

Ruby on Rails® Bible

Ruby on Rails® Bible

Timothy Fisher

Ruby on Rails® Bible

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-25822-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN
THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE
MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN
THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2008927915

Trademarks: Wiley and related trade dress are registered trademarks of Wiley Publishing, Inc., in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

www.wiley.com

About the Author
Timothy Fisher has over 17 years of experience in the software development industry. He has
served in a variety of roles including chief architect, technical team lead, and senior architect and
developer. Tim is currently an architect with the Compuware Corporation Professional Services
Group in Detroit, Michigan.

Ruby and the Ruby on Rails framework have consumed Tim’s interest and have led him to find the
Southeastern Michigan Ruby Users Group, as well as owning and maintaining the Michigan Ruby
Users Group Web site, www.rubymi.org. Tim is currently working on a large Ruby/Rails collab-
orative project management and planning application to be released as an open source project in
2008.

Tim is an experienced technical writer and author who has contributed to Java developer’s Journal
and XML Journal and written the Java Phrasebook published by Pearson Ed. in 2006. In addition to
his technical skills Tim holds a degree in electrical engineering and a masters degree in education
with a specialty in instructional design for online learning. He lives in Flat Rock, Mich., with his
wife, Kerry, and two sons, Timmy and Camden.

Credits
Acquisitions Editor
Stephanie McComb

Project Editor
Chris Wolfgang

Technical Editor
Scott Deming

Copy Editor
Marylouise Wiack

Editorial Manager
Robyn Siesky

Business Manager
Amy Knies

Sr. Marketing Manager
Sandy Smith

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Bob Ipsen

Vice President and Publisher
Barry Pruett

Project Coordinator
Erin Smith

Graphics and Production Specialists
Melanee Habig
Laura Pence

Quality Control Technician
Caitie Kelly

Proofreading and Indexing
Christine Sabooni
Infodex Indexing Services, Inc.

vii

This book is dedicated to my parents, Thomas and Betty Fisher.
Throughout my life, my mom and dad made it possible for me to
achieve anything that I set my heart and mind to. Without their

love and guidance, an accomplishment such as this book would not
be possible. I am thankful to be able to show this accomplishment
to my dad, and I know that my mom has been with me as I wrote

this book. I am sure she would be proud.

ix

It is impossible to write a book of this size without a great deal of help from those around me
and some that I’ve never even met face-to-face. First I’d like to thank Wiley for giving me the
opportunity to write this book. Writing a Rails book was something that I had wanted to do as

Rails has become a passion of mine the past few years. Specifically, I’d like to thank the people at
Wiley whom identified me as a candidate to write this book, and those that made the process
smooth and successful. Stephanie McComb is the acquisitions editor that gave me the opportunity
to be the author of this book. For that I am thankful. Chris Wolfgang served as my editor for this
book. Without her, I am quite certain the content you are about to read would not have been
nearly as clear and as readable as I hope it has become.

Ruby on Rails is a large framework that has been the subject of many books, many web sites, and
hundreds if not thousands of articles. There has been a great deal of knowledge and expertise
baked into the Rails framework. It would be impossible for a single person to write a comprehen-
sive Rails book without assistance others who review and provide feedback of the content. I’d like
to acknowledge the contributions of Scott Deming for his work as the Technical Editor of this
book. The job of a Technical Editor is at times more difficult than that of the author. It is the tech-
nical editor’s job to review everything I have written and correct the mistakes and faulty knowledge
that may have passed through into the book. Scott’s advice and feedback have been invaluable in
creating this book.

The next person I’d like to thank also played a very large role in getting this book completed. That
person is Noel Rappin. Noel stepped in late in the writing phase and assisted with completing
some of the content. Noel contributed significant content to the following chapters: 5, 9, 10, 11,
and 12. Noel also wrote both of the appendixes for the book. Noel has his own book published by
Wrox, Professional Ruby on Rails.

Finally, I must acknowledge those who are closest to me, my family. Any author with a young
family appreciates the challenge of maintaining quality family life while writing a book. I have
two boys, Timmy and Camden, who like to keep their dad busy whenever they can. The time I
put into writing a book is time that has to come away from other tasks that I’d normally have more
time for. I thank my wife, Kerry, for her understanding of what it means to me to write this book
and her unwavering support and ability to help me find the time and effort to write. You can read
more about what interests me and perhaps learn a bit from my blog at http://blog.timothy
fisher.com. Now that this book is completed, I hope to become a much more active blogger!

Ruby on Rails Quick Start ...1

Part I: First Steps with Rails . 13
Chapter 1: Learning Ruby ...15
Chapter 2: Getting Started with Rails ..67

Part II: Rails In Depth . 105
Chapter 3: Using Active Record ..107
Chapter 4: Controller: In Depth ..147
Chapter 5: View: In Depth ..173

Part III: Developing a Complete Rails Application 203
Chapter 6: Developing Book Shelf: The Basic Framework ...205
Chapter 7: Developing Book Shelf: Adding the Core Functionality ...249
Chapter 8: Developing Book Shelf: Social Support ...291
Chapter 9: Testing the Book Shelf Application ..333

Part IV: Advanced Rails . 379
Chapter 10: Using Prototype and script.aculo.us ..381
Chapter 11: Extending Rails ...415
Chapter 12: Advanced Topics ...467

Part V: Appendixes . 503
Appendix A: Ruby Quick Reference ..505
Appendix B: Ruby on Rails Guide ...535

