

Ruby on Rails®

for Microsoft® Developers

subtitle

Updates, source code, and Wrox technical support at www.wrox.com

The Art of Rails®

Edward Benson

Wrox Programmer to Programmer TM

Updates, source code, and Wrox technical support at www.wrox.com

Professional

Ruby on Rails

Noel Rappin

Wrox Programmer to Programmer TM

 Enhance Your Knowledge
Advance Your Career

Professional ASP.NET 3.5 AJAX
978-0-470-39217-1
This book is for ASP.NET developers who are interested in using AJAX
to enhance existing web sites or develop new, more interactive web
applications.

Ruby on Rails for Microsoft Developers
978-0-470-37495-5
This book is for programmers who have experience developing the
Microsoft Windows platform and are interested in getting the most out
of Ruby on Rails.

Professional Ajax, 2nd Edition
978-0-470-10949-6
This book is for web developers who want to enhance the usability
of their sites and applications. Familiarity with JavaScript, HTML, and
CSS is necessary, as is experience with a server-side language such
as PHP or a .NET language.

Professional Ruby on Rails
978-0-470-22388-8
This book is for Ruby on Rails programmers, software and web devel-
opers, designers, and architects who are looking to expand their
knowledge of the Rails framework.

The Art of Rails
978-0-470-18948-1
This book is for developers familiar with Ruby on Rails who are looking
to advance their skills by learning the design and coding techniques
that enable a mastery of web application development with Rails.

Beginning Ruby on Rails
978-0-470-06915-8
This book is for anyone who wants to develop online applications using
Ruby and Rails. A basic understanding of programming is helpful;
some knowledge of HTML is necessary.

Beginning ASP.NET 2.0 AJAX
978-0-470-11283-0
This book is for developers and programmers who are starting to use
ASP.NET 2.0 AJAX framework technologies to build web sites and
applications.

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=.96"

Ruby on Rails® for Microsoft Developers

Introduction . xxiii
Chapter 1: Getting Started with Rails . 1
Chapter 2: Understanding Rails . 33
Chapter 3: Ruby’s Data Types . 55
Chapter 4: Programming Ruby . 85
Chapter 5: A Working Sample . 135
Chapter 6: Incremental Development, Logging, and Debugging 197
Chapter 7: Object-Relational Mapping with ActiveRecord 233
Chapter 8: Handling Requests with ActionController 303
Chapter 9: Rendering the User Interface with ActionView 353
Chapter 10: ActiveResource and Web Services . 383
Chapter 11: Going Into Production . 393
Appendix A: Additional Resources . 417
Index . 423

74955book.indd Listi74955book.indd Listi 3/4/09 8:42:18 AM3/4/09 8:42:18 AM

74955book.indd Listii74955book.indd Listii 3/4/09 8:42:19 AM3/4/09 8:42:19 AM

Ruby on Rails®

for Microsoft Developers

74955book.indd Listiii74955book.indd Listiii 3/4/09 8:42:19 AM3/4/09 8:42:19 AM

74955book.indd Listiv74955book.indd Listiv 3/4/09 8:42:19 AM3/4/09 8:42:19 AM

Ruby on Rails®

for Microsoft Developers

Antonio Cangiano

74955book.indd Listv74955book.indd Listv 3/4/09 8:42:19 AM3/4/09 8:42:19 AM

Ruby on Rails® for Microsoft Developers
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-37495-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all
warranties, including without limitation warranties of fi tness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the
United States and other countries, and may not be used without written permission. Ruby on Rails is a reg-
istered trademark of David Heinemeier Hansson. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

74955book.indd Listvi74955book.indd Listvi 3/4/09 8:42:19 AM3/4/09 8:42:19 AM

www.wiley.com
www.wiley.com/go/permissions
www.wiley.com/go/permissions

For Jessica, my guiding star.

To my parents, Carmela and Ciro.

74955book.indd Listvii74955book.indd Listvii 3/4/09 8:42:19 AM3/4/09 8:42:19 AM

74955book.indd Listviii74955book.indd Listviii 3/4/09 8:42:19 AM3/4/09 8:42:19 AM

About the Author
Antonio Cangiano is a Software Engineer and Technical Evangelist at the IBM Toronto Software Lab.
He authored the initial ActiveRecord adapter for IBM DB2 and received an IBM Outstanding Technical
Achievement Award for his work with Rails. As a long-standing programmer, he has developed with
Microsoft .NET since its fi rst public beta, while maintaining a keen interest in multiple programming lan-
guages and technologies as well. He discovered Ruby and Ruby on Rails in 2004, immediately recognizing
their potential, and has adopted them as his favorite development tools ever since. Cangiano has contrib-
uted to books on the subject in both English and Italian, as well as to a few Open Source projects. You can
fi nd more of his writing on his blog, Zen and the Art of Programming (http://antoniocangiano.com).

74955book.indd Listix74955book.indd Listix 3/4/09 8:42:19 AM3/4/09 8:42:19 AM

74955book.indd Listx74955book.indd Listx 3/4/09 8:42:19 AM3/4/09 8:42:19 AM

Acquisitions Editor
Jenny Watson

Development Editors
Kelly Talbot
Gus A. Miklos
Sydney Jones

Technical Editor
Dr. Ian Piper

Production Editor
Kathleen Wisor

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefi eld

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Compositor
Craig Woods, Happenstance Type-O-Rama

Proofreader
Jen Larsen, Word One
Nate Pritts, Word One

Indexer
J & J Indexing

Credits

74955book.indd Listxi74955book.indd Listxi 3/4/09 8:42:19 AM3/4/09 8:42:19 AM

74955book.indd Listxii74955book.indd Listxii 3/4/09 8:42:19 AM3/4/09 8:42:19 AM

Acknowledgments

Winston Churchill once said, “Writing a book is an adventure. To begin with, it is a toy and an amuse-
ment; then it becomes a mistress, and then it becomes a master, and then a tyrant. The last phase is that
just as you are about to be reconciled to your servitude, you kill the monster, and fl ing him out to the
public.” There is a lot of truth to those sentiments and I feel compelled to briefl y thank the people who
helped me “kill that monster,” as well as those who made the whole process enjoyable.

It has been my pleasure to work with the good folks at Wrox. In particular, I would like to thank Jenny
Watson for giving me the opportunity to write this book, my two development editors Kelly Talbot and
Sydney Jones for their advice and help with keeping me on track, and my technical editor Ian Piper,
as well as Gus Miklos, for their invaluable suggestions. I also would like to thank my manager Leon
Katsnelson, who fi rst brought the possibility of writing this book to my attention, and for his continu-
ous support.

I would like to express my gratitude to several people who helped me out in various ways; these friends
and world class programmers are (in alphabetical order): Piergiuliano Bossi, Ninh Bui, Marco Ceresa,
Paolo Corti, Giovanni Intini, Hongli Lai, Ludovico Magnocavallo, Carlo Miron, Lawrence Oluyede,
Gregg Pollack, and Valentino Volonghi. I can’t help but also thank Antani and Tarapia Tapioco. A huge
thank you goes straight to Marco Beri who was writing a book at the same time as I was writing mine.
I’d sometimes tease him by saying that he wasn’t as lucky as me, since his book wasn’t on Rails, but on
Django, a framework for the Python language. Inside jokes aside, our interaction via instant messaging
kept my spirits high and provided encouragement during the many long nights spent in front of a glow-
ing monitor. My appreciation also goes out to several people who kindly offered their help with review-
ing this book as it was being written. I’m sorry that time constraints and logistics didn’t allow for this. As
well, I can’t forget to mention Andrea Peltrin, a great Web designer who helped me improve the look and
feel of the sample blog application that was developed for Chapters 5 and 6. All the people mentioned
here did an amazing job in helping me to write the book you are holding, but I want to highlight how
any mistakes or shortcomings that may appear here are mine and mine alone, and are in no way repre-
sentative of these fi ne people’s work.

I feel it’s also important to acknowledge three people who didn’t work directly on this book, yet were
hugely infl uential in its coming to be. These are Yukihiro Matsumoto (a.k.a Matz), David Heinemeier
Hansson, and Dave Thomas. Matz invented the Ruby language, one of the most beautiful programming
languages out there. David created the Ruby on Rails framework, whose value will be revealed through-
out the book. And fi nally, Dave Thomas wrote some of the earliest available books on the subject of Ruby
and Rails. His work helped to popularize both of these and gave a large part of the programming public
the opportunity to learn about this pair of technologies. These three people affected my life more than
they will ever know, and for this I deeply respect and thank them.

74955book.indd Listxiii74955book.indd Listxiii 3/4/09 8:42:19 AM3/4/09 8:42:19 AM

xiv

Acknowledgments

A sincere, heartfelt thank you goes to my unoffi cial editor, my wife Jessica, whose mastery of the
English language and craft of writing may only be surpassed by her patience, dedication, and beauty.
Though not a programmer, her help has been invaluable in improving the quality of this book. Writing
a book while maintaining a full-time day job and a regularly updated blog is a challenging task and an
effort that leaves little to no time for your family. So I must thank Jessica once again for being the unde-
manding, lovely companion who helped me maintain my sanity during these busy times.

In conclusion, I want to thank you, my readers. You are investing your time, money, and trust in this
book. For this I thank you and I want to reassure you that a great deal of care was placed into the
writing of this book, so as not to betray your trust.

74955book.indd Listxiv74955book.indd Listxiv 3/4/09 8:42:19 AM3/4/09 8:42:19 AM

Contents

Introduction xxiii

GChapter 1: etting Started with Rails 1

The Rise and Challenges of Web Development 2
What Is Rails? 3

Open Source 3
Cross-Platform 4
Full-Stack 4
The MVC Pattern 4
Agile Development 5
Database Driven 6
Ruby: Rails’ Secret Sauce 7
Greater Than the Sum of Its Parts 7

A Brief History of Rails 8
Understanding Rails’ Origins 8
Powering the Web 2.0 10
The Rise of Ruby 10

Installing Rails 11
Can You Use Rails on Windows? 11
Installing on Windows 12
Confi guring Instant Rails 17
Installation on Other Platforms 19
RubyStack 21

Editors and IDEs 21
IDEs Are Helpful, Not Necessary 21
Popular Choices 22
TextMate: The King of Rails Editors 22
Vi and Emacs 24
NetBeans IDE 25
Aptana Studio and RadRails 25
Ruby In Steel: I Still Want Visual Studio 27

Whetting Your Appetite 29
Summary 31

74955book.indd Listxv74955book.indd Listxv 3/4/09 8:43:58 AM3/4/09 8:43:58 AM

xvi

Contents

Understanding Rails 3Chapter 2: 3

Misconceptions about Rails 33
You Don’t Have to Be a Programmer 34
Rails Is a Silver Bullet 34
Rails Is Hard to Deploy 35
Rails Doesn’t Scale 35

Understanding MVC 36
Overview of the Architectural Pattern 36
Defi ning Models 38
Designing Views 41
Managing Controllers 42

Rails’ Standard Packages 44
Understanding Rails’ Main Principles 44

Convention over Confi guration 44
Don’t Repeat Yourself (DRY) 46

Rails vs. ASP.NET vs. ASP.NET MVC 47
A 10,000-Foot Comparison 48
ASP.NET MVC and Other .NET Frameworks 51

Summary 53

Ruby’s Data Types 5Chapter 3: 5

What’s Ruby? 55
Hello, Ruby! 56
Your New Best Friends 59

Interactive Ruby (IRB) 60
Ruby Interactive (RI) 61

Ruby’s Essential Data Types 63
Everything Is an Object 63
Identifi ers and Variables 64
Working with Numbers 67
Booleans 72
Strings 74
Symbols 77
Regular Expressions 77
Ranges 78
Arrays 79
Hashes 81

Summary 83

74955book.indd Listxvi74955book.indd Listxvi 3/4/09 8:43:58 AM3/4/09 8:43:58 AM

xvii

Contents

Programming Ruby 8Chapter 4: 5

Defi ning Methods 85
Conditionals 88

if / elsif / else / unless 88
The Ternary Operator 90
The case Statement 91

Looping 93
The for/in Loop 93
The while and until Loops 94
Blocks and Iterators 95

Exception Handling 107
Raising Errors 109

Objects and Classes 111
Defi ning and Instantiating Classes 111
Attributes and Accessor Methods 112
Methods Visibility 116
Single Inheritance 117
Monkey Patching 120
Singleton Methods and Eigenclasses 121

Modules and Mixins 126
Modules Act as Namespaces 127
Modules Act as Mixins 129

Metaprogramming 131
Method Name Resolution 132
Alternative Ruby Implementations 133
Summary 134

A Working Sample 13Chapter 5: 5

Creating a New Rails Application 135
The rails Command 136
confi g\database.yml 137
Creating Databases 139

Scaffolding and Migrations 140
Migrations 140
Putting It All Together: Creating a Rails Application 146

A RESTful Application 151
What’s REST? 152
Mapping Routes to Actions 153
Named route Helpers 155

Analyzing the Model 156

74955book.indd Listxvii74955book.indd Listxvii 3/4/09 8:43:58 AM3/4/09 8:43:58 AM

xviii

Contents

Analyzing the Controller 157
index 157
show 158
new 159
edit 160
create 160
update 161
destroy 162

Analyzing the View Layer 163
Rails’ Layouts vs. ASP.NET’s Master Pages 163
The articles.html.erb Layout 164
The index.html.erb Template 166
The new.html.erb Template 168
The edit.html.erb Template 170
The show.html.erb Template 171

Adding Partials 172
Adding Validations 174
Adding a Bit of Style 176
Setting a Default Time Zone 182
Adding Support for Textile 184
Using named_scope 188
Adding a Custom REST Action 191

Defi ning a Helper Method 192
More about Partials 193

Summary 196

Incremental Development, Logging, and Debugging 19Chapter 6: 7

Adding Pagination 197
Installing the will_paginate Plugin 198
Using the Plugin 198

Adding Comments 201
Defi ning Associations 204
Nested Resources 206

Adapting the Controller 207
Adapting the View Layer 211
Embedding Comments in Articles 215

Runtime Environments 221
Development 221
Test 222
Production 222
Your Own Environment 223

74955book.indd Listxviii74955book.indd Listxviii 3/4/09 8:43:58 AM3/4/09 8:43:58 AM

xix

Contents

Logging 223
Using Logger 224
Redirecting Logging to the Console 226
Filtering Data 226

Debugging 227
Rails Directory Structure 230
Summary 231

Object-Relational Mapping with ActiveRecord 23Chapter 7: 3

Supported Databases 234
ActiveRecord Outside of Rails 235
Object-Relational Mapping 237

Generating Models 237
Generating Migrations 239
ORM Conventions 244

CRUD Operations 250
Create 250
Read 252
Update 265
Delete 269

ActiveRecord Associations 270
One-to-one Relationships 270
One-to-many Relationships 271
Many-to-many Relationships 271
Auto-generated Methods 273
Association Extensions 280

ActiveRecord Validations 281
Validation Helpers 283

Advanced ActiveRecord 284
Single Table Inheritance 284
Polymorphic Associations 286
Callbacks 289
Association Callbacks 292
Observers 292

Testing Models 294
Summary 301

Handling Requests with ActionController 30Chapter 8: 3

Defi ning Routes with map.connect 305
Default Parameters 305

74955book.indd Listxix74955book.indd Listxix 3/4/09 8:43:58 AM3/4/09 8:43:58 AM

xx

Contents

Customizing Your Routes 306
Route Priority 309
Routes from the Console 310

Named Routes 311
RESTful Routes 312

map.resources 313
map.resource 314
Customizing RESTful Routes 315

Working with Controllers 319
Generating Controllers 320
Action Processing 321

Rendering 322
render 322
send_data and send_fi le 324
redirect_to 325

Accessing the Request and Response Environment 326
The request Object 327

Maintaining the State 329
Flash 330
Sessions 332
Session Storage Options 333
Enabling and Disabling Sessions 337
Session Expiration 338

Filters 339
Using Filters for HTTP Basic Authentication 342
Ideas for Improving the Authentication System 344

Testing Controllers 346
Testing Routes 346
Functional Testing 348

Summary 352

Rendering the User Interface with ActionView 35Chapter 9: 3

Working with Templates 353
Rendering Templates 353

Built-in Template Engines 357
ERb 357
Builder 358
RJS 359

Adding an RSS and Atom Feed 360
format.rss and format.atom 360

74955book.indd Listxx74955book.indd Listxx 3/4/09 8:43:58 AM3/4/09 8:43:58 AM

xxi

Contents

index.rss.builder and index.atom.builder 361
Linking to the Feeds 366

Helpers 367
Predefi ned Helpers 368
Creating Helpers 376

Adding a Sprinkle of Ajax 377
Alternatives 381
Summary 382

ActiveResource and Web Services 38Chapter 10: 3

ActiveResource 383
Creating ActiveResource Models 384
CRUD Operations 385
Nested Resources 389
Consuming and Publishing REST Web Services from .NET 390

SOAP, XML-RPC, and ActionWebService 391
Summary 391

Going Into Production 39Chapter 11: 3

Security Considerations 393
Cross-Site Scripting (XSS) 394
SQL Injection 397
Protecting Your Records 398
Other Costly Mistakes 399
Ruby on Rails Security Guide 400

Performance and Optimization 400
Measuring Performance 400
Commercial Monitoring 404
Caching 406
Application-Level Performance Considerations 407

Deploying Rails 409
A Brief History of Deploying Rails 410
Deploying on Windows 412
Deploying on GNU/Linux 413

A Few Enterprise Pointers 414
Upgrading to Rails 2.3 415
Summary 416

74955book.indd Listxxi74955book.indd Listxxi 3/4/09 8:43:58 AM3/4/09 8:43:58 AM

xxii

Contents

Additional Resources 41Appendix A: 7

HTML and JavaScript 417
HTML Links 417
JavaScript Links 417
Common Ajax Libraries and Frameworks 418

Ruby and Rails 418
Useful Links 418
Hosting Services 419
Getting Help 419

Recommended Books 420

Index 423

74955book.indd Listxxii74955book.indd Listxxii 3/4/09 8:43:58 AM3/4/09 8:43:58 AM

Introduction

In July 2004 David Heinemeier Hansson released Ruby on Rails, a Web framework for the Ruby pro-
gramming language. It quickly gained momentum and became notorious for being a highly productive
Model-View-Controller (MVC) Web framework that was particularly well suited to Agile development.

Favoring sensible conventions over verbose confi guration fi les, Rails (as it is often called for short) aimed
to simplify and improve the lives of developers by allowing rapid prototyping of Web applications.

Fast-forward a few years, and Rails is now considered to be an established framework that has had a
signifi cant infl uence on the world of Web development. It inspired many other frameworks, helped boost
the popularity of dynamic programming languages on the Web, and has been used to implement some
of the largest sites that are out there today.

Despite Rails’ wide success and adoption, its community still remains Unix-centric, favoring Mac OS X,
GNU/Linux, or BSD variants over Microsoft Windows. Consequently the majority of books on the subject
and most of the literature you’ll fi nd online assume that you are using Unix-like operating systems and
tools. Though I personally use all of the operating systems I just mentioned, I believe that learning a new
language and framework can be challenging in its own right, so there is no need to make the whole expe-
rience more diffi cult by adding a new operating system and its ecosystem of tools to the learning curve.

Until today, if you were to approach Rails as a “Microsoft developer” you would most likely be in for a
culture shock. I felt compelled to change that by writing a book that helps bridge that cultural gap and
make the experience of learning Rails, when you have a Microsoft background, much less traumatic.
I attempt to be a friendly voice that can help you reach a better understanding of what Rails is and how
you can use it for your own projects, while utilizing tools you are (already) comfortable with, leveraging
your existing .NET or other Microsoft technologies skills, and understanding what caveats are associated
with developing Ruby on Rails applications on Windows.

Who This Book Is For
This book is introductory in nature and as such is intended for beginner to intermediate programmers.
Throughout the book I assume that you are somewhat familiar with object-oriented programming and
Web application development, but not with Ruby or Rails in particular.

If you are an absolute beginner you may fi nd some parts more challenging or obscure than others, but
you should still be able to grasp the gist of things and get a glimpse of the bigger picture of what Rails
can do for you. Conversely, if you are an experienced .NET developer, you’ll probably appreciate a few
in-depth considerations and the occasional comparison in the text, whenever similarities between the
two worlds exist.

I also assume that you’ll be using Windows, even though it is possible to follow along using any
operating system, because the commands and examples are cross-platform.

74955book.indd Listxxiii74955book.indd Listxxiii 3/4/09 8:44:19 AM3/4/09 8:44:19 AM

Introduction

xxiv

To successfully keep up with this book, the following skills would be benefi cial:

A general understanding of how the Web works ❑

XHTML and JavaScript ❑

A basic understanding of object-oriented programming (OOP) ❑

Entry level knowledge of working with databases ❑

Rails is extremely good at abstracting details. Therefore it provides you with one of the gentlest
introductions to the world of Web development (if your current understanding of the Web is not
overly advanced).

Several Ruby helpers and mechanisms are also provided by Rails, in order to minimize the amount
of raw XHTML or JavaScript that you have to write. You don’t have to be an expert in either of these
languages, especially because this book is focused on Rails, not Ajax.

If you are in need of a refresher course for either XHTML or JavaScript, Appendix A provides links to
excellent online material.

Ruby is important if you want to properly develop in Rails. Ruby is viewed as being multi-paradigm,
but it’s still fully object oriented. Understanding OOP will therefore help you become a better Rails
programmer.

This book is general enough to be used by any developer, whether or not you’re accustomed to Microsoft
development models and tools. It is, however, particularly aimed at Microsoft developers. These days,
when people talk about Microsoft programmers, they almost always inevitably think about .NET devel-
opers given that .NET has been the fl agship development platform in the Microsoft world for several
years. The book that you are holding in your hand now has been written with a clear understanding of
this fact.

For example, in Chapter 2 you fi nd a comparison overview of Rails and ASP.NET programming,
whereas in Chapters 3 and 4, when I introduce you to the Ruby language, I refer to .NET languages
(in particular C#) more than others.

The term “Microsoft developers” is rather broad and encompasses more than just .NET developers
though. In this book I’ve (roughly) divided the spectrum of Microsoft developers into a few groups
(not a complete list by any means). In your own specifi c case, different group descriptions could very
easily overlap to describe the experiences, skills, and the roles that characterize your background.

Depending on which category (or categories, if more than one applies) you fall into, you’ll have an
easier or harder time meeting the preceding requirements and approaching the process of learning
Ruby and RoR.

Microsoft Web Developers
I expect the majority of my readers to be Web developers. After all, this is a book about Web technologies;
hence it wouldn’t be surprising if the largest volume of interest came from Microsoft Web developers,
who’re planning on learning more about what all the fuss surrounding Rails is about.

74955book.indd Listxxiv74955book.indd Listxxiv 3/4/09 8:44:19 AM3/4/09 8:44:19 AM

Introduction

xxv

If you’re a Web developer, I have great news for you: the framework and the methods for creating applica-
tions may be different in Rails, but the Web is still the same. Your understanding of how the Web works,
and of technologies like HTML, CSS, JavaScript, and Web Services, are a great starting point, which will
help make you feel somewhat at home as you learn new Rails concepts.

If you are an ASP.NET developer, things get even better. Rails is much slimmer and simpler to learn
than ASP.NET, and the fact that you have a solid understanding of object-oriented programming,
through languages like C# and VB.NET, will ensure that you can quickly pick up Ruby, which hap-
pens to be much easier than the aforementioned languages, as well. Of course, the same can be said
for C++ developers who may have old-school ISAPI programming experience.

ASP.NET developers will also benefi t from being accustomed to a development environment where
presentation and business logic are separated. The same thing can’t always be said for ASP developers
though, who also may not be as strong in terms of OOP skills, especially if VBScript is the sole language
that they’ve worked with.

If you are an ASP classic developer, don’t worry; essential Ruby knowledge is easy enough to grasp and,
by following this book, you’ll be able to learn Rails from scratch. In your case, your biggest asset is your
knowledge of how the Web works.

Microsoft Windows Developers
Developers of MFC, Windows Forms, and WPF applications will fi nd the MVC paradigm and the
principle of separation of concerns rather intuitive, even when applied to the Web. And if you’re well
versed in programming languages like C++, C#, VB.NET, or Java, this will defi nitely play in your favor
as you approach Ruby.

The biggest challenge for you will be switching to a relatively different platform. Programming in Rails
is very different than producing desktop applications for Windows using Visual Studio.

On the bright side, if you’ve decided that it’s time to give Web development a try, Rails will make your
life much easier and will teach you a great new way of developing for the Web.

Microsoft Offi ce Developers
If you are a Microsoft Offi ce developer, you’re in a somewhat similar scenario to that of a Windows
developer (I’m assuming that you don’t have any Web development experience yet). Your challenge is
further increased, though, if you’ve only ever programmed in VBA and haven’t switched to .NET yet.
Again, in this book Ruby and Rails are taught from scratch, so you should be able to learn them both
nevertheless.

Database Programmers
As a database programmer you have an invaluable asset when using Rails. Though ActiveRecord
doesn’t require advanced SQL skills from programmers, mastering SQL and database design will
remove many limits from the set of possible applications that you can develop. Understanding the
Active Record pattern will be much easier for you and you’ll be able to truly take advantage of it.

74955book.indd Listxxv74955book.indd Listxxv 3/4/09 8:44:19 AM3/4/09 8:44:19 AM

Introduction

xxvi

Possessing a good knowledge of SQL will help you query the database, whenever the default abstrac-
tions provided by ActiveRecord are not enough for you or when a particularly effi cient, custom query is
needed. Conversely, when developing Rails projects you still decide what structure the database is going
to have. A concrete understanding of normalization and its trade-offs, indexes, and advanced features
such as stored procedures, will aid you when trying to decide if Rails conventions are suffi cient, or when
it’s absolutely necessary to break the rules and do otherwise to satisfy your project’s requirements.

Rails has an adapter for SQL Server, so if you decide to work with the database that you’re most likely
familiar with, you can do so.

Please note that, at this stage, there is little to no support for Microsoft Access databases. You can experi-
ment with a rough draft of an adapter provided at http://blog.behindlogic.com/2007/07/
msaccess-for-rails-heres-your-rough.html, but it’s probably easier to just migrate your data
to a different, fully supported database system.

How This Book Is Structured
The book begins by setting up the development environment and introducing the framework in the
fi rst two chapters.

Chapters 3 and 4 provide you with a crash course in Ruby programming.

In Chapters 5 and 6, a step-by-step sample blog application is developed. References to this simple app
are occasionally made elsewhere in the book.

Chapter 7, 8, and 9 carefully examine the three components of the MVC triad, which is covered in the
order of model, controller, and view.

Chapter 10 discusses exposing and consuming Web Services through Rails. And last but not least,
Chapter 11 wraps up the book by covering the topic of moving into production, by briefl y introduc-
ing security, performance and optimization, and deployment considerations. This last chapter also
features a few pointers regarding aspects that may concern Enterprise developers.

Though the best results are probably achieved by reading the book cover to cover, this book was orga-
nized to be fairly modular and as such it’s almost always possible to read chapters independently from
the others.

That said, and as tempting as it is to jump right in, don’t skip the fi rst two chapters. They’ll help you
get started, set up your machine, and provide you with the right perspective to start building your
knowledge of Rails. Likewise, unless you are familiar with Ruby, you shouldn’t skip Chapters 3 and 4
either. Rails is a framework that is written in Ruby for Ruby programmers; having a solid understand-
ing of Ruby will make your life a lot easier down the road.

What You Need to Use This Book
Throughout the book I assume that you’re using Ruby 1.8.x and Rails 2.2.2. Newer versions will probably
work too, with little to no adjustments, but it is recommended that you follow along using the same ver-
sion as the book. The main idea is that once you’ve learned the main concepts, you will be able to use any

74955book.indd Listxxvi74955book.indd Listxxvi 3/4/09 8:44:20 AM3/4/09 8:44:20 AM

Introduction

xxvii

future version of Rails. That said, when differences between Rails 2.2.2 and Rails 2.3 (the next Rails ver-
sion, which has not been released yet at the time of writing) exist, these are pointed out. Other software
that has been employed includes SQLite, a lightweight fi le-based database, and Mongrel, which is a rela-
tively fast HTTP Web server. Instructions for installing this development stack on Windows, Mac OS X,
and GNU/Linux are provided in Chapter 1.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

We ❑ highlight new terms and important words when we introduce them.

We show keyboard strokes like this: Ctrl+A. ❑

We show fi le names, and code within the text like so: ❑ persistence.properties.

We present code in two different ways: ❑

We use a monofont type with no highlighting for most code examples.
We use gray highlighting to emphasize code that’s particularly important in the
present context.

Source Code
As you work through the examples in this book, you may choose to either type in all the code manually
or to use the source code fi les that accompany the book. All of the source code used in this book is avail-
able for download at http://www.wrox.com. Once at that site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may fi nd it easier to search by ISBN; this book’s ISBN is
978-0-470-37495-5.

Once you’ve download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

74955book.indd Listxxvii74955book.indd Listxxvii 3/4/09 8:44:20 AM3/4/09 8:44:20 AM

www.wrox.com

Introduction

xxviii

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To fi nd the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fi x the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

74955book.indd Listxxviii74955book.indd Listxxviii 3/4/09 8:44:20 AM3/4/09 8:44:20 AM

www.wrox.com

Ruby on Rails®

for Microsoft Developers

74955book.indd Listxxix74955book.indd Listxxix 3/4/09 8:44:20 AM3/4/09 8:44:20 AM

74955book.indd Listxxx74955book.indd Listxxx 3/4/09 8:44:20 AM3/4/09 8:44:20 AM

Getting Started with Rails
First they ignore you,

then they laugh at you,
then they fi ght you,

then you win.

— Mahatma Gandhi

Ruby on Rails is a highly productive Web application framework for the Ruby language. It will
change the way you think about Web development and simplify the process of creating, deploying,
and maintaining your Web applications. It could be argued that Ruby on Rails will ultimately make
you a better developer.

These statements may seem like bold claims now, but over the course of the next few chapters,
suffi cient evidence is presented that will help to convince you otherwise.

The aim of this chapter is to provide you with an introduction to the Rails framework, and help
you set up your favorite operating system so that it’s ready to work with Rails.

What’s in a Name?
The name Ruby on Rails is often shortened to Rails. Another common abbreviation
is the acronym RoR (pronounced like a lion’s “roar”). I feel it is important to clarify
something that is often a source of confusion for newcomers: Ruby is a modern, object-
oriented programming language, which predates Rails by about a decade. Ruby on
Rails is simply the “full name” of a great Web framework written in Ruby, for Ruby
developers. This name is also used for the URL of the offi cial project website, available
at http://rubyonrails.org.

74955book.indd List174955book.indd List1 3/4/09 8:44:45 AM3/4/09 8:44:45 AM

2

Chapter 1: Getting Started with Rails

The Rise and Challenges of
Web Development

Over the past few years the development world has experienced a radical paradigm shift from desktop
to Web applications. It may be premature to call traditional desktop programs obsolete, but the rapid
rise of Web-based software is a clear sign of the ever-increasing popularity and signifi cance of Web
development.

Web applications provide developers and users alike with a wealth of advantages. In particular, pro-
grammers can leverage a more immediate development, deployment, and maintenance cycle, while
end users are able to utilize applications with desktop-like features and interfaces (often referred to as
Rich Internet Applications or RIAs) directly from their browser. This enables users to access data in a
platform-independent manner, on the operating system and device of their choice, and from anywhere
an Internet connection is available. A signifi cant part of the success of Web applications resides in this
ability to respond well to the needs of a world that is continually more and more connected. Web devel-
opment is therefore a stimulating and worthwhile endeavor.

The new Web — commonly dubbed Web 2.0 (a term that’s attracted its fair share of critics) — poses a
few challenges for developers, especially for beginners. The Web as a development platform is exciting,
but far from perfect.

The main problem in this regard arises from the Web’s origins. The HTTP protocol was created as a
means to store and retrieve documents. HTML, on the other hand, is a markup language that was cre-
ated to represent interlinked documents (hypertext). Traditionally, the Web’s entire architecture was
document-based.

Yet, its worldwide success and the growing reliance upon it by more than a billion people has forced
the Web to rapidly evolve over the past 15 years to the point where multimedia and very complex appli-
cations are possible. In moving from an era of documents to one of rich applications and interfaces, a
series of new technologies were introduced. It isn’t far-fetched to say that we’re pushing the Web far
beyond the limits for which it was initially created.

It is very challenging to approach the new Web with general-purpose languages and tools. For
example, though it is possible to write CGI scripts today, far better-suited tools exist, which make a
developer’s job much easier and more enjoyable, while delivering solid applications that are simple
to maintain. These tools — and Rails is an excellent poster child for this — are specifi cally tailored
for the new challenges of the modern Web and for this reason are often considered to be an example
of Domain Specifi c Languages (DSLs). Rails and similar frameworks incarnate and adhere to the
best practices assimilated by the industry, and attempt to hide the tedious, repetitive, low-level work
required by Web applications from the developer.

Web applications are often developed by a small team and tend to change at a rather fast pace. This is
in stark contrast to development scenarios that are present within the Enterprise world, where extensive
planning and long release cycles are not uncommon. It is therefore necessary to use development meth-
odologies and tools that allow the developer to be productive and embrace change.

It is also important to understand that a user typically interacts with a Web application through a
browser, hence its limits will inevitably affect the user’s experience on the Web.

74955book.indd List274955book.indd List2 3/4/09 8:44:47 AM3/4/09 8:44:47 AM

3

Chapter 1: Getting Started with Rails

One of the toughest quirks to work around is the issue of cross-browser compatibility. The contents of
non-trivial Web pages are displayed and behave differently based on the browser that’s being used. In
some cases, a Web application may not work at all in certain browsers.

Dozens of Web browsers exist, even limiting the playing fi eld to the most popular and widely adopted
choices (multi-browser compatibility); at the very least, attentive developers must test their applications
with common browsers such as Internet Explorer, Mozilla Firefox, Safari, and Opera. Plus, one has to
keep in mind that different versions of the same browser will typically render the content in a different
manner (for example, IE 6 and IE 7). Sadly, this aspect is often overlooked, and it isn’t uncommon for
many companies and developers to verify their Web apps with Internet Explorer alone.

Browser vendors are making a conscious effort to improve their browsers in order to achieve better compli-
ance with major Web standards and specifi cations, but it would be naïve to expect complete compatibility
anytime soon. Coping with this fl ock of browsers adds to the complexity and can be detrimental to the fun
of programming.

If you are already a Web developer or a Web designer, you’re probably aware of the importance of adopt-
ing the W3C recommendations (for example, XHTML, CSS, and DOM), and international standards (for
example, ECMAScript, aka JavaScript), as well as testing your application in multiple browsers.

Mentioning the names of a few commonly adopted languages brings up another issue: the modern Web
is rather complex and, in order to work well, requires a set of server- and client-side technologies that you
should be familiar with. The skills required encompass (depending on your role): a solid understanding
of the HTTP protocol, XHTML, CSS, JavaScript, Ajax (or Flex, or Microsoft Silverlight), server-side pro-
gramming, database design, SQL, Web Services, security, Web servers, and so on, with a list that could
continue on for a good long while. Contrary to popular belief — that is perhaps a remnant of the early
days of simple HTML homepages — Web development is a complex balance between art and engineering.

As the number of Internet users grows, so too does the demand for a higher degree of interaction, useful
features, and — thanks to fast connections and technologies like Ajax — responsive and advanced Web
UIs. A few examples of such Web applications are Gmail, Google Docs (an online Offi ce suite), Google
Maps, YouTube, Flickr, and more recently, Adobe Photoshop Express (Photoshop on the Web). In other
words, the bar for what constitutes a good Web application has been raised considerably over the past
few years.

Luckily for you, Ruby on Rails is the ideal tool when it comes time to approach these challenges.

What Is Rails?
Rails is an open source, cross-platform, full-stack, Model-View-Controller (MVC) framework for the Agile
development of database-driven Web applications that use the Ruby language. This dense defi nition incor-
porates quite a few concepts that you may not be familiar with. Let’s break things down so as to get a better
overview of the framework.

Open Source
Rails is an open source project. It’s released under a very liberal license (MIT) that enables you to freely
modify, contribute, and distribute the framework. In the vernacular of the Free Software world, Rails is

74955book.indd List374955book.indd List3 3/4/09 8:44:47 AM3/4/09 8:44:47 AM

4

Chapter 1: Getting Started with Rails

free as in beer and as in speech. As a Microsoft developer, you’re probably used to proprietary software,
where several of the components that you employ in your applications are closed source.

The fact that Rails is open source implies that, whenever you encounter a bug in the framework itself,
you’ll have full access to the source code of the libraries that constitute the framework. You will be able
to identify where the problem lies, report it with accuracy, and even correct it yourself and submit a
patch to the project. In other words, stepping through and reviewing the source code helps you to bet-
ter understand how the framework operates and in turn enables you to build better applications.

Cross-Platform
Unlike ASP.NET (with an exception made for its alternative implementation through the Mono project),
Rails runs on a number of platforms. The most popular choices within the community are operating
system members of the *nix family (like GNU/Linux, Mac OS X, and *BSD), but Rails can be used on
Windows as well.

Full-Stack
The term full-stack means that the framework provides you with a supportive, integrated environment
in which it’s possible to develop complete Web applications from start to fi nish. To borrow an expres-
sion from the Python world, Rails “comes with batteries included.” Aside from handling the request-
response cycle and providing you with the necessary libraries for easier database, server-side, and Web
Service programming, on the client side, Rails also includes a JavaScript framework (Prototype) and a
library (script.aculo.us) for creating Ajax-powered applications.

Support for testing, a very important topic for Rails developers, is baked-in as well. To top it all off,
Rails provides you with a handy HTTP server known as WEBrick which, albeit meant for development
purposes only, enables you to get started right away without having to worry about confi guring more
complicated Web servers.

If you’re accustomed to developing with large frameworks such as ASP.NET or J2EE, Rails’ full-stack
nature may seem “not full enough.” This is intentionally so, in order to avoid complexity and bloat in
the framework and leave a core that’s reasonably slim and extendable through free, third-party plugins.
Rails’ plugin architecture encourages code reuse and enables the developer to extend Rails’ core behavior
and out-of-the-box features in reusable plugins that are often shared with the whole world. As a Rails
beginner, you can learn a lot by simply studying the code of high-quality Rails plugins, and you can take
advantage of a wealth of functionalities by simply installing them within your own Rails projects on an
as-needed basis. Plugins are, in my opinion, one of Rails’ best features.

The MVC Pattern
MVC is an architectural pattern designed to satisfy the principle of separation of concerns. When suc-
cessfully applied to the design of a software project, it promotes the isolation of the user interface from
the business logic. This separation is extremely important in order to create maintainable applications,
and it’s especially true on the Web, where the distinction between business logic (server side) and
presentation layer (client side) is almost intrinsic to the medium.

Models represent the data, views the user interface, and controllers act as coordinators, controlling the
fl ow of the application. Controllers are the glue of the application; they allow modifi cation and retrieval

74955book.indd List474955book.indd List4 3/4/09 8:44:47 AM3/4/09 8:44:47 AM

5

Chapter 1: Getting Started with Rails

of model data, and preparation of the content so it can be rendered in the view. Changes performed to
the view by, your designer, for example, shouldn’t affect the team of developers working on the backend.

If you have done ASP (classic) or PHP development, where access to the database, business logic,
and presentation layer are often intermingled, you’ll fi nd RoR’s approach rather refreshing, tidy, and
even elegant.

Rails generates the skeleton of an application and, in effect, forces you to adopt an MVC-style of pro-
gramming. Every Rails application applies separation between the model, the view, and the controller,
storing the fi les for each of these components in different folders. You’d have to go out of your way to be
able to intentionally break the enforcement of this pattern in Rails. But don’t let this apparent strictness
toward MVC get you down. In most cases ASP.NET developers who switch to Rails fi nd themselves
liberated by the rigidity of the language (be it C# or VB.NET) and the framework they were used to.

In Chapter 2, the MVC pattern is described in further detail, with particular emphasis on the way Rails
implements each entity and their interaction with each other.

Agile Development
Agile development is a perfect match for the Rails developer. It can be argued that Rails is an attempt
to bring Agile methodologies to the Web, where development has often been led by opposite principles.
If you are not familiar with the Agile movement, I invite you to read the following Manifesto for Agile
Software Development (http://agilemanifesto.org). The Agile Manifesto was the brainchild of
17 pioneers who decided to start a movement to improve the practice of software development. Among
these folks, three individuals (Martin Fowler, Dave Thomas, and Andy Hunt) are deeply involved with
the Ruby and Rails communities.

Manifesto for Agile Software Development
We are uncovering better ways of developing software by doing it and helping others
do it. Through this work we have come to value:

Individuals and interactions over processes and tools ❑

Working software over comprehensive documentation ❑

Customer collaboration over contract negotiation ❑

Responding to change over following a plan ❑

That is, while there is value in the items on the right, we value the items on the left more.

— Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler,
James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin,
Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas.

Rails absolutely embraces each of these four principles, and the so-called “Rails Way” of programming
faithfully adheres to the Agile methodologies. Rails’ main philosophies are often condensed into mne-
monic mantras that originated and are well-known in the Extreme Programming (XP) and Agile com-
munities. The three canonical ones are: Don’t Repeat Yourself (DRY), Convention over Confi guration,
and You Ain’t Gonna Need It (YAGNI).

74955book.indd List574955book.indd List5 3/4/09 8:44:47 AM3/4/09 8:44:47 AM

6

Chapter 1: Getting Started with Rails

“Convention over Confi guration” expresses Rails’ philosophy of adopting a series of sensible assump-
tions, which frees programmers from defi ning and confi guring every single detail of their application.
Most Web applications share common elements and Rails requires confi guration only when the conven-
tions adopted by the framework are not endorsed and, therefore, need to be overwritten. For example,
Rails assumes that the class Order will correspond to the pluralized orders table in the database.
Unless you’re required to overwrite this convention, the mapping between the Ruby class and the data-
base table is automatic and no explicit confi guration is required.

Even if you intend to overwrite a given convention, unlike with other frameworks, Rails’ confi gura-
tion is performed in simple readable text fi les, rather than using verbose XML fi les. A medium-sized
application in a traditional framework can end up having hundreds, if not thousands, of lines of XML
just to defi ne a correspondence between the objects within the code and the relational structure in the
database. This is intentionally not the case with Rails, even if it provides programmers with the ability
to confi gure and overwrite conventions in order to meet their needs.

The “Don’t Repeat Yourself” mantra implies that writing less redundant code and reducing duplication
ends up producing maintainable and less bug-prone applications, which can easily evolve and change.
A change in a given point of an application should not affect unrelated elements and should be properly
refl ected in related ones, without requiring multiple changes. Localizing change is a principle that is fun-
damental to Rails development, and the framework structure promotes and enforces this.

Finally, the “You Ain’t Gonna Need It” principle is a reminder about the importance of implementing
features that are actually needed now, and fi ghting the urge to write code for features that may only be
necessary in the future. This approach to software engineering has been embraced by Rails’ creators as
well as being common among developers using Rails. Following the YAGNI principle offers a greater
focus on the required core functionalities, keeps software lean, and helps in retaining the application’s
fl exibility to change as needed. 37signals endorses this principle and extends it into the principle of
“less software,” which is aimed at outsmarting the competition with focused software that has fewer
features than their competitors. So far, it has worked wonders for them.

Understanding the Rails philosophy of Web development is essential to successfully employing the
framework and becoming an effective programmer.

These principles are closer to the Unix philosophy, rather than the one that’s common within the
Microsoft development world. This by no means implies that, as a Microsoft developer, you may not
have already adopted and sought out these development practices, but it was essential to explain them
further and state their importance throughout the book.

Database Driven
Rails assumes that each Web application is going to store data within a database. It is a reasonable
assumption for all but the most trivial of applications. More importantly, Rails uses an Object Relational
Mapper (ORM) Ruby library called ActiveRecord, that follows the Active Record design pattern as
defi ned by Martin Fowler in his popular book, Patterns of Enterprise Application Architecture (Addison-
Wesley 2002).

ActiveRecord greatly simplifi es CRUD, the four basic functions of persistent storage — create, read,
update, and delete — enabling you to favor Ruby code over SQL queries (most of the time). It’s the
abstraction that allows domain models to wrap database objects and handle their underlying relation-
ships. Thanks to a series of adapters, ActiveRecord, and therefore Rails, can be used with all of the most

74955book.indd List674955book.indd List6 3/4/09 8:44:47 AM3/4/09 8:44:47 AM

7

Chapter 1: Getting Started with Rails

popular databases, from the fi le-based SQLite (Rails’ current default) to more “enterprisey” choices such
as Microsoft SQL Server, IBM DB2, or Oracle. The Rails community has a clear preference toward open
source databases such as MySQL and PostgreSQL, but you are more than welcome to adopt whatever
RDBMS you have at hand or are more comfortable with.

This book uses the default database (SQLite) and recommends that you do the same to follow along, but
don’t be too concerned if you’re using a different one. That’s the beauty of ActiveRecord’s abstraction: the
Ruby code will be (virtually) the same no matter what database is being used. That said, there are special
considerations for SQL Server, DB2, and Oracle, and pointers for these are provided in Chapter 11.

Ruby: Rails’ Secret Sauce
Ruby is an open source, modern, object-oriented programming language — and a fantastic one at that.
It synthesizes the best lessons learned from other programming languages like Smalltalk, Perl, and
Lisp, combining the elegance of the object-oriented paradigm (in Ruby everything is an object; there
are no primitive types) with the immediacy of a scripting language, further combined with functional
programming. If you are not familiar with this last programming style, but have had a chance to try out
the language extensions to C# 3.0 and Visual Basic 9 — provided by LINQ in the .NET 3.5 Framework —
you’ve already had your fi rst contact with the functional world.

If you’re used to programming languages like C#, VB.NET, C++, or Java, you’ll be blown away by how
Ruby is concise yet readable, expressive, powerful, and easy-to-learn. Its dynamic, interpreted nature
makes it much less tedious to work with, when compared to the aforementioned compiled program-
ming languages.

Ruby is a very high-level language and it’s truly Rails’ secret sauce. Its fl exibility and refl ective nature
make it an ideal language with which to implement a framework/DSL like Rails.

A good part of the fun of writing Rails applications lies in the fact that you get to code in Ruby, a language
that was invented by Yukihiro Matsumoto (commonly known as Matz), with the specifi c intention of
being programmer-friendly, productive, and maintainable.

Rails takes Ruby to the next level, by expanding its out-of-the-box capabilities through utility classes
and extension to the Standard Library; on the other hand, Ruby’s openness and fl exibility enable you,
the developer, to extend Rails to suit your needs.

Rails is written in Ruby for Ruby programmers, so it is essential to be well versed in Ruby before
attempting to create interesting Rails applications. This is a common mistake by people who are trying
to learn Rails. They skip Ruby and dive right into the framework, tempted by Rails’ approachability.
The end result is not pretty, with a lot of confused newcomers and very basic Ruby questions popping
up in the Rails mailing lists and forums.

In this book Ruby is not an afterthought. I deemed it crucial to include two whole chapters dedicated
to the language, as opposed to a simple appendix as often happens in other Rails books. I’ve also tried to
emphasize and clarify aspects of the language throughout this book, whenever required.

Greater Than the Sum of Its Parts
Reading about Rails features and design choices may lead you to realize that Rails didn’t invent any-
thing particularly new. The powerful MVC pattern was fi rst described back in 1979 and was already

74955book.indd List774955book.indd List7 3/4/09 8:44:47 AM3/4/09 8:44:47 AM

8

Chapter 1: Getting Started with Rails

adopted by other MVC frameworks. Conversely, the Active Record pattern was well known, too. Over
the past few years, all sorts of Ajax libraries and frameworks have been released into the wild; and Test
Driven Development (TDD) and the Agile methodologies were also not invented by Rails.

What Rails did was to put each component in the right place, in a coherent manner, while attempt-
ing to keep everything as simple as possible for the programmer. The end result is a powerful and
fun toolkit that lets you concentrate on the actual application, rather than on small technical details
that are repeated over and over in each project. Does the programmer really need to specify the whole
connection string in order to access the data within the database? Rails doesn’t think so. Rails favors
“Convention over Confi guration” because when these conventions are sensible, they truly free the
developer from having to take care of minutiae in confi guration fi les.

This homogeneous set of features, conveniences for the developers, “best practices,” and guiding philoso-
phies make Rails invaluable when it comes to producing solid Web applications in very short time frames,
when compared to other existing solutions. The Rails community has done a good job of conveying the
framework’s strengths, and understandably many developers are excited about the chance to use Ruby on
Rails in their projects.

A Brief History of Rails
To fully understand the reasons behind Rails’ design choices, it is benefi cial to very briefl y learn about
its history.

Understanding Rails’ Origins
Rails was released to the world back in July 2004. The framework was extracted from a Web-based man-
agement and collaboration application project called Basecamp. Rails was created by David Heinemeier
Hansson (often referred to simply as “DHH”), a Danish programmer and partner with 37signals, the
fi rm that produces Basecamp and other similar Web applications. This brief piece of information offers
us some important preemptive insight.

Rails was not designed by a committee. It was extracted from a real-world application. Even after Rails’
incredible success, David has insisted that there won’t be a Rails, Inc. because he fi rmly believes in the
importance of working on real applications and only then applying the most useful lessons learned
(and possible missing features) back into the framework.

This approach guarantees that Rails doesn’t end up becoming a bloated framework that includes all sorts
of features, to satisfy the requirements of any possible company or scenario out there. Rails is intentionally
general enough to be used for a wide range of applications, but its focus has always been the needs of
37signals and other companies/developers who take up similar principles. That’s where Rails really shines.
To paraphrase what David said during a keynote at Startup School (http://startupschool.org):
37signals targets Fortune 5,000,000 companies.

37signals’ team has strong opinions about how software development should be done. They embrace
Agile development, simplicity, and software that focuses on a relatively small number of features (the
previously mentioned YAGNI principle). Rails is opinionated software because it was tailored for the
needs of 37signals, their products, and their way of developing. The good news is that, not only are they
very successful, but the practices that they promote are well proven within the industry, and make a
great deal of sense from a business and engineering standpoint.

74955book.indd List874955book.indd List8 3/4/09 8:44:47 AM3/4/09 8:44:47 AM

9

Chapter 1: Getting Started with Rails

Born into this kind of context, Rails makes assumptions about your applications. It assumes that you
are going to use a database and that you’ll be dividing your work into three environments: develop-
ment, test, and production. It assumes that you’ll be starting from scratch, rather than working with
legacy databases. Ruby is not the fastest language out there, but that’s acceptable because from 37sig-
nals’ viewpoint, a need for extra hardware implies a greater number of paying customers. Developer
time is much more expensive than hardware. Having to make a choice while creating Rails, they opted
in favor of programmer productivity, code maintainability, scalability, and speed of development, as
opposed to the raw speed of the framework and the chosen language.

37signals
If you’d like to learn more about 37signals, I invite you to read their popular design
and usability blog, “Signal vs. Noise” (http://www.37signals.com/svn/) and
their book on how to build successful Web-based applications, called “Getting Real”
(https://gettingreal.37signals.com).

Rails’ origins help you better comprehend what its sweet spot is. Rails is particularly well suited to
applications that have the following characteristics:

Applications and sites that aren’t trivial. Employing a whole framework for a page or two is still ❑

probably overkill and there are more straightforward solutions.

Applications built from scratch, following Rails conventions. Working against Rails conventions ❑

is possible, but if your project heavily requires going against the stream, working with Rails
won’t be as easy. An example of this situation is when you are trying to deal with legacy data-
bases and corporate environments.

Applications hosted on VPS (Virtual Private Servers), dedicated servers, or elastic/cloud com- ❑

puting services. Shared hosting is an acceptable solution for non-critical applications and low
volume websites, but it is neither ideal nor within Rails’ sweet spot. You can read more on
deployment options and considerations in Chapter 11.

Rails doesn’t usually prevent you from building any type of applications, but it is opinionated and
you’ll be able to get the best out of it when you take advantage of “the Rails Way” of development or,
in other words, when your opinions match those of Rails.

If the core Rails functionalities don’t quite cut it for your project, you can still decide to use other open
source plugins (or write them yourself) in order to allow Rails to behave in manner that’s closer to one
of your specifi c needs. For example, you may require support for composite primary keys, which by
default are not supported by Rails. There is a homonym plugin that extends ActiveRecord to add this
functionality.

It isn’t uncommon for the Rails core team (a group of a few open source developers captained by David)
to reply to requests of the “wouldn’t it be cool if Rails was able to…” sort with the acronym PDI, which
stands for Please Do Investigate. Theirs is not a fl ippant answer, but rather a pragmatic one. It’s an open
source project after all and anyone can contribute or pay someone else to do it for them in order to get the
kind of features that they may require for their own purposes, which don’t quite fi t into the Rails core.

If your development style, environment, and practices are entirely opposite to the Agile ones promoted
by Rails, chances are that you have a bigger problem than deciding whether or not Rails is a good tool
for you. In this case, the answer is clear: Rails may not be the best tool in this kind of context, and a
.NET or J2EE solution might end up being less problematic.

74955book.indd List974955book.indd List9 3/4/09 8:44:47 AM3/4/09 8:44:47 AM

10

Chapter 1: Getting Started with Rails

Powering the Web 2.0
Since its release in the summer of 2004, Rails has managed to become one of the most used and appreci-
ated frameworks on the Web. By 2006, Rails had arguably already achieved its tipping point, and nowa-
days most developers have heard about Ruby on Rails. It quickly became the tool of choice for most of
the (so-called) Web 2.0 startups, and today is widely adopted by some of the largest sites on the Web.

Scribd.com, YellowPages.com, Hulu.com, Twitter.com, RevolutionHealth.com, 43things.com, Helium.
com, and Funnyordie.com are but a few examples of popular sites that are currently written in Rails,
which you may have visited or heard of.

And the list of Rails users doesn’t end with startups and popular websites. Companies of all sizes are
employing Rails talent and starting new projects, embracing Ruby and a more Agile style of program-
ming in pursuit of productivity. While typically very popular with smaller and medium companies,
Rails has also been used within the borders of giants like IBM (which I work for), Amazon, Yahoo!,
NASA, Oracle, EA, BBC, Cisco, and a long list of other successful Fortune 500 members.

Endorsements
“Ruby on Rails is a breakthrough in lowering the barriers of entry to programming.
Powerful Web applications that formerly might have taken weeks or months to develop
can be produced in a matter of days.”– Tim O’Reilly

This enthusiastic quote from the founder of O’Reilly Media is just one of many great
comments that Rails has received, from all sorts of experienced developers and IT
veterans. You can read more at http://rubyonrails.org/quotes.

Ruby on Rails took the Web by storm and, along with Ajax, it became one of the greatest “revolutions”
in modern Web development history. In fact, Rails’ infl uence isn’t limited to the Ruby community. It
helped popularize the concept of MVC for many beginners, and inspired other developers to start simi-
lar projects (or clones) using Ruby and other programming languages, including but not limited to C#,
PHP, Python, Java, and even JavaScript.

You may be familiar with the fact that the .NET community created its own open source version, called
MonoRail, through the Castle Project (http://castleproject.org) before Microsoft made the wise
move to respond to Rails’ success with its ASP.NET MVC framework.

The Rise of Ruby
Despite its tagline of being a “programmer’s best friend,” and its ever growing popularity in its home-
land (Japan), Ruby’s worldwide adoption was initially limited by its lack of English documentation. In
2000, with the appearance of the fi rst English literature on Ruby, and the involvement of “The Pragmatic
Programmers” within the community, Ruby started to become more widely used. But the advocacy and
promotion from early adopters was not enough to bring it directly into the spotlight because, at this
stage, relatively few programmers had even heard of this thing called Ruby.

When Rails became such a smash hit, developers started using Ruby and began to appreciate it for its
own merits. Today, most people still use Ruby to develop with RoR, but it has become quite a common
choice outside of the Web or in conjunction with alternative Web frameworks, too. Ruby made Rails
great, and Rails made Ruby much more common and accepted within the development world.

74955book.indd List1074955book.indd List10 3/4/09 8:44:47 AM3/4/09 8:44:47 AM

11

Chapter 1: Getting Started with Rails

This works well for Rails developers, who can benefi t from a larger Ruby community that’s ready to
improve the existing implementation of the language and share libraries for all sorts of development
purposes.

Installing Rails
This section takes a break from discussing theory in order to get your environment set up. It provides
you with step-by-step instructions for installing Ruby, Rails, and all the other necessary components of
a development stack on Microsoft Windows, GNU/Linux, and Mac OS X.

For the Windows installation, two different methods are illustrated: the fi rst leverages an installer and
the second uses a learning environment known as Instant Rails.

Can You Use Rails on Windows?
Macs are very popular within the Rails community. If you ever get the chance to attend a Rails conference,
you’ll see a very high percentage of Apple laptops. The entire Rails core team uses Macs. The community
seems to be keen on GNU/Linux as well, which is another common option for Rails development, and the
most popular deployment one. In fact, most Rails hackers that I know develop on a Mac and deploy on
GNU/Linux or *BSD, a combination that I adopt and enjoy myself.

You probably won’t see many Windows systems. Generally speaking, the community prefers Unix-like
environments and few people would admit in public to consciously choosing Windows at any Ruby or
Rails venue. There are many reasons for this, most of which are cultural ones. Does this mean that you
can’t use Windows or that you’ll be the only one doing it?

Although this book can be followed by utilizing any operating system of your choice, the assumption
is that as a Microsoft developer, you’re primarily familiar with Windows .NET, and other Microsoft
developers often face a culture clash when trying to learn Rails. This book tries to minimize that by
letting you take advantage of the tools and skills that you’re already familiar with. For this reason, I’ve
employed Windows to write this book, and the screenshots are from (the much debated) Vista.

Developing with Rails on Windows is usually not a problem, given that in the end we are just editing
fi les, but it’s a fair assessment to say that both Ruby and Rails work much better on Unix-like operating
systems. For example, Ruby is signifi cantly faster on Ubuntu, Fedora, or Mac OS X than it is on Windows
XP (where it still performs better than it does on Vista).

Some people even go so far as to run Rails from within a virtual machine (using GNU/Linux or BSD)
in Windows. There are also specifi c cases of libraries or particular deployment options that are well
supported on, say, Linux, but not on Windows due to crashes and other problems. In general, it is rec-
ommended that you deploy your Rails applications on *nix systems, but it is understood that doing so
is not always an option. You’ll feel reassured to know that Rails can be deployed on Windows and that
this is commonly done. Chapter 11 tells you how.

I wanted to give you a heads up about the special relationship between Ruby, Rails, their respective com-
munities, and Windows, but please don’t let this discourage you. Windows is a viable platform for Rails
development and there are several initiatives to further improve the current situation. Rails’ success and

74955book.indd List1174955book.indd List11 3/4/09 8:44:48 AM3/4/09 8:44:48 AM

12

Chapter 1: Getting Started with Rails

mainstream acceptance will also depend, in my opinion, on its ability to succeed on Windows, which is
still the most popular operating system out there.

If you enjoy using Windows, I’ll let you in on a surprising piece of information: Ruby is very popular
on Windows. In fact, I’m going to prove its popularity in a somewhat scientifi c manner. Many Ruby
and Rails projects are hosted at a site called RubyForge (http://rubyforge.org), the equivalent
of SourceForge or CodePlex for Ruby. The most popular download is, surprise-surprise, a one-click
installer for installing Ruby on Windows. As I write this, it has been downloaded about 3 million times.
And the third most popular download is Instant Rails, a package that helps you to quickly get up and
running with Rails on Windows (it’s had more than 700,000 downloads so far). Rails on Windows
might very well be a silent majority. In other words, and to quote Michael Jackson: you are not alone.

Installing on Windows
For this book you’ll need to install the following components:

Ruby: ❑ The Ruby interpreter plus its core and Standard Library. Ruby 1.8.6 or newer is required
for modern versions of Rails (for example, 2.2.2 and newer).

RubyGems: ❑ A packaging system used to install, update, and remove Ruby libraries and pro-
grams (packaged and distributed as “gems”).

Ruby on Rails: ❑ All the gems required to run Rails.

Mongrel: ❑ A much faster server that we’ll use in place of WEBrick.

SQLite3: ❑ A lightweight, fi le based, ACID (Atomicity, Consistency, Isolation, Durability) compli-
ant database that’s available in the public domain.

sqlite3-ruby: ❑ A gem used by Rails to access SQLite3 databases.

Subversion: ❑ An open source version control system required to install many of Rails’ plugins.

Installing the One-Click Ruby Installer
Windows is one of the easiest platforms on which to install such a complete Rails stack, thanks to the
abovementioned One-Click Ruby Installer, which takes care of the fi rst two elements in the preceding list.

To install it, follow these simple steps:

 1. Visit the homepage of the project at http://rubyforge.org/projects/rubyinstaller and
click Download on the right-hand side, half way through the page.

 2. On the download page, there will be several versions available. Ensure that you download the
latest one. At the time of this writing, the current stable version is ruby186-26.exe; click this
or a more recent version if available.

 3. Double-click the downloaded executable to start the setup wizard. Go through the installation
process, accepting the default options (see Figure 1-1). The operation may take a few minutes to
complete.

74955book.indd List1274955book.indd List12 3/4/09 8:44:48 AM3/4/09 8:44:48 AM

13

Chapter 1: Getting Started with Rails

At this point Ruby, RubyGems, and a handy text editor called SciTE are all installed in c:\ruby (unless
you specifi ed a different location during the installation process).

To verify that the installation was successful, you can run a quick sanity check by opening the command
prompt (cmd.exe) and running the following command:

ruby -v

Figure 1-1

Ruby should reply, stating its version number to the prompt; for example, on my machine I obtain the
following: ruby 1.8.6 (2007-09-24 patchlevel 111) [i386-mswin32]. Ensure that you have
Ruby 1.8.6 or newer, because this is a requirement for Rails.

Updating RubyGems
The version of RubyGems that ships with the One-Click installer may not be the most recent one. You
can verify the installed version number by running gem -v from the command line and upgrade to the
latest version by issuing the following:

gem update — system

This will fetch and install the latest version of RubyGems from the RubyForge repository, so you’ll need
to be connected to the Internet. When the update is fi nished, you should get the message “RubyGems
system software updated” or similar, as shown in Figure 1-2.

Running gem -v again will give you the peace of mind that the update was indeed successful and that
the command is still working.

74955book.indd List1374955book.indd List13 3/4/09 8:44:48 AM3/4/09 8:44:48 AM

14

Chapter 1: Getting Started with Rails

Figure 1-2

Now that you’ve updated the system, you can proceed to update the actual gems that came with the
One-Click installer by running gem update from the command line. You can obtain a list of installed
gems by running the following command:

C:\> gem list
*** LOCAL GEMS ***

fxri (0.3.7, 0.3.6)
fxruby (1.6.18, 1.6.12)
hpricot (0.6.164, 0.6)
log4r (1.0.5)
ptools (1.1.6)
rake (0.8.3, 0.7.3)
rubygems-update (1.3.1)
sources (0.0.1)
test-unit (2.0.2)
win32-api (1.3.0, 1.0.4)
win32-clipboard (0.4.4, 0.4.3)
win32-dir (0.3.2)
win32-eventlog (0.5.0, 0.4.6)
win32-file (0.6.0, 0.5.4)
win32-file-stat (1.3.2, 1.2.7)
win32-process (0.6.0, 0.5.3)
win32-sapi (0.1.4)
win32-sound (0.4.1)
windows-api (0.2.4, 0.2.0)
windows-pr (0.9.8, 0.7.2)

As you can see in the preceding output, when multiple versions of a gem exist, they are listed as well
between parentheses.

Installing Rails
Now that the must-have RubyGems packaging system is installed, you can you use it to install a fresh
copy of Rails by issuing the following command:

gem install rails -v 2.2.2

74955book.indd List1474955book.indd List14 3/4/09 8:44:48 AM3/4/09 8:44:48 AM

15

Chapter 1: Getting Started with Rails

RubyGems Improvements
RubyGems has come a long way. In its previous versions, the developer had to indicate
the gem version and platform required during the installation of a gem. If you want
to install a specifi c version of a gem, you can now use the — version or -v option (for
example, -v 2.2.2).

The dependencies weren’t installed by default either, and the -y or — include-
dependencies option was required to include them. Now that gem automatically
installs the dependencies, you can specify the — ignore-dependencies option in
the rare occurrence when you don’t want them to be installed.

This command will fetch the rails gem version 2.2.2 and all its dependencies from the default source
repository at http://gems.rubyforge.org (you can run gem source -l to see a list of sources used
by the command). If you omit -v 2.2.2, the command will install the latest available version. This book
uses version 2.2.2 so it’s recommended that you follow along with the same version even if version 2.3
will be out by the time you read this.

No huge differences exist between Rails 2.2.2 and 2.3. At the time of writing 2.3’s release date has not
been announced but I will point out throughout the book when the known differences exist.

The installation process may take a while, as gem proceeds with installing Rails and fi ve other gems
plus their documentation, as shown in Figure 1-3.

To see a list of remote gems you can use the — remote option. When used in conjunction with list it
can help you fi nd gems by their name. For example, gem list sql — remote will show you a list of
gems that start with sql (it’s not case sensitive).

Figure 1-3

Gem places the rails command within c:\ruby\bin, which is in the Windows’s Path environment
variable and therefore executable from any command prompt.

Running rails — version (or its shorter version -v) tells you which version is currently active.

74955book.indd List1574955book.indd List15 3/4/09 8:44:48 AM3/4/09 8:44:48 AM

16

Chapter 1: Getting Started with Rails

Installing Mongrel
It’s nice that Rails ships with an HTTP server. Unfortunately, even strictly for development purposes,
it’s not very fast. Through RubyGems you can easily install a much faster replacement called Mongrel
that, in more elaborate confi gurations, is often used to run some of the largest Rails websites out there.

To install Mongrel, simply run:

C:\> gem install mongrel
Successfully installed gem_plugin-0.2.3
Successfully installed cgi_multipart_eof_fix-2.5.0
Successfully installed mongrel-1.1.5-x86-mswin32-60
3 gems installed
Installing ri documentation for gem_plugin-0.2.3...
Installing ri documentation for cgi_multipart_eof_fix-2.5.0...
Installing ri documentation for mongrel-1.1.5-x86-mswin32-60...
Installing RDoc documentation for gem_plugin-0.2.3...
Installing RDoc documentation for cgi_multipart_eof_fix-2.5.0...
Installing RDoc documentation for mongrel-1.1.5-x86-mswin32-60...

This command installs the Windows version of Mongrel and the required dependencies as well.

A second gem, mongrel_service, exists for installing Mongrel as a Windows service. This is not
needed for development but it’s very useful when deploying an application, to ensure that Mongrel
automatically starts if the machine reboots. You shouldn’t worry about this gem until you are ready to
deploy your application. This subject is discussed in Chapter 11.

Installing SQLite3 and sqlite3-ruby
SQLite version 3 is a very nice, lightweight, fi le-based (like Microsoft Access) relational database. It’s
ideal for quick prototyping (in development mode) even though you’ll probably want to use a data
server when dealing with all but the smallest amount of traffi c in a production setting.

MySQL used to be the default database system for Rails, but now SQLite has taken its place, lowering
the entry barrier for developing in Rails even further and quickly allowing you to get started. There are
no users, authentication, or ports to confi gure: just simple fi les. In this book, I decided to stick with the
default database. Switching to a different database system is most often trivial.

Installing SQLite is a piece of cake. Just download the DLL contained in a zip fi le that’s available from
the offi cial website at http://www.sqlite.org/download.html. The current version at the time
of writing is 3.6.10, so I downloaded the fi le sqlitedll-3_6_10.zip containing sqlite3.dll.You
should grab the most recent version available.

Extract the zip fi le and place the DLL in a location on your path. c:\ruby\bin is a good place, given
that you’re installing SQLite specifi cally for Rails development purposes.

You should also download the command-line program for accessing and modifying SQLite databases.
It’s available on the same download page, and its fi le name (as of this writing) is sqlite-3_6_10.zip.
Again, extract it and place the sqlite3.exe fi le in c:\ruby\bin. From now on, running sqlite3
from the command line opens the SQLite3 shell. Beginning with Rails 2.1, this shell can also be invoked
using a Rails script (dbconsole), as explained in Chapter 5.

74955book.indd List1674955book.indd List16 3/4/09 8:44:48 AM3/4/09 8:44:48 AM

17

Chapter 1: Getting Started with Rails

At this point you’ll need to install the Ruby bindings through RubyGems as follows:

C:\> gem install sqlite3-ruby -v 1.2.3
Successfully installed sqlite3-ruby-1.2.3-x86-mswin32
1 gem installed
Installing ri documentation for sqlite3-ruby-1.2.3-x86-mswin32...
Installing RDoc documentation for sqlite3-ruby-1.2.3-x86-mswin32...

The preceding command specifi es version 1.2.3 because it ships with the Ruby bindings in binary form.
The latest release, 1.2.4, attempts to build the Ruby extension from source, which is more complicated
on Windows because it requires Ruby’s development headers and nmake, Microsoft’s version of make.

Installing Subversion
Subversion (SVN) is a very popular open source version control system. Though it might not be very
accurate from a technical viewpoint, it may help you to think about SVN as an effi cient and whittled
down version of Visual SourceSafe or Microsoft Team Foundation Server.

SVN and similar alternatives are crucial for working on real projects, but in this context I invite you to
install the SVN client tools, because they’re required for installing Rails plugins. When you attempt
to install a plugin, Rails essentially performs a checkout from the given remote Subversion repository
you specifi ed.

On Windows, you can get SVN from the URL http://subversion.tigris.org/servlets/Project
DocumentList?folderID=91. The most recent setup fi le in the download list will do (in my case, that’s
svn-1.4.6-setup.exe). All that’s left to do is for you to double-click the downloaded installer and go
through the default setup process.

Setup takes care of concatenating the SVN bin directory (for example, c:\Program Files\Subversion\
bin) to your Path environment variable. Opening a new command prompt should now allow you to run
svn and obtain in return a Type ‘svn help’ for usage message. It doesn’t do anything too useful, but
it’s a good sanity check that guarantees you that svn.exe is available from the command prompt.

Many plugins are released on GitHub.com, a site that hosts thousands of projects that use the Git
distributed revision control system. For this reason, you may want to install a Git client as well. On
Windows, you could install msysGit (http://code.google.com/p/msysgit/). If you are new
to Git, you should also check out “An Illustrated Guide to Git on Windows” available at http://
nathanj.github.com/gitguide/tour.html.

Confi guring Instant Rails
The original author of the One-Click installer (Curt Hibbs) created an alternative project called Instant
Rails. Unlike the One-Click installer above, Instant Rails doesn’t require any installation, nor does it
modify your environment. You download a zip fi le, extract it to the folder of your choice, and you will
automatically have a full Rails stack at your fi ngertips. The current version includes Ruby, RubyGems,
Rake, Rails, Mongrel, support for SQLite3, MySQL, Apache, and PHP (for phpMyAdmin, which is used to
manage MySQL), and a couple of sample Rails projects.

It essentially contains anything that’ll you need to get started with Rails. You will need to manually
install SVN, but other than that, you’ll be all set (which helps explain the popularity of this package).
Because it’s such a great all-in-one package, it is very commonly used by Rails beginners who are work-
ing with Windows.

74955book.indd List1774955book.indd List17 3/4/09 8:44:48 AM3/4/09 8:44:48 AM

18

Chapter 1: Getting Started with Rails

You could use Instant Rails while reading this book, but I don’t recommend that you do so. Instant
Rails is meant to be a development-only package, and it’s not typically used in production environ-
ments. You’re also somewhat tied to its management application (InstantRails Manager), even though
you could manually confi gure the binaries to be accessible throughout the whole system. For as great
as it is, Instant Rails remains a prepackaged solution that is not as fl exible and “solid” as the manual
installation previously discussed. On top of that, it could be using different version numbers and make
this book harder to follow.

With that in mind, there are still times when you can’t install software on your Windows system or,
for whatever reason, prefer not to touch the existing environment. In such situations, Instant Rails is
the right solution and you should have no qualms about giving it a spin. To install Instant Rails, follow
these steps:

 1. Download Instant Rails from http://rubyforge.org/projects/instantrails/. As usual,
click Download and grab the latest stable version of the zip fi le that’s available, which has the
following format: InstantRails-X.Y-win.zip, where X and Y (obviously) make up the ver-
sion number.

 2. Extract the contents (see Figure 1-4) of the zip fi le to a convenient location, like c:\
InstantRails.

Figure 1-4

 3. Double-click the InstantRails application and accept the confi guration regeneration, as shown in
Figure 1-5.

74955book.indd List1874955book.indd List18 3/4/09 8:44:48 AM3/4/09 8:44:48 AM

19

Chapter 1: Getting Started with Rails

Figure 1-5

 4 The Instant Rails management application now appears and attempts to start Apache and MySQL
for you. The Windows Firewall may ask you to allow this. Feel free to keep blocking Apache,
given that the combination of Apache and phpMyAdmin is not used throughout this book. You can
even stop both services by selecting Stop (or Kill, if stop is not available) in the menu that appears
after clicking respectively on the MySQL and the Apache buttons. Confi guration and startup set-
tings are available by clicking the I icon button within the interface, and selecting the (previously
concealed) menu Confi gure ➪ Instant Rails as shown in Figure 1-6.

Figure 1-6

As per the “manual” installation through the One-Click installer, it is a good idea to update the
installed gems, by issuing a gem update. In this case though, gem is not accessible from any command
prompt, so you’ll have to open the Ruby console from Instant Rails, by clicking Rails Applications ➪
Open Ruby Console Window.

You can also create and manage your applications by selecting Rails Applications ➪ Manage Rails
Applications. The Rails Applications window will appear. To create a new application, you’d click
the Create New Rails App button. What this does is simply open a command prompt, which is aptly
located in (depending on the folder you picked in the beginning) c:\InstantRails\rails_apps.

These brief instructions should get you started on the right foot if you were not able to proceed with
the recommended method in the previous section. Please note, however, that throughout the rest of the
book, you won’t fi nd instructions that are specifi c to Instant Rails.

Installation on Other Platforms
This section is just a quick pointer in case you decide to get started with Rails on *nix systems rather
than Windows.

74955book.indd List1974955book.indd List19 3/4/09 8:44:49 AM3/4/09 8:44:49 AM

20

Chapter 1: Getting Started with Rails

Mac OS X
Apple has been shipping Ruby on its OS for some time now. The default Ruby installation on systems
older than Mac OS X 10.4.6 doesn’t work well with Rails. If this scenario applies to your system, you
have a few options besides upgrading your OS.

You can download (http://www.ruby-lang.org/en/downloads/) and then compile and build from
source code, if you are familiar with the process. If you’re brave, this guide leads you through the instal-
lation step-by-step:

http://hivelogic.com/articles/2005/12/ruby_rails_lighttpd_mysql_tiger

You can also simply use one of the popular distribution systems like MacPorts (http://www.macports
.org) or Fink (http://www.finkproject.org). You should install the whole stack that I pointed out in
the Windows section in order to successfully follow this book and start working with Rails projects.

The two preceding methods are only needed if you are running a Mac OS X version that’s older than
10.4.6. But it’s not uncommon for developers to install their own customized stack rather than to rely on
Apple’s copy.

A much easier alternative for beginners is Locomotive (http://locomotive.raaum.org), a popular
project with similar aims (and arguably caveats) to those of Instant Rails, but targeted for Mac OS X.

If you are running Tiger, with a version number equal or greater than 10.4.6, your Ruby installation
is good and you’ll just need to update RubyGems, the pre-installed gems, and then proceed with the
installation of Rails. Conversely, on Leopard (Mac OS X 10.5.x), Rails, Mongrel, and a series of other
goodies are already included for you and you’ll just need to update them to the latest version. In both
cases, you can run the following commands from the Terminal:

sudo gem update — system
sudo gem install rails
sudo gem install mongrel
sudo gem update

GNU/Linux
If you are using GNU/Linux, you’re aware of the many variants (aka distributions, or distros for short)
available. It would be impossible for me to provide instructions on how to proceed for each of them.
Chances are that no matter what package management system your GNU/Linux version adopts, Ruby
1.8.6 or later, RubyGems, SQLite3, and SVN will be around for you to work with. From RubyGems you
can do the rest by updating RubyGems itself, installing (or updating) Rails and Mongrel (and optionally
sqlite3-ruby if not available through the package management of your distro).

One of the most common distributions nowadays is Ubuntu (and its variants like Kubuntu and
Xubuntu). As an example, I’ve provided the following instructions on how to set up a Rails stack on
version 8.04 of K/X/Ubuntu:

sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install subversion
sudo apt-get install ruby-full rubygems libsqlite3-dev libsqlite3-ruby1.8

74955book.indd List2074955book.indd List20 3/4/09 8:44:49 AM3/4/09 8:44:49 AM

21

Chapter 1: Getting Started with Rails

sudo gem update — system
sudo gem install rails
sudo gem install mongrel
sudo gem update

You’ll also have to add Gem’s bin folder to your PATH, by adding the following line (or a similar one, if
you’re not using the default BASH shell) in your shell profi le (for example, in ~/.bashrc):

export PATH=$PATH:/var/lib/gems/1.8/bin

By the time you read this book, things may have changed, but several people have reported a few issues
with the RubyGems version installed through apt-get. Alternatively, you could remove rubygems
from the preceding instructions and install it manually by downloading and building its source code
(http://rubyforge.org/frs/?group_id=126) before proceeding with the last four instructions.

RubyStack
BitNami produces several open source multi-platform installers for popular development stacks. Among
these, RubyStack installs Ruby, RubyGems, Rails, ImageMagick, Subversion, SQLite3, MySQL, Apache,
PHP, and phpMyAdmin. Their installer works with Windows, GNU/Linux, and Mac OS X and, unlike
Instant Rails, performs an actual installation and provides scripts to manage the various servers installed.

If you’re struggling with alternative installation methods, you may want to give RubyStack, available at
http://bitnami.org/stack/rubystack, a try.

Editors and IDEs
Talking about editors is like entering a minefi eld. As the Latin would say “De gustibus non est dis-
putandum,” which can be liberally translated as, “There’s no arguing with taste.” Editor and IDE pref-
erences are highly personal, and I will therefore refrain from telling you which one you should use.
I do, however, provide a list of a few popular choices, and I invite you to try them out at your leisure,
until you fi nd the one that’s right for you.

IDEs Are Helpful, Not Necessary
Microsoft evangelists may occasionally use Notepad in their demos, but as a Microsoft developer you
know all too well that without a serious IDE like Visual Studio, writing ASP.NET or .NET desktop appli-
cations would be a nightmare. Your profi ciency in Visual Studio may make or break your productivity.

In the Rails world there isn’t an offi cial IDE and we’re not big fans of drag-and-drop tools either. The
truth of the matter is that Rails doesn’t need either of these two things. Most Rails developers are very
happy about using text editors. As a matter of fact, when programming in Ruby or in Rails, a good text
editor is all you really need. Even something as simple as SciTE, which we installed through the One-
Click Ruby Installer, is probably suffi cient.

C# and Visual Basic are both relatively verbose languages that take advantage of a huge framework.
Ruby is so expressive and concise that an IntelliSense system like the one you are used to in Visual
Studio would be helpful, but it is not required to the same extent.

74955book.indd List2174955book.indd List21 3/4/09 8:44:49 AM3/4/09 8:44:49 AM

22

Chapter 1: Getting Started with Rails

Another great feature provided by IDEs is their ability to do the drudge work for you by generating
a lot of code. This, again, is not necessary in Rails. The generation of controllers, models, or scaffold
(aimed at rapid prototyping) to name but a few, are all carried out by simple scripts that you can run
from the command line. And the generated code could be written (even in Notepad) in very little time.
When dealing with Rails there simply isn’t a need for a lot of code generation of the sort you’d expect
with some other languages and frameworks.

Don’t use Notepad as your editor. There are issues associated with the use of the Windows’ end of line
characters, which would cause trouble when deploying or committing your code to a non-Windows
machine. If you must, at least consider Notepad++ (http://notepad-plus.sourceforge.net).

IDEs help with the compilation of software, but Ruby is interpreted and, as such, the process is already
much more straightforward. You write the code and then run it directly, plain and simple.

That said, IDEs can be helpful even when programming in Rails. But they are usually much lighter in
terms of features (and responsiveness) when compared to Visual Studio and similar programs. A good
Rails IDE needs fi rst and foremost to have a solid editor. Syntax highlighting and auto indentation of
the code are, in my opinion, a must. Not so much with Ruby, but Rails has a tendency to use very long
method names, which can become quite tedious to type. An editor that enables fast typing and pro-
poses contextual automatic completion of code can make your life easier.

I fi nd that the most successful Rails IDEs (and some editors) tend to provide quick access to fi les and
folders within your project, given that multiple folders and fi les are created when Rails generates the
skeleton of an application. IDEs should also allow you to run shell commands directly within the envi-
ronment, so that you aren’t forced to switch between the editor and the command line. Some IDEs also
provide support for refactoring, testing, and debugging/profi ling of both Ruby and JavaScript.

Popular Choices
In an informal survey — admittedly not one of an overly scientifi c nature — performed by Tim Bray,
the Ruby and Rails communities were asked to provide information about what tools they were using.
I’m reporting the results of Bray’s survey here because they defi nitely confi rm the anecdotal evidence
that I’ve gathered over the past few years in the Rails world.

Figure 1-7 shows a chart with the most popular choices for Rails, according to the survey available
online at http://www.tbray.org/ongoing/When/200x/2007/11/26/Ruby-Tool-Survey.

Of the fi rst 1,000 programmers who responded to the survey, 38.30% replied that TextMate was their
Rails editor of choice. As you can see, text editors are very popular; in fact TextMate, Vi, Emacs, gedit,
SciTe, jEdit, and E Text Editor are all editors. NetBeans, Eclipse, and IntelliJ are IDEs. ActiveState
Komodo represents a mix of both, given that there is an Edit version and a commercial IDE. From these
numbers, let’s briefl y consider the most popular choices.

TextMate: The King of Rails Editors
TextMate (http://macromates.com) is not an IDE, but a fast and extendable editor that is both very
powerful and easy to use. It is a commercial product, but it’s fairly inexpensive at about $63 US. TextMate’s
strength lies in its ability to employ user-contributed bundles, which are very easy to create and modify. It
ships with a Ruby and a Rails bundle, among others, and new contributions, with improved features cre-
ated by other open source developers, are often shared with the community.

74955book.indd List2274955book.indd List22 3/4/09 8:44:49 AM3/4/09 8:44:49 AM

23

Chapter 1: Getting Started with Rails

TextMate vi family NetBeans Eclipse Emacs
family

IntelliJ Gedit SciTE jEdit E Text
Editor

Komodo Other

Popular Rails Editors

38.30%

18.71%

13.30%

10.82%
9.65%

2.05%
1.02% 0.88% 0.88% 0.88% 0.73%

2.81%

Figure 1-7

TextMate has a Drawer that can contain your project folder and fi le structure, multi-tabs, and the ability
to quickly access a fi le by simply pressing a shortcut and typing the start of the fi le name. Among many
useful features is the ability to trigger snippets of code (often, common idioms), which can save a lot
of time and help you with Rails’ long method names (for example, validates_uniqueness_of). The
catch is that it’s only available for Mac OS X.

E Text Editor (http://www.e-texteditor.com), used by less than 1% of the surveyed sample, is a clone
of TextMate for Windows and its tagline is quite aptly “The Power of TextMate on Windows.” It’s cheaper
than TextMate at about $35, and can take advantage of TextMate’s bundles (see Figure 1-8), but you’ll need
Cygwin, a Linux-like environment for Windows, in order to get the best from its many features.

Cygwin and the One-Click Ruby Installer
The fi rst thing I do whenever I need to work on a Windows box is to ensure that it has
a POSIX emulation layer installed. I do this because I feel greatly incapacitated without
being able to take advantage of the many powerful tools available in Unix-like systems.

The E Text Editor encourages you to install Cygwin upon startup and thanks to this
you will be able to take advantage of TextMate bundles on Windows. Unfortunately, the
native Ruby installed by the One-Click Ruby Installer and the emulated Ruby provided
by Cygwin are not compatible. If you installed the One-Click Ruby Installer, and then
tried to use Ruby or Rails from within Cygwin, you’d face all sorts of problems.

If you decide to uninstall the One-Click Ruby Installer and use the Cygwin version of
Ruby, you will have to manually install RubyGems and then Rails through the gem
command within the shell provided by Cygwin. Alternatively, by taking the E editor
out of the picture, you can use the command-line tools provided by Cygwin (or simi-
larly MinGW), but resist using the Ruby version they provide.

74955book.indd List2374955book.indd List23 3/4/09 8:44:49 AM3/4/09 8:44:49 AM

24

Chapter 1: Getting Started with Rails

Figure 1-8

TextMate is what I personally use when I’m on a Mac, and I feel that the experience provided by TextMate
on a Mac is hard to beat; but given that TextMate is not available for Windows, you may fi nd E to be very
useful. Expect it to be very different from what you’re accustomed to with large IDEs. After all, it’s still a
text editor.

Vi and Emacs
Vi and Emacs, and all of their respective variants, are two powerful and very different text editors that
have been popular for decades in the *nix world. They’re free software and have Windows versions, but
if you’ve never used them before, both will seem extremely complicated to you. In the Rails community
Vi is the most used of the two, and in the Ruby community, according to that particular survey, mem-
bers of the Vi family are even more popular than TextMate.

Some developers swear by either of them, whereas others consider them suboptimal for developing in
Rails. It’s true that Vi and Emacs are very extendable, powerful, and that there are all sorts of resources for
using them for Ruby and Rails development, but unless you come from a Unix background, I don’t par-
ticularly recommend you check them out. They are worth all the effort that’s necessary to learn them, but
I don’t feel that you need extra obstacles while trying to learn Ruby, Rails, and a different culture.

74955book.indd List2474955book.indd List24 3/4/09 8:44:49 AM3/4/09 8:44:49 AM

25

Chapter 1: Getting Started with Rails

NetBeans IDE
Sun Microsystems has vested a lot of interest in Ruby and RoR. One of the fruits of its involvement
with the community is the NetBeans IDE. This multi-platform Java-based tool has been continuously
improved to add new Ruby- and Rails-specifi c features and, in a short amount of time, it has gathered a
growing following.

The tool works well and it even offers code auto completion as shown in Figure 1-9, but don’t raise your
hopes too high, because currently it’s not nearly as refi ned and effi cient as Microsoft’s IntelliSense.

Figure 1-9

Aptana Studio and RadRails
Aptana RadRails is an award-winning open source plugin for Eclipse-based IDEs. It is available as a
plugin for Eclipse and can also be installed from within the free-of-charge Aptana Studio, the com-
munity edition of a commercial IDE (Aptana Studio Pro). Aptana Studio is based on Eclipse, and once
you’ve installed the RadRails plugin, it provides you with a very pleasant working environment, full of
useful Rails features. This product is constantly being improved upon, has excellent support from the
company, and it’s one of the best liked and most used IDEs in the community.

74955book.indd List2574955book.indd List25 3/4/09 8:44:50 AM3/4/09 8:44:50 AM

26

Chapter 1: Getting Started with Rails

Just like NetBeans, it offers basic support for code completion (see Figure 1-10) and many more fea-
tures. You can see a feature comparison with NetBeans on Aptana’s website (http://www.aptana
.com/rails/).

Figure 1-10

Out-of-the-box features aside, its real advantage over NetBeans is that it’s part of the Eclipse ecosystem,
where many useful plugins are available for Web developers. Of all the editors and IDEs presented here
(which work on Windows), Aptana Studio plus the RadRails plugin are defi nitely one of the most valid
choices (and what I use when I’m on a GNU/Linux or Windows workstation).

If you decide to try RadRails, install Aptana Studio (or Eclipse) and then click Install RadRails from the
Aptana Start Page.

74955book.indd List2674955book.indd List26 3/4/09 8:44:50 AM3/4/09 8:44:50 AM

27

Chapter 1: Getting Started with Rails

RubyMine
Currently available as a public preview release, RubyMine is a new Rails commercial
IDE by JetBrains. Dubbed by its makers as “The Most Intelligent Ruby IDE,” it’s prob-
ably too early to establish the impact that it will have within the Rails community.
The Java-based IDEs mentioned previously are quite smart in their own right and are
available for free.

Nevertheless, JetBrains has a reputation for creating great IDEs (it makes IntelliJ
IDEA) and RubyMine 1.0 is scheduled to be released in the fi rst quarter of 2009. By
the time you read this sidebar, it will most likely have been released, and it may be
worth checking out.

Ruby In Steel: I Still Want Visual Studio
Ruby In Steel is not on the list of the most common Rails tools. Still, in a book aimed at Microsoft
developers, it’s too important to be omitted.

You may spend a week or so trying out several of the recommended IDEs and notice that they all have
little in common with the RAD tools you’ve spent most of your professional life working with. You may
feel a bit lost, and would prefer to still work with something along the lines of Visual Studio 2008.

If that describes you, Ruby In Steel may be your best bet. It’s not just similar to Visual Studio, it actually
is Visual Studio! In fact, Ruby In Steel adds support for Ruby on Rails to Visual Studio 2005 and 2008.
As such, this commercial IDE may greatly simplify your transition to the Rails world.

Four downloads are currently available (http://www.sapphiresteel.com/spip?page=download):

Ruby In Steel Developer 2005: ❑ A plugin for Visual Studio 2005.

Ruby In Steel Developer 2008: ❑ A plugin for Visual Studio 2008.

Ruby In Steel All-in-One Installer: ❑ A complete package that installs Visual Studio 2008 Shell
(integrated mode) with the Ruby In Steel Developer edition. This installer can also optionally
setup Ruby, Rails, and MySQL for you.

Ruby In Steel Text Edition: ❑ A lightweight entry level edition that can be installed in Visual
Studio 2008 (standard and up) or in the Visual Studio 2008 Shell that is installed by the All-in-
One Installer (but not with Visual Studio 2005).

Both versions (Developer and Text Edition) have a very fast debugger called “‘Cylon” and provide
support for IntelliSense (as shown in Figure 1-11). The Developer edition also features a Visual Rails
WorkBench for drag-and-drop client-side design.

74955book.indd List2774955book.indd List27 3/4/09 8:44:50 AM3/4/09 8:44:50 AM

28

Chapter 1: Getting Started with Rails

Figure 1-11

Ruby In Steel Developer (version 1.3) currently costs $199, and Ruby In Steel Text Edition is sold by
Sapphire In Steel for $49. The trial versions will permit you to use them free of charge for up to 60 days.
You may not be fond of Visual Studio in the context of Rails, but it’s far more likely that you’ll enjoy the
familiarity of the environment.

Recently the company introduced a free edition known as Ruby In Steel PE 2008, which has most of the
useful features offered by the commercial versions, but lacks the integrated debugger (available starting
with the Text Edition), auto-expanding of code snippets, and technical support. Though not as useful as
the commercial versions, it is still a good starting point nevertheless. You can fi nd it online at http://
www.sapphiresteel.com/Ruby-In-Steel-New-Free-Edition.

A fourth edition, Ruby In Steel IronRuby Edition — for Microsoft’s implementation of Ruby on the
Dynamic Language Runtime (DLR) — is free and currently in Alpha. I don’t recommend that you
install the Alpha version at this stage because neither IronRuby nor its VS plugin are currently suit-
able for developing Rails applications. This will probably change fast though, so feel free to check
IronRuby’s progress periodically at http://www.ironruby.net.

Spend some time exploring these tools; it’s important to fi nd the editor/IDE that you’re most comfortable
with. No matter what you choose, you’ll be able to follow the rest of the book with ease.

74955book.indd List2874955book.indd List28 3/4/09 8:44:50 AM3/4/09 8:44:50 AM

29

Chapter 1: Getting Started with Rails

Whetting Your Appetite
A “Getting Started” chapter would not be complete without an example to show you how quickly appli-
cations can be prototyped thanks to Rails. The aim of this section is truly to “whet your appetite” as
opposed to provide extensive explanations of each step. In Chapter 5, after covering the Ruby language
in Chapters 3 and 4, you’ll create a more complex Web application and everything will be explained in
detail. Here I’m going to provide you with a sneak preview. After all, Rails became so popular thanks
also to its ability to create entire applications with just a few commands.

Begin by creating a Rails project that can hold your friends’ addresses. From within a directory of your
choice (for example, c:\projects), use the command prompt to run the following commands:

rails addressbook
cd addressbook

This generates an addressbook directory that contains the skeleton of your Rails application, and the
second instruction makes it the current directory in your prompt.

This being Rails, you’ll use a table within a database to store the data. This table will need fi elds like the
person’s name, address, phone number, and perhaps email and blog/site URL.

You can specify those fi elds and their data types thanks to the so-called scaffold generator, as follows:

ruby script/generate scaffold person name:string address:string phone:string
 email:string blog:string

This will generate a model, controller, and a series of view templates required to provide you with a
basic application for performing CRUD operations.

Before you can see what it looks like, you will need to create a development database for the application
as well as apply the table defi nition stored by scaffold in a migration fi le. The two tasks are achieved by
a single command:

C:\projects\addressbook> rake db:migrate
(in C:/projects/addressbook)
== CreatePeople: migrating ===
 — create_table(:people)
 -> 0.0660s
== CreatePeople: migrated (0.0680s) ==

By convention the development database will be db/development.sqlite3; you didn’t have to specify
that nor provide a connection string. Also note how Rails is smart enough to fi gure out that a person’s
data should be stored in a people table (which is correctly pluralized).

Now that the database is taken care of, start the Web server:

ruby script/server

The Windows fi rewall may ask you to unblock the server, which you should agree to.

74955book.indd List2974955book.indd List29 3/4/09 8:44:50 AM3/4/09 8:44:50 AM

30

Chapter 1: Getting Started with Rails

Point your browser to http://localhost:3000/people and you should see an interface for listing,
creating, editing, and deleting entries in your address book. This also incidentally demonstrates Rails’
cleverness in handling multiple versus singular terms, because the URL for the application is http://
localhost:3000/people (where we’d expect to see a list of people). It’s remarkable that no code was
written to achieve all this.

Would you like to add validations to make the name and address mandatory? And how about ensuring
that there are no duplicated names? Just add the following two highlighted lines within your person.rb
model in the app/models directory:

class Person < ActiveRecord::Base
 validates_presence_of :name, :address
 validates_uniqueness_of :name
end

You now have a fully functioning, database-driven Rails Web application that has complete CRUD
functionality. Into the bargain the application validates your input, checking that you have put in a
name and address and checking that there are no duplicates (with nice friendly error messages if you
get it wrong, as shown in Figure 1-12).

Figure 1-12

74955book.indd List3074955book.indd List30 3/4/09 8:44:50 AM3/4/09 8:44:50 AM

31

Chapter 1: Getting Started with Rails

Summary
This fi rst chapter provided a general introduction and overview of Ruby on Rails, highlighting part of
its story, philosophy, and relevance to the current Web development world. Step-by-step instructions
to set up a complete development environment as well as a quick glance at common editors completed
the chapter.

Chapter 2 debunks common misconceptions, explores the concepts behind MVC, takes a closer look at
the philosophical principles embraced by Rails, and fi nally, provides a macroscopic analysis of the dif-
ferences between this and the ASP.NET world.

74955book.indd List3174955book.indd List31 3/4/09 8:44:50 AM3/4/09 8:44:50 AM

74955book.indd List3274955book.indd List32 3/4/09 8:44:51 AM3/4/09 8:44:51 AM

Understanding Rails
What sets this framework apart from all of the others is the preference for convention

over confi guration making applications easier to develop and understand.

— Sam Ruby, Apache Software Foundation, Board of Directors

After reading the fi rst chapter you should have a clear mental picture of what Rails is. Unless
you encountered unforeseen issues, you should also have your environment properly set up with
Ruby, Rails 2.2.2, Mongrel, and SQLite3 with its Ruby bindings.

If you are experiencing diffi culties while setting up your environment, feel free to ask for help in
the p2p.wrox.com forum for this book. I’ll be glad to help you get started.

This chapter delves further into the framework to provide you with more details and a better
understanding of its main components and philosophies. Before diving in, though, some common
misconceptions about Rails need to be debunked.

Months after I fi rst wrote this chapter, David published a list of Rails Myths. You might consider
reading them online at http://www.loudthinking.com/posts/29-the-rails-myths
in addition to the ones presented here. This note, of course, was added in during the chapter
review phase.

Misconceptions about Rails
When a new technology hits the spotlight, a lot people start talking about it. It’s a given that not
all of them are going to be fully aware of the subject, and new myths and misconceptions will
inevitably spring forth. With Rails’ exponential success and big promises of easier Web develop-
ment, this phenomenon is particularly accelerated. In the past four years, all sorts of misinformed
comments about Rails have popped up. The next few sections focus on some of the most common
ones, but also on those that are very much worth clarifying from the get-go.

74955book.indd List3374955book.indd List33 3/4/09 8:45:11 AM3/4/09 8:45:11 AM

34

Chapter 2: Understanding Rails

You Don’t Have to Be a Programmer
Rails developers are often enthusiastic about their framework of choice. The fact that they like to stress
how easy and productive Rails is, is very understandable given that programming in Rails is a joy and
probably considered (by these developers) much easier and better than anything else they’ve tried
before. In truth, to initially get started with Rails you don’t really need to be an expert on how the Web
works, nor profi cient in SQL, HTML, or JavaScript. Rails takes care of a lot of small details for you.

The notion that you don’t have to be a programmer to write Web applications with Rails, however, is false.
All but the most trivial applications require a good dose of programming skills and design choices.

When you create a Rails application, one of the fi rst tasks is to defi ne the database structure. You’ll
have several tools that can help you with this, and you won’t have to do it by specifying the SQL code
in most cases, but you’ll still have to fundamentally decide how the information is going to be stored in
the database.

Most of the code that you’ll be writing is going to be in Ruby, a full-fl edged programming language. All
of the most profi cient Rails developers are excellent Ruby programmers as well, simply because Ruby is
the key to getting the best out of Rails.

In other words, Rails is not a Content Management System (CMS) like DotNetNuke, Community Server
by Telligent, or Drupal. Non-programmers are actually much better off with these highly modular CMS
applications rather than with Rails, for the simple reason that these don’t expect you to be a programmer,
whereas Rails defi nitely does.

Rails makes Web development easier and much more accessible to newcomers, in the same way that
programming in C# is more approachable than programming in, say, Assembler. But in both cases, it’s
still 100% programming.

Rails Is a Silver Bullet
In the famous paper “No Silver Bullet - Essence and Accidents of Software Engineering,” Fred Brooks,
author of The Mythical Man-Month (Addison-Wesley 1975), makes the following claim:

“There is no single development, in either technology or in management technique,
that by itself promises even one order of magnitude improvement in productivity, in

reliability, in simplicity. In this article, I shall try to show why, by examining both
the nature of the software problem and the properties of the bullets proposed.”

— Fred Brooks

You should take the time to read No Silver Bullet. You can fi nd it online at http://www.lips
.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf.

It is now well established in the software development industry that there are “no silver bullets,” an
expression that’s loosely used today to indicate that no new technology is going to be the fi nal solution
to all of the problems of software design and productivity.

74955book.indd List3474955book.indd List34 3/4/09 8:45:12 AM3/4/09 8:45:12 AM

35

Chapter 2: Understanding Rails

Yet Rails is often wrongly considered a silver bullet by some, because it is arguably much more produc-
tive than working with .NET or Java. As explained by Brooks in his essay, there are two types of com-
plexities: accidental and essential. The former is caused by us developers and our approach, and the
latter is intrinsic to the resolution of the problem.

Rails improves productivity by considerably reducing the accidental complexity, but it can’t alter the
essential complexity of Web development, hence Rails is no silver bullet and it never will be, no matter
how much it improves.

This fact shouldn’t concern you though, given that no other technology is going to be a silver bullet either.
Rails is one of the best tools available today for aiding developers in managing complexity, but it’s still just
a tool, and one that doesn’t aim at being the ultimate solution for every Web development problem and
developer out there. Through this book, you’ll understand Rails’ strengths and weaknesses, and better
evaluate when and if it’s the right tool for you.

Rails Is Hard to Deploy
Deployment is the act of moving your Web application from your development machine to a production
one, where it becomes accessible to your customers through their browser. Deploying Rails applications
today is a fairly straightforward process. Several well-known confi gurations and a series of useful tools
are available (for example, Capistrano) to help you out in the process. Many hosting companies have also
heavily invested in improving their support for Rails and in providing easy “upload and go” solutions.

Admittedly in the past, especially before mod_rails for Apache was released in 2008, the experience
of deploying Rails applications wasn’t as pleasant as it was for the ubiquitous PHP. The most common
solution was the adoption of a cluster of Mongrel instances, proxy balanced by a Web server like Apache.
This confi guration is not rocket science, and it’s still the favorite one by many large sites, but it requires
more confi guration fi ddling than some would like to do. This option also implies, in most cases, the use
of a Virtual Private Server (VPS) or dedicated hosting solution, both of which are more expensive and
require more attention than a shared hosting arrangement.

Today, the number of useful tools and hosting options has improved in number and quality, and there is
no reason to believe in the myth that deploying Rails applications is hard. Chapter 11 guides you through
some of the deployment tools and confi gurations, including hosting on Windows servers, and you’ll realize
how deploying Rails applications is generally not much more diffi cult than developing them.

Rails Doesn’t Scale
To borrow an expression from Mark Twain, reports of Rails’ scalability problems have been greatly
exaggerated. One of the greatest myths surrounding Ruby on Rails is the claim that it doesn’t scale.
Whenever a large site written in Rails is having troubles (for example, like twitter.com did in 2008),
misinformed pundits tend to immediately identify Rails as the culprit.

The reality is that there is nothing in Ruby or in Rails that makes them inherently non-scalable. Au
contraire, Rails has a “share nothing” architecture, which allows you to plug in additional hardware
with little extra confi guration, as long as the data persistence mechanism adopted (for example, your
database server) allows you to scale.

Scalability often has little to do with the given language or framework, and everything to do with the
architecture and design choices made for the whole application stack.

74955book.indd List3574955book.indd List35 3/4/09 8:45:12 AM3/4/09 8:45:12 AM

36

Chapter 2: Understanding Rails

The misconception that Rails doesn’t scale probably originated due to a couple of existing issues surround-
ing Rails. First, the current main Ruby implementation is not fast. It is generally considered one of the slow-
est, even among other interpreted languages. Second, Ruby’s adoption of green threads and ActiveRecord’s
historical lack of thread safety implies that Rails’ concurrency support and ability to take advantage of
multiple processors is limited. As explained in Chapter 4, several Ruby implementations exist with the aim,
among others, to solve Ruby’s performance issues. Conversely, Rails’ performances have been improving
with each new release.

ActiveRecord is currently thread safe; however, the C implementation of Ruby still uses threads that are
not native to the operating system.

The fact that Ruby is not as fast as C# — and even assuming that a Rails app is much slower than an
equivalent one written in ASP.NET — doesn’t imply that Rails doesn’t scale. It only tells us that more
hardware is required to handle a comparably large amount of Web traffi c. You also need to keep in
mind that often the real bottlenecks are elsewhere, and having a fast framework and language won’t
do you much good if, for example, caching and database optimization are not fi ne tuned.

Chapter 11 has further considerations on scaling but, for the time being, don’t be too concerned
about this aspect: many large sites employ Rails and are able to serve millions of requests on
relatively inexpensive hardware.

Understanding MVC
The MVC architectural pattern is one of the most well-known and adopted patterns in the history of
software engineering. When Trygve Reenskaug, a Norwegian computer scientist, fi rst described it back
in 1979, it aimed at favoring the development and maintainability of Smalltalk GUI applications by a
clear division of business logic and presentation in three distinct types of components: the model, the
view, and the controller.

You can fi nd the original and revised documents describing the pattern online at http://heim.ifi
.uio.no/~trygver/themes/mvc/mvc-index.html.

The idea was general enough to be applied in any context that involved some form of user interaction.
Thirty years later, the same architecture is in fact widely adopted for Web development. The monolithic
approach taken by many in the early days of the Web was a regression over an older but well-proven
pattern, especially if you consider that MVC is a particularly fi tting abstraction of the underlying archi-
tecture provided by the Web. Although it’s not the only valid option available, it is indisputably one of
the most successful and, above all, the one chosen by the Rails framework.

Entire books could be written on the subject and some may like to indulge in sterile discussions about
the purity and fi delity of the various MVC implementations when compared to the original idea. But
this won’t serve any concrete purpose and will not help you create better Rails applications. This section,
therefore, concentrates on the MVC pattern as implemented by Rails.

Overview of the Architectural Pattern
As mentioned in the previous chapter, the model represents the data and the rules that guarantee the
validity of the persisted data. The view handles the generation of the user interface, and the controller
coordinates the application. It communicates with the model to retrieve and store data, while prompting
the users with the right view based on their interaction with the Web application.

74955book.indd List3674955book.indd List36 3/4/09 8:45:12 AM3/4/09 8:45:12 AM

37

Chapter 2: Understanding Rails

The real strength of the paradigm resides in the harmony of these three components, which is entirely
handled by Rails for you, as long as you follow its sensible conventions. This facilitates development,
testing, and maintenance, because you are able to focus on one component at a time. It also helps to sep-
arate the roles and responsibilities among the MVC components, clarifying what types of code belong
where, as well as enabling developers to focus on the specifi c purpose of the code.

If you’re not already familiar with the MVC architecture, the previous description may appear to be
rather abstract, so let’s move on to an example of the request/response life cycle as seen through the
eyes of MVC. Figure 2-1 provides a high-level illustration of this process.

DB

Dispatcher
Controller

Routing

Model

View

Client Web Server

Figure 2-1

 1. The user issues a request through his browser at the URL: http://example.com/products/
show/42

Beautiful URLs
As you learn more about Rails, you’ll realize how beautiful URLs are characteristic of
Rails applications. You won’t see the following:

http://example.com/main.asp?type=product&action=show&id=42

or similarly ugly query strings very often in the Rails world.

The issue of clean and beautiful URLs is not limited to aesthetics and Search Engine
Optimization (SEO), but becomes a vital component of the application particularly
when defi ning RESTful ones (which is a highly recommended style for CRUD-based
applications) as explained in Chapters 5, 6, and 10.

 2. The Web Server forwards the request for a dynamic page to Rails’ dispatcher.

 3. Rails’ dispatcher invokes the routing component on the URL to determine what controller and
action (Rails’ speak for a public controller method) should handle the request. Routing uses a
series of sensible conventions (confi gurable in config/routes.rb within a Rails application)
to determine this information. By default, the /controller/action/id pattern applies; there-
fore, unless otherwise specifi ed, the router determines that the request should be handled by the
show action of the Products controller, using id 42 as a parameter.

74955book.indd List3774955book.indd List37 3/4/09 8:45:12 AM3/4/09 8:45:12 AM

38

Chapter 2: Understanding Rails

 4. The dispatcher loads the proper Ruby fi le for the controller at hand (app/controllers/
products_controller.rb) and creates an instance of the controller class
(ProductsController).

 5. The Products controller’s show action is called. This action typically interacts with the model layer
by calling one or more methods of the Product model (note the singular form of the identifi er).

 6. The model translates the Ruby code into SQL and executes the query in order to retrieve the
record with id 42 from the proper table (products) in the database. The information for the prod-
uct is then returned to the controller, which stores it in an instance variable that will be accessible
from the view.

 7. The controller invokes the rendering of the proper view, which typically assembles an HTML
template with the product information passed on by the controller.

 8. The Web server uses this data to formulate a proper HTTP response to send to the user’s
browser.

 9. Lastly, the user is presented with the page requested.

Of course many details are omitted from this simplifi ed description, but this should suffi ce to provide
you with an initial illustration of how model, view, and controller interact.

You may have noticed that despite the acronym MVC, the model, view, and controller don’t work in
that sequential order.

As you can see, each of these three components has a specifi c set of responsibilities and Rails handles
their coordination and cooperation automatically for you. You might also notice that Rails makes several
assumptions along the way. For instance, as long as you have created a Product model, Rails knows by
convention how to fi nd the actual table in the database (the table products, unless otherwise specifi ed).
The Model-View-Controller set of layers combined with good conventions are crucial to Rails’ incredible
productivity.

Rails doesn’t simply promote the MVC pattern, it actually enforces it from the moment you generate an
application, creating empty folders for you that are ready to contain models, controllers, and each of the
several templates that are part of the view layer.

Contrary to what the fashion industry would like you to believe, you should have “fat models.”
Conversely, you should aim to code “skinny controllers” and “dumb views.” Models should do the
heavy lifting as much as possible. Controllers should be thin and contain the bare essentials required
to coordinate the action. And fi nally, views shouldn’t house any but the most trivial business logic
required to present the contents (for example, looping through a collection of objects that need to be
presented).

Defi ning Models
In a typical Rails application, each model is a Ruby class that represents a table in the database. Rails pro-
vides a useful abstraction that enables you to think in terms of concepts and business objects, rather than
tables and rows. To accomplish this goal, Rails employs ActiveRecord, an easy-to-use Object-Relational
Mapper (ORM), which was briefl y introduced in the previous chapter.

74955book.indd List3874955book.indd List38 3/4/09 8:45:12 AM3/4/09 8:45:12 AM

39

Chapter 2: Understanding Rails

ActiveRecord is a powerful abstraction that greatly simplifi es the development process. As an
ORM, ActiveRecord maps a model to a table, the columns of the table to the model attributes, and
the records within a table to instances of the corresponding model.

Martin Fowler described the Active Record ORM pattern as follows: “An object that wraps a row in a
database table or view, encapsulates the database access, and adds domain logic on that data.”

One characteristic of ActiveRecord is that it works by making assumptions. Unless you need to over-
write these assumptions, ActiveRecord won’t require any confi guration. This is in stark contrast with
some other ORMs from the .NET and Java worlds, where the confi guration is often performed within
XML fi les, which is quite a tedious and time-consuming task.

When you create a Product model, ActiveRecord will automatically assume that it represents the table
products in the database. You’ll only have to specify otherwise if Product needs map to a different table,
and even then this is done in Ruby within the model class with a single line of code: set_table_name
“myprodtable.”

ActiveRecord really simplifi es working with databases. It provides a series of useful methods for querying
tables, without having to specify any SQL code (in most cases), making basic CRUD (Create, Read, Update,
and Delete) operations a breeze. ActiveRecord also handles the relationships between models and even
validates the data, ensuring the correctness of the persisted data and disallowing the storage of informa-
tion that doesn’t respect the business rules that you’ve defi ned.

With a single line it’s possible to retrieve the product with id 42 (to re-use the example mentioned
previously) by running:

Product.find(42)

Behind the scenes, the find method searches for the product by issuing the query SELECT * FROM
“products” WHERE (“products”.”id” = 42). If the product exists, an instance of the Product
class is returned. This contains the information you are looking for. Often Rails developers are par-
ticularly fond of the notion of using Ruby, a single language, for all or at least most of their application.
Therefore, minimizing the amount of SQL that needs to be written is seen as a good thing.

Similarly, in this hypothetical scenario, it’s possible to obtain a list of all products that are no longer in
stock, by running:

Product.find_all_by_quantity(0)

ActiveRecord is very fl exible when it comes to providing you with fi nder methods to query the database.
Likewise, assuming that the products table has name, quantity, and price columns, you can create a new
record just as easily by running:

Product.create(:name => “iPhone”, :quantity => 2000, :price => “199.99”)

For the moment, don’t worry about Ruby’s syntax for hashes; it is thoroughly explained in Chapter 3.

And of course, ActiveRecord has analogous methods for updating and deleting records, and even for
specifying entirely customized SQL statements.

74955book.indd List3974955book.indd List39 3/4/09 8:45:12 AM3/4/09 8:45:12 AM

40

Chapter 2: Understanding Rails

These methods are database agnostic, given that ActiveRecord uses the adapter for the database in use,
in order to translate and execute the code into the specifi c SQL syntax requested. Aside from simplifying
the development process, this implies that it’s possible to switch from one database to another without
changing any of the application’s code.

In practice, there are more considerations to be made, due to the different levels of support for
ActiveRecord’s features provided by each adapter. But overall, a good code base can be switched
from one adapter to another with minimal hassle.

Working with ActiveRecord models lets you focus on the domain logic without worrying about how the
information is displayed. In fact, a model is entirely independent from the view and controller layers.
The process of developing a model in Rails requires that you determine its name, its attributes/fi elds,
and its associations with other model objects. It also requires that you defi ne validations to ensure the
validity of your data, and the defi nition of custom methods that encapsulate your domain logic and add
the behavior you need to the model.

The model generator, scaffold generator, and migrations are all useful tools provided by Rails to facilitate
this process by generating a skeleton and letting you fi ll the blanks to phase out the tedious work. You
should take care to pay a lot of attention when developing your models, given that they’ll end up being
the heart of your applications.

What’s Scaffolding?
It is worth spending a few moments to introduce this tool called scaffold generator,
which aids you in creating Rails applications.

The scaffold generator is a tool that allows the automatic generation of a basic Web
application for performing CRUD operations (as seen in Chapter 1). As a developer
all you have to do is provide the specifi cation, by indicating the name of the model
(which in turn defi nes the name of the actual table in the database), its fi elds, and their
data types.

Scaffolding takes care of the rest by generating the proper migration fi les (which
defi ne the table defi nition in Ruby code), the model, controller, view templates, routes,
skeletons for the tests, and so on. The end result is the creation of a basic Web interface
that can be used to insert, show, modify, and delete records from the database. All this
without writing a single line of code.

Scaffolding is useful for rapid prototyping and for when you want to have a solid base
upon which to customize and build more powerful features. It usually wows beginners
because it gets you up and running in no time and the generated code is easy to under-
stand and modify.

One of the easiest ways to understand how Rails applications work is in fact to
analyze how the code generated by scaffolding works. When you create an actual
application in Chapter 5, you’ll take this approach and start by generating the basic
components of the application by scaffolding.

Chapters 5, 6, and 7 provide you with more insight into model development and ActiveRecord.

