoriously non-portable, even across
releases of the same platform. Implementations of the Socket API on Win32 platforms
(WinSock), for example, are subtly different than on UNIX platforms. Advanced Socket
operations, such as multicast and broadcast, are not portable across these platforms as
a result. Even WinSock implementations on different versions of Windows possess
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incompatible timing-related bugs that cause sporadic failures when performing non-
blocking connections.

8 Steep learning curve. Due to the excessive level of detail, the effort required to master
operating system APIs can be very high. For example, it is hard to learn how to program
with POSIX asynchronous 1/0 [POSIX95] correctly. It is even harder to learn how to
write a portable application using asynchronous I/O mechanisms, because they differ so
widely across operating system platforms.

§ Inability to scale up to handle increasing complexity. Operating system APIs define
basic interfaces to mechanisms, such as process and thread management, interprocess
communication, file systems, and memory management. However, these basic
interfaces do not scale up gracefully as applications grow in size and complexity. For
example, a typical UNIX process allows a backlog of only ~7 pending connections
[Ste98]. This number is completely inadequate for heavily accessed e-commerce
servers that must handle hundreds or thousands of simultaneous clients.

Key design challenges for infrastructure networking or system programs thus center on
minimizing the accidental complexities outlined above without sacrificing performance.

For higher-level distributed object computing applications, service access often involves
invoking remote operations on reusable components that define common services, such as
naming [OMG97a], trading [OMG98b], and event notification [OMG99c]. Many component
models, such as Enterprise JavaBeans [MaHa99], COM+ [Box97], and the CORBA
component model [OMG99a], allow components to export different service roles to different
clients, depending on factors, such as the version expected by the client or the authorization
level of the client. A key design challenge at this level therefore centers on ensuring that
clients do not access invalid or unauthorized component service roles.

Resolving this challenge is important: networked applications are more vulnerable to security
breaches than stand-alone applications, because there are more access points for an
intruder to attack [YB99]. For example, many shared-media networks, such as Ethernet,
Token Ring, and FDDI, provide limited built-in protection against cable tapping and 'packet
snhooping' tools [Ste93]. Similarly, networked applications must guard against one host
masquerading as another to access unauthorized information. Although some network
software libraries, such as OpenSSL [OSSL00], support authentication, authorization, and
data encryption, a single API to access these security services has not been adopted
universally.

Supporting the static and dynamic evolution of services and applications is another key

challenge in networked software systems. Evolution can occur in two ways:

§ Interfaces to and connectivity between component service roles can change, often at
run-time, and new service roles can be implemented and installed into existing
components.

8 Distributed system performance can be improved by reconfiguring service load to
harness the processing power of multiple hosts.

Ideally these component configuration and reconfiguration changes should be transparent to
client applications that access the various services. Another design challenge therefore is to
ensure that an entire system need not be shut down, recompiled, relinked, and restarted
simply because a particular service role in a component is reconfigured or its load is
redistributed.

It is even more challenging to determine how to access services that are configured into a
system 'on-demand' and whose implementations are unknown when the system was
designed originally.
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Many modern operating systems and run-time environments provide explicit dynamic linking

APIs [WHQ91] that enable the configuration of applications on-demand:

8 UNIX defines the dl open(), dlsym(),anddl cl ose() API that can be used to
load a designated dynamically linked library (DLL) into an application process explicitly,
extract a designated factory function from the DLL, and unlink/unload the DLL,
respectively [Ste98].

§  Win32 provides the LoadLi brary(), GetProcAddr(),andd oseHandl e() API
that perform the same functionality as the UNIX DLL API [S0l98].

§ Java's Java. appl et . Appl et class definesinit(), start(), stop(),and
destroy() hook methods that support the initializing, starting, stopping, and
terminating of applets loaded dynamically.

However, configuring services into applications on-demand requires more than dynamic

linking mechanisms—it requires patterns for coordinating (re)configuration policies. Here the
design challenges are two-fold. First, an application must export new services, even though
it may not know their detailed interfaces. Second, an application must integrate these
services into its own control flow and processing sequence transparently and robustly, even
at run-time.

Chapter 2, Service Access and Configuration Patterns, presents four patterns for designing
effective programming APIs to access and configure services and components in stand-
alone and networked software systems and applications. These patterns are Wrapper

Facade (47), Component Configurator (75), Interceptor (109), and Extension Interface (141).

Challenge 2: Event Handling

As systems become increasingly networked, software development techniques that support
event-driven applications have become increasingly pervasive. Three characteristics
differentiate event-driven applications from those with the traditional 'self-directed’ flow of
control [PLoPD1]:

§  Application behavior is triggered by external or internal events that occur
asynchronously. Common sources of events include device drivers, I/O ports, sensors,
keyboards or mice, signals, timers, or other asynchronous software components.

8 Most events must be handled promptly to prevent CPU starvation, improve perceived
response time, and keep hardware devices with real-time constraints from failing or
corrupting data.

8 Finite state machines [SGWSM94] may be needed to control event processing and
detect illegal transitions, because event-driven applications generally have little or no
control over the order in which events arrive.

Therefore, event-driven applications are often structured as layered architectures [POSA1
with so-called 'inversion of control' [John97]:
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Application Code
Event Handlers

run event dispatch
loop callbacks

Demultiplexer

Event Sources

At the bottom layer are event sources, which detect and retrieve events from various
hardware devices or low-level software device drivers that reside within an operating
system.

At the next layer is an event demultiplexer, such as sel ect () [Ste98], which waits for
events to arrive on the various event sources and then dispatches events to their
corresponding event handler callbacks.

The event handlers, together with the application code, form yet another layer that
performs application-specific processing in response to callbacks—hence the term
'inversion of control'.

The separation of concerns in this event-driven architecture allows developers to
concentrate on application layer functionality, rather than rewriting the event source and
demultiplexer layers repeatedly for each new system or application.

In many networked systems, applications communicate via peer-to-peer protocols, such as
TCP/IP [Ste93], and are implemented using the layered event-driven architecture outlined
above. The events that are exchanged between peers in this architecture play four different

roles [BI91]:
PEER, Client Initintor PEER, Service Provider
h: Event Handlers: i Event Handlers |
I process event * l process event
: | I: send request event  —— ~f 1 recetve indicallon svenl
|
3 ii recefve comphetion event l-q | [ 1 3 send response seenl ]
Demultiplexer . : 1 l}emulliplzz;:-r_- ]
Event Sournces | S . Event Sources
§ PEER;, the client initiator application, invokes a send operation to pass arequest event

to PEER,, the service provider application. The event can contain data necessary for
PEER; and PEER; to collaborate. For example, a PEER; request may contain a CONNECT
event to initiate a bidirectional connection, or a DATA event to pass an operation and its
parameters to be executed remotely at PEER,.

The PEER; service provider application is notified of the request event arrival via an
indication event. PEER, can then invoke a receive operation to obtain and use the
indication event data to perform its processing. The demultiplexing layer of PEER, often
waits for a set of indication events to arrive from multiple peers.

After the PEER, service provider application finishes processing the indication event, it
invokes a send operation to pass a response event to PEER;, acknowledging the
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original event and returning any results. For example, PEER, could acknowledge the
CONNECT event as part of an initialization 'handshake’, or it could acknowledge the
DATA event in a reliable two-way remote method invocation.

8 The PEER; client initiator application is notified of a response event arrival via a
completion event. At this point it can use a receive operation to obtain the results of the
request event it sent to the PEER, service provider earlier.

If after sending a request event the PEER; application blocks to receive the completion event
containing PEER,'s response, it is termed a synchronous client.? In contrast, if PEER; does
not block after sending a request it is termed an asynchronous client. Asynchronous clients
can receive completion events via asynchrony mechanisms, such as UNIX signal handlers
[Ste99] or Win32 I/O completion ports [Sol98].

Traditional networked applications detect, demultiplex, and dispatch various types of control
and data events using low-level operating system APIs, such as Sockets [Ste98], sel ect ()
[Ste9g], pol | () [Rago93], Wai t For Mul ti pl eObj ect s(), and I/O completion ports
[Sol98]. However, using these low-level APIs increases the accidental complexity of event-
driven programming. Programming with these low-level APIs also increases code duplication
and maintenance effort by coupling the 1/0 and demultiplexing aspects of an application with
its connection and concurrency mechanisms.

Chapter 3, Event Handling Patterns, presents four patterns that describe how to initiate,
receive, demultiplex, dispatch, and process various types of events effectively in networked
software frameworks. The patterns are Reactor (179), Proactor (215), Asynchronous
Completion Token (261), and Acceptor-Connector (285).

Challenge 3: Concurrency

Concurrency is a term that refers to a family of policies and mechanisms that enable one or
more threads or processes to execute their service processing tasks simultaneously
[Ben90]. Many networked applications, particularly servers, must handle requests from
multiple clients concurrently. Therefore, developers of concurrent networked software often
need to become proficient with various process and thread management mechanisms.

A process is a collection of resources, such as virtual memory, I/O handles, and signal
handlers, that provide the context for executing program instructions. In earlier-generation
operating systems, for example BSD UNIX [MBKQ96], processes had a single thread of
control.

A thread is a single sequence of instruction steps executed in the context of a process
[Lew95]. In addition to an instruction pointer, a thread consists of resources, such as a run-
time stack of function activation records, a set of registers, and thread-specific data.

The use of single-threaded processes simplified certain types of concurrent applications,
such as remote logins, because separate processes could not interfere with each other
without explicit programmer intervention. It is hard, however, to use single-threaded
processes to develop networked applications. For example, single-threaded BSD UNIX
servers cannot block for extended periods while handling one client request without
degrading their responsiveness to other clients. Although it is possible to use techniques like
signal-driven Socket I/O or forking multiple processes to work around these limitations, the
resulting programs are complex and inefficient.

Modern operating systems overcome the limitations of single-threaded processes by
providing multi-threaded concurrency mechanisms that support the creation of multiple
processes, each of which may contain multiple concurrent threads. In these operating
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systems the processes serve as units of protection and resource allocation within hardware-
protected address spaces. Similarly, the threads serve as units of execution that run within a
process address space shared by other threads:
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Threads and Thread Stacks Threads and Thread Siacks

Popular thread programming models, such as POSIX Pthreads [I[EEE96] and Win32 threads

[Sol98], offer four benefits:

§ They improve performance transparently by using the parallel processing capabilities
of hardware and software platforms.

§ They improve performance explicitly by allowing programmers to overlap computation
and communication service processing.

8 They improve perceived response time for interactive applications, such as graphical
user interfaces, by associating separate threads with different service processing tasks
in an application.

8 They simplify application design by allowing multiple service processing tasks to run
independently using synchronous programming abstractions, for example two-way
method invocations.

It is remarkably hard, however, to develop efficient, predictable, scalable, and robust
concurrent applications [Lea99a]. One source of complexity arises from common multi-
threading hazards, for example race conditions and deadlocks [Lea99a]. Another source of
complexity arises from limitations with existing development methods, tools, and operating
system platforms. In particular, the heterogeneity of contemporary hardware and software
platforms complicates the development of concurrent applications and tools that must run on
multiple operating systems.

For example, shutting down multi-threaded programs gracefully and portably is hard. The
problem stems from inconsistent thread cancellation semantics [Lew95] across operating
systems, such as POSIX/UNIX, Win32, and real-time embedded systems like VxWorks or
LynxOS. Similarly, support for advanced threading features, for example thread-specific
storage (475), 'detached' threads [Lew95], real-time scheduling [Kan92], and scheduler
activations [ABLL92] varies widely across operating systems. It is therefore infeasible to
write portable concurrent applications by programming directly to the operating system APIs.

General-purpose design patterns, such as Adapter [GoF95] and Wrapper Facade (47), can
be applied to shield concurrent software from the accidental complexities of the APIs
outlined above. In addition, off-the-shelf 'infrastructure’ middleware [SFJ96], such as ACE
[Sch97] and JVMs, is now widely available and has reified these patterns into efficient and
reusable object-oriented operating system encapsulation layers. However, even after
adopting this level of middleware many challenges remain, due to inherent complexities
associated with concurrent application development, including:

§ Determining an efficient application concurrency architecture that minimizes context
switching, synchronization, and data copying/movement overhead in concurrent
applications [SchSu95] [SKT96].

8 Designing complex concurrent systems containing synchronous and asynchronous
service processing tasks to simplify programming without degrading execution efficiency

[Sch96].
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§ Selecting appropriate synchronization primitives to increase performance, prevent race
conditions, and reduce the maintenance costs of concurrent applications on multi-
processors [McK95].

8 Eliminating unnecessary threads and locks in concurrent [HPS99] or real-time [HLS97
applications to enhance performance or simplify resource management without
compromising correctness, incurring deadlocks, or blocking application progress unduly.

Resolving these inherent complexities requires more than general-purpose design patterns
and portable infrastructure middleware threading APIs. Instead, it requires developers to
learn and internalize the successful patterns for developing concurrent applications,
components, frameworks, and system architectures.

Chapter 5, Concurrency Patterns, includes five patterns that define various types of
concurrency architectures for components, subsystems, and entire applications. These are
Active Object (369), Monitor Object (399), Half-Sync/Half-Async (423), Leader/Followers
(447), and Thread-Specific Storage (475).

Challenge 4: Synchronization

The efficiency, responsiveness, and design of many networked applications can benefit from
the use of the concurrency mechanisms and patterns outlined above. For example, objects
in an application can run concurrently in different threads to simplify program structure. If
multiple processors are available, threads can be programmed to exploit true hardware
parallelism and thus improve performance.

In addition to the complexities outlined in Challenge 3: Concurrency, concurrent
programming is also harder than sequential programming due to the need to synchronize
access to shared resources. For example, threads that run concurrently can access the
same objects or variables simultaneously, and potentially corrupt their internal states. To
prevent this problem, code that should not execute concurrently in objects or functions can
be synchronized within a critical section. A critical section is a sequence of instructions that
obeys the following invariant: while one thread or process is executing in the critical section,
no other thread or process can execute in the same critical section [Tan95]:
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A common way to implement a critical section in object-oriented programs is to hard-code
some type of lock object into a class or component. For example, a mutual exclusion (mutex)
object is a type of lock that must be acquired and released serially. If multiple threads
attempt to acquire the mutex simultaneously, only one thread will succeed. The others must
wait until the mutex is released, after which all waiting threads will compete again for the lock
[Tan92]. Other types of locks, such as semaphores and readers/writer locks, use a similar
acquire/release protocol [McK95].

Unfortunately, programming these locking techniques using low-level operating system APIs

yields two drawbacks:

8 Error-prone. Explicitly acquiring a lock before entering a critical section and explicitly
releasing it when exiting a critical section is surprisingly hard. In particular, if a critical
section has multiple return paths, the lock must be released explicitly in all of them. This
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usage is a common source of subtle programming errors, because it is easy to forget to
release a lock in one of the return paths, particularly if exceptions are thrown in the
block. If the lock is not released, deadlock will occur when subsequent threads enter the
critical section and they will then block indefinitely.

§ Inflexible and inefficient. Depending on the context where an application runs,
performance requirements may necessitate that different lock types be used to
implement critical sections. For example, if an application that used a mutex originally is
run on a large-scale multi-processor platform, performance may be improved by
changing the locking mechanism to a readers/writer lock. This type of lock allows
multiple reader threads to access a shared resource in parallel [McK95]. If the locking
primitives are hard-coded into the software at every point of use, however, changing the
primitives becomes unnecessarily hard and time-consuming.

Chapter 4, Synchronization Patterns, describes four patterns that alleviate the problems
described above to simplify serialization and locking in concurrent systems. These patterns
are Scoped Locking (325), Strategized Locking (333), Thread-Safe Interface (345), and
Double-Checked Locking Optimization (353).

Other Challenges for Networked Software

The four topic areas covered above—service access and configuration, event handling,
concurrency, and synchronization—represent the core networked software development
challenges addressed by the patterns in this book. However, developers of networked
application software must address issues in other topic areas, such as dependability, service
naming, and location selection. Although these topics are beyond the scope of this book, we
outline the important challenges below to illustrate the scope of the field.

Dependability. One of the reasons for adopting a networked architecture is to improve
reliability and prevent single points of failure. Ironically, networked applications often require
substantial effort to achieve levels of dependability equivalent to those provided by stand-
alone applications. Detecting service failures in a stand-alone application is relatively easy,
because the operating system has global knowledge of the health and status of system
services and peripheral devices. Thus if a resource is unavailable the operating system can
notify the application quickly. Similarly, if a service or device fails, the operating system can
terminate an application, leaving no doubt about its exit status.

In contrast, detecting errors in networked applications is harder, due to incomplete
knowledge of global system state. For example, networked applications are designed to
tolerate some amount of latency jitter and non-determinism. As a result, a client may not
detect an abnormal server termination until after valuable information has been lost.
Similarly, server responses may get lost in the network, causing clients to retransmit
duplicate requests.

There are several techniques for improving application dependability:

8 Reactivation. Applications and services can be run under control of a monitor daemon
that detects and automatically restarts servers if they terminate unexpectedly [HK93].
Servers report their current status to their associated monitor daemon periodically via
'heart-beat' messages. If a message does not arrive within a designated interval, the
monitor daemon assumes that the server has terminated abnormally and reactivates it.

§ Replication. Applications and services can be run under control of a replica manager at
multiple locations throughout a network [GS97]. Replica managers can update service
replicas continuously using 'active replication’, or just when a primary service fails using
'‘passive replication'. Replication frameworks [FGS98] provide various monitoring,
membership, consensus, and messaging mechanisms to help enhance application
dependability.
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A large body of research literature and tools focuses on improving the dependability of
processes [GS97] [BR94] [HK93] or distributed objects [CRSS+98] [FGS98]. Some work has
been documented in pattern form [IM96] [Maf96] [SPM98] [ACGH+96] [Stal100], though
much research remains to be done. With the adoption of the Fault Tolerant CORBA
specification [OMG99qd] and ORBs that implement it, more application developers will be
able to document their experience with the patterns of fault-tolerant distributed object
computing.

Service Naming and Location Selection. Stand-alone applications generally identify their
constituent services via object and function memory addresses. In contrast, networked
applications require more elaborate mechanisms to name, locate, and select their remote
services. IP host addresses and TCP port numbers are a common remote service
addressing scheme used by CORBA, DCOM, Java RMI, DCE, and SunRPC. These low-
level mechanisms are often inadequate for large-scale networked systems, however,
because they are hard to administer in a portable and unambiguous manner. For example,
TCP port 5000 need not refer to the same service on host machines configured by different
vendors or network administrators.

Distributed object computing and RPC middleware therefore provide location brokers that
allow clients to access services via higher-level names rather than by their low-level IP
addresses and TCP port numbers. Location brokers simplify networked system
administration and promote more flexible and dynamic placement of services throughout a
network by automating the following tasks:

8 Name binding. This task binds service names onto their current host/process locations.
For example, the SUnRPC r pchi nd facility performs the port mapping task on a single
end-system [Sun88]. More general name binding mechanisms, such as the DCE Cell
Directory Service (CDS) [RKF92]. LDAP [HSGH99], X.500 [SS99], and the CORBA
Naming Service [OMG97a], are also available. These services implement a global
name-space within an administrative domain, such as a local area network or intranet.

§ Service location. A service or resource may often run at several locations throughout a
network to improve reliability via replication. In this case applications may use a location
broker to determine which service provider is most appropriate. For example, the
CORBA Trading Service allows clients to select remote objects via a set of properties
associated with services [OMG98b]. A client can select an appropriate resource by
using these properties, such as choosing a printer by determining which printers in a
building have Postscript support, color printing, 1200 dpi resolution, and sufficient

paper.

Patterns related to name binding and service location have appeared in POSA1 [Doble96]

[JKOQ].

®n the remainder of this chapter we refer to and use concrete UNIX and Win32 operating
system APIs in our discussion. You may want to keep copies of references such as [Ste99
[Ste98] [Lew95] [Ric97] handy to clarify some topics or terms if they are unfamiliar.

Ehwhile reading the patterns in this book it is important to recognize that the terms ‘client’ and
'service' are not immutable properties of particular software or hardware components.
Instead, they are roles [RG98] played during a particular request/response interaction. For
example, in a symmetric peer-to-peer system PEER; and PEER, could play both the roles of
client initiator and service provider at various times during their interactions.

1.3 A Case Study: Designing a Concurrent Web Server

The volume of Web traffic is growing rapidly due to the proliferation of Web browsers that
allow end-users easy access to a wide range of content [PQO00]. Similarly, Web technology is
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being increasingly applied to computationally-expensive tasks, such as medical image
processing servers [PHS96] and database search engines. To keep pace with increasing
demand, it is essential to develop concurrent Web servers that can provide efficient caching
and content delivery services to Internet and intranet users.

The figure below presents an overview of a typical Web system and its components:
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These Web system components interact as follows when an HTTP client retrieves an HTML
file from an HTTP server.

1. Through GUI interactions via a Web browser, an end-user instructs the HTTP client to
download a patrticular file.

2. The requester is the active component of the HTTP client that communicates over a
TCP/IP network. It uses the appropriate transfer protocol syntax, such as HTTP 1.0
[Ste96], to send TCP connection events and HTTP GET request events, which are
strings that inform the server to download a particular file.

3. Events arriving at an HTTP server are received by the event dispatcher. This is the
server's demultiplexing engine that accepts TCP connection events and coordinates
the socket handles and threads used to receive and process HTTP GET request
events.

4. Each HTTP GET request event is processed by a protocol handler, which parses and
logs the request, fetches file status information, updates the file cache, transmits the
file back to the HTTP client, and cleans up any resources it allocated.

5. When a requested file is returned to the client it is parsed by an HTML parser, which
interprets and renders the file. At this point, the requester may issue other requests
on behalf of the client, such as updating a client-side cache or downloading
embedded images.

Developers must avoid common problems when creating and optimizing Web servers.

These problems include wrestling with low-level programming details and portability

constraints, committing to a particular server configuration prematurely, and being

overwhelmed by the breadth of design alternatives, including:

§ Concurrency models, such as thread-per-request or thread pool variants

§ Event demultiplexing models, such as synchronous or asynchronous event

demultiplexing

§ File caching models, such as least-recently used (LRU) or least-frequently used (LFU)

§ Content delivery protocols, such as HTTP/1.0 [BEF96], HTTP/1.1 [FEGMFB97], or
HTTP-NG [W3C98]

The reason there are so many alternatives is to help ensure that Web servers can be
tailored to different end-user needs and traffic workloads. However, no single set of
configuration choices is optimal for all hardware/software platforms and workloads [HPS99]



[HMS98]. Moreover, without proper guidance it is time-consuming and error-prone to
navigate through all these design alternatives.

The remainder of this section illustrates how eight patterns in this book have been applied to
produce a flexible and efficient Web server called JAWS [HPS99]. JAWS is both a Web
server and a framework from which other types of servers can be built [HS98].

We selected JAWS as our example application for four reasons:

§
§

It is a production-quality Web server [ENTERAOQQ] that is representative of challenges
that arise when developing concurrent and networked software.

JAWS' throughput and scalability are high and its latency and jitter are low [HPS99]
[HMS98], demonstrating that pattern- and framework-oriented software architectures
can be efficient.

The JAWS framework itself is developed using the ACE framework [Sch97], which
provides object-oriented implementations of most patterns in this book.

ACE and JAWS are open—source,@ so you can see first-hand how patterns are applied
to avoid rediscovering and reinventing solutions to concurrent and networked software
design problems.

Overview of the JAWS Framework

There are three main framework components in JAWS:

Protocol Handlers
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Event Dispatcher. This accepts client connection request events, receives HTTP GET
requests, and coordinates JAWS' event demultiplexing strategy with its concurrency
strategy. As events are processed they are dispatched to the appropriate Protocol
Handler.

Protocol Handler. This implements the parsing and protocol processing of HTTP
request events. JAWS Protocol Handler design allows multiple Web protocols, such as
HTTP/1.0, HTTP/1.1, and HTTP-NG, to be incorporated into a Web server. To add a
new protocol, developers just have to write a new Protocol Handler component and
configure it into the JAWS framework.

Cached Virtual Filesystem. This improves Web server performance by reducing the
overhead of file system accesses when processing HTTP GET requests. Various
caching strategies, such as least-recently used (LRU) or least-frequently used (LFU),
can be selected according to the actual or anticipated workload and configured statically
or dynamically.
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Applying Patterns to Resolve Common Design Challenges in
JAWS

The overview of the JAWS framework architecture above describes how JAWS is structured,
but does not explain why it is structured in this way. Understanding why the JAWS
framework contains these particular components—and why the components are designed
the way they are—requires a deeper knowledge of the patterns underlying the domain of
concurrent and networked software in general, and concurrent Web servers in particular.

Eight patterns are used to implement the main components in JAWS:

T E= Ty Protecol Handlers
&mt::} - =] | - =N =% =2 Acceptor-
T - g ‘rl ]ll 11— | Connectar
7 Y . JJ |
Cached L e —
Virtual [ — | Lemider
Filesystom 2 Threads 'E 5 ‘E | Followers
Hall-Syne/ PLEFEL Iyt St  Resctor |
_ HaltAsyne ¥ W W Bockels z I
Monitor L T
. Wrapper Facade

These patterns help resolve the following seven common challenges that arise when
developing concurrent servers:

8 Encapsulating low-level operating system APIs

8 Decoupling event demultiplexing and connection management from protocol
processing

Scaling up server performance via multi-threading

Implementing a synchronized request queue

Minimizing server threading overhead

Using asynchronous I/O effectively

Enhancing server configurability

w W W W W

In addition to describing the patterns using a minimal 'context/problem/solution’ form, we

note the trade-offs between certain patterns and show how these patterns are applied to

develop the concurrent JAWS Web server. Chapters 2 through 5 describe these patterns
both more generally and in more detail.

Encapsulating Low-level Operating System APIs

Context

A Web server must manage a variety of operating system services, including processes,
threads, Socket connections, virtual memory, and files. Most operating systems, such as
Win32 or POSIX, provide low-level APIs written in C to access these services.

Problem

The diversity of hardware and operating systems makes it hard to build portable and robust
Web server software by programming to low-level operating system APIs directly. These
APIs are tedious, error-prone, and non-portable, which makes them an ineffective way to
develop Web servers or other networked applications.

Solution



Apply the Wrapper Facade pattern (47) to avoid accessing low-level operating system APIs
directly. This design pattern encapsulates the functions and data provided by existing non-
object-oriented APls, for example low-level operating system APIs, within more concise,
robust, portable, maintainable, and cohesive object-oriented class interfaces.

Usein JAWS

JAWS uses the wrapper facades defined by ACE to ensure its framework components can
run on many operating systems, including Windows, UNIX, and many real-time operating
systems.

For example, JAWS uses the ACE Thr ead_Mut ex wrapper facade to provide a portable
interface to operating system mutual exclusion mechanisms.
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The Thr ead_Mut ex wrapper shown in the diagram is implemented using the Solaris
threading API [EKBF+92]. However, the ACE Thr ead_Mut ex wrapper facade is also
available for other threading APIs, for example Win32 threads or POSIX Pthreads. Other
ACE wrapper facades used in JAWS encapsulate Sockets, process and thread
management, memory-mapped files, explicit dynamic linking, and time operations [Sch97].

Decoupling Event Demultiplexing and Connection Management
from Protocol Processing

Context

A Web server can be accessed simultaneously by multiple clients, each of which has its own

connection to the server. A Web server must therefore be able to demultiplex and process

multiple types of indication events that can arrive from different clients concurrently:

§ A connection request, which the server receives via a CONNECT indication event that
instructs it to accept the client connection

§  AnHTTP GET request to download a file, which the server receives via a READ
indication event that instructs it to receive a request from one of its client connections

A common way to demultiplex events in a Web server is to use sel ect () [Ste98]. This
function reports which socket handles have indication events pending so that Socket
operations, such as accept () for accepting a client connection request orrecv() for
receiving a client request, can be invoked without blocking the server.

Problem

Developers often tightly couple a Web server's event-demultiplexing and connection-
management code with its protocol-handling code that performs HTTP 1.0 processing. In
such a design, however, the demultiplexing and connection-management code cannot be
reused as black-box components by other HTTP protocols, or by other middleware and
applications, such as ORBs [SC99] and imaging servers [PHS96]. Moreover, changes to the
event-demultiplexing and connection-management code, such as porting it to use TLI
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[Rago93] or Vi t For Mul ti pl eCbj ect s() [Sol98], will affect the Web server protocol
code directly and may introduce subtle bugs.

Solution

Apply the Reactor pattern (179) and the Acceptor-Connector pattern (285) to separate the
generic event-demultiplexing and connection-management code from the HTTP protocol
code. The Reactor architectural pattern decouples the synchronous event demultiplexing
and dispatching logic of server applications from the service(s), such as HTTP protocol
processing, performed in response to events. The Acceptor-Connector design pattern can
build on the Reactor pattern to decouple the connection and initialization of co-operating
peer services, for example an HTTP client and server, from the processing activities
performed by these peer services once they are connected and initialized.

Usein JAWS

JAWS uses the Reactor pattern to process multiple synchronous events from multiple
sources of events without polling all its event sources or blocking indefinitely on any single
source of events. Similarly, it uses the Acceptor-Connector pattern to vary its protocol-
processing code independently from its connection-management code.

Reactor dispatches  * | Epent Handler
hamdbe_events(l [r—— harclls svenill |
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remove_handler(]
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In this design, the sel ect () synchronous event demultiplexer waits for events to occur on
a set of handles. When an event arrives, sel ect () notifies a reactor, which then
demultiplexes and dispatches this event to a designated event handler for further
processing.

There are two types of event handlers in JAWS:

§ The HTTP_Accept or registers itself with the React or for CONNECT events. When
these events occur the React or invokes the handl e_event () hook method of the
HTTP_Accept or , which then creates, connects, and activates an HTTP_Handl er .

§ Each HTTP_Handl er is a Protocol Handler whose handl e_event () hook method is

responsible for receiving and processing the HTTP GET request sent by its connected
client.

By using the Reactor and Acceptor-Connector patterns, the protocol-specific processing
code in the HTTP_Handl er is decoupled from the protocol-independent event

demultiplexing and connection-management code in the Event Dispatcher. This design
makes it easier to maintain and reuse the various components in JAWS.

Scaling Up Server Performance via Multi-threading

Context
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HTTP runs over TCP, which uses flow control to ensure that senders do not produce data
more rapidly than slow receivers or congested networks can buffer and process [Ste93].
Achieving efficient end-to-end quality of service (QoS) is important to handle heavy Web
traffic loads [PQOOQ]. A Web server must therefore scale up efficiently as its number of clients
increases.

Problem

Processing all HTTP GET requests reactively within a single-threaded process does not
scale up efficiently, because each Web server CPU time-slice spends much of its time
blocked waiting for I/O operations to complete. Similarly, to improve Qos for all its connected
clients, an entire Web server process must not block while waiting for connection flow control
to abate so it can finish sending a file to a client.

Solution

Apply the Half-Sync/Half-Async pattern (423) to scale up server performance by processing
different HTTP requests concurrently in multiple threads. This architectural pattern defines
two service processing layers—one asynchronous and one synchronous—along with a
gueueing layer that allows services to exchange messages between the two layers. The
pattern allows synchronous services, such as HTTP protocol processing, to run concurrently,
relative both to each other and to asynchronous services, such as event demultiplexing.

This solution yields two benefits:

§ Threads can be mapped to separate CPUs to scale up server performance via multi-
processing.

§ Each thread blocks independently, which prevents one flow-controlled connection from
degrading the QoS other clients receive.

Use in JAWS

JAWS can use the Half-Sync/Half-Async pattern to process HTTP GET requests
synchronously from multiple clients, but concurrently in separate threads of control:
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The React or 's HTTP_Handl er s constitute the services in JAWS' ‘asynchronous' layer.
Although the React or is not truly asynchronous, it shares key properties with asynchronous
services. For example, an HTTP_Handl er dispatched by the React or cannot block for long
without starving other clients. Therefore, in this design an HTTP_Handl er just reads an
incoming HTTP GET request and inserts it into a request queue serviced by a pool of worker
threads.

The worker thread that removes the request performs HTTP protocol processing
synchronously. It then transfers the file back to the client. If flow control occurs on its client
connection this thread can block without degrading the QoS experienced by clients serviced
by other worker threads in the pool.
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Implementing a Synchronized Request Queue

Context

At the center of the Half-Sync/Half-Async pattern is a queueing layer. In JAWS, the
React or thread is a 'producer' that inserts HTTP CGET requests into a queue. The worker
threads in the pool are ‘consumers' that remove and process requests from the queue.

Problem

A naive implementation of a request queue will incur race conditions or 'busy waiting' when
multiple threads insert and remove requests. For example, multiple concurrent producer and
consumer threads can corrupt the queue's internal state if it is not synchronized properly.
Similarly, these threads will 'busy wait' when the queue is empty or full, which wastes CPU
cycles unnecessarily.

Solution

Apply the Monitor Object pattern (399) to implement a synchronized request queue. This
design pattern synchronizes method execution to ensure only one method at a time runs
within an object, such as the Web server's request queue. In addition, it allows an object's
methods to schedule their execution sequences co-operatively. For example, a monitor
object can be used to prevent threads from 'busy waiting' when the request queue is empty
or full.

Use in JAWS

The JAWS synchronized request queue uses a pair of POSIX condition variables to
implement the queue's not-empty and not-full monitor conditions. This synchronized request
gueue can be integrated into the Half-Sync/Half-Async thread pool implementation in JAWS'
Event Dispatcher:
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When a worker thread attempts to dequeue an HTTP GET request from an empty queue, the
request queue's get () method atomically releases the monitor lock and the worker thread
suspends itself on the not-empty monitor condition. It remains suspended until the queue is
no longer empty, which happens when an HTTP_HandlI er running in the React or thread
inserts a request into the queue.

Minimizing Server Threading Overhead

Context

Socket implementations in certain multi-threaded operating systems, such as Windows NT
and Solaris, provide a concurrent accept () optimization [Ste98] to accept client connection
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requests. This optimization improves the performance of Web servers that implement the

HTTP 1.0 protocol in three ways:

8 The operating system allows a pool of threads in a Web server to callaccept () on
the same passive-mode socket handle.

8  When a connection request arrives, the operating system's transport layer creates a
new connected transport endpoint, encapsulates this new endpoint with a data-mode
socket handle and passes the handle as the return value from accept () .

§ The operating system then schedules one of the threads in the pool to receive this
data-mode handle, which it uses to communicate with its connected client.

Problem

The Half-Sync/Half-Async threading model described in the discussion on Scaling Up Server
Performance via Multi-threading (31) is more scalable than the purely reactive model
described in the sub-section on Decoupling Event Demultiplexing and Connection
Management from Protocol Processing (29). It is not necessarily the most efficient design,
however. For example, it incurs a dynamic memory allocation, multiple synchronization
operations, a context switch, and cache updates to pass a request between the React or
thread and a worker thread. This overhead makes JAWS' latency unnecessarily high,
particularly on operating systems that support the concurrent accept () optimization
outlined in the Context discussion.

Solution

Apply the Leader/Followers pattern (447) to minimize server threading overhead. This
architectural pattern provides an efficient concurrency model where multiple threads take
turns to share event sources, such as a passive-mode socket handle, in order to detect,
demultiplex, dispatch, and process service requests that occur on the event sources. This
pattern eliminates the need for—and the overhead of—a separate React or thread and
synchronized request queue.

Use in JAWS
JAWS' Event Dispatcher and Protocol Handler can be implemented via a Leader/Followers

thread pool design, as follows:

Worker Thread Pool
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dermultiplexes

*

Event Handler

Reactor e *| Handle | ases hardle_ event])

handle_events|

deactivate_handbe() : [ = |
resactivate_handle HTTP HTTPF
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In this design, multiple worker threads in a pool share the same passive-mode socket

handle. There are two variants to consider:

8 If the operating system supports the concurrent accept () optimization described in
the Context paragraph, all worker threads can simply call accept () . The operating
system thread scheduler then determines the order in which client HTTP GET requests
are dispatched to HTTP_Handl er s by applying the steps outlined above. Each
HTTP_Handl er now runs in its own thread of control, so it can perform its I/O
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operations synchronously without blocking other threads that are processing their client
requests.

8 If the operating system does not support the accept () optimization a different
Leader/Followers implementation can be used to share the passive-mode socket
handle. In this design, one thread at a time—the leader thread—calls the React or 's
handl e_event s() method to wait for a connection to arrive on the passive-mode

socket handle. The other threads—the followers—queue waiting their turn to become
the leader.

After the current leader thread receives a newly-connected socket handle, it promotes a
follower thread to become the new leader. It then plays the role of a processing thread,
using the React or to demultiplex and dispatch the event to an HTTP_Handl er that
performs all HTTP protocol processing for that client's request. Multiple processing
threads can run concurrently while the new leader thread waits for new connections to
arrive via the React or .

After handling its HTTP GET request, a processing thread reverts to a follower role and
waits to become the leader thread again.

The Leader/Followers thread pool design is highly efficient SMEGOQ]. If there are
requirements besides just raw performance, however, the Half-Sync/Half-Async (423) design
may still be a more appropriate concurrency model for a Web server:

8 The Half-Sync/Half-Async design can reorder and prioritize client requests more
flexibly, because it has a synchronized request queue implemented using the Monitor
Object pattern (399).

8 It may be more scalable, because it queues requests in Web server virtual memory,
rather than the operating system kernel [Sch97].

We cover both thread pool alternatives here to illustrate how the use of patterns helps to
make these design trade-offs explicit.

Leveraging Asynchronous I/O Effectively

Context

Synchronous multi-threading may not be the most scalable way to implement a Web server

on operating system platforms that support asynchronous 1/0 more efficiently than

synchronous multi-threading. For example, highly-efficient Web servers can be implemented

on Windows NT [Sol98] by invoking asynchronous Win32 operations that perform the

following activities:

§ Processing indication events, such as TCP CONNECT and HTTP GET requests, via
Accept Ex() and ReadFi | e() , respectively

§ Transmitting requested files to clients asynchronously via Wit eFi | e() or
TransmitFil e() [HPS99]

When these asynchronous operations complete, the operating system delivers the
associated completion events containing their results to the Web server. It then processes
these events and performs the appropriate actions before returning to its event loop.

Problem
Developing software that achieves the potential efficiency and scalability of asynchronous

I/O is hard. The challenge is due largely to the separation in time and space of
asynchronous operation invocations and their subsequent completion events.
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Solution

Apply the Proactor pattern (215) to make efficient use of asynchronous 1/0. This

architectural pattern structures event-driven concurrent server applications that receive and

process requests from multiple clients asynchronously. Application services are split into two

parts:

§ Operations that execute asynchronously, for example to accept connections and
receive client HTTP GET requests

8 The corresponding completion handlers that process the asynchronous operation
results, for example to transmit a file back to a client after an asynchronous connection
operation completes

As with the Reactor pattern, the Proactor pattern decouples the event demultiplexing and
event-handler dispatching logic of server applications from the service(s) performed in
response to events. The primary difference is that the Proactor handles completion events
resulting from asynchronous operations, whereas the Reactor handles indication events that
trigger synchronous operations.

Use in JAWS

JAWS can use the Proactor pattern to perform its Protocol Handler processing, such as
parsing the headers of an HTTP GET request, while processing other connection- and 1/O-
related events asynchronously. JAWS can thus implement its Event Dispatcher and Protocol
Handler components efficiently on Windows NT:
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In this design, JAWS initiates asynchronous Win32 operations via socket handles to process
service requests 'proactively'. For example, Accept Ex() can accept incoming connection
requests from clients and Transmi t Fi | e() can send a file back to the client. These
operations are executed asynchronously by the Windows NT kernel.

When an asynchronous operation finishes, the kernel inserts a completion event containing
that operation's results into an I/O completion port, which queues the completion events.
Completion events are removed from this port via the Get QueuedConpl eti onSt at us()
Win32 function, which is called by the Pr oact or that runs JAWS' event loop. The

Pr oact or demultiplexes and dispatches completion events to the appropriate
HTTP_Accept or or HTTP_Handl er that is associated with the asynchronous operation.

Completion handlers process the results of asynchronous operations, potentially invoking
additional asynchronous operations. For example, the completion handler for an
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asynchronous Accept Ex() operation typically initiates an asynchronous Wi t eFi |l e() or
Transm t Fi | e() operation to download a requested file to the client.

On platforms that support asynchronous I/O efficiently, Proactor pattern implementations of

Web servers are often substantially more efficient than Half-Sync/Half-Async (423) and

Leader/Followers (447) pattern implementations [HPS99]. However, the Proactor pattern can

be more complex to implement than the other two concurrency architectures:

§ It has more participants than the other two patterns, which requires more effort to
understand and implement.

8 The combination of 'inversion of control' and asynchrony in Proactor requires a great
deal of experience to program and debug.

As discussed in the section Minimizing Server Threading Overhead, (34) the use of patterns
enables us to evaluate the pros and cons of various Web server architectures without being
distracted by nonessential implementation details, such as the syntax of a platform's
threading, demultiplexing, or connection-management APIs.

Enhancing Server Configurability

Context

The implementation of certain Web server strategies depends on a variety of factors. Certain
factors are static, such as the number of available CPUs and operating system support for
asynchronous I/O. Other factors are dynamic, such as Web workload characteristics.

Problem

No single Web server configuration is optimal for all use cases. In addition, some design
decisions cannot be made efficiently until runtime. Prematurely committing to a particular
Web server configuration is therefore inflexible and inefficient. For example, it is undesirable
to include unused Protocol Handler or Cached Virtual Filesystem components in a Web
server, because this increases its memory footprint and can degrade its performance.

Solution

Apply the Component Configurator pattern (75) to enhance the configurability of a Web
server. This design pattern allows an application to link and unlink its component
implementations at runtime. New and enhanced services can therefore be added without
having to modify, recompile, statically relink, or shut down and restart a running application.

Use in JAWS

JAWS uses the Component Configurator pattern to dynamically optimize, control, and
reconfigure the behavior of its Web server strategies at installation-time or during run-time.
For example, JAWS applies the Component Configurator pattern to configure its various
Cached Virtual Filesystem strategies, such as least-recently used (LRU) or least-frequently
used (LFU):
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The Conmponent class defines a uniform interface for configuring and controlling a particular
application service that it provides. Concrete components, which include the

LRU Fil e_Cachi ng_Strat egy class and the LFU _Fi | e_Cachi ng_Str at egy class,
then implement this interface. Web server administrators can use the Conponent interface
to initiate, suspend, resume, and terminate the concrete components dynamically,
depending on anticipated or actual workload.

Concrete components can be packaged into a suitable unit of configuration, such as a
dynamically linked library (DLL). Only the components that are currently in use need to be
configured into the Web server. These components can be linked/unlinked into and out of an
application dynamically under the control of a Conponent Confi gur at or . In turn, this
object uses a Conponent Reposi t ory, which is a memory-resident database that
manages all concrete components configured into the Web server.