74955book.indd List4074955book.indd List40 3/4/09 8:45:13 AM3/4/09 8:45:13 AM

41

Chapter 2: Understanding Rails

Designing Views
The view represents the user interface. Of the three roles, the view is the one that requires the least
amount of programming, and is in fact often delegated to the Web designer. It is important, though, not
to underestimate the signifi cance of this component in Rails applications.

The interface defi nes your software in the eyes of the user, given that it’s the only layer the user will inter-
act with directly. It is therefore your specifi cation and a lot of attention should be paid to ensuring that the
user is able to retrieve and store the information through a well-designed, intuitive, and logical UI.

A classic book on the subject of usability and Web design UI is Steve Krug’s, Don’t Make Me Think!
A Common Sense Approach to Web Usability (Que 2000). This title is highly recommended for
programmers and designers alike.

The view layer renders the information to the user by assembling templates with the actual dynamic
content provided by the action within the controller, which in turn obtains it (in most cases) directly
from the model.

Rails offers three types of templates:

ERb: ❑ Templates that embed Ruby code similarly to how it’s done in ASP classic, PHP, or JSP. ERb
templates aren’t just used to generate XHTML, but can be employed so as to render emails, CSV
fi les, and so on.

XML Builder: ❑ Templates that are used to generate XML documents from Ruby code. They are
often employed when creating Atom and RSS feeds.

RJS: ❑ Templates employed to generate JavaScript from Ruby code. These, coupled with Rails’
inclusion of the Prototype framework and the script.aculo.us library, enable you to create Ajax-
powered user interfaces.

The view is not the spot to place application logic, so the presence of Ruby code
should be kept to a minimum and strictly limited to what’s required in order to
properly present the data.

ERb templates are the ones that you’ll use most often, but the other two will be illustrated as well,
particularly in Chapter 9.

The following code is an example of an ERb template (produced by the scaffold generator). The Ruby
code is contained within the <% and %> tags:

<h1>Listing products</h1>

<table>
<tr>
<th>Name</th>
<th>Price</th>
<th>Quantity</th>
<th>Info</th>
</tr>

74955book.indd List4174955book.indd List41 3/4/09 8:45:13 AM3/4/09 8:45:13 AM

42

Chapter 2: Understanding Rails

<% for product in @products %>
<tr>
<td><%=h product.name %></td>
<td><%=h product.price %></td>
<td><%=h product.quantity %></td>
<td><%=h product.info %></td>
<td><%= link_to ‘Show’, product %></td>
<td><%= link_to ‘Edit’, edit_product_path(product) %></td>
<td><%= link_to ‘Destroy’, product, :confi rm => ‘Are you sure?’, :method => :delete
%></td>
</tr>
<% end %>
</table>

<%= link_to ‘New product’, new_product_path %>

Chapter 5 analyzes the code generated by scaffold in detail, so don’t worry if the code doesn’t make
much sense to you at this stage. I only provided it as an example to help you picture what embedding
Ruby code into XHTML can look like.

Ruby Template Engines
ERb is not the only Ruby template engine. There are in fact more than a dozen available
choices that you can adopt in your Rails applications.

ERb is the default, mostly because it gets the job done and ships with Ruby, so no
external dependencies are required. Two common alternatives are Erubis and Haml.

Erubis (http://www.kuwata-lab.com/erubis/) is an ERb-like engine whose main
selling point is its rendering speed. According to a few benchmarks available on
the offi cial site, Erubis can be several times faster than ERb, a desirable trait for Web
applications.

Haml (http://haml.hamptoncatlin.com/), on the other hand, is often adopted for
its compact and beautiful style, which makes it very different (in a good way) from
ERb. It’s not everyone’s cup of tea, but many developers and designers have expressed
enthusiasm toward it.

Managing Controllers
Controllers coordinate the application. The importance of the controller in a Rails application can’t be
overstated, given that the interaction between the user and the view and model layers is controlled and
coordinated by the controller.

A controller receives requests from the client, determines which action needs to handle the request,
interacts with models to retrieve and store data in the database, and then invokes the view layer so as
to render the results back to the user.

The areas of responsibility for the controller are far reaching and not limited to this; in fact, they
include processing parameters, redirecting, handling errors, providing helpers for the view, managing

74955book.indd List4274955book.indd List42 3/4/09 8:45:13 AM3/4/09 8:45:13 AM

43

Chapter 2: Understanding Rails

caching for drastically improving performance, sessions for maintaining the user status as they inter-
act with the application, and many other small errands that are further explained, predominantly, in
Chapters 5 and 8.

A non-trivial Rails application has several controllers, each dedicated to a given area of functionality.
For instance, an online store may have controllers for handling user accounts, displaying products,
managing the inventory, and so on.

A controller Products for performing CRUD operations could have the following structure:

class ProductsController<ApplicationController
def index
 # code for showing a list of products
end

def show
 # code for showing a given product
end

def new
 # code for the empty form for a new product
end

def edit
 # code for the editing form for a given product
end

def create
 # code for the creation of a new product
end

def update
 # code for updating a given product

End

def destroy
 # code for deleting a given product
end
end

Each of the public methods defi ned in the controller represents an action. When the routing component
determines that the given request corresponds to a certain action, the Ruby code for that action is executed.
From the controller, instance variables used by the view layer are set and the view itself is invoked, either
explicitly or implicitly (in that case by a convention based on the action name).

74955book.indd List4374955book.indd List43 3/4/09 8:45:13 AM3/4/09 8:45:13 AM

44

Chapter 2: Understanding Rails

Rails’ Standard Packages
When you installed Rails in the fi rst chapter, aside from the main Rails gem, several other gems were
installed. All of these libraries together compose what is considered to be the Ruby on Rails framework.
They are:

ActiveRecord: ❑ The M of the MVC triad, which provides Object-Relational mapping for several
RDBMS, as previously discussed.

ActionPack: ❑ A very large library that handles the whole request-response cycle. It is composed
of the ActionController library (the C of MVC) and the ActionView library (the V of MVC).

ActionMailer: ❑ A small framework that adds email support to Rails applications. This can be used
whenever the need for email notifi cation arises, like in the case of sign ups or forgotten password
requests. It greatly simplifi es the process of sending out emails from Rails, and as such, can also be
used to set up an admin notifi cation every time the Rails application raises an exception.

ActiveSupport: ❑ A series of utility classes and Ruby’s Standard Library extensions used by Rails
and in Rails applications.

ActiveResource: ❑ A library that connects business objects to Representational State Transfer
(REST) Web Services. Chapter 10 covers this subject in greater detail.

Understanding Rails’ Main Principles
The Rails culture has adopted many of the good principles that derive from the world of Extreme
Programming (XP) and the Agile movement in general. For example, though Rails doesn’t force you to
adopt Test-Driven Development (TDD), this is a popular practice in the Rails community. Also, Rails
integrates, simplifi es, and promotes testing. As briefl y mentioned in the fi rst chapter, YAGNI (You Ain’t
Gonna Need It) is also a principle that’s been largely adopted by the community. There are, however,
two mantras that characterize the Rails way of doing development above anything else: “Convention
over Confi guration” and “Don’t Repeat Yourself (DRY).”

It can be said that Rails’ strength comes from three components that fi t together organically: the framework
itself, its Agile philosophies and principles, and fi nally, the Ruby language. These Agile mantras are so
important that it’s worth spending some time to analyze them further; the next chapter takes care of pro-
viding you with all the essential Ruby skills that you’ll need to understand and write Rails applications.

Convention over Confi guration
Back in 2004, before Rails had garnered the popularity that it enjoys today, a nine-minute demo by
David Heinemeier Hansson was recorded and placed online. The application he showcased was quick
and simple: a bare-bones blog. Today, a second version (for Rails 1.0) is available online at http://
rubyonrails.org/screencasts and, as you’ll see for yourself if you decide to watch it for historical
purposes (it’s only 15 minutes long), there are no advanced features and even a few “whoops” here and
there. Yet that seemingly plain video had a huge impact in contributing to Rails' popularity.

A third version covering Rails 2 has been recently released at the same URL.

74955book.indd List4474955book.indd List44 3/4/09 8:45:13 AM3/4/09 8:45:13 AM

45

Chapter 2: Understanding Rails

Extreme Programming vs. Agile Programming
Agile development promotes iterations and incremental development, collaboration
and adaptability to change. And so does XP. When talking about Rails’ philosophy it’s
not unusual to see these two terms pop up almost interchangeably. So unless you’re
already familiar with the Agile world, you may be wondering what the difference
between the two is.

Extreme Programming is a specifi c Agile method that predates the Agile Manifesto.
Agile is an umbrella term that covers several, somewhat similar, lightweight methodolo-
gies, which include, among others, the very popular Extreme Programming and Scrum.

XP is by far the most applied Agile method and the one that includes software
engineering practices such as Simple Design, Pair Programming, TDD, Continuous
Integration, Refactoring, Coding Standards, and Collective Ownership. As a matter of
fact, XP’s engineering practices are often adopted within the context of Scrum, which
acts in those cases as a management wrapper for XP.

It’s also worth noting the emergence of the so-called post-Agilism, which I believe
represents several Rails programmers. Post-Agile developers are well aware of Agile
methodologies, but don’t identify themselves with them. They haven’t reverted back
to a waterfall, heavily processed approach, but rather try to apply the good, fun-
damental Agile principles to other development techniques as they fi t, doing what
works best for them, without being dogmatic about the approach taken. To learn
more about post-Agilism, you can read the FAQ at http://www.kohl.ca/blog/
archives/000184.html.

The reason for its success was that in its simplicity, the video gave away the fact that Rails was extremely
productive. It was more than just productive; it was magical. The application was only 58 lines (in the
case of the video from 2005, referenced previously). In virtually no time at all, there it was, a working,
albeit basic, Web log engine.

Admittedly, part of the magic was due to the fact that David employed dynamic scaffolding, a feature
that allowed him to add columns to the tables and see the forms in the browser automatically update to
accommodate the new columns. But from Rails 2.0 onward, this feature no longer exists. When it was
included, it made for some great demos, but was usually not suitable and fl exible at all for real-world
projects. At the time, even the normal (static) scaffold wasn’t a particularly good starting point for real
applications, so when they wrote the new one, they got rid of dynamic scaffolding as well.

The point was that Rails brought productivity to a whole new level with its lack of confi guration.
David didn’t have to write a connection string that was a few hundred characters long, he didn’t have
to use an IDE to pre-generate a lot of code for him, and he didn’t have to specify the mapping between
tables and the Ruby code anywhere either. He was just a guy with a text editor (TextMate), a command
line, and a browser.

The only piece of confi guration required was to add his password for the database to a fi le (config/
database.yml) that was generated by the rails command at the beginning. In the video you can hear
David point this out: “Look at all the things I’m not doing, look at all the confi guration I’m not writing.”

74955book.indd List4574955book.indd List45 3/4/09 8:45:13 AM3/4/09 8:45:13 AM

46

Chapter 2: Understanding Rails

Developers (and their managers) love to hear that a new framework will make them much more produc-
tive. When the productivity claim is found to be true, as intuitively shown by David’s demo, the effort and
time investment required to learn a new framework becomes both justifi ed and welcomed.

Rails tackles the problem of increasing productivity from several angles. But at its heart, the philosophical
principle of favoring Convention over Confi guration is fundamental to Rails’ productivity and hassle-free
development.

Frameworks are supposed to make your life easier, allow you to write better and more maintainable
code, and improve your productivity by letting you focus on the logic of your application rather than
repetitive, dreary details (for example, confi guration). Far too many frameworks fall short of this goal,
because they don’t endorse the principle of Convention over Confi guration nearly enough.

Frameworks need to have a set of sensible defaults straight “out of the box,” and they should force you
to resort to confi guration only when strictly necessary, because their defaults are not suitable for your
specifi c project requirements. When naming conventions fail, the framework should be fl exible enough
to allow you to add in your own confi guration.

Ruby on Rails empowers developers to get started quickly by just learning a few naming conventions
and, as they become more experienced, allows them to overrule these conventions through confi gura-
tion for unconventional scenarios and edge cases. As such, it becomes particularly productive if you
follow its conventions whenever possible, in order to reduce the amount of confi guration required. In
other words, try not to contradict Rails.

If you think about it, Convention over Confi guration is a universally good software design paradigm. If
you’re defi ning an API, library, or framework of your own, always provide defaults that make sense and
allow these conventions to be easily overwritten, if the need arises.

As mentioned a few times now, a model’s identifi er should be singular (for example, Project), and in
turn it is automatically mapped to a table of the same name, only pluralized (for example, projects).
Each table is supposed to have an auto-incrementing fi eld called id. Associations between models
assume that the naming convention for foreign keys is adopted. For example, the foreign key in the
tasks table referencing the projects table will be called by convention project_id. You get the idea.

Understanding how ActiveRecord works is one of the most direct ways of experiencing the power of
Convention over Confi guration, so pay close attention to Chapters 5, 6, and 7. Rest assured that naming
and other useful conventions, which you’ll need to know, are explained throughout this book as they
are introduced.

Don’t Repeat Yourself (DRY)
Try to think about any software project you’ve worked on in the past. How long did it take before you
had to go back and start making changes, essentially switching to maintenance mode programming?
Contrary to popular belief, maintenance programming doesn’t start after the fi rst release is out. It usually
begins much sooner: a few minutes after you wrote that initial line of code.

Programming is maintenance programming, even when you start with a fresh new project. The reality
of this fact can be easily verifi ed empirically if you sit down and try to come up with any program or
Web application, no matter how small. You will start defi ning a few classes, some methods, and then

74955book.indd List4674955book.indd List46 3/4/09 8:45:13 AM3/4/09 8:45:13 AM

47

Chapter 2: Understanding Rails

you’ll realize that something is not working right. You’ll go back and make changes to the code to fi x
the bug that you just introduced a few minutes earlier. After a while you’ll realize that certain portions
of the code can be refactored and improved, and there you are, half an hour after you started writing
your program, already doing maintenance work.

Maintenance and change can’t be avoided, so why not embrace them? That’s what Rails does by incar-
nating and promoting the Don’t Repeat Yourself (DRY) principle, and the direct consequence is better
applications that can easily accommodate change. DRY is about removing duplication and encouraging
loosely coupled designs by ensuring that the ties between unrelated layers of an application are kept to
a minimum (a concept sometimes referred to as orthogonality). The DRY principle promotes the localiza-
tion of change, so that whenever requirements change (and that will defi nitely happen) the developer
can respond to them by simply changing the application in one place rather than several.

What this means in practice is that you shouldn’t repeat your code in several places, but rather fi nd a
single authoritative location in the application. For example, if several pages share a common element,
you could “copy and paste” the code for that element onto each page, but if you ever need to change
it, you’d have to go back to edit each applicable page. That’s not DRY that’s a mess. The proper way to
do it would be to defi ne a reusable component (for instance, using what Rails calls partials) that can be
included on the desired pages, so that if you need to change it, you can do so in just one spot.

And the principle of not repeating yourself extends far beyond your application’s code. A software project
will typically have code, a database schema, tests, and documentation. If your coding style and the frame-
work that you use don’t endorse the DRY principle, you will fi nd yourself juggling each of the components
of your system, in an attempt to keep them all in sync.

Rails offers you plenty of tools to prevent this from happening. The MVC architecture neatly separates
concerns; ActiveRecord’s Object-Relational mapping creates a correspondence between your business
and database objects; the migration system allows you to keep the database schema and its evolution
under control; excellent testing capabilities are available “out of the box” so that you can have more con-
fi dence in accommodating changes; and the documentation can be automatically generated from the
code, hence, if you change the code and its comments, this is automatically refl ected when you generate
the documentation.

When developing Rails applications you should always keep the DRY mantra in mind. Thankfully,
Rails was designed from the ground up in a manner that allows you to espouse these philosophies. As
you gain more knowledge about the framework, you’ll realize how many options are available to keep
things DRY and avoid the need to write similar code more than once.

That said, remember that the best tool against coupling and duplication is your brain. No matter how
good a framework is at promoting superior development practices (and Rails is defi nitely excellent in
this regard), there is no substitute for the developer actively pursuing the application of the principles
illustrated to obtain productivity and code that is maintainable and easy to change.

Rails vs. ASP.NET vs. ASP.NET MVC
If you are reading this book, you’re probably an ASP.NET developer. However, even if you aren’t,
the Rails versus ASP.NET diatribe that’s raised every so often in online forums and groups is worth
addressing before wrapping up this “philosophical” chapter.

74955book.indd List4774955book.indd List47 3/4/09 8:45:13 AM3/4/09 8:45:13 AM

48

Chapter 2: Understanding Rails

The “versus” question is often asked by developers who’d like to learn the “next big thing” in Web
programming, be prepared for the evolution of the job marketplace, or, even more commonly, by
programmers who’re looking for the best tool for a certain project.

Becoming profi cient in a new framework can take at least a few months, so it is understandable that
most people don’t want to bet “on the wrong horse.”

Choices exist that are bound to become more popular and that better suit certain types of projects or
development philosophies, just like there are options that are more productive than others. Switching
to Rails from an ASP.NET background makes a lot of sense in most cases, so this section will help you to
better understand how these two different frameworks compare from a macroscopic perspective.

A 10,000-Foot Comparison
From a technical standpoint Microsoft ASP.NET and Ruby on Rails are very different. They have so
little in common that, at a microscopic level, a detailed list of differences would be huge. It is truly
comparing apples to oranges; they are both round fruit, just like Rails and ASP.NET are both Web
application frameworks, but they don’t have too much in common beyond that. Taking into consider-
ation the Rails notions introduced so far, a high-level comparison based on several aspects of the two
worlds is going to be the most benefi cial.

Albeit very different, whenever the occasional similarity exists between the two, this is pointed out
(throughout the book) as Rails concepts are introduced, in order to make them seem less foreign. For
instance, the concept of layouts in Rails is very similar to that of MasterPages in ASP.NET. Or again,
the controller layer can be intuitively seen as the Rails (loose) equivalent of the Code-Behind model
in ASP.NET.

Political Matters
Microsoft ASP.NET is a proprietary solution for Web development, whereas Ruby on Rails is entirely
open source and ships with a very liberal license (MIT). Microsoft is slowly embracing openness, but
it is far from being able to claim that ASP.NET is open source. ASP.NET works on Windows only, if we
exclude the Mono project (http://mono-project.com). Mono allows you to run ASP.NET applications
on operating systems like Linux and *BSD, but being a part of Microsoft’s implementation, it usually
plays the “catch up game” with the latest version that’s been released by Microsoft. Rails and Ruby are,
on the other hand, both cross-platform.

The implication is that Rails developers tend to opt for open source tools, operating systems, databases,
and Web servers, whereas ASP.NET developers will usually employ Visual Studio, Windows, SQL
Server, and IIS. They are two different breeds of developers living in different cultures.

The open nature of Rails-based stacks is a strong advantage that shouldn’t be ignored when choosing
between the two platforms; but it’s up to you to decide whether these somewhat “political” considerations
matter or are entirely irrelevant.

A very practical implication that comes to mind is that ASP.NET development is tied to Windows and
has (with the exception of Mono) a single deployment stack that is centered around IIS. As you will
learn in Chapter 11, Rails has many possible deployment stacks, most of which separate the Web server
from the application server, giving you a greater deal of fl exibility in deciding how the request-response
cycle should be handled.

74955book.indd List4874955book.indd List48 3/4/09 8:45:13 AM3/4/09 8:45:13 AM

49

Chapter 2: Understanding Rails

Who Uses What?
ASP.NET has the advantage of being a few years older than Rails, plus the backing of a giant corpora-
tion like Microsoft. Despite the David (literally) versus Goliath scenario, Rails is the tool of choice that’s
favored by most startups and independent Software as a Service (SaaS) vendors, especially in Silicon
Valley, which, as we all know, is the biggest startup hub.

Its exponential growth in the marketplace implies that today Rails has even attracted the attention of
the corporate world. Its market share will continue to grow, but realistically though, ASP.NET along
with Java remain the most widely used solutions in the Enterprise world. In these environments, big
projects carried out by large teams of developers still favor ASP.NET over Rails any day.

This has certain implications in the job marketplace. Currently there are far more job ads for ASP.NET
developers than there are for Rails ones (at least outside of Silicon Valley). On the other hand, Ruby and
Rails skills are very much in demand, given that there are relatively fewer developers than the fi erce com-
petition that exists in the .NET world. If you are a manager, please be advised that Rails developers are not
hard to fi nd (and visiting http://WorkingWithRails.com is a good starting point for fi nding talents).

The working environments in which these two frameworks are utilized are also very different. It’s a
good bet that Dilbert-esque scenarios are much more common among ASP.NET corporate jobs than
they are in Rails startups or corporate teams that are brave (and smart) enough to adopt Rails.

Learning Curve
Based on experience, it’s far easier and faster to teach developers Rails than it is to teach them ASP.NET.
The technology is much simpler and more intuitive. The .NET Framework alone is a huge body of concepts
and namespaces that heavily affect one’s ability to get started quickly.

Try to remove Visual Studio from an ASP.NET developer and then ask him to code with Notepad. He’ll
probably be unable to do so. A Rails developer, on the other hand, would have no problem using just
Notepad. It would be less convenient, but not worth sweating over. I think this speaks volumes about
the relative complexity of the two frameworks and their reliance on RAD tools.

Even if you take the frameworks out of the picture, C# and Visual Basic.NET are much more com-
plex to learn than a “programmer friendly” language like Ruby. Anyone who can program in both is
bound to confi rm this point.

Rails requires only a decent understanding of Ruby and a few specifi c concepts and conventions. As
such, even existing .NET teams can switch over to Rails in a relatively short amount of time. And this
book should help you to do just that.

Anecdotal evidence is not conclusive, but should help illustrate this point. A couple of years ago in IBM
I had three bright students doing an internship. These students had never seen Ruby or Rails code before,
so I trained them on both Ruby and Rails, for three days in a row. After that they started working on a
project, while I provided them with mentoring support.

They wrote all the code, and after only 10 weeks, they had a complex Ajax-enabled application up and
running. Those who saw the application couldn’t believe that it had been developed in so little time by
a trio of students. And what’s more important — you guessed it — they absolutely loved working with
Ruby on Rails.

74955book.indd List4974955book.indd List49 3/4/09 8:45:14 AM3/4/09 8:45:14 AM

50

Chapter 2: Understanding Rails

Performance Considerations
Rails is written in Ruby and as such is interpreted, whereas ASP.NET is compiled. It can’t be denied that
this difference has repercussions when considering performance. ASP.NET tends to be faster than Rails.
Just as C# is a relatively fast programming language, whereas Ruby is a slow one.

This aspect is worth keeping in mind, but not worth getting paranoid about. It only means that if you’re
ever going to handle very large volumes of traffi c with a Rails application, it is plausible to assume that
you may need slightly more hardware than if you implemented the same application in ASP.NET.

What’s more important though, is that Rails allows you to develop applications faster (and simplify their
maintenance) than ASP.NET can. That’s your crucial gain. After all, hand-coded Assembler is drastically
faster than C#, but that’s not a good enough reason to favor it over C# in most contexts. There is a clear
trend in the industry and it’s that very high-performing, dynamic languages are here to stay.

The Issue with ASP.NET
Beyond language choices and culture diversity, which could certainly be discussed at length, a funda-
mental issue distinguishes ASP.NET from Rails.

ASP.NET is based on the very bad assumption that Web development should mimic desktop application
development as much as possible. But desktop applications and Web applications are fundamentally
different.

The act of dragging and dropping controls on WebForms made ASP.NET relatively easy for MFC and
Windows Forms programmers, but it was also a terrible decision that has had far-reaching consequences.
ASP.NET’s evolution has been continually forced to work around that initial mistake.

For instance, it greatly complicated the request-response life cycle and forced a paradigm that is essen-
tially event driven upon Web developers. You drag and drop the control, double-click it, and then proceed
to describe what it should do when the associated event is triggered. That’s not how the HTTP protocol or
the Web naturally works.

That same assumption also led to abominations like the ViewState, in order to store the state of these
fancy controls on the client side through a hidden HTML fi eld. ViewState can easily be abused, and acci-
dentally introduce serious problems. Even when Microsoft introduced the ASP.NET Ajax extensions (for-
merly known as Atlas) in order to inject Ajax functionalities into ASP.NET development, it was forced to
do so in a control-centric manner.

Many ASP.NET developers create Ajax-powered applications by essentially dragging and dropping
controls within the UpdatePanel, enabling portions of the page to be partially rendered without the
need for a postback. That’s very different from how the overwhelming majority of other Ajax frame-
works work and it’s arguably a much less fl exible approach. Of course, ASP.NET Ajax provides more
than just “ajaxifi ed” controls, but many developers will still probably end up using and abusing the
drag-and-drop approach due to its familiarity and ease of use.

If you’d still like the convenience of dragging and dropping controls from within an IDE into an ERb
template, you can use the Ruby In Steel IDE described in the fi rst chapter. This offers a Visual Rails
Workbench, which enables drag-and-drop design without the negative consequences of ASP.NET
server controls.

74955book.indd List5074955book.indd List50 3/4/09 8:45:14 AM3/4/09 8:45:14 AM

51

Chapter 2: Understanding Rails

Rails avoids all these headaches by simply opting not to force an abstract, event-driven, and control-
based approach onto developers. Through ERb templates and the information provided by the con-
troller, the view can render HTML which, along with JavaScript and CSS, is all you really need to
generate Web pages. No special server controls, a straightforward request-response cycle, and a clean
separation of content and presentation through the MVC paradigm greatly simplifi es development
and has the added bonus of facilitating the testing of each layer. In particular, Unit Testing in Rails is
fairly easy, whereas all the complications mentioned previously (which are due to that initial assump-
tion) imply that the same can’t be said for ASP.NET. Data access becomes extremely easy too, thanks
to ActiveRecord. And there’s no need to bind controls to a given DataSet or to follow other approaches
that are typical of the desktop development arena.

Rails lets you be “closer to the metal” and gain fl exibility without being unnecessarily complicated.

When to Use ASP.NET Instead of Rails
Learning to program in Rails doesn’t have to be a religious conversion. In many cases developers
realize how much more enjoyable Rails is and prefer to switch from ASP.NET entirely. But that’s not
always an option. Learning Rails will therefore, in most cases, be the equivalent of adding a useful
tool to your toolbox.

Though it’s possible to use Rails for just about any project, there are still times when ASP.NET would
work fi ne and be even less problematic than Rails. To distinguish what this sort of case is, you need to
learn where ASP.NET has the advantage over Rails:

Performance: ❑ The performance issue was mentioned earlier. If you need to develop a Web
application whose performance is critical, ASP.NET may be the right solution. Just don’t be too
quick to jump to the conclusion that this applies to your application. The average social net-
working site, blog engine, Content Management System, or online store is in no way a perfor-
mance-crucial application. As a matter of fact, these are all areas where Rails would excel.

Unicode support: ❑ Great progress has been made in the area of internationalization and Unicode
support by both Ruby (particularly since the 1.9 development release) and Rails. To be fair, though,
these are still far behind what the .NET Framework has to offer. If this topic is critical for the suc-
cess of your application, you should carefully evaluate whether Rails’ current support (including
its plugins) satisfi es your needs well enough.

Legacy databases: ❑ Rails’ Convention over Confi guration approach implies that it really works best
when you follow its conventions. If you are dealing with legacy databases that diverge a lot from
the standard Rails conventions, you may fi nd yourself “fi ghting” with Rails and spending far too
much time confi guring and “convincing” ActiveRecord to work with your data. In instances like
these, ASP.NET can be more productive and less of a headache.

Enterprise features: ❑ Though the number of libraries for Ruby, and plugins for Rails, is con-
stantly growing, large and complex projects that require a lot of integration with an existing
Enterprise infrastructure are probably better left to ASP.NET. For example, the .NET transaction
model and message queue capabilities are far more advanced than what you can currently fi nd
in Ruby-land. Chapter 11 provides a few pointers to articles about Rails and the Enterprise.

ASP.NET MVC and Other .NET Frameworks
Many Web developers have come to appreciate the MVC paradigm thanks to Rails. It shouldn’t be too
much of a surprise, then, that so many MVC frameworks are inspired by Rails or, in some instances, are
even clones of Rails, for languages other than Ruby. The .NET world wasn’t immune to this infl uence either.

74955book.indd List5174955book.indd List51 3/4/09 8:45:14 AM3/4/09 8:45:14 AM

52

Chapter 2: Understanding Rails

MonoRail
Several MVC frameworks are available for .NET, but the most popular open source one comes from
the Castle Project. Castle (for short) includes, among other components, MonoRail and ActiveRecord.
MonoRail is a clone of ActionPack for .NET. You can think of it as the VC part of the MVC triad.
ActiveRecord is, as you would expect, an implementation of the Active Record pattern for the .NET
Framework, and covers the M layer of MVC. Castle’s ActiveRecord leverages the NHibernate ORM, but
it doesn’t require XML confi guration.

A few .NET developers have expressed enthusiasm toward the combination of MonoRail and
ActiveRecord, and opted for this alternative, as opposed to switching to a new language (Ruby) and
framework (Ruby on Rails). But many who tried this approach eventually ended up opting for Rails,
because it’s more polished, robust, and well-documented than its .NET clone. “Why not use the real
deal?” is an argument often heard, and many admit that by not using Ruby, these frameworks lose a
lot of their appeal.

With this and other Rails inspired projects, you need to take into consideration that they were started later
than Rails itself and have received much less attention and time in the limelight. As such, their maturity
in the face of real-world projects is usually inferior to that of a well-tested framework with thousands of
contributions, like Rails. For example, these frameworks may lack a few generators (one of Rails’ killer
features) or other particular features (for example, according to the FAQ, the current version of MonoRail
doesn’t offer support for caching).

That being said, and despite this being a book about Rails, you are absolutely encouraged to try out
MonoRail and other .NET alternative frameworks if you are an ASP.NET developer. There is no reason
why you couldn’t take your knowledge and apply it to both MonoRail and Ruby on Rails. In life, as in
programming, it’s always worth being open minded and ready to try out possible alternatives.

In the .NET culture, developers who keep an eye open for a better way, independently from where it’s
coming from (Microsoft or not) are part of the so called ALT.NET movement. David Laribee coined the
term in his original post that you can read at http://laribee.com/blog/2007/04/10/altnet/.

ASP.NET MVC
Following Rails’ success even Microsoft took note and decided to come up with the ASP.NET MVC project,
which adds an MVC framework that’s similar to Rails, on top of ASP.NET, wherein the controller takes the
place of the typical postback model.

This is defi nitely a huge step in the right direction for Microsoft and, if you’re an ASP.NET developer, you
may really want to try it out. It provides some of Rails’ strong selling points, including the ability to delin-
eate beautiful URLs by defi ning routes in your Global.asax.cs fi le. The same considerations made in
the previous section for MonoRail apply to this project too, though, even if it’s probably going to become
the de facto standard in the .NET world. A lot of Rails’ productivity and wow factor is directly related to
the fact that the Ruby language is employed. Consequently, ASP.NET MVC applications still feel different
and much more verbose than Rails ones (at least until IronRuby will be ready for prime time).

ASP.NET MVC is often considered a clone of Rails, but this is not entirely fair. It’s very likely that
Microsoft started the project in order to offer to .NET developers the advantages of a framework like
Rails. And yes, perhaps it also did it to prevent many .NET developers from switching to Rails. Rails
and other open source MVC frameworks heavily inspired Microsoft. But the fi nal product includes
bits of Microsoft’s own approach to MVC and Web development, and as such it ends up being different
enough so as to not feel like one’s developing in Rails when using it.

74955book.indd List5274955book.indd List52 3/4/09 8:45:14 AM3/4/09 8:45:14 AM

53

Chapter 2: Understanding Rails

Consider these alternatives, particularly the promising ASP.NET MVC, but please read on and give
Rails and Ruby a shot. You may fi nd, as many did before you, that Rails has a unique chemistry, which
is hard to duplicate even in very similar frameworks.

Summary
Congratulations, you’ve reached the end of Rails’ Philosophy 101. More seriously, Rails’ MVC archi-
tecture, its culture, and development philosophies are fundamental parts of the framework and it was
worth spending time exploring them further to truly “understand Rails.”

Now that you are equipped with enough background information, you can start digging into the Ruby
language in the next two chapters, as well as creating a sample Rails application in Chapters 5 and 6.

74955book.indd List5374955book.indd List53 3/4/09 8:45:14 AM3/4/09 8:45:14 AM

74955book.indd List5474955book.indd List54 3/4/09 8:45:14 AM3/4/09 8:45:14 AM

Ruby’s Data Types
Ruby is designed to make programmers happy.

— Yukihiro Matsumoto, Creator of Ruby

Ruby on Rails lets you create Web applications in Ruby. Working with Rails without a proper
understanding of the essentials of the Ruby language is akin to creating ASP.NET applications
without possessing any knowledge of .NET-enabled languages. In both cases, the language used
in order to work with the framework is a strict prerequisite.

Many beginners try this approach because they’re eager to get started with Rails. Unfortunately
for them, they end up wasting more time than if they’d picked up the basics of the language fi rst,
and then moved on to Rails.

Trying to learn both Ruby and Rails at the same time can work for some, but passing over Ruby
altogether is a huge mistake. For this reason, unless you are already well versed in Ruby, it’s
recommended that you don’t skip over this and the next chapter.

What’s Ruby?
As briefl y discussed in the fi rst chapter, Ruby is a modern object-oriented programming language
that was fi rst released by its author, Yukihiro Matsumoto, back in 1995. Despite being older than
C#, and just as old as Java, Ruby’s recognition outside of Japan has been undeservedly very limited
for many years.

Over the past few years, Ruby has been one of the fastest growing languages in the world. Rails made
this popularity possible, but as many developers have discovered, Ruby is a language whose value
stands on its own. And it’s very much worth knowing independently from your interest in Rails.

Ruby is fully object-oriented (everything is an object), but it is also considered multi-paradigm,
because it allows for a procedural style (useful for scripts) and has support for several elements
that are typical of the functional programming world.

74955book.indd List5574955book.indd List55 3/4/09 8:45:31 AM3/4/09 8:45:31 AM

56

Chapter 3: Ruby’s Data Types

Clearly Ruby has been infl uenced by many languages, but it can be said that it combines an object
model, which is heavily inspired by Smalltalk, with the immediacy, pragmatism, and text processing
ability of Perl (which also infl uenced its syntax), plus the expressive nature of Lisp.

Ruby is often referred to as a scripting language, but what’s more important is that it’s a very high-level
language that’s both powerful and concise. It was created with the intention of being programmer-
friendly, focused on simplicity and productivity, and as such it is often associated with the principle of
least surprise (POLS). This principle implies that Ruby, unlike languages like C++, tends to be less con-
fusing and more predictable for experienced developers (but also for beginners). Ruby code is therefore
easy to read and to write, and it features an arguably elegant syntax.

If you head over to the offi cial website at http://www.ruby-lang.org you’ll notice that Ruby’s
tagline is A Programmer’s Best Friend. An apt description in my opinion.

There isn’t a universally accepted defi nition of strongly typed. Nevertheless it is generally fair to say that
Ruby is both dynamically and strongly typed. What this means is that with Ruby you don’t need to
explicitly declare your variables’ type, but at the same time, Ruby will only perform trivial automatic
conversions for you (for example, you can’t sum a string with a number directly, like you can in some
other languages). Ruby adopts the so-called Duck Typing, which makes working with types less restric-
tive and allows for polymorphism independently from inheritance. Duck Typing is further explained in
the next chapter.

Ruby implements native regular expression support, a large Standard Library, a wide array of third-
party code and libraries, and is easily extensible in C. Like C#, Visual Basic, and Java, Ruby features
automatic memory management through Garbage Collection. It also provides support for operator over-
loading, introspection, refl ection, blocks, closures, and metaprogramming. If these terms don’t make
sense to you now, fear not. The foundations of what you need to know to use Ruby in your Rails appli-
cations are housed in this and the next chapter.

Last but not least, the main implementation of Ruby is a single-pass interpreter that’s available for several
platforms, and it’s free software with a very liberal license.

But enough with notional descriptions, let’s get started.

Hello, Ruby!
You have to start somewhere, so I won’t break the tradition of using a Hello world program as the
fi rst example.

Place the following lines into a fi le called hello.rb as shown in Listing 3-1.

Listing 3-1: Hello world in Ruby

Saying hello the Ruby way
puts ‘Hello, Ruby!’

To run this, execute ruby hello.rb from the command line. Not surprisingly, Ruby displays the string
Hello, Ruby! as shown in Figure 3-1.

74955book.indd List5674955book.indd List56 3/4/09 8:45:32 AM3/4/09 8:45:32 AM

57

Chapter 3: Ruby’s Data Types

Figure 3-1

When working with single Ruby fi les on Windows, it is convenient to use the SciTE editor (shown in
Figure 3-2) that gets installed with the One-Click Ruby Installer. By default, this is located in c:\ruby\
scite\SciTE.exe. If you opt to do the same, press F5 to run the hello.rb program or reach for the
Tools menu.

Figure 3-2

In its extreme simplicity, this example already offers grounds for a few important considerations.

You run your program by simply invoking the Ruby interpreter (aptly named ruby). Being an interpreted
language, you didn’t have to compile it fi rst, obtain an executable, and then run it.

From the fi rst line you can see how Ruby comments begin with a # character and continue for the rest
of the line. You can also place comments in line with code:

puts ‘Hello, Ruby!’ # Saying hi from Ruby

When commenting multiple lines you can either have a series of # characters or opt for embedded docu-
ments, which start with =begin at the beginning of a line, and end with =end at the beginning of another:

=begin This is an embedded document.
Anything in here is considered a comment.
No matter how many lines it spans.
=end

In this example, you are passing a string to the puts method. As you can see, in Ruby the parentheses
around the arguments of a method are optional, even though they are highly recommended in all but
the most trivial cases (puts is an example of a method for which it is usually considered okay to omit the
parentheses). One clear exception is for methods that don’t accept any parameters; in this case the paren-
theses should be omitted (for example, use my_method not my_method()).

74955book.indd List5774955book.indd List57 3/4/09 8:45:32 AM3/4/09 8:45:32 AM

58

Chapter 3: Ruby’s Data Types

Ruby is a case-sensitive language. Don’t capitalize method names.

Literals delimited by single quotes are instances of the class String. Double quotes can be used as well
(for example, “Hello, Ruby!”), but in Ruby there are a couple of fundamental differences between the
two. If a double-quoted string includes an escape sequence, for example, the newline (that is, \n), this
is correctly interpreted as a single character, which moves the cursor to the next line in the case of new-
line. With strings defi ned through single quotes, the newline is considered by Ruby to be a sequence of
two regular characters (the backslash and the letter n, respectively). String literals defi ned with double
quotes can also be used for string interpolation, a concept explained later on in this chapter.

Unlike C# and Visual Basic, Ruby doesn’t have a special data type reserved for single
characters. Characters are just strings of length one (for example, ‘a’ or “a”).

This example uses the method puts, which is the most commonly used by Rubyists for printing to the
standard output. A couple of common alternatives are print and printf. The difference between puts
and print is roughly equivalent to the difference between Console.WriteLine and Console.Write
in .NET. But there is a twist. puts is smart enough to place the cursor on a new line after printing each
of its arguments, but only when the argument needs it because a \n is missing at the end (print doesn’t
do this).

print “Hello, Ruby!\n” # Equivalent to: puts ‘Hello, Ruby!’

printf is a more advanced method that is used in order to apply a format string to a list of arguments:

printf(“$%.2f”, price) # e.g. prints $48.95

If you’ve ever programmed in C or C++, you should already be familiar with this method.

You may also notice that there is no need for semicolons at the end of the line, as is the case with Visual
Basic as well. Semicolons can still be useful though, such as whenever you feel the need to place several
statements on the same line:

puts ‘Hello, Ruby!’; puts ‘Hello again!’ # Two statements on the same line

One fi nal consideration it is important to make is the immediacy of the program. Yes, it’s one of the
most trivial programs you could possibly write, but it’s already much more concise than its equivalents
in compiled languages such as C# and VB.NET.

Visually compare them:

Ruby
puts ‘Hello, Ruby!’

C#
using System;

74955book.indd List5874955book.indd List58 3/4/09 8:45:32 AM3/4/09 8:45:32 AM

59

Chapter 3: Ruby’s Data Types

class Hello
{
static void Main(String[] args)
 {
Console.WriteLine(“Hello, Ruby!”);
 }
}

VB.NET
Imports System

Class Hello

 Shared Sub Main()
Console.WriteLine(“Hello, Ruby!”)
 End Sub

End Class

There’s certainly no need to create wrapping methods and classes just to print a string. And unlike the
C# and VB.NET examples, the Ruby Hello world reads like English. The general idea is that Ruby tries
to remove obstacles from the developer and strives not to get in the way.

Your New Best Friends
In the preceding section, you wrote a tiny script and then ran it by passing the name of the fi le to
the Ruby interpreter. If you think about it, you already cut the typical development cycle in half
by skipping the compilation portion. That’s good, for sure, but you still have a couple of issues to
deal with.

Imagine that you are writing a large program and would now like to incorporate a new functionality.
Wouldn’t it be nice to be able to try it out before you actually start to change your program? You could
create a new fi le, write the snippet of code to test, and then run it as usual through your editor. That
works, but Ruby is all about having fun and that approach sounds a bit tedious and not so immediate.
A better way to go is to use a tool called irb (Interactive Ruby).

Our second point to consider is that you are brand new to the world of Ruby. You don’t know what meth-
ods are available for a given class or how to use them. You could use Google, and the API for Ruby’s Core
and Standard libraries is available online in several places (for example, http://www.ruby-doc.org).
But it’s not as immediate. To help you out, there’s ri (Ruby Interactive).

The two tools have very similar names, which can be quite confusing. Most rubyists prefer to simply
call them irb and ri.

irb and ri should become “your best friends” if you wish to learn Ruby. But don’t think that they’re
only for beginners. They are used by Rubyists of all levels and even by Matz himself.

74955book.indd List5974955book.indd List59 3/4/09 8:45:33 AM3/4/09 8:45:33 AM

60

Chapter 3: Ruby’s Data Types

Interactive Ruby (IRB)
Interactive Ruby is an invaluable tool for the Ruby programmer. It’s a Ruby shell that lets you evaluate
expressions in interactive mode and is ideal for trying out snippets and experimenting with Ruby. When
you start irb from the command line, you’ll be greeted by the prompt shown in Figure 3-3.

Figure 3-3

You can now insert Ruby code and see it evaluated in “real time.” To get started, use irb as a powerful
calculator. Try inserting the following expressions:

irb(main):001:0> 3+3
=> 6
irb(main):002:0> 4-9
=> -5
irb(main):003:0> 7*8
=> 56
irb(main):004:0> 10/3
=> 3
irb(main):005:0> 3**100
=> 515377520732011331036461129765621272702107522001

The values following => are the output provided by irb. You can see that as you enter more expressions,
the counter in the prompt increases as well. If you don’t really care about this kind of information you
can opt for a simplifi ed prompt that can be obtained by running irb — simple-prompt (a — no-prompt
option exists as well). The prompt in this case looks like the following:

>> 8 % 3
=> 2

If you are using Terminal on a Mac, the simple prompt is displayed by default.

From now on I’ll use >> and => to indicate the input and output in an irb session.

The expressions inputted so far should all be familiar to you: you added, subtracted, multiplied,
divided, performed exponentiation, and calculated a remainder (using the modulo operator).

The section on numbers provides more details about numeric operations, but it’s important to note imme-
diately how the division between two integer numbers results in another integer number (expression 4),
and how Ruby is able to handle arbitrarily large numbers (expression 5).

74955book.indd List6074955book.indd List60 3/4/09 8:45:33 AM3/4/09 8:45:33 AM

61

Chapter 3: Ruby’s Data Types

In reality, even arbitrary numbers have their limits when dealing with ridiculously large numbers. For
example, if you tried to calculate 2 to the power of 1000000000, you’d obtain the following:

>> 2 ** 1000000000
(irb):1: warning: in a**b, b may be too big
=> Infinity

irb can be used to evaluate any Ruby code, so don’t assume that it’s limited to calculations. For
instance, the following concatenates my fi rst name, with a space, and my last name:

>> “Antonio” + “ “ + “Cangiano”
=> “Antonio Cangiano”

Interactive Ruby also provides you with information about exceptions that are raised during the execu-
tion of your snippets as shown here:

>> 3 / 0
ZeroDivisionError: divided by 0
 from (irb):1:in `/‘
 from (irb):1

Familiarize yourself with this handy tool; you’ll be using it on a regular basis.

Ruby Interactive (RI)
A second “tool of the trade” is Ruby Interactive, a command-line tool for viewing Ruby’s
documentation.

It is not universally accepted what ri stands for. Ruby Interactive is fairly common, but Ruby Index
and Ruby Information are not unheard of. Again, calling it just ri works best.

ri provides you with information about Ruby’s Core and Standard libraries, as well as other libraries
that you may have installed on your system.

To obtain a list of classes and modules that ri is aware of, you can run ri -c from the command line.

The command-line tool accepts the name of a module, class, or method and displays information about
it. You can also provide a partial name and when more than one match exists, you are prompted with a
list of options.

You may be curious to learn more about the previously mentioned String class. If so, run the following
from the command line:

ri String

The output of the command is partially shown in Figure 3-4.

74955book.indd List6174955book.indd List61 3/4/09 8:45:33 AM3/4/09 8:45:33 AM

62

Chapter 3: Ruby’s Data Types

Figure 3-4

Now imagine that from that list, you’d like to learn how to use the downcase method. You can simply run:

ri String.downcase

Figure 3-5 shows the output of the command. As you can see, in this particular case, aside from a brief
explanation, there’s also a usage example.

Figure 3-5

Omitting the name of the class or module, or providing a partial name for methods, works too, but
usually yields a list of possible matches. For example, if you run:

ri F.tim

ri displays:

More than one method matched your request. You can refine
your search by asking for information on one of:

 File::atime, File::ctime, File::mtime, File::utime, File#atime,
 File#ctime, File#mtime

74955book.indd List6274955book.indd List62 3/4/09 8:45:33 AM3/4/09 8:45:33 AM

63

Chapter 3: Ruby’s Data Types

All the methods that match the search pattern are returned. The methods atime, ctime, and mtime of
the File class appear twice, once separated by :: and a second time by #. The reason for this is that
each of these three methods exists as both a class method and an instance one. Please note that the
Class#method notation is conventionally used by the ri tool to indicate instance methods but it’s not
valid Ruby syntax.

It’s also worth noting that when using the ri tool you can be more specifi c than simply using the dot to
separate classes (or modules) and methods. You can use :: for methods that you already know are class
methods, and # for instance methods. For example, if you run ri Complex.polar you’ll be prompted
with both versions of the method and the message “More than one method matched your request...”.
If you run ri Complex#polar (for the instance method) or ri Complex::polar (for the class
method) you’ll bypass the list of methods and be taken straight to the documentation of the right version
of the method. Of course, there will be times when you don’t know if the method you are looking for is
an instance or class method, in which case using the dot is a safer bet. FastRI is a signifi cantly faster
and more advanced implementation of ri. The RubyForge project is located at http://rubyforge
.org/projects/fastri.

Ruby’s Essential Data Types
Ruby offers a wide range of data types that you can use in your programs and Rails applications. Being
a dynamic language, when it comes to types, Ruby is slightly different from what you may have seen
in compiled languages such as C, C++, C#, Visual Basic, or Java. Fortunately, working with Ruby data
types tends to be much easier.

Everything Is an Object
.NET developers are familiar with the Common Type System (CTS), in which there are two broad
categories of types: Value types and Reference types. Among the Value types there are the built-in
value types such as System.Int32, System.Double, or System.Boolean.

Other languages like C, C++ (outside of the .NET Framework), and Java may use different names and
a different terminology, but they all essentially distinguish between “primitive” types and actual full-
fl edged classes. In these languages, there are objects, like instances of the class Array, and then there are
primitive types that you can’t inherit from, call a method on, retrieve or set a property for, and so on.

Forget all that. In Ruby that distinction doesn’t exist. Here are a few examples of perfectly valid Ruby code:

3.zero? # Equivalent to 3 == 0
-5.abs # 5
12.to_f # 12.0
15.div(3) # 5
9.9.round # 10
true.to_s # “true”
nil.nil? # true

This example just called methods on simple numbers, true, and even nil (Ruby’s version of null).
How is that possible? In Ruby every value is an object!

74955book.indd List6374955book.indd List63 3/4/09 8:45:33 AM3/4/09 8:45:33 AM

64

Chapter 3: Ruby’s Data Types

Ruby methods can end with a question mark, as shown in the example with zero? and nil?. Such
methods should always return a Boolean value. The general idea behind this nomenclature is that it
increases the readability of the code.

To verify this further you can use the method class available for any object in Ruby. As you can imagine
this method tells you the class of a given instance:

3.class # Fixnum
-273.15.class # Float
true.class # TrueClass
false.class # FalseClass
nil.class # NilClass
“hello”.class # String

All those values, except for “hello,” may appear “primitive” to you, but they really aren’t. As you
can see 3 is an instance of the Fixnum class. -273.15 is an object of the Float class. Even “special”
values (they are keywords) such as true, false, and nil represent (the sole) instances of the classes
TrueClass, FalseClass, and NilClass, respectively.

Identifi ers and Variables
Identifi ers are case-sensitive names for entities like variables, methods, and classes. There’s nothing
weird about identifi ers in Ruby, but there are conventions and rules to follow when defi ning them.
Conventions make your code nicer and more understandable to other Rubyists, but by the same token,
they won’t break your program if ignored. Rules, on the other hand, affect the semantics of your pro-
gram and are defi nitely a deal-breaker and can’t be ignored.

Convention: Adopt snake_case
As a Microsoft developer you’re probably used to adopting camelCase (or CamelCase) for multi-
word variables and methods. In Ruby the convention is to use the so called snake_case instead.
Conventionally, the underscore sign is used to separate words in variables and methods. For example,
use file_name, not fileName. Though this may appear bizarre at fi rst, you’ll soon realize how it
makes your code easier to read and introduces fewer accidental mistakes (for example, due to the fact
that filename and fileName are distinct). This is not a rule; Ruby works fi ne with CamelCase vari-
ables and methods, but nothing screams “newbie” as much as employing this type of naming style in
Ruby. Code is written for both humans and machines; the former will certainly appreciate any effort to
keep your code as idiomatic as possible.

Abelson and Sussman remarked in their classic textbook Structure and Interpretation of Computer
Programs (The MIT Press 1996, also known as the SICP) that “Programs must be written for people
to read, and only incidentally for machines to execute.” Truer words have rarely been written.

Convention: Don’t Switch Types of a Variable
Ruby is a dynamically typed language and as such, you don’t need to declare a variable’s type. Aside
from all the disputes about the merits of static versus dynamic typing, most people agree that dynami-
cally typed languages tend to be more immediate, less verbose, and, ultimately, easier to program.

74955book.indd List6474955book.indd List64 3/4/09 8:45:33 AM3/4/09 8:45:33 AM

65

Chapter 3: Ruby’s Data Types

This is how you declare and assign a value to the following three variables in C#:

C#
int age = 100;
string name = “Antonio”;
MyObject obj = new MyObject();

In Ruby this simply becomes:

age = 100
name = “Antonio”
obj = MyObject.new

Notice how the left-side type declarations (and the semicolon) have disappeared. In Ruby, you use vari-
ables without having to declare their type. Whenever you introduce a new variable without assigning a
value to it, its default value is nil.

Ruby provides you with several methods to verify the type of a given variable. The most common ones
are class, is_a?, and kind_of?.

The fact that variables don’t have a fi xed type implies that you could fi rst assign an integer value to a
variable, then assign it a string literal, and, fi nally, assign it the instance of a given object:

Don’t do this
my_var = 100
my_var = “Antonio”
my_var = MyObject.new

Though this is possible, it’s highly discouraged. If you start assigning different types of values to the
same variable throughout your program, you’ll easily introduce bugs and greatly impair the readability
of your code.

Ruby’s dynamic nature has several (positive) consequences. Aside from being a more immediate, easier,
concise, and readable programming language which doesn’t get in the way, its dynamism implies that
many features and design patterns that are required in other languages are already incorporated in
Ruby and its Standard Library. For example, think of .NET Generics; in Ruby, there’s no reason for them
to exist.

Rule: Defi ne Scope Using Sigils
Ruby makes use of sigils, which are symbols attached to an identifi er to indicate its scope or data type.
In Ruby’s specifi c case, they don’t offer any data type information, but they do fundamentally defi ne the
scope of the variables.

Local variables don’t have any sigils attached to their names, and as such, they start with a letter or an
underscore. Identifi ers starting with an @ character are instance variables. Those starting with @@ are
class variables. Finally, global variables start with a dollar sign ($).

74955book.indd List6574955book.indd List65 3/4/09 8:45:33 AM3/4/09 8:45:33 AM

66

Chapter 3: Ruby’s Data Types

The following summarizes this:

price # local variable
@price # instance variable
@@price # class variable
$price # global variable

The next chapter explains Ruby’s object model, so the differences between the scopes of these variables
will become evident.

Convention: Append ! and ? to Certain Methods
Ruby methods can end with a special character, like an equal sign, an exclamation mark (sometimes
referred to as bang), or a question mark (as mentioned before). The fi nal equal sign is used for setter
methods, as you see in the next chapter. The other two, ! and ?, are appended to method names to
increase the readability of code and to distinguish methods that behave differently despite having
an otherwise identical name.

Many methods from the Core and Standard libraries adopt this convention and so should you. Whenever
you defi ne a new method, you need to decide if using one of them is appropriate, based on the behavior
of the method. The rule of thumb is that methods that “answer a question” and return a true or a false
value should be defi ned with a question mark at the end. For example:

“ “.empty? # Evaluates to false, because spaces are characters
“”.empty? # It’s the empty string, so the returned value is true

Methods that don’t answer any questions, but rather perform certain actions on copies of the receiver object
should not have any special ending signs. The method upcase of the class String is a perfect example:

name = “Matz” # “Matz”
new_name = name.upcase # new_name’s value is “MATZ”
name # name’s value is still “Matz”

Finally, methods that directly alter the object that they were called on should be defi ned with an exclama-
tion mark as the last character. Methods such as these that alter the receiver carry an ! as a warning for
the developer, because they can modify or destroy the receiver object, as shown in the following snippet:

name = “Matz” # “Matz”
new_name = name.upcase! # new_name’s value is “MATZ”
name # name’s value is “MATZ” as well

There are a few exceptions. For example, the element assignment of a string doesn’t have an exclamation
mark, yet it still alters the string. Whenever you’re in doubt, you can consult the documentation (for
example, through the ri tool) and verify Ruby’s behavior from irb.

When working with these kinds of methods, you should be cautious and also keep in mind that they
typically return nil when the method doesn’t make any changes to the receiver object. Here is a
practical example:

my_string = “1234” # “1234”
new_string = my_string.downcase! # new_string’s value is nil
my_string # my_string’s value is still “1234”

74955book.indd List6674955book.indd List66 3/4/09 8:45:33 AM3/4/09 8:45:33 AM

67

Chapter 3: Ruby’s Data Types

The string “1234” can’t be transformed into lowercase, because it’s composed entirely of digits which
are, in their nature, neither upper- nor lowercase. Hence, the downcase! method does not alter the
receiver (my_string), and therefore, returns nil as a result. my_string will contain the original value
and new_string will contain nil. This behavior is expected.

Be careful when assigning the return value of a method that ends with an excla-
mation mark. In this example, you may have mistakenly assumed that downcase!
would still assign the original string to a new_string like downcase would. But
this is clearly not the case.

Using this set of conventions, you could theoretically have three versions of the same method name
(for example, read, read!, and read?). This doesn’t happen very often, but it isn’t uncommon to have
classes that offer some methods in both a “plain” version that returns a properly modifi ed copy of the
receiver, and one that ends with an exclamation mark, which actually modifi es the original object.

Rule and Convention: Naming Constants
Identifi ers that start with an uppercase letter are constants. Once you set the value of a constant, you’re
not really supposed to change it in your application. However, Ruby doesn’t strictly enforce this, and
instead of raising an exception, it issues a warning:

>> ALMOST_PI = 22/7.0
=> 3.14285714285714
>> ALMOST_PI = 355/113.0
(irb):2: warning: already initialized constant ALMOST_PI
=> 3.14159292035398

It’s idiomatic to use all uppercase letters for the name of constants. For multiword constants, use the
uppercase SNAKE_CASE naming convention. This is not a requirement though, given that Ruby will
recognize a constant based solely on the case of its fi rst letter. Yet it’s still a good convention to adhere
to. One exception is the case of class and module names (which are constants too); you would typically
use MyName rather than MY_NAME.

Modules are formally introduced in the next chapter. For the time being, simply think of them as namespaces.

Working with Numbers
It’s already established that numbers are objects. Ruby provides several classes for working with numbers.
Some of these are part of the Core Library, while others are included in the Standard Library. The fi rst are
“built-in” or readily available, whereas fi les containing the classes that belong to the Standard Library need
to be loaded explicitly into the program. Figure 3-6 shows the inheritance hierarchy for Ruby’s numeric
classes. Similar to .NET, there is an Object class from which each class inherits.

There are quite a few classes, but arithmetic operations in Ruby couldn’t be easier. The following list
analyzes each of the classes that you’ll be using in your programs:

Fixnum ❑ : Integer numbers that can be represented on a machine word, minus 1 bit. This typically
means 31 bits. In Ruby though, you never have to worry about overfl ows and rarely have to
think in terms of bits. If the number becomes too big to be represented as a Fixnum, it is auto-
matically converted to Bignum.

74955book.indd List6774955book.indd List67 3/4/09 8:45:33 AM3/4/09 8:45:33 AM

68

Chapter 3: Ruby’s Data Types

Bignum ❑ : Arbitrarily large integer numbers outside of the range of Fixnum. When a Bignum
object becomes small enough to fi t in a Fixnum, it automatically gets converted.

Float ❑ : Real numbers in double-precision fl oating-point representation.

BigDecimal ❑ : Real numbers with arbitrary precision. They can be seen as the equivalent of
Bignums for the fl oating-point world.

Complex ❑ : Complex numbers.

Rational ❑ : Rational numbers (fractions).

Fixnum Bignum

Integer Float BigDecimal

Numeric

Object

Complex Rational

Numeric Classes

In the Standard Library

Figure 3-6

BigDecimal, Complex, and Rational are far less common and are part of Ruby’s Standard Library.
As such, if you wanted to use rational numbers, for example, you would need to require the proper fi le
from the Standard Library. The following irb session should clarify this requirement:

>>r = Rational(2,6)
NoMethodError: undefined method ’Rational’ for main:Object
 from (irb):1
>>require ‘rational’
=>true
>>r = Rational(2,6)
=>Rational(1, 3)
>>r.to_f
=> 0.333333333333333

As you can see, this example fi rst tries to create a Rational object (corresponding to the 1/3 reduced
fraction), but it can’t because Ruby doesn’t have Rational in its Core Library. When you require rational,
irb tells you that it was successfully loaded and from then onward, you’ll be able to use Rational.

require loads a Ruby fi le only once. If a fi le is already loaded, require returns false.

You assign a rational number to the variable r and then call its instance method to_f to obtain its fl oating-
point representation. On a side note, rational numbers created in this way are reduced to their lowest terms.

At this stage you should really just worry about understanding how integer and fl oating-point numbers
work in Ruby. And the easiest way to do that is with a few examples.

74955book.indd List6874955book.indd List68 3/4/09 8:45:34 AM3/4/09 8:45:34 AM

69

Chapter 3: Ruby’s Data Types

Fixnums and Bignums
Conversions between fixnums and bignums are usually automatic, and you can practically ignore
the difference between the two in most cases. As previously mentioned, fi xnums are stored in a native
word, which is 4 bytes on most architectures. Bignums, on the other hand, can be arbitrarily large. If
you wish to verify this and would like to see how much space an integer occupies, you can use the
method size, which is available for both classes:

x = 2302
y = 150
x.class # Fixnum
x.size # 4 (bytes)
power = x**y
power.class # Bignum
power.size # 212 (again, bytes)

When dealing with large numbers, for legibility purposes, Ruby allows you to separate the digits with
an underscore. For example, you can use award = 1_000_000 instead of award = 1000000, if
you wish (yes, some may even opt for award = 10**6 in this particular case).

Fixnum and Bignum numbers support all the basic arithmetic operations that you would expect
as follows:

a = 4
b = 5
sum = a+b
subtraction = a-b
product = a*b
power = a**b
division = a/b
modulus = a%b

Be Aware of the Differences
Ruby behaves very differently from C, C++, Java, C#, and Visual Basic when it comes
to divisions where at least one operand is negative. In such instances, Ruby rounds the
quotient to minus infi nity, whereas C# and the other compiled languages that have
already been mentioned round to zero. What this means is that, for example, 13/(-4)
would return -3 in these languages, whereas it’s -4 in Ruby.

The same care should be applied when dealing with modulo operators. A different
quotient obviously affects the remainder. Moreover, in C# or VB the sign of the remain-
der (determined through the modulo operator) is provided by the sign of the fi rst oper-
and. In Ruby, in such circumstances, it’s the second operator that determines the sign of
the result. For instance, 13%(-4) is 1 in C#, but -3 in Ruby.

You should keep this consideration in mind whenever you use the modulo method,
its equivalent % operator (syntax sugar), and the divmod method, which returns both
the quotient and the modulus as elements of an array. The method remainder
returns results consistent with C, C#, and all the other languages mentioned.
So 13.remainder(-4) returns 1, as you would expect.

For further examples regarding this issue, please consult the documentation for
divmod (with ri Numeric#divmod).

74955book.indd List6974955book.indd List69 3/4/09 8:45:34 AM3/4/09 8:45:34 AM

70

Chapter 3: Ruby’s Data Types

Shortcut assignments are available as well as shown here:

a = 4
a += 2 # Equivalent to a = a+2
a -= 2 # Equivalent to a = a-2
a *= 3 # Equivalent to a = a*3
a /= 6 # Equivalent to a = a/6
a %= 2 # Equivalent to a = a%2

Unlike C++ and C#, Ruby doesn’t provide a ++ (increment) or — (decrement) operator. But just as you
would in Visual Basic, you can use a shortcut assignment (for example, i += 1 or i -= 1). In Ruby, the
need for these two operators is even less prominent, given that programs tend to rely on higher-level
control structures (such as iterators) when looping, as opposed to the typical loop of C-like languages.

Ruby allows you to convert an integer number into a string through the to_s method. Not surprisingly,
this is the Ruby equivalent of the Object.ToString method provided by the .NET Framework. As
such, it’s not exclusive to numbers; you’ll fi nd that it’s available for any object and you can customize it
within your own classes. When dealing with integers, it can do more than a plain conversion to string,
as shown here:

42.to_s # “42”
42.to_s(2) # “101010”
42.to_s(8) # “52”
42.to_s(16) # “2a”

Notice how when passing an integer argument (the radix), you specify that the string should represent the
receiver (42) in binary, octal, or hexadecimal notation. The base that you select is not limited to 2, 8, and 16,
and can be any positive number between 2 and 36 (”z” would be the last admissible digit in that case).

Integer literals can also be written in binary, octal, or hexadecimal by prefi xing them with a 0b, 0, or 0x,
respectively:

0b110 # Binary, equivalent to 6
0177 # Octal, equivalent to 127
0xfff # Hexadecimal, equivalent to 4095

Finally, you can use the chr method to obtain a string containing the equivalent ASCII character that is
represented by a given integer as shown here:

59.chr # “;”
65.chr # “A”
93.chr # “]“
200.chr # “\310”
3000.chr # RangeError: 3000 out of char range

Floats
Floats are numbers with a decimal point as in the following examples:

22/7.0 # 3.14285714285714
49.99
-273.15

74955book.indd List7074955book.indd List70 3/4/09 8:45:34 AM3/4/09 8:45:34 AM

71

Chapter 3: Ruby’s Data Types

2.1e3 # 2100.0
0.1010101
0.3333333

Unlike integers, the chr method doesn’t exist and the to_s method on fl oating-point numbers doesn’t
accept any parameters:

65.0.chr # NoMethodError: undefined method ’chr’ for 65.0:Float
345_002_132.1932.to_s # “345002132.1932”
345_002_132.1932.to_s(2) # ArgumentError: wrong number of arguments (1 for 0)

All the basic operations that you saw in the “Fixnums and Bignums” section are available for fl oats too,
but it’s worth nothing that whenever one of the operands is a fl oat, the result will be a fl oat because
Ruby performs an automatic conversion. For example:

1/3 # Evaluates to 0. Integer division between two fixnums.
1/3.0 # 0.333333333333333
1.0/3 # 0.333333333333333

You should use the to_f method on one of the operands whenever you want to divide two integer
numbers to obtain a fl oat.

The Float class implements all the useful methods that you’d expect, and that you can fi nd in any
other modern programming language. You can use the methods to_i, to_int, or truncate to convert
a fl oat into an integer by eliminating the decimal part of the number. Similarly, you’re able to use the
methods floor, ceil, and round as shown here:

1.8.to_i # 1
2.1.ceil # 3
2.9.floor # 2
1.8.round # 2
1.3.round # 1
1.5.round # 2

Aside from regular “fi nite” fl oats, two special numbers exist: NaN (short for Not a Number) and
Infinity. A fl oat is represented with NaN when the number is not defi ned, and it is Infinity (or
-Infinity) when it’s extremely large. The following example should help demonstrate this:

1.0/0 # Infinity
-1.0/0 # -Infinity
0.0/0 # NaN

You can use the nan?, finite?, and infinite? methods to verify whether or not a fl oat is a regular
number.

Floats are not immune to accuracy errors, but as a developer, you should already be aware of this:

x = 0.4 - 0.3 # 0.1
y = 0.1 # 0.1
x == y # false

74955book.indd List7174955book.indd List71 3/4/09 8:45:34 AM3/4/09 8:45:34 AM

72

Chapter 3: Ruby’s Data Types

This is due to their different representation. Using the “format % value” shorthand, you can verify this
as follows:

>> “%.20f” % (0.4 - 0.3)
=> “0.10000000000000003000”
>> “%.20f” % (0.1)
=> “0.10000000000000001000”

In Ruby, the machine epsilon is available through Float::EPSILON. The two colons act as a scope
resolution operator, and allow you to access the EPSILON constant within the Float class. Using this,
you can perform relative comparisons and work around the accuracy issue:

x = 0.4 - 0.3
y = 0.1
epsilon = Float::EPSILON # 2.22044604925031e-016
(x - y).abs <= epsilon # true

You are probably very aware of this, but it’s worth repeating: do not use fl oats for fi nancial and mon-
etary calculations! Whenever accuracy is a must, use the BigDecimal class (similarly to how you’d use
decimal in .NET):

require ‘bigdecimal’

x = 0.1
bx = BigDecimal(x.to_s) # #<BigDecimal:28d6128,’0.1E0’,4(8)>
by = BigDecimal((0.4 - 0.3).to_s) # #<BigDecimal:28d1894,’0.1E0’,4(8)>
bx == by # true

You can also automatically convert from fl oats to decimals in this way:

require ‘bigdecimal’
require ‘bigdecimal/util’

x = 0.1.to_d
y = (0.4 - 0.3).to_d
x == y # true

Booleans
true is a keyword that evaluates to the only instance (known as a singleton instance) of the TrueClass;
similarly, false is a keyword that evaluates to the only instance of the FalseClass. Ruby provides you
with the usual operators for Boolean expressions:

true and false # false
true and true # true
true && false # false
true && true # true

The and and && operators are very similar but it’s recommended that you use the latter, because it has
higher precedence and is the one that’s recommended for Rails’ internal code. Note that the && operator

74955book.indd List7274955book.indd List72 3/4/09 8:45:34 AM3/4/09 8:45:34 AM

73

Chapter 3: Ruby’s Data Types

applies a short-circuit evaluation; therefore, if the fi rst operand evaluates to false, the second won’t be
calculated at all, no matter what it is:

false && 3/0 # Evaluates to false with no exceptions raised

Similarly, you have the or and || operators:

true or false # true
false or false # false
true || false # true
false || false # false

For the same reasons just mentioned, use || whenever you can. This performs the same short-circuited
evaluation, so if the fi rst operand is true, there is no reason to calculate the second one:

true || 3/0 # Evaluates to true with no exceptions raised

Ruby also has the & and |operators (single character as opposed to double), but these are, respectively,
the bitwise AND and bitwise OR.

To no one’s surprise, not and ! are also available:

not true # false
!false # true

Most classes provide operators for comparing instances.

These classes use the Comparable mixin as explained in the next chapter.

<, <=, ==, >, >=, and between? are the most common ones:

3 < 5 # true
4 <= 4 # true
5 == 3 # false
9 > 3 # true
9 >= 10 # false
3.between?(3,8) # true

Only the between? method should be new to you and it can really come in handy at times.

Boolean expressions are often used in control structures, like if or while statements, so it’s important
to point out that any expression can be evaluated as a Boolean by Ruby.

When Ruby requires a Boolean value, everything but nil and false evaluates to true. This implies that
0, an empty string, or even NaN will all evaluate to true when a Boolean value is required. The following
will print “Zero!” and “Empty String!”:

if 0
 puts “Zero!”
end

74955book.indd List7374955book.indd List73 3/4/09 8:45:34 AM3/4/09 8:45:34 AM

74

Chapter 3: Ruby’s Data Types

if “”
 puts “Empty String!”
end

For the time being, ignore the specifi c syntax of the if statement in Ruby. It is formally introduced in
the next chapter along with other control structures.

The && and || shortcut evaluation’s nature can (sometimes) be used even when you don’t need a
Boolean value. In fact, && returns the second operand as long as the fi rst is not false or nil, whereas
the || operator returns the fi rst operand if this is true, otherwise the second operand is returned:

10 && 20 # 20
“hello” && “Ruby” # “Ruby”
false && Time.now # false

10 || 20 # 10
“hello” || “Ruby” # “hello”
false || Time.now # Thu Jun 19 23:12:47 -0400 2008
false || nil # nil

There is one particular idiom that is very common in Ruby programs:

x ||= y

If x evaluates to false, y gets assigned to x. If x already has been assigned a value other than false or
nil, no assignment is performed. This is very effi cient because if the expression on the right side of ||=
is expensive (like retrieving data from a database) it gets executed only once in the life cycle of the vari-
able on the left (assuming that this expensive calculation doesn’t return false or nil). It’s an easy way
of achieving memorization.

Strings
Strings are the data type that you’ll be dealing with the most. String objects can be created by explicitly
calling String.new. As you’ve seen so far, string literals can also be defi ned with double quotes or with
single quotes, and there is an important distinction between the two. Double-quoted literals interpret
escape sequences and allow substitutions, whereas single-quoted literals do not.

Let’s see this is in action:

name = “Antonio”
“Name:\t#{name}“ # Name: Antonio
‘Name:\t#{name}‘ # Name:\t#{name}

During the evaluation of the second line, which is a double-quoted literal, the \t sequence was inter-
preted as a tab. The variable name was also substituted with its actual value “Antonio.” Whereas when
the third line was evaluated, no interpretation of \t or substitution of name occurred.

This substitution process is called String Interpolation. Ruby recognizes #{expression} patterns inside
double-quoted strings and substitutes the value of the expression in the string. This is usually much
cleaner than concatenating values. For example, in the following snippet, the string “My name is

74955book.indd List7474955book.indd List74 3/4/09 8:45:34 AM3/4/09 8:45:34 AM

75

Chapter 3: Ruby’s Data Types

Antonio Cangiano.” gets printed twice. Both approaches work, but the string interpolation one is
defi nitely the way to go:

name, lastname = “Antonio”, “Cangiano” # Parallel assignment

Don’t do this
puts “My name is “ + name + “ “ + lastname + “.”

Do this instead
puts “My name is #{name} #{lastname}.”

It is worth noting that the substituted expressions are not limited to simple variables but can be arbi-
trarily complex as follows:

x = 3
y = 4
“Hypotenuse: #{Math.sqrt(x**2 + y**2)}“ # “Hypotenuse: 5.0”

When dealing with long strings that span several lines it’s convenient to use the %q and %Q literal
constructors as shown here:

%q{
This is a long string that spans multiple lines.
Any line within the matching brackets will be part of the string.
}

%Q{
This is a long string that spans multiple lines.
Any line within the matching brackets will be part of the string.
I can include expressions like this #{expression} and escape sequences as well.\n
}

Using %q is equivalent to using single quotes, and %Q is the same as creating the string literal and sur-
rounding it with double quotes. The curly brackets are arbitrary, given that other matching special
characters could be used as well (for example, %Q(), %Q[], or %Q! !).

Aside from concatenating strings through the addition operator or through string interpolation, you
can also “multiply” them:

“abc” * 5 # “abcabcabcabcabc”

Ruby is very fl exible when it comes to working with strings. You can treat them as arrays and access
substrings directly. For example, assume that you have the following string:

string = “Ruby on Rails for Microsoft Developers”

If you want to retrieve the fi rst character, you can use string[0]. Unfortunately, passing a single
Fixnum argument to the []method returns the numeric representation of the ASCII character, which is
not what you want (in most cases, at least). To obtain the actual character you would have to either con-
catenate the chr method to string[0] or slice the string by passing two Fixnum arguments to []:

string[0] # 82
string[0].chr # “R”
string[0,1] # “R”

74955book.indd List7574955book.indd List75 3/4/09 8:45:34 AM3/4/09 8:45:34 AM

76

Chapter 3: Ruby’s Data Types

This behavior has been fi xed in the upcoming version of Ruby, which will most likely be released in its
stable form as Ruby 1.9.1. By the time you read these words, the release should already be out but this
is not something that should concern you. It will take a long time for the community, and all the useful
gems and plugins, to move to this new version. For the relatively near future, Ruby 1.8 is the version in
use for Rails programming.

Passing two Fixnum arguments (call them a and b) tells Ruby that we requested a substring, which
starts at the a position and continues on for a number b of characters. Negative indexes can be used as
well, with -1 representing the last character of a string, -2 the one before it, and so on. If you want to
obtain the last 10 characters from the preceding string, you could use the following:

string[-10,10] # “Developers”

Running ri “String#[]“ provides you with a lot more information and available options.

Use the length method (or its alias size) to determine the length of a string:

string.length # 38

Another common method is chomp (or its chomp! version), which removes the separator, specifi ed as
an argument, from the end of the receiver. When the method is called without parameters, Ruby will
remove carriage return characters from the end of the string if they exist:

input = gets # “example\n”
input.chomp! # “example”

gets is Ruby’s equivalent of .NET’s Console.ReadLine.

You can also substitute strings using the sub or gsub method:

“hello”.gsub(‘h’, ‘Oth’) # Othello

The String class offers a wide range of methods to manipulate strings. It is far easier to work with
strings in Ruby than it is in C#. It’s strongly advised that you run ri String to familiarize yourself
with the many methods available. There is no reason to “reinvent the wheel” and with Ruby, for any
given micro-task, there is often a built-in method ready to help you out.

An important distinction exists between Ruby’s strings and C# strings. In C# or VB.NET, strings are
immutable. In Ruby they are not (like C and C++). It’s important to keep this in mind. The following
example should help clarify this further:

first = “Ruby”
second = first

first.reverse!

puts first # “ybuR”
puts second # “ybuR”

Notice how reverse! is able to modify the fi rst string, and how this affects the second variable that
references it as well.

74955book.indd List7674955book.indd List76 3/4/09 8:45:35 AM3/4/09 8:45:35 AM

77

Chapter 3: Ruby’s Data Types

Whenever you need to render an instance unmodifi able, you can use the freeze method and verify if
an instance is currently frozen through the frozen? method.

string = “Ruby”
string.frozen? # false
string.freeze # Freezes the object referenced by the variable string
string.frozen? # true
string[0] = “N” # `[]=’: can’t modify frozen string (TypeError)

Symbols
Not only Ruby’s strings are mutable, but two different String instances with the same identical value
are stored in memory as two distinct objects. This means that strings aren’t the best choice when you
need to use and reuse some form of identifi ers that won’t change over time.

Ruby fi nds an answer to this point in symbols. A symbol is an instance of the Symbol class. Symbol
objects are used by the Ruby interpreter to represent names and certain strings. What’s more important,
only one instance exists for a given symbol.

Using the object_id method, you can determine if two instances are the same actual object in memory.
Compare the different behavior between strings and symbols shown here:

Strings
“Rails”.object_id # 21103620
“Rails”.object_id # 21103600
“Rails”.object_id # 21103580

Symbols
:rails.object_id # 99298
:rails.object_id # 99298
:rails.object_id # 99298

Symbols can be defi ned as :name or :”name” literals or created by to_sym methods available in a few
classes (including String, of course). Some people like to think of symbols as lightweight strings, but
it’s much better to distinguish them in terms of when their usage is appropriate. When the focus is on
the name itself — and this can be used over and over — symbols are favored over strings.

Symbols are ideal for keys of associative arrays (or Hashes, in Ruby speak) and are widely used when
programming in Ruby on Rails. This is an example, taken straight from the Rails documentation:

link_to “Profile”, :controller => “profiles”, :action => “show”, :id => @profile

As you can see the symbols :controller, :action, and :id are the keys of the hash passed to the
link_to method (a Rails helper).

Regular Expressions
Ruby has built-in support for regular expressions, which are instances of the class Regexp. Regular
expressions are essentially patterns used to match and extract information from text. They are a very
powerful and useful tool, even though they can easily get complex and hard to understand.

74955book.indd List7774955book.indd List77 3/4/09 8:45:35 AM3/4/09 8:45:35 AM

78

Chapter 3: Ruby’s Data Types

In Rails they are often used to validate user input. For example, you may want to verify that a phone
number is in the right format. Regular expressions allow you to do this, even if they appear to be very
complex to the untrained eye.

Instances of Regexp can be created by delimiting the pattern between forward slashes /pattern/,
through the %r{pattern} literal, or by passing the pattern to the Regexp constructor (for example,
Regexp.new(pattern)).

Ruby has two built-in operators to test whether or not a given regular expression matches a string: =~ and
its opposite !~. The fi rst is the most common one and returns the index of the fi rst matching character if
there is a match, or nil if there’s not:

‘A long string with some text’ =~ /long/ # 2
/Microsoft|Rails/ =~ “Ruby on Rails” # 8
/\s+/ =~ “The answer is 42” # 3
/\d+/ =~ “a word” # nil

As you can see the order of the operands is not important (such as if the string is on the left or on the
right of the operator).

In case you are new to the world of regular expressions, the fi rst one indicates that the word “long”
has to appear in the string (and it does on the third character), the second that the string needs to con-
tain either “Microsoft” or “Rails” for a match to exist, the third that the string needs to contain at
least one space, and the last one that the string needs to contain one or more digits (and it doesn’t, so
nil is returned).

Ranges
Instances of the class Range represent a set of values defi ned by their start and their end. As usual, they
can be defi ned through Range.new or through literals as shown here:

Range.new(‘a’, ‘z’) # “a”..”z”
‘c’..’k’ # “c”..”k”
-10...10 # -10...10

The difference between literals defi ned with the two dots and literals defi ned with the three dots is that
ranges defi ned with the three dots won’t include the last element. So -10...10 will include consecutive
numbers from -10 to 9.

Ranges are not limited to single characters and integers. If a class, whether user-defi ned or built-in,
satisfi es two specifi c requirements, ranges can be constructed using its instances. The two requirements
are: 1) The class instances can be compared using the special <=> operator, which unequivocally allows
for a comparison of the elements, and 2) The class needs to implement a method called succ, which
returns the next instance in a sequence.

Don’t worry about the details of these requirements; they essentially mean that to create a range with an
arbitrary object type, these objects need to be comparable (for example, 4 < 8) and that there must be a
way to obtain the next number (for example, 6 following 5, 7 after 6, and so on). The second requirement
is not a strict one; in fact you could create a range of fl oats. However, a range loses a lot of its usefulness
if it can’t be iterated over.

74955book.indd List7874955book.indd List78 3/4/09 8:45:35 AM3/4/09 8:45:35 AM

79

Chapter 3: Ruby’s Data Types

You can convert ranges to arrays, using the to_a method:

(1..10).to_a # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Or through the so called splat operator, which “expands” the range into the array:

[*1..10] # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Iterating over ranges is fairly easy, because they are essentially collections of consecutive objects. The fol-
lowing snippet loops through a range and prints the whole English alphabet, with one character per line:

for c in ‘a’..’z’
 puts c
end

On a side note, idiomatic Ruby code uses two-space indentation.

This is perfectly fi ne and somewhat friendly to C# and VB programmers. However, the true “Ruby
way” is to put aside the “syntax sugar” provided by the for loop and opt for the each iterator instead
as shown here:

(‘a’..’z’).each {|x| puts x }

To understand that one-liner, a few concepts need to be introduced. The next chapter tells you all you
need to know about blocks and iterators, including how to create your own iterators for your classes
and for built-in ones.

It may seem quite surprising, but Ruby allows you to reopen classes, including core ones, and defi ne
additional methods of your own or overwrite existing ones. This is a powerful feature of the language,
though you do need to be careful not to abuse it. The next chapter covers this topic as well.

Arrays
Arrays in Ruby are instances of the Array class. They are collections of objects, whose integer index
starts at 0, like in most other languages. These objects can be of any type and don’t have to be homo-
geneous. A single array could contain numbers, strings, ranges, Booleans, and nil values. An array of
arrays is perfectly fi ne as well. Of course, it usually makes sense to collect elements of the same type,
but this is not enforced by the interpreter. With no set type and size, arrays don’t require any special
declarations.

[]and Array.new can both be used to create arrays, for example:

a = [] # []
b = Array.new # []
c = Array.new(5, 0) # [0, 0, 0, 0, 0]
d = [2, 3, 7, 9, 18] # [2, 3, 7, 9, 18]

As you can see, when you pass two parameters to the Array.new method, you are specifying the
number of elements (in this case 5) “to initialize” and their value (in this case 0). Again, this doesn’t
mean that the array can contain only the specifi ed number of elements. It’s just an available initial-
ization option that can be convenient in a few circumstances.

74955book.indd List7974955book.indd List79 3/4/09 8:45:35 AM3/4/09 8:45:35 AM

80

Chapter 3: Ruby’s Data Types

In the “Strings” section of this chapter, you’ve already seen how you can access individual characters by
referring to their index, as well as how to select a substring, by specifying an offset and the number of
characters required. The same rules apply to arrays, and this shouldn’t come as a shock if you consider
that strings are essentially sequences of bytes, for example:

array = [‘Matz’, ‘David’, ‘Antonio’]
array[0] # “Matz”
array[-1] == array[2] # true
array[2] = ‘Tony’ # “Tony”
array # [“Matz”, “David”, “Tony”]
array[1, 2] # [“David”, “Tony”]
array[0, 2] # [“Matz”, “David”]

puts vs. p
If you are trying out these lines of code for yourself through irb, you will see the
same properly formatted results that I’ve indicated in the inline comments. If, on
the other hand, you are trying them out from a Ruby fi le, prefi xing the expressions
with puts, you may have noticed the following:

array = [‘Matz’, ‘David’, ‘Antonio’]
puts array # Prints Matz, David and Antonio, one per line

That’s not very nice, especially when dealing with large and complex arrays. In order
to visualize arrays, the way you did in the inline comments, and the way irb displays
them, you should use the method p rather than puts.

This method is very handy not only with arrays, but whenever you need to analyze
objects. What this does is print the object’s data based on the return value of its
inspect method.

Even with simple strings, the difference between puts and p is evident: puts
“hello\n” prints “hello” whereas p “hello\n” prints the actual stored
value “hello\n”. If you are troubleshooting a problem, the second is defi nitely
preferable.

If you decide to assign a value to the 50th element in an array (for example, array[49] = ‘Something’),
and there are currently only three elements, the assignment will be successful and the values from the 4th
element to the 49th one will be nil.

Similarly, you can add elements:

a = [3, 10, 20, 44]
p a << 5 # [3, 10, 20, 44, 5]
p a.push(2) # [3, 10, 20, 44, 5, 2]

And remove them:

a = [1, 2, 3, 4]
a.pop # 4
a # [1, 2, 3]
a.delete_at(1) # 2
a # [1, 3]

74955book.indd List8074955book.indd List80 3/4/09 8:45:35 AM3/4/09 8:45:35 AM

81

Chapter 3: Ruby’s Data Types

The following snippet shows a few of the many methods available for Array objects:

numbers = [9, 5, 3 , 4, 2, 8, 1, 6, 7]

numbers.first # 9
numbers.last # 7
numbers.length # 9

numbers.max # 9
numbers.min # 1

numbers.join # “953428167”
numbers.join(“, “) # “9, 5, 3, 4, 2, 8, 1, 6, 7”

numbers.sort # [1, 2, 3, 4, 5, 6, 7, 8, 9]
numbers # [9, 5, 3 , 4, 2, 8, 1, 6, 7]

numbers[0] = nil # nil
numbers[3] = nil # nil
numbers # [nil, 5, 3, nil, 2, 8, 1, 6, 7]
numbers.compact! # [5, 3, 2, 8, 1, 6, 7]

numbers << 9 << 4 << 10 # [5, 3, 2, 8, 1, 6, 7, 9, 4, 10]
numbers.sort! # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

numbers += [20] # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20]
numbers - [1,2,3,4] # [5, 6, 7, 8, 9, 10, 20]
numbers.reverse! # [20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
numbers # [20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

The few isolated numbers variables in the snippet are there to show you once again what methods
modify the original array and which ones leave it unaltered. As usual, ri Array is your friend.

In the next chapter, when iterators and blocks are introduced, you will see some of the most useful
methods of Array objects. Meanwhile, just as you can with ranges, you are able to loop through arrays
too, for example:

Prints 2, 4, 6, 8 one per line
for i in [1,2,3,4]
 puts i*2
end

Hashes
Hashes are associative arrays. They are essentially arrays that allow any type of keys to be used, as
opposed to consecutive integer ones, which start from zero. Another important distinction is that
Hashes, unlike Arrays, are not ordered.

Hashes are somewhat similar to Hashtables or Dictionary<TKey, TValue> in .NET. Like Hashtables,
which return null if the key is not found, Ruby’s Hashes return nil by default, unless a different value
has been specifi ed as a parameter of the Hash.new method.

74955book.indd List8174955book.indd List81 3/4/09 8:45:35 AM3/4/09 8:45:35 AM

82

Chapter 3: Ruby’s Data Types

You can use two curly brackets to create an object of the Hash class or (as usual) Hash.new:

h1 = {} # {}
h2 = Hash.new # {}
h1 == h2 # true
h1.object_id == h2.object_id # false

Once a variable has been assigned a reference to an empty hash, you can add entries (key-value pairs):

h1[“name”] = “George” # “George”
h1[“age”] = 71 # 71
h1 # {“name”=>”George”, “age”=>71}
h1[“name”] # “George”
h1[“age”] # 71

Ruby offers a much friendlier syntax for initializing hashes, and if you consider (as mentioned before)
that symbols are a better choice for hash keys, you get the following:

h = {:name => “George”, :age => 71}
h[:name] # “George”
h[:age] # 71

If you have a hash with strings as keys and would like to switch to symbols, you can always use the
symbolize_keys! method.

Looping through the keys and values of a hash can be easily accomplished through a for loop or more
idiomatically through an each iterator, for example:

h = {:name => “George”, :age => 71}

for key, value in h
 puts “#{key} = #{value}“
end

More idiomatic
h.each {|key, value| puts “#{key} = #{value}“ }

This snippet prints the following output:

age = 71
name = George
age = 71
name = George

Hashes are widely used by Rails, so it’s important that you understand their basic workings.

Again, ri Hash gives you more details about the class and the available methods. Most of the fun
methods, just as was the case for Array, require knowledge of blocks and iterators. Further examples
are therefore provided in the next chapter.

74955book.indd List8274955book.indd List82 3/4/09 8:45:35 AM3/4/09 8:45:35 AM

83

Chapter 3: Ruby’s Data Types

Summary
This chapter provided you with a quick introduction to some of the essential data types and how they
work. You should have a clearer picture of what Ruby code looks like and how to manipulate basic
objects. The fun really starts in the next chapter, however, which explores actual object-oriented pro-
gramming in Ruby.

74955book.indd List8374955book.indd List83 3/4/09 8:45:35 AM3/4/09 8:45:35 AM

74955book.indd List8474955book.indd List84 3/4/09 8:45:35 AM3/4/09 8:45:35 AM

Programming Ruby
I learned very early the difference between knowing

the name of something and knowing something.

— Richard Feynman

The previous chapter introduced the Ruby language by briefl y surveying its syntax and the fun-
damental data types that you’ll encounter over and over again as you learn about and develop
more with Rails.

Chapter 3 started by introducing you to common tools of the trade like irb and ri, the concept that
everything is an object, the conventions and rules for identifi ers and variables, as well as essential
types like numbers, Booleans, strings, symbols, regular expressions, ranges, arrays, and hashes.

This chapter brings your Ruby knowledge to the next level by exploring the essential aspects of
object-oriented programming, the Ruby way. It does so by fi rst covering basic concepts like defi n-
ing methods, using conditional and looping statements, and handling exceptions, only to focus
in the second half of the chapter on objects, classes, and modules. Finally, at the very end of the
chapter, you’ll fi nd a short overview of a few available Ruby implementations.

Chapters 3 and 4 are therefore your Ruby tutorial before you begin to truly work with Rails
in Chapter 5. With this roadmap in mind, let’s get started.

Defining Methods
Every object and class exposes several methods. Class methods are methods that can be invoked
directly on classes, for example ActiveRecord’s fi nders:

author = Author.find_by_last_name(“Ginsberg”)

74955book.indd List8574955book.indd List85 3/5/09 1:27:53 PM3/5/09 1:27:53 PM

86

Chapter 4: Programming Ruby

Similarly, there are instance methods that can be invoked on any object of a given class, like the down-
case method of a String, or to keep in line with ActiveRecord’s example:

books = author.books

Then there are the so-called singleton methods, which are a special type of method that can be defi ned,
and which exist only for a specifi c instance of a class:

my_string.my_method # my_string has a singleton method
my_string2.my_method # Raises a NoMethodError

Ruby doesn’t really differentiate between the three of them when you call a given method on a class or
an object. The interpreter only cares about determining whether or not the receiver exposes that method.
When you use the syntax receiver.method, Ruby is actually sending a message with the name of the
method, and its arguments, to the receiver object (be it an object, class, or module). As a matter of fact,
the following two are equivalent, and the dot notation is just sugar syntax for the developer:

“antonio”.capitalize # “Antonio”
“antonio”.send(:capitalize) # “Antonio”

You can see the advantages of the dot notation when chaining multiple method calls together as
shown here:

puts “$32.90”.sub(‘$’,’Ð’) # Prints Ð32.90
Kernel.send(:puts, “$32.90”.send(:sub, ‘$’, ‘Ð’)) # Prints Ð32.90

As a reminder, the values placed in the inline comments can either refer to the output of an expression
or the value it evaluates to. If a method like puts, p, or print is used, the output is shown in the com-
ment (as opposed to the return value). If you were to run either of the two lines above in irb, you would
see Ð32.90 printed, as well as a => nil to notify you of the much less interesting return value.

The method puts that you’ve used so far (as though it were a function rather than a method) is in reality
a Kernel method. Kernel is a module included in Object, and as such its methods are available every-
where within Ruby programs. Remember, Ruby is purely object-oriented and as such every function is a
method and it’s defi ned, implicitly or explicitly, within an object, a class, or a module.

Using existing methods won’t get you too far, so you can move on to creating methods of your own.

You defi ne methods through the def statement and terminate the method defi nition with end:

def hello_antonio
 puts “Antonio”
end

hello_antonio # Prints Antonio

You can create an alias method by writing alias :new_method_name :old_method_name out-
side of the method defi nition. Oddly enough, Ruby provides you with undef as well, so you could theo-
retically defi ne a method, use it and then “undefi ne” it (for example, undef hello_antonio).

74955book.indd List8674955book.indd List86 3/5/09 1:27:53 PM3/5/09 1:27:53 PM

87

Chapter 4: Programming Ruby

Methods can also accept one or more arguments as shown here:

def hello(name)
 puts name
end

def sum(x, y)
 x + y
end

hello(“Antonio”) # Prints Antonio
puts sum(5, 3) # Prints 8

Notice how there is no need to declare variable types and, as such, the hello method is able to print
any type of argument that you pass to it. Similarly, the sum method works with any parameters whose
class implements the + method/operator, be it numeric, string, array, or what have you. Note also how
the sum method did not use the return keyword. This is optional in Ruby, given that by default the last
evaluated expression in the method body is returned. This also means that the hello method defi ned
in the preceding code returns nil, because that’s the returning value of the puts method (which is the
last, and only, expression that’s evaluated in the body of the method). At times it’s still useful to use
return to make the returning value stand out or to insert multiple exit points within the method.

Ruby methods also support default arguments:

def greet(user = “guest”)
 puts “Welcome #{user}!”
end

greet # Prints Welcome guest!
greet(“Matz”) # Prints Welcome Matz!

Methods can only have one default argument, and this has to be the last argument:

def power(x, y = 2)
 return x**y
end

puts power(5) # Prints 25
puts power(5, 3) # Prints 125

Unlike C# and VB, Ruby does not support method overload. This is to say that Ruby won’t accept two
identical identifi ers with the same scope, which accepts different arguments. The polymorphic nature
of Ruby’s methods ensures that you don’t have to create copies of the same method to handle integers,
fl oating-point numbers, and so on, as you would in most compiled languages. The issue of variable
arguments passed to the method still exists though, and you may want your method to accept one, two,
or even three arguments. In Ruby you can use the splat operator (*) to defi ne a method that accepts a
variable number of arguments that are stored in an array:

def my_print(*list)
 p list
end

74955book.indd List8774955book.indd List87 3/5/09 1:27:53 PM3/5/09 1:27:53 PM

88

Chapter 4: Programming Ruby

my_print # Prints []
my_print(“a string”) # Prints [“a string”]
my_print(2, 5, 9) # Prints [2, 5, 9]
my_print(“user”, “pass”, true) # Prints [“user”, “pass”, true]

This can also be used to defi ne a list of mandatory arguments along with optional ones:

def collect_data(name, last_name, *info)
 # code...
end

You learn much more about methods later on in this chapter.

Conditionals
Ruby offers several conditional statements and control structures for managing the fl ow of your appli-
cations. In the previous chapter you had a sneak peak at the if and for statements; here they are intro-
duced more formally, among others useful statements.

if / elsif / else / unless
The following illustrates the usage of the if conditional statement in Ruby:

if temperature < 0
 puts “Freezing!”
end

Visual Basic programmers will fi nd this syntax quite natural, and it shouldn’t be too foreign to C# pro-
grammers either.

Any code between the if and the end line is executed unless the tested expression evaluates to false
or nil. The if statement also accepts the then token separator (as opposed to the newline alone), so
you could have written the same code as follows:

if (temperature < 0) then
 puts “Freezing!”
end

Parenthesis around expressions within conditional statements are optional in Ruby, but it may not be
a bad idea to include them when they’re helpful in clarifying the meaning of the code. Or even as a
single line:

if temperature < 0 then puts “Freezing!” end

Ruby 1.8 allows semicolons as token separators as well, but Ruby 1.9 doesn’t.

Listing 4-1 shows a recursive version of the factorial in Ruby.

74955book.indd List8874955book.indd List88 3/5/09 1:27:53 PM3/5/09 1:27:53 PM

89

Chapter 4: Programming Ruby

Listing 4-1: Naïve Factorial in Ruby

Naive, recursive implementation of the factorial in Ruby

def fact(n)
 if n <= 1
 1
 else
 n * fact(n-1)
 end
end

n = (ARGV[0] || 10).to_i
puts fact(n)

Copy the code into a fact.rb fi le (or whatever you wish to call it), and then run ruby fact.rb. The
result should be 3628800, which is the factorial of 10. You can also pass an argument to the program by
running (for example) ruby fact.rb 5, obtaining 120.

Line 11 shows you a little trick: n = (ARGV[0] || 10).to_i. ARGV is an array of arguments passed
to the program, so ARGV[0] retrieves the fi rst argument as a string or nil if no arguments were passed.
ARGV[0] || 10 returns the fi rst argument if different than nil or 10 if nil. The result is then con-
verted to an integer (because ARGV[0] is a string when it exists). This idiom is an easy way to specify a
default number when no arguments are passed to the program, while still accepting an argument from
the user.

Ruby also offers the possibility of using the if statement as an expression modifi er. So you can rewrite
the line from the earlier example as:

puts “Freezing!” if temperature < 0

This notation offers a clear gain in readability for simple one-liners (try reading it out loud), but for
non-trivial statements it’s far better to use the “traditional” multiple-line if.

if statements may also include the optional elsif and else clauses using the following syntax:

if expression1
 code
elsif expression2
 code
elsif expression3
 code
else
 code
end

From now on, in these snippets, code is used as a single, generic term that indicates one or more lines
of code.

There can be several elsif clauses but only one fi nal else. Please pay attention to the peculiar syntax
of the elsif clause. It’s not ElseIf of VB, nor else if of C#.

74955book.indd List8974955book.indd List89 3/5/09 1:27:54 PM3/5/09 1:27:54 PM

90

Chapter 4: Programming Ruby

Perhaps surprisingly, Ruby also offers an unless statement:

unless sold_out
 place_order
end

As you can imagine, unless is the opposite of if, and the preceding code delimited within unless
and end is executed only when the condition tested is nil or false. unless can also be used as an
expression/statement modifi er:

place_order unless sold_out

unless supports an else clause, but unlike the if statement, it doesn’t accept elseif clauses. Depending
on the situation, you may opt for if or prefer unless; Ruby provides both for the sake of convenience and
readability.

Though if and unless have been viewed as “statements” so far, in Ruby there’s a twist: they too are
expressions. Unlike C# and VB, in Ruby everything is an expression, so even if and unless return values.
If you run the following snippet, the variable state is set to the returning value of the if expression, in
this particular case “Gas,” before being printed to the console:

h2o_temp = 130

state = if h2o_temp < 0
 “Solid”
elsif h2o_temp > 100
 “Gas”
else
 “Liquid”
end

puts state

The Ternary Operator
Like C#, and many other C-derived languages, Ruby also supports the ternary operator. The ?: operator
returns the fi rst value unless the condition is false or nil, in which case the second value is returned:

value = condition ? val1 : val2

The preceding line is a much more succinct way of writing the following if statement:

value = if condition
 val1
else
 val2
end

For example, you could write:

ticket = (age < 18) ? “child” : “adult”

74955book.indd List9074955book.indd List90 3/5/09 1:27:54 PM3/5/09 1:27:54 PM

91

Chapter 4: Programming Ruby

The case Statement
In most languages, whenever you need to verify multiple conditions, you’d employ the “switch” state-
ment. Ruby calls it the case statement and it’s far closer to what Visual Basic developers — as opposed
to C# ones — are accustomed to. That said, Ruby’s case statement is much more powerful than what
you may expect at fi rst.

There are two ways of using the statement. The fi rst, without passing an argument, is equivalent to
using an if statement with a series of elsif clauses:

case
 when condition1
 code
 when condition2
 code
 when condition3
 code
 when condition4
 code
 else
 code
end

And the second, which passes an argument:

case expression
 when value1
 code
 when value2
 code
 when value3
 code
 when value4
 code
 else
 code
end

In both usages, the case statement can have multiple when clauses, and an optional else clause for
code that should be executed if no other previous condition has been successful. This is equivalent to
the default clause in C# and the Case Else in VB.NET.

Please note that case has no fall-through behavior, so if one of the conditions is met, no other attempts to
evaluate other conditions are carried out by the interpreter. This implies that, just as in VB.NET, there’s
no need for break statements of any sort. Still similarly to Visual Basic, it is possible to combine multiple
conditions on the same line by separating them with a comma:

case expression
 when value1, value, value3
 code
 when value4, value5
 code

74955book.indd List9174955book.indd List91 3/5/09 1:27:54 PM3/5/09 1:27:54 PM

92

Chapter 4: Programming Ruby

 when value6, value7, value8
 code
 when value9
 code
 else
 code
end

Just like if and unless, the case statement returns the last evaluated expression if any code is
executed, or nil if no condition was successful and no else clause was defi ned. Conversely, like
if and unless, the when clause supports the then token separator as well.

The case statement in Ruby is very powerful because it’s able to use not only integers, strings, or what
other languages consider “primitive types,” but any type of expression, even when the value is deter-
mined during runtime. What’s more, it works by using the so-called “case equality” operator (that is,
===). Though several classes make no distinction between this operator and the simple equality one
(that is, ==), many classes implement the case equality operator in a somewhat intuitive and logical
manner. The class Regexp implements the === operator to check if there is a match for the given pat-
tern, whereas the Range class implements it in order to check whether the element is contained within
the given range, and so forth. For example, the following snippet prints “Senior” to the console.

age = 85

puts case age
 when 0..12 then “Child”
 when 13..19 then “Teenager”
 when 20..65 then “Adult”
 else “Senior”
 end

Another common idiom takes advantage of the equality operator implemented by the Class class. This
verifi es that the given expression is an instance of the specifi ed class:

Numeric === 3 # true
String === “Rails” # true
Array === {} # false, because an empty hash is not an instance of Array

Within the context of the case statement, you could then write the following:

case my_expression
 when Numeric
 # Handle number
 code
 when String
 # Handle String
 code
 when Array
 # Handle Array
 code
 when Hash
 # Handle Hash
 code

74955book.indd List9274955book.indd List92 3/5/09 1:27:54 PM3/5/09 1:27:54 PM

93

Chapter 4: Programming Ruby

 when TrueClass, FalseClass
 # Handle Boolean
 code
 else
 # Handle any other type
 code
end

Looping
The Ruby language offers two categories of looping statements: “built-in loops” and iterators. Ruby has
three types of built-in loops: for, while, and until. A few differences aside, these are constructs that
you should already be accustomed to from other languages.

Ruby also offers an infi nite loop construct, through the loop method.

Despite being employed at times, idiomatic Ruby code tends to favor iterators that can also be customized
to refl ect the needs of your code.

The for/in Loop
The for statement in Ruby iterates over a collection of elements. To be more exact, it enables you to iterate
through enumerable objects such as arrays, hashes, and ranges. This is its basic syntax:

for element in collection
 # Do something with element
 code
end

Notice that the statement requires both the for and in keywords, and as such it acts similarly to the
For Each in Visual Basic, and foreach in C#, not their simple For and for versions.

These are a few examples that use for to loop through collections:

Prints the integers between 0 and 10
for i in 0..10
 puts i
end

Prints each element of the array
for el in [2, 4, 6, 8, 10]
 puts el
end

Prints each key-value pair in the hash
h = { :x => 24, :y => 25, :z =>26 }
for key, value in h
 puts “#{key} => #{value}“
end

74955book.indd List9374955book.indd List93 3/5/09 1:27:54 PM3/5/09 1:27:54 PM

94

Chapter 4: Programming Ruby

Similarly to if, unless, and case, for is terminated by end, and it accepts an optional separator token.
Only, instead of being then, do is the keyword as shown here:

for c in ‘a’..’z’ do
 puts c
end

This is useful when a newline or a semicolon (in Ruby 1.8’s case) is missing, but usually otherwise
omitted.

The while and until Loops
The while loop in Ruby acts just as you’d expect. When the tested condition is not false or nil, the
body of the loop gets executed. Here is the basic syntax:

while expression
 code
end

The until statement is the opposite. It continues to loop when the condition evaluates to nil or false
and stops when it evaluates to true (remember that anything but false and nil evaluates to true):

until expression
 code
end

The following example would probably never be written by a savvy rubyist in a real program, but it
illustrates the difference between the two:

Prints integers from 0 to 10
i = 0
while (i<= 10)
 puts i
 i += 1
end

Prints integers from 0 to 10
i = 0
until (i> 10)
 puts i
 i += 1
end

Like the for/in loop, while and until accept an optional do keyword.

There is nothing particular about while and until in Ruby, except that they too can be used as
expression modifi ers. Here again this increases readability for trivial one-liners, as shown by these
two equivalent, hypothetical lines of code:

battery.charge! while !battery.full?
battery.charge! until battery.full?

74955book.indd List9474955book.indd List94 3/5/09 1:27:54 PM3/5/09 1:27:54 PM

95

Chapter 4: Programming Ruby

Blocks and Iterators
Ruby methods can have regular parameters, and can accept a block as well. A block is one or more
statements grouped together, which act as nameless (or anonymous) functions. They don’t exist on their
own, but need to be associated with a method. Iterators are methods that accept an associated code
block of this type. They usually iterate over a collection of elements, but the defi nition is broad enough
to include methods that don’t do that. For this reason, some people prefer not to refer to methods that
don’t iterate as iterators, but simply as methods that accept an associated block.

If you’ve ever worked with the IEnumerable and IEnumerator interfaces (and their generic forms) the
iterator pattern shouldn’t feel new to you. In the .NET world, LINQ to Objects introduced a few generators
to simplify the process further. In Ruby, things are much simpler and concise, though undisputed that
iterators and blocks were not invented by Ruby, but they are a distinctive feature of the language.

Numeric Iterators
Take a look at one of the simplest iterators, the method times of the Integer class:

5.times { puts “Ruby” }

This iterator accepts a block of code that prints the “Ruby” string literal and executes it a number of
times, as specifi ed by the receiver object (5 in this case). In short, this prints the code between the curly
brackets fi ve times.

Blocks can be defi ned between curly brackets or through the do/end notation, for example:

5.times do
 puts “Ruby”
end

The convention is to use curly brackets for one-line blocks and a do/end pair for blocks that contain
multiple lines of code.

When the iterator has a regular argument, this should be surrounded by parentheses when adopting the
curly brackets style for blocks, given that they have high precedence and would end up calling the block
over the argument (a generally meaningless operation), instead of the method.

At each iteration, times passes a value to the associated block. That value is accessible from within the
block as an iterator parameter/variable that you defi ne by specifying an arbitrary identifi er between
pipes (for example, |identifier|):

5.times {|x| print x }

At each iteration the value of x is set as an incremented number (in the case of times), starting from
zero. This line of code therefore prints 01234.

The class Integer offers another two common iterators, upto and downto:

1.upto(10) {|n| puts n } # Returns 1 and prints integers from 1 up to 10
10.downto(1) {|n| puts n } # Returns 10 and prints integers from 10 down to 1

74955book.indd List9574955book.indd List95 3/5/09 1:27:54 PM3/5/09 1:27:54 PM

96

Chapter 4: Programming Ruby

For the sake of simplicity, this example uses the puts method, but blocks can contain any arbitrarily
complex code as shown here:

fact = 1
2.upto(10) {|n| fact *= n }
puts fact # Prints 3628800

The Numeric class offers a step iterator as well, which invokes the block with the sequence of numbers
that begins with the number that the method is invoked on. It’s also incremented by the specifi ed step
on each call, until the limit is exceeded:

Prints a table of squares for numbers
between 0 and 10, in increments of 0.1
0.step(10, 0.1) do |n|
 puts “#{n}\t#{n**2}“
end

The each Method
Perhaps the most common iterator that’s available for many objects is the each method, as you briefl y
saw in the previous chapter when you used it as a more popular alternative to the for loop.

The following snippet shows its usage with arrays:

sites = [“reddit.com”, “dzone.com”, “digg.com”]
sites.each {|site| puts “#{site.capitalize}” }

Blocks can perform any action on the data iterated over, but the returning value of each is generally
the receiver itself (the array sites in the preceding example).

This outputs:

Reddit.com
Dzone.com
Digg.com

It is common for classes that implement the each method to include the Enumerable module as well,
which provides a series of useful traversal and search methods. For example, Array also has the method
each_with_index, which passes the actual element and its index to the two block parameters:

[“a”,”b”,”c”].each_with_index {|elem, index| puts “#{elem}: #{index}“ }

Again, the names of the block parameters (elem and index in this example) are entirely up to you. It
is often useful to use short, meaningful ones though.

This prints:

a: 0
b: 1
c: 2

The each iterator can be used with ranges as well:

(‘abc’..’xyz’).each {|s| puts s }

74955book.indd List9674955book.indd List96 3/5/09 1:27:54 PM3/5/09 1:27:54 PM

97

Chapter 4: Programming Ruby

This prints all the strings between ‘abc’ and ‘xyz’ in alphabetical order:

abd
abe
abf
abg
abh
...
...
xyv
xyw
xyx
xyy
xyz

And hashes:

author = { :name => “Kurt Vonnegut”, :site => “vonnegut.com”, :books =>14 }
author.each {|k, v| puts “#{k} => #{v}“ }

This prints each key-value pair. Hashes are not ordered and, as such, the output may appear in a
different order:

site => vonnegut.com
books => 14
name => Kurt Vonnegut

The String class has an each method as well (also available as each_line). It accepts an optional
argument (the string separator) that defaults to the newline:

“this is\na string\non multiple\nlines”.each {|line| puts line }

The output of this one-liner is:

this is
a string
on multiple
lines

This is perhaps not exactly what you expected from the each method when it’s applied to strings.
Perhaps you were expecting to be able to iterate over every single character. Doing so is possible by
employing the each_byte iterator:

“just a string”.each_byte {|c| print c, “ “ }

which prints:

106 117 115 116 32 97 32 115 116 114 105 110 103

This is probably still not what you want. So you need to convert the numbers to their ASCII character
representation through the chr method:

“just a string”.each_byte {|c| print c.chr, “ “ }

74955book.indd List9774955book.indd List97 3/5/09 1:27:54 PM3/5/09 1:27:54 PM

98

Chapter 4: Programming Ruby

And obtain:

j u s t a s t r i n g

Yes, the preceding example adds a fi nal space at the end of the output.

Alternatively, you could have used the printf method passing it the argument “%c.”

The each method is particularly useful when dealing with fi les:

A very simple quine

File.open(“quine.rb”) do |f|
 f.each {|line| puts line }
end

If you save the code of that snippet in a fi le called quine.rb and run it, the program prints its own
source code. This is a very straightforward form of quine (a program that prints its own source code).

You might also notice that blocks are often employed when working with fi les by passing them to the
class method File.open. In a similar way, you could write to a fi le:

File.open(“myfile.txt”, “w”) do |f|
 5.times { f.puts “Let’s add a string” }
end

The “w” specifi es that the fi le is accessible for writing and it should be created if it doesn’t exist. If the
fi le already exists, it is overwritten. If you’d like to append instead, use the “a” argument.

The each_with_index iterator exists for fi les as well:

File.open(“myfile.txt”) do |f|
 f.each_with_index do |line, index|
 puts “#{index}: #{line}“
 end
end

This prints each line contained in the myfile.txt fi le with its index. For example, if you ran the previous
“write on fi le” snippet from the same folder, you’d obtain:

0: Let’s add a string
1: Let’s add a string
2: Let’s add a string
3: Let’s add a string
4: Let’s add a string

ri File will tell you a whole lot more about the File class.

When working in Ruby on Rails you will often deal with arrays. So the next section takes a closer look
at some other common iterators that are available for instances of Array (and in most cases, Hash).

74955book.indd List9874955book.indd List98 3/5/09 1:27:54 PM3/5/09 1:27:54 PM

99

Chapter 4: Programming Ruby

Common Iterators
Array objects have a map method (alias for collect) that creates a new array containing the values
returned by the associated block:

[1,2,3,4].map {|n| n**2 } # [1, 4, 9, 16]
[1,2,3,4].collect {|n| n** 2 } # [1, 4, 9, 16]

It is the Ruby equivalent of Enumerable.Select in .NET. This is particularly useful when you want to
obtain a new array by uniformly altering each element of another array as shown here:

def capitalize_names(list)
 list.map {|name| name.capitalize }
end

names = [“matz”, “david”, “antonio”]
cap_names = capitalize_names(names) # [“Matz”, “David”, “Antonio”]

Notice how map doesn’t alter the original names array because, as is common in Ruby, it works on a
copy of the receiver. The equivalent methods map! and collect! actually modify the receiver:

names.map! {|name| name.capitalize }
p names # Prints [“Matz”, “David”, “Antonio”]

Using the select iterator, you can create a new array by selecting elements based on the given criteria:

numbers = [*1..10] # [1,2,3,4,5,6,7,8,9,10]
evens = numbers.select {|x| x % 2 == 0 }
p evens # Prints [2, 4, 6, 8, 10]

If you are an effi ciency geek, in Ruby you can use x & 1 == 0 when testing for evenness, too.

The select method can be employed to implement the classical Quicksort algorithm, as shown in
Listing 4-2 (quicksort.rb).

Listing 4-2: Quicksort Using Array#select

def qsort(array)
 return [] if array.empty?
 pivot, *tail = array
 less = tail.select {|el| el < pivot }
 greater = tail.select {|el| el >= pivot }
 qsort(less) + [pivot] + qsort(greater)
end

a = [2, 7, 9, 1, 3, 5, 2, 10]
p qsort(a) # Prints [1, 2, 2, 3, 5, 7, 9, 10]
puts qsort(a) == a.sort # Prints true

The third line assigns the fi rst element of the array to pivot, and the rest of the array to the variable tail.

If you are not familiar with the Quicksort algorithm, feel free to skip this example.

74955book.indd List9974955book.indd List99 3/5/09 1:27:54 PM3/5/09 1:27:54 PM

100

Chapter 4: Programming Ruby

The opposite of select is reject, which returns only elements for which the block is not true.
Somewhat similarly, arrays have the delete_if method that removes elements for which the block
evaluates to true (from the receiver array, not a copy):

numbers = [*1..10]
numbers.delete_if {|x| (x&1).zero? } # Returns [1, 3, 5, 7, 9]
p numbers # Prints [1, 3, 5, 7, 9]

The Enumerable module also provides the Array class with the partition method, which returns
two arrays: the fi rst array contains the elements of the array for which the block evaluates to true, and
the second one, for which the block is false:

numbers = [*1..10]
p numbers.partition {|x| (x&1).zero? } # Prints [[2, 4, 6, 8, 10], [1, 3, 5, 7, 9]]

You can use this method to make Listing 4-2 even more concise as shown in Listing 4-3 (quicksort2.rb).

Listing 4-3: Quicksort Using Enumerable#partition

def qsort(array)
 return [] if array.empty?
 pivot, *tail = array
 less, greater = tail.partition {|el| el < pivot }
 qsort(less) + [pivot] + qsort(greater)
end

a = [2, 7, 9, 1, 3, 5, 2, 10]
p qsort(a) # Prints [1, 2, 2, 3, 5, 7, 9, 10]
puts qsort(a) == a.sort # Prints true

tail.partition creates an array containing two arrays: the fi rst with elements less than the pivot,
and the second with elements greater or equal to the pivot. The parallel assignment assigns the fi rst ele-
ment (an array) to the less variable, and the second element (an array as well) to the greater variable.

Another iterator worth mentioning is Enumerable#inject, which is sometimes known as reduce,
fold, or aggregate in other languages. As a matter of fact, it’s the Ruby equivalent of Enumerable.
Aggregate in .NET 3.5.

This is the description of the method taken from the output of ri Enumerable#inject:

 — - Enumerable#inject
enum.inject(initial) {| memo, obj | block } => obj
enum.inject {| memo, obj | block } => obj
 — -
 Combines the elements of _enum_ by applying the block to an
accumulator value (_memo_) and each element in turn. At each step,
 memo is set to the value returned by the block. The first form
lets you supply an initial value for _memo_. The second form uses
the first element of the collection as a the initial value (and
skips that element while iterating).

74955book.indd List10074955book.indd List100 3/5/09 1:27:54 PM3/5/09 1:27:54 PM

101

Chapter 4: Programming Ruby

The description is exact, but may still appear somewhat confusing unless you’re well-versed in functional
programming languages. A few examples should help illustrate its usage.

Take this line into consideration (it uses a range, but works equally well with arrays):

puts (0..100).inject {|sum, n| sum + n } # Prints 5050

The great mathematician Gauss didn’t need inject to calculate this. When he was a schoolboy he came
up with a formula that easily added up arithmetical series.

The sum parameter is fi rst set to the fi rst element of the receiver (0 in this case). At each iteration n is set to
the current element, and the returning value of the block is stored in sum. This means that the fi rst iteration
sum is set to 0+1, then 1+2, then 3+3, then 6+4, and so on, until the last element (100) has been added.

You could very easily rewrite the factorial (seen before), through the inject method (the factorial of
0 and 1 is 1, so you can pass 1 as an argument for inject, and this will work as the initial value for
the calculation):

(2..n).inject(1) {|fact, x| fact * x }

Running ri Hash will tell you which iterators are available for Hash objects. collect, select,
reject, delete_if, and partition, to name but a few, are all available. They usually accept two
block parameters/variables instead of one. Of these, one is for the key and the other for the value. The
following is an example of Hash#select and Hash#delete_if usage:

hash = { “a” => 1, “b” => 2, “c” => 3, “d” => 4 }
p hash.select {|k,v| k > “b” } # Prints [[“c”, 3], [“d”, 4]]
p hash.select {|k,v| v < 3 } # Prints [[“a”, 1], [“b”, 2]]
p hash.delete_if {|k,v| v < 3 } # Prints {“c”=>3, “d”=>4}

Array and Hash both include the Enumerable module, or in Ruby speak, they “mix in” its methods.
Many instance methods are made available by Enumerable, but the following is a list (almost complete)
of common ones:

Plain iterators: ❑ each_with_index, each_cons, and each_slice.

Methods that return ❑ true or false: include? (and member?), any?, and all?.

Filter methods: ❑ detect (and find), select (and find_all), reject, and grep.

Methods that transform a collection by either directly modifying it or by returning an ❑

altered copy of the receiver: map (and collect), partition, sort, sort_by, zip, and to_a
(and entries).

Aggregators: ❑ inject and sum.

Summarizers: ❑ max and min.

Use the ri tool to look up those that haven’t been illustrated in this and the previous chapter (for example,
ri Enumerable#find).

Before moving on to the creation of your own iterator methods, think about how you’d implement all
these little snippets of code in C#, Visual Basic, or on any other language you’re accustomed to. Chances
are that you’ll fi nd Ruby far more direct, concise, and easy to use.

74955book.indd List10174955book.indd List101 3/5/09 1:27:55 PM3/5/09 1:27:55 PM

102

Chapter 4: Programming Ruby

Defi ning Your Own Iterators
A common characteristic of all the iterator methods seen so far is that they invoke the associated block
of code for each element of a given sequence. As mentioned before, there can also be methods that
expect and invoke the execution of a block of code, but don’t actually loop (and they too are sometimes
broadly and improperly called iterators).

At the heart of both, there is the yield statement, which enables the invoked method to temporarily
pass the control to the block for execution. For example, the following method executes the associated
block three times:

def three_times
 yield
 yield
 yield
end

three_times { puts “hello” }

It is important to understand that yield temporarily passes the control to the block of code, but when
the last line of code in the block gets executed, the control is passed back to the method. The following
modifi ed version of the preceding example illustrates this:

def three_times
 puts “In the method”
 yield
 yield
 yield
 puts “In the method again”
end

three_times { puts “In the block” }

which prints:

In the method
In the block
In the block
In the block
In the method again

Remember the previous snippets in which most iterators allowed you to use one argument in the block
(or two in the case of hashes)? You can pass argument values to the associated block by following your
yield statements with a list of values (or expressions, to be more exact):

def three_times
 yield 1, 2
 yield 3, 4
 yield 5, 6
end

three_times {|a, b| puts a + b }

74955book.indd List10274955book.indd List102 3/5/09 1:27:55 PM3/5/09 1:27:55 PM

103

Chapter 4: Programming Ruby

And this prints to the standard output:

3
7
11

This example illustrates the point, but it’s rather silly, given that your real code will most likely need
to perform something much more useful than that. So assume for a moment that you’d like to have an
iterator for ranges that pass only even argument values to the associated block. You can easily imple-
ment it as follows:

def each_even(range)
 range.each do |n|
 yield n if (n&1).zero?
 end
end

each_even(1..10) {|x| print x, “ “ } # Prints 2 4 6 8 10

It is worth noting that the class Range has an instance method called step, which could be used instead.

You can verify if a block was passed to the method through the block_given? method (globally
accessible, because it’s defi ned in Kernel) as shown here:

def n_times(n)
 if block_given?
 n.times { yield }
 else
 puts “I’m blockless”
 end
end

n_times(5) { puts “oh hi” } # Prints 5 times oh hi
n_times(5) # Prints “I’m blockless”

The n.times passes an argument whose value goes from zero to n-1 during the execution, as seen
before, but in this specifi c case, it was ignored. Changing the line n.times { yield} to n.times
{|val| yield val } makes that value available to your custom-defi ned version (for example, n_
times(5) {|x| puts x }).

yield also has a rough equivalent that can be utilized by specifying a block argument explicitly then
prefi xing it with an ampersand character (&), before invoking it through the call method. The previous
range example can therefore be written as follows:

def each_even(range, &block)
 range.each do |n|
 block.call n if (n&1).zero?
 end
end

each_even(1..10) {|x| print x, “ “ } # Prints 2 4 6 8 10

74955book.indd List10374955book.indd List103 3/5/09 1:27:55 PM3/5/09 1:27:55 PM

104

Chapter 4: Programming Ruby

It is usually fi ne to opt for yield instead, but the “&block and block.call” approach has an
advantage in situations where you need more control, given that you have an actual object (a Proc
one) to use as a point of reference, rather than just relying on a keyword (yield) to handle control
from the method.

Proc.new and lambda
As mentioned before, blocks are essentially subroutines that are associated with a method and as such,
cannot exist on their own:

my_block = { puts “don’t do this” } # syntax error

Thankfully, Ruby offers a way to explicitly convert a “standalone block” into an actual Proc object
through the Proc.new and Kernel#lambda methods.

When a block is passed to a method, this gets instantiated as a Proc object as well.

Take a look at the following example:

add = lambda {|x, y| x + y } # #<Proc:0x03c1926c@myfile.rb:1>
sum = Proc.new {|x, y| x + y } # #<Proc:0x03c190b4@myfile.rb:2>
puts add.call(3, 5) # Prints 8
puts sum.call(3, 5) # Prints 8

Both methods are used to create anonymous methods (or functions, if you prefer) that can be invoked
(with parameters in this case) and reused in your programs. When in the previous section you gave
a name to the block, specifying it as an argument prefi xed by an ampersand character, and then you
called it with block.call, you were working with a Proc object.

You can use Proc objects as arguments for iterators that expect a block, by prefi xing them with an
ampersand:

addition = Proc.new {|sum, x| sum + x }
puts [1,2,3,4,5].inject(&addition) # Prints 15

Blocks and procs act as closures because they can access variables that have been defi ned outside of their
scope (or to clarify this further, outside of the curly brackets or the do/end pair). This means that they’re
able to access and modify objects that were defi ned in the context that invoked them (their binding).

There is actually a method called binding that returns a Binding object. This describes the variables
and methods’ context when called.

Behind the scenes, Ruby associates a binding with any block or proc that it creates. This implies that
you can have the following:

sum = 0
1.upto(100) {|n| sum += n }
puts sum # Prints 5050

74955book.indd List10474955book.indd List104 3/5/09 1:27:55 PM3/5/09 1:27:55 PM

105

Chapter 4: Programming Ruby

Notice how the sum variable can be accessed and modifi ed from within the block. Variables defi ned
inside the block are local to the block and not accessible outside of it:

1.upto(100) {|n| var = n }
puts var # Raises a NameError

Please bear in mind that block scoping will be substantially revisited in the next version of Ruby (Ruby 1.9).

In the following example, you can see how the method n_power returns a Proc object, created through
lambda. When this proc gets invoked, the value (3) of the argument n originally passed to the n_power
method is retained by the proc and is used along with the val parameter (whose value is 5), passed to
the call method, in order to execute the actual calculation in the body of the proc:

def n_power(n)
 lambda {|val| val ** n }
end

cubed = n_power(3)
puts cubed.call(5) # Prints 125

The following shows how a Proc “remembers” and can modify its binding, even when invoked
several times:

def make_counter(n = 0)
 lambda { n += 1 }
end

c1 = make_counter
c1.call # 1
c1.call # 2
c1.call # 3

Note how the counter gets incremented because lambda created a closure that’s able to keep the state of
the argument n (assigned to 0 by default when executing c1 = make_counter) and increment its value
at each call. If you were to create a second closure, its local variables would be independent from c1,
which has a different binding:

c2 = make_counter
c2.call # 1
c2.call # 2

Both Proc.new and Kernel#lambda return a Proc instance and can usually be used almost interchange-
ably. It’s important to be aware of two fundamental differences between these two methods though.

The fi rst difference concerns the returning behavior. Using return within the block of a proc created with
lambda returns control back to the calling method. Using return with a proc created with Proc.new
tries to return from the calling method. The following example shows these different behaviors:

def process_lambda
 puts “In the method”
 p = lambda { return “In the block” }
 puts p.call

74955book.indd List10574955book.indd List105 3/5/09 1:27:55 PM3/5/09 1:27:55 PM

106

Chapter 4: Programming Ruby

 puts “Back in the method”
end

def process_procnew
 puts “In the method”
 p = Proc.new { return “In the block” }
 puts p.call
 puts “Back in the method”
end

Executing process_lambda produces:

In the method
In the block
Back in the method

which is what you would expect in most cases. Executing process_procnew prints the following:

In the method

This surprising result is due to the fact that return within the Proc.new block returns “In the
block” as the returning value for the calling method, which exists de facto from the earlier method.

Not only that, but if the proc were to be called outside of a method, it would raise a LocalJumpError error:

p = Proc.new { return “In a block” }
p.call # Raises unexpected return (LocalJumpError)

The second difference, perhaps with far fewer implications, is that Proc.new tends to be more liberal in
terms of argument passing, whereas lambda acts like a regular method that expects an exact number of
arguments (unless the splat operator is used to pack a variable number of arguments into an array). You
can see the different behavior in the following example:

p1 = Proc.new {|x, y| x + y }
p2 = lambda {|x, y| x + y }

2 arguments as expected
puts p1.call(1,2) # 3
puts p2.call(1,2) # 3

A third unexpected argument
puts p1.call(1,2,3) # 3
puts p2.call(1,2,3) # Raises wrong number of arguments (3 for 2) (ArgumentError)

At this point you may wonder why so many pages have been devoted to covering concepts like blocks,
iterators, procs, and closures. It’s because these are so fundamental to Ruby (and Rails) programming,
that if the chapter were to abruptly end here, understanding these concepts would still place you ahead
of many Rails beginners.

It was important to spell out a few more advanced details. That said, this section is admittedly quite
heavy in terms of details and you should be able to get by even if you don’t remember all of them, as long
as you get the general idea. You can breathe a sigh of relief as the chapter progresses toward other topics.

74955book.indd List10674955book.indd List106 3/5/09 1:27:55 PM3/5/09 1:27:55 PM

107

Chapter 4: Programming Ruby

Exception Handling
In the previous examples, it was casually mentioned how Ruby raises this or that type of error, if you
perform an illicit operation. Just like C#, VB, and any other respectable modern programming language
out there, Ruby offers full support for handling exceptions.

This is how you would typically “catch an exception” in C# and VB:

C#
int a = 5;
int b = 0;
int div;

try
{
 div = a / b;
 Console.WriteLine(“This is never written”);
}
catch (Exception ex)
{
 Console.WriteLine(“Oops... {0}“, ex.Message);
}

VB
Dim a As Integer = 5
Dim b As Integer = 0
Dim div As Integer

Try
 div = a / b
 Console.WriteLine(“This is never written”)
Catch ex As Exception
 Console.WriteLine(“Oops... {0}“, ex.Message)
End Try

In both cases a division by zero is attempted within the try statement, and the exception raised is
caught by the catch clause, which prints “Oops... Attempted to divide by zero.” in C#’s case
and “Oops... Arithmetic operation resulted in an overflow.” for VB. Ruby works in the
same way through begin/rescue as shown here:

a = 5
b = 0

begin
 div = a /b
 puts “This is never written”
rescue Exception => ex
 puts “Oops... #{ex.message}“
end

The rescue clause sets the variable ex to reference an instance of the given error class. The Exception
class is the root of all error classes in Ruby, and as such it catches any errors that can possibly be raised.

It is generally a bad idea to rescue all the exceptions in a single catch clause.

74955book.indd List10774955book.indd List107 3/5/09 1:27:55 PM3/5/09 1:27:55 PM

108

Chapter 4: Programming Ruby

If you didn’t specify Exception at all (that is, rescue => ex) this would still handle most errors
in a program because the rescue clause would default ex to an instance of StandardError. There
are, however, errors that are not subclasses of StandardError. For example, ScriptError (and its
LoadError, NotImplementedError, and SyntaxError subclasses), NoMemoryError, and other low-
level errors.

Please also keep in mind that there will be a few rearrangements to the exception hierarchy in the next
version of Ruby (1.9), but this shouldn’t really affect you too much.

Conversely, as long as you don’t need a variable representing the just caught exception, you could
remove the => ex part as well, reducing the basic begin/rescue statement to:

begin
 3/0
rescue
 puts “There was an error!”
end

Similarly to C# and VB, you can be more specifi c and only handle a certain type of exception as follows:

begin
 5.a_non_existing_method
 3/0
rescue ZeroDivisionError
 puts “You divided by zero!”
end

This snippet raises the following error:

errors.rb:2: undefined method ’a_non_existing_method’ for 5:Fixnum (NoMethodError)

errors.rb is just the fi le that was running the snippet and the 2 afterwards indicates that the second
line was the culprit behind the error. If you were to run the same from an irb session, you’d get an
error message along the lines of:

NoMethodError: undefined method ’a_non_existing_method’ for 5:Fixnum
 from (irb):2

Regardless of how you ran the snippet, the reason why Ruby raised an unhandled exception is that
the rescue clause was ready to handle ZeroDivisionErrors, but not NoMethodErrors. Aside from
providing you with a “catch-all” exception class, you can also chain multiple rescue clauses together
to handle several exceptions differently, just like you would in C#, VB, and many other programming
languages.

Ruby also supplies you with an else clause that is executed when no errors are raised in the begin/
end block of code, and an ensure clause that is executed no matter what, for example:

begin
 # ... some error prone code
 # ...

74955book.indd List10874955book.indd List108 3/5/09 1:27:55 PM3/5/09 1:27:55 PM

109

Chapter 4: Programming Ruby

rescue SystemCallError => ex
 puts “A system call failed: #{ex.message}“
rescue ZeroDivisionError
 puts “You divided by zero!”
rescue NoMethodError => ex
 puts “That method doesn’t exist: #{ex.message}“
rescue Exception => ex
 puts “Error: #{ex.message}“
else
 puts “Yay! No errors!”
ensure
 puts “Error or not, this is always printed!”
end

ensure is, of course, the equivalent of finally in C# and VB.

As usual, Ruby also provides you with an inline option:

File.read(‘non_existent_file.txt’) rescue puts “You need an existing file!”

When defi ning methods you can also skip begin and the fi nal end:

def with
 begin
 #...
 rescue
 #...
 end
end

def without
 # ...
rescue
 # ...
end

Raising Errors
At times you may need to raise errors. In Ruby this is done through the Kernel#raise method. Try the
following sessions in irb:

>> raise
RuntimeError:
 from (irb):1

As you can see, called on its own without arguments, it raises a RuntimeError with an empty message.
Now add a message to the error, for example:

>> raise “A generic error message”
RuntimeError: A generic error message
 from (irb):2

74955book.indd List10974955book.indd List109 3/5/09 1:27:55 PM3/5/09 1:27:55 PM

110

Chapter 4: Programming Ruby

Now you have a RuntimeError with a custom message. This works fi ne as long as the error that you
want is a generic RuntimeError. But what if you want a ZeroDivisionError, ArgumentError, or
ThreadError? You can pass the error type to rescue:

>> raise ZeroDivisionError, “Don’t divide by 0, mkay?”
ZeroDivisionError: Don’t divide by 0, mkay?
 from (irb):3

Perfect. Now you can use it to make your methods a little more robust as shown in Listing 4-4.

Listing 4-4: Factorial Method That Can Raise an ArgumentError

def fact(n)
 if n >= 0
 (2..n).inject(1) {|f, x| f * x }
 else
 raise ArgumentError, “The factorial is defi ned for non-negative integers only.”
 end
end

(0..10).each {|n| puts “#{n}:\t#{fact(n)}“ }

This prints the following table:

0: 1
1: 1
2: 2
3: 6
4: 24
5: 120
6: 720
7: 5040
8: 40320
9: 362880
10: 3628800

The method fact can now raise exceptions, so passing a negative number executes the else clause of
the if statement within the method, therefore raising an ArgumentError.

If you place the following within the same fi le (fact2.rb):

puts fact(-5)

this prints to the standard error output stream (stderr):

fact2.rb:5:in `fact’: The factorial is defined for non-negative integers only.
(ArgumentError)
 from fact2.rb:10

74955book.indd List11074955book.indd List110 3/5/09 1:27:55 PM3/5/09 1:27:55 PM

111

Chapter 4: Programming Ruby

Objects and Classes
Ruby wouldn’t be much of an object-oriented language if you weren’t able to defi ne your own classes
and objects. The next few sections show you how.

Defi ning and Instantiating Classes
Classes are defi ned through the class keyword, followed by the capitalized name of the class. The
name needs to be capitalized because, as mentioned before, classes in Ruby are constants:

class Account
end

As usual, the defi nition is terminated by end, and any line of code contained between class and end
forms the body of the class. From the defi ned class you can obtain an object by invoking the new method:

account = Account.new
account.class # Account

By employing the Object#is_a? method, you can determine whether or not an object is an instance of
a given class:

account.is_a? Account # true

The same method can also be used to verify if a class is a superclass of the class of an instance (or an
ancestor class in the inheritance hierarchy):

account.is_a? Object # true

The preceding line tells you that Object is a superclass or an ancestor for the Account class. It’s actually
a superclass as you can see if you run the following:

account.class.superclass # Object

You may notice that no method is specifi ed in the Account class, but it was still possible to instantiate it
thanks to the fact that the constant Account is a Class object, and as such, it has access to a new method
for creating instances.

The initialize Method
An empty class defi ned in this manner won’t be very useful, so the next step is to specify an
initialize method for the class. This method is private by default, and therefore cannot be called
directly as you would with a constructor in C# or VB (but you can call it from within the class
implementation). If an initialize method exists, this will automatically be called by the method
new when it creates an instance of the given class.

For the sake of simplicity, assume that in order to open an account, all that’s required is a name and
Social Security number:

class Account
 def initialize(holder, ssn)

74955book.indd List11174955book.indd List111 3/5/09 1:27:56 PM3/5/09 1:27:56 PM

112

Chapter 4: Programming Ruby

 @holder = holder
 @ssn = ssn
 @balance = 0
 end
end

Note that the method requires two arguments. The arguments passed to the new method will be passed
to the initialize method. Therefore, by requiring two arguments for the initialize method, you
are essentially specifying that the new method will require two arguments as well:

account = Account.new(“Jane Smith”, “123-45-6789”)

By default, whenever you defi ne a method with the def keyword followed by a simple identifi er
inside a class, this is an instance method. As such, it is accessible only to objects of that class (and
its subclasses).

self
Within the body of the initialize method, you set three instance variables. Instance variables are
prefi xed by an @ symbol and can only be accessed by instance methods of that object. Ruby uses self as
a reference to the current object. This is somewhat similar to this in C# and Me in VB, but can be used
anywhere in the code of your program. To clarify this, take a look at how self changes depending on
where you are in the execution of the code:

class A
 puts self

 def initialize
 puts self
 end
end

a = A.new

This will print A fi rst, and then something along the lines of #<A:0x3e09054>. Within the class defi ni-
tion, but outside of any method, self references the class itself, whereas inside an instance method, self
references the current instance. It is important to point this out because as a .NET developer, you may be
inclined to “declare” your instance variables at the beginning of the class outside of any method, which
would not be what you intended.

Attributes and Accessor Methods
Now that you’ve specifi ed a more meaningful initialization, you can inspect the object that you’ve
created and verify that the instance variables are being set correctly:

account = Account.new(“Jane Smith”, “123-45-6789”)
Prints #<Account:0x3c18ed4 @balance=0, @ssn=”123-45-6789”, @holder=”Jane Smith”>
puts account.inspect

Now think about adding a couple of instance methods for depositing and withdrawing money from the
account as shown in Listing 4-5 (account.rb).

74955book.indd List11274955book.indd List112 3/5/09 1:27:56 PM3/5/09 1:27:56 PM

113

Chapter 4: Programming Ruby

Listing 4-5: Adding Deposit and Withdrawal to the Account Class

class Account
 def initialize(holder, ssn)
 @holder = holder
 @ssn = ssn
 @balance = 0
 end

 def deposit(amount)
 @balance += amount
 puts “You deposited #{amount} dollars.”
 end

 def withdrawal(amount)
 new_balance = @balance - amount
 if new_balance >= 0
 @balance = new_balance
 puts “You withdrew #{amount} dollars.”
 else
 puts “Your account doesn’t allow overdrafts.”
 end
 end
end

account = Account.new(“Jane Smith”, “123-45-6789”)
account.deposit(100) # Prints You deposited 100 dollars.
account.withdrawal(20) # Prints You withdrew 20 dollars.
account.withdrawal(100) # Prints Your account doesn’t allow overdrafts.

Note that if you tried the following:

puts account

you’d get an unconvincing #<Account:0x3c18678> written to the console. This is due to the fact that
puts is using the default Object#to_s method, thereby printing the object’s class and the encoding of
its object id.

Change this by overwriting the default with your own to_s instance method:

 def to_s
 “#{@holder}‘s account has #{@balance} dollars.”
 end

Now, puts account prints “Jane Smith’s account has 80 dollars.” Note how easy it is to
overwrite methods defi ned in the parent class: you simply redefi ne them.

You may also be tempted to read the balance with the dot notation directly from your instance, but this
won’t work:

account.balance # Raises a NoMethodError

74955book.indd List11374955book.indd List113 3/5/09 1:27:56 PM3/5/09 1:27:56 PM

114

Chapter 4: Programming Ruby

Instance variables are associated with a given instance, but are not directly accessible.

Instance variables are essentially private, unlike constants, which are practically public.

This guarantees proper encapsulation while still allowing instance methods to be read and modifi ed. If
you want to be able to read the balance of a given account, you could defi ne a getter method in the class.
Getter and setter methods in Ruby can be declared as normal instance methods. In the case of @balance
you don’t want to change it directly, so it will be the equivalent of a read-only property:

def balance
 @balance
end

You may also want to retrieve the name of the account holder. Assume for a moment that Jane Smith is
getting married to John Doe, and opts to change her surname. To handle this occurrence as well, you
should be able to defi ne a getter and a setter method for the @holder variable. This is easy enough and
can be done as follows:

def holder
 @holder
end

def holder=(new_name)
 @holder = new_name
end

You may be tempted to use the newly defi ned setter method from within other
instance methods. For example, instead of using @holder = new_holder you may
opt for holder = new_holder. Don’t do that. This will only create a holder local
variable, not actually set the value of the instance variable @holder. For simple sce-
narios stick with @holder = new_holder. If the setter method does a lot of heavy
lifting for you and you’d like to reuse it, use self.holder = new_holder instead.

Now you can do the following:

puts account.holder # Prints Jane Smith
account.holder = “Jane Doe”
puts account.holder # Prints Jane Doe

This is okay; it works as expected, and it wasn’t too much of a hassle. You essentially defi ned the equiv-
alent of traditional properties in C# or VB, with a much cleaner and concise syntax. Ruby pushes the
envelope further when it comes to attributes though, and provides a series of methods to automate this
extremely common process, whenever the logic of the getter and setter are trivial (as it was in this case).
C# 3.0 assumes a similar approach with its recently introduced auto-implemented properties.

An attribute is Ruby-speak for an instance variable that is available through a getter or setter method.
They are what C# and Visual Basic programmers call properties, and have nothing to do with the word
“attribute” in the .NET world.

74955book.indd List11474955book.indd List114 3/5/09 1:27:56 PM3/5/09 1:27:56 PM

115

Chapter 4: Programming Ruby

You can specify that an attribute should be read only (a getter) through the attr_reader method, writ-
ten only (a setter) through the attr_writer method, and readable and writable (an accessor) through
the attr_accessor method. All three methods accept a list of symbols that specify the attributes that
should be defi ned. They can also — but much less conventionally — accept a list of strings.

These methods are defi ned by the Module class, which is a superclass for the Class class. As such they
are available for every class in Ruby. This is an example of Ruby’s powerful metaprogramming abilities.
With a single method you’re able to dynamically create instance variables, plus getter and setter methods.

In the wake of this new knowledge, you can rewrite your class as shown in Listing 4-6 (account2.rb).

Listing 4-6: Using attr_reader and attr_accessor in the Account Class

class Account
 attr_reader :balance, :ssn
 attr_accessor :holder

 def initialize(holder, ssn)
 @holder = holder
 @ssn = ssn
 @balance = 0
 end

 def deposit(amount)
 @balance += amount
 puts “You deposited #{amount} dollars.”
 end

 def withdrawal(amount)
 new_balance = @balance - amount
 if new_balance >= 0
 @balance = new_balance
 puts “You withdrew #{amount} dollars.”
 else
 puts “Your account doesn’t allow overdrafts.”
 end
 end

 def to_s
 “#{@holder}‘s account has #{@balance} dollars.”
 end
end

account = Account.new(“Jane Smith”, “123-45-6789”)
puts account
puts account.balance
account.deposit(1000)
puts account.balance
account.withdrawal(100)
puts account.balance
puts account.holder
account.holder = “Jane Doe”
puts account.holder
puts account.ssn

74955book.indd List11574955book.indd List115 3/5/09 1:27:56 PM3/5/09 1:27:56 PM

116

Chapter 4: Programming Ruby

This prints to the standard output:

Jane Smith’s account has 0 dollars.
0
You deposited 1000 dollars.
1000
You withdrew 100 dollars.
900
Jane Smith
Jane Doe
123-45-6789

Methods Visibility
Ruby’s methods can be public, protected, or private. Methods are by default public, with an exception
for the initialize method and methods defi ned globally, outside of a class defi nition. What this
means is that whenever you defi ne a new method in a class, be it an instance method or a class method
(as shown later on), these can be invoked on the object and on the class, respectively.

Private methods are methods intended for use from within the class or its subclasses, and as such cannot
be invoked outside of the class (or its subclasses). Even from within the class or object implementation,
these are implicitly invoked on self (for example, my_private_method not self.my_private_method
or obj.my_private_method).

Protected methods are a middle ground. They can only be used from within the class and its subclasses,
and allow for invocation on a receiver other than the implicit self, as long as the objects they are invoked
on are the same class or subclass of self’s class. Of the three visibility levels, protected is by far the least
commonly used (being utilized in practice only for instance methods).

Method visibility can be set in two ways. You can use the private, public, and protected methods
without arguments, for example:

class A
 def a
 end

 def b
 end

 protected

 def c
 end

 def d
 end

 def e
 end

 private

74955book.indd List11674955book.indd List116 3/5/09 1:27:56 PM3/5/09 1:27:56 PM

117

Chapter 4: Programming Ruby

 def f
 end
end

a and b will be public by default; all the methods underneath protected and up to private will be
protected (meaning c, d, and e). f will be private. You’ll be able to run:

obj = A.new
obj.a
obj.b

but not so with any of the other methods previously defi ned:

obj.c # protected method `c’ called for #<A:0x3d68a50> (NoMethodError)

The second way to set method visibility is by specifying arguments for any of three methods seen
previously:

class A
 def a
 end

 def b
 end

 def c
 end

 def d
 end

 def e
 end
 protected :c, :d, :e

 def f
 end
 private :f
end

Ruby’s refl ective nature and metaprogramming capabilities actually allow you to work around the method
visibility limits and access methods that are defi ned as private (and instance variables). Exploring these
capabilities is outside the scope of this book, but keep in mind that the encapsulation provided by these
three levels of visibility does not limit Ruby’s incredibly refl ective and open nature.

Single Inheritance
Ruby supports single inheritance. A class has only one direct parent. Every class you defi ne is implicitly
a subclass of the Object class and, therefore, its instances are provided with a whole set of features out
of the box (for example, you already saw the to_s method).

When programming in C# or VB you have the concept of “multiple implementations” through interfaces,
to emulate the benefi ts of multiple inheritance. Ruby uses something called mixins, as explained later on.

74955book.indd List11774955book.indd List117 3/5/09 1:27:56 PM3/5/09 1:27:56 PM

118

Chapter 4: Programming Ruby

If you want to specify that class Child inherits from class Parent, you can use the < operator:

class Child < Parent
end

If Parent exposes many useful methods and attributes, Child will automatically inherit them “for
free.” This is what Rails uses for controllers and models. A controller looks like the following when
you’ve just created it:

class PostsController < ApplicationController
end

And this is an Active Record model:

class Post < ActiveRecord::Base
end

Now imagine that you have two classes, Child and Parent, defi ned as follows:

class Parent
 def my_method
 puts “I’m in Parent and self is #{self}“
 end

 def parent_method
 puts “I’m in the method defined in Parent only and self is #{self}“
 end
end

class Child < Parent
 def my_method
 puts “I’m in the overwritten Child method and self is #{self}“
 end
end

The parent_method is defi ned by Parent only, but it’s still accessible by instances of its subclass
Child. The fact that my_method is defi ned by both the Child class and its superclass (Parent) implies
that the respective objects call the version defi ned by their own class:

child = Child.new
parent = Parent.new

child.my_method
child.parent_method

parent.my_method
parent.parent_method

This prints:

I’m in the overwritten Child method and self is #<Child:0x3e08a28>
I’m in the method defined in Parent only and self is #<Child:0x3e08a28>
I’m in Parent and self is #<Parent:0x3e089d8>
I’m in the method defined in Parent only and self is #<Parent:0x3e089d8>

74955book.indd List11874955book.indd List118 3/5/09 1:27:56 PM3/5/09 1:27:56 PM

119

Chapter 4: Programming Ruby

Also notice how self is always a reference to the current object, no matter where the method that is
invoked from is defi ned.

In the previous section you defi ned a bank account class. This was the defi nition of its initialize
method:

class Account
 # ...

 def initialize(holder, ssn)
 @holder = holder
 @ssn = ssn
 @balance = 0
 end

 # ...
end

If you were to defi ne a class to represent a credit card account, you could inherit from the more generic
Account, but you would have to specify an Annual Percentage Rate (APR) for the account (obviously,
this is really simplifying the banking system here). So you might be tempted to write the following:

class CreditCard < Account
 # ...
 def initialize(holder, ssn, interest_rate)
 @holder = holder
 @ssn = ssn
 @balance = 0
 @apr = interest_rate
 end
 # ...
end

cc = CreditCard.new(“Jane Smith”, “123-45-6789”, 12.99)

This works but it’s not very DRY. The two initialize methods would be essentially identical if it
wasn’t for the @apr assignment. If the logic of the method changes in the future, you’d have to go and
change the same code in both classes. Ruby’s solution to this is the method super, as shown here:

class CreditCard < Account
 # ...
 def initialize(holder, ssn, interest_rate)
 super(holder, ssn)
 @apr = interest_rate
 end
 # ...
end

When you specify super(holder, ssn) in the initialize method, Ruby looks for an initialize
method in the superclass, and passes the two arguments specifi ed to it. In this case it executes the code
within Account’s initialize method, which sets both @holder and @ssn, and then “comes back” to
the method that called it, to continue the execution (in this case, by performing an assignment to the
instance variable @apr). When the method that Ruby is looking for does not exist in the immediate

74955book.indd List11974955book.indd List119 3/5/09 1:27:56 PM3/5/09 1:27:56 PM

120

Chapter 4: Programming Ruby

superclass, Ruby continues to search for it in each ancestor within the inheritance hierarchy until it fi nds
one that implements it (and raises an error if there are no classes that implement it). The exact method
resolution algorithm is more complex than this, though, and is explained in detail later in this chapter.

Monkey Patching
If you’ve worked with .NET, you’re probably familiar with the concept of sealed classes. C# uses the
sealed modifi er, whereas Visual Basic .NET uses NotInheritable; they both mean the same thing:
this class shall not be inherited from.

In Ruby things are much more open and dynamic. Not only can you inherit from any user-defi ned
class, core classes, and classes defi ned in the Core and Standard libraries, but you can actually reopen
classes and redefi ne existing methods or add your own methods and attributes, without touching the
initial defi nition of the class.

ActiveSupport
Rails’ internal code relies heavily on ActiveSupport, a collection of utility classes
and Ruby’s Standard Library extensions, which contains numerous useful features.
ActiveSupport is possible thanks to Ruby’s ability to reopen classes. The following
are a few basic examples of methods that are available only when the ActiveSupport
library has been loaded into your Ruby programs (and of course, ActiveSupport is
automatically available in Rails applications):

require ‘rubygems’
require ‘activesupport’

puts “my_table”.classify # Prints MyTable
puts “author_id”.humanize # Prints Author
puts “mouse”.pluralize # Prints mice

puts 2.days.ago # Prints something like Mon Jun 30
19:02:29 -0400 2008
puts 3.hours.from_now # Prints something like Wed Jul 02
22:02:29 -0400 2008

As you can see ActiveSupport is not only for Rails’ internal code, but you can use it in
your own programs and in Rails applications whenever it is convenient to do so.

Remember the Integer class (inherited by both Fixnum and Bignum) discussed in the previous chapter?
Now add an even? instance method to it:

class Integer
 def even?
 self & 1 == 0
 end
end

Believe it or not, you can now do the following:

puts 10.even? # Prints true
puts 15.even? # Prints false

74955book.indd List12074955book.indd List120 3/5/09 1:27:56 PM3/5/09 1:27:56 PM

121

Chapter 4: Programming Ruby

Notice how self is used to refer to the current instance within the method even?, to verify whether or
not it’s an even number.

Perhaps you’d like a squares iterator:

class Integer
 def squares
 self.times {|x| yield x**2 }
 end
end

10.squares {|n| print n, “ “ } # Prints 0 1 4 9 16 25 36 49 64 81

Or plug that each_even iterator you defi ned before for ranges, directly into the Array class (for a bit
of variety):

class Array
 def each_even
 self.each do |n|
 yield n if (n&1).zero?
 end
 end
end

[1,1,2,4,5,6,8,9,10,11,15].each_even {|x| print x, “ “ } # Prints 2 4 6 8 10

As you can see, this can be a very powerful feature and most people who learn about it for the fi rst time
think it’s extremely cool. Most Rails plugins rely on this technique (called Monkey Patching) to modify
the core behavior of Rails, which would otherwise be hard to customize. Monkey Patching is a useful
technique and in the Ruby community, unlike the Python one, it is usually not frowned upon. As a
developer you should always keep a balanced approach to programming though.

This technique can be easily abused, thus making it hard to fi nd bugs. For example, a library could
change the behavior of a core method and your program — which loads the library and relies on the
standard behavior of the method — will start to act differently from what you expected, for no appar-
ent reason.

With great power comes great responsibility. Always try to see if other techniques are suitable before
blindly applying Monkey Patching, which may appear to be the “easy way out.”

Singleton Methods and Eigenclasses
In Ruby you can defi ne methods that exist only for a specifi c instance. These methods are called singleton
methods, for example:

str = “A string”

def str.print
 puts self
end

74955book.indd List12174955book.indd List121 3/5/09 1:27:56 PM3/5/09 1:27:56 PM

122

Chapter 4: Programming Ruby

str.print # Prints A string

Raises a NoMethodError
“a different one”.print

Duck Typing
Monkey Patching is only one of the unusual names that you’ll hear in the Ruby com-
munity. Another common one is Duck Typing.

The gist of it is that in Ruby there is a tendency to consider objects based on their
behavior, as opposed to their type. In other words, more often than not, we care more
about what an object can do and what methods it implements, instead of its type. The
saying goes, “If it walks like a duck, and it talks like a duck, then it’s a duck.” It may
not be an actual duck, but Ruby is able to treat it as such.

If you defi ne the following method:

def put_them_together(a, b)
 a + b
end

it doesn’t particularly matter if a and b are two integers, two fl oats, an integer and a
fl oat, two complex numbers, two points of a plane, two strings, two arrays…as long as
they can be “added” through the + method/operator.

At times you may want to be more mindful and verify that a given object responds to
a certain method before trying to invoke it. The method respond_to? does just that:

10.respond_to?(:find) # false
“a string”.respond_to?(:find) # true
[1,2,3].respond_to?(:find) # true
(5..50).respond_to?(:find) # true

As you can see, the method name is prefi xed by the actual object that you’re defi ning it for (plus a dot).
If you defi ne such a method for a particular object and then try to call it for a different instance of the
same class, the method won’t be available and a NoMethodError will be raised.

Please note that the main Ruby implementation treats fi xnums and symbols as immediate values (they are
still objects, but are treated as values as opposed to references). This generally doesn’t affect you in any
way, but there is a small caveat; being immediate values, you won’t be able to defi ne a singleton method
for any of their objects. What’s more, for consistency reasons, the same is extended to any instance of the
Numeric class, thus:

a = 3

def a.print
 puts self
end

a.print # Raises a TypeError

74955book.indd List12274955book.indd List122 3/5/09 1:27:57 PM3/5/09 1:27:57 PM

123

Chapter 4: Programming Ruby

Class Methods
Having introduced singleton methods naturally brings us to class methods. Class methods are singleton
methods defi ned for an object that happens to be a class (or a module). In fact, in Ruby, even classes are
objects, because they are themselves instances of the Class class. What does this mean in practice?

Class methods must be invoked on a class (or a module), instead of an instance of the class. For example,
when you invoke File.open you are requesting the open class method on the class File, similarly to
how Math.cos means invoking the class method cos defi ned by the module Math. On the other hand,
“a string”.reverse or [“a”, “string”].join(‘ ‘) are calls to instance methods on receivers that
are “regular objects.”

Class methods in Ruby are essentially the same as static methods in C# and shared methods in
VB.NET. Given that class methods are just a particular form of singleton methods, the syntax for defi n-
ing them is quite different from the one in those languages though. You can defi ne them as follows:

class MyClass
 def self.my_name
 puts self.to_s
 end
end

MyClass.my_name # Prints MyClass

The object you are defi ning the singleton method my_name for is referenced by self. But as you have
seen before, self inside of a class and outside of an instance method refers to the class itself. So what
you are doing is the equivalent of saying: def MyClass.my_name (which would work as well, by the
way). Now you can call the my_name method on MyClass. Note also how self within the class method
just defi ned is still referencing MyClass, because there is no instance, and the “current object” is the
class itself, which acts as the receiver of the method invocation.

Class Variables Considered Harmful
Similarly to “static methods,” Ruby provides “static fi elds” as well. Ruby offers class
variables, which are variables defi ned at class level and prefi xed by two @@ symbols
(for example, @@counter).

Whenever a subclass modifi es the value of a class variable though, this is changed
for the base class and all of its subclasses as well; this is not always the desired out-
come and this lack of encapsulation can accidentally introduce hard-to-trace bugs
into the program.

Their usage is often discouraged in the Ruby community, and many avoid them
altogether, opting for class instance variables instead. These are instance variables
(a single @) that are defi ned at class level. Googling the subject should bring up a
series of discussions on the topic.

On a side note, global variables prefi xed by the $ sign (for example, $my_directory)
are accessible in any scope within an application and their use tends to be discouraged
as well.

You can use class variables if you have to, even Rails uses them internally, but do so
with care.

74955book.indd List12374955book.indd List123 3/5/09 1:27:57 PM3/5/09 1:27:57 PM

124

Chapter 4: Programming Ruby

As you would probably expect, invoking a class method of a class on an instance of that class raises
an error:

m = MyClass.new
m.my_name # Raises a NoMethodError

Eigenclasses
Whenever you defi ne a singleton method for a particular object, this gets stored in an anonymous class
associated with that object. This special type of class is often called eigenclass, but can also be referred
to as singleton class, metaclass, or even ghost class.

Ruby offers a shorthand notation for explicitly opening the eigenclass of a given object:

class << obj
 #...
end

Any method defi ned within that eigenclass will of course be a singleton method for obj, as shown in
the following example:

beats = [“Ginsberg”, “Kerouac”, “Burrough”, “Corso”]

class << beats
 def list
 self.join(“, “)
 end
end

puts beats.list # Prints Ginsberg, Kerouac, Burrough, Corso
puts [1,2,3].list # Raises a NoMethodError

This is a handier way of defi ning several singleton methods at once without having to prefi x each defi -
nition with obj. (for example, obj.method1, obj.method2, and so on).

A distinction between singleton methods defi ned on common objects and those defi ned on class objects
(hence class methods) is that the eigenclasses associated with a class object can have a superclass, plus
ancestor classes. Understanding this distinction will help you better understand Ruby’s lookup method
algorithm, as explained later in this chapter.

The same technique can be applied to defi ne class methods en masse (remember, class methods are
singleton methods for a class object). Assuming that you defi ned a MyClass class, you can defi ne new
class methods for it by opening its eigenclass:

class << MyClass
 def method1
 # ...
 end

 def method2
 # ...
 end

74955book.indd List12474955book.indd List124 3/5/09 1:27:57 PM3/5/09 1:27:57 PM

125

Chapter 4: Programming Ruby

 def method3
 # ...
 end
end

MyClass.method1
MyClass.method2
MyClass.method3

Or perhaps more commonly:

class MyClass
 # ...
 # Some instance methods
 #...

 # Class methods
 class << self
 def method1
 # ...
 end

 def method2
 # ...
 end

 def method3
 # ...
 end
 end
end

MyClass.method1
MyClass.method2
MyClass.method3

Notice how class << self is equivalent to class << MyClass because self within that point of the
class defi nition references to MyClass.

Again, this is shorthand that spares you from defi ning each class method by prefi xing it with self.:

Equivalent to the previous definition
class MyClass
 # ...
 # Some instance methods
 # ...

 # Class methods
 def self.method1
 # ...
 end

 def self.method2
 # ...
 end

74955book.indd List12574955book.indd List125 3/5/09 1:27:57 PM3/5/09 1:27:57 PM

126

Chapter 4: Programming Ruby

 def self.method3
 # ...
 end
end

MyClass.method1
MyClass.method2
MyClass.method3

The class << self idiom is extremely common, but a style consideration is in order. When you defi ne
several singleton methods at once directly in the eigenclass, you may have code that spans many lines, so
it may not be so obvious that a method you’re looking at is a class method (because it’s defi ned between
class << self and end) and not an instance method. For the sake of readability it is usually better to
defi ne class methods explicitly by prefi xing them with self.

As you advance with your knowledge of Ruby, you’ll realize that the ability to open eigenclasses still
comes in handy on a few occasions, especially when doing metaprogramming.

Modules and Mixins
The word “module” has been mentioned here and there a few times so far. It’s time to take a closer look
at a fundamental part of Ruby programming.

As mentioned before, modules serve two purposes. They act as namespaces that prevent name collision
and are used as a way to add functionalities to classes that would otherwise be limited by the single
inheritance nature of Ruby’s object model.

A series of similarities between classes and modules are as follows:

Classes are constants and so are modules. ❑

Classes are defi ned through the ❑ class keyword and modules are defi ned with the module
keyword.

Classes are instances of the ❑ Class class, and modules are instances of the Module class.

Classes act as namespaces. Two identical methods defi ned within two unrelated classes are not ❑

going to pose a problem. The same is true for modules.

Classes can be nested, and so can modules. ❑

The ❑ Class class inherits from the Module class, so it can be said that every class is also a module.

On the other hand, a few fundamental differences also exist:

Classes can be instantiated. Modules cannot. ❑

Classes can have a superclass and subclasses; as such they yield a hierarchy tree. Modules do ❑

not, because they don’t have a parent or any children.

Modules can be used as mixins, but classes cannot. ❑

74955book.indd List12674955book.indd List126 3/5/09 1:27:57 PM3/5/09 1:27:57 PM

127

Chapter 4: Programming Ruby

Modules Act as Namespaces
If you are a .NET developer, you are no doubt familiar with the concept of namespaces. The basic idea
is to group constants, variables, methods, and classes into well-organized units. In C# and VB you’d use
namespace, in Ruby you use module:

module MyModel
end

Modules, like classes, are constants, and as such need to start with a capital letter. It is also customary
to adopt the CamelCase notation for module names (just as it is for classes).

Now defi ne a module and a constant as follows:

module Physics
 EARTH_MASS = 5.9742e24 # In Kg
end

How do you access that constant now? In Ruby you access methods through a dot operator and con-
stants through ::. This means that you’ll have access to the value of that EARTH_MASS constant in the
following way:

puts Physics::EARTH_MASS # Prints 5.9742e+024

You could start to add a series of constants to the module; in fact, given its name, it is plausible to
assume that the module would take care of a lot of physics-related functionalities. Imagine that this
module would be developed to contain dozens of physics constants, a few classes, and many methods.
It would be much better to organize all the physics constants into a module called Constants.

Modules can be nested, so you can achieve this quite easily. For example:

module Physics
 module Constants
 EARTH_MASS = 5.9742e24 # Kg
 # ...
 AVOGADRO = 6.0221415e23 # mol^-1
 # ...
 end
end

Now how can you get access to the value of EARTH_MASS or AVOGADRO? Again, in Ruby you access con-
stants through the :: operator; it doesn’t matter if the constant happens to be a numeric one, a class, or
a module. You start with the name of the outermost module (Physics), add a couple of colons to access
the constant/module Constants, and fi nally, add another pair of colons to gain access to the two con-
stants EARTH_MASS and AVOGADRO:

puts Physics::Constants::EARTH_MASS # Prints 5.9742e+024
puts Physics::Constants::AVOGADRO # Prints 6.0221415e+023

74955book.indd List12774955book.indd List127 3/5/09 1:27:57 PM3/5/09 1:27:57 PM

128

Chapter 4: Programming Ruby

You can nest modules by simply nesting their defi nitions:

module A
 # ... A ...
 module B
 # ... B ...
 module C
 # ... C ...
 module D
 # ... D ...
 end
 end
 end

 module F
 # ... F ...
 end
end

As long as the intermediary modules are already defi ned (A::F in this case), you can also defi ne a
nested module in this way:

module A::F::G
 # ...
end

Generally speaking you wouldn’t want to overdo it, but two or three nested namespaces are not
uncommon.

“Standalone” class methods can be defi ned within modules in the usual “singleton manner”:

module MyModule
 def self.method1
 end

 def self.method2
 end

 def self.method3
 end
end

Or alternatively:

module MyModule
 def MyModule.method1
 end

 def MyModule.method2
 end

 def MyModule.method3
 end
end

74955book.indd List12874955book.indd List128 3/5/09 1:27:57 PM3/5/09 1:27:57 PM

129

Chapter 4: Programming Ruby

In both equivalent cases, the dot operator is used to access the method directly contained in a
namespace:

MyModule.method1

If MyModule were a module nested within, say, AnotherModule, then method1 would be accessible
through MyModule::AnotherModule.method1. AnotherModule::MyModule is the receiver for the
method.

Class methods defi ned within modules, just like class methods defi ned for classes, can share data
through class variables (for example, @@var). Modules don’t inherit from each other, so using them
inside of the defi nitions of class methods within modules (but outside of classes) makes them less risky.

Modules can also contain classes, as you’d probably expect if you are coming from a .NET background.

Just as for the classes, you can reopen modules as well, and monkey patch them if needed.

Before moving onto the real deal with modules (their usage as mixins) you should know how you can
load Ruby fi les (including those that contain modules). Assume that you defi ned the Physics module
within a physics.rb fi le.

The name of a fi le can be arbitrary and contain any Ruby code you like. If your fi le contains only one
main module (and its possible nested modules and classes) though, it is customary to call the fi le with
the name of that module (in lowercase).

To load it from a program in the same directory, you can run:

require ‘physics’

The fi le will actually be loaded only once, and all of its content (modules, classes, methods, and so on)
will be available in your program.

require accepts absolute paths as well. See ri Kernel#require for more information about this.

Modules Act as Mixins
Modules are a powerful tool in the hands of a competent Ruby programmer, because they can act as
mixins. You won’t fi nd “mixins” in the dictionary, but the term comes from “mix” and “in,” which is a
very apt description of what modules can do; they can add functionalities to existing classes by “mix-
ing in” a series of methods.

Mixins are modules whose code can be included in a class (and in another module). Consider a basic
example. The following is a module with a method:

module Logger
 def log
 puts “#{Time.now}: #{self.inspect}“
 end
end

74955book.indd List12974955book.indd List129 3/5/09 1:27:57 PM3/5/09 1:27:57 PM

130

Chapter 4: Programming Ruby

All the log method does is print the current time and object. Note how this method is not a class
method (because it wasn’t defi ned as self.log or Logger). log is an instance method and you can’t
really instantiate modules. What this means is that you are not able to invoke Logger.log. What you
can do, though, is to add the functionalities of the Logger module to a class, by adding its instance
methods to the class. In this example, the added feature will just be the log method, but the same prin-
ciple applies to arbitrarily complex code as well.

You can include the module within any class:

class Array
 include Logger
end

This adds the instance method log to the class Array. Now you can run:

array = []
10.times { array << rand(100) }
array.sort!
array.log

and obtain something that resembles this in your output:

Wed Jul 02 00:31:32 -0400 2008: [5, 38, 47, 51, 63, 73, 83, 84, 90, 95]

Interestingly, you can verify that array.is_a? Logger evaluates to true, whereas array.
instance_of? Logger will return false.

Notice that the method is general enough to be used by any class. By defi ning it in a mixin, instead of
a specifi c class, you can include that functionality in any class that may need it. This turns out to be
extremely powerful, even if the simplicity of the example may be misleading and cause you to think
otherwise. A class can include several mixins, and as such obtain functionalities derived from several
modules. This approach is simple, fl exible, and essentially provides the benefi ts of multiple inheritance.

Classes like Range, Array, and Hash all include the Enumerable module, whereas String (at least in
Ruby 1.8) includes both Comparable and Enumerable. Enumerable is defi nitely one of the most used
mixins. The reason for this is that it provides many iterators “for free” to your classes, as long as you
implement a required each method. If you do, Enumerable can infer the right behavior for its iterators.

To include multiple mixins, you can pass a list to include:

class MyClass
 include Enumerable, Comparable, MyCustomMixin
end

include Versus extend
A lot of concepts were introduced in the past couple of sections, so let’s recap the type of methods that
you can defi ne directly inside of a module. If you defi ne a singleton method in the module (for example,
def self.my_method), you can then invoke it like a utility function, with the module as a receiver
(for example, MyModule.my_method) acting mainly as a namespace for logically similar functions/
methods. If you defi ne an instance method in the module (for example, def my_method), you can

74955book.indd List13074955book.indd List130 3/5/09 1:27:57 PM3/5/09 1:27:57 PM

131

Chapter 4: Programming Ruby

then add it to classes as an instance method by passing the mixin (that is, the name of the module) to
include within the defi nition of the class.

You may notice that a third type of method is missing. What about actual singleton methods that can be
invoked on a specifi c object, or perhaps more interestingly, on a class object? Yes, having arrived at this
point, you are essentially missing a way to defi ne class methods that are invoked on actual classes.

Ruby provides you with extend exactly for that purpose:

class MyClass
 extend Logger
end

MyClass.log

Notice how the method log, defi ned as an “instance method” in the module Logger, becomes a class
method of the MyClass class. Behind the scenes, all the instance methods defi ned in Logger get added
to the eigenclass of MyClass. This means that, if instead of doing it with a class object, you added extend
Logger to a specifi c instance of an object, the methods would become regular singleton methods for that
object. For most practical purposes, just remember: use include to obtain instance methods, and extend
to get class methods for your class.

Investigate the module_function method if you’d like to automatically obtain a method that can
be called on a module (for example, MyModule.my_method) from an instance method that you
defi ned in the module. This way, you’ll be able to obtain mixin behavior with include/extend
in your classes, while still being able to access the methods like you would with a module that acts
purely as a namespace.

Metaprogramming
Metaprogramming is defi ned as the act of programming code that is able to manipulate itself (or other
code). A practical example of this showed up a few sections ago when you used methods such as attr_
accessor to dynamically obtain getter and setter methods for instance variables. The ability to reopen
classes, defi ne classes and methods conditionally, and call methods that get defi ned when fi rst invoked,
are all good examples of Ruby’s metaprogramming abilities.

Metaprogramming is generally encouraged within the Ruby community partially because it’s particu-
larly useful when defi ning Domain Specifi c Languages (DSLs). Most Ruby developers would agree
that powerful metaprogramming techniques should not be abused when writing code that may end up
becoming “too clever for its own good,” but that a decent mastery of the subject can really separate a
beginner from a pro Ruby programmer.

Rails makes extensive use of metaprogramming in its implementation, and you are encouraged to explore
the topic further on your own once you’ve gained more confi dence with Ruby and Rails. Even as a Rails
developer (as opposed to a Rails implementer), metaprogramming can be very useful, particularly when
you want to start creating and publishing your own plugins. It’s important to provide you with one quick
example though, in order to understand how ActiveRecord’s dynamic fi nders work. If you have a User
model with a user_name and a password attribute, in ActiveRecord you could issue the following:

@user = User.find_by_user_name_and_password(“acangiano”, “secret”)

74955book.indd List13174955book.indd List131 3/5/09 1:27:58 PM3/5/09 1:27:58 PM

132

Chapter 4: Programming Ruby

No matter where you look in ActiveRecord’s code you won’t fi nd a find_by_user_name_and_password
method. This method gets created on the spot, the fi rst time that it’s invoked. This is mainly possible
thanks to two metaprogramming features of Ruby: method_missing and the ability to dynamically
defi ne methods (this can be accomplished in more than one way).

method_missing is a special method that gets invoked whenever a requested method cannot be found
by the receiver. By default method_missing will just raise a NoMethodError error, but it can be over-
written and customized to implement your own logic. The following example verifi es that method_
missing gets invoked when you send an undefi ned method name to the receiver:

class String
 def method_missing(method_id, *args)
 puts “Don’t know how to handle #{method_id}.”
 end
end

“A string”.matz

The “A string” object doesn’t know how to handle the method matz, so method_missing (the over-
written version) is invoked. This is the output of the preceding snippet:

Don’t know how to handle matz.

The fi rst argument of method_missing is a symbol that represents the name of the unknown method,
and the second argument stores a variable number of arguments in the args variable (here they are
called method_id and args, but they are just parameters; you can call them however you please). If
you wanted to handle a possible block passed to the method, you could use the usual third &block
parameter.

This example kept things simple and printed a message, but within that method_missing method
you could write elaborate logic to handle situations where a method is unknown to its receiver. Behind
the scenes that’s exactly what ActiveRecord does with dynamic fi nders, and it employs class_eval, a
method used to dynamically add methods to classes.

Method Name Resolution
Instance methods, singleton methods (including class methods), objects, classes, eigenclasses, modules
that act as mixins, super, method_missing… How does a receiver know where to fi nd a method? The
Ruby interpreter uses a specifi c algorithm to look up methods. Consider the following method invocation:

[1,2,3].method1

Assume that we haven’t defi ned method1 anywhere for that array.

Ruby will follow each step until it fi nds a matching method:

 1. Look into the eigenclass of that particular instance. Is method1 defi ned in there?

74955book.indd List13274955book.indd List132 3/5/09 1:27:58 PM3/5/09 1:27:58 PM

133

Chapter 4: Programming Ruby

 2. Is there an instance method method1 defi ned by the Array class?

 3. Does the mixin Enumerable, included in the class Array, have a method1?

 4. Does the superclass of Array (that is, Object) include a method1?

 5. Does the mixin Kernel, included by the superclass Object, include method1?

 6. Starting from the eigenclass, and through all the classes and modules in the order presented
here (eigenclass, Array, Enumerable, Object, Kernel), is method_missing defi ned?
Yes, the fi rst method_missing is defi ned by the Kernel mixin and can therefore be invoked.
method_missing will raise a NoMethodError error.

If you were to run [1,2,3].length, the method name resolution algorithm would stop at the second step.

You can see the ancestor of a class, including its mixins, through the ancestors method. For example
String.ancestors returns [String, Enumerable, Comparable, Object, Kernel].

Class method lookup works in almost the same manner, which is not surprising if you consider that a
class method is just a singleton method where the associated object is an instance of Class. As mentioned
before, the main difference is that class methods are defi ned in eigenclasses that can have superclasses. So
if you defi ne a class method in Object and a class method in Array, Object’s eigenclass is going to be a
superclass of Array’s eigenclass. As such, instead of going from step 1 to step 2, the algorithm introduces
an intermediary step, which is used to search for a singleton method (a class method) within the super-
class of the eigenclass associated with the receiver, and all of the ancestor eigenclasses in the hierarchy
tree, before moving on to step 2 (which becomes step 3, as a matter of fact).

Realistically, this is more than you need to know at this stage. But it’s included so that you can come
back to it at a later stage.

Alternative Ruby Implementations
When we talk about Ruby it’s common to assume that we are referring to the latest stable version of
Matz’s interpreter. It is important to keep in mind that Ruby is a programming language, not a single
implementation. Several alternative implementations have popped up over the past few years, thanks to
the incredible success that Rails brought to the language. Most of them were aimed toward fi xing Ruby’s
main Achilles’ heel, the speed of its most commonly used interpreter. But the world of alternative imple-
mentations is so much more than that, and each of them is characterized by particular strengths and
weaknesses. Every year new implementations are released and thus there is a form of natural selection in
place, which will end up whittling the selection down to a few established players that will become some-
what commonly used. In their wake, many others will fall to the wayside and end up being used far less
routinely. The following list introduces you to the ones that are today’s main players:

I periodically run shootouts among all these implementations. You can fi nd them on my blog at
http://antoniocangiano.com.

Ruby 1.9 ❑ is the next version of Ruby. In this version, the heart of Ruby has been replaced with a
bytecode interpreter known as YARV (Yet Another Ruby VM). It has support for Rails and it’s
about three times faster than Ruby 1.8.6, according to a series of micro-benchmarks that I run
periodically. Unfortunately other benchmarks have shown that Rails applications running on
Ruby 1.9 don’t gain nearly as much speed. But that said, it’s still a huge improvement over the

74955book.indd List13374955book.indd List133 3/5/09 1:27:58 PM3/5/09 1:27:58 PM

134

Chapter 4: Programming Ruby

current interpreter nevertheless, especially if you consider that a few design fl aws of the lan-
guage are being addressed as well.

JRuby ❑ is an implementation of Ruby for the JVM, which is aimed at being fast and providing
integration with the Java world. It is the oldest and probably most mature alternative imple-
mentation, and it has been able to run Rails since 2006.

Rubinius ❑ is a compiler and Smalltalk-like virtual machine for Ruby. The focus of this VM is on
correctness, extensibility, and speed. The development team, joined also by other VM implement-
ers, did a great job in creating specs for the Ruby language (which unfortunately, lacks a formal
grammar). In 2008, Rubinius was able to introduce preliminary support for Rails applications.

MagLev ❑ is the youngest of the lot, but was able to wow the audience at RailsConf 2008, thanks
to its impressive results during a series of micro-benchmarks. At the time of this writing it is
not yet publicly available, or able to run Rails. But I have tried it and can confi rm that it’s a
promising project with the potential to do very well in terms of performance. It’s developed by
Gemstone, a well-known company in the world of Smalltalk, and may become a commercial
product with a free version available as well. The basic idea behind this project is that Ruby is
not all that different from Smalltalk, and as such, Gemstone should be able to leverage their
experience in delivering a fast and scalable platform for Smalltalk, even when applied to Ruby.

MacRuby ❑ is an implementation of Ruby 1.9 in Objective-C, developed by Apple, Inc. Its goal
is to become a fast replacement for RubyCocoa when it comes to writing Ruby applications for
Mac, and at the time of this writing, is not able to run Rails applications yet.

IronRuby ❑ is a version of Ruby implemented by Microsoft. It’s built on top of the Dynamic
Language Runtime (DLR), which in turn sits atop of the CLR. If you are a .NET developer,
this is the alternative implementation that should interest you the most, given that when a
stable version is released, it will allow you to write Rails applications that can take advantage
of Silverlight and the .NET Framework. This would be the best of both worlds, as long as you
haven’t decided to abandon the .NET ship altogether. At the time of this writing, IronRuby has
added preliminary support for both Rails and Silverlight.

A similar project that was sponsored by Microsoft is Ruby.NET (based on the CLR). Though it is clear
that IronRuby is going to become the de facto standard for Ruby on .NET, particularly after the head of
the project left Ruby.NET and joined IronRuby, few developers do try to actively keep the Ruby.NET
project alive, but its future is uncertain at best. I recommend that you explore the IronRuby possibility
fi rst, if you are interested in the interoperability between Ruby and the Microsoft world.

Summary
Hefty tomes have been written on the subject of Ruby programming (see Appendix A), and this and the
previous chapters alone cannot possibly do Ruby full justice, particularly when it comes to advanced
topics (such as metaprogramming).

Ruby’s coverage within this book is meant to be a solid language foundation upon which you can approach
the world of Rails. Whenever the need for further Ruby-specifi c knowledge arises throughout the book, I
have ensured that I’ve covered it by augmenting topics that have already been covered in the current and
prior chapter.

In the next chapter you fi nally get to play with Rails, and I’ll guide you step-by-step as you create a
basic sample application to illustrate how Rails is used and how it works in practice.

74955book.indd List13474955book.indd List134 3/5/09 1:27:58 PM3/5/09 1:27:58 PM

A Working Sample
Ruby on Rails is astounding. Using it is like watching a kung-fu movie, where a

dozen bad-ass frameworks prepare to beat up the little newcomer only to be handed
their asses in a variety of imaginative ways.

— Nathan Torkington, O’Reilly Program Chair for OSCON

The fi rst two chapters provided an overview of Rails, and the last two gave you a good taste of what
programming in Ruby is like. In this chapter the action begins and you start creating a simple blog
engine in Rails. It’s admittedly not a very original project, but it’s a great example for learning Rails’
basics. It’s simple enough to be explained in a chapter or two, and substantial enough to explore a
lot of Rails concepts and how to apply them in practice to write real Web applications.

Creating a New Rails Application
If you were to create a new ASP.NET application, you would typically reach for Visual Studio or its
free counterpart Visual Web Developer 2008 Express Edition, in order to produce a new ASP.NET
website. The solution and project generated would essentially be an almost empty container for the
items that you’d add as you developed the application.

With Rails you reach for the command line and invoke the rails command, unless you are
using one of the available IDEs that does that behind the scenes for you. Unlike Visual Studio,
this command generates several folders and fi les that act as the skeleton of your application.

In Rails there is a lot of magic going on. This improves productivity but can also
be intimidating to newcomers. When doing Rails development, always keep a
tab open on the offi cial API documentation (http://api.rubyonrails.org) or
equivalent sites such as http://apidock.com/rails.

74955book.indd List13574955book.indd List135 3/4/09 8:46:13 AM3/4/09 8:46:13 AM

136

Chapter 5: A Working Sample

The rails Command
You can use the rails command to create your blog application:

C:\projects> rails blog

This creates a blog directory in the current one (C:\projects in this case) and also prints a list of
directories and fi les that are generated, as shown in Figure 5-1.

Figure 5-1

You use cd to step into the blog directory that was just generated by the rails command:

C:\projects> cd blog

The directory structure is shown in Figure 5-2. In this chapter you get to interact with several of these
directories, in particular with app, where most of the application resides, and config, where the con-
fi guration of the application is found. The next chapter presents a more systematic explanation of all the
remaining folders.

Figure 5-2

74955book.indd List13674955book.indd List136 3/4/09 8:46:14 AM3/4/09 8:46:14 AM

137

Chapter 5: A Working Sample

Forward Slash Versus Backslash
If you are using Windows, the path to the database.yml fi le is config\database.yml.
If you happen to use a *nix system, the path will be config/database.yml. This raises
the issue of forward slash (which is cross-platform) and backslash (which is Windows
specifi c).

Given the target audience for this book I will adopt the following convention: I’ll use
the backslash when describing folder and fi le paths in the text, and use the forward
slash in the commands. The reason for this is that I’d like to keep the commands cross-
platform, in case you are following the book from GNU/Linux or a Mac.

In reality Rails’ scripts understand both type of slashes, so as you type along on your
Windows machine, it may be easier to use the backslash rather than forward slash,
because the command prompt will give you proper auto-completion by pressing the
Tab key.

confi g\database.yml
The database credentials in a Rails application are stored in config\database.yml by default. Listing 5-1
shows the one generated by the previous rails command (available for download as listing0501.yml).

Listing 5-1: Default confi g\database.yml for SQLite3

SQLite version 3.x
gem install sqlite3-ruby (not necessary on OS X Leopard)
development:
 adapter: sqlite3
 database: db/development.sqlite3
 pool: 5
 timeout: 5000

Warning: The database defined as “test” will be erased and
re-generated from your development database when you run “rake”.
Do not set this db to the same as development or production.
test:
 adapter: sqlite3
 database: db/test.sqlite3
 pool: 5
 timeout: 5000

production:
 adapter: sqlite3
 database: db/production.sqlite3
 pool: 5
 timeout: 5000

As you can see this is not XML but a very readable YAML (recursive acronym for YAML Ain’t a Markup
Language) fi le. Ruby ships with support for reading and writing YAML fi les and this format is often
favored over XML in the Ruby and Rails communities.

74955book.indd List13774955book.indd List137 3/4/09 8:46:14 AM3/4/09 8:46:14 AM

138

Chapter 5: A Working Sample

You’ll also notice that adapter, database, and timeout are provided for each of the three environments:
development, test, and production. These three environments are independent of each other, so in
theory you could use SQLite3 for development, SQL Server for production, and MySQL for testing. Of
course this doesn’t generally make much sense and it’s not recommended, but it illustrates how each envi-
ronment can be treated as a separate world independently from the others. Furthermore, it clearly high-
lights how Rails’ database abstraction allows you to write Ruby code while all the heavy lifting is done for
you, regardless of what database environment you ultimately end up using.

Depending on whether you’re in development mode, production mode, or test mode, Rails will employ
the right database and other supported options, as specifi ed (for example, the 5 seconds timeout or the
size of the connection pool). In this particular case, given that sqlite3 is Rails’ default adapter, there
isn’t very much to specify, because you don’t have to provide a username and password, nor the details
to reach a remote host that is running your databases.

Had you decided to employ MySQL instead, you would have run the rails command with the –d
option and passed the name of the adapter required (that is, -d mysql). Even though SQLite, MySQL,
and PostgreSQL are the only databases for which the adapter ships directly with Rails, the -d option
currently accepts the following adapters: mysql, sqlite2, sqlite3, postgresql, oracle, frontbase,
and ibm_db (for DB2). If you are using SQL Server, for example, you will have to skip the -d option and
manually modify the database.yml.

Running rails blog -d mysql would have generated the database.yml as shown in Listing 5-2
(available for download as listing0502.yml) for you.

Listing 5-2 strips all the comments from the fi le for improved clarity on the printed page.

Listing 5-2: Default confi g\database.yml for MySQL

development:
 adapter: mysql
 encoding: utf8
 database: blog_development
 pool: 5
 username: root
 password:
 host: localhost

test:
 adapter: mysql
 encoding: utf8
 database: blog_test
 pool: 5
 username: root
 password:
 host: localhost

production:
 adapter: mysql
 encoding: utf8
 database: blog_production
 pool: 5
 username: root
 password:
 host: localhost

74955book.indd List13874955book.indd List138 3/4/09 8:46:14 AM3/4/09 8:46:14 AM

139

Chapter 5: A Working Sample

The database name for each of the three environments is automatically generated based on the name of
the application and the environment at hand. The default host name is localhost, and in the specifi c
case of MySQL there is an encoding parameter set to utf-8 to support internationalization.

If you were using a remote MySQL database, you could specify the host IP or name and optionally its
port number.

Compare this approach with the option of adding a connection string to a Web.config XML fi le and
you’ll start to realize how Rails consistently tries to make things easy for the developer from the begin-
ning. You provide the user credentials, specify the database and its location, and you’re set. In this case,
using SQLite3 practically means that you don’t even have to touch the database.ymlfi le at all.

Creating Databases
Rails generates and populates a confi guration fi le for your databases, but it doesn’t automatically create
the actual databases for you. In order to create the databases you have two options. You could create them
independently from Rails, for example, by using the sqlite3 command for SQLite3 databases, or SQL
Server Management Studio for SQL Server databases. This approach works, but Rails provides a handier
option when the databases that need to be created are local to the machine that’s running Rails. You can
create local databases using a Rake task.

Rake is a build tool, just like Microsoft nmake and NAnt. It allows you to defi ne a series of tasks in
Ruby that perform certain actions for you. As you can imagine, Rails ships with a whole set of useful
Rake tasks to help out while developing applications. To create all the local databases specifi ed in the
database.yml fi le, run the following:

C:\projects\blog> rake db:create:all

Similarly, you can drop all the local databases with rake db:drop:all. If you want to create or drop the
database for a specifi c environment only, use rake db:create and rake db:drop, respectively. In Rails,
the default environment is development, so if you execute those two Rake tasks without specifying an
argument, they will create and drop the local development database, respectively. If you want to explicitly
specify that, say, the production database should be created or dropped (be careful with dropping actual
production databases), you can pass a RAILS_ENV=production argument to the tasks (for example, rake
db:create RAILS_ENV=production).

To display a complete list of Rake tasks that are available in a given Rails application, you can run
rake -T. You can also limit the list of tasks to those that contain a given word as shown here:

C:\projects\blog> rake -T notes
(in C:/projects/blog)
rake notes # Enumerate all annotations
rake notes:custom # Enumerate a custom annotation, specify with ANNOTATI...
rake notes:fixme # Enumerate all FIXME annotations
rake notes:optimize # Enumerate all OPTIMIZE annotations
rake notes:todo # Enumerate all TODO annotations

By the way, the tasks in the output are used to retrieve all the FIXME, OPTIMIZE, and TODO or custom
comments embedded in your Rails application’s code, in a similar manner to how you’d use the Task
List in Visual Studio.

74955book.indd List13974955book.indd List139 3/4/09 8:46:14 AM3/4/09 8:46:14 AM

140

Chapter 5: A Working Sample

Scaffolding and Migrations
You can get a head start on building your simple blog engine by employing the scaffold generator.
The guiding idea behind scaffolding is that you can use it to obtain a basic CRUD application that dis-
plays and manipulates the data within a table, without having to write a single line of code (as briefl y
seen in Chapter 1). This then becomes a foundation that can be customized and which allows you to
build a more complex application that looks and behaves the way you want it to.

As a bare minimum your blog will need to allow you to list, show, create, delete, and edit articles.
For each article, you should keep track of its title (which is a string), body (which is a bunch of text),
whether or not it is published already (so a Boolean) and its publication date and time. To translate
this idea into an actual application, go ahead and run the following command:

C:\projects\blog> ruby script/generate scaffold article title:string body:text
published:boolean published_at:datetime

article is the resource, and the pairs title:string, body:text, published:boolean, and
published_at:datetime specify its attributes and their data types.

The output of this command resembles the following (except that the exists lines have been removed
for clarity):

 create app/views/articles
 create app/views/articles/index.html.erb
 create app/views/articles/show.html.erb
 create app/views/articles/new.html.erb
 create app/views/articles/edit.html.erb
 create app/views/layouts/articles.html.erb
 create public/stylesheets/scaffold.css
 create app/controllers/articles_controller.rb
 create test/functional/articles_controller_test.rb
 create app/helpers/articles_helper.rb
 route map.resources :articles
 dependency model
 create app/models/article.rb
 create test/unit/article_test.rb
 create test/fixtures/articles.yml
 create db/migrate
 create db/migrate/20080710224642_create_articles.rb

The scaffold generator creates folders and fi les for the ArticlesController, the Article model,
and the view layer. It generates a few basic functional tests (for testing the controller) and unit tests (for
testing the model), and modifi es the config\routes.rb fi le to map URLs to actions in the controller.
Each of these are analyzed in detail, but focus fi rst on the last two highlighted lines.

Migrations
The scaffold generator created a migrate directory inside the db one. Within it, it placed a fi le called,
in this specifi c case, 20080710224642_create_articles.rb.

74955book.indd List14074955book.indd List140 3/4/09 8:46:14 AM3/4/09 8:46:14 AM

141

Chapter 5: A Working Sample

The fi le name is determined by a timestamp of the UTC time of creation, and the name of the table it
will create, based on the resource (for example, article) you passed as an argument to the scaffold
generator. The numeric part of your fi le name will therefore defi nitely be different. If it isn’t, two of the
following things are possible. Your computer time is wrong and you miraculously managed to get the
same timestamp, in which case I suggest that you buy a lottery ticket; or you’re a time traveler and I
suggest that you go back to mid 2004 and start studying Rails back then. That too is arguably one way
to win a lottery of sorts.

Using Ruby to Defi ne Tables
This fi le defi nes the structure of the articles table with Ruby code. Take a look at the code of the
20080710224642_create_articles.rb fi le, which is automatically generated for you:

class CreateArticles < ActiveRecord::Migration
 def self.up
 create_table :articles do |t|
 t.string :title
 t.text :body
 t.boolean :published
 t.datetime :published_at

 t.timestamps
 end
 end

 def self.down
 drop_table :articles
 end
end

The create_table method on the third line is used in its block form. It accepts the table name as a sym-
bol (that is, :articles) or a string (that is, “articles”), a series of options (missing in this particular
case), and a block in which you can defi ne columns by using the syntax t.datatype :column_name,
where t is the argument of the block and it represents the table defi nition. Each column defi nition can
have a series of options as well (not shown in this snippet of code).

You may notice that the scaffold generator added a t.timestamps line as well. This adds two special
columns called created_at and updated_at that are automatically handled by Rails. The fi rst stores
the date and time for when an instance of the Article model (a row) gets created, and the second one
stores the date and time of its last update. You can remove this feature if you wish, but there is usually
no harm in keeping it.

You might be wondering why we needed to specify a published_at attribute, if we have a created_at
column “for free.” In general we don’t, but in this particular case I wanted to provide the author of the blog
with the ability to schedule the publication of a post in the future, as you’ll see later on.

Rails Data Types
The mapping of Rails data types with the actual database types is defi ned within the Active Record’s
adapter for the database that’s in use. For example, the DB2 adapter I created for IBM supports an xml
data type, but this will not be available for your SQLite3 database.

74955book.indd List14174955book.indd List141 3/4/09 8:46:14 AM3/4/09 8:46:14 AM

142

Chapter 5: A Working Sample

A few exceptions aside though, the following data types are native: binary, boolean, date, datetime,
decimal, float, integer, string, text, time, and timestamp. There is also a special type called
primary_key.

string is usually implemented as a varchar (or equivalent) with a default limit of 255 characters.
This limit can be overwritten by passing a hash of options containing the :limit symbol as a key to
the column defi nition method (for example, t.string :name, :limit => 80) to the string.

The following are the available options when it comes to defi ning columns:

:limit ❑ defi nes the maximum length for the column. This option is supported by default by the
following data types: string, text, integer, and binary.

:default ❑ defi nes the default value for the column. If NULL is the desired default value, use
:default => nil.

:null ❑ defi nes whether or not null values are accepted in the column. By default they are
(except for primary_key, of course), but you can specify :null => false if you wish to not
permit them.

:precision ❑ and :scale are two options for decimal columns. They can be used indepen-
dently, but often go together (for example, t.decimal :budget, :precision => 15,
:scale => 2).

You may be confused by date, datetime, timestamp, and time all being very similar data types. The
sqlite3 adapter, for example, maps all of them, except date, to the SQL datetime data type, so you
might as well consider timestamp and time as aliases for datetime. Other adapters (like mysql and
postgresql) may map datetime and timestamp to the same SQL data type, but have date and time
mapped to distinct SQL data types. Don’t worry too much about this though, because you can always
inspect a table to verify what these “abstract” data types actually map to in the defi nition of your table
in the database.

As a Microsoft developer you are probably interested in the mapping of the data types from Active
Record to Microsoft SQL Server. The following table describes mapping between Active Record and
the SQL Server Adapter.

Active Record Microsoft SQL Server

primary_key int NOT NULL IDENTITY(1, 1) PRIMARY KEY

binary image

Boolean bit

date datetime

datetime datetime

decimal decimal

fl oat fl oat

integer int

74955book.indd List14274955book.indd List142 3/4/09 8:46:15 AM3/4/09 8:46:15 AM

143

Chapter 5: A Working Sample

Active Record Microsoft SQL Server

string varchar

text text

time datetime

timestamp datetime

rake db:migrate

Remember how the rails command generated a config\database.yml fi le, but you had to use a Rake
task to create the actual databases? The same principle applies here. The scaffold generator created a
migration fi le containing the table defi nition, but didn’t actually create the table in the database. To do
that you’ll need to use the Rake task db:migrate. So run the following to create the articles table:

C:\projects\blog> rake db:migrate
(in C:/projects/blog)
== 20080710224642 CreateArticles: migrating ===================================
 — create_table(:articles)
 -> 0.1090s
== 20080710224642 CreateArticles: migrated (0.1250s) ==========================

The preceding output shows that the table was created and there were no errors whatsoever. Once
again, given that you didn’t specify otherwise with a RAILS_ENV argument, the table was created in
the development database.

Open the SQLite3 console as follows (also available through sqlite3 db/development.sqlite3):

C:\projects\blog> ruby script/dbconsole
SQLite version 3.6.10
Enter “.help” for instructions
Enter SQL statements terminated with a “;”sqlite>

Now you can show the tables within the database with .tables:

sqlite> .tables
articles schema_migrations

And see the table defi nition for the articles table with .schema:

sqlite> .schema articles
CREATE TABLE “articles” (“id” INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, “title”
varchar(255), “body” text, “published” boolean, “published_at” datetime,
“created_at” datetime, “updated_at” datetime);

Use .exit to get out of the SQLite3 console.

As you can see in the SQL query, all the columns for the attributes specifi ed as arguments of the
scaffold generator, plus created_at and updated_at, are there; no surprise. The table also has a
primary key called id. As mentioned before, this is an ActiveRecord convention, and it’s automatically

74955book.indd List14374955book.indd List143 3/4/09 8:46:15 AM3/4/09 8:46:15 AM

144

Chapter 5: A Working Sample

defi ned whenever you create tables by specifying their defi nition with the create_table method.
This method allows you to overwrite the convention by either specifying :id => false or by
indicating a different name for the primary key (for example, :primary_key => ‘guid’). It’s worth
repeating that unless you have a good reason for overwriting a given convention (and occasionally
you will), it’s better to stick with what ActiveRecord, and more generally Rails, expects.

The schema_migrations Table
When you listed the tables in the SQLite3 console, you may have noticed that there was a schema_
migrations table next to articles. This table is created by the db:migrate task if it doesn’t already
exist. If it does exist, it’s used by the task to determine which migration fi les need to be applied to the
current schema in the database. The table schema_migrations has a single column called version and
every time a migration fi le is applied, the timestamp within its name gets stored as a string in the table.

When I ran rake db:migrate on my machine, the table schema_migrations was fi rst created,
then the class method up defi ned in 20080710224642_create_articles.rb was invoked, creating
therefore the table articles, and lastly the value 20080710224642 was inserted into the schema_
migrations table.

SELECT version FROM schema_migrations gets executed before and after each migration. This
helps, for example, to ensure that a fi le hasn’t already been migrated meanwhile by a different developer
in your team.

Migrating Up and Down
Let’s try to better understand how migrations work and why they are a very useful tool. In a traditional
ASP or ASP.NET environment, you would defi ne the database objects through a series of SQL scripts
(T-SQL if using SQL Server) or directly from a GUI application. Any change or rollback to the database
schema would typically have to be performed “manually.”

Rails believes in the idea of defi ning database objects through Ruby code as much as possible, so
migrations are a way to defi ne and manipulate tables through Ruby instead of SQL as seen earlier
(well, at least, in most cases). But migrations are much more than that.

Every time a migration fi le is generated (through scaffold or not) its name will be “timestamped.” In
this case, for example, the timestamp was 20080710224642, which is the UTC time in the year, month,
day, hour, minute, and second format.

If at a later stage you add a second migration fi le that adds a column to the existing table, the timestamp
for this fi le will be successive to the previous one. What this means is that the db:migrate task will
execute them in succession, which is what you want.

scaffold is not the only generator that creates migration fi les. Any generator, whether it’s built-in
or provided by a plugin, that requires an alteration of the database somehow, will generate migration
fi les. There is also a migration generator, which simply creates a migration fi le for you. We talk more
about this in Chapter 7.

The fact that schema_migrations holds all the timestamps for the migration fi les already migrated means
that the db:migrate can compare them with the fi les within the db\migrate directory and determine
which migration fi les need to be migrated. It will pick up migrations that are newer as well as migrations
that have older timestamps, but which have not been run yet perhaps because they were committed at a
later stage by a different developer in the team or are being merged from a different branch.

74955book.indd List14474955book.indd List144 3/4/09 8:46:15 AM3/4/09 8:46:15 AM

145

Chapter 5: A Working Sample

Running rake db:migrate runs all the migrations that haven’t been executed yet, but you can also
migrate or rollback up to a specifi c version (for example, rake db:migrate VERSION=20080711104321).
You can rollback to the previous migration level if you realize you made a mistake by using db:rollback
too. Specifying a STEP= argument, you can rollback a number of steps in the migration history, instead of
passing a specifi c version number (for example, rake db:rollback STEP=3). Every time you migrate up
or down, the entries within the schema_migrations change to keep track of which migration fi les were
applied to the current schema.

Old Style Migrations
Before Rails 2.1 was released, migrations worked in a similar fashion (aside from a few methods intro-
duced by Rails 2.1) but were not time-stamped and as such were more susceptible to collisions. The fi rst
migration fi le of a project had the 001 prefi x instead of a timestamp, and each new migration fi le had
a prefi x that was incremented by one. At the time there was a schema_info table that kept track only
of the latest version you’d migrated to, as opposed to schema_migrations in Rails 2.1 and successive,
which keep tracks of every migration that you’ve run.

The problem with this approach was that it introduced unnecessary collisions. For example, say that
the last migration fi le committed to the repository of the project is 011_create_users.rb. Now if you
add a migration fi le to your local copy of the repository, this will be, say, 012_create_assets.rb. If
another developer needs to add a new table called tasks, he will create, say, 012_create_tasks.rb
in his local copy of the repository. Then you both commit to the repository. When migrating up, you’ll
encounter a confl ict because both of your commits will be prefi xed by 012, which is the version that
db:migrate is supposed to migrate to (given that 11 is the version stored in the schema_info table).

In reality your changes may be entirely independent, so it wouldn’t really matter whether or not your
migration gets executed fi rst. With timestamp-based migrations á la Rails 2.1, the probability of this
type of collision is exceptionally slim, so the migrations for adding assets and tasks would have a
different timestamp and could be migrated without encountering any problems.

Unnecessary collisions, where the order of the two migrations is irrelevant, are removed, but even the
timestamp-based migrations can still have collisions that need to be resolved manually. For example, if
a migration drops a certain table, and a second migration (from another developer who doesn’t know
about your change) adds a column to that table, the order of execution matters. If your migration has
a timestamp older than the one of the other developer, you’ll encounter a confl ict when migrating up,
because rake db:migrate will drop a table and then attempt to add a column to that table that was
just dropped, resulting in an error.

Conceptually unavoidable confl icts aside, migrations are still much more convenient than modifying the
database directly through SQL scripts. With that in mind, developing in Rails without using migrations
is still perfectly possible.

The up and down Class Methods
If you take a look again at the migration fi le for the creation of the articles table, you’ll notice that the
CreateArticles migration inherits from ActiveRecord::Migration and defi nes two class methods,
up and down:

class CreateArticles < ActiveRecord::Migration
 def self.up
 create_table :articles do |t|
 t.string :title

74955book.indd List14574955book.indd List145 3/4/09 8:46:15 AM3/4/09 8:46:15 AM

146

Chapter 5: A Working Sample

 t.text :body
 t.boolean :published
 t.datetime :published_at

 t.timestamps
 end
 end

 def self.down
 drop_table :articles
 end
end

If db:migrate determines that this fi le should be included in the migration to evolve the schema of
the database, CreateArticles.up gets invoked. When you are migrating down or rolling back to a
schema version that predates this fi le, the effect of the up method gets cancelled out by invoking the
CreateArticles.down method. You can also explicitly invoke the up and down methods of a specifi c
migration by using the db:migrate:up and db:migrate:down tasks and passing a VERSION= argument
to it (for example, rake db:migrate:down VERSION=20080711104321).

It is important that you defi ne the opposite action of what you’re doing in the up method in the down
method of the migration, so that it can be safely rolled back. If you are adding a column through the
add_column method, then in the down method you should use remove_column. If, like in this case, you
are creating a table articles in the up method, then to restore the database to its previous state in case
of a rollback, a drop_table :articles within the down method is required. If you are changing a
column in the up method, change it back in the down method. You get the idea.

Migrations offer several handy methods to manipulate database objects. We cover them in Chapter 7.

Migrations are a concept that sounds complicated in theory, but that is very simple in practice. You
ran rake db:migrate to create the articles table, but as you work with the application, you’ll use
migrations again to evolve the schema and add, at a bare minimum, a second table. You’ll see that it
couldn’t be easier and migrations are a great tool for handling the incremental evolution of the schema
in an “as automated as possible” way.

Putting It All Together: Creating a Rails Application
Before showing you (in the browser) what the scaffold generator actually accomplished, let’s recap the
steps that were required to achieve this. Migrations were discussed at length and introduced several new
concepts, but don’t get the false impression that scaffolding is hard. It’s not. So far you haven’t actually
written a single line of code, and the following table shows you the commands employed up to this point.

Command Meaning

rails blog Generates a blog folder that contains the skeleton of the
Rails application.

rake db:create:all Creates all the local databases defi ned in config\
database.yml.

74955book.indd List14674955book.indd List146 3/4/09 8:46:15 AM3/4/09 8:46:15 AM

147

Chapter 5: A Working Sample

Command Meaning

ruby script/generate
scaffold article title:string
body:text published:boolean
published_at:datetime

Generates an entire basic application for handling CRUD
operations on the articles table.

rake db:migrate Runs the migration fi le defi ned by scaffold, creating the
articles tables.

ruby script/server Runs the Web server to serve the Rails application.

The last step in the table should be new to you. This is used to start a Web server to serve your Rails
application. By default this is WEBrick, but if you installed Mongrel in the fi rst chapter, it will automati-
cally be picked up, providing you with a smoother and quicker experience as you try out the applica-
tion in development mode.

If you are not using Windows, you can simply run ./script/server from the main folder of
your project.

Go ahead and start the Web server in development mode:

C:\projects\blog> ruby script/server
=> Booting Mongrel (use ‘script/server webrick’ to force WEBrick)
=> Rails 2.2.2 application starting on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server
** Starting Mongrel listening at 0.0.0.0:3000
** Starting Rails with development environment...
** Rails loaded.
** Loading any Rails specific GemPlugins
** Signals ready. INT => stop (no restart).
** Mongrel 1.1.5 available at 0.0.0.0:3000
** Use CTRL-C to stop.

If you are using Windows Vista you may have to approve the operation in a security popup
that appears.

This will make the application available in development mode, on the localhost, on port 3000. These
defaults can be changed of course, as shown by the output here:

C:\projects\blog> ruby script/server — help
=> Booting Mongrel (use ‘script/server webrick’ to force WEBrick)
Usage: server [options]
 -p, — port=port Runs Rails on the specified port.
 Default: 3000
 -b, — binding=ip Binds Rails to the specified ip.
 Default: 0.0.0.0
 -d, — daemon Make server run as a Daemon.
 -u, — debugger Enable ruby-debugging for the server.
 -e, — environment=name Specifies the environment to run this server

74955book.indd List14774955book.indd List147 3/4/09 8:46:15 AM3/4/09 8:46:15 AM

148

Chapter 5: A Working Sample

under (test/development/production).
 Default: development

 -h, — help Show this help message.

Now that you have the server up and running, take a look at your application. Direct your browser to
http://localhost:3000. You should see the Rails’ welcome message as shown in Figure 5-3.

If you are using Internet Explorer, you may be prompted with an information bar warning you about
intranet settings. Click it and follow the instructions to make it disappear.

Figure 5-3

If you can see it on your screen, congratulations, it means that you are up and running with Rails. There is
however, a problem: this has nothing to do with your articles table. The reason why this page is being
served instead of the promised application, which is supposed to handle articles, is that the rails com-
mand generates a public\index.html static fi le. By the same token, scaffolding mapped the address
/articles, not /, to ArticlesController. Long story short, head over to http://localhost:3000/
articles and you should be able to see a page that lists articles as shown in Figure 5-4.

If you take a look at the command prompt where you are running Mongrel, you’ll notice a few pieces of
information that have been logged for the request it just served. In this case:

Processing ArticlesController#index (for 127.0.0.1 at 2008-07-11 05:12:38) [GET]

 Ð[4;36;1mArticle Load (0.0ms)Ð[0m Ð[0;1mSELECT * FROM “articles” Ð[0m
Rendering template within layouts/articles
Rendering articles/index
Completed in 16ms (View: 0, DB: 0) | 200 OK [http://localhost/articles]

74955book.indd List14874955book.indd List148 3/4/09 8:46:15 AM3/4/09 8:46:15 AM

149

Chapter 5: A Working Sample

Figure 5-4

Being able to see all this information is great when trying to fi gure out why something isn’t working
as expected. And given that you are in development mode, the fi le log\development.log will contain
the same (and more) information as well. If you were in production mode, the actual SQL query would
not be logged.

Click New Article and you should see a form as shown in Figure 5-5.

Figure 5-5

74955book.indd List14974955book.indd List149 3/4/09 8:46:16 AM3/4/09 8:46:16 AM

150

Chapter 5: A Working Sample

It may not be the prettiest form that you’ve ever seen, but it’s fully functional, and again, you didn’t
have to write a single line of code. Notice also how the URL changed from http://localhost:3000/
articles to http://localhost:3000/articles/new. Let’s add a title, some text, mark off the
published checkbox, and click the Create button. This will create a record in the articles table and
redirect you to http://localhost:3000/articles/1, where the record (which has id 1 in the table)
is shown, as you can see in Figure 5-6.

Figure 5-6

Also notice how a confi rmation message, “Article was successfully created.” appears on the page.

Again, perhaps it’s not the presentation that you intended for the fi nal application, but it works and
the aesthetics can always be customized later. If you click the Edit link you’re brought to the address
http://localhost:3000/articles/1/edit, from which you can update the record. Clicking Back
brings you back to http://localhost:3000/articles, which lists all the records (well, you only
have one record so far) as shown in Figure 5-7.

Figure 5-7

From there you can show records (Figure 5-6 without the “Article was successfully created.” message),
edit them, and even destroy them (upon clicking OK on a confi rmation message box). So there you have
it, not a single line of code (so far) and you have a front-end that’s ready to perform CRUD operations
on the back-end.

74955book.indd List15074955book.indd List150 3/4/09 8:46:16 AM3/4/09 8:46:16 AM

151

Chapter 5: A Working Sample

It doesn’t look or behave like a blog quite yet, but that’s not a problem; to fi x that you can use incremental
development. You can use this base and customize it for your needs. Furthermore, scaffolding doesn’t
just create a bunch of forms for you; it enables an application to work as a Web Service (a RESTful one,
as you’ll see in the next section). In fact, if you append an .xml to http://localhost:3000/articles/1
you’ll obtain an XML representation of the fi rst record in the articles table, as shown in Figure 5-8.

Figure 5-8

Before explaining the code that makes all this magic possible, there is one thing that annoys me. When I
head over to http://localhost:3000 I don’t want to see a welcome page, but would prefer to get a list
of all the articles. This can be accomplished in two steps. First you can edit your config\routes.rb fi le
in order to include the highlighted line:

ActionController::Routing::Routes.draw do |map|
 map.root :controller => “articles”
 map.resources :articles

 # ...

This maps the root path of the application (that is, /) to the Articles controller. The second step is to
delete the public\index.html fi le, because being a static HTML fi le it would have precedence over the
index action of the Articles controller (which gets invoked by default when you visit /articles or,
from now on, when you visit / as well).

It is customary to say “Articles controller,” even if the actual name of the class is
“ArticlesController.” They are used interchangeably throughout this book.

A RESTful Application
The fi le config\routes.rb defi nes how URLs are mapped to controllers and their methods (actions,
in Rails speak). For example, in the previous paragraph you mapped the controller Articles with the
root of your Rails application.

In traditional Rails applications — if the word “traditional” can be used for such a young framework —
URLs have the following format by default :controller/:action/:id, as briefl y discussed in Chapter 2.

74955book.indd List15174955book.indd List151 3/4/09 8:46:16 AM3/4/09 8:46:16 AM

152

Chapter 5: A Working Sample

So /articles/show/3 would trigger the show action defi ned within the ArticlesController and pass
a parameter id to it, whose value is 3. Similarly, /articles/edit/3 would trigger the edit action of the
same controller on the same object, and /articles/update/3 would do the same for the update action.

Defi ning URLs in this manner is still possible today with the current version of Rails, but it means think-
ing in terms of pages that you access and upon which you perform certain actions that send a request
and receive a response back. This approach works and it’s the traditional way of doing Web development.
Even the ASP.NET event-based model, despite its many differences, essentially leads developers to think
in terms of pages (WebForms).

What’s REST?
Rails has clearly embraced “the REST way” of doing Web development. REST stands for REpresentational
State Transfer and it’s a set of principles that defi ne the style of software architecture for distributed
networks such as the Web. What this means in practice is that you think in terms of resources that are
accessible by a Uniform Resource Identifi er (URI). Each resource is the source of the information, and it
exposes a series of functions to the Web clients, so that they can read and manipulate the resource. The
communication between the server and the client happens over the HTTP protocol.

The server determines what to do based on the identifi er of the resource and the HTTP method (often
referred to as verb) that’s being used for the request. Resources in Rails are usually exposed by seven
CRUD actions defi ned in the controller, but you can defi ne additional custom actions when needed.

The URI also provides the representation requested for the resource (essentially its format). The actual
information could be stored in the database within a table, but the client ignores all this. For example, the
client will send a request for a given URI (for example, http://localhost:3000/articles/1.xml),
with a certain HTTP verb (for example, GET) and will obtain the resource associated with that URI in the
XML format back in return.

As you’ll see in a moment, Rails knows that a GET request with that URI should be handled by the
index action of ArticlesController and will respond to the request with XML data.

If you omit the .xml part, the HTML representation will be transferred to the client instead. It’s
important to understand that even though HTML and XML are the most common formats for most
requests, a resource could be programmed to present the information in a number of representations,
including, but not limited to, JavaScript Object Notation (JSON), plain text, one of the many image
formats, a comma-separated list of values, or iCalendar. The information in the model remains the
same, but its representation (which is sent to the client) varies depending on the URL of the request.
You’ll see later on what formats are available out of the box in Rails and how to defi ne custom ones.

Applications that follow REST principles are commonly known as RESTful. And because Rails is
continually becoming a more RESTful framework (a trend that started in 2006), you’ll develop your
blog the REST way. As a matter of fact, given that you employed the scaffold generator as the base
of your application, you’ve already started doing RESTful development.

You may have noted that I initially, somewhat casually, used the word “resource” to identify the article
argument that I passed to the scaffold generator. Now you know that scaffolding effectively builds a
basic resource-based application, which exposes the seven actions mentioned previously.

74955book.indd List15274955book.indd List152 3/4/09 8:46:16 AM3/4/09 8:46:16 AM

153

Chapter 5: A Working Sample

Mapping Routes to Actions
In an earlier section, you saw a few CRUD operations, which are made available by scaffolding. These were
possible because the scaffold generator added map.resources :articles in config\routes.rb. That
single line defi nes a series of named routes and maps pairs of URLs and HTTP verbs to actions within the
ArticlesController.

What’s more, that line also instructs Rails to provide you with a series of helper methods, so that you
can easily refer to these named routes from the controller and the view layer.

The following table shows you the mapping of a URL and an HTTP method to a controller action for
all seven of the CRUD actions of the Articles controller. The number 1 is used as an example of the
id parameter.

URL HTTP Method Controller Action

/articles GET index

/articles POST create

/articles/new GET new

/articles/1 GET show

/articles/1 PUT update

/articles/1 DELETE destroy

/articles/1/edit GET edit

As you can see, four HTTP verbs are employed: GET, POST, PUT, and DELETE. When you send a GET
request for the path /articles, the index action of ArticlesController is executed. When you send
a POST request for the resource located at /articles, the create action is run instead; and so on for
the other fi ve actions.

In earlier versions of Rails, the path mapping to the edit action was /articles/1;edit. Nobody
really liked this though and it caused problems when dealing with caching, so a forward slash was
employed instead of a semicolon.

If you are familiar with the HTTP methods and current Web browsers, you may spot a problem with
this, though. In fact, though it’s not hard to create a client for a Web Service that sends PUT or DELETE
requests, the major browsers support only two verbs: GET and POST.

If REST is going to be the future for many Web projects, it is likely that the PUT and DELETE methods
will see their way into the browser — eventually. In the meantime though, Rails cheats. PUT and DELETE
requests in the browser are handled by placing a hidden _method fi eld. When Rails sees that fi eld, it cor-
rectly interprets the request as if it was a genuine PUT or DELETE request. And with Rails being Rails,
specifying that a link should send the request in a particular HTTP method is a snap, as you’ll see later
on in this chapter.

74955book.indd List15374955book.indd List153 3/4/09 8:46:16 AM3/4/09 8:46:16 AM

154

Chapter 5: A Working Sample

There are seven default CRUD actions, but some of the routes also accept an optional format. In fact, a
single resource can have many representations. When you factor this in, remembering all the routes may
be a bit tricky. That’s where the routes task comes in handy. If you run rake routes in your project,
you will obtain the following output:

C:\projects\blog> rake routes
(in C:/projects/blog)
 root /
{:controller=>”articles”, :action=>”index”}
 articles GET /articles
{:controller=>”articles”, :action=>”index”}
 formatted_articles GET /articles.:format
{:controller=>”articles”, :action=>”index”}
 POST /articles
{:controller=>”articles”, :action=>”create”}
 POST /articles.:format
{:controller=>”articles”, :action=>”create”}
 new_article GET /articles/new
{:controller=>”articles”, :action=>”new”}
 formatted_new_article GET /articles/new.:format
{:controller=>”articles”, :action=>”new”}
 edit_article GET /articles/:id/edit
{:controller=>”articles”, :action=>”edit”}
formatted_edit_article GET /articles/:id/edit.:format
{:controller=>”articles”, :action=>”edit”}
 article GET /articles/:id
{:controller=>”articles”, :action=>”show”}
 formatted_article GET /articles/:id.:format
{:controller=>”articles”, :action=>”show”}
 PUT /articles/:id
{:controller=>”articles”, :action=>”update”}
 PUT /articles/:id.:format
{:controller=>”articles”, :action=>”update”}
 DELETE /articles/:id
{:controller=>”articles”, :action=>”destroy”}
 DELETE /articles/:id.:format
{:controller=>”articles”, :action=>”destroy”}
 /:controller/:action/:id
 /:controller/:action/:id.:format

The output will appear with the same line wraps, unless you set the width of your command prompt to
be very large.

Despite the output being poorly formatted (due to the limited width of the page), you can see how each
line maps an HTTP verb and a URL to a controller and an action. These are all RESTful routes, except
for three routes for which no HTTP verb is specifi ed:

root / {:controller=>”articles”, :action=>”index”}
/:controller/:action/:id
/:controller/:action/:id.:format

All the routes but these three were defi ned by that map.resources :articles line in config\
routes.rb, which was placed there by the scaffold generator. So where do these three non-RESTful

74955book.indd List15474955book.indd List154 3/4/09 8:46:16 AM3/4/09 8:46:16 AM

155

Chapter 5: A Working Sample

routes come from? The fi rst of the three is the root named route. You defi ned it earlier in the chapter in
order to map / with the index action of the Articles controller. To fi nd out more about the other two,
take a look at the routes fi le once again (stripped of most of its comments for brevity):

ActionController::Routing::Routes.draw do |map|
 map.root :controller => “articles”
 map.resources :articles

 # Install the default routes as the lowest priority.
 map.connect ‘:controller/:action/:id’
 map.connect ‘:controller/:action/:id.:format’
end

Notice how the last two highlighted lines defi ne the two routes you were looking for. These are default
routes and are defi ned by three parameters: a :controller, an :action, and an :id. In the case of
the second route, there is also a :format parameter. The existence of those two map.connect calls in
the config\routes.rb fi le implies that traditional non-REST mapping is still allowed.

So if you were to point your browser to http://localhost:3000/articles/show/1 (or 1.xml)
you’d still get the desired outcome. Even the controller is a parameter in these default routes;
therefore if you reach http://localhost:3000/account/list, Rails tries to map that URL
with the list action of the Account controller. In this case, there is no Account controller, so an
ActionController::RoutingError exception is raised.

The sample blog is going to be a purely RESTful one, so you can go ahead and comment those two lines
out (never expose more than you need to):

ActionController::Routing::Routes.draw do |map|
 map.root :controller => “articles”
 map.resources :articles

 # Install the default routes as the lowest priority.
 #map.connect ‘:controller/:action/:id’
 #map.connect ‘:controller/:action/:id.:format’
end

Named route Helpers
The following is one of the routes printed out by the rake routes command:

articles GET /articles {:controller=>”articles”, :action=>”index”}

articles represents the named route, which is also the stem for a series of handy helpers. Appending
_url or _path to a named route will give you a method that returns that route’s address. For example,
given that you have a named route articles, you can use articles_url and articles_path, which
will return http://localhost:3000/articles and /articles, respectively. The difference between
the two pretty much means that helper methods suffi xed with _url are often used within the controller,
and those postfi xed by _path are often employed in the view layer.

From the output of the rake routes command, you’ll notice that :id and :format are often parameters.
:id identifi es the resource needed by its id (for example, 1), and :format is an optional parameter that

74955book.indd List15574955book.indd List155 3/4/09 8:46:16 AM3/4/09 8:46:16 AM

156

Chapter 5: A Working Sample

specifi es the representation required (for example, .xml). For instance, when you send a GET request for
the URL http://localhost:3000/articles/1.xml, the params hash is:

{ “format”=>”xml”, “action”=>”show”, “id”=>”1”, “controller”=>”articles” }

Named routes that allow you to specify a format begin with the word formatted. In our case, these
are: formatted_articles, formatted_new_article, formatted_edit_article, and formatted_
article. The presence of that initial token affects the name of the dynamically generated helpers.

For example, you can have articles_url and articles_path as you saw before, as well as their
“formatted” counterparts, such as formatted_articles_url and formatted_articles_path. These
formatted helpers accept the format requested as an argument. For example, if in a view you were to
use formatted_articles_path(:xml), the value returned by the helper would be the string literal
“/articles.xml,” which would invoke the index method of the Articles controller, and respond to
the request with an XML representation of the resources (rather than the default HTML that’s returned
if no other format is explicitly requested).

Likewise, in the view layer you could use formatted_article_path(@article, :xml), where
@article is an instance variable that is defi ned in the show action of ArticlesController, and it
refers to an instance of the Article model. The helper is smart enough to extract the id attribute from
the @article object and assign it to the id parameter. It also assigns :xml as the value for the key
:format in the parameters hash. The end result would be the path: /articles/1.xml.

After this overview of the config\routes.rb fi le, which was generated through scaffolding, you can
move on to briefl y analyzing the code in the model, controller, and view, which allows you to perform
CRUD operations of the articles table.

Analyzing the Model
Rails’ models are stored in the app\models directory of the project. The Article model is therefore
defi ned in the fi le app\models\article.rb. This is the code contained within it:

class Article < ActiveRecord::Base
end

That’s it. At this stage the model is just a class defi nition. The class Article inherits from
ActiveRecord::Base and this is suffi cient enough to obtain a fully functional model that maps
an articles table in the current database.

The database in use is always (by default) the one specifi ed in config\database.yml for the current
environment mode.

Please pay attention to singulars and plurals in Rails. The model should be singular and automatically
map to a plural table name. Rails is smart enough to understand that the model Mouse maps to the
table mice and not (sic) mouses. The mapping for very uncommon irregular plurals may not always be
correct, but you can customize the infl ection rules and also set the table name manually through the
set_table_name method, as explained in Chapter 7.

74955book.indd List15674955book.indd List156 3/4/09 8:46:16 AM3/4/09 8:46:16 AM

157

Chapter 5: A Working Sample

Analyzing the Controller
Controllers are stored in app\controllers, so you can fi nd your Articles controller in
app\controllers\articles_controller.rb.

Note how the singular resource (that is, article) passed to the scaffold generator created a model that is
singular and a controller that is plural. It is customary for RESTful controllers to be plural, because when
you send a GET request for /articles or /articles.xml you are expecting to get a collection of items
in return. Issuing a /article or /article.xml to obtain a series of articles doesn’t seem as logical.

All of the code for your controller exists within the following class defi nition:

class ArticlesController < ApplicationController
 # ...
end

As you can see, the class ArticlesController inherits from ApplicationController. The
Application controller is an application-wide controller, and all the controllers that you defi ne inherit
from it. You can fi nd its defi nition in app\controllers\application.rb. ApplicationController
in turn inherits from ActionController::Base.

Let’s tackle each action within ArticlesController, one at a time.

index
The index action is there to list all the existing articles. This is how it is defi ned:

 # GET /articles
 # GET /articles.xml
 def index
 @articles = Article.find(:all)

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @articles }
 end
 end

The two comments are there to remind you that a GET /articles or GET /articles.xml request
would lead to this method being invoked.

The fi rst line of the method retrieves a list of all the records that are available in the articles table and
stores them in the @articles instance variable:

 @articles = Article.find(:all)

The find class method will return an array of Article objects because the :all argument was passed
to it. Every instance variable that you defi ne in an action becomes available in the corresponding view
that gets rendered by Rails. By assigning an array of articles to @articles, you can use this instance
variable to loop through the records in the view.

74955book.indd List15774955book.indd List157 3/4/09 8:46:17 AM3/4/09 8:46:17 AM

158

Chapter 5: A Working Sample

If you were to serve HTML only, the code of your action would be that single line and no further code
would be required, because Rails knows, by convention, which fi les in the view layer need to be rendered.
The controller defi nition that’s generated through scaffolding also has Web Service support, as you saw
when you rendered XML instead of HTML. For this reason, you need the following snippet as well:

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @articles }
 end

Note that # index.html.erb is just a comment; it’s not necessary. It’s usually included for the sake
of clarity.

Within the block passed to the respond_to method, you specify what to do depending on the format
that’s requested. Rails determines what format was requested by the client by analyzing the HTTP
Accept header that it submitted.

If the format requested is HTML, Rails just renders the default view template associated with this action
(which is index.html.erb in this case). If XML was requested by the client instead, Rails renders the list
of articles retrieved, but in XML format. The block { render :xml => @articles } is actually smart
enough to invoke the to_xml method on the @articles instance variable, and is therefore equivalent to
{ render :xml => @articles.to_xml }.

Supported Formats
So far you’ve seen format.html and format.xml. Other request formats are available
out of the box in Rails: js, atom, rss, text, yaml, and ics (for iCalendar).

If you’d like to defi ne your own format for a MIME type that is not supported by
default, you can do so in config\initializers\mime_types.rb. For example, if
you add Mime::Type.register “text/richtext”, :rtf to that fi le, you will then
be able to use format.rtf within the block of the respond_to method.

show
This is the defi nition of the show action:

 # GET /articles/1
 # GET /articles/1.xml
 def show
 @article = Article.find(params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml => @article }
 end
 end

74955book.indd List15874955book.indd List158 3/4/09 8:46:17 AM3/4/09 8:46:17 AM

159

Chapter 5: A Working Sample

This snippet of code looks very similar to the one shown for the index action. However, this time you
only need to hand back one record. You start by fi nding the record and assigning it to the @article
instance variable:

@article = Article.find(params[:id])

params is a hash that stores the parameters passed to this action by the request. The path that triggers this
action is either going to be /articles/:id or /articles/:id.:format, therefore params[:id] will
store the value of the id contained in the URL. If the request is http://localhost:3000/articles/10,
then params[:id] will be 10.

When you just pass a numeric value to the find method, this will return the record whose id is the
same as that number. Hence, Article.find(10) will return the Article object whose id attribute
is equal to 10. In short, Article.find(params[:id]) will retrieve the record associated with the id
requested in the URL.

The respond_to method will do the same thing as the index method, with the sole exception being
that only one record (that is @article) will be rendered as XML (not an entire list of them). Also, the
name of the action is show this time, so the associated template that will be rendered if the requested
format is HTML will be show.html.erb.

new
The defi nition of the new action is very similar to the show one:

 # GET /articles/new
 # GET /articles/new.xml
 def new
 @article = Article.new

 respond_to do |format|
 format.html # new.html.erb
 format.xml { render :xml => @article }
 end
 end

The only obvious difference is that you assigned a new Article object to the @article instance variable,
instead of fi nding a record, like you did for show.

As explained in a later section, whether the instance variable @article is a new object or an existing
one will be an important distinction for Rails, because it uses it for deciding whether a “new” form or
an “edit” one should be generated in the view.

Not surprisingly, new.html.erb gets rendered when the requested format is HTML.

74955book.indd List15974955book.indd List159 3/4/09 8:46:17 AM3/4/09 8:46:17 AM

160

Chapter 5: A Working Sample

edit
The edit action is the simplest of the lot, because by default it handles HTML requests only and, as
such, doesn’t need a respond_to method. The associated edit.html.erb template will be rendered
automatically (which is Rails’ default behavior). Here is the method defi nition:

 # GET /articles/1/edit
 def edit
 @article = Article.find(params[:id])
 end

The requested record is retrieved and assigned to the @article instance variable. edit.html.erb
provides the user with an input form to update the record. If the object referenced by @article con-
tains any values in its attributes, these will already be pre-fi lled in the input form (this magic is possible
thanks to helpers like form_for).

create
The create action gets a little trickier because it handles HTML and XML requests, plus it deals with
two different cases, depending on whether or not the record was successfully saved. This is its defi nition:

 # POST /articles
 # POST /articles.xml
 def create
 @article = Article.new(params[:article])

 respond_to do |format|
 if @article.save
 flash[:notice] = ‘Article was successfully created.’
 format.html { redirect_to(@article) }
 format.xml { render :xml => @article, :status => :created, :location => @
article }
 else
 format.html { render :action => “new” }
 format.xml { render :xml => @article.errors, :status => :unprocessable_
entity }
 end
 end
 end

In order to understand this action, let’s try to see when this gets invoked for HTML requests. Before
when you clicked the New Article link, you were redirected to /articles/new. That in turn invokes
the new action and renders an empty form that allows you to input the details of an article you want to
create. When you click the Create button, a POST /articles request is sent for you.

At this stage, the create action is invoked but you don’t have an id in the params hash. What you have
is an article parameter that contains all the attributes of the object that you’d like to create as inserted
in the form. Hence, the fi rst line of this action creates a new object with this data and assigns the object
to @article:

@article = Article.new(params[:article])

Notice that at this point the record has not been saved yet in the database.

74955book.indd List16074955book.indd List160 3/4/09 8:46:17 AM3/4/09 8:46:17 AM

161

Chapter 5: A Working Sample

Then the method invokes the respond_to method in order to handle both HTML and XML requests
as follows:

 respond_to do |format|
 if @article.save
 flash[:notice] = ‘Article was successfully created.’
 format.html { redirect_to(@article) }
 format.xml { render :xml => @article, :status => :created, :location => @
article }
 else
 format.html { render :action => “new” }
 format.xml { render :xml => @article.errors, :status => :unprocessable_
entity }
 end
 end

Here is what happens within the block. You fi rst try to save in the database the object you created by
calling the save instance method.

Behind the scenes this calls a create_or_update method, which will do exactly that, create the
record if it’s new or update it if this already exists.

If the record is successfully saved, the user is prompted with the message “Article was successfully cre-
ated.” as was shown in Figure 5-6. flash is a special type of hash (whose class is ActionController
::Flash::FlashHash) that allows you to store data that will be exposed in the next action. In practice
this means that you can store your message in flash[:notice]within the create action, and you’ll be
able to retrieve and display it when you’re redirected to the show action (after the record is saved). As
soon as you move onto yet another action or refresh the page, the flash content is discarded.