Other Patterns Used to Implement JAWS

The implementation of JAWS applies other design patterns to improve its flexibility and
modularity. For example, two other design patterns and an idiom in this book are used in
JAWS:

8 The Thread-Safe Interface (345) and Strategized Locking (333) patterns help minimize
locking overhead in the JAWS' Cached Virtual Filesystem file cache strategies. They
also ensure that intra-component method calls do not incur 'self-deadlock’ by trying to
reacquire a lock that a file cache already holds.

8 The Scoped Locking C++ idiom (325) is used throughout JAWS to ensure that a lock is
acquired when control enters a scope and the lock is released automatically when
control leaves the scope, regardless of the path out of the scope.

Three patterns from [GoF95] are also used in JAWS:

§ The Singleton pattern ensures that a class has only one instance and provides a global
point of access to it. JAWS uses a Singleton to ensure that only one instance of its
Cached Virtual Filesystem exists in a Web server process.

8 The State pattern defines a composite object whose behavior depends upon its state.
The Event Dispatcher in JAWS uses the State pattern to support both different
concurrency strategies and synchronous and asynchronous 1/0 seamlessly [HPS99].

8 The Strategy pattern defines a family of algorithms, encapsulates each one, and
makes them interchangeable. JAWS uses this pattern extensively, for example to select
different HTTP protocols without affecting its Protocol Handler software architecture.

Other design patterns from [GoF95], such as Adapter, Bridge, Factory Method, Iterator and
Template Method, and from [POSA1], such as Proxy, are used in JAWS to implement the
eight patterns we presented above. The pattern descriptions presented in Chapters 2
through 5 describe the relationships between all these patterns in full detail.

In contrast to the four architectural patterns—Reactor, Proactor, Half-Sync/Half-Async, and
Leader/Followers—described in section Applying Patterns to Resolve Common Design
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Challenges in JAWS, these design patterns have a relatively localized impact on JAWS. For
example, although the Strategized Locking pattern is domain-independent and widely
applicable, the problem it addresses does not impact JAWS' Web server software
architecture as pervasively as the Proactor or Leader/Followers patterns. A thorough
understanding of design patterns is essential, however, to implement highly-flexible software
that is resilient to changes in application requirements and platform characteristics.

BThe source for JAWS and ACE can be downloaded at ht t p: // ww. posa. uci . edu/ .

1.4 Wrapping Up

Computing power and network bandwidth will continue to increase dramatically during this
decade. However, the requirements, scale, and complexity of the concurrent and networked
application software that builds on these hardware advances will also increase at a similar
pace. Without corresponding advances in software techniques, it will be hard to manage
lifecycle costs and develop quality software within a reasonable time and level of effort.

Much of the cost and effort of concurrent and networked software stems from the continual
rediscovery and reinvention of fundamental patterns and framework components that reify
these patterns. Patterns and pattern languages help reduce this cost and improve the quality
of software by using proven architectures and designs to produce applications and
application frameworks. These frameworks can be customized to meet existing application
requirements, as well as extended to meet future requirements.

The JAWS example presented in this chapter demonstrates how the effort required to
develop concurrent and networked software can be reduced significantly by applying
patterns and framework components judiciously. Rather than rediscovering solutions to
complex concurrent and networked software problems and reinventing the corresponding
software from scratch, developers can instead focus on achieving their strategic technical
and business objectives. Even when changes to technologies or tools preclude the direct
use of existing components, algorithms, detailed designs, and implementations, the core
architectural and design patterns that underlie these artifacts often can still be reused.

The JAWS example also illustrates the importance of understanding how groups of patterns
collaborate to help resolve complex concurrent and networked application design problems.
Problems and forces are often inter-related, and these relationships should be considered
when addressing key design issues and implementation trade-offs. Regardless of their
individual utility, therefore, no single pattern is an island. Instead, patterns must be
understood in the larger software architecture context in which they apply.
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Chapter 2: Service Access and Configuration
Patterns

Overview

There once was a man who went to a computer trade show. Each day as he
entered the man told the guard at the door: "l am a great thief, renowned for
my feats of shoplifting. Be forewarned, for this trade show shall not escape
unplundered.”

This speech disturbed the guard greatly, because there were millions of
dollars of computer equipment inside, so he watched the man carefully. But
the man merely wandered from booth to booth, asking questions and
humming quietly to himself.

When the man left, the guard took him aside and searched his clothes, but
nothing was to be found. On the next day of the trade show, the man
returned and chided the guard saying: "l escaped with a vast booty
yesterday, but today will be even better." So the guard watched him ever
more closely, but to no avail.

On the final day of the trade show, the guard could restrain his curiosity no
longer. "Sir Thief", he said, "l am so perplexed, | cannot live in peace.
Please enlighten me. What is it that you are stealing?"

The man smiled. "I am stealing patterns”, he said.

Adapted from "The TAO Of Programming" [JH98] by Geoffrey James and
Duke Hillard

This chapter presents four patterns for designing effective application programming
interfaces (APIs) to access and configure services and components in stand-alone and
networked systems: Wrapper Facade, Component Configurator, Interceptor, and Extension
Interface.

Networked systems are inherently heterogeneous [HV99]. Therefore, a key challenge
confronting researchers and developers is how to effectively design and configure
application access to the interfaces and implementations of evolving service components.
This chapter presents four patterns that address various aspects of service access and
configuration:

§ The Wrapper Facade design pattern (47) encapsulates the functions and data
provided by existing non-object-oriented APIs within more concise, robust, portable,
maintainable, and cohesive object-oriented class interfaces. Wrapper Facade is often
applied to improve application portability by ‘wrapping' lower-level operating system
APIs. It can also alleviate the accidental complexity associated with programming using
low-level APIs.

To minimize redundancy in other patterns in the book, the Implementation section of the
Wrapper Facade pattern contains detailed coverage of wrapper facades for threads,
mutex locks, condition variables, and Sockets. Subsequent patterns, such as Reactor
(179), Proactor (215), Acceptor-Connector (285), Strategized Locking (333), Active
Object (369), and Monitor Object (399), use these wrapper facades in their own
implementations. Therefore, we recommend you read Wrapper Facade first.
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8 The Component Configurator design pattern (75) allows an application to link and
unlink its component implementations at run-time without having to modify, recompile,
or relink the application statically. Applications with high availability requirements, such
as mission-critical systems that perform online transaction processing or real-time
industrial process automation, often require such flexible configuration capabilities.
Component Configurator therefore addresses aspects of service configuration and
service evolution.

Other patterns in this section, particularly Extension Interface (141) and Interceptor
(109), can use the Component Configurator pattern to (re)configure various service
roles into components in application processes without having to shut down and restart
running application processes.

8 The Interceptor architectural pattern (109) allows services to be added to a framework
transparently and to be triggered automatically when certain events occur. Interceptor
therefore prepares a framework for its own evolution to accommodate services that are
not configured or not even known during the framework's original development.
Interceptor also allows other applications to integrate components and services with
instances of the framework. Such services are often ‘out-of-band' or application-specific
from the perspective of the framework instance, but are important for the productive and
proper operation of applications that use the framework.

§ The Extension Interface design pattern (141) prevents the 'bloating' of interfaces and
breakage of client code when developers extend or modify the service functionality of
existing components. Multiple extension interfaces can be attached to the same
component. Extension Interface addresses both the challenge of component and
service evolution and the provision of clients with an authorized and role-specific access
to a component's functionality.

The topics of service access and configuration involve more challenges than are addressed

by the patterns in this section. These challenges include:

8 Mediating access to remote services via local proxies

8 Managing the lifecycle of services, locating services in a distributed system and

8 Controlling the operating system and computing resources a server can provide to the
service implementations it hosts

Other patterns in the literature address these issues, such as Activator [Sta100], Evictor
[HV99], Half Object plus Protocol [Mes95], Locator [JKOQ], Object Lifetime Manager
[LGS99], and Proxy [POSA1] [GoF95]. These patterns complement those presented in this
section and together describe key principles that well-structured distributed systems should
apply to configure and provide access to the services they offer.

Wrapper Facade

The Wrapper Facade design pattern encapsulates the functions and data provided by
existing non-object-oriented APIs within more concise, robust, portable, maintainable, and
cohesive object-oriented class interfaces.

Example

Consider a server for a distributed logging service that handles multiple clients concurrently
using the connection-oriented TCP protocol [Ste98]. To log data a client must send a
connection request to a server transport address, which consists of a TCP port number and
IP address. In the logging server, a passive-mode socket handle factory listens on this
address for connection requests. The socket handle factory accepts the connection request
and creates a data-mode socket handle that identifies this client's transport address. This
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handle is passed to the server, which spawns a logging handler thread that processes client

logging requests.

After a client is connected it sends logging requests to the server. The logging handler
thread receives these requests via its connected socket handle. It then processes the
requests in the logging handler thread and writes the requests to a log file.
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A common way to develop this logging server is to use low-level C language APIs, such as
Solaris threads [EKBFE+92] and Sockets [Ste98], to program the server's threading,

synchronization, and network communication functionality. If the logging server runs on
multiple platforms, however, there will be differences between functions and data in the low-
level APIs, as well as different operating system and compiler features and defects.
Developers commonly handle these differences by inserting conditional compilation
directives, such as C/C++ #i f def s, throughout their code. For instance, the following code
illustrates a logging server that has been implemented using #i f def s to run on Solaris and

Windows NT:

#if defined (_WN32)
#i ncl ude <wi ndows. h>
typedef int ssize t;
#el se

typedef unsigned int
Ul NT32;

#i ncl ude <t hread. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/socket. h>

#i ncl ude <netinet/in.h>

#i ncl ude <nmenory. h>
#endif /* WN32 */

/1 Keep track of nunber of
| oggi ng requests.

static int request_count;

/1 Lock that serializes
concurrent access to
request _count.

#if defined (_WN32)

static CRITI CAL_SECTI ON
| ock;

#el se

#if defined (_WN32)

EnterCritical Section (& ock);
#el se

mut ex_I| ock (& ock);
#endi f /* WN32 */

/1l Execute follow ng two
statements in a critical

// section to avoid ace conditions

and scranbl ed
/1 output, respectively.
++request _count;

/1 A return value of -1 signifies

failure.
if (wite_record (log_record,

br eak;
#if defined (_WN32)
LeaveCritical Section (& ock);
#el se
mut ex_unl ock (& ock);
#endi f /* WN32 */

}
#if defined (_WN32)

| en)
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static nutex_t | ock;
#endif /* WN32 */

/1 Maxi mum si ze of a | oggi ng
record.

static const int
LOG RECORD MAX = 1024;

// Port nunber to listen on
for requests.

static const int
LOGE NG _PORT = 10000;

/1 Entry point that wites
| oggi ng records.

int wite_record (char
log record[], int len) {

/* */
return O;

/1 Entry point that
processes | ogging records
for

/1 one client connection.
#if defined (_WN32)
u_l ong
#el se
void *
#endif /* WN32 */
| oggi ng_handl er (void *arg)

/1 Handl e UNI X/ W n32
portability.

#if defined (_WN32)

SOCKET h =
reinterpret_cast <SOCKET>
(arg);

#el se

int h = reinterpret_cast
<int> (arg);

#endif /* WN32 */

cl osesocket (h);
#el se

close (h);
#endi f /* WN32 */

return O;

/] Main driver
int min (int argc,

function for the server.
char *argv[]) {

struct sockaddr _in sock_ addr;

/1 Handl e UNI XY Wn32 portability.
#if defined (_WN32)

SOCKET accept or;

WORD ver si on_requested = MAKEWORD( 2,
0);
WSADATA wsa_dat a;
int error =
WBASt art up(versi on_requested, &wsa_data);
if (error '=20) return -1;
#el se

i nt acceptor;
#endi f /* WN32 */

// Create a | ocal
conmuni cati on.

endpoi nt of

acceptor = socket (AF_I NET,
SOCK_STREAM 0) ;

/1 Set up the address to becone a
server.

menset (&sock_addr, 0, sizeof

sock_addr);
sock_addr.sin_famly = PF_I NET;

sock_addr.sin_port
(LOGE NG_PORT) ;

sock_addr.sin_addr.s_addr = htonl
(1 NADDR_ANY) ;

/1 Associate address w th endpoint.

= htons

bi nd (acceptor,
reinterpret _cast<struct sockaddr *>

(&sock_addr),
sock_addr);

/1 Make endpoi nt
connecti ons.

si zeof
listen for

listen (acceptor, 5);
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for (;:) {
#if defined (_WN32)
ULONG | en;
#el se
U NT32 | en;
#endif /* WN32 */

/! Ensure a 32-bit
quantity.

char
| og_record[ LOG_RECORD MAX] ;

/'l The first <recv>
reads the | ength

/'l (stored as a 32-

bit integer) of
/'l adj acent
record. This code

| oggi ng

/1 does not handl e
"short-<recv>s".

ssize t n =recv (h,

reinterpret_cast <char *>
(& en),

si zeof | en,

0);

// Bail out if we're
shut down or

|/ errors occur
unexpect edl y.

if (n <= sizeof len)
br eak;

len = ntohl (len);

if (len >

LOG RECORD MAX) br eak;

/1 The second <recv>
t hen reads <l en>

/'l bytes to obtain
t he actual record.

/1 This code handl es
"short-<recv>s".

for (size_t nread =
0; nread < len; nread += n)

{

n = recv (h,
| og_record + nread,

/] Main server event

for (5;) {
/1 Handl e UNI X¥ Wn32 portability.
#if defined (_WN32)

| oop.

SCCKET h;

DWORD t i d;
#el se

int h;

thread t t_id;
#endi f /* WN32 */

/1 Block waiting for clients to
connect .

h = 0, 0),

/1 Spawn a new thread that
the <server>

accept (acceptor,
runs

/1 entry point.
#if defined (_WN32)
CreateThread (0, O,

LPTHREAD START_ROUTI NE( & oggi ng_handl er),

reinterpret_cast <void *>
(h), 0, & _id);
#el se
thr _create
(0, 0,
reinterpret_cast <void *> (h),
THR_DETACHED, &t _id);
#endi f /* WN32 */
}

return O;

| oggi ng_handl er,

}
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len -
nread, 0);

// Bail out if an
error occurs.

if (n <=0) return
0;

}

The design shown above may work for short-lived, 'throw-away' prototypes [FoY099]. It is
inadequate, however, for software that must be maintained and enhanced over time. The
use of conditional compilation directives and direct programming of low-level APIs makes the
code unnecessarily hard to understand, debug, port, maintain, and evolve.

Certain problems can be alleviated by moving platform-specific declarations, such as the
mutex and socket types, into separate configuration header files. This solution is incomplete,
however, because the #i f def s that separate the use of platform-specific APIs, such as
thread creation calls, will still pollute application code. Supporting new platforms will also
require modifications to platform-specific declarations, irrespective of whether they are
included directly into application code or separated into configuration files.

Several well-known patterns address similar problems, but unfortunately do not help to
resolve the problems outlined above. For example, Facade [GoF95] encapsulates object-
oriented subsystems rather than lower-level non-object-oriented APIs. Decorator [GoF95
extends an object dynamically by attaching additional responsibilities transparently, which
incurs unnecessary performance overhead. Bridge and Adapter [GoF95] also introduce an
additional layer of indirection that can incur overhead. In general, therefore, these patterns
are not well suited to encapsulate existing lower-level non-object oriented APIs, where it may
be more important that the solution be efficient than be dynamically extensible.

Context

Maintainable and evolvable applications that access mechanisms or services provided by
existing non-object-oriented APIs.

Problem

Applications are often written using non-object-oriented operating system APIs or system
libraries. These APIs access network and thread programming mechanisms, as well as user
interface or database programming libraries. Although this design is common, it causes
problems for application developers by not resolving the following forces:

8 Concise code is often more robust than verbose code because it is easier to develop
and maintain. Using object-oriented languages that support higher-level features, such
as constructors, destructors, exceptions, and garbage collection, reduces the likelihood
of common programming errors. However, developers who program using lower-level
function-based APIs directly tend to rewrite a great deal of verbose and error-prone

software reieatedli.

8The code for creating and initializing an acceptor socket in the mai n() function of our
logging server example is error-prone. Moreover, these errors are subtle, such as
failing to initialize the sock_addr to zero or not using the ht ons() macro to
convert the LOGA NG_PORT number into network byte order [Sch92]. The lack of
constructors and destructors in C also makes it hard to ensure that resources are
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§

allocated and released properly. For example, note how the lock that serializes
access to r equest _count will not be released correctly if thewrite_record()
function returns - 1.

Software that is portable or can be ported easily to different operating systems,
compilers, and hardware platforms helps increase product market-share. Although
reusing existing lower-level APls may reduce some of the software development effort,
applications programmed directed with lower-level APIs are often non-portable.
Programming using lower-level APIs across different versions of the same operating
system or compiler also may be non-portable due to the lack of source-level or binary-
level compatibility across software releases [Box97].

8Our logging server example has hard-coded dependencies on several non-portable
operating system threading and network programming C APIs. For example, the
Solarist hr _create(), mutex_| ock(),andnutex_unl ock() functions are
not portable to Win32 platforms. Although the code is quasi-portable—it also
compiles and runs on Win32 platforms—there are various subtle portability
problems. In particular, there will be resource leaks on Win32 platforms because
there is no equivalent to the Solaris THR_DETACHED feature, which spawns a
'detached' thread whose exit status is not retained by the threading library [Lew95].

Improving software maintainability helps reduce lifecycle costs. Programs written
directly to low-level non-object-oriented APIs are often hard to maintain, however. For
example, C and C++ developers often address portability issues by embedding
conditional compilation directives into their application source. Unfortunately,
addressing platform-specific variations via conditional compilation at all points of use
increases the software's physical design complexity [Lak95]. For instance, platform-
specific details become scattered throughout the application source files.

§Maintenance of our logging server is impeded by the #i f def s that handle Win32 and
Solaris portability, for example the differences in the type of a socket on Win32 and
Solaris. In general, developers who program to low-level C APIs like these must
have intimate knowledge of many operating system idiosyncrasies to maintain and
evolve their code.

Cohesive components are easier to learn, maintain, and enhance. However, low-level
APIs are rarely grouped into cohesive components because languages like C lack
features such as classes, namespaces, or packages. It is hard, therefore, to recognize
the extent of low-level APIs. Programming with non-cohesive stand-alone function APIs
also scatters common code throughout an application, making it hard to 'plug in' new
components that support different policies and mechanisms.

§The Socket API is particularly hard to learn because the several dozen C functions in
the Socket library lack a uniform naming convention. For example, it is not obvious
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that socket (), bind(), listen(), connect(),andaccept() are related.
Other low-level network programming APIs, such as TLI, address this problem by
prepending a common function prefix, such as the t _ prefixed before each function
in the TLI API. However, the use of a common prefix does not by itself make the TLI
API more 'pluggable’ than Sockets. It remains a low-level function-based API rather
than a more cohesive object-oriented class interface.

In general, developing applications by programming to non-object-oriented APIs directly is a
poor design choice for software that must be maintained and evolved over time.

Solution

Avoid accessing non-object-oriented APIs directly. For each set of related functions and data
in a non-object-oriented API, create one or more wrapper facade classes that encapsulate
these functions and data within the more concise, robust, portable, and maintainable
methods provided by the object-oriented wrapper facade(s).

Structure

There are two participants in the Wrapper Facade pattern:

Functions are the building blocks of existing non-object-oriented APIs. They provide a stand-
alone service or mechanism and manipulate data passed as parameters or accessed
through global variables.

A wrapper facade is a set of one or more object-oriented classes that encapsulate existing
functions and their associated data. These class(es) export a cohesive abstraction that
provides a specific type of functionality. Each class represents a specific role in this
abstraction.

The methods in the wrapper facade class(es) generally forward application invocations to
one or more of the functions, passing the data as parameters. The data is often hidden
within the private portion of the wrapper facade and is not accessible to client applications.
Compilers can then enforce type safety because primitive data types, such as pointers or
integers, are encapsulated within strongly-typed wrapper facades.
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The following class diagram illustrates the structure of Wrapper Facade:
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Collaborations in the Wrapper Facade pattern are often straightforward:

8 The application code invokes a method on an instance of the wrapper facade.

8 The wrapper facade method forwards the request and its parameters to one or more of
the lower-level API functions that it encapsulates, passing along any internal data
needed by the underlying function(s).
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Implementation

This section describes the activities involved in implementing the Wrapper Facade pattern.
Certain activities may require multiple iterations to identify and implement suitable wrapper
facade abstractions. To reduce repetition elsewhere in the book, we present an in-depth
discussion of concrete wrapper facades for mutexes, condition variables, Sockets, and
threads in this section. Although this lengthens the current section somewhat, the
implementation examples of other patterns in this book, including Acceptor-Connector (285),
Strategized Locking (333), Thread-Specific Storage (475), and Monitor Object (399), are
simplified by using these wrapper facades.

1. Identify the cohesive abstractions and relationships among existing low-level APIs.
Mature low-level APIs contain functions and data structures that define many
cohesive abstractions and map cleanly onto object-oriented classes and methods.
Common examples include the C APIs for Win32 synchronization and threading,
POSIX network programming, and X Windows GUI event dispatching. Due to the lack
of data abstraction in languages like C, however, it may not be clear how functions in
these existing APlIs relate to each other. The first activity in implementing the
Wrapper Facade pattern is therefore to identify the cohesive abstractions and
relations among existing APIs.

2. The original implementation of our logging server carefully uses many low-level
functions that provide several cohesive operating system mechanisms, such as
synchronization and network communication. The Solaris nut ex_| ock() and
mut ex_unl ock() functions, for example, are associated with a mutex
synchronization abstraction. Similarly, the socket (), bind(), listen(),
and accept () functions play various roles in a network programming
abstraction.
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4. If existing functions and data structures have been developed as throw-away code or
via piecemeal growth [FoY099], they may exhibit little or no cohesive abstractions. In
this case the code should be refactored [Opd92] [EBBOR99], if possible, before
proceeding with the implementation of the Wrapper Facade pattern.

5. Cluster cohesive groups of functions into wrapper facade classes and methods. This
activity defines one or more class abstractions that shield applications from low-level
data representations, arbitrary variations in function syntax, and other implementation
details. It can be decomposed into five sub-activities:

1. Create cohesive classes. We start by defining one or more wrapper facade
classes for each group of existing non-object-oriented APIs that are related to

a particular abstraction. Common criteria used to create cohesive classes

include the following:

8 Coalesce functions and data with high cohesion into individual
classes, while minimizing unnecessary coupling between classes.
Examples of cohesive functions are those that manipulate common data
structures, such as a Socket, a file, or a signal set [Ste98].

§ Identify the common and variable aspects in the underlying functions
and data [Cope98]. Common aspects include mechanisms for
synchronization, threading, memory management, addressing, and
operating system platform APIs. Variable aspects often include the
implementations of these mechanisms. Whenever possible variation in
functions and data should be factored into classes that isolate variation
behind uniform interfaces to enhance extensibility.

In general, if the original API contains a wide range of related functions, it may
be necessary to create several wrapper facade classes to separate concerns
properly.

2. Coalesce multiple individual functions into a single method. In addition to
grouping existing functions into classes, it may be useful to coalesce multiple
individual functions into a smaller number of methods in each wrapper facade
class. Coalescing can be used to ensure that a group of lower-level functions
are called in the appropriate order, as with the Template Method pattern
[GoF95].

3. Automate creation and destruction operations, if possible. Lower-level APIs
often require programmers to call functions explicitly to create and destroy
data structures that implement instances of the API. This procedure is error-
prone, however, because developers may forget to call these functions in one
or more paths through their code. A more robust approach therefore is to
leverage the implicit creation and destruction operation capabilities provided
by object-oriented languages, such as C++ and Java. In fact, the ability to
create and destroy objects automatically often justifies the use of the Wrapper
Facade pattern, even if the wrapper facade methods do nothing but forward
control to the lower-level function calls.

4. Select the level of indirection. Most wrapper facade classes simply forward
their method calls to the underlying low-level functions, as mentioned above. If
wrapper facade methods can be inlined implicitly or explicitly, there need be
no run-time indirection overhead when compared to invoking the low-level
functions directly. It is also possible to add another level of indirection by
dispatching wrapper facade implementations using dynamically bound
methods or some other form of polymorphism. In this case the wrapper facade
classes play the role of the abstraction class in the Bridge pattern [GoF95].
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Determine where to encapsulate any platform-specific variation. A common
use of the Wrapper Facade pattern is to minimize platform-specific variation in
application code. Although wrapper facade method implementations may differ
across different operating system platforms, they should provide uniform,
platform-independent interfaces. Where platform-specific variation exists it can
be encapsulated via conditional compilation or separate directories:

§ Conditional compilation can be used to select among different wrapper
facade class method implementations. The use of conditional compilation
is inelegant and tedious when #i f def s are scattered throughout
application code. Conditional compilation may be acceptable, however, if
it is localized in a few platform-specific wrapper facade classes or files
that are not accessed directly by application developers. When
conditional compilation is used in conjunction with auto-configuration
tools, such as GNU aut oconf , platform-independent wrapper facades
can be created within a single source file. As long as the number of
variations supported in this file is not unwieldy therefore, conditional
compilation can help localize variation and simplify maintenance.

8 Separate directories can be used to factor out different wrapper facade
implementations, thereby minimizing conditional compilation or avoiding it
altogether. For example, each operating system platform can have its
own directory containing implementations of platform-specific wrapper
facades. Language processing tools can be used to include the
appropriate wrapper facade class from the relevant directory at
compilation. To obtain a different implementation, a different include path
could be provided to the compiler. This strategy avoids the problems with
conditional compilation described above because it physically decouples
the various alternative implementations into separate directories.

Choosing a strategy depends on how often wrapper facade interfaces and
implementations change. If changes occur frequently it may be time-
consuming to update the conditional compilation sections for each platform.
Similarly, all files that depend on the affected files will be recompiled even if
the change is only necessary for one platform. Therefore the use of condition
compilation becomes increasingly complex as a larger number of different
platforms are supported. Regardless of which strategy is selected, however,
the burden of maintaining wrapper facade implementations should be the
responsibility of wrapper facade developers rather than application
developers.

To simplify our logging server implementation, we define wrapper facades
that encapsulate existing low-level C APIs for mutexes, Sockets, and
threads. Each wrapper facade illustrates how various design issues
outlined above can be addressed systematically. We focus on defining
wrapper facades for C functions because C is used to define popular
operating system APIs, such as POSIX or Win32. However, the same
design principles and techniques can be applied to other non-object-
oriented languages, such as FORTRAN, Ada 83, Scheme, or Pascal, as
well as to non-operating system APIs, such as X Windows or ODBC
database toolkits [San98].

Mutex wrapper facades. We first define a Thr ead_Mut ex abstraction that
encapsulates the Solaris mutex functions with a uniform and portable
class interface:”

cl ass Thread_Mitex {
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publi c:
Thread_Mutex ()
{ mutex_init (&rutex_, USYNC THREAD, 0); }
~Thread_Mutex () { mutex_destroy (&rutex_); }

void acquire () { mutex lock (&mutex ); }

void release () { mutex _unlock (&mutex_ ); }
private:

/1 Sol aris-specific Mitex nechani sm

mutex_t nutex_;

/1 Disallow copying and assi gnment.
Thread_Mutex (const Thread_Mitex &);
voi d operator= (const Thread_Mitex &);

/1 Define a <Thread_Condition> as a friend so
it can

/] access <nmutex_>.
friend class Thread Condition;

b

Note how we define the copy constructor and assignment operator as
private methods in the Thr ead_Mut ex class. This C++ idiom ensures that
application programmers cannot copy or assign one Thr ead_Mit ex to
another accidentally [Mey98] [Str97]. Copying mutexes is a semantically-
invalid operation that is erroneously permitted by the less strongly-typed C
programming API. Our Thr ead_Mit ex wrapper facade therefore provides
a mutex interface that is less error-prone than programming directly to the
lower-level Solaris synchronization functions.

By defining a Thr ead_Mut ex class interface and then writing applications
to use it, rather than lower-level native operating system C APIs, we can
port our wrapper facade to other platforms more easily. For example, the
identical Thr ead_Mut ex interface can be implemented to run on Win32:

cl ass Thread_Mitex {
publi c:
Thread_Mutex ()
{ InitializeCritical Section (&mtex ); }
~Thread_Mutex ()
{ DeleteCritical Section (&mutex_); }

void acquire () { EnterCritical Section
(&mutex_ ); }

void release () { LeaveCritical Section
(&mutex_ ); }
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private:
/1 Wn32-specific Mitex mechani sm
CRI TI CAL_SECTI ON mut ex_;

/1 Disallow copying and assi gnment.
Thread_Mutex (const Thread Mitex &);
voi d operator= (const Thread Mitex &);

H

Naturally, a complete implementation of Thr ead_Mut ex would map the
platform-specific error handling return values from the various nut ex_t
and CRI Tl CAL_SECTI ON functions to portable C++ exceptions.

As described earlier, we can support multiple operating systems
simultaneously by using conditional compilation and #i f def 'ing the

Thr ead_Mut ex method implementations. If conditional compilation is
unwieldy due to the number of supported platforms, it is possible to factor
out the different Thr ead_Mut ex implementations into separate
directories. In this case, language processing tools such as compilers and
preprocessors can be instructed to include the appropriate platform-
specific variant into the application during compilation.

Condition variable wrapper facade. A condition variable is a
synchronization mechanism used by collaborating threads to suspend
themselves temporarily until condition expressions involving data shared
between the threads attain desired states [IEEE96]. We describe the
wrapper facade for condition variables at this point because they are often
used in conjunction with the Thr ead_Mut ex wrapper facade described
above. Although our logging server example does not use condition
variables, they are used by other patterns throughout the book, such as
Strategized Locking (333), Leader/Followers (447), and Monitor Object
(399).

As mentioned above, a condition variable is always used in conjunction
with a mutex that the client thread must acquire before evaluating the
condition expression. If the condition expression is false the client
suspends itself on the condition variable and releases the mutex
atomically, so that other threads can change the shared data. When a
cooperating thread changes this data it can notify the condition variable,
which resumes a thread atomically that had suspended itself previously on
the condition variable. The thread then re-acquires the mutex associated
with the condition variable.

After re-acquiring its mutex a newly-resumed thread next re-evaluates its
condition expression. If the shared data has attained the desired state, the
thread continues. Otherwise it suspends itself on the condition variable
again until it is resumed. This process can repeat until the condition
expression becomes true.

In general, when complex condition expressions or scheduling behaviors
are required, combining a mutex with a condition variable is more
appropriate than just using a mutex. For example, condition variables can
be used to implement synchronized message queues, as shown in the
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Monitor Object pattern example (399). In this situation a pair of condition
variables are employed to block supplier threads cooperatively when a
message queue is full, and to block consumer threads when the queue is
empty.

The following Thr ead_Condi t i on class is a wrapper facade that is
implemented using the Solaris condition variable API:
class Thread Condition {
publi c:
/1 Initialize the condition variable and
/1 associate it with the <mutex_>.

Thread_Condi ti on (const Thread Mitex &m
mutex_ (n)

{ cond_init (&ond_, USYNC THREAD, 0); }

/1 Destroy the condition variable.
~Thread_Condition () { cond destroy (&cond_ );

/1 WAit for the <Thread Condition> to be
notified

/1 or until <timeout> has el apsed. If
<tinmeout> ==

/1 then wait indefinitely.
void wait (Tine_Value *timeout = 0) {
cond tinedwait (&cond_, &mutex .nutex_,
timeout ==
? 0 : timeout->nsec ());

}

/1 Notify one thread waiting on
<Thread_Condi ti on>.

void notify () { cond_signal (&ond ); }

/1 Notify all threads waiting on
<Thread_Condition>.

void notify all () { cond _broadcast (&cond );

private:
/] Solaris condition variable.
cond t cond_;

/1 Reference to nmutex | ock.
const Thread_ Mitex &nmutex_;
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The constructor initializes the condition variable and associates it with the
Thr ead_Mut ex passed as a parameter. The destructor destroys the
condition variable, which releases allocated resources. Note that the
mutex is not owned by the Thr ead_Condi t i on so it is not destroyed in
the destructor.

When called by a client thread the wai t () method performs the following

two steps atomically:

§8 It releases the associated mutex and

§ It suspends itself atomically for up to ati meout amount of time,
waiting for the Thr ead_Condi t i on object to be notified by another
thread.

The not i fy() method resumes one thread waiting on a

Thr ead_Condi ti on. Similarly the noti fy_al | () method notifies all
threads that are currently waiting on a Thr ead_Condi ti on. The nut ex__
lock is reacquired by the wai t () method before it returns to its client
thread, either because the condition variable was notified or because its
ti meout expired.

Socket wrapper facades. Our next wrapper facade encapsulates the
Socket API. This APl is much larger and more expressive than the Solaris
mutex APl [Sch92]. We must therefore define a group of related wrapper
facade classes to encapsulate Sockets. We start by defining at ypedef
and a macro that hide some of the UNIX/POSIX and Win32 portability
differences:

typedef int SOCKET;
const int | NVALID HANDLE VALUE = -1;

Both SOCKET and | NVALI D_HANDLE VALUE are defined in the Win32
API already. Therefore, we could either integrate them using #i f def s or
using separate platform-specific directories, as discussed earlier in
implementation activity 2.5 (55).

Next, we define an | NET_Addr class that encapsulates the internet
domain address st r uct :

class | NET_Addr {
publi c:
| NET_Addr (u_short port, u_long addr) {

/1 Set up the address to becone a server.
nenset (&addr_, 0, sizeof addr );
addr_.sin_famly = AF_I NET;
addr_.sin_port = htons (port);
addr _.sin_addr.s_addr = htonl (addr);

u_short get _port () const { return
addr _.sin_port; }
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u_long get _ip_addr () const
{ return addr_.sin_addr.s_addr; }

sockaddr *addr () const

{ return reinterpret_cast <sockaddr *>
(&addr_);}

size_t size () const { return sizeof (addr_);

/1
private:
sockaddr i n addr_;

H

Note how the | NET_Addr constructor eliminates several common Socket
programming errors. For example, it initializes the sockaddr _i n field to
zero, and ensures the TCP port number and IP address are converted into
network byte order by applying the nt ons() and nt onl () macros
automatically [Ste98].

The next wrapper facade class, SOCK_St r eam encapsulates the 1/10
operations, such asrecv() and send() , that an application can invoke
on a connected socket handle:

cl ass SOCK_Stream {
publi c:
/1 Default and copy constructor.

SOCK _Stream () : handle_
(1 NVALI D_HANDLE VALUE) { }

SOCK_Stream (SOCKET h): handle_ (h) { }

/1 Automatically close the handl e on
destruction.

~SOCK_Stream () { close (handle ); }

/1 Set/get the underlying SOCKET handl e.

voi d set_handl e (SOCKET h) { handle_ = h; }
SOCKET get _handle () const { return handle_; }

/1 Regular I/0O operations.

ssize_t recv (void *buf, size_t len, int
flags);

ssize_t send (const char *buf, size t len, int
flags);
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/1 110 operations for "short" receives and

sends.
ssize_t recv_n (char *buf, size_t len, int
flags);
ssize_t send_n (const char *buf, size_ t |en,
int flags);
/1 ... other methods omtted.
private:
/1 Socket handl e for exchangi ng socket data.
SOCKET handl e_;
H

As discussed in implementation activity 2.3 (55), this class leverages the
semantics of C++ destructors to ensure that a socket handle is closed
automatically when a SOCK_St r eamobject goes out of scope. In addition,
the send_n() andrecv_n() methods can handle networking
idiosyncrasies, for example 'short' send and receive operations.

SOCK_St r eamobjects can be created via a connection factory, called
SOCK_Accept or , which encapsulates passive establishment of Socket
connections. The SOCK_Accept or constructor initializes the passive-
mode acceptor socket to listen at the sock_addr address. The
SOCK_Accept or's accept () method is a factory that initializes the
SOCK_St r eamparameter with a socket handle to a new connection:

cl ass SOCK Acceptor {

publi c:
/1 Initialize a passive-node acceptor socket.
SOCK_Acceptor (const | NET_Addr &addr) {

/]l Create a local endpoint of
conmuni cat i on.

handl e = socket (PF_INET, SOCK STREAM

0);
/1 Associ ate address wi th endpoint.
bi nd (handl e_, addr.addr (), addr.size
());
/1 Make endpoint |isten for connections.
listen (handle_, 5);
1
/1 A second nethod to initialize a passive-
node

/1 acceptor socket, anal ogously to the
constructor.

voi d open (const | NET_Addr &sock_addr) { /*
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/1 Accept a connection and initialize the
<streanp.

voi d accept (SOCK _Stream &s) {
s.set_handl e (accept (handle_, 0, 0));

}

private:
SOCKET handle_; // Socket handle factory.

H

Note how the constructor for the SOCK_Accept or applies the strategy
discussed in implementation activity 2.2 (55) to ensure that the low-level
socket (), bind(),andlisten() functions are always called
together and in the correct order.

A complete set of Socket [Sch97] wrapper facades would also include a
SOCK_Connect or that encapsulates the logic for establishing
connections actively. The SOCK_Accept or and SOCK_Connect or
classes are concrete IPC mechanisms that can be used to instantiate the
generic acceptor and connector classes described in the Acceptor-
Connector pattern (285) to perform connection establishment.

Thread wrapper facade. Our final wrapper facade encapsulates operating
system threading APIs that are available on different operating system
platforms, including Solaris threads, POSIX Pthreads, and Win32 threads.
These APIs exhibit subtle syntactic and semantic differences. For
example, Solaris and POSIX threads can be spawned in 'detached' mode,
whereas Win32 threads cannot. It is possible, however, to provide a

Thr ead_Manager wrapper facade that encapsulates these differences in
a uniform manner. The Thr ead_Manager wrapper facade below, which is
a Singleton [GoF95], illustrates the spawn method implemented for Solaris
threads:

cl ass Thread_Manager {

publi c:
/1 Singleton access point.
Thr ead_Manager *instance ();

/1 Spawn a thread.

voi d spawn (void *(*entry_point_function)
(void *),

void *arg = 0, long flags = O,
| ong stack _size = 0,

void *stack pointer = 0O,
thread t *t_id = 0) {

thread t t;
if (t_id==0)
t id=&;

thr_create



(stack_size, stack pointer,
entry _point_function, arg, flags,

[/ ... Oher nethods omtted.
b

The Thr ead_Manager class also provides methods for joining and
canceling threads that can be ported to other operating systems.

6. Consider allowing applications controlled access to implementation details. One
benefit of defining a wrapper facade is to make it hard to write incorrect or non-
portable applications. For example, wrapper facades can shield applications from
error-prone or platform-specific implementation details, such as whether a socket is
represented as a pointer or an integer. Cases may arise, however, where the extra
abstraction and type safety actually prevent programmers from using a wrapper
facade in useful ways not anticipated by its designer. This experience can be
frustrating and may discourage programmers from leveraging other benefits of
wrapper facades.

A common solution to the problem of 'too much' abstraction is to provide an 'escape
hatch' mechanism or open implementation technique, such as AOP [KLM+97]. This
design allows applications to access implementation details in a controlled manner.

The SOCK_St r eamclass defines a pair of methods that set and get the
underlying SOCKET handle:

cl ass SOCK Stream {

public:
/1 Set/get the underlying SOCKET handl e.
voi d set_handl e (SOCKET h) { handle_ = h; }
SOCKET get _handle () const { return handle_; }

These methods can be used to set and get certain Socket options, such as
support for 'out-of-band' data [Ste98], that were not defined by the original Socket

Wraiier facades.

Escape-hatch mechanisms should be used sparingly of course, because they
decrease portability and increase the potential for errors, thereby nullifying key
benefits of the Wrapper Facade pattern. If applications use certain escape hatches
repeatedly in similar situations, it may indicate that explicit methods should be added
to the public interface of the wrapper facade. The Extension Interface pattern (141)
defines techniques for adding these new methods without disrupting existing clients.
7. Develop an error-handling mechanism. Low-level C operating system function APIs

often use return values and integer codes, such as er r no, to return errors to their



calling code. This technique can be error-prone, however, if callers do not check the
return status of their function calls.

A more elegant way of reporting errors is to use exception handling. Many
programming languages, such as C++ and Java, support exception handling as a
fundamental error-reporting mechanism. It is also used in some operating systems,
for example Win32 [Sol98]. There are several benefits of using exception handling as
the error-handling mechanism for wrapper facade classes:

8§ It is extensible, for example by defining hierarchies of exception classes in C++
and Java.
8 It cleanly decouples error handling from normal processing. Error handling

information is neither passed to an operation explicitly, nor can an application
accidentally ignore an exception by failing to check function return values.

8 It can be type-safe. In languages like C++ and Java, exceptions can be thrown
and caught in a strongly-typed manner.

We can define the following exception class to keep track of which operating
system error or condition has occurred:

class System Ex : public exception {

publi c:
/1 Map <os_status> into a platformindependent error
/1 or condition status and store it into <error_>.
System Ex (int os_status) { /* ... */ }

/1 Platformindependent error or condition status.
int status () const { return status_; }

/1
private:
/1 Store platformindependent error/condition
st at us.
int status_;
H

Platform-independent errors and conditions could be defined via macros or
constants that map onto unique values across all operating systems. For
instance, the Solaris implementation of the Thr ead_Mut ex: : acqui re()
method shown on page 57 could be written as follows:

void Thread_Mitex::acquire () {
int result = nutex_| ock (&nmutex);
if (result '=0) { throw System Ex (result); }

}

Unfortunately, there are several drawbacks to the use of exception handling for
wrapper facade classes:
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8 Not all languages or implementations provide exception handling. For
example, C does not define an exception model and some C++ compilers do not
implement exceptions.

§ Languages implement exceptions in different ways. It can thus be hard to
integrate components written in different languages when they throw exceptions.
Using proprietary exception handling mechanisms, such as Windows NT's
structured exception handling [Sol98], can also reduce the portability of
applications that use these mechanisms.

§ Resource management can be complicated if there are multiple exit paths from
a block of C++ or Java code [Mue96]. If garbage collection is not supported by
the language or programming environment, care must be taken to ensure that
dynamically-allocated objects are deleted when an exception is thrown.

8 Poor exception handling implementations incur time or space over-heads even
when exceptions are not thrown [Mue96]. This overhead is problematic for
embedded systems that must be efficient and have small memory footprints

[GS9g].

The drawbacks of exception handling are particularly problematic for wrapper facades
that encapsulate kernel-level device drivers or low-level operating system APIs that
must run on many platforms [Sch92], such as the mutex, Socket and thread wrapper
facades described above. A common error handling mechanism for system-level
wrapper facades [Sch97] is based on the Thread-Specific Storage pattern (475) in
conjunction with er r no. This solution is efficient, portable, and thread-safe, though
more obtrusive and potentially error-prone than using C++ exceptions.

8. Define related helper classes (optional). After lower-level APIs are encapsulated within
wrapper facade classes it often becomes possible to create other helper classes that
further simplify application development. The benefits of these helper classes are
often apparent only after the Wrapper Facade pattern has been applied to cluster
lower-level functions and their associated data into classes.