After storing your message in the flash, you can handle the HTML and XML cases separately. When
the client wants HTML, you can redirect to the show action for the article you just created. Notice that the
redirect_to method is smart enough to fi gure out that passing a single Article object implies that you
want to show it. This would be equivalent to using redirect_to(article_url(@article)), but much
more concisely. In the case of an XML request, you send the XML encoded object and pass a pair of head-
ers back to the client.

If the record isn’t able to be saved, as in the case of HTML requests, you can render the template for the
action new. Notice that you don’t have to perform a full redirect to the new action, because this would
clear out all the data that the user just tried to save. If the requested format is XML, you can return the
errors in XML format back to the client, and set the :status header to :unprocessable_entity.

This may appear complicated at fi rst, but it’s all very easy once you get the hang of it, and it’s important
to remember that you didn’t actually write this code, but that it’s there for you to build upon.

update
The update action is defi ned as follows:

 # PUT /articles/1
 # PUT /articles/1.xml
 def update
 @article = Article.find(params[:id])

74955book.indd List16174955book.indd List161 3/4/09 8:46:17 AM3/4/09 8:46:17 AM

162

Chapter 5: A Working Sample

 respond_to do |format|
 if @article.update_attributes(params[:article])
 flash[:notice] = ‘Article was successfully updated.’
 format.html { redirect_to(@article) }
 format.xml { head :ok }
 else
 format.html { render :action => “edit” }
 format.xml { render :xml => @article.errors, :status => :unprocessable_
entity }
 end
 end
 end

This action is very similar to the create one except that it calls the method update_attributes
instead of save, and passes it through the params[:article] argument. You’ll also notice that upon
successfully updating the record, in the XML response block there is simply a head :ok. This is a
method that returns only headers and not content. The logic behind this is that if the update was suc-
cessful, you’d inform the Web Service client of this with a 200 OK response. You can use symbols (for
example, :ok) or status code (for example, 200).

A list of all the status codes is available (depending on your version and installation path) at
C:\ruby\lib\ruby\gems\1.8\gems\actionpack-2.2.2\lib\action_controller\
status_codes.rb.

If the update isn’t successful, you can render the edit.html.erb template by issuing render :action
=> “edit” if the response requested is HTML, or you can provide the same error you saw for the create
action if XML was requested.

This shouldn’t be too confusing if you look at it from a user’s standpoint. The user reaches the URL
/articles/1/edit to edit a record, makes a few changes, and clicks the Update button. This sends a
request that gets handled by the update action, which in turn tries to update the record. If it’s able to do
so, the user is redirected to /articles/1 and shown the updated record and a confi rmation message
(through flash). If it’s not able to be saved for some reason, the user is sent back to the editing form
(which hasn’t been cleared of the existing data that he has already inserted).

destroy
Finally, the destroy action is defi ned as such:

 # DELETE /articles/1
 # DELETE /articles/1.xml
 def destroy
 @article = Article.find(params[:id])
 @article.destroy

 respond_to do |format|
 format.html { redirect_to(articles_url) }
 format.xml { head :ok }
 end
 end

74955book.indd List16274955book.indd List162 3/4/09 8:46:17 AM3/4/09 8:46:17 AM

163

Chapter 5: A Working Sample

You fi rst fi nd the record that needs to be deleted and then invoke the destroy method. Then if the
requested format is HTML, you then redirect the user to the list of all articles using the articles_url
helper as an argument for the redirect_to method. This list will show that the deleted record is no
longer there. If the request format was XML, you can simply confi rm that the request was successful by
calling head :ok.

Analyzing the View Layer
So far you have analyzed the model and the controller, now let’s complete the MVC triad. The fi les con-
stituting the view layer are all enclosed within folders located in app\views as shown in Figure 5-9.

Figure 5-9

As you can see, inside app\views are two folders, articles and layouts. The articles folder is
there to contain all the view templates and partials that are associated with the Articles controller.

Notice how each of the view fi les generated by the scaffold generator has the format name.html.erb.
This indicates that ERb should be used as a template engine to produce HTML.

The layouts folder hosts, as the name implies, layouts. Rails knows by convention that the
ArticlesController should render the layout app\views\layouts\articles.html.erb.
This convention can of course be overwritten and you could, for example, decide to reuse the same
layout for multiple controllers.

Rails’ Layouts vs. ASP.NET’s Master Pages
There is a striking similarity between ASP.NET’s master pages and Rails’ layouts. Both are aimed at
sharing the same layout, structure, and style among pages that should have a similar look and feel. The
fi rst benefi t in both cases is therefore the ability to automatically obtain a consistent style and structure
for all the pages that are supposed to have a specifi c theme.

Both Rails’ layout and ASP.NET’s master pages help to guarantee that the code is DRY and that you
don’t have to repeat, for example, the same header and footer for each view template (in Rails’ case) or
.aspx page (in ASP.NET’s case).

Layouts in Rails are contained in the app\views\layouts folder, but their extensions are no different
than those of a normal view template. They are, in fact, a view template themselves and as such can

74955book.indd List16374955book.indd List163 3/4/09 8:46:17 AM3/4/09 8:46:17 AM

164

Chapter 5: A Working Sample

embed Ruby code and defi ne the presentation logic in them. Master pages use the ContentPlaceHolder
control to indicate the place where the content (the .aspx page) should be wrapped at runtime. Rails’
layouts work in a similar fashion, but the yield keyword is used instead.

In ASP.NET, you would have to set the MasterPageFile property to indicate the name of the master
page fi le associated with a page. Unlike ASP.NET, in Rails each view template doesn’t need to be aware
of the existence of a layout. They get “included into the layout” dynamically at runtime and there is no
need to specify anything.

Rails’ layouts can be specifi c to one or more controllers as mentioned before, but it’s also possible to defi ne
an application-wide controller. If you add an application.html.erb layout, by default it will apply
to all of the application’s controllers. If a controller specifi es otherwise in its code (for example, layout
“my_layout”) or there’s already a layout for a specifi c controller (for example, articles.html.erb),
these take precedence over application.html.erb and will instead be rendered when rendering an
action of that controller.

Rails 2 also introduces the concept of partial layouts, as explained in Chapter 9.

The articles.html.erb Layout
This is the code of the articles.html.erb layout:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
<meta http-equiv=”content-type” content=”text/html;charset=UTF-8” />
<title>Articles: <%= controller.action_name %></title>
<%= stylesheet_link_tag ‘scaffold’ %>
</head>
<body>

<p style=”color: green”><%= fl ash[:notice] %></p>

<%= yield %>

</body>
</html>

Applications that are based on the output of the scaffold generator are by default XHTML
Transitional, but this can easily be changed by specifying something else in each layout.

I’ve highlighted the interesting bits so as to analyze them line by line. The following code uses the con-
troller.action_name to retrieve the name of the action that’s being rendered:

<title>Articles: <%= controller.action_name %></title>

Notice how the tags for embedded Ruby code are <% %>, which should be familiar to you. Whenever
you want the calculated expression to be rendered in the page, as opposed to just being interpreted, you
place an equal sign after the opening tag (for example, <%= 2 + 2 %>).

74955book.indd List16474955book.indd List164 3/4/09 8:46:17 AM3/4/09 8:46:17 AM

165

Chapter 5: A Working Sample

Sometimes you’ll see a closing tag with a minus sign (that is, -%>), which removes any unnecessary
empty lines in the output.

The second highlighted line uses the stylesheet_link_tag helper to include the scaffold stylesheet
fi le, which is located in public\stylesheets\scaffold.css. As always with helpers, they are
there to make your life easier, but you could have skipped the helper and written HTML to link to the
stylesheet if you were so inclined.

The third highlighted line is interesting because it shows how the flash[:notice] you set in a few
actions gets retrieved in the view. And now you also know why the confi rmation messages from scaf-
folding are green:

<p style=”color: green”><%= flash[:notice] %></p>

The fact that the fl ash notice is retrieved from within the article's layout implies that it will be available
in every action of that controller (unless you specify otherwise in the controller).

Finally, the most important line of all is: <%= yield %>. This tells Rails to enclose any view template
rendered inside the layout.

For example, if you visit /articles/1 you should obtain the following HTML code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=“http://www.w3.org/1999/xhtml” xml:lang=“en” lang=“en”>
<head>
<meta http-equiv=“content-type” content=“text/html;charset=UTF-8” />
<title>Articles: show</title>
<link href=“/stylesheets/scaffold.css?1215730002” media=“screen” rel=“stylesheet”
type=“text/css” />
</head>
<body>

<p style=“color: green”></p>

<p>
Title:
 Hello, Rails!
</p>

<p>
Body:
 Hi from the body of an article. :)
</p>

<p>
Published:
 true
</p>

<p>

74955book.indd List16574955book.indd List165 3/4/09 8:46:18 AM3/4/09 8:46:18 AM

166

Chapter 5: A Working Sample

Published at:
 2008-07-11 09:24:00 UTC
</p>

Edit |
Back

</body>
</html>

The fi nal document combines the rendering of the outer layout discussed earlier, with the view template,
which in this case is show.html.erb.

As was shown in Figure 5-9, the articles folder contains four templates: index.html.erb, new
.html.erb, edit.html.erb, and show.html.erb. Each of these is automatically rendered when the
corresponding action is invoked and the requested format is HTML. There are three actions that don’t
have an associated template and these are create, update, and destroy.

The index.html.erb Template
The index.html.erb template contains the following code:

<h1>Listing articles</h1>

<table>
<tr>
<th>Title</th>
<th>Body</th>
<th>Published</th>
<th>Published at</th>
</tr>

<% for article in @articles %>
<tr>
<td><%=h article.title %></td>
<td><%=h article.body %></td>
<td><%=h article.published %></td>
<td><%=h article.published_at %></td>
<td><%= link_to ‘Show’, article %></td>
<td><%= link_to ‘Edit’, edit_article_path(article) %></td>
<td><%= link_to ‘Destroy’, article, :confirm => ‘Are you sure?’, :method => :delete
%></td>
</tr>
<% end %>
</table>

<%= link_to ‘New article’, new_article_path %>

74955book.indd List16674955book.indd List166 3/4/09 8:46:18 AM3/4/09 8:46:18 AM

167

Chapter 5: A Working Sample

The instance variable @articles defi ned in the index action is used here to loop through all the
articles. Inside the loop, several attributes of the article object are rendered (one per column). article
.title is a string containing the title of the given article object, article.body is a string containing
the text, and so on.

You’ll notice that there is an h after the equal sign. That’s a special helper that is an alias for the ERB::Util
method html_escape. This escapes HTML tags transforming the less than and greater than signs into
their HTML characters. For example, h(“<p>hi</p>”) will return “<p>hi</p>.” This
helper is used whenever you need to display potentially unsafe content (the rule of thumb is that any con-
tent provided by the user cannot be trusted).

The scaffold generator tries to be security conscious and strips any tags by employing the h helper.
That said, in this specifi c case, you’re the only one who is entering articles (once the app has an authen-
tication system), so there isn’t a concrete need to sanitize your own input. There’s no harm in leaving
them in there though.

link_to is a helper for producing HTML links. To provide a link to the show action for a given article
you can use:

<%= link_to ‘Show’, article %>

The link_to method — like redirect_to(@article) did in the controller — understands that if
you pass the article object to the helper as its second argument, you intend to obtain the URL for the
show action. This is equivalent to passing article_path(article), but is easier to remember and
more concise.

The named route helpers mentioned before still come in handy though. For example, for the Edit link,
you would use:

<%= link_to ‘Edit’, edit_article_path(article) %>

The Destroy link is rather different given that you need to perform a request through the DELETE
HTTP method. As mentioned before, Rails emulates this by inserting a hidden form fi eld _method. To
make this happen then, the third argument (a hash) needs to have a :method key whose value is set to
:delete. Given that you’re deleting a record, you want to provide a confi rmation step too, as shown in
Figure 5-10. All this is accomplished by the following line:

<%= link_to ‘Destroy’, article, :confirm => ‘Are you sure?’, :method => :delete %>

The fact that a DELETE HTTP verb is required to delete a record ensures that a record is never acciden-
tally deleted by simply sending a GET request to a given URL from your browser. Adding a confi rma-
tion message box makes accidental deletion even less likely.

It’s also worth pointing out that the :comfirm and :method keys are part of the same hash, which is the
third parameter you pass to the link_to method.

The last link that was generated takes advantage of the new_article_path route helper:

<%= link_to ‘New article’, new_article_path %>

74955book.indd List16774955book.indd List167 3/4/09 8:46:18 AM3/4/09 8:46:18 AM

168

Chapter 5: A Working Sample

Figure 5-10

The new.html.erb Template
The template for the new action is very straightforward:

<h1>New article</h1>

<% form_for(@article) do |f| %>
<%= f.error_messages %>

<p>
<%= f.label :title %>

<%= f.text_field :title %>
</p>
<p>
<%= f.label :body %>

<%= f.text_area :body %>
</p>
<p>
<%= f.label :published %>

<%= f.check_box :published %>
</p>
<p>
<%= f.label :published_at %>

<%= f.datetime_select :published_at %>

74955book.indd List16874955book.indd List168 3/4/09 8:46:18 AM3/4/09 8:46:18 AM

169

Chapter 5: A Working Sample

</p>
<p>
<%= f.submit “Create” %>
</p>
<% end %>

<%= link_to ‘Back’, articles_path %>

The form_for helper is a method that is able to create a form for a given model object. In this case the
model object is @article, which was set in the new action of the Articles controller, to be a brand
new Article object. The form_for helper understands that the object it’s creating the form for is a new
object, so it generates an empty input form.

Notice that the action that needs to process the form is not explicitly specifi ed; this is because the helper
is aware of REST and can yield a RESTful form automatically for you.

Inside the associated block, the f block argument is used to give scope to each of the fi elds that cor-
respond to the attributes of the given object (except for its id). This allows you to write a very concise
line, such as:

<%= f.text_field :title %>

This is equivalent to using the following, less succinct method:

<%= text_field :article, :title %>

During runtime, both translate into this XHTML code:

<input id=”article_title” name=”article[title]“ size=”30” type=”text” />

If you visit http://localhost:3000/articles/new and view the source code that’s been generated,
you’ll see how each of the fi elds is transformed from the DSL (Domain Specifi c Language) methods
provided by ActionView to XHTML. You’ll quickly notice how these methods are very convenient.

The form_for line gets translated into:

<form action=”/articles” class=”new_article” id=”new_article” method=”post”>

A POST /articles request will be handled by the create action, which is exactly what you want when
the Submit button is clicked.

form_for in a non-RESTful Context
If config\routes.rb didn’t identify the articles as a resource with map.resources
:articles, you would be doing “traditional” development in a non-RESTful way. In that
case the form_for arguments would have to be more verbose and explicit as follows:

<% form_for :article, :url => { :action => “create” } do |f| %>

74955book.indd List16974955book.indd List169 3/4/09 8:46:18 AM3/4/09 8:46:18 AM

170

Chapter 5: A Working Sample

The syntax for the Submit button is just as succinct:

<%= f.submit “Create” %>

The scope around @article that’s provided by the block enables that generic line to be rendered in
XHTML as follows:

<input id=”article_submit” name=”commit” type=”submit” value=”Create” />

You’ll notice that this is a very different approach than using special controls, as ASP.NET does, but
it’s just as convenient.

In this form, the scaffold generator uses the label, text_field, text_area, check_box, date-
time_select, and submit methods inside the block associated with the form_for helper. Other
methods are available as well though, such as file_field, hidden_field, password_field, and
radio_button.

On the fi rst line inside the block there is a mysterious <%= f.error_messages %>. This is used
to display any possible errors for the model object. The requirement for this will become clear as
validations are introduced later on.

Finally, the new.html.erb template provides a “Back” link to a list of all the articles. As usual, the
link_to URL helper is used, this time in conjunction with the named route helper articles_path.

The edit.html.erb Template
The edit.html.erb fi le contains the following code:

<h1>Editing article</h1>

<% form_for(@article) do |f| %>
<%= f.error_messages %>

<p>
<%= f.label :title %>

<%= f.text_field :title %>
</p>
<p>
<%= f.label :body %>

<%= f.text_area :body %>
</p>
<p>
<%= f.label :published %>

<%= f.check_box :published %>
</p>
<p>
<%= f.label :published_at %>

<%= f.datetime_select :published_at %>
</p>
<p>
<%= f.submit “Update” %>
</p>

74955book.indd List17074955book.indd List170 3/4/09 8:46:18 AM3/4/09 8:46:18 AM

171

Chapter 5: A Working Sample

<% end %>

<%= link_to ‘Show’, @article %> |
<%= link_to ‘Back’, articles_path %>

If you exclude the h1 tag and a “Show” link at the bottom, this is identical to new.html.erb. The reason
for this is that as a matter of fact, the new and edit forms have the same fi elds. On top of that, the form_for
method is smart enough to fi gure out that this time around the Article object — assigned to @article in
the controller — is not empty and that it should pre-fi ll the fi elds for the existing attributes of the object as
shown in Figure 5-11.

Figure 5-11

If you think that all this repetition directly violates the DRY principle, you’re absolutely correct. You
are defi nitely repeating yourself in the new.html.erb and edit.html.erb templates. To fi x this you’ll
need to use partials, as explained in a subsequent section.

The show.html.erb Template
The template for the show action is defi ned as follows:

<p>
Title:

74955book.indd List17174955book.indd List171 3/4/09 8:46:18 AM3/4/09 8:46:18 AM

172

Chapter 5: A Working Sample

<%=h @article.title %>
</p>

<p>
Body:
<%=h @article.body %>
</p>

<p>
Published:
<%=h @article.published %>
</p>

<p>
Published at:
<%=h @article.published_at %>
</p>

<%= link_to ‘Edit’, edit_article_path(@article) %> |
<%= link_to ‘Back’, articles_path %>

You don’t need a form_for helper because you are just displaying data. The @article instance variable
was set in the show action, so you can now display its attributes (highlighted in the preceding code).

Adding Partials
new.html.erb and edit.html.erb both have the code that generates their forms in common. Rails
provides partials in order to reuse code and remove repetition, thereby allowing you to include a par-
tial in other view templates. Partials can be spotted thanks to the underscore prefi x on their fi le name
(for example, _person.html.erb).

Go ahead and create an empty _form.html.erb fi le in app\views\articles. In this fi le you’ll
want to include the common snippet of code between the new and edit forms. As such you could
copy in _form.html.erb the following code:

<% form_for(@article) do |f| %>
 <%= f.error_messages %>

 <p>
 <%= f.label :title %>

 <%= f.text_field :title %>
 </p>
 <p>
 <%= f.label :body %>

 <%= f.text_area :body %>
 </p>
 <p>
 <%= f.label :published %>

 <%= f.check_box :published %>

74955book.indd List17274955book.indd List172 3/4/09 8:46:18 AM3/4/09 8:46:18 AM

173

Chapter 5: A Working Sample

 </p>
 <p>
 <%= f.label :published_at %>

 <%= f.datetime_select :published_at %>
 </p>
 <p>
 <%= f.submit “Update” %>
 </p>
<% end %>

The only problem with this is the value of the Submit button, which is different in the two forms. One
is Create and the other says Update. To solve this you can use a local variable (that is, button_value)
instead of a string literal (for example, “Create”). You can also change the instance variable @article
into a simple variable that’s local to the partial, to improve encapsulation.

Copy the following code into _form.html.erb:

<% form_for(article) do |f| %>
 <%= f.error_messages %>

 <p>
 <%= f.label :title %>

 <%= f.text_field :title %>
 </p>
 <p>
 <%= f.label :body %>

 <%= f.text_area :body %>
 </p>
 <p>
 <%= f.label :published %>

 <%= f.check_box :published %>
 </p>
 <p>
 <%= f.label :published_at %>

 <%= f.datetime_select :published_at %>
 </p>
 <p>
 <%= f.submit button_value %>
 </p>
<% end %>

Now you can remove the existing form from new.html.erb and edit.html.erb and include the
partial you just defi ned. Go ahead and change the new.html.erb template to look like this:

<h1>New article</h1>

<%= render :partial => “form”, :locals => { :article => @article, :button_value =>
‘Create Article’ } %>

<%= link_to ‘Back’, articles_path %>

74955book.indd List17374955book.indd List173 3/4/09 8:46:18 AM3/4/09 8:46:18 AM

174

Chapter 5: A Working Sample

Similarly, replace the content of edit.html.erb with this:

<h1>Editing article</h1>

<%= render :partial => “form”, :locals => { :article => @article, :button_value =>
‘Save Changes’ } %>

<%= link_to ‘Show’, @article %> |
<%= link_to ‘Back’, articles_path %>

As you can see, the highlighted lines render a partial through the render method. The :locals option
allows you to specify the value of local variables inside of a hash. In this case you used it to set the vari-
able button_value to “Create Article” when rendering new.html.erb, and to “Save Changes” when
rendering edit.html.erb. That value will be rendered as the value of the button in the partial. You also
passed to the partial the @article object, which is assigned to its local variable article.

Using :locals to assign values to variables local to the partial is conceptually similar to passing
arguments to a method.

In this way the repetition is eliminated, and any changes to the _form.html.erb partial will be
refl ected automatically in the templates for the new and edit actions. That’s DRY.

Adding Validations
Validations are a mechanism provided by Active Record to ensure that the data conforms to certain busi-
ness rules. The forms generated by the scaffold generator don’t perform any validations by default. For
example, you could create an article that had an empty title and empty body, and these would be stored in
the database as empty strings. Similarly, you may decide that you don’t want to allow articles to have the
same exact text, therefore eliminating duplicates. Validations are the answer.

Change the Article model to look like this (app\models\article.rb):

class Article < ActiveRecord::Base
 validates_presence_of :title, :body
 validates_uniqueness_of :body
end

Those two highlighted lines indicate that an article’s title and a body are required and that the
body of an article needs to be different from any others that already exist. Save the file, head over
to /articles/new, and try to click Create Article with the title and body left empty. You should
see an error report similar to the one shown in Figure 5-12.

Unlike ASP.NET validation controls, Rails validations are always server-side and
defi ned in the model, as opposed to the page that gets rendered.

74955book.indd List17474955book.indd List174 3/4/09 8:46:19 AM3/4/09 8:46:19 AM

175

Chapter 5: A Working Sample

Figure 5-12

That was quite effortless! If you take a look at the source of the generated page, you will see that the
<%= f.error_messages %> inside the partial was transformed into (reformatted for clarity):

<div class=”errorExplanation” id=”errorExplanation”>
<h2>2 errors prohibited this article from being saved</h2>
<p>There were problems with the following fields:</p>
Body can’t be blankTitle can’t be blank
</div>

You’ll notice also that the affected fi elds are now surrounded by a <div> tag, which highlights them:

<p>
<div class=”fieldWithErrors”><label for=”article_title”>Title</label></div>

<div class=”fieldWithErrors”><input id=”article_title” name=”article[title]“
size=”30” type=”text” value=”“ /></div>
</p>

<p>
<div class=”fieldWithErrors”><label for=”article_body”>Body</label></div>

74955book.indd List17574955book.indd List175 3/4/09 8:46:19 AM3/4/09 8:46:19 AM

176

Chapter 5: A Working Sample

<div class=”fieldWithErrors”><textarea cols=”40” id=”article_body”
name=”article[body]“ rows=”20”></textarea></div>
</p>

The CSS classes errorExplanation and fieldWithErrors are defi ned in the scaffold.css fi le
in public\stylesheets, so you can customize the look and feel of error reporting to suit your own
tastes. You can also defi ne your own custom messages by passing the :message option to the valida-
tion. For example, you can specify that the report should print “Body is a required fi eld” and “Title is a
required fi eld” instead of the default “can’t be blank,” as follows:

validates_presence_of :title, :body, :message => “is a required field”

Notice that even though the two attributes that you are trying to validate are passed to the method on
the same line, their validation is independent from each other. This means that if you tried to submit an
article with a non-empty body but an empty title, you’d get an error message about the missing title only.
Similarly, if you tried to create a duplicate post with the exact same text as a previous one, a message
would inform you that this is not allowed.

Chapter 7 explains many more useful validations.

Adding a Bit of Style
One of the main reasons why you still can’t quite call the output of the scaffold generator a blog is
that it doesn’t look like one. Create a couple more articles in order to have at least three of them to work
with, and let’s add some style.

To get a nice looking blog, you’ll need a few stylesheet fi les and a few images. In a real-life scenario
these would be provided to you by your Web designer. In order to follow along, download the code
for this chapter from the wrox.com site and copy the stylesheets contained in the project_files
folder, into the public\stylesheets directory of your project. Similarly, copy over the three images
from the project_files folder you just downloaded into your public\images directory. Also delete
rails.png from that same directory, and public\stylesheets\scaffold.css because you won’t
need them anymore.

You’ll start your customization by modifying the articles.html.erb layout. In this example I call the
blog “The Rails Noob,” so the fi rst thing you can do is change the title tag:

<title>The Rails Noob</title>

Next, you need to link to the main stylesheet, which is going to be site.css:

<%= stylesheet_link_tag ‘site’ %>

You can add a logo (linked to the homepage) in plain HTML or by using the image_tag helper:

<%= link_to image_tag(‘logo.png’, :width => ‘350’, :alt => “The Rails Noob”), root_
path %>

74955book.indd List17674955book.indd List176 3/4/09 8:46:19 AM3/4/09 8:46:19 AM

177

Chapter 5: A Working Sample

You’ll also need to add a few tags, and ids and classes attributes to give the blog a bit of structure and
style. Listing 5-3 shows the full code of the articles.html.erb layout. Ensure that your layout looks
the same by either typing the difference from Listing 5-3 or by copying the fi le from the downloaded
directory (the fi le is named listing0503.html.erb).

Listing 5-3: app\views\layouts\articles.html.erb Customized

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
 <meta http-equiv=”content-type” content=”text/html;charset=UTF-8” />
 <title>The Rails Noob</title>
 <%= stylesheet_link_tag ‘site’ %>
</head>
<body>
 <div id=”header” class=”container”>
 <div id=”logo”>
 <%= link_to image_tag(‘logo.png’, :width => ‘350’, :alt => “The Rails Noob”),
 root_path %>
 </div>

 <ul id=”nav” class=”clear”>
 <%= link_to ‘Home’, root_path %>
 <%= link_to ‘New Article’, new_article_path %>

 <! — /header — >
 </div>

 <div id=”main” class=”container”>
 <p style=”color: green” id=”notice”><%= flash[:notice] %></p>
 <%= yield %>
 </div>

 <div id=”footer” class=”container clear”>
 <div class=”column span-6”>

 <! — /column — >
 </div>

 <div class=”column span-4 last”>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Nullam sed lectus ut nisi hendrerit congue.
 </p>
 <! — /column — >
 </div>
 <! — /footer — >
 </div>
</body>
</html>

74955book.indd List17774955book.indd List177 3/4/09 8:46:19 AM3/4/09 8:46:19 AM

178

Chapter 5: A Working Sample

Now you can tackle the index.html.erb template as shown in Listing 5-4.

Listing 5-4: app\views\articles\index.html.erb Customized

<% for article in @articles %>
 <div class=”article clear”>
 <h2><%= link_to h(article.title), article %></h2>
 <div class=”column span-6”>
 <div class=”entry”>
 <%=h article.body %>
 </div>
 <! — /column — >
 </div>

 <div class=”column span-4 last”>
 <div class=”meta”>
 <h3>About this article</h3>
 Published on <%= article.published_at.to_s(:long_ordinal) %>
 </div>

 <div class=”tools”>
 <h3>Tools</h3>
 <%= link_to ‘Edit’, edit_article_path(article) %> ·
 <%= link_to ‘Destroy’, article, :confirm => ‘Are you sure?’, :method
=> :delete %>
 </div>
 <! — /column — >
 </div>
 <! — /article — >
 </div>
<% end %>

Note in the following line that the date and time format are set to appear in the long ordinal format:

Published on <%= article.published_at.to_s(:long_ordinal) %>

Time and dates can be easily formatted using one of the existing format types and you can even defi ne
your own formats as explained later on in the book.

The end result of the cosmetic changes that you’ve applied so far is shown in Figure 5-13.

That looks much better! But notice how the oldest post (the one that you initially created) appears fi rst,
which is the opposite of how a blog normally works. You can fi x this by modifying the index action in
the controller and specifying the order of the retrieved articles as follows:

 def index
 @articles = Article.fi nd(:all, :order => “published_at DESC”)

 respond_to do |format|

74955book.indd List17874955book.indd List178 3/4/09 8:46:19 AM3/4/09 8:46:19 AM

179

Chapter 5: A Working Sample

 format.html # index.html.erb
 format.xml { render :xml => @articles }
 end
 end

Figure 5-13

ActiveRecord’s fi nders are extremely fl exible and accept many options including :order. This fi xes the
order issue as shown in Figure 5-14.

Now that you’ve embellished the layout for the Articles controller and the template for the index
action, you can customize the _form.html.erb partial slightly, for the new and edit actions as shown
in Listing 5-5.

74955book.indd List17974955book.indd List179 3/4/09 8:46:19 AM3/4/09 8:46:19 AM

180

Chapter 5: A Working Sample

Figure 5-14

Listing 5-5: app\views\articles_form.html.erb Customized

<% form_for(article) do |f| %>
 <%= f.error_messages %>
 <% fi eld_set_tag do %>
 <div class=”fi eld”>
 <%= f.label :title %>
 <%= f.text_field :title %>
 </div>

 <div class=”fi eld”>
 <%= f.label :body %>
 <%= f.text_area :body %>
 </div>

74955book.indd List18074955book.indd List180 3/4/09 8:46:19 AM3/4/09 8:46:19 AM

181

Chapter 5: A Working Sample

Listing 5-5: app\views\articles_form.html.erb Customized (continued)

 <div class=”fi eld”>
 <%= f.label :published_at %>
 <%= f.datetime_select :published_at %>
 </div>

 <div class=”fi eld”>
 <%= f.check_box :published %>
 <%= f.label :published %>
 </div>
 <% end %>

 <% fi eld_set_tag do %>
 <%= f.submit button_value, :class => “button” %>
 <% end %>
<% end %>

Notice how f.submit accepts a :class optional argument to specify the CSS class of the button.

Showing the articles, creating, and editing them is all good, but what about the show action? Figure 5-15
shows you a less than satisfactory default look.

Figure 5-15

74955book.indd List18174955book.indd List181 3/4/09 8:46:19 AM3/4/09 8:46:19 AM

182

Chapter 5: A Working Sample

You can change this by modifying the show.html.erb template as shown in Listing 5-6.

Listing 5-6: app\views\articles\show.html.erb Customized

<div class=”article clear”>

 <h1><%= h(@article.title)%></h1>

 <div class=”column span-6”>
 <div class=”entry”>
 <%=h @article.body %>
 </div>
 <! — /column — >
 </div>

 <div class=”column span-4 last”>
 <div class=”meta”>
 <h3>About this article</h3>
 Published on <%=h @article.published_at.to_s(:long_ordinal) %>
 <! — /meta — >
 </div>

 <div class=”tools”>
 <h3>Tools</h3>
 <%= link_to ‘Edit’, edit_article_path(@article) %> ·
 <%= link_to ‘Destroy’, @article, :confirm => ‘Are you sure?’,
 :method => :delete %> ·
 <! — /tools — >
 </div>
 <! — /column — >
 </div>

<! — /article — >
</div>

The result of this cosmetic change is shown in Figure 5-16.

Setting a Default Time Zone
Every time a model’s datetime attribute is saved in the database, this becomes stored as a UTC time. The
problem is that the dates and times presented to the visitor and the blog author are UTC times, rather
than a predefi ned local time zone. When you click New Article you’ll see that the default date and time
selected are based on UTC, not the local time zone. This implies that if you want to schedule a post in the
future for a certain “local time,” you’ll have to offset it (in your head) to obtain the UTC time. Likewise,
having chosen the “long ordinal” presentation of the date and time, when showing an article the readers
of your blog will just see an absolute numeric representation of the time and won’t assume that it’s a
UTC time.

74955book.indd List18274955book.indd List182 3/4/09 8:46:20 AM3/4/09 8:46:20 AM

183

Chapter 5: A Working Sample

Figure 5-16

Depending on your application’s requirements, this may or may not be a big deal. Luckily for you,
Rails 2.2.2 provides excellent support for time zones and setting a predefi ned time zone for your appli-
cation is extremely easy. I live in Toronto, so my time zone is Eastern Time (US & Canada). You can
see a list of local time zones by running the rake task time:zones:local:

C:\projects\blog> rake time:zones:local
(in C:/projects/blog)

* UTC -05:00 *
Bogota
Eastern Time (US & Canada)
Indiana (East)
Lima
Quito

74955book.indd List18374955book.indd List183 3/4/09 8:46:20 AM3/4/09 8:46:20 AM

184

Chapter 5: A Working Sample

You can use rake time:zones:us to obtain only the US time zones matching the local time on your
machine. If you’d like a list of all the time zones supported by Rails, run rake time:zones:all.

Once you’ve determined the time zone that you’d like to apply — usually the time zone of your computer
or of your deployment server — you need to tell Rails that you’d like to use this instead of UTC for your
dates and times. In the config\environment.rb fi le change this line:

config.time_zone = ‘UTC’

With the following or the time zone you’re in:

config.time_zone = ‘Eastern Time (US & Canada)‘

Restart Mongrel, refresh the /articles page, and you will see that the times are now presented
in the local time zone. Furthermore, if you head over to /articles/new the default time for the
published_at fi eld will be the current time in your local time zone as well.

Rails will still store the date and time values as UTC in the database, but will perform an automatic
conversion for you when retrieving them from, or storing them in, the database. To verify this fi re up
the Rails console:

C:\projects\blog> ruby script/console
Loading development environment (Rails 2.2.2)
>>

This console works similarly to irb but it already has Rails’ current environment loaded for you.

Try to evaluate the following expression:

>> Article.find(1).published_at
=> Fri, 11 Jul 2008 05:24:00 EDT -04:00

The result I obtained is local to my machine (which is what I’m after), however this may trick you into
believing that the database holds that local date and time as well. This is not the case, as you can con-
fi rm by appending before_type_cast to the attribute published_at to obtain the date and time
before the automatic conversion:

>> Article.find(1).published_at_before_type_cast
=> “2008-07-11 09:24:00”

Adding Support for Textile
Despite having separate paragraphs in the text area for the body attribute as shown in Figure 5-17, these
newlines (that is, \n) are not rendered as line breaks or new paragraphs when the template is rendered
in HTML.

You could use the helper simple_format, which appends a linebreak (that is,
) to each newline.
When two consecutive newlines are found, the text before them, and the text after them, is wrapped in
two separated pairs of paragraph tags. This fi xes the “wall of text” issue, but you’d still be left with the
issue of safely allowing innocuous HTML tags.

74955book.indd List18474955book.indd List184 3/4/09 8:46:20 AM3/4/09 8:46:20 AM

185

Chapter 5: A Working Sample

Figure 5-17

The helper method santize does exactly that. It strips all the attributes that aren’t explicitly allowed,
while encoding the ones that are permitted. The method accepts two arguments, the HTML text that
needs to be “sanitized,” and a hash of options. santize can be considered as a more advanced replace-
ment of h. If you were to adopt this strategy, simple_format and sanitize could be used together to
obtain paragraph separation from newlines fi rst, and then strip all the non-allowed tags and attributes.
This approach would work but would require the blog’s author to manually insert HTML.

It is customary for blog engines to provide a friendly markup language like Textile or Markdown,
instead of requiring HTML code to be written. Assume that in your blog you’ll opt for Textile, which
is a very readable and easy to remember markup language.

A textile reference is available online at http://hobix.com/textile. For converting Markdown,
you can use the BlueCloth plugin instead.

The user will insert textile text, which will be stored in the database. The only conversion required is in
the view layer, where you want to transform the retrieved body attribute in textile format into HTML
that can be rendered by any browser.

74955book.indd List18574955book.indd List185 3/4/09 8:46:20 AM3/4/09 8:46:20 AM

186

Chapter 5: A Working Sample

Ruby offers a library called RedCloth that is able to perform this conversion for you. As long as the
RedCloth gem is installed, Rails’ helper method textilize can be used. The fi rst thing you’ll need
to do is add a requirement for the RedCloth gem in config\environment.rb, as follows:

Rails::Initializer.run do |config|
 # ...
 # ...
 config.gem “RedCloth”, :version => “>= 3.301”, :source => “http://code.
whytheluckystiff.net”
 # ...
 # ...
end

As you can see, this specifi es that the application depends on the RedCloth gem, that the version
installed should be 3.301 or greater, and that it should be fetched directly from the website of the devel-
oper. This third option is not strictly required, but for this particular gem it is highly recommended,
given that the gem that’s available from RubyForge is not the most up-to-date one and an important
release (nicknamed Super RedCloth) was recently put out by the developer on his own repository.

Once you have added this config.gem line, save the fi le and run the rake gems:install task to
install the required gem as follows:

C:\projects\blog> rake gems:install
(in C:/projects/blog)
gem.bat install RedCloth — version “>= 3.301” — source http://code.whytheluckyst
iff.net
Successfully installed RedCloth-3.301-x86-mswin32
1 gem installed

Now you need to employ the textilize helper provided by Rails into the templates for the index and
show actions.

You could also use RedCloth.new(text).to_html where text is the textile text that needs to
be converted.

This is easily done by replacing the following snippet in index.html.erb:

<div class=”entry”>
<%=h article.body %>
</div>

with:

<div class=”entry”>
<%= textilize(article.body) %>
</div>

And similarly, replace the following in show.html.erb:

<div class=”entry”>
<%=h @article.body %>
</div>

74955book.indd List18674955book.indd List186 3/4/09 8:46:20 AM3/4/09 8:46:20 AM

187

Chapter 5: A Working Sample

with:

<div class=”entry”>
<%= textilize(@article.body) %>
</div>

This will convert the textile markup into HTML code.

Regarding the Security of textilize
The textilize helper doesn’t sanitize the text passed to it, and as such is susceptible
to cross-site scripting (XSS) attacks. If the input is coming from the end user, such as
in the case of a comment, the output of the textilize method needs to be explicitly
sanitized using the santize method or another white listing fi lter.

In this specifi c case, as mentioned before, you are the only one who will have access
to the form for entering and editing articles (once the app has authentication in place),
so it is not strictly necessary to sanitize your own input. Things would be very differ-
ent for forms that accept textile comments from visitors. Chapter 11 has more security
considerations.

Restart Mongrel, and load http://localhost:3000 into your browser. This time around, you should
be able to see that textilize has converted each chunk of text into a paragraph of its own.

Now create a new article by employing a bit more textile markup. Use the following text for the body:

Hi there!

If you don’t know what %{color:red}Rails% is, you can read more about it on the
“official website”:http://rubyonrails.org and then buy Antonio Cangiano’s book.
It’s *highly recommended*. ;-)

By the way, did you know that Ruby on Rails(TM) is a trademark of “David Heinemeier
Hansson”:http://loudthinking.com?

This will be converted into the following HTML code by the textilize helper:

<p>Hi there!</p>
<p>If you don’t know what Rails is, you can
read more about it on the official website
and then buy Antonio Cangiano’s book. It’s highly recommended</
strong>. ;-)</p>

<p>By the way, did you know that Ruby on Rails™ is a trademark of David Heinemeier Hansson?</p>

The rendered page for the show action is shown in Figure 5-18.

74955book.indd List18774955book.indd List187 3/4/09 8:46:20 AM3/4/09 8:46:20 AM

188

Chapter 5: A Working Sample

Figure 5-18

Another easy way to handle textile in Rails is to use the acts_as_textiled plugin.

Using named_scope
At this stage your The Rails Noob blog publishes every single article in the database regardless of its
published or unpublished status. This is because in the index action you used a fi nder method, which
retrieves all the records from the articles table:

@articles = Article.find(:all, :order => “published_at DESC”)

You can change this in order to select only published articles by specifying a condition in the query:

@articles = Article.find(:all, :conditions => { :published => true }, :order =>
“published_at DESC”)

This is converted into the SQL query:

SELECT * FROM “articles” WHERE (“articles”.”published” = ‘t’) ORDER BY published_at
DESC

You don’t want to show all the published articles though. For example, if an article is set as published,
but its publication date is in the future, that article is scheduled and should be shown only when its

74955book.indd List18874955book.indd List188 3/4/09 8:46:20 AM3/4/09 8:46:20 AM

189

Chapter 5: A Working Sample

publication date is presently due or if it was in the past. You need to indicate two conditions to the find
method, then, as shown here:

@articles = Article.find(:all, :conditions => [“published = ? AND published_at <=
?”, true, Time.now], :order => “published_at DESC”)

Notice how you specify the conditions by assigning an array to the :conditions key. This array con-
tains the SQL condition, and the two parameters that the condition requires, in the order that they
appear within it. The resulting SQL query will resemble the following:

SELECT * FROM “articles” WHERE (published = ‘t’ AND published_at <= ‘2008-07-16
21:49:52’) ORDER BY published_at DESC

This is almost what you want, except that there’s a problem: Time.now is a local time and it gets
compared to UTC times in the database. To fi x this you need to convert it to UTC through the utc
instance method:

@articles = Article.find(:all, :conditions => [“published = ? AND published_at <=
?”, true, Time.now.utc], :order => “published_at DESC”)

This, at the time I ran the query, was converted into:

SELECT * FROM “articles” WHERE (published = ‘t’ AND published_at <= ‘2008-07-17
02:01:22’) ORDER BY published_at DESC

This is exactly the query you were aiming for. In theory you could have gone ahead and applied the
new fi nder options in your index action and everything would work as expected. There is, however, a
consideration to be made.

If you were to develop your blog in the real world, so as to include many typical blog features, it’s very
possible that you’d fi nd yourself refi ning your query further in different ways. For example, in an action
you may want to retrieve a list of published articles for a given month, whereas in another you may
wish to get a list of articles that have been published within a certain range of dates. All these fi nders,
which can become visually quite busy, will have a lot of common code because they all need to retrieve
a list of published posts.

One approach to deal with this repetition, and adhere to the DRY principle, would be to create a class
method in the model as follows:

Returns published articles excluding scheduled ones
def self.published(options)
 find(:all, options.merge(:conditions => [“published = ? AND published_at <= ?”,
true, Time.now.utc]))
end

This solution enables you to call Article.published as well as pass a few fi nder options to the
method from your controller:

Article.published(:order => “published_at DESC”)

74955book.indd List18974955book.indd List189 3/4/09 8:46:20 AM3/4/09 8:46:20 AM

190

Chapter 5: A Working Sample

Since version 2.1, Rails offers an even better solution that is more concise and far more fl exible: named
scopes. These were introduced into Rails’ core with the 2.1 release, but were already available before
thanks to a plugin called has_finder. The idea behind named scopes is that it’s possible to attribute a
name to a customized fi nder much as you would with a class method. Unlike a class method though,
these can be chained with other ActiveRecord methods so that they become a very easy way to reuse
the fi nder logic that they encapsulate. Within your models you can defi ne a named scope with the
method named_scope. Go ahead and add the following named scopes to the Article model (in
app\models\article.rb):

Finds all the published posts excluding scheduled ones
named_scope :published, :conditions => [“published = ? AND published_at <= ?”,
true, Time.now.utc]

Finds all the drafts and scheduled posts
named_scope :unpublished, :conditions => [“published = ? OR published_at > ?”,
false, Time.now.utc]

Now you’ll be able to run Article.published and obtain a list of published (excluding scheduled
ones) articles. Likewise, you can use Article.unpublished to get an array of scheduled articles and
drafts. You can also transparently chain a fi nder method to it (or any Article class method or Array
instance method) to refi ne the select conditions further.

Change the fi nder in the index action within the Articles controller from:

@articles = Article.find(:all, :order => “published_at DESC”)

to:

@articles = Article.published.find(:all, :order => “published_at DESC”)

Reload http://localhost:3000 and you should see that only published, non-scheduled articles
appear.

Feel free to change the publication status or scheduled dates of a few articles of your own to see how
this is properly refl ected on the articles (as shown on the blog’s homepage). You can also use the Rails
console introduced previously, which is also a quick way to modify the status of a record as shown in
the following Rails console session:

C:\projects\blog> ruby script/console
Loading development environment (Rails 2.2.2)
>> a = Article.published.fi rst
=> #<Article id: 1, title: “Hello, Rails!”, body: “Hi from the body of an articl
e. :)“, published: true, published_at: “2008-07-11 09:24:00”, created_at: “2008-
07-11 09:32:41”, updated_at: “2008-07-11 09:32:41”>
>> a.published
=> true
>> a.published = false
=> false
>> a.save
=> true
>> a
=> #<Article id: 1, title: “Hello, Rails!”, body: “Hi from the body of an articl

74955book.indd List19074955book.indd List190 3/4/09 8:46:21 AM3/4/09 8:46:21 AM

191

Chapter 5: A Working Sample

e. :)“, published: false, published_at: “2008-07-11 09:24:00”, created_at: “2008
-07-11 09:32:41”, updated_at: “2008-07-17 03:18:28”>

Like irb, enter exit and hit the Return key to quit the console.

Notice that there is no collision between the named scope published and the attribute published.
The fi rst is accessed from the Article class (like a common class method), whereas the second is only
defi ned by Article instances.

Adding a Custom REST Action
At this point in time, any scheduled article or draft will be excluded from the homepage. You could
edit them from the console or access them by placing their id in the URL, but this is far from conve-
nient. What you can do is create a custom action called unpublished. Add the following action to your
ArticlesController:

GET /articles/unpublished
GET /articles/unpublished.xml
def unpublished
 @articles = Article.unpublished.find(:all, :order => “published DESC, published_
at DESC”)

 respond_to do |format|
 format.html { render :action => “index” }
 format.xml { render :xml => @articles }
 end
end

To retrieve the list of unpublished articles, you can chain the unpublished named scope with a fi nder
that sorts them to display scheduled articles fi rst and drafts second. Furthermore, you keep the inverse
chronological order for each of the two “groups.”

The template for the unpublished action would be identical to the one of the index action because
they both display a bunch of articles, no matter what these are.

Truth be told, the destroy action redirects every HTML request to the index action. This means that
if you delete an article from the “unpublished page” you’ll be redirected back to the index action, not
to unpublished. It’s a minor nuisance that can be fi xed by improving the redirecting logic inside the
destroy action, to make it aware of the previous action (for example, index or unpublished). To do
so, replace redirect_to(articles_url) in destroy with redirect_to(:back).

Rather than fostering repetition by copying the index.html.erb template into a unpublished.html.erb
fi le, it’s far nicer to simply render the template of the index action via render :action => :index.

Unlike redirect_to, using render implies that only the index.html.erb tem-
plate will be rendered and there is no risk that the index action will be executed,
thereby assigning the wrong array of articles to the @articles variable.

74955book.indd List19174955book.indd List191 3/4/09 8:46:21 AM3/4/09 8:46:21 AM

192

Chapter 5: A Working Sample

If you try to access http://localhost:3000/articles/unpublished you’ll get an ugly error message:

Couldn’t find Article with ID=unpublished

The reason for this is that you are using a custom REST action that is not automatically mapped by
map.resources :articles in config\routes.rb. Therefore routing assumes that unpublished
is the id of the record that you are looking for, not the name of an action.

You’ll just have to plug the new action into the collection of REST actions within the routes fi le. Change
it as follows:

map.resources :articles, :collection => { :unpublished => :get }

Restart Mongrel, because you’ve modifi ed the routes fi le, and visit http://localhost:3000/articles/
unpublished again. This time you should see a list of scheduled and drafted articles. Likewise, visiting
http://localhost:3000/articles/unpublished.xml will return the same articles (encoded in XML
format) to you.

Beautiful! Now that it works, you can add a link (the highlighted line) in the articles.html.erb
layout:

 <%= link_to ‘Home’, root_path %>
 <%= link_to ‘Unpublished Articles’, unpublished_articles_path %></
li><%= link_to ‘New Article’, new_article_path %>

Notice that when you added your custom REST action to the collection in the routes fi le, you essentially
created a named route for it, so you can also use the handy “url” and “path” helper methods (for example,
unpublished_articles_path). If you reload the homepage, you should now see that the new menu bar
includes a working link to the unpublished articles.

When adding some form of authentication to the blog, it will be necessary to hide this link from the
general public.

A fi nal touch would be the ability to distinguish drafts from scheduled posts. You could, for example,
provide this bit of information in the “About this article” section on the right side of the article’s body.
Instead of saying “Published on” all the time, you could distinguish and use “Scheduled for” and “This
is still a draft.” when appropriate.

Defi ning a Helper Method
One way to do this is by defi ning a status instance method in the Article model that returns a string
indicating the status of the article object. You would then need to use this value to create a full string
that includes the proper “for” or “on” preposition, plus the publication date and time in the view layer.
If you take this approach, you could even think of formulating the whole string, as it needs to appear
to the user, directly in the status method from within the model. This latter idea is a very bad one!
You shouldn’t include presentation logic in the model, because a distinct separation of concerns is king
when it comes to Rails development.

A much more straightforward approach consists of simply defi ning a custom helper method that receives
the article object as an argument and returns the desired string. You can defi ne helper methods in the

74955book.indd List19274955book.indd List192 3/4/09 8:46:21 AM3/4/09 8:46:21 AM

193

Chapter 5: A Working Sample

app\helpers directory of your project. If you take a look in that folder, you’ll fi nd two fi les, applica-
tion_helpers.rb and articles_helpers.rb. The naming convention has the same logic as that
of controllers and layouts. Methods defi ned in application_helpers.rb will be available site-wide,
whereas those defi ned in articles_helpers.rb will be accessible only from the article templates.

In this case the helper method that you need is highly specifi c to articles, so go ahead and change your
app\helpers\articles_helpers.rb fi le to look like this:

module ArticlesHelper
 def publication_status(article)
 publication_time = article.published_at.to_s(:long_ordinal)

 if article.published
 if article.published_at <= Time.now
 “Published on #{publication_time}“
 else
 “Scheduled for #{publication_time}“
 end
 else
 “This article is still a draft.”
 end
 end
end

Notice how this uses the attributes of the article object passed as an argument to determine its status
and in turn decides which string to return. In the case of a draft, it doesn’t make much sense to publish
the publication date, so the string literal “This article is still a draft.” is returned.

Now you need to use the helper publication_status in both the index.html.erb and show.html.
erb templates. Before doing that though, you need to make an important consideration. This isn’t the fi rst
time that you had to change the code in both templates. When this happens, it’s a surefi re giveaway that
the code could adhere more to the DRY principle by employing a partial template. Effectively, if you take
a look at the code of index.html.erb and show.html.erb you’ll notice that they are virtually the same,
except that the template associated with the index action loops through the list of articles.

More about Partials
To solve this, create a partial in the app\views\articles directory and call it _article.html.erb.

Place the following code, cut and pasted from the index.html.erb template, inside the partial you
just created:

<div class=”article clear”>
 <h2><%= link_to h(article.title), article %></h2>
 <div class=”column span-6”>
 <div class=”entry”>
 <%= textilize(article.body) %>
 </div>
 <! — /column — >
 </div>

74955book.indd List19374955book.indd List193 3/4/09 8:46:21 AM3/4/09 8:46:21 AM

194

Chapter 5: A Working Sample

 <div class=”column span-4 last”>
 <div class=”meta”>
 <h3>About this article</h3>
 Published on <%= article.published_at.to_s(:long_ordinal) %>
 </div>

 <div class=”tools”>
 <h3>Tools</h3>
 <%= link_to ‘Edit’, edit_article_path(article) %>·
 <%= link_to ‘Destroy’, article, :confirm => ‘Are you sure?’, :method =>
:delete %>
 </div>
 <! — /column — >
 </div>
<! — /article — >
</div>

You can immediately modify it to use the publication_status helper you defi ned before. Replace the
following line in the _article.html.erb partial:

Published on <%= article.published_at.to_s(:long_ordinal) %>

with:

<%= publication_status(article) %>

Now that you have created this partial, go ahead and remove the entire content of show.html.erb,
replacing it with the following line:

<%= render :partial => @article %>

The render method is smart enough to fi gure out the partial name, inferring it from the name of
the class of the object, @article. In our case, it will render _article.html.erb. That method also
makes the object assigned to the @article instance variable available through the article local
variable in the partial.

Some people prefer to avoid all this magic and opt instead to specify the name of the partial and the local
variables explicitly. Another common option is :object, which passes the value assigned to it down to the
local variable that matches the name of the partial. For example: render :partial =>”article”,
:object => @article will accomplish the same results as render :partial => @article, but
in a less concise way. Be careful though, because render :partial =>”my_partial”, :object
=> @article would assign the value of @article to the local variable my_partial, not article.

You made the show.html.erb template as DRY as possible, however you still need to address the
index.html.erb one. The peculiarity of this template is that it loops through a collection of articles,
so you’d have to render the partial you saw before (within a loop).

Thankfully, the render method is fl exible and smart enough to infer from an @articles collection
of Article objects assigned to :partial, that the partial _article.html.erb should be rendered

74955book.indd List19474955book.indd List194 3/4/09 8:46:21 AM3/4/09 8:46:21 AM

195

Chapter 5: A Working Sample

once for each object in the array. Every time the partial is rendered, the current object in the array will
be assigned to the local variable article in the partial. This syntax is much more concise. What’s
more, the local variable article_counter will be set to store the current position in the list of records
(starting from 1, not 0).

Replace the entire contents of the index.html.erb fi le with the following:

<%= render :partial => @articles %>

Earlier you saw that :partial => @article could be rewritten using the :object option if you
wanted to. Similarly, :partial => @articles could be rewritten using the :collection hash.
For example, render :partial => “article”, :collection => @articles is equivalent
to render :partial => @articles, which you used in index.html.erb. Just like :object,
:collection defi nes the local variable based on the name of the partial. In the case of collections, this
can be overwritten with the option :as introduced in Rails 2.2.

Assuming you followed each step carefully, everything should be working now, just as planned,
and the code that you’ve got in your hands here defi nitely applies the Don’t Repeat Yourself principle.
Figure 5-19 shows you the “Unpublished Articles” page for the articles I created on my machine (I high-
lighted the rendered output of the publication_status helper with a rectangle).

Figure 5-19

74955book.indd List19574955book.indd List195 3/4/09 8:46:21 AM3/4/09 8:46:21 AM

196

Chapter 5: A Working Sample

Summary
Now your blog looks suffi ciently presentable. There are still a few missing features though, before you
can rightfully consider it a full-fl edged simple blog:

 1. You lack pagination. If your blog had 50 currently published articles, all of them would appear
on the front page. I like the idea of having only one post on the front page (or if you wish, more)
and being able to click a navigation menu to see the previous posts.

 2. Some blogs opt not to have comments enabled, but in your blog you’ll allow them and this
provides the opportunity to introduce a few more Rails concepts.

 3. Any respectable blog should allow content syndication; hence you need to add an RSS and
Atom feed.

 4. You should throw in a bit of Ajax in order to provide a more responsive experience when using
your application.

In the next chapter you address the fi rst two points, adding pagination and comments to your blog. In
Chapter 8 you evaluate a few options for easily adding authentication and authorization to the application,
and in Chapter 9 you add RSS and Atom feeds, as well as throwing in a sprinkle of Ajax.

What’s key is that you are doing incremental development, so as new concepts are explained in the
coming chapters, you’ll add a few features to the application when doing so fi ts.

74955book.indd List19674955book.indd List196 3/4/09 8:46:21 AM3/4/09 8:46:21 AM

Incremental Development,
Logging, and Debugging

The wages of sin is debugging.

— Ron Jeffries, Co-founder of the XP methodology

The previous chapter laid the foundation for your undemanding The Rails Noob blog application, but
you currently lack pagination and the ability to add comments. In this chapter, you add these func-
tionalities and also take a closer look at a few other aspects of the framework, including logging and
debugging.

Adding Pagination
As seen before, when you visit / or /articles all the currently published posts are shown. If
you are a regular blogger you’ll probably post at least an article each week. At that pace, the front
page would soon become an exceedingly long scroll of content. To work around this issue, you are
going to add pagination, which is the ability to defi ne a set number of articles that will appear per
page. Here it is assumed that you want to display only the latest post on the homepage.

You could implement this feature yourself, given that ActiveRecord’s fi nders allow you to specify
:limit and :offset conditions for SELECT queries, but why should you reinvent the wheel?
Pagination is an extremely common requirement for Web applications, and several plugins are
available that can be readily used.

In earlier versions of Rails, pagination was a feature that was included by the framework, but its
implementation and performance were less than satisfactory, so it has since been removed.

74955c06.indd List19774955c06.indd List197 3/5/09 8:09:14 AM3/5/09 8:09:14 AM

198

Chapter 6: Incremental Development, Logging, and Debugging

Installing the will_paginate Plugin
The most commonly used pagination plugin is will_paginate. This excellent plugin makes adding
pagination to your applications a joy. The recommended way of installing it is through RubyGems. The
fi rst thing that you need to do, then, is to add a requirement for the gem in config\environment.rb.

Add to that fi le the following line:

config.gem ‘mislav-will_paginate’, :version => ‘>= 2.3.2’,
 :lib => ‘will_paginate’,
 :source => ‘http://gems.github.com’

This should be placed after the existing config.gem line in the Rails::Initializer.run block.

You need to specify the :lib key/option because the name of the gem is mislav-will_paginate,
whereas the name of the actual library that needs to be loaded is will_paginate. GitHub is a very
popular and highly appreciated site for Ruby projects and libraries, and as such it’s common for many
gems and plugins to be hosted there.

Not all plugins are available as gems, and many of them need to be installed by running ruby
script/plugin install http://example.org/repository/name_plugin, which copies
the plugin to the vendor\plugins directory of the project.

So far, you’ve only specifi ed what’s required for loading a specifi c gem when the HTTP server starts up;
you’ve yet to actually install the gem though. Let’s do that next.

From the main directory of your project, run rake gems:install. You should see a reassuring mes-
sage that confi rms that the gem was correctly installed. Now you can restart Mongrel, wherein you
shouldn’t see any warnings about missing gems.

Using the Plugin
Now that the plugin is properly installed, you’ll need to do two things. The fi rst is to specify the number
of articles per page that you’d like to retrieve. The second is to modify the index.html.erb template so
that it contains a page menu that will allow you to navigate between pages. The will_paginate plugin
makes both of these steps incredibly straightforward.

You’re interested in paginating the main page of your site, so you’ll need to modify the fi nder used
in the index action of the Articles controller. The plugin you just installed adds a paginate class
method to ActiveRecord::Base, which is essentially a fi nder with two additional options: :page
and :per_page.

Replace the existing fi nder in the index action with the following:

@articles = Article.published.paginate(:page => params[:page],
 :per_page => 1,
 :order => “published_at DESC”)

With that line you specifi ed that only one record per page should be fetched. The method paginate
knows which record should be retrieved based on the :per_page setting and the page parameter

74955c06.indd List19874955c06.indd List198 3/5/09 8:09:15 AM3/5/09 8:09:15 AM

199

Chapter 6: Incremental Development, Logging, and Debugging

(with 1 being the default for page if no parameter is given). As you can verify by visiting http://
localhost:3000/, in this case loading the homepage would lead to the retrieval of only the last
published, non-scheduled article.

Don’t forget to have the Web server running with ruby script/server.

Upon visiting http://localhost:3000/?page=2 in your browser, you’d assign the value 2 to the
page parameter, trigger the index action, and obtain the second page that should be rendered. Because
you specifi ed that you’d like to see only one article per page (with :per_page => 1), that request will
lead you to the second record. Had you specifi ed :per_page => 5, the second page would have dis-
played records from the 6th to the 10th post (based on the order condition “published_at DESC”).

Before proceeding to add a convenient pagination menu to move between pages, let’s think this one
through. Is the index action the only action that should be paginated? It could be argued that any page
that needs to display a series of articles should have pagination. In this scenario, this assumption leads
us to consider pagination for the unpublished action as well.

Replace the existing fi nder in the unpublished action with the following:

@articles = Article.unpublished.paginate(:page => params[:page], :per_page => 1,
:order => “published DESC, published_at DESC”)

If you now load http://localhost:3000/articles/unpulished in your browser, you’ll see only
the latest unpublished article.

The problem with what you just did is that you need to repeat how many records you want per page in
both actions. With only two existing actions, this is not a big violation of the DRY principle, but every
time you need to add a new action that’s able to display a collection of articles, you’ll face this same rep-
etition (assuming that they all share the same per_page setting).

Truth be told, some may opt for a larger number of articles per page for the unpublished page, in which
case no repetition occurs when specifying the per_page option.

Setting per_page in the Model
Thankfully, the will_paginate plugin provides a way to specify this option model-wide. All you need
to do is defi ne a class method called per_page that returns the number of records that you want to render
on each page.

Sometimes you’ll see code that looks like the following:

cattr_reader :per_page
@@per_page = 1

This works too. cattr_reader is a method provided by ActiveSupport, which adds the equivalent of
attr_reader to class variables. Using the preceding code in a class will defi ne a class method and an
instance method called per_page. Both will return the value of the class variable @@per_page.

74955c06.indd List19974955c06.indd List199 3/5/09 8:09:15 AM3/5/09 8:09:15 AM

200

Chapter 6: Incremental Development, Logging, and Debugging

You can improve your code slightly then, so go ahead and change your Article model by adding the
following class method to its defi nition:

def self.per_page
 1
end

Having defi ned the per_page option in the model, you can now remove it from the two actions. The
“fi nal” fi nders appear as follows:

In index
@articles = Article.published.paginate(:page => params[:page], :order =>
“published_at DESC”)

In unpublished
@articles = Article.unpublished.paginate(:page => params[:page], :order =>
“published DESC, published_at DESC”)

Adding a Pagination Menu to the View
Now that the model and controller have done their part, you’ll need to modify the view layer to include
a pagination menu. Edit the index.html.erb template (used by both index and unpublished) so that
it looks like the following:

<%= render :partial => @articles %>
<%= will_paginate @articles %>

Save the fi le and reload the homepage; you should see the pagination menu at the bottom as shown in
Figure 6-1. The number of pages will depend on the quantity of published articles that already exist.

Figure 6-1

If you visit http://localhost:3000/articles/unpublished you can obtain a similar menu that
may have a different number of pages, depending on the number of scheduled and drafted articles.

The plugin repository for the plugin is located at http://github.com/mislav/will_paginate/.
Within the fi le examples/pagination.css are a few predefi ned CSS classes that you can use to
customize the look of the output of the will_paginate helper.

Try to think about what you just did and you’ll realize how adding pagination was very straightfor-
ward and much easier than what you would have to do if you were implementing it in ASP or ASP.NET.

74955c06.indd List20074955c06.indd List200 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

201

Chapter 6: Incremental Development, Logging, and Debugging

Adding Comments
Your visitors should be able to read articles and comment on them. The information that you need from
each commenter is their name, their email address (which you won’t display), and the body of their
comment. Let’s create a new resource for this.

Go ahead and run the following:

C:\projects\blog> ruby script/generate scaffold comment article:references
name:string email:string body:text

This is analogous to what you already did before for the article resource. The only part warranting expla-
nation is article:references. It indicates that you need a foreign key that references the primary key
of the articles table so that you can establish a one-to-many relationship between the articles table
and the comments table. The foreign key in the comments table will be article_id. It will be an integer
(just as the referenced id is).

references has an alias called belongs_to. Using article:belongs_to would have been
acceptable as well.

The migration fi le looks like this:

class CreateComments < ActiveRecord::Migration
 def self.up
 create_table :comments do |t|
 t.references :article
 t.string :name
 t.string :email
 t.text :body

 t.timestamps
 end
 end

 def self.down
 drop_table :comments
 end
end

It is usually a very good idea to add indexes to foreign key columns. This can drastically improve per-
formance. Before proceeding with the creation of the table, you should modify the migration fi le to add
an index as shown here:

class CreateComments < ActiveRecord::Migration
 def self.up
 create_table :comments do |t|
 t.references :article
 t.string :name
 t.string :email
 t.text :body

 t.timestamps
 end

74955c06.indd List20174955c06.indd List201 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

202

Chapter 6: Incremental Development, Logging, and Debugging

 add_index :comments, :article_id
 end

 def self.down
 drop_table :comments
 end
end

Please note that add_index has an opposite method, called remove_index. For example, in the down
method you could write remove_index :comments, :column => :article_id. This is not necessary,
however, given that you already have drop_table :comments. When the table is dropped, the index you
defi ned will be removed as well.

Now you need to evolve the current schema, which includes the articles table only, to a version that
will include the new comments table as well. To do this, run rake db:migrate as you did in the pre-
vious chapter. If you look at the log\development.log fi le, you’ll see that the generated SQL query
creates a comments table that includes an article_id column, the name, email, and body fi elds that
you specifi ed, plus the usual created_at and updated_at. You’ll also see the following query for the
index you defi ned:

CREATE INDEX “index_comments_on_article_id” ON “comments” (“article_id”)

You can also see this in Ruby code if you take a look at the contents of the fi le db\schema.rb, which is
generated after executing rake tasks that affect the schema (for example, db:migrate):

ActiveRecord::Schema.define(:version => 20080723022822) do

 create_table “articles”, :force => true do |t|
 t.string “title”
 t.text “body”
 t.boolean “published”
 t.datetime “published_at”
 t.datetime “created_at”
 t.datetime “updated_at”
 end

 create_table “comments”, :force => true do |t|
 t.integer “article_id”
 t.string “name”
 t.string “email”
 t.text “body”
 t.datetime “created_at”
 t.datetime “updated_at”
 end

 add_index “comments”, [“article_id”], :name => “index_comments_on_article_id”
end

This fi le can also be explicitly generated by running rake db:schema:dump and loaded into an empty
database by running rake db:schema:load. schema.rb is essentially a translation, in Ruby code, of
the database schema. This uses the ActiveRecord adapter for the specifi c database system to determine
how to map SQL data types with Rails data types.

74955c06.indd List20274955c06.indd List202 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

203

Chapter 6: Incremental Development, Logging, and Debugging

Because schema.rb is relied upon for generating the test database, if your database has database-specifi c
column types that are not supported by the adapter or that use other db-specifi c features, which won’t
be “dumped” by the db:schema:dump task, it’s far better to switch to an SQL-based creation of the test
database by uncommenting the existing line in config\environment.rb:

Use SQL instead of Active Record’s schema dumper when creating the test database.
This is necessary if your schema can’t be completely dumped by the schema dumper,
like if you have constraints or database-specific column types
confi g.active_record.schema_format = :sql

Fortunately, you don’t need to do that in your case.

If you head over to http://localhost:3000/comments, you will probably be quite disappointed by
the bare-bones look that is typical of the scaffold generator, as shown in Figure 6-2.

Figure 6-2

The reason for this is that the actions of the Comments controller are rendered using the comments
.html.erb layout and not the articles.html.erb one that you’ve customized so far.

Things get even worse if you decide to accept the open invitation to click “New comment” as shown in
Figure 6-3.

Figure 6-3

74955c06.indd List20374955c06.indd List203 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

204

Chapter 6: Incremental Development, Logging, and Debugging

Defining Associations
That doesn’t look too good, now, does it? The problem lies in the fact that the app\views\comments\
new.html.erb template that’s generated by scaffold expects Comment model objects to have an
article method. This is not automatically the case because you have not specifi ed an association
between the Article and Comment models. To do that, edit the Article model to include the follow-
ing highlighted line:

class Article < ActiveRecord::Base
 has_many :comments

 # ... other existing code ...
end

Similarly, the Comment model, located in app\models\comment.rb, should look like the following:

class Comment < ActiveRecord::Base
 belongs_to :article
end

Starting with Rails 2.2 belongs_to is automatically populated for you when scaffolding. In earlier
versions it had to be manually specifi ed.

The highlighted lines employ methods to defi ne associations between models that in turn represent rela-
tionships between the respective tables in the database. In this case, you defi ned a one-to-many relation-
ship between Article and Comment.

As you can see, the syntax of these associated methods is very straightforward. Each of them receives a
symbol that indicates the associated object (plus optional arguments). They end up reading like common
speech: an article “has many comments” and a comment “belongs to an article.”

Notice how the symbol passed to the has_many method is plural, whereas the argument for belongs_
to is singular. Other association methods are has_one (for one-to-one relationships) and has_and_
belongs_to_many (for many-to-many relationships).

Including that single line for each model automatically adds a series of methods that allow you to effort-
lessly work with the related tables. For example, you’ll be able to use the comments method on any
Article object to obtain a list of associated comments. For instance, you’ll just issue Article.find(42).
comments to obtain an array of Comment objects whose article_id attribute is set to 42. Likewise, you
can now use the method article to obtain the Article object that a comment “belongs to.”

Having added these associations, the Comment model now has an instance method article so you can
reload the page http://localhost:3000/comments/new without seeing any errors, as shown
in Figure 6-4.

By the way, errors like the one shown in Figure 6-3 are for troubleshooting purposes and are not dis-
played when Rails is running in production mode.

While you are at it, you can also add validation for the Comment model. Its code becomes:

class Comment < ActiveRecord::Base
 belongs_to :article

74955c06.indd List20474955c06.indd List204 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

205

Chapter 6: Incremental Development, Logging, and Debugging

 validates_presence_of :name, :email, :body
 validates_format_of :email, :with => /\A([\w\.\-\+]+)@((?:[-a-z0-9]+\.)+[a-z]
{2,})\Z/i
end

You require name, email, and body for each comment. Then you use validates_format_of to verify
that the email address inserted by the end user is valid. That scary looking thing is a regular expression
literal. The i after the slash indicates that it should not be case sensitive. Despite its size, this is used to
perform only a basic validation of the conformity of email addresses. Regular expressions, which are
compliant with RFC 822, are even larger.

You can take a look at a slow implementation here: http://www.ex-parrot.com/~pdw/Mail-
RFC822-Address.html. In general it is not a good idea to try to come up with your own very strict
regular expression for validating emails. For a discussion on the topic, check out this post: http://
www.rorsecurity.info/2007/04/16/ruby-regular-expression-fun, which the preced-
ing regular expression comes from, and http://www.regular-expressions.info/email
.html. Using a library like the one pointed out by the rorsecurity.info site may be a good idea.

Figure 6-4

Notice in Figure 6-4 that you don’t have a convenient drop-down list of possible articles to choose from.
Scaffold gives you a text fi eld, where you can enter the article_id, but that’s it. Even if it provided
us with a list to choose from, this would still be far from what you want in a blog.

In your blog you’ll need to make the following three adjustments:

 1. If you run rake routes, you’ll see a bunch of /comments paths due to the fact that scaffold
added map.resources :comments to the project’s routes fi le. You don’t really want people to
be able reach http://localhost:3000/comments/new, because a comment is always associ-
ated with a given article. Instead, it would be nice to have nested routes, so as to refl ect this
logical hierarchy in the URL as well (for example, http://localhost:3000/articles/42/
comments/new).

74955c06.indd List20574955c06.indd List205 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

206

Chapter 6: Incremental Development, Logging, and Debugging

 2. You shouldn’t see a fi eld for article_id, but rather the new form should appear beneath an
article and be automatically associated with it.

 3. A look and feel that is consistent with what you have for the articles. Ideally, you should be able
to embed comments in that same layout.

Nested Resources
What you’ll need to address all these points is the ability to nest the two resources. Edit your
config\routes.rb fi le to replace the following two lines (non-adjacent in your routes fi le):

map.resources :comments
map.resources :articles, :collection => { :unpublished => :get }

with:

map.resources :articles, :has_many => :comments, :collection => { :unpublished =>
:get }

Alternatively, when you need more control, you can use this equivalent block-based syntax:

map.resources :articles, :collection => {:unpublished => :get} do |article|
 article.resources :comments
end

Once you’ve added the highlighted line to the routes fi le, run rake routes again and you’ll see that all
the /comments are gone, replaced by /articles/:article_id/comments. Awesome!

On top of that, you’ll have _path and _url helpers, as you’re accustomed to, for comments as well.
Given that the routes are nested, the stem for these methods will be different, as shown in the output
of the routes task you just ran. For example, article_comments_url will accept an article as an argu-
ment and return the URL to access a list of all its comments. If you hadn’t nested the resources, that
helper would have been comments_url, and it wouldn’t have accepted any arguments.

You changed the routes fi le, so go ahead and restart Mongrel. The bad news is that if you try to load
http://localhost:3000/articles/1/comments/new in your browser, you will get a nasty error
like this one:

undefined method `comments_path’ for #<ActionView::Base:0x59bfcf8>

The error is pretty obvious if you think about it. The view template generated by scaffold in the
fi le app\views\comments\new.html.erb uses the default helper methods, such as comments_path.
Because you changed the routes fi le to defi ne nested routes, you now need to ensure that any helpers in
the controller and the view layers are changed to refl ect this new arrangement.

Let’s do that right away.

74955c06.indd List20674955c06.indd List206 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

207

Chapter 6: Incremental Development, Logging, and Debugging

Adapting the Controller
The scaffold generator created a standard controller for the comment resource. However, you changed
the routes fi le so that comments are logically tied to an existing article. For this reason you’ll need to
adapt the Comments controller.

Let’s start by instructing the Comments controller to use the same layout you used for the articles. You
do this by invoking the layout method in its defi nition:

layout “articles”

This indicates to the Comments controller that it should render the articles.html.erb layout for all
the actions it defi nes. So go ahead and delete the comments.html.erb layout generated by scaffold.

The layout method also accepts the :except and :only conditions whenever you need to defi ne a
specifi c layout only for certain actions. Specifying layout nil is one way to indicate that no layouts
should be rendered.

In the index action you have:

@comments = Comment.find(:all)

This index action will need to list all the comments for a certain article. Assuming that this article
is stored in @article, you can access all of its comments with @article.comments. This returns an
array of Comment objects. If you need to refi ne the comment search with some condition, you can do
so by chaining a fi nder method to @article.comments just like you would with a named scope or a
regular ActiveRecord::Base object (for example, @article.comments is equivalent to @article
.comments.find(:all)).

Replace the preceding line in the index action with the following:

@comments = @article.comments

Now, change the show, edit, update, and destroy actions. Replace the following assignment in all
of them:

@comment = Comment.find(params[:id])

with:

@comment = @article.comments.find(params[:id])

Replace this line in the new action:

@comment = Comment.new

with this:

@comment = @article.comments.new

74955c06.indd List20774955c06.indd List207 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

208

Chapter 6: Incremental Development, Logging, and Debugging

This will create a new, unsaved Comment object whose article_id already references the id in @article.

Finally, in the create action replace:

@comment = Comment.new(params[:comment])

with:

@comment = @article.comments.build(params[:comment])

You are almost done with the controller. You just have to replace the redirects so that they’ll work with
the nested resources. After creating a comment, you want to redirect back to the article that lists all the
comments as well (for HTML requests). To do so, change the existing format.html { redirect_to(@
comment) }in the create action with:

format.html { redirect_to(@article) }

On the other hand, when you update a comment, an operation that the blog’s owner might do, you are
okay with redirecting back to the show action for the comment in question, thus verifying that the com-
ment looks good. To do so you can’t simply use redirect_to(@comment) because comments are now a
resource that is nested into articles. Therefore you’ll need to use redirect_to([@article, @comment]).
This is a succinct notation to express that you want to redirect to the show action for the object @comment,
which “belongs to” the @article object. It’s equivalent to using redirect_to(article_comment_url(@
article, @comment)).

Go ahead and replace the following line from the update action:

format.html { redirect_to(@comment) }

with:

format.html { redirect_to([@article, @comment]) }

Note also that the destroy action performs a redirect with redirect_to(comments_url) in
an attempt to redirect to the list of comments after deleting the comment (well, at least for HTML
requests). With your new routes fi le in place, you’ll have to modify this and replace it with redirect_
to(article_comments_url(@article)).

When you are confused as to what stem of the helper to use, always remember to use rake routes.
After a while you’ll become accustomed to them and will no longer need to look them up.

The last thing left to do is to ensure that before each action the @article variable is set to the article
indicated by the article_id parameter in the request. You do this in two steps. You fi rst defi ne a
private method called get_article in the Comments controller:

private

def get_article
 @article = Article.find(params[:article_id])
end

74955c06.indd List20874955c06.indd List208 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

209

Chapter 6: Incremental Development, Logging, and Debugging

This is private because it’s just an auxiliary method in the controller, and it doesn’t need to be exposed
to the end user as an action. The next step is instructing the controller to invoke this method before any
action is executed. You do this by using the before_filter method:

before_filter :get_article

In this way when, for example, in the index action you have @comments = @article.comments, the
variable @article will exist, and already be set to the object whose id is the article_id parameter
in the request. For instance, when you send a GET request for http://localhost:3000/articles/
3/comments this invokes the get_article method, fi nds and assigns the record with id 3 to the
@article variable, and then invokes the index action, which retrieves all the comments for that record
with @comments = @article.comments.

The resulting code of the controller is shown in Listing 6-1.

In production mode, a 404 status code is returned when a record cannot be found.

Listing 6-1: The comments_controller.rb File Adjusted for Nested Resources

class CommentsController < ApplicationController
 layout “articles”

 before_filter :get_article

 # GET /comments
 # GET /comments.xml
 def index
 @comments = @article.comments

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @comments }
 end
 end

 # GET /comments/1
 # GET /comments/1.xml
 def show
 @comment = @article.comments.find(params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml => @comment }
 end
 end

 # GET /comments/new
 # GET /comments/new.xml
 def new
 @comment = @article.comments.new

 respond_to do |format|
Continued

74955c06.indd List20974955c06.indd List209 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

210

Chapter 6: Incremental Development, Logging, and Debugging

Listing 6-1: The comments_controller.rb File Adjusted for Nested Resources (continued)

 format.html # new.html.erb
 format.xml { render :xml => @comment }
 end
 end

 # GET /comments/1/edit
 def edit
 @comment = @article.comments.find(params[:id])
 end

 # POST /comments
 # POST /comments.xml
 def create
 @comment = @article.comments.build(params[:comment])

 respond_to do |format|
 if @comment.save
 flash[:notice] = ‘Comment was successfully created.’
 format.html { redirect_to(@article) }
 format.xml { render :xml => @comment, :status => :created, :location => @
comment }
 else
 format.html { render :action => “new” }
 format.xml { render :xml => @comment.errors, :status => :unprocessable_
entity }
 end
 end
 end

 # PUT /comments/1
 # PUT /comments/1.xml
 def update
 @comment = @article.comments.find(params[:id])

 respond_to do |format|
 if @comment.update_attributes(params[:comment])
 flash[:notice] = ‘Comment was successfully updated.’
 format.html { redirect_to([@article, @comment]) }
 format.xml { head :ok }
 else
 format.html { render :action => “edit” }
 format.xml { render :xml => @comment.errors, :status => :unprocessable_
entity }
 end
 end
 end

 # DELETE /comments/1
 # DELETE /comments/1.xml
 def destroy
 @comment = @article.comments.find(params[:id])
 @comment.destroy

74955c06.indd List21074955c06.indd List210 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

211

Chapter 6: Incremental Development, Logging, and Debugging

Listing 6-1: The comments_controller.rb File Adjusted for Nested Resources

 respond_to do |format|
 format.html { redirect_to(comments_url) }
 format.xml { head :ok }
 end
 end

 private

 def get_article
 @article = Article.find(params[:article_id])
 end
end

Adapting the View Layer
The following is the automatically generated code for app\views\comments\new.html.erb:

<h1>New comment</h1>

<% form_for(@comment) do |f| %>
 <%= f.error_messages %>

 <p>
 <%= f.label :article %>

 <%= f.text_fi eld :article %>
 </p>
 <p>
 <%= f.label :name %>

 <%= f.text_field :name %>
 </p>
 <p>
 <%= f.label :email %>

 <%= f.text_field :email %>
 </p>
 <p>
 <%= f.label :body %>

 <%= f.text_area :body %>
 </p>
 <p>
 <%= f.submit “Create” %>
 </p>
<% end %>

<%= link_to ‘Back’, comments_path %>

The highlighted lines are problematic. The fi rst highlighted one doesn’t work because you are generating a
RESTful form for @comment, but comments are now nested into articles, so the form will need to be aware
of the article for which you are generating the form as well. Then you have a text fi eld, and its label, for the
article object. These two lines will get scrapped, because you don’t want to see an input box prompting you
to insert the article_id manually. Finally, due to the nested routes you defi ned, comments_path is no
longer an existing helper, so you’ll also need to change this.

74955c06.indd List21174955c06.indd List211 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

212

Chapter 6: Incremental Development, Logging, and Debugging

You need to modify this code and while you are at it, you should place it into a partial template (as you
did for the articles in the previous chapter) given that both the new and edit actions of the Comments
controller share almost identical code. Create a _form.html.erb partial and place it in app\views\
comments.

Now add the code shown in Listing 6-2 (downloadable as listing0602.html.erb).

Listing 6-2: The app\views\comments_form.html.erb Partial Template

<% form_for [article, comment] do |f| %>
 <%= f.error_messages %>

 <% field_set_tag do %>

 <div class=”field”>
 <%= f.label :name %>
 <%= f.text_field :name %>
 </div>

 <div class=”field”>
 <%= f.label :email %>
 <%= f.text_field :email %>
 </div>

 <div class=”field”>
 <%= f.label :body %>
 <%= f.text_area :body %>
 </div>

 <% end %>

 <% field_set_tag do %>
 <%= f.submit button_value, :class => “button” %>
 <% end %>
<% end %>

The fi rst highlighted line uses the array [article, comment]. The form_for method is smart enough to
fi gure out that it should create a comment form for the article specifi ed in article. As usual, if comment
is a new unsaved object, the form will be empty (new action) or pre-fi lled with the existing values if not
(edit action).

The second highlighted line is just the usual trick of defi ning a local button_value variable so that
the partial can be rendered from both new.html.erb and edit.html.erb with the button having the
names "Create Comment" and "Save Changes," respectively.

Another difference between the scaffold code and the partial is that we added the fieldset tags
(through the field_set_tag helper) and the CSS classes to customize the appearance.

Fixing new.html.erb and edit.html.erb
Now you need to modify app\views\comments\new.html.erb and app\views\comments\edit
.html.erb to render the partial and fi x the links by using helpers for the nested routes.

74955c06.indd List21274955c06.indd List212 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

213

Chapter 6: Incremental Development, Logging, and Debugging

Replace all the code within app\views\comments\new.html.erb with the following:

<h1>New comment</h1>

<%= render :partial => “form”, :locals => {:article => @article,
 :comment => @comment,
 :button_value => “Create Comment”} %>

<%= link_to ‘Back’, article_comments_path(@article) %>

The highlighted line will assign the @article and @comment instance variables (defi ned in the
Comments controller) to the local variables article and comment in the partial _form.html.erb.
It will also assign the value “Create Comment” to the button_value local variable.

You then change the last line to use the helper article_comments_path(@article) to obtain a link
that sends a GET request for /articles/:article_id/comments (where :article_id is the actual
value of the id of the Article object assigned to @article). This will allow you to return to the list of
comments for the article.

Now replace the content of app\views\comments\edit.html.erb with the following:

<h1>Editing comment</h1>

<%= render :partial => “form”, :locals => {:article => @article,
 :comment => @comment,
 :button_value => “Save Changes”}
%>

<%= link_to ‘Show’, [@article, @comment] %> |
<%= link_to ‘Back’, article_comments_path(@article) %>

The code for rendering the partial is identical, except for the button_value variable being set to “Save
Changes” instead of “Create Comment.” At the bottom of the template there is also an extra link to show
the comment. This uses [@article, @comment] to generate a link that sends a GET request to the server,
for the path /articles/:article_id/comments/:id, where :article_id and :id are the actual values
of the id attribute of the model objects @article and @comment, respectively. For example, /articles/1/
comments/4 shows the comment with id4 that was made for the article with id 1.

Fixing index.html.erb and show.html.erb
You now need to modify the other two templates: app\views\comments\index.html.erb and app\
views\comments\show.html.erb. You are not really too concerned about their appearance, because
you’ll embed comments into the article template so these templates will only be seen by the blog author.

In other words, they act as your quick admin interface for performing CRUD operations on the
comments.

Simply replace the helpers placed in there by scaffold with their equivalent nested route helper.

In app\views\comments\index.html.erb replace:

 <td><%= link_to ‘Show’, comment %></td>
 <td><%= link_to ‘Edit’, edit_comment_path(comment) %></td>

74955c06.indd List21374955c06.indd List213 3/5/09 8:09:16 AM3/5/09 8:09:16 AM

214

Chapter 6: Incremental Development, Logging, and Debugging

 <td><%= link_to ‘Destroy’, comment, :confirm => ‘Are you sure?’, :method =>
:delete %></td>

with:

 <td>
 <%= link_to ‘Show’, [@article, comment] %> ·
 <%= link_to ‘Edit’, [:edit, @article, comment] %> ·
 <%= link_to ‘Destroy’, [@article, comment], :confirm => ‘Are you sure?’,
:method => :delete %>
 </td>

The · is there just to visualize the link in a more compact manner.

[:edit, @article, comment] is a convenient notation that is equivalent to using edit_article_
comment_path(@article, comment).

Also replace the following:

<%= link_to ‘New comment’, new_comment_path %>

with:

<%= link_to ‘New comment’, new_article_comment_path(@article) %> |
<%= link_to ‘Back to the article’, @article %>

Now, in app\views\comments\show.html.erb replace the following couple of lines:

<%= link_to ‘Edit’, edit_comment_path(@comment) %> |
<%= link_to ‘Back’, comments_path %>

with:

<%= link_to ‘Edit’, [:edit, @article, @comment] %> |
<%= link_to ‘Back’, article_comments_path(@article) %>

All four templates will now be compatible with the nested resources you defi ned. Try to visit http://
localhost:3000/articles/4/comments and http://localhost:3000/articles/4/comments/
new. Assuming that you have an article with id 4, you should now see a (empty) list of comments and
the form for creating a new comment, respectively. If you do, all the changes were applied correctly.

We made a lot of chances to the initial scaffolding code. If you see errors instead of nice forms, you can go
through the steps presented here again, in order to spot any differences between this text and your code.

The remaining problem is that if you visit http://localhost:3000 or http://localhost:3000/
articles/4, nowhere will you see references to comments or a way to create new ones. This is because
you haven’t touched the article templates yet. Let’s do that.

74955c06.indd List21474955c06.indd List214 3/5/09 8:09:17 AM3/5/09 8:09:17 AM

215

Chapter 6: Incremental Development, Logging, and Debugging

Embedding Comments in Articles
Before you begin modifying the templates, think for a moment about how you want to embed com-
ments. It is safe to assume that the user is accustomed to the following two conventions:

 1. On the front page there should be a link to the comments for each article. In your case there is
only one article on the front page, but the code should still work if you change your pagination
policy.

 2. When showing an article, all the comments should be listed below the main text and a form for
adding a new one should be present as well.

The fi rst is just a link that needs to be added in the “About this article” section. So go ahead and add the
following highlighted line to the app\views\articles_article.html.erb partial:

<h3>About this article</h3>
<%= publication_status(article) %>

<%= link_to pluralize(article.comments.size, ‘comment’), article %>

The link uses the pluralize helper provided by ActiveSupport, to obtain “1 comment” when there
is only one comment or the pluralized version when there are more comments (for example, “23 com-
ments”). The front page with this new link is shown in Figure 6-5. This link leads to the show action of
the Articles controller, which will display the article and (at the bottom) all the existing comments.

Alternatively you could link directly to the comments section through an HTML anchor.

Figure 6-5

74955c06.indd List21574955c06.indd List215 3/5/09 8:09:17 AM3/5/09 8:09:17 AM

216

Chapter 6: Incremental Development, Logging, and Debugging

The future tense in the previous sentence is necessary because the show action of the Articles controller
does not know anything about comments yet. You’ll need to perform a few changes in order to be able to
display all the comments and a new form at the bottom.

Listing the Comments and the New Form
Currently, the show action of the Articles controller takes care of displaying one article. You’d like to
be able to display a list of associated comments and a form to create a new one as well though. To do
this, add a @comments and a @comment variable to the show action. In app\controllers\articles_
controller.rb add the highlighted lines:

@article = Article.find(params[:id])
@comments = @article.comments
@comment = @article.comments.new

Now the action will retrieve the article fi rst, and then all of its comments, assigning them to @comments. It
will also prepare a new Comment object and assign it to @comment. In the view, let’s modify app\views\
articles\show.html.erb to take advantage of this. Listing 6-3 shows the updated code.

Listing 6-3: The app\views\articles\show.html.erb Template with Embedded Comments

<%= render :partial => @article %>

<div class=”clear”>
 <div class=”column span-6”>
 <% unless @comments.empty? %>
 <div id=”comments”>
 <h2 id=”comments_count”><%= pluralize(@comments.size, ‘Comment’) %></h2>

 <%= render :partial => “comment”, :collection => @comments %>

 <! — /comments — >
 </div>
 <% end %>

 <div id=”add-comment”>
 <h2>Add a comment</h2>
 <%= render :partial => “comments/form”,
 :locals => {:article => @article,
 :comment => @comment,
 :button_value => “Create Comment”} %>
 <! — /add-comment — >
 </div>
 <! — /column — >
 </div>
<! — /clear — >
</div>

Aside from a few tags and CSS ids and classes to give it a proper look and feel, the juicy parts that you
are going to analyze in detail are highlighted.

74955c06.indd List21674955c06.indd List216 3/5/09 8:09:17 AM3/5/09 8:09:17 AM

217

Chapter 6: Incremental Development, Logging, and Debugging

You fi rst want to display all the comments. Initially you verify if there are any comments so far with
unless @comments.empty?. Notice that you can’t simply say unless @comments, because [] is still
considered as true in Ruby.

Then you add an h2 tag that displays the number of existing comments. Again, pluralize is used to
ensure that you don’t get “1 comments” in order not to irritate the most obsessive-compulsive readers.

You then proceed to render a partial:

<%= render :partial => “comment”, :collection => @comments %>

The partial will contain the code for displaying a comment. The :collection option is used so that
the partial is rendered for each comment in @comments. The name of the partial that’s indicated is
comment and you are going to create it in the articles folder in a moment.

Note that you can’t use render :partial => @comments, because otherwise ActionView
would attempt to render a nonexisting comments/_comment.html.erb partial. Using :partial
=>”comment” indicates that you want to render the _comment.html.erb partial defi ned within the
same folder (that is, articles) as the template invoking render (that is, app\views\articles\
show.html.erb).

Go ahead and create app\views\articles_comment.html.erb and add the following code to it:

 <%=h comment.name %> wrote:
 <div class=”entry”>
 <%= sanitize comment.body, :tags => %w{strong b em i a p br} %>
 </div>

For each comment, you display its author name (escaped for security reasons) and its body. You don’t
want angry readers, so their email address is not displayed. Notice that you sanitize the comment by
allowing only the strong, b, em, i, a, p, and br tags. All other tags will be stripped from their attributes
and HTML encoded.

The :attributes option exists as well to specify allowed attributes. If the sanitizing rules are con-
sistent across the application, you can defi ne them in the confi guration of the application. Consult the
documentation for sanitize for examples of this.

Back in Listing 6-3, the last highlighted bit is:

 <%= render :partial => “comments/form”,
 :locals => {:article => @article,
 :comment => @comment,
 :button_value => “Create Comment”} %>

With this you tell Rails to render the _form.html.erb partial defi ned in the comments folder and pass
to it @article, @comment, as well as the label for the button. You are essentially using the partial that
you defi ned before, in the same way as you rendered it in app\views\comments\new.html.erb. The
only difference is that before you could simply say :partial => “form” because the partial was
located in the same folder.

74955c06.indd List21774955c06.indd List217 3/5/09 8:09:17 AM3/5/09 8:09:17 AM

218

Chapter 6: Incremental Development, Logging, and Debugging

If you direct your browser to http://localhost:3000/articles/4 (or use an id for an article that
you actually have), you will see a form at the bottom for adding new comments, as shown in Figure 6-6.

Figure 6-6

This form may be excessively large for comments. Let’s make it smaller by modifying the existing form
in app\views\comments_form.html.erb to include a :rows option for text_area:

<%= f.text_area :body, :rows => 10 %>

:column, :size, and :disabled are also supported options. As usual, check the online documentation
for examples.

Save, reload the page, and you should see a smaller box. Now go ahead and create one or two com-
ments. In doing so, you’ll see that these are displayed as well, as shown in Figure 6-7.

74955c06.indd List21874955c06.indd List218 3/5/09 8:09:17 AM3/5/09 8:09:17 AM

219

Chapter 6: Incremental Development, Logging, and Debugging

Figure 6-7

Let’s also add a link to the “scaffold admin” at the bottom, as shown in Figure 6-8. This way the blog
owner will be able to edit and destroy comments. Edit app\views\articles\show.html.erb and add
the highlighted line:

 <! — /add-comment — >
 </div>
 <%= link_to “Edit comments”, article_comments_path(@article) %>
 <! — /column — >

Notice that for sake of simplicity, we kept the scaffold interface as it is. In the real
world, you’d probably want to create a more elaborate small admin interface or
ditch the scaffold UI entirely, and change the code to present an Edit and Delete
link next to a comment, when the blog author is logged in.

74955c06.indd List21974955c06.indd List219 3/5/09 8:09:17 AM3/5/09 8:09:17 AM

220

Chapter 6: Incremental Development, Logging, and Debugging

Figure 6-8

When you click that “Edit comments” link, you are redirected to http://localhost:3000/articles/4/
comments where you will see the scaffold interface for the comments, as shown in Figure 6-9.

Figure 6-9

74955c06.indd List22074955c06.indd List220 3/5/09 8:09:17 AM3/5/09 8:09:17 AM

221

Chapter 6: Incremental Development, Logging, and Debugging

Feel free to click “Back to the article” and add further comments in the page that shows the article, to see
how these are displayed between the article and the new comment form.

Having arrived at this point, you can safely take a break from the sample blog application to have a
closer look at a few other aspects of the Rails framework.

Runtime Environments
By default, Rails applications have three environments: development, test, and production. As you saw
earlier, development is the default environment. These three modes are confi gured to act differently
and in accordance with their purpose. The easiest way to understand the differences among them is to
look at their confi guration fi les located in config\environments.

Development
This is the code from config\environments\development.rb:

Settings specified here will take precedence over those in config/environment.rb

In the development environment your application’s code is reloaded on
every request. This slows down response time but is perfect for development
since you don’t have to restart the webserver when you make code changes.
confi g.cache_classes = false

Log error messages when you accidentally call methods on nil.
confi g.whiny_nils = true

Show full error reports and disable caching
confi g.action_controller.consider_all_requests_local = true
confi g.action_view.debug_rjs = true
confi g.action_controller.perform_caching = false

Don’t care if the mailer can’t send
confi g.action_mailer.raise_delivery_errors = false

The comments and code are pretty much self-explanatory.

In development mode the classes are not cached. This is done so that the application’s code is reloaded
at every request, providing an immediate feedback loop for the developer, who therefore does not need
to restart the Web server for code changes (the exception being code within the config folder).

If you accidentally call methods on the nil object, these are logged. The errors and their backtraces
are shown in the browser, because every request is considered local. Caching is not enabled, in order to
make it easier to troubleshoot problems. And fi nally, Rails also ignores delivery error messages when
using ActionMailer to send emails.

Not surprisingly, it’s an environment tailored for development, where the programmer gets immediate
feedback for any possible errors that might arise (mail delivery excluded).

74955c06.indd List22174955c06.indd List221 3/5/09 8:09:17 AM3/5/09 8:09:17 AM

222

Chapter 6: Incremental Development, Logging, and Debugging

Test
The code for config\environments\test.rb is as follows :

Settings specified here will take precedence over those in config/environment.rb

The test environment is used exclusively to run your application’s
test suite. You never need to work with it otherwise. Remember that
your test database is “scratch space” for the test suite and is wiped
and recreated between test runs. Don’t rely on the data there!
confi g.cache_classes = true

Log error messages when you accidentally call methods on nil.
confi g.whiny_nils = true

Show full error reports and disable caching
confi g.action_controller.consider_all_requests_local = true
confi g.action_controller.perform_caching = false

Disable request forgery protection in test environment
confi g.action_controller.allow_forgery_protection = false

Tell Action Mailer not to deliver emails to the real world.
The :test delivery method accumulates sent emails in the
ActionMailer::Base.deliveries array.
confi g.action_mailer.delivery_method = :test

This is a special environment because you’d like to test the application as if it was in production mode, but
you also need to be able to catch errors, as you do in development mode. It’s also peculiar because, like
the fi rst comment explains, the test environment is used exclusively to run the application’s test suite. As
such, you can cache classes, but you still need to log errors for methods that are accidentally invoked on
nil, and be able to get full error reports. Furthermore, caching can be disabled, just as forgery protection
can be. Emails are not actually delivered but placed in the ActionMailer::Base.deliveries array to
facilitate their testing.

Production
In production mode you don’t want to reveal details of the errors to the end user, and you’d like to
cache anything that can be cached. This is accomplished with the following default code:

Settings specified here will take precedence over those in config/environment.rb

The production environment is meant for finished, “live” apps.
Code is not reloaded between requests
confi g.cache_classes = true

Enable threaded mode
config.threadsafe!

Use a different logger for distributed setups
config.logger = SyslogLogger.new

74955c06.indd List22274955c06.indd List222 3/5/09 8:09:17 AM3/5/09 8:09:17 AM

223

Chapter 6: Incremental Development, Logging, and Debugging

Full error reports are disabled and caching is turned on
confi g.action_controller.consider_all_requests_local = false
confi g.action_controller.perform_caching = true

Use a different cache store in production
config.cache_store = :mem_cache_store

Enable serving of images, stylesheets, and javascripts from an asset server
config.action_controller.asset_host = “http://assets.example.
com”

Disable delivery errors, bad email addresses will be ignored
config.action_mailer.raise_delivery_errors = false

Notice that the environment already offers commented-out code for defi ning a different logger, cache
store, the enablement of an asset server, and the ability to decide whether delivering to bad addresses
should be ignored.

In Rails 2.2 you can now write (or uncomment):

config.threadsafe!

That single line enables multithreaded dispatching of your application and thread safety. This improves
performance and reduces the amount of memory required to run a given load. As such it’s a highly rec-
ommended option in production mode.

Your Own Environment
Occasionally you may wish to defi ne your own environment mode. You can easily accomplish this
by creating a Ruby fi le in config\environments. You can then copy over the code of one of the three
default environments and customize it as you wish. In config\database.yml you will need to pro-
vide the connection details for this new environment as well.

This means that you’ll be able to defi ne environments for troubleshooting unforeseen issues with a live
production application, directly from your machine, or defi ne environments for different confi gurations
as needed.

Logging
Both this and the previous chapter mentioned that you could see the executed queries, errors, and other
details about the requests in a log fi le. Depending on the environment you are in, Rails will log a certain
amount of information in log\development.log, log\test.log, or log\production.log. The log
folder will also contain a server.log fi le for the Web server (for example, Mongrel).

When you look at the development.log fi le after having visited the front page of the blog, you see an
entry similar to the following:

Processing ArticlesController#index (for 127.0.0.1 at 2009-01-28 11:28:11) [GET]
 [4;36;1mArticle Load (0.0ms)[0m [0;1mSELECT * FROM “articles” WHERE (published
= ‘t’ AND published_at <= ‘2009-01-28 16:28:11’) ORDER BY published_at DESC LIMIT 1
OFFSET 0[0m

74955c06.indd List22374955c06.indd List223 3/5/09 8:09:17 AM3/5/09 8:09:17 AM

224

Chapter 6: Incremental Development, Logging, and Debugging

 [4;35;1mSQL (0.0ms)[0m [0mSELECT count(*) AS count_all FROM “articles” WHERE
(published = ‘t’ AND published_at <= ‘2009-01-28 16:28:11’) [0m
Rendering template within layouts/articles
Rendering articles/index
 [4;36;1mSQL (0.0ms)[0m [0;1mSELECT count(*) AS count_all FROM “comments” WHERE
(“comments”.article_id = 2) [0m
Rendered articles/_article (10.0ms)
Completed in 29ms (View: 18, DB: 0) | 200 OK [http://localhost/]

This tells you a whole lot of information: the type of request received, the IP it came from and the time-
stamp, which controller and action executed your request, the rendered templates, and the queries that
were executed behind the scenes. It also tells you the time that it took to execute each of these, and how
much time was spent processing the view, versus database access. For example, in the preceding output,
the request took 0.029 seconds with no signifi cant time spent querying the database. Finally, you have
the HTTP response code and the URL that were sent back to the client.

Analyzing the log fi les can be an extremely useful way to perform preliminary troubleshooting, spot
performance problems, and identify unexpected behavior.

Developers operating on non-Microsoft operating systems often use the following command to display
the last lines of their current development log: tail -f log/development.log. On Windows
simply use the output of ruby script/server or a POSIX emulation layer like Cygwin.

As the logs grow, there are times when you might want to clear all of your .log fi les in log. Rather
than doing this manually, you can use a provided Rake task:

rake log:clear

Using Logger
Though Rails logs a good deal of information for you (particularly when in development and test mode),
it is incredibly benefi cial to be able to log your own messages.

Rails 2.x takes advantage of the ActiveSupport::BufferedLogger class to log messages and it pro-
vides you with the identifi er logger, which references the Rails logger instance. In contexts where this
is not defi ned, you can directly reference RAILS_DEFAULT_LOGGER, which is a constant that’s globally
available.

To verify all this, try running the following session:

C:\projects\blog> ruby script/console
Loading development environment (Rails 2.2.2)
>> logger
NameError: undefined local variable or method `logger’ for #<Object:0x27bf9ec>
 from (irb):1
>> Rails.logger
=> #<ActiveSupport::BufferedLogger:0x51dade4 @no_block=false, @level=0, @log=#<F
ile:C:/projects/blog/log/development.log>, @auto_flushing=1, @buffer=[]>
>> RAILS_DEFAULT_LOGGER
=> #<ActiveSupport::BufferedLogger:0x51dade4 @no_block=false, @level=0, @log=#<F
ile:C:/projects/blog/log/development.log>, @auto_flushing=1, @buffer=[]>

74955c06.indd List22474955c06.indd List224 3/5/09 8:09:17 AM3/5/09 8:09:17 AM

225

Chapter 6: Incremental Development, Logging, and Debugging

Levels of Severity
logger exposes several methods that are used to indicate the level of severity of the information being
logged. Ordered by severity, these methods/levels are debug, info, warn, error, and fatal.

Whether you execute logger.debug “a custom message!” or logger.warn “a custom message!”
in your code, the same message gets stored in the log fi le. Why do you need fi ve methods then?

The existence of these methods representing various levels of severity is justifi ed by the fact that each
environment in Rails will only log messages that have been passed to methods above a certain thresh-
old. This threshold for development and testing is debug, which means that any logging messages will
be added to the log. In production mode, only info or more severe methods are logged (that is, warn,
error, and fatal). This is how, for example, Rails manages to log all the SQL queries when in develop-
ment and test mode, but not when in production. This occurs because those SQL queries that you saw
before are logged using the debug method.

To see the log in production mode, run the following preliminary steps:

rake db:migrate RAILS_ENV=production
ruby script/server -e production

Once the Web server is running, load the front page of the blog. Within the production log, you should
obtain something along the lines of:

Processing ArticlesController#index (for 127.0.0.1 at 2009-01-28 12:05:40) [GET]
Rendering template within layouts/articles
Rendering articles/index
Completed in 6ms (View: 2, DB: 1) | 200 OK [http://localhost/]

Only messages logged with info (or above) are shown, so there are no SQL queries in there.

When you log your own messages, try to stick to this rule of thumb:

Use ❑ debug when the information you want to log is there purely to provide aid in case of
troubleshooting at a later stage

info ❑ when the behavior is expected and the information captured is important enough to be
published in the production log

warn ❑ when you’d like to keep track of any unexpected behavior that doesn’t break your
application, but that still needs to be addressed

error ❑ when in the presence of an actual error that breaks a part of the application, but doesn’t
warrant taking the server offl ine

fatal ❑ for those occasions when the error is something so serious that the application needs to
be manually restarted (and of course, the idea is to fi x the cause of the problem as well)

Reducing the Production Log
Writing many messages in production can impact the server performance (I/O is expensive). With this
in mind, some people like to increase the level that’s required before anything is logged in their produc-
tion log fi le. To do this you can add the following line to your config\environments\production.rb:

config.log_level = :warn

74955c06.indd List22574955c06.indd List225 3/5/09 8:09:17 AM3/5/09 8:09:17 AM

226

Chapter 6: Incremental Development, Logging, and Debugging

In this way, any warning, error, or fatal message is still logged, but simple information isn’t. This means
that when you go to apply this change and visit the front page again, no entries will be added to the
log\production.log, unless an error/warning occurred.

Similarly, you can defi ne a different fi le for the log messages that are to be saved, by adding config
.log_path = ‘log/my_log.log’.

Keep in mind that this can be viewed as a case of premature optimization and it is not recommended
that you do it right away. Having knowledge and insight of what your server does is usually much more
valuable than trying to squeeze performances from the get-go. Should the need arise though, you know
how to do it.

You could also modify the way the controller logs errors for common exceptions that do not warrant any
changes to the code, by monkey patching the log_error method. When the issue at hand is the sheer
size of the log rather than the row performance impact, setting up log rotation with one of the many tools
available for most operating systems can be a good idea.

Redirecting Logging to the Console
Instead of trying out snippets in the console and then checking out the SQL queries that are executed
by looking into the log fi le, it is convenient in such instances to simply redirect the logging performed by
ActiveRecord to the standard output. To do this, fi rst start the console and then run the highlighted lines:

C:\projects\blog> ruby script/console
Loading development environment (Rails 2.2.2)
>> ActiveRecord::Base.logger = ActiveSupport::BufferedLogger.new(STDOUT)
=> #<ActiveSupport::BufferedLogger:0x6031d34 @auto_flushing=1, @level=0, @buffer
={}, @log=#<IO:0x44b6af0>, @guard=#<Mutex:0x6031cf8>>>> Article.fi nd(4).comments
 ?[4;36;1mArticle Load (0.001000)?[0m ?[0;1mSELECT * FROM “articles” WHERE (“
articles”.”id” = 4) ?[0m
 ?[4;35;1mComment Load (0.000000)?[0m ?[0mSELECT * FROM “comments” WHERE (“co
mments”.article_id = 4) ?[0m
=> [#<Comment id: 3, article_id: 4, name: “Fabio”, email: “fabio@example.org”, b
ody: “I like your blog. Keep it up! :)“, created_at: “2008-07-27 23:04:53”, upda
ted_at: “2008-07-27 23:07:59”>]
>>

Notice how you create a new instance of ActiveSupport::BufferedLogger, indicating that the standard
output should be used as the target for the logger. Then when you run Article.find(4).comments the
queries are printed to the console, before you obtain the actual array of comments (in this case, a single
comment).

Filtering Data
Logging is a powerful tool and Rails makes it very easy to use and customize this feature to suit your
needs. There are, however, certain pieces of information that you may not want to log. Passwords and
credit card numbers come to mind. In production mode the queries are not logged, but this sensitive
data may still show up in the log. So how can you log the request parameters without showing certain
types of sensitive data, in plain text within your logs?

74955c06.indd List22674955c06.indd List226 3/5/09 8:09:17 AM3/5/09 8:09:17 AM

227

Chapter 6: Incremental Development, Logging, and Debugging

Once again, Rails really strives to make your life as easy as possible and provides you with a filter_
parameter_logging method. This method accepts one, or a list, of comma-separated symbols, and
instructs the controller not to log any parameters containing that word (or those words). So if you were
to uncomment the following line in the ApplicationController:

filter_parameter_logging :password

the logs would show [FILTERED]for any parameter matching the regular expression /password/i
(for example, :password => [FILTERED]).

Debugging
Debugging is another important aspect of developing Rails applications. When something goes wrong
it’s fundamental to be able to understand what exactly is happening, as well as evaluate expressions
and easily move around within the code.

As a Microsoft developer, you are probably accustomed to the excellent debugging support offered by
Visual Studio and .NET. Having programmed in both environments, I can confi rm that the level of sup-
port and convenience for debugging offered by .NET was way beyond what the Ruby world had to offer.

Ruby In Steel, covered in Chapter 1, enables you to work with Rails in Visual Studio and provides a
fast debugger called Cylon.

Fortunately, there have been many efforts to improve this situation and Rails 2.x really simplifi es the
process of debugging applications by taking advantage of the fast ruby-debug gem. To perform fast
debugging in Rails, three things are required:

 1. ruby-debug needs to be installed.

 2. You need to specify a “breakpoint” where you want the debugging session to start.

 3. The Web server needs to load the debugger.

Let’s start by installing the ruby-debug gem. Run the following:

gem install ruby-debug

Notice that I opted not to add this as a prerequisite in config\environment.rb because it’s a gem
that’s required for development purposes only.

Having installed ruby-debug, you can now place the method debugger anywhere you want in the
application. Let’s temporarily add it to the index action of the Articles controller before the fi nder:

GET /articles
GET /articles.xml
def index
 debugger
 @articles = Article.published.paginate(:page => params[:page], :order =>
“published_at DESC”)

74955c06.indd List22774955c06.indd List227 3/5/09 8:09:18 AM3/5/09 8:09:18 AM

228

Chapter 6: Incremental Development, Logging, and Debugging

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @articles }
 end
end

You need to load the debugger; so start Mongrel with the — debugger option as shown here:

C:\projects\blog> ruby script/server — debugger
=> Booting Mongrel (use ‘script/server webrick’ to force WEBrick)
=> Rails 2.2.2 application starting on http://0.0.0.0:3000
=> Debugger enabled
=> Call with -d to detach
=> Ctrl-C to shutdown server
** Starting Mongrel listening at 0.0.0.0:3000
** Starting Rails with development environment...
** Rails loaded.
** Loading any Rails specific GemPlugins
** Signals ready. INT => stop (no restart).
** Mongrel 1.1.5 available at 0.0.0.0:3000
** Use CTRL-C to stop.

If you head over to http://localhost:3000 with your browser, the index action of the Articles
controller will be invoked. The method debugger will then be executed, starting a debugging session
in the command prompt window where you started the server:

C:\projects\blog> ruby script/server — debugger
=> Booting Mongrel (use ‘script/server webrick’ to force WEBrick)
=> Rails 2.2.2 application starting on http://0.0.0.0:3000
=> Debugger enabled
=> Call with -d to detach
=> Ctrl-C to shutdown server
** Starting Mongrel listening at 0.0.0.0:3000
** Starting Rails with development environment...
** Rails loaded.
** Loading any Rails specific GemPlugins
** Signals ready. INT => stop (no restart).
** Mongrel 1.1.5 available at 0.0.0.0:3000
** Use CTRL-C to stop.
C:/projects/blog/app/controllers/articles_controller.rb:6
@articles = Article.published.paginate(:page => params[:page], :order =>
“published_at DESC”)
(rdb:5)

The actual output obviously depends on how you formatted your code in the controller (for example,
how many lines you use for your fi nders).

The cursor is positioned on the last (highlighted line); your debug shell (rdb) is ready to receive expres-
sions to evaluate and commands to execute.

You could even step into an irb session, by simply running irb.

74955c06.indd List22874955c06.indd List228 3/5/09 8:09:18 AM3/5/09 8:09:18 AM

229

Chapter 6: Incremental Development, Logging, and Debugging

Meanwhile the page in the browser is idly waiting, having not yet rendered anything, because every-
thing is frozen in time where you placed the debugger method. The line of code displayed in the debug
shell is the current line (which hasn’t been executed yet). It’s the one immediately below debugger in
the index action. The list command shows the code surrounding your current breakpoint:

(rdb:5) list
[1, 10] in C:/projects/blog/app/controllers/articles_controller.rb
 1 class ArticlesController < ApplicationController
 2 # GET /articles
 3 # GET /articles.xml
 4 def index
 5 debugger
=> 6 @articles = Article.published.paginate(:page => params[:page], :order
=> “published_at DESC”)
 7
 8 respond_to do |format|
 9 format.html # index.html.erb
 10 format.xml { render :xml => @articles }

If you want to evaluate the value of the params[:page] parameter you can do so simply by issuing:

(rdb:5) params[:page]
nil
Or p params[:page].

In this particular case, it’s the front page so no page parameters were passed during the request. If you
want to see what parameters do exist, you can evaluate the whole params hash:

(rdb:5) params
{“action”=>”index”, “controller”=>”articles”}

Great! How about moving on to the next line? You do so with the next command:

(rdb:5) next

Processing ArticlesController#index (for 127.0.0.1 at 2009-01-28 12:25:39) [GET]

c:/projects/blog/app/controllers/articles_controller.rb:9
respond_to do |format|
(rdb:5) list
[3, 12] in C:/projects/blog/app/controllers/articles_controller.rb
 3 # GET /articles.xml
 4 def index
 5 debugger
 6 @articles = Article.published.paginate(:page => params[:page], :order
=> “published_at DESC”)
 7
=> 8 respond_to do |format|
 9 format.html # index.html.erb
 10 format.xml { render :xml => @articles }
 11 end
 12 end
(rdb:5)

74955c06.indd List22974955c06.indd List229 3/5/09 8:09:18 AM3/5/09 8:09:18 AM

230

Chapter 6: Incremental Development, Logging, and Debugging

With next you executed lines 6/7, and moved onto line 8 (which has yet to be interpreted). list
showed you once again where you are. You can now try to evaluate @articles:

(rdb:5) @articles
[#<Article id: 4, title: “Oh hi!”, body: “Hi there!\r\n\r\nIf don’t know what %{
color:red}Rails% ...”, published: true, published_at: “2008-07-20 03:52:00”, cre
ated_at: “2008-07-16 22:56:33”, updated_at: “2008-07-17 16:21:48”>]

Again, the actual line numbers depend on your code formatting but you get the idea. Other important
commands aside from list and next are step, up, and cont. step and up are roughly the equivalent
of F11 and Shift+F11 in Visual Studio. You can exit rdb with exit. It’s defi nitely a different approach
from what you’re used to, but it works quite well and you’ll probably learn to appreciate its simplicity
and fl exibility.

Remember to remove the debugger line after you’ve experimented with it.

A complete list of commands and their meanings is available online at http://blog.nanorails.com/
articles/2006/07/14/a-better-rails-debugger-ruby-debug.

Debugging from the Console
The two-fold process you are using is a bit tedious. You have to start the Web server,
visit the page, and only then can you step into the debug shell. The process can be sped
up simply by loading the debugger from within the console. Once you’ve started the
console, you’ll need to require ‘ruby-debug.’ At that point, you can send requests
such as app.get ‘/articles/4’ and be taken directly to the debugging session.

Rails Directory Structure
Before moving to the next chapter, let’s try to recap what folders you’ve interacted with so far. They were
app, config, db, log, public, and script (it contains the scripts you’ve used so far). The main directory
of any Rails application contains more folders though. The following briefl y explains their roles:

doc: ❑ This is the directory used to store the documentation that’s auto-generated by the rdoc
tool. If you have other documentation that you have created, like “a getting started” PDF, this
is a good place to put it.

lib: ❑ You can place your own libraries in this folder. If the code is substantial and reusable for
other projects, you may consider creating a plugin instead.

test: ❑ The folder that contains all the tests for your application.

tmp: ❑ A folder used by Rails to hold temporary fi les.

vendor: ❑ A special directory for third-party code. This is where non-gem plugins get installed
and where the required gems (plugins or not) and Rails gems are copied whenever you decide
to deploy them with the application, as opposed to expecting the deployment server to already
have them installed. This is discussed in the chapter dedicated to deployment.

74955c06.indd List23074955c06.indd List230 3/5/09 8:09:18 AM3/5/09 8:09:18 AM

231

Chapter 6: Incremental Development, Logging, and Debugging

Summary
In this chapter you added a few features to the basic application, and the powerful concept of nested
resources was introduced. Also introduced were two fundamental concepts: logging and debugging,
which will serve you well as your journey toward learning Rails progresses.

The next three chapters cover the ActiveRecord framework, ActionController, and ActionView. You’ll
do a bit more incremental development on The Rails Noob blog here and there, but the main focus will
be on introducing new concepts and reinforcing the existing ones, as opposed to performing major
changes to the sample application that you have created so far.

74955c06.indd List23174955c06.indd List231 3/5/09 8:09:18 AM3/5/09 8:09:18 AM

74955c06.indd List23274955c06.indd List232 3/5/09 8:09:18 AM3/5/09 8:09:18 AM

Object-Relational Mapping
with ActiveRecord

Before Ruby on Rails, web programming required a lot of verbiage, steps and time.
Now, web designers and software engineers can develop a website much faster and

more simply, enabling them to be more productive and effective in their work.

— Bruce Perens, Open Source Luminary

ActiveRecord is a Ruby implementation of the Active Record pattern described by Martin Fowler
in his classic Patterns of Enterprise Application Architecture (Addison-Wesley 2002). The abstraction
layer provided by ActiveRecord enables the Ruby developer to ignore many of the low level, data-
base-specifi c details of the source logic, and focus instead on the domain logic that defi nes the
application. Among the benefi ts of this approach is a concise and readable syntax (Ruby in place
of SQL) that makes programming database-driven applications faster and easier. In the past two
chapters, for example, you employed the ActiveRecord framework to create a basic blog applica-
tion without having to write any SQL code.

ActiveRecord is a key component of the Rails stack, whose presence has no doubt substantially
contributed to Rails’ popularity and ability to provide developers with a productive environment
that enables them to write better code. This chapter introduces the framework by taking a closer
look at the essential concepts you’ll need to learn in order to work with databases through Rails.
As such, this is a fundamental chapter, just as an ADO.NET chapter would be crucial to an ASP.
NET book. In fact, ActiveRecord implements the M component of the MVC acronym. Your models
are ActiveRecord objects.

74955c07.indd List23374955c07.indd List233 3/4/09 9:24:57 AM3/4/09 9:24:57 AM

234

Chapter 7: Object-Relational Mapping with ActiveRecord

Supported Databases
If you’ve used the .NET Framework before, you should be familiar with the concept of a Data Provider.
The .NET Framework offers several types of this sort of class, each used to access data that’s stored in
SQL Server, Oracle, and data sources exposed using OLE DB and ODBC. Third-party alternatives are
provided as well, so that .NET developers have a few options to choose from.

ActiveRecord is an Object-Relational Mapper and works at a higher level of abstraction than ADO.NET.
For a database to be supported by ActiveRecord, two components are required: a driver and an adapter.
The driver is typically a Ruby extension written at least partially in C, which exposes an API for storing
and retrieving data from a given RDBMS (Relational Database Management System).

The adapter is comprised of Ruby code that’s required to inform ActiveRecord about the specifi cs of the
database system at hand. For example, the adapter specifi es how to map ActiveRecord data types like
string or datetime with their actual SQL representation. ActiveRecord doesn’t really know anything
about the driver either, so it’s the adapter that ultimately calls the driver to execute a certain query.

Due to their nature, drivers are installed by the developers and aren’t shipped with ActiveRecord
or Rails. This is true for any database system. In Chapter 1, for example, you obtained the SQLite3
driver by installing the sqlite3-ruby gem. When it comes to the adapters though, you’re looking at
a different story. Four adapters ship with the framework: sqlite (for SQLite versions older than 3),
sqlite3, mysql, and postgresql.

You can verify this by heading over to the offi cial repository at http://github.com/rails/
rails/tree/master/activerecord/lib/active_record/connection_adapters/ or
by checking the content of the C:\ruby\lib\ruby\gems\1.8\gems\activerecord-2.2.2\
lib\active_record\connection_adapters folder on your system. This path will vary if you
installed Ruby in a different folder or if you’re using another version of Rails.

In the past other adapters were shipped with ActiveRecord, but in December 2007 with the release
of version 2, the controversial decision of limiting the core to the three main open source databases
was made. This has a couple of implications for you if you decide to use a different database: you will
need to install the adapter separately on your own, and it won’t be directly maintained by the Rails
core team.

In all but one instance, the maintainer is one or more community volunteers. In the case of the ibm_db
adapter — the one I initially developed — the API team at IBM takes care of maintaining, developing,
and supporting the adapter (and the driver).

The following table shows currently supported data sources besides SQLite, MySQL, and PostgreSQL,
and which adapters/gems need to be installed in order to use them with ActiveRecord.

Data Source Adapter’s Gem

DB2 ibm_db

DBSlayer activerecord-dbslayer-adapter

Firebird activerecord-firebird-adapter

74955c07.indd List23474955c07.indd List234 3/4/09 9:24:58 AM3/4/09 9:24:58 AM

235

Chapter 7: Object-Relational Mapping with ActiveRecord

Data Source Adapter’s Gem

FrontBase activerecord-frontbase-adapter

Informix ibm_db or activerecord-informix-adapter

Interbase activerecord-interbase-adapter

ODBC activerecord-odbc-adapter

OpenBase activerecord-openbase-adapter

Oracle activerecord-oracle-adapter or activerecord-oracle_enhanced-
adapter

SQL Server activerecord-sqlserver-adapter

Salesforce activerecord-activesalesforce-adapter

Sybase activerecord-sybase-adapter

It is possible that further ActiveRecord adapters for less common databases are going to be developed
in the future.

If you list the remote gems (for example, by running gem list -r), you’ll also notice gems with
names such as activerecord-jdbcsqlite3-adapter; you can safely ignore these unless you intend
to use JRuby.

ActiveRecord Outside of Rails
Much like ADO.NET, ActiveRecord doesn’t have to be used only in Web applications. You can load it
in any program or script you are writing. Listing 7-1 shows an example of a small script that employs
ActiveRecord.

Listing 7-1: A Sample Script That Uses ActiveRecord

require ‘rubygems’
require ‘active_record’

ActiveRecord::Base.establish_connection(:adapter => “sqlite3”,
 :database => “blog/db/development.sqlite3”,
 :timeout => 5000)

class Article < ActiveRecord::Base
end

p Article.find(:all)

74955c07.indd List23574955c07.indd List235 3/4/09 9:24:58 AM3/4/09 9:24:58 AM

236

Chapter 7: Object-Relational Mapping with ActiveRecord

When you save this fi le as listing0701.rb in C:\projects and run it, the array of existing articles in
the articles table within the C:\project\blog\db\development.sqlite3 database is printed in the
output as follows:

[#<Article id: 1, title: “Hello, Rails!”, body: “Hi from the body of an article.
:)“, published: false, published_at: “2008-07-11 09:24:00”, created_at: “2008-07-11
09:32:41”, updated_at: “2008-07-17 03:18:28”>, #<Article id: 2, title: “Lorem
Ipsum”, body: “Lorem ipsum dolor sit amet, consectetuer adipiscing...”, published:
 true, published_at: “2008-07-17 06:36:00”, created_at: “2008-07-16 14:31:33”,
updated_at: “2008-07-20 20:20:30”>, #<Article id: 3, title: “More Lorem Ipsum”,
body: “Etiam justo justo, ultricies sed, semper ac, hendre...”, published: true,
published_at: “2008-07-17 01:50:00”, created_at: “2008-07-16 14:35:18”, updated_at:
 “2008-07-17 01:53:05”>, #<Article id: 4, title: “Oh hi!”, body: “Hi
there!\r\n\r\nIf you don’t know what %{color:red}Rails% ...”, published: true,
 published_at: “2008-07-20 03:52:00”, created_at: “2008-07-16 22:56:33”,
 updated_at: “2008-07-17 16:21:48”>]

At the beginning of the script, ActiveRecord is loaded:

require ‘rubygems’
require ‘active_record’

The fi rst line loads RubyGems which is a requirement given that you installed ActiveRecord through
the gem command. This line is not strictly necessary if you set the RUBYOPT environment variable to
-rubygems.

The second line loads ActiveRecord. Notice that you use ‘active_record’ despite the gem being
activerecord, because the fi le that’s being required happens to be called active_record.rb.

Subsequently, you establish a connection to the database:

ActiveRecord::Base.establish_connection(:adapter => “sqlite3”,
 :database => “blog/db/development.sqlite3”,
 :timeout => 5000)

If you are working in “standalone” mode, not within a Rails application, you don’t have a config\
database.yml fi le to rely on; hence, you need to explicitly call the establish_connection class
method and pass a hash argument to it, containing the information for the connection. establish_
connection is a method that ends up invoking a connection method in the adapter, which in turn
invokes a driver method that actually establishes the connection.

Normally, in a Web application, Rails does this for you by invoking that method and passing a hash that’s
derived from config\database.yml. In fact, if you evaluate ActiveRecord::Base.configurations
from the Rails console, you’ll obtain something along the lines of the following (reformatted for clarity):

{“development” => {“adapter” => “sqlite3”,”pool” => 5,
 “timeout” => 5000, “database” => “db/development.sqlite3”},
 “production” => {“adapter” => “sqlite3”, “pool” => 5,
 “timeout” => 5000, “database” => “db/production.sqlite3”},
 “test” => {“adapter” => “sqlite3”, “pool” => 5,
 “timeout” => 5000, “database” => “db/test.sqlite3”}
}

74955c07.indd List23674955c07.indd List236 3/4/09 9:24:58 AM3/4/09 9:24:58 AM

237

Chapter 7: Object-Relational Mapping with ActiveRecord

Rails 2.3 will have a reconnect option for MySQL. By default its value will be false. When set to
true, it will attempt to reconnect if the connection is lost.

That’s a hash of a hash, so when you’re in the (default) development mode, the hash
ActiveRecord::Base.configurations[‘development’] is used as an argument for
the establish_connection method.

Within an initializer you can connect to a specifi c mode by simply referring to it through its symbol.
For example, ActiveRecord::Base.establish_connection :my_mode.

Finally, the script defi nes an Article model, which maps to the articles table, and you immediately
put it to good use, by obtaining a list of all the records through the find method:

class Article < ActiveRecord::Base
end

p Article.find(:all)

Object-Relational Mapping
.NET developers are used to dealing with Connection, Command, Parameter, DataAdapter, DataReader,
DataSet, DataTable, DataView, and so on. Most would probably agree that ADO.NET is very powerful, but
its architecture veers on the complex side. ActiveRecord, on the other hand, strives to achieve elegance and
productivity through simplicity. It all revolves around one concept, the model, which is a class that inherits
from the ActiveRecord::Base class. As previously stated, that model represents a certain table in the
database, and its instances represent the records within that table. It couldn’t get much easier than that.

The tradeoff is one that’s typical of all highly abstract languages, libraries, or framework: a loss in
fl exibility, which is usually fully justifi ed by the advantage in productivity and maintainability of
the code. For example, a DataTable in .NET can represent an arbitrary table in the database, whereas
ActiveRecord has certain, conventional expectations on the nature of the table. Try to create a table
lacking an id column and then use the corresponding model, and you’ll see what I mean.

The previous chapters employed the scaffold generator as a way to get a head start when it comes
to building an application that would work with articles and comments. That command generated a
whole lot of code for you, including your models. There will be times, though, when you’d like to create
a model without the need to generate a whole resource and all the extra fi les like controllers and view
templates. In such instances, you could create the fi le by hand within the app\models directory of your
project, but there is a better way. The easiest way to generate a model is to use the model generator.

Generating Models
You don’t want to disrupt the existing blog application just to try out new things, so let’s create a “throw
away” Rails application to try out a few tricks with. Go ahead and create the application chapter7:

C:\projects> rails chapter7
C:\projects> cd chapter7

74955c07.indd List23774955c07.indd List237 3/4/09 9:24:59 AM3/4/09 9:24:59 AM

238

Chapter 7: Object-Relational Mapping with ActiveRecord

And also create the databases for it:

C:\projects\chapter7>rake db:create:all

Now you are ready to use the model generator. This works in a very similar fashion to the scaffold
generator you used before. From the chapter7 directory, try the following:

C:\projects\chapter7> ruby script/generate model recipe title:string
instructions:text calories:integer
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/recipe.rb
 create test/unit/recipe_test.rb
 create test/fixtures/recipes.yml
 create db/migrate
 create db/migrate/20080806011444_create_recipes.rb

This command creates the model class Recipe in app\models\recipe.rb, a unit test in test\
unit\recipe_test.rb, a test fi xture in test\fixtures\recipes.yml, and a migration in db\
migrate\20080806011444_create_recipes.rb. We discuss testing models at the end of this
chapter, but for now consider the code for the model and the migration fi le:

app\models\recipe.rb
class Recipe < ActiveRecord::Base
end

db\migrate\20080806011444_create_recipes.rb
class CreateRecipes < ActiveRecord::Migration
 def self.up
 create_table :recipes do |t|
 t.string :title
 t.text :instructions
 t.integer :calories

 t.timestamps
 end
 end

 def self.down
 drop_table :recipes
 end
end

Notice that you have to specify attributes only because the table recipes didn’t exist already in the data-
base, so it’s convenient to have a migration fi le generated for you. If the recipes table already existed in the
database, you could simply generate your model by running ruby script/generate model recipe.

If you happen to realize that you created a model by mistake and you’d like to auto-
matically delete all the fi les that have been generated, you can use the destroy script
in this way: ruby script/destroy model model_name. The destroy script is the
opposite of generate, and can be used to neutralize the effects of the scaffold gen-
erator as well: ruby script/destroy scaffold resource_name.

74955c07.indd List23874955c07.indd List238 3/4/09 9:24:59 AM3/4/09 9:24:59 AM

239

Chapter 7: Object-Relational Mapping with ActiveRecord

Because you generated a migration fi le, you can run the db:migrate Rake task to create the table in the
database (specifi ed in config\database.yml for the development environment); for example:

C:\projects\chapter7> rake db:migrate
(in C:/projects/chapter7)
== CreateRecipes: migrating ====================================
 -- create_table(:recipes)
 -> 0.1250s
== CreateRecipes: migrated (0.1250s) ===========================

Generating Migrations
Besides the scaffold and model generators, migration fi les also have their own dedicated generator.
The migration generator creates a migration class for you within a “timestamped” fi le in db\migrate.

Say that you realize that you need to add a chef column to the recipes table; you could do so by
running ruby script/generate migration add_chef_column (or AddChefColumn) and then
modifying the migration class yourself, in order to add the column within the up class method. This
would work, but for the common action of adding and removing columns, the migration generator
offers an automated way of accomplishing the same results. As long as you name your migration in
the format AddAttributesToModel or RemoveAttributesFromModel, you will be able to pass a list
of attributes to the generator just like you did with scaffold and model.

In this case, you only need to add one column to your table (that is, chef), so you’ll run the following:

C:\projects\chapter7> ruby script/generate migration AddChefToRecipe chef:string
 exists db/migrate
 create db/migrate/20080806174246_add_chef_to_recipe.rb

In a real application, chef would probably be stored in a table of its own, and you would add a foreign
key fi eld instead.

The name of the generated fi le is the snake_case version of the CamelCase string you provided in input,
so that reading the generated fi le name is suffi cient to make its purpose obvious. You won’t have to
wonder what that migration fi le does.

The migration name can also be passed to the generator in snake_case format.

The class defi nition contained within is as follows:

class AddChefToRecipes < ActiveRecord::Migration
 def self.up
 add_column :recipes, :chef, :string
 end

 def self.down
 remove_column :recipes, :chef
 end
end

The highlighted lines show how the add_column and remove_column were added automatically
for you. If you have to add multiple columns in the same migration fi le, you can do so by naming the

74955c07.indd List23974955c07.indd List239 3/4/09 9:24:59 AM3/4/09 9:24:59 AM

240

Chapter 7: Object-Relational Mapping with ActiveRecord

migration accordingly (for example, AddCol1Col2ToRecipe) and then passing to the generator all
the attributes in order (for example, col1:string col2:integer).

Aside from create_table, drop_table, add_column, and remove_column, many other schema alter-
ing methods are available. A few common ones are change_table, rename_table, change_column,
change_column_default, remove_columns, add_index, and remove_index. Consult the documen-
tation for the class ActiveRecord::ConnectionAdapters::SchemaStatements to obtain a complete
list and examples of how to use them.

You can fi nd the documentation for this class online at http://api.rubyonrails.org/
classes/ActiveRecord/ConnectionAdapters/SchemaStatements.html. Check
http://api.rubyonrails.org/classes/ActiveRecord/ConnectionAdapters/
TableDefinition.html#M001150 for a list of column options.

Migrations are not only used to modify and add new tables. They can also be used to migrate data. Any
valid Ruby code is in fact fair game, as long as your migration affects the database, be it by inserting a
bunch of records or by actually modifying its schema.

Customizing Migrations
Real-world projects tend to have rather advanced migration fi les. Besides the standard aforementioned
methods, it isn’t uncommon to see custom SQL statements. It isn’t hard to imagine a need for this. The
fi rst time you want to add some triggers to your database, you’ll be faced with the choice of doing it
outside of the migration realm or executing the proper SQL statements to create and drop the trigger
within your migration fi le. Arbitrary SQL statements can be executed by the method execute.

Experienced developers tend to push this further and create their own methods in addition to the
built-in ones, whenever they need to implement custom functionality. These are usually organized in
a convenient module that can be “extended”/“mixed in” by the migration class that needs its methods.
Let’s clarify this with a practical example.

In the previous chapter the tables articles and comments had a one-to-many relationship but
ActiveRecord didn’t defi ne a foreign key constraint in the database for you. The reason for this is
that many developers in the Rails community prefer to enforce this, and other, constraints at an
application level, as opposed to the more conventional database level.

Although ActiveRecord doesn’t defi ne foreign key constraints in the database, it
still provides you with an add_index method that can be used to add indexes to the
database within a migration class. Indexes are fundamental to obtain reasonable
performances.

If you’d like to defi ne actual foreign key constraints, you may be surprised to learn that there are no
methods for adding foreign keys from within migrations. Luckily, you have a couple of options to add
custom SQL statements that’ll do the trick.

The following examples are provided to explain how to customize migrations,
but you should not actually add them to the chapter7 project. This is particularly
important because there are a few limitations with SQLite, as explained at the end
of this section.

74955c07.indd List24074955c07.indd List240 3/4/09 9:24:59 AM3/4/09 9:24:59 AM

241

Chapter 7: Object-Relational Mapping with ActiveRecord

The fi rst approach is to use the :options argument for a column when defi ning or altering a table
defi nition. For example:

create_table :books do |t|
 t.string :title
 t.string :author
 t.string :isbn
 t.text :description
 t.integer :category_id, :null => false, :options => “CONSTRAINT fk_books_
category_id REFERENCES categories(id)“

 t.timestamps
end

The create_table method accepts a :force option that can be used to specify that a table should
be dropped and re-created if it already exists in the database (for example, create_table :books,
:force => true) when running migration tasks.

A more fl exible approach is possible thanks to the execute method. Say you have the following
migration fi le:

class AddCategoryIdToBook < ActiveRecord::Migration
 def self.up
 add_column :books, :category_id, :integer
 end

 def self.down
 remove_column :books, :category_id
 end
end

This adds (and removes in the down method) the category_id column to the hypothetical books table.
To add a foreign key constraint, you could then transform it into the following:

class AddCategoryIdToBook < ActiveRecord::Migration
 def self.up
 add_column :books, :category_id, :integer

 execute %(
 alter table books
 add constraint fk_books_category_id
 foreign key (category_id)
 references categories(id)
)
 end

 def self.down
 execute %(
 alter table books
 drop foreign key fk_books_category_id
)

 remove_column :books, :category_id
 end
end

74955c07.indd List24174955c07.indd List241 3/4/09 9:24:59 AM3/4/09 9:24:59 AM

242

Chapter 7: Object-Relational Mapping with ActiveRecord

The method execute accepts a string (and optionally a second one for the logs); in this case the string
is defi ned within %(and) so as to easily span multiple lines.

This works but it clutters up the two up and down methods a bit, and it leads you to “repeat yourself”
if you were to add more foreign key constraints to the database. You can improve upon this by moving
the code into two separate methods (plus one helper method to defi ne the constraint’s name) as shown
in Listing 7-2.

Listing 7-2: Adding Foreign Keys to Migrations

class AddCategoryIdToBook < ActiveRecord::Migration
 def self.up
 add_column :books, :category_id, :integer
 add_foreign_key :books, :category_id, :categories
 end

 def self.down
 drop_foreign_key :books, :category_id
 remove_column :books, :category_id
 end

 def self.add_foreign_key(table, column, referenced_table)
 execute %(
 alter table #{table}
 add constraint #{fk_name(table, column)}
 foreign key (#{column})
 references #{referenced_table}(id)
)
 end

 def self.drop_foreign_key(table, column)
 execute %(
 alter table #{table}
 drop foreign key #{fk_name(table, column)}
)
 end

 def self.fk_name(table, column)
 “fk_#{table}_#{column}“
 end
end

This is defi nitely nicer, but it still doesn’t solve the problem that these methods will not be available in a
different migration fi le. Embracing the DRY principle, let’s improve this approach further. You can move
these three methods into a module so that they will be available in any migration fi le that needs them.

If you were to create a migration_helpers.rb fi le within the lib directory in your projects, the code
required for the module would be the one shown in Listing 7-3.

74955c07.indd List24274955c07.indd List242 3/4/09 9:24:59 AM3/4/09 9:24:59 AM

243

Chapter 7: Object-Relational Mapping with ActiveRecord

Listing 7-3: lib\migration_helpers.rb

module MigrationHelpers
 def add_foreign_key(table, column, referenced_table)
 execute %(
 alter table #{table}
 add constraint #{fk_name(table, column)}
 foreign key (#{column})
 references #{referenced_table}(id)
)
 end

 def drop_foreign_key(table, column)
 execute %(
 alter table #{table}
 drop foreign key #{fk_name(table, column)}
)
 end

 def fk_name(table, column)
 “fk_#{table}_#{column}“
 end
end

And the migration fi le would simply become Listing 7-4.

Listing 7-4: A Migration Class Taking Advantage of MigrationHelpers

class AddCategoryIdToBook < ActiveRecord::Migration
 extend MigrationHelpers

 def self.up
 add_column :books, :category_id, :integer
 add_foreign_key :books, :category_id, :categories
 end

 def self.down
 drop_foreign_key :books, :category_id
 remove_column :books, :category_id
 end
end

When this migration is applied, the method add_foreign_key will be executed, adding a foreign
key constraint to the database. When the migration is rolled back, the drop_foreign_key method is
executed, dropping the foreign key constraint from the database.

If, at a later stage, a different migration fi le needs to utilize add_foreign_key and drop_foreign_key,
it will be able to do so as long as you add an extend MigrationHelpers statement within the class
defi nition.

Also notice how the methods within the module were not prefi xed by self. because extend takes care
of adding these to AddCategoryIdToBook as class methods.

74955c07.indd List24374955c07.indd List243 3/4/09 9:24:59 AM3/4/09 9:24:59 AM

244

Chapter 7: Object-Relational Mapping with ActiveRecord

A few considerations are in order:

SQLite’s support for foreign keys is sketchy at best. The fi rst approach (through ❑ :options)
would work with SQLite, but the foreign key constraint would not be enforced. A workaround
exists, through triggers, as you can read online at http://www.justatheory.com/computers/
databases/sqlite/foreign_key_triggers.html. This is not a huge deal, because few people
adopt a fi le-based database system during production, but if you opt to go this route, you should
check out this link.

The second approach that alters the existing table through the ❑ execute method in order to
add a foreign key constraint will not work with SQLite. If you try this method, you’ll obtain
an exception pointing out a syntax error near the word “constraint” in the SQL syntax.

The issue with SQLite perfectly illustrates how executing DDL statements directly will often lead ❑

you to be database-specifi c, losing the ability to switch from one database type to another, with-
out altering the existing code. This doesn’t usually matter and shouldn’t be a big concern. If you
really need the application to be compatible with several database systems, you can always use
conditional statements to execute one, among several versions of the same query, depending on
the adapter in use.

The preceding example served us well as a means of exposing a few techniques that enable you ❑

to gain fl exibility. Many developers, however, would probably opt in favor of using a plugin
such as Foreign Key Migrations, which is available at http://www.redhillonrails.org/
foreign_key_migrations.html.

Finally, it’s important to note that migrations are great, but you are not forced to use them. When you
create a model Article, the articles table is supposed to be there, but ActiveRecord doesn’t care
how the table was created, just that it exists in the database. For this reason, some people prefer to
approach the database schema creation and evolution the traditional way, opting to skip the migration
“framework” in favor of what they are already accustomed to. I recommend that you give migrations a
chance though; they are a very useful feature and an integral part of the Rails developer mindset.

ORM Conventions
ActiveRecord endorses the Convention over Confi guration principle to its core. While developing the
basic blog application in the past two chapters you never had to write XML confi guration fi les. The map-
ping between the articles and comments tables and their respective models, Article and Comment,
was done automatically for you by convention. Naming conventions represent such a fundamental part
of being able to work with ActiveRecord that it’s worth exploring them further.

Mapping Tables to Models
A model is a subclass of ActiveRecord::Base. For each model that exists in your application,
ActiveRecord expects a corresponding table represented by that model (unless you specify otherwise,
as you’ll see later on). As repeated ad nauseam by now, if the model class is Article, then the table
that you expect to fi nd in the database would be articles. But what about irregular plurals or other
languages? An Italian developer may decide to call his model Articolo, Italian for article; would
ActiveRecord look for the table articoli, the correct Italian plural, or append an s as is the norm in
English, and expect a table articolos (which would be okay for Spanish, but not for Italian)?

Besides the fact that choosing a different language other than English for identifi ers can be considered a
poor development practice, answering the preceding questions will shed some light on how the mapping
convention really works.

74955c07.indd List24474955c07.indd List244 3/4/09 9:24:59 AM3/4/09 9:24:59 AM

245

Chapter 7: Object-Relational Mapping with ActiveRecord

The Rails team put forth a great deal of effort to develop an internationalization
(I18n) framework for those who need to internationalize their applications. You can
read all about it in the The Rails Internationalization (I18n) API guide, which is available
online at http://guides.rails.info/i18n.html or in the doc folder of your Rails
project after running rake doc:guides, which generates the Rails guides locally.

ActiveRecord determines the table name starting from the model name by ultimately taking advantage
of the pluralize method of a class called Inflector (defi ned by ActiveSupport).

The fact that Inflector is defi ned by the ActiveSupport library implies that you can use it in your
own programs, outside of Rails, by simply requiring the gem activesupport.

Let’s take it for a spin. Start the Rails console from the chapter7 directory:

C:\projects\chapter7> ruby script/console

From within the console, you can fi nd the table name for model names that are regular nouns in the
English language:

>> “article”.pluralize
=> “articles”
>> “comment”.pluralize
=> “comments”

Plural nouns are usually left untouched:

>> “money”.pluralize
=> “money”
>> “accounts”.pluralize
=> “accounts”

Irregular words tend to be pluralized correctly as well:

>> “mouse”.pluralize
=> “mice”
>> “datum”.pluralize
=> “data”
>> “cow”.pluralize
=> “kine”
>> “person”.pluralize
=> “people”

By the way, it’s the archaic kine and not cows, all thanks to this ticket http://dev.rubyonrails
.org/ticket/4929. Consider it to be an inside joke of sorts.

Infl ector Isn’t Perfect
To be exact, ActiveRecord doesn’t directly use the pluralize method to determine the table name, but
rather the tableize method, which takes advantage of pluralize. Unlike this, tableize takes care

74955c07.indd List24574955c07.indd List245 3/4/09 9:25:00 AM3/4/09 9:25:00 AM

246

Chapter 7: Object-Relational Mapping with ActiveRecord

of lowercasing the model name and properly pluralizing the last word of a composite model name as
shown in the following example:

>> “Bank”.tableize
=> “banks”
>> “BankAccount”.tableize
=> “bank_accounts”

Notice how model names should be in CamelCase, whereas tables are supposed to adopt the snake_
case convention.

The opposite of tableize is classify, which turns a table name into its model name. This in turn
uses the singularize method. Good Ruby code uses snake_case for methods and variables; because
of this point, it’s important to adopt snake_case for the name of the columns in the table, so that the
corresponding attributes will do the same thing as well. For example, use interest_rate not
interestRate as a column name.

Unfortunately, the Inflector class is not as reliable as you might expect it to be. For example, the fol-
lowing irregular nouns are handled incorrectly:

>> “nucleus”.pluralize
=> “nucleus”
>> “Phenomenon”.tableize
=> “phenomenons”
>> “Curriculum”.tableize
=> “curriculums”
>> “business”.classify
=> “Busines”

In the last line we intentionally tricked the Inflector by invoking the classify method on a
singular noun ending in s. Notice how classify returns a string. Use “my_table”.classify
.constantize when you need to get the actual class.

“Bug! Let’s report it!” you may be exclaiming. Well, not so fast. The reality is that the Inflector tries
to pluralize and singularize most nouns correctly, but it’s accepted that it won’t do so for all of the irreg-
ular ones. The developers decided to freeze its code a while ago, primarily as a means of maintaining
backward compatibility. Whenever you’re in doubt, use the console and the methods mentioned previ-
ously to verify model and table name mapping.

The easiest way to actually know what tables a given model is mapping to is to use the table_name
method (for example, MyModel.table_name).

The pluralization offered by the Inflector is more or less as accurate as that of a young child. But
that’s okay, because you can change the rules and add exceptions to the Inflector.

Another issue with the Inflector, at least for some, is the fact that it only pluralizes and singularizes
English words:

>> “articolo”.pluralize
=> “articolos”
>> “conto”.pluralize
=> “contos”

74955c07.indd List24674955c07.indd List246 3/4/09 9:25:00 AM3/4/09 9:25:00 AM

247

Chapter 7: Object-Relational Mapping with ActiveRecord

Adding New Infl ection Rules
Any Rails application has a config\initializers\inflections.rb fi le generated by default. This
fi le contains the following commented out lines:

Be sure to restart your server when you modify this file.

Add new inflection rules using the following format
(all these examples are active by default):
Inflector.inflections do |inflect|
inflect.plural /^(ox)$/i, ‘\1en’
inflect.singular /^(ox)en/i, ‘\1’
inflect.irregular ‘person’, ‘people’
inflect.uncountable %w(fish sheep)
end

If you need to add new rules, this is the fi le that you need to modify. The plural, singular, irregular,
and uncountable methods provide you with an easy-to-use DSL to customize the infl ections. For example,
go ahead and add the following to that fi le within the chapter7 project:

Inflector.inflections do |inflect|
 infl ect.irregular ‘curriculum’, ‘curricula’
end

Save the fi le, exit from the console (using exit) if you haven’t already done so, and then start it again.

Get Familiar with the Console
Whenever you modify your models, you can use the reload! command instead
of manually restarting the console. In this case, you had to restart it because you
modifi ed an initializer.

Remember also that by default the console uses the development environment; if you’d
like to specify a different one, just pass its name as an argument to the command. For
example, use ruby script/console production for the production console.

You should now be able to see that the old rules still apply, as well as the new infl ection you defi ned:

C:\projects\chapter7> ruby script/console
Loading development environment (Rails 2.2.2)
>> “curriculum”.pluralize
=> “curricula”
>> “recipe”.pluralize
=> “recipes”

If you want to defi ne your own set of rules from scratch, getting rid of the default ones, you can do so by
fi rst clearing them with the clear method. This would really be helpful only when your database tables
consistently follow a precise naming convention that’s different than the default one, or when you are
creating a set of rules for a specifi c language. For example, the following snippet would correctly cover
most Italian words (only the regular ones), but would lose the ability to pluralize English words:

Inflector.inflections do |inflect|
 inflect.clear

74955c07.indd List24774955c07.indd List247 3/4/09 9:25:00 AM3/4/09 9:25:00 AM

248

Chapter 7: Object-Relational Mapping with ActiveRecord

 inflect.singular /^(\w]*)i/i, ‘\1o’
 inflect.plural /^([\w]*)o/i, ‘\1i’
 inflect.singular /^([\w]*)e/i, ‘\1a’
 inflect.plural /^([\w]*)a/i, ‘\1e’
end

You can also be more specifi c than that, and use clear :plurals, clear :singulars, or clear
:uncountables.

The regular expressions may make it look scary, but it’s really rather simple. Words ending in o should
be pluralized by replacing the o with an i and vice versa; words ending in i should be singularized
with an o. Similarly, strings ending with an a should be pluralized by replacing that fi nal a with an e.

Notice that the occurrence of a string that matches the pattern between the round brackets is “captured”
by \1, which is then used to defi ne the new word (in the second parameter passed to the methods
singular and plural). For example, if the word is “articolo,” \1 will capture “articol,” to which
i is then appended (if you are pluralizing).

Setting a Custom Table Name for a Model
The path of least resistance is available anytime you stick to the convention for table and model
naming. There are times, however, when this is not possible or convenient due to restrictions that
are beyond the developer’s control. In such instances, overwriting the convention is possible.

Though you could simply modify the infl ection rules to infl uence the mapping as needed, this is not
always a clean solution. For example, convincing the Inflector that the plural of recipe is my_cookbook
has all the characteristics of a so called “code smell.” Luckily for you, ActiveRecord allows you to set the
table name for a model explicitly.

As mentioned earlier, at any time you can verify the table represented by a model by using the class
method table_name. From the same console for the chapter7 project, try to use this as follows:

>> Recipe.table_name
=> “recipes”

The table represented by Recipe is recipes, as expected; but let’s modify your model to map it with a
custom table named my_cookbook, from the preceding example:

class Recipe < ActiveRecord::Base
 self.table_name = “my_cookbook”
end

Similarly, you can also use the (macro style) method set_table_name:

class Recipe < ActiveRecord::Base
 set_table_name :my_cookbook
end

Having changed one or more models, you’ll need to impart the reload! command in the console. Once
you’ve done that, you’ll see that the table associated with the model is now my_cookbook:

>> reload!
Reloading...

74955c07.indd List24874955c07.indd List248 3/4/09 9:25:00 AM3/4/09 9:25:00 AM

249

Chapter 7: Object-Relational Mapping with ActiveRecord

=> true
>> Recipe.table_name
=> “my_cookbook”

Notice that this will work whether or not that table exists. However, to do anything useful with such a
model, the table obviously needs to exist in the database.

Specifying a Prefi x or Suffi x
Along with setting a custom table name, it’s also possible to let all the Inflector rules be applied as
usual, except for a custom prefi x or suffi x. For example, say that the table you’d like Recipe to represent
is w7c_recipes, where w7c is a department code. You can then set the table_name_prefix as follows:

class Recipe < ActiveRecord::Base
 self.table_name_prefi x = “w7c_“
end

Similarly, you can set the table_name_suffix.

Setting a prefi x or suffi x for a single model in this way is not a more concise option than simply
using set_table_name. Imagine for a moment, though, that all the tables in your application need
a w7c_ prefi x. In this sort of scenario you could leverage the setter not for a particular model, but for
the ActiveRecord::Base class, and all the models in the application would automatically inherit
from it. An easy way to do this is to place the following code within an initializer of the application
(for example, in a Ruby fi le within config\initializers):

class ActiveRecord::Base
 self.table_name_prefi x = “w7c_“
end

Using a Different Primary Key
Conventionally ActiveRecord expects tables to have an id primary key that’s an auto-incrementing
integer fi eld.

By the same convention, foreign key columns are supposed to be named by appending id to the singular
name of the referenced table (for example, article_id).

This convention too can be easily overwritten, even though it’s not recommended to do so unless you
really have to. ActiveRecord’s productivity comes from sticking to its conventions whenever possible.
The method used for this task is set_primary_key.

If you want to inform the model that the primary key column is guid, not id, you can do so as follows
(in this case, the model is generically named MyModel):

class MyModel < ActiveRecord::Base
 set_primary_key “guid”
end

You can also opt for self.primary_key = “guid”.

74955c07.indd List24974955c07.indd List249 3/4/09 9:25:00 AM3/4/09 9:25:00 AM

250

Chapter 7: Object-Relational Mapping with ActiveRecord

The method also accepts a block, if the fi rst parameter (in this case “guid”) is missing or evaluates
to false. In such cases, the returning value of the block will be assigned as the value for the primary
key column.

By convention, migrations will generate tables with an id primary key column. This too can effortlessly
be overwritten, so that it matches the primary key you set in the model:

create_table(:my_models, :primary_key => ‘guid’) do |t|
 # ... some column definitions
end

ActiveRecord doesn’t support composite primary keys; if you need them in order to support a legacy
schema, you might want to check out the Composite Primary Keys plugin at http://compositekeys
.rubyforge.org.

Migrations also allow you to specify that no primary key should be defi ned. This is usually important
when creating an intermediary table for a many-to-many relationship that has no corresponding model.
The documentation for the create_table method offers this example:

create_table(:categories_suppliers, :id => false) do |t|
 t.column :category_id, :integer
 t.column :supplier_id, :integer
end

The ability to overwrite the conventions described previously should be enough to allow you to use
most legacy schemas. There is also a plugin that takes the opposite approach and automatically creates
models from an existing database; it’s called Magic Models and is available at http://magicmodels
.rubyforge.org.

For further details and tips for working with legacy databases, pop by the wiki page http://wiki
.rubyonrails.com/rails/pages/HowToUseLegacySchemas. Rails’ wiki is admittedly in need of a
clean up, so you may fi nd the information presented to be disorganized and in some instances obsolete.
That said, if you dig through it, you’ll certainly fi nd valuable suggestions.

CRUD Operations
One thing should be clear by now. ActiveRecord really shines when it comes to simplifying the basic
operations for creating, reading, updating, and deleting data. Let’s systematically review the methods
that are available when you want to perform CRUD (create, read, update, delete) operations.

Create
Because a table is represented by a model class, and its rows by instances of that class, inserting new
records is as easy as creating a new model object and then saving it.

Assume that you have a model that was generated by the following command:

ruby script/generate model Book title:string author:string publisher:string
pages:integer isbn:string description:text

74955c07.indd List25074955c07.indd List250 3/4/09 9:25:00 AM3/4/09 9:25:00 AM

251

Chapter 7: Object-Relational Mapping with ActiveRecord

This is a long chapter with a lot of reference-like content, so you don’t have to follow
along and type all code, except when explicitly asked to do so. If you do wish to type
along throughout, remember that a model generation must always be followed by
running migrations (rake db:migrate), so that it can actually create the table in
the database.

When you create an empty object, all of its attributes that represent columns will be set to nil:

C:\projects\chapter7> ruby script/generate model Book title:string author:string
publisher:string pages:integer isbn:string description:text
>> my_book = Book.new
=> #<Book id: nil, title: nil, author: nil, publisher: nil, pages: nil, isbn: nil,
description: nil, created_at: nil, updated_at: nil>

As a reminder, the >> and => tokens respectively represent the input and output within a Rails console,
starting with ruby script/console.

You can use attribute writers to assign values to the columns of your record:

>> my_book.title = ‘Ruby on Rails for Microsoft Developers’
=> “Ruby on Rails for Microsoft Developers”
>> my_book.author = ‘Antonio Cangiano’
=> “Antonio Cangiano”
>> my_book.publisher = ‘Wrox’
=> “Wrox”
>> my_book.pages = 450
=> 450
>> my_book.isbn = ‘978-0470374955’
=> “978-0470374955”

The object will now store those values in the respective attributes:

>> my_book
=> #<Book id: nil, title: “Ruby on Rails for Microsoft Developers”, author:
 “Antonio Cangiano”, publisher: “Wrox”, pages: 450, isbn: “978-0470374955”,
 description: nil, created_at: nil, updated_at: nil>

You can also obtain a list of attributes using the attributes method (also available as the writer
method attributes=):

>> my_book.attributes
=> {“isbn”=>”978-0470374955”, “updated_at”=>nil, “title”=>”Ruby on Rails for
 Microsoft Developers”, “author”=>”Antonio Cangiano”, “publisher”=>”Wrox”,
 “description”=>nil, “pages”=>450, “created_at”=>nil}

You’ll notice that no id, created_at, or updated_at values have been assigned yet. At this stage, the
object contains all the data you want, but the record has yet to be saved in the database.

You can confi rm this using the new_record? method:

>> my_book.new_record?
=> true

74955c07.indd List25174955c07.indd List251 3/4/09 9:25:00 AM3/4/09 9:25:00 AM

252

Chapter 7: Object-Relational Mapping with ActiveRecord

To actually create the record you’ll need to save your object:

>> my_book.save
=> true

Saving returns a true value, which confi rms that the procedure of storing a record in the database was
successful. If you evaluate the object after you’ve saved it, you’ll now obtain an id and the creation/
update date times as well.

>> my_book
=> #<Book id: 1, title: “Ruby on Rails for Microsoft Developers”, author: “Antonio
 Cangiano”, publisher: “Wrox”, pages: 450, isbn: “978-0470374955”, description:
 nil, created_at: “2009-01-31 17:24:15”, updated_at: “2009-01-31 17:24:15”>

ActiveRecord offers a few alternatives to creating a variable (and manually assigning values to its attri-
butes). The fi rst enables you to skip the repetition of variable names by employing a block:

Book.new do |b|
 b.title = ‘Professional Ruby on Rails’
 b.author = ‘Noel Rappin’
 b.publisher = ‘Wrox’
 b.pages = 457
 b.isbn = ‘978-0470223888’
 b.save
end

More importantly, ActiveRecord allows for the creation of new records by passing a hash,
containing the attribute values, to the constructor. This is particularly handy when trying to
create a record from a form submitted by a user. For example, imagine that params[:book] is
the following hash:

{ “isbn” => “978-0470189481”, “title” => “The Art of Rails”, “author” => “Edward
Benson”, “publisher” => “Wrox”, “pages” => 309 }

At this point you can create a new record as follows:

book = Book.new(params[:book])
book.save

Or more conveniently, by instantiating the object and saving it in one step through the create method:

Book.create(params[:book])

Read
In the previous chapters you saw how fi nders are used to retrieve data. The simplest possible example
you can come up with is the find method, to which an id is passed.

book = Book.find(3)

74955c07.indd List25274955c07.indd List252 3/4/09 9:25:00 AM3/4/09 9:25:00 AM

253

Chapter 7: Object-Relational Mapping with ActiveRecord

Finding by Id(s)
The most common scenario for this is to retrieve a record using the id provided by the user:

book = Book.find(params[:id])

When the id can’t be found in the table, an ActiveRecord::RecordNotFound exception is raised.
In a production environment, this translates into a 404, which is a sensible default. And because find
accepts a list or an array of ids as well, if any of the ids is missing, the same exception will be raised.
Otherwise, an array of instances is returned:

>> Book.fi nd(1,3)
=> [#<Book id: 1, title: “Ruby on Rails for Microsoft Developers”, author: “Antonio
 Cangiano”, publisher: “Wrox”, pages: 450, isbn: “978-0470374955”, description:
 nil, created_at: “2009-01-31 17:24:15”, updated_at: “2009-01-31 17:24:15”>, #<Book
 id: 3, title: “The Art of Rails”, author: “Edward Benson”, publisher: “Wrox”,
 pages: 309, isbn: “978-0470189481”, description: nil, created_at: “2009-01-31
17:28:34”, updated_at: “2009-01-31 17:28:34”>]

:fi rst, :last, and :all
find(:all) returns an array, and as such you can chain the method with Enumerable methods and
perform nice tricks:

>> Book.fi nd(:all).collect(&:isbn)
=> [“978-0470374955”, “978-0470223888”, “978-0470189481”]
>> Book.fi nd(:all).sum(&:pages)
=> 1216

Incidentally, all three Rails books combined fail to reach the same number of pages as the most popular
ASP.NET title.

Book.find(:all).collect(&:isbn) is a more concise form of Book.find(:all)
.collect {|book| book[:isbn] }, which should be familiar to you. Unfortunately
in Ruby 1.8.x this “symbol to proc” shortcut is much slower than the regular block
form, and as such you should think twice before using it in production.

Two common symbols found in any Rails application are :first and :all. Not surprisingly, the fi rst
symbol tells the fi nder to return only the fi rst record in the result set as an instance of the model, and
the second symbol, all the records as an array of instances:

>> Book.fi nd(:fi rst)
=> #<Book id: 1, title: “Ruby on Rails for Microsoft Developers”, author: “Antonio
 Cangiano”, publisher: “Wrox”, pages: 450, isbn: “978-0470374955”, description:
 nil, created_at: “2009-01-31 17:24:15”, updated_at: “2009-01-31 17:24:15”>
>> Book.fi nd(:all)
=> [#<Book id: 1, title: “Ruby on Rails for Microsoft Developers”, author: “Anto
nio Cangiano”, publisher: “Wrox”, pages: 450, isbn: “978-0470374955”, descriptio
n: nil, created_at: “2009-01-31 17:24:15”, updated_at: “2009-01-31 17:24:15”>, #
<Book id: 2, title: “Professional Ruby on Rails”, author: “Noel Rappin”, publish
er: “Wrox”, pages: 457, isbn: “978-0470223888”, description: nil, created_at: “2
009-01-31 17:26:37”, updated_at: “2009-01-31 17:26:37”>, #<Book id: 3, title: “T

74955c07.indd List25374955c07.indd List253 3/4/09 9:25:00 AM3/4/09 9:25:00 AM

254

Chapter 7: Object-Relational Mapping with ActiveRecord

he Art of Rails”, author: “Edward Benson”, publisher: “Wrox”, pages: 309, isbn:
“978-0470189481”, description: nil, created_at: “2009-01-31 17:28:34”, updated_a
t: “2009-01-31 17:28:34”>]

A third, perhaps less common symbol, exists as well and it’s :last. These three can be used in conjunc-
tion with other options as well, but starting with Rails 2.1, three handy methods have been added as
shortcuts for them:

Book.first # Book.find(:first)
Book.last # Book.find(:first, :order => “id DESC”) or Book.find(:last)
Book.all # Book.find(:all)

These three methods accept other arguments just as find does. In this chapter, they’ve been used
interchangeably.

Finders are extremely fl exible in terms of the arguments that they accept, as you can see by reading the
online documentation for the methods.

:order and :group
You already encountered the :order attribute, used to specify an SQL fragment to order the results in
the query. Invoking the following:

Book.find(:all, :order => “created_at DESC”)

would lead to the execution of the SQL query:

SELECT * FROM “books” ORDER BY created_at DESC

Similarly, another attribute/option that’s available is :group, which translates into a GROUP BY clause:

This becomes SELECT * FROM “books” WHERE (pages > 430) GROUP BY publisher
Book.fi nd(:all, :conditions => [“pages > ?”, 430], :group => “publisher”)

Adding Conditions
You can also add conditions to the fi nder (as you’ve seen before, as well):

Equivalent to Book.all(:conditions => “pages > 430”, :order => “created_at DESC”)
Book.fi nd(:all, :conditions => “pages > 430”, :order => “created_at DESC”)

This becomes:

SELECT * FROM “books” WHERE (pages > 430) ORDER BY created_at DESC

You don’t have to reach for the logs to see the SQL queries generated by the commands you
entered into the console. From the console simply run ActiveRecord::Base.logger =
Logger.new(STDOUT) (as long as you aren’t in production mode). You can also use the
ActiveSupport::BufferedLogger, used by Rails and mentioned before in this book.

Conditions can be specifi ed in several ways. The preceding example uses a string, but other common
ways of specifying conditions are hashes and arrays.

74955c07.indd List25474955c07.indd List254 3/4/09 9:25:01 AM3/4/09 9:25:01 AM

255

Chapter 7: Object-Relational Mapping with ActiveRecord

A hash can be used as follows:

Book.find(:first, :conditions => { :author => “Antonio Cangiano”, :pages => 450 })

This yields (at least on SQLite3):

SELECT * FROM “books” WHERE (“books”.”author” = ‘Antonio Cangiano’ AND
“books”.”pages” = 450) LIMIT 1

Arrays are used to substitute parameters with their values in an SQL fragment:

Book.find(:all, :conditions => [“pages > ?”, 430])
Book.find(:all, :conditions => [“pages > :pages”, {:pages => 430}])

If you had several parameters, the values that need to be substituted would be added to the array in the
order that they appear:

Book.find(:all, :conditions => [“pages > ? AND author = ?”, 430, “Antonio
Cangiano”])

Note that the substitution of the parameters with their values happens during the formulation of the
query; therefore, the database will execute a normal SQL query and not, say, a parameterized query.
You may wonder, then, what is the point of using parameters. Can’t you just embed the variables in the
SQL fragment as follows?

Don’t do this
Book.find(:all, :conditions => “pages > #{params[:pages]}“)

The problem with this approach is that it poses a considerable security risk. Remember, you can’t trust
the user’s input, and embedding the value in an SQL fragment like the preceding one would make
you susceptible to SQL injection attacks. When you use the hash or the more fl exible array approach,
ActiveRecord takes care of escaping malicious inputs for you.

For example, imagine that a malicious user passed the value 300’; DROP TABLE books; as a parameter.
If you use the correct approach:

Book.all(:conditions => [“pages > ?”, params[:pages]])

you have nothing to fear:

SELECT * FROM “books” WHERE (pages > ‘300’‘; DROP TABLE books;’)

The single quote after 300, which would indicate the termination of the string/value, has been properly
escaped with a second one, transforming it into a regular character. The topic of security is investigated
further in Chapter 11.

When the fi nder’s condition is determined by a value provided by the user, always
use the array or hash form for :conditions.

74955c07.indd List25574955c07.indd List255 3/4/09 9:25:01 AM3/4/09 9:25:01 AM

256

Chapter 7: Object-Relational Mapping with ActiveRecord

:limit and :offset
:limit and :offset are used to specify, respectively, the number of records that should be fetched,
and how many records should be skipped. For example:

Book.find(:all, :limit => 10, :offset => 5)

This will return, if they exist, 10 rows, skipping the fi rst 5 rows. The generated SQL is truly database-
specifi c, and will be different for SQL Server, DB2, or Oracle, but for SQLite, it would be:

SELECT * FROM “books” LIMIT 10 OFFSET 5

If you were to follow along throughout the chapter, you’d fi nd yourself with three records, so an empty
array would be returned by the preceding Ruby instruction.

In many circumstances it makes sense to use :limit along with :offset, but :limit can also be
used on its own. If, on the other hand, you specify an offset but no limit, this will have no effect on the
resulting query. Please note, though, that if you try to specify an offset with no limit, yet you’ve passed
a :first or :last symbol to the fi nder, then the :offset attribute will have an effect on the query
because :first and :last both implicitly set a :limit => 1.

:select and :from
You should have noticed by now that all the queries generated by these fi nders start with SELECT *.
If you want to limit the columns returned to just a few, you can use the :select option:

>> Book.fi rst(:select => “title”)
=> #<Book title: “Ruby on Rails for Microsoft Developers”>

The resulting query is what you’d expect it to be:

SELECT title FROM “books” LIMIT 1

When you need more than one column, you can assign a comma-separated list as the string value for
the :select key:

>> Book.fi rst(:select => “title, author”)
=> #<Book title: “Ruby on Rails for Microsoft Developers”, author: “Antonio Cang
iano”>

Not surprisingly, this executes:

SELECT title, author FROM “books” LIMIT 1

The :select option is particularly useful whenever you want to exclude the joined columns in a join,
to avoid duplicates (for example, :select => “DISTINCT books.*“), or improve performances.

The :from option is less common, but it allows you to specify a different table name or database view
for the query:

Both execute SELECT * FROM wrox_book_catalog
Book.all(:from => “wrox_book_catalog”)
Book.find(:all, :from => “wrox_book_catalog”)

74955c07.indd List25674955c07.indd List256 3/4/09 9:25:01 AM3/4/09 9:25:01 AM

257

Chapter 7: Object-Relational Mapping with ActiveRecord

:include and :joins
:include is a very important option when working with associations. It enables you to perform eager
loading and prevent the shudder-inducing 1+N problem, where fetching N records requires the execu-
tion of 1+N queries.

Just in case you’re not familiar with this issue, and in order to show the usefulness of :include, let’s
see an illustrative example. Imagine that you have the following schema in the database:

create_table :books do |t|
 t.string :title
 t.string :publisher
 t.integer :pages
 t.string :isbn
 t.datetime :created_at
 t.datetime :updated_at
 t.integer :author_id
end

create_table :authors do |t|
 t.string :name
 t.text :bio
 t.datetime :created_at
 t.datetime :updated_at
end

create_table :reviews do |t|
 t.string :title
 t.text :body
 t.string :reviewer
 t.boolean :published
 t.datetime :created_at
 t.datetime :updated_at
 t.integer :book_id
end

The books table declared here clearly has nothing to do with the table defi ned
earlier in the chapter. This is a standalone example provided to illustrate the 1+N
problem, but you don’t have to type it out.

You can assume that the Book model would have the following defi nition:

class Book < ActiveRecord::Base
 belongs_to :author
 has_many :reviews
end

Now imagine that you’d like to print the book title, its author, its publisher, and the title of the latest
review that it received within a Ruby script (not necessarily in a Rails application). A fi rst, perhaps
naive, approach would be this:

Book.all.each do |book|
 puts “Title: #{book.title}“

74955c07.indd List25774955c07.indd List257 3/4/09 9:25:01 AM3/4/09 9:25:01 AM

258

Chapter 7: Object-Relational Mapping with ActiveRecord

 puts “Author: #{book.author.name}“
 puts “Publisher: #{book.publisher}“
 puts “Latest review: #{book.reviews.last.title}“
end

The code, as it’s written, would raise an exception if a book happened to have no reviews, because it
would attempt to run nil.title. But this is just an example to illustrate the 1+N problem.

Book.all is equivalent to Book.find(:all) so it will only execute the query once:

SELECT * FROM “books”

Within the block, book.author.name and book.reviews.last.title will execute two queries that
look like the following (the values for id and book_id can change depending on the records at hand):

SELECT * FROM “authors” WHERE (“authors”.”id” = 1)
SELECT * FROM “reviews” WHERE (“reviews”.book_id = 1) ORDER BY reviews.id DESC
LIMIT 1

For each iteration, two queries are executed. So if you had 100 records in the books table, in total that
snippet would execute 201 queries. What’s more, 100 of them would look virtually identical save for the
id, which changes, and another 100 would be virtually identical except for their book_id value. This is
known as the 1+N problem, and as you can imagine it’s a big strike against database performances.

Technically, in this case, you have 2N+1 queries because two queries that involved associations in the
loop/block were used.

How can you improve this? Thanks to :include, you can drastically better the situation. Consider the
following:

Book.all(:include => :author).each do |book|
 puts “Title: #{book.title}“
 puts “Author: #{book.author.name}“
 puts “Publisher: #{book.publisher}“
 puts “Latest review: #{book.reviews.last.title}“
end

This executes two queries before you execute a statement within the block:

SELECT * FROM “books”
SELECT * FROM “authors” WHERE (“authors”.id IN (‘1’, ‘2’, ‘3’,...))

The query is shortened for sake of brevity. Any id for an author that has written a book would be listed
between brackets.

Within the loop, because you’ve included author, but not reviews, you would execute the following
query 100 times:

SELECT * FROM “reviews” WHERE (“reviews”.book_id = 1) ORDER BY reviews.id DESC
LIMIT

74955c07.indd List25874955c07.indd List258 3/4/09 9:25:01 AM3/4/09 9:25:01 AM

259

Chapter 7: Object-Relational Mapping with ActiveRecord

As things stand, you cut the number of queries from 201 to 102. Not bad. But :include allows you to
do even better, because you’re not limited to eager loading a single fi eld. As a matter of fact, the proper
way to handle this hypothetical scenario is to include both author and reviews as follows:

Book.all(:include => [:author, :reviews]).each do |book|
 puts “Title: #{book.title}“
 puts “Author: #{book.author.name}“
 puts “Publisher: #{book.publisher}“
 puts “Latest review: #{book.reviews.last.title}“
end

This way you’ll execute three queries no matter how many records you have in the books table. All the
data that you need is “eagerloaded” before you even enter the block.

SELECT * FROM “books”
SELECT * FROM “authors” WHERE (“authors”.id IN (‘1’, ‘2’, ‘3’,...))
SELECT “reviews”.* FROM “reviews” WHERE (“reviews”.book_id IN (1,2,3,4,5,...))

Again, the last two queries have been shortened for the sake of brevity. Any id for an author that has writ-
ten a book would be listed between brackets and any id for a book that has reviews would be listed as well.

This demonstrates the importance of eager loading associations, but you should always pay attention to
SQL queries that are hidden by the abstraction layer that’s provided by ActiveRecord. For example, you
need to be very careful when adding :include and :conditions options at the same time. Consider
the following straightforward looking line of code:

Book.find(:all, :include => [:author, :reviews],
 :conditions => [‘reviews.published = ?’, true])

It will generate the following SQL (SQlite3 version) for you:

SELECT “books”.”id” AS t0_r0, “books”.”title” AS t0_r1, “books”.”publisher” AS
t0_r2, “books”.”pages” AS t0_r3, “books”.”isbn” AS t0_r4, “books”.”created_at” AS
 t0_r5, “books”.”updated_at” AS t0_r6, “books”.”author_id” AS t0_r7, “authors”.”id”
 AS t1_r0, “authors”.”name” AS t1_r1, “authors”.”bio” AS t1_r2,
“authors”.”created_at” AS t1_r3, “authors”.”updated_at” AS t1_r4, “reviews”.”id” AS
 t2_r0, “reviews”.”book_id” AS t2_r1, “reviews”.”title” AS t2_r2, “reviews”.”body”
AS t2_r3, “reviews”.”created_at” AS t2_r4, “reviews”.”updated_at” AS t2_r5,
“reviews”.”reviewer” AS t2_r6 FROM “books” LEFT OUTER JOIN “authors” ON
“authors”.id = “books”.author_id LEFT OUTER JOIN “reviews” ON reviews.book_id =
books.id WHERE (reviews.published = ‘t’)

Notice how that = ‘t’ is strongly dependent on the way the adapter defi nes Boolean values. It’s not
uncommon for them to be implemented as 1 for true, and 0 for false.

On top of being a bit scary looking when compared to what you’ve seen so far, this query fails to return
books that lack published reviews, because the condition reviews.published = ‘t’ applies to the
whole SQL statement. This outcome may or may not be what you wanted.

When this approach doesn’t match the desired outcome, it is sensible to attack the problem from a
different angle. For example, it is common to eager load an association that has conditions defi ned on
it. At this stage don’t worry about this somewhat advanced technique. You’ll see an example of it later
on in this chapter.

74955c07.indd List25974955c07.indd List259 3/4/09 9:25:01 AM3/4/09 9:25:01 AM

260

Chapter 7: Object-Relational Mapping with ActiveRecord

:include can also be used to include a hierarchy of associations. ActiveRecord’s documentation
provides an example of this:

Post.find(:all, :include => [:author, {:comments => {:author => :gravatar }}])

This will need to generate a single query that’s able to load all the posts, their authors, all the comments,
their authors, and gravatar pictures. Again, this is a powerful feature and it’s okay to include a hierar-
chy of associations, which isn’t too deep. And as a result, performances can improve by choosing this
route. But be careful; if you try to add :conditions to something like that, you’ll be facing database
chocking SQL monsters in no time.

Always double-check the queries that ActiveRecord produces to identify bottle-
necks and performance issues.

There are times where :include alone won’t cut it and you may need to customize the resulting query
by specifying an SQL fragment for additional join clauses. In such instances, you can use the :joins
option/attribute.

:readonly and :lock
The :readonly option allows you to specify that the returned records are read-only, so that they can’t
be altered. Check out this console session (with the error output truncated):

>> book = Book.fi nd(:fi rst, :readonly => true)
=> #<Book id: 1, title: “Ruby on Rails for Microsoft Developers”, author: “Antonio
 Cangiano”, publisher: “Wrox”, pages: 450, isbn: “978-0470374955”, description:
 nil, created_at: “2009-01-31 17:24:15”, updated_at: “2009-01-31 17:24:15”>
>> book.title = “A different title”
=> “A different title”
>> book.save
ActiveRecord::ReadOnlyRecord: ActiveRecord::ReadOnlyRecord

The :lock option allows you to specify pessimistic locking. This is useful when dealing with concur-
rent transactions. For example, if a few end users attempt to increase a sales fi eld concurrently, it is
possible that you’ll fi nd yourself with an incorrect number. Using :lock => true you can lock the
row, thus granting access to only one transaction at a time, while the other(s) wait for the fi rst to be
completed. This is a sample snippet:

Book.transaction do
 book = Book.find(22, :lock => true)
 book.sales += 1
 book.save!
end

The books table defi ned before didn’t have a sales column. Consider this example to be a hypothetical
scenario.

The contents of the block are wrapped in a transaction. Transactions in ActiveRecord can be instantiated
by simply calling the method transaction on a model and wrapping the content of the transaction in
the associated block. The book record is returned with :lock set to true when you try to add 1 to the
sales fi eld and then save the record.

74955c07.indd List26074955c07.indd List260 3/4/09 9:25:01 AM3/4/09 9:25:01 AM

261

Chapter 7: Object-Relational Mapping with ActiveRecord

The save! method is similar to save, but it raises a RecordNotSaved exception instead of return-
ing false.

The fi nder :lock option provides a convenient way to perform row-level locking without having to
explicitly call the lock! method on the object or the reload(:lock => true) method.

Optimistic Locking
Unlike pessimistic locking, optimistic locking allows concurrent access to the same
record for editing purposes, under the “optimistic” assumption that any confl icts will
be minimal. The consistency of the data is achieved by adding a lock_version column
(that must be defaulted to 0 and can be overwritten with set_locking_column) to the
table, whose stored value for a given record is automatically incremented at each update.

ActiveRecord will check that value to determine if the record has been changed since
you fi rst read it from the database, and if that’s the case it won’t allow a second update
but rather raise ActiveRecord::StaleObjectError. At this point, it will be up to
the programmer to rescue the exception and decide how to resolve the confl ict. Unlike
pessimistic locking, which works at the database level by appending a FOR UPDATE
(or its equivalent) to the query that’s generated by the fi nder, optimistic locking works
at the application level. Please consult the documentation for the module ActiveReco
rd::Locking::Optimistic for further details.

Other options for fi nder methods exist. Consult the online documentation to learn about each of them.
Also remember regardless of the options passed to a fi nder, it’s always possible to pass an :options
hash as the last parameter, to specify fragments of SQL that should be appended to the query.

Dynamic Finders
By taking advantage of Ruby’s powerful metaprogramming features — method_missing in particular —
ActiveRecord allows you to use dynamic fi nders. These methods are not defi ned until the moment you
invoke them. They are quite handy and improve the readability of one’s code.

This method invocation:

Book.find(:first, :conditions => [“title = ?”, title])

can also be written as:

Book.find_by_title(title)

Rails 2.2 introduced a similar dynamic fi nder to retrieve the last result. Instead of writing:

Book.find(:last, :conditions => [“title = ?”, title])

you can now write:

Book.find_last_by_title(title)

74955c07.indd List26174955c07.indd List261 3/4/09 9:25:01 AM3/4/09 9:25:01 AM

262

Chapter 7: Object-Relational Mapping with ActiveRecord

Similarly, consider the following:

Book.find(:all, :conditions => [“publisher = ?”, publisher])

This is equivalent to:

Book.find_all_by_publisher(publisher)

Nice and concise, isn’t it? But it gets even better because you can concatenate a few attributes. For
example:

Book.find_all_by_title_and_publisher(title, publisher)

This is equivalent to the much more verbose:

Book.find(:all, :conditions => [“title = ? AND publisher = ?”, title, publisher])

Despite being defi ned on the fl y during the moment of their invocation, these methods are subse-
quently cached by Ruby and normally have a negligible amount of impact on performance.

When the Record Can’t Be Found
I mentioned that Book.find(params[:id]) and Book.find(params[:list_of_
ids]) would raise an exception when the record(s) can’t be found. This is a sensible
choice in the context of Rails, because by default you access the detail page of a record
by passing the id, which is handled by the show action. If you visit books/show/5 and
the record with id 5 doesn’t exist, you’d probably expect a 404 page, which is exactly
what Rails does in production.

With that in mind, this behavior is not what you’d generally want when, say, perform-
ing a search in your application. For this reason, the find method, with the exception
of those two cases mentioned previously, will not raise an exception when a record
can’t be found. If you are retrieving a single record, nil will be returned.

If this is not what you want, Rails 2.2 introduced dynamic fi nders in the form of
find_by_<attribute>!; these raise an error when a record can’t be found.

When retrieving a collection of records through the :all symbol, the all fi nder, or through a find_
all_by_<attribute> dynamic fi nder, an empty array (that is, []) is returned when no records can
be found. It is not uncommon to use a dynamic fi nder to fi nd a record if it exists and create one if this
doesn’t exist. For example, Book.find_or_create_by_title(“On the Road”) will return the model
object if the book already exists, and if not, it will create one (by actually performing the insert opera-
tion in the database) and return the object so that you can, for example, add further details and assign
values to its attributes, then invoke its save or save! method.

Specifying Custom SQL Queries
The fi nder methods and their many options are defi nitely nice to work with. They make code easy to
write and maintain, and don’t require that you provide SQL queries by hand for most reading opera-
tions. If you are a .NET developer though, when it comes to executing SQL statements you might be
used to thinking in terms of ExecuteReader, ExecuteNonQuery, and ExecuteScalar provided by,
among others, the OleDbCommand and SqlCommand classes.

74955c07.indd List26274955c07.indd List262 3/4/09 9:25:01 AM3/4/09 9:25:01 AM

263

Chapter 7: Object-Relational Mapping with ActiveRecord

An initial important difference is that ActiveRecord, being opinionated software, entirely ignores the
concept of stored procedures or parameterized queries.

You can work with stored procedures, and with parameterized queries, as long as you are willing to do
all the work yourself, by using the database driver directly.

Despite this, perhaps discouraging bit of information, ActiveRecord still allows you to execute arbitrary
SQL statements. Your weapon of choice here is find_by_sql. This method is used whenever the many
options that are available for regular fi nders just don’t cut it and you’d like to pass a full SQL statement
that you’ve defi ned to the fi nder:

Book.find_by_sql(sql)

Being a generic method, this will return an array of model instances even if you limit the result set to a
single record (for example, with LIMIT 1 for certain database engines).

The same considerations that were made in the migration section of this chapter apply here. Whenever
you provide your own SQL statements, you lose the ability to be independent from the database server
that’s being used. Sticking to the SQL standard can help, but there’s no guarantee that the application
will work out of the box if you switch it from, say, MySQL to SQL Server.

Technically it’s always possible to work at an even lower level of abstraction, by using the driver
directly or by employing the various methods that are available through the connection object (for
example, Book.connection.execute or Book.connection.insert).

Calculations
ActiveRecord provides several calculation methods such as count, sum, average, minimum, maximum,
and calculate. The fi rst fi ve are just common shortcuts for the last one.

Consider count:

>> Book.count
=> 100

This returns the number of records within the table books. The following is the executed SQL query:

SELECT count(*) AS count_all FROM “books”

It can also be used to return the number of records whose column (passed to the method) has a value:

>> Book.count(:isbn)
=> 76

This translates into:

SELECT count(“books”.isbn) AS count_isbn FROM “books”

This method is often used in its simplest form, but it accepts many options including :conditions,
:joins, :include, :order, :having (for example, :having => ‘min(pages) > 200’ to exclude
short books), :group, :select, :distinct (to turn this into a distinct calculation), and of course the

74955c07.indd List26374955c07.indd List263 3/4/09 9:25:01 AM3/4/09 9:25:01 AM

264

Chapter 7: Object-Relational Mapping with ActiveRecord

ever present :options for appending custom SQL fragments. Please consult the online documentation
for details and further examples.

Earlier on you saw this one-liner:

Book.find(:all).sum(&:pages)

This executes SELECT * FROM books and then uses Ruby’s ability to work with Enumerable to cal-
culate the sum. That’s not the most effi cient way of doing it, especially if there are many records in the
table that wouldn’t have to be retrieved anyway. Perhaps more worrisome, if a row doesn’t have a value
in the pages column, this would be seen as nil by Ruby, which in turn would raise a TypeError: nil
can’t be coerced into Fixnum error when it tries to sum things up.

There is a better way that solves both problems; use the sum method instead:

>> Book.sum(:pages)
=> 43870

This is the actual query generated by that call:

SELECT sum(“books”.pages) AS sum_pages FROM “books”

As a reminder, when I mentioned that a given method translates into a certain query, I offered the
SQLite3 version for illustrative purposes. This is often common among several database engines, but
each adapter may end up translating queries slightly differently. For example, the :limit option is
translated in a LIMIT clause in SQLite, but it’s a TOP clause in SQL Server.

Unlike count, and like average, minimum, and maximum, sum requires a column name and accepts only
the :options option.

Here is an example that showcases average, minimum, and maximum:

>> Book.average(:pages)
=> 438.7
>> Book.minimum(:pages)
=> 189
>> Book.maximum(:pages)
=> 1680

These three will execute the following queries:

SELECT avg(“books”.pages) AS avg_pages FROM “books”
SELECT min(“books”.pages) AS min_pages FROM “books”
SELECT max(“books”.pages) AS max_pages FROM “books”

calculate is a more generic method. For example, Book.count can also be written as:

Book.calculate(:count, :all)

74955c07.indd List26474955c07.indd List264 3/4/09 9:25:02 AM3/4/09 9:25:02 AM

265

Chapter 7: Object-Relational Mapping with ActiveRecord

If you were using SQL Server, you could, for instance, use it to perform calculations such as:

Book.calculate(:stdev, :pages)
Book.calculate(:var, :pages)

And this would generate SQL queries that take advantage of the STDEV and VAR functions that are
available in SQL Server.

Update
You have several ways to update a record with ActiveRecord. The fi rst one is to assign new values to the
attributes that need to be changed:

book = Book.find_by_title(“A sample book”)
book.pages = 435
book.publisher = “Penguin”
book.save

This is the SQL query that’s generated:

UPDATE “books” SET “pages” = 435, “publisher” = ‘Penguin’, “updated_at” = ‘2008-
08-21 23:50:03’ WHERE “id” = 34

This assumes that 34 is the id of the “A sample book” book.

If there are associations, this technique can be employed as well, but you need to be careful:

book = Book.first
book.author.name = “John Doe”
book.save # Don’t do this. It won’t change the author name
book.author.save # Saves the author name

This only showcases how to update an associated record.

Notice how invoking save on a Book object will only execute a query if there is an attribute that’s been
changed. The author_id value hasn’t changed in this case, so book.save will return true but won’t
really do anything. To update the Author object with the new name, you’ll have to invoke save on
book.author, yielding the following SQL query:

UPDATE “authors” SET “name” = ‘John Doe’, “updated_at” = ‘2008-08-21 23:58:36’
WHERE “id” = 1

Partial Updates and Dirty Objects
Prior to Rails 2.1, updates to ActiveRecord objects would generate SQL queries where all the columns in
a row would be updated. Starting with ActiveRecord 2.1, partial updates were introduced so that only
modifi ed attributes ended up in the query (plus updated_at, which is automatically handled). This works
thanks to the so-called “dirty objects” (an attribute is “dirty” when it’s changed) that track unsaved attri-
bute changes. When you call save or save! ActiveRecord updates these and only these attributes.

74955c07.indd List26574955c07.indd List265 3/4/09 9:25:02 AM3/4/09 9:25:02 AM

266

Chapter 7: Object-Relational Mapping with ActiveRecord

This example showcases a few available “dirty object” methods:

book = Book.first
book.changed? # false
book.title # “A title”
book.title = “A different title”
book.changed? # true
book.title_changed? # true
book.title_was # “A title”
book.title_change # [“A title”, “A different title”]
book.publisher # “Penguin”
book.publisher = “Wiley”
book.changed # [“title”, “publisher”]
book.changes
{“title”=>[“A title”, “A different title”], “publisher”=>[“Penguin”, “Wiley”]}
book.save # true

changed?, changed, and changes are regular methods, whereas title_changed?, title_was, and
title_change are dynamic methods that are defi ned when invoked with the usual method_miss-
ing trick. As such, they can be adapted to the name of the attribute that you want to track (for example,
publisher_change).

The query executed by book.save then becomes:

UPDATE “books” SET “title” = ‘A different title’, “publisher” = ‘Wiley’, “updated_
at” = ‘2008-08-22 00:34:30’ WHERE “id” = 1

There is an important gotcha that you must be aware of. Dirty attribute tracking
only works when the values of an attribute are altered through direct assignment.
If the values have been changed in a different way, ActiveRecord won’t be aware of
the changes!

Observe this session:

book = Book.first
book.title.upcase!
book.publisher << “-Blackwell”
book.changes # {}
book.save # true, but no actual changes were made

You’d probably expect the title and publisher attributes for the record to be updated. In reality, the
changes to the object have not been saved in the corresponding table. No queries whatsoever have been
executed upon issuing book.save.

To solve this issue, use the *_will_change! method for attributes that are going to change through
means different than a simple assignment:

>> book.title_will_change!
=> “A different title”
>> book.title.upcase!
=> “A DIFFERENT TITLE”

74955c07.indd List26674955c07.indd List266 3/4/09 9:25:02 AM3/4/09 9:25:02 AM

267

Chapter 7: Object-Relational Mapping with ActiveRecord

>> book.publisher_will_change!
=> “Wiley”
>> book.publisher << “-Blackwell”
=> “Wiley-Blackwell”
>> book.changes
=> {“title”=>[“A different title”, “A DIFFERENT TITLE”], “publisher”=>[“Wiley”,
“Wiley-Blackwell”]}
>> book.save
=> true

This time, the record is properly updated through the following query:

UPDATE “books” SET “title” = ‘A DIFFERENT TITLE’, “publisher” = ‘Wiley-Blackwell’,
“updated_at” = ‘2008-08-22 01:28:15’ WHERE “id” = 1

As a reminder, dates and times will obviously be different on your machine. Actually, within this chapter
you will fi nd some dates from 2008 and others from 2009 depending on whether the reported output was
from the fi rst draft of the chapter, or from its revision. Of course, the dates and times in the output are
entirely irrelevant.

update_attribute and update_attributes
Updating an attribute value can also be achieved through the update_attribute method:

>> book.update_attribute(:title, “Yet another title”)
=> true

Just as you’d expect, the SQL statement issued by this is:

UPDATE “books” SET “title” = ‘Yet another title’, “updated_at” = ‘2008-08-22
01:33:02’ WHERE “id” = 1

Similarly, and this is much more useful, you have the update_attributes method. You encountered
this method before while analyzing the code produced by the scaffold generator.

>> book.update_attributes(:title => “A newer title”, :publisher => “Wrox”)
=> true

The reason why this is particularly useful is that it allows you to update a record directly from the hash
that’s received as a parameter from an input form:

>> book.update_attributes(params[:book])
=> true

Updating Multiple Records
ActiveRecord provides you with yet another two methods to update records: update and update_all.

This is the signature for the method update:

update(id, attributes)

where id is a single id or a list of ids of objects that need to be updated; attributes is a hash of attri-
butes to be assigned to a single object, or an array of hashes to update multiple records.

74955c07.indd List26774955c07.indd List267 3/4/09 9:25:02 AM3/4/09 9:25:02 AM

268

Chapter 7: Object-Relational Mapping with ActiveRecord

Update a single record as follows:

Book.update(3, { :title => “Ruby on Rails for Microsoft Developers”, :publisher =>
 “Wrox”, :isbn => “978-0470374955” })

This translates into:

UPDATE “books” SET “isbn” = ‘978-0470374955’, “title” = ‘Ruby on Rails for
Microsoft Developers’, “publisher” = ‘Wrox’, “updated_at” = ‘2008-09-01 20:09:11’
 WHERE “id” = 3

If you need to update multiple records, you can do so at the same time as follows:

books = { “1” => { :publisher => “Wiley” }, “2” => { :title => “The Art of
Rails”, :publisher => “Wrox” } }
Book.update(books.keys, books.values)

This translates correctly into the following two queries:

UPDATE “books” SET “publisher” = ‘Wiley’, “updated_at” = ‘2008-09-01 20:20:14’
WHERE “id” = 1

UPDATE “books” SET “title” = ‘The Art of Rails’, “publisher” = ‘Wrox’, “updated_at”
= ‘2008-09-01 20:20:15’ WHERE “id” = 2

The update method is not very fl exible. Sure, it’s going to be useful at times, but imagine that you
need to update all the records in the table, or those that meet a certain condition. update will require
an array of ids, as well as an array of hashes, whose cardinality depends on the number of records
affected. Fear not; there is a better way without having to resort to issuing custom SQL statements: the
update_all method.

This method has the following signature:

update_all(updates, conditions = nil, options = {})

where updates is a string containing a comma-separated list of column/value pairs to be set for any
row that meets the conditions specifi ed by conditions.

The following line would affect all the records in a books table:

Book.update_all(“publisher = ‘Wrox’, returned = 0”)

Again, this is not the table that we defi ned much earlier on in the chapter, because it didn’t contain a
returned fi eld, but rather it’s just an example.

Or just books that contain the word Rails:

Book.update_all(“publisher = ‘Wrox’, returned = 0”, “title LIKE ‘%Rails%‘“)

74955c07.indd List26874955c07.indd List268 3/4/09 9:25:02 AM3/4/09 9:25:02 AM

269

Chapter 7: Object-Relational Mapping with ActiveRecord

This translates into the following SQL:

UPDATE “books” SET publisher = ‘Wrox’, returned = 0 WHERE (title LIKE ‘%Rails%‘)

update_all returns a number indicating how many records were affected by the update.

Delete
Deleting a row can be accomplished through the delete class method or the destroy method (avail-
able as a class and as an instance method). delete can be used to delete both a single row or a list of
rows based on their ids:

Book.delete(5)
Book.delete([3, 7, 12])

The usual returning value (it’s defi ned by the adapter) is the number of rows that were deleted. Just like
update and update_all, delete has a variant called delete_all:

Book.delete_all([“sales < ?”, min_sales])

destroy is available as a class method and is used just like delete:

Book.destroy(5)
Book.destroy([3, 7, 12])

Unlike delete, destroy returns the affected record. If the record can’t be located, delete returns 0,
whereas destroy would have raised an ActiveRecord::RecordNotFound error.

destroy can also be invoked as an instance method:

book = Book.last
book.destroy

After deleting a row in the table, the book object is frozen to prevent accidental assignments to its
attributes.

destroy_all can be used just like delete_all:

Book.destroy_all(“title IS ?”, nil])

destroy_all returns an empty array if no records are found to meet the condition, or an array of
affected model objects otherwise. If no condition is passed to destroy_all, all the records will be
destroyed.

The main difference between the two types of methods is that delete bypasses business rules defi ned
through validations and callbacks, and directly executes a DELETE statement in the database. destroy
plays by the rules, instantiating the object (if used as a class method) and respecting any callbacks or
validations you may have in place. Because of this, destroy is usually a safer bet when you want to
delete a single record while still enforcing any business rules you may have defi ned.

74955c07.indd List26974955c07.indd List269 3/4/09 9:25:02 AM3/4/09 9:25:02 AM

270

Chapter 7: Object-Relational Mapping with ActiveRecord

On the other hand, delete_all is often favored over destroy_all because it will delete all the records
with a single query. destroy_all will fi nd the records, instantiate them, and then invoke the instance
method destroy on each of them. The end result is two queries for each record, and as such it’s really
not the way to go for larger sized tables.

ActiveRecord Associations
Associations are highly readable class methods used to defi ne relationships between models, allow-
ing you to easily work with associated objects. The convenience of Book.find_by_title(“On the
Road”).author.name is only possible thanks to the fact that you established a relationship between
the Book and Author class models through a pair of association methods. By employing them (has_
many and belongs_to), and respecting the foreign key naming convention by adding an author_id
column to the books table, you automatically obtained several methods that are added to instances of
both models, including author, which returns the Author object for any given Book object.

The association methods are:

belongs_to ❑

has_one ❑

has_many ❑

has_and_belongs_to_many ❑

These ActiveRecord associations are used to defi ne three types of relationships between models: one-
to-one, one-to-many, and many-to-many. These are covered in the next few sections.

One-to-one Relationships
One-to-one relationships are relationships in which one row in a certain table references one row (at
most) of the related table; so it could also reference no rows. A one-to-one relationship between models
can be established by employing the has_one and belongs_to association methods. It is common for
newcomers to confuse which model should have which of the two methods in their defi nition. The rule
is rather clear though: use belongs_to in the defi nition of the model whose corresponding table has
the foreign key.

The following example establishes a one-to-one relationship between an Account model and an
Employee model:

class Account < ActiveRecord::Base
 belongs_to :employee # foreign key: employee_id
end

class Employee < ActiveRecord::Base
 has_one :account
end

Note that following the ActiveRecord convention for foreign key fi elds, as the rule described earlier
stated, the table accounts needs to have an employee_id foreign key that references the primary key
of the employees table.

74955c07.indd List27074955c07.indd List270 3/4/09 9:25:02 AM3/4/09 9:25:02 AM

271

Chapter 7: Object-Relational Mapping with ActiveRecord

One-to-many Relationships
One-to-many relationships are relationships in which one row in a certain table references an arbi-
trary number of rows in the related table. One-to-many relationships between models are established
through the has_many and belongs_to methods. Imagine that you have two models, Product and
Company. It’s reasonable to assume that “a company has many products, and a product belongs to a
company,” right? Let’s translate this into code:

class Company < ActiveRecord::Base
 has_many :products
end

class Product < ActiveRecord::Base
 belongs_to :company # foreign key: company_id
end

That was rather effortless, and is pretty much what you did in the previous chapter with articles and
comments. Notice that you passed a symbol to the has_many method (that is, :products), which rep-
resents a collection, and as such, the plural form was employed. As usual, the model whose defi nition
contains the belongs_to call is the one whose corresponding table has the foreign key. In this case,
this is company_id in the table products.

Many-to-many Relationships
Many-to-many relationships are relationships in which an arbitrary number of rows in a table reference
an arbitrary number of rows in another table. This type of relationship between models can be estab-
lished in two different ways.

Using a Join Table
The fi rst approach requires a join table that’s been named according to the convention, which is going to
contain two foreign keys, one for each of the referenced tables. This table is not supposed to have an id,
because the foreign key pair uniquely identifi es each record.

This join table doesn’t have a model that represents it, and its name should be created by joining the
two table names in alphabetical order, separating them with an underscore. When this approach is
taken, the verbose method has_and_belongs_to_many (aka, habtm) is used in both models to specify
the many-to-many relationship.

If you take into consideration a Post and a Category model, it isn’t unreasonable to state that “a post
has and belongs to many categories” and of course, vice versa, “a category has and belongs to many
posts.” This translates directly into this code:

class Post < ActiveRecord::Base
 has_and_belongs_to_many :categories
end

class Category < ActiveRecord::Base
 has_and_belongs_to_many :posts
end

74955c07.indd List27174955c07.indd List271 3/4/09 9:25:02 AM3/4/09 9:25:02 AM

272

Chapter 7: Object-Relational Mapping with ActiveRecord

Note that in a real project, a model may have several types of relationships with other models. Because
of this, it’s common to see several association methods within the defi nition of a model.

Once again, the principle of Convention over Confi guration makes our life easy. The join table will need
to be called categories_posts, unless you specify otherwise, and will only contain a category_id
and post_id foreign key column. No foreign keys for this relationship should be included in either the
categories or posts tables.

The join table doesn’t have a representing model, but you may still want to create it through migra-
tions. The peculiarity of this table is that it has no id, so the code within the migration will need to
look like this:

create_table :categories_posts, :id => false do |t|
 t.integer :category_id
 t.integer :post_id
end

You can add an optional :null => false parameter to each column when you want to prevent
categories that don’t reference any posts, and posts that don’t reference any categories.

Specifying :id => false as the second argument of the create_table method is enough to prevent
the table from having the default id primary key. Also note that join tables are notorious for quickly
growing large in size; for this reason it’s highly recommended that you add a couple of indexes to the
migration, which will also help to maintain acceptable performances:

add_index(:categories_posts, [:category_id, :post_id], :unique => true)
add_index(:categories_posts, :post_id, :unique => false)

The fi rst composite index speeds up searches on the foreign key pair and (usually) for looking up
category_id as well. The second index speeds up lookups for post_id. You pass :unique => true
to the fi rst add_index call because each pair containing category_id and post_id is unique.

Using a Join Model
The second approach when it comes to building many-to-many relationships employs an intermediary
model. This will act as your join table, and unlike the preceding approach, the corresponding table can
contain other columns for fi elds you’d like to track.

Imagine wanting to create a many-to-many relationship between the model Actor and the model
Movie. An actor “has” many movies, and a movie has many actors. Instead of proceeding as you did
before with a join table, you’ll introduce a third “join” model, Appearance. The corresponding table
appearances will contain the foreign key columns to reference actors and movies, as well as other
fi elds that you are interested in. For example, you may wish to store and retrieve the fi ctional char-
acter (for example, Austin Powers), the role (for example, Protagonist), and whether the actor/actress
received an Oscar for their performance (a Boolean will do). The migration fi le for such a table might
look like this:

create_table :appearances, :id => false do |t|
 t.integer :actor_id
 t.integer :movie_id
 t.string :character

74955c07.indd List27274955c07.indd List272 3/4/09 9:25:03 AM3/4/09 9:25:03 AM

273

Chapter 7: Object-Relational Mapping with ActiveRecord

 t.string :role
 t.boolean :oscar
end

The models will then be:

class Appearance < ActiveRecord::Base
 belongs_to :actor
 belongs_to :movie
end

class Actor < ActiveRecord::Base
 has_many :appearances
 has_many :movies, :through => :appearances
end

class Movie < ActiveRecord::Base
 has_many :appearances
 has_many :actors, :through => :appearances
end

appearances is the table with the foreign keys, so the belongs_to method is found in the correspond-
ing Appearance model. Also, both actors and movies have many appearances, so you need to specify
that point with has_many :appearances in both the Actor and Movie model.

The key point, and the new element here, is the :through parameter. That parameter allows you to
specify a collection, a plural form of the join model (that is, Appearance) that enables the relationship
to exist. In other words, you need to specify that “a movie has many actors through appearances” and
that “an actor has many movies through appearances.”

Auto-generated Methods
Declaring associations is important because it greatly simplifi es the process of working with tables that
are related. Instead of providing custom queries or requiring multiple steps to retrieve the information
you need from a related table, associations allow you to work with linked objects by automatically add-
ing new methods to the model class.

Every time you add has_one, belongs_to, has_many, or has_and_belongs_to_many to a model, you
are also automatically adding a series of instance methods to that model, so that you can easily retrieve,
create, update, and delete related/linked objects. You already saw this in the previous chapter, when you
were able to retrieve a list of comments for a given article by simply invoking the method comments, but
dig a little deeper to see how useful associations really are.

Consider the one-to-many example shown earlier. Imagine that you have found a certain product based
on the id that the user specifi ed:

product = Product.find(params[:id])

If associations didn’t exist, and you wanted to retrieve the name of the company that produced a
particular product, you’d have to specify your own SQL query or do something like this:

company_id = product.company_id
company_name = Company.find(company_id).name

74955c07.indd List27374955c07.indd List273 3/4/09 9:25:03 AM3/4/09 9:25:03 AM

274

Chapter 7: Object-Relational Mapping with ActiveRecord

Thanks to belongs_to :company within the model defi nition, the instance method company was
added for you, so you can do this in one straightforward step:

company_name = product.company.name

Similarly, if you wanted to retrieve a list of products for a given company, you could use the products
method added by has_many :products:

Company.find(551).products

Because the instance methods added to the model are based on the name of the
association, it’s important that you don’t create associations with the same name as
any pre-existing ActiveRecord::Base instance methods. If you do, the generated
methods will overwrite the existing ones, thus breaking your application. The offi -
cial API documentation warns against names such as attributes and connection,
but don’t be afraid to double-check the existing instance methods in the documen-
tation and read over this — somewhat in need of a cleanup — Wiki page: http://
wiki.rubyonrails.org/rails/pages/ReservedWords.

Depending on the macro-like method employed, different instance methods are automatically defi ned
for you. Let’s check them out.

belongs_to
The belongs_to method adds a series of methods to deal with a single associated object. The names
of the generated methods are determined by the symbol that’s passed as the fi rst parameter to the
method. To keep things generic enough we’ll use — just as the documentation does — the generic term
association to identify the name of the associated object:

association(force_reload = false) ❑ : Returns the associated object if it exists. If it doesn’t,
nil is returned. The result is cached, so pass true if you’d like to force the method to actually
hit the database.

association=(associate) ❑ : Assigns an associate object by assigning the primary key of
associate to the foreign key (for example, associate_id) of the receiver.

association.nil? ❑ : Answers the question, “Are there no associated objects?”

build_association(attributes = {}) ❑ : Returns a new associated object that’s instantiated
with the attributes that were passed to the method. The object is instantiated but hasn’t been
saved in the database yet.

create_association(attributes = {}) ❑ : Does the same thing as build_association, but
it actually saves the associated object (assuming that the existing validations are passed).

Let’s see what this means in practice. In the relationships described before, the following models
employed the belongs_to method:

 1. Account: in a one-to-one relationship with Employee (that is, belongs_to :employee).

 2. Product: in a one-to-many relationship with Company (that is, belongs_to :company).

74955c07.indd List27474955c07.indd List274 3/4/09 9:25:03 AM3/4/09 9:25:03 AM

275

Chapter 7: Object-Relational Mapping with ActiveRecord

 3. Appearance: join model in a many-to-many relationship between Movie and Actor (that is,
belongs_to :movie and belongs_to :actor).

Account objects will have these new methods: employee, employee=, employee.nil?, build_
employee, and create_employee.

Likewise, Product objects will have these methods added: company, company=, company.nil?,
build_company, and create_company.

Not surprisingly, Appearance objects will be able to access the linked Movie and Actor objects with
the following methods: movie, movie=, movie.nil?, build_movie, create_movie, and actor,
actor=, actor.nil?, build_actor, and create_actor.

To illustrate the usage of these methods, let’s consider Product and Company (assuming that you
started with a database without any records in it):

>> Product.all
=> []

You can create a new product as usual through the create method:

>> product = Product.create(:name => “Time-travel machine”, :copies => 3)
=> #<Product id: 1, name: “Time-travel machine”, copies: 3, company_id: nil, cre
ated_at: “2008-08-25 22:41:33”, updated_at: “2008-08-25 22:41:33”>

Let’s put the company and company.nil? methods we talked about to good use:

>> product.company
=> nil
>> product.company.nil?
=> true

product is just a variable that contains a reference to the Product object. It could be named
arbitrarily.

The company is nil because the company_id attribute for product is nil. Had company_id stored
the value of the primary key of an existing company, product.company would have returned that
company object and product.company.nil? would have been false.

You can change this by linking the product to a company. In our hypothetical scenario, you don’t have
a company yet, so you’ll have to create one. The easiest way to do that is to use the create_company
method:

>> product.create_company(:name => “Back to the future Inc.”)
=> #<Company id: 1, name: “Back to the future Inc.”, address: nil, city: nil,
 country: nil, postal_code: nil, phone: nil, created_at: “2008-08-25 22:57:11”,
 updated_at: “2008-08-25 22:57:11”>

Not all the attributes for the company were assigned a value, because I only specifi ed the name. This is
okay, as long as those fi elds are nullable.

74955c07.indd List27574955c07.indd List275 3/4/09 9:25:03 AM3/4/09 9:25:03 AM

276

Chapter 7: Object-Relational Mapping with ActiveRecord

This has created a new company (with id 1) and automatically linked this object to the product object.
You can verify this by running:

>> product.company
=> #<Company id: 1, name: “Back to the future Inc.”, address: nil, city: nil,
country: nil, postal_code: nil, phone: nil, created_at: “2008-08-25 22:57:11”,
 updated_at: “2008-08-25 22:57:11”>

Now you can conveniently access the company that a product belongs to. Because the company method
returns a Company instance, you can access its attributes as well:

>> product.company.name
=> “Back to the future Inc.”

The link between the product and the company object is created through create_company, by assign-
ing the id of the company object to the company_id attribute of the product object. You can verify this
by running:

>> product.company_id
=> 1

Notice that if you want to assign an existing company to a given product, you can easily do so through
the company= writer method:

product.company = another_company
product.save

product.save is required to actually store this change in the database.

Assuming that another_company is a Company object.

product.build_company
You could have used product.build_company instead of product.create_company.
It’s important to understand the differences though.

Using build_company would have instantiated a new company object and linked it
to the product object. However, the company object would not have been saved in the
database yet.

Furthermore, it’s true that product.company would return this new object, but the
id of this new company would be nil because the object hasn’t been saved yet. As a
direct consequence of this, the product’s attribute, company_id, would not have been
changed either.

A save call is required to save the new company in the database. Invoking product
.company.save would save the company object in the database, but fail to update the
foreign key company_id in the product, with the newly generated company id. To
save the company in the database and permanently assign it to the product, just like
create_company automatically did for you, you’d have to use product.save. This
would store the new company in the table and set its id as the value of the product’s
company_id attribute.

74955c07.indd List27674955c07.indd List276 3/4/09 9:25:03 AM3/4/09 9:25:03 AM

277

Chapter 7: Object-Relational Mapping with ActiveRecord

belongs_to accepts several options. :class_name is used to specify a class name that is different from
the name of the association. For example, belongs_to :perfomer, :class_name => “Actor” will
create a performer association that uses the Actor model.

By convention, ActiveRecord assumes that the foreign key will be the name of the association, plus _id,
:foreign_key can be used to specify a foreign key with a different name.

:class_name and :foreign_key are often employed when defi ning self-referential relationships.
These are relationships in which rows of a table can refer to rows of that same table through a foreign
key column.

:conditions, :select, :include, and :readonly are also available, and they are essentially the
usual options you’ve seen before when describing fi nders.

When using :select to defi ne an association, always include the primary key and
the foreign keys or you’ll run into trouble.

If you check the online documentation you’ll notice that there are three extra options :polymorphic,
:counter_cache, and :dependent. The fi rst is used for polymorphic associations, a concept that’s
explained later on in the chapter, and :counter_cache is used for counter cache columns, a subject
you’ll deal with in Chapter 11, when covering performances and optimization.

The third one, :dependent, allows you to specify a business rule when it comes to associated objects.
If :dependent is not specifi ed, when you drop an object you won’t automatically drop the associated
object. The :dependent option can accept :destroy as a value to specify that the associated object (for
example, an employee) should be destroyed when you invoke destroy on the object (for example, an
account). This key can also be set to :delete, in which case the associated object is deleted without
invoking the destroy method (do you remember the difference between delete and destroy?).

For example, you can modify the defi nition of Account in the scenario indicated in the one-to-one
relationship section to include :dependent:

class Account < ActiveRecord::Base
 belongs_to :employee, :dependent => :destroy
end

If you now destroy an Account object, the associated Employee object is also destroyed. The :dependent
option allows you to enforce referential integrity directly from your application code.

It’s important to be careful with this option. For example, if you drop a product, what will happen to
the associated company? Should you drop it as well? The answer is simply, no, because a company may
have many other products. You don’t want to have “orphan” products whose parent company has just
been destroyed. For this reason, never specify the :dependent option for a belongs_to when this is
used in conjunction with has_many to establish a relationship.

For all intents and purposes, this option is only used when establishing a relationship where a has_one
has been used in the associated class. In such a one-to-one relationship, like the employee/account example
above, it’s reasonable to assume that there are times when the :dependent => :destroy option may be
required. When you destroy an order, you may want to destroy the associated invoice; when you destroy a
user, you may want to destroy the associated profi le, and so on.

74955c07.indd List27774955c07.indd List277 3/4/09 9:25:03 AM3/4/09 9:25:03 AM

278

Chapter 7: Object-Relational Mapping with ActiveRecord

has_one
belongs_to added several methods to operate on what can be considered the “parent” object. has_one
sits at the opposite side of a one-to-one relationship, and as such adds a series of methods to operate on
the “child” object.

The terms “parent object” and “child object” are loosely used to indicate an object that represents a
row in the parent table and in the child table. In this context, parent/child has nothing to do with class
inheritance.

As a matter of fact, the methods you saw before still apply: association, association=, association
.nil?, build_association, and create_association (again, replace association with the real name
of the association at hand). Sticking to the Employee and Account example, an employee object automati-
cally has the following methods added to it: account, account=, account.nil?, build_account, and
create_account.

At this point, you may wonder why you need a different macro-like method to obtain the same meth-
ods in the end. The reality is that there are a few important differences between them, including but not
limited to, the many other parameter options available for has_one.

Unlike belongs_to, with has_one, assigning an associated object automatically saves that object and
the object that is being replaced (if it exists), unless the parent/receiver object is a new record (verifi able
through new_record?). For example, consider the following:

employee.account = an_unsaved_account

Unless employee is a new record, this will save the newly created object an_unsaved_account, assign-
ing the id of employee to the attribute employee_id of an_unsaved_account. It will also save the
existing employee.account unless it was nil, so that its employee_id can be updated to nil, there-
fore breaking the link with the employee object and making it an “orphan.”

As a reminder, when an attribute is assigned a nil value, and then the record is saved, the value that’s
actually stored in the row is NULL.

Among the additional options are :order to specify the order in which the associated object will be
picked through an SQL fragment string; :as for polymorphic associations, and :through, :source,
and :source_type to work with a join model.

For details and examples of the many options available, always check the up-to-date online documenta-
tion. For these methods, check the documentation for module ActiveRecord::Associations::Cl
assMethods.

The :dependent option for has_one indicates to ActiveRecord what it’s supposed to do when you
destroy a parent object. :destroy or true destroys the corresponding row in the child table, whereas
:nullify turns it into an orphan by assigning NULL to the foreign key, and :false or nil tells
ActiveRecord not to update the child object or row.

74955c07.indd List27874955c07.indd List278 3/4/09 9:25:03 AM3/4/09 9:25:03 AM

279

Chapter 7: Object-Relational Mapping with ActiveRecord

has_many and habtm
The has_many and has_and_belongs_to_many methods both add a series of methods that are used
to operate on a collection of associated objects. Using the generic name collection, the methods auto-
matically added to the model instances are:

collection(force_reload = false) ❑ : Returns an array of all the associated objects or an
empty array if none are found. Pass true to bypass caching and force the method to query the
database.

collection<<(object, ...) ❑ : Adds one or more objects to the collection, assigning their
foreign key to the primary key of the parent object. Unless the parent is a new record, adding
objects to a collection automatically saves them in the database.

collection.delete(object, ...) ❑ : Removes one or more objects from the collection by
assigning their foreign key to NULL. In a one-to-many relationship (where an object’s model
defi nes a belongs_to, referring to the parent’s model), the objects will also be destroyed if so
indicated through a :dependent option. However, this is not the case if the association was
created with a :through option.

collection=objects ❑ : Removes the existing objects and adds any new ones that are being
assigned to the collection.

collection_singular_ids ❑ : Returns an array of ids for the associated objects in the collection.

collection_singular_ids=ids ❑ : Similar to collection=, it replaces the collection by identi-
fying the new objects that are to be assigned through their ids.

collection.clear ❑ : By default this method removes all the objects from the collection by
assigning the value NULL to their foreign key. When a :dependent => :destroy has been
specifi ed though, it destroys the records. Likewise, :dependent => :delete_all deletes
them directly from the database without invoking destroy.

collection.empty? ❑ : Returns true if there are no associated objects, and false if at least one
object belongs to the collection.

collection.size ❑ : Returns the number of associated objects.

collection.find(*args) ❑ : Finds an associated object by following the same rules of the
ActiveRecord::Base.find method.

collection.build(attributes = {}, ...) ❑ : Returns one or more new objects of the
collection type, instantiated with the attributes passed to the method. Each object is linked
to the parent but it has yet to be saved.

collection.create(attributes = {}) ❑ : Similar to build, but it actually saves the objects.

ActiveRecord’s development, which spanned several years, implied that there were, and still are, other
similar methods available, each with slight differences from the ones mentioned here. For example, there
is size, but also length and count. There is clear, but also delete_all and destroy_all.
Knowing the handful of methods described here should be more than enough to master most situations.
The offi cial documentation is a great place to check which methods are available, as well as the subtle
differences between them.

74955c07.indd List27974955c07.indd List279 3/4/09 9:25:04 AM3/4/09 9:25:04 AM

280

Chapter 7: Object-Relational Mapping with ActiveRecord

The generated method here (generically called collection) is an array, so other regular Ruby methods
will be available to work with it as well.

Taking into consideration the one-to-many relationship between the Company and Product models,
has_many adds all the methods mentioned previously to Company objects: products, products<<,
products.delete, products=, products_singular_ids, products_singular_ids=, products
.empty?, products.size, products.find, products.build, and products.create.

In the many-to-many example, where the :through option has been employed, both Movie and Actor
objects have methods that access each other’s collections, as well as the appearances’ rows. So you
may invoke a_movie.actors, an_actor.movies, or even a_movie.appearances and an_actor
.appearances.

Many options are available for the has_many method: :class_name, :conditions, :order, :foreign_
key, :include, :group, :limit, :offset, :select, :as, :through, :source, :source_type, :uniq
(to omit duplicates), :readonly, :dependent, :finder_sql (to specify a full SQL statement), :counter_
sql (to specify a full SQL statement to retrieve the size of the collection), and :extend.

:dependent admits :destroy, which destroys all the associated objects by calling their destroy
method; :delete_all, which deletes all the rows from the table without calling the destroy method;
and :nullify, which sets the foreign key to NULL for all the associated objects without calling their
save callbacks. You’ll dig deeper into the issue of callbacks later on in this chapter.

As an exercise, feel free to go ahead and modify the Article model in the blog
application you defi ned in Chapters 5 and 6, so that when an article is destroyed,
all of its comments are deleted (for example, use :dependent => :delete_all).

:extend is used to specify a named model that extends the proxy. The whole concept is covered in the
next section.

The method has_and_belongs_to_many doesn’t have a :dependent option, and as such, collec-
tion.clear doesn’t destroy any objects from the join table. Options are also available that are specifi c
to habtm: :join_table (to specify a custom table name), :association_foreign_key, :delete_
sql, and :insert_sql. Please check the online documentation for details and examples.

Association Extensions
When you defi ne an association, you can pass a block to it, in which it’s possible to defi ne methods that
are only available from the association.

For example, you can defi ne the method best_sellers for the products association collection:

class Company < ActiveRecord::Base
 has_many :products do
 def best_sellers(limit)
 fi nd(:all, :limit => limit, :order => “sales DESC”)
 end
 end
end

74955c07.indd List28074955c07.indd List280 3/4/09 9:25:04 AM3/4/09 9:25:04 AM

281

Chapter 7: Object-Relational Mapping with ActiveRecord

Eager Loading Associations
Earlier in the chapter I mentioned how it’s dangerous to use conditions in conjunction
with a hierarchy of :include due to the resulting complex (and slow) SQL. I mentioned
that “it is common to eager load an association that has conditions defi ned on it.” That
sentence was rather cryptic at the time, but now that you have gained knowledge of
associations and their options, I can provide you with an example (from the offi cial
documentation).

Rather than doing this:

Post.find(:all, :include => [:author, :comments],
:conditions =>
[‘comments.approved = ?’, true])

You can defi ne an association with a condition:

class Post < ActiveRecord::Base
 has_many :approved_comments, :class_name => ‘Comment’,
:conditions =>
 [‘approved = ?’, true]
end

And then eager load the association, which contains only your approved comments,
with :include:

Post.find(:all, :include => :approved_comments)

You can then use it as a regular method of the collection:

Company.find(5).products.best_sellers(10)

Associations can also be extended by adding all the methods you want to defi ne into a module, and
then using the :extend option to add them to the association as class methods:

class Company < ActiveRecord::Base
 has_many :products, :extend => SalesFinder
end

Assign an array of modules to :extend , if you need to include the methods from several modules.

ActiveRecord Validations
Validations are a feature that enables you to specify certain rules before a record is created or updated
in the database. Several high-level helpers are provided for the most common tasks, but it’s good to
know the three generic validation methods that allow you to perform validations based on a method
that you’ve defi ned. These are validate, validate_on_create, and validate_on_update.

When you defi ne a validation rule with validate, ActiveRecord applies that rule to determine whether
or not the object should be saved. If the object fails the validation, it’s not saved and an error message is
added to it so that, in the context of Rails, the view can display it to the user again, who can correct the
error by changing the data in the form and trying to resubmit it.

74955c07.indd List28174955c07.indd List281 3/4/09 9:25:04 AM3/4/09 9:25:04 AM

282

Chapter 7: Object-Relational Mapping with ActiveRecord

validate_on_create is similar to validate, but it’s triggered only when a new record is being created,
not when this is being updated. Vice versa, validate_on_update validates attempts to update a record,
but not the creation of new ones. The method valid? can also be used to trigger all the existing valida-
tions defi ned for a model object.

Because the method save is used for both the creation and the update of a record, how does ActiveRecord
know which of the two operations it needs to perform? The answer is that it uses the new_record?
method, which returns true if it’s a new record (wherein an INSERT is performed), or false, in which
case an UPDATE statement is issued,

You’ll also notice that when you create a new record, it doesn’t have an id, because the primary key is
auto-generated. If it’s an existing record, its id will not be nil.

When using any of these three generic validation methods, error messages for a specifi c attribute are
added with the method errors.add(:column_name, message), whereas errors for the whole object
are added through errors.add_to_base(message). The error for a specifi c attribute can be retrieved
through the method errors.on(:attribute_name) (and its alias errors[:attribute_name]).
Clearing the error messages for an object can be accomplished by using the method errors.clear.

Let’s see a practical example of how you can use these methods to defi ne validation rules:

class Book < ActiveRecord::Base
 validate :valid_page_count?
 validate_on_creation :unique_book?

 private

 def valid_page_count?
 unless pages && pages > 48
 errors.add(:pages, “is missing or less than 49”)
 end
 end

 def unique_book?
 if Book.fi nd_by_isbn(isbn)
 errors.add(:isbn, “exists already”)
 end
 end
end

By passing the symbol :valid_page_count? to validate, you instructed ActiveRecord to execute the
private method valid_page_count? before allowing any insert or update. The method adds an error
message for the attribute pages, if it has been assigned a value that’s less than 49 (or if no value was
assigned).

Likewise, by passing :unique_book? to validate_on_creation, the private method unique_book?
is invoked upon an attempt to create a record for a new book. This method tries to fi nd the book through
its ISBN among the existing ones and, if it can, it adds an error for the attribute that indicates that the
book already exists in the database.

These two methods are private because you most likely don’t want Book objects to be able to invoke
them directly. These methods can also be used in their block form.

74955c07.indd List28274955c07.indd List282 3/4/09 9:25:04 AM3/4/09 9:25:04 AM

283

Chapter 7: Object-Relational Mapping with ActiveRecord

If Book didn’t have an isbn attribute, the fi nder probably should have searched for a book with the
same title, author, and publisher. In such instances, where multiple attributes are involved, errors.
add_to_base(“The book exists already”) would be used to add an error for the whole object.

Validation Helpers
While building the basic blog application you didn’t use validate (or its variants), but rather high-
level helpers such as validate_presence_of and validates_uniqueness_of. The creators of
ActiveRecord tried to simplify our lives by providing a series of helpers for common validation pur-
poses as follows:

validates_acceptance_of ❑ : Handy when trying to validate the acceptance of an agreement.

validates_associated ❑ : Validates any kind of associated object.

validates_confirmation_of ❑ : Used to validate a confi rmation for a fi eld like email address or
password.

validates_each ❑ : Used to validate multiple attributes against a block.

validates_exclusion_of ❑ : Validates that the value of the specifi ed attribute is not within an
enumerable object provided.

validates_format_of ❑ : Validates the value of the specifi ed attribute against a provided
regular expression.

validates_inclusion_of ❑ : Validates that the value of the specifi ed attribute is an element of
an enumerable object provided. It’s the opposite of validates_exclusion_of.

validates_length_of ❑ : Validates the length of a specifi ed attribute value against provided
restrictions. It has an alias called validates_size_of.

validates_numericality_of ❑ : Validates whether a specifi ed attribute value is numeric.

validates_presence_of ❑ : Validates that the specifi ed attribute value exists by employing the
method blank?. Because of this, the object won’t pass the validation if the attribute value is nil
or, for example, an empty string.

validates_uniqueness_of ❑ : Validates whether the value of the specifi ed attribute is unique
or whether it already exists in the table. For example, to verify that a book is unique (as you did
before), you can just use validates_uniqueness_of :isbn. An index is often added to the
column represented by the specifi ed attribute, as means of further guaranteeing uniqueness,
even when dealing with concurrent transactions.

Do not use validates_presence_of to validate Booleans because false.blank?
evaluates to true. Use validates_inclusion_of :attribute_name, :in =>
[false, true] instead.

All of them have a default message (that used to be defi ned in ActiveRecord::Errors.default_
error_messages), which can be overwritten with the :message option. Conversely, you can have
conditional validations by using the options :if or :unless, which accept a symbol (for a method that
defi nes the condition), a string (evaluated by eval), or a Proc object.

74955c07.indd List28374955c07.indd List283 3/4/09 9:25:04 AM3/4/09 9:25:04 AM

284

Chapter 7: Object-Relational Mapping with ActiveRecord

ActiveRecord::Errors.default_error_messages has been deprecated in Rails
2.2.2, and replaced by I18n.translate ‘activerecord.errors.messages’.

All three of them should return true or false, and both the method and the Proc object receive the
current model instance as an argument:

class Book < ActiveRecord::Base
 validates_presence_of :title, :author, :publisher
 validates_uniqueness_of :isbn, :message => “must be unique”
 validates_length_of :pages, :in => 49..3000, :allow_nil => false
 validates_presence_of :sales, :if => Proc.new { |book| book.published == true })
end

validate had the validate_on_creation and validate_on_update variants. These additional
versions are not necessary for the preceding helper methods, because the :on option is used instead.
This accepts the values :save, :create, and :update:

validates_format_of :email, :with => /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})
\Z/i, :on => :create

Please consult the online documentation for these methods — defi ned in the module ActiveRecord::
Validations::ClassMethods — to see examples and the exact options available for each.

When none of the validation helpers is suffi cient for the rule that you want to enforce, you’ll always able
to fall back on validate, validate_on_creation, and validate_on_update.

Advanced ActiveRecord
Having covered most of what makes ActiveRecord an excellent ORM, you can move onto the next level,
with more advanced topics; the knowledge of which will certainly come in handy more than a few times.

Single Table Inheritance
Relational databases work under the assumption that tables can be related through associations, as you
have seen so far in this chapter. Object-oriented programming tends to use, where appropriate, inheri-
tance, a concept that is foreign to the world of RDBMS. To bridge this gap, ActiveRecord allows you to
easily implement single table inheritance.

Imagine that you want to represent photos, videos, and songs in your application. The traditional
approach would be to use three tables (and three corresponding models):

create_table :songs do |t|
 t.string :name
 t.string :file_path
 t.integer :user_id
end

74955c07.indd List28474955c07.indd List284 3/4/09 9:25:04 AM3/4/09 9:25:04 AM

285

Chapter 7: Object-Relational Mapping with ActiveRecord

create_table :videos do |t|
 t.string :name
 t.string :file_path
 t.integer :user_id
end

create_table :photos do |t|
 t.string :name
 t.string :file_path
 t.integer :user_id
end

The problem with this approach is that it forces you to use three structurally identical tables to repre-
sent what are essentially just media fi les. Single table inheritance allows you to use a single common
table for all three of them, whose corresponding model is the superclass of the three (Song, Video, and
Photo) models.

The single table will be media_files:

create_table :media_files do |t|
 t.string :name
 t.string :file_path
 t.string :type
 t.integer :user_id
end

t.references or t.belongs_to instead of t.integer would work as well.

Notice that this has a special string column called type. This is used by ActiveRecord to distinguish a
media fi le that happens to be a video from one that happens to be a photo or a song.

At this point, you’ll have one parent model corresponding to that table and three subclasses:

class MediaFiles < ActiveRecord::Base
 belongs_to :user
end

class Song < MediaFiles
 # Some Song specific methods
end

class Video < MediaFiles
 # Some Video specific methods
end

class Photo < MediaFiles
 # Some Photo specific methods
end

This is very well organized from an object-oriented perspective and it uses a single table for all our media
fi les. If you want to determine the class of a retrieved record, you can do so through the class method:

media_file = MediaFiles.find_by_name(“Darkest Dreaming”)
media_file.class # Song

74955c07.indd List28574955c07.indd List285 3/4/09 9:25:04 AM3/4/09 9:25:04 AM

286

Chapter 7: Object-Relational Mapping with ActiveRecord

Three important caveats apply:

 1. Don’t try to access the type attribute directly, because type is also the name of a deprecated Ruby
method. The far safer choice is to check the class through the class method and to automatically
assign type a value by using a subclass of the main model (for example, Photo.create). If you
really have to change the underlying value for an already defi ned object, use the hash notation.
For example: media_file[:type] = Video.