9. In our logging example we can leverage the Guar d template class defined in the
Strategized Locking pattern (333) [Str97]. This class ensures that a
Thr ead_Mut ex is acquired and released properly within a scope regardless of
how the method's flow of control leaves the scope. The Guar d class constructor
acquires the mutex and the destructor releases it within a scope automatically:

10. {

11. /1 Constructor of <guard> automatically
12. /1l acquires the <nutex> | ock.

13. Quar d<Thr ead_Mit ex> guard (mutex);

14. /1 ... operations that nust be serialized.
15.

16. /1 Destructor of <guard> autonatically

17. /1 releases the <nmutex> | ock.

18. }

19. We can easily substitute a different type of locking mechanism while still using
the Guar d's automatic locking and unlocking protocol because we used a class
as the Thr ead_Mut ex wrapper facade. For example, we can replace the
Thr ead_Mut ex class with a Process_Mit ex class:

20. /1 Acquire a process-w de nutex.
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21. Guar d<Process_Mut ex> guard (mutex);

22. Itis much harder to achieve this degree of 'pluggability’ using lower-level C
functions and data structures instead of C++ classes. The main problem is that
the functions and data lack language support for cohesion, whereas the C++
classes provide this support naturally.

Example Resolved

The code below illustrates the | oggi ng_handl er () function of our logging server after it
has been rewritten to use the wrapper facades for mutexes, Sockets, and threads described
in the Implementation section. To ease comparison with the original code, we presentitin a
two-column table with the original code from the example section in the left-hand column and
the new code in the right-hand column

#if defined (_WN32) #i
#i ncl ude <w ndows. h> #

ncl ude " ThreadManager. h"
ncl ude " ThreadMut ex. h"
ncl ude " CGuard. h"

ncl ude "1 NET_Addr. h"

ncl ude " SOCKET. h"

ncl ude "SOCK Acceptor. h"
ncl ude "SOCK Stream h"

typedef int ssize_t; #
#el se #i
typedef unsigned int U NT32; #
#i ncl ude <t hread. h> #i
#i ncl ude <uni std. h> #

#i ncl ude <sys/socket. h>

#i ncl ude <netinet/in.h>

#i ncl ude <nmenory. h>
#endi f /* WN32 */

/'l Keep track of number of logging // Keep track of nunber of | ogging
requests. requests.

static int request_count; static int request_count;

/1 Lock to protect request_count.
#if defined (_WN32)

static CRITI CAL_SECTI ON | ock;
#el se

static nutex_t | ock;
#endif /* WN32 */

/1 Maxi mum si ze of a | oggi ng

/1 Maxi mum size of a | ogging record.

record. static const int LOG RECORD MAX =
static const int LOG RECORD MaX = 1024

1024;

// Port nunber to listen on for
requests.
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// Port nunber to listen on for
requests.

static const
10000;

int LOGAE NG_PORT =

/1 Entry point that wites | ogging
records.

int wite record (const char
l og_record[], size_t len) {

/* ... *] return O;

/1 Entry point that
| oggi ng records for

processes

/1 one client connection
#if defined (_WN32)
u_l ong
#el se
void *
#endif /* WN32 */
| oggi ng_handl er (void *arg) {
#if defined (_WN32)

SOCKET h = reinterpret_cast
<SOCKET> (arg);

#el se

int h =
(arg);
#endi f

reinterpret_cast <int>

/* _WN32 */
for (;:) {
/1 Ensure a 32-bit
quanti fy;
#if defined (_WN32)
ULONG | en;
#el se
U NT32 | en;
#endif /* WN32 */

char
| og_record[ LOG_RECORD_MAX] ;

[/ The first <recv> reads
the length

stati c const
10000;

int LOGA NG _PORT =

/1 Entry point that wites |ogging
records.

int wite_record (const char
log record[], size_t len) {

/* ... *| return O;

/1 Entry point that
| oggi ng records for

processes

/1 one client connection

voi d *l oggi ng_handl er (void *arg)
{

SOCKET h = reinterpret_cast
<SOCKET> (arg);

/|l Create a <SOCK Streanr
obj ect.

SOCK_Stream stream (h);

for (;;) {
/1 Ensure a 32-bit quantity.
U NT_32 | en;
char

| og_record[ LOG_RECORD MAX] ;

/1 The first <recv_n> reads
the length

/1l (stored as a 32-bit
i nteger) of
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/1l (stored as a 32-bit
i nteger) of

/1 adjacent |ogging record.

ssize_t n =recv (h, & en,
si zeof len, 0);

if (n <= sizeof |en) break;
/1 Bailout on error.

len = ntohl (len);

if (len > LOG _RECORD_MAX)
br eak;

/1 Loop to <recv> the data.

for (size_t nread = O;
nread < len; nread += n) {

n =recv (h, log_record
+ nread,
len - nread, 0);
if (n <=0) return O;
}

#if defined (_WN32)

EnterCritical Section
(& ock);

#el se

nmut ex_| ock (& ock);
#endif /* WN32 */

++r equest _count ;

[/ A -1 return val ue
signifies failure.

if (wite_record
(log_record, len) == -1)

br eak;
#if defined (_WN32)

LeaveCritical Section
(& ock);

#el se
mut ex_unl ock (& ock);
#endif /* _WN32 */
}
#if defined (_WN32)
cl osesocket (h);
#el se

close (h);

/1 adjacent |ogging record.

ssize_t n = streamrecv_n

(& en, sizeof len);

if (n <= 0) break; //
Bai | out on error.

len = ntohl (len);

if (len > LOG RECORD NAX)
br eak;

/1 Second <recv_n> reads the
dat a.

n =
(l og_record,

streamrecv_n
| en);

if (n <= 0) break;

{

/1 Constructor acquires
the | ock.

Guar d<Thr ead_Mut ex> non
(1 ock);

++r equest _count ;

/1 A -1 return value
signifies failure.

if (wite_record
(log_record, len) == -1)

br eak;

/] Destructor rel eases
t he | ock.
}
}
return O;

/] Destructor of <streanp
cl oses down <h>.

}
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#endif /* WN32 */
return O;

}

The code in the right-hand column addresses the problems with the code shown in the left-
hand column. For example, the destructors of SOCK_St r eamand Guar d will close the
socket handle and release the Thr ead_Mut ex, respectively, regardless of how the code
blocks are exited. This code is also easier to understand, maintain, and port because it is

more concise and uses no platform-specific APIs.

Analogously to the | oggi ng_handl er () function, we present a two-column table below
that compares the original code for the mai n() function with the new code using wrapper

facades:

/1 Main driver function for the server.
int main (int argc, char *argv[]) {
struct sockaddr in sock_ addr;
/1 Handl e UNI X¥ Wn32 portability.
#if defined (_WN32)
SOCKET acceptor;
WORD ver si on_requested = MAKEWORD( 2, 0);
WEADATA wsa_dat a;

int error = WSASt art up(versi on_requested,
&wsa_dat a) ;

if (error
#el se

1= 0) return -1;
int acceptor;
#endif /* WN32 */

// Create a |ocal
conmmuni cati on.

endpoi nt of

accept or =
0);

!/l Set

menset (reinterpret_cast<void *>
(&sock_addr),

0, sizeof sock_addr);
PF_| NET;
= htons

socket (AF_I NET, SOCK STREAM

up the address to becone a server.

sock_addr.sin_famly =

sock_addr. sin_port
(LOGAE NG_PORT) ;

sock_addr.sin_addr.s_addr = htonl
(1 NADDR_ANY) ;

/1 Associ ate address with endpoint.

bi nd (acceptor,
sockaddr *>

(&sock_addr),

reinter pret _cast<struct

si zeof sock_addr);

/!l NMain driver
for the server.

function

int min (int argc, char
*argv[]) {

| NET_Addr addr (port);

/] Passive-node
accept or object.

SOCK_Accept or server
(addr);

SOCK_Stream
new_st r eam

/1 Main server event

| oop.
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/1 Make endpoint listen for connections.
listen (acceptor, 5);
/1 Main server event |oop. for (;;) {
for (i) {
/1 Handl e UNI XYy Wn32 portability.
#if defined (_WN32)
SOCKET h;
DWORD t i d;
#el se
int h;
thread t t _id;
#endif /* WN32 */
/1 Block waiting for clients to
connect . /I Accept a
h = accept (acceptor, 0, 0); connection froma client.

server. accept
(new_strean;

/] Cet the
under | yi ng handl e.

SOCKET h =
new stream get _handle ();

/1 Spawn a new thread that runs the
<server>

/'l entry point.
#if defined (_WN32) /1 Spawn of f a

CreateThread (0, O, t hr ead- per - connect i on.

LPTHREAD START_ROUTI NE( & oggi ng_handl er),
reinterpret_cast <void *> (h), O,

thr _nmgr. spawn

& _id); (1 oggi ng_handl er
#el se
thr_create reinterpret_cast <void *>
(0, 0, |ogging_handl er, (h).
reinterpret_cast <void *> (h), THR_DETACHED) ;
THR DETACHED, &t _id); }
#endif /* WN32 */
}
return O;
}
return O;
}
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Note how literally dozens of lines of low-level, conditionally compiled code disappear in the
right-hand column version that uses the Wrapper Facade pattern.

Known Uses

Microsoft Foundation Classes (MFC). MFC [Pro99] provides a set of wrapper facades that
encapsulate many lower-level C Win32 APIs. It focuses largely on providing GUI
components that implement the Microsoft Document-View architecture, which is a variant of
the Document-View architecture described in [POSA1].

ACE. The Socket, thread, and mutex wrapper facades described in the Implementation
section are abstractions of ACE framework [Sch97] components, such as the ACE_SOCK* ,
ACE_Thread_Manager and ACE_ Thread_Mut ex classes, respectively.

Rogue Wave. Rogue Wave's Net . h++ and Thr eads. h++ class libraries implement
wrapper facades for Sockets, threads, and synchronization mechanisms on a number of
operating system platforms.

ObjectSpace. The ObjectSpace Syst enxTool ki t > also implements platform-independent
wrapper facades for Sockets, threads, and synchronization mechanisms.

Java Virtual Machine and Java class libraries. The Java Virtual Machine (JVM) and
various Java class libraries, such as AWT and Swing [RBV99], provide a set of wrapper
facades that encapsulate many low-level native operating system calls and GUI APlIs.

Siemens REFORM. The REFORM framework [BGHS98] for hot rolling mill process
automation uses the Wrapper Facade pattern to shield the object-oriented parts of the
system, such as material tracking and setpoint transmission, from a neural network for the
actual process control. This neural network is programmed in C due to its algorithmic nature
and contains mathematical models that characterize the physics of the automation process.

The wrapper facades defined in the REFORM framework differ from wrapper facades for
operating system mechanisms because the process-control APIs they encapsulate are at a
higher level of abstraction. In fact the neural network is part of the REFORM system itself.
However, its function-based C APIs are lower-level compared to the complex object-oriented
high-level structure and logic of the hot rolling mill framework. The REFORM wrapper
facades therefore have similar goals and properties as the lower-level operating system
wrapper facades:

8 They provide the views and abstractions that the object-oriented parts of the
framework need of the process control neural network. There is a separate wrapper
facade for every component using the neural network.

8 They hide API variations. For different customer-specific instances of the framework
there may be (slightly) different implementations of the neural network. As a result,
semantically identical functions in these neural network implementations may have
different signatures. These differences do not affect the framework implementation,
however.

§ They ensure lower-level C functions are invoked in the right order.

Books consisting of edited collections of papers. A real-life example of the Wrapper
Facade pattern are books consisting of edited collections of papers that are organized into
one or more 'themes'. For example, the PLoPD series [PLoPD1] [PLoPD2] [PLoPD3]
[PLoPD4] consist of individual papers that are organized into cohesive sections, such as
event handling, fault tolerance, application framework design, or concurrency. Thus, readers
who are interested in a particular topic area or domain can focus their attention on these
sections, rather than having to locate each paper individually.
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Consequences
The Wrapper Facade pattern provides the following benefits:

Concise, cohesive and robust higher-level object-oriented programming interfaces. The
Wrapper Facade pattern can be used to encapsulate lower-level APIs within a more concise
and cohesive set of higher-level object-oriented classes. These abstractions reduce the
tedium of developing applications, thereby decreasing the potential for certain types of
programming error. In addition, the use of encapsulation eliminates programming errors that
occur when using untyped data structures incorrectly, such as socket or file handles.
Application code can therefore use wrapper facades to access lower-level APIs correctly and
uniformly.

Portability and maintainability. Wrapper facades can be implemented to shield application
developers from non-portable aspects of lower-level APIs. The Wrapper Facade pattern also
improves software structure by replacing an application configuration strategy based on
physical design entities, such as files and #i f def s, with logical design entities, such as
base classes, subclasses, and their relationships. It is often much easier to understand,
maintain, and enhance applications in terms of their logical design rather than their physical

design [Lak95].

Modularity, reusability and configurability. The Wrapper Facade pattern creates cohesive
and reusable class components that can be 'plugged’ into other components in a wholesale
fashion, using object-oriented language features like inheritance and parameterized types. In
contrast, it is harder to replace groups of functions without resorting to coarse-grained
operating system tools such as linkers or file systems.

The Wrapper Facade pattern incurs several liabilities:

Loss of functionality. Whenever an abstraction is layered on top of an existing abstraction it
is possible to lose functionality. In particular, situations can occur in which the new
abstraction prevents developers from accessing certain capabilities of the underlying
abstraction. It is hard to define a suitable high-level abstraction that covers all these use
cases without becoming bloated. One useful heuristic to follow is to design wrapper facades
so that they are easy to use correctly, hard to use incorrectly, but not impossible to use in
ways that the original designers did not anticipate. An 'escape-hatch' mechanism or open
implementation [KLM+97] technique can often help reconcile these design forces cleanly.

Performance degradation. The Wrapper Facade pattern can degrade performance. For
example, if wrapper facade classes are implemented with the Bridge pattern [GoF95], or if
they make several forwarding function calls per method, the additional indirection may be
more costly than programming to the lower-level APIs directly. However, languages that
support inlining, such as C++ or certain C compilers, can implement the Wrapper Facade
pattern with no significant overhead, because compilers can inline the method calls used to
implement the wrapper facades. The overhead is therefore the same as calling lower-level
functions directly.

Programming language and compiler limitations. Defining C++ wrapper facades for well-
designed C APIs is relatively straightforward, because the C++ language and C++ compilers
define features that facilitate cross-language integration. It may be hard to define wrapper
facades for other languages, however, due to a lack of language support or limitations with
compilers. For example, there is no universally accepted standard for integrating C functions
into languages like Ada, Smalltalk, and Java. Programmers may therefore need to use to
non-portable mechanisms to develop wrapper facades.

See Also
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The Wrapper Facade pattern is related to several of the structural patterns in [GoF95],
including Facade, Bridge, Adapter, and Decorator.

Facade. The intent of Facade is to provide a unified interface that simplifies client access to
subsystem interfaces. The intent of Wrapper Facade is more specific: it provides concise,
robust, portable, maintainable, and cohesive class interfaces that encapsulate lower-level
APIs such as operating system mutex, Socket, thread, and GUI C APIs. In general, facades
hide complex class relationships behind a simpler API, whereas wrapper facades hide
complex function and data structure API relationships behind richer object-oriented classes.
Wrapper facades also provide building-block components that can be 'plugged' into higher-
level objects or components.

Bridge. The intent of Bridge is to decouple an abstraction from its implementation, so the two
can vary independently and dynamically via polymorphism. Wrapper Facade has a similar
intent: minimizing the overhead of indirection and polymorphism. Wrapper Facade
implementations rarely vary dynamically, however, due to the nature of the systems
programming mechanisms that they encapsulate.

Adapter. The intent of Adapter is to convert the interface of a class into another interface that
is expected by a client. A common application of Wrapper Facade is to create a set of
classes that 'adapt' low-level operating system APIs to create a portable set of wrapper
facades that appear the same for all applications. Although the structure of this solution is
not identical to either the object or class form of Adapter in [GoF95], the wrapper facades
play a similar role as an adapter by exporting an object-oriented interface that is common
across platforms.

Decorator. The intent of Decorator is to extend an object dynamically by attaching
responsibilities transparently. In contrast, Wrapper Facade statically encapsulates lower-
level functions and data with object-oriented class interfaces.

In general, Wrapper Facade should be applied in lieu of these other patterns when there are
existing lower-level, non-object-oriented APIs to encapsulate, and when it is more important
that the solution be efficient than be dynamically extensible.

The Layers pattern [POSA1] helps organize multiple wrapper facades into a separate
component layer. This layer resides directly on top of the operating system and shields
applications from all the low-level APIs they use.

Credits

Thanks to Brad Appleton, Luciano Gerber, Ralph Johnson, Bob Hanmer, Roger Whitney,
and Joe Yoder for extensive comments that improved the form and content of the Wrapper
Facade pattern description substantially.

During the public review of Wrapper Facade we debated the best name for this pattern.
Several reviewers suggested to call it Wrapper because the Wrapper Facade pattern
describes what is often referred to as a 'wrapper' by software developers. Unfortunately the
term ‘wrapper' is already overloaded in the patterns community. For example, Wrapper is
listed in the Also Known As sections of the Adapter and Decorator patterns [GoF95],
However, the pattern in this book differs from these patterns. We therefore decided to use a
non-overloaded name for the pattern we present here.

Lo conserve space and focus on the essential design issues, many of our method
implementations in this book do not check for errors, nor do they always return values from
functions with non-voi d return types or throw exceptions. Naturally, production software
should always check for and propagate errors consistently and correctly.
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Component Configurator

The Component Configurator design pattern allows an application to link and unlink its
component implementations at run-time without having to modify, recompile, or statically
relink the application. Component Configurator further supports the reconfiguration of
components into different application processes without having to shut down and re-start
running processes.

Also Known As

Service Configurator [JS97b]

Example

A distributed time service [Mil88] [OMG97c] provides accurate clock synchronization for
computers that collaborate in local-area or wide-area networks. Its architecture contains
three types of components:

8 Time server components answer queries about the current time.

8 Clerk components query one or more time servers to sample their notion of the current
time, calculate the 'approximate’ correct time, and update their own local system time
accordingly.

§ Client application components use the globally-consistent time information maintained
by their clerks to synchronize their behavior with clients on other hosts.

The conventional way to implement this distributed time service is to configure the
functionality of the time server, clerk, and client components statically at compile-time into
separate processes running on hosts in the network:

" [Time Server \ Teme Update Clerk
Process | =9 LY +— = | Process |
| Time f Time = |
Chernt | | Clerk | | Update / : - Update| [ Clerk Chent |
E Provess Process | ™ oy T ServeT L — | |'r|-1'|---. | Frocess |
i = - Frocess | - 3
hoat ¢ huist =

Q,__ 'J-u_-"\'"-':':;.}. _]— 1 ( bosmdony . [ :;‘

- £ 3 k! A network

In such a configuration, one or more hosts run processes containing time service
components that handle requests for time updates. A clerk component runs in a process on
each host on which applications require global time synchronization. Client components in
application processes perform computations using the synchronized time reported by their
local clerk component.

Although a distributed time service design can be implemented in this way, two general

types of problems arise:

8 The choice of component implementation can depend on the environment in which
applications run. For example, if a WWYV receiver is available,? the Cristian time service
algorithm [Cris89] is most appropriate. Otherwise the Berkeley algorithm [GZ89] is the
better choice.

Changing the environment in which applications run may therefore also require a
change to the implementation of time service components. A design in which the
implementation of a particular component is fixed statically within a process at compile-
time, however, makes it hard to exchange this component's implementation. In addition,
as each component is coupled statically with a process, existing applications must be
modified, recompiled, and statically relinked when changes occur.
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§

Components may also need to be reconfigured to enhance key quality-of-service
(QoS) properties, such as latency and throughput. For example, we can reconfigure the
clerk and the time server components in our distributed time service so they are
collocated [WSV99] on the same host. In this case, communication overhead can be
minimized by allowing the clerk to access the time server's notion of time via shared
memory, rather than exchanging data through a pipe or 'loopback’ Socket connection.

However, if components are configured statically into processes, making the changes
outlined above requires terminating, reconfiguring, and restarting running time service
processes. These activities are not only inefficient, they are potentially infeasible for
systems with high availability requirements.

Unfortunately patterns such as Bridge and Strategy [GoF95] are not sufficient by
themselves to solve these types of problems. For example, Bridge and Strategy are
often used to alleviate unnecessary coupling between components. When these
patterns are applied to our example application in isolation, however, all possible
implementations of time service components must be configured at compile-time in
order to support the selection of different strategies at run-time. This constraint may be
excessively inflexible or costly for certain applications.

For example, if a time service runs on a personal computing device with stringent
memory and power limitations, components that are not currently in use should be
unlinked to minimize resource consumption. This ‘dynamic reconfiguration' aspect is not
addressed directly by patterns such as Bridge and Strategy.

Context

An application or system in which components must be initiated, suspended, resumed, and
terminated as flexibly and transparently as possible.

Problem

Applications that are composed of components must provide a mechanism to configure
these components into one or more processes. The solution to this problem is influenced by
three forces:

§

Changes to component functionality or implementation details are common in many
systems and applications. For example, better algorithms or architectures may be
discovered as an application matures. It should be possible therefore to modify
component implementations at any point during an application's development and
deployment lifecycle.

Modifications to one component should have minimal impact on the implementation of
other components that use it. Similarly, it should be possible to initiate, suspend,
resume, terminate, or exchange a component dynamically within an application at
runtime. These activities should have minimal impact on other components that are
configured into the application.

Developers often may not know the most effective way to collocate or distribute
multiple component components into processes and hosts at the time an application is
developed. If developers commit prematurely to a particular configuration of
components it may impede flexibility, reduce overall system performance and
functionality, and unnecessarily increase resource utilization.

In addition, initial component configuration decisions may prove to be sub-optimal over
time. For example, platform upgrades or increased workloads may require the
redistribution of certain components to other processes and hosts. In such cases, it may
be helpful to make these component configuration decisions as late as possible in an
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application's development or deployment cycle, without having to modify or shut down
an application obtrusively.

§ Performing common administrative tasks such as configuring, initializing, and
controlling components should be straightforward and component-independent. These
tasks can often be managed most effectively by a central administrator rather than
being distributed throughout an application or system. They should be automated
whenever possible, for example by using some type of scripting mechanism [MGGO00].

Solution

Decouple component interfaces from their implementations and make applications
independent of the point(s) in time at which component implementations are configured into
application processes.

In detail: a component defines a uniform interface for configuring and controlling a particular
type of application service or functionality that it provides. Concrete components implement
this interface in an application-specific manner. Applications or administrators can use
component interfaces to initiate, suspend, resume, and terminate their concrete components
dynamically, as well as to obtain run-time information about each configured concrete
component. Concrete components are packaged into a suitable unit of configuration, such
as a dynamically linked library (DLL). This DLL can be dynamically linked and unlinked into
and out of an application under the control of a component configurator, which uses a
component repository to manage all concrete components configured into an application.

Structure
The Component Configurator pattern includes four participants:

A component defines a uniform interface that can be used to configure and control the type
of application service or functionality provided by a component implementation. Common
control operations include initializing, suspending, resuming, and terminating a component.

Concrete components implement the component control interface to provide a specific type
of component. A concrete component also implements methods to provide application-
specific functionality, such as processing data exchanged with other connected peer
components. Concrete components are packaged in a form that can be dynamically linked
and unlinked into or out of an application at run-time, such as a DLL.

Closs Collahorator || class Collmborator
Componeni Concrete Compamend ® Lanireis
' Loampaonent
Responsibiliby Hesponsibility

1 interface #  ipleiiv=ins &

Two types of concrete components are used in our distributed time service: time server
and clerk. Each of these concrete components provides specific functionality to the
distributed time service. The time server component receives and processes requests
for time updates from clerks. The clerk component queries one or more time servers to
determine the 'approximate' correct time and uses this value to update its own local
system time. Two time server implementations are available in our example, one for the
Cristian algorithm and one for the Berkeley algorithm.
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A component repository manages all concrete components that are configured currently into
an application. This repository allows system management applications or administrators to
control the behavior of configured concrete components via a central administrative
mechanism.

A component configurator uses the component repository to coordinate the (re)configuration
of concrete components. It implements a mechanism that interprets and executes a script
specifying which of the available concrete components to (re)configure into the application
via dynamic linking and unlinking from DLLs.

Class | Collabarator Closs Collabarator
Cavim el * Concrete Cesnpnnes * Corcrete
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Responsibilityg Responsibility
s Malriains the | ® Configures
Componenis | Componends inbo an
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The class diagram for the Component Configurator pattern is as follows:
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The behavior of the Component Configurator pattern can be characterized by three phases:

8 Component initialization. The comgonent configurator dynamically links a component
into an application and initializes it After a component has been initialized
successfully the component configurator adds it to its component repository. This
repository manages all configured components at run-time.

§ Component processing. After being configured into an application, a component
performs its processing tasks, such as exchanging messages with peer components
and performing service requests. The component configurator can suspend and resume
existing components temporarily, for example when (re)configuring other components.

8 Component termination. The component configurator shuts down components after
they are no longer needed, allowing them the opportunity to clean up their resources
before terminating. When terminating a component, the component configurator
removes it from the component repository and unlinks it from the application's address
space.
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The following state chart diagram illustrates how a component configurator controls the
lifecycle of a single concrete component:
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This diagram illustrates the event-driven ‘'inversion of control' [Vlis98a] behavior of a
component configurator. For example, in response to the occurrence of events like
CONFI GURE and TERM NATE, the component configurator invokes the component's
corresponding method, in this case i ni t () andfi ni (), respectively.

Implementation

The participants in the Component Configurator pattern can be decomposed into two layers:

8 Configuration management layer components. This layer performs general-purpose,
application-independent strategies that install, initialize, control, and terminate
components.

§  Application layer components. This layer implements the concrete components that
perform application-specific processing.

The implementation activities in this section start at the 'bottom’ with the configuration
management layer and work upwards to components in the application layer.

1. Define the component configuration and control interface. Components should support
the following operations so that they can be configured and controlled by a
component configurator:

8 Component initialization. Initialize or re-initialize a component.
8 Component finalization. Shut down a component and clean up its resources.



8 Component suspension. Suspend component execution temporarily.

8 Component resumption. Resume execution of a suspended component.

8 Component information. Report information describing the static or dynamic
directives of a component.

The interface used to configure and control a component can be based on either an

inheritance or a message passing strategy:

§ Inheritance-based interface. In this strategy, each component inherits from a
common base class that contains pure virtual hook methods [Pree95] for each

comionent confiiuration and control oieration.

§ The following abstract Conponent class is based on the ACE framework

[SchSu94]:

§ cl ass Conponent : public Event_Handl er {

§ public:

§ /1 Initialization and term nation hooks.

§ virtual void init (int argc, const char *argv[]) =
0;

§ virtual void fini () = 0;

§

§ /1 Schedul i ng hooks.

§ virtual void suspend ();

§ virtual void resume ();

§

§ // Status information hook.

§ virtual void info (string &status) const = O;

§ b

§ The component execution mechanism for our time service example is based
on a reactive event handling model within a single thread of control, as
described by the Reactor pattern (179). By inheriting from the Reactor
pattern's Event _Handl er participant, a Conponent implementation can
register itself with a reactor, which then demultiplexes and dispatches events

to the comionent.

§ Message-based interface. Another strategy for configuring and controlling
components is to program them to respond to a set of messages, suchas | NI T,
SUSPEND, RESUME, and FI NI , sent to the component from the component
configurator. Component developers must write code to process these
messages, in this case to initialize, suspend, resume, and terminate a
component, respectively. Using messages rather than inheritance makes it
possible to implement the Component Configurator pattern in non-object-
oriented programming languages that lack inheritance, such as C or Ada 83.

2. Implement a component repository. All concrete component implementations that are

linked into an application via DLLs are managed by a component repository. A

component configurator uses this repository to control a component when it is
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configured into or out of an application. Each component's current status, such as
whether it is active or suspended, can be maintained in the repository.

A component repaository can be a reusable container, for example a Java

java. util . Hasht abl e [Sun00a] or a C++ standard template library map [Aus98].
Conversely it can be implemented as a container in accordance with the Manager
pattern [Som97]. This container can be stored in main memory, a file system, or
shared memory. Depending on where it resides, a component repository can be
managed within the application or by a separate process.

The interface of our Conponent _Reposi t ory class is also based on the ACE
framework [SchSu94]:

cl ass Component Repository {

publi c:
/1 Initialize and cl ose down the repository.
Conponent _Repository ();
~Conponent _Repository ();

/1 Insert a new <Conponent> with <conponent nane>.
void insert (const string &conponent nane,
Conponent *);

/1 Find <Conponent> associated with
<component _nane>.

Conponent *find (const string &conponent_nane);

/1 Remove <Component> associated with
/| <conponent _nane>.
voi d renove (const string &conmponent _nane);

/1 Suspend/resume <Conponent> associated with
/| <conponent _nane>.
voi d suspend (const string &conponent _nane);
voi d resunme (const string &conmponent _nane);
private:
/1
};

3. Implement the component (re)configuration mechanism. A component must be
configured into an application's address space before it can be executed. The
component configurator defines a mechanism to control the static and/or dynamic
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(re)configuration of components into application processes. The implementation of a
component configurator involves five sub-activities:

1. Define the component configurator interface. The component configurator is
often implemented as a singleton facade [GoF95]. This can mediate access to
other Component Configurator pattern components, such as the component
repository described in implementation activity 2 (84) and the mechanism for
interpreting the component configuration directives described in

implementation activiti 3.3 i88i.

2.

© N o gk~

10.
11.
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13.
14.

15.
16.

17.
18.
19.
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23.
24.
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27.

The following C++ interface, which is also based on ACE, is the singleton
facade used for our distributed time server example:

cl ass Conponent Confi gurator {

public:

free up

&script _

string.

/1 Initialize the conponent configurator.
Conponent _Confi gurator ();

/1 d ose down the conponent configurator and

/1 dynam cally allocated resources.
~Conponent _Confi gurator ();

/1l Process the directives specified in the
/] <script_name>.

voi d process_directives (const string
nane) ;

/1 Process a single directive specified as a

voi d process_directive
(const string &directive_string);

/'l Accessor to the <Conmponent Repository>.
Conponent _Repository *component _repository ();

/1 Singleton accessor.
static Conponent_ Configurator *instance ();

private:

}s

11

29. Define a language for specifying component configuration directives. These
directives supply the component configurator with the information it needs to
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locate and initialize a component's implementation at run-time, as well as to
suspend, resume, re-initialize, and/or terminate a component after it has been
initialized. Component configuration directives can be specified in various
ways, such as via the command line, environment variables, a graphical user

interface, or a confiiuration scriit.

30. To simplify installation and administration, the component configurator in
our distributed time server example uses a component scripting
mechanism similar to the one provided by ACE [SchSu94]. A script file,
which we call conp. conf , consolidates component configuration
directives into a single location that can be managed centrally by
applications, developers, or administrators. Every component to be
(re)configured into an application is specified by a directive in the
conp. conf script.

31. The following conp. conf script illustrates how a time server can be
configured dynamically into an application:

32. # Configure a Time Server.

33. dynam ¢ Tine_Server Conponent *

34. cristian.dll:nmake Time_Server()
35. "-p $TI ME_SERVER PORT"

36. The directive in this conp. conf script contains a dynam ¢ command,
which instructs the interpreter to perform two actions:
§ Dynamically link the cri sti an. dl | DLL into the application's
address space and
§ Invoke the make_Ti me_Ser ver () factory function automatically. This
function allocates a new time server instance dynamically:

8 /1l Keep C++ conpiler from non-portably mangling
name!
§ extern "C'

8 Conponent *make_ Ti me_Server () {

8 /1l <Time_Server> inherits fromthe
<Conponent >
§ Il class.

return new Ti me_Server;

§ 1}

The string parameter " - p $TI ME_SERVER PORT" at the end of the
directive contains an environment variable that specifies the port number
on which the time server component listens to receive connections from
clerks. The component configurator converts this string into an

‘ar gc/ ar gv'-style array and passes it to the i ni t () hook method of the
time server component. If the i ni t () method initializes the component
successfully, a pointer to the component is stored in the component
repository under the name 'Ti me_Ser ver '. This name identifies the
newly-configured component so that it can be controlled dynamically by
the component configurator on behalf of an application or an
administrator.



The directives in a conp. conf script are processed by the component
configurator's directive interpreter, as described in implementation activity
3.3(88). Each directive begins with a command that instructs the
interpreter how to configure, reconfigure, or control a component:

| Command ‘ Description

| dynani c ‘ Dynamically link and initialize a component

| static ‘ Initialize a statically linked component

renove Remove a component from the component repository and
unlink it

| suspend ‘ Suspend a component temporarily without removing it

| resune ‘ Resume a previously suspended component

Directives can be written using a simple configuration scripting language
defined by the following BNF grammar:

<directive> := <dynamic> | <static> | <suspend>

| <resume> | <renove>

<dynani c> ::= dynam c <conp-|ocation> <paraneters-
opt >

<static> ::= static <conp-nanme> <paraneters-opt>

<suspend> ::= suspend <conp-nane>

<resume> ::= resume <conp-name>

<renove> ::= renobve <conp-name>

<conp-l ocation> ::= <conp-name> <type> <function-
name>

<type> ::= Conponent '*' | NULL

<function-nanme> ::= STRING':' STRING ' (' ")’

<paraneters-opt> ::= """ STRING '"'| NULL

<conp- name> ::= STRI NG

37. Implement a mechanism for parsing and processing component configuration
directives. This mechanism is often implemented as a directive interpreter that
decouples the configuration-related aspects of a component from its run-time
aspects. A directive interpreter can be implemented using the Interpreter
pattern [GoF95], or standard parser-generator tools, such as | ex and yacc

[SchSu94].

38. The Conponent _Confi gur at or facade class defines two methods that
allow applications to invoke a component configurator's directive
interpreter. The process_di recti ves() method can process a
sequence of (re)configuration and control directives that are stored in a
designated script file. This method allows multiple directives to be stored
persistently and processed iteratively. Conversely, the
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process_directive() method can process a single directive passed
as a st ri ng parameter. This method allows directives to be created
dynamically and/or processed interactively.

40. A simple directive interpreter executes each component configuration directive
in the order in which they are specified. In this case, application developers
are responsible for ensuring this execution sequence satisfies any ordering
dependencies among components being configured. A more complex
interpreter and scripting language could of course be devised to allow the
directive interpreter to handle ordering dependencies automatically, for
example by using topological sorting.

41. Implement the dynamic configuration mechanism. A component configurator
uses this mechanism to link and unlink components into and out of an
application process dynamically. Modern operating systems, such as System
V Release 4 (SVR4) UNIX and Win32, support this feature via explicit dynamic
linking mechanisms [WHO91].

SVR4 UNIX, for example, defines the dl open(), dlsym(), and

dl cl ose() APIto link a designated DLL dynamically into an application
process explicitly, extract a designated factory function from the DLL, and
unlink the DLL, respectively. Microsoft's Win32 operating systems support the
LoadLi brary(), GetProcAddr(),andd oseHandl e() APIs to perform
the same functionality. As the component configurator's directive interpreter
parses and processes directives, it uses these APIs to link and unlink DLLs

dynamicalli into the aiilication's address siace.

Our Conponent _Conf i gur at or implementation uses the following
explicit dynamic linking API, based on the wrapper facade (47) defined in
ACE [Sch97]:

class DLL {

/1 This wapper facade defines a portable
interface to

/1 program various DLL operations. The <CS::*>
/1 methods are | ower-1level wapper facades

t hat
/1l encapsul ate the variation anong explicit
dynami ¢
/1 linking APls defined on different operating
/] systens.
publi c:

/1 Opens and dynamically links the DLL
<dl | _nane>.

DLL (const string &Il _name) {
handle_ = OS::dlopen (dll _nane.c_str ());
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/1 Unlinks the DLL opened in the constructor.
~DLL () { Os::dlclose (handle_); }

/1 1f <synmbol _name> is in the synbol table of
the DLL

/1 return a pointer to it, else return O.
voi d *synbol (const string &ynbol nane) {

return OS::dl sym (handl e_,
synmbol _nane.c_str ();

}

private:
/1 Handle to the dynamically |inked DLL.
HANDLE handl e_;

}s

To illustrate how a component configurator can use this API, consider the
directive used to configure a Ti me_Ser ver component shown in
implementation activity 3.2 (86). In this example the component configurator
performs seven steps:

1. Itcreates a DLL object and passes the ‘cri sti an. dl | ' string to its
constructor.

2. Thecristian.dl | DLListhen linked into the application's address
space dynamically via the OS: : dl open() method called in the DLL
class constructor.

3. The component configurator next passes the string
'make_Ti nme_Server () 'to the synbol () method of the DLL object.

4. This method uses the CS: : dl syn() method to locate the
make_Ti me_Server entry in the symbol table of thecri sti an. dl |
DLL and returns a pointer to this factory function.

5. Assuming the first four steps succeed, the component configurator
invokes the factory function, which returns a pointer to a Ti me_Ser ver
component.

6. The component configurator then calls the i ni t () method of this
component, passing the string - p $TI ME_SERVER PORT' as an
‘ar gc/ ar gv'-style array. The i ni t () method is a hook that the
Ti me_Ser ver component uses to initialize itself.

7. Finally, the component configurator stores the initialized Ti ne_Ser ver
component into its component repository.

42. Implement the dynamic reconfiguration mechanism. This mechanism builds on
the dynamic configuration mechanism described above to trigger dynamic
reconfiguration of component implementations. Component reconfiguration
should have minimal impact on the execution of other components in an
application process. The following two aspects should therefore be addressed
when implementing a dynamic reconfiguration mechanism:

Define the reconfiguration triggering strategy. There are two strategies for
triggering component reconfiguration, in-band and out-of-band:
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§ An in-band strategy initiates reconfigurations synchronously by using
an IPC mechanism, such as a Socket connection or a CORBA operation.
The application and/or component configurator is responsible for checking
for such a reconfiguration event at designated 'reconfiguration points'.

8 An out-of-band strategy generates an asynchronous event, such as a
UNIX SI GHUP signal, that can interrupt a running application process or
thread to initiate reconfiguration. In either case, on receiving a
reconfiguration event the component configurator will interpret a new set
of component configuration directives.

An in-band strategy for triggering reconfiguration is generally easier to
implement, because there is less potential for race conditions. In-band
triggering may, however, be less responsive, because reconfiguration can only
occur at designated reconfiguration points. In contrast, out-of-band
reconfiguration triggering is more responsive. However, it is harder to use out-
of-band reconfiguration to implement robust protocols for determining when
configuration can occur.

Define protocols for ensuring robust reconfiguration. Another important aspect
to consider when implementing a reconfiguration mechanism is robustness.
For example, if other components in an application are using a component that
is being reconfigured, a component configurator may not be able to execute
requests to remove or suspend this component immediately. Instead, certain
components must be allowed to finish their computation before reconfiguration
can be performed.

If a new component is configured into an application, other components may
want to be notified, so that they can interact with the new component.
Similarly, when a suspended component is resumed, other components may
want to be notified so that they can resume their computations.

The Component Configurator pattern focuses on (re)configuration
mechanisms, such as how to interpret a script containing component
configuration directives to link and unlink components dynamically. It is
therefore beyond the scope of Component Configurator to ensure robust
dynamic component reconfiguration unilaterally. Supporting robust
reconfiguration requires collaboration between a component configurator and
component/configuration-specific protocols. These protocols determine when
to trigger a reconfiguration and which components to link and interact with to
configure particular application processes.

One way to implement a robust reconfiguration mechanism is to apply the
Observer pattern [GoF95]. Client components that want to access a particular
component are observers. These observers register with the component
configurator, which contains a notifier that plays the role of the Observer
pattern's subject participant.

When a component is scheduled for termination, the component configurator
implements a two-phase protocol. The first phase notifies its registered client
component ‘observers' to finish their computations. In the second phase, the
component configurator removes the component after all client components
acknowledge this notification. When a new component is initialized, the
component configurator re-notifies its registered client components to indicate
that they can connect to the new component.
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Similarly, client components can register with the component configurator and
be naotified when a particular component's execution is suspended and
resumed.

For example, the following changes could be made to the Conponent and
Conponent _Conf i gur at or classes to support the Observer-based
reconfiguration mechanism:

cl ass Component : public Event Handl er {
publi c:

/1 Hook mnethod call ed back when
<observed_conponent >

/1 receives a configuration-related event.
virtual void handl e_update
( Conponent *observed_conponent,

Configuration_Event_ Type
event);

/1
b

cl ass Conponent Confi gurator {
publi c:
/1 Type of configuration-related events.
enum Event _Type { INIT, SUSPEND, RESUME, FI NI

/1 Register <notified_conponent> to receive
/1 notifications when <observed_conponent> is
/1 reconfigured or suspended/resuned.
voi d regi ster_observer
( Conponent *notified_conponent,
Conponent *observed_conponent);
/1
};

4. Implement the concrete components. Concrete component classes can be derived
from a common base class such as the Conponent class specified in implementation
activity 1 (82). They can also be implemented via a message-passing mechanism
that allows them to receive and process component control messages. Components
often implement other methods, such as establishing connections with remote peer
components and processing service requests received from clients. Component
implementations typically reside in DLLs, though they can also be linked statically
with the application.
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Implementing concrete components involves three sub-activities:

0.

Implement the concrete component concurrency model. An important aspect
of implementing a concrete component involves selecting the component's
concurrency strategy. For example, a component configured into an
application by a component configurator can be executed using event
demultiplexing patterns such as Reactor (179) or Proactor (215), or
concurrency patterns, such as Active Object (369), Monitor Object (399), Half-
Sync/Half-Async (423), or Leader/Followers (447):

§ Reactive/proactive execution. Using these strategies, one thread of
control can be used to process all components reactively or proactively.
Components implemented using the Reactor pattern are relatively
straightforward to (re)configure and control, because race conditions are
minimized or eliminated. However, reactive components may not scale as
well as other strategies because they are single-threaded.

Conversely, components using the Proactor pattern may be more efficient
than reactive implementations on platforms that support asynchronous I/O
efficiently. However, it may be more complicated to reconfigure and
control proactive components, due to the subtleties of canceling
asynchronous operations. See the Proactor pattern's liability discussion
on page 258 for more details.

§ Multi-threaded or multi-process concurrent execution. Using these
strategies, the configured components execute in their own threads or
processes after being initialized by a component configurator. For
instance, components can run concurrently using the Active Object
pattern (369), or execute within a pre-spawned pool of threads or
processes in accordance with the Leader/Followers (447) or Half-
Sync/Half-Async (423) patterns.

In general, executing components in one or more threads within the same

process as the component configurator may be more efficient than

running the components in separate processes. Conversely, configuring

components into separate processes may be more robust and secure,

because each component can be isolated from accidental corruption via

operating system and hardware protection mechanisms [Sch94].
Implement a mechanism for inter-component communication. Some
components run in complete isolation, whereas other components must
communicate with one another. In the latter case, component developers must
select a mechanism for inter-component communication.

The choice of mechanism is often guided by whether the communicating

components will be collocated or distributed:

8 When components are collocated, the choice is typically between
hard-coding pointer relationships between components, which is inflexible
and can defeat the benefits of dynamic component configuration, versus

accessincI; comionents 'bi name' usini a comionent reiositori.

§ Applications in our time service example use a template to retrieve
concrete components from a singleton
Conponent _Conf i gur at or 's Conponent _Reposi t ory in a type-
safe manner:

§ tenpl ate <cl ass COVPONENT>
§ cl ass Concrete_Component {
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8 public:

8 /1 Return a pointer to the <COVPONENT>
i nstance

8 /1 in the singleton
<Conponent _Configurator>'s

§ /'l <Component _Repository> associated with
<namne>.

§ stati ¢ COMPONENT *instance (const string
&nane) ;

CHE

§ Thei nstance() method is implemented as follows:

8 tenpl ate <cl ass COVPONENT>

8 COVPONENT * Concr et e_Conponent <COMPONENT>: : i nst ance

8 (const string &nane) {

8 /1 Find the <Conponent> associated with
<nane>,

§ /1 and downcast to ensure type-safety.

8 Conponent *conp = Conponent _Confi gurator::

8 i nstance ()->conponent_repository ()-
>fi nd(nane) ;

§ return dynam c_cast <COWONENT *> (comp) ;

§ }

§ This template is used to retrieve components from the component
repository:

8 Ti me_Server *tinme_server =

8 Concr et e_Component <Ti ne_Server >: : i nst ance

8 ("Time_Server") ;

8 /1l I nvoke nethods on the <tine_server>
conponent. ..

§ When components are distributed, the typical choice is between low-

level IPC mechanisms, such as TCP/IP connections programmed using
Sockets [Ste98] or TLI [Rago93], and higher-level mechanisms, such as
CORBA [OMG98a]. One of the benefits of using CORBA is that the ORB
can transparently optimize for the fastest IPC mechanism, by determining
automatically whether the component is collocated or distributed
[WSVI9].
Implement a mechanism to re-establish component relationships. As outlined
in implementation activity 4.2 (93), components can use other components, or
even other objects in an application, to perform the services they offer.
Replacing one component implementation with another at run-time therefore
requires the component configurator to reconnect the new component
automatically with components used by the removed component.
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One strategy for implementing this mechanism is to checkpoint a component's
references to its related components and store it in a Memento [GoF95]. This
memento can be passed to the component configurator before shutting down
the component. Similarly, the memento may contain additional state
information passed from the old to the new component. After the new
component is installed, the component configurator can pass the memento to
the new component. This component then re-installs the connections and
state information that were saved in the memento.

Implementing a mechanism to save and re-establish component

relationships would require three changes to our

Conponent _Conf i gur at or and Conponent classes:

§ Define a Memento hierarchy. For every concrete component type,
define a memento that saves the references that the component type
can maintain to other components. A reference can be denoted either
by a component's name or by a pointer, as outlined in implementation
activity 4.2 (93). All mementos derive from an abstract memento. This
allows the Conponent _Conf i gur at or to handle arbitrary
mementos using polymorphism.

§ Implement a mechanism for maintaining mementos in the component
configurator. During a component's reconfiguration, the memento
containing references to other components is stored in the
Conponent _Conf i gur at or . The corresponding infrastructure for
handling this memento within the Conponent _Conf i gur at or can
contain a reference to the memento, as well as the component type
whose references the memento stores.

§ Change the component interface and implementation. To pass a
memento from a component to the Conponent _Conf i gur at or and
vice versa, we must change the Conponent interface. For example,
the memento can be passed to a Conponent as a parameter to its
i nit() method, and back to the Conponent _Conf i gur at or viaa
parameter in the Conponent 's fi ni () method. Within thei ni t ()
and f i ni () method implementations of concrete components, the
memento is then used to retrieve and save the component's
relationships to other components and objects.

In addition to component references, the memento could maintain other
state information that is passed to the new component. For example,

Cl er k components could pass the frequency at which they poll time
servers, so that new Cl er k components can update their local system

time at the same freiuenci.

In the remainder of this section, we show how the implementation activity 4
(92) and its sub-activities can be applied to guide the implementation of

concrete comionent iarticiiants in our distributed time service examile.

There are two types of concrete components in a distributed time service:
Ti me_Server and C er k. The Ti me_Ser ver component receives and
processes requests for time updates from d er ks. Both Ti me_Ser ver
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and d er k components are designed using the Acceptor-Connector
pattern (285). As outlined in implementation activity 1 (82), the component
execution mechanism for the Ti ne_Ser ver and C er k is based on a
reactive event-handling model within a single thread of control, in
accordance with the Reactor pattern (179).

The Ti me_Ser ver inherits from the Conponent class:
class Time_Server : public Conponent {
public:
/1 Initialize and term nate a <Ti ne_Server>.

virtual void init (int argc, const char
*argv[]) ;
virtual void fini () ;

/1 Qther nmethods (e.g., <info> <suspend> and
/1l <resune>) onmitted.

private:

/1 The <Time_Server_Acceptor> that creates,

accepts,

/1 and initializes <Tinme_Server_ Handl er >s.

Ti me_Server _Acceptor acceptor_;

/1 A Ct+ standard library <list> of

/1l <Tinme_Server Handl er >s.

list<Tine _Server Handl er *> handler |ist_;
b

By inheriting from Conponent, Ti ne_Server objects can be linked and
unlinked by the Corrponent _Conf i gur at or dynamically. This design
decouples the implementation of the Ti me_Ser ver from the time or
context when it is configured, allowing developers to switch readily
between different Ti ne_Ser ver algorithms.

Before storing the Ti nme_Ser ver component in its component repository,
the application's component configurator singleton invokes the
component'si ni t () hook method. This allows the Ti me_Ser ver
component to initialize itself.

Internally, the Ti me_Ser ver contains a Ti ne_Ser ver _Accept or that
listens for connection requests to arrive from d er ks. It also contains a
C++ standard template library [Aus98] | i st of Ti me_Server _Handl er s
that process time update requests. The Ti me_Ser ver _Accept or is
created and registered with a reactor when the Ti ne_Server'sinit ()
method is called.

When a new connection request arrives from a d er k, the acceptor
creates a new Ti ne_Ser ver _Handl er , which processes subsequent
time update requests from the C er k. When itsi ni t () method is
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invoked by the Ti me_Ser ver _Accept or , each handler registers itself
with the singleton reactor, which subsequently dispatches the handler's
handl e_event () method when time update requests arrive.

When a component configurator terminates a Ti me_Ser ver , it calls the
Ti me_Server'sfini () method. This method unregisters the

Ti me_Server _Accept or and all of its associated

Ti me_Ser ver _Handl er s from the reactor and destroys them.

We provide two Ti ne_Ser ver component implementations:

§ The first component implements Cristian's algorithm [Cris89]. In this
algorithm each Ti me_Ser ver is a passive entity that responds to
qgueries made by O er ks. In particular, a Ti me_Ser ver does not
guery other machines actively to determine its own notion of time.

§ The second component implements the Berkeley algorithm [GZ89]. In
this algorithm, the Ti ne_Ser ver is an active component that polls
every machine in the network periodically to determine its local time.
Based on the responses it receives, the Ti me_Ser ver computes an
aggregate notion of the correct time.

As with the Ti me_Ser ver above, the d er k inherits from the
Conponent class:

class Cerk : public Conponent {
publi c:
/1l Initialize and termnate a <O erk>.

virtual void init (int argc, const char
“argv[]);
virtual void fini () ;

/1 <info> <suspend>, and <resune> met hods
om tted.

/1 Hook nethod invoked by a <Reactor> when a
ti meout

/1 occurs periodically. This method contacts
sever al

/1 <Tinme_Server>s to conpute its |local notion
of tinme.

virtual void handl e_event (HANDLE, Event_Type)

private:
/1 The <O erk_Connector> that connects and
/1 initializes <O erk_Handl er>s.
C erk_Connector connector_;

/1 A C++ standard library <list> of
<C erk_Handl er >s.
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list<Clerk Handler *> handler list_;
b

By inheriting from Conponent , the Cl er k can be linked and unlinked
dynamically by a component configurator. Similarly, a component
configurator can configure, control and reconfigure the  er k it manages
by callingitsinit(), suspend(), resune(),andfini () hook
methods.

Our O er k component establishes and maintains connections with

Ti me_Ser ver s and queries them to calculate the current time. The
Cerk'sinit() method dynamically allocates Cl er k_Handl er s that
send time update requests to Ti ne_Ser ver s connected via a

Cl er k_Connect or . It also registers the C er k with a reactor to receive
timeout events periodically, such as every five minutes.

When the timeout period elapses, the reactor notifies the d er k's

handl e_event () hook method. This method instructs the Cl er k's

C er k_Handl er s to request the current time at the time servers to which
they are connected. The O er k receives and processes these server
replies, then updates its local system time accordingly. When Cl i ent s
ask the C er k component for the current time, they receive a locally-
cached time value that has been synchronized with the global notion of
time. The d er k's fi ni () method shuts down and cleans up its
connector and handlers.

The two alternative implementations of the time services are provided
within two DLLs. The cri sti an. dl | contains a factory that creates
components that run the Cristian algorithm. Likewise, the ber kel ey. dl |
contains a factory that creates components that run the Berkeley
algorithm.

Example Resolved

In this section, we show how our example distributed time server implementation applies the
Component Configurator pattern using a configuration mechanism based on explicit dynamic
linking [SchSu94] and a conp. conf configuration script. The example is presented as
follows:

§  We first show how the configuration mechanism supports the dynamic configuration of
Cl erk and Ti me_Ser ver components into application processes via scripting.

§  We then show how these features allow Cl er k components to change the algorithms
used to compute local system time. In particular, after a new algorithm has been
selected, a singleton Conrponent _Conf i gur at or can reconfigure the C er k
component dynamically without affecting the execution of other types of components
controlled by the component configurator.

There are two general strategies for configuring a distributed time component application:

collocated and distributed. We outline each strategy to illustrate how a component
configurator-enabled application can be dynamically (re)configured and run.
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Collocated configuration. This configuration uses a conp. conf script to collocate the
Ti me_Ser ver and the C er k within the same process.

A generic mai n() program configures components dynamically using the
process_directives() method of the Conponent _Confi gur at or object and then
runs the application's event loop. This event loop is based on the Reactor pattern (179):

int min (int argc, char *argv[]) {
Conponent _Confi gurat or server;

/1l Interpret the conp.conf file specified in argv[1].
server. process_directives (argv[1]);

/1 Reactor singleton perform conponent processing and
/1 any reconfiguration updates.
for (1)
Reactor::instance ()->handle_events ();
/* NOTREACHED */

}

The process_di recti ves() method configures components into the server process
dynamically as it interprets the following conp. conf configuration script:

# Configure a Time Server.
dynam ¢ Ti ne_Server Conponent *
cristian.dll:make_Ti me_Server()
"-p $TI ME_SERVER_PORT"

# Configure a d erk.
dynam ¢ C erk Conmponent *
cristian.dll:mke_d erk()
"-h tango. cs: $TI ME_SERVER_PORT"
"-h perdita.werl:$TlI ME_SERVER PORT"
"-h atomc-clock.Ilanl.gov:$TI ME_SERVER_PORT"
"-P 10" # polling frequency

The directives in conp. conf specify to the Conponent _Conf i gur at or how to configure
a collocated Ti me_Ser ver and O er k dynamically in the same application process using
the Cristian algorithm. The Conponent _Confi gur at or links the cri sti an. dl | DLL into
the application's address space dynamically and invokes the appropriate factory function to
create new component instances. In our example, these factory functions are called
make_Ti me_Server () and make_C er k() , which are defined as follows:

Conponent *make_Tine_Server () { return new Tine_Server; }
Conponent *make_Clerk () { return new derk; }

After each factory function returns its new allocated component, the designated initialization
parameters in the conp. conf script are passed to the respective i ni t () hook methods.
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These perform the corresponding component-specific initialization, as illustrated in
implementation activity 4 (92).

Distributed configuration. To reduce the memory footprint of an application, we may want to
collocate the Ti me_Ser ver and the O er k in different processes. Due to the flexibility of
the Component Configurator pattern, all that is required to distribute these components is to
split the conp. conf script into two parts and run them in separate processes or hosts. One
process contains the Ti ne_ Ser ver component and the other process contains the d er k
component.

The figure below shows what the configuration looks like with the Ti ne_Ser ver and d erk
collocated in the same process, as well as the new configuration after the reconfiguration
split. Note that the components themselves need not change, because the Component
Configurator pattern decouples their processing behavior from the point in time when they
are configured.

T ’ - o i b |
Server Clerk et 3 [ e

COLLODUATED + T
_Seover |
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CONFIGLRATION RECONFIGURATION
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Reconfiguring an application's components. Now consider what happens if we decide to
change the algorithms that implement components in the distributed time service. For
example, we may need to switch from Cristian's algorithm to the Berkeley algorithm to take
advantage of new features in the environment. For example, if the machine on which the

Ti me_Ser ver resides has a WWYV receiver, the Ti me_Ser ver can act as a passive entity
and the Cristian algorithm may be appropriate. Conversely, if the machine on which the

Ti me_Ser ver resides does not have a WWYV receiver, an implementation of the Berkeley

algorithm may be more appropriate.

Ideally, we should be able to change Ti ne_Ser ver algorithm implementations without
affecting the execution of other components of the distributed time service. Accomplishing
this using the Component Configurator pattern simply requires minor modifications to our
distributed time service configuration activities:
1. Modify the existing comp.conf script. We start by making the following change to the
conp. conf script:

2. # Shut down <Ti me_Server >.
3. renove Ti nme_Server

This directive instructs the Conponent _Conf i gur at or to shut down the
Ti me_Ser ver component, remove it from the Conponent _Reposi t ory, and unlink
the cri stian. dl | if there are no more references to it.

4. Notify the component configurator to reinterpret the comp.conf script. Next we must
instruct the Conrponent _Conf i gur at or to process the updated conp. conf script.
This can be triggered either in-band, such as via a Socket connection or a CORBA
operation, or out-of-band, such as via a UNIX SI GHUP signal. Regardless of which
triggering strategy is used, after the Conponent _Conf i gur at or receives a
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reconfiguration event, it consults its conp. conf script again and shuts down the
Ti me_Ser ver component by calling its fi ni () method. During this step the
execution of other components should be unaffected.

5. Initiate reconfiguration. We can now repeat steps 1 and 2 to reconfigure the Berkeley
Ti me_Ser ver component implementation into an application. The conp. conf script
must be modified with a new directive to specify that the Berkeley Ti me_Ser ver
component be linked dynamically from the ber kel ey. dl | DLL:

# Configure a Tinme Server.
dynam ¢ Ti ne_Server Conponent *
ber kel ey. dl | : make_Ti me_Server ()
"-p $TI ME_SERVER PORT"

© © N o

Finally, an event is generated to trigger the Conponent _Conf i gur at or in the
process to reread its conp. conf script and add the updated Ti me_Ser ver
component to the Conponent _Reposi t ory. This component starts executing
immediately afteritsi ni t () method is invoked successfully.

The ease with which new component implementations can be replaced dynamically
exemplifies the flexibility and extensibility provided by the Component Configurator pattern.
In particular, no other configured components in an application should be affected when the
Conponent _Conf i gur at or removes or reconfigures the Ti me_Ser ver component.

Known Uses

The Windows NT Service Control Manager (SCM. The SCMallows a master SCMprocess
to initiate and control administrator-installed service components automatically using the
message-based strategy described in the Implementation section. The master SCMprocess
initiates and manages system service components by passing them various control
messages, such as PAUSE, RESUME, and TERM NATE, that must be handled by each
service component. SCMbased service components run as separate threads within either a
single-service or a multi-service server process. Each installed service component is
responsible for configuring itself and monitoring any communication endpoints, which can be
more general than socket ports. For instance, the SCMcan control named pipes and shared
memory.

Modern operating system device drivers. Most modern operating systems, such as Solaris,
Linux, and Windows NT, provide support for dynamically-configured kernel-level device
drivers. These drivers can be linked into and unlinked out of the system dynamically via
hooks, suchastheinit(), fini(),andinfo() functions defined in SVR4 UNIX
[Rago93]. These operating systems apply the Component Configurator pattern to allow
administrators to reconfigure the operating system kernel without having to shut it down,
recompile, and statically relink new drivers and restart it.

Java applets. The applet mechanism in Java supports dynamic downloading, initializing,
starting, stopping, and terminating of Java applets. Web browsers implement the
infrastructure software to actually download applets and prepare them for execution. The
class j ava. appl et . Appl et provides empty methodsinit(), start(), stop(),and
destroy(), to be overridden in application-specific subclasses. Java therefore uses the
inheritance-based strategy described in the Implementation section. The four life-cycle hook
methods mentioned above are called by the browser at the correct time. They give the
applet a chance to provide custom behavior that will be called at appropriate times.

98



For example, the i ni t () hook will be called by the browser once the applet is loaded. The
start () hook will be called once set-up is complete and the applet should start its
application logic. The st op() hook will be called when the user leaves the Web site. Note
thatstart () and stop() can be called repeatedly, for example when the user visits and
leaves a Web site multiple times. The dest r oy() hook is called once the applet is
reclaimed and should free all resources. Finer-grained life-cycle behavior inside an applet
can be achieved by creating multiple threads inside the applet and having them scheduled
as in ordinary Java applications. Additional examples of how the Component Configurator
pattern is used for Java applets are presented in [JS97b].

The dynamicTAO reflective ORB [KRL+00] implements a collection of component
configurators that allow the transfer of components across a distributed system, loading and
unloading modules into the ORB run-time system, and inspecting and modifying the ORB
configuration state. Each component configurator is responsible for handling the
(re)configuration of a particular aspect of dynamicTAO. For example, its TAOConf i gur at or
component configurator contains hooks to which implementations of concurrency and
scheduling strategies, as well as security and monitoring interceptors (109), can be attached.
In addition, a Domai nConf i gur at or provides common services for loading and unloading
components into dynamicTAO. It is the base class from which all other component
configurators derive, such as TACConf i gur at or .

ACE [Sch97]. The ADAPTIVE Communication Environment (ACE) framework provides a set
of C++ mechanisms for configuring and controlling components dynamically using the
inheritance-based strategy described in the Implementation section. The ACE Service
Configurator framework [SchSu94] extends the mechanisms provided by | net d, Li sten,
and SCMto support automatic dynamic linking and unlinking of communication service
components.

The Service Configurator framework provided by ACE was influenced by the mechanisms
and patterns used to configure and control device drivers in modern operating systems.
Rather than targeting kernel-level device drivers, however, ACE focuses on dynamic
configuration and control of application-level components. These ACE components are often
used in conjunction with the Reactor (179), Acceptor-Connector (285), and Active Object
(369) patterns to implement communication services.

In football, which Americans call soccer, each team's coach can substitute a limited number
of players during a match. The coach is the component configurator who decides which
players to substitute, and the players embody the role of components. All players obey the
same protocol with respect to substitution, which occurs dynamically, that is, the game does
not stop during the substitutions. When players see a sign waved with their numbers, they
leave the field and new players join the game immediately. The coach's list of the current 11
players corresponds to the Component Repository. Just as the reconfiguration script is not
always written by the coach: some home crowds are renowned for asking and shouting for
specific players to be put into the game—and for firing the coach.

Consequences
The Component Configurator pattern offers the following benefits:

Uniformity. The Component Configurator pattern imposes a uniform configuration and
control interface for managing components. This uniformity allows components to be treated
as building blocks that can be integrated as components into a larger application. Enforcing
a common interface across all components makes them 'look and feel' the same with
respect to their configuration activities, which simplifies application development by
promoting the 'principle of least surprise'.
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Centralized administration. The Component Configurator pattern groups one or more
components into a single administrative unit. This consolidation simplifies development by
enabling common component initialization and termination activities, such as
opening/closing files and acquiring/releasing locks, to be performed automatically. In
addition, the pattern centralizes the administration of components by ensuring that each
component supports the same configuration management operations, such asi nit (),
suspend(), resune(),andfini().

Modularity, testability, and reusability. The Component Configurator pattern improves
application modularity and reusability by decoupling the implementation of components from
the manner in which the components are configured into processes. Because all
components have a uniform configuration and control interface, monolithic applications can
be decomposed more easily into reusable components that can be developed and tested
independently. This separation of concerns encourages greater reuse and simplifies
development of subsequent components.

Configuration dynamism and control. The Component Configurator pattern enables a
component to be dynamically reconfigured without modifying, recompiling, or statically
relinking existing code. In addition, (re)configuration of a component can often be performed
without restarting the component or other active components with which it is collocated.
These features help create an infrastructure for application-defined component configuration
frameworks.

Tuning and optimization. The Component Configurator pattern increases the range of
component configuration alternatives available to developers by decoupling component
functionality from component execution mechanisms. For instance, developers can tune
server concurrency strategies adaptively to match client demands and available operating
system processing resources. Common execution alternatives include spawning a thread or
process upon the arrival of a client request or pre-spawning a thread or process at
component creation time.

The Component Configurator pattern has several liabilities:

Lack of determinism and ordering dependencies. The Component Configurator pattern
makes it hard to determine or analyze the behavior of an application until its components are
configured at runtime. This can be problematic for certain types of system, particularly real-
time systems, because a dynamically-configured component may not behave predictably
when run with certain other components. For example, a newly configured component may
consume excessive CPU cycles, thereby starving other components of processing time and
causing them to miss deadlines.

Reduced security or reliability. An application that uses the Component Configurator pattern
may be less secure or reliable than an equivalent statically-configured application. It may be
less secure because impostors can masquerade as components in DLLs. It may be less
reliable because a particular component configuration may adversely affect component
execution. A faulty component may crash, for example, corrupting state information it shares
with other components configured into the same process.

Increased run-time overhead and infrastructure complexity. The Component Configurator
pattern adds levels of abstraction and indirection when executing components. For example,
the component configurator first initializes components and then links them into the
component repository, which may incur excessive overhead in time-critical applications. In
addition, when dynamic linking is used to implement components many compilers add extra
levels of indirection to invoke methods and access global variables [GLDW87].
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Overly narrow common interfaces. The initialization or termination of a component may be
too complicated or too tightly coupled with its context to be performed in a uniform manner
via common component control interfaces, such asinit () andfi ni ().

See Also

The intent of the Component Configurator pattern is similar to the Configuration pattern
[CMP95]. The Configuration pattern decouples structural issues related to configuring
protocols and services in distributed applications from the execution of the protocols and
services themselves. The Configuration pattern has been used in frameworks that support
the construction of distributed systems out of building-block components.

In a similar way, the Component Configurator pattern decouples component initialization
from component processing. The primary difference is that the Configuration pattern focuses
on the active composition of chains of related protocols and services. In contrast, the
Component Configurator pattern focuses on the dynamic initialization of components that
process requests exchanged between transport endpoints.

Credit

Thanks to Giorgio Angiolini, who provided us with feedback on an earlier version of this
pattern. In addition, thanks to Prashant Jain, who was the co-author of the original version of
the Service Configurator pattern, which formed the basis for the Component Configurator
pattern described here. Fabio Kon contributed the description of the dynamicTAO known
use.

@A WWV receiver intercepts the short pulses broadcast by the US National Institute of
Standard Time (NIST) to provide Universal Coordinated Time (UTC) to the public.

EBThe Implementation section describes how parameters can be passed into the component,
as well as different options for activating the component.

Interceptor

The Interceptor architectural pattern allows services to be added transparently to a
framework and triggered automatically when certain events occur.

Example

MiddleSoft Inc. is developing an object request broker (ORB) middleware framework called
MiddleORB, which is an implementation of the Broker pattern [POSA1]. MiddleORB provides
communication services that simplify the development of distributed applications. In addition
to core communication services, such as connection management and transport protocols,
applications using MiddleORB may require other services, such as transactions and security,
load balancing and fault tolerance, auditing, and logging, non-standard communication
mechanisms like shared memory, and monitoring and debugging tools.
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To satisfy a wide-range of application demands, the MiddleORB architecture must support
the integration of these extended services. One strategy for coping [Cope98] with this
requirement is to integrate as many services as possible into the default MiddleORB
configuration. This strategy is often infeasible, however, because not all ORB services can
be anticipated at its development time. As distributed applications evolved, the ORB
framework would inevitably expand to include new features. Such piecemeal growth can
complicate ORB design and maintenance, as well as increase its memory footprint, even
though many of these features are not used by all applications all the time.

An alternative strategy is to keep the MiddleORB framework as simple and concise as
possible. In this model, if application developers require services not available in the
framework, they would implement them along with their own client and server code.
However, this strategy would require developers to implement much code that was unrelated
to their application logic.

In addition, certain services cannot be implemented solely at the application client and object
level, because they must interact intimately with core ORB features. For example, a security
service should be integrated with the ORB infrastructure. Otherwise, applications can
masquerade as privileged users and gain unauthorized access to protected system
resources.

Clearly, neither strategy outlined above is entirely satisfactory. With the first strategy
MiddleORB will be too large and inflexible, whereas with the second, applications will
become overly complex and potentially insecure or error-prone. We must therefore devise a
better strategy for integrating application-specific services into MiddleORB.

Context
Developing frameworks that can be extended transparently.
Problem

Frameworks, such as ORBs, application servers, and domain-specific software architectures
[SG96], cannot anticipate all the services they must offer to users. It may also not be feasible
to extend certain types of frameworks, particularly black-box frameworks [HJE95], with new
services that they were not originally designed to support. Similarly, it is often undesirable to
rely upon applications to implement all the necessary services themselves, because this
defeats many benefits of reuse. Framework developers must therefore address the following
three forces:
§ A framework should allow integration of additional services without requiring
modifications to its core architecture.
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§For example, it should be possible to extend MiddleORB to support security services,
such as Kerberos or SSL [OSSLO00], without modifying the structure of its internal

desiﬁn OoOMG98d].

8 The integration of application-specific services into a framework should not affect
existing framework components, nor should it require changes to the design or

implementation of existini aiilications that use the framework.

8For instance, adding load balancing to MiddleORB should be unobtrusive to existing
MiddleORB client and server applications.

§  Applications using a framework may need to monitor and control its behavior.

§For example, some applications may want to control MiddleORB's fault tolerance
strategies [OMG99q] via the Reflection pattern [POSA1] to direct its responses to
failure conditions.

Solution

Allow applications to extend a framework transparently by registering 'out-of-band' services
with the framework via predefined interfaces, then let the framework trigger these services
automatically when certain events occur. In addition, open the framework's implementation
[Kic92] so that the out-of-band services can access and control certain aspects of the
framework's behavior.

In detail: for a designated set of events processed by a framework, specify and expose an
interceptor callback interface. Applications can derive concrete interceptors from this
interface to implement out-of-band services that process occurrences of these events in an
application-specific manner. Provide a dispatcher for each interceptor that allows
applications to register their concrete interceptors with the framework. When the designated
events occur, the framework naotifies the appropriate dispatchers to invoke the callbacks of
the registered concrete interceptors.

Define context objects to allow a concrete interceptor to introspect and control certain
aspects of the framework's internal state and behavior in response to events. Context
objects provide methods to access and modify a framework's internal state, thus opening its
implementation. Context objects can be passed to concrete interceptors when they are
dispatched by the framework.

Structure

A concrete framework instantiates a generic and extensible architecture to define the
services provided by a particular system, such as an ORB, a Web server, or an application
server.
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Two types of concrete frameworks are available in MiddleORB, one for the client and

one for the server:®

§Client applications use the client concrete ORB framework's programming interface to
access remote objects. This concrete framework provides common services, such
as binding to a remote object, sending requests to the object, waiting for replies,
and returning them to the client.

§The server concrete ORB framework provides complementary services, including
registering and managing object implementations, listening on transport endpoints,
receiving requests, dispatching these requests to object implementations, and
returning replies to clients.

Interceptors are associated with a particular event or set of events exposed by a concrete
framework. An interceptor defines the signatures of hook methods [Pree95] [GHJV95] that
the concrete framework will invoke automatically via a designated dispatching mechanism
when the corresponding events occur. Concrete interceptors specialize interceptor interfaces
and implement their hook methods to handle these events in an application-specific manner.

In our MiddleORB example, we specify an interceptor interface containing several hook
methods that the client and server concrete ORB frameworks dispatch automatically
when a client application invokes a remote operation and the corresponding server
receives the new request, respectively.
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To allow interceptors to handle the occurrence of particular events, a concrete framework
defines dispatchers for configuring and triggering concrete interceptors. Typically there is a
dispatcher for each interceptor. A dispatcher defines registration and removal methods that
applications use to subscribe and un-subscribe concrete interceptors with the concrete
framework.

A dispatcher also defines another interface that the concrete framework calls when specific
events occur for which concrete interceptors have registered. When the concrete framework
notifies a dispatcher that such an event has occurred, the dispatcher invokes all the concrete
interceptor callbacks that have registered for it. A dispatcher maintains all its registered
interceptors in a container.

In our MiddleORB example, the client concrete ORB framework implements a dispatcher
that allows client applications to intercept certain events, such as outgoing requests to
remote objects and incoming object replies. Servers use a corresponding dispatcher in
the server concrete ORB framework to intercept related events, such as incoming client
requests and outgoing object replies. Other dispatchers can be defined at different
layers in the ORB to intercept other types of events such as connection and message

tl’anSiiOFt events.

Concrete interceptors can use context objects to access and control certain aspects of a
concrete framework. Context objects can provide accessor methods to obtain information
from the concrete framework and mutator methods to control the behavior of the concrete
framework. A context object can be instantiated by a concrete framework and passed to a
concrete interceptor with each callback invocation. In this case the context object can
contain information related to the event that triggered its creation.

Conversely, a context object can be passed to an interceptor when it registers with a
dispatcher. This design provides less information but also incurs less overhead.
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In our MiddleORB example, the interceptor interface defines methods that the client
concrete ORB framework dispatches automatically when it processes an outgoing
request. These methods are passed a context object parameter containing information
about the current request. Each context object defines accessor and mutator methods
that allow a concrete interceptor to query and change ORB state and behavior,
respectively.

For example, an accessor method in a context object can return the arguments for a
remote operation. Using the context object's mutator methods, a client application's
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concrete interceptor can redirect an operation to a different object. This feature can be
used to implement custom load balancing and fault tolerance services [ZBS97].

An application runs on top of a concrete framework and reuses the services it provides. An
application can also implement concrete interceptors and register them with the concrete
framework to handle certain events. When these events occur, they trigger the concrete
framework and its dispatchers to invoke concrete interceptor callbacks that perform
application-specific event processing.
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The class diagram below illustrates the structure of participants in the Interceptor pattern.
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Dynamics

A typical scenario for the Interceptor pattern illustrates how an application implements a
concrete interceptor and registers it with the corresponding dispatcher. The dispatcher then
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invokes the interceptor callback when the concrete framework notifies it that an event of

interest has occurred:

§  An application instantiates a concrete interceptor that implements a specific interceptor
interface. The application registers this concrete interceptor with the appropriate
dispatcher.

8 The concrete framework subsequently receives an event that is subject to interception.
In this scenario a special context object is available for each kind of event. The concrete
framework therefore instantiates an event-specific context object that contains
information related to the event, as well as functionality to access and potentially control
the concrete framework.

§ The concrete framework notifies the appropriate dispatcher about the occurrence of
the event, passing the context object as a parameter.

§ The dispatcher iterates through its container of registered concrete interceptors and
invokes their callback hook methods, passing the context object as an argument.

§ Each concrete interceptor can use its context object to retrieve information about the
event or the concrete framework. After processing this information, a concrete
interceptor can optionally call method(s) on the context object to control the behavior of
the concrete framework and its subsequent event processing.

§  After all concrete interceptor callback methods have returned, the concrete framework
continues with its normal operation.
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Implementation

Seven implementation activities describe a common approach for implementing the
Interceptor pattern.

1. Model the internal behavior of the concrete framework using a state machine or an
equivalent notation, if such a model is not available already. This modeling need not
capture all abstractions of the concrete framework, but should document the aspects
that are related to interception. To minimize the complexity of any given state
machine, the modeled parts of the concrete framework can be composed from
smaller state machines that together form a composite state machine.®

Each smaller state machine represents a particular aspect of the concrete framework.
Once the dynamic aspects of the concrete framework are modeled as a state
machine, use this model to determine where and when certain events can be
intercepted.

In ORB middleware and many other component-based systems at least two types of

concrete frameworks exist, one for the role of client and one for the role of server. In
this case the concrete frameworks should be modeled as separate state machines. In
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general, state machine modeling helps identify where to place interceptors and how
to define their behavior in a concrete framework.

Consider the client concrete ORB framework defined by MiddleORB. During ORB
start-up this framework is initialized to continue processing client requests until it
is shut down. The client concrete ORB framework provides two types of service
to clients:

8 When a client binds to a new remote object, the concrete framework creates a
proxy that connects to the object.

§ If the bind operation is successful the client can send requests to the remote
object. Each request is marshaled and delivered to the remote object using a
pre-established connection. After successful delivery, the concrete
framework waits for the object's response message, demarshals it upon
arrival, returns the result to the client, and transitions to the idle state.

Additional error states denote situations in which problems are encountered, such
as communication errors or marshaling errors, are shown in the following figure.
Note that this figure illustrates only a portion of the client concrete ORB

framework's internal comiosite state machine.
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2. ldentify and model interception points. This implementation activity can be divided into
four sub-activities:

1. Identify concrete framework state transitions that may not be visible to external
applications, but are subject to interception. For example, a client may want to
intercept outgoing requests so it can add functionality, such as logging or
changing certain request parameters, dynamically. We call these state
transitions 'interception points'.

2. Partition interception points into reader and writer sets. The reader set includes
all state transitions in which applications only access information from the
concrete framework. Conversely the writer set includes all state transitions in
which applications can modify the behavior of the concrete framework.

3. Integrate interception points into the state machine model. Interception points
can be modeled in the state machine by introducing intermediary states. If a
state transition is subject to interception, place a new interception state
between the source state and the sink state of the original transition. This
interception state triggers the corresponding interceptors. For interception
points that belong to the writer set, introduce additional state transitions in
which the following properties apply:
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§ The interception state is the start node and
§ The target nodes are states that represent the subsequent behavior of
the concrete framework after the interception.

Many component-based distributed systems define peer concrete frameworks,
such as client and server ORBs, that are organized in accordance with the
Layers pattern [POSA1]. When identifying interception points in one of these
concrete frameworks, introduce a related interception point in the other peer
concrete framework at the same logical layer. For example, if a client ORB
intercepts outgoing requests, it is likely that the server ORB should also
intercept incoming requests. When integrating layered services, such as
adding security tokens on the client-side and encrypting outgoing request
data, a corresponding interceptor is therefore required on the server to extract
the security token and decrypt the incoming data.

By applying the state machine model of the client concrete ORB

framework shown above, we can identify the potential interception points

shown in the following table:

Interception Point

Description

Reader
[ Writer

Shut-down

The concrete framework is
shutting down its operation.
Clients may need to perform
certain cleanup work, such as
freeing resources they have
allocated previously.

Reader

Binding

The client application is binding
to a remote object. The
concrete framework instantiates
a new proxy and establishes a
communication channel. A
monitoring service might
intercept this event to visualize
new client/object relationships.

Reader

PreMarshalOutRequest

The client application sends a
request to the remote object.
Interceptors might be used to
change the target object or the
parameter values to support
load balancing, validate certain
preconditions, or encrypt
parameters.

Reader
+ Writer

PostMarshalOutRequest

The client concrete ORB
framework has marshaled the
data but not yet delivered it. A
client may be interested in
monitoring activities, such as
starting a timer to measure the
round-trip latency.

Reader

PreMarshallnReply

The reply just arrived and the

Reader
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Interception Point Description Reader
| Writer

concrete framework has not yet
demarshaled the data. A client
may be interested in monitoring
this event or stopping a round-
trip latency timer.

PostMarshallnReply The client concrete ORB Reader
framework has marshaled the + Writer
reply. An interceptor might
evaluate post-conditions or
change the result. For example,
it could decrypt the result if it
was encrypted by a server-side
interceptor.

Additional interception points may be required if a client intercepts
exceptions, such as failed connection events. The server concrete ORB

framework can also define ieer interceition ioints.

Partition interception points into disjoint interception groups. To process
events, concrete frameworks often perform a series of related activities, each
of which may be associated with an interception point. To emphasize the
relationship between each activity, it may be useful to coalesce a series of
semantically-related interception points into an interception group.

For example, all interception points associated with sending a request can
form one interception group, whereas all interception points associated with
receiving a request can form another group. These interception groups help to
minimize the number of necessary interceptors and dispatchers as shown in
implementation activity 4 (123).

To identify interception groups, analyze the state machine for interception
points that are located in the same area of the state machine and participate in
the same activity. For example, interception points that are triggered by
transitions originating from a particular state, ending in a particular state, or
ending in a particular set of neighbor states may be candidates for

consideration as iart of the same interceition i;roui.

In MiddleORB, both the PreMarshalOutRequest and
PostMarshalOutRequest interception points participate in sending a
request. These interception points can therefore constitute the
OutRequest interception group. This interception group coalesces all
events related to the activities of sending a request in order to differentiate
these events from other interception groups, such as InRequest,
OutReply, or InReply.
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3. Specify the context objects. Context objects allow interceptors to access and control
aspects of the framework's internal state and behavior in response to certain events.
Three sub-activities can be applied to specify context objects:

0. Determine the context object semantics. Context objects provide information
about an interception point and may also define services to control the
framework's subsequent behavior. Concrete interceptors use the information
and services to handle interception points in an application-specific manner.
The accessor and mutator methods defined for context objects can be based
on information that a concrete framework provides to interceptors, as well as
the degree to which a framework is 'open':

§ If an interception point belongs to the reader set, determine what
information the concrete framework should provide the interceptor for
each event it handles. For example, if a context object provides
information about a particular remote operation invocation, it may contain
the reference of the target object being called as well as the operation's
name and parameter values.

8 If the interception point belongs to the writer set, determine how to
‘open' the concrete framework's implementation so that concrete
interceptors can control selected aspects of its behavior [Kic92]. For
example, if a context object provides information about a particular
remote operation invocation, it may contain methods that can modify the
operation's parameter values. The design force to balance here, of
course, is 'open extensibility' versus 'errorprone interception code'.

Although concrete frameworks with open implementations can ha ve
powerful interceptors, they are also more vulnerable to interceptors that
maliciously or accidentally corrupt the concrete framework's robustness
and security. Some interception designs therefore disallow mutator
functionality within context objects.
1. Determine the number of context object types. Here are two strategies for
selecting the number and types of context objects:

§ Multiple interfaces. If the interception points in a concrete framework
cover a diverse set of requirements, different types of context objects can
be defined for different interception points. This strategy is flexible,
because it allows fine-grained control of particular interception points.
However it increases the number of interfaces that developers of concrete
interceptors must understand.

8 Single interface. It is possible to specify a generic context object with a
single interface. Using a single interface reduces the number of context
object interfaces, but may yield a bloated and complex context object
interface.

In general, multiple interfaces are useful when client applications intercept a
wide variety of different framework events. In other cases, however, the single

interface strateii mai be ireferable due to its similiciti.

When the MiddleORB client ORB framework intercepts outgoing client

requests, applications may want to access and/or control the following

aspects:

§ Reading and changing the target object reference to implement fault
tolerance or load balancing.

§ Reading and modifying parameter values to encrypt data, validate
selected arguments, or change behavior reflectively [POSA1].

§ Adding new data to the request to send out-of-band information, such
as security tokens or transaction contexts.
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§ Integrating custom parameter marshalers and demarshalers.

These activities correspond to those specified by the
PreMarshalOutRequest and PostMarshalOutRequest interception points
outlined in the table in implementation activity 2.3 (118). We therefore
introduce two corresponding context object types,

Unmar shal edRequest and Mar shal edRequest . The interface
Unmar shal edRequest is structured as follows:

public interface Unmarshal edRequest {
public String getHost (); // get host

public void setHost (String host); // set host
public long getPort (); // get server port
public void setPort (long newPort); // set new
port
public String getCbjNane (); // get object
nanme
public void setObjNane (String newNane); //
set nane
public String getMethod (); // get method name
public void setMethod (String nane); // set
nmet hod

public Enumeration getParaneters ();// get
par amet ers

public Object getArg (long i); // get i _th arg

public void setArg (long i, Object 0); // set
i th arg

public void addinfo (Ooject info); // add
extra info.

11
}

2. Define how to pass context objects to concrete interceptors. Context objects
are instantiated by the concrete framework. They are passed to a concrete
interceptor using one of the following two strategies:

8 Per-registration. In this strategy a context object is passed to an
interceptor once when it registers with a dispatcher.
§ Per-event. In this strategy a context object is passed to a concrete

interceptor with every callback invocation.

The per-event strategy allows a concrete framework to provide finegrained
information about the occurrence of a particular event. In contrast, the per-
registration strategy only provides general information common to all
occurrences of a particular event type. The per-event strategy may incur
higher overhead, however, due to repeated creation and deletion of context
objects.
4. Specify the interceptors. An interceptor defines a generic interface that a concrete
framework uses to invoke concrete interceptors, via dispatchers, when interception
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points are triggered. An interceptor is defined for each interception group identified in
implementation activity 2.4 (120). Consequently each concrete interceptor that
derives from a particular interceptor is responsible for handling all the interception
points of a specific interception group.

For each interception point in an interception group, an interceptor defines a
designated callback hook method. There is thus a one-to-one relationship between
an interception point and an interceptor hook method. In general the interceptor
corresponds to the observer participant in the Observer pattern [GoF95], where its
callback hook methods play the role of event-specific update methods. If the
'perevent’ context object strategy described in implementation activity 3 (121) is
applied, context objects can be passed as parameters to the concrete interceptor
callback hook methods. These methods can return results or raise exceptions, in
accordance with the policies described in implementation activity 6 (126).

In implementation activity 2.4 (120) we identified the interception group
OutRequest. Below we illustrate a common interceptor interface for this
interception group:

public interface CdientRequestlnterceptor {
public void onPreMarshal Request
(Unmar shal edRequest context);
public voi d onPost Mar shal Request
( Mar shal edRequest cont ext);

}

For each interception point associated with the OutRequest interception group,
the Cl i ent Request | nt er cept or defines a separate hook method that is

called back bi the disiatcher at the aiiroiriate interceition ioint.

5. Specify the dispatchers. For each interceptor, define a dispatcher interface that
applications can use to register and remove concrete interceptors with the concrete
framework. In addition, this interface is used by the framework to dispatch concrete
interceptors registered at interception points. Two sub-activities are involved:

0. Specify the interceptor registration interface. A dispatcher corresponds to the
Observer pattern's [GoF95] subject role. It implements a registration interface
for interceptors, which correspond to the observer role. Applications pass a
reference to a concrete interceptor to the registration method, which stores the
reference in a container in accordance with the Manager pattern [Som97].