 2. The superclass model can contain attributes that are defi ned only for certain subclasses. For
instance, you could add a column called duration to the table media_files, which keeps
track of the length of a song or a video. This attribute wouldn’t apply to Photo though, so it
would be important that such a column was defi ned as nullable.

 3. Unless you are using a table for single table inheritance, never add a column called type to it,
because this will mislead ActiveRecord and result in all sorts of problems.

Polymorphic Associations
Polymorphic associations are a second option to simplify and improve the code quality when working
with multiple models. They are very straightforward but tend to confuse newcomers. The prerequisite
to avoid confusion is to understand the reason why you need them. Imagine that you have a one-to-
many relationship between Post and Comment; the comments table will be akin to the following:

create_table :comments do |t|
 t.text :body
 t.string :author
 t.references :post_id
end

add_index :comments, :post_id

Notice that you need a foreign key to reference posts, and ideally, an index for it. Now, imagine that as
you develop the application, you realize that you’d like to have the ability to add comments about com-
panies, milestones, projects, and tasks. The comments table would have to include foreign keys for these
as well:

create_table :comments do |t|
 t.text :body
 t.string :author
 t.references :post_id
 t.references :company_id
 t.references :milestone_id
 t.references :project_id
 t.references :task_id
end

add_index :comments, :post_id
add_index :comments, :company_id
add_index :comments, :milestone_id
add_index :comments, :project_id
add_index :comments, :task_id

74955c07.indd List28674955c07.indd List286 3/4/09 9:25:05 AM3/4/09 9:25:05 AM

287

Chapter 7: Object-Relational Mapping with ActiveRecord

Pretty ugly isn’t it? What’s worse is that in the database, you’ll have records that look like the ones
shown in the following table (which presents values in the comments table without polymorphic
associations):

id body author post_id company_id milestone_id project_id task_id

1 “...” “Stan” NULL 13 NULL NULL NULL

2 “...” “Kyle” 27 NULL NULL NULL NULL

3 “...” “Eric” NULL NULL NULL 3 NULL

4 “...” “Kenny” NULL NULL NULL NULL 42

5 “...” “Randy” NULL NULL 5 NULL NULL

6 “...” “Chef” 27 NULL NULL NULL NULL

This results in a table with many foreign keys, yet only one of them is actually used per record. When
Kyle and Chef commented on a post, none of the foreign keys except for post_id were used to store inte-
ger values. When Stan commented on the company with id 13, the foreign keys post_id, milestone_
id, project_id, and task_id were NULL. And so on for the remaining records.

The model Comment would have to be the following:

class Comment < ActiveRecord::Base
 belongs_to :post
 belongs_to :company
 belongs_to :milestone
 belongs_to :project
 belongs_to :task
end

Not really nice either!

Polymorphic associations allow you to DRY both the table defi nition and the resulting model by defi ning
a common foreign key of choice, and a common type column that’s named accordingly. The comments
table would become:

create_table :comments do |t|
 t.text :body
 t.string :author
 t.integer :commentable_id
 t.integer :commentable_type
end

add_index :comments, [:commentable_id, :commentable_type]

Always add an index for polymorphic tables. They tend to get large rather quickly
and their performance can be severely impacted if indexes have not been defi ned.

74955c07.indd List28774955c07.indd List287 3/4/09 9:25:05 AM3/4/09 9:25:05 AM

288

Chapter 7: Object-Relational Mapping with ActiveRecord

Now the Comment model simply becomes:

class Comment < ActiveRecord::Base
 belongs_to :commentable, :polymorphic => true
end

You defi ne a commentable association and specify that it’s a polymorphic one through the
:polymorphic option, so that ActiveRecord knows how to automatically handle commentable_id
and commentable_type.

This will enable you to access the associated object through the method commentable. For example:

c = Comment.first
c.author # “Kenny”
c.commentable.class.to_s # “Task”
c.commentable.name # “Great job with the migrations, Sean!”

The other fi ve models will be able to access the comments for each of their objects, as long as they
include has_many :comments, :as => commentable:

class Post < ActiveRecord::Base
 # ... some other associations ...
 has_many :comments, :as => commentable
end

class Company < ActiveRecord::Base
 # ... some other associations ...
 has_many :comments, :as => commentable
end

class Milestone < ActiveRecord::Base
 # ... some other associations ...
 has_many :comments, :as => commentable
end

class Project < ActiveRecord::Base
 # ... some other associations ...
 has_many :comments, :as => commentable
end

class Task < ActiveRecord::Base
 # ... some other associations ...
 has_many :comments, :as => commentable
end

That :as => commentable is required to specify a polymorphic interface.

For example:

Company.find_by_name(“IBM”).comments.each do |c|
 puts “Comment by #{c.author}: #{c.body}“
end

74955c07.indd List28874955c07.indd List288 3/4/09 9:25:05 AM3/4/09 9:25:05 AM

289

Chapter 7: Object-Relational Mapping with ActiveRecord

Behind the scenes, the second SELECT query (the one that retrieves the comments) issued ends with
WHERE (comments.commentable_id = 22 AND comments.commentable_type = ‘Company’),
assuming that 22 is the id of the company IBM.

The table comments will also look slimmer and more compact as shown in the following table:

id body author commentable_id commentable_type

1 “...” “Stan” 13 “Company”

2 “...” “Kyle” 27 “Post”

3 “...” “Eric” 3 “Project”

4 “...” “Kenny” 42 “Task”

5 “...” “Randy” 5 “Milestone”

6 “...” “Chef” 27 “Post”

ActiveRecord automatically converts between the class and the corresponding string that’s actually
stored in the database.

Serializing
Generally speaking, it’s possible to instruct ActiveRecord to store a Ruby object in a given
column. The conversions from, and to, the database data type will be handled automati-
cally then. To achieve this, you simply need to use the serialize :attribute_name
method in the model defi nition. This is handier and safer than performing manual seri-
alization, by converting an object into YAML format before an INSERT (with the to_yaml
method), and then converting it back manually when you need to retrieve the object (for
example, with YAML::load).

Notice that commentable is an arbitrarily chosen word and could be replaced with any non-reserved
word of your choice. You just have to be consistent in using it for the foreign key, for the *_type column,
and in the model defi nitions.

The example I’ve used here lends itself to explain why polymorphic associations are a very useful feature.
That said, to implement comments the polymorphic way in your projects, you can probably save some
time and code by employing the acts_as_commentable plugin instead.

Callbacks
Though ActiveRecord is happy to handle the life cycle of objects on its own, it also provides you with
a series of special methods, called callbacks, that allow you to intervene and decide that certain actions
should be taken before or after an object is created, updated, destroyed, and so on.

74955c07.indd List28974955c07.indd List289 3/4/09 9:25:05 AM3/4/09 9:25:05 AM

290

Chapter 7: Object-Relational Mapping with ActiveRecord

Callback methods for validations are:

before_validation ❑

before_validation_on_create ❑

before_validation_on_update ❑

after_validation ❑

after_validation_on_update ❑

after_validation_on_create ❑

Their names are quite self-explanatory. The before_* callbacks are triggered before a validation, and the
after_* callbacks are used to execute code afterwards. The *_on_update and *_on_create callbacks
are only triggered by validations for update and create operations, respectively. before_validation and
after_validation apply to both updates and creations.

Callbacks specifi c to the creation of an object are:

before_create ❑

after_create ❑

Likewise, callbacks triggered by the update of a record only are:

before_update ❑

after_update ❑

The following two callbacks are executed for both updates and inserts:

before_save ❑

after_save ❑

Callbacks specifi c to destroy are:

before_destroy ❑

after_destroy ❑

There are then two after_* callbacks, without a before version:

after_find ❑

after_initialize ❑

Note that for each call to save, create, or destroy, there is an ordered chain of callbacks that allows
you to intervene with the execution of your custom code in the exact spot that you desire. For example,
for the creation of a new record the callback order is as follows:

 1. before_validation

 2. before_validation_on_create

74955c07.indd List29074955c07.indd List290 3/4/09 9:25:05 AM3/4/09 9:25:05 AM

291

Chapter 7: Object-Relational Mapping with ActiveRecord

 3. after_validation

 4. after_validation_on_create

 5. before_save

 6. before_create

 7. after_create

 8. after_save

Between 2 and 3, the validation occurs, and between 6 and 7, the actual INSERT is issued.

To execute code during a callback, you’ll need to use any of these methods in the model defi nition.
Three options are available.

You can defi ne the callback method within the model:

class User < ActiveRecord::Base
 # ...

 def before_save
 # Some code to encrypt the password
 # ...
 end
end

Or, in a nicer way, you can pass a symbol representing the handler method:

class User < ActiveRecord::Base
 # ...
 before_save :encrypt_password

 private

 def encrypt_password
 # Some code to encrypt the password
 # ...
 end
end

The method encrypt_password will be always executed before a user is created or updated.

You could even create a class that defi nes several callback methods so that they can be shared among
several models. To do so, you’ll just need to pass an object to the callback method within the model
required (for example, before_save MyClass.new, but fi rst require “myclass” in the model’s fi le).

The third way to defi ne code that’s to be executed during a callback is to use a block:

class User < ActiveRecord::Base
 # ...
 before_save do |user|
 # Some code to encrypt the password

74955c07.indd List29174955c07.indd List291 3/4/09 9:25:05 AM3/4/09 9:25:05 AM

292

Chapter 7: Object-Relational Mapping with ActiveRecord

 # user is the instance that will be saved
 end
end

Association Callbacks
Regular callbacks allow you to hook into the life cycle of an ActiveRecord object, but what about an
association collection? It turns out that ActiveRecord allows you to execute custom code before and
after an object is added or removed from an association collection. The callback options are :before_
add, :after_add, :before_remove, and :after_remove. For example:

class Company < ActiveRecord::Base
 has_many :employees, :after_add => :enable_badge, :after_remove => :disable_badge

 def enable_badge(employee)
 # ...
 end

 def disable_badge(employee)
 # ...
 end
end

Just as with regular callbacks, if an exception is raised during the execution of a
:before_add callback, the object will not be added to the collection. Likewise, if
an exception is raised during the execution of the handler for the :before_remove
callback, the object will not be removed from the collection.

Observers
As previously mentioned, it’s possible to share the callbacks that are defi ned within a class with several
models. To do this you fi rst defi ne a class with a few callbacks:

class MyCallbackObject

 def initialize(list_of_attributes)
 # ... initialize here...
 end
 def before_save
 # ... your logic here ...
 end

 def after_save
 # ... your logic here ...
 end
end

And then, include them in each model that requires those callbacks:

class MyModel < ActiveRecord::Base

74955c07.indd List29274955c07.indd List292 3/4/09 9:25:05 AM3/4/09 9:25:05 AM

293

Chapter 7: Object-Relational Mapping with ActiveRecord

 cb = MyCallbackObject.new([:attr1, :attr2, :attr3])

 before_save cb
 after_save cb
end

Obviously replace all the generic names with the ones that apply. For example, instead of attr1, use
the name of the real attribute that is required by the callback object. Check the online documentation for
ActiveRecord::Callbacks for more examples and details.

At the time of this writing, when you defi ne an after_find or after_initialize
within a callback object, these will need to appear in the model as empty methods
as well, because otherwise ActiveRecord won’t execute them.

The main downside of using callback objects is that they clutter the model, often with a series of func-
tionalities, like logging, which are not really the model’s responsibility. That clutter is then repeated
over and over for each model that requires the callbacks that have been defi ned by the callback object.

The Single Responsibility Principle has led ActiveRecord’s developers to include a powerful and elegant
feature that solves this problem: observers. Observer classes are used to access the model’s life cycle in
a trigger-like fashion without altering the code of the model that’s being observed.

Observers are subclasses of ActiveRecord::Observer are by convention named after the class they
observe, to which the Observer token is appended:

class UserObserver < ActiveRecord::Observer
 def after_save(user)
 user.logger.info(“User created: #{user.inspect}“)
 end
end

Conventionally, observers are stored in app\models just like models or callback objects.

The problem with this convention is that observers are often used to “observe” many models, so it’s
usually necessary to overwrite the convention through the observe method:

class Auditor < ActiveRecord::Observer
 observe User, Account

 def after_save(model)
 model.logger.info(“#{model.class} created: #{model.inspect}“)
 end
end

Without having to touch the code of User or Account, the preceding code will log the creation of both
users and accounts, as long as you enable the observer in your Rails application. But fi rst you’ll need to add
the following line in your config\environment.rb fi le, where a commented, similar line already exists:

config.active_record.observers = :auditor

74955c07.indd List29374955c07.indd List293 3/4/09 9:25:05 AM3/4/09 9:25:05 AM

294

Chapter 7: Object-Relational Mapping with ActiveRecord

If you’ve created more than one observer, you can assign a comma-separated list of symbols to
observers.

If, on the other hand, you are not using Rails, you can load observers through their instance method:
ModelObserver.instance.

Testing Models
Testing is an integral part of developing in Rails. The subject matter is quite large and this book isn’t
even going to begin to do it enough justice. Nevertheless, it would do you a great disservice to close a
chapter on ActiveRecord without at least scratching the bare surface of unit testing.

It is called unit testing, because individual units of code (for example, models) are tested to verify that
they work correctly.

The Rails community embraces Test-Driven Development (TDD) and many developers even go as far as
to write tests fi rst, so that they act as a well-defi ned spec, and only then write code to pass those tests (a
practice commonly known as Test-First Development).

Lately many developers have been embracing BDD (Behavior-Driven Development), often by employ-
ing the excellent RSpec. I recommend that, with the help of Google, you check out this alternative testing
framework.

Many people dislike testing because they tend to prefer to spend their time writing “real code.” But the
reality is that, aside from being a staple of the XP methodology, testing improves the quality of your
application. Testing cannot guarantee a complete lack of bugs in your Web application, but with good
testing coverage you can ensure that many basic cases/functionalities are properly handled.

More importantly, it gives you confi dence when it comes time to make changes and develop the applica-
tion further, without having to worry that a change may break a related piece of code somewhere else
in the code repository. With a good set of tests, you’ll be able to spot “what broke what,” in many cases.

Other secondary, positive side-effects include the fact that tests provide a form of documentation for
how your application is supposed to work; they can force programmers to think more thoroughly
about the code they are about to write, and they can also be a warning sign for problematic code. In
fact, it’s been my experience that code that is hard to test is often code that could be refactored and bet-
ter thought through.

Testing has a bit of a learning curve to it, but the payoff far outweighs the initial time investment. And if
you are used to the NUnit framework with .NET, it will all be rather familiar, while at the same time you’ll
be able to appreciate how much nicer it is to work with Ruby’s unit testing library. In fact, ActiveRecord
essentially relies on Ruby’s Test::Unit framework, which ships as part of the Standard Library.

You are going to operate on the sample blog application again.

The fi rst thing that you’ll do is run the unit tests. From the main folder of the project, run the follow-
ing task:

rake test:units

74955c07.indd List29474955c07.indd List294 3/4/09 9:25:06 AM3/4/09 9:25:06 AM

295

Chapter 7: Object-Relational Mapping with ActiveRecord

The output of the command should be similar to the following:

(in C:/projects/blog)
c:/ruby/bin/ruby -Ilib;test “c:/ruby/lib/ruby/gems/1.8/gems/rake-0.8.3/lib/rake/
rake_test_loader.rb” “test/unit/article_test.rb” “test/unit/comment_test.rb”
Loaded suite c:/ruby/lib/ruby/gems/1.8/gems/rake-0.8.3/lib/rake/rake_test_loader
Started
..
Finished in 0.593 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

For each test that passes, a dot is displayed beneath the word Started. At the end of the report, a line
summarizes the outcome after you’ve run the test suite. In this case, it informs you that there were two
tests, two assertions, and no failures or errors.

Tests are public methods (defi ned in a test case) that contain one or more assertions, whereas assertions
are comparisons between an expected value and the value of an expression. These either pass or fail,
depending on whether the assertion is actually true or false during the execution of the test suite. If a
test causes an unrescued exception, this outcome is reported as an error, as opposed to a failure.

The aim is to have zero failures and errors. When all the tests have passed successfully, you can go ahead
and change the application or add a new feature (and add new tests for it). If upon running the tests again
the application fails this time around, you’ll know for sure that your change or new feature was problem-
atic. When there are failed assertions, the value expected by the assertion and the actual value are both
shown. If there are errors, the error message and stacktrace are displayed in the output as well.

Let’s take a look at the two tests and assertions that you’ve just passed, by opening the fi les article_
test.rb and comment_test.rb in the project’s test\unit directory:

test\unit\article_test.rb
require ‘test_helper’

class ArticleTest < ActiveSupport::TestCase
 # Replace this with your real tests.
 test “the truth” do
 assert true
 end
end# test\unit\comment_test.rb
require ‘test_helper’

class CommentTest < ActiveSupport::TestCase
 # Replace this with your real tests.
 test “the truth” do
 assert true
 end
end

The test case is a subclass of ActiveSupport::TestCase and the method test is passed a string
literal that acts as a label for the test. With the method’s block there is just a placeholder with a single
assertion: assert true. assert is a method that defi nes an assertion that always passes except when
the argument is false, nil, or raises an error. If you change article_test.rb so that the test body

74955c07.indd List29574955c07.indd List295 3/4/09 9:25:06 AM3/4/09 9:25:06 AM

296

Chapter 7: Object-Relational Mapping with ActiveRecord

is assert false and run the tests again, you would obtain one failure, an F instead of a dot, and the
message <false> is not true. Changing it to assert 3/0 would give you one error, an E instead of
a dot, and the error message ZeroDivisionError: divided by 0 (as well as the stacktrace).

assert false is equivalent to the method flunk, which always fails.

This is the general structure of a test case fi le in a Rails setting:

require ‘test_helper’

class NameTest < ActiveSupport::TestCase
 fixtures :models

 # Run before each test method
 def setup
 # ...
 end

 test “a functionality” do
 # assertions
 # ...
 end

 # Run after each test method
 def teardown
 # ...
 end
end

The code within the optional method setup will be executed before each test method, whereas
teardown is invoked after each test. Because you are testing models, and doing assertions is all
about comparing the evaluated expressions against known values, you’ll need a way to store all the
well-known records that are not subject to change in the test database. The perfect answer to this
can be found in fi xtures, which are loaded through the fixtures method.

If you take a look at the test\fixtures directory within the project, you’ll notice that two fi xture fi les
were generated by the scaffold generator: articles.yml and comments.yml. These are YAML fi les that
can contain several records that you’d like to load into the database before running the tests. These records
have a name, and besides being available to you when reading the test database, they can also be accessed
through a hash. This is important when you want to verify the correctness of the data obtained through
a model.

This is what articles.yml looks like (as you can see it respects the table structure of articles):

Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html

one:
 title: MyString
 body: MyText
 published: false
 published_at: 2008-07-10 22:46:42

74955c07.indd List29674955c07.indd List296 3/4/09 9:25:06 AM3/4/09 9:25:06 AM

297

Chapter 7: Object-Relational Mapping with ActiveRecord

two:
 title: MyString
 body: MyText
 published: false
 published_at: 2008-07-10 22:46:42

Notice that the indentation is arbitrary, as long as it’s consistent. It’s still good idea to indent by two
spaces as per usual in Ruby.

The two records, one and two, are statically defi ned, but YAML fi xtures allow you to embed ERb code
with the usual <% %> and <%= %> pairs. Therefore, it’s possible to dynamically defi ne more records or
defi ne their values programmatically. CSV fi xtures are also permitted, in which case the record names
are auto-generated. However, YAML is the default and generally favored format.

Let’s change the articles fi xtures into something less repetitive and specify the id while you’re at it
(because this would be random otherwise):

hello:
 id: 1
 title: Hello, World!
 body: puts “Hello, world!”
 published: true
 published_at: 2008-09-08 05:30:22

fall:
 id: 2
 title: Fall is coming
 body: Some interesting text
 published: false
 published_at: 2008-09-08 07:48:12

Now load these fi xtures by adding fixtures :article to the ArticleTest test case.

As you can imagine, the single test that you have right now is pretty useless, so you’ll get rid of it and
instead write a couple of tests that are more meaningful, using a few of the many assertion methods
available.

Consult the Ruby documentation for Test::Unit for a list of available assertions. A few common ones
are assert, assert_nil, assert_equal, assert_raise, and assert_not_raised. All the
assertion methods accept an optional argument to specify a custom message.

To get started you can test that the validations are working as follows:

 test “article validations” do
 no_title_or_body = Article.new(:published => true, :published_at => Time.now)

 no_title = Article.find(1)
 no_title.title = nil

 duplicate_body = Article.find(2)
 duplicate_body.body = articles(:hello).body

74955c07.indd List29774955c07.indd List297 3/4/09 9:25:06 AM3/4/09 9:25:06 AM

298

Chapter 7: Object-Relational Mapping with ActiveRecord

 assert_equal false, no_title_or_body.save

 assert_raise ActiveRecord::RecordInvalid do
 no_title.save!
 end

 assert_raise ActiveRecord::RecordInvalid do
 duplicate_body.save!
 end
 end

Notice how you can access the named records defi ned in the fi xtures fi le by passing their symbol to the
name of the fi xtures (for example, articles(:hello)).

The Article model defi nes validations that prevent objects from being saved when they’re missing a
body or title, or if the body already exists. The test instantiates a record without a body and title, so it’s
fair to expect that invoking save will lead to false being returned. You assert this with:

 assert_equal false, no_title_or_body.save

It then retrieves an existing record and assigns nil to its title. Again, this is in direct vio-
lation of the validation you defi ned in the model so invoking save! should lead to an
ActiveRecord::RecordInvalid error being raised. You assert this with assert_raise, which
accepts the error class and a block that is supposed to raise that error type:

 assert_raise ActiveRecord::RecordInvalid do
 no_title.save!
 end

Note that save would not raise any errors, but rather quietly return false.

Finally, the test retrieves another record and assigns the value of the fi rst record to its body attribute.
Because you can’t have two records with the same body, you’ll assert that you expect the call to save!
to raise an ActiveRecord::RecordInvalid error:

 assert_raise ActiveRecord::RecordInvalid do
 duplicate_body.save!
 end

ActiveRecordError is the generic exception class. All the error classes defi ned by ActiveRecord
inherit from it, which in turn inherits from Ruby’s StandardError.

Now you can add a test for the published and unpublished named scopes:

 test “article status” do
 published_article = Article.find_by_published(true)
 unpublished_article = Article.find_by_published(false)
 scheduled_article = Article.create(:title => “A post in the future”,
 :body => “... some text ...”,
 :published => true,
 :published_at => 2.hours.from_now)

74955c07.indd List29874955c07.indd List298 3/4/09 9:25:06 AM3/4/09 9:25:06 AM

299

Chapter 7: Object-Relational Mapping with ActiveRecord

 assert Article.published.include?(published_article)
 assert Article.unpublished.include?(unpublished_article)
 assert Article.unpublished.include?(scheduled_article)
 assert_equal false, Article.published.include?(unpublished_article)
 assert_equal false, Article.published.include?(scheduled_article)
 assert_equal false, Article.unpublished.include?(published_article)
 end

The test fi rst retrieves two records, respectively: a published and an unpublished one, and then creates
a new scheduled one (published with a future publication date). Then you assert that the published one
should be included in the array returned by the published named scope, and the unpublished and
scheduled ones should be included in the array returned by the unpublished named scope. And for
good measure, you’ll also make sure it checks that neither of the named scopes include an inappropri-
ate record (for example, you don’t want a scheduled post to appear in the published list).

The resulting test case is shown in Listing 7-5.

Listing 7-5: The ArticleTest Test Case with a Couple of Tests

require ‘test_helper’

class ArticleTest < ActiveSupport::TestCase
 fixtures :articles

 test “article validations” do
 no_title_or_body = Article.new(:published => true, :published_at => Time.now)

 no_title = Article.find(1)
 no_title.title = nil

 duplicate_body = Article.find(2)
 duplicate_body.body = articles(:hello).body

 assert_equal false, no_title_or_body.save

 assert_raise ActiveRecord::RecordInvalid do
 no_title.save!
 end

 assert_raise ActiveRecord::RecordInvalid do
 duplicate_body.save!
 end
 end

 test “article status” do
 published_article = Article.find_by_published(true)
 unpublished_article = Article.find_by_published(false)
 scheduled_article = Article.create(:title => “A post in the future”,
 :body => “... some text ...”,
 :published => true,
 :published_at => 2.hours.from_now)

Continued

74955c07.indd List29974955c07.indd List299 3/4/09 9:25:06 AM3/4/09 9:25:06 AM

300

Chapter 7: Object-Relational Mapping with ActiveRecord

Listing 7-5: The ArticleTest Test Case with a Couple of Tests (continued)

 assert Article.published.include?(published_article)
 assert Article.unpublished.include?(unpublished_article)
 assert Article.unpublished.include?(scheduled_article)
 assert_equal false, Article.published.include?(unpublished_article)
 assert_equal false, Article.published.include?(scheduled_article)
 assert_equal false, Article.unpublished.include?(published_article)
 end
end

When the setup logic is common among a few tests, it’s better to refactor the test case so that the setup
logic is moved to the setup method, which is invoked before the execution of each test case.

Running the tests you now obtain:

C:\projects\blog> rake test:units
(in C:/projects/blog)
c:/ruby/bin/ruby -Ilib;test “c:/ruby/lib/ruby/gems/1.8/gems/rake-0.8.3/lib/rake/
rake_test_loader.rb” “test/unit/article_test.rb” “test/unit/comment_test.rb”
Loaded suite c:/ruby/lib/ruby/gems/1.8/gems/rake-0.8.3/lib/rake/rake_test_loader

Started
...
Finished in 0.354 seconds.

3 tests, 10 assertions, 0 failures, 0 errors

Great! Keep in mind that this is not by any means a complete set of tests, and you’d probably want more
records in your fi xtures to play around with. But the example should be enough to get you started.

You can check some interesting stats about your application, including the code-to-test ratio, by run-
ning the rake task stats.

Unit Testing and Transactions
By default the execution of each test is wrapped in a transaction that is rolled back
upon completion. This has two positive consequences. The fi rst is related to perfor-
mance. This approach doesn’t require you to reload the fi xture data after each test,
which speeds up the execution of the whole test suite considerably. Second, and per-
haps more importantly, each test will start with the same data in the database, there-
fore eliminating the risk of creating dependencies between different tests, where one
test changes the data and the other needs to be aware of it in order to work. That’d be a
very bad approach to testing and a route that you defi nitely don’t want to go down.

As a fi nal exercise, try to create additional tests for Article and perhaps move onto the Comment mod-
el’s tests as well. You’ll notice that the fi xtures within comments.yml have an article article key. You
can assign the name of an article fi xture (for example, hello) to that column as follows:

article: hello

74955c07.indd List30074955c07.indd List300 3/4/09 9:25:06 AM3/4/09 9:25:06 AM

301

Chapter 7: Object-Relational Mapping with ActiveRecord

You’ll get back to the subject of testing in the next chapter, which discusses functional and integra-
tion tests.

Summary
ActiveRecord has changed the way many developers write Web applications. This chapter has pro-
vided you with a wide spectrum of topics that are considered fundamental for any Rails programmer.
Integrating this knowledge with the offi cial API documentation should enable you to write all sorts of
database-driven Web applications.

The next chapter deals with the fundamentals of working with controllers, the C component of
the MCV triad. Chapter 9 completes it, by introducing a few fundamental notions concerning the
view layer.

74955c07.indd List30174955c07.indd List301 3/4/09 9:25:06 AM3/4/09 9:25:06 AM

74955c07.indd List30274955c07.indd List302 3/4/09 9:25:06 AM3/4/09 9:25:06 AM

Handling Requests with
ActionController

Rails is the most well thought-out web development framework I’ve ever used.
And that’s in a decade of doing web applications for a living. I’ve built my own

frameworks, helped develop the Servlet API, and have created more than a
few web servers from scratch. Nobody has done it like this before.

— James Duncan Davidson, Creator of Tomcat and Ant

ActionController is a key module used by Rails to handle incoming requests by mapping
them with, and handing over control to, specifi c public instance methods known as actions.
ActionController works closely with ActionView to formulate a proper response for each request,
and together they form a powerful framework known as ActionPack.

The process of going from an incoming request to a complete response that’s sent back to the
user’s browser can be divided into three logical steps: routing the request to determine which
action should handle it; executing the code of the action; and fi nally rendering a template in the
view layer. The fi rst two steps are managed by ActionController and, together with testing, are
the main subject of this chapter.

When a request comes in, ActionController uses a routing component that looks up the routes
defi ned for the project to determine which controller and action should handle the incoming
request. As soon as the controller has been identifi ed, its class is instantiated. The details of the
incoming request and a new response object are then passed to its process method (defi ned
by ActionController::Base). This method takes care of extracting the action name from
the request parameters, executing the action’s code and ultimately disposing of the controller
instance when the request-response cycle is complete.

74955c08.indd List30374955c08.indd List303 3/4/09 9:29:19 AM3/4/09 9:29:19 AM

304

Chapter 8: Handling Requests with ActionController

ASP.NET Routing and Rails Routing
When ASP.NET MVC introduced a routing system inspired by Rails, it was immedi-
ately clear that the namespace System.Web.Routing was going to be benefi cial for
regular ASP.NET developers outside of the MVC context. For this reason, Microsoft
decided to include it with its .NET 3.5 Service Pack 1 release.

If you’ve had the chance to experiment with ASP.NET Routing, you’ll fi nd the concepts
and ideas illustrated in this chapter somewhat familiar, or at least not overly foreign.
Sure, the syntax, data structures, and the specifi c method calls will be different, but
knowing ASP.NET Routing will help give you a good head start. On the other hand,
if you haven’t tried it, Rails’ routing shouldn’t be too confusing either, as long as you
focus on the big picture.

ActionController::Base defi nes two process methods: a class method and an instance one. The
class method acts as a factory that instantiates the controller through the new method, and then invokes
the instance method process on it. The instance method is the one that, among other things, actually
extracts the action name, executes the action’s code, and eventually discards the controller object when
a response has been formulated.

All this is possible because you tell ActionController what rules should be used to fi nd the right con-
troller and action. In Rails applications this is typically done in a config\routes.rb fi le. For the blog
application, routes.rb was defi ned as follows (stripped of its many comments):

ActionController::Routing::Routes.draw do |map|
 map.root :controller => “articles”
 map.resources :articles, :has_many => :comments,
 :collection => { :unpublished => :get }

 map.connect ‘:controller/:action/:id’
 map.connect ‘:controller/:action/:id.:format’
end

Any mapping happens within the block passed to ActionController::Routing::Routes.draw.
The naming makes sense if you think of it as the process of drawing routes.

Within the block, you employ two types of routings: a RESTful one, which is based on the concept of
resource and defi ned through the method resources, and conventional pattern-matching routing,
which is obtained through connect.

resources creates HTTP-verb aware named routes for a collection resource (for example, articles)
. resources was also the method that provided all the handy *_url and *_path helpers that are based on
the named routes. connect, on the other hand, creates an unnamed route only, and this is based solely
on two things: the pattern passed as the fi rst parameter (for example, ‘:controller/:action/:id’) and
an optional hash of options.

Rails offer maximum fl exibility thanks to the fact that within your routes.rb fi le, you can use one
style or the other, or a mix of both. Let’s take a speedy look at both routing styles.

74955c08.indd List30474955c08.indd List304 3/4/09 9:29:20 AM3/4/09 9:29:20 AM

305

Chapter 8: Handling Requests with ActionController

Defining Routes with map.connect
When you create a new application, Rails generates a config\routes.rb fi le that defi nes two default
(unnamed or anonymous) routes:

map.connect ‘:controller/:action/:id’
map.connect ‘:controller/:action/:id.:format’

The routing subsystem will try to fi nd a match between the defi ned patterns and the URL of the
incoming request.

For example, take the fi rst route into consideration:

map.connect ‘:controller/:action/:id’

This tells Rails that the route recognizes only paths that include an arbitrarily named controller, action,
and id. Hence, ‘/library/borrow/25189’ matches this route, and instructs Rails to map the fi rst token
in the URL (that is, library) to the :controller parameter, the second token (for example, borrow) to
the :action parameter, and the third token to the :id parameter, which has a value of “25189.” The
params object will then look like this:

params = { :controller => “library”, :action => “borrow”, :id => “25189” }

Rails will therefore be able to process the request, by instantiating the library controller and executing
the borrow action defi ned within it. As a developer, you’ll be able to retrieve the :id parameter from
within the controller through params[:id].

Default Parameters
/library/borrow/25189 results in the parameters { :controller => “library”, :action=>
“borrow”, :id => “25189” }, but not all three parameters are strictly required.

You could omit an id, issuing perhaps a request for the path /library/catalog instead. The parameters
would then be the following:

params = { :controller => “library”, :action => “catalog” }

Such a match is possible, despite the missing third parameter, because connect defi nes a default for
:id. Unless a value is specifi ed in the URL, :id is nil. And :id => nil doesn’t appear in the params
hash-like object, because nil parameters that are not specifi ed in the path are not included.

Similarly, connect defi nes a default value when the action is missing. Reasonably so, this default value
is “index”. /library will therefore be mapped to { :controller => “library”, :action =>
“index” }.

Before scaffolding was refactored to become RESTful, the default routes and their default values still
enabled beautiful paths such as /library, /library/list, and /library/show/12345 to work just
as you’d expect them to. To this day, if you have a non-RESTful controller, the presence of these default
routes in routes.rb will allow you to have paths in the format /controller_name, /controller_
name/action_name, and /controller_name/action_name/id.

74955c08.indd List30574955c08.indd List305 3/4/09 9:29:20 AM3/4/09 9:29:20 AM

306

Chapter 8: Handling Requests with ActionController

Customizing Your Routes
This default route is rather generic, because its pattern will be matched by requests whose URLs contain
an arbitrary controller name (as long as the controller exists), an arbitrarily named action (whether or
not it exists), and an arbitrary id. On top of that, any HTTP verb is fair play for this route. But don’t let
this mislead you into thinking that it would match any path. On the contrary, /library/borrow/
43274/something or /library/something/borrow/43274 will not match this route, because they
both have four tokens, rather than the three expected.

The :id parameter can have any value, and it’s not limited to numeric values enclosed in a string,
although this is often the case because params[:id] is usually passed to ActiveRecord::Base’s
find method.

:controller and :action are specially named parameters because they are used to identify the
controller and the action that should process the request, respectively. Any other symbol within
the pattern, even :id, will, however, be considered as a regular named parameter and included in the
params object. :controller and :action can be used anywhere you need to match a controller or
action name; it’s also possible to explicitly require a specifi c controller, and/or action, by passing an
option (for example, :controller or :action) to the connect method. For example, consider the
following route declaration:

map.connect ‘library/:action/:isbn’, :controller => “library”

/library/borrow/9780470189481 will then be mapped as follows:

params = { :controller=> “library”, :action=> “borrow”, :isbn=> “9780470189481” }

The route will also match the path /library/archive/9780470189481. In fact, this will yield:

params = { :controller=> “library”, :action=> “archive”, :isbn=> “9780470189481” }

The method with_options can be used to declare several conditions that are common to a series of
routes defi ned within the block passed to the method. Check the online documentation for examples.

Notice how the action is “variable,” and can be arbitrary because you use the :action symbol in the
pattern. However, the controller is not variable, so for the route to match, the path requested by the user
must begin with /library/ and be followed by an action and an ISBN. :id defaults to nil but your
custom named parameter :isbn doesn’t. This means that a value must be provided or you won’t have
a match. Consequently, you can’t just have /library/9780470189481 either, because 9780470189481
would be interpreted as the value that’s supposed to be assigned to :action and the :isbn value would
still be missing in Rails’ eyes.

There are times when this is exactly what you want: a mandatory set of parameters that cannot be omitted
for a certain route. For example, the previously defi ned route doesn’t work well if you want to map actions
like borrow and archive in LibraryController, assuming as you can imagine neither of these actions
would be meaningful without access to an :isbn parameter that identifi es a certain book.

Here archive is intended as the action of “returning a book” to the archive, as opposed to listing the
catalog, which wouldn’t require an :isbn parameter.

74955c08.indd List30674955c08.indd List306 3/4/09 9:29:20 AM3/4/09 9:29:20 AM

307

Chapter 8: Handling Requests with ActionController

It is, however, possible to defi ne your own default values through the :defaults option. To make
:isbn an optional parameter, for example, you could do the following:

map.connect ‘library/:action/:isbn’, :controller => “library”,
 :defaults => { :isbn => nil }

If you omit the ISBN, it will simply not appear in the parameters hash. And because you removed this
constraint, you can now also omit an action (for example, “/library”) and fall back on :action’s
default value, which is “index.”

Route Globbing
Ruby methods can have a variable number of arguments thanks to the splat opera-
tor that we encountered in the Ruby section of this book. You might recall that in the
method signature, a parameter that’s prefi xed by a splat operator has to be the last one
in the signature.

Within the pattern of a route, you can do something similar in an attempt to catch a
variable number of slash-separated tokens provided in the URL. If you place *path
(or any other name, really) in the pattern, you’ll be able to catch a variable quantity of
tokens in the URL through params[:path] (assuming you used *path).

This is known as “route globbing” and unlike regular Ruby methods, the glob doesn’t
have to be the last parameter in the pattern.

For example, if the pattern is ‘library/:action/:isbn/*extra/preview’ and
the path requested by the user is ‘/library/borrow/9780470189481/3/weeks/
preview,’ not only will there be a match between the path and the pattern specifi ed
for this route, but you’ll also be able to access those additional parameters through
params[:extra], which will contain the array[“3”, “weeks”].

The fi rst parameter passed to connect already gives you a great deal of fl exibility, especially if you con-
sider that you can have an arbitrary number of defi ned routes and can therefore fi ne tune which URLs
are handled by which route. Declaring routes is, however, even more customizable thanks to the fact
that connect accepts a second parameter, a hash of options. Let’s review all the accepted keys for that
option hash:

:action ❑ : Used to indicate what action should handle the request when there is a match
between the requested URL and the pattern specifi ed by the route declaration. If :action is
present within the pattern, this has precedence over the :action option. This means that pass-
ing :action => “my_action” to connect will only have an effect if no action name has been
indicated in the URL. In such a circumstance, :action is equivalent to adding an entry for the
action to :defaults.

:conditions ❑ : Used to defi ne restrictions on routes, it supports the :method condition that
specifi es which HTTP methods can access the route among :post, :get, :put, :delete, and
the catch-all :any. This is particularly handy when, for example, you want to specify that a dif-
ferent action should handle the requested URL, depending on whether this is a GET or POST
request. To handle that situation, you could specify two routes, and pass :action => “first_
action”, :conditions => { :method => :get } to the fi rst route, and :action =>
“second_action”, :conditions => { :method => :post } to the second route.

74955c08.indd List30774955c08.indd List307 3/4/09 9:29:21 AM3/4/09 9:29:21 AM

308

Chapter 8: Handling Requests with ActionController

:controller ❑ : Similarly to :action, this is used to indicate which controller should be mapped
to the route. If the catch-all :controller symbol appears within the pattern specifi ed by the
route, the :controller => “example” option will only apply when a controller is not provided
in the URL. Just like in the case of :action, you have the option to use :defaults instead, if
you’d like.

:defaults ❑ : Used to specify default values for one or more named parameters included in the
pattern passed to connect. For instance, consider the following route declaration:

map.connect ‘library/:action/:isbn’, :controller => ‘library’,
 :defaults => { :action => ‘info’,
 :isbn => nil }

This will map the path ‘/library’ as requested by an end user, with the controller library
and the action info (an:isbn key will not be added to params, because the :isbn named
parameter was defaulted to nil).

:<parameter_name> ❑ : This option can be used for two different tasks depending on the
assigned value. When a regular expression is assigned, this sets a requirement for the named
parameter (for example, :quantity => /\d+/). If the condition is not satisfi ed (for example,
:quantity exists in the URL but its value is not composed entirely of digits), the route will not
match the request. The second way of using this is to assign a regular value so that the param-
eter is added to the params object. Note that, unlike entries in the :defaults hash, parameters
added in this way are not required to be named parameters within the pattern. In practice, this
means that you can use :my_parameter => “my_value” anytime you need to associate a
parameter with a certain request. The params object will enable you to retrieve that value from
within the action (for example, with params[:my_parameter]).

:requirements ❑ : Used to specify constraints on the format of one or more parameters that
appear in the URL. If any of the parameters specifi ed in the request fail to satisfy the condition
defi ned within the :requirements hash, the route will not apply. This is entirely equivalent
to using multiple :<parameter_name> options whose assigned values are regular expres-
sions. A typical example to illustrate the usefulness of :requirements is the permalink of blog
engines. If the pattern used for the route is ‘example/:year/:month/:day,’ you’ll be able
to retrieve the three named parameters from within the controller through params[:year],
params[:month] and params[:day]. However, this doesn’t guarantee that the three values
you received were properly formatted. It would be better to show a 404 page for requests whose
URLs are meaningless, like ‘/example/1492/10/12’ (unless you’re transcribing Columbus’
diary) or ‘/example/2008/03/50.’ In that case, it will be suffi cient to pass :requirements
=> { :year => /20\d\d/, :month => /(0?[1-9]|1[012])/, :day => /(0?[1-
9]|[12]\d|3[01])/ } to connect. If any of the three named parameters don’t meet the
specifi ed conditions, a match between the incoming request and this route will not appear.

Note that the regular expressions in this case are just an aid to exclude the majority of incorrect dates
and values. However, this doesn’t take into account leap years or the fact that certain months don’t have
31 days.

Each route that you defi ne will typically have a pattern with a few named parameters in it (for exam-
ple, :isbn), and a few options that are different from the ones we encountered earlier (for example,
:defaults), in a manner that enables the developer to defi ne with surgical precision how URLs should
be recognized and mapped.

74955c08.indd List30874955c08.indd List308 3/4/09 9:29:21 AM3/4/09 9:29:21 AM

309

Chapter 8: Handling Requests with ActionController

Route Priority
The block passed to ActionController::Routing::Routes.draw in route.rb can contain multiple
routes, and it’s also possible to have more than one route that matches the incoming request URL and
HTTP verb. Yet, each request needs to be mapped with only one route, so that Rails unequivocally knows
which controller, and action, should handle the request, and what parameters should be available to them.

Thankfully, routing solves this problem for you by giving a different priority to each route you defi ne.
Starting from the top and moving toward the bottom, the pattern-matching algorithm will check each
route’s pattern, conditions, and requirements against the request until it fi nds a match. When a matching
route is located, no further routes are checked for that request. This implies that the routes within the
block are presented in order of their priority. The fi rst route will have the highest priority and the last
route the lowest.

This is an important notion because you don’t want the intended route for a given request to be obscured
by another matching route that happens to have greater priority. This is why the default routes are placed
toward the end of the block, rather than at the beginning. The default routes are so generic that they can
be considered as “catch-all” routes (to a certain extent), when more specifi c routes do not apply. If no
routes match the incoming request (not even the default ones), an ActionController::RoutingError
exception is raised.

Take into consideration the routes.rb fi le defi ned for the simple blog application. If you were to
change the order of the routes, and place the default routes on top, you’d have the following:

Don’t do this
ActionController::Routing::Routes.draw do |map|
 map.connect ‘:controller/:action/:id’
 map.connect ‘:controller/:action/:id.:format’

 map.root :controller => “articles”
 map.resources :articles, :has_many => :comments,
 :collection => { :unpublished => :get }
end

When a RESTful request comes in, in trying to visualize an article at /articles/3/show, routing would
try to match that with the fi rst route. The pattern in the fi rst route is now ‘:controller/:action/:id.’
Do you have a match? Indeed, because the default route is so generic that it requires only three tokens in
the URL and accepts any HTTP verb.

The end result would be that the request is mapped to the articles controller (correct), the action 3
(wrong), and the id show (wrong again).

It is in fact advisable to comment out the default routes altogether if they are not needed within a
RESTful application. It is also a matter of preventing the existence of default routes that can be used to
create or delete objects with simple GET requests. So please go ahead and delete or comment them out
in the blog application you created, so that the routes.rb fi le appears as follows:

ActionController::Routing::Routes.draw do |map|
 map.root :controller => “articles”
 map.resources :articles, :has_many => :comments,
 :collection => { :unpublished => :get }
end

74955c08.indd List30974955c08.indd List309 3/4/09 9:29:21 AM3/4/09 9:29:21 AM

310

Chapter 8: Handling Requests with ActionController

The order in which routes appear matters. Always place the most generic routes at
the bottom. If yours is a RESTful application, it is advisable to comment out the
default routes.

Routes from the Console
The console was an indispensible tool when dealing with ActiveRecord, and not surprisingly, it can be
highly useful when working with controllers as well. Things are, however, less straightforward, so let’s
explore how you can work with routes from the console.

When working with routes, you’re interested in two tasks. The fi rst is to determine which route matches
a given URL, so that you can see which controller, action, and parameters result from the request. The
second is the exact opposite: you have a controller, action, and parameters and you need to obtain a URL.

All the routes that you defi ne in routes.rb are added to Routes, which is a RouteSet object. Both the
class and the object are defi ned in ActionController::Routing. You use Routes and its methods to
both recognize a given path and generate URLs. Let’s investigate the former fi rst.

You need to start the console and assign ActionController::Routing::Routes to a local variable
for the sake of convenience:

>> routes = ActionController::Routing::Routes

The output generated will be quite large because a lot of information is stored in this object.

Now that you have a handle to play with, you can use the recognize_path method.

Notice that for this to work, the controller needs to be defi ned in the application. If you are testing the
routing for controllers you haven’t defi ned yet, you can place their names in an array, and pass that
array to use_controllers!:

>> ActionController::Routing::use_controllers! [“main”, “library”]

As well, you should reload the routing fi le for good measure (that is, load ‘config/routes.rb’).

You can now recognize paths as follows:

>> routes.recognize_path ‘/main/show/3’
=> {:action => “show”, :controller => “main”, :id => “3”}

On the fl ip side, generating URLs can be accomplished through the generate method:

>> routes.generate :controller => ‘main’, :coupon => 1920321
=> “/main?coupon=1920321”

These are just examples, of course; the output depends entirely on the routes you defi ne.

74955c08.indd List31074955c08.indd List310 3/4/09 9:29:21 AM3/4/09 9:29:21 AM

311

Chapter 8: Handling Requests with ActionController

:coupon is a parameter that was not specifi ed in the pattern for the route that applies, and as such it’s
appended to the URL.

Normally you’d use the method url_for in the controller (and the link_to helper in the view) to
generate a URL for a certain controller, action, and its required parameters. For anonymous routes, a
link in the controller might look like this:

@borrow_link = url_for(:controller => ‘library’, :action => ‘borrow’,
 :isbn => @book.isbn)

Controllers can be defi ned within modules, and in such cases the specifi ed controller is assumed to be
local to the module that contains the controller that issues the request. Use /example to indicate that
it’s an absolute “path” to the controller.

This will assign a string like ‘http://localhost:3000/library/borrow/9780307237699’ to
@borrow_link. The actual string will of course depend on the hostname, port (typically 80 in produc-
tion), and :isbn parameter, and assumes that the default route was specifi ed in the routes.rb fi le.

The url_for method is quite fl exible; check the online documentation for a complete list and description
of accepted options.

Note that you can’t use url_for directly from the console, but that you have to resort to the analogous
generate method. A similar method called url_for is available through the special object app, which
is an instance of ActionController::Integration::Session, but it doesn’t behave exactly like the
url_for method in a controller does. For example, if it lacks an associated request, the generated URL
will use www.example.com as the hostname.

Named Routes
The connect method generates unnamed routes, but ActionController provides the ability to defi ne
labels for your routes, known simply as named routes. An initial example of this was shown when you
defi ned the following line in the routes.rb fi le that you’ve been playing with so far:

map.root :controller => “articles”

By using root rather than connect, this created a named route root. As you saw before, this route will
easily be accessible through the methods generated by appending _url and _path to its name, namely
root_url (for example, http://localhost:3000/) and root_path (for example, /).

This method is special, in the sense that it also serves the purpose of informing routing about which
controller (for example, articles) and action (for example, by default index) should be invoked
whenever the root of the application is requested (that is, /). Remember, the public\index.html
fi le needs to be removed in order for this to work; otherwise the static fi le will have precedence over the
index action you defi ned.

Named routes are handy because you can use helper methods to refer to them, rather than having to
specify the controller, action, default values, and so on every time, to methods like url_for, redirect_
to, or link_to. Evidence of the advantages of named routes is admittedly weak when you consider the
example of root, which could just as easily be accessed by using /.

74955c08.indd List31174955c08.indd List311 3/4/09 9:29:21 AM3/4/09 9:29:21 AM

312

Chapter 8: Handling Requests with ActionController

The real power behind named routes becomes self-evident upon introducing the notion that connect
and root are not the only available method names. In fact, you can pick an arbitrary name that you’d
like to use for your route by simply using it instead of connect. For example, consider the following
route declaration:

map.catalog “library/“, :controller => “library”, :action => “list”

This generates a named route called catalog, which can be referenced through catalog_url and
catalog_path (which excludes the hostname and port number). For instance, to redirect to the control-
ler library’s list action, you could use the following:

redirect_to(catalog_url)

Short and sweet, and because you chose the name of the route, it’s also meaningful and readable.

Compare this with what’s needed for an analogous anonymous route (created by using connect):

redirect_to(:controller => “library”, :action => “list”)

That’s not too bad, but it’s not as concise or nice either. Let’s consider a second route, this time with a
named parameter:

map.borrow_book “library/borrow/:isbn”,
 :controller => “library”,
 :action => “borrow”

Obtaining the URL for this route will be as easy as employing borrow_book_url and passing the ISBN
to the method:

borrow_book_url(“9780307237699”)

Or alternatively:

borrow_book_url(:isbn => “9780307237699”)

If more named parameters are present within the pattern, they’ll be passed to the helper in the order
that they appeared, or in the conventional hash notation (as in the preceding line of code).

RESTful Routes
REST (REpresentational State Transfer) was already introduced earlier in the book when you developed
the basic blog application. This section briefl y recaps how this new paradigm affects Rails’ routing.

RESTful routing is considered to be the new standard for Rails applications and, whenever possible, it
should be favored over the traditional style described so far. In short, RESTful routing doesn’t simply
match a URL to code within the controller, but rather maps resource identifi ers (think URLs) and HTTP
verbs to seven predefi ned actions. These actions normally perform CRUD operations in the database as
well, through the model layer.

74955c08.indd List31274955c08.indd List312 3/4/09 9:29:21 AM3/4/09 9:29:21 AM

313

Chapter 8: Handling Requests with ActionController

map.resources
RESTful routes can be defi ned through the resources method. Consider this route:

map.resources :books

Whenever you need to declare more than one resource, you can do so on a single line by passing a list of
symbols (for example, map.resources :books, :catalogs, :users) to resources.

This manages to pull off a fair bit of magic, by abstracting and hiding many of REST’s implementation
details, as well as providing you with named routes and easy-to-use helpers to work with. A single con-
cise line creates seven RESTful routes, as shown in the following table.

Route Name HTTP Method URL Action in BooksController

books GET /books index

formatted_books POST /books create

new_book GET /books/new new

book GET /books/:id show

edit_book GET /books/:id/edit edit

formatted_book PUT /books/:id update

formatted_book DELETE /books/:id destroy

Each named route will also be accessible when needed through the _url and _path helpers (four pairs
are generated excluding the ones starting with formatted_).

Formatted routes are going to be removed from Rails 2.3 because they are rarely used
and have an impact on the memory footprint. As such, the formatted helpers will
disappear as well; they will be replaced by a :format parameter passed to regular
route helpers (for example, books_path(:format => “xml“)).

Keep in mind that in reality the number of routes generated is more than seven because a counterpart that
includes a :format parameter exists for all of the routes listed in the preceding table. The whole REST
paradigm is founded on the idea that for a given resource there can be several “Representations.” This
means that in addition to the ones already listed, you also have the routes shown in the following table.

Route Name HTTP Method URL Action in BooksController

formatted_books GET /books.:format index

formatted_books POST /books.:format create

formatted_new_book GET /books/new.:format new

Continued

74955c08.indd List31374955c08.indd List313 3/4/09 9:29:21 AM3/4/09 9:29:21 AM

314

Chapter 8: Handling Requests with ActionController

(continued)

Route Name HTTP Method URL Action in BooksController

formatted_book GET /books/:id.:format

formatted_edit_
book

GET /books/:id/
edit:format

edit

formatted_book PUT /books/:id.format update

formatted_book DELETE /books/:id.:format destroy

The value of the id will of course be accessible through params[:id](as it is with any other route), and
params[:format] will do the trick for the format. However, as you’ve seen before, the respond_to
method spares you from having to worry about retrieving the format through the params hash-like object.

The request GET /books will be handled by the index action, but POST /books will be mapped
with the create action. Similarly, GET /books.xml will still be handled by the index action, but the
format of the request will be XML, and the action should handle this accordingly, by providing an
XML response.

Because the HTTP verb is meaningful and used by the routing subsystem, to destroy a resource it won’t
be enough to simply reach a URL. You have to explicitly send a DELETE request. In practice this means
that you’ll be provided with further protection from accidental, potentially damaging operations. To
illustrate this point, think of Web crawlers. They follow links — smart ones may even dynamically
come up with requests — but they defi nitely do not send DELETE requests to your Web application.

If you don’t require all of the seven actions, you can save memory resources by
indicating that only some routes need to be generated or excluded. The options
for this are :only and :except (for example, map.resources :books, :only =>
[:index, :show]).

map.resource
Defi ning a series of routes through resources assumes that an index action is going to show a list
of resources, while other actions allow you to show, edit, create, and destroy a single resource. The
resource method exists for times when you need to work with a singular resource (known as single-
ton resource), as opposed to a collection of resources. The symbol passed to the method needs to be
singular as well, whereas the corresponding controller is by default pluralized:

map.resource :catalog

The generated routes are slightly different and all singular as shown by running rake routes:

 POST /catalog {:controller=>”catalogs”, :action=>”create”}
 POST /catalog.:format {:controller=>”catalogs”, :action=>”create”}
new_catalog
 GET /catalog/new {:controller=>”catalogs”, :action=>”new”}
formatted_new_catalog

74955c08.indd List31474955c08.indd List314 3/4/09 9:29:22 AM3/4/09 9:29:22 AM

315

Chapter 8: Handling Requests with ActionController

 GET /catalog/new.:format {:controller=>”catalogs”, :action=>”new”}
edit_catalog
 GET /catalog/edit {:controller=>”catalogs”, :action=>”edit”}
formatted_edit_catalog
 GET /catalog/edit.:format {:controller=>”catalogs”, :action=>”edit”}
catalog
 GET /catalog {:controller=>”catalogs”, :action=>”show”}
formatted_catalog
 GET /catalog.:format {:controller=>”catalogs”, :action=>”show”}
 PUT /catalog {:controller=>”catalogs”, :action=>”update”}
 PUT /catalog.:format {:controller=>”catalogs”, :action=>”update”}
 DELETE /catalog {:controller=>”catalogs”, :action=>”destroy”}
 DELETE /catalog.:format {:controller=>”catalogs”, :action=>”destroy”}

Visualizing routes through the console is admittedly lame. For projects with complex routes, con-
sider installing the Vasco plugin, which is a route explorer available at http://github.com/
relevance/vasco.

GET /catalog will show the singleton resource (that doesn’t have to be identifi ed by an id, being the
only one globally identifi ed) and no index action is mapped by any of the routes either, because there
is only one catalog and hence you don’t need a list.

Customizing RESTful Routes
The routes defi ned by resources can be customized by passing a hash of additional parameters to the
method. Many of these can be used with resource as well. Aside from :only and :except, as mentioned
earlier (introduced in Rails 2.2), these are as follows.

:as
The :as option specifi es a different name to be used for the path of each generated route. Consider the
following:

map.resources :books, :as => “titles”

This will generate the routes shown in the previous tables, but with the path being titles not books.
Therefore GET /titles/42 will be mapped with the action show of the BooksController. This option
is often used when the resource name contains an underscore, but you’d like the URLs to contain a dash
instead. It’s important to notice that the *_url and *_path helpers generated are still based on the name
of the resource; so, for example, you still have new_book_url and new_book_path and not new_title_
url and new_title_path.

:collection, :member, and :new
These three options are used when you need to add routes to map to any action other than the seven
default ones. :collection specifi es one or more named routes for actions that work on a collection
resource:

map.resources :books, :collection => { :search => :get }

74955c08.indd List31574955c08.indd List315 3/4/09 9:29:22 AM3/4/09 9:29:22 AM

316

Chapter 8: Handling Requests with ActionController

This will recognize GET /books/search requests and even generate the search_books_url and
search_books_path helpers (as well as the two corresponding helpers obtained by appending
formatted). The acceptable values for the HTTP method are :get, :post, :put, :delete, and :any.
When the HTTP verb of the request doesn’t matter, you can use :any.

:member is very similar, but is reserved for actions that operate on a single member of the collection:

map.resources :books, :member => { :borrow => :post }

This will generate the route helpers to access the borrow_book named route. Finally, :new is used to
defi ne routes for creating a new resource:

map.resources :books, :new => { :register => :post }

Requests such as POST /books/new/register will be recognized and handled by the register action
of the BooksController. The named routes generated will be register_new_books and formatted_
register_new_books. Note that if you’d like to alter the accepted verbs mapping to the existing new
method, you can do so through the :new parameter as well by, for example, binding the new action to the
:any symbol representing any verb:

map.resources :books, :new => { :new => :any, :register => :post }

:conditions
The :conditions parameter was introduced fi rst in this chapter as an option for the method connect.
Because this defi nes HTTP verb restrictions on single routes, it’s hardly needed in a RESTful context.

:controller
The :controller option is used to specify a different controller for the generated routes. For example,
consider the following:

map.resources :books, :controller => “titles”

When a request for GET /books comes in, Rails knows that the index action of the TitlesController
should handle the request. The named routes, and therefore the helpers, generated are going to be based
on the name of the resource, and will therefore not be affected.

:has_one and :has_many
:has_one and :has_many are two options used as a shorthand to declare basic nested resources. The
difference between the two is that :has_one maps singleton resources rather than plural ones.

Consider this:

map.resources :books, :has_one => :author, :has_many => [:reviews, :categories]
Notice how multiple resources are assigned through an array of symbols.

This is equivalent to declaring the nested routes as follows:

map.resources :books do |book|
 book.resource :author

74955c08.indd List31674955c08.indd List316 3/4/09 9:29:22 AM3/4/09 9:29:22 AM

317

Chapter 8: Handling Requests with ActionController

 book.resources :reviews
 book.resources :categories
end

This second, more explicit, notation enables you to create resources that are nested within resources,
which in turn are nested within resources and so on to create a hierarchy that’s as deep as you want it
to be. But don’t be tempted to fall in this trap. A deeply nested resource will be accessible through very
long URLs and helpers that are no longer easy to remember or type. The consensus within the Rails
community is that one level of nested routes, as demonstrated in Chapter 6 for the comments resource,
is an acceptable compromise.

Technically, there is also a :shallow => true option that can be passed to resources before the block,
to indicate that the routes/helpers declared within the block can be used without prefi xing the name of
the resource that contains them (or any :name_prefix or :path_prefix specifi ed) when accessing an
individual resource through its id.

To learn more about this and other options, check the online documentation and consider reading the
offi cial guide “Rails Routing from the Outside In,” available at http://guides.rails.info/routing/
routing_outside_in.html. Most of the material is covered in this chapter, but you may fi nd a few
extra bits of specialized information there.

Generating Rails Guides
Rails guides are available online, but you can also generate all of Rails’ offi cial guides
by running rake doc:guides from within your Rails project. This task will place
the guides within the doc\guides folder. Upon launching index.html within your
browser, you will be able to select the guide that interests you among the ones shown
(as you can see in Figure 8-1).

Currently these are “Getting Started with Rails,” “Rails Database Migrations,”
“Active Record Associations,” “Active Record Finders,” “Layouts and Rendering in
Rails,” “Action View Form Helpers,” “Rails Routing from the Outside In,” “Basics
of Action Controller,” “Rails Caching,” “Testing Rails Applications,” “Securing Rails
Applications,” “Debugging Rails Applications,” “Benchmarking and Profi ling
Rails Applications,” and “The Basics of Creating Rails Plugins.” New guides are
likely to be published in the future.

Reading these guides will solidify, integrate, and augment the concepts presented
within this book.

Other Options
If all the options mentioned so far are not enough for what you need to do, a few further options are
available. :name_prefix and :path_prefix, respectively, are used to add a string prefi x (for example,
“book_“) and for adding a prefi x that includes variables in the same format as the pattern passed to
connect (for example, “/publisher/:publisher_id”) to the generated routes.

:singular (not available for resource) and :plural are used to specify the correct singulariza-
tion and pluralization of the resource name. Two other options, already discussed for connect, are
:requirements and arbitrarily named parameters (previously indicated with the generic name
:<parameter_name>).

74955c08.indd List31774955c08.indd List317 3/4/09 9:29:22 AM3/4/09 9:29:22 AM

318

Chapter 8: Handling Requests with ActionController

Figure 8-1

Namespaced Resources
Rails supports the so-called namespaced resources. These are resources that are consistently prefi xed
by a given string. ActionController defi nes the method namespace that automatically prefi xes the gen-
erated routes for you. For example, consider the following:

map.namespace(:admin) do |admin|
 admin.resources :books
end

There are quite a few implications to this:

Each book-related route will now expect the incoming URL to be prefi xed by ❑ admin. For
instance, to access the list of books, you’ll need a GET /admin/books request.

The controller is now expected to be located within the ❑ app\controllers\admin folder and
therefore have its name prefi xed by Admin::. In this case, the controller name needs to be
changed to Admin::BooksController.

74955c08.indd List31874955c08.indd List318 3/4/09 9:29:22 AM3/4/09 9:29:22 AM

319

Chapter 8: Handling Requests with ActionController

If you generate the ❑ BooksController by scaffolding, you will be surprised to see that the
application no longer works. This is because now all the helpers used by the application to
access book-related routes are going to be prefi xed by admin (for example, admin_books_url).

Despite the adjustments that are required, it’s often a good idea to group a few controllers within a
common namespace. The most usual scenario is indeed grouping a series of controllers that belong to
an administration section.

The same results can be accomplished by carefully combining :name_prefix and :path_prefix,
but there is really no reason to do so if namespaced routes fi t the bill.

Helpers and RESTful Routes
Besides being able to generate routes in a concise manner, RESTful routes also have an advantage when
it comes to working with helpers. Consider the following method calls, taken from the blog application:

redirect_to(@article)
redirect_to([@article, @comment])
redirect_to(article_comments_url(@article))
<%= link_to ‘Edit’, edit_article_path(article) %>
<%= link_to ‘Show’, [@article, @comment] %>

Notice how these methods are able to understand the URL that needs to be generated, by simply pass-
ing objects to them. This magic is possible thanks to the usual Convention over Confi guration principle.
Helpers are “smart” and understand that passing an object (for example, @article) means that you
want to display that resource, and therefore the URL should be generated by using the corresponding
controller name and the id of that object (for example, a GET request for /articles/12).

The same helpers are also aware of nested routes, and [@article, @comment] are automatically
mapped, in this specifi c case, to paths like /articles/12/comments/3. That array is essentially telling
the method it’s passed to (for example, redirect_to or link_to) that you want to show that comment
(for example, with id 3); keep in mind the fact that it’s nested within an article resource (for example,
with id 12).

You can consider this notation to be a shorthand version of some of the more verbose *_url and *_
path helpers.

Working with Controllers
Routing is just the fi rst part of the equation, with the second one being the actual code defi ned within
controllers. If you are familiar with ASP.NET, this is conceptually similar to the Code Behind model,
and a vital component of every Rails application. The fi nal aim is to have separation of concerns and
place just enough logic in the controller to orchestrate the application, while the heavy lifting is per-
formed by the model layer and the presentation is delegated to the view.

74955c08.indd List31974955c08.indd List319 3/4/09 9:29:22 AM3/4/09 9:29:22 AM

320

Chapter 8: Handling Requests with ActionController

Generating Controllers
In the examples presented so far, the controller was never created directly, but rather was generated as
a consequence of running the scaffold generator. Controllers are contained within textual fi les so you
could create a fi le in the right directory and defi ne the code by hand. A more convenient and practical
approach, though, is passing the controller argument to the generate script, as shown in the follow-
ing example:

All controllers inherit from the ApplicationController class defi ned in application.rb. In
Rails 2.3, this fi le is renamed as application_controller.rb to be more consistent with the nam-
ing convention of every other controller.

C:\projects\> rails chapter8
C:\projects\> cd chapter8
C:\projects\chapter8> ruby script/generate controller Account
 exists app/controllers/
 exists app/helpers/
 create app/views/account
 exists test/functional/
 create app/controllers/account_controller.rb
 create test/functional/account_controller_test.rb
 create app/helpers/account_helper.rb

This generates the controller fi le (for example, account_controller.rb), a helper to defi ne helper
methods that are specifi c to this controller (for example, account_helper.rb), and a functional test
case (for example, account_controller_test.rb).

Use app\helpers\application_helper.rb to defi ne helpers that can be reused by every control-
ler in the application.

The generated controller will then be:

class AccountController < ApplicationController
end

Notice that controllers defi ned in such a way are not RESTful by default. To make
them so, you have to use methods like map.resources in routes.rb, as well as
add the corresponding default seven actions. For this reason, when you need to
create a RESTful controller, it is usually more convenient to rely on the scaffold
generator that does this specifi c task for you.

The controller generator also accepts a list of actions/views:

C:\projects\chapter8> ruby script/generate controller BankAccount deposit withdraw
 exists app/controllers/
 exists app/helpers/
 create app/views/bank_account
 create test/functional/
 create app/controllers/bank_account_controller.rb
 create test/functional/bank_account_controller_test.rb

74955c08.indd List32074955c08.indd List320 3/4/09 9:29:22 AM3/4/09 9:29:22 AM

321

Chapter 8: Handling Requests with ActionController

 create app/helpers/bank_account_helper.rb
 create app/views/bank_account/deposit.html.erb
 create app/views/bank_account/withdraw.html.erb

This generates the usual controller fi les as well as the default XHTML code for the views indicated in
the given arguments. The generated controller will contain the corresponding actions:

class BankAccountController < ApplicationController
 def deposit
 end

 def withdraw
 end

end

Use ruby script/destroy controller ControllerName to destroy an existing controller and all
the associated fi les that were generated for it.

You can use either CamelCase (like the class name) or snake_case (like the fi le name) strings to indicate
the name of the controller that needs to be generated or destroyed.

Action Processing
Routing directs Rails as to which controller class should be instantiated and which method name (the
action) should be invoked. But what happens if the method name is not there? To understand how
things work, it is necessary to learn about the algorithm used by Rails for action processing.

Imagine that the incoming request requires the execution of the action deposit. The steps taken are
straightforward. Rails will:

 1. Search for a public method deposit in the controller. If the method is found, this is executed.

 2. If the method cannot be found, Rails looks for a method_missing method within the control-
ler. If this exists, it’s executed. From within method_missing it’s possible to access the action
name because this is passed as a parameter.

 3. If method_missing is (fi ttingly) missing, Rails searches for a corresponding template. If the
controller is AccountController and the action requested through a Web browser is deposit,
the template desposit.html.erb is searched for in app\views\account.

 4. Finally, if none of the above could be found, an “Unknown action” exception appears.

These four steps have a few implications for the developer. The fi rst step is usually the desired outcome,
so it’s important that your actions are defi ned as public methods (Ruby’s default). If you defi ne them as
protected or private, these methods will be available from within the controller, but won’t be accessible
to the end user as actions.

If you need to hide a method that absolutely must be public, you can also use the method hide_
action. Usually this is not necessary though and almost always symptomatic of code that could use
some redesigning.

74955c08.indd List32174955c08.indd List321 3/4/09 9:29:23 AM3/4/09 9:29:23 AM

322

Chapter 8: Handling Requests with ActionController

The method_missing method can be used to implement a metaprogramming trick to dynamically
determine the code that will be executed for the incoming request:

def method_missing(method)

 #... code ...

end

This can be useful in very specifi c cases where there’s a concrete need for such a feature, but be wary of
abusing this option for sake of coolness.

Finally, the third step implies that you can defi ne “static” pages by simply defi ning a template. The
template will still take advantage of the layout defi ned for the controller at hand, and will still be able to
use ERb, but in the controller there will be no corresponding action for it.

Many still fi nd it useful to keep track of all the actions, by defi ning empty/stub actions in the controller for
these templates, even if they are not strictly necessary. Searching Google for “Rails static pages” (without
quotes) will lead to a series of articles and blog entries on the topic, and will give you a lot of insight about
more elaborate approaches that are taken to serve static content in a highly dynamic Rails application.

Rendering
An action’s main goal is to enable the formulation of a response for each user request. To be exact, that’s
one response per request. An action typically sets up one or more instance variables and renders a tem-
plate that uses these variables to present them in a meaningful way. This is not always the case though;
when appropriate, a request can send only headers back and not the actual body of the content. This is
fairly common for some Ajax requests.

Because only one response is sent back to the client, at most an action should invoke
the rendering of one template.

Whether a template is involved or you’re sending a string of text or just headers back to the template,
the method of choice is the fi ttingly named render.

render
Invoked without parameters, render will render the default template for the given action. For example,
the following snippet renders the hello.html.erb template back to the client:

def hello
 render
end

Notice that this is the default behavior, and the explicit render is not required. As mentioned in the
previous section, for such a basic case, not even the action needs to be declared because Rails automati-
cally looks for the template.

74955c08.indd List32274955c08.indd List322 3/4/09 9:29:23 AM3/4/09 9:29:23 AM

323

Chapter 8: Handling Requests with ActionController

If you are working with a legacy Rails application, the template that is rendered could be called
hello.rhtml. This is the old-fashioned extension for HTML ERb templates in Rails.

By passing a :text argument, you can render a string back to the browser thus bypassing any template
rendering:

def hello
 render(:text => “Hello, Rails!”)
end

Even though the parentheses are recommended in general, in many code bases this is found without
parentheses.

Passing :action allows you to render the default template for another action:

def hello
 render(:action => “index”)
end

The index.html.erb template is rendered, but the code of the index action is not. For this reason,
if that template expects to use instance variables that have been set up by index, these have to be set
up in hello as well. But if that’s the case, chances are that you should use redirect_to (as explained
further later on in this chapter).

render :action doesn’t execute the code within the specifi ed action; only its
default template is rendered.

A template name can be rendered through the :template option:

def hello
 render(:template => “example/my_template”)
end

Notice that both a controller and a template name must be specifi ed.

If a :locals hash is passed to the method as well, the values assigned to its key will be available as
local variables within the template.

Likewise, a template can be specifi ed as an absolute fi le path through the option :file. Aside from
:locals, in this case render also accepts a :user_full_path Boolean option, to switch to a relative path.

It’s also possible to provide the source for a template inline as a parameter. Use :inline and assign a
string representing the template to it. Within this string you can embed variable evaluations (for example,
#{my_var}) as well as accessing values passed within the :locals hash. The template engine defaults to
ERb, but you can specify differently through the :type key. This accepts “erb”, “builder”, and “rjs.”

Other common options are render(:nothing => true) to send an empty body back to the client,
:partial to render a partial template, and :xml and :json for rendering XML and JSON data and
to set the content type appropriately (for example, application/xml). Finally, an :update option is
available if you want to pass the current page object to a block of RJS code.

74955c08.indd List32374955c08.indd List323 3/4/09 9:29:23 AM3/4/09 9:29:23 AM

324

Chapter 8: Handling Requests with ActionController

Consult the more than extensive online documentation for the ActionController::Base#render
method, to see further examples and details about the many extra options (for example, :layout) avail-
able for each of these rendering types.

Running the API Documentation Locally
Rails has become a fairly large and fl exible framework. For each method or concept
that’s introduced, many more options are available to customize its behavior to your
liking. Due to the limited size of the book you are holding, it’s neither possible nor
wise to reproduce the whole API documentation, which already exists online. You
should become well acquainted with it, because it’s going to become your main tool
when working with Rails.

Aside from accessing the documentation online, you can also download a local copy
from sites like http://www.railsbrain.com. Another option, perhaps less fancy in
terms of presentation, is to run a documentation server locally. This makes the docu-
mentation available not just for Rails, but for all of the gems for which RDoc documen-
tation has been installed on your system. To do so run: gem server from anywhere in
your system. The documentation for this is available at http://localhost:8808.

Aside from a more Spartan presentation, the downside to this is losing both the Ajax
search facility and the insightful comments and notes that you can fi nd on sites like
http://apidock.com/rails.

send_data and send_fi le
So far you saw that it’s possible to send “nothing” (well, just the headers), a string, or a template-based
response. But what about fi les or more “generally arbitrary” data streams? Rails provides two methods
for this: send_data and send_file.

The following is a fi ctitious example, inspired by the awesome movie Offi ce Space, of how to send a PDF
report in response through send_data:

def report
 tps_report = QualityAssurance.generate_report(Date.today, :format => :pdf)
 send_data(tps_report, :type => “application/pdf”, :fi lename => “tps_report.pdf”
end

Notice how it is passing three arguments to the method: the data that constitutes the document, image,
or binary fi le; an HTTP content type (which defaults to application/octet-stream); and the fi le
name suggested to the browser. Two other two available options are :disposition and :status.
:disposition defaults to “attachment” (save and download) but can also be set to “inline” (often
used for images). :status is used to indicate an HTTP status code (defaults to “200 OK” of course).

For working with reports, I highly recommend the Ruby gem Ruport. You can read
more about it on its offi cial website at http://rubyreports.org.

74955c08.indd List32474955c08.indd List324 3/4/09 9:29:23 AM3/4/09 9:29:23 AM

325

Chapter 8: Handling Requests with ActionController

Similarly, it’s possible to send a fi le that’s available on the server, to the client. The following example
shows how to use send_file to do just that:

def download
 send_file ‘/path/to/ebook.zip’
end

This method also accepts several options, including :filename, :disposition, :type, and :status,
as seen with send_data. Other available options are :stream, :buffer_size, :url_based_file-
name, and x_send_file:

:stream ❑ determines if the fi le should be sent to the user agent as soon as it’s read (if set to
true, which is the default behavior if the option is omitted) or if it should only be sent after the
entire fi le has been read (if set to false).

:buffer_size ❑ specifi es the buffer size in bytes for streaming (defaults to 4096 bytes).

:url_based_filename ❑ can be set to true if you want the browser to determine the fi le name
based on the URL. This is necessary for i18n fi le names on certain browsers. Specifying a fi le
name overrides this option.

:x_send_file ❑ is an option that, when set to true, enables support for the X-Sendfile HTTP
header in the Apache Web server. The fi le will be served directly from the disk and not by
streaming through a Rails process. The end result is a faster, less memory-intensive operation.
This option was incorporated into Rails 2.1 (previously it was available as a plugin), but not all
Web servers support it.

NGINX and x_send_fi le => :true
Nginx — an excellent Russian Web server that’s popular within the Rails com-
munity — can take advantage of the x_send_file feature as long as you set the
header to X-Accel-Redirect (which is similar to the X-Sendfile of Apache). To
do so, add the following line to your environment.rb or to an initializer:

ActionController::Streaming::X_SENDFILE_HEADER = ‘X-Accel-Redirect’

redirect_to
When the code generated through scaffolding was analyzed, it contained several redirect_to methods.
This method allows an action to hand control over to another action. This is very useful and it’s a tech-
nique that’s used in pretty much all Rails applications. Think about the destroy action in your RESTful
articles controller:

 def destroy
 @article = Article.find(params[:id])
 @article.destroy

 respond_to do |format|
 format.html { redirect_to(:back) }
 format.xml { head :ok }
 end
 end

74955c08.indd List32574955c08.indd List325 3/4/09 9:29:23 AM3/4/09 9:29:23 AM

326

Chapter 8: Handling Requests with ActionController

This action destroys an article and then, if the requested format is in HTML, it redirects to the
articles_url (or the unpublished page, whichever triggered the deletion), which will be handled
by the same controller’s index action (or again, unpublished). This shows a list of articles to the
user, who will see that the article was just deleted.

As mentioned before for render, only one redirect_to should be ever executed
within an action.

Aside from providing :back or a path, it’s also possible to redirect directly to an action:

redirect_to(:action => :thanks)

The options provided (for example, :action, :controller, :id, and so on) will be passed to url_ to
generate the actual URL that Rails needs to redirect to. This means that all the nice options discussed in
the routing section are available to redirect_to as well.

By default these redirects are performed as “302 Found,” but it’s possible to specify otherwise through
the :status option by setting it to, for example, :301 (or the equivalent :moved_permanently):

redirect_to(articles_url, :status => :301)

Less elegantly, it’s also possible to set the Status key (in the headers hash) within the action before
performing a redirect:

headers[“Status”] = “301 Moved Permanently”
redirect_to(articles_url)

Finally, remember that redirect_to(:back) is just a syntax sugar for redirecting back to the page
that issued the request, without the need to write your own logic (that is, redirect_to(request
.env[“HTTP_REFERER”])).

Accessing the Request and
Response Environment

The last couple of examples do something very interesting: the fi rst alters the HTTP headers for the
response that is about to be sent, and the second accesses the HTTP REFERER of the request. This is
neat, but Rails offers much more when it comes to accessing request and response information.

The following is a list of special identifi ers that you can use from within your controller: action_name,
cookies, headers, logger, params, request, and response.

Their names are self-descriptive: action_name is a method that returns the name of the current action;
cookies represents the cookies for the request; headers is a hash of HTTP headers for the response;
logger is a ActiveSupport::BufferedLogger object that’s available throughout the application as
discussed before; and params is the parameters hash.

74955c08.indd List32674955c08.indd List326 3/4/09 9:29:23 AM3/4/09 9:29:23 AM

327

Chapter 8: Handling Requests with ActionController

request and response are objects that represent the request being processed and the response that is
about to be sent, respectively.

You rarely have to modify the response object directly, because Rails takes care of formulating a
proper response on its own. However, in the few circumstances where you need to alter the object
before it’s sent to the client, you can do so easily by accessing one or more of its attributes. Among
these, the two that will most likely be used to alter the response object are body and headers.

request, on the other hand, is slightly more complex, and is used frequently enough to warrant further
explanation.

To learn more about these two objects, check the documentation for the abstract classes
ActionController::AbstractRequest and ActionController::AbstractResponse.

The request Object
The environment of a request is captured in the read-only attribute env. From within a debugging session
for a simple request, I obtained the following output for request.env:

(rdb:5) request.env
{“SERVER_NAME”=>”localhost”, “PATH_INFO”=>”/main”,
“HTTP_ACCEPT_ENCODING”=>”gzip,deflate,bzip2”, “HTTP_USER_AGENT”=>”Moz
illa/5.0 (Windows; U; Windows NT 6.0; en-US) AppleWebKit/525.13 (KHTML, like Gecko)
 Chrome/0.2.149.30 Safari/525.13”, “S
CRIPT_NAME”=>”/“, “SERVER_PROTOCOL”=>”HTTP/1.1”, “HTTP_HOST”=>”localhost:3000”,
“HTTP_ACCEPT_LANGUAGE”=>”en-US,en”, “REM
OTE_ADDR”=>”127.0.0.1”, “SERVER_SOFTWARE”=>”Mongrel 1.1.5”,
“REQUEST_PATH”=>”/main”, “HTTP_ACCEPT_CHARSET”=>”ISO-8859-1,
*,utf-8”, “HTTP_VERSION”=>”HTTP/1.1”, “REQUEST_URI”=>”/main”,
 “SERVER_PORT”=>”3000”, “GATEWAY_INTERFACE”=>”CGI/1.2”, “HT
TP_ACCEPT”=>”text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/pl
ain;q=0.8,image/png,*/*;q=0.5”, “HTTP
_CONNECTION”=>”Keep-Alive”, “REQUEST_METHOD”=>”GET”}

That’s a lot of information that can be used to obtain details about the client and the request. For exam-
ple, request.env[“HTTP_USER_AGENT”] retrieves the user agent for the browser that’s being used (in
this case Google Chrome).

env is the only attribute for request, but many methods are defi ned by this object.

Purposely, many of these methods are there to facilitate access to the same information that’s available
in the env hash-like object.

headers returns a hash of HTTP headers:

(rdb:5) request.headers
{“SERVER_NAME”=>”localhost”, “HTTP_USER_AGENT”=>”Mozilla/5.0 (Windows; U; Windows
NT 6.0; en-US) AppleWebKit/525.13 (KHT
ML, like Gecko) Chrome/0.2.149.30 Safari/525.13”,
“HTTP_ACCEPT_ENCODING”=>”gzip,deflate,bzip2”, “PATH_INFO”=>”/main”, “H
TTP_ACCEPT_LANGUAGE”=>”en-US,en”, “HTTP_HOST”=>”localhost:3000”,

74955c08.indd List32774955c08.indd List327 3/4/09 9:29:23 AM3/4/09 9:29:23 AM

328

Chapter 8: Handling Requests with ActionController

“SERVER_PROTOCOL”=>”HTTP/1.1”, “SCRIPT_NAME”=>”/“, “REQ
UEST_PATH”=>”/main”, “SERVER_SOFTWARE”=>”Mongrel 1.1.5”,
“REMOTE_ADDR”=>”127.0.0.1”, “HTTP_VERSION”=>”HTTP/1.1”, “HTTP_A
CCEPT_CHARSET”=>”ISO-8859-1,*,utf-8”, “REQUEST_URI”=>”/main”,
“SERVER_PORT”=>”3000”, “GATEWAY_INTERFACE”=>”CGI/1.2”, “HT
TP_ACCEPT”=>”text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/pl
ain;q=0.8,image/png,*/*;q=0.5”, “REQU
EST_METHOD”=>”GET”, “HTTP_CONNECTION”=>”Keep-Alive”}

Similarly, body, content_type, and content_length return the request’s body as an IO stream,
the MIME type (for example, Mime::XML), and the length of the body in bytes. accepts and format,
respectively, return the accepted MIME types and the format (as a MIME type as well) used in the
request. If no format is available, the fi rst of the accepted types will be used (for browsers this is usually
Mime::HTML).

When you are using the respond_to method introduced in Chapter 5, there is usually no need to
invoke these “low-level” mime methods directly. The logic that needs to be implemented for each format
in the request (among the registered ones, known to Rails) will be defi ned within the block passed to the
method respond_to.

host, domain, port, port_string, host_with_port, protocol, request_uri, url, and parameters
all work as you’d probably expect them to:

(rdb:5) request.host
“localhost”
(rdb:5) request.domain
“localhost”
(rdb:5) request.port
3000
(rdb:5) request.port_string
“:3000”
(rdb:5) request.host_with_port
“localhost:3000”
(rdb:5) request.protocol
“http://“
(rdb:5) request.request_uri
“/main”
(rdb:5) request.url
“http://localhost:3000/main”
(rdb:5) request.parameters
{“action”=>”index”, “controller”=>”main”}

remote_ip is used to retrieve the IP address that issued the request. This method returns a string con-
taining a single IP, or more IPs if one or more proxies are involved.

The request object also has the two methods method and request_method. These return the HTTP
method used for the request as a symbol:

(rdb:5) request.method
:get
(rdb:5) request.request_method
:get

74955c08.indd List32874955c08.indd List328 3/4/09 9:29:24 AM3/4/09 9:29:24 AM

329

Chapter 8: Handling Requests with ActionController

The difference between the two is that method will return :get when a :head request is issued. The
reason for this is that from an application standpoint there is usually no need to distinguish between a
:get and a :head request.

There is a series of methods that return Boolean values. These methods follow Ruby’s convention of
ending with a question mark. Among the most common are get?, post?, put?, delete?, head?, ssl?,
xhr?, and xml_http_request?.

The fi rst fi ve, corresponding to their fi ve respective verbs, will return true only if the request was
issued using the proper HTTP method. request.post?, for example, will return true for POST
requests and false for any other type of request verb.

It is common to see an if request.get? or if request.post? statement within an action. This is
usually present whenever an action acts differently based on whether the incoming request was a GET
or a POST request. In a RESTful controller, if an action is accessible only by a GET or only by a POST
request, there is no need to use these methods to check the verb.

Dangerous GET requests
The golden rule of Web development is that any request that retrieves information
should be a GET request, and any request that affects the data stored on the server
should use the POST HTTP method.

This rule is constantly violated and it’s not rare to see publicly accessible links that
issue GET requests and have the ability to delete or modify data on the server side.
You should avoid this at all costs. Using buttons to submit forms rather than links is
a suffi cient countermeasure. Another is to use intermediary pages that confi rm the
requested action.

In the world of REST, you are not limited to GET and POST. You can (and should) use
DELETE to destroy resources, POST to create them, PUT to update them, and GET to
retrieve them. So PUT and DELETE can affect the state of the server as well, whereas
GET shouldn’t, whether or not you are in a RESTful context.

Also keep in mind that at this point in time most browsers don’t support PUT and
DELETE, so these are emulated through POST requests.

ssl? is used to determine whether this was an SSL request, and fi nally, xml_http_request? (and its
alias xhr?) are used to check if the incoming request is an Ajax request. This is done by verifying that
the value “XMLHttpRequest” was assigned to the request’s X-Requested-With header.

This method is fundamental to Ajax applications, because a response will typically vary depending on
whether or not the request was an Ajax one. Ajax requests will normally require a response that updates
only certain elements of the page, whereas a regular HTML request requires rendering the whole page.

Maintaining the State
It is fair to state that each request-response pair is a world unto itself. For example, an instance variable
set within the index action is not going to be available in the view when serving a second request for
the edit action.

74955c08.indd List32974955c08.indd List329 3/4/09 9:29:24 AM3/4/09 9:29:24 AM

330

Chapter 8: Handling Requests with ActionController

By the way, go easy on the number of instance variables that you defi ne in each
action. These are expensive and introducing an excessive number of instance vari-
ables is considered to be faux pas. If a variable within a controller is not going to be
used by the view, declare it as a local variable (that is, don’t prefi x it with a @ sign).

The stateless nature of the Web poses the challenging question of how to maintain the state. This
could be something as simple as carrying a message over from an action to another when a redirect
is required, or a more elaborate solution to keep track of which users are currently logged in, without
prompting them to re-enter their username and password at each new request for a protected page.

In Rails, the fi rst scenario is resolved through a flash object, and the second by employing sessions.

Flash
As mentioned previously, instance variables defi ned within an action are not available to requests that
are serving a different action. The reason for this is that with each request, a brand new instance of the
controller is generated. This implies that instance variables cannot be used as a means to pass messages
between actions whenever you are performing a redirect (which is, for all practical purposes, a new
request). For example, the following snippet will not work because @message will be nil within the
confi rm action:

Don’t do this
def create
 @email = Email.new(params[:email])
 if @email.save
 @message = ‘Your email has been subscribed to our newsletter’
 redirect_to(:action => “confi rm”)
 else
 render(:action => “new”)
 end
end

def confirm
 render :text => @message
end

Flash is a hash-like object that has the peculiar characteristic of making its content available until the
next request has been processed. Because of this, it’s possible to store informative and error messages
that you intend to display in the action that you are redirecting to. For example, this is the code for the
create method in the ArticlesController of the blog application:

def create
 @article = Article.new(params[:article])

 respond_to do |format|
 if @article.save
 fl ash[:notice] = ‘Article was successfully created.’
 format.html { redirect_to(@article) }
 format.xml { render :xml => @article, :status => :created,
 :location => @article }

74955c08.indd List33074955c08.indd List330 3/4/09 9:29:24 AM3/4/09 9:29:24 AM

331

Chapter 8: Handling Requests with ActionController

 else
 format.html { render :action => “new” }
 format.xml { render :xml => @article.errors,
 :status => :unprocessable_entity }
 end
 end
end

When serving a regular request that comes from a browser, the :notice “key” of the hash-like fl ash
object is assigned a confi rmation message before redirecting to the show action for the article that was
just created. That message is then retrieved by the view, while processing the next action (show). In
fact, in this case (and by default when scaffolding), you render the value of flash[:notice] in green
within the articles.html.erb layout:

...
<div id=”main” class=”container”>
 <p style=”color: green” id=”notice”><%= fl ash[:notice] %></p>
 <%= yield %>
</div>
...

The evaluation of this value could have been placed in any view (for example, show.html.erb), but
it’s usually convenient to make it available for all the actions of a controller, by positioning it within the
layout just before the yield method.

When the show action is fi nally processed and the message has been displayed, fl ash will automatically
clear its content. You can choose any key (for example, flash[:confirmation]), but the most common
ones in Rails projects are:notice, :warning, and :error.

The object offers a few methods to alter the default behavior. discard enables you to mark the fl ash to
be swiped at the end of the current action. You can either discard the whole object or just one entry:

flash.discard # Discard all
flash.discard(:error) # Discard :error only

now sets the fl ash so that it’s available for the current action only. You can use it as follows:

flash.now[:notice] = “You’re still in the current action!”

Having used now doesn’t affect the way the fl ash entries are retrieved in the view (for example,
flash[:notice]).

Finally, the method keep allows you to extend the lifespan of the fl ash entries for one more action. Just
like discard, you can scope the method to a single entry:

flash.keep # Keep all the entries
flash.keep(:notice) # Keep the :notice entry only

Behind the scenes, both discard and keep use the same method, namely use, which is a private method
that allows them to mark fl ash entries as already having been used (for discard) or as unused (for keep).

Any serializable object can be stored in the fl ash, but it’s highly recommended that you keep it simple,
and limit the contents to messages (strings) or parameter passing (to the next action).

74955c08.indd List33174955c08.indd List331 3/4/09 9:29:24 AM3/4/09 9:29:24 AM

332

Chapter 8: Handling Requests with ActionController

The fl ash is stored in the session data, and as such it requires that the sessions are enabled (which they are
by default) to work properly. The fl ash mechanism could easily be emulated by saving the message in the
session directly. Unlike saving the messages in a key within the session though, fl ash is handy because it
automatically clears itself after a response has been provided for the next request, whereas objects in the
session stick around until the session data has been explicitly removed or the session has expired.

Sessions
Because HTTP is a stateless protocol, Rails sessions are used to persist the state across several
actions/requests. If you’ve done Web development before, this concept should not be new to you. For
example, if you are familiar with the ASP.NET session state, you know that session variables are stored
in a SessionStateItemCollection object, which in turn is exposed within a WebForms page as its
Session property.

Setting session variables in ASP.NET is fairly straightforward thanks to Session:

Visual Basic (.NET)
Dim firstName As String = “Antonio”
Dim lastName As String = “Cangiano”
Session(“FirstName”) = fi rstName
Session(“LastName”) = lastName

C#
string firstName = “Antonio”;
string lastName = “Cangiano”;
Session[“FirstName”] = fi rstName;
Session[“LastName”] = lastName;

And so is retrieving them:

Visual Basic (.NET)
Dim firstName as String = CType(Session.Item(“FirstName”), String)
Dim lastName as String = CType(Session.Item(“LastName”), String)

C#
string firstName = (string)(Session[“FirstName”]);
string lastName = (string)(Session[“LastName”]);

In the Rails world, session data is stored in a collection-like object too (or hash-like in Ruby speak),
which is accessible through the session (lowercase) attribute of each controller. Setting the same val-
ues outlined previously in Rails is done as follows:

session[:first_name] = “Antonio”
session[:last_name] = “Cangiano”

And retrieving values set elsewhere is just as easy, like if you were dealing with a regular hash:

first_name = session[:first_name]
last_name = session[:last_name]

74955c08.indd List33274955c08.indd List332 3/4/09 9:29:24 AM3/4/09 9:29:24 AM

333

Chapter 8: Handling Requests with ActionController

session’s keys can be strings, but it’s idiomatically preferred to use symbols. The distinction between
strings and symbols is explained in Chapter 3.

What to Store in the Session?
Though sessions can store any serializable object (those that can be marshaled and
unmarshaled through Ruby’s Marshal.dump and Marshal.load methods), it is a
good idea to try to keep your session data’s size to a minimum. Instead of storing
a whole ActiveRecord object (which is a very bad practice to get in the habit of), just
store its id. Don’t store too much data (as you will see, the cookie-based sessions are
limited to 4Kb) and try to avoid storing important information within the session
before it has been safely persisted in the database.

Like the ASP.NET session state, Rails sessions are identifi ed by a unique id known as the session id.
This is randomly generated as a 32-hexadecimal characters long value, and just like the SessionID
property in ASP.NET, this too is stored in a cookie by default, ready to be retrieved at each request to
identify which session data belongs to which request.

The cookies generated by Rails are crypto-signed, to ensure that their content is valid and that they
haven’t been tampered with by a malicious user (even though their content is not encrypted and is there-
fore visible in clear text). Furthermore, Rails 2.2 increases the security of your projects by setting by the
default option :session_http_only to true. This disables JavaScript from having access to the cookies.

The fact that the session_id key is assigned 32 hexadecimal characters implies that a Rails applica-
tion is able to uniquely identify up to 340282366920938463463374607431768211456 different active
sessions (that’s 16 to the 32nd power).

When dealing with sessions, the most important question to ask is where to store the session data.

Session Storage Options
Rails offers several session storage options, each of which has its own pros and cons, depending on
your application type, traffi c, and deployment arrangements.

ActiveRecordStore
With the ActiveRecordStore session data is marshaled in Base64 format and stored in a data column
within a sessions table in the database by default. That table has a session_id text fi eld and, by con-
vention, the usual id primary key. As usual, these defaults can be overwritten if need be. By default the
table is defi ned with the automatically handled updated_at and created_at attributes, which makes
implementing session expiration fairly easy.

Run rake db:sessions:create to create a migration fi le for the sessions table. The generated fi le
will then be defi ned as follows:

 class CreateSessions < ActiveRecord::Migration
 def self.up
 create_table :sessions do |t|
 t.string :session_id, :null => false

74955c08.indd List33374955c08.indd List333 3/4/09 9:29:24 AM3/4/09 9:29:24 AM

334

Chapter 8: Handling Requests with ActionController

 t.text :data
 t.timestamps
 end

 add_index :sessions, :session_id
 add_index :sessions, :updated_at
 end

 def self.down
 drop_table :sessions
 end
end

Notice how session_id is not nullable, a default id column is generated, and indexes are defi ned for
both session_id and updated_at to improve performance.

At this point, all you have to do is migrate (rake db:migrate) and set active_record_store as the
session storage for the application in config\environment.rb. There is a commented out line for this
particular option already, so all you have to do it is uncomment it:

 config.action_controller.session_store = :active_record_store

That symbol corresponds to the class CGI::Session::ActiveRecordStore. Like the other options
you’ll see in a moment, the symbol used for setting the session store is always the snake_case version
of the class name.

When you develop, at times you may need to clear all the sessions. To do so quickly and easily, use the
handy rake db:sessions:clear.

CookieStore
CookieStore is Rails’ default session storage. Unlike ActiveRecordStore, where the session data is
stored server side in the database, CookieStore stores the data client-side in cookies.

We can only assume that this would be his favorite session storage option if Cookie Monster were to
ever entertain the idea of programming in Rails.

The session data stored in cookies is limited to 4096 bytes. The user cannot modify the content of a
cookie, though (for example, altering a user_id variable to access other people’s session data). In fact,
each cookie includes a message digest and the integrity of the cookie is checked through the SHA1
algorithm. This can be changed to other digests supported by OpenSSL (for example, SHA256, MD5,
and so on).

In environment.rb you’ll fi nd a :secret option set for verifying cookie-based
sessions. This is randomly generated for you and needs to be at least 30 characters
long. Don’t replace it with common words, or it will be vulnerable to diction-
ary attacks. If you are porting a legacy application to Rails 2.2, you can use rake
secret to have a cryptographically secure key generated for you.

74955c08.indd List33474955c08.indd List334 3/4/09 9:29:24 AM3/4/09 9:29:24 AM

335

Chapter 8: Handling Requests with ActionController

Because this is Rails’ default option, it usually isn’t required that this is set explicitly; but if you were to
do so, it would be set as follows:

 config.action_controller.session_store = :cookie_store

Rails provides you with a cookies attribute as well, which enables you to work directly with cookies
should you need to. This wraps the process of reading and writing cookies into an abstraction layer that
works similarly to a hash.

The CookieStore is a sensible default, given that it’s very easy on the server and there is nothing to
set up. It is in fact a good choice for applications that expect a lot of traffi c. But there are two important
caveats: CookieStore is only suitable if the data that’s being stored doesn’t exceed 4 Kb (it’s always a
good idea to keep your sessions light) or isn’t sensitive/confi dential, given that the end user can read
the marshaled content.

CookieStore is “easy on the server” because all of the session data is stored client side. All the server
has to do is serialize the data and write it in a cookie at the end of the request processing, and conversely
read the data from the cookie, verify its integrity, and unmarshal its content for the controller to use.

DrbStore
DRb stands for Distributed Ruby and it’s a library that’s used to share objects via TCP/IP. When adopting
DrbStore, the marshaled session data is stored on a DRb server. This server doesn’t belong to the applica-
tion, and as an external entity is not handled by Rails either.

Rails provides you with a DRb server, but it’s very primitive and is essentially a hash that’s enabled
for DRb access. You can fi nd it in C:\ruby\lib\ruby\gems\1.8\gems\actionpack-2.2.2\
lib\action_controller\session\drb_server.rb (your actual location may vary depending
on where you installed Ruby and whether you installed Rails as a gem).

To use this option, specify:

 config.action_controller.session_store = :drb_store

This is theoretically a highly scalable solution for session management, because the distributed nature
of DRb would enable scaling out with multiple processes on several servers serving many requests that
need to access the same session object. The caveat to this is that an effi cient DRb server, with the ability
to expire sessions as well, is required (for example, you may have to develop one).

MemCacheStore
memcached is a high-performance, distributed memory object caching system that was originally devel-
oped for LiveJournal, but now it’s used by many of the largest websites on the net, including YouTube,
Wikipedia, Slashdot, Flickr, Digg, and Twitter. The basic idea behind this open-source program (released
under the BSD license) is to alleviate the database load by reducing the amount of access to the database
that’s required to retrieve data. Data and objects are in fact cached in memory, often in a distributed
fashion across multiple machines. The database is only accessed if the data has not been stored in the
in-memory cache. If this is the case, memcached falls back on the database.

74955c08.indd List33574955c08.indd List335 3/4/09 9:29:24 AM3/4/09 9:29:24 AM

336

Chapter 8: Handling Requests with ActionController

This option is set by including the following line in config\environment.rb (or config\environ-
ments\production.rb if you only need it for production):

config.action_controller.session_store = :mem_cache_store

There are quite a few options that you can specify and the MemCacheStore’s confi guration and setup
are beyond the scope of this book. Just keep in mind that should your high-traffi c site adopt memcached
to ease the database server load, then taking advantage of memcached for the sessions as well, through
the MemCacheStore, is a good idea. As an added benefi t, you get the ability to set the expiration time in the
confi guration, and you no longer have to worry about routinely expiring/cleaning up the session data:

config.action_controller.session_options[:expires] = 1200

PStore
When you use this option, ActionController stores sessions within fi les (in PStore format, keeping the
data in marshaled form) on the server. It can be set as follows:

config.action_controller.session_store = :mem_cache_store

Assigning strings to session_options’s keys is possible if you want to defi ne a prefi x for the fi les
(with :prefix), as well as their location (with :tmpdir). By default the generated fi les are stored in
the tmp\sessions folder of your application and can be tidied up as you develop with the rake task
tmp:sessions:clear.

In production, the same fi les will typically need to be cleaned up periodically, often executing the fi le
elimination through cron, which is a scheduling service for Unix-like systems.

In theory PStore can work well if you have a fast SAN (Storage Area Network) in place or if you have
one server and a limited amount of traffi c; but as the number of sessions grow, beyond a certain thresh-
old having to create so many fi les in the fi le system will inevitably become a bottleneck, which will
therefore perform poorly when compared to the other solutions mentioned previously.

Other Storage Options
For the sake of completeness, two other storage options exist: MemoryStore and FileStore. These
store the session data in either the memory (fast but not scalable) or in plain fi les (which only accept
strings and have the same limits of PStore). In practice, no Rails developer worth their salt would be
likely to choose either of these options.

If you search for them, you’ll also fi nd that other *Store classes have been released by some developers,
but these are not part of the Rails core and their quality and stability may vary.

In conclusion, there isn’t a clear winner when it comes to choosing how to store your sessions. It depends
on too many factors to be able to broadly suggest which one you should take up for your projects. As a very
general rule of thumb, I’d say that you might want to start with CookieStore if the 4Kb limit works for
you and you don’t need to store confi dential information in the session. Failing that, ActiveRecordStore
is a good choice that’s relatively fast, easy to maintain, and scalable. Should the success of your Web appli-
cation cause you to need to offl oad some of the database work, then MemCacheStore or DrbStore should
do the trick. In any case, I would probably stay away from a fi le-based solution like PStore.

74955c08.indd List33674955c08.indd List336 3/4/09 9:29:25 AM3/4/09 9:29:25 AM

337

Chapter 8: Handling Requests with ActionController

Enabling and Disabling Sessions
Aside from choosing a proper session storage type, you can use the session method within your
controllers to fi ne tune how sessions should be handled. By default sessions are enabled for all the
actions within each controller in your application, but it’s possible to be more selective than that.

Sessions in Rails 2.3 are “lazy loaded,” meaning that they are not loaded unless you make explicit use
of them.

To disable sessions within a controller pass :off to the macro-like session method:

class ExampleController < ActionController::Base
 session :off
 #...
end

This disables session management for all the actions defi ned within ExampleController.

To disable session management for all the actions, save for a few, within a controller, use the
:except option:

session :off, :except => %w(download feed)

Conversely, to do the exact opposite and disable sessions for only a few actions, use :only:

session :off, :only => %w(download feed)

An :if option exists for times when you need to disable (or enable) a session based on a condition. This
option expects a Proc object:

Disables session management for all the actions, excluding index,
if the request was not an HTML or Ajax request.
session :off, :except => :index,
 :if => Proc.new { |req| !(req.format.html? || req.format.js?) }

session can be used within ApplicationController, so that its effects are inherited by all the other
controllers. For example, the following disables sessions for the whole application:

class ApplicationController < ActionController::Base
 session :off
 #...
end

If you need to enable sessions for a few controllers and/or a few actions only, you can do so by using
session :on. For example, consider the following controllers:

class ApplicationController < ActionController::Base
 session :off
 #...
end

74955c08.indd List33774955c08.indd List337 3/4/09 9:29:25 AM3/4/09 9:29:25 AM

338

Chapter 8: Handling Requests with ActionController

class FirstController < ActionController::Base
 session :on
 #...
end

class SecondController < ActionController::Base
 session :on, :only => :feed
 #...
end

This disables session management for all the controllers, but turns it back on for all the actions in the
fi rst controller, and for the feed action in the second controller.

The same method can be used to specify a few more options as well. Some common ones are setting a ses-
sion domain (:session_domain), a default session id (:session_id), the name to be used for the session
in cookies (:session_key), the request path for the cookies (:session_path), and whether sessions are
enabled over SSL only (:session_secure).

As a matter of fact, Rails automatically sets the session key based on the application’s name. For example,
your blog application had the following in config\environment.rb:

 config.action_controller.session = {
 :session_key => ‘_blog_session’,
 :secret => ‘c410dcb43b70ece50b4856a4b2e5d029404338e51d8ae45b642659781...’
 }

Remember, session options can be specifi ed within a controller or within an environment confi guration
fi le (like Rails 2.x does by default).

For a complete list of accepted options check the documentation for the method
ActionController::Base.process_cgi.

Session Expiration
One of the problems related to session management is expiring and/or removing old session data.
The reason for this is that you typically don’t want users to be able to access session data after a certain
amount of time has passed. For example, a login system would normally ask you to re-login after 15,
30, or 60 minutes of inactivity. The need to expire users’ sessions is coupled with the fact that sessions
stored on the server side take up valuable resources, so over time you need to come up with a system
that performs regular clean ups.

The expiration logic varies depending on the session storage option you’ve chosen, but generally
speaking, deleting the session data is easier than, and just as effective as, implementing the expiration
of a particular session_id stored in a cookie.

As mentioned before, for PStore sessions, a cron job (or equivalent) that deletes the fi les within tmp\
sessions at regular intervals will do. If you are using ActiveRecordStore, you can do the same thing
but execute a DELETE SQL query, taking advantage of the updated_at column. For DrbStore, your
server should implement the expiration logic for the shared session data. MemCacheStore sessions can
be expired automatically by simply confi guring the session_options[:expires] option, as shown in
the previous section.

74955c08.indd List33874955c08.indd List338 3/4/09 9:29:25 AM3/4/09 9:29:25 AM

339

Chapter 8: Handling Requests with ActionController

Finally, cookie-based sessions are automatically taken care of when the users close their browser, but
there are several possible ways to implement a timeout to limit the validity of a cookie to a set amount
of time.

You can fi nd a somewhat disorganized discussion about some of these possibilities and avail-
able plugins on the offi cial Rails Wiki at http://wiki.rubyonrails.org/rails/pages/
HowtoChangeSessionOptions. Some of the information provided is out of date as well, but
it’s a decent pointer.

Whenever you need to explicitly clear the session data for a current session, you can do so by calling the
method reset_session within your actions. This will typically be used for “sign out” or “clear history”
types of links in your application, but can also be used when defi ning your own expiration logic. For
example, you could store the cookie time in the session (for example, in session[:updated_at]), and
check whether the expiration time has passed. When that’s the case, you can invoke reset_session to
clear the session data.

Filters
Filters are a convenient way to wrap actions and execute code before and/or after an action has been,
or is being, processed. Before fi lters are executed before the action processing takes place. If any of
the fi lters in the before fi lter chain returns false, processing is terminated and no other fi lters (or the
action itself) are executed for that request. Likewise, the code within after fi lters is executed after the
code within the action has been processed.

The main fi lters are before_filter, after_filter, and around_filter. When any one of them
appears within a controller, its effect applies to all the actions within the current controller and its
subclasses. As you can probably imagine, placing a fi lter within ApplicationController adds that
fi lter to the chain of fi lters for all the actions in the application. All three fi lters accept the :only and
:except options — which you should be familiar with by now — to limit the number of actions for
which the fi lter should be applied.

These methods accept a method name as a symbol:

class ExampleController < ActionController::Base
 before_fi lter :authenticate

 #...

 private

 def authenticate
 #...
 end
end

The method authenticate will be executed before any actions within ExampleController.

or a block:

class ExampleController < ActionController::Base
 after_fi lter do |controller|

74955c08.indd List33974955c08.indd List339 3/4/09 9:29:25 AM3/4/09 9:29:25 AM

340

Chapter 8: Handling Requests with ActionController

 # The action name is stored in controller.action_name
 #...
 end

 #...
end

In addition, they even accept any class (an object in the case of the around fi lter) that
contains a defi nition for a method filter. That method needs to be a class method (for example,
self.filter(controller,&block)) for before and after fi lters, and an instance method (that is,
def filter(controller,&block)) for the around fi lter. For example:

class ExampleController < ActionController::Base
 before_fi lter LogFilter, :except => :download
 around_fi lter BenchmarkFilter.new, :only => :speed_test

 # ...
end

Every time before_filter or after_filter is defi ned in a controller, the fi lter that it defi nes is
appended to its respective before or after fi lter chains. If, for instance, you were to defi ne a before fi lter
in a controller, and a before fi lter in its superclass, the fi lter within the controller would be executed only
after the fi lter inherited from the parent class was executed (and only if this didn’t return false). This
may not be what you want in every scenario. To prefi x, rather than append, a fi lter to its fi lter execution
chain, you can use the corresponding methods prepend_before_filter and prepend_after_filter.

Unlike the other two fi lters, around_filter executes some code before the action is invoked, then
the action is processed, and fi nally more code gets executed within the fi lter. As the name suggests,
around fi lters wrap around an action. When passing a method name as a symbol, the action is invoked
through yield:

class ExampleController < ActionController::Base
 around_fi lter :benchmark, :except => :login

 #...

 private

 def benchmark
 start = Time.now
 yield
 exec_time = Time.now - start
 logger.info(“Processing #{action_name} took #{exec_time} seconds.”)
 end
end

And as mentioned before, you also pass a block to the method. In this case, the method will have two
block parameters, one for the controller and another for the action as a Proc object that’s ready to be
executed through the call method:

class ExampleController < ActionController::Base
 around_fi lter(:except => :login) do |controller, action|
 start = Time.now

74955c08.indd List34074955c08.indd List340 3/4/09 9:29:25 AM3/4/09 9:29:25 AM

341

Chapter 8: Handling Requests with ActionController

 action.call
 exec_time = Time.now - start
 logger.info(“Processing #{controller.action_name} took #{exec_time} seconds.”
 end
end

An around fi lter will typically invoke the execution of the action, but this is not necessarily the case.
If yield (when passing a symbol to the fi lter declaration) or action.call (when passing to it a block)
is not invoked, the action will not be executed.

These examples are just a sample of how around_filter can be used; you shouldn’t
time your actions, because this information is already available in your logs.

When there are multiple declarations for around_filter, they’re chained together by merging them,
so that all the code before the execution of the action is executed in the order it appears, and all the code
after the action is invoked will be executed after the action processing in the order that appears as well.

To clarify this further with an example, consider the following code that has three fi lters defi ned, in the
order first_filter, second_filter, and then an unnamed fi lter that uses a block:

def ExampleController < ActionController::Base
 around_fi lter :fi rst_fi lter, :second_fi lter

 around_fi lter do |controller, action|
 logger.info(“In the block before the action”)
 action.call
 logger.info(“In the block after the action”)
 end

 def index
 logger.info(“In the index action”)
 end

 private

 def fi rst_fi lter
 logger.info(“In the fi rst fi lter before the action”)
 yield
 logger.info(“In the fi rst fi lter after the action”)
 end

 def second_fi lter
 logger.info(“In the second fi lter before the action”)
 yield
 logger.info(“In the second fi lter after the action”)
 end
end

When /my/index is invoked, the following result is yielded in the logs:

In the first filter before the action
In the second filter before the action

74955c08.indd List34174955c08.indd List341 3/4/09 9:29:25 AM3/4/09 9:29:25 AM

342

Chapter 8: Handling Requests with ActionController

In the block before the action
In the index action
Rendering m/index
In the block after the action
In the second filter after the action
In the first filter after the action

It’s also possible to skip the fi lters defi ned in a parent class from within children classes by invoking
the methods skip_before_filter, skip_after_filter, and skip_filter (which skips any fi lter,
including around fi lters). Declarations using these three methods accept only a method name as a
symbol, and therefore can only skip fi lters defi ned through a symbol (and not those defi ned through
a block or a class/object).

Just like fi lters, these declarations also accept :only and :except.

Filters are just regular code that’s defi ned within the controller and as such they can access all the attri-
butes and objects available to normal actions, including the ability to redirect and render content back
to the user. For this reason, before fi lters are often used for authentication purposes and after fi lters are
frequently delegated to the task of altering the response object in some way (for example, to compress
the output when the user’s browser supports it).

Verifi cation
A higher abstraction layer based on fi lters is provided by Rails through the verify
method. This method enables you to verify certain conditions before an action is
executed. In practice, this is a fancier before_filter that’s able to guard an action
against the possibility of being invoked if certain conditions are not met. These con-
ditions can verify the existence of a particular parameter key, fl ash key, session key,
HTTP method, and whether it was an Ajax request (by passing :xhr).

Consult the documentation for examples and reference points for the method Action
Controller::Verification::ClassMethods.verify.

Using Filters for HTTP Basic Authentication
Having introduced the concept of fi lters, it is now easy to show how HTTP basic authentication can
be added to the blog app. Rails provides a lengthy method called authenticate_or_request_with_
http_basic, which enables you to log in through HTTP Basic Authentication, without the need to
design an ad-hoc form. This is probably not something you’d want to expose your users to (usually),
but as a blogger who needs to access a reserved area, you won’t likely mind this. It’s functional and
extremely easy to implement. Moreover, it’s a good example of how fi lters can aid in the design of
Rails applications.

Open the ArticlesController and add the following:

class ArticlesController < ApplicationController
 before_fi lter :authenticate, :except => %w(index show)

 #... All the existing actions ...

74955c08.indd List34274955c08.indd List342 3/4/09 9:29:25 AM3/4/09 9:29:25 AM

343

Chapter 8: Handling Requests with ActionController

 private

 def authenticate
 authenticate_or_request_with_http_basic(‘Administration’) do |username,
password|
 username == ‘admin’ && password == ‘secret’
 end
 end
end

Whenever an action on an article is requested, with the exception of index and show, which should
be visible to the public, the application will try to authenticate the user. For example, try to click the
Unpublished Articles link in the menu and you should be prompted for a username and a password as
shown in Figure 8-2. Enter admin and secret, and you’ll be able to log in and see the page. Clicking the
Cancel button will produce an HTTP Basic: Access denied message (but you could just as easily create
a redirect to a public page). When the user has already been authenticated, the login dialog will no lon-
ger be shown. However, unless the Remember Password check box has been marked off, or the browser
remembers the credentials automatically for you, when you close your browser you are essentially “log-
ging off” and will be prompted for credentials the next time you visit a protected link.

Figure 8-2

Notice that you get a warning about a basic authentication without a secure connection. The username
and password will in fact be sent in clear text, so it’s a very good idea to adopt SSL in production mode.