To implement different callback policies, an application can pass a dispatcher
additional parameters. For example, it can pass a priority value that
determines the invocation order when multiple interceptors are registered for
the same interception point, as described in implementation activity 6 (126).
The dispatcher returns a key to the application that identifies the registered
interceptor uniquely. An application passes this key to the dispatcher when it
removes an interceptor it registered previously.

To automate interceptor registration, and to hide its implementation, a

concrete framework can implement helper classes that provide 'noop’
implementations of interceptor interfaces. The constructors of these classes
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register instances automatically with the concrete framework. Applications
derive their concrete interceptor implementations from the appropriate helper
class, override its methods and call the base class constructor to register their
interceptors implicitly.

In general, a specific dispatcher can forward every occurrence of its
corresponding event types from the concrete framework to the concrete
interceptors that registered for these events. Dispatchers are therefore often

implemented usini the Sinileton iattern |GoF95|.

The methods defined in the following C i ent Request Di spat cher class
allow applications to register and remove Cl i ent Request | nt er cept or
instances with the MiddleORB concrete framework:

public class dient Request D spatcher {

/1 Interceptors are stored in a Java vector
and cal l ed

// in FIFO order.
Vector interceptors_;

synchroni zed public void
regi sterd i ent Request | nterceptor
(dientRequestinterceptor i) {

interceptors_.addEl ement (i); // Add
i nterceptor.

}

synchroni zed public void

renoveC i ent Request | nt ercept or
(dientRequestinterceptor i) {
/1 Rerove interceptor.
i nterceptors_.renoveEl enent (i);

1. Specify the dispatcher callback interface. When an interception event occurs
the concrete framework notifies its dispatcher. When notified, a dispatcher
invokes the corresponding hook methods of its registered concrete
interceptors. A dispatcher often provides the same interface to the concrete
framework that its associated interceptor provides to the dispatcher.

There are two reasons for this similarity:
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§ It streamlines performance, by allowing a dispatcher to delegate event
notifications to its registered interceptors efficiently, without transforming
any parameters.

8 It localizes and minimizes the modifications required if the public
interface of the dispatcher changes. An example of such a modification
might be the addition of a new interception point to the interception group
associated with the dispatcher callback interface. In this case an
additional hook method would be added to the callback interface.

In MiddleORB the internal dispatcher d i ent Request Di spat cher also
implements the interface Cl i ent Request | nt er cept or :

public class dient Request Di spat cher

i mpl enents Client Requestinterceptor { /*
*/ }

The MiddleORB client concrete ORB framework can thus use the callback
hook methods in this interface to notify the dispatcher about all events
related to client requests.

6. Implement the callback mechanisms in the concrete framework. When an interception
event occurs the concrete framework notifies the corresponding dispatcher. The
dispatcher then invokes the hook methods of all registered concrete interceptor
callbacks in turn. A mechanism is therefore needed to propagate events from the
concrete framework to its dispatchers and from the dispatchers to the registered
interceptors. This mechanism can be implemented by applying the Observer pattern

[GoF95] twice.

The first application of the Observer pattern occurs whenever the concrete framework
reaches an interception point. At this point it creates the appropriate context object
and notifies the dispatcher about the occurrence of the event. In terms of the
Observer pattern, the concrete framework is a subject that is observed by a
dispatcher.

When the concrete framework notifies the dispatcher, it can either pass the context
object as a parameter, or it can use a pre-allocated singleton context object that acts
as an interface to the concrete framework. In the first strategy, all event-related
information is encapsulated in the context object, while the second strategy requires
the concrete framework to store all of the necessary information. The choice of
strategy depends on the design of the concrete framework, as described in
implementation activity 3.3 (123).

The second application of the Observer pattern occurs after the dispatcher is notified.
At this point it iterates over all interceptors that have registered at this interception
point and invokes the appropriate callback method in their interface, passing the
context object as a parameter. The dispatcher is thus also a subject that is observed
by concrete interceptors.

The dispatcher's internal callback mechanism can be implemented with the Iterator
pattern [GoF95]. Similarly, a dispatcher can apply the Strategy pattern [GoF95] to
allow applications to select from among several interceptor callback orderings:
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§

Simple invocation strategies include ‘first-in first-out' (FIFO) or 'last-in first-out'
(LIFO) ordering strategies, where interceptors are invoked in the order they were
registered or vice-versa. When using the Interceptor pattern to implement a
particular 'interceptor stack’, a combined FIFO/LIFO approach can be used to
process messages traversing the stack. On the client a FIFO strategy can be
used to pass messages down the stack. On the server a LIFO strategy can be
used to pass messages up the stack.

A more sophisticated ordering callback strategy dispatches concrete
interceptors in priority order. In this strategy an application passes a priority
parameter when registering a concrete interceptor with a dispatcher. When
propagating an event, the dispatcher invokes interceptors with higher priorities
first.

Another sophisticated callback strategy is based on the Chain of Responsibility
pattern [GoF95]. If a concrete interceptor can handle the event that its dispatcher
delivers, it returns the corresponding result. Otherwise it can return a special
value or raise an exception to indicate it is not interested in intercepting the
event. In this case the callback dispatching mechanism asks the next interceptor
in the chain to handle the event. This progression stops after one of the
interceptors handles the event.

If an interceptor encounters error conditions that prevent it from completing its work
successfully, it can invoke exceptions or return failure values to propagate these
errors to handlers. In this case the concrete framework must be prepared to handle
these errors.

When a client concrete ORB framework processes a request it instantiates a
context object, and notifies the corresponding dispatcher to iterate through the
registered interceptors to call their appropriate event handling hook methods,
such as onPr eMar shal Request () :

public class dient Request D spatcher {
/1
public void
di spat chCl i ent Request I nt er cept or PreMar sha
(Unmar shal edRequest context) {
Vector interceptors;
synchroni zed (this) { // Cone vector
interceptors = (Vector)
i nterceptors.clone ();

}
for (int i =0; i <interceptors.size (); ++i) {
Cient Requestinterceptor ic =
(dientRequestlnterceptor)
i nterceptors.elenentAt (i);
/1 Dispatch call back hook nethod.
i c. onPreMar shal Request (context);
}
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...
)
T

7. Implement the concrete interceptors. Concrete interceptors can derive from and
implement the corresponding interceptor interface in application-specific ways. A
concrete interceptor can use the context object it receives as a parameter to either:
§ Obtain additional information about the event that occurred or
§ Control the subsequent behavior of the concrete framework, as described in

implementation activity 3 (121)

The Extension Interface pattern (141) can be applied to minimize the number of
different interceptor types in an application. Each interception interface becomes an
extension interface of a single interceptor object. The same 'physical’' object can thus

be used to imilement different 'Ioiical' interceitors.

A client application can provide its own Cl i ent Request | nt er cept or class:
public class dient {
static final void main (String args[]) {
C i ent Requestinterceptor nylnterceptor =

/1 Use an anonynous inner class.

new Client Requestinterceptor () {

public void onPreNarshal Request
(Unmar shal edRequest context) {
Systemout. println

(context.getQhj () + " called");

/1
}
public void onPost Mar shal Request
( Marshal edRequest context) { /* ... */ }

}
Cl i ent Request Di spat cher .t hel nstance ().
regi sterd i ent Request | nterceptor
(mylnterceptor);
/1 Do normal work.

}

In this implementation the client's mai n() method creates an instance of an
anonymous C i ent Request | nt er cept or inner class and registers it with the
singleton instance of the Ol i ent Request Di spat cher class. Whenever the
client concrete ORB framework encounters a client request event it notifies the
dispatcher, which then calls back the appropriate hook method of the registered
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interceptor. In this example the interceptor just prints a message on the screen
after a method is invoked but before it is marshaled.

Example Resolved

Applications can use the Interceptor pattern to integrate a customized load-balancing
mechanism into MiddleORB. By using interceptors, this mechanism is transparent to the
client application, the server application, and the ORB infrastructure itself. In this example a
pair of concrete interceptors are interposed by the client application:

§

Bind interceptor. When a client binds to a remote object, the bind interceptor
determines whether subsequent invocations on the CORBA object should be load
balanced. All such 'load balancing' objects can be replicated [GS97] automatically on
predefined server machines. Information on load balancing, servers, and available
replicated objects can be maintained in the ORB's Implementation Repository [Hen98]
and cached within memory-resident tables. Information on the current system load can
reside in separate tables.

Client request interceptor. When a client invokes an operation on a remote object, the
client request concrete interceptor is dispatched. This interceptor checks whether the
object is replicated. If it is, the interceptor finds a server machine with a light load and
forwards the request to the appropriate target object. The algorithm for measuring the
current load can be configured using the Strategy pattern [GoF95]. Client developers
can thus substitute their own algorithms transparently without affecting the ORB
infrastructure or the client/server application logic.

The following diagram illustrates the scenario executed by the client request interceptor after
the bind interceptor has replicated an object that is load balanced on multiple servers:
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This scenario involves three steps:

§  Aclient invokes an operation on a replicated object (1).

8 The client request interceptor intercepts this request (2). It then consults a table
containing the object's replicas to identify a server with a lightest load (3). The bind
interceptor created this table earlier when the object was replicated.

8 The client ORB forwards the request to the server with a light load (4). The server's
ORB then delivers it to the object implementation residing on this server (5) and
dispatches its operation (6).

Variants

Interceptor Proxy variant (also known as Delegator). This variant is often used on the server-
side of a distributed system to intercept remote operations. The server concrete framework
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automatically instantiates a proxy [POSA1] to a local object implementation residing on the
server. This proxy implements the same interfaces as the object. When the proxy is
instantiated it receives a reference to the actual server object.

When a client issues a request, the server's proxy intercepts the incoming request and
performs certain pre-processing functionality, such as starting a new transaction or validating
a security tokens. The proxy then forwards the request to the local server object, which
performs its process operations in the context established by the proxy:
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After the object processing is finished, the proxy performs any post-processing that is
needed and returns the result, if any, to the client. Both the client and the server object are
oblivious to the existence of the interceptor proxy.

Single Interceptor-per-Dispatcher. This variant allows only one interceptor to register with a
specific dispatcher. This restriction can simplify the pattern's implementation when it makes
no sense to have more than one interceptor, in which case there is no need for the concrete
framework to retain a whole collection of interceptors.

In MiddleORB there could be an interceptor interface for changing the concrete
framework's transport protocol dynamically [NakaOQ]. At most there should be one
interceptor that changes the default behavior of the concrete framework. Thus, there is
no reason to register a chain of different interceptors that are each responsible for
changing the transport protocol.

Interceptor Factory. This variant is applicable when the concrete framework instantiates the
same class multiple times and each instance of the class is subject to interception. Instead
of registering an interceptor for each object with the dispatcher explicitly, applications
register interceptor factories with the concrete framework. Thus, for every object the
concrete framework instantiates, it also instantiates a concrete interceptor using the supplied
factory.

In MiddleORB there could be a different interceptor for each object implementation
created by the server concrete ORB framework. In addition the client concrete ORB
framework could use a factory to instantiate a separate client interceptor for each proxy.
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Implicit Interceptor Registration. Rather than registering interceptors via dispatchers
explicitly, a concrete framework can load interceptors dynamically. There are two ways to
implement this strategy:

8 The concrete framework searches for interceptor libraries in predefined locations. It
then loads these libraries into the concrete framework and ensures that they support the
required interceptor interfaces before installing and dispatching events to them.

8 The concrete framework can link interceptors dynamically using a run-time
configuration mechanism, such as the one defined by the Component Configurator
pattern (75). In this design a component configurator component within the concrete
framework interprets a script that specifies which interceptors to link, where to find the
dynamically linked libraries (DLLS) that contain these interceptors, and how to initialize
them. The component configurator then links the specified DLLs and registers the
interceptors contained within them with the concrete framework.

Known Uses

Component-based application servers for server-side components, such as EJB
[MaHa99], CORBA Components [OMG99a], or COM+ [Box97], implement the Interceptor
Proxy variant. To help developers focus on their application-specific business logic, special
concrete frameworks—often denoted as 'containers' in this context—are introduced to shield
components from the system-specific run-time environment. Components need not
implement all their infrastructural services, such as transactions, security, or persistence, but
instead declare their requirements using configuration-specific attributes. The diagram below
illustrates this container architecture:
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After a new component is instantiated, the concrete framework also instantiates an
interceptor proxy and associates it with that particular component, for example, by providing
the proxy with a component reference during its initialization. After any client request arrives
the proxy checks the configuration-specific attributes of the component and performs the
services it expects, such as initiating new transactions.

Application servers often provide an instantiation of the standard Interceptor pattern to notify
components about lifecycle events, such as connection initiation and termination, component
activation and passivation, or transaction-specific events.

CORBA implementations [OMG98c] such as TAO [SLM98] and Orbix [Bak97] apply the
Interceptor pattern so that application developers can integrate additional services to handle
specific types of events. Interceptors enhance ORB flexibility by separating request
processing from the traditional ORB communication mechanisms required to send and
receive requests and replies.
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For example, Orbix defines the concept of filters that are based on the concept of 'flexible
bindings' [Shap93]. By deriving from a predefined base class, developers can intercept
events. Common events include client-initiated transmission and arrival of remote
operations, as well as the object implementation-initiated transmission and arrival of replies.
Developers can choose whether to intercept the request or result before or after marshaling.
Orbix programmers can leverage the same filtering mechanism to build multi-threaded
servers [SV96a] [SV96b] [SV96¢c]. Other ORBs, such as Visibroker, implement the
Interceptor Factory variant of the Interceptor pattern.

The OMG has introduced a CORBA Portable Interceptor specification [OMG99f] to
standardize the use of interceptors for CORBA-compliant implementations. Portable
Interceptors are intimately tied into the communication between a client and server. They
can thus affect the contents of CORBA requests and replies as they are exchanged, as
outlined in the following two examples:

§ A client-side security interceptor can add authorization information to a request
transparently before it leaves the client process. The matching server-side security
interceptor in the receiving server could then verify that the client is authorized to invoke
requests on the target object before the request is dispatched. If authorization fails the
request should be rejected.

§ A transaction interceptor is another example of a Portable Interceptor. This interceptor
adds a transaction ID to a request before it leaves the client. The corresponding server-
side transaction interceptor then ensures the request is dispatched to the target object
within the context of that particular transaction.

Fault-tolerant ORB frameworks. The Interceptor pattern has been applied in a number of
fault-tolerant ORB frameworks, such as the Eternal system [NMM99] [MMN99] and the
CORBA Fault-Tolerance specification [OMG99q]. Eternal intercepts system calls made by
clients through the lower-level 1/0O subsystem and maps these system calls to a reliable
multicast subsystem. Eternal does not modify the ORB or the CORBA language mapping,
thereby ensuring the transparency of fault tolerance from applications.

The AQUA framework [CRSS+98] also provides a variant of the Interceptor pattern. The
AQUA gateway acts as an intermediary between the CORBA objects and the Ensemble
group communication subsystem, and translates GIOP messages to group communication
primitives. AQUA uses the Quality Objects (QuO) [ZBS97] framework to allow applications to
specify their dependability requirements.

COM [Box97] [HS99a] programmers can use the Interceptor pattern to implement the
standard interface | Mar shal in their components. | Mar shal provides custom marshaling
functionality rather than standard marshaling, which is useful for several reasons. For
example, custom marshaling can be used to send complex data such as graph structures
across a network efficiently.

When the COM run-time system transfers an interface pointer from a component to a client
residing in another execution environment, it queries the corresponding component for an
implementation of the interceptor interface | Mar shal . If the component actually implements
| Mar shal , the COM run-time uses the methods of this interceptor interface to ask the
component for specific information to allow it to externalize the data to a stream object.

Web browsers. Web browsers implement the Interceptor pattern to help third-party vendors
and users integrate their own tools and plug-ins. For example, Netscape Communicator and
Internet Explorer allow browsers to register plug-ins for handling specific media types. When
a media stream arrives from a Web server the browser extracts the content type. If the
browser does not support the content type natively, it checks whether a plug-in has
registered for it. The browser then invokes the appropriate plug-in automatically to handle
the data.
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The dynamicTAO reflective ORB [KRL+00] supports interceptors for monitoring and
security. Particular interceptor implementations are loaded into dynamicTAO using
component configurators (75). Using component configurators to install interceptors in
dynamicTAO allows applications to exchange monitoring and security strategies at run-time.

Change of address surface mail forwarding. A real-life example of the Interceptor pattern
arises when people move from one house to another. The post office can be instructed to
intercept surface mail addressed to the original house and have it transparently forwarded to
the new house. In this case, the contents of the mail is not modified and only the destination
address is changed.

Consequences
The Interceptor pattern offers the following benefits:

Extensibility and flexibility. By customizing and configuring Interceptor and dispatcher
interfaces, users of a concrete framework can add, change, and remove services without
changing the concrete framework architecture or implementation.

Separation of concerns. Interceptors can be added transparently without affecting existing
application code because interceptors are decoupled from application behavior. Interceptors
can be viewed as aspects [KLM+97] that are woven into an application, so that programmers
can focus on application logic rather than on infrastructure services. The Interceptor pattern
also helps to decouple programmers who write interceptor code from programmers who are
responsible for developing and deploying application logic.

Support for monitoring and control of frameworks. Interceptors and context objects help to
obtain information from the concrete framework dynamically, as well as to control its
behavior. These capabilities help developers build administration tools, debuggers, and
other advanced services, such as load balancing and fault tolerance.

When a client invokes a remote operation, an interceptor can be notified automatically. By
using the context object the interceptor can change the target object specified in the method
invocation from the original destination to another server that provides the requested service.
The choice of server can depend on various dynamic factors, such as current server load or
availability. If a framework cannot complete a request successfully, another interceptor can
be activated to re-send the request to a replicated server that provides the same service,
thereby enhancing fault tolerance via replication [OMG99al].

Layer symmetry. To implement layered services, developers can introduce symmetrical
interceptors for related events exposed by the concrete framework. For example, in a
CORBA environment developers could write a client-side interceptor that creates security
tokens and automatically adds these tokens to outgoing requests. Similarly, they could write
a symmetrical server-side interceptor that extracts these tokens before the incoming request
is forwarded to the actual object implementation.

Reusability. By separating interceptor code from other application code, interceptors can be
reused across applications. For example, an interceptor used to write information into a log
file may be reused in other applications that require the same type of logging functionality.
The Interceptor pattern also incurs the following liabilities:

Complex design issues. Anticipating the requirements of applications that use a specific

concrete framework is non-trivial, which makes it hard to decide which interceptor
dispatchers to provide. In general, providing insufficient dispatchers reduces the flexibility
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and extensibility of the concrete framework. Conversely, providing too many dispatchers can
yield large, inefficient systems that are complex to implement, use and optimize.

A similar problem arises when a concrete framework defines many different interceptor
interfaces and dispatchers. In this case interceptor implementors must address all these
heterogeneous extensibility mechanisms. If there are too many different mechanisms it is
hard to learn and use them. In contrast, providing only one generic interceptor and one
generic dispatcher can lead to bloated interfaces or complex method signatures. In general,
it is hard to find the right balance without knowledge of common application usages.

Malicious or erroneous interceptors. If a concrete framework invokes an interceptor that fails
to return, the entire application may block. To prevent blocking, concrete frameworks can
use configurable time-out values. If the interceptor does not return control after a specified
time, a separate thread can interrupt the execution of the interceptor. This approach can
complicate concrete framework design, however.

For example, complex functionality may be required to help concrete frameworks recover
from time-outs without leaking resources or corrupting important data structures. Interceptors
can also perform unanticipated activities or cause run-time errors. It is hard to prevent these
problems because concrete frameworks and interceptors generally execute in the same
address space.

Potential interception cascades. If an interceptor leverages a context object to change the
behavior of the concrete framework it may trigger new events, thereby initiating state
transitions in the underlying state machine. These state transitions may cause the concrete
framework to invoke a cascade of interceptors that trigger new events, and so on.
Interception cascades can lead to severe performance bottlenecks or deadlocks. The more
interceptor dispatchers that a concrete framework provides, the greater the risk of
interception cascades.

See Also

The Template Method pattern [GoF95] specifies a skeleton for an algorithm—called the
‘template method'—where different steps in the algorithm can vary. The execution of these
variants is delegated to hook methods, which can be overridden in subclasses provided by
clients. The template method can therefore be viewed as a lightweight concrete framework,
and the hook methods as lightweight interceptors. The Template Method pattern can be
used to leverage interception locally at a particular level of abstraction, whereas the
Interceptor pattern promotes interception as a fundamental design aspect that cuts across
multiple layers in a framework architecture.

The Chain-of-Responsibility pattern [GoF95] defines different handlers that can be
interposed between the sender and the receiver of a request. As with the Interceptor pattern,
these handlers can be used to integrate additional services between senders and receivers.
In the Chain-of-Responsibility pattern, however, requests are forwarded until one of the
intermediary handlers processes the request. In contrast, a dispatcher in the Interceptor
pattern usually forwards events to all concrete interceptors that have registered for it.

To emulate the Interceptor pattern, each intermediary handler in a chain of responsibility
must therefore both handle and forward the request. Interceptor and Chain of Responsibility
differ in two other aspects, however. Event handlers in a chain of responsibility are chained
together, as the name of the pattern implies. In contrast, concrete interceptors in a
framework need not be chained together, but can instead be associated at various levels of
abstraction in a layered architecture [POSA1]. Event handlers in a chain of responsibility
also cannot control the subsequent behavior of other event handlers or application
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components. Conversely, a key aspect of the Interceptor pattern is its ability to control a
concrete framework's subsequent behavior when a specific event occurs.

The Pipes and Filters pattern [POSA1] defines an architecture for processing a stream of
data in which each processing step is encapsulated in a filter component. Data is passed
through pipes between adjacent filters. If a concrete framework is structured as a Pipes and
Filters architecture with clients and objects being the endpoints, each pipe in the Pipes and
Filter chain defines a potential location at which interceptors can be interposed between
adjacent filters. In this case, registration of interceptors consists of reconfiguring the Pipes
and Filters chain.

The context object is the information passed from the source filter to the interceptor. The
interceptor is responsible for sending information to the sink filter in the appropriate format.
However, in the Pipes and Filters pattern, filters are chained via pipes, whereas in the
Interceptor pattern concrete interceptors at different layers are often independent. In
addition, Pipes and Filters defines a fundamental computational model for a complete
application 'pipeline’, whereas interceptors are used to implement 'out-of-band’ services in
any type of concrete framework.

The Proxy pattern [GoF95] [POSA1] provides a surrogate or placeholder for an object to
control access to itself. Although proxies can be used to integrate additional functionality to a
system, their use is restricted to objects that are already visible in a system. In contrast,
interceptors allow external components to access and control internal and otherwise
'invisible' components. As described in the Variants section, to instantiate the Interceptor
Proxy variant, we can instantiate the Proxy pattern with enhancements such as context
objects.

The Observer [GoF95] and Publisher-Subscriber [POSA1] patterns help synchronize the
state of cooperating components. These patterns perform a one-way propagation of
changes in which a publisher can notify one or more observers/subscribers when the state of
a subject changes. In contrast to the Interceptor pattern, the Observer and Publisher-
Subscriber patterns do not specify how observers/subscribers should access the
functionality of publishers because they define only one-way communication from the
publishers to the subscribers. These patterns also emphasize event notifications, whereas
the Interceptor pattern focuses on the integration of services into a framework.

These differences are also illustrated by the difference between event objects and context
objects. While event objects often contain values related to the current event, context objects
provide an additional programming interface to access and control concrete frameworks.
The Observer and Publisher-Subscriber patterns can therefore be viewed as variants of the
Interceptor pattern, in which context objects correspond to event types that are transferred
from concrete frameworks playing the subject role to interceptors playing the
observer/subscribe roles.

The Reflection pattern [POSA1] provides a mechanism for changing structure and behavior
of software systems. A layer of base-level objects includes the application logic. An
additional layer, the meta-level, provides information about system properties and allows
developers to control the semantics of the base level. The relationship between the
Reflection pattern and the Interceptor pattern is twofold:

8 Interception provides a means to implement reflective mechanisms. For example, to
instantiate the Reflection pattern we can introduce dispatchers that help developers
introduce new behavior by registering interceptors with the meta-level. Interception can
thus be viewed as a lightweight reflective approach that is easier to implement and less
consumptive of CPU and memory. Moreover, interception only exposes certain of the
internals of the underlying system, whereas reflection often covers a broader scope.
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8 Reflection can define a type of interception mechanism. The main intent of reflection is
to allow applications to observe their own state so that they can change their own
behavior dynamically. In contrast, the main intent of Interceptor is to allow other
applications to extend and control the behavior of a concrete framework.

The Reactor pattern (179) demultiplexes and dispatches service requests that are delivered
concurrently to an application from one or more clients. While the Reactor pattern focuses
on handling system-specific events, the Interceptor pattern helps to intercept application-
specific events. The Reactor pattern is often instantiated to handle system events occurring
in the lower layers of a communication framework, whereas the Interceptor pattern is used in
multiple layers between the framework and the application.

Credits

Thanks to Fabio Kon who contributed the dynamicTAO known use.

¥l this context, events denotes application-level events such as the delivery of requests
and responses within an ORB framework. These events are often visible only within the
framework implementation.

ElorBs support peer-to-peer communication. Thus 'client' and 'server' are relative terms
corresponding to roles played during a particular request/response interaction, rather than
being fundamental properties of particular system components.

ClMore details on composite state machines is available in the UML User Guide [BRJ98].

Extension Interface

The Extension Interface design pattern allows multiple interfaces to be exported by a
component, to prevent bloating of interfaces and breaking of client code when developers
extend or modify the functionality of the component.

Example

Consider a telecommunication management network (TMN) [ITUT92] framework that can be
customized to monitor and control remote network elements such as IP routers and ATM
switches. Each type of network element is modeled as a multi-part framework component in
accordance with the Model-View-Controller pattern [POSA1]. A view and a controller are
located on a management application console. The view renders the current state of a
network element on the console and the controller allows network administrators to manage
the network element.

A model resides on the network element and communicates with the view and controller to
receive and process commands, such as commands to send state information about the
network element to the management application console. All components in the TMN
framework are organized in a hierarchy. The Uni ver sal Conponent interface shown in the
following figure provides the common functionality needed by every component, such as
displaying key properties of a network element and accessing its neighbors.
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In theory, this design might be appropriate if the Uni ver sal Conponent interface shown
above is never changed, because it would allow client applications to access a wide range of
network elements via a uniform interface. In practice, however, as the TMN framework
becomes increasingly popular, management application developers will request that new
functionality and new methods, such as dunp () and persi st (), be added to the

Uni ver sal Conponent interface.

Over time the addition of these requests can bloat the interface with functionality not
anticipated in the initial framework design. If new methods are added to the

Uni ver sal Conponent interface directly, all client code must be updated and recompiled.
This is tedious and error-prone. A key design challenge is therefore to ensure that
evolutionary extensions to the TMN framework do not bloat its interfaces or break its client
code.

Context
An application environment in which component interfaces may evolve over time.
Problem

Coping with changing application requirements often necessitates modifications and
extensions to component functionality. Sometimes all interface changes can be anticipated
before components are released to application developers. In this case it may be possible to
apply the ‘Liskov Substitution Principle' [Mar95]. This principle defines stable base interfaces
whose methods can be extended solely via subclassing and polymorphism.

In other cases, however, it is hard to design stable interfaces, because requirements can
change in unanticipated ways after components have been delivered and integrated into
applications. When not handled carefully, these changes can break existing client code that
uses the components. In addition, if the new functionality is used by only few applications, all
other applications must incur unnecessary time and space overhead to support component
services they do not need.

To avoid these problems, it may be necessary to design components to support evolution,
both anticipated and unanticipated. This requires the resolution of four forces:
§  When component interfaces do not change, modifications to component

implementations should not break existini client code.

§If implementations of our Uni ver sal Conponent interface store their state
persistently in external storage, clients should not be affected if this functionality is
re-implemented differently, as long as the component's interface is unchanged.
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§ Existing client code should not break when developers extend a component with new
services that are visible externally. Ideally it should not be necessary to re-compile client
code.

§It may be necessary to add a logging service to the Uni ver sal Conponent interface
so that management applications and network elements can log information to a
central repository. Existing clients that are aware of the original version of
Uni ver sal Conponent should not be affected by this change, whereas new
clients should be able to take advantage of the new logging functionality.

8 Changing or extending a component's functionality should be relatively straightforward,
neither bloating existing component interfaces nor destabilizing the internal architecture
of existing components.

§When adding the logging service outlined above, we should minimize changes to
existing implementations of the Uni ver sal Conponent interface.

8 It should be possible to access components remotely or locally using the same
interface. If components and their clients are distributed across network nodes, the
interfaces and implementations of a component should be decoupled.

§Management applications can benefit from location-transparent access to remote
network elements in our TMN system. It should therefore be possible to separate
the interfaces of network element management components from their physical
implementations. These can be distributed throughout the network.

Solution

Program clients to access components via separate interfaces, one for each role a
component plays, rather than programming clients to use a single component that merges all
its roles into a single interface or implementation.

In detail: export component functionality via extension interfaces, one for each semantically-
related set of operations. A component must implement at least one extension interface. To
add new functionality to a component, or to modify existing component functionality, export
new extension interfaces rather than modify existing ones. Moreover, program clients to
access a component via its extension interfaces instead of its implementation. Hence, clients
only have dependencies on the different roles of a component, each of which is represented
by a separate extension interface.

To enable clients to create component instances and retrieve component extension
interfaces, introduce additional indirection. For example, introduce an associated component
factory for each component type that creates component instances. Ensure that it returns an
initial interface reference that clients can use to retrieve other component extension
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interfaces. Similarly, ensure that each interface inherits from a root interface that defines
functionality common to all components, such as the mechanism for retrieving a particular
extension interface. All other extension interfaces derive from the root interface. This
ensures that at minimum they offer the functionality it exports.

Structure
The structure of the Extension interface pattern includes four participants:

Components aggregate and implement various types of service-specific functionality. This

functionality can often be partitioned into several independent roles, each of which defines a

set of semantically-related operations.
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Components in our TMN framework play various roles, such as storing and retrieving the

state of a network element or managing the persistence of a component's internal state.

Extension interfaces export selected facets of a component's implementation. There is one

extension interface for each role [RG98] that a component implements. In addition, an

extension interface implicitly specifies a contract that describes how clients should use the
component's functionality. This contract defines the protocol for invoking the methods of the

extension interface, such as the acceptable parameter types and the order in which methods

must be called.

The components in the TMN framework can implement the | St at eMenor y interface,

which allows them to maintain their state in memory. A persistence manager, such as

the CORBA Persistent State Service [OMG99e] can use the | St at eMenor y interface to

manage component persistence without requiring components to expose their
representational details.

If new network element components are added that also implement | St at eMenory, the
persistence manager can manage their persistence without requiring any changes. The
| St at eMenory interface contains methods to prepare the component for reading and
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writing its state, as well as its read and write operations. The implicit contract between
the interface and its users therefore prescribes that the pr epar e() method must be
called before eitherreadSt ate() orwiteState().

The root interface is a special extension interface that provides three types of functionality:

8 Core functionality that all extension interfaces must support, for example functionality
that allows clients to retrieve the interfaces they request. This functionality defines the
basic mechanisms a component must implement to allow clients to retrieve and
navigate among its interfaces.

§ Domain-independent functionality, such as methods that manage component life-
cycles.

§ Domain-specific functionality that should be provided by all components within a
particular domain.

Although the root interface must implement core functionality, it need not support domain-
independent or domain-specific functionality. However, all extension interfaces must support
the functionality defined by the root interface. Each extension interface can thus play the role

of the root interface, which guarantees that every extension interface can return any other
extension interface on behalf of a client request.
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A Uni ver sal Conponent interface can be defined as the root interface in our TMN
framework. Unlike the multi-faceted—and increasingly bloated—

Uni ver sal Conponent interface outlined in the Example section, however, this root

interface only defines the minimum set of methods that are common to all components
in the TMN framework.

Clients access the functionality provided by components only via extension interfaces. After
a client retrieves a reference to an initial extension interface, it can use this reference to

retrieve ani other extension interface suiiorted bi a comionent.

A management application console client can use components in the TMN framework to
render the state of network elements and their relations visually on the screen, as well
as to store and retrieve their state using persistent storage.
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To retrieve an initial reference, clients interact with a component factory associated with a
particular component type. This component factory separates the creation and initialization
aspects of a component from its processing aspects. When a client creates a new
component instance, it delegates this task to the appropriate component factory.

After a component is created successfully, the component factory returns a reference to an
extension interface to the client. A component factory may allow clients to request a specific
type of initial extension interface. Factories may also provide functionality to locate and
return references to existing component instances.
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The class diagram below illustrates the participants in the Extension Interface pattern. This
diagram emphasizes logical rather than physical relationships between components. For
example, extension interfaces could be implemented using multiple inheritance or nested
classes, as described in implementation activity 6.1 (155). Such implementation details are
transparent to clients.
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Dynamics

We illustrate the key collaborations in the Extension Interface pattern using two scenarios.

Scenario | depicts how clients create new components and retrieve an initial extension

interface:

§ The client requests a component factory to create a new component and return a
reference to a particular extension interface.
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§ The component factory creates a new component and retrieves a reference to its root

interface.
§ The component factory asks the root interface for the requested extension interface,
then returns a reference to the extension interface to the client.
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Note that the factory could return any interface to the client, instead of retrieving a specific
extension one. Such a design can incur additional round-trips in a distributed system,
however, which increases the overhead of accessing the required interface.

Scenario Il depicts the collaboration between clients and extension interfaces. Note that the
component implementation itself is not visible to the client, because it only deals with
extension interfaces:

§  The client invokes a method on extension interface A, which can either be the root
interface or an extension interface.

8 The implementation of extension interface A within the component executes the
requested method and returns the results, if any, to the client.

§ The client calls the get Ext ensi on() method on extension interface A and passes it a
parameter that specifies the extension interface in which the client is interested. The
get Ext ensi on() method is defined in the root interface, so it is supported by all
extension interfaces. The implementation of extension interface A within the component
locates the requested extension interface B and returns the client a reference to it.

8 The client invokes a method on extension interface B, which is then executed within
the component implementation.
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Implementation
This section describes the activities associated with implementing the Extension Interface

pattern. This pattern should be familiar to anyone who has programmed with Microsoft's
Component Object Model (COM) [Box97], Enterprise JavaBeans (EJB) [MaHa99], or the

131



CORBA Component Model (CCM) [OMG99a], because it captures and generalizes the core
concepts underlying these component technologies.

1. Determine the stability of the design and the long-term application requirements.
Before applying the Extension Interface pattern, it is important to determine whether it
is really needed. Although this pattern is a powerful solution to a particular set of
forces, it is nontrivial to implement. It can also complicate a software design
significantly if applied unnecessarily.

We therefore recommend that the forces outlined in the Problem section are
considered carefully. You should ensure that these issues are faced in your software
system before applying this pattern. For example, it may turn out that the complete
set of methods an interface requires can be determined during system development,
and that the interface will not change over time as application requirements evolve. In
this case, it may be simpler to use the Liskov Substitution Principle [Mar95] rather
than the Extension Interface pattern.

2. Analyze the domain and specify a domain-specific component model. Assuming that
the Extension Interface pattern is necessary, the next activity involves analyzing
domain-specific application requirements. In particular, this activity focuses on
identifying application-specific entities, such as the network elements in our TMN
example, the roles a particular entity provides to the system, and the functionality that
supports the different roles. The result is a domain model that identifies which

comionents to imilement, as well as the functionaliti thei must irovide.

3. For the management application console, every type of entity to be controlled is
implemented as a separate managed object [ITUT92], which is an abstraction
used to represent hardware units, such as routers, computers, bridges, or
switches. Managed objects can also represent software elements, such as
applications, ports, or connections. Management applications use managed
objects to control and monitor the state of network elements, display debugging

information, or visualize sistem behavior on a manacI;ement console.

5. After devising a domain model, it is necessary to specify a component model to
implement the identified components:

§ If the components are restricted to a single application domain or a small set of
related domains, consider specifying a domainspecific component model that is
tailored for the application or family of applications being developed.

§ Conversely, if the components must be applied to a wide range of applications,
or even across multiple domains, consider using an existing component
technology, such as Microsoft COM [Box97], EJB [MaHa99], or the CORBA
Component Model [OMG99a].

In the latter case, the next implementation activity can be skipped, because these
component models define the infrastructure it specifies.

6. Specify the root interface. Determine if each type of functionality identified in
implementation activity 2 above should form part of the root interface, or be separated
into an extension interface.

With this criteria in mind, iterate through three sub-activities:
1. Specify core functionality. Several issues must be addressed when defining
the core functionality of the root interface:
8 Extension interface retrieval. At minimum, the root interface must
include a method that returns extension interface references to clients.
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The type of information returned from this method depends largely on the
programming language. For example, Java clients expect to retrieve an
object reference, whereas pointers are an appropriate choice for C++.

§ Unique naming. Extension interfaces must be named using integer
values or strings. Strings can be read more easily by programmers and
simple management tools, but integer values can be smaller and
processed more efficiently. To prevent name clashes, interface identifiers
can be generated algorithmically. For instance, Microsoft COM uses 128
bit globally unique identifiers (GUIDs) based on the address of the
network interface, the date, and the time.

8 Error handling. Component developers must determine what a
component should do when a client requests an extension interface that
is not supported. For example, a component could either return an error
value or raise an exception. The Implementation section of the Wrapper
Facade pattern (47) discusses several strategies for implementing an
error-handling mechanism and evaluates their trade-offs.

2. Specify domain-independent services. In addition to defining a method for
retrieving extension interfaces, the root interface can provide methods for
various domain-independent services. Here are two possibilities:

§ Reference counting. In programming languages that do not provide
automatic garbage collection, such as C or C++, clients are responsible
for deleting extension interfaces they no longer need. However, multiple
clients may share the same extension interface. Components can thus
provide a reference counting mechanism to prevent the accidental
deletion of resources used to implement extension interfaces.

Reference counting enables components to track the number of clients
accessing specific extension interfaces. After an extension interface is no
longer referenced by any clients, the resources used by the component's
implementation of the interface can be released automatically. The
Counted Pointer idiom [POSA1] [Cope92] presents several options for
implementing a reference counting mechanism.

§ Run-time reflection. Another example of a domain-independent service
is a run-time reflection mechanism. This mechanism allows components
to publish information about the specific roles, extension interfaces, and
methods they support. Using this knowledge, clients can construct and
send method invocations dynamically [GS96]. This enables scripting
languages to integrate components into existing client applications at run-
time. Reflection mechanisms can be instantiated using the Reflection
architectural pattern [POSA1].

3. Specify domain-specific functionality. The root interface can also export
domain-specific functionality if all components implementing the root interface

provide this functionaliti.

4. In our management application console, the drawing functionality could be
moved to the root interface.

6. The decision about which domain-specific services to specify in the root
interface should normally be deferred until after implementation activity 4
(153). Ideally, all domain-specific functionality should reside in separate
extension interfaces. If all components end up implementing a particular
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extension interface, refactor the current solution [Opd92] [FBBOR99] and
move the methods of that particular extension interface to the root interface.

7. Inour TMN framework example, extension interfaces are identified by
unique integer constants. We use Java as the implementation language
because it provides automatic garbage collection, which simplifies
memory management. The only common functionality therefore required

in the root interface—which we call | Root —is a method that allows client
to retrieve any interface they need.

8. /1 Definition of |Root:

9. public interface | Root {

10. | Root get Extension (int I1D) throws UnknownEx;
11. }

12. 1 Root serves as a generic base interface for all extension interfaces, If a
component does not support a particular interface, it throws an
UnknownEx exception:

13. /1 Definition of UnknownEx:

14. public class UnknownEx extends Exception {

15. protected int |D;

16. public UnknownEx (int ID) { this.ID=1D; }
17. public int getID () { return ID; }

18. }

19. The unique identifier of the requested interface is passed as an argument
to the UnknownEx constructor. This allows a client to determine which
interface caused the exception.

21. Another potential candidate for inclusion in the root interface is a persistence
mechanism. However, there are many different strategies and policies for
handling persistence, such as managing component state in databases or flat
files, which makes it hard to anticipate all possible use cases. Therefore,
components can choose to support whatever persistence mechanism they
consider appropriate by implementing specific extension interfaces.

7. Introduce general-purpose ext3ension interfaces. General-purpose extension
interfaces contain functional roles that must be provided by more than one
component and that are not included in the root interface. A separate extension
interface should be defined for each role. For example, extension interfaces can be
defined to handle persistence aspects of components, as discussed at the end of
implementation activity 3 (150).

8. Our management application console helps to control and monitor remote
network entities via managed objects. Managed objects are implemented as
components that send information to the management application console and
receive commands from it.
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37.

38.

9. Every managed object therefore implements the following interface,
| ManagedObj ect 0

10. /] Definition of |IManagedObject:

11. i mport java.util.*;

12.

13. public interface | ManagedObj ect extends | Root {

14. public void setValue (String key, Object
val ue) ;

15. public Object getValue (String key) throws

16. W ongKeyEx;

17. public void setMiltipleVal ues

18. (Vector keys, Vector val ues);

19. public Vector getMiltipleVal ues

20. (Vector keys) throws W ongKeyEx;

21. public long addNotificationLi stener

22. (I'NotificationSink sink) ;

23. public void renoveNotificationListener (long
handl e) ;

24. public void setFilter (String expr) ;

25. }

26. This example illustrates managed objects that are visualized on a management
console. We therefore introduce two additional extension interfaces, | Dunp and
| Render , which are implemented by all components that print debug information
on the console or draw themselves.

27. /1 Definition of |Dunp:

28. public interface | Dunp extends |Root {
29. public String dump () ;

30. }

31.

32. /1 File |IDraw.java.

33. public interface | Render extends |Root ({
34. public void render () ;

35. }

If a particular general-purpose extension interface must be supported by all
components, it may be feasible to refactor the root interface specified in
implementation activity 3 (150) and integrate this functionality there. Note, however,
that refactoring the root interface may bloat it with functionality or break existing
applications, thereby defeating the benefits of the Extension Interface pattern.
Define component-specific extension interfaces. The extension interfaces needed to
export generic component functionality were specified in implementation activities 3
(150) and 4 (153). This implementation activity defines additional interfaces that are
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specific to a particular component or that are applicable to a limited range of
components.

39. For our TMN framework, we specify the extension interfaces | Port and
| Connect i on. Managed objects that represent ports on a particular host
implement | Port :

40. /1 Definition of IPort:

41. public interface I Port extends |Root {
42. public void setHost (String host) ;
43. public String getHost ();

44. public void setPort (long port);
45. public long getPort ();

46. }

47. Likewise, objects that represent the connection between two ports implement
| Connecti on:

48. /1 Definition of IConnection:

49. public interface | Connection extends |Root {

50. public void setPortl (IPort pl) ;

51. public IPort getPortl () ;

52. public void setPort2 (IPort p2);

53. public IPort getPort2 ();

54. public void openConnection () throws
CommEr r or Ex;

55. public void closeConnection () throws
CommEr r or Ex;

56. }

. Implement the components. The implementation of components involves five sub-
activities:
0. Specify the component implementation strategy. This activity determines how
extension interface implementations should be linked, in accordance with the
following three strategies:

8 Multiple inheritance. In this strategy a component class inherits from
all of its extension interfaces.
8 Nested classes. In this strategy extension interfaces can be

implemented as nested classes within the component class. The
component class instantiates a singleton instance [GoF95] of each nested
class. Whenever the client asks for a particular extension interface, the
get Ext ensi on() method implementation returns the appropriate nested
class object.

8 Separate interface classes. Extension interfaces can use the Bridge or
Adapter patterns [GoF95] to implement separate classes that are
independent of the component itself. This strategy is particularly useful
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when applying the Extension Interface pattern to refactor an existing
component that does not implement the pattern.

The 'tie’' adapter [SV98a] defined in the CORBA IDL mappings for Java
and C++ is an example of this component implementation strategy. In
CORBA a tie adapter inherits from an automatically-generated servant
class, overrides all its pure virtual methods, and delegates these methods
to another C++ object, the so-called 'tied object’. A server application
developer defines the tied object.

1. Regardless of which component implementation strategy is selected, the client
is unaffected, because it only accesses the component via references to
extension interfaces.

2. Implement the mechanism to retrieve extension interfaces. When
implementing the generic method that retrieves extension interfaces on behalf
of clients, ensure that the method implementation conforms to three

conventions:

§ Reflexivity. When clients query extension interface A for the same
extension interface A, they must always receive the same reference A.

8 Symmetry. If a client can retrieve extension interface B from extension

interface A, it also must be able to retrieve extension interface A from
extension interface B.

§ Transitivity. If a client can retrieve extension interface B from extension
interface A and extension interface C from extension interface B, it must
be possible to retrieve extension interface C directly from extension
interface A.

Following the conventions above ensures that a client can always navigate
from a specific extension interface of a component to any other extension
interface of the same component. In other words, each extension interface can
be connected with every other extension interface via navigation.

3. Implement a reference counting mechanism (optional). If the root interface
requires the reference counting mechanism discussed in implementation
activity 3.2 (151), specify the resources in the component implementation that
must be managed by this mechanism. There are two common options for
implementing a reference counting mechanism:

8 If each interface implementation requires or uses separate resources,
or if there are separate implementations for each interface, introduce a
separate reference counter for each extension interface. If a particular
reference counter drops to zero, release all resources used by the
corresponding extension interface. After the last reference counter has
fallen to zero, all resources associated with the component can be
released.

8 If all interface implementations share the same resources, introduce a
global reference counter for the entire component. After this global
reference counter reaches zero, release the component's resources.

The first option can optimize resource management more effectively than the
second option, because in the second option all resources must always be
available. In the first option, in contrast, extension interfaces and their required
resources may be activated and deactivated on demand. Only those extension
interfaces and resources actually used by clients are activated. The
disadvantage of maintaining extension interface-specific reference counters,
however, is their complex implementation within the component.
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We can apply reference counting to activate and deactivate extension
interface implementations on-demand in our TMN framework. This avoids
the unnecessary commitment of resources such as memory or socket
handles. For example, when a management application client accesses
an extension interface whose reference counter is zero, the component
can activate the interface implementation and its resources transparently.
When no clients access the extension interface, the corresponding
implementation and resources can be deactivated and released

selectiveli. The COM |Box97 comionent model imilements this strateii.

4. Select a concurrency strategy. In concurrent or networked systems, multiple
clients can access a particular extension interface simultaneously.
Implementations of different extension interfaces may share state and
resources within the component. Critical sections and state within the
component's implementation must be serialized therefore to provide corruption
from concurrent access by clients.

The Active Object (369) and Monitor Object (399) concurrency patterns, as
well as the Scoped Locking (325), Strategized Locking (333), and Thread-Safe
Interface (345) synchronization patterns, define various strategies and
mechanisms for protecting critical sections and state within components.

5. Implement the extension interface functionality using the selected component
implementation strategy. This implementation activity is largely domain- or
application-specific, so there are no general issues to address.

6. Inour TMN framework example we implement components using multiple
interface inheritance. Our components do not require explicit reference
counting, because Java provides automatic garbage collection.

7. For simplicity, we do not illustrate the component concurrency strategy. To
identify different extension interfaces uniquely, we define an
I nt er f acel Dclass that enumerates all interface identifiers. These are
defined to be integers via the following types:

8. /1 Definition of InterfacelD:
9. public class InterfacelD {
10. public final static int ID ROOT = 0;

c
11. public final static int |D MANOBJ= 1;
12. public final static int ID DUW = 2;
13. public final static int |D RENDER= 3;
14. public final static int |ID PORT = 4;
15. public final static int D CONN = 5;
16. }

17. A more sophisticated implementation could use a repository of interface
identifiers. In this case, unique identifiers could be generated automatically
by tools to prevent name clashes when different component providers
define different interfaces. We could also use a St ri ng as the identifier
type rather than an i nt . This might improve the readability and
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19.
20.
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22.
23.
24.
25.
26.

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

46

47.

debuggability of the component system, but at the expense of larger
memory footprint and slower lookup time.

One of the component types in the management application console
represents a connection between two ports. This component supports the
extension interfaces | Managed(bj ect, | Render, | Connection, and
| Dunp. We implement all extension interfaces using Java interface
inheritance:

/1 Definition of ConnectionConponent:
public class ConnectionConponent inplenents
| ManagedObj ect, | Render, |Dunp, | Connection {
/1 <table> contains all properties.
private Hashtable table = new Hashtable ();

/1l <listener> contains event sinks.
private Hashtable |isteners = new Hashtabl e

()

private long nListeners = 0;

private |Port portl, port?2;
private String filterExpression;

/1 <l Root > met hod.
public | Root getExtension (int |ID)
throws UnknownEx {
switch (1D {
case Interfacel D. | D _ROOT:
case Interfacel D.| D_MANOBJ:
case Interfacel D.| D_DUVP:
case Interfacel D.|1 D RENDER:
case Interfacel D.| D_CONNECT:
return this;
defaul t:
t hr ow new UnknownEx (1D);

}

Note how the get Ext ensi on() interface uses a swi t ch statement to
determine which interface is supported by the component. Had the
identifier type been defined as a St ri ng rather than ani nt , we would
have used a different type of lookup strategy such as linear search,
dynamic hashing, or perfect hashing [Sch98a].

/1 Definition of |IManagedObject:
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val ue) {

*/ )

*/ }

}

public void setValue (String key, Object

tabl e. put (key, val ue);
}
public Object getValue (String key)
throws WongKeyEx {
W ongKeyEx wWkEx = new WongKeyEx ();
if (!table.containsKey (key)) {
wkEx. addKey (key); throw wkEx;

}
return table.get (key);

/1 Additional methods from <l ManagedObj ect >.

public void setMiltipleVal ues
(Vector keys, Vector values) { /*

public Vector getMiltipleVal ues

*/

(Vector keys) throws WongKeyEx { /* ...

public long addNotificationLi stener

(I'NotificationSink sink) { /* ...

public void renoveNotificationListener
(long handle) { /* ... */ }

*/

public void setFilter (String expr) { /* ...

/1 <l Dunp> and <l Render> met hods.
public String dump () { /* ... */ }
public void render () { /* ... */ }

/1 <l Connecti on> net hods.
public void setPortl (IPort pl) { portl

public IPort getPortl () { return portl; }

public void setPort2 (IPort p2) { port2

public I Port getPort2 () { return port2; }

public void openConnection () throws

CommErrorkx { }

public void closeConnection () throws

CommErrorkx { }

pl;

p2;
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82. }

59. Implement component factories. Every component type must implement a factory that
clients can use to obtain instances of the component type. This involves three sub-
activities:

0. Define the association between component factories and components. For
every component type, a singleton [GoF95] component factory can be defined
to create instances of this component type. Two strategies can be applied to
implement this association:

§ One component factory interface per component type. In this strategy
a separate factory interface is defined for every component type and used
to instantiate the component type. One component type could offer a
component factory interface with a single method cr eat e() . Another
component type could offer a selection of different methods for creating
components. The Factory Method pattern [GoF95] can be used to
implement this strategy. It requires clients to handle many different
component factory interfaces, however.

§ One component factory interface for all component types. In this
strategy there is only one component factory interface that all concrete
component factories must implement. This design enables clients to
create different components in a uniform manner. For example, when a
client creates a new component, it only must know how to invoke the
generic component factory interface. The Abstract Factory design pattern
[GoF95] can be used to implement this strategy.

1. Decide which functionality the factory will export. Regardless of the strategy
selected in implementation activity 7.1 (160), the following issues must be
addressed when specifying the interface of a particular component factory:

8 There could be one or more different methods for creating new
components. These creation methods are similar to constructors in
object-oriented programming languages, such as C++ or Java, in that
they instantiate and initialize component types. Different types of
initialization information might be necessary to construct a new
component instance. For each of these alternatives, a separate create
method is introduced with its own, possibly empty, set of initialization
parameters.

§ Methods could be available for finding existing components rather than
creating them for each invocation. If component instances are already
available and if they can be identified uniquely, a factory can be
implemented using the Manager pattern [Som97]. In this case, its f i nd()
methods are passed a set of conditions as arguments, such as the
primary key associated with each component. It then retrieves one or
more components that adhere to the condition arguments.

§ Clients can specify component usage policies. For example, one
policy could provide a singleton implementation for a particular
component type. Another policy could determine whether a specific
component is expected to maintain its state persistently.

8 Life-cycle management support for components is another candidate
for the component factory interface. For example, methods to release

existincI; comionents micI;ht be included in the comionent factori.

2. For every managed object in our TMN framework, we provide a separate
component factory, implemented as a singleton. The interface | Fact ory
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is generic and is supported by all concrete component factory
implementations. It contains the cr eat e() method that clients use to
instantiate a new component and to return the | Root interface to the
caller:

3. /1 Definition of Factory:

4, public interface Factory {

5. | Root create ();

6. }

7. Every concrete component factory must implement this factory interface:

8. /1 Definition of ConnectionFactory:

9. public class ConnectionFactory inplenents Factory
{

10. /1 Inplement the Singleton pattern.

11. private static ConnectionFactory thelnstance;

12.

13. private ConnectionFactory () { }

14.

15. public static ConnectionFactory getlnstance ()
{

16. if (thelnstance == null)

17. t hel nst ance = new Connecti onFactory
0);

18. return thel nstance;

19. }

20.

21. /1 Conponent creation nethod.

22. public I Root create () {

23. return new Connecti onConponent ();

24. }

25. }

. Introduce a component factory finder. As the number of component types
increases, the problem of how to find the associated component factories
arises. One way to resolve this is to define a global component factory finder.
This finder could maintain the associations between component types and
their component factories, as specified in implementation activity 7.1 (160).

To obtain the component factory for a particular component type, clients must
indicate to the component factory finder which component type they require.
Component types must therefore be identified uniquely. A common way to
implement this identification mechanism is to introduce a primary key type for
every component type. This key type helps to associate component instances
with instances of the primary key type uniquely.
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For example, each component instance might be associated uniquely with an
integer value. This integer value might be passed as an argument to a
particular f i nd() method of the component factory, which uses the primary
key to obtain the associated component instance. For this purpose, the
component factory can apply the Manager pattern [Som97] and map from
primary key values to component instances. To simplify client programming,
the same primary key type can be used to identify both component instances
and extension interfaces, as shown in implementation activity 3.1 (151). In
Microsoft COM, for example, globally-unique identifiers (GUIDs) identify both
extension interfaces and component types.

When clients request a specific component factory from the component factory
finder, the factory finder returns the interface of the component factory. By
using this interface, clients can instantiate the components they need. If there
is only one global component factory finder in the system, use the Singleton
pattern [GoF95] to implement it.

The component factory finder can optionally provide a trading mechanism
[OMG98Db]. In this case, clients do not pass a concrete component type to the
component factory finder. Instead, they specify properties that can be used by
the component factory finder to retrieve an appropriate component factory. For
example, a client might specify certain properties of extension interfaces in
which it is interested to a component factory finder. The component factory
finder then locates a component type that implements all the requested
interfaces.

Management application clients in our TMN system need not know all
component factories. We therefore introduce a component factory finder
that is responsible for managing a hash table with component-to-factory
associations. Clients need only know where the single component factory
finder is located. To identify components uniquely, we apply the same
strategy used for interfaces in implementation activity 6.5 (158).

A class Conponent | Dis introduced that contains integer values, each
associated with a single component factory:

/1 Definition of ComnponentlD:

public class ConponentlD {
public final static int CID PORT = O;
public final static int CI D CONN

I
=

}

The component factory finder is implemented as a singleton. It contains
two methods that are publicly accessible. Ther egi st er Fact ory()
method must be called—either by clients or by components—to register
component factories with the component factory finder. The

fi ndFact ory() method is used to search for existing component
factories.

/1 Definition of FactoryFinder:
import java.util.*;

public class FactoryFi nder {
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/1 1D/ factory associations are stored in a
hash tabl e.

Hashtable table = null;
/1 1mplenent the Singleton pattern.
private static FactoryFinder thelnstance;

public static FactoryFinder getlnstance () {
if (thelnstance == null) {
t hel nstance = new FactoryFi nder ();

}

return thel nstance;

private FactoryFinder () {
tabl e = new Hashtable ();

}

/1 Component factory is registered with the
finder.

public void registerFactory (int ID Factory
f)

table. put (new Integer (I1D), f);

/1 Finder is asked for a specific conponent
factory.

public Factory findFactory (int |D)
t hrows UnknownEx {
Factory f = (Factory) table.get
(new Integer (1D));
if (f == null) throw new UnknownEx (I1D);
else return f;

}
}

60. Implement the clients. Clients use functionality provided by components. They may
also act as containers® for these components. To implement clients apply the
following steps:

8 First determine which component functionality they require. For example,
determine if there are existing components that cover some or all of the
functionality the clients are expected to provide.
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§ Identify which components should be composed together and determine which
components can use other components.

§ Determine if there are any subsystems within the client application that might
be used in other applications and separate these into new component types.

After evaluating these issues, integrate the client application using the components

identified via the analisis outlined in the imilementation activities above.

In our example, to localize the initialization of our TMN system we provide a class
Conponent | nst al | er within a client that creates all the necessary component
factories and registers them with the component factory finder:

cl ass Componentlinstaller {
static public void install () {
/1 First, get the global factory finder

i nst ance.
Fact oryFi nder finder =
Fact oryFi nder . getl nstance ();
/1 Ask the factory finder for the conp.
factories
Port Factory pFactory =
Port Factory. getl nstance ();
ConnectionFactory cFactory =
Connecti onFactory. getlnstance ();
/1 Register both conmponent factories.
finder. registerFactory
(component | D. Cl D_PCRT, pFactory);
finder. registerFactory
(component I D. Cl D_CONN, cFactory);
}
}

The main class of the client application defines the methods dunpAl | () and
drawAl | () . Both methods are passed an array of components as a parameter.
They then iterate through the array querying each component for the extension
interface | Dunp and | Render , respectively, calling the methods dunp() and
render () if the query succeeds. This example shows that polymorphism can be
supported by using interface inheritance rather than implementation inheritance.

/1 This client instantiates three components: two ports
/1 and a connection between them
public class dient {
private static void dunpAll (1Root components[])
t hrows UnknownEx {
for (int i = 0; i < conponents.length; ++i) {
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| Dunp d = (| Dunp)
conponent s[i]. get Ext ensi on
(I'nterfacel D. | D_DUMP) ;
Systemout.println (d.dunp ());

private static void drawAll (1Root comnponents[])
t hrows UnknownEx {
for (int i = 0; i < conponents.length; ++i) {
| Render r = (I Render)
conponent s[i]. get Ext ensi on
(I'nterfacel D. | D RENDER) ;
r.render ();

}

The mai n() method is the entry point into the client application. It first initializes
the TMN system using the initialization component introduced above, then it

retrieves the required component factories representing ports and connections
between ports:

public static void main (String args[]) {
Factory pFactory = null;
Factory cFactory = null;

/'l Register conponents with the factory finder.
Conponentlnstaller.install ();

/1 access factory finder.
Fact oryFi nder finder =
Fact or yFi nder . get I nstance ();

try {
// Get factories.

pFactory = finder. findFactory
(conponent | D. Cl D_PORT) ;

cFactory = finder. findFactory
(conponent | D. Cl D_CONN) ;

}
catch (UnknownEx ex) {

Systemout.println (ex.getID () +

"not found!");
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Systemexit (1);

/]l Create two ports and a connection.
| Root port 1Root pFactory.create ();
| Root port2Root = pFactory.create ();

| Root connectionRoot = cFactory.create ();

Note that a client could type cast port 1Root and port 2Root below instead of
calling the get Ext ensi on() method, because the components use interface
inheritance to implement the extension interfaces. However, this design would
tightly couple the client implementation and the component implementation. If we
later restructured the components to use Java inner classes rather than multiple
interface inheritance, for example, all the client code would break.

try {
/1 Initialize port 1.
| Port pl = (lPort) port1Root. getExtension
(I'nterfacel D.1 D_PORT);
pl. set Host (" Machine A");
pl. set Port ( PORT_NUMBER) ;

/1 ...Initialize port 2 and connection...

/1 Build array of conponents.
| Root conponents[] ={ c, pl, p2 };
/1 Dunp all components.
dunpAl | (conponents);
/1 Draw all components.
drawAl | (conponents);
} catch (UnknownEx error) {

Systemout.println ("Interface
+error.getID () + " not supported!");
} catch (ComrError Ex commError) ({

Systemout. println ("Connection problent);

}
}

Example Resolved
Shortly after delivering the component-based management application console to their

customers, the TMN framework developers receive two change requests. The first request
requires each component in the TMN framework to load and store its state from a persistent
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database. The second request requires a new component with a star connection topology.
This topology denotes a set of network elements that are all connected to a central element,
yielding a star-like shape.

To satisfy these change requests, the TMN framework developers can apply the Extension
Interface pattern:

8 To support loading and storing component state from a persistent database, a new
extension interface called | Per si st ence is defined:

public interface |Persistence extends |Root {
public Persistenceld store ();

public | oad (Persistenceld persistenceld);

w W W W

}

Every existing component is then enhanced to implement this interface. In detail, a
component implementor must add all methods defined in the new interface to the
component implementation. The amount of work necessary to extend a component with
a new extension interface directly depends on the particular extension interface added
to the component. The persistence example requires just a few database calls to
implement the new interface.

To support star connection topologies, we define an | Connecti onSt ar interface:
public interface | ConnectionStar extends | Root ({
public void setAllPorts (IPort ports []);
public void setPort (long whichPort, |Port port);
public I Port getPort (long whichPort);

}

All TMN framework components must then implement the | Render, | Dunp,
| ConnectionStar, | ManagedObj ect and | Per si st ence interfaces.

The I nt er f acel D class defined in implementation activity 6.5 (158) is extended with
identifiers for the new interfaces.

If a client needs to access the new functionality, it can retrieve any extension interface from
the component, query the component for a new extension interface and use the new service:

| Root iRoot =/* ... */; /] use any conponent interface
try {
Persi stenceld storage = /* ... */;

| Persi stence i Persistence =
i Root . get Ext ensi on (Interfacel D.| D _PERSI STENCE) ;
Persi stenceld id = iPersistence.l oad (storage);
} catch (UnknownEx ue) {

/1 Provide exception handling code here when
/1 <getExtension> fails to return <l Persistence>.

}

Variants
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Extension Object [PLoPD3]. In this variant there is no need for a component factory because
each component is responsible for returning interface references to clients. Extension
objects are well-suited for components that are built using a single object-oriented
programming language, such as C++ or Java, where components derive from all interfaces
they implement. Type-safe downcasting can be used to retrieve component interfaces. In
these language-specific implementations component factories are not needed because
component classes map directly to language classes, which are themselves responsible for
instance creation.

Distributed Extension Interface. This variant features an additional type of participant,
servers, which host the implementations of components. Each server contains the factory as
well as the implementation of all supported extension interfaces. A single server can host
more than one component type. In distributed systems, clients and servers do not share the
same address space. It is the task of the server to register and unregister its components
with a locator service, so that clients or factory finders can retrieve remote components.

In distributed systems there is a physical separation of interfaces and implementations.
Client proxies can be introduced to attach clients to remote extension interfaces
transparently [POSA1] [GoF95]. Client-side proxies implement the same extension
interfaces as the components they represent. They also shield clients from tedious and
error-prone communication mechanisms by forwarding method invocations over the network
to remote components. Proxies can be defined so that clients can leverage the Extension
Object variant outlined above. To enhance performance, client proxies can provide co-
located [WSV99] local implementations of general-purpose extension interfaces to reduce
network traffic, in accordance with the Half Object plus Protocol pattern [Mes95].

In distributed object computing middleware [OMG98c], proxies can be implemented
automatically via an interface definition language (IDL) compiler. An IDL compiler parses
files containing interface definitions and generates source code that performs various
network programming tasks, such as marshaling, demarshaling, and error-checking [GS98].
The use of interface definition languages simplifies the connection of components and
clients written in different programming languages. To ensure this degree of distribution and
location transparency, the underlying component infrastructure can instantiate the Broker
architectural pattern [POSA1].

Extension Interface with Access Control. In this variant the client must authenticate itself to
the extension interface. Client access to an extension interface can be restricted by this
method. For example, an administrator might be granted access to all interfaces of a
component, whereas another client would be allowed to invoke methods on a subset of
interfaces that provided specific functionality.

Asymmetric Extension Interface. This variant specifies one distinguished interface that is
responsible for providing access to all other interfaces. In contrast to the symmetric case,
clients are not capable of navigating from an extension interface to any other extension
interface. They must instead use the distinguished extension interface to navigate to any
other extension interface. This interface may be provided by the component itself, as defined
by the Extension Object variant.

Known Uses

Microsoft's COM/COM+ technology is based upon extension interfaces [Box97]. Each COM
class implementation must provide a factory interface called | Cl assFact or y that defines
the functionality to instantiate new instances of the class. When the COM run-time activates
the component implementation, it receives a pointer to the associated factory interface.
Using this interface, clients can to create new component instances.
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Each COM class implements one or more interfaces that are derived from a common root
interface called | Unknown. The | Unknown interface contains the method
Querylnterface(REFI I D, voi d**), which allows clients to retrieve particular extension
interfaces exported by a component. The first parameter to Quer yl nt er f ace() is a unique
identifier that determines which extension interface to return to a client. If the component
implements the interface requested by a client, it returns an interface pointer in the second
parameter, otherwise an error is returned.

This activity is called interface negotiation, because clients can interrogate components to
determine whether they support particular extension interfaces. COM/COM+ implements the
Distributed Extension Interface variant and allows clients and components to be developed
in any programming language supported by Microsoft, including Visual Basic, C, C++ and
Java.

CORBA 3 [Vin98] introduces a CORBA Component Model (CCM) [OMG99a] in which each
component may provide more than one interface. Clients first retrieve a distinguished
interface, the component's so-called 'equivalent’ interface. They then use specific 'provide'
methods to navigate to one of the extension interfaces, called 'facets' in CCM. Every CCM
interface must implement the method get _conponent (), which is similar to COM's
Queryl nterface() method described above. It is therefore always possible to navigate
from a facet back to the component's equivalent interface.

To obtain a reference to an existing component, or to create a new component, clients
access a so-called 'home' interface, which is associated with a single component type. This
interface represents the component factory interface, as defined by CORBA components
and Enterprise JavaBeans. The factory finder within CCM is implemented by the
Conponent HomeFi nder , whereas EJB relies on the Java Naming and Directory Interface
(JNDI) for the same purpose. CORBA components and the Java-centric subset Enterprise
JavaBeans (EJB) [MaHa99] use the Asymmetric Extension Interface variant.

OpenDoc [OHE96] introduces the concept of adding functionality to objects using
extensions. Functionality is provided to retrieve extensions in the root interface, as well as
for reference counting. OpenDoc implements the Extension Object variant of Extension
Interface.

Consequences
The Extension Interface pattern offers the following benefits:

Extensibility. Extending the functionality of a component should only require adding new
extension interfaces. Existing interfaces remain unchanged, so existing clients should not be
affected adversely. Developers can prevent interface bloating by using multiple extension
interfaces rather than merging all methods into a single base interface.

Separation of concerns. Semantically-related functionality can be grouped together into
separate extension interfaces. A component can play different roles for the same or different
clients by defining a separate extension interface for each role.

Polymorphism is supported without requiring inheritance from a common interface. If two
components implement the same extension interface, a client of that particular extension
interface need not know which component actually provides the functionality. Similarly,
multiple components can implement the same set of interfaces, thereby allowing them to
exchange component implementations transparent.

Decoupling of components and their clients. Clients access extension interfaces rather than
component implementations. There is therefore no (tight) coupling between a component
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implementation and its clients. New implementations of extension interfaces can thus be
provided without breaking existing client code. It is even possible to separate the
implementation of a component from its interfaces by using proxies [POSA1] [GoF95].

Support for interface aggregation and delegation. Components can aggregate other
components and offer the aggregated interfaces as their own. The aggregate interfaces
delegate all client requests to the aggregated component that implements the interface. This
allows the aggregate interfaces to assume the identity of every aggregated component and
to reuse their code. However, a pre-condition for this design is that the aggregate interface
component and its constituent aggregated components collaborate via the

get Ext ensi on() method.

However, the Extension Interface pattern also can incur the following liabilities:

Increased component design and implementation effort. The effort required to develop and
deploy components can be non-trivial. The component programming effort is particularly
tedious when the Extension Interface pattern is not integrated transparently in a particular
programming language. For example, it is relatively straightforward to instantiate the pattern
using Java or C++. Implementing it in C is extremely complex, however, due to the lack of
key language features such as inheritance or polymorphism.

Increased client programming complexity. The Extension Interface pattern makes clients
responsible for determining which interfaces are suitable for their particular use case. Clients
must therefore perform a multi-step protocol to obtain a reference to an extension interface
before using it. A client must also keep track of a variety of bookkeeping details, such as
interface or instance identifiers and reference counts, that can obscure the client's core
application logic.

Additional indirection and run-time overhead. Clients never access components directly,
which may reduce run-time efficiency slightly. Similarly, run-time reference counting of
initialized components is complex and potentially inefficient in multi-threaded or distributed
environments. In certain cases, however, this additional indirection is negligible, particularly
when accessing components across highlatency networks.

See Also

Components and clients may not reside in the same address space, be written in the same
programming language or be deployed in binary form, but it still may be necessary to
interconnect them. The Proxy pattern [POSA1] [GoF95] can be applied in this context to
decouple a component's interface from its implementation. For a more sophisticated and
flexible solution, the Broker pattern [POSA1] can be applied. In this pattern components act
as servers and the broker, among its other responsibilities, provides a globally-available
factory finder service.

The Extension Object variant of the Extension Interface pattern is introduced in [PLoPD3].
This variant is applicable whenever the object model of the underlying programming
language can be used to implement a non-distributed component extension mechanism. In
this case,

§ Components and component factories map directly to programming language classes
8 Component interfaces map to programming language interfaces and

8 The retrieval of component interfaces is implemented using typesafe downcasting
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distributed object computing in the days when he was Doug Schmidt's office-mate in
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UINote that a component may provide interfaces, such as | ManagedObj ect , that are
accessed locally by the client, while their actual implementation resides on a remote network
node. By using the Proxy pattern [POSA1] [GoF95], distribution can be transparent to
clients. For clarity we assume that all interfaces have local implementations in this example.
For information on how proxies can be introduced to support distributed environments, refer
to the Distributed Extension Interface variant.

[&Typically a component is loaded into the address space of a run-time environment that
provides resources such as CPU time and memory to its components. This runtime
environment is often called a container, because it shields components from the details of
their underlying infrastructure, such as an operating system. In non-distributed use cases,
clients can contain components and therefore act as containers.
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Chapter 3. Event Handling Patterns

Overview

"The power to guess the unseen from the seen, to trace the implications of
things, to judge the whole piece by the pattern ... this cluster of gifts may
almost be said to constitute experience."

Henry James, Jr. (1843-1916) — English Author

This chapter presents four patterns that describe how to initiate, receive, demultiplex,
dispatch, and process events in networked systems: Reactor, Proactor, Asynchronous
Completion Token, and Acceptor-Connector.

Event-driven architectures are becoming pervasive in networked software applications. The
four patterns in this chapter help to simplify the development of flexible and efficient event-
driven applications. The first pattern can be applied to develop synchronous service
providers:

§

The Reactor architectural pattern (179) allows event-driven applications to demultiplex
and dispatch service requests that are delivered to an application from one or more
clients. The structure introduced by the Reactor pattern 'inverts' the flow of control within

an application, which is known as the Hollywood Principle— 'Don't call us, we'll call you'

[VIis98a].

It is the responsibility of a designated component, called reactor, not an application, to
wait for indication events synchronously, demultiplex them to associated event handlers
that are responsible for processing these events, and then dispatch the appropriate
hook method on the event handler. In particular, a reactor dispatches event handlers
that react to the occurrence of a specific event. Application developers are therefore
only responsible for implementing concrete event handlers and can reuse the reactor's
demultiplexing and dispatching mechanisms.

Although the Reactor pattern is relatively straightforward to program and use, it has several
constraints that can limit its applicability. In particular it does not scale to support a large
number of simultaneous clients and/or long-duration client requests well, because it
serializes all event handler processing at the event demultiplexing layer. The second pattern
in this chapter can help alleviate these limitations for event-driven applications that run on
platforms that support asynchronous 1/O efficiently:

§

The Proactor architectural pattern (215) allows event-driven applications to efficiently
demultiplex and dispatch service requests triggered by the completion of asynchronous
operations. It offers the performance benefits of concurrency without incurring some of
its liabilities.

In the Proactor pattern, application components—represented by clients and completion
handlers—are proactive entities. Unlike the Reactor pattern (179), which waits passively
for indication events to arrive and then reacts, clients and completion handlers in the
Proactor pattern instigate the control and data flow within an application by initiating one
or more asynchronous operation requests proactively on an asynchronous operation
processor.

When these asynchronous operations complete, the asynchronous operation processor
and and a designated proactor component collaborate to demultiplex the resulting
completion events to their associated completion handlers and dispatch these handlers'
hook methods. After processing a completion event, a completion handler may initiate
new asynchronous operation requests proactively.
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The remaining two design patterns in this chapter can be applied in conjunction with the first
two architectural patterns to cover a broader range of event-driven application concerns.

The next pattern is particularly useful for optimizing the demultiplexing tasks of a Proactor

(215) implementation, because it addresses an important aspect of asynchronous

application design:

§ The Asynchronous Completion Token design pattern (261) allows an application to
demultiplex and process efficiently the responses of asynchronous operations it invokes
on services.

The final pattern in this chapter is often used in conjunction with the Reactor (179) pattern for

networking applications:

8 The Acceptor-Connector design pattern (285) decouples the connection and
initialization of cooperating peer services in a networked system from the processing
they perform once connected and initialized. Acceptor-Connector allows applications to
configure their connection topologies in a manner largely independent of the services
they provide. The pattern can be layered on top of Reactor to handle events associated
with establishing connectivity between services.

All four patterns presented in this chapter are often applied in conjunction with the patterns
presented in Chapter 5, Concurrency Patterns. Other patterns in the literature that address
event handling include Event Notification [Rie96], Observer [GoF95], and Publisher-
Subscriber [POSA1].

Reactor

The Reactor architectural pattern allows event-driven applications to demultiplex and
dispatch service requests that are delivered to an application from one or more clients.

Also known as
Dispatcher, Notifier
Example

Consider an event-driven server for a distributed logging service. Remote client applications
use this logging service to record information about their status within a distributed system.
This status information commonly includes error notifications, debugging traces, and
performance diagnostics. Logging records are sent to a central logging server, which can
write the records to various output devices, such as a console, a printer, a file, or a network
management database.
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Clients communicate with the logging server using a connection-oriented protocol, such as
TCP [Ste98]. Clients and the logging service are thus bound to transport endpoints
designated by full associations consisting of the IP addresses and TCP port numbers that
uniquely identify clients and the logging service.

The logging service can be accessed simultaneously by multiple clients, each of which
maintains its own connection with the logging server. A new client connection request is
indicated to the server by a CONNECT event. A request to process logging records within the
logging service is indicated by a READ event, which instructs the logging service to read new
input from one of its client connections. The logging records and connection requests issued
by clients can arrive concurrently at the logging server.

One way to implement a logging server is to use some type of multi-threading model. For

example, the server could use a 'thread-per-connection' model that allocates a dedicated

thread of control for each connection and processes logging records as they arrive from

clients. Using multi-threading can incur the following liabilities, however:

§ Threading may be inefficient and non-scalable due to context switching,
synchronization, and data movement among CPUs.

§ Threading may require the use of complex concurrency control schemes throughout
server code.

§ Threading is not available on all operating systems, nor do all operating systems
provide portable threading semantics.

§ A concurrent server may be better optimized by aligning its threading strategy to
available resources, such as the number of CPUSs, rather than to the number of clients
is services concurrently.

These drawbacks can make multi-threading an inefficient and overly-complex solution for
developing a logging server. To ensure adequate quality of service for all connected clients,
however, a logging server must handle requests efficiently and fairly. In particular, it should
not service just one client and starve the others.

Context

An event-driven application that receives multiple service requests simultaneously, but
processes them synchronously and serially.

Problem

Event-driven applications in a distributed system, particularly servers,Y must be prepared to
handle multiple service requests simultaneously, even if those requests are ultimately
processed serially within the application. The arrival of each request is identified by a
specific indication event, such as the CONNECT and READ events in our logging example.
Before executing specific services serially, therefore, an event-driven application must
demultiplex and dispatch the concurrently-arriving indication events to the corresponding
service implementations.

Resolving this problem effectively requires the resolution of four forces:

§ To improve scalability and latency, an application should not block on any single
source of indication events and exclude other event sources, because blocking on one
event source can degrade the server's responsiveness to clients.

8 To maximize throughput, any unnecessary context switching, synchronization, and
data movement among CPUs should be avoided, as outlined in the Example section.

8 Integrating new or improved services with existing indication event demultiplexing and
dispatching mechanisms should require minimal effort.

§  Application code should largely be shielded from the complexity of multi-threading and
synchronization mechanisms.
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Solution

Synchronously wait for the arrival of indication events on one or more event sources, such
as connected socket handles. Integrate the mechanisms that demultiplex and dispatch the
events to services that process them. Decouple these event demultiplexing and dispatching
mechanisms from the application-specific processing of indication events within the services.

In detail: for each service an application offers, introduce a separate event handler that
processes certain types of events from certain event sources. Event handlers register with a
reactor, which uses a synchronous event demultiplexer to wait for indication events to occur
on one or more event sources. When indication events occur, the synchronous event
demultiplexer notifies the reactor, which then synchronously dispatches the event handler
associated with the event so that it can perform the requested service.

Structure
There are five key participants in the Reactor pattern:

Handles are provided by operating systems to identify event sources, such as network
connections or open files, that can generate and queue indication events. Indication events
can originate from external sources, such as CONNECT events or READ events sent to a
service from clients, or internal sources, such as time-outs. When an indication event occurs
on an event source, the event is queued on its associated handle and the handle is marked
as 'ready'. At this point, an operation, such as anaccept () orread(), can be performed
on the handle without blocking the calling thread.

Socket handles are used in the logging server to identify transport endpoints that receive
CONNECT and READ indication events. A passive-mode transport endpoint and its
associated socket handle listen for CONNECT indications events. The logging server then
maintains a separate connection, and thus a separate socket handle, for each
connected client.

A synchronous event demultiplexer is a function called to wait for one or more indication
events to occur on a set of handles—a handle set. This call blocks until indication events on
its handle set inform the synchronous event demultiplexer that one or more handles in the
set have become 'ready’, meaning that an operation can be initiated on them without
blocking.

sel ect () is a common synchronous event demultiplexer function for 1/O events [Ste98
supported by many operating systems, including UNIX and Win32 platforms. The

sel ect () call indicates which handles in its handle set have indication events pending.
Operations can be invoked on these handles synchronously without blocking the calling
thread.
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An event handler specifies an interface consisting of one or more hook methods [Pree95]
[GoF95]. These methods represent the set of operations available to process application-
specific indication events that occur on handle(s) associated with an event handler.

Concrete event handlers specialize the event handler and implement a specific service that
the application offers. Each concrete event handler is associated with a handle that identifies
this service within the application. In particular, concrete event handlers implement the hook
method(s) responsible for processing indication events received through their associated
handle. Any results of the service can be returned to its caller by writing output to the handle.

The logging server contains two types of concrete event handlers: logging acceptor and
logging handler. The logging acceptor uses the Acceptor-Connector pattern (285) to
create and connect logging handlers. Each logging handler is responsible for receiving

and irocessini Ioiiincl; records sent from its connected client.
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A reactor defines an interface that allows applications to register or remove event handlers
and their associated handles, and run the application's event loop. A reactor uses its
synchronous event demultiplexer to wait for indication events to occur on its handle set.
When this occurs, the reactor first demultiplexes each indication event from the handle on
which it occurs to its associated event handler, then it dispatches the appropriate hook
method on the handler to process the event.
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Note how the structure introduced by the Reactor pattern 'inverts' the flow of control within
an application. It is the responsibility of a reactor, not an application, to wait for indication
events, demultiplex these events to their concrete event handlers, and dispatch the
appropriate hook method on the concrete event handler. In particular, a reactor is not called
by a concrete event handler, but instead a reactor dispatches concrete event handlers,
which react to the occurrence of a specific event. This 'inversion of control' is known as the

Hollywood principle [VIis98a].

Application developers are thus only responsible for implementing the concrete event
handlers and registering them with the reactor. Applications can simply reuse the reactor's
demultiplexing and dispatching mechanisms.

The structure of the participants in the Reactor pattern is illustrated in the following class
diagram:

Reactor %! Event Handler
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Dynamics

The collaborations in the Reactor pattern illustrate how the flow of control oscillates between

the reactor and event handler components:

§  An application registers a concrete event handler with the reactor. At this point, the
application also indicates the type of indication event(s) the event handler wants the
reactor to notify it about, when such event(s) occur on the associated handle.

8 The reactor instructs each event handler to provide its internal handle, in our example
by invoking their get _handl e() method. This handle identifies the source of indication
events to the synchronous event demultiplexer and the operating system.

§  After all event handlers are registered, the application starts the reactor's event loop,
which we call handl e_event s() . At this point the reactor combines the handles from
each registered event handler into a handle set. It then calls the synchronous event
demultiplexer to wait for indication events to occur on the handle set.
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§ The synchronous event demultiplexer function returns to the reactor when one or more
handles corresponding to event sources becomes 'ready’, for example when a Socket
becomes 'ready to read'.

8 The reactor then uses the ready handles as 'keys' to locate the appropriate event
handler(s) and dispatch the corresponding hook method(s). The type of indication event
that occurred can be passed as a parameter to the hook method. This method can use
this type information to E]erform any additional application-specific demultiplexing and
dispatching operations. 2

§  After the appropriate hook method within the event handler is dispatched, it processes
the invoked service. This service can write the results of its processing, if any, to the
handle associated with the event handler so that they can be returned to the client that
originally requested the service.
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Implementation

The participants in the Reactor pattern decompose into two layers:

8 Demultiplexing/dispatching infrastructure layer components. This layer performs
generic, application-independent strategies for demultiplexing indication events to event
handlers and then dispatching the associated event handler hook methods.

§  Application layer components. This layer defines concrete event handlers that perform
application-specific processing in their hook methods.

The implementation activities in this section start with the generic demultiplexing/dispatching
infrastructure components and then cover the application components. We focus on a
reactor implementation that is designed to demultiplex handle sets and dispatch hook
methods on event handlers within a single thread of control. The Variants section describes
the activities associated with developing concurrent reactor implementations.

1. Define the event handler interface. Event handlers specify an interface consisting of
one or more hook methods [Pree95]. These hook methods represent the set of
services that are available to process indication events received and dispatched by
the reactor. As described in implementation activity 5 (196), concrete event handlers
are created by application developers to perform specific services in response to
particular indication events. Defining an event handler interface consists two sub-
activities:

1. Determine the type of the dispatching target. Two types of event handlers can
be associated with a handle to serve as the target of a reactor's dispatching
strategy:

8 Event handler objects. In object-oriented applications a common way
to associate an event handler with a handle is to create an event handler
object. For example, the Reactor pattern implementation shown in the
Structure section dispatches concrete event handler objects. Using an
object as the dispatching target makes it convenient to subclass event
handlers to reuse and extend existing components. Similarly, objects
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make it easy to integrate the state and methods of a service into a single
component.

8 Event handler functions. Another strategy for associating an event
handler with a handle is to register a pointer to a function with a reactor
rather than an object. Using a pointer to a function as the dispatching
target makes it convenient to register callbacks without having to define a
new subclass that inherits from an event handler base class.

The Adapter pattern [GoF95] can be employed to support both objects and
pointers to functions simultaneously. For example, an adapter could be
defined using an event handler object that holds a pointer to an event handler
function. When the hook method was invoked on the event handler adapter
object it could automatically forward the call to the event handler function that
it encapsulates.

2. Determine the event handling dispatch interface strategy. We must next define
the type of interface supported by the event handlers for processing events.
Assuming that we use event handler objects rather than pointers to functions,
there are two general strategies:

§ Single-method dispatch interface strategy. The class diagram in the
Structure section illustrates an implementation of the Event _Handl er
base class interface that contains a single event handling method, which
is used by a reactor to dispatch events. In this case, the type of the event
that has occurred is passed as a parameter to the method.

8 We specify a C++ abstract base class that illustrates the single-
method interface. We start by defining a useful type definition and
enumeration literals that can be used by both the single-method and
multi-method dispatch interface strategies:

§ typedef unsigned int Event_Type;

§ enum {

§ /'l Types of indication events.

§ READ_EVENT = 01, /| ACCEPT_EVENT ali ases
READ_EVENT

§ ACCEPT_EVENT = 01, // due to <select>
semanti cs.

§ VWRI TE_EVENT = 02, TI MEQUT_EVENT = 04,

§ SI GNAL_EVENT = 010, CLOSE_EVENT = 020

§ /'l These val ues are powers of two so

§ /'l their bits can be "or'd" together
efficiently.

CHE

§ Next, we implement the Event _Handl er class:

8 cl ass Event _Handler { // Single-nmethod interface.

8 public:

8 /'l Hook mnethod di spatched by <Reactor> to
handl e

§ /'l events of a particular type.
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virtual void handl e_event (HANDLE handl e,
Event _Type et) = 0;
/' Hook method that returns the I/O <HANDLE>.
virtual HANDLE get handle () const = O;
pr ot ect ed:
/1 Virtual destructor is protected to ensure
/1 dynam c allocation.

virtual ~Event Handler ();

}s
I ——

w W W W W W W W W

The single-method dispatch interface strategy makes it possible to
support new types of indication events without changing the class
interface. However, this strategy encourages the use of C++ swi t ch and
i f statements in the concrete event handler's handl e_event () method
implementation to handle a specific event, which degrades its
extensibility.