74955c08.indd List34374955c08.indd List343 3/4/09 9:29:26 AM3/4/09 9:29:26 AM

344

Chapter 8: Handling Requests with ActionController

Now you need to protect a few actions in the CommentsController as well, because you don’t want to
allow your users to destroy or edit comments. Change it to look like this:

class CommentsController < ApplicationController
 layout “articles”

 before_filter :get_article
 before_fi lter :authenticate, :only => %w(edit update destroy)

 #... All the existing actions ...

 private

 def get_article
 @article = Article.find(params[:article_id])
 end

 def authenticate
 authenticate_or_request_with_http_basic(‘Administration’) do |username, password|
 username == ‘admin’ && password == ‘secret’
 end
 end
end

When you visit /articles/1/comments/1/edit now you are prompted for a username and
password.

Rails 2.3 adds a more secure form of HTTP Basic Authentication, known as HTTP
Digest Authentication. This makes use of the authenticate_or_request_with_
http_digest method.

Ideas for Improving the Authentication System
That username == ‘admin’ && password == ‘secret’ is extremely simplistic and that
password in clear text might make you cringe. But the principle behind using before_filter
along with HTTP Basic Authentication stands. You could, for example, replace that line of code with
a User.authenticate(username, password) of sorts, and then implement authenticate as a
class method in the model. Perhaps something like this:

def self.authenticate(username, password)
 user = self.find_by_username(username)
 user && user.valid_password?(password)
end

Where valid_password? is a method defi ned in the model, so that User instances are able to compare
the password provided with the encrypted version stored in a fi eld of the table.

As long as the method returns true when the user can be authenticated and false when the user cannot,
authenticate_or_request_with_http_basic will be pleased and this basic logging system will work.

There is no User model in the sandbox/basic application, but many projects will have one.

74955c08.indd List34474955c08.indd List344 3/4/09 9:29:26 AM3/4/09 9:29:26 AM

345

Chapter 8: Handling Requests with ActionController

Also note that the simplicity of the implementation shown in this example has a big downside: you
show “admin” links to regular unauthenticated users. In some applications this might be okay, but for a
blog this is not the case. To solve this problem, you could set an instance variable @is_authenticated
within the authenticate method:

@is_authenticated = authenticate_or_request_with_http_basic(‘Administration’) do
|username, password|
 username == ‘admin’ && password == ‘secret’
end

And then you could check in the articles.html.erb layout if @is_authenticated, before visual-
izing admin links. You could even defi ne a helper method within the ApplicationController:

class ApplicationController < ActionController::Base
 helper :all # include all helpers, all the time
 helper_method :logged_in? # Make logged_in? available in the view

 def logged_in?
 @is_authenticated
 end

 #...
end

With this in place, in the view it’s possible to show a link only if the user is logged in, in this way:

Home
<% if logged_in? -%>
 <%= link_to ‘Unpublished Articles’, unpublished_articles_path %>
 <%= link_to ‘New Article’, new_article_path %>
<% end -%>

The process will have to be repeated for every link that isn’t supposed to appear to the unauthenticated
user. Of course, if you were to do so, you’d be left with no link with which to trigger the login system
when you, the blogger, aren’t authenticated yet. In that case, you could either leave a single generic
Admin link that points to a protected link, or simply bookmark a URL that triggers an action affected
by the before_filter (for example, the path /articles/unpublished).

If you are experimenting with this, remember to assign the result of the authentication method to
the @is_authenticated instance variable in the CommentsController as well, and hide links in the
templates in app\views\comments too.

You may notice that having similar code in both controllers (articles and comments) is a minor infrac-
tion of the DRY principle. But nothing that can’t be resolved with a bit of refactoring, for example, by
placing the before_filter declaration and authentication method within an AdminController,
subclass of ApplicationController, and having all the administrative controllers inherit from it. Or
perhaps in a simpler manner, by defi ning the authenticate method within ApplicationController
so that is accessible to both controllers.

It’s also worth pointing out that with the namespaces provided by routing, it may be worth separating
the publicly available actions from the administrative ones; for example, having index and show within
ArticlesController and moving the other fi ve actions to Admin::ArticlesController. The URLs

74955c08.indd List34574955c08.indd List345 3/4/09 9:29:26 AM3/4/09 9:29:26 AM

346

Chapter 8: Handling Requests with ActionController

would change, the helpers for the actions defi ned within the administrative articles controller would
be prefi xed by admin, and therefore it would be easy to distinguish between the two controllers. Keep
in mind, though, that this would require quite a bit of renaming in both the controller layer and in the
view layer. For a larger project, this method of separation would be recommended.

Feel free to experiment with these and other ideas that you might have, because making mistakes and
fi guring out how to solve them is an important part of the process of learning.

Finally, for real applications, consider using the restful_authentication plugin instead. This is the
plugin used by most Rails sites out there and it has many useful features, including secure password
handling and the ability to send validation emails before activating accounts. You could write your own
user authentication and authorization system, but the restful_authentication plugin is usually a
good starting point. Checking its code is also an excellent way to learn more about “best practices”; for
example, how to encrypt passwords in the database (with a cryptographic salt for added security). You
can fi nd its code online on GitHub:

http://github.com/technoweenie/restful-authentication/tree/master

There is also a fork that’s aimed at being internationalization-friendly, called restful-authentication-
i18n. This too is available on GitHub, which is now the most popular repository site for Ruby and Rails
code, outside of RubyForge.

Testing Controllers
Testing is an important component of performing Agile Web development. In fact, as stressed multiple
times before, one of the fundamental principles of the Agile methodologies is the ability to change the
software code base to respond to changes in requirements.

It’s easy enough to verify that routing and controllers are working as expected by fi ring up your
favorite browser and trying out paths within the application. But this approach is not systematic and
won’t provide you with any level of confi dence, as you continue to change and evolve your application.
Furthermore, working on a code base that doesn’t have good test coverage is risky and tends to require
much more time and effort while debugging.

As a reminder, at any time you can check your test coverage and other interesting statistics about your
project by running rake stats.

For these reasons, this chapter concludes with a brief tour of what Rails bakes-in for testing routes and
controllers.

Testing Routes
Route testing consists of writing unit tests that verify that the mapping between paths and the controllers’
code works as expected.

74955c08.indd List34674955c08.indd List346 3/4/09 9:29:26 AM3/4/09 9:29:26 AM

347

Chapter 8: Handling Requests with ActionController

Your routing tests can be stored in test\unit\routing_test.rb, which is just going to be a regular
test case (within the context of Rails):

require ‘test_helper’

class RoutingTest < ActiveSupport::TestCase

 #... Your routing tests...

end

This fi le is not generated automatically by Rails and must be manually created by developers who
intend to test routes.

Routing consists of two parts: generating paths from amidst a bunch of options (like :controller
and :action), and obtaining these same options by recognizing paths. Not surprisingly then, Rails
provides us with three assert methods related to routes: assert_generates, assert_recognizes,
and assert_routing, which unites the two previous ones.

These are defi ned in ActionController::Assertions::RoutingAssertions and their signatures
are as follow:

assert_generates(expected_path, options, defaults={}, extras = {}, message=nil)
assert_recognizes(expected_options, path, extras={}, message=nil)
assert_routing(path, options, defaults={}, extras={}, message=nil)

extras is used to store query string parameters. extras and options need to use symbols for keys
and strings for their values, or assertions will fail. Ignore the defaults parameter that’s currently
unused. As usual, the message parameter is used to provide a custom error message upon failure.

If you consider the blog application, you could use assert_generates to write the following assertion:

assert_generates(“/articles/unpublished”, :controller => “articles”,
 :action => “unpublished”)

This verifi es the assertion that the hash of options { :controller => “articles”, :action =>
“unpublished” } generates the path /articles/unpublished.

The opposite of that assertion would be:

assert_recognizes({ :controller => “articles”, :action => “unpublished” },
 “/articles/unpublished”)

This verifi es that the path /articles/unpublished is correctly recognized in the hash of options
{ :controller => “articles”, :action => “unpublished” }.

Finally, both of them can be tested at the same time through assert_routing. For example, in the
following very simple test case, I tested for both recognition and generation of the path:

require ‘test_helper’

class RoutingTest < ActiveSupport::TestCase

74955c08.indd List34774955c08.indd List347 3/4/09 9:29:26 AM3/4/09 9:29:26 AM

348

Chapter 8: Handling Requests with ActionController

 load “confi g/routes.rb”

 test “generating and recognizing /articles/unpublished” do
 assert_routing(“/articles/unpublished”, :controller => “articles”,
 :action => “unpublished”)
 end
end

Notice that the routes.rb fi le needs to be loaded explicitly.

By the way, the descriptive string for test cases is a feature that has been long available through third-
party code (typically in BDD frameworks like RSpec and Shoulda) but that has now been integrated
into the core. The old syntax (for example, def test_unpublished) is still supported for backwards
compatibility.

You can run routing tests by executing rake test:units. If your source code is stored in an SVN
or, starting with Rails 2.2, in a Git repository, you can use the command rake test:uncommitted
to speed up testing, by limiting the test run to the tests whose fi les have not been committed yet (for
example, they have been changed locally).

Using autotest -rails
Many professional Rails developers like to use autotest, which continuously moni-
tors the fi les you change so that the associated tests are run. The advantage of this
is that you don’t have to sit there and wait for your entire test suite to run, because
they’ll run continuously and will alert you when any test fails or goes into error. This
promotes Test-Driven development, reduces the context switch between writing code,
using the command line to run tests, and opening up the browser. You can install it
with gem install ZenTest (prepend sudo if you are not running Windows) and
then run it as autotest -rails in your Rails project. You can read an enthusiastic
blog post about it and watch a quick screencast online at http://nubyonrails.com/
articles/autotest-rails.

Functional Testing
Functional testing is the process of testing actions within a single controller. If you inspect the
test\functional folder for the blog application, you’ll notice that the scaffold generator has
created articles_controller_test.rb and comments_controller_test.rb for you. In fact,
anytime a controller gets generated a functional test case for it is created as well. When you gener-
ate a controller through the controller generator, the functional test case is just a stub; however,
scaffold does one better than that. In fact, the following is the automatically generated code for
articles_controller_test.rb:

require ‘test_helper’

class ArticlesControllerTest < ActionController::TestCase
 test “should get index” do
 get :index
 assert_response :success

74955c08.indd List34874955c08.indd List348 3/4/09 9:29:26 AM3/4/09 9:29:26 AM

349

Chapter 8: Handling Requests with ActionController

 assert_not_nil assigns(:articles)
 end

 test “should get new” do
 get :new
 assert_response :success
 end

 test “should create article” do
 assert_difference(‘Article.count’) do
 post :create, :article => { }
 end

 assert_redirected_to article_path(assigns(:article))
 end

 test “should show article” do
 get :show, :id => articles(:one).id
 assert_response :success
 end

 test “should get edit” do
 get :edit, :id => articles(:one).id
 assert_response :success
 end

 test “should update article” do
 put :update, :id => articles(:one).id, :article => { }
 assert_redirected_to article_path(assigns(:article))
 end

 test “should destroy article” do
 assert_difference(‘Article.count’, -1) do
 delete :destroy, :id => articles(:one).id
 end

 assert_redirected_to articles_path
 end
end

Spend a few minutes analyzing this code, and you’ll notice that it’s quite readable and easy to under-
stand. Consider the fi rst test:

 test “should get index” do
 get :index
 assert_response :success
 assert_not_nil assigns(:articles)
 end

get :index simulates an HTTP GET request for the index action. This method, and others in “its
family,” expects an action name and three optional hashes for storing parameters, session variables,
and fl ash messages that should be associated with the request.

74955c08.indd List34974955c08.indd List349 3/4/09 9:29:26 AM3/4/09 9:29:26 AM

350

Chapter 8: Handling Requests with ActionController

Remember that if you are passing a hash to the method, skipping any previous hashes in the signature,
you’ll need to provide an empty hash to indicate to Ruby that your hash is an nth parameter and not the
second one (for example, get :index, {}, { :my_key => “my value” }).

You then expect the response to be successful (200 OK), so you assert that with assert_response
:success. Finally assert_not_nil assigns(:articles) asserts that an @articles instance vari-
able was set by the index action.

Let’s consider a slightly more complex test, among the auto-generated ones:

 test “should destroy article” do
 assert_difference(‘Article.count’, -1) do
 delete :destroy, :id => articles(:one).id
 end

 assert_redirected_to articles_path
 end

assert_difference takes two arguments, and indicates that you expect Article.count to be smaller by
one, after the code within its associated block has been executed. In fact, within its block here I destroyed
an article by simulating an HTTP DELETE request for the destroy action, and passing it an :id parameter.
articles(:one).id is just the id of the fi rst of the two records within your fi xture.

These two records are automatically loaded in the test database from the default fi xture fi le (arti-
cles.yml) in test\fixtures.

The test then goes on asserting that after an article has been deleted, it should be redirected to
articles_path (once again, these helpers make your life easier).

You can run this test case by executing rake test:functionals, but it’s also possible to run a single
test case as follows:

ruby -I test test/functional/articles_controller_test.rb

For improved reporting of test errors and failures, you may want to consider the TURN library, available
at http://codeforpeople.rubyforge.org/turn.

Scaffolding has also generated a similar test case, which you can always augment, for the comments
controller. If you run rake test:functionals you’ll notice though that things don’t quite work out of
the box. And the reason for this is that you changed the default behavior of these controllers by nesting
them, and defi ned your own logic for redirecting so that the blog appears to be laid out logically (well
most of it, at least) to its user and visitors. You also changed the fi xtures within Chapter 7, as I intro-
duced the subject of testing models, so the current functional test, for example, expects a “one” fi xture
that doesn’t exist.

Consider this as the perfect opportunity to experiment with working with tests. It would be a very ben-
efi cial exercise if you were to attempt to correct the default test cases so that they work for your applica-
tion. You could also add more tests and assertions, and perhaps even change the code of the application,
as you discover odd or unwanted behaviors. The keyword here is experiment. Try things out to get

74955c08.indd List35074955c08.indd List350 3/4/09 9:29:26 AM3/4/09 9:29:26 AM

351

Chapter 8: Handling Requests with ActionController

acquainted with these concepts; even if you make mistakes, rake test:functionals will tell you
when you get it right.

It is recommended that you read the functional tests section of the offi cial Rails
guide dedicated to the subject of testing, which you can fi nd online at http://
guides.rubyonrails.org/testing_rails_applications.html.

It’s important to notice that the request type methods available are get, post, put, head, and delete
to be able to properly test RESTful controllers. Also, assigns is not the only hash available after one of
those fi ve methods has been used. In fact, while assigns stores all the instance variables that were set
in the action (as they are accessible to the view), cookies gives you access to the cookies that were set, as
flash does to the fl ash object and session to the session variables and data.

For historical reasons, assigns is the only object whose keys are accessed through round brackets.
cookies, flash, and session all use the regular square brackets with a symbol or a string as a key.

After having simulated a request, you also get access to three useful instance variables: @controller,
@request, and @response. As their names suggest, these are, respectively, the controller processing
your request, the request object, and the response object produced by the controller.

Besides assert_response and assert_redirected_to many more useful assertions are available.
Check the API documentation for the module ActionController::Assertions. All the assertions
defi ned by ActionController are contained within six classes of that module: DomAssertions,
ModelAssertions, ResponseAssertions, RoutingAssertions, SelectorAssertions, and
TagAssertions.

Integration Testing
Whereas functional testing pertains to the domain of a single controller, integration
testing aims to test the integration of multiple controllers. This isn’t very different
from testing a single controller, except that there are a few practical implications. The
test case needs to inherit from ActionController::IntegrationTest, its fi le is not
automatically generated for you when a controller is created (use the integration_
test generator instead for this), and it needs to be stored in test\integration.
Fixtures are not automatically loaded, but you need to explicitly include them through
the fixture method. It also means that a few helpers are provided in support of being
able to test the fl ow of the application. For example, there are methods like https! (to
emulate a request over HTTPS) and follow_redirect!, open_session, or put_via_
redirect, which creates an HTTP PUT request and follows any redirect caused by a
controller’s response. If you generated the Rails guide in your project, open the fi le
doc\guides\testing_rails_applications.html#_integration_testing
in your favorite browser to learn more about integration testing and see a few
examples of it.

74955c08.indd List35174955c08.indd List351 3/4/09 9:29:26 AM3/4/09 9:29:26 AM

352

Chapter 8: Handling Requests with ActionController

Summary
Routing and controllers are fundamental aspects of every Rails application. This chapter tried to pro-
vide an overview of most of the features that are available for you to use.

Parts of this chapter can be viewed as reference-like and are admittedly harder to digest. So don’t
worry, no one is expecting you walk away remembering every single method or every option in the
API. Whenever you need a specialized bit of information, you can always go back to what you read, as
well as consult the offi cial API documentation.

In fact, the goal of this chapter, and this book as a whole, is to provide you with a good introduction,
show you a few advanced aspects, and give you a good sense of what developing in Rails looks like as
well as what the pieces that compose the framework puzzle are, so that you can quickly get started and
apply these concepts to your own Rails projects.

Caching and performance testing are covered within Chapter 11, but in the next chapter, you’ll fi nally
complete the MVC triad by analyzing the view layer.

74955c08.indd List35274955c08.indd List352 3/4/09 9:29:27 AM3/4/09 9:29:27 AM

Rendering the User
Interface with ActionView

After researching the market, Ruby on Rails stood out as the best choice.
We have been very happy with that decision. We will continue building on

Rails and consider it a key business advantage.

— Evan Williams, Creator of Blogger, ODEO and Twitter

The previous chapter analyzed the controller’s role in a Rails application. For each request that
comes in, a proper response is formulated, often by combining the data retrieved from the model
layer with a template in the view layer. The functionalities provided by the view are all incorpo-
rated in the ActionView framework which, along with ActionController, forms ActionPack.

Working with Templates
At a certain point, the controller hands over control to the view so that it can build the body of the
response based on the appropriate layout, view templates, and partials. This can happen implicitly,
when you let Rails process the default template for an action and request format, or explicitly by
invoking the render method.

Rendering Templates
This section fi rst reviews how default templates are determined and how it’s possible to specify
a non-default template to be used for the response to a request. It then takes a look at the available
template types and standard engines that Rails bakes-in.

74955c09.indd List35374955c09.indd List353 3/5/09 8:13:58 AM3/5/09 8:13:58 AM

354

Chapter 9: Rendering the User Interface with ActionView

Default Templates
The view prominently enters into the picture whenever the response’s body depends on a template. As
you can imagine, this is the norm for HTML requests because their bodies are typically XHTML docu-
ments displayed through a browser. When render isn’t called, the default template for a given action is
rendered. As mentioned several times, the name of the default template that’s going to be used is deter-
mined based on the action name and the format requested. If the controller is ExampleController, the
view templates for its actions are conventionally stored in app\views\example.

When processing the following action, index.html.erb is rendered by default:

index.html.erb will be rendered by default
def index
 @books = Book.all
end

If the expected template is missing, a 500 Internal Server Error is raised and a “Template is missing”
page is displayed in the browser.

The default template also depends on the format of the request:

def show
 @book = Book.find(params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml => @book }
 format.js # show.js.rjs
 end
end

For instance, in the preceding snippet, the two highlighted lines indicate that the view should render
the show.html.erb template for HTML requests and the show.js.rjs for JavaScript requests (for
example, an Ajax call). The template engine used for the two is different as well. The fi rst uses ERb to
mingle XHTML and Ruby code, whereas the latter uses RJS so as to enable you to be able to write code
in a Ruby DSL (Domain-Specifi c Language), which will be translated and rendered as JavaScript back
to the user’s browser.

Bypassing Templates with render
In its simplest form, render can be used to send a response that does not involve a template. You can
render plain text:

render(:text => “Confirmed”) # Sends the text without rendering the layout
render(:text => “<h1>OK!</h1>”), :layout => true

XML, JSON, or JavaScript:

render(:xml => @article)
render(:json => @article)
render(:js => “alert(‘Hello from JavaScript’);”)

74955c09.indd List35474955c09.indd List354 3/5/09 8:13:59 AM3/5/09 8:13:59 AM

355

Chapter 9: Rendering the User Interface with ActionView

to_xml and to_json will automatically be invoked for you in the fi rst two lines. Call them explicitly
with the :only, :except, :include, or :method arguments if you need to customize what should
be included in the transformation of the object(s) to those two formats.

Though I’ve grouped more than one render call in each snippet to save space, remember that you should
only render one per request.

or leave it blank (for an empty body):

render(:nothing)

This works if you only need to send headers in the response, but it’s preferential to use the head method
instead.

Rendering a Specifi c Template
When the render method is used explicitly, it can be leveraged to inform ActionView that a non-default
template should be used. You can do this by rendering a template that’s associated with a different action:

render(:action => “show”)

or, when you need to render a template defi ned for an action within a different controller, by using the
:template option:

render(:template => “sales/show”)

or even from a specifi c fi le:

render(:file => “/path/to/a/shared/view/somewhere/show.html.erb”)

You could also specify the template markup directly in the controller:

Don’t do this
render(:inline => “<% articles.each do |a| %><p><%= a.title %></p><% end %>”)

And you could even do a render(:update) and pass a block of RJS code to it, so as to perform
JavaScript-like updates directly in the controller.

“Could” is the keyword here. You could, but that doesn’t mean that you should.
In fact, do not embed template markup or JavaScript-like page updates in your
controller. Templates belong to the view layer, and the separation of concerns pro-
moted by the MVC architectural pattern must be preserved.

Excluding bad practices like inline markup in the controller, a render :action, render :template,
or render :file will tell the view to take over and formulate a proper response’s body based on the
specifi ed template.

74955c09.indd List35574955c09.indd List355 3/5/09 8:13:59 AM3/5/09 8:13:59 AM

356

Chapter 9: Rendering the User Interface with ActionView

Partials
The view does not simply combine instance variables (for example, @article) with
a single template (for example, show.html.erb). In fact, as seen in Chapters 5 and 6,
the resulting document is usually the product of rendering a layout, which yields the
rendering of the template at hand, which in turn can invoke the rendering of other
templates and/or one or more partials. Partials, as explained earlier, are fragments of
pages that can be used to improve the reusability and DRY adherence of the code.

It is also possible to have layouts that apply to partials. Unlike regular layouts that
are scoped for an entire action and in many cases apply to a whole controller, these
layouts are aimed at providing common code that wraps fragments of the view (that
is, partials). These work in a very similar fashion to regular layouts; they contain a
<%= yield %> where the partial should be rendered, and can be applied to a partial
when this is called with the :layout option. For example:

<%= render :partial => “user”, :layout => “admin”, :locals =>
{ :admin => @user } %>

Partials can also be shared among views that are associated with different controllers.
In such cases, it’s conventional to place them within app\views\shared. When ren-
dering these shared partials from within a template, you need to include the shared
folder in the argument passed to render. Rails will be smart enough to understand
that the last, and only the last, token is the name of the partial, while the rest is the
path of a folder within app\views:

<%= render :partial => “shared/my_partial” %>

Check the documentation for ActionView::Partials for further details.

Communication with the Other Layers
Templates are able to access instance variables that have been defi ned within the controller as well
as the fl ash. This is what the view is expected to do so that it can communicate with the controller.
However, it’s not limited to this alone. The view layer is capable of accessing a series of attributes you
encountered in the previous chapter about controllers.

These attributes are controller, session, request, response, header, params, logger, and the
debugger method (which triggers a debugging session). The view is even capable of interacting with
the model directly. You could, for example, execute Book.all directly from the view.

As is often the case in the world of programming, the freedom that’s provided to the programmer
should not be abused. Yes, you could call the model directly from the view, but that would be a major
“code smell” as well as a strong violation of the principle of separation of concerns. Likewise, with the
exception of debugger, the aforementioned attributes are normally the domain of the controller, which
handles them as required.

Never query the model directly from the view. Use the controller instead.

74955c09.indd List35674955c09.indd List356 3/5/09 8:13:59 AM3/5/09 8:13:59 AM

357

Chapter 9: Rendering the User Interface with ActionView

Despite this due warning and premise, the ability to access them can come in handy when troubleshoot-
ing. In fact, Rails provides us with a debug helper, which dumps (using the YAML format) the object
that is passed in argument. This turns out to be an easy way of inspecting the contents of the attributes
mentioned earlier.

Built- in Template Engines
A template enables the view to dynamically generate the response’s body by combining dynamic
values, like instance variables and the flash object, and static content like HTML tags and text.
Throughout this book you’ve been exposed to ERb templates as a means of generating XHTML docu-
ments. Yet ERb is not limited to this task and can be used to generate any other type of document that
requires a mix of static and dynamic content (that is, Ruby code).

For the sake of convenience, Rails ships with two other built-in template engines: Builder and RJS. And
whereas ERb is normally used for XHTML pages, Builder is particularly handy for XML content and RJS
for writing JavaScript responses in Ruby code.

To tell Rails what document type is going to be rendered, and what template engine is going to be
used, you add two extensions to each template: myfile.html.erb for XHTML produced through ERb,
myfile.xml.builder for XML produced through Builder, and myfile.js.rjs for JavaScript pro-
duced through RJS.

Note that for historical reasons, the old extension format is still accepted. If you work with legacy code,
you may fi nd the equivalent myfile.rhtml, myfile.rxml, and myfile.rjs. As you upgrade an
existing project to Rails 2.2 or a newer version, you can safely rename them.

ERb
ASP.NET developers are used to thinking in terms of controls that are positioned within a page. In ERb
templates, the approach is entirely different. In fact, most templates contain regular XHTML code inter-
mingled with Ruby code that gets evaluated at runtime. Expressions evaluated inline are contained
between the tags <%= and %>, whereas Ruby code that doesn’t need to produce an output is contained
between <% and %>. The amount of Ruby code is kept to a minimum, because the view layer is sup-
posed to have as little application logic as possible, and focus on the presentation of the content instead.

In many code bases you’ll often fi nd -%> as the closing tag. As mentioned before, this is used to trim the
output from extra newlines so that it results in more compact XHTML code.

This means that a typical ERb template will evaluate instance variables declared in the associated con-
troller, display fl ash messages, and dynamically control the structure of the page with a few conditional
statements and iterations/loops (to display data contained within a collection of objects).

Because there are no “fancy controls” available in Rails, and you don’t want business logic in the view,
ERb templates rely instead on predefi ned helpers like the form_for or link_to or user-made helpers.

There is a secondary and very practical reason why ERb templates are supposed to be fairly straightfor-
ward: the view templates are often handed over to the designer, who has to be able to understand and

74955c09.indd List35774955c09.indd List357 3/5/09 8:13:59 AM3/5/09 8:13:59 AM

358

Chapter 9: Rendering the User Interface with ActionView

modify them to make the page look as he or she would prefer it to. Most of their work will probably be
accomplished through CSS fi les, but keeping the view clean from complex logic can only facilitate their
job, and in turn avoid accidental changes that can break your application.

As a general rule of thumb, try to centralize the information within the controller, so that the view is
limited to the presentation of the data. For example, consider the following trivial template:

<h2>Discount Coupon</h2>
<p>Your coupon <%= @coupon %> is valid until <%= @expiration = 7.days.from_now
%>.</p>

<! — some more HTML — >

<p>Don’t forget to take advantage of your discount before <%= @expiration %>.</p>

7.days.from_now is not standard Ruby. This highly readable expression is possible thanks to the
extensions provided by ActiveSupport.

Notice how you are able to assign a variable (@expiration) and then evaluate it a few lines later.
This works but it has a problem. Variables are better assigned in a centralized place, and that place
is the controller. In fact, tomorrow you might decide that the coupons are going to expire in 14 days
instead and you’ll be forced to track each view template that hard codes 7.days.from_now to change
it. Furthermore, as the application’s requirements change, you may require the application of different
coupon expiration policies depending on the customer that’s currently logged in. Remember the man-
tra, Don’t Repeat Yourself!

An initial quick refactoring leads you to place @expiration = 7.days.from_now within the
controller’s action and replace <%= @expiration = 7.days.from_now %> in the template with
<%= @expiration %>.

To improve it further, you’d probably also want to get rid of that magic number (7), and use a constant
to store that value instead.

I discussed this point amply while developing the blog example, but it warrants repeating. There is a
big security risk in simply using <%= when the evaluated expression is originated by a user. In fact, the
expression could contain malicious script code and this would be interpreted nevertheless. For this rea-
son, most Rails users almost have an automatic refl ex to place an h after the opening tag (that is, <%=h),
so that the html_escape helper, whose alias is h, is invoked on the expression that’s being evaluated.
html_escape escapes HTML tag characters so that “<script>” is rendered in the response as “
<script>”.

Always use <%=h as the opening tag when you want to evaluate any expression
that could potentially be unsafe (for example, comes from the user). If you need
to allow certain tags, consider using an alternative helper like sanitize.

Builder
Builder templates are called as such because of the homonymous library they use, the aim of which is
to provide a simple way to generate XML. The basic concept is that you can use regular Ruby code and
a special xml object to generate any XML content. Arbitrarily named methods are translated into tags,

74955c09.indd List35874955c09.indd List358 3/5/09 8:13:59 AM3/5/09 8:13:59 AM

359

Chapter 9: Rendering the User Interface with ActionView

the fi rst parameter passed to these methods is translated into the value contained within the pair of
tags, and any other parameter passed in a hash form will be an attribute. It’s also possible to nest tags
by using Ruby blocks.

The following example should clarify this:

xml.message do
 xml.time(Time.now)
 xml.from(@sender)
 xml.to(@receiver)
 xml.body(“Don’t forget the milk”, :type => “plain”)
end

This produces an XML document like the following:

<message>
 <time>Tue Nov 5 22:23:00 -0500 2008</time>
 <from>Jessica</from>
 <to>Tony</to>
 <body type=”plain”>Don’t forget the milk</body>
</message>

The do after xml.message indicates that all the element’s content within the block should be contained
within the <message></message> tags. Also notice how :type was passed as a second parameter to
add the type attribute to the body element.

A much more practical example of how to use Builder templates is provided in the section titled
“Adding an RSS and Atom Feed,” in which an RSS and Atom feed will be added to your blog
application.

This library is quite fl exible and you are welcome to check out further information about its usage online
at http://builder.rubyforge.org.

RJS
RJS templates are used to generate a JavaScript that’s executed by the browser in response to an Ajax
request. Much like other template types, when an Ajax request is received, Rails looks for the associated
.js.rjs fi le within app\views and the subfolder named after the current controller.

Notice that you may fi nd yourself in situations where you wish to use ERb, as opposed to RJS, as the
template engine for your JavaScript. This typically happens when you need to insert JavaScript code in
a template. In this case the fi le would have the extension .js.erb.

RJS templates are usually employed when the page needs to be updated without a refresh, and are par-
ticularly useful when grouping a series of changes to the page, which are triggered by a simple action
like clicking a link or a button.

Although exploring the vast topic of Ajax programming is beyond the scope of this book, a small
example that showcases how to work with RJS templates is shown in the second half of this chapter,
in the section “Adding a Sprinkle of Ajax.”

74955c09.indd List35974955c09.indd List359 3/5/09 8:13:59 AM3/5/09 8:13:59 AM

360

Chapter 9: Rendering the User Interface with ActionView

Adding an RSS and Atom Feed
Responding to a request for a given resource in XML format is usually done without the need for a
Builder template. For example, in the ArticlesController you had:

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @articles }
 end

The highlighted line will invoke the to_xml method and render the collection of Article objects in
the default XML representation. In this case, @articles will contain only one record because you
set the pagination to one article per page. Reaching for /articles.xml will provide the following
(depending on your content, of course):

<?xml version=”1.0” encoding=”UTF-8”?>
<articles type=”array”>
 <article>
 <body>Hi there!

If you don’t know what %{color:red}Rails% is, you can read more about it on the
"official website":http://rubyonrails.org and then buy Antonio Cangiano’s
book. It’s *highly recommended*. ;-)

By the way, did you know that Ruby on Rails(TM) is a trademark of "David
Heinemeier Hansson":http://loudthinking.com?</body>
 <created-at type=”datetime”>2008-07-16T18:56:33-04:00</created-at>
 <id type=”integer”>4</id>

 <published type=”boolean”>true</published>
 <published-at type=”datetime”>2008-07-19T23:52:00-04:00</published-at>
 <title>Oh hi!</title>
 <updated-at type=”datetime”>2008-07-17T12:21:48-04:00</updated-at>
 </article>
</articles>

A great example of when this approach is not suffi cient is the publication of an RSS (from version 2.0
this stands for Really Simple Syndication) or an Atom (to be exact, Atom Syndication Format) feed.
Every feed is supposed to be a valid XML document, but their format also differs from the standard
representation of the data provided by the method to_xml.

What you need for both of these formats is a Builder template that specifi es how the fi nal XML data is
supposed to be formulated. And to provide you with a couple of concrete examples, you are going to
add an RSS and an Atom feed to the “The Rails Noob” blog.

format.rss and format.atom
Modify app\controllers\articles_controller.rb, so that its index action looks like this:

 def index
 @articles = Article.published.paginate(:page => params[:page],
 :order => “published_at DESC”)

74955c09.indd List36074955c09.indd List360 3/5/09 8:13:59 AM3/5/09 8:13:59 AM

361

Chapter 9: Rendering the User Interface with ActionView

 @syndicated_articles = Article.published.all(:limit => 10,
 :order => “published_at DESC”)

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @articles }
 format.rss { render :rss => @syndicated_articles }
 format.atom { render :atom => @syndicated_articles }
 end
 end

When you want to syndicate, say, 10 articles from among the ones you’ve published and present them in
reversed chronological order so that newer articles are at the top, what you need to do is to retrieve those
articles with Article.published.all and assign them to @syndicated_articles. That will be your
source of information for the feeds that are independent from the syndication format you’ll be using.

In the last two highlighted lines, you added a format.rss and format.atom within the respond_to
block, so that the application now knows how to handle application/atom+xml and application/
rss+xml media types (for example, requests for /articles.rss and /articles.atom).

As a reminder, Rails already recognizes both formats. If you want to specify a format that Rails doesn’t
know, you will need to register its MIME type in config\initializers\mime_types.rb, before
you’ll be able to use it within the respond_to block.

Within the respective inline blocks, you use render :rss and render :atom similarly to how
you applied render :xml to the preceding line, except this time you are passing the @syndicated_
articles variable instead of @articles. The real twist, however, lies in the view. You will in fact
prepare two Builder templates: index.rss.builder and index.atom.builder.

index.rss.builder and index.atom.builder
When a request for /articles.atom comes in, Rails executes that last line of code corresponding
to the Atom format and makes the @syndicated_articles’s content available to the template. Rails
expects to fi nd an index.atom.builder template much like it would expect an index.html.erb for
HTML requests. And the same is true for the RSS format as well.

Listing 9-1 is the Builder template for your RSS feed.

Listing 9-1: app\views\articles\index.rss.builder

xml.instruct! :xml, :version => “1.0”
xml.rss :version => “2.0” do
 xml.channel do
 xml.title(“The Rails Noob”)
 xml.description(“My latest articles”)
 xml.link(formatted_articles_url(:rss))

 for article in @syndicated_articles
 xml.item do

Continued

74955c09.indd List36174955c09.indd List361 3/5/09 8:13:59 AM3/5/09 8:13:59 AM

362

Chapter 9: Rendering the User Interface with ActionView

Listing 9-1: app\views\articles\index.rss.builder (continued)

 xml.title(article.title)
 xml.description(textilize(article.body))
 xml.pubDate(article.published_at.to_s(:rfc822))
 xml.link(formatted_article_url(article, :rss))
 xml.guid(formatted_article_url(article, :rss))
 end
 end
 end
end

The basic idea is that you use the xml object (which was introduced earlier) and with it you defi ne a
series of elements that are required by the RSS specifi cation before looping through all the articles
that are going to show up in the feed. The :rfc822 symbol that was passed to article.published_
at.to_s ensures that the timestamp appears in the expected format.

Figure 9-1 shows the resulting feed in Internet Explorer.

Figure 9-1

74955c09.indd List36274955c09.indd List362 3/5/09 8:14:00 AM3/5/09 8:14:00 AM

363

Chapter 9: Rendering the User Interface with ActionView

In Listing 9-2 you’ll fi nd the code for the Atom feed’s template.

Listing 9-2: app\views\articles\index.atom.builder

atom_feed do |feed|
 feed.title(“The Rails Noob”)
 last_article = @syndicated_articles.first
 feed.updated(last_article.published_at) if last_article

 for article in @syndicated_articles
 feed.entry(article) do |entry|
 entry.title(article.title)
 entry.content(textilize(article.body), :type => ‘html’)

 entry.author do |author|
 author.name(“Antonio Cangiano”)
 end
 end
 end
end

Note how the article.body is passed to the helper textilize, so that the body content is trans-
formed from Textile to HTML.

Here you wrap all of the code in the block that was passed to the special method atom_feed, you
defi ne a few required elements like the feed title and the time of your last update, and loop through
the collection of articles that are intended for syndication (including their titles, content, and author
names). Elements for the publication and updates for each individual entry will be added automatically
by feed.entry.

Figure 9-2 shows the output in Internet Explorer.

Feed Entry Order
You will notice that the order of the fi rst two posts is different in Figure 9-1 and
Figure 9-2. The reason for this is that Internet Explorer uses the updated element
instead of published to determine how to order the entries within the Atom feed. In
my particular case, the “Lorem Ipsum” post was published before the “Oh hi” post,
but I modifi ed “Lorem Ipsum” last, and therefore its updated_at column is more
recent in the database.

Upon opening the same feeds in Firefox, the entries will show up in the same order
for both the RSS and Atom feeds. Depending on the feed reader used by the sub-
scriber, when clicking “Subscribe to this feed,” the entries will be displayed in the
order of publication or their respective updates.

74955c09.indd List36374955c09.indd List363 3/5/09 8:14:00 AM3/5/09 8:14:00 AM

364

Chapter 9: Rendering the User Interface with ActionView

Figure 9-2

The output generated by the template for the RSS feed will be similar (depending on your data, of
course) to the following output (truncated for clarity):

<?xml version=”1.0” encoding=”UTF-8”?>
<rss version=”2.0”>
 <channel>
 <title>The Rails Noob</title>
 <description>My latest articles</description>
 <link>http://localhost:3000/articles.rss</link>
 <item>
 <title>Oh hi!</title>
 <description><p>Hi there!</p>

<p>If you don&#8217;t know what <span
style="color:red;">Rails is, you can read more about it
on the offi cial website
and then buy Antonio Cangiano&#8217;s book. It&#8217;s highly
recommended. ;-)</p>

<p>By the way, did you know that Ruby on Rails&#8482; is a trademark of
David Heinemeier
Hansson?</p></description>

74955c09.indd List36474955c09.indd List364 3/5/09 8:14:00 AM3/5/09 8:14:00 AM

365

Chapter 9: Rendering the User Interface with ActionView

 <pubDate>Sat, 19 Jul 2008 23:52:00 -0400</pubDate>
 <link>http://localhost:3000/articles/4.rss</link>
 <guid>http://localhost:3000/articles/4.rss</guid>
 </item>

 <item>
 <title>Lorem Ipsum</title>
 <description><p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Ut mi nisi, ullamcorper pharetra, imperdiet id, feugiat eu, justo. Class
aptent taciti sociosqu ad ...
 ...
 ...
 </description>
 <pubDate>Thu, 17 Jul 2008 02:36:00 -0400</pubDate>
 <link>http://localhost:3000/articles/2.rss</link>
 <guid>http://localhost:3000/articles/2.rss</guid>
 </item>
 ...
 ...
 </channel>
</rss>

For the Atom feed you’ll have the following:

<?xml version=”1.0” encoding=”UTF-8”?>
<feed xml:lang=”en-US” xmlns=”http://www.w3.org/2005/Atom”>
 <id>tag:localhost,2005:/articles</id>
 <link type=”text/html” rel=”alternate” href=”http://localhost:3000”/>
 <link type=”application/atom+xml” rel=”self” href=”http://localhost:3000/
articles.atom”/>
 <title>The Rails Noob</title>
 <updated>2008-07-19T23:52:00-04:00</updated>
 <entry>
 <id>tag:localhost,2005:Article/4</id>
 <published>2008-07-16T18:56:33-04:00</published>
 <updated>2008-07-17T12:21:48-04:00</updated>
 <link type=”text/html” rel=”alternate”
href=”http://localhost:3000/articles/4”/>
 <title>Oh hi!</title>
 <content type=”html”><p>Hi there!</p>

<p>If you don&#8217;t know what
Rails is, you can read more about it
on the offi cial website
and then buy Antonio Cangiano&#8217;s book. It&#8217;s highly
recommended. ;-)</p>

<p>By the way, did you know that Ruby on Rails&#8482; is a trademark of
 David Heinemeier
Hansson?</p></content>
 <author>
 <name>Antonio Cangiano</name>
 </author>
 </entry>

74955c09.indd List36574955c09.indd List365 3/5/09 8:14:00 AM3/5/09 8:14:00 AM

366

Chapter 9: Rendering the User Interface with ActionView

 <entry>
 <id>tag:localhost,2005:Article/2</id>
 <published>2008-07-16T10:31:33-04:00</published>
 <updated>2008-07-20T16:20:30-04:00</updated>
 <link type=”text/html” rel=”alternate” href=”http://localhost:3000/articles/2”/>
 <title>Lorem Ipsum</title>
 <content type=”html”><p>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Ut mi nisi, ullamcorper pharetra, imperdiet id, feugiat eu, justo.
 Class aptent taciti sociosqu ad ...
 ...
 ...
 </content>
 <author>
 <name>Antonio Cangiano</name>
 </author>
 </entry>
 ...
 ...
</feed>

Nowadays most developers favor Atom over RSS, but they are both extremely common.

Linking to the Feeds
At this point, all you need to do is provide your users with a link to at least one of your feeds, as well as
allow browsers/clients to auto-discover it.

For the links, it’s suffi cient enough to use the two helpers, link_to and formatted_articles_path,
within the articles.html.erb layout:

<%= link_to ‘Feed’, formatted_articles_path(:atom) %>

This translates into:

Feed

If you want to advertise both versions of the feed, add a second link by passing :rss to the path helper.
Alternatively, you may want to include an RSS feed icon to make the presence of a feed more prominent.

In Rails 2.3 formatted_articles_path(:atom) will be written as articles_
path(:format => “atom”).

To add an auto-discovery link to the layout, use the auto_discovery_link_tag helper:

<head>
 <meta http-equiv=”content-type” content=”text/html;charset=UTF-8” />
 <title>The Rails Noob</title>
 <%= auto_discovery_link_tag :atom, formatted_articles_url(:atom) %>
 <%= stylesheet_link_tag ‘site’ %>
</head>

74955c09.indd List36674955c09.indd List366 3/5/09 8:14:00 AM3/5/09 8:14:00 AM

367

Chapter 9: Rendering the User Interface with ActionView

This facilitates the discovery of the feed URL starting from the site onward in feed readers and other
automated services. It will also add the standard (typically orange) feed syndication icon to most
browsers, as shown in Figure 9-3 and 9-4, respectively, for Internet Explorer and Mozilla Firefox.

You can check the validity of your feeds online at http://feedvalidator.org.

Figure 9-3

Figure 9-4

As an exercise, feel free to create a feed for all the most recent comments and/or for
the comments associated with a given article.

Helpers
Whereas in ASP.NET you have controls that you can drag and drop to help ease the development pro-
cess, keep you productive, and maintain relatively lean pages, in Rails you have helpers. These handy
methods provide a convenient way to write HTML controls, as well as perform other operations on a
given input in order to provide the required output. For example, whereas in ASP.NET you have the
following line of code:

<asp:TextBox ID=”TextBox1” runat=”server”></asp:TextBox>

in Rails, you would use the text_field or text_field_tag helper, depending on whether or not the
resulting input tag needs to be bound to a particular model attribute.

Rails defi nes many helpers besides form ones. Consider, for instance, the pluralize and excerpt
textual helpers:

<%= excerpt(@article, ‘sed’, 50) %>

<%= pluralize(@people.size, ‘person’) %>

This will display output such as the following:

...lis porttitor. Curabitur elementum risus eu eros. Sed elit. Praesent elit
sapien, dictum ac, ornare por...

3 people

74955c09.indd List36774955c09.indd List367 3/5/09 8:14:00 AM3/5/09 8:14:00 AM

368

Chapter 9: Rendering the User Interface with ActionView

Helpers offer multiple advantages. In particular, they encourage reuse, simplify the templates, ease
development, make testing easier, adhere to the DRY principle, and discourage the inclusion of applica-
tion logic within the view templates. Their usage is more than encouraged. Two types of helpers exist:
those included by ActionView and those defi ned by the developer.

Predefi ned Helpers
Helpers defi ned by Rails are included in the module ActionView::Helpers. Consulting the API
documentation will reveal a wealth of helpers that are available, as well as examples of their usage.
It is, however, important to fi rst understand how these helpers are categorized. ActionView::Helpers
includes many helper modules itself, which in turn defi ne the actual helper methods. These are the
children modules:

ActionView::Helpers::ActiveRecordHelper ❑

ActionView::Helpers::AssetTagHelper ❑

ActionView::Helpers::AtomFeedHelper ❑

ActionView::Helpers::BenchmarkHelper ❑

ActionView::Helpers::CacheHelper ❑

ActionView::Helpers::CaptureHelper ❑

ActionView::Helpers::DateHelper ❑

ActionView::Helpers::DebugHelper ❑

ActionView::Helpers::FormHelper ❑

ActionView::Helpers::FormOptionsHelper ❑

ActionView::Helpers::FormTagHelper ❑

ActionView::Helpers::JavaScriptHelper ❑

ActionView::Helpers::NumberHelper ❑

ActionView::Helpers::PrototypeHelper ❑

ActionView::Helpers::RecordIdentificationHelper ❑

ActionView::Helpers::RecordTagHelper ❑

ActionView::Helpers::SanitizeHelper ❑

ActionView::Helpers::ScriptaculousHelper ❑

ActionView::Helpers::TagHelper ❑

ActionView::Helpers::TextHelper ❑

ActionView::Helpers::UrlHelper ❑

Their names are, in most cases, self-explanatory and you can bask in the knowledge that you will not
need to memorize them by heart. As you progress in your journey of learning Ruby on Rails, you’ll
become accustomed to the most frequent helpers defi ned by these modules, and the less familiar ones
will be at your fi ngertips in the documentation.

74955c09.indd List36874955c09.indd List368 3/5/09 8:14:00 AM3/5/09 8:14:00 AM

369

Chapter 9: Rendering the User Interface with ActionView

ActiveRecordHelper contains helper methods like form or error_messages_for that simplify
working with forms built around ActiveRecord objects. AssetTagHelper simplifi es the genera-
tion of HTML for linking to assets like images, JavaScript fi les, CSS fi les, and so on. The helper
auto_discovery_link_tag that you used a few paragraphs ago is defi ned in this module, and so
are, among many others, javascript_include_tag (to include JavaScript libraries), stylesheet_
link_tag (to link to a stylesheet), and image_tag.

AtomFeedHelper defi nes the atom_feed helper you just used in your Builder template, and
BenchmarkHelper implements a benchmark helper that’s used to measure the execution time of
blocks passed to the method. The resulting time is then logged. For example, the following fragment
will log (by default at the info level) a message such as “Render chat log (0.602143)“:

<% benchmark “Render chat log” do %>
 <%= print_chat(@chat_log) %>
<% end %>

CacheHelper provides a cache method that can be used to cache fragments of a view template (both
static and dynamic content). I talk more about caching, performances, and benchmarking in Chapter 11.

CaptureHelper implements two useful methods for code reuse: capture and content_for. capture
is used to easily assign fragments of a template to an instance variable. That instance variable will then
be available throughout the view layer. content_for allows you to mark a given fragment of view that
was passed to the helper as a block, so that it can be reused elsewhere. You could, for example, identify
a section as your footer:

<% content_for :footer do %>
 <! — some footer content — >
<% end %>

and then render that content elsewhere:

<%= yield :footer %>

If you defi ne several fragments with the same identifi er, they’ll be chained in the order that they were
processed.

DateHelper is a module you should familiarize yourself with. As the name implies, it implements
helpers for working with dates and times. Helpers exist that produce HTML select/options tags, such
as select_date, select_datetime, select_day, select_hour, select_minute, select_month,
select_second, select_time, select_year, date_select, datetime_select, and time_select,
as well as handy methods that work with the date and time provided in input, such as distance_of_
time_in_words, distance_of_time_in_words_to_now, and time_ago_in_words. If you wanted to
display the time that’s elapsed because an article was published in your blog application, rather than its
publication date, you could use one of these helpers.

DebugHelper defi nes the debug method that was mentioned earlier in this chapter. This makes it easy
to inspect the content of complex objects as they are rendered on the pages.

74955c09.indd List36974955c09.indd List369 3/5/09 8:14:00 AM3/5/09 8:14:00 AM

370

Chapter 9: Rendering the User Interface with ActionView

FormHelper and FormTagHelper
FormHelper and FormTagHelper are both modules that relate to form generation, but they differ in the
fact that FormHelper methods generate code that assumes that the form is for a model object, whereas
FormTagHelper methods do not. You will use one or the other, depending on whether or not you need
to “bind” a form to a particular model object’s attribute.

The presence of tag in the name of a helper indicates that it will generate HTML code that’s not associ-
ated with a model object or its attributes.

The methods implemented by FormHelper are check_box, fields_for, file_field, form_for,
hidden_field, label, password_field, radio_button, text_area, and text_field. All but
fields_for and form_for accept a fi rst argument, which indicates the object, and a second one that
individuates the attribute that’s being represented. Alternatively, when invoked on the block variable,
these methods do not require the object (because it’s provided by the receiver):

<% form_for(@article) do |f| %>
 <%= f.error_messages %>
 <% field_set_tag do %>
 <div class=”field”>
 <%= f.label :title %>
 <%= f.text_fi eld :title %>
 </div>

 <div class=”field”>
 <%= f.label :body %>
 <%= f.text_area :body %>
 </div>

 <div class=”field”>
 <%= f.label :published_at %>
 <%= f.datetime_select :published_at %>
 </div>

 <div class=”field”>
 <%= f.check_box :published %>
 <%= f.label :published %>
 </div>
 <% end %>

 <% field_set_tag do %>
 <%= f.submit button_value, :class => “button” %>
 <% end %>

<% end %>

form_for creates the form for a model instance, which is something that it can do in a resource-oriented
way (REST style), by receiving the instance in argument and automatically confi guring the form. For
example, in a “new” form, the code will be equivalent to:

<% form_for :article, Article.new, :url => articles_path, :html => { :class =>
“new_article”, :id => “new_article” } do |f| %>
 <! — ... — >
<% end %>

74955c09.indd List37074955c09.indd List370 3/5/09 8:14:00 AM3/5/09 8:14:00 AM

371

Chapter 9: Rendering the User Interface with ActionView

However, in an “edit” form, the same code becomes (depending on the id attribute of the object):

<% form_for :article, @article, :url => article_path(@article), :html => { :method
=> :put, :class => “edit_article”, :id => “edit_article_3” } do |f| %>
 <! — ... — >
<% end %>

How does the helper know whether you intend the form to be used for the creation of new records or to
edit them by populating the existing attribute values in the form? The model instance passed to form_
for is used to verify if it is a new record (for example, using the method new_record?) or if it’s an
existing one, and the form is then rendered accordingly.

This is the preferred way to operate with form_for in Rails, but it is still possible to manually confi gure
all the form parameters, as shown in the preceding output, as needed.

fields_for is an important helper because it allows you to create a scope around a particular model
instance, without creating a form tag in the HTML. What this means in practice is that you can use
fields_for any time you need a form that represents more than one model. You cannot have more
than one form HTML tag, so using form_for twice in the same template is out of the question, but
by using fields_for to wrap the controls for a second model instance, you can have multiple model
forms with relative ease.

Rails 2.3 simplifi es the process of creating complex forms through the so-called
Nested Object Forms. You can read more about this online at http://ryandaigle
.com/articles/2009/2/1/what-s-new-in-edge-rails-nested-attributes

File Uploads
file_field is a helper that generates a fi le upload input tag that’s associated with the
model instance attribute. That said, dealing with attachments is a notoriously error
prone, and somewhat annoying, problem.

For this reason, when dealing with attachments, many Rails developers prefer more
refi ned solutions, such as those that are made available through plugins. Two popular
choices are attachment_fu and Paperclip.

These facilitate handling uploads in Rails and add further features like the ability
to thumbnail images, resize them, or store the uploaded fi le on Amazon S3’s storage
service.

You can fi nd them online at http://svn.techno-weenie.net/projects/plugins/
attachment_fu and http://github.com/thoughtbot/paperclip, respectively

FormTagHelper includes the following methods: check_box_tag, field_set_tag,
file_field_tag, form_tag, hidden_field_tag, image_submit_tag, label_
tag, password_field_tag, radio_button_tag, select_tag, submit_tag,
text_area_tag, and text_field_tag. Again, these are meant to be used when
the form does not have a corresponding model object.

74955c09.indd List37174955c09.indd List371 3/5/09 8:14:00 AM3/5/09 8:14:00 AM

372

Chapter 9: Rendering the User Interface with ActionView

FormOptionsHelper
FormOptionsHelper offers a quick way to convert collections into select/options tags. The methods
implemented by this module are collection_select, option_groups_from_collection_for_
select, options_for_select, options_from_collection_for_select, select, time_zone_
options_for_select, and time_zone_select.

Consider the following usage of the select helper:

select(“article”, “category_id”, Category.all.collect {|c| c.name, c.id },
{ :include_blank => ‘None’ })

This would generate the following:

 <select name=”article[category_id]“>
 <option value=”1”>Python</option>
 <option value=”2” selected=”selected”>Ruby</option>
 <option value=”3”>C#</option>
 <option value=”4”>Visual Basic</option>
 <option value=”5”>Delphi</option>
 </select>

This assumes that the helper was placed within a form that was being displayed so as to edit an article, and
as such you can imagine that the value “Ruby” was already selected because the article’s category_id
attribute is 2.

Consult the offi cial API documentation to learn more about the other methods in the module and
their usage.

country_select
In September 2008, before Rails 2.2 was released, the Rails team decided to remove the
country_select and country_options_for_select helpers. The main reason for
this decision was the lack of agreement on a defi nitive list of countries to be included and
the culturally sensitive issue that this provoked. If you are curious, you can read about
the controversy on the blog of a Rails Core team member at http://www.koziarski
.net/archives/2008/9/24/countries-and-controversies.

Listing countries is still a recurring feature in many registration and shipping forms,
though, so once again you can rely on plugins to help you out with this feature.

Currently a good choice for this purpose is the localized_country_select plugin,
because it also leverages Rails’ i18n features in order to provide a list of countries that
are localized to the language of the application. You can fi nd this plugin on GitHub:
http://github.com/karmi/localized_country_select.

74955c09.indd List37274955c09.indd List372 3/5/09 8:14:01 AM3/5/09 8:14:01 AM

373

Chapter 9: Rendering the User Interface with ActionView

JavaScriptHelper, PrototypeHelper, and ScriptaculousHelper
These three modules are there to facilitate working with JavaScript and Ajax in your views (RJS templates
or not). JavaScriptHelper implements several useful methods including the following:

button_to_function ❑ : Generates a button that triggers a JavaScript function. For exam-
ple, button_to_function “Hello”, “alert(‘Hello!’)“ translates into <input
onclick=”alert(‘Hello!’);” type=”button” value=”Hello” />.

link_to_function ❑ : Equivalent to button_to but generates a link instead: <a href=”#“
onclick=”alert(‘Hello!’); return false;”>Hello.

define_javascript_functions ❑ : Used to include all the JavaScript libraries that ship with
ActionPack within a single <script> tag.

escape_javascript ❑ : Escapes carrier returns and both single and double quotes for JavaScript
(that is, prefi xing them with a backslash).

javascript_tag ❑ : Generates a JavaScript <script> tag that wraps the content passed as an
argument or a block. For example, <%= javascript_tag “alert(‘Hello!’)“ %> returns:

<script type=”text/javascript”>
//<![CDATA[
alert(‘Hello!’)
//]]>
</script>

CDATA sections are used to allow modern browsers to interpret the content as a script, while being
safely ignored by XML parsers (which would otherwise interpret it as XML).

Prototype is one of the most popular JavaScript frameworks; it simplifi es working with the DOM
(Document Object Model), Ajax, and object-orientation in JavaScript. Rails ships with this library and
provides you with the PrototypeHelper to access its functionalities from Ruby.

Prototype ships with Rails, but it must be included in your application in order to be able to use it, as
you’ll see later on.

This module implements several helpers that conveniently wrap the Prototype API. Many of these
contain the word remote to distinguish them from the regular helpers that are used in non-Ajax forms.
For example, you have remote_form_for and its alias form_remote_tag in place of form_for and
form_tag, and you have link_to_remote instead of link_to, or again submit_to_remote. When a
remote_form_for or its alias form_remote_for is used, the form will be submitted in the background
using XMLHttpRequest, instead of sending (by default) the POST request and reloading the page. For
instance, consider the following:

<% remote_form_for(@article) do |f| %>
 <! — ... — >
<% end %>

74955c09.indd List37374955c09.indd List373 3/5/09 8:14:01 AM3/5/09 8:14:01 AM

374

Chapter 9: Rendering the User Interface with ActionView

This would translate into a <form> tag along the lines of the following:

<form action=”/articles/3” class=”edit_article” id=”edit_article_3” method=”post”
onsubmit=”new Ajax.Request(‘/articles/3’, {asynchronous:true, evalScripts:true,
parameters:Form.serialize(this)}); return false;”>

When the form is submitted, a new asynchronous Ajax.Request is instantiated. In fact, as fancy as it
sounds, Ajax is all about being able to send an XMLHttpRequest from the browser to Rails, so that a
background request for a given action is initiated without having to completely reload the page. Rails
will then be able to process the action and update the page accordingly. The helper update_page
yields a JavaScriptGenerator, which can be used to update multiple elements on the same page, for
a single request as it’s received. I highly recommend that you read the extensive API reference for the
PrototypeHelper and for PrototypeHelper::JavaScriptGenerator::GeneratorMethods so as to
gain familiarity with working with Prototype in Rails.

Firebug and the Web Developer Toolbar
Most Web developers, including myself, use Mozilla Firefox as their browser of choice.
Though testing for Internet Explorer compatibility is still done, it is rare to see a Rails
developer who consciously chooses to use Internet Explorer over other open-source
browsers that are available. The main reason for this is not purely ideological, but
fi nds its roots in the advantages and far smaller number of quirks that Firefox pro-
vides. In fact, many Web applications end up requiring special arrangements to guar-
antee compatibility with the latest versions of Internet Explorer.

Two killer Firefox add-ons that are must-haves for any Web developer are Firebug and
the Web Developer toolbar. Firebug in particular is essential for any developer who
intends to work with Ajax applications. This Firefox extension provides a console, a
DOM inspector, HTTP traffi c analysis, and many other fundamental features that are
necessary to be able to debug the client side. If you haven’t already done so, be sure to
install Firefox, and get Firebug and Web Developer. I cannot stress enough how much
these three will improve your development workfl ow.

No matter how good Firefox is, it’s important to test your application with multiple
browsers, particularly with Internet Explorer; and because it is with this browser
that most compatibility quirks arise, it makes sense to have similar tools for Internet
Explorer as well. Though not as refi ned as their Firefox counterparts, two equivalent
tools for IE have been released: the IE Developer Toolbar and DebugBar. I highly
encourage you to get and install them as well.

Other browsers have similar projects underway to provide comparable functionalities.
For example, Opera is developing a Firebug equivalent known as Dragonfl y.

Firebug: ❑ http://getfirebug.com

Web Developer: ❑ https://addons.mozilla.org/en-US/firefox/
addon/60

IE Developer Toolbar and DebugBar: ❑ http://tinyurl.com/ie-tools

Opera Dragonfl y: ❑ http://www.opera.com/products/dragonfly/

74955c09.indd List37474955c09.indd List374 3/5/09 8:14:01 AM3/5/09 8:14:01 AM

375

Chapter 9: Rendering the User Interface with ActionView

script.aculo.us is a JavaScript library that’s built on top of Prototype and its main aim is to provide visual
effects and nice-looking Ajax controls. ActionPack ships this library as well, and just like Prototype, it
needs to be included explicitly in your application before you’re able to use it. Prototype is also required
because script.aculo.us builds on top of it. Luckily, Rails provides a convenient way to include them both in
your layouts via the include_javascript_tag helper, as you’ll see later on in a practical Ajax example.

ScriptaculousHelper defi nes four highly confi gurable helpers: draggable_element, drop_
receiving_element, sortable_element, and visual_effect. This last method is often used in
conjunction with other Ajax helpers to give them nice visual effects once the background request has
been completed. This can be done inline:

<%= link_to_remote “Load Results”,
 :update => “results”,
 :url => { :action => “results” },
 :complete => visual_effect(:highlight, “results”, :duration => 0.7) %>

or it can be used more elegantly in an RJS template. In Appendix A, I’ve provided you with resources
and a bibliography to help you explore the topic of Ajax further. You will also see a quick, concrete
example in the section titled “Adding a Sprinkle of Ajax.”

Many more Ajax functionalities are available through plugins. Browse http://agilewebdevelopment
.com/plugins/list and http://www.railslodge.com/plugins for an extensive list of
available plugins.

Other Helpers
NumberHelper provides helpers that convert numbers into strings. The exposed methods are number_
to_currency, number_to_human_size, number_to_percentage, number_to_phone, number_with_
delimiter, and number_with_precision. They are useful at times, but admittedly not revolutionary
at all.

SanitizeHelper and TextHelper, respectively, offer methods that sanitize potentially unsafe user
input and work with text. TextHelper in particular has many interesting methods including auto_
link, which automatically recognizes and transforms text into links; pluralize and excerpt, which
were mentioned before; truncate, word_wrap (which forces the wrapping of long lines of text), and
highlight (for highlighting certain words in the input text); simple_format to apply simple trans-
formation rules to the input text like adding a
 tag after a single newline; and the familiar
textilize and markdown.

UrlHelper is a module that contains many of the methods used in previous chapters. Besides link_to,
button_to, and url_for, this also implements the link_to_if, link_to_unless, link_to_unless_
current, current_page?, and mail_to helpers. The fi rst three are conditional links, each of which
has a tag that is generated only when a given condition is satisfi ed. link_to_unless_current is par-
ticularly handy when creating navigation menus where you do not want the current page to be linked.
When visiting the Archive page, the following will render links for the Home and About pages only:

 <ul id=”menubar”>
 <%= link_to_unless_current(“Home”, { :action => “index” }) %>
 <%= link_to_unless_current(“Archive”, { :action => “archive” }) %>
 <%= link_to_unless_current(“About”, { :action => “about” }) %>

74955c09.indd List37574955c09.indd List375 3/5/09 8:14:01 AM3/5/09 8:14:01 AM

376

Chapter 9: Rendering the User Interface with ActionView

current_page? verifi es that the current URI was generated by the options passed in argument to the
helpers, and mail_to generates a link to a mailto:, which triggers the user’s default mail client to send
emails client-side.

The three remaining, not particularly common helper modules are TagHelper, RecordTagHelper, and
RecordIdentificationHelper.

TagHelper allows you to defi ne tags programmatically (check out the tag and content_tag helpers)
and RecordTagHelper exposes methods that create HTML elements whose id and class parameters
are tied to a specifi ed ActiveRecord object. Finally, RecordIdentificationHelper exposes three del-
egate helpers used by the view to identify conventional names for markup code from ActiveRecord and
ActiveResource objects.

Creating Helpers
Predefi ned helpers will take you a long way when it comes to Rails applications, but helpers would be
very limiting if it wasn’t for the ability to defi ne your own.

To defi ne a helper all you have to do is declare a method in a helper module. By default, application-wide
helpers defi ned by the user are contained within ApplicationHelper in app\helpers\application_
helper.rb, whereas controller-specifi c helpers are defi ned in their own module/fi le. For example, if the
controller is ExampleController, the associated helper will conventionally be in ExampleHelper, which
in turn is defi ned in app\helpers\example_helper.rb.

helper and helper_method
The helper method is used to indicate which helper module should be made available
for templates that correspond to a particular controller. Because helper :all is pres-
ent within ApplicationController, all the helpers within the folder app\helpers
will be available as well.

It’s important to understand that helpers are available to the view layer (including
other helper modules) only, and not to controllers. If you tried to use the method
time_ago_in_words in a controller, for example, you’d get an error because the
method is not defi ned in that scope.

In the rare instances where a user-defi ned helper needs to be available to both
the controller and the view, you can defi ne a method in the controller and then use
helper_method to declare it as a helper (for example, helper_method :my_helper).
As usual, don’t abuse this facility, because it’s important not to mix presentation and
business logic, and to respect the Separation of Concerns principle.

Custom-defi ned helpers are regular methods that accept an input (usually a few options) and spit out an
output that’s normally used in the rendering of a page. For example, consider the following trivial helper:

module ApplicationHelper
 def three_times
 3.times { yield }
 end
end

74955c09.indd List37674955c09.indd List376 3/5/09 8:14:01 AM3/5/09 8:14:01 AM

377

Chapter 9: Rendering the User Interface with ActionView

Once defi ned, this would allow you to insert the following in any ERb template:

<% three_times do -%>
 <p>Lorem Ipsum...</p>
<% end -%>

and obtain:

 <p>Lorem Ipsum...</p>
 <p>Lorem Ipsum...</p>
 <p>Lorem Ipsum...</p>

In all fairness, this helper is not terribly useful, but it shows the fl exibility of this approach. This
is particularly true when you consider that any predefi ned Rails helper is available within helper
modules, and as such, it is possible to create helpers that build on ones that already exist.

Adding a Sprinkle of Ajax
To add a sprinkle of Ajax to the blog example, you are going to allow your users to comment without
reloading the page. The fi rst thing that you need to do is to include the default JavaScript libraries that ship
with Rails. Do this by modifying the articles.html.erb layout within the <head> tag as shown here:

<head>
 <meta http-equiv=”content-type” content=”text/html;charset=UTF-8” />
 <title>The Rails Noob</title>
 <%= auto_discovery_link_tag :atom, formatted_articles_url(:atom) %>
 <%= stylesheet_link_tag ‘site’ %>
 <%= javascript_include_tag :defaults %>
</head>

The javascript_include_tag is a helper used to include JavaScript libraries. When used in a layout, it
makes these libraries available to all of the view templates for which the layout applies. You can pass it the
names (with or without extension) of JavaScript fi les located in public\javascripts and these will be
included on each page for which the layout was rendered. In the highlighted line I used the :defaults
symbol, which tells Rails to include both Prototype and script.aculo.us, as well as application.js in
public\javascripts, if it exists. Passing :all will include all the JavaScript fi les in that directory and
its subdirectories. In production, it is usually a good idea to cache all the JavaScript fi les into a single
all.js fi le. This is done automatically for you by passing the :cache => true option to the helper, and
will work as long as ActionController::Base.perform_caching is set to true (which is by default
the case for production and not for development).

In the blog application, <%= javascript_include_tag :defaults %> generates code such as the
following:

<script src=”/javascripts/prototype.js?1215726390” type=”text/javascript”></script>
<script src=”/javascripts/effects.js?1215726390” type=”text/javascript”></script>
<script src=”/javascripts/dragdrop.js?1215726391” type=”text/javascript”></script>
<script src=”/javascripts/controls.js?1215726391” type=”text/javascript”></script>
<script src=”/javascripts/application.js?1215726391” type=”text/javascript”></script>

74955c09.indd List37774955c09.indd List377 3/5/09 8:14:01 AM3/5/09 8:14:01 AM

378

Chapter 9: Rendering the User Interface with ActionView

The next step is to transform the form used to create comments, from a regular form to an Ajax one. Go
ahead and edit the app\views\comments_form.html.erb partial so that it uses form_remote_for
as shown in Listing 9-3.

Listing 9-3: app\views\comments_form.html.erb

<% form_remote_for [article, comment] do |f| %>
 <%= f.error_messages %>

 <% field_set_tag do %>

 <div class=”field”>
 <%= f.label :name %>
 <%= f.text_field :name %>
 </div>

 <div class=”field”>
 <%= f.label :email %>
 <%= f.text_field :email %>
 </div>

 <div class=”field”>
 <%= f.label :body %>
 <%= f.text_area :body, :rows => 10 %>
 </div>

 <% end %>

 <% field_set_tag do %>
 <%= f.submit button_value, :class => “button” %>
 <% end %>
<% end %>

This simple change is suffi cient because it modifi es the way the form is handled upon submission.

The third step is to modify the CommentsController’s create action so that it’s able to respond to
JavaScript requests. Change it by adding the highlighted line:

 # POST /comments
 # POST /comments.xml
 def create
 @comment = @article.comments.build(params[:comment])

 respond_to do |format|
 if @comment.save
 flash[:notice] = ‘Comment was successfully created.’
 format.html { redirect_to(@article) }
 format.xml { render :xml => @comment, :status => :created,
 :location => @comment }
 format.js
 else
 format.html { render :action => “new” }

74955c09.indd List37874955c09.indd List378 3/5/09 8:14:01 AM3/5/09 8:14:01 AM

379

Chapter 9: Rendering the User Interface with ActionView

 format.xml { ender :xml => @comment.errors, :status =>
:unprocessable_entity }
 end
 end
 end

This tells ActionPack that a create.js.rjs template should be used to formulate a response, when the
incoming request is an Ajax one.

You might have noticed that if the comment fails to save, nothing happens to the existing form. This
may or may not be the desired outcome, depending on the application. In some instances, you may want
to handle the failed attempt by informing the user about the problem that prevented the object from
being saved; for example, by placing a format.js { render :template => “shared/error
.js.rjs” } in the else branch and implementing an error.js.rjs template.

The fourth and last step (I didn’t say that it would be hard, now did I?), is therefore to create an
RJS template. Go ahead and create app\views\comments\create.js.rjs, then copy the code
from Listing 9-4.

Listing 9-4: app\views\comments\create.js.rjs

page.insert_html :bottom, :comments, :partial => “articles/comment”, :object => @
comment
page.replace_html :comments_count, pluralize(@article.comments.size, ‘Comment’)
page[:new_comment].reset
page.replace_html :notice, flash[:notice]
flash.discard

If you require nice visual effects when an object is created, destroyed, or a change is made, use the
method page.visual_effect.

Before delving into the analysis of this snippet, start the Web server and try to add a new comment to
an existing post. You should see that the comment is immediately added without reloading the page,
the comment counter before the comments section was updated, and the reassuring green, fl ash mes-
sage “Comment was successfully created.” should be displayed. Congratulations, you just added a
simple Ajax feature to your fi rst Rails application.

The RJS template in Listing 9-4 is easy to understand. page is a JavaScriptGenerator object
that represents the page that issued the request, so that it can be easily manipulated from Ruby
code. In the fi rst line, you append, at the bottom of the DOM element with id comments, the partial
articles_comment.html.erb, which displays the comment you’ve just created:

page.insert_html :bottom, :comments, :partial => “articles/comment”,
 :object => @comment

insert_html is a helper that’s defi ned in the class ActionView::Helpers::PrototypeHelper
::JavaScriptGenerator::GeneratorMethods. Similar helpers defi ned by the same class are
replace_html, hide, show, and toggle, which switches between hiding and showing a given element.

74955c09.indd List37974955c09.indd List379 3/5/09 8:14:01 AM3/5/09 8:14:01 AM

380

Chapter 9: Rendering the User Interface with ActionView

WATIR and Selenium
Aside from regular functional and unit testing, many Rails developers opt to fur-
ther test their applications by using software that is able to automate the browser
interaction with the application, and compare the expected results with what was
actually obtained.

This sort of black-box testing, before the release of an application, is a form of auto-
mated Acceptance Testing and can be very benefi cial when it comes to improving the
Q&A of a Web application. And because the browser is automatically operated, as
opposed to performing some sort of emulation, Rich Internet Applications are not a
problem. No matter how much Ajax your application uses, these types of tests will be
able to interact with the application and capture the produced output.

In the Rails world, two tools are very popular: Watir (Web Application Testing in
Ruby, pronounced “water”) and Selenium. Watir works through OLE to automate
Internet Explorer, whereas Selenium is multi-platform and can be used with a variety
of modern Web browsers. There is also a project, FireWatir, which is working to bring
Watir to Mozilla Firefox. An effort to merge these two is currently underway. I highly
encourage you to check out Watir and Selenium and try to give them a spin.

Watir: ❑ http://wtr.rubyforge.org

Selenium: ❑ http://selenium.seleniumhq.org

FireWatir: ❑ http://code.google.com/p/firewatir

In the second line of Listing 9-4, you replaced the DOM element with id comments_count (with the
updated number of comments):

page.replace_html :comments_count, pluralize(@article.comments.size, ‘Comment’)

You now need to clean up the form that was fi lled in to create the form. You do this by using the
method reset on the page element with id new_comment (your form):

page[:new_comment].reset

You then need to replace the empty fl ash notice in the page with your success message. You do this as
usual with replace_html:

page.replace_html :notice, flash[:notice]

And fi nally, you invoke flash.discard to discard the fl ash message. You need this fi nal step to clear
the fl ash for the next page reload. If you left out this line of code, the fl ash would still be on hand for the
next request.

As demonstrated by this small example, Rails really simplifi es the process of working with Ajax and
JavaScript. Professional Web developers will inevitably end up writing JavaScript code as well, but Rails
tries to keep everything as simple as possible by providing you with a Ruby DSL.

74955c09.indd List38074955c09.indd List380 3/5/09 8:14:01 AM3/5/09 8:14:01 AM

381

Chapter 9: Rendering the User Interface with ActionView

A Bug and an Exercise for the Reader
If you pay close attention, you will notice that the RJS template updates several elements
in the page, but it doesn’t update the number of comments in the right sidebar, just below
the “Published on” date and time. So you will have a page that reads “4 comments” in the
right sidebar, and above the comment section “5 comments.” Solving this bug, which was
intentionally left in, will be your exercise. All you’ll have to do is add an id to the element
in the sidebar, and then add a line to the RJS template so that its content is replaced as
well when the request is completed.

Alternatives
Rails is opinionated software, and as such ships with a set of sensible defaults. As you have seen through-
out this chapter, Rails assumes that you’ll be using ERb, Builder, and RJS templates, and that you’re going
to employ Prototype and script.aculo.us. But it’s important to understand that you are not limited to these
options. Should you prefer a different template engine, you are free to adopt one instead of ERb. Common
choices are Haml (http://haml.hamptoncatlin.com) and Liquid (http://www.liquidmarkup.org).
If you’d like to simplify writing CSS, you can also check Haml’s sister project, Saas.

Regarding Ajax, more than 200 frameworks are out there. Prototype is one of the best and most popu-
lar, but should you feel inclined to work with a different framework, you can copy it over in public\
javascripts, include it with javascript_include_tag, and then it will be ready for you to use when-
ever you like. Of course, you’d be using JavaScript, as opposed to comfortable Ruby wrappers, but you can
always defi ne your own Ruby helpers and perhaps share and distribute them with others as a plugin. In
fact, many plugins for alternative JavaScript libraries exist or are under development at the moment.

One JavaScript library in particular has been gaining a lot of momentum: jQuery. It’s very light, fast,
powerful, and well written, and it’s been able to catch the interest of many Rails developers. If you are
among the legions of jQuery fans, you should use the jRails plugin (http://ennerchi.com/projects/
jrails), which provides a drop-in jQuery replacement for Prototype and script.aculo.us.

There is then the matter of alternatives to Ajax. Quite a few people were able to successfully interface
Adobe Flex and Rails, skipping Ajax altogether. Similarly, as IronRuby matures, it will be interesting to
be able to deploy Silverlight (or its open source counterpart Moonlight) and Ruby on Rails in production
mode, an effort that’s already underway thanks to experimental plugins like Silverline (http://www
.schementi.com/silverline).

Sending Emails
Ruby on Rails enables developers to send emails thanks to ActionMailer. In order for
your application to be able to send emails, you’ll mainly need to defi ne a model that
inherits from ActionMailer::Base and a mailer view that is a regular ERb template
that represents the body of your email.

I highly recommend that you read the offi cial Rails guide “Action Mailer Basics” to
learn more about how to confi gure and use ActionMailer to send emails in your Rails
applications. You can fi nd it locally in doc (as discussed before) or online at http://
guides.rubyonrails.org/action_mailer_basics.html.

74955c09.indd List38174955c09.indd List381 3/5/09 8:14:01 AM3/5/09 8:14:01 AM

382

Chapter 9: Rendering the User Interface with ActionView

Summary
Whether you have the luxury of a dedicated Web designer to help you out or you are in charge of both
back-end and front-end, having a solid understanding of how the view layer works is fundamental, and
this chapter should have helped you to get started.

It also concludes the broad panoramic of the MVC architectural pattern as implemented by Rails. It has
been a somewhat lengthy journey, but it was a necessary undertaking to grasp the essential principles
behind how the framework functions.

Moving on, the last two chapters in this book will be specialist ones, respectively dedicated to the topic
of Web Services and then a whirlwind tour of performance and optimization, security, a few enterprise
considerations, as well as deployment.

74955c09.indd List38274955c09.indd List382 3/5/09 8:14:01 AM3/5/09 8:14:01 AM

ActiveResource
and Web Services

Your paradigm is so intrinsic to your mental process that you are hardly aware of its
existence, until you try to communicate with someone with a different paradigm.

— Donella Meadows, Environmental Scientist

Web Services are systems used to allow machines to interact over a network. Within the context
of Web development, the network is the Internet itself, and the interaction is between at least one
computer that exposes a Web API and other machines that use this API to require services.

The previous chapters analyzed how you can defi ne resources through ActionController::
Resources and hence easily defi ne a RESTful service that exposes an API. When the format
requested was XML, Rails would formulate a response in XML that was suitable for other computers
to understand.

Historically XML has been the lingua franca for communicating among machines. Another
younger contender is JSON (JavaScript Object Notation).

What you did not explore yet, and what will be the main subject of this chapter, is how to con-
sume REST Web Services that are defi ned through Rails. Enter the world of ActiveResource (also
known as ARes).

ActiveResource
Because requesting GET /articles.xml in your blog example produces XML data, you could inter-
act with the REST service in this manner, without any wrapper and with “low-level” requests. But
just like interacting with databases via low-level queries is more time consuming and error prone
than using ActiveRecord, so is working with Web Services by sending handmade HTTP requests.

74955book.indd List38374955book.indd List383 3/4/09 8:47:56 AM3/4/09 8:47:56 AM

384

Chapter 10: ActiveResource and Web Services

The idea behind ActiveResource is then very simple. ActiveRecord simplifi es the process of interacting
with databases, by providing object-relational mapping between relational data and business objects.
ActiveResource does the same, only mapping REST resources. Both ActiveRecord and ActiveResource
rely on a series of conventions and assumptions to be able to provide a wrapper to map structures con-
taining the data (relational tables and resources, respectively) to model objects.

A script, desktop application, or Web application, can take advantage of ActiveResource, by simply
defi ning a model for a given remote REST resource. When this prerequisite has been fulfi lled, it will be
possible to use that model through an API similar to ActiveRecord’s one. Unlike ActiveRecord, which
operates on database records and sends queries to the database, ActiveResource operates on remote
HTTP resources by sending XML requests to the remote Web Service. Any XML received in response
will then be opportunely serialized, so that you can continue to work with Ruby objects, as opposed
to raw data.

Under the hood, the HTTP methods GET, POST, PUT, and DELETE are used to send the request, depending
on the operation intended on the resource. For example, GET will be used to retrieve resources, POST to
create new resources, PUT to update them, and fi nally, DELETE to, not surprisingly, delete resources.

Notice my use of the word “resource” as opposed to “record.” In fact, though a resource will often
represent actual database records, in which case ActiveResource indirectly provides an API to perform
CRUD operations on a remote database, this doesn’t have to be the case. There can be resources that do
not represent database data.

Creating ActiveResource Models
The process of creating ActiveResource models is very similar to that for ActiveRecord models. When
the client consuming a REST Web Service is another Rails application, an ActiveResource model is
located in app\models. The class is conventionally named after the name of the remote resource and
inherits from ActiveResource::Base.

First start the blog sample application as usual with ruby script/server, so that your Web Service
will be up and running.

Please use the blog application without authentication. If you’ve already added authentication to your
blog app, you can use the blog version provided with Chapter 6 in the code download at wrox.com.

Next, create a new Rails application that will use it:

C:\projects> rails blog_consumer
C:\projects> cd blog_consumer

Proceed by creating an Article model. Create an article.rb fi le in app\models with the following
content:

class Article < ActiveResource::Base
 self.site = “http://localhost:3000/“
end

The highlighted line sets a class variable site, so that ActiveResource knows where to fi nd the remote
REST Web Service that needs to be invoked. In this particular case, you are running the blog application

74955book.indd List38474955book.indd List384 3/4/09 8:47:57 AM3/4/09 8:47:57 AM

385

Chapter 10: ActiveResource and Web Services

on localhost, so the model will be mapped to http://localhost:3000/articles, but the assigned
value could be any valid URI.

Another useful class variable is timeout (for example, self.timeout = 4), which is used to express
the timeout in seconds. When a request times out, the error ActiveResource::TimeoutError is raised.
You can rescue it and decide how to proceed after each timeout. Generally speaking it’s recommended
that you keep the timeout value to a rather small number, to respect the Fail-fast principle (you can read
more about it online at http://en.wikipedia.org/wiki/Fail-fast). The default value for timeout
depends on the Ruby implementation that is running Rails, but it’s usually 60 seconds.

Avoiding Duplicates
In this scenario you have an Article ActiveRecord model on a server, and an Article
ActiveResource model on the client, so there is no confl ict whatsoever. However, what
happens if your Rails application that acts as a client for the Web Service exposed by
another Rails application already has an existing article.rb fi le for ActiveRecord in
app\models?

When this happens, you can avoid duplication by simply setting the element_name
for the ActiveResource model:

class ArticleResource < ActiveResource::Base
 self.site = “http://localhost:3000/“
 self.element_name = “article”
end

CRUD Operations
To experiment with this new model, you will work from the console. Open it by running:

C:\projects\blog_consumer> ruby script/console

Once inside the console, you’ll proceed by performing a few CRUD operations. The whole process
should appear familiar, because it’s analogous to what you did with ActiveRecord, but don’t forget
that you are not interrogating a database but a remote REST service.

Again, for simplicity, I’m assuming you are using the blog application without authentication enabled,
as per the code attached with Chapter 6.

If your Web Service has HTTP authentication in place, you can assign the credentials in the URL (for
example, self.site = http://myuser:secret@mydomain.com/).

Alternatively, you can also use the class methods user= and password=, which are the only option
when the username is an email address and as such cannot be included in the URL:

self.site = “https://mydomain.com/“
self.user = “myuser@mydomain.com”
self.password = “secret”

It is recommended that in production you use SSL to encrypt the communication between the Web Service
consumer and the server, so that the password will not be sent in clear text (for example, self.site =
https://myuser:secret@mydomain.com/).

74955book.indd List38574955book.indd List385 3/4/09 8:47:57 AM3/4/09 8:47:57 AM

386

Chapter 10: ActiveResource and Web Services

Read
Let’s try to retrieve a resource by its id:

>> article = Article.fi nd(1)
=> #<Article:0x61322c4 @prefix_options={}, @attributes={“updated_at”=>Thu Jul 17
03:18:28 UTC 2008, “body”=>”Hi from the
 body of an article. :)“, “title”=>”Hello, Rails!”, “published”=>false, “id”=>1,
“published_at”=>Fri Jul 11 09:24:00 UTC
 2008, “created_at”=>Fri Jul 11 09:32:41 UTC 2008}>

Assuming that the resource whose XML element id is 1 exists, ActiveResource will retrieve the XML
document and instantiate an Article object for you. All the entries defi ned within @attributes will
be available as attributes of the object:

>> article.published
=> false
>> article.title
=> “Hello, Rails!”

If an XML element contains other XML elements, this will be mapped as its own object (for example,
article.complex_object.sub_element).

If the record doesn’t exist, an ActiveResource::ResourceNotFound exception is raised:

>> Article.fi nd(100)
ActiveResource::ResourceNotFound: Failed with 404 Not Found
 from d:/Ruby/lib/ruby/gems/1.8/gems/activeresource-2.2.2/lib/active_
resource/connection.rb:170:in `handle_respon
se’
 from d:/Ruby/lib/ruby/gems/1.8/gems/activeresource-
2.2.2/lib/active_resource/connection.rb:151:in `request’
 from d:/Ruby/lib/ruby/gems/1.8/gems/activeresource-
2.2.2/lib/active_resource/connection.rb:116:in `get’
 from d:/Ruby/lib/ruby/gems/1.8/gems/activeresource-
2.2.2/lib/active_resource/base.rb:593:in `find_single’
 from d:/Ruby/lib/ruby/gems/1.8/gems/activeresource-
2.2.2/lib/active_resource/base.rb:521:in `find’
 from (irb):31

Note that although you can retrieve a collection of resources through find(:all), the alias methods
all (as well as first and last) are not available for ActiveResource models.

Whenever the find method is invoked on your Article model, a GET request (for the XML format) is
sent. For example, Article.find(1) generates a request on the server running the REST Web Service
with the following parameters:

{ “format” => “xml”, “action” => “show”, “id” => “1”, “controller” => “articles” }

74955book.indd List38674955book.indd List386 3/4/09 8:47:57 AM3/4/09 8:47:57 AM

387

Chapter 10: ActiveResource and Web Services

Using JSON Rather Than XML
The default ActiveResource format is XML. If you’d like to set JSON as the format for
your ARes models, add self.format = :json. Doing so changes the value of the
parameter format from “xml” to “json.” The Web Service will need to be able to deal
with JSON requests or you’ll get an ActiveResource::ClientError with a 406 Not
Acceptable status code.

Create
Creating new resource instances is just as easy thanks to methods like save and create. These are the
ActiveResource equivalents of the familiar methods you used for ActiveRecord.

Consider this example, which also employs the new? method to verify that an article resource hasn’t
been saved yet:

>> article = Article.new(:title => “Hi from ActiveResource”, :body => “...some
 text...”)
=> #<Article:0x611d018 @prefix_options={}, @attributes={“body”=>”...some text...”,
“title”=>”Hi from ActiveResource”}>
>> article.new?
=> true
>> article.save
=> true
>> article.id
=> 6

Instead of new and save, you can also use the create method to reduce the creation process to a
single method.

When article.save is executed, a POST request for http://localhost:3000/articles.xml is sent by
the client. Notice that the resource id doesn’t exist until you invoke article.save. When a new resource
request is sent, the Web Service will try to create a new record (in our case) and if successful will return a
201 HTTP status code (Created), with a Location header like http://localhost:3000/articles/6.
This is a RESTful URI that indicates the location of the resource you just created. Out of this URI the id is
parsed and assigned to the receiver (for example, the object referenced by article).

Please note that server-side validations apply. If a validation fails, article.save will fail and return
false. You can check the validity of a resource through the method valid? and read a list of errors by
calling errors.full_messages on the object you tried to save.

You can defi ne validations in your ActiveResource models to perform validations client side, in
a similar manner to how ActiveRecord validations work server side. Check the documentation of
ActiveResource::Validations for further information.

Update
To update a resource, you can modify its attributes and then invoke the save method:

>> article = Article.fi nd(1)
=> #<Article:0x60d3f80 @prefix_options={}, @attributes={“updated_at”=>Thu Jul 17

74955book.indd List38774955book.indd List387 3/4/09 8:47:57 AM3/4/09 8:47:57 AM

388

Chapter 10: ActiveResource and Web Services

03:18:28 UTC 2008, “body”=>”Hi from the
 body of an article. :)“, “title”=>”Hello, Rails!”, “published”=>false, “id”=>1,
 “published_at”=>Fri Jul 11 09:24:00 UTC
 2008, “created_at”=>Fri Jul 11 09:32:41 UTC 2008}>
>> article.title = “Hello!”
=> “Hello!”
>> article.save
=> true

Updating a resource sends a PUT request, in this case, for http://localhost:3000/articles/1.xml.
Unlike creating a resource, successfully updating a resource returns an empty response with a 204 HTTP
status code (No Content).

Delete
Deleting remote resources can be accomplished through the instance method destroy, or with the class
method delete (by passing an id). These send a DELETE request for the resource location (including
.xml which specifi es the format) and returns an empty response with HTTP status code of 200 (OK).

The existence of a resource can be verifi ed with the method exists?.

Don’t let the uncanny similarity between the basic CRUD methods defi ned by
ActiveRecord and ActiveResource fool you. You won’t be able to use many methods
defi ned by ActiveRecord, including dynamic fi nders like find_by_title, with
ActiveResource models, unless you defi ne them yourself.

Beyond CRUD
The four basic CRUD operations and a few extra methods to verify the status of a model instance will
fall short when trying to consume certain APIs. For this reason, ActiveResource enables you to use your
own custom REST methods, through get, post, put, and delete.

For example, consider the following:

>> Article.get(:unpublished)
=> [{“updated_at”=>Sun Nov 30 19:25:43 UTC 2008, “title”=>”Hello!”, “body”=>”Hi
from the body of an article. :)“, “published”=>false, “id”=>1, “published_at”=>Fri
Jul 11 09:24:00 UTC 2008, “created_at”=>Fri Jul 11 09:32:41 UTC 2008}]

This translates to GET /articles/unpublished.xml request. Because you defi ned an unpublished
REST method, you obtain the expected result.

The same is true for the other verbs as well. For example, the following by default will translate in a
POST request for /books/new/add.xml, under the assumption that the Web Service has defi ned a cus-
tom REST method add:

Book.new(:title => “Advanced Calculus”).post(:add)

74955book.indd List38874955book.indd List388 3/4/09 8:47:57 AM3/4/09 8:47:57 AM

389

Chapter 10: ActiveResource and Web Services

Any extra argument passed to any of these methods will be interpreted as a parameter. For instance:

Book.find(1).put(:deposit, :overdue => true)

will issue a PUT /books/1/deposit.xml?overdue=true request.

Of course, you can go further and defi ne add or deposit class methods within the ARes model, by
taking advantage of post and put, respectively.

Note that the last two book examples are generic; I’m not referencing other book examples I made in
Chapter 7.

Nested Resources
I mentioned that despite the similarity between the ActiveRecord and ActiveResource APIs, only
selected methods are available for the latter. This also means that, while tempting, reaching for the
methods that provide access to a collection of objects associated with a given object like you’d do in
ActiveRecord is not going to work in ActiveResource.

ActiveResource, in fact, knows nothing about databases, tables, and records. The fact that a one-to-
many relationship between the articles table and the comments table exists is absolutely irrelevant
to ActiveResource. What ActiveResource minds is resources and their relationships. Because you
specifi ed that comments are nested within articles in config\routes.rb, you are now able to work
with nested resources from an ActiveResource client as well.

The comment.rb model in app\models needs to look like this:

class Comment < ActiveResource::Base
 self.site = “http://localhost:3000/articles/:article_id”
end

Notice how you need to provide the suffi x articles/:article_id because comments are nested
within articles, so an article_id is always necessary in order to access comments.

With this model defi nition, you can then access a list of comments for a given article as follows:

Comment.find(:all, :params => {:article_id => 1})

You can also retrieve a particular comment resource, modify its attributes, and then request an update:

c = Comment.find(:last, :params => { :article_id => 1 })
c.name = “A different commenter”
c.save #=> true

Specifying the article_id through params is fundamental, otherwise the URI generated for a request
like Comment.find(:last) will be the malformed /articles//comments.xml.

74955book.indd List38974955book.indd List389 3/4/09 8:47:58 AM3/4/09 8:47:58 AM

390

Chapter 10: ActiveResource and Web Services

To help you determine the URI generated you can use the helper methods element_path and
collection_path. Take a look at the following two examples of their usage:

>> Comment.element_path(3, { :article_id => 1 })
=> “/articles/1/comments/3.xml”
>> Comment.collection_path(:article_id => 2)
=> “/articles/2/comments.xml”

element_path is therefore used for retrieving the path for a single resource, whereas collection_path
is for retrieving the path to a list of resource objects, like the list of comments for a particular article.

Please notice that element_path and collection_path do not accept a :params key.

Consuming and Publishing REST Web Services from .NET
REST is a relatively new technology, but it’s gaining momentum with an increasing number of websites
exposing RESTful APIs. Truth to be told, not all of the APIs called “RESTful” actually are, but those
sites that genuinely provide a REST Web Service can be “consumed” client side by ActiveResource,
whether the Web Service has been implemented in Ruby on Rails or in a different language/framework.

This is great news when you need to use these services from within Ruby. Whether you are writing a
Rails application or a regular Ruby program, you can use ActiveResource to interact with the Web Service.

You may, however, fi nd yourself in a different position. Perhaps you just created a nice RESTful Rails
application and would now like to be able to consume the REST Web Service it exposes from your
existing .NET infrastructure.

This is not such a farfetched scenario, given that it’s one of the easiest ways to start introducing Rails
into a company that is mainly .NET-based. The other way is consuming through ARes a REST Web
Service implemented in .NET.

Because your client will be written in .NET code, you cannot use ActiveResource (short of tinkering
with IronRuby), so face the challenge of consuming a REST Web Service.

The REST architecture is based on the HTTP protocol and there is very little voodoo about it. It is so
straightforward that you could decide to formulate requests and parse the XML content retrieved on
your own. You could, for example, use XmlDocument or the XElement class defi ned by System.Linq.
XML for your GET requests, and use it along with the HttpWebRequest class when you need to specify
a different HTTP verb.

If the Web Service returns JSON, rather than XML, you can use the class JavaScriptSerializer.

Finally, should you require to publish RESTful Web Services using .NET, you can take advantage of
the Windows Communication Foundation (WCF) REST Starter Kit, which includes samples, code, tem-
plates, screencasts, and a wealth of information about working with REST in .NET. You can fi nd it on
MSDN at http://msdn.microsoft.com/wcf/rest.

74955book.indd List39074955book.indd List390 3/4/09 8:47:58 AM3/4/09 8:47:58 AM

391

Chapter 10: ActiveResource and Web Services

SOAP, XML-RPC, and ActionWebService
In the previous chapters you learned about creating RESTful Rails applications, which effortlessly
allow you to expose a Web Service as well. In this chapter, you learned about how to consume these
Web Services from Ruby, through ActiveResource. It’s fair to state that as far as REST is concerned,
Rails gets you covered from both the publishing and the consuming ends.

The bad news is that REST is not the most popular type of architectural style for Web Services, yet. In
fact, a good part of the Enterprise world is still using and adopting “Big Web Services” or SOA (Service-
Oriented Architecture) Web Services. In fact, REST Web Services are not currently very popular among
.NET and Java development teams. Though this is bound to change, at the present, you may be forced at
times to step outside of the REST boundaries, where things are less smooth and simple.

Thankfully both Ruby and Rails provide tools to interoperate with these other types of Web Services.
When you need to publish a SOAP-based or XML-RPC Web Service from Rails, you can use the
ActionWebService plugin, available as the actionwebservice gem (online at http://rubyforge.org/
projects/aws). ActionWebService used to be part of the Rails core, before REST found its way to the
heart of the framework and the community.

AWS tries to simplify the process of publishing APIs via WSDL (Web Service Defi nition Language),
based on the SOAP or XML-RPC protocols.

A fairly complete manual used to be available online at http://manuals.rubyonrails.com/
read/book/10 but at the time of writing, this is only available through the Google Cache. Checking
the “raw” documentation may be the best bet at this stage.

Please note that AWS does not implement the full W3C specifi cation, but it’s limited to the basic
functionalities required to interoperate with Java and .NET.

If you need to consume a SOAP-based Web Service written in .NET or Java from Ruby/Rails, you can
either still use the abstractions provided by ActionWebService or, perhaps more simply, use Ruby’s
SOAP library. You can fi nd an example of this online in this blog post: http://webgambit.com/blog/
calling-a-net-web-service-from-rails-original.

If you have an interest in Web Services, you should defi nitely check out the Atom Publishing Protocol
(APP) as well. You can start from http://www.atomenabled.org.

Summary
In the past few years, Web Services have assumed an increasingly important role in the world
of computing. Think about all the cloud services and the APIs published by so-called Web 2.0
applications.

Ruby on Rails marries the most modern architectural style for Web Services, making it dead easy to
publish RESTful Web Services and, thanks to ActiveResource, just as easy to consume them, whether
these were published by another Rails application or an entirely different stack.

74955book.indd List39174955book.indd List391 3/4/09 8:47:58 AM3/4/09 8:47:58 AM

392

Chapter 10: ActiveResource and Web Services

In its simplicity, ActiveResource does a lot for you. It transforms ActiveRecord-like methods into requests,
composed by an HTTP verb, a RESTful URI, and an XML (or JSON) body. And when a response is received,
this is handled and processed so that its details are available to the developer through model objects and
their attributes.

REST is defi nitely the way to go when developing in Rails, but I hope to have you reassured that
alternatives exist, albeit less straightforward.

The next chapter touches on the subjects of deployment, security, and optimization.

74955book.indd List39274955book.indd List392 3/4/09 8:47:58 AM3/4/09 8:47:58 AM

Going Into Production
Phusion Passenger, aka mod_rails, has been on a tour de force lately and rightfully so.
It makes Rails deployment so much simpler and, combined with REE, faster and with

less memory overhead. So I’m really happy to see that lots of the hosting companies
in the Rails world are adopting it and making it available to their customers.

— David Heinemeier Hansson

Ruby on Rails is notorious for its ability to provide developers with a quick and relatively easy
way to prototype Web applications. Yet building an application is only the fi rst in a series of steps
that are required before you’re able to see your creation live.

This chapter supplies you with a few important considerations about security, performance and
optimization, and deployment. Because entire books have been written on each of these topics,
my aim with this fi nal chapter is merely to provide you with a few essential notions and consid-
erations before you advance on your own journey of further improving your Ruby on Rails skills.
We’ll start with the fundamental topic of securing your Web application.

Security Considerations
It would be nice to be able to publish Web applications and sites without worrying about them
being hacked, but it is not realistic. It’s a jungle out there on the Internet, and unless you take
serious precautions, your site is bound to become compromised sooner or later.

To make things more challenging, the security of an application is like a chain: it’s only as strong
as its weakest link. Covering the subject of securing a Web server is well beyond the scope of this
book. If you are not familiar with the process, hosting companies and plans are available that will
take care of this for you. What they cannot do, though, is guarantee that your application is secure
as well. As a developer, application-level security is your responsibility, and this section should
help you make more conscious choices in this regard.

74955book.indd List39374955book.indd List393 3/4/09 8:48:11 AM3/4/09 8:48:11 AM

394

Chapter 11: Going Into Production

Cross-Site Scripting (XSS)
Cross-site scripting (XSS) attacks take advantage of vulnerabilities in a Web application to inject malicious
code that will be executed when other users view the page.

To better understand how XSS attacks work, let’s take a look at one possible scenario. Assume that
you have a blog application that allows comments. If that comment form is vulnerable to XSS attacks, a
malicious user could publish a comment that includes JavaScript code. Once the comment is published
on the site, every visitor who comes across that page executes the malicious JavaScript code (assuming
JavaScript was enabled in their browsers).

This is dangerous because the vulnerable form enables a malicious user to publish arbitrary code that
would be executed by other users. The malicious user could, for example, inject JavaScript code that
would grab the cookie of a legitimate user and send it over to a server where it would be collected and
processed. If the genuine user was logged in to the application, the malicious user would then be able to
use the stolen cookie to gain access to the application as if he were the authenticated, genuine user. And
that genuine user, who visited the compromised page on the application, could be the administrator of
the site, granting the malicious user full control of the application and its data.

It’s important to understand that this attack relies on vulnerable pages that publish unsafe values with-
out properly escaping them fi rst. While you’re developing Web applications, you need to be ruthless
when it comes to any value that could originate from a malicious user.

For example, the following is vulnerable to XSS attacks, because it displays the content coming from the
user as it is:

<%= params[:body] %>

If params[:body] contains a <script> tag, it will be published and executed by any future visitors to
that page.

html_escape
In Rails, the easiest way is to escape any HTML tags is with the already amply discussed h helper (alias
for html_escape). This helper will transform < and > occurrences within the argument into < and
>. The correct way to display the previous example is as follows:

<%= h(params[:body]) %>

or as it will often appear in many code bases:

<%=h params[:body] %>

With this in place, all tags will be displayed instead of being interpreted/executed. Any <script>
in input becomes an innocuous <script>, which is rendered as the string <script> by any
browser.

sanitize
Escaping HTML tags with h is good practice from a security standpoint, but it’s also very limiting when
you need to allow certain tags to be displayed. These occasions warrant the use of sanitize, which
takes a whitelist approach, by allowing only a specifi c set of tags and attributes.

74955book.indd List39474955book.indd List394 3/4/09 8:48:11 AM3/4/09 8:48:11 AM

395

Chapter 11: Going Into Production

Everything else is escaped (tags) or stripped (attributes). This process of sanitizing the input also strips
dangerous protocols (for example, javascript:), preventing them from being used as values for href and
src attributes. Finally, sanitize tries to combat any tricks that black-hat hackers may have up their sleeve,
and their attempts to bypass the JavaScript fi lters with special characters (for example, hexadecimals).

Without optional arguments, sanitize is used as follows:

<%= sanitize(@comment.body) %>

You may be wondering what tags, attributes, and protocols are allowed by default. To verify which ones
are, you need to dig into Rails’ code in actionpack/lib/action_controller/vendor/html-scanner/
html/sanitizer.rb, to discover the following snippet:

A regular expression of the valid characters used to separate protocols like
the ‘:’ in ‘http://foo.com’
self.protocol_separator = /:|(�*58)|(p)|(%|%)3A/

Specifies a Set of HTML attributes that can have URIs.
self.uri_attributes = Set.new(%w(href src cite action longdesc xlink:href
 lowsrc))

Specifies a Set of ‘bad’ tags that the #sanitize helper will remove completely,
as opposed
to just escaping harmless tags like
self.bad_tags = Set.new(%w(script))

Specifies the default Set of tags that the #sanitize helper will allow unscathed.
self.allowed_tags = Set.new(%w(strong em b i p code pre tt samp kbd var
sub sup dfn cite big small address hr br div span h1 h2 h3 h4 h5 h6 ul ol li dt dd
abbr acronym a img blockquote del ins))

Specifies the default Set of html attributes that the #sanitize helper will leave
in the allowed tag.
self.allowed_attributes = Set.new(%w(href src width height alt cite datetime
title class name xml:lang abbr))

Specifies the default Set of acceptable css properties that #sanitize and
#sanitize_css will accept.
self.allowed_protocols = Set.new(%w(ed2k ftp http https irc mailto news gopher
nntp telnet webcal xmpp callto feed svn urn aim rsync tag ssh sftp rtsp afs))

The :tags and :attributes options are used to specify additional tags and attributes that can be
permitted. For example:

<%= sanitize(@comment.body, :tags => %w{table tr td}, :attributes => %w{id class}) %>

These can also be specifi ed globally for the application within an initializer (that is, in config\
environment.rb or in a fi le within config\initializers):

Rails::Initializer.run do |config|
 confi g.action_view.sanitized_allowed_tags = ‘table’, ‘tr’, ‘td’
 confi g.action_view.sanitized_allowed_attributes = ‘id’, ‘class’
end

74955book.indd List39574955book.indd List395 3/4/09 8:48:12 AM3/4/09 8:48:12 AM

396

Chapter 11: Going Into Production

You can also disallow some of the existing tags or attributes by deleting them from the default list:

Rails::Initializer.run do |config|
 config.after_initialize do
 ActionView::Base.sanitized_allowed_tags.delete(‘img’)
 end
end

Alternatively, for a whitelist approach that removes all tags by default, consider the Sanitize gem. You
can fi nd more information about it online at http://wonko.com/post/sanitize.

XSS vulnerabilities are not limited to regular forms. Allowing users to upload fi les that become avail-
able to other users can also be dangerous. In fact, a malicious user could misrepresent the fi le’s content
type and try to let other users execute the fi le’s content as opposed to simply downloading the fi le.
Another risk is attempting to pass a relative path to the server to make sensitive fi les that are located
on the server (for example, ../../config/database.yml) available for download. Using the Rails
plugin Paperclip (http://www.thoughtbot.com/projects/paperclip) and its validations
eases the process of working securely with attachments.

Cookie Security
In the scenario described in the previous section, the malicious user was able to log in as a different
user thanks to both a vulnerable form and the application’s reliance on the session data stored in the
cookie to identify a user.

Along with escaping/stripping/validating the user input, a (admittedly less effective) step is attempting
to render the stolen cookie useless. In the pursuit of this aim, a common countermeasure is to store the
IP address of the legitimate user in the session data. This way when a malicious user tries to use the
cookie from a different IP, the IP address won’t match up and the controller will be able to invalidate
the session data, preventing the attacker from getting through. This does not offer 100% protection,
because the attacker could have the same IP (if for example, both legitimate and malicious users are
behind the same NAT or Web Proxy). Furthermore, it’s an inconvenience for those users whose dynamic
IP addresses change regularly.

Because of the possibility of inconveniencing many users, a developer should think carefully about the
pros and cons of adopting this countermeasure.

This is also a possible countermeasure against Session Fixation Attacks. In these kinds of attacks, the
malicious user manages to assign a session id to a user through vulnerabilities, such as XSS, and then
waits for the user to log in with that session id, allowing the malicious user to impersonate a legitimate
user. Storing the IP address of the user in the session data within the cookie, reduces — but doesn’t
eliminate — the risk of this type of attack.

Another common technique that is very effective against Session Fixation Attacks is to issue new session
data whenever a user logs in. This way, the attacker who’s waiting for the “victim” to log in with the “fi xed”
session id will be disarmed, because the legitimate user will log in but doing so with a new session id that
was assigned by the Rails application.

The session ids (SIDs) are larger in size and randomly generated by Rails on purpose, so as not to be
simply guessed at.

74955book.indd List39674955book.indd List396 3/4/09 8:48:12 AM3/4/09 8:48:12 AM

397

Chapter 11: Going Into Production

SQL Injection
XSS attacks can be very dangerous, but when it comes to application-level security risks, SQL injec-
tion attacks take the cake. As the name implies, these attacks consist of injecting fragments of SQL
containing meta-characters into legitimate queries, so as to gain access to the database and execute
arbitrary queries.

It’s important to understand that these attacks are not Rails-specifi c. Independently from the language
and/or framework that’s been employed, any application can be vulnerable to these types of attacks if
the developer doesn’t pay close enough attention and provide valid countermeasures. Conversely, these
countermeasures are framework-specifi c.

Imagine for a moment that you created a login form without properly escaping the user input. A malicious
user could provide the following input:

Login: admin
Password: anything’ or ‘a’=’a

And with these simple strings the attacker would suddenly gain access to your application as an
administrator. Let’s see how this works and what you can do to prevent it from happening.

SQL injection attacks are database-specifi c and each RDBMS allows different SQL syntaxes, which
means that attackers will try several variants of this exploit.

A developer would be expecting the database to execute queries as follows:

SELECT * FROM users WHERE username = ‘someuser’ AND password = ‘somepwd’;

When the previous malicious input is provided, the executed query becomes:

SELECT * FROM users WHERE username = ‘admin’ AND password = ‘anything’ or ‘a’=’a’;

As you can see, the condition to the right of AND is always true, and therefore the attacker manages to
log in as an administrator (provided the admin username was admin).

Thankfully this can easily be avoided by using Rails’ built-in fi nders correctly. Whenever you retrieve
a record based on its id, escaping of special characters like ‘ and “ is done automatically for you. For
example, look at the following SQL injection attempt:

User.find(params[:id]) # params[:id] is ‘ or 1 —

It generates the harmless query:

SELECT * FROM “users” WHERE (“users”.”id” = 0)

Similarly, using dynamic fi nders without manually adding SQL conditions is a safe move as well:

Book.find_by_title(params[:title])

74955book.indd List39774955book.indd List397 3/4/09 8:48:12 AM3/4/09 8:48:12 AM

398

Chapter 11: Going Into Production

Problems begin to arise when you adopt options in your fi nders that allow you to specify custom frag-
ments of SQL. For example, one typical mistake is to evaluate expressions directly within a string that’s
been assigned to the key :conditions. The following line is vulnerable to SQL injection attacks:

Don’t do this
Account.find(:all, :conditions => “name LIKE ‘%#{params[:name]}%‘ AND active =
‘#{params[:active]‘“)

You should never embed tainted expressions (ones that are coming from the user) in SQL fragments,
because these strings are not escaped and are able to be exploited. You can pass an array to :conditions
instead. The fi rst element is a string with question marks in place of the actual values, and the remaining
elements of the array are values in order of how they should be substituted:

Account.find(:first, :conditions => [“name LIKE ? AND active = ?”,
“%#{params[:name]}%“, params[:active])

This will automatically escape dangerous characters that could be used to hijack your queries.
Likewise, you can opt for the hash form as well:

Account.find(:first, :conditions => { :username => params[:username],
 :password => params[:password] })

It is worth noticing that in the industry, parametric queries are often used as a means of optimizing per-
formances and securing databases against SQL injection attacks. The current version of ActiveRecord
does not make use of these however.

Check out the offi cial documentation for santize* methods that you can use whenever you’re defi ning
your own model’s methods (that involve potentially unsafe SQL strings).

Little Bobby Table
xkcd is an online webcomic that’s very popular among developers. In what is now a
famous comic strip called “Exploits of a Mom,” a school runs into big trouble due to
a student named Robert’; DROP TABLE Students; — , or “Little Bobby Table” as
he’s nicknamed at home. In the last frame of this hilarious strip, the school informs the
mother that they’ve lost this year’s student records because of his name. And the mother
tells the school: “And I hope you’ve learned to sanitize your database inputs.” Indeed,
SQL injection is a serious threat and as Web developers it is our responsibility to care-
fully sanitize any input. You can fi nd the strip online at http://xkcd.com/327/ and
I also recommend that you check out the wealth of other xkcd comics that are available
there, if you’re into geeky humor.

Protecting Your Records
Another important security risk is leaving your records’ attributes unprotected. Imagine that you have
a User model with the following attributes: name, email, password, is_admin, and photo. For regular
users, the form for editing one’s profi le will probably contain all of these fi elds but it will leave out the
fi eld is_admin. Unless you protect your records, by default the users will be able to save the page on
their hard drive, modify it to add a checkbox for the is_admin boolean fi eld, mark off that checkbox,
and then click submit to grant themselves admin access to the application.

74955book.indd List39874955book.indd List398 3/4/09 8:48:12 AM3/4/09 8:48:12 AM

399

Chapter 11: Going Into Production

Alternatively, a malicious user could opt to manipulate the URL instead.

In fact, in your code you’d probably update the user like this:

current_user.update_attributes(params[:user])

Note that this will perform a mass-assignment for all the available model attributes that are contained
within params[:user]. That’s problematic because users can alter all the fi elds they want as well as
the associated objects if associations between models were defi ned.

Mass-assignments are possible through methods such as update_attributes, new, and
attributes=.

Rails provides two macro-like methods to prevent this risky default behavior. The fi rst is attr_protected
and the second is attr_accessible. The former adopts a blacklist approach, in which you specify attri-
butes that should be protected from mass-assignments. The latter uses a whitelist approach, allowing you
to specify which attributes can be modifi ed through mass-assignment, and blocking all the rest.

In the previous example, you can protect the is_admin fi eld when performing mass-assignments as
follows:

class User < ActiveRecord::Base
 attr_protected :is_admin
end

Likewise, you could have specifi ed a list of allowed fi elds:

class User < ActiveRecord::Base
 attr_accessible :name, :email, :password, :photo
end

This second approach is more verbose, but it protects all the attributes from mass-assignments by
default, hence protecting attributes defi ned by associations as well. Furthermore, any future attributes
added to the model at a later stage will automatically be protected as well.

Other Costly Mistakes
A common mistake made by beginners is to leave all the methods in their controllers as public. When
a method defi ned in a controller, including ApplicationController, is public, it becomes an action
that can be accessed by visitors to the site. Whenever you have a method used by other actions that
shouldn’t be accessible to the end user, you need to declare it as private (or protected).

Another typical mistake is to allow access to other users’ data by simply accepting the id provided in
input. Because the id appears in the URL, it doesn’t take a hacker to increment or change it. The easiest
way to protect your application from this type of vulnerability (which concerns privacy as well) is to
perform your searches based on the id (or other parameters) as well as verify that the current user has
the right to access it.

For example, in the show action of a BankAccountController you should retrieve the bank account
through an id as well as the condition that the owner of the account is the current user. So don’t run
@account = BankAccount.find(params[:id]) or everyone will have access to the account of

74955book.indd List39974955book.indd List399 3/4/09 8:48:12 AM3/4/09 8:48:12 AM

400

Chapter 11: Going Into Production

everyone else. Instead, add a condition like :conditions => [“user_id = ?”, @user.id] where
@user is an instance variable set in a private before fi lter method.

Remember that on its own “security through obscurity” rarely works. Don’t rely on
hard-to-guess ids as a means of protecting your users’ data.

When find (by id) fails to fi nd a record an error is raised. This error could be rescued within a rescue
clause, in which a redirect to the homepage or another appropriate page is performed.

Ruby on Rails Security Guide
The subject of security is very wide and it’s beyond the scope of this book to provide you with a com-
plete set of possible security countermeasures in Rails applications. It would also be a duplication of the
excellent work carried out by the Rails community to provide informative online material.

My suggestion to you is to read the offi cial Ruby on Rails Security Guide, which is available online at
http://guides.rails.info/security.html or through rake doc:guides. This guide is extensive
and covers all you realistically need to know.

I also recommend checking the Ruby on Rails Security Project at http://www.rorsecurity.info. Its
blog has plenty of interesting articles related to Rails security and it also provides a short, free e-book
that you may want to check out.

Finally, in order to keep your applications secure, I can’t stress enough the importance of subscribing to the
offi cial Rails blog, Riding Rails, which is available at http://weblog.rubyonrails.org as well as keep-
ing an eye on the Rails Security mailing list available at http://lists.rubyonrails.org/mailman/
listinfo/rails-security. Any vulnerability or security concerns will be publicly announced there,
as well as the availability of Rails upgrades.

Performance and Optimization
An important step before releasing your application to the world is to ensure that the application’s
performances are acceptable. This section briefl y provides pointers to do just that.