Multi-method dispatch interface strategy. A different strategy for
defining the Event _Handl er dispatch interface is to create separate
hook methods for handling each type of event, such as input events,
output events, or time-out events. This strategy can be more extensible
than the single-method dispatch interface because the demultiplexing is
performed by a reactor implementation, rather than by a concrete event
handler's handl e_event () method implementation.

§ The following C++ abstract base class illustrates the multi-method

interface:

8 cl ass Event Handl er {

8 public:

8 /1 Hook methods di spatched by a <Reactor> to
handl e

8 /] particular types of events.

8 virtual void handl e_i nput (HANDLE handle) = 0;

8 virtual void handl e_out put (HANDLE handl e) =
0;

8 virtual void handle_tineout (const Tine_Val ue
& = 0;

virtual void handl e_cl ose (HANDLE handl e,
Event _Type et) = 0;

/'l Hook method that returns the I/O <HANDLE>.

virtual HANDLE get handle () const = O;

}s
]

w w W W W
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§ The multi-method dispatch interface strategy makes it easy to override
methods in the base class selectively, which avoids additional
demultiplexing viaswi t ch ori f statements in the hook method
implementation. However, this strategy requires pattern implementors to
anticipate the event handler methods in advance. The various
handl e_*() methods in the Event _Handl er dispatch interface above
are tailored for I/O and time-out indication events supported by the
sel ect () function. This function does not encompass all the types of
indication events, such as synchronization events that can be handled via
the Win32 Wai t For Mul ti pl eObj ect s() function [SchSt95].

3. Both the single-method and multi-method dispatch interface strategies are
implementations of the Hook Method [Pree95] and Template Method [GoF95
patterns. Their intent is to provide well-defined hooks that can be specialized
by applications and called back by lower-level dispatching code. This allows
application programmers to define concrete event handlers using inheritance
and polymorphism.

2. Define the reactor interface. The reactor's interface is used by applications to register
or remove event handlers and their associated handles, as well as to invoke the
application's event loop. The reactor interface is often accessed via a Singleton
[GoF95] because a single reactor is often sufficient for each application process.

To shield applications from complex and non-portable demultiplexing and dispatching
operating system platform mechanisms, the Reactor pattern can use the Bridge
pattern [GoF95]. The reactor interface corresponds to the abstraction participant in
the Bridge pattern, whereas a platform-specific reactor instance is accessed internally

via a iointer, in accordance with the imilementation hierarchi in the Brich;e iattern.

The reactor interface in our logging server defines an abstraction for registering
and removing event handlers, and running the application's event loop reactively:

cl ass Reactor {
publi c:
/1 Methods that register and renove <Event_ Handl er >s
/1 of particular <Event_ Type>s on a <HANDLE>.
virtual void register_handl er
(Bvent _Handl er *eh, Event_Type et) = 0;
virtual void register_handl er
(HANDLE h, Event_Handl er *eh, Event_Type et) =

virtual void renove_handl er

(Bvent _Handl er *eh, Event_Type et) = 0;
virtual void renove_ handl er

(HANDLE h, Event_Type et) = 0;

/1 Entry point into the reactive event |oop. The
/1 <timeout> can bound tine waiting for events.
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voi d handl e_events (Time_Value *tineout = 0);
/1 Define a singleton access point.
static Reactor *instance ();

private:
/1 Use the Bridge pattern to hold a pointer to
/1l the <Reactor | nplenentation>.
Reactor | npl enentation *reactor_inpl_;

}s

A typical reactor interface also defines a pair of overloaded methods, which we call
regi ster_handl er (), that allow applications to register handles and event
handlers at run-time with the reactor's internal demultiplexing table described in
implementation activity 3.3 (193). In general, the method for registering event
handlers can be defined using either or both of the following signatures:

8 Two parameters. In this design, one parameter identifies the event handler and
another that indicates the type of indication event(s) the event handler has
registered to process. The method's implementation uses 'double-dispatching’
[GoF95] to obtain a handle by calling back to an event handler method
get _handl e() . The advantage of this design is that the 'wrong' handle cannot
be associated with an event handler accidentally.

§ The following code fragment illustrates how double-dispatching is used in the
regi st er _handl er () implementation:

§ void Select_Reactor_|nplenmentation::register_handl er
8§ (Event _Handl er *event handl er,

§ Event _Type event_type) {

§ /'l Doubl e-di spatch to obtain the <HANDLE>.

8 HANDLE handl e = event _handl er->get_handl e ();

§ 11

§

}
|

8 Three parameters. In this design a third parameter is used to pass the handle
explicitly. Although this design can be more error-prone than the two-parameter
signature, it allows an application to register the same event handler for multiple
handles, which may help to conserve memory.

Both types of registration methods store their parameters into the appropriate
demultiplexing table, as indicated by the handle.

The reactor interface also defines two other overloaded methods, which we call
renove_handl er (), that can be used to remove an event handler from a reactor.
For example, an application may no longer want to process one or more types of
indication events on a particular handle. These methods remove the event handler
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from a reactor's internal demultiplexing table so that it is no longer registered for any
types of indication events. The signatures of the methods that remove an event
handler can be passed either a handle or an event handler in the same way as the
event handler registration methods.

The reactor interface also defines its main entry point method, which we call

handl e_event s(), that applications can use to run their reactive event loop. This
method calls the synchronous event demultiplexer to wait for indication events to
occur on its handle set. An application can use thet i meout parameter to bound the
time it spends waiting for indication events, so that the application will not block
indefinitely if events never arrive.

When one or more indication events occur on the handle set, the synchronous event
demultiplexer function returns. At this point the handl e_event s() method 'reacts’
by demultiplexing to the event handler associated with each handle that is now ready.
It then dispatches the handler's hook method to process the event.

3. Implement the reactor interface. Four sub-activities help implement the reactor
interface defined in implementation activity 2 (189):

0. Develop a reactor implementation hierarchy. The reactor interface abstraction
illustrated in implementation activity 2 (189) delegates all its demultiplexing
and dispatching processing to a reactor implementation, which plays the role
of the implementation hierarchy in the Bridge pattern [GoF95]. This design
makes it possible to implement and configure multiple types of reactors
transparently. For example, a concrete reactor implementation can be created
using different types of synchronous event demultiplexers, such as sel ect ()
[Ste9q], pol | () [Rago93], or Wi t For Mul ti pl eCbj ect s() [Sol98], each
of which provides the features and limitations described in implementation
activity 3.2 (192).

1. In our example the base class of the reactor implementation hierarchy is
defined by the class React or _| npl ement at i on. We omit its declaration
here because this class has essentially the same interface as the
React or interface in implementation activity 2 (189). The primary
difference is that its methods are pure virtual, because it forms the base of
a hierarchy of concrete reactor implementations.

3. Choose a synchronous event demultiplexer mechanism. The reactor
implementation calls a synchronous event demultiplexer to wait for one or
more indication events to occur on the reactor's handle set. This call returns
when any handle(s) in the set are 'ready’, meaning that operations can be
invoked on the handles without blocking the application process. The
synchronous event demultiplexer, as well as the handles and handle sets, are
often existing operating system mechanisms, so they need not be developed
by reactor implementors.

4. For our logging server, we choose the sel ect () function, which is a
synchronous event demultiplexer that allows event-driven reactive
applications to wait for an application-specified amount of time for various
types of 1/0 events to occur on multiple I/O handles:

5. int select (u_int nmax_handl e _plus_1,



fd set *read fds, fd_set *wite fds,
fd set *except_fds,tinmeval *tinmeout);

8. The sel ect () function examines the three 'file descriptor set' (f d_set)
parameters whose addresses are passed inread_fds, wite_fds,
and except _f ds to see if any of their handles are 'ready for reading’,
'reading for writing', or have an 'exceptional condition’, respectively.
Collectively, the handle values in these three file descriptor set parameters
constitute the handle set participant in the Reactor pattern.

9. The sel ect () function can return multiple 'ready' handles to its caller in a
single invocation. It cannot be called concurrently on the same handle set
by multiple threads of control, however, because the operating system will
erroneously notify more than one thread calling sel ect () when I/O
events are pending on the same subset of handles [Ste98]. In addition,
sel ect () does not scale up well when used with a large set of handles

|BaMo98 .

11. Two other synchronous event demultiplexers that are available on some
operating systems are the pol | () and Wai t For Mul ti pl eObj ect s()
functions. These two functions have similar scalability problems as sel ect () .
They are also less portable, because they are only available on platforms
compatible with Win32 and System V Release 4 UNIX, respectively. The
Variants section describes a unique feature of
Wi t For Mul ti pl eQbj ect s() that allows it to be called concurrently on the
same handle set by multiple threads of control.

12. Implement a demultiplexing table. In addition to calling the synchronous event
demultiplexer to wait for indication events to occur on its handle set, a reactor
implementation maintains a demultiplexing table. This table is a manager
[Som97] that contain a set of <handle, event handler, indication event types>
tuples. Each handle serves as a 'key' that the reactor implementation uses to
associate handles with event handlers in its demultiplexing table. This table
also stores the type of indication event(s), such as CONNECT and READ, that
each event handler has registered on its handle.

The demultiplexing table can be implemented using various search strategies,
such as direct indexing, linear search, or dynamic hashing. If handles are
represented as a continuous range of integers, as they are on UNIX platforms,
direct indexing is most efficient, because demultiplexing table tuple entries can
be located in constant O(1) time.

On platforms like Win32 where handles are non-contiguous pointers, direct
indexing is infeasible. Some type of linear search or hashing must therefore be
used to implement a demultiplexing table.

I/O handles in UNIX are contiguous integer values, which allows our
demultiplexing table to be implemented as a fixed-size array of st r uct s.
In this design, the handle values themselves index directly into the
demultiplexing table's array to locate event handlers or event registration
types in constant time. The following class illustrates such an
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implementation that maps HANDLEs to Event _Handl er s and
Event _Types:

cl ass Dermux_Tabl e {
publi c:
/1 Convert <Tuple> array to <fd_set>s.
void convert _to fd sets (fd _set &read fds,
fd set &wite fds,
fd set &except fds);

struct Tuple {
/1 Pointer to <Event Handl er> t hat

processes

/1 the indication events arriving on the
handl e.

Event Handl er *event handl er _;

/1 Bit-mask that tracks which types of
i ndi cation

/1 events <Event Handler> is registered
for.

Event _Type event _type_;

s

/1 Tabl e of <Tuple>s indexed by Handl e
val ues. The

/1 macro FD _SETSI ZE is typically defined
in the

/'l <sys/socket.h> system header file.
Tupl e tabl e [ FD_SETSI ZE] ;

H

In this simple implementation, the Denux_Tabl e's t abl e_ array is
indexed by UNIX I/0O handle values, which are unsigned integers ranging
from O to FD_SETSI ZE- 1. Naturally, a more portable solution should
encapsulate the UNIX-specific implementation details with a wrapper

facade iﬂi

13. Define the concrete reactor implementation. As shown in implementation
activity 2 (189), the reactor interface holds a pointer to a concrete reactor
implementation and forwards all method calls to it.

14. Our concrete reactor implementation uses sel ect () as its synchronous
event demultiplexer and the Denux_Tabl e class as its demultiplexing
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41.
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table. It inherits from the React or _| npl enent ati on class and
overrides its pure virtual methods:

cl ass Sel ect _Reactor_Inpl enentation :
public Reactor_Inplenentation {

publi c:

The handl e_event s() method defines the entry point into the reactive
event loop of our Sel ect _React or _| npl enent ati on:

voi d
Sel ect _Reactor _| npl ement ati on: : handl e_events

(Time_Value *tinmeout = 0) {
This method first converts the Denmux_Tabl e tuples into f d_set handle
sets that can be passed to sel ect () :
fd set read fds, wite fds, except fds;

dermux_tabl e. convert _to fd sets
(read_fds,wite_fds, except_fds);

Next, sel ect () is called to wait for up to t i meout amount of time for
indication events to occur on the handle sets:

HANDLE max_handle = // Max value in
<fd_set >s.
int result = select
(max_handl e + 1,
& ead fds, &wite fds, &except fds,
ti meout);
if (result <= 0)
throw /* handl e error or timeout
cases */;
Finally, we iterate over the handle sets and dispatch the hook method(s)

on event handlers whose handles have become 'ready' due to the
occurrence of indication events:

for (HANDLE h = 0; h <= max_handl e; ++h)

/1 This check covers READ +
ACCEPT_EVENTs

/1 because they have the same enum
val ue.

if (FD_I SSET (&read_fds, h))

denux_table.table [h].event handler ->
handl e_event (h, READ EVENT);

167



43. [l ... performthe same di spatching
| ogic for

44. // WRI TE_EVENTs and EXCEPT_EVENTs ...
45. }

46. For brevity, we omit implementations of other methods in our reactor, for
example those for registering and unregistering event handlers.

47. The private portion of our reactor class maintains the event handler
demultiplexing table:

48. private:

49. /1 Demultiplexing table that maps <HANDLE>s to
50. /1l <Event Handl er>s and <Event Type>s.

51. Demux_Tabl e denmux_tabl e_;

52. };

53. Note that this implementation only works on operating system platforms
where 1/O handles are implemented as contiguous unsigned integers,
such as UNIX. Implementing this pattern on platforms where handles are
non-contiguous pointers, such as Win32, therefore requires an additional
data structure to keep track of which handles are in use.

4. Determine the number of reactors needed in an application. Many applications can be
structured using a single instance of the Reactor pattern. In this case the reactor can
be implemented using the Singleton pattern [GoF95], as shown in implementation
activity 2 (189). This pattern is useful for centralizing event demultiplexing and
dispatching in one reactor instance within an application.

However, some operating systems limit the number of handles that it is possible to
wait for within a single thread of control. Win32, for example, allows

Wi t For Mul ti pl eQbj ect s() to wait for a maximum of 64 handles in a single
thread. To develop a scalable application in this case, it may be necessary to create
multiple threads, each of which runs its own instance of the Reactor pattern.

Allocating a separate reactor to each of the multiple threads can also be useful for
certain types of real-time applications [SMEGO00]. For example, different reactors can
be associated with threads running at different priorities. This design provides
different quality of service levels to process indication events for different types of
synchronous operations.

Note that event handlers are only serialized within an instance of the Reactor pattern.
Multiple event handlers in multiple threads can therefore run in parallel. This
configuration may necessitate the use of additional synchronization mechanisms if
event handlers in different threads access shared state concurrently. The Variants
section describes techniques for adding concurrency control to reactor and event
handler implementations.

5. Implement the concrete event handlers. Concrete event handlers derive from the event
handler interface described in implementation activity 1 (186) to define application-
specific functionality. Three sub-activities must be addressed when implementing
concrete event handlers.
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0. Determine policies for maintaining state in concrete event handlers. An event
handler may need to maintain state information associated with a particular
request. In our example, this could occur when an operating system notifies
the logging server that only part of a logging record was read from a Socket,
due to the occurrence of transport-level flow control. As a result, a concrete
event handler may need to buffer the logging record fragment and return to the
reactor's event loop to await notification that the remainder of the record has
arrived. The concrete event handler must therefore keep track of the number
of bytes read so that it can append subsequent data correctly.

1. Implement a strategy to configure each concrete event handler with a handle.
A concrete event handler performs operations on a handle. The two general
strategies for configuring handles with event handlers are:

8 Hard-coded. This strategy hard-codes handles, or wrapper facades
(47) for handles, into the concrete event handler. This strategy is
straightforward to implement, but is less reusable if different types of
handles or IPC mechanisms must be configured into an event handler for
different use cases.

§ The Example Resolved section illustrates the SOCK_Accept or and
SOCK_St r eamclasses, which are hard-coded into the logging server
components. These two classes are wrapper facades that are defined
in the Implementation section of the Wrapper Facade pattern (47).
They encapsulate the stream Socket semantics of socket handles
within a portable and type-secure object-oriented interface. In the
Internet domain, stream Sockets are implemented using TCP.

8 Generic. A more generic strategy is to instantiate wrapper facades
(47) via parameterized types in a templatized event handler class. This
strategy creates more flexible and reusable event handlers, although it
may be unnecessarily general if a single type of handle or IPC

mechanism is alwais used.

§ The Acceptor, Connector, and Servi ce_Handl er classes
shown in the Implementation section of the Acceptor-Connector
pattern (285) are templates instantiated with wrapper facades.

2. Implement concrete event handler functionality. Application developers must
decide the processing actions to be performed to implement a service when its
corresponding hook method is invoked by a reactor implementation. To
separate connection-establishment functionality from subsequent service
processing, concrete event handlers can be divided into several categories in
accordance with the Acceptor-Connector pattern (285). In particular, service
handlers implement application-specific services, whereas the reusable
acceptors and connectors establish connections on behalf of these service
handlers passively and actively, respectively.

Example Resolved
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Our logging server uses a singleton reactor implemented via the sel ect () synchronous
event demultiplexer along with two concrete event handlers—logging acceptor and logging
handler—that accept connections and handle logging requests from clients, respectively.
Before we discuss the implementation of the two concrete event handlers, which are based
on the single-method dispatch interface strategy, we first illustrate the general behavior of
the logging server using two scenarios.

The first scenario depicts the sequence of steps performed when a client connects to the
logging server:
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§ The logging server first registers the logging acceptor with the reactor (1) to handle
indication events corresponding to client connection requests. The logging server next
invokes the event loop method of the reactor singleton (2).

8 The reactor singleton invokes the synchronous event demultiplexing sel ect ()
operation to wait for connection indication events or logging data indication events to
arrive (3). At this point, all further processing on the server is driven by the reactive
demultiplexing and dispatching of event handlers.

§  Aclient sends a connection request to the logging server (4), which causes the reactor
singleton to dispatch the logging acceptor's handl e_event () hook method (5) to
notify it that a new connection indication event has arrived.

8 The logging acceptor accepts the new connection (6) and creates a logging handler to
service the new client (7).

8 The logging handler registers its socket handle with the reactor singleton (8) and
instructs the reactor to notify it when the reactor receives an indication event signaling
that the Socket is now 'ready for reading'.

After the client is connected, it can send logging records to the server using the socket
handle that was connected in step 6.

The second scenario therefore depicts the sequence of steps performed by the reactive
logging server to service a logging record:
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§  Aclient sends a logging record request (1), which causes the server's operating
system to notify the reactor singleton that an indication event is pending on a handle it is
sel ect () 'ing on.

§ The reactor singleton dispatches the handl e_event () method of the logging handler
associated with this handle (2), to notify it that the new indication event is intended for it.

§ The logging handler reads the record from the Socket in a non-blocking manner (3).
Steps 2 and 3 are repeated until the logging record has been completely received from
the socket handle.

8 The logging handler processes the logging record and writes it to the standard output
of the logging server (4), from which it can be redirected to the appropriate output
device.

8 The logging handler returns control back to the reactor's event loop (5), which
continues to wait for subsequent indication events.

The following code implements the concrete event handlers for our logging server example.
A Loggi ng_Accept or class provides passive connection establishment and a
Loggi ng_Handl er class provides application-specific data reception and processing.

The Loggi ng_Accept or class is an example of the acceptor component in the Acceptor-
Connector pattern (285). It decouples the task of connection establishment and service
initialization from the tasks performed after a connection is established and a service is
initialized. The pattern enables the application-specific portion of a service, such as the
Loggi ng_Handl er, to vary independently of the mechanism used to establish the
connection and initialize the handler.

A Loggi ng_Accept or object accepts connection requests from client applications
passively and creates client-specific Loggi ng_Handl er objects, which receive and process
logging records from clients. Note that Loggi ng_Handl er objects maintain sessions with
their connected clients. A new connection is therefore not established for every logging
record.

The Loggi ng_Accept or class inherits from the 'single-method' dispatch interface variant
of the Event _Handl er base class that was defined in implementation activity 1.2 (187).
The Loggi ng_Accept or constructor registers itself with a reactor for ACCEPT events:

cl ass Loggi ng_Acceptor : public Event_Handl er {
publi c:
Loggi ng_Acceptor (const | NET_Addr &addr,
Reactor *reactor):
acceptor__ (addr), reactor_ (reactor) {
reactor_->register_handler (this, ACCEPT_EVENT);

}

Note that the r egi st er _handl er () method 'double dispatches' to the

Loggi ng_Accept or 's get _handl e() method to obtain its passive-mode socket handle.
From this point, whenever a connection indication arrives the reactor dispatches the

Loggi ng_Accept or 's handl e_event () method, which is a factory method [GoF95]:

virtual void handl e_event
(HANDLE, Event Type event _type) {
/1 Can only be called for an ACCEPT event.
if (event_type == ACCEPT_EVENT) {
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SOCK_Stream cli ent_connecti on;

/1l Accept the connection.
acceptor . accept (client_connection);

/1l Create a new <Loggi ng_Handl er >.
Loggi ng_Handl er *handl er = new
Loggi ng_Handl er (client_connecti on,
reactor_);

}

The handl e_event () hook method invokes the accept () method of the

SOCK_Accept or, which initializes a SOCK_St r eam After the SOCK_St r eamis connected
with the new client passively, a Loggi ng_Handl er object is allocated dynamically in the
logging server to process the logging requests.

The final method in this class returns the 1/0 handle of the underlying passive-mode socket:
virtual HANDLE get handle () const {
return acceptor_.get _handle ();

}

This method is called by the reactor singleton when the Loggi ng_Accept or is registered.
The private portion of the Loggi ng_Accept or class is hard-coded to contain a
SOCK_Accept or wrapper facade (47):

private:
/1 Socket factory that accepts client connections.
SOCK_Accept or acceptor_;

/| Cached <React or>.
Reactor *reactor_;

b

The SOCK_Accept or handle factory enables a Loggi ng_Accept or object to accept
connection indications on a passive-mode socket handle that is listening on a transport
endpoint. When a connection arrives from a client, the SOCK_Accept or accepts the
connection passively and produces an initialized SOCK_St r eam The SOCK_St r eamis then
uses TCP to transfer data reliably between the client and the logging server.

The Loggi ng_Handl er class receives and processes logging records sent by a client
application. As with the Loggi ng_Accept or class shown above, the Loggi ng_Handl er
inherits from Event _Handl er so that its constructor can register itself with a reactor to be
dispatched when READ events occur:

cl ass Loggi ng_Handl er : public Event_ Handler {
publi c:
Loggi ng_Handl er (const SOCK Stream &stream
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Reactor *reactor):
peer_stream_ (strean) {
reactor->regi ster_handler (this, READ EVENT);
}

Subsequently, when a logging record arrives at a connected Socket and the operating
system generates a corresponding READ indication event, the reactor dispatches the
handl e_event () method of the associated Loggi ng_Handl er automatically:

virtual void handl e_event (HANDLE,
Event _Type event type) {
if (event_type == READ EVENT) {
Log_Record | og_record;

/1l Code to handle "short-reads" omtted.
peer_stream.recv (& og record,

si zeof | og_record);

/1 Wite logging record to standard out put.
log record.write (STDQOUT);

}

else if (event_type == CLOSE _EVENT) {
peer_stream. close ();

/1 Deal | ocate oursel ves.
del ete this;

}

The handl e_event () method receives, processes, and writes the logging record? to the
standard output (STDOUT). Similarly, when the client closes down the connection, the reactor
passes the CLOSE event flag, which informs the Loggi ng_Handl er to shut down its
SOCK_St r eamand delete itself. The final method in this class returns the handle of the
underlying data-mode stream socket:

virtual HANDLE get handle () const {
return peer_stream. get _handle ();

}

This method is called by the reactor when the Loggi ng_Handl er is registered. The private

portion of the Loggi ng_Handl er class is hard-coded to contain a SOCK_St r eamwrapper
facade (47):

private:

/1 Receives | ogging records froma connected client.
SOCK_Stream peer _stream ;
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The logging server contains a single mai n() function that implements a single-threaded
logging server that waits in the reactor singleton's handl e_event s() event loop:

/1 Loggi ng server port number.
const u_short PORT = 10000;

int min () {
/1 Loggi ng server address.
| NET_Addr addr (PORT);

/1 Initialize |ogging server endpoint and register
/1 with reactor singleton.
Loggi ng_Acceptor la (addr, Reactor::instance ());

/1 Event |oop that processes client connection
/1 requests and | og records reactively.
for (1)
Reactor::instance ()->handle_events ();
/* NOTREACHED */

}

As requests arrive from clients and are converted into indication events by the operating
system, the reactor singleton invokes the hook methods on the Loggi ng_Accept or and
Loggi ng_Handl er concrete event handlers to accept connections, and receive and
process logging records, respectively.

The sequence diagram below illustrates the behavior in the logging server:

= maadn] : Reactor : Synchronous
Ewent
: Demultiplexer
zzrgeuless v
s EElng I ACCEFT
L :".:?t—ﬂn: M| EVENT |
) - reglsier bl
*I." 1_hardle]
| Hamid e
L = Sall
haredle_events - Handles chze
~il
harsdle_sventil 1?‘5.‘5‘? "
=i S 4 Handles

th
A FEADES -
Ih: Logging | READ
™ Handier PP
- regisier
-...l| Alertl
et _handbcll

Handie [

I" seleet]]
Handles al
Ay la i
EVENT Mamdies

. Bandle_sveniliage |

Variants

174



The Implementation section described the activities involved in implementing a reactor that
demultiplexes indication events from a set of I/O handles within a single thread of control.
The following are variations of the Reactor pattern that are needed to support concurrency,
re-entrancy, or timer-based events.

Thread-safe Reactor. A reactor that drives the main event loop of a single-threaded
application requires no locks, because it serializes the dispatching of event handler
handl e_event () hook methods implicitly within its application process.

However, a reactor also can serve as a single-threaded demultiplexer/dispatcher in multi-

threaded applications. In this case, although only one thread runs the reactor's

handl e_event s() eventloop method, multiple application threads may register and

remove event handlers from the reactor. In addition, an event handler called by the reactor

may share state with other threads and work on that state concurrently with them. Three
issues must be addressed when designing a thread-safe reactor:

8 Preventing race conditions. Critical sections within a reactor must be serialized to
prevent race conditions from occurring when multiple application threads modify the
reactor's internal shared state. A common technique for preventing race conditions is to
use mutual exclusion mechanisms, such as semaphores or mutexes, to protect internal
state shared by multiple threads.

For example, a mutex can be added to the reactor's demultiplexing table, and the
Scoped Locking idiom (325) can be used in the reactor's methods for registering and
removing event handlers to acquire and release this lock automatically. This
enhancement helps ensure that multiple threads cannot corrupt the reactor's
demultiplexing table by registering or removing handles and event handlers
simultaneously.

To ensure the reactor implementation is not penalized when used in single-threaded
applications, the Strategized Locking pattern (333) can be applied to parameterize the
locking mechanism.

8 Preventing self-deadlock. In multi-threaded reactors, the reactor implementation
described in implementation activity 3.4 (194) must be serialized, to prevent race
conditions when registering, removing, and demultiplexing event handlers. However, if
this serialization is not added carefully, self-deadlock can occur when the reactor's
handl e_event s() method calls back on application-specific concrete event handlers
that then subsequently re-enter the reactor via its event handler registration and
removal methods.

To prevent self-deadlock, mutual exclusion mechanisms can use recursive locks
[Sch95], which can be re-acquired by the thread that owns the lock without incurring
self-deadlock on the thread. In the Reactor pattern, recursive locks help prevent
deadlock when locks are held by the same thread across event handler hook methods
dispatched by a reactor.

§ Explicitly notify a waiting reactor event loop thread. The thread running a reactor's
event loop often spends much of its time waiting on its synchronous event demultiplexer
for indication events to occur on its handle set. The reactor event loop thread may
therefore need to be notified explicitly when other threads change the contents of its
demultiplexing table by calling its methods for registering and removing event handlers.
It may not otherwise find out about these changes until much later, which may impede
its responsiveness to important events.

An efficient way for an application thread to notify the reactor thread is to pre-establish a
pair of ‘writer/reader' IPC handles when a reactor is initialized, such as a UNIX pipe or a
'loopback' TCP Socket connection. The reader handle is registered with the reactor
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along with a special 'naotification event handler', whose purpose is simply to wake up the
reactor whenever a byte is sent to it via its connected writer handle.

When any application thread calls the reactor's methods for registering and removing
event handlers, they update the demultiplexing table and then send a byte to the writer
handle. This wakes up the reactor's event loop thread and allows it to reconstruct its
updated handle set before waiting on its synchronous event demultiplexer again.

Concurrent Event Handlers. The Implementation section described a single-threaded
reactive dispatching design in which event handlers borrow the thread of control of a reactor.
Event handlers can also run in their own thread of control. This allows a reactor to
demultiplex and dispatch new indication events concurrently with the processing of hook
methods dispatched previously to its event handlers. The Active Object (369),
Leader/Followers (447), and Half-Sync/Half-Async (423) patterns can be used to implement
concurrent concrete event handlers.

Concurrent Synchronous Event Demultiplexer. The synchronous event demultiplexer
described in the Implementation section is called serially by a reactor in a single thread of
control. However, other types of synchronous event demultiplexers, such as the

Wi t For Mul ti pl e Qbj ect s() function, can be called concurrently on the same handle
set by multiple threads.

When it is possible to initiate an operation on one handle without the operation blocking, the
concurrent synchronous event demultiplexer returns a handle to one of its calling threads.
This can then dispatch the appropriate hook method on the associated event handler.

Calling the synchronous event demultiplexer concurrently can improve application
throughput, by allowing multiple threads to simultaneously demultiplex and dispatch events
to their event handlers. However, the reactor implementation can become much more
complex and much less portable.

For example, it may be necessary to perform a reference count of the dispatching of event
handler hook methods. It may also be necessary to queue calls to the reactor's methods for
registering and removing event handlers, by using the Command pattern [GoF95] to defer
changes until no threads are dispatching hook methods on an event handler. Applications
may also become more complex if concrete event handlers must be made thread-safe.

Re-entrant Reactors. In general, concrete event handlers just react when called by a reactor
and do not invoke the reactor's event loop themselves. However, certain situations may
require concrete event handlers to retrieve specific events by invoking a reactor's

handl e_event s() method to run its event loop. For example, the CORBA asynchronous
method invocation (AMI) feature [ARSKOQ] requires an ORB Core to support nested

wor k_pendi ng()/ perform work() ORB event loops. If the ORB Core uses the Reactor
pattern [SC99], therefore, its reactor implementation must be re-entrant.

A common strategy for making a reactor re-entrant is to copy the handle set state
information residing in its demultiplexing table to the run-time stack before calling the
synchronous event demultiplexer. This strategy ensures that any changes to the handle set
will be local to that particular nesting level of the reactor.

Integrated Demultiplexing of Timer and 1/0O Events. The reactor described in the
Implementation section focuses primarily on demultiplexing and dispatching features
necessary to support our logging server example. It therefore only demultiplexes indication
events on handle sets. A more general reactor implementation can integrate the
demultiplexing of timer events and I/O events.
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A reactor's timer mechanism should allow applications to register time-based concrete event
handlers. This mechanism then invokes the handl e_t i meout () methods of the event
handlers at an application-specified future time. The timer mechanism in a reactor can be

implemented using various strategies, including heaps [BaLee98], delta-lists [CoSte91], or
timing wheels [VaLa97]:

§  Aheap is a 'partially-ordered, almost-complete binary tree' that ensures the average-

and worst-case time complexity for inserting or deleting a concrete event handler is
O(log n).

§ Delta-lists store time in 'relative’ units represented as offsets or 'deltas' from the earliest
timer value at the front of the list.

§ Timing wheels use a circular buffer that makes it possible to start, stop, and maintain
timers within the range of the wheel in constant O(1) time.

Several changes are required to the React or interface defined in implementation

activity 2 (189) to enable applications to schedule, cancel, and invoke timer-based event
handlers:

cl ass Reactor {
publi c:

/1l ... same as in inplenentation activity 2 ...

/1 Schedul e a <handl er> to be dispatched at
/1 the <future_tine> Returns a tiner id that can
/1 be used to cancel the tiner.
timer_id schedule (Event _Handl er *handl er,
const void *act,
const Time_Value & uture_tinme);

/1 Cancel the <Event Handl er> matching the <tiner_id>
/1 val ue returned from <schedul e>.
voi d cancel (timer_id id, const void **act

0);

/1l Expire all timers <= <expire_tine>  This

/1 nmethod nmust be called nanually since it

/1 is not invoked asynchronously.

voi d expire (const Tine_Value &expire_tine);
private:

/1

b

An application uses the schedul e() method to schedule a concrete event handler to
expire after f ut ur e_t i me. An asynchronous completion token (ACT) (261) can be
passed to schedul e() . If the timer expires the ACT is passed as the value to the event
handler's handl e_t i neout () hook method. The schedul e() method returns a timer
id value that identifies each event handler's registration in the reactor's timer queue
uniquely. This timer id can be passed to the cancel () method to remove an event
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handler before it expires. If a non-NULL act parameter is passed to cancel (), it will be
assigned the ACT passed by the application when the timer was scheduled originally,
which makes it possible to delete dynamically-allocated ACTs to avoid memory leaks.

To complete the integration of timer and 1/O event demultiplexing, the reactor
implementation must be enhanced to allow for both the timer queue's scheduled event
handler deadlines and the t i meout parameter passed to the handl e_event s()
method. This method is typically generalized to wait for the closest deadline, which is
either the t i neout parameter or the earliest deadline in the timer queue.

Known uses

InterViews [LC87]. The Reactor pattern is implemented by the InterViews windowing
system, where it is known as the Dispatcher. The InterViews Dispatcher is used to define an
application's main event loop and to manage connections to one or more physical GUI
displays. InterViews therefore illustrates how the Reactor pattern can be used to implement
reactive event handling for graphical user interface systems that play the role of both client
and server.

The Xt toolkit from the X Windows distribution uses the Reactor pattern to implement its
main event loop. Unlike the Reactor pattern implementation described in the Implementation
section, callbacks in the Xt toolkit use C function pointers rather than event handler objects.
The Xt toolkit is another example of how the Reactor pattern can be used to implement
reactive event handling for graphical user interface systems that play the role of both client
and server.

ACE Reactor Framework [Sch97]. The ACE framework uses an object-oriented framework
implementation of the Reactor pattern as its core event demultiplexer and dispatcher. ACE
provides a class, called ACE_React or , that defines a common interface to a variety of
reactor implementations, such as the ACE_Sel ect _React or and the

ACE_WFMO React or . These two reactor implementations can be created using different
synchronous event demultiplexers, such as Wai t For Mul ti pl eQbj ect s() and

sel ect (), respectively.

The ORB Core component in many implementations of CORBA [OMG98a], such as TAO
[SC99] and ORBacus, use the Reactor pattern to demultiplex and dispatch client requests to
servants that process the requests.

Call Center Management System. The Reactor pattern has been used to manage events
routed by Event Servers [SchSu94] between PBXs and supervisors in a Call Center
Management system.

Project Spectrum. The high-speed I/O transfer subsystem of Project Spectrum [PHS96
uses the Reactor pattern to demultiplex and dispatch events in an electronic medical
imaging system.

Receiving phone calls. The Reactor pattern occurs frequently in everyday life, for example
in telephony. Consider yourself as an event handler that registers with a reactor—a
telecommunication network—to ‘handle’ calls received on a particular phone number—the
handle. When somebody calls your phone number, the network notifies you that a ‘call
request' event is pending by ringing your phone. After you pick up the phone, you react to
this request and 'process' it by carrying out a conversation with the connected party.
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Consequences
The Reactor pattern offers the following benefits:

Separation of concerns. The Reactor pattern decouples application-independent
demultiplexing and dispatching mechanisms from application-specific hook method
functionality. The application-independent mechanisms can be designed as reusable
components that know how to demultiplex indication events and dispatch the appropriate
hook methods defined by event handlers. Conversely, the application-specific functionality in
a hook method knows how to perform a particular type of service.

Modularity, reusability, and configurability. The pattern decouples event-driven application
functionality into several components. For example, connection-oriented services can be
decomposed into two components: one for establishing connections and another for
receiving and processing data.

This decoupling enables the development and configuration of generic event handler
components, such as acceptors, connectors, and service handlers, that are loosely
integrated together through a reactor. This modularity helps promote greater software
component reuse, because modifying or extending the functionality of the service handlers
need not affect the implementation of the acceptor and connector components.

In our logging server, the Loggi ng_Accept or class can easily be generalized to create
the acceptor component described in the Acceptor-Connector pattern (285). This
generic acceptor can be reused for many different connection-oriented services, such as
file transfer, remote log-in, and video-on-demand. It is thus straightforward to add new
functionality to the Loggi ng_Handl er class without affecting the reusable acceptor
component.

Portability. UNIX platforms offer two synchronous event demultiplexing functions, sel ect ()
[Ste98] and pol | () [Rago93], whereas on Win32 platforms the

Wi t For Mul ti pl eObj ect s() [Sol98] or sel ect () functions can be used to demultiplex
events synchronously. Although these demultiplexing calls all detect and report the
occurrence of one or more indication events that may occur simultaneously on multiple event
sources, their APIs are subtly different. By decoupling the reactor's interface from the lower-
level operating system synchronous event demultiplexing functions used in its
implementation, the Reactor pattern therefore enables applications to be ported more readily
across platforms.

Coarse-grained concurrency control. Reactor pattern implementations serialize the
invocation of event handlers at the level of event demultiplexing and dispatching within an
application process or thread. This coarse-grained concurrency control can eliminate the
need for more complicated synchronization within an application process.

The Reactor pattern can also incur the following liabilities:

Restricted applicability. The Reactor pattern can be applied most efficiently if the operating
system supports synchronous event demultiplexing on handle sets. If the operating system
does not provide this support, however, it is possible to emulate the semantics of the
Reactor pattern using multiple threads within the reactor implementation. This is possible, for
example, by associating one thread to process each handle.
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Whenever events are available on a handle, its associated thread reads the event and
places it on a queue that is processed sequentially by the reactor implementation. This
design can be inefficient, however, because it serializes all the event handler threads. Thus,
synchronization and context switching overhead increases without enhancing application-
level parallelism.

Non-pre-emptive. In a single-threaded application, concrete event handlers that borrow the
thread of their reactor can run to completion and prevent the reactor from dispatching other
event handlers. In general, therefore, an event handler should not perform long duration
operations, such as blocking I/0 on an individual handle, because this can block the entire
process and impede the reactor's responsiveness to clients connected to other handles.

To handle long-duration operations, such as transferring multimegabyte images [PHS96], it
may be more effective to process event handlers in separate threads. This design can be
achieved via an Active Object (369) or Half-Sync/Half-Async (423) pattern variant that
performs services concurrently to the reactor's main event loop.

Complexity of debugging and testing. It can be hard to debug applications structured using
the Reactor pattern due to its inverted flow of control. In this pattern control oscillates
between the framework infrastructure and the method call-backs on application-specific
event handlers. The Reactor's inversion of control increases the difficulty of 'single-stepping’
through the run-time behavior of a reactive framework within a debugger, because
application developers may not understand or have access to the framework code.

These challenges are similar to the problems encountered trying to debug a compiler's
lexical analyzer and parser written with | ex and yacc. In such applications, debugging is
straightforward when the thread of control is within user-defined semantic action routines.
After the thread of control returns to the generated Deterministic Finite Automata (DFA)
skeleton, however, it is hard to follow the program's logic.

See Also

The Reactor pattern is related to the Observer [GoF95] and Publisher-Subscriber [POSA1]
patterns, where all dependents are informed when a single subject changes. In the Reactor
pattern, however, a single handler is informed when an event of interest to the handler
occurs on a source of events. In general, the Reactor pattern is used to demultiplex
indication events from multiple event sources to their associated event handlers. In contrast,
an observer or subscriber is often associated with only a single source of events.

The Reactor pattern is related to the Chain of Responsibility pattern [GoF95], where a
request is delegated to the responsible service handler. The Reactor pattern differs from the
Chain of Responsibility because the Reactor associates a specific event handler with a
particular source of events. In contrast, the Chain of Responsibility pattern searches the
chain to locate the first matching event handler.

The Reactor pattern can be considered a synchronous variant of the asynchronous Proactor
pattern (215). The Proactor supports the demultiplexing and dispatching of multiple event
handlers that are triggered by the completion of asynchronous operations. In contrast, the
Reactor pattern is responsible for demultiplexing and dispatching multiple event handlers
that are triggered when indication events signal that it is possible to initiate an operation
synchronously without blocking.

The Active Object pattern (369) decouples method execution from method invocation to
simplify synchronized access to shared state by methods invoked in different threads. The
Reactor pattern is often used in lieu of the Active Object pattern when threads are
unavailable or the overhead and complexity of threading is undesirable.
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The Reactor pattern can be used as the underlying synchronous event demultiplexer for the
Leader/Followers (447) and Half-Sync/Half-Async (423) pattern implementations. Moreover,
if the events processed by a reactor's event handlers are all short-lived, it may be possible to
use the Reactor pattern in lieu of these other two patterns. This simplification can reduce
application programming effort significantly and potentially improve performance, as well.

Java does not offer a synchronous demultiplexer for network events. In particular, it does not
encapsulate sel ect () due to the challenges of supporting synchronous demultiplexing in a
portable way. It is therefore hard to implement the Reactor pattern directly in Java. However,
Java's event handling in AWT, particularly the listener or delegation-based model, resembles
the Reactor pattern in the following way:

§ Typically, application developers reuse prefabricated graphical components, such as
different kinds of buttons. Developers typically write event handlers that encode the
application-specific logic to process certain events, such as a mouse-click on a button.
Before receiving button-related events on a button, an event handler must register itself
with this button for all events of this type, which are called Act i onEvent s.

§  When the underlying native code is called by the Java virtual machine (JVM), it notifies
the button's peer, which is the first Java layer on top of the native code. The button peer
is platform-specific and posts a new Act i onEvent to be executed in the event handler
thread, which is a specific-purpose thread created by the JVM.

§ Events are then entered into a queue and an Event Di spat chThr ead object runs a
loop to 'pump’ events further up the AWT widget hierarchy, which ultimately dispatches
the event to all registered listeners stored in a recursive data structure called
AWrEvent Mul ti caster.

All pumping, dispatching, and subsequent event processing runs synchronously in the same
thread, which resembles the synchronous processing of events by a reactor.

Credits
John Vlissides, the shepherd of the [PLoPD1] version of Reactor, Ralph Johnson, Doug Lea,

Roger Whitney, and Uwe Zdun provided many useful suggestions for documenting the
original Reactor concept in pattern form.

EThe Known Uses section lists examples in which the Reactor pattern is used to implement
event handling for applications that play both client and server roles.

@An alternative dispatching approach is described in the Implementation section.

@Log_Recor d's memory layout is identical to a conventional C-style st r uct . Thus, there
are no virtual functions, pointers, or references, and all its values are stored contiguously.