Measuring Performance
Because it is said that premature optimization is the root of all evils, you fi rst must determine how well
your application performs and identify where possible bottlenecks exist. In other words, you need to be
able to benchmark and profi le your application.

Several tools are available to measure the performance of your applications. The fi rst most obvious
approach is to check your production logs.

Remember, applications running in development mode are usually much slower than in production
mode. You can run ruby script/server -e production or uncomment ENV[‘RAILS_ENV’]
||= ‘production’ in your config\environment.rb fi le, to ensure that the application will
run in production mode.

74955book.indd List40074955book.indd List400 3/4/09 8:48:12 AM3/4/09 8:48:12 AM

401

Chapter 11: Going Into Production

Reading Logs
Each entry within the logs provides timing information. Prior to Rails 2.2, the logs would report the
throughput for the request (the number of requests per seconds as shown here):

Processing ArticlesController#index (for 127.0.0.1 at 2009-01-04 03:49:51) [GET]
 Session ID: f88e2cf214faf1ad32c8c3564900828a
 Parameters: {“action”=>”index”, “controller”=>”articles”}
Rendering template within layouts/articles
Rendering articles/index
Completed in 0.01900 (52 reqs/sec) | Rendering: 0.00800 (42%) | DB: 0.00100 (5%) |
200 OK [http://localhost/]

In Rails 2.2, this has been changed to report the amount of time for each request:

Processing ArticlesController#index (for 127.0.0.1 at 2009-01-04 04:01:26) [GET]
Rendering template within layouts/articles
Rendering articles/index
Completed in 62ms (View: 62, DB: 0) | 200 OK [http://localhost/articles]

Notice how the rendering time is separated from the database processing time to help you identify which
of the two may cause slowdowns.

Though it is tempting to think in terms of requests per second, it’s far more effective to consider the
actual amount of time per request. For example, imagine that the throughput for a given action is 1000
reqs/s. Bringing this to 2000 reqs/s may seem like a great accomplishment, because you “doubled the
performance.” In reality, you simply went from 1 millisecond per request to half a millisecond per
request. Sure, you’ll be able to serve more requests and that’s a good thing, but under a regular load
no user is going to notice the difference.

In other words, this new approach invites developers to go after real bottlenecks and slow actions as
opposed to prematurely trying to optimize what really doesn’t need to be optimized.

This becomes self-evident if you use the Firebug extension for Firefox (or equivalent). This add-on has
a Net panel that breaks down the amount of time required to load a page. As soon as you start using it,
you’ll immediately see how milliseconds spent within the Rails stack to respond to a request are only
a minimal part of the whole process of loading the page client side (as shown in Figure 11-1). Of course
slow queries (or rendering times) need to be fi xed, but just remember to pick your battles.

If you want to time and log a specifi c snippet of code in your model, controller, or view, you can use the
benchmark method. This method is available in three fl avors, depending on where you intend to use it.

Use benchmark defi ned in ActionController::Benchmarking::ClassMethods to benchmark
blocks within your controllers. For the view, use the helper version defi ned in ActionView::Helpers:
:BenchmarkHelper:

<% benchmark(“Process TPS reports”) do %>
 <%= process_reports %>
<% end %>

74955book.indd List40174955book.indd List401 3/4/09 8:48:12 AM3/4/09 8:48:12 AM

402

Chapter 11: Going Into Production

Figure 11-1

This will add something like “Process TPS reports (1331.2ms)“ to your log. Finally, for models,
use the benchmark class method defi ned by ActiveRecord::Base.

Other Tools
If you are familiar with the *nix world, you can use tools like grep (available on Windows through
Cygwin) to data mine your logs, rather than manually reading them.

Even better, you can use a log analyzer. Two common choices are the Production Log Analyzer (avail-
able at http://rails-analyzer.rubyforge.org) and the Request Log Analyzer (available at
http://github.com/wvanbergen/request-log-analyzer).

Another set of tools for measuring performance and profi ling your Rails applications is RailsBench,
available on RubyForge at http://railsbench.rubyforge.org. Patching the Ruby interpreter with
a patch (available at the same URL) that improves the garbage collector (aka GC) is unfortunately a
requirement.

ruby-prof is a fast profi ler for Ruby that acts as a replacement for the slow built-in one available through
the option -r profile. It can be installed via gem install and provides a series of reporting options

74955book.indd List40274955book.indd List402 3/4/09 8:48:12 AM3/4/09 8:48:12 AM

403

Chapter 11: Going Into Production

(for example, fl at, graph, HTML graph, and so on). This is often used to profi le Rails applications as well,
as described in the helpful documentation at http://ruby-prof.rubyforge.org.

You’ll also notice that in the script folder of your Rails applications there is a performance folder
containing three scripts: benchmarker, profiler, and request. These are provided for convenience
and can be used to quickly benchmark, profi le, and simulate a number of requests.

For example, you could run the following to compare two expensive (equivalent) methods and evaluate
which one is the fastest (with 100 iterations):

ruby script/performance/benchmarker 100 ‘Article.method1’ ‘Article.method2’
 user system total real
#1 0.842000 0.031000 0.873000 (0.881000)
#2 0.874000 0.094000 0.968000 (0.948000)

Likewise, you could run the profi ler for a single method. This will automatically use Ruby’s built-in
profi ler or the ruby-prof extension mentioned earlier, if installed. The quantity of information output-
ted by the profi ler is admittedly overwhelming, but it’s usually enough to focus on the top entries to
spot unusually slow calls:

ruby script/performance/profi ler ‘Article.method1’ 1000 fl at
Loading Rails...
Using the ruby-prof extension.
Thread ID: 33481630
Total: 1.629000

 %self total self wait child calls name
 8.78 0.42 0.14 0.00 0.28 5000 Integer#times-1
(ruby_runtime:0}
 7.00 0.11 0.11 0.00 0.00 28000
<Module::SQLite3::Driver::Native::API>#sqlite3_column_text (ruby_runtime:0}
 6.63 0.18 0.11 0.00 0.08 4000 Hash#each_key
(ruby_runtime:0}
 6.51 0.33 0.11 0.00 0.23 17 Kernel#gem_original_require-1
(ruby_runtime:0}
 4.36 0.07 0.07 0.00 0.00 5000
<Module::SQLite3::Driver::Native::API>#sqlite3_step (ruby_runtime:0}
 3.87 0.06 0.06 0.00 0.00 5023 Array#flatten
(ruby_runtime:0}
 3.50 0.68 0.06 0.00 0.63 5000 SQLite3::ResultSet#next
(d:/Ruby/lib/ruby/gems/1.8/gems/sqlite3-ruby-1.2.3-x86-
mswin32/lib/sqlite3/resultset.rb:89}
 3.31 0.05 0.05 0.00 0.00 98 <Class::Dir>#[]
(ruby_runtime:0}
 2.82 0.15 0.05 0.00 0.11 8090 Array#each (ruby_runtime:0}

Finally, the request script allows you to benchmark or profi le on a per-request basis. This requires
the name of a fi le containing the request script. For example, the simplest script possible would be the
following:

get ‘/‘

74955book.indd List40374955book.indd List403 3/4/09 8:48:12 AM3/4/09 8:48:12 AM

404

Chapter 11: Going Into Production

And this could be run (for 200 times) as follows:

ruby script/performance/request -n 200 home.rb
Warming up once
0.32 sec, 1 requests, 3 req/sec

Profiling 200x
`gem install ruby-prof` to use the profiler

If you install ruby-prof, be warned that unless you also patch the garbage collector
with the patch mentioned previously, this script will crash the Ruby interpreter on
Windows. In fact, some of the features of ruby-prof require the GC fi x. And build-
ing Ruby from source on Windows in order to patch it is a less than straightforward
process. My advice is to avoid using this particular script on Windows or simply
miss the profi ling functionality it provides.

You shouldn’t worry about this script that benchmarks and profi les integration
tests, because it has become deprecated in Rails 2.3. If you intend to use it in the
next version of Rails (2.3), you should install the request_profiler plugin, which
provides the same functionality.

For further information about benchmarking and profi ling, including how to write performance tests,
I recommend that you read the offi cial Performance Testing Rails Applications guide available online at
http://guides.rails.info/performance_testing.html. You may also want to check out the fol-
lowing blog post about how to profi le Rails applications: http://cfis.savagexi.com/2007/07/10/
how-to-profile-your-rails-application.

Should the URL no longer be valid by the time you read this page, simply visit the newly announced
portal for Rails guides, available at http://guides.rails.info. There you will fi nd all the new
versions of the guides mentioned throughout this book, and new ones that are being written and are
already updated to the latest version of Rails. Alternatively, you can always rely on the guides produced
for your version of Rails, by generating them with rake doc:guides. As you probably know by now,
they will be placed in the doc folder of your application.

Stress Testing
Among the non–Rails-specifi c tools, httperf and ab are commonly used to stress test
your application and simulate a very high load of browser requests. If these are not an
option for you, Microsoft Web Application Stress Tool will do as well. The main idea is
to fi nd out how well your Web server confi guration handles a large volume of requests
before your site is actually hit by real traffi c.

Commercial Monitoring
Using some of the tools mentioned in the previous sections, you should be able to resolve performance
and scalability issues before your application goes into production. Slow queries, sluggish helpers, and
far too complex routes can all be caught early on. Once that job is done and your application has been

74955book.indd List40474955book.indd List404 3/4/09 8:48:13 AM3/4/09 8:48:13 AM

405

Chapter 11: Going Into Production

deployed into production, the second part of the equation becomes monitoring its performance while
it’s live, up, and running.

You can still use log analyzers of course, but a few companies emerged to tackle the challenge of mak-
ing it easy to make sense of the overwhelming amount of information available in your logs (and more).
Three well established names are New Relic, FiveRuns, and Scout.

FiveRuns has a very interesting blog that features “Rails TakeFive” interviews with prominent Ruby
and Rails members of the community. You can fi nd it at http://blog.fiveruns.com.

New Relic (http://newrelic.com) offers a service called RPM. After installing a plugin and choos-
ing your subscription plan, it automatically monitors your application and provides you with detailed
and helpful reports about the performance of your application. Its lite version is free and provides basic
reporting.

FiveRuns (http://fiveruns.com) offers two products, TuneUp and Manage. The former is free and
it’s aimed at monitoring the application during development, before it goes into production. The latter,
its commercial offering, is similar to New Relic RPM in scope, and aims at monitoring and identifying
performance drops in Rails apps running in production.

Finally, Scout (http://scoutapp.com) offers a very similar service to New Relic RPM and FiveRuns
Manage, and allows you to sign up for your fi rst server for free. Commercial plans allow you to add
more servers, longer data retention for the output of the plugin, and more frequent reporting intervals.

All three commercial services have achieved a great deal of interest in the Rails community and are
widely used. If you are interested in this type of service, I highly recommend that you try them before
you decide which one works best for you.

Performance vs. Scalability
Performance and scalability are two related but distinct concepts. Performance has to
do with how fast your application is, whereas scalability indicates the ability to handle
an increasingly larger volume of traffi c. The two are related, especially because most
often performance becomes an issue only when a large number of requests start rolling
in, but it’s important to understand the difference.

During performance optimization the attention is focused on improving speed and
eliminating bottlenecks. Scaling an application, on the other hand, means being able
to take advantage of additional hardware resources.

Scaling vertically (aka scaling up) is the ability to take advantage of additional resources,
typically additional RAM and CPUs, added to a single server. Conversely, scaling hori-
zontally (aka scaling out) means being able to easily add more nodes/servers to serve
your application. Adding extra Web and/or database servers to handle the increasing
load is an example of scaling out.

Thankfully, the Rails ecosystem is well equipped with tools to help you scale your
application, when the need arises.

74955book.indd List40574955book.indd List405 3/4/09 8:48:13 AM3/4/09 8:48:13 AM

406

Chapter 11: Going Into Production

Caching
When talking about performance we can’t fail to mention caching. Caching is a necessary evil. For
instance, it makes your application harder to test and to debug. All things considered, though, cach-
ing can grant you a huge performance boost. Instead of repeating slow operations in the back-end, the
result of the computation is calculated once and stored in the cache where it will be easily retrieved at
the next request.

Taking ActionPack into consideration, three levels of caching are available: page caching, action caching,
and fragment caching. In order to use any of these, you’ll need to have caching enabled in your envi-
ronment’s confi guration fi les. By default, this is disabled in development and test mode, but enabled in
production:

In production mode
config.action_controller.perform_caching = true

Page caching caches a whole page within a static fi le on the server’s fi lesystem. Because this is saved by
default as an HTML fi le in public, at the next request for that page, the HTML fi le will be served bypass-
ing the whole Rails stack de facto. This type of caching has the advantage of being extremely fast, because
at each request for the same page, you’ll be serving a static fi le.

Sadly, there are a few disadvantages as well. If a page has dynamic content that changes often, it shouldn’t
be cached in this way. Likewise, if a page needs to be protected by authentication, page caching cannot be
used. Perhaps more importantly, the biggest drawback is that expiring the cache is not automated because
the cached fi les (for example, public/show.html) are regular HTML pages and will be happy to stay
there forever unless they are removed somehow.

Page caching is performed by using the caches_page method in your controllers:

caches_pages :index

Expiring pages can be achieved by adopting special observers known as Sweepers or strategically using
the method expire_page:

def create
 #...
 expire_pages :action => :index
end

Action caching is very similar to page caching, but it doesn’t serve the cached fi le directly.
Instead, ActionPack handles the request allowing you to run before fi lters and other rules to
satisfy authentication and other requirements. Its usage is analogous to page caching:

Caches the edit action
caches_action :edit

...

Expires the edit action
expire_action :action => :edit

74955book.indd List40674955book.indd List406 3/4/09 8:48:13 AM3/4/09 8:48:13 AM

407

Chapter 11: Going Into Production

Finally, the third type of cache is fragment caching and it’s aimed at allowing you to cache certain
parts of the page, whenever caching the whole page is not possible. This is usually the case with highly
dynamic pages that have several “moving parts” that cannot all be cached or expired at the same time.
Fragment caching is also an easy way to speed up the process of serving more static content, like a navi-
gation menu or regular HTML code.

To perform fragment caching you can use the cache helper:

 <% cache do %>
 <%= render :partial => “sidebar” %>
 <% end %>

This helper also accepts an :action and an :action_suffix that you can use to identify fragments,
whenever you want to cache multiple fragments for an action. Expiring them can then be accomplished
through the expire_fragment helper.

Outside of the realm of ActionPack, the M component of the MVC triad has caching as well. In fact,
ActiveRecord has built-in caching capabilities and the results of every SQL query already executed
within the lifespan of an action are cached. So if you perform the same query more than once within
an action, the database will only be hit once.

For further details about caching, I highly encourage you to read the offi cial guide, “Caching with
Rails,” available online at http://guides.rubyonrails.org/caching_with_rails.html.

As an exercise, try to add various forms of caching to the sample blog application
and benchmark the application to see their effect.

Application-Level Performance Considerations
Before moving on to the “Deploying Rails” section, I’d like to leave you with a few additional bits of
advice, in what can be considered an incomplete checklist or a list of common mistakes/pitfalls:

Don’t go randomly looking for places where you should optimize your code, but rather put ❑

your trust in the profi ler (and in running benchmarks).

Caching is not your friend, but a necessary acquaintance. A judicious and conservative use ❑

of caching is necessary and can do wonders to improve your application’s responsiveness and
ability to handle heavy loads.

Most of the code that you write when developing in Rails is Ruby code. Ruby is not the fastest ❑

language out there so it’s important that the code you write is reasonably effi cient.

Rails’ routing system can be quite slow. Simplify your routes and avoid complex ones. ❑

Defi ne indexes on large tables for fi elds that are commonly looked up. ❑

ActiveRecord is a nice abstraction layer, but don’t forget that you have a full-blown relational ❑

database at your hands — don’t be afraid to use it. This means that even if certain features are
not available in ActiveRecord, you shouldn’t hesitate to use them, because they’re able to give
you a much needed performance boost. Depending on the database system you are using, your

74955book.indd List40774955book.indd List407 3/4/09 8:48:13 AM3/4/09 8:48:13 AM

408

Chapter 11: Going Into Production

requirements, and the bottlenecks you are experiencing, this could mean using stored procedures,
triggers, parametric queries, actual foreign key constraints, hand-tuned SQL queries through
find_by_sql, and so on.

If you are retrieving a larger record only to use a very small portion of it, you should use the ❑

:select option to limit the set of returned fi elds and therefore the resultset size.

Eager load your associations using ❑ :include. This will also prevent the 1+N problem discussed
in Chapter 7.

Avoid combining deeply nested ❑ :includes with :conditions because this leads to the
generation of slow and very hefty sized SQL queries.

Don’t use ❑ length to retrieve the size of an associated collection of objects. For example, use
user.comments.size or user.comments.count instead of user.comments.length. The
reason for this is that the fi rst two formulate a COUNT(*) query, whereas length will retrieve
all the records and then count them with the Array instance method length. That’s extremely
ineffi cient.

Related to the previous point, consider using counter caches. These are fi elds that can be used ❑

to automatically keep track of the associated record’s count, without having to query the data-
base every time. In a scenario where Article and Comment are your models, you could, for
example, defi ne a comments_count integer column with default 0 in the articles table, and
have belongs_to :article, :counter_cache => true within the Comment model. Be
aware that size and count are not aliases when using counter caches. size is the only one that
will look at the cache value stored in comments_count and as such it won’t hit the database.
length and count’s behavior is the same as described in the previous point.

When appropriate, group multiple queries within a transaction. Furthermore, if you need to ❑

import a great deal of data, consider using the ar-extensions gem, which adds an import
class method to ActiveRecord::Base, which is ideal for bulk updates.

Review the performance considerations made in Chapter 7, in regards to the available ❑

session stores.

Don’t make your user-defi ned helpers bloated. Try to make them small and effi cient, particularly ❑

those that will end up being executed multiple times by loops and iterators within your view.

Keep your controllers lean and delegate your data-related heavy lifting to the model layer. ❑

Rails 2.3 will take advantage of a middleware feature codenamed “Metal.” Whenever you are ❑

creating a service where every millisecond counts and you need raw performance, Metal will be
a good fi t. This new feature is essentially a wrapper that goes around Rake’s middleware. Rake
is a thin layer that provides an interface between Ruby-enabled Web servers and Ruby frame-
works. As such, Metal lets you be “closer to the metal” and bypasses most of the Rails stack.
You can read more about it in the offi cial announcement at http://weblog.rubyonrails
.org/2008/12/17/introducing-rails-metal.

Merb is a clone of Rails that’s aimed at being very modular, because it allows users to choose what ❑

components should form the MVC stack. More relevantly to this chapter, it aims at improving per-
formance by optimizing the implementation of many Rails parts. Luckily for both communities, the
two projects have joined forces and merged into what will soon become Rails 3.0. This means that
you can expect future versions of Rails to be faster and more modular. Likewise, the community
is slowly moving toward Ruby 1.9.1, which is a much faster version of the main Ruby interpreter.
Once it becomes widely adopted, Ruby 1.9.1 will no doubt help give your applications a boost
in speed.

74955book.indd List40874955book.indd List408 3/4/09 8:48:13 AM3/4/09 8:48:13 AM

409

Chapter 11: Going Into Production

Install the YSlow extension for Firebug, available at ❑ http://developer.yahoo.com/yslow.
This checks your site against a set of guidelines for improving the performance and responsive-
ness of your Web pages, as shown in Figure 11-2. Those guidelines are not Rails-specifi c, but
rather best practices for most sites, particularly those with heavy traffi c.

Figure 11-2

Deploying Rails
Deploying a Rails application into production is an exciting moment. After a journey that brought you
from requirement gathering to a full implementation of the application, you are fi nally ready to deploy
your application to the world (or to a selected few within an intranet).

This may come as a surprise to you, but historically, this was often the exact moment when troubles
started brewing. In fact, the easy-to-use framework that increased your productivity and made you
love Web programming was once anything but easy when it came to moving from development to
production mode.

74955book.indd List40974955book.indd List409 3/4/09 8:48:13 AM3/4/09 8:48:13 AM

410

Chapter 11: Going Into Production

A Brief History of Deploying Rails
Deployment has always been Rails’ Achilles’ heel. While PHP developers had their mod_php module
for the Apache Web server, and ASP and ASP.NET developers could count on IIS, Rails developers were
left with a bad taste in their mouths due to a series of solutions that didn’t really work reliably.

The timeline of recommended deployment confi gurations and technologies has been a rollercoaster
ride and moved just as speedily as one. In the beginning there was WEBrick, but it wasn’t really meant
for production use, so in 2004 when Rails came out, the recommended confi guration for Rails or any
other Ruby Web framework was to use Apache with FastCGI. The problem was that FastCGI was, for
all intents and purposes, an old and abandoned technology that somehow managed to get the spotlight
thanks to the fact that an equivalent module a la PHP didn’t exist for Rails. The community at large
quickly learned about the instability of this confi guration and started looking for something better.
Apache + FastCGI was also a very poor solution for shared hosting, because it required far too much
maintenance and in some cases users were forced to open tickets with their hosting company just to
restart FastCGI whenever it inexplicably stopped working.

Thanks to a more solid implementation of FastCGI, a lightweight and fast Web server called Lighttpd
(aka Lighty) managed to become the de facto recommended confi guration for deploying applications in
2005. Some users experimented with Lighttpd and SCGI, or Apache and FastCGID, but most people
in the Rails community were rolling with Lighty and its implementation of FastCGI.

There were some people who were satisfi ed by this solution and a few of them are probably still using
this confi guration to a certain extent, but most experienced Rails developers will confess to the fact that
FastCGI was rather problematic. Other alternatives popped up but none of them really hit it big with
the mainstream audience.

Until 2006 that is. Two years after Rails’ fi rst release, a drastically better solution came along. Zed Shaw
created an application server called Mongrel. It was fast and allowed you to run a cluster of Mongrels
(a few processes each responding on a different port). Suddenly, a proper deployment solution was
available. In fact, it was now possible to use Apache2 to serve static content while proxying the execu-
tion of Ruby code to Mongrel (or a cluster of Mongrel processes). Apache2 was very fast at serving
static content, and Mongrel did a great job as a Ruby-based application server. Zed Shaw and his oddly
named application server saved the day.

In 2007, several people started to show an appreciation for a Russian Web server called Nginx. It was
lighter than Apache2, faster according to many, and easy to confi gure. In 2007, Nginx + Mongrel fi nally
became a widely adopted solution. Engine Yard, one of the most prominent Rails hosting companies out
there, embraced the combination and to date is still using it to fl awlessly serve millions of page views.

Whether in conjunction with Apache2, Lighttpd, Ngnix, or other load balancing software, proxying
HTTP requests to Mongrel or similar application servers (for example, Ebb or Thin) became (and to a
great extent still is) the way to go.

No, I’m not going to tell you that the Rails community has abandoned Mongrel in favor of something else.
But something even more revolutionary did come along in 2008. Before briefl y discussing what changed
in ’08, it’s important to understand that Apache2 + Mongrel or Nginx + Mongrel work perfectly fi ne today
and are, in fact, a good way to scale applications.

74955book.indd List41074955book.indd List410 3/4/09 8:48:13 AM3/4/09 8:48:13 AM

411

Chapter 11: Going Into Production

If you need to serve more requests, you can simply add extra mongrels and, assuming that you added
extra nodes to the network, you can have them run Mongrel processes and use Apache2 (or Nginx, or
any other load balancer) to load balance them when the requests come in.

Actually, you can even use a load balancer like Pen, which won’t serve static content, and causes Mongrel
to serve the whole request (even though this is not as fast as it would be with Apache2 or Nginx).

The only criticism that we are able to afford against this type of deployment is that it’s not very straight-
forward compared to something like mod_php. It’s not as hard as proving or disproving that P = NP,
but it can still be intimidating to newcomers.

I have a truly marvelous proof of the P = NP proposition, which this margin is too narrow to contain.

Furthermore, though it’s a very good solution to scale up and out Rails applications, it requires a sizeable
amount of resources, and each Mongrel process (which is mostly Ruby code) has a non-negligible memory
footprint.

These are not huge tradeoffs as long as you have the resources and know what you are doing. It is, how-
ever, a solution that works best for those people who are deploying at least on a VPS (Virtual Private
Server) or, even better, on a dedicated server.

Naturally, cloud services that are available through elastic computing a la Amazon Web Services are
fi ne too.

It’s not ideal, you might even think it’s downright problematic, for people who want to deploy Rails on
cheap shared hosting. Meanwhile, PHP and Apache2 are easily deployed pretty much everywhere.

In 2008, this last obstacle to the deployment of Rails was shattered by something called Phusion Passenger
(aka mod_rails). This is a module for Apache2 to serve Rails applications. As you can imagine, it’s roughly
the Rails equivalent of what PHP has always had (only smarter and more optimized). Passenger is stable,
very fast, and, especially when combined with Ruby Enterprise Edition, a free edition of Ruby 1.8 created
by the same company (http://phusion.nl), it tends to have a relatively small memory footprint. Shared
hosting companies love Passenger and it’s extremely easy to set up thanks to an installer that takes care
of everything and informs you about a simple manual step. Hongli Lai and Ninh Bui, the authors of
Passenger, really saved the day.

37signals (the company that created Rails) and several other companies are now moving to Apache2
+ Passenger and it is considered by many, including David (Rails’ creator), to currently be the recom-
mended way of deploying Rails applications in most circumstances.

The story of Rails’ deployment pretty much ends here. There may be changes to it in the future.
For example, it is likely that an Nginx version of Passenger will appear soon, even though it hasn’t
been announced yet as of the time of writing. Likewise, it’s not farfetched to assume that Passenger
may release a premium, commercial version of its module. But between Mongrel and (in particular)
Passenger, we have reached a point where having a solid deployment in production is no longer a
dream, and thanks to Passenger, deploying Rails is fi nally easy.

74955book.indd List41174955book.indd List411 3/4/09 8:48:13 AM3/4/09 8:48:13 AM

412

Chapter 11: Going Into Production

At the beginning of 2008, Zed Shaw published a now somewhat famous rant entitled “Rails is a ghetto.”
In this “highly critical” (to use a euphemism) piece, he disassociated himself from the Ruby and Rails com-
munities in a categorical manner, and delegated the leadership of his project to others. Ever since, many
people have felt less than enthusiastic about adopting Mongrel in production. This, coupled with the rise
of a great product like Passenger, made Mongrel less prominent in the Rails community, though it is still
successfully being used by many.

Deploying on Windows
It is usually not recommended to deploy Rails on Windows. Let that news sink in for a moment. Sadly,
despite the diligent efforts of some, Windows is currently considered to be a second class citizen when
it comes to Ruby and Rails. Though it can be done, and you shouldn’t be ashamed of deploying on
Windows, a series of caveats and poor performances are associated with this choice.

In fact, according to my latest “Great Ruby Shootout,” Ruby 1.8 on Windows would be twice as slow as
Ruby 1.8 compiled from source on GNU/Linux, against a set of synthetic benchmarks (using the Ruby
Benchmark Suite, a project I created). These results are also confi rmed by a great deal of anecdotal
evidence, and Rails applications are reported to be (and are in my experience) much slower and less
responsive on Windows.

You can fi nd the December 2008 version of the shootout online at http://antoniocangiano
.com/2008/12/09/the-great-ruby-shootout-december-2008.

This is a sad state of affairs, I know, at least for Windows developers. It is possible that things may
change in the future, but for the time being, my best recommendation is this: if you can, deploy on
Linux, but if you need to deploy on Windows, read on.

Phusion Passenger takes advantage of *nix-specifi c features and as such is not available for Windows, nor
are there plans to change this anytime soon. With this excellent option out of the picture, you are really
only left with one solid alternative, and that’s using Mongrel with Apache2 (or an equivalent server).

IronRuby Deployment
Deploying Rails with IIS 7.0 is currently far from being an established practice. There
are initiatives like http://www.codeplex.com/RORIIS, but it’s something that usually
doesn’t work out of the box and that I wouldn’t recommend for now. The book Deploying
Rails Applications: A Step-by-Step Guide (Pragmatic Bookshelf, 2008) proposes an approach
that works, by hiding Apache behind IIS. This is a possibility whenever IIS is a must.

Things will change drastically once IronRuby becomes ready for primetime. With
IronRuby, developing and deploying Ruby and RoR applications will be no different
from deploying your typical ASP.NET application written in C# or Visual Basic. As
a “Microsoft developer” you should defi nitely be excited about this perspective and
pay close attention to the news surrounding this Ruby implementation. If you are a
skilled C# programmer, you may also want to consider contributing to John Lam’s
IronRuby project.

For step-by-step instructions on how to install and confi gure Mongrel and Apache 2.2, I urge you
to follow Paolo Corti’s instructions, which are published on his blog at http://www.paolocorti
.net/2007/11/15/ruby-on-rails-applications-with-mongrel-cluster-and-apache-url-
rewriting-on-windows.

74955book.indd List41274955book.indd List412 3/4/09 8:48:14 AM3/4/09 8:48:14 AM

413

Chapter 11: Going Into Production

Deploying on GNU/Linux
As mentioned before, the recommended way to deploy your Rails application on Linux is to use
Phusion Passenger. The process is very straightforward:

 1. Ensure that you have Apache 2.2 installed. The name of the package will depend on the distro
you are using.

 2. Open a shell and install the Passenger gem by running sudo gem install passenger.

 3. From the shell run sudo passenger-install-apache2-module.

This third step will provide you with step-by-step instructions on how to proceed with enabling the
module as well as confi guring a virtual host for your site in Apache’s confi guration fi les.

Passenger is now also known as mod_rack, thanks to its support for the Rack Web Server interface. As
such, installing Apache2 + Passenger will be able to serve more than just Rails applications. Most Rack-
enabled Ruby frameworks, including popular choices like Sinatra, Ramaze, and Merb, are supported by
this deployment confi guration.

A virtual host entry will resemble the following:

<VirtualHost *:80>
 ServerName www.example.com
 DocumentRoot /apps/example/public
</VirtualHost>

Please note that the DocumentRoot needs to point to the public directory of your Rails application.

In any deployment, only the public directory should be readable to your visitors. For this reason, it is
not uncommon to store the application on the disk and create symbolic links (for example, with ln -s)
from the public folder of the application.

Restarting an application through Passenger is as easy as touching a restart.txt fi le:

touch /apps/example/tmp/restart.txt

The extensive guide available at http://www.modrails.com/documentation/Users%20guide
.html provides you with all the details you’ll need to confi gure and fi ne tune your Phusion Passenger
deployment.

To monitor your processes on Linux, you can use either Monit (http://mmonit.com/monit) or
god, which is written in Ruby and available online at http://god.rubyforge.org.

It’s also worth pointing out that when developing on Windows and deploying on Linux, it’s important
to use an editor that’s able to work with, and convert, code that has the Unix-style line end character. If
you don’t, you’ll encounter problems on Linux due to the extra character placed at the end of each line
by many Windows editors (for example, CR + LF). This is also important when committing code to a
repository that may have commits from both Windows and *nix clients.

74955book.indd List41374955book.indd List413 3/4/09 8:48:14 AM3/4/09 8:48:14 AM

414

Chapter 11: Going Into Production

Tools of the Trade
SVN and Git are two popular source and revision control systems. Lately the Rails
community has embraced the latter and there’s been an explosion of code that’s been
released on GitHub (http://github.com).

Git happens to be a very powerful distributed revision (or version) control system
that’s used by countless popular projects, including Rails itself. On Windows you can
use them both, even though SVN’s support is the best among the two.

When developing Rails applications, it is highly recommended that you use revision
control software like Git or SVN (but remember not to commit your database.yml
fi le, adding it to the ignore list) in order to collaborate with other developers, and still
be able to have full control over all the code that was committed at any given time.

Technically you could use Microsoft SourceSafe or Visual Studio Team System but
those are often overkills when it comes to Rails applications, and if you intend to
actively participate within the Rails community, it’s a good idea to get acquainted with
the basics of Git and SVN. If possible at all, consider using either one of them (prefer-
ably Git) for your own projects. If you’ve never used revision control software before,
you’ll be blown away by how useful it is.

And if you are looking for project management and bug tracking software as well,
Redmine is a pretty good option (and as a bonus it’s an open source Rails application
that you can study and modify). It’s available online at: http://www.redmine.org.

Finally, another tool of the trade is software for Continuous Integration (CI), which is
aimed at monitoring commits to the repository by running the test suite at each commit,
thereby notifying the users about commits that break the application. Popular options
in the Rails world are CruiseControl.rb (http://cruisecontrolrb.thoughtworks
.com/), Cerberus (http://cerberus.rubyforge.org/), and ContinuousBuilder
(http://agilewebdevelopment.com/plugins/continuous_builder).

If you happen to be deploying and developing on Linux, you may want to consider Capistrano, which
is an excellent system for uploading applications that are located in a repository or a local folder, to a
remote, production machine. Once you defi ne a Capistrano recipe, you will be able to redeploy your
application, upon changes, in an entirely automatic manner. You can read more about it online at
http://www.capify.org.

Unfortunately, support for Capistrano on Windows has recently been discontinued.

A Few Enterprise Pointers
Before letting you go and wrapping up this chapter, I’d like to provide you with a few pointers about
“enterprise-y” topics that may interest you.

Because you can use the method ❑ establish_connection on a per model basis, it is possible to
let Rails applications communicate with multiple databases. A starting point is the wiki article:
http://wiki.rubyonrails.org/rails/pages/HowtoUseMultipleDatabases.

74955book.indd List41474955book.indd List414 3/4/09 8:48:14 AM3/4/09 8:48:14 AM

415

Chapter 11: Going Into Production

Freeze Your Application
One common deployment issue is having different Rails versions on your development
machine and your production server. An easy way to guarantee that your code will work
in production, no matter what version of Rails is installed, is to “freeze your application”
by copying your local Rails version within the vendor\rails directory. This process is
entirely automated by running rake rails:freeze:gems. The reverse action is rake
rails:unfreeze, which will remove the local copy.

Likewise, it is possible to freeze the non-Rails gems required by your application by run-
ning rake gems:unpack (or gems:unpack:dependencies to include the dependencies
as well). These gems will be placed in the vendor\gems directory of your project.

Once Rails and the required gems are frozen, you can deploy your application without
worrying about mismatching versions.

To work with Legacy schemas you may have to overwrite some conventions via confi guration. ❑

A good starting point is the previously mentioned wiki article: http://wiki.rubyonrails
.org/rails/pages/howtouselegacyschemas.

Composite primary keys are not supported by ActiveRecord. If you want to use them neverthe- ❑

less, take advantage of Dr. Nic’s plugin, which extends ActiveRecord::Base. It’s available
online at http://compositekeys.rubyforge.org.

If you’d like to create your own plugins, you can get started with the Creating Plugins guide, ❑

available at http://guides.rubyonrails.org/creating_plugins.html.

To use SQL Server as your database system, you can follow the steps outlined by this guide: ❑

http://www.sapphiresteel.com/Using-SQL-Server-With-A-Rails.

If you intend to use Rails with DB2, you can get started by reading the InfoCenter documenta- ❑

tion (at http://tinyurl.com/rails-db2) and by following the http://db2onrails.com
blog (which I’m one of the authors of). Thanks to its pureXML technology, DB2 offers the ability
to natively store XML documents and retrieve them through XQuery and SQL/XML. By using
find_by_sql you’ll have access to these features even though ActiveRecord doesn’t support them
directly. DB2 9.5.2 also includes a Text Search engine and its production-ready DB2 Express-C ver-
sion is available free of charge.

Oracle has published a nice article about getting started with Rails. You can fi nd it at ❑ http://
www.oracle.com/technology/pub/articles/haefel-oracle-ruby.html. If you decide
to use Oracle as your main database, I recommend you check out the Oracle Enhanced Adapter
as well, whose RubyForge project is available online at the URL http://rubyforge.org/
projects/oracle-enhanced.

Should you need to interface your Rails application with LDAP or Active Directory, ❑

consider using the ActiveLDAP gem available at http://rubyforge.org/projects/
ruby-activeldap.

Upgrading to Rails 2.3
By the time you read this fi nal section, Rails 2.3 is likely to have already been released. To fully under-
stand the differences between Rails 2.2 and Rails 2.3, it is fundamental that you review the Rails 2.3
Release Notes available online at http://guides.rubyonrails.org/2_3_release_notes.html.

74955book.indd List41574955book.indd List415 3/4/09 8:48:14 AM3/4/09 8:48:14 AM

416

Chapter 11: Going Into Production

If you’d like to upgrade existing projects to the latest version of Rails, you can use rake rails:update,
which will take care of updating confi guration, script, and JavaScript fi les. This will often not be suffi cient
enough to upgrade from one version to another, because there could be other incompatibilities among the
two (for example, formatted helpers are no longer available in Rails 2.3), but it’s a good starting point for
you to take over and manually upgrade the application from.

Developers who’d like to work with the latest development version of Rails (known as edge) can run the
following task to download and freeze edge Rails in the vendor directory:

C:\projects\test> rake rails:freeze:edge
(in C:/projects/test)
cd vendor
Downloading Rails from http://dev.rubyonrails.org/archives/rails_edge.zip
Unpacking Rails
rm -rf rails
rm -f rails.zip
rm -f rails/Rakefile
rm -f rails/cleanlogs.sh
rm -f rails/pushgems.rb
rm -f rails/release.rb
touch rails/REVISION_922c528d428b5ab08611976dfe0037875a4bf387
cd -
Updating current scripts, javascripts, and configuration settings

As you can see this downloads the latest version, unpacks its code in the vendor folder, and then auto-
matically performs rake rails:update for you.

Normally you wouldn’t need to work with edge Rails, but if you were in an experimental mood, at least
you’ll know how it’s done.

Summary
Looks like you made it, congratulations! As you reach the end of this fi nal chapter, and therefore of this
book, my sincere hope is that you’ll have a much clearer picture of what Ruby on Rails development is
like, as well as being able to start porting or creating your own Rails Web applications.

The aim of this book was to provide you with the fundamentals of the Rails framework and its philosophy,
from start to fi nish, so that you can immediately begin working with Rails and progress in your journey of
mastering both Ruby and RoR.

I wish you nothing but heartfelt good luck with this worthy endeavor.

74955book.indd List41674955book.indd List416 3/4/09 8:48:14 AM3/4/09 8:48:14 AM

Additional Resources

In this appendix you will fi nd a list of links and pointers to additional resources that can help you
as you continue to study Ruby on Rails and attempt to bring your skills to the next level.

HTML and JavaScript
This book assumes that you are somewhat familiar with HTML and JavaScript. To follow along,
you can probably get away with not knowing the latter, but a basic understanding of HTML is a
must, and acquiring some knowledge of JavaScript is very benefi cial as well.

HTML Links
W3Schools’ HTML Tutorial: ❑ http://www.w3schools.com/html/DEFAULT.asp

HTML Primer: ❑ http://www.htmlgoodies.com/primers/html/

HTML Code Tutorial: ❑ http://www.htmlcodetutorial.com

HTML on Wikipedia: ❑ http://en.wikipedia.org/wiki/HTML

XHTML on Wikipedia: ❑ http://en.wikipedia.org/wiki/XHTML

HTML 4.01 Specifi cation: ❑ http://www.w3.org/TR/REC-html40/

XHTML 1.0 Specifi cation: ❑ http://www.w3.org/TR/xhtml1/

W3C’s Markup Validator: ❑ http://validator.w3.org

W3Schools’ CSS Tutorial: ❑ http://www.w3schools.com/css/

JavaScript Links
Mozilla’s JavaScript guides: ❑ https://developer.mozilla.org/en/JavaScript

W3Schools’ JavaScript Tutorial: ❑ http://www.w3schools.com/JS/default.asp

74955book.indd List41774955book.indd List417 3/4/09 8:48:32 AM3/4/09 8:48:32 AM

418

Chapter A: Additional Resources

JavaScript on Wikipedia: ❑ http://en.wikipedia.org/wiki/JavaScript

The JavaScript Programming Language (four parts): ❑ http://video.yahoo.com/
watch/111593/1710507

JavaScript — The Good Parts: ❑ http://video.yahoo.com/watch/630959/2974197

The Theory of DOM (three parts): ❑ http://video.yahoo.com/watch/111582/992708

Welcome to Firebug 1.0: ❑ http://video.yahoo.com/watch/111597/1755924

Common Ajax Libraries and Frameworks
Prototype: ❑ http://www.prototypejs.org

script.aculo.us: ❑ http://script.aculo.us

jQuery: ❑ http://jquery.com

dojo: ❑ http://dojotoolkit.org

Ext JS: ❑ http://extjs.com

MooTools: ❑ http://mootools.net

YUI: ❑ http://developer.yahoo.com/yui/

Ruby and Rails
The Ruby and Rails communities are some of the most active in the development world. Because of this,
you’ll fi nd an incredible wealth of information available for free online.

This section points out only some must-see links to tutorials and other useful resources in general as
you start to explore the community and what it has to offer.

Useful Links
Ruby on Rails homepage: ❑ http://rubyonrails.org

Ruby homepage: ❑ http://ruby-lang.org

Offi cial Rails blog: ❑ http://weblog.rubyonrails.org

Rails source code: ❑ http://github.com/rails/rails

Rails bug tracker: ❑ http://rails.lighthouseapp.com

List of Rails plugins (and more): ❑ http://www.railslodge.com

Rails screencasts: ❑ http://railscasts.com (free) and http://peepcode.com (commercial)

Weekly Rails podcasts: ❑ http://www.railsenvy.com/podcast

Ruby and Rails documentation: ❑ http://ruby-doc.org and http://apidock.com

Working with Rails: ❑ http://www.workingwithrails.com

Ruby/Rails Open Source code hosting: ❑ http://rubyforge.org and http://github.com

74955book.indd List41874955book.indd List418 3/4/09 8:48:33 AM3/4/09 8:48:33 AM

419

Chapter A: Additional Resources

Try Ruby in your browser: ❑ http://tryruby.hobix.com

Why’s (Poignant) Guide to Ruby: http ❑ ://poignantguide.net/ruby/

An absolute beginner guide to programming in Ruby: ❑ http://pine.fm/LearnToProgram/

The Book of Ruby (a highly recommended, comprehensive guide): ❑ http://www.sapphiresteel
.com/The-Book-Of-Ruby

Hosting Services
Over the years a large number of hosting companies have added support for Rails. There are virtually
countless such companies at this point and listing all of them here would be unfeasible. The following
companies specialize in Rails hosting. They are not the only good hosting providers, but rather companies
I feel I can recommend.

Engine Yard (managed hosting): ❑ http://www.engineyard.com

Joyent (managed hosting): ❑ http://www.joyent.com

Rails Machine (VPS and dedicated): ❑ http://railsmachine.com

Planet Argon’s Rails Boxcar (VPS): ❑ http://railsboxcar.com

BrightBox (VPS): ❑ http://www.brightbox.co.uk

Slicehost (VPS): ❑ http://www.slicehost.com

Linode (VPS): ❑ http://www.linode.com

Rimu Hosting (VPS): ❑ http://rimuhosting.com/rails-hosting

Morph Labs (cloud hosting): ❑ http://www.mor.ph

Heroku (cloud hosting): ❑ http://heroku.com

Web Faction (shared hosting): ❑ http://www.webfaction.com

Hosting Rails (shared hosting): ❑ http://www.hostingrails.com

Keep in mind that Rails tends to work best when more resources are available than those that are usually
provided by shared hosting companies. It is recommended that you deploy Rails on beefi er confi gura-
tions, like those offered by the rest of the aforementioned companies. On the plus side, shared hosting is
very inexpensive and the hosting company usually manages the operating system for you. Yet this type
of entry-level hosting is not ideal over all, and defi nitely not well suited for resource-intensive applica-
tions or sites that expect to receive a fairly large amount of traffi c.

Getting Help
One of the greatest aspects of the Ruby on Rails community is the amount of support you can get
entirely for free online. Here you’ll fi nd a few places where you can direct your questions and exchange
ideas with fellow rubyists:

You can get virtually instantaneous Rails support within the ❑ #rubyonrails channel on irc
.freenode.net. Likewise, on the same server you can visit the #ruby-lang channel for Ruby.
The #rails-contrib channel is more advanced and aimed at those who are trying to contrib-
ute to Rails’ core.

74955book.indd List41974955book.indd List419 3/4/09 8:48:33 AM3/4/09 8:48:33 AM

420

Chapter A: Additional Resources

Ruby on Rails Talk is a mailing list where you can post your questions and clarify any doubts ❑

you may encounter. You’ll fi nd a Web interface at http://groups.google.com/group/
rubyonrails-talk. There’s also Ruby on Rails Core (for Rails’ core developers) at http://
groups.google.com/group/rubyonrails-core and Ruby on Rails Security if you want
to read announcements about security issues: http://groups.google.com/group/
rubyonrails-security.

For Ruby, you can check out Ruby Talk (❑ http://blade.nagaokaut.ac.jp/ruby/ruby-talk/
index.shtml), which is mirrored for convenience on Google Groups: http://groups.google
.com/group/ruby-talk-google. Alternatively, you can read all the mailing lists mentioned
here in forum format at http://www.ruby-forum.com. Of course, other forums exist, and they
are just a Google search away.

Recommended Books
Over the past few years there has been a surge of Ruby and Rails books being published. After reading
this book, you may be wondering what you could read next to further your knowledge. There seems to be
two possible directions: getting to know more about Ruby or gathering a greater level of insight into Rails.
My recommendation is that you do both, and you are probably better off doing them at the same time.

For Ruby, if you are a novice programmer, I would suggest you read either of the following two books:

Ruby for Rails ❑ by David A. Black, ISBN: 1932394699

Beginning Ruby: From Novice to Professional ❑ by Peter Cooper, ISBN: 1590597664

They are both excellent at bringing you from “zero” to a solid knowledge of the language.

Should you already be an intermediate or experienced object-oriented programmer, you should probably
be able to study either of the following two instead:

The Ruby Programming Language ❑ by David Flanagan and Yukihiro Matsumoto, ISBN: 0596516177

Programming Ruby: The Pragmatic Programmers’ Guide, Second Edition ❑ by Dave Thomas, Chad
Fowler, and Andy Hunt, ISBN: 0974514055

Flanagan and Matz’s book is simply amazing. It covers — with a lawyer-like rigor — the core aspects of
the language (both 1.8 and 1.9), like no other book I’ve read on the topic so far. Even experienced Ruby
programmers can learn from it. Dave Thomas’ book, on the other hand, is a bit broader in scope and
more tutorial-like. Being the fi rst English book on the subject, it’s also worth pointing out that most of
us (relatively) early adopters fi rst learned Ruby thanks to this title.

For Rails, having already read the book you are holding, the next logical step is to read an excellent
book that’s published by Wrox as well:

Professional Ruby on Rails ❑ by Noel Rappin, ISBN: 047022388X

Rappin does a great job of highlighting the best practices and providing practical advice for develop-
ing Rails projects with a test-driven approach. This is not a book for beginners and assumes that you
know Rails already, but it will work well as your second book on the subject.

74955book.indd List42074955book.indd List420 3/4/09 8:48:33 AM3/4/09 8:48:33 AM

421

Chapter A: Additional Resources

A third book, that will really help you move from an intermediate to an expert level, is:

The Art of Rails ❑ by Edward Benson, ISBN: 0470189487

An enjoyable, thoroughly researched, and well-written book, The Art of Rails is guaranteed to make you
a better Rails developer. The only caveat is that its target audience is intermediate Rails developers, so
you shouldn’t approach it until you have some experience under your belt.

Finally, to learn more about Prototype, script.aculo.us, and AJAX in general, consider the following
two books:

Practical Prototype and script.aculo.us ❑ by Andrew Dupont, ISBN: 1590599195

Professional Ajax, 2nd Edition ❑ by Nicholas C. Zakas, Jeremy McPeak, and Joe Fawcett, ISBN:
0470109491

Also keep in mind that all of these books can help you become very familiar with the technologies at
hand, but only through coding and practical experience will you be able to become a pro.

74955book.indd List42174955book.indd List421 3/4/09 8:48:33 AM3/4/09 8:48:33 AM

74955book.indd List42274955book.indd List422 3/4/09 8:48:33 AM3/4/09 8:48:33 AM

Index

SYMBOLS AND
NUMBERS
%q, Ruby literal constructors, 75
%Q, Ruby literal constructors, 75
&& operator, Ruby, 72
* (splat operator)
defi ning methods that accept multiple

arguments, 87
for expanding range into arrays, 79

:: operator, for accessing constants, 127
_ (underscore prefi x), indicating partials

with, 172
{} (curly brackets), in block syntax, 95
|| (pipes) operator, Ruby, 72
< (less than) operator, Ruby, 72
<%=h tag, evaluating expressions, 358
<= (less than or equal to) operator,

Ruby, 72
== (equality) operator, Ruby, 81, 92
=== (case equality) operator, Ruby, 92
> (greater than) operator, Ruby, 74
>= (greater than or equal to) operator,

Ruby, 74
\ (backslash), convention regarding use

of, 137
. (dot operator), for accessing

methods, 127
! (exclamation mark), Ruby method

syntax, 66
/ (forward slash), convention regarding

use of, 137
! (not operator), Ruby, 72
? (question mark), Ruby method syntax, 66
?: (ternary operator), Ruby programming, 90
37signals, 8–9

A
ab tool, for stress testing, 404
Acceptance Testing, 380
accessor methods, Ruby programming,

112–116
action caching, 406
ActionController, 303–352
accessing request/response environment,

326–327
benchmark method, 401–402
console for working with routes, 310–311
customizing RESTful routes, 315–317
customizing routes, 306–308
defi ning routes, 305
enabling/disabling sessions, 337–338
expiration of sessions and, 338–339
fi lters, 339–342
Flash objects and, 330–332
functional testing, 348–351
generating controllers, 320–321
HTTP authentication and, 342–344
improving authentication system, 344–346
managing state, 329–330
named routes, 311–312
namespaced resources, 318–319
overview of, 303–304
processing actions, 321–322
redirec_to method, 325–326
render method, 322–324
request object, 327–329
RESTful route helpers, 319
RESTful routes, 312–315
route priority, 309–310
send_data and send_file methods,

324–325
sessions and, 332–333

74955book.indd List42374955book.indd List423 3/4/09 8:48:46 AM3/4/09 8:48:46 AM

424

ActionController (continued)

ActionController (continued)
storing session, 333–336
summary, 352
testing controllers, 346
testing routes, 346–348
working with controllers, 319

ActionMailer
e-mail and, 381
as standard package in Rails, 44

ActionPack
caching and, 406
MonoRail as clone of, 52
as standard package in Rails, 44

actions
adding custom REST action to blog

example, 191–192
config\routes.rb and, 151
defi ned, 303
mapping routes to, 153–155
processing, 321–322
redirect_to method, 325–326
render method, 322–324
request/response environment and,

327–329
send_data method and send_file

method, 324–325
ActionView
adding Ajax to blog example, 377–380
adding RSS and Atom feeds, 360
Builder templates, 358–359
built-in template engines, 357
creating helpers, 376–377
default templates, 354
ERb templates, 357–358
format.rss and format.atom, 360–361
FormHelper and FormTagHelper,

370–371
FormOptionsHelper, 372
helpers, 367–368, 375–376
index.rss.builder and index.atom

.builder, 361–366
JavaScriptHelper,

PrototypeHelper, and
ScripttaculousHelper, 373–375

linking to RSS and Atom feeds, 366–367
overview of, 353
predefi ned helpers, 368–369
render method for bypassing templates,

354–355
render method for rendering specifi c

template, 355
RJS templates, 359
software alternatives, 381
summary, 382
view layer communicating with other layers,

356–357
ActionWebService (AWS), 391
Active Record pattern
ASP.NET, 52
overview of, 233

ActiveRecord
adding infl ection rules, 247–248
advanced uses, 284
ArticleTest test case, 299–300
ASP.NET Active Record pattern and, 52
association callbacks, 292
association extensions, 280–281
associations, 270
auto-generated methods, 273–274
belongs_to method, 274–277
caching and, 407
calculations, 263–265
callbacks, 289–292
CRUD operations, 250
customizing migrations, 240–244
customizing SQL queries, 262–263
customizing table names for models,

248–250
data types and, 141–142
databases supported, 234–235
defi ning models, 38–40
delete operations, 269–270
dynamic fi nders, 131–132, 261–262
fi nding and limiting or offsetting fetched

records, 256
fi nding and ordering or grouping results, 254
fi nding by fi rst, last, and all, 253–254
fi nding by id(s), 253

74955book.indd List42474955book.indd List424 3/4/09 8:48:46 AM3/4/09 8:48:46 AM

425

and operator

fi nding with conditions, 254–255
fi nding with include and i options,

257–260
fi nding with readonly and lock options,

260–261
fi nding with SELECT and FROM option, 256
generating migrations, 239–240
generating models, 237–239, 250–252
has_and_belongs_to_many method,

279–280
has_many method, 279–280
has_one method, 278
Inflector class and, 245–246
many-to-many relationships, 271–273
mapping tables to models, 244–245
observers, 292–294
one-to-many relationships, 271
one-to-one relationships, 270
ORM (Object Relational Mapping), 6, 237
overview of, 233
partial updates and dirty objects, 265–267
polymorphic associations, 286–289
read operation, 253
sample script using, 235–237
single table inheritance, 284–286
as standard package in Rails, 44
summary, 301
testing models, 294–301
update operations, 265
update_attribute/update_

attributes, 265–267
updating multiple records, 267–269
validation, 174, 281–283
validation helpers, 283–284
ActiveRecord::Base, 244
ActiveRecordHelper, 369
ActiveRecordStore, 333
ActiveResource
avoiding duplicate models, 385
consuming/publishing REST services from

.NET, 390
create operations, 387
creating ActiveResource models, 384–385

CRUD operations, 385
delete operations, 388
JSON vs. XML, 387
nested resources, 389–390
overview of, 383–384
read operations, 386
REST methods (get, post, put, and delete)

and, 388–389
SOAP, XML-RPC, and ActionWebService, 391
as standard package in Rails, 44
summary, 391
update operations, 387–388

ActiveSupport
Buffered Logger class, 224
cattr_reader method, 199
as standard package in Rails, 44
utility classes in, 120
acts_as_textiled plugin, 188
adapters, database support and,

234–235
add_index method, 202, 240
Adobe Flex, 381
ADO.NET, 234
after_filter method, 339–342
aggregator methods, in Enumerable

module, 101
agile development
Rails and, 5–6
Rails culture and, 44
testing and, 346
XP (Extreme Programming) compared

with, 45
Agile Manifesto, 5–6
Ajax
adding to blog example, 377–380
frameworks, 381, 418
issues with ASP.NET, 50
libraries, 418
RJS templates and, 359
script.aculo.us, 375

alias methods, 86–87
all, fi nder options, 253–254
and operator, Ruby, 72

74955book.indd List42574955book.indd List425 3/4/09 8:48:46 AM3/4/09 8:48:46 AM

426

Apache

Apache
deploying Rails on GNU/Linux, 413
installing/confi guring, 412
overview of, 410–411

APP (Atom Publishing Protocol), 391
app directory, 136
app\controllers directory, 157
ApplicationController, 339
application-level performance

considerations, 407–409
applications
blog example. See blog example
characteristics of applications that Rails is

suited for, 9
creating new Rails application,

146–151
app\models
defi ning associations and, 204
models stored in, 156
app\views
adapting for comments, 207–211
embedded comments and, 216
layouts folder, 163–164
overview of, 163

Aptana RadRails IDE, 25–27
Ares. See ActiveResource
ArgumentError method, raising errors in

Ruby, 109–110
arguments
case statement passing, 91
methods and, 87
around_filter method, 339–342
arrays
adding conditions to fi nder, 254–255
each method for iterating, 96
hashes as associative arrays, 81–82
map method, 99
partition method, 100
Ruby data types, 79–81
treating strings as, 75
Article model
analyzing, 156
defi ning associations, 204

articles
embedding comments in, 215–221
listing, 150, 157–158
New Article, 149
articles folder
app\views, 163
edit.html.erb template, 170–171
index.html.erb template, 166–168
new.html.erb template, 168–170
show.html.erb template, 171–172
articles.html.erb layout, 164–166, 176
ArticleTest test case, 299–300
as option, customizing RESTful routes, 315
ASCII characters, converting numbers to, 97
ASP.NET
Code Behind, 319
developer preferences and, 49
learning curve and, 49
main issue with, 50–51
master pages, 163–164
MVC framework, 10, 52–53
overview of, 47–48
performance considerations, 50
politics of, 48
routing compared with Rails routing, 304
sessions, 332
similarities/dissimilarities with Rails, 48
when to use, 51

assert methods, testing routes and, 347
associations
auto-generated methods and, 273–274
belongs_to method, 274–277
callbacks, 292
defi ning, 204–206
eager loading, 281
extensions, 280–281
has_and_belongs_to_many method,

279–280
has_many method, 279–280
has_one method, 278
include option, 257
many-to-many relationships, 271–273
one-to-many relationships, 271

74955book.indd List42674955book.indd List426 3/4/09 8:48:46 AM3/4/09 8:48:46 AM

427

blog example

one-to-one relationships, 270
overview of, 270
polymorphic, 286–289

Atom (Atom Syndication Format) feeds, 359
adding, 360
format.atom, 360–361
index.atom.builder, 361–366
linking to, 366–367

Atom Publishing Protocol (APP), 391
Atom Syndication Format feeds. See Atom

(Atom Syndication Format) feeds
AtomFeedHelper, ActionView, 369
attachments, working securely with

e-mail, 396
attr_accessible, protecting records, 399
attr_accessor, Account class, 115–116
attr_protected, protecting records, 399
attr_reader, Account class, 115–116
attributes
assigning/viewing, 251
Ruby programming, 112–116
update_attribute/update_

attributes methods, 265–267
authentication
fi lters for HTTP basic authentication,

342–344
HTTP authentication, 385
improving, 344–346

auto-generated methods, associations and,
273–274

auto-implemented properties, C#, 114
autotest-rails, 348
average method, calculations, 264
AWS (ActionWebService), 391

B
backslash (\), convention regarding use

of, 137
BDD (Behavior-Driven Development)
overview of, 294
RSpec and Shoulda and, 348
before_filter method, 209, 339–342

Behavior-Driven Development (BDD)
overview of, 294
RSpec and Shoulda and, 348
belongs_to
auto-generated methods and, 273–274
one-to-many relationships, 271
one-to-one relationships, 270
belongs_to
associations, 274
example of model employing, 274–276
options accepted by, 277
belongs_to_many , 204
benchmark method, 401–402
benchmark script, 403
between operator, Ruby, 72
bigdecimals, Ruby numeric classes, 68
bignums, Ruby numeric classes, 68, 69–70
bindings, blocks and procs associated

with, 104
bitwise AND, Ruby operators, 72
bitwise OR, Ruby operators, 72
black box testing, 380
block_given? method, 103
blocks
converting standalone block into Proc

objects, 104
overview of, 95
syntax for, 95

blog example
associations, defi ning, 204–206
comments added to, 201–203
comments embedded in articles, 215–221
controller adapted for, 207–211
controllers, analyzing, 157
create action, 160–161
creating Rails application for, 146–151
creating tables for, 141–144
custom environments, 223
custom REST action added to, 191–192
data types in, 141–144
database credentials stored in config\

database, 137–139

74955book.indd List42774955book.indd List427 3/4/09 8:48:46 AM3/4/09 8:48:46 AM

428

blog example (continued)

blog example (continued)
database for, 139
debugging, 227–230
destroy action, 162–163
development environment and, 221
directory structure, 230–231
edit action, 159
edit.html.erb template, 170–171
fi ltering data, 226–227
helper methods, 192–193
index action for listing articles,

157–158
index.html.erb template, 166–168
layouts, 163–166
logging, 223–226
migrations, 141, 144–146
models, analyzing, 156
named route helpers, 155–156
named_scope used in, 188–191
nested resources, 206
new action, 159
new.html.erb template, 168–170
pagination of, 197–200
partials added to, 172–174, 193–195
production environment and, 222–223
rails command for creating, 136–137
RESTful applications and, 151–152
routes mapped to actions, 153–155
scaffold generator and, 140–141
schema-migrations table, 144
show action, 158–159
show.html.erb template, 171–172
style added to, 176–182
summary, 193–195, 231
test environment and, 222
textile support, 184–188
time zones, 182–184
update action, 161–162
validation added to, 174–176
view layer adapted for, 211–214
views, analyzing, 163

BlueCloth plugin, 185
book resources, recommendations, 420

Booleans
Ruby data types, 72–74
validation of, 283

Bray, Tim, 22
Brooks, Fred, 34
browsers
cross-browser compatibility and, 3
Web developers and, 374
Buffered Logger class,

ActiveSupport, 224
Builder templates
Atom feeds, 360, 363, 365–366
RSS feeds, 360–362, 364–365
XML and, 357–359

built-in template engines, 357

C
C#
auto-implemented properties, 114
exception handling, 107
Ruby strings compared with C# strings, 76

cache
MemCacheStore, 335–336
performance and, 406–407
CacheHelper, ActionView, 369
calculations, methods for, 263–265
callbacks, 289–292
associations and, 292
executing code during, 291–292
observers and, 292–294
order of, 290–291
overview of, 289
types of, 290

CamelCase, 246
Capistrano, 414
CaptureHelper, ActionView, 369
case equality operator (===), 92
case sensitivity, in Ruby, 58
case statements, 91–93
Castle Project’s MonoRail. See MonoRail
cattr_reader method, ActiveSupport, 199
cd command, stepping into directory

with, 136

74955book.indd List42874955book.indd List428 3/4/09 8:48:46 AM3/4/09 8:48:46 AM

429

controllers

CDATA sections, 372
characters
ASCII, 97
Ruby treatment of, 58
chomp method, Ruby, 76
chr method, 97
CI (Continuous Integration), 414
class keyword, 111
class methods
defi ned, 85
fi nding, 133
overview of, 123–124

class variables, 123
classes
defi ning/instantiating, 111
fi nding, 132–133
initialize method, 111–112
in modules, 129
modules compared with, 126

closures, blocks and procs as, 104
CMS (Content Management System), 34
code
controllers defi ning, 319
partials for reusing, 172

Code Behind, ASP.NET, 319
collection option, RESTful routes and,

315–316
collections, looping through, 93
Comment model
defi ning associations, 204
validation of, 204–205

comments
adapting Comments controller, 207–211
adapting view layer for, 211–214
adding, 201–203
defi ning associations and, 204
embedding in articles, 215–221
nested resources and, 206
Comments controller, 207–211
comments_controller.rb fi le, 209–211
commit monitoring, 414
Common Type System (CTS), 63
compatibility, cross-browser, 3

complex, Ruby numeric classes, 68
conditionals
if/elsif/else/unless, 88–90
overview of, 88

conditions, fi nding with, 254–255
conditions option, RESTful routes, 316
config directory, 136
config\database.yml, 137–139
config\environments
creating custom environments, 223
development environment, 221
production environment and, 222–223
test environment, 222
config\routes.rb, 151, 304
confi guring Instant Rails, 17–19
connect method
customizing routes and, 307–308
named routes and, 311–312

console
reload! command for restarting, 247
working with routes, 310–311

constants
accessing with ::, 127
Ruby conventions, 67

constructors, Ruby literal, 75
Content Management System (CMS), 34
Continuous Integration (CI), 414
controller option, RESTful routes, 316
controllers. See also MVC (Model-View-

Controller) pattern
ActionController. See ActionController
adapting Comments controller, 207–211
analyzing blog application controller, 157
code defi ned by, 319
defi ning within modules, 311
destroying, 321
generating, 320–321
managing in MVC approach, 42–43
mapping controller actions to URLs, 153
partials in shared views, 356
testing, 346
view layer and, 356–357
working with, 319

74955book.indd List42974955book.indd List429 3/4/09 8:48:47 AM3/4/09 8:48:47 AM

430

Convention over Confi guration

Convention over Confi guration
in ActiveRecord, 244
canons of agile development, 5–6
Rails culture and, 44–46

cookie security, 396
CookieStore, storing sessions, 334–335
Core library, ri (Ruby interactive), 59
Corti, Paolo, 412
count method, 263
create, rake db:create, 139
create, read, update, and delete. See CRUD

(create, read, update, and delete)
create action
blog application example, 160–161
comments and, 208
create method
creating new resources, 387
instantiating objects, 252

create operation. See also CRUD (create,
read, update, and delete)

ActiveRecord, 250–252
ActiveResource, 387
create_table method, 141–144, 241
cross-browser compatibility, 3
cross-platform basis, of Rails, 4
cross-site scripting attacks. See XSS (cross-

site scripting) attacks
CRUD (create, read, update, and delete)
mapping routes to actions, 153–155
resources defi ned by CRUD actions, 152
scaffold generators and, 140

CRUD (create, read, update, and delete), in
ActiveRecord

calculations, 263–265
create operation for generating models,

250–252
customizing SQL queries, 262–263
delete operations, 269–270
dynamic fi nders, 261–262
fi nding and limiting or offsetting fetched

records, 256
fi nding and ordering or grouping results, 254
fi nding by fi rst, last, and all, 253–254

fi nding by id(s), 253
fi nding with conditions, 254–255
fi nding with include and join, 257–260
fi nding with readonly and lock options,

260–261
fi nding with SELECT and FROM, 256
overview of, 250
partial updates and dirty objects, 265–267
read operation, 253
simplifying approach to, 6
update operations, 265
update_attribute/update_

attributes, 265–267
updating multiple records, 267–269

CRUD (create, read, update, and delete), in
ActiveResource, 385

create operation, 387
delete operations, 388
read operations, 386
update operations, 387–388

CTS (Common Type System), 63
curly brackets ({}), in block syntax, 95
customization
environments, 223
helpers, 376
migrations, 240–244
RESTful actions, 191–192
RESTful routes, 315–316
routes, 306–308
SQL queries, 262–263
table names for models, 248–250

Cygwin
managing logs with, 402
One-Click Ruby Installer and, 23

D
data
fi ltering, 226–227
Rails Web applications storing, 6–7
retrieving with find, 252
send_data method, 324–325
storing session data, 336

data sources, list of supported, 234

74955book.indd List43074955book.indd List430 3/4/09 8:48:47 AM3/4/09 8:48:47 AM

431

do keyword

data types, Rails, 141–144
data types, Ruby
arrays, 79–81
Booleans, 72–74
fi xnums and bignums, 69–70
fl oats, 70–72
hashes, 81–82
identifi ers and variables, 64–67
numeric classes, 67–68
objects, 63–64
vs. other programming languages, 69
ranges, 78–79
regular expressions, 77–78
strings, 74–77
symbols, 77

databases
adding indexes to, 240
creating, 139
credentials stored in config\database.

yml, 137–139
installing SQLite3 and sqllite3-ruby, 16–17
Rails Web applications storing data in, 6–7
supported, 234–235
testing with SQL instead of Active Record’s

schema dumper, 203
DateHelper, ActionView, 369
db:create, rake , 139
db:drop, rake , 139
db:migrate, rake, 144–145
db:rollback, rake, 145
db:schema, rake, 202–203
debug helper, 357
debug level, logger, 225
debugger method, 227–230
debugging, 227–230
from Console, 230
debugger method, 227–230
ruby-debug gem, 227
DebugHelper, ActionView, 369
decrement operators, Ruby vs. other

programming languages, 70
def statement, for defi ning methods, 86
default routes, 305

default templates, ActionView, 354
DELETE, HTTP methods, 152
delete method
deleting rows, 269
REST methods in ActiveResource, 388–389

delete operation. See also CRUD (create,
read, update, and delete)

delete operations
ActiveRecord, 269–270
ActiveResource, 388
delete_all method, 270
deploying Rails
enterprise-related topics, 414–415
freezing application and, 415
on GNU/Linux, 413
history of, 410–411
misconceptions regarding, 35
source version control tools, 414
on Windows OSs, 411

Deploying Rails Applications: A Step-by-Step
Guide, 412

destroy action
blog application example, 162–163
comments and, 207–208
destroy method
callback methods and, 290
deleting rows, 269
destroying existing controllers, 321
destroying resources, 388
destroy script, deleting generated fi les

with, 238
developers
adds-on for Web developer, 374
ASP.NET vs. Rails, 49

development, agile. See agile development
development environment, 221
directory structure, 136, 230–231
dirty objects, ActiveRecord, 265–267
Distributed Ruby (DRb), 335
division operators, Ruby compared with

other programming languages, 69
divmod method, Ruby, 69
do keyword, looping and, 94

74955book.indd List43174955book.indd List431 3/4/09 8:48:47 AM3/4/09 8:48:47 AM

432

doc folder

doc folder, in directory structure, 230
doc:guides, rake, 317
Document Object Model (DOM), 373
documentation, Rails API, 324
DOM (Document Object Model), 373
Domain Specifi c Languages (DSLs), 2, 131
Don’t Make Me Think (Krug), 41
Don’t Repeat Yourself (DRY)
canons of agile development, 5–6
Rails culture and, 46–47

dot notation, chaining multiple methods, 86
dot operator (.), for accessing methods, 127
down class method, migrations, 145–146
downto iterator, numeric class, 95
DRb (Distributed Ruby), 335
DrbStore, 335
drivers, database support and, 234
drop, rake db:drop, 139
DRY (Don’t Repeat Yourself)
canons of agile development, 5–6
Rails culture and, 46–47

DSLs (Domain Specifi c Languages), 2, 131
Duck Typing, 56, 122
dynamic fi nders
ActiveRecord, 131–132
overview of, 261–262
SQL injection attacks and, 397–398

E
each method, 96–98
iterating arrays, 96
iterating fi les, 98
iterating over ranges, 79, 96
iterating strings, 97

eager loading, associations, 281
edit action
blog application example, 159
comments and, 207
edit.html.erb template, 170–171, 212
eigenclasses
fi nding, 132–133
singleton methods and, 124–126
else conditional, 89–90

elsif conditional, 89–90
Emac text editor, 24
e-mail, ActionMailer and, 381
embedding comments, in articles, 215–221
encryption, SSL, 385
end statement, terminating method

defi nitions, 86
enterprise-related topics
overview of, 414–415
when to use ASP.NET instead of Rails, 51
Enumerable module, 101
environments
defi ning custom, 223
development, 221
production, 222–223
test, 222

equality operator (==), 81, 92
ERb templates
ActionView, 357–358
overview of, 41–42
error level, logger, 225
errors
raising, 109–110
“Template is missing”, 354

Erubis template engine, 42
escaping HTML tags, 394
except helper, textual helpers, 367
exception handling, 107–109
execute method, SQL statements, 240
expressions
<%=h tag when evaluating, 358
statements and, 90
extend method, 130–131
extensibility, of Ruby, 56
extensions, association, 280–281
Extreme Programming. See XP

(Extreme Programming)

F
FastCGI, 410
fatal level, logger, 225
feeds, RSS and Atom, 359
adding, 360

74955book.indd List43274955book.indd List432 3/4/09 8:48:47 AM3/4/09 8:48:47 AM

433

GitHub

format.rss and format.atom, 360–361
index.rss.builder and index.atom

.builder, 361–366
linking to, 366–367
order of, 363
file_field helper, 371
fi les
each method for iterating, 98
send_file method, 324–325
uploading, 371
FileStore, storing session data, 336
fi lter methods, 101
filter_parameter_logging method, 227
fi lters
HTTP authentication, 342–344
logging and, 226–227
overview of, 339–342
find method
ActiveResource, 386
obtaining list of records with, 237
records not found and, 262
retrieving data with, 252
find_by_sql method, 263
fi nders
customizing SQL queries, 262–263
dynamic fi nders, 261–262
fi nding and limiting or offsetting fetched

records, 256
fi nding and ordering or grouping results, 254
fi nding by fi rst, last, and all, 253–254
fi nding by id(s), 253, 400
fi nding with conditions, 254–255
fi nding with include and join, 257–260
fi nding with readonly and lock options,

260–261
fi nding with SELECT and FROM, 256
SQL injection attacks and, 397–398

Firebug adds-on, for Web developers, 374
Firefox, Mozilla, 374
FireWatir, Rails tools, 380
first, fi nder options, 253–254
FiveRuns, 405
fi xnums, Ruby data types, 67, 69–70
Flash objects, 330–332

Flex, Adobe, 381
fl oats, Ruby data types, 68, 70–72
for keyword, 93
foreign key columns, adding indexes to,

201–202
foreign key constraints
adding to migrations, 242–244
applying at application level vs. database

level, 240
for/in loops, 93–94
form_for arguments, 169, 212
format.atom, 360–361
format.rss, 360–361
formats, Rails supported, 158
FormHelper, ActionView, 370–371
FormOptionsHelper, ActionView, 372
FormTagHelper, ActionView, 370–371
forward slash (/), convention regarding use

of, 137
Fowler, Martin, 233
fragment caching, 406–407
frameworks
Ajax, 381, 418
ASP.NET MVC framework, 10
BDD, 348
Convention over Confi guration and, 46
full-stack, 4
JavaScript frameworks, 373
from, fi nder options, 256
full-stack framework, Rails as, 4
functional testing, 348–351

G
generators
migration generator, 144, 239–240
model generator, 40, 237–239
scaffold generator. See

scaffold generator
GET, HTTP methods, 152, 329
get, REST methods in ActiveResource,

388–389
getter/setter methods, Ruby, 114–115
GitHub, 346, 414

74955book.indd List43374955book.indd List433 3/4/09 8:48:47 AM3/4/09 8:48:47 AM

434

GNU/Linux

GNU/Linux
deploying Rails on, 413
installing Rails on, 20–21
Rails on, 11–12
grep, managing logs with, 402
group, fi nder options, 254
guid, as primary key for tables, 249–250
guides, generating Rails guides, 317

H
h helper. See html_escape
habtm, see has_and_belongs_to_many
hackers, 393
Haml template engine, 42, 381
Hansson, David Heinemeier, 8
has_and_belongs_to_many
auto-generated methods and, 273
overview of, 279–280
has_many
auto-generated methods and, 273
customizing RESTful routes, 316–317
one-to-many relationships, 271
overview of, 279–280
has_one
auto-generated methods and, 273
customizing RESTful routes, 316–317
defi ning associations, 204
one-to-one relationships, 270
overview of, 278

hashes
adding conditions to fi nder, 254–255
Ruby data types, 81–82

Hello world program, in Ruby, 56–59
help resources, 419–420
helper method, 376
helper_method, 376
helpers
ActionView, 367–368
creating, 376–377
defi ning, 192–193
ERb and, 357
FormHelper and FormTagHelper,

370–371

FormOptionsHelper, 372
JavaScriptHelper,

PrototypeHelper, and
ScripttaculousHelper,
373–375

MigrationHelpers, 243
other options, 375–376
pluralize helper method, 215
predefi ned helpers, 368–369
RESTful route helpers, 319
sanitize helper method, 185
validation, 283–284

Hibbs, Curt, 17
hosting services, resources for, 419
HTML
formats supported by Rails, 158
representation formats, 152
resources for, 417

HTML tags
escaping, 394
sanitizing, 394–396
html_escape, 394
HTTP, representation formats, 152
HTTP authentication
fi lters for, 342–344
Web services and, 385

HTTP headers, request/response
environment an, 326–327

HTTP methods
ActiveResource using, 384
defi ning RESTful routes, 313–314
mapping to controller actions, 153
requests, 152
httperf, for stress testing, 404

I
identifi ers, 64–67
for constants, 67
mapping tables to models and, 244
for methods, 66–67
overview of, 64
snake_case convention, 64
for variables, 64–66

74955book.indd List43474955book.indd List434 3/4/09 8:48:47 AM3/4/09 8:48:47 AM

435

JavaScript

IDEs (Integrated Development Environments)
Aptana RadRails, 25–27
NetBeans, 25
overview of, 21–22
Ruby in Steel IDE, 27–28
RubyMine IDE, 27

ids
fi nding by, 253
as primary key for tables, 249–250
vulnerabilities and, 399

IE (Internet Explorer), 374
if conditional, 88–90
IIS (Internet Information Services), 412
in
for/in loops, 93–94
in keyword, 93
include method, vs. extend method,

130–131
include option, fi nders, 257–260
increment operators, Ruby vs. other

programming languages, 70
index action
listing articles, 157–158
listing comments, 207
index.atom.builder, 361–366
indexes
add_index method, 202, 240
adding to foreign key columns, 201–202
polymorphic tables and, 287
index.html.erb template, 166–168,

213–214
index.rss.builder, 361–366
infl ection
adding new infl ection rules, 247–248
Inflector class, 245–246
info level, logger, 225
inheritance, single table, 117–120,

284–286
initialize method, 111–112
initializers, 234
installing Mongrel, 16
installing Rails
on GNU/Linux, 20–21
on Mac OS X, 20

One-Click Ruby Installer, 12–13
on Windows OSs, 12, 14–15

installing RubyGems, 13–14
installing SQLite3 and sqllite3-ruby, 16–17
installing Subversion (SVN), 17
instance methods
defi ned, 86
fi nding, 132–133

instance variables, 114
Instant Rails, confi guring, 17–19
Integer class, 95
Integrated Development Environments.

See IDEs (Integrated Development
Environments)

integration testing, 351
Interactive Ruby (IRB)
overview of, 59
using, 60–61

internationalization
Rails and, 245
restful-authentication-118, 346

Internet Explorer, 374
Internet Information Services (IIS), 412
IP addresses, cookie security and, 396
IRB (Interactive Ruby)
overview of, 59
using, 60–61

IronRuby
deploying, 412
Ruby versions, 134
software alternatives for using with Rails, 381

iterators
common, 99–101
defi ning, 102–104
each method, 96
numeric, 95–96
overview of, 95

J
JavaScript
libraries, 377
rendering in, 354
resources for, 417–418
RJS templates, 357, 359

74955book.indd List43574955book.indd List435 3/4/09 8:48:47 AM3/4/09 8:48:47 AM

436

JavaScript Object Notation

JavaScript Object Notation. See JSON
(JavaScript Object Notation)

javascript_include_tag, 376
JavaScriptHelper, ActionView, 373–375
join models, many-to-many relationships

and, 272–273
join option, fi nders, 257–260
join tables, many-to-many relationships and,

271–272
jQuery, 381
JRuby, 134
JSON (JavaScript Object Notation)
ActiveResource using, 387
for communication among machines, 383
rendering in, 354–355
representation formats, 152

K
Kernel methods, 86
Kernel#lambda method, 104–106
Kernel#raise method, 109–110

L
last, fi nder options, 253–254
layout method, adapting Comments

controller, 207
layouts
articles.html.erb layout, 164–166
compared with ASP.NET master pages,

163–164
partials in, 356
layouts folder, app\views, 163–164
learning curve, ASP.NET vs. Rails, 49
legacy databases, when to use ASP.NET

instead of Rails, 51
lib folder, in directory structure, 230
libraries
Ajax, 418
Core and Standard, 59
JavaScript, 377, 381
Ruby, 186
Ruby’s SOAP library, 391

licensing Rails, 3, 48

Lighttpd (Lighty), 410
limit option, fi nders, 256
links
to comments, 215
resources for HTML, 417
resources for JavaScript, 417–418
resources for Ruby on Rails, 418–419
to RSS and Atom feeds, 366–367

Lisp language, 56
literal constructors, Ruby, 75
local variables, controllers and, 330
localization, country_select, 372
lock option, fi nders, 260–261
log analyzers, 402
log\development, 223
logger
security levels and, 226
using, 225

logs/logging, 223–226
fi ltering data and, 226–227
overview of, 223–224
performance logs, 401–402
production logs, 225–226
redirecting logging to console, 226
security levels and, 225
SQL queries and, 254
tools for managing, 402

looping. See also iterators
for/in loops, 93–94
overview of, 93
while/until loops, 94

M
Mac OS X
installing Rails, 20
Rails and, 11

MacRuby, Ruby versions, 134
MagLev, Ruby versions, 134
many-to-many relationships, 271–273
join models and, 272–273
join tables and, 271–272
map method, arrays, 99
map.connect, for defi ning routes, 305

74955book.indd List43674955book.indd List436 3/4/09 8:48:48 AM3/4/09 8:48:48 AM

437

modulo method

mapping tables to models, 244–245
map.resource, defi ning RESTful routes,

314–315
map.resources, defi ning RESTful routes,

313–314
Markdown, 185
master pages, ASP.NET, 163–164
Matsumoto, Yukihiro, 7
maximum method, calculations, 264
member option, RESTful routes, 315–316
MemCacheStore, 335–336
MemoryStore, 336
metaprogramming, 131–132
method overload, Ruby not supporting, 87
method_missing method
action processing and, 321–322
as dynamic fi nder, 261–262
overview of, 132

methods
arguments and, 87
class methods, 123–124
defi ning Ruby, 85–88
include method vs. extend method,

130–131
name resolution, 132–133
Ruby, 66
singleton methods, 121–122
visibility, 116–117

Microsoft SourceSafe, 414
Microsoft Web Application Stress Tool, 404
migrate, rake db:migrate, 144–145
migration generator
creating migration fi les, 144
generating migrations with, 239–240

MigrationHelpers, 243
migrations
adding foreign keys to, 242–244
customizing, 240–244
generating, 239–240
old style, 145
overview of, 144–145
specifying primary keys and, 250
up and down class methods, 145–146

minimum method, calculations, 264
misconceptions regarding Rails
deployment and, 35
overview of, 33
programming skill requirements, 33
scalability and, 35–36
silver bullet myth, 34–35

MIT licensing, 3, 48
mixins, modules as, 129–130
mod_rails (Phusion Passenger)
deploying Rails on GNU/Linux, 413
overview of, 393
Rails deployment and, 35, 411
model generator
creating models with, 237–239
Rails, 40

models. See also MVC (Model-View-
Controller) pattern

as ActiveRecord objects, 233
analyzing blog application model, 156
create operation for generating, 250–252
creating ActiveResource models, 384–385
defi ning in MVC approach, 38–40
generating with ActiveRecord, 237–239
mapping tables to, 244–245
ORM (Object Relational Mapping)

and, 237
setting custom table names for models,

248–250
testing, 294–301
view layer interaction with, 356

Model-View-Controller pattern. See MVC
(Model-View-Controller) pattern

module, 127
Module class, 115
modules
classes in, 129
compared with classes, 126
defi ning controllers within, 311
fi nding, 132–133
as mixins, 129–130
as namespaces, 127–129
modulo method, Ruby, 69

74955book.indd List43774955book.indd List437 3/4/09 8:48:48 AM3/4/09 8:48:48 AM

438

Mongrel

Mongrel
components need when installing Rails, 12
confi guring, 412
installing, 16
ruby script/server command for

starting, 147
as Web server, 410–412

Monit, 413
monitoring performance, 404–405. See also

performance
monkey patching, Ruby programming,

120–121
MonoRail
MVC framework for .NET, 52
overview of, 10

Mozilla Firefox, 374
MVC (Model-View-Controller) pattern
ActiveRecord implementing model

component of, 233
adapting Comments controller, 207–211
adapting view layer for comments, 211–214
analyzing blog application controller, 157
analyzing blog application model, 156
analyzing blog application view, 163
applying to software development, 4–5
ASP.NET MVC, 52–53
defi ning models, 38–40
designing views, 41–42
interaction of model, view, and controller,

36–38
managing controllers, 42–43
MonoRail framework, 52
overview of, 36

MySQL, 138

N
name resolution, 132–133
name_prefix option, for RESTful

routes, 317
named routes, 311–312
namespaced resources, 318–319
namespaces, modules as, 127–129

naming conventions
adding new infl ection rules, 247–248
Convention over Confi guration and, 46
Inflector class, 245–246
mapping tables to models and, 244–245
setting custom table names for models,

248–250
NAnt, Rake compared with, 139
nested resources, 389–390
comments and, 206
comments_controller.rb fi le adjusted for,

209–211
.NET, consuming/publishing REST services

from, 388–389
NetBeans IDE, 25
new action, blog application example, 159
new option, RESTful route, 315–316
New Relic RPM service, 405
new.html.erb template, 168–170, 212
Nginx Web servers, 325, 410–411
nmake, Rake compared with, 139
not operator, Ruby, 72
NumberHelper, 375
numeric classes, Ruby, 67–68
numeric iterators, Ruby, 95–96

O
object creation, callback methods, 290
Object Relational Mapper. See ORM (Object

Relational Mapper)
object-oriented languages, 55
objects
defi ning/instantiating classes, 111–112
fi nding, 132–133
referencing current, 112
Ruby data types, 63–64

observers, ActiveRecord, 292–294
offset option, fi nders, 256
One-Click Ruby Installer, 12–13, 23
one-to-many relationships, 271
one-to-one relationships, 270
online documentation, Rails API, 324

74955book.indd List43874955book.indd List438 3/4/09 8:48:48 AM3/4/09 8:48:48 AM

439

principles

open source, 3–4
operators
for accessing constants and methods, 127
case equality, 92
decrement/increment, 70
division, 69
equality operator, 81, 92
list of Ruby, 72, 74
splat, 79, 87
ternary, 90

optimistic locking, 261
or operator, Ruby, 72
order attribute, fi nder options, 254
ORM (Object Relational Mapper). See

also ActiveRecord
ActiveRecord and, 237
defi ning models in MVC architecture, 38–40
Rails use of, 6

orthogonality, DRY principle and, 47

P
p method, vs. puts command, 80
packages, standard in Rails, 44
page caching, 406
pagination
adding pagination menu to view, 200
adding to blog example, 197–200
overview of, 197
per_page method and, 199–200
will_paginate plugin, 198–199

pagination menu, 200
Paperclip plugin, for attachment

security, 396
parameterized queries, ActiveRecord, 263
partial updates, ActiveRecord, 265–267
partials
ActionView and, 356
adding to blog application example, 172–

174, 193–195
reusability and, 47
partition method, arrays, 100
patches, 402
path_prefix option, for RESTful routes, 317

Patterns of Enterprise Application
Architecture (Fowler), 6, 233

per_page method, of pagination, 199–200
performance
application-level considerations, 407–409
ASP.NET vs. Rails, 50
caching and, 406–407
logs, 401–402
measuring, 400
monitoring, 404–405
scalability and, 405
tools for, 402–404
when to use ASP.NET instead of Rails, 51
performance folder, scripts in, 403
Performance Testing Rails Applications

guide, 404
Perl language, 56
pessimistic locking, 261
Phusion Passenger (mod_rails)
deploying Rails on GNU/Linux, 413
overview of, 393
Rails deployment and, 35, 411

plain text
rendering in, 354
representation formats, 152

platforms, Rails cross-platform basis, 3
pluralize helper, textual helpers, 215,

217, 367
pluralize method, of Inflector

class, 245
POLS (principle of least surprise), 56
polymorphic associations, ActiveRecord,

286–289
POST, HTTP methods, 152, 329
post, REST methods in ActiveResource,

388–389
predefi ned helpers, ActionView, 368–369
prefi xes, specifying for table names, 249
primary keys, tables, 249–250
principle of least surprise (POLS), 56
principles
Convention over Confi guration, 44–46
DRY (Don’t Repeat Yourself), 46–47
overview of, 44

74955book.indd List43974955book.indd List439 3/4/09 8:48:48 AM3/4/09 8:48:48 AM

440

private methods

private methods
method visibility and, 116–117
security and, 399
Proc.new method, 104–106
production
application-level performance

considerations, 407–409
caching and, 406–407
cookie security, 396
costly mistakes, 399
deploying on GNU/Linux, 413
deploying on Windows OSs, 411
deployment history, 410–411
enterprise-related topics, 414–415
escaping HTML tags, 394
logs, 401–402
measuring performance, 400
monitoring performance, 404–405
overview of, 393
record protection, 398–399
Ruby on Rails Security Guide, 399
sanitize HTML tags, 394–396
source version control tools, 414
SQL injection attacks, 397–398
summary, 416
tools for measuring performance, 402–404
upgrading to Rail 2.3, 415–416
XSS (cross-site scripting) attacks and, 394

production environment, 222–223
Production Log Analyzer, 402
production logs, 225–226
productivity, Convention over Confi guration

and, 46
profiler script, 403
profi ling
with RailsBench, 402
with ruby-prof, 402–403

programming languages
Rails compared with, 7
Ruby compared with, 69

programming skills, Rails misconceptions, 33
protected methods, visibility and, 116–117

Prototype
Ajax and, 381
JavaScript frameworks, 373
PrototypeHelper, 373–375
PStore, for storing sessions, 336
public methods
security and, 399
visibility and, 116–117

publishing REST services, from .NET,
388–389

PUT, HTTP method, 152
put, REST methods in ActiveResource,

388–389
puts command
vs. p method, 80
printing in Ruby, 58

Q
Quicksort algorithm, 99–100

R
RadRails IDE, Aptana, 25–27
rails command
creating blog application, 136–137
creating new Rails applications, 135

Rails introduction. See Ruby on
Rails, introduction

RailsBench, measuring performance and
profi ling with, 402

rails:update, rake, 416
raising errors, 109–110
Rake
creating databases, 139
rake db:create, 139
rake db:drop, 139
rake db:migrate, 144–145
rake db:rollback, 145
rake db:schema, 202–203
rake doc:guides, 317
rake rails:update, 416
rake routes , 155
rake stats, 346

74955book.indd List44074955book.indd List440 3/4/09 8:48:48 AM3/4/09 8:48:48 AM

441

REST

ranges
each method for iterating, 96
Ruby data types, 78–79

rational, Ruby numeric classes, 68
read operations, ActiveRecord. See also

CRUD (create, read, update, and delete)
calculations, 263–265
customizing SQL queries, 262–263
dynamic fi nders, 261–262
fi nding and limiting or offsetting fetched

records, 256
fi nding and ordering or grouping results, 254
fi nding by fi rst, last, and all, 253–254
fi nding by id(s), 253
fi nding with conditions, 254–255
fi nding with include and join, 257–260
fi nding with readonly and lock options,

260–261
fi nding with SELECT and FROM, 256
overview of, 253

read operations, ActiveResource, 386.
See also CRUD (create, read, update,
and delete)

readonly option, fi nders, 260–261
Really Simple Syndication feeds. See RSS

(Really Simple Syndication) feeds
RecordIdentificationHelper, 376
records. See also ActiveRecord
adding new records to table, 250–252
inability to fi nd, 262
pessimistic and optimistic locking, 261
protecting, 398–399
RecordTagHelper, 376
RedCloth library, Ruby, 186
redirect_to method, 325–326
Reenskaug, Trygve, 36
references types, Ruby types contrasted

with, 63
Regexp class, Ruby, 77–78
regular expressions, Ruby data types, 56,

77–78
relationships. See associations
reload! command, for restarting

console, 247

remainder method, Ruby, 69
remove_index method, 202
render method, 194
ActionController, 322–324
bypassing templates, 354–355
rendering specifi c template, 355

reports, Ruby gem Ruport, 324
REpresentational State Transfer. See REST

(REpresentational State Transfer)
request handling. See ActionController
Request Log Analyzer, 402
request object, request/response

environment, 327–329
request script, 403
request/response cycle, 303
request/response environment,

326–327
requests, ActionController, 305
rescue clause, exception handling and,

107–109
resources. See also ActiveResource
creating new, 387
CRUD actions and, 152
destroying, 388
namespaced resources, 318–319
nested, 206, 389–390
saving, 387–388
resources method, RESTful routes,

313–314
response object, request/response

environment, 327
REST (REpresentational State Transfer)
ActiveResource and, 388–389
consuming/publishing REST services from

.NET, 390
creating RESTful controllers, 320
customizing RESTful actions, 191–192
customizing RESTful routes, 315–317
mapping REST resources, 384
overview of, 152
RESTful applications, 151–152
RESTful route helpers, 319
RESTful routes, 312–315

74955book.indd List44174955book.indd List441 3/4/09 8:48:48 AM3/4/09 8:48:48 AM

442

REST Starter Kit

REST Starter Kit, WCF (Windows
Communication Foundation), 390

reusability, partials and, 47
ri (Ruby interactive)
overview of, 59
using, 61–63

RIAs (Rich Internet Applications), 2
Riding Rails blog, 400
RJS templates, 41, 359
rollback, rake db:rollback, 145
root method, 311
RoR. See Ruby on Rails, introduction
route globbing, 307
routes
console for working with, 310–311
customizing, 306–308
customizing RESTful routes, 315–317
defi ning, 305
mapping to actions, 153–155
name route helpers, 155–156
named routes, 311–312
priority, 309–310
RESTful route helpers, 319
RESTful routes, 312–315
testing, 346–348
routes , rake, 155
routing, ASP.NET vs. Rails, 304
rows, deleting, 269
RPM service, New Relic, 405
RSpec, BDD framework, 348
RSS (Really Simple Syndication) feeds, 359
adding, 360
format.rss, 360–361
index.rss.builder, 361–366
linking to, 366–367

Rubinius, Ruby versions, 134
Ruby
arrays, 79–81
Booleans, 72–74
components need when installing Rails, 12
constants, 67
fi xnums and bignums, 69–70
fl oats, 70–72

hashes, 81–82
Hello world program, 56–59
identifi ers, 64
IRB (Interactive Ruby), 60–61
methods, 66–67
numeric classes, 67–68
objects, 63–64
vs. other programming languages, 69
overview of, 7
ranges, 78–79
regular expressions, 77–78
ri (Ruby interactive), 61–63
SOAP library, 391
strings, 74–77
summary, 83
symbols, 77
template engines, 42
useful tools, 59
variables, 64–66
what it is, 55–56

Ruby, programming with
attributes and accessor methods, 112–116
blocks and iterators, 95
case statement, 91–93
class methods, 123–124
common iterators, 99–101
conditionals, 88
defi ning iterators, 102–104
defi ning methods, 85–88
defi ning/instantiating classes, 111
each method, 96–98
eigenclasses, 124–126
exception handling, 107–109
for/in loops, 93–94
if/elsif/else/unless, 88–90
include method vs. extend method,

130–131
initialize method, 111–112
looping, 93
metaprogramming, 131–132
method name resolution, 132–133
method visibility, 116–117
modules as mixins, 129–130

74955book.indd List44274955book.indd List442 3/4/09 8:48:48 AM3/4/09 8:48:48 AM

443

sanitize helper method

modules as namespaces, 127–129
modules compared with classes, 126
monkey patching, 120–121
numeric iterators, 95–96
overview of, 85
Proc.new and Kernel#lambda

methods, 104–106
raising errors, 109–110
single inheritance, 117–120
singleton methods and eigenclasses,

121–122
summary, 134
ternary operator, 90
versions of, 133–134
while/until loops, 94
ruby, Ruby interpreter, 57
Ruby 1.9, 133
Ruby in Steel IDE, 27–28
Ruby interactive (ri)
overview of, 59
using, 61–63

Ruby on Rails, introduction
advantages of, 7–8
agile development and, 5–6
Aptana RadRails IDE, 25–27
confi guring Instant Rails, 17–19
cross-platform basis of, 4
database installation, 16–17
database-driven, 6–7
example project, 29–30
as full-stack framework, 4
history of, 8–9
IDEs and, 21–22
installing on GNU/Linux, 20–21
installing on Mac OS X, 20
installing on Windows OSs, 12, 14–15
MVC pattern and, 4–5
NetBeans IDE, 25
One-Click Ruby Installer, 12–13
open source basis of, 3–4
popularity of, 10–11
resources for, 418–419

Ruby in Steel, 27–28
Ruby programming language, 7
RubyGems and, 13–14
RubyStack installer, 21
summary, 31
TextMate editor, 22–24
upgrading to Ruby on Rails 2.3, 415–416
version control for, 17
Vi and Emac text editors, 24
Web 2.0 and, 10
Web server for, 16
what it is, 3
Windows vs. Unix/Linux platforms, 11–12

Ruby on Rails Security Guide, 399
ruby script/server command, for

starting Web server, 147
ruby-debug gem, 227
RubyGems
components need when installing Rails, 12
improvements in, 15
installing/updating, 13–14

RubyMine IDE, 27
ruby-prof
patch required for using, 404
profi ling with, 402–403

RubyStack installer, 21
runtime environments
defi ning custom, 223
development environment, 221
production environment, 222–223
test environment, 222
RuntimeError method, 109–110
Ruport, Ruby gem, 324

S
SaaS (Software as a Service)
Rails use by SaaS vendors, 49
writing CSS and, 381
sanitize
HTML tags, 394–396
using for potentially dangerous tags, 358

sanitize helper method, 185

74955book.indd List44374955book.indd List443 3/4/09 8:48:49 AM3/4/09 8:48:49 AM

444

SanitizeHelper

SanitizeHelper, 375
save method, 387–388
scaffold generator
creating blog engine with, 140
creating migrate directory with, 140–141
creating RESTful controllers, 320
generating migration fi les, 144
Rails and, 40
view fi les generated by, 163

scalability
misconceptions regarding, 35–36
performance and, 405
schema, rake db:schema, 202–203
schema-migrations table, 144–145
SciTE editor, 57
scope, using named_scope in blog example,

188–191
Scout, 405
script.aculo.us, 375
scripting languages, Ruby as, 56
scripts
in performance folder, 403
sample script using ActiveRecord, 235–237
ScripttaculousHelper, 373–375
security
cookie security, 396
escaping HTML tags, 394
record protection, 398–399
Ruby on Rails Security Guide, 399
sanitize HTML tags, 394–396
SQL injection attacks, 397–398
XSS (cross-site scripting) attacks, 394
select method, Quicksort algorithm and,

99–100
select option, fi nders, 256
SELECT queries, 197
Selenium, Rails tools, 380
self, referencing current object, 112
send_data method, 324–325
send_file method, 324–325
serializing records, ActiveRecord, 289
servers. See Web servers

Service-Oriented Architecture (SOA), 391
Session Fixation Attacks, 396
session IDs (SIDs), 396
session method, for enabling/disabling

sessions, 337–338
sessions
ActiveRecordStore, 333
CookieStore, 334–335
DrbStore, 335
enabling/disabling, 337–338
expiration of, 338–339
MemCacheStore, 335–336
other storage options, 333–336
overview of, 332–333
PStore, 336
shared methods (VB.NET), 123
shared views, partials in, 356
Shaw, Zed, 410
Shoulda, BDD framework, 348
show action
blog application example, 158–159
comments and, 207
show.html.erb template
comments and, 213–214
embedded comments and, 216
overview of, 171–172

SIDs (session IDs), 396
sigils, defi ning scope in Ruby with, 65–66
silver bullet myth, Rails misconceptions,

34–35
Silverlight, 381
Silverline plug-in, 381
simple_format, for adding line breaks,

184–185
single inheritance, 117–120, 284–286
Single Responsibility Principle, 293
singleton methods
defi ning, 121–122
eigenclasses and, 124–126
fi nding, 132–133
overview of, 86

74955book.indd List44474955book.indd List444 3/4/09 8:48:49 AM3/4/09 8:48:49 AM

445

TagHelper

singular option, customizing RESTful
routes, 317

Smalltalk, 56
snake_case convention, 64, 246
SOA (Service-Oriented Architecture), 391
SOAP, 391
software
alternatives for using with Rails, 381
Convention over Confi guration in design

of, 46
Software as a Service (SaaS)
Rails use by SaaS vendors, 49
writing CSS and, 381

source version control. See SVN (Subversion)
splat operator (*)
defi ning methods that accept multiple

arguments, 87
for expanding range into arrays, 79

SQL injection attacks, 397–398
SQL queries. See also fi nders
customizing, 262–263
include and join options, 258–260
logs, 254

SQL Server, 142–143
SQL Server Management Studio, 139
SQL statements, execute method for

using, 240
SQLite3
components need when installing Rails, 12
default config\database.yml, 137
installing, 16–17
support for foreign keys, 244
sqlite3 command, 139
sqllite3-ruby
components need when installing Rails, 12
installing, 16–17

SSL encryption, 385
Standard library, 59
standard packages, 44
state management, ActionController,

329–330
statements, expressions and, 90

static methods (C#), 123
stats, rake, 346
step iterator, numeric class, 96
stored procedures, ActiveRecord and, 263
stress testing, 404
String Interpolation, 74
string literals, Ruby syntax for, 58
strings
adding conditions to fi nder, 254
each method for iterating, 97
Ruby data types, 74–77
symbols and, 77

strongly typed language, Ruby as, 56
style, adding to blog application example,

176–182
Subversion. See SVN (Subversion)
suffi xes, specifying for table names, 249
sum method, calculations, 264
summarizer methods, Enumerable

module, 101
SVN (Subversion)
components need when installing Rails, 12
installing, 17
overview of, 414

switch statements, 91–93
symbols, Ruby data types, 77

T
tables
adding new records to, 250–252
create_table method, 241
defi ning, 141
mapping to models, 244–245
polymorphic associations, 286–289
prefi xes and suffi xes for custom

tables, 249
primary keys, 249–250
schema-migrations table, 144
setting custom table names for models,

248–250
single inheritance, 284–286
TagHelper, 376

74955book.indd List44574955book.indd List445 3/4/09 8:48:49 AM3/4/09 8:48:49 AM

446

TDD

TDD (test driven development)
popularity in Rail community, 44
Rails community embracing, 294

templates, Rails, 41
templates, view
Builder templates, 358–359
built-in template engines, 357
default templates, 354
ERb templates, 357–358
render method for bypassing templates,

354–355
render method for rendering specifi c

template, 355
RJS templates, 359

ternary operator (?:), Ruby programming, 90
test driven development (TDD)
popularity in Rail community, 44
Rails community embracing, 294

test environment, 222
test folder, in directory structure, 230
Test-First Development, 294
testing
ArticleTest test case, 299–300
benefi ts of, 294
controllers, 346
functional testing, 348–351
models, 294–301
performance and stress tests, 404
routes, 346–348
unit tests, 294–295, 300
validation, 297–298

text editors
TextMate, 22–24
Vi and Emac, 24
TextHelper, 375
Textile, adding Textile support to blog

application example, 184–188
textilize method, 186–187
TextMate editor, 22–24
time zones, setting for blog application

example, 182–184
times method, as numeric iterator, 95

timestamps, migrations and, 144
tmp folder, in directory structure, 230
tools, performance, 402–404
tools, Ruby
IRB (Interactive Ruby), 60–61
overview of, 59
ri (Ruby interactive), 61–63

transactions, unit testing and, 300
TuneUp and Manage services,

FiveRuns, 405

U
Unicode, when to use ASP.NET instead of

Rails, 51
Uniform Resource Identifi ers (URIs), 152
unit testing
defi ned, 294
transactions and, 300

Unix. See GNU/Linux
unless conditional, 90
unpublished action, 191
until, while/until loops, 94
up class method, migrations, 145–146
update, rake rails:update, 416
update action
blog application example, 161–162
comments and, 207–208
update method, 267–269
update operations, ActiveRecord. See also

CRUD (create, read, update, and delete)
overview of, 265
update_attribute/update_

attributes methods, 265–267
updating multiple records, 267–269

update operations, ActiveResource,
387–388. See also CRUD (create, read,
update, and delete)

update_all method, 267–269
update_attribute method,

ActiveRecord, 265–267
update_attributes method,

ActiveRecord, 265–267

74955book.indd List44674955book.indd List446 3/4/09 8:48:49 AM3/4/09 8:48:49 AM

447

Web forms

updates, callback methods and, 290
upgrading to Rail 2.3, 415–416
uploading fi les, 371
upto iterator, numeric class, 95
URIs (Uniform Resource Identifi ers), 152
UrlHelper, 375
URLs
default format in Rails, 151–152
mapping to actions, 153
Rails and, 37
security of, 399

user interface. See ActionView
UTC
migration timestamps, 144
setting default time zone, 182–184

utility classes, ActiveSupport, 120

V
valid_password method, 344
validate method, 281–282
validate_on_create method, 281–282
validate_on_update method, 281–282
validates_format_of, 205
validation
ActiveRecord, 281–283
adding to blog application example,

174–176
callback methods and, 290
of Comment model, 204–205
helpers, 283–284
testing, 297–298

value types, Ruby types contrasted with, 63
variables, 64–66
class variables, 123
declaring local, 330
instance variables, 114
not switching types, 64–65
options for creating, 252
sigils for defi ning scope of, 65–66
snake_case convention, 64

VB (Visual Basic), 107

VB.NET, 76
vendor folder, in directory structure, 230
verbs. See HTTP methods
verify method, fi ltering with, 342
version control. See SVN (Subversion)
versions, Ruby, 133–134
Vi text editor, 24
views. See also MVC

(Model-View-Controller) pattern
adapting, 211–214
analyzing blog application view, 163
designing in MVC approach, 41–42
interaction with models, 356
pagination menu added to, 200
templates. See templates, view
view layer communicating with other layers,

356–357
ViewState, issues with ASP.NET, 50
Virtual Private Server (VPS), 35, 411
visibility, of methods, 116–117
Visual Studio, 27–28
Visual Studio Team System, 414
VPS (Virtual Private Server), 35, 411
vulnerabilities
ids and, 399
XSS (cross-site scripting) attacks, 393, 394

W
warn level, logger, 225
Watir (Web Application Testing), 380
WCF (Windows Communication

Foundation), 390
Web 2.0, 2, 10
Web Application Testing (Watir), 380
Web applications, shift from desktop

applications to, 2
Web Developer toolbar, adds-on for Web

developers, 374
Web developers, 374
Web development, challenges of, 2–3
Web forms, issues with ASP.NET, 50

74955book.indd List44774955book.indd List447 3/4/09 8:48:49 AM3/4/09 8:48:49 AM

448

Web servers

Web servers
Apache, 410–413
mapping data types between ActiveRecord

and SQL Server, 142–143
Mongrel. See Mongrel
Nginx, 325, 410–411
Rails deployment and, 410–411
ruby script/server command for

starting, 147
VPS (Virtual Private Server) for Rails

deployment, 35
WEBrick server, 3, 147

Web Service Defi nition Language
(WSDL), 391

Web services. See
also ActiveResource

benefi ts of working with through
ActiveResource, 383–384

consuming/publishing from .NET, 390
HTTP authentication and, 385
overview of, 383

WEBrick server
overview of, 3
starting, 147
while/until loops, 94
will_paginate plugin
overview of, 198
per_page method, 199–200
using, 198–199

Windows Communication Foundation
(WCF), 390

Windows OSs
deploying Rails on, 411
installing Rails on, 12

Rails and, 11–12
working with Ruby fi les on, 57

WSDL (Web Service Defi nition
Language), 391

X
XHTML, 357
XML
ActiveResource using, 387
Builder templates and, 357–359
communication among machines, 383
formats supported by Rails, 158
rendering in, 354–355
RSS and Atom feeds, 360

XML Builder, 41
XML-RPC, 391
XP (Extreme Programming)
agile development compared with, 45
Rails and, 5
Rails culture and, 44
testing and, 294

XSS (cross-site scripting) attacks
escaping HTML tags, 394
overview of, 394
sanitize HTML tags, 394–396
textilize method and, 187
vulnerabilities, 393

Y
YAGNI (You Ain’t Gonna Need It), 5–6
YAML, 289
yield statement, 102
You Ain’t Gonna Need It (YAGNI), 5–6

74955book.indd List44874955book.indd List448 3/4/09 8:48:49 AM3/4/09 8:48:49 AM

74955book.indd List44974955book.indd List449 3/5/09 1:27:21 PM3/5/09 1:27:21 PM

74955book.indd List45074955book.indd List450 3/5/09 1:27:21 PM3/5/09 1:27:21 PM

Ruby on Rails®

for Microsoft® Developers

subtitle

Updates, source code, and Wrox technical support at www.wrox.com

The Art of Rails®

Edward Benson

Wrox Programmer to Programmer TM

Updates, source code, and Wrox technical support at www.wrox.com

Professional

Ruby on Rails

Noel Rappin

Wrox Programmer to Programmer TM

 Enhance Your Knowledge
Advance Your Career

Professional ASP.NET 3.5 AJAX
978-0-470-39217-1
This book is for ASP.NET developers who are interested in using AJAX
to enhance existing web sites or develop new, more interactive web
applications.

Ruby on Rails for Microsoft Developers
978-0-470-37495-5
This book is for programmers who have experience developing the
Microsoft Windows platform and are interested in getting the most out
of Ruby on Rails.

Professional Ajax, 2nd Edition
978-0-470-10949-6
This book is for web developers who want to enhance the usability
of their sites and applications. Familiarity with JavaScript, HTML, and
CSS is necessary, as is experience with a server-side language such
as PHP or a .NET language.

Professional Ruby on Rails
978-0-470-22388-8
This book is for Ruby on Rails programmers, software and web devel-
opers, designers, and architects who are looking to expand their
knowledge of the Rails framework.

The Art of Rails
978-0-470-18948-1
This book is for developers familiar with Ruby on Rails who are looking
to advance their skills by learning the design and coding techniques
that enable a mastery of web application development with Rails.

Beginning Ruby on Rails
978-0-470-06915-8
This book is for anyone who wants to develop online applications using
Ruby and Rails. A basic understanding of programming is helpful;
some knowledge of HTML is necessary.

Beginning ASP.NET 2.0 AJAX
978-0-470-11283-0
This book is for developers and programmers who are starting to use
ASP.NET 2.0 AJAX framework technologies to build web sites and
applications.

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=.96"

www.wrox.com

$49.99 USA
$59.99 CAN

Wrox guides are crafted to make learning programming languages and technologies easier than you think. Written by
programmers for programmers, they provide a structured, tutorial format that will guide you through all the techniques involved.

Recommended
Computer Book

Categories

Internet

Web Page Design

ISBN: 978-0-470-37495-5

subtitle

Updates, source code, and Wrox technical support at www.wrox.com

The Art of Rails®

Edward Benson

Wrox Programmer to Programmer TM

Updates, source code, and Wrox technical support at www.wrox.com

Professional

Ruby on Rails

Noel Rappin

Wrox Programmer to Programmer TM

With its valuable combination of simplicity and productivity, Ruby on Rails is a
portable, extendable, open source web application framework that quickly gained
worldwide acclaim. The aim of this book is to make the enticing Rails methodology
more approachable for developers who are already familiar with Microsoft tools.

After an overview and brief history of the framework, you'll focus on learning Rails
development from the point of view of a beginner-to-intermediate level Microsoft
developer.

The author explores all the fundamental aspects of Rails, and includes comparisons
and references to Microsoft development tools that you may already be familiar
with. In doing so, he provides you with an easier path to learn how Rails simplifies
the design and implementation of web applications.

By serving as a roadmap for migrating your skill set, development processes, and
applications to the newer Agile programming platform that Rails offers, this book
will help you leverage your existing skills so you can quickly take advantage of the
full potential of Rails.

What you will learn from this book
● The Rails history and culture, as well as common misconceptions
● How to install Rails on Windows and other platforms
● How to grasp the Model-View-Controller (MVC) architecture pattern as

implemented by Rails
● The different philosophies between Rails and Microsoft frameworks like

ASP.NET and ASP.NET MVC
● The essentials of the Ruby language and its datatypes
● Techniques for creating and developing a new RESTful Rails application
● Using the ActiveRecord Object-Relational Mapper (ORM) to work with databases
● Publishing and consuming Web Services with Rails
● Getting ready for deployment in production Enhance Your Knowledge

Advance Your Career

Ruby on Rails®

for Microsoft® Developers

Who this book is for
This book is for programmers who have experience developing the Microsoft Windows platform and are interested in learning
more about, and getting the most out of, Ruby on Rails.

R
uby o

n R
ails

®

fo
r M

icroso
ft

® D
eve

lo
pe

rs

Cangiano

spine=.96"

Updates, source code, and Wrox technical support at www.wrox.com

Ruby on Rails®

for Microsoft® Developers

Antonio Cangiano

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

www.wrox.com

	Ruby on Rails® for Microsoft Developers
	Cover Page
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Getting Started with Rails
	The Rise and Challenges of Web Development
	What Is Rails?
	A Brief History of Rails
	Installing Rails
	Editors and IDEs
	Whetting Your Appetite
	Summary

	Chapter 2: Understanding Rails
	Misconceptions about Rails
	Understanding MVC
	Rails’ Standard Packages
	Understanding Rails’ Main Principles
	Rails vs. ASP.NET vs. ASP.NET MVC
	Summary

	Chapter 3: Ruby’s Data Types
	What’s Ruby?
	Hello, Ruby!
	Your New Best Friends
	Ruby’s Essential Data Types
	Summary

	Chapter 4: Programming Ruby
	Defining Methods
	Conditionals
	Looping
	Exception Handling
	Objects and Classes
	Modules and Mixins
	Metaprogramming
	Method Name Resolution
	Alternative Ruby Implementations
	Summary

	Chapter 5: A Working Sample
	Creating a New Rails Application
	Scaffolding and Migrations
	A RESTful Application
	Analyzing the Model
	Analyzing the Controller
	Analyzing the View Layer
	Adding Partials
	Adding Validations
	Adding a Bit of Style
	Setting a Default Time Zone
	Adding Support for Textile
	Using named_scope
	Adding a Custom REST Action
	Summary

	Chapter 6: Incremental Development, Logging, and Debugging
	Adding Pagination
	Adding Comments
	Defining Associations
	Nested Resources
	Runtime Environments
	Logging
	Debugging
	Rails Directory Structure
	Summary

	Chapter 7: Object-Relational Mapping with ActiveRecord
	Supported Databases
	ActiveRecord Outside of Rails
	Object-Relational Mapping
	CRUD Operations
	ActiveRecord Associations
	ActiveRecord Validations
	Advanced ActiveRecord
	Testing Models
	Summary

	Chapter 8: Handling Requests with ActionController
	Defining Routes with map. connect
	Named Routes
	RESTful Routes
	Working with Controllers
	Rendering
	Accessing the Request and Response Environment
	Maintaining the State
	Filters
	Testing Controllers
	Summary

	Chapter 9: Rendering the User Interface with ActionView
	Working with Templates
	Built-in Template Engines
	Adding an RSS and Atom Feed
	Helpers
	Adding a Sprinkle of Ajax
	Alternatives
	Summary

	Chapter 10: ActiveResource and Web Services
	ActiveResource
	SOAP, XML-RPC, and ActionWebService
	Summary

	Chapter 11: Going Into Production
	Security Considerations
	Performance and Optimization
	Deploying Rails
	A Few Enterprise Pointers
	Upgrading to Rails 2.3
	Summary

	Appendix A: Additional Resources
	HTML and JavaScript
	Ruby and Rails
	Recommended Books

	Index