Proactor

The Proactor architectural pattern allows event-driven applications to efficiently demultiplex
and dispatch service requests triggered by the completion of asynchronous operations, to
achieve the performance benefits of concurrency without incurring certain of its liabilities.

Example

Consider a networking application that must perform multiple operations simultaneously,
such as a high-performance Web server that processes HTTP requests sent from multiple
remote Web browsers [HPS99]. When a user wants to download content from a URL four
steps occur:
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1. The browser establishes a connection to the Web server designated in the URL and
then sends it an HTTP GET request.

2. The Web server receives the browser's CONNECT indication event, accepts the
connection, reads and then parses the request.

3. The server opens and reads the specified file.

4. Finally, the server sends the contents of the file back to the Web browser and closes
the connection.
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One way to implement a Web server is to use a reactive event demultiplexing model in
accordance with the Reactor pattern (179). In this design, whenever a Web browser
connects to a Web server, a new event handler is created to read, parse, and process the
request and transfer the contents of the file back to the browser. This handler is registered
with a reactor that coordinates the synchronous demultiplexing and dispatching of each
indication event to its associated event handler.

Although a reactive Web server design is straightforward to program, it does not scale up to
support many simultaneous users and/or long-duration user requests, because it serializes
all HTTP processing at the event demultiplexing layer. As a result, only one GET request can
be dispatched and processed iteratively at any given time.

A potentially more scalable way to implement a Web server is to use some form of
synchronous multi-threading. In this model a separate server thread processes each
browser's HTTP GET request [HS98]. For example, a new thread can be spawned
dynamically for each request, or a pool of threads can be pre-spawned and managed using
the Leader/Followers (447) or Half-Sync/Half-Async (423) patterns. In either case each
thread performs connection establishment, HTTP request reading, request parsing, and file

transfer operations synchronously—that is, server processing operations block until they
complete.

Synchronous multi-threading is a common concurrency model. However, problems with
efficiency, scalability, programming complexity, and portability may occur, as discussed in
the Example section of the Reactor pattern (179).

On operating systems that support asynchronous I/O efficiently, our Web server can
therefore invoke operations asynchronously to improve its scalability further. For example,
on Windows NT the Web server can be implemented to invoke asynchronous Win32
operations that process externally-generated indication events, such as TCP CONNECT and
HTTP GET requests, and transmit requested files to Web browsers asynchronously.

When these asynchronous operations complete, the operating system returns the
associated completion events containing their results to the Web server, which processes
these events and performs the appropriate actions before returning to its event loop. Building
software that achieves the potential performance of this asynchronous event processing
model is hard due to the separation in time and space of asynchronous invocations and their
subsequent completion events. Thus, asynchronous programming requires a sophisticated
yet comprehensible event demultiplexing and dispatching mechanism.

Context
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An event-driven application that receives and processes multiple service requests
asynchronously.

Problem

The performance of event-driven applications, particularly servers, in a distributed system
can often be improved by processing multiple service requests asynchronously. When
asynchronous service processing completes, the application must handle the corresponding
completion events delivered by the operating system to indicate the end of the asynchronous
computations.

For example, an application must demultiplex and dispatch each completion event to an
internal component that processes the results of an asynchronous operation. This
component can reply to external clients, such as a Web browser client, or to internal clients,
such as the Web server component that initiated the asynchronous operation originally. To
support this asynchronous computation model effectively requires the resolution of four
forces:

8 To improve scalability and latency, an application should process multiple completion
events simultaneously without allowing long-duration operations to delay other
operation processing unduly.

§ To maximize throughput, any unnecessary context switching, synchronization, and
data movement among CPUs should be avoided, as outlined in the Example section.

§ Integrating new or improved services with existing completion event demultiplexing
and dispatching mechanisms should require minimal effort.

§  Application code should largely be shielded from the complexity of multi-threading and
synchronization mechanisms.

Solution

Split application services into two parts: long-duration operations that execute
asynchronously and completion handlers that process the results of these operations when
they finish. Integrate the demultiplexing of completion events, which are delivered when
asynchronous operations finish, with their dispatch to the completion handlers that process
them. Decouple these completion event demultiplexing and dispatching mechanisms from
the application-specific processing of completion events within completion handlers.

In detail: for every service offered by an application, introduce asynchronous operations that
initiate the processing of service requests 'proactively' via a handle, together with completion
handlers that process completion events containing the results of these asynchronous
operations. An asynchronous operation is invoked within an application by an initiator, for
example, to accept incoming connection requests from remote applications. It is executed by
an asynchronous operation processor. When an operation finishes executing, the
asynchronous operation processor inserts a completion event containing that operation's
results into a completion event queue.

This queue is waited on by an asynchronous event demultiplexer called by a proactor. When
the asynchronous event demultiplexer removes a completion event from its queue, the
proactor demultiplexes and dispatches this event to the application-specific completion
handler associated with the asynchronous operation. This completion handler then
processes the results of the asynchronous operation, potentially invoking additional
asynchronous operations that follow the same chain of activities outlined above.

Structure

The Proactor pattern includes nine participants:
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Handles are provided by operating systems to identify entities, such as network connections
or open files, that can generate completion events. Completion events are generated either
in response to external service requests, such as connection or data requests arriving from

remote applications, or in response to operations an application generates internally, such

as time-outs or asinchronous 110 sistem calls.

Our Web server creates a separate socket handle for each Web browser connection. In
Win32 each socket handle is created in ‘overlapped 1/0' mode, which means that
operations invoked on the handles run asynchronously. The Windows NT 1/O subsystem

also cI]enerates comiletion events when asinchronousli-executed oierations comilete.

Asynchronous operations represent potentially long-duration operations that are used in the
implementation of services, such as reading and writing data asynchronously via a socket
handle. After an asynchronous operation is invoked, it executes without blocking its caller's
thread of control. Thus, the caller can perform other operations. If an operation must wait for
the occurrence of an event, such as a connection request generated by a remote
application, its execution will be deferred until the event arrives.

Our proactive Web server invokes the Win32 Accept Ex() operation to accept
connections from Web browsers asynchronously. After accepting connections the Web
server invokes the Win32 asynchronous ReadFi | e() and Wit eFi |l e() operations to
communicate with its connected browsers.
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A completion handler specifies an interface that consists of one or more hook methods
[Pree95] [GHJIVI5]. These methods represent the set of operations available for processing
information returned in the application-specific completion events that are generated when
asynchronous operations finish executing.

Concrete completion handlers specialize the completion handler to define a particular
application service by implementing the inherited hook method(s). These hook methods
process the results contained in the completion events they receive when the asynchronous
operations associated with the completion handler finish executing. A concrete completion
handler is associated with a handle that it can use to invoke asynchronous operations itself.
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For example, a concrete completion handler can itself receive data from an asynchronous
read operation it invoked on a handle earlier. When this occurs, the concrete completion
handler can process the data it received and then invoke an asynchronous write operation to

return the results to its connected remote ieer aiilication.

Our Web server's two concrete completion handlers—HTTP acceptor and HTTP
handler—perform completion processing on the results of asynchronous Accept Ex(),
ReadFil e(),and WiteFil e() operations. The HTTP acceptor is the completion
handler for the asynchronous Accept Ex() operation—it creates and connects HTTP
handlers in response to connection request events from remote Web browsers. The
HTTP handlers then use asynchronous ReadFi | e() and Wit eFi | e() operations to

irocess subseiuent reiuests from remote Web browsers.
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Asynchronous operations are invoked on a particular handle and run to completion by an
asynchronous operation processor, which is often implemented by an operating system
kernel. When an asynchronous operation finishes executing the asynchronous operation
processor generates the corresponding completion event. It inserts this event into the
completion event queue associated with the handle upon which the operation was invoked.

This queue buffers completion events while they wait to be demultiplexed to their associated
completion handler.
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In our Web server example, the Windows NT operating system is the asynchronous
operation processor. Similarly, the completion event queue is a Win32 completion port
[Sol98], which is a queue of completion events maintained by the Windows NT kernel on
behalf of an application. When an asynchronous operation finishes the Windows NT
kernel queues the completion event on the completion port associated with the handle

on which the asinchronous oieration was oriiinalli invoked.
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An asynchronous event demultiplexer is a function that waits for completion events to be
inserted into a completion event queue when an asynchronous operation has finished
executing. The asynchronous event demultiplexer function then removes one or more

comiletion event results from the iueue and returns to its caller.

One asynchronous event demultiplexer in Windows NT is
Get QueuedConpl et i onSt at us() . This Win32 function allows event-driven proactive

applications to wait up to an application-specified amount of time to retrieve the next
available completion event.

A proactor provides an event loop for an application process or thread. In this event loop, a
proactor calls an asynchronous event demultiplexer to wait for completion events to occur.
When an event arrives the asynchronous event demultiplexer returns. The proactor then
demultiplexes the event to its associated completion handler and dispatches the appropriate
hook method on the handler to process the results of the completion event.
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Our Web server application calls the proactor's event loop method. This method calls the
Get QueuedConpl et i onSt at us() Win32 function, which is an asynchronous event
demultiplexer that waits until it can dequeue the next available completion event from
the proactor's completion port. The proactor's event loop method uses information in the

completion event to demultiplex the next event to the appropriate concrete completion
handler and dispatch its hook method.

An initiator is an entity local to an application that invokes asynchronous operations on an
asynchronous operation processor. The initiator often processes the results of the
asynchronous operations it invokes, in which case it also plays the role of a concrete

comiletion handler.

In our example HTTP acceptors and HTTP handlers play the role of both initiators and
concrete completion handlers within the Web server's internal thread of control. For
example, an HTTP acceptor invokes Accept Ex() operations that accept connection
indication events asynchronously from remote Web browsers. When a connection
indication event occurs, an HTTP acceptor creates an HTTP handler, which then
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invokes an asynchronous ReadFi | e() operation to retrieve and process HTTP GET

reiuests from a connected Web browser.

Class Collaborator
Initiator * Asynchronous
Operation
Processor
Responsibility » Asynchronous
+ [nvokes Operation
asynchraonous + Concrele
operations Completion
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completion handler

Note how in the Proactor pattern the application components, represented by initiators and
concrete completion handlers, are proactive entities. They instigate the control and data flow
within an application by invoking asynchronous operations proactively on an asynchronous
operation processor.

When these asynchronous operations complete, the asynchronous operation processor and
proactor collaborate via a completion event queue. They use this queue to demultiplex the
resulting completion events back to their associated concrete completion handlers and
dispatch these handlers' hook methods. After processing a completion event, a completion
handler may invoke new asynchronous operations proactively.

The structure of the participants in the Proactor pattern is illustrated in the following class
diagram:
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The following collaborations occur in the Proactor pattern:
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§

An application component playing the role of an initiator invokes an asynchronous
operation on an asynchronous operation processor via a particular handle. In addition to
passing data parameters to the asynchronous operation, the initiator also passes
certain completion processing parameters, such as the completion handler or a handle
to the completion event queue. The asynchronous operation processor stores these

parameters internalli for later use.

8The HTTP handler in our Web server can instruct the operating system to read a new
HTTP GET request by invoking the ReadFi | e() operation asynchronously on a
particular socket handle. When initiating this operation on the handle, the HTTP
handler passes itself as the completion handler so that it can process the results of
an asynchronous operation.

After an initiator invokes an operation on the asynchronous operation processor, the
operation and initiator can run independently. In particular, the initiator can invoke new
asynchronous operations while others continue to execute concurrently.m If the
asynchronous operation is intended to receive a service request from a remote
application, the asynchronous operation processor defers the operation until this
request arrives. When the event corresponding to the expected request arrives, the
asynchronous operation will finish executing.

8§The Windows NT operating system defers the asynchronous ReadFi | e() operation
used to read an HTTP GET request until this request arrives from a remote Web
browser.

When an asynchronous operation finishes executing, the asynchronous operation
processor generates a completion event. This event contains the results of the
asynchronous operation. The asynchronous operation processor then inserts this event
into the completion event queue associated with the handle upon with the asynchronous

operation was oricl;inalli invoked.

§If an HTTP handler invoked an asynchronous ReadFi | e() operation to read an HTTP
CGET request, the Windows NT operating system will report the completion status in

the comiletion event, such as its success or failure and the number of bﬁes read.

When an application is ready to process the completion events resulting from its
asynchronous operations, it invokes the proactor's event loop entry-point method, which
we call handl e_event s() . This method calls an asynchronous event demuItipIexer@
to wait on its completion event queue for completion events to be inserted by the
asynchronous operation processor. After removing a completion event from the queue
the proactor's handl e_event s() method demultiplexes the event to its associated
completion handler. It then dispatches the appropriate hook method on the completion
handler, passing it the results of the asynchronous operation.

188



§The proactor in our Web server example uses a Win32 completion port as its
completion event queue. Similarly, it uses the Win32
Get QueuedConpl et i onSt at us() function [Sol98] as its asynchronous event
demultiplexer to remove completion events from a completion port.

§ The concrete completion handler then processes the completion results it receives. If
the completion handler returns a result to its caller, two situations are possible. First, the
completion handler that processes the results of the asynchronous operations also can
be the initiator that invoked the operation originally. In this case the completion handler
need not perform additional work to return the result to its caller, because it is the caller.

Second, a remote application or an application internal component may have requested
the asynchronous operation. In this case, the completion handler can invoke an
asynchronous write operation on its transport handle to return results to the remote
application.

In response to an HTTP GET request from a remote Web browser, an HTTP
handler might instruct the Windows NT operating system to transmit a large file
across a network by calling Wi t eFi | e() asynchronously. After the operating
system completes the asynchronous operation successfully the resulting completion
event indicates the number of bytes transferred to the HTTP handler. The entire file
may not be transferred in one Wi t eFi | e() operation due to transport-layer flow
control. In this case the HTTP handler can invoke another asynchronous

Wit eFil e() operation at the appropriate file offset.

§  After the completion handler finishes its processing it can invoke other asynchronous
operations, in which case the whole cycle outlined in this section begins again.
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Implementation

The participants in the Proactor pattern can be decomposed into two layers:

§

Demultiplexing/dispatching infrastructure layer components. This layer performs

generic, application-independent strategies for executing asynchronous operations. It
also demultiplexes and dispatches completion events from these asynchronous
operations to their associated completion handlers.

Application layer components. This layer defines asynchronous operations and

concrete completion handlers that perform application-specific service processing.

The implementation activities in this section start with the generic demultiplexing/dispatching
infrastructure components and then cover the application components. We focus on a
proactor implementation that is designed to invoke asynchronous operations and dispatch
hook methods on their associated completion handlers using a single thread of control. The
Variants section describes the activities associated with developing multi-threaded proactor
implementations.

1. Separate application services into asynchronous operations and completion handlers.

To implement the Proactor pattern, application services must be designed to separate
the initiation of asynchronous operations via a handle from the processing of these
operations' results. Asynchronous operations are often long-duration and/or
concerned with 1/0, such as reading and writing data via a socket handle or
communicating with a database. The results of asynchronous operations are
processed by completion handlers. In addition to processing results, completion
handlers can play the role of initiators, that is, they invoke asynchronous operations
themselves.

The products of this activity are a set of asynchronous operations, a set of completion
handlers, and a set of associations between each asynchronous operation and its
completion handler.

2. Define the completion handler interface. Completion handlers specify an interface

consisting of one or more hook methods [Pree95]. These hook methods represent the
completion handling for application-specific completion events generated when
asynchronous operations finish executing. The implementation of completion
handlers consists of three sub-activities:
1. Define a type to convey the results of asynchronous operation. When an
asynchronous operation completes or is canceled its completion event results
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must be conveyed to its completion handler. These results indicate its success
or failure and the number of bytes that were transmitted successfully. The
Adapter pattern [GoF95] is often used to convert information stored in a
completion event into a form used to dispatch to its associated concrete

comiletion handler.

2. The following C++ class conveys the results of an asynchronous Win32
operation back to a concrete completion handler:

3. cl ass Async_Result : public OVERLAPPED {
/1 The Wn32 OVERLAPPED struct stores the file

of f set

5. /'l returned when an asynchronous operation
conpl et es.

6 public:

7 /1 Dispatch to conpletion handl er hook method.

8. virtual void conmplete () = O;

9 /1 Set/get nunber of bytes transferred by an

10. /'l asynchronous operation

11. void bytes_transferred (u_l ong);

12. u_long bytes_transferred () const;

13.

14. _ /1 Set/get the status of the asynchronous
operati on,

15. /1 i.e., whether it succeeded or failed.

16. void status (u_long);

17. u_long status () const;

18.

19. /1 Set/get error value if the asynchronous
operation

20. /1 failed or was canceled by the initiator

21. void error (u_long);

22. u_long error () const;

23. private:

24. /1 ... data nenbers omitted for brevity ..

25. };

26. Deriving Async_Resul t from the OVERLAPPED st r uct allows
applications to add custom state and methods to the results of
asynchronous operations. C++ inheritance is used because the Win32 API
does not provide a more direct way to pass a per-operation result object to
the operating system when an asynchronous operation is invoked.
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28. Determine the type of the dispatching target. Two types of completion handlers
can be associated with a handle to serve as the target of a proactor's
dispatching mechanism, objects and pointers to functions. Implementations of
the Proactor pattern can choose the type of dispatching target based on the
same criteria described in implementation activity 1.1 of the Reactor (179)
pattern.

29. Define the completion handler dispatch interface strategy. We next define the
type of interface supported by the completion handler to process completion
events. As with the Reactor pattern (179), assuming that we use completion
handler objects rather than pointers to functions, two general strategies exist:

§

Single-method dispatch interface strategy. The class diagram in the
Structure section illustrates an implementation of the
Conpl eti on_Handl er interface that contains a single event handling
method, which we call handl e_event () . A proactor uses this method to
dispatch completion events to their associated completion handlers. In
this case the type of completion event that has occurred is passed as a
parameter to the method. The second parameter is the base class for all
asynchronous results, which, depending on the completion event, can be

further downcast to the correct tiie.

§ The following C++ abstract base class illustrates the single-method
dispatch interface strategy. We start by defining useful type
definitions and enumeration literals that can be used by both the
single-method and multi-method dispatch interface strategies:

§ typedef unsigned int Event_Type;

§ enum {

8 /1 Types of indication events.

§ READ EVENT = 01,

§ ACCEPT_EVENT = 01, // An "alias" for
READ_EVENT.

§ VWRI TE_EVENT = 02, TI MEQUT_EVENT = 04,

§ SI GNAL_EVENT = 010, CLOSE_EVENT = 020

§ /1 These val ues are powers of two so

8 /1 their bits can be "or'd" together
efficiently.

§ }

§ Next, we implement the Conpl et i on_Handl er class:
8 cl ass Conpl etion_Handl er {
§
§

public:
/| Cache the <proactor> so that hook nethods

can
8 /'l invoke asynchronous operations on

<proact or >,
§ Conpl eti on_Handl er (Proactor *proactor):
8 proactor_ (proactor) { }
§
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[/ Virtual destruction.

virtual ~Conpletion_Handler ();

/1 Hook met hod di spatched by cached
<proactor_> to

8 /1 handl e conpl etion events of a particular
type that

8 /1 occur on the <handl e>. <Async_Result>
reports the

§ /1 results of the conpl eted asynchronous
oper ati on.

virtual void handl e_event
(HANDLE handl e, Event_ Type et,
const Async_Result &result) = O;

/1 Returns underlying I/ O <HANDLE>.

virtual HANDLE get handle () const = O;
private:

/| Cached <Proact or >.

Proactor *proactor_;

}s
]

w W W W W W W w W w

The single-method dispatch interface strategy makes it possible to add
new types of events without changing the class interface. However, to
handle a specific event, this strategy encourages the use of C++swi t ch
and i f statements in the concrete event handler's handl e_event ()
method implementation, which degrades its internal extensibility.

Multi-method dispatch interface strategy. A different strategy for
implementing the Conpl et i on_Handl er interface is to define separate
hook methods for handling each type of event, such as
handl e_read(), handle wite(),orhandl e _accept (). This
strategy can be more extensible than the single-method dispatch interface
because the demultiplexing is performed by a proactor implementation,
rather than by a concrete event handler's handl e_event () method
implementation.

§ The following C++ abstract base class illustrates a multi-method
interface used by a proactor for network events in our Windows NT-
based Web server example:

8 cl ass Compl etion_Handl er {
8 public:

8 /1l The <proactor> is cached to all ow hook
nmet hods to
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/'l invoke asynchronous operations on
<proact or >,

Conpl eti on_Handl er (Proactor *proactor):

proactor_ (proactor) { }

[/ Virtual destruction.

virtual ~Conpletion_Handler ();

/1 The next 3 nmethods use <Async_Result> to
report

/'l results of conpleted asynchronous
oper ati on.

/1 Dispatched by <proactor_ > when an
asynchr onous

/1 read operation conpl etes.
virtual void handl e_read

(HANDLE handl e, const Async_Result
&result) = 0;

/1 Dispatched by <proactor_ > when an
asynchr onous

/1 wite operation conpletes.
virtual void handle wite

(HANDLE handl e, const Async_Result
&result) = 0;

/1 Di spached by <proactor_> when an
asynchr onous

/| <accept> operation conpl etes.
virtual void handl e_accept

(HANDLE handl e, const Async_Result
& esult) = 0;

/1 Dispatched by <proactor_> when a timeout
expires.

virtual void handl e_tinmeout

(const Tine_Value & v, const void *act)

/1 Returns underlying I/ O <HANDLE>.

virtual HANDLE get handle () const = O;
private:

/| Cached <Proact or>.

Proactor *proactor_;
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§ 1

§ The multi-method dispatch interface strategy makes it easy to override
methods in the base class selectively, which avoids further demultiplexing
viaswi tch ori f statements in the hook method implementation.
However, this strategy requires pattern implementors to anticipate the
hook methods in advance. The various handl e_* () hook methods in the
Conpl eti on_Handl er interface above are tailored for networking
events. However, these methods do not encompass all the types of
events handled via the Win32 Wai t For Mul ti pl eObj ect s()
mechanism, such as synchronization object events [SchSt95].

30. Both the single-method and multiple-method dispatch interface strategies are

implementations of the Hook Method [Pree95] and Template Method [GoF95
patterns. The intent of these patterns is to provide well-defined hooks that can
be specialized by applications and called back by lower-level dispatching
code.

31. Completion handlers are often designed to act both as a target of a proactor's

completion dispatching and an initiator that invokes asynchronous operations,
as shown by the HTTP_Handl er class in the Example Resolved section.
Therefore, the constructor of class Conpl et i on_Handl er associates a
Conpl eti on_Handl er object with a pointer to a proactor. This design allows
a Conpl eti on_Handl er 's hook methods to invoke new asynchronous

operations whose completion processing will be dispatched ultimately by the
same proactor.

3. Implement the asynchronous operation processor. An asynchronous operation
processor executes operations asynchronously on behalf of initiators. Its primary
responsibilities therefore include:

§
§

§

4,

Defining the asynchronous operation interface
Implementing a mechanism to execute operations asynchronously and

generating and

Queueing completion events when an operation finishes

Define the asynchronous operation interface. Asynchronous operations can be

passed various parameters, such as a handle,” data buffers, buffer lengths,

and information used to perform completion processing when the operation
finishes. Two issues must be addressed when designing a programming
interface that initiators use to invoke asynchronous operations on an
asynchronous operation processor:

§ Maximizing portability and flexibility. Asynchronous operations can be
used to read and write data on multiple types of I/O devices, such as
networks and files, and on multiple operating systems, such as Windows
NT, VMS, Solaris, and Linux. The Wrapper Facade (47) and Bridge
[GoF95] patterns can be applied to decouple the asynchronous operation
interface from underlying operating system dependencies and ensure the
interface works for multiple types of 1/O devices.

§ Handling multiple completion handlers, proactors, and completion
event queues efficiently and concisely. More than one completion
handler, proactor, and completion event queue can be used
simultaneously within an application. For example, different proactors can
be associated with threads running at different priorities, to provide
different quality of service levels for processing different completion
handlers. In addition to its data parameters, an asynchronous operation

195



must then indicate which handle, concrete completion handler, proactor,
and completion event queue to use when processing the completion of
asynchronous operations.

A common strategy to consolidate all this completion processing
information efficiently is to apply the Asynchronous Completion Token
pattern (261). When an initiator invokes an asynchronous operation on a
handle, an asynchronous completion token (ACT) can then be passed to
the asynchronous operation processor, which can store this ACT for later
use. Each ACT contains information that identifies a particular operation
and guides its subsequent completion processing.

When an asynchronous operation finishes executing, the asynchronous
operation processor locates the operation's ACT it stored earlier and
associates it with the completion event it generates. It then inserts this
updated completion event into the appropriate completion event queue.
Ultimately, the proactor that runs the application's event loop will use an
asynchronous event demultiplexer to remove the completion event results
and ACT from its completion event queue. The proactor will then use this
ACT to complete its demultiplexing and dispatching of the completion

event results to the comiletion handler desiinated bi the ACT.

Although our Web server is implemented using Win32 asynchronous
Socket operations, we apply the Wrapper Facade pattern (47) to
generalize this class and make it platform-independent. It can
therefore be used for other types of 1/0 devices supported by an
asynchronous operation processor.

The following Async_St r eamclass interface is used by HTTP
handlers in our Web server example to invoke asynchronous
operations:

cl ass Async_Stream {
publi c:

/] Constructor 'zeros out' the data
nmenbers.

Async_Stream ();

/1 Initialization nethod.
voi d open (Conpl etion_Handl er *handl er,

HANDLE handl e, Proactor
*proactor);

/1 Invoke an asynchronous read operation.

void async_read (void *buf, u_long
n_bytes);

/1 Invoke an asynchronous write operation.

void async_wite (const void *buf, u_long
n_bytes);
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private:
/1 Cache paraneters passed in <open>.
Conpl eti on_Handl er *conpl eti on_handl er _;
HANDLE handl e_;
Proactor *proactor_;

b

A concrete completion handler, such as an HTTP handler, can pass
itself to open() , together with the handl e on which the
Async_Streams async_read() and async_write() methods
are invoked:

voi d Async_Stream : open (Conpl etion_Handl er
*handl er,

HANDLE handl e,
Proact or *proactor)

{
conpl etion_handl er _ = handler;
handl e_ = handl e;
proactor_ = proactor;

/1 Associate handle with <proactor>'s
conpl eti on

/1 port, as shown in inplenentation
activity 4.

proactor->regi ster _handl e (handl e);

}

To illustrate the use of asynchronous completion tokens (ACTS),
consider the following implementation of the

Async_Stream : async_read() method. It uses the Win32
ReadFi | e() function to read up to n_byt es asynchronously and
store them in its buf parameter:

void Async_Stream:read (void *buf, u_long
n_bytes) {

u_l ong bytes read;

OVERLAPPED *act = new // Create the ACT.

Async_Stream Read_Resul t
(compl etion_handler );

ReadFil e (handl e_, buf, n_bytes,
&byt es_read, act);

}
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The ACT passed as a pointer to ReadFi | e() is a dynamically
allocated instance of the Async_Stream Read Resul t class
below:

class Async_Stream Read Result : public
Async_Result {

publi c:

/1 Constructor caches the conpletion
handl er.

Async_Stream Read_Resul t

( Conpl et i on_Handl er
*conpl eti on_handl er):

conpl eti on_handl er _
(conpl etion_handler) { }

/1 Adapter that dispatches the
<handl e_event >

/1 hook nethod on cached conpl etion
handl er.

virtual void complete ();

private:
/1 Cache a pointer to a conpletion handler.
Conpl eti on_Handl er *conpl eti on_handl er _;

b

This class plays the role of an ACT and an adapter [GoF95]. It inherits
from Async_Resul t , which itself inherits from the Win32
OVERLAPPED struct, as shown in implementation activity 2.1 (227).
The ACT can be passed as the | pOver | apped parameter to the
ReadFi | e() asynchronous function. ReadFi | e() forwards the ACT
to the Windows NT operating system, which stores it for later use.

When the asynchronous ReadFi | e() operation finishes it generates
a completion event that contains the ACT it received when this
operation was invoked. When the pr oact or 's handl e_event s()
method removes this event from its completion event queue, it
invokes the conpl et e() method on the

Async_Stream Read_Resul t . This adapter method then
dispatches the completion handler's handl e_event () hook method
to pass the event, as shown in implementation activity 5.4 (240).

Choose the asynchronous operation processing mechanism. When an initiator
invokes an asynchronous operation, an asynchronous operation processor
executes the operation without blocking the initiator's thread of control. An
asynchronous operation processor provides mechanisms for managing ACTs
and executing operations asynchronously. It also generates completion events
when operations finish and queues the events into the appropriate completion
event queue.
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Some asynchronous operation processors allow initiators to cancel
asynchronous operations. However, completion events are still generated.
Thus, ACTs and other resources can be reclaimed properly by completion
handlers.

Certain operating environments provide these asynchronous operation
execution and completion event generation mechanisms, such as Real-time
POSIX [POSIX95] and Windows NT [Sol98]. In this case implementing the
asynchronous completion processor participant simply requires mapping
existing operating system APIs onto the asynchronous operation wrapper
facade (47) interfaces described in implementation activity 3.1 (232). The
Variants section describes techniques for emulating an asynchronous
operation processor on operating system platforms that do not support this
feature natively.

4. Define the proactor interface. The proactor's interface is used by applications to invoke
an event loop that removes completion events from a completion event queue,
demultiplexes them to their designated completion handlers, and dispatches their
associated hook method. The proactor interface is often accessed via a singleton
[GoF95] because a single proactor is often sufficient for each application process.

The Proactor pattern can use the Bridge pattern [GoF95] to shield applications from
complex and non-portable completion event demultiplexing and dispatching
mechanisms. The proactor interface corresponds to the abstraction participant in the
Bridge pattern, whereas a platform-specific proactor instance is accessed internally
via a pointer, in accordance with the implementation hierarchy in the Bridge pattern.

The proactor interface in our Web server defines an abstraction for associating
handles with completion ports and running the application's event loop
proactively:

cl ass Proactor {

publi c:
/] Associate <handle> with the <Proactor>'s
/1 conpletion event queue.
voi d regi ster_handl e (HANDLE handl e);

/1 Entry point into the proactive event |oop. The
/1 <tinmeout> can bound tine waiting for events.
voi d handl e_events (Time_Value *wait_time = 0);

/1 Define a singleton access point.
static Proactor *instance ();
private:
/1 Use the Bridge pattern to hold a pointer to
/1 the <Proactor_Inpl enentation>.
Proact or _| npl enent ati on *proactor _inpl _;

}s
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A proactor interface also defines a method, which we call r egi st er _handl e(),
that associates a handle with the proactors completion event queue, as described in
implementation activity 5.5 (240). This association ensures that the completion events
generated when asynchronous operations finish executing will be inserted into a
particular proactor's completion event queue.

The proactor interface also defines the main entry point method, we call it

handl e_event s() , that applications use to run their proactive event Ioop.m This
method calls the asynchronous event demultiplexer, which waits for completion
events to arrive on its completion event queue, as discussed in implementation
activity 3.1 (232). An application can use the timeout parameter to bound the time it
spends waiting for completion events. Thus, the application need not block
indefinitely if events never arrive.

After the asynchronous operation processor inserts a completion event into the
proactor's completion event queue, the asynchronous event demultiplexer function
returns. At this point the proactor's handl e_event s() method dequeues the
completion event and uses its associated ACT to demultiplex to the asynchronous
operation's completion handler and dispatch the handler's hook method.

5. Implement the proactor interface. Five sub-activities can be used to implement the
proactor interface:

0. Develop a proactor implementation hierarchy. The proactor interface
abstraction illustrated in implementation activity 4 (235) delegates all its
demultiplexing and dispatching processing to a proactor implementation. This
plays the role of the implementation hierarchy in the Bridge pattern [GoF95].
This design allows multiple types of proactors to be implemented and
configured transparently. For example, a concrete proactor implementation
can be created using different types of asynchronous event demultiplexers,
such as POSIX ai o_suspend() [POSIX95], or the Win32
Get QueuedConpl eti onStatus() orWai t For Mul ti pl eQhj ects()
functions [Sol98].

1. In our example the base class of the proactor implementation hierarchy is
defined by the class Proact or _|I npl emrent ati on. We omit its
declaration here because this class has essentially the same interface as
the Pr oact or interface in implementation activity 4 (235). The primary
difference is that its methods are purely virtual, because it forms the base

of a hierarchi of concrete iroactor imilementations.

3. Choose the completion event queue and asynchronous event demultiplexer
mechanisms. The handl e_event s() method of the proactor implementation
calls an asynchronous event demultiplexer function, which waits on the
completion event queue for the asynchronous operation processor to insert
completion events. This function returns whenever there is a completion event
in the queue. Asynchronous event demultiplexers can be distinguished by the
types of semantics they support, which include one of the following:

§ FIFO demultiplexing. This type of asynchronous event demultiplexer
function waits for completion events corresponding to any asynchronous
operations that are associated with its completion event queue. The
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4,

5.

events are removed from the queue in the order in which they are
inserted.

§ The Win32 Get QueuedConpl eti onSt at us() function allows event-
driven proactive applications to wait up to an application-specified
amount of time for any completion events to occur on a completion
port. Events are removed in FIFO order [Sol98].

8 Selective demultiplexing. This type of asynchronous event
demultiplexer function waits selectively for a particular subset of
completion events that must be passed explicitly when the function is
called.

§ The POSIX ai o_suspend() function [POSIX95] and the Win32
Wi t For Mul ti pl eObj ect s() function [Sol98] are passed an array
parameter designating asynchronous operations explicitly. They
suspend their callers for an application-specified amount of time until

at least one of these asinchronous oierations has comileted.

The completion event queue and asynchronous event demultiplexer are often
existing operating system mechanisms that need not be developed by
Proactor pattern implementors.

The primary difference between Get QueuedConpl eti onSt at us(),

ai o_suspend(), and Wai t For Mul ti pl eObj ect s() is that the latter two
functions can wait selectively for completion events specified via an array
parameter. Conversely, Get QueuedConpl eti onSt at us() just waits for the
next completion event enqueued on its completion port. Moreover, the POSIX
ai o_* () functions can only demultiplex asynchronous I/O operations, such
asai o _read() oraio_write(), whereas

Get QueuedConpl eti onSt at us() and Wai t For Mul ti pl eCbj ect s() can
demultiplex other Win32 asynchronous operations, such as timers and

synchronization objects.

6. Our Web server uses a Win32 completion port as the completion event
gueue and the Get QueuedConpl et i onSt at us() function as its
asynchronous event demultiplexer:

7. BOOL Get QueuedConpl eti onSt at us
(HANDLE Conpl eti onPort,
9. LPDWORD | pNunber Of Byt esTr ansf erred,
10. LPDWORD | pConpl et i onKey,
11. LPOVERLAPPED *| pOver | apped,
12. DWORD dwM | | i seconds);
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13. As shown in implementation activity 5.5 (240), our proactor
implementation's handl e_event s() method uses this function to
dequeue a completion event from the specified Conpl eti onPort . The
number of bytes transferred is returned as an 'out' parameter. The
| pOver | apped parameter points to the ACT passed by the original
asynchronous operation, such as the ReadFi | e() call in the
Async_Stream : async_read() method shown in implementation
activity 3.1 (232).

14. If there are no completion event results queued on the port, the function
blocks the calling thread, waiting for asynchronous operations associated
with the completion port to finish. The
Get QueuedConpl et i onSt at us() function returns when it is able to
dequeue a completion event result or when the dwM | | i seconds

timeout exiires.

16. Determine how to demultiplex completion events to completion handlers. An
efficient and concise strategy for demultiplexing completion events to
completion handlers is to use the Asynchronous Completion Token pattern
(261), as described in implementation activity 3.1 (232). In this strategy, when
an asynchronous operation is invoked by an initiator the asynchronous
operation processor is passed information used to guide subsequent
completion processing. For example, a handle can be passed to identify a
particular socket endpoint and completion event queue, and an ACT can be
passed to identify a particular completion handler.

When the asynchronous operation completes, the asynchronous operation
processor generates the corresponding completion event, associates it with its
ACT and inserts the updated completion event into the appropriate completion
event queue. After an asynchronous event demultiplexer removes the
completion event from its completion event queue, the proactor
implementation can use the completion event's ACT to demultiplex to the
designated completion handler in constant O(1) time.

As shown in implementation activity 3.1 (232), when an async_r ead()
orasync_write() methodisinvoked on an Async_St r eam they
create a new Async_Stream Read_Resul t or

Async_Stream Wite_ Result ACT, respectively and pass it to the
corresponding Win32 asynchronous operation. When this asynchronous
operation finishes, the Windows NT kernel queues the completion event
on the completion port designated by the handle that was passed during
the original asynchronous operation invocation. The ACT is used by the
proactor to demultiplex the completion event to the completion handler
designated in the original call.

17. Determine how to dispatch the hook method on the designated completion
handler. After the proactor's handl e_event s() method demultiplexes to the
completion handler it must dispatch the appropriate hook method on the
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completion handler. An efficient strategy for performing this dispatching
operation is to combine the Adapter pattern [GoF95] with the Asynchronous
Completion Token pattern (261), as shown at the end of implementation

activiti 3.1 i&i

18. An Async_Stream Read Resul t is an adapter, whose conpl et e()
method can dispatch the appropriate hook method on the completion
handler that it has cached in the state of its ACT:

19. voi d Async_Stream Read Result::conplete () {
20. conpl eti on_handl er _->handl e_event

21. (conpl eti on_handl er _->get _handle (),
22. READ _EVENT, *this);

23. }

24. Note how the handl e_event () dispatch hook method is passed a
reference to the Async_Stream Read Resul t object that invoked it.
This double-dispatching interaction [GoF95] allows the completion handler
to access the asynchronous operation results, such as the number of
bytes transferred and its success or failure status.

26. Define the concrete proactor implementation. The proactor interface holds a
pointer to a concrete proactor implementation and forwards all method calls to

it, as shown in imilementation activiti 4 i235i.

27. Our concrete proactor implementation overrides the pure virtual methods it
inherits from class Pr oact or _I npl enent ati on:

28. cl ass Wn32_Proactor_Inpl enentation :
29. public Proactor_|nplenentation {
30. public:

31. The W n32_Proact or _| npl enent ati on constructor creates the
completion port and caches it in the conpl et i on_port _ data member:

32. W n32_Proactor I npl enentation::
33. W n32_Proactor_Inplenentation () {
34. conpletion_port_ =

Creat el oConpl eti onPort
35. (1 NVALI D_HANDLE, 0, 0, 0);
36. }

37. Theregi st er _handl e() method associates a HANDLE with the
completion port:

38. voi d
W n32_Proactor_| npl enentation::register_handl e

39. (HANDLE h) {

203



40.

41.

42,

43.

44.

45.
46.
47.

48.

49.
50.
51.
52.

53.

54.
55.

56.

57.
58.
59.

60.
61.

62.

63.

64.

Creat el oConpl eti onPort (h,
conpl etion_port _,0,0);

}

All subsequent completion events hat result from asynchronous
operations invoked via the HANDLE will be inserted into this proactor's
completion port by the Windows NT operating system.

The next code fragment shows how to implement the handl e_event s()
method:

W n32_Pr Xg::tdor_l npl erent ati on: : handl e_event s
(Tinme_Value *wait _time = 0) {
u_l ong num byt es;
OVERLAPPED *act ;

This method first calls the Get QueuedConpl eti onSt at us()
asynchronous event demultiplexing function to dequeue the next
completion event from the completion port:

BOOL status = Get QueuedConpl eti onSt at us
(conpletion_port_, &num bytes,
0, &act,
wait time == 0 ? 0 : wait _tine->nsec

0);

When this function returns, the ACT returns, the ACT received from the
Windows NT operating system is downcast to become an Async_Resul t

* -
Async_Result *async_result =
static_cast <Async_Result *> (act);

The completion event that Get QueuedConpl eti onSt at us() returned
updates the completion result data members inasync_resul t:

async_result-> status (status);
if (!status)

async_result->error
(GetLastError());

el se

async_result-
>byt es_transferred(num bytes);

The proactor implementation's handl e_event s() method then invokes
the conpl et e() method on the async_r esul t adapter:

async_result->conplete ();

Implementation activity 5.4 (240) illustrates how the conpl et e() method
in the Async_St ream Read_Resul t adapter dispatches to the concrete
completion handler's handl e_event () hook method.
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65. Finally, the proactor deletes the async_r esul t pointer, which was
allocated dynamically by an asynchronous operation interface method, as
shown in implementation activity 3.1 (232).

66. del ete async_result;
67. }

68. The private portion of our proactor implementation caches the handle to its
Windows NT completion port:

69. private:

70. /1 Store a HANDLE to a W ndows NT conpl etion
port.

71. HANDLE conpl etion_port _;

72. };

6. Determine the number of proactors in an application. Many applications can be
structured using just one instance of the Proactor pattern. In this case the proactor
can be implemented using the Singleton pattern [GoF95], as shown in
implementation activity 4 (235). This design is useful for centralizing event
demultiplexing and dispatching of completion events to a single location in an
application.

It can be useful to run multiple proactors simultaneously within the same application
process, however. For example, different proactors can be associated with threads
running at different priorities. This design provides different quality of service levels to
process completion handlers for asynchronous operations.

Note that completion handlers are only serialized per thread within an instance of the
proactor. Multiple completion handlers in multiple threads can therefore run in
parallel. This configuration may necessitate the use of additional synchronization
mechanisms if completion handlers in different threads access shared state
concurrently. Mutexes and synchronization idioms such as Scoped Locking (325) are
suitable.

7. Implement the concrete completion handlers. Concrete completion handlers specialize
the completion handler interface described in implementation activity 2.3 (228) to
define application-specific functionality. Three sub-activities must be addressed when
implementing concrete completion handlers:

0. Determine policies for maintaining state in concrete completion handlers. A
concrete completion handler may need to maintain state information
associated with a particular request. For example, an operating system may
notify a server that only part of a file was written to a Socket asynchronously,
due to the occurrence of transport-level flow control. A concrete completion
handler must then send the remaining data, until the file is fully transferred or
the connection becomes invalid. It must therefore know which file was
originally specified, how many bytes remain to be sent, and the position of the
file at the start of the previous request.

1. Select a mechanism to configure concrete completion handlers with a handle.
Concrete completion handlers perform operations on handles. The same two
strategies described in implementation activity 6.2 of the Reactor (179)

pattern—hard-coded and generic—can be applied to configure handles with
event handlers in the Proactor pattern. In both strategies wrapper facades (47)
can encapsulate handles used by completion handler classes.
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2. Implement completion handler functionality. Application developers must
decide the processing actions that should be performed to implement a
service when its corresponding hook method is invoked by a proactor. To
separate connection establishment functionality from subsequent service
processing, concrete completion handlers can be divided into several
categories in accordance with the Acceptor-Connector pattern (285). In
particular, service handlers implement application-specific services. In
contrast, acceptors and connectors establish connections passively and
actively, respectively, on behalf of these serv