Index ..565

Acknowledgments . ix

Introduction . xi

Ruby on Rails Quick Start .1
Installing Instant Rails on Windows ..2
Installing Ruby and Rails on Mac OS X and Linux ..6

Installing on Linux ..6
Installing on Mac OS X..7

Setting up a Development Environment ..7
Source code version control ..7
IDE or Editor? ...8

TextMate ...8
E ...9
IntelliJ IDEA ..9
NetBeans ...9
Eclipse ...10
Heroku ..10
Aptana Studio ..11

Summary ..11

Part I: First Steps with Rails 13

Chapter 1: Learning Ruby . 15
The Nature of Ruby ..15

Dynamic or static typing ...16
Duck typing ..16
Compiled or scripting language ...17

Compiled languages ..17
Scripted languages ...17

Object Oriented Programming ..18
The Basics of Ruby ..19

Ruby’s interactive shell ..19
Ruby syntax basics ..20

Adding comments ...20
Using parentheses ..21
Using white space ..22
Using semicolons ...22

Running Ruby programs ...23
Classes, Objects, and Variables ...24

Using objects in Ruby..24
Defining objects ...24

xii

Contents

Writing methods ...25
Methods with parameters ..26
Creating instances of a class ...27
Instance and class methods ...28
Instance and class variables ...30
Getters and setters in Ruby objects ..32

Inheritance ..36
Built-in Classes and Modules ..37

Scalar objects ..38
Strings ...38
Numerics ...41
Symbols ...42
Times and dates ...42

Collections ..47
Arrays ..47
Hashes ...48
Ranges ...49

Control Flow ..51
Conditionals ..51

The if statement ...52
The unless statement ...52
The case statement ..53

Loops, blocks, and iterators ...53
for loops ..54
while and until loops ...54
Blocks ..55
Iterators ...56

Exception handling ...57
Exceptions in Ruby ..57
Using begin, raise, and rescue..58
More exception handling using ensure, retry, and else60

Organizing Code with Modules...62
Advanced Ruby Techniques ..63

Variable length argument lists ...63
Dynamic programming with method_missing ...64
Reopening classes ..65

Summary ..65

Chapter 2: Getting Started with Rails . 67
What is Ruby on Rails? ...68

DRY ..69
Convention over configuration ..69
Opinionated software ..69

Rails Architecture ..70
MVC ...70
Rails and MVC ..71

xiii

Contents

Rails Scripts ..73
Rails Console ...73
WEBrick..74
Generators...74
Migrations ...74

Your First Rails Application ..74
Create the project ..75
Set up the database..77
Create the model ...79
Create the controller and views ...82

Implementing the index action ..85
Implementing the new action ..89
Implementing the create action ...91
Implementing the show action ..92
Implementing the update action ..94
What you have accomplished ..95

Style the application ..96
WebScaffolding ...98
More to get you started ...102

Summary ..103

Part II: Rails In Depth 105

Chapter 3: Using Active Record . 107
What is Active Record? ...108
Active Record Basics ...109

Active Record classes and objects ..109
Active Record naming conventions ..109

Class and table names ..110
Table keys ...110

Setting up a Model ..112
Generate a Rails project and model ...112
Configure Active Record..113
Rails Development Environments ..114

Using Migrations ...115
Schema versions ..118
Migration methods ..119

Tables ..119
Columns ..120
Indexes ..120

Inserting data with migrations ...120
Create, Read, Update, and Delete ..122

Creating records ..122
Reading data ...124

Column metadata ..124
Accessing attributes ...125

xiv

Contents

Using the find method ...126
Dynamic finders ..127
Find using SQL ...128

Creating and finding data with the Rails Console ...128
Updating records...130
Deleting records ..130
Using development log files...130

Defining Relationships ..131
One-to-one relationships ...132

Methods added by has_one ...133
Methods added by belongs_to ...134

Many-to-one relationships ...134
Methods added by has_many ..135
Methods added by belongs_to ...136

Many-to-many relationships ..136
Methods added by has_and_belongs_to_many ..137

Implementing Validations ...139
Custom Validations ...141
Advanced Active Record ...142

Single table inheritance ...142
Composition ...144
Transactions ..145

Summary ..146

Chapter 4: Controller: In Depth . 147
What is ActionController? ...147
All About Routing ...148

Defining custom routes ...149
Defining a custom default route ..151
Using named routes ..152
Constructing URLs with url_for ..153

Creating and Using Controllers ...155
Generating controllers ...155
Action methods ...157

Using request parameters ..158
Rendering templates ..159
Redirects ...160
Sending feedback with flash ..160
Sending other types of data to the browser ..162

Using Filters ..163
Before filters ..163
After filters ..164
Around filters ..164
Protecting filter methods ...166

Working with Sessions ..167
Using the ActiveRecord session storage ...168
Using MemCached session storage ..169

xv

Contents

Caching ..169
Page caching ...170
Action caching ..171
Fragment caching ..171

Summary ..172

Chapter 5: View: In Depth . 173
ActionView ...173

Getting to the view ..174
Rendering options ...175
Responding to different formats ..176

Embedded Ruby (ERb) ...179
Using the <%- and -%> delimiters ...180
Commenting out embedded Ruby ...181

Layouts ...182
Partials ..185
Helpers ...186

Predefined Rails helpers ..187
HTML creation helpers ..188
Form creation helpers ..190
JavaScript creation helpers ...192
Data Processing helpers ...193
Debugging helpers ...197

Creating your own block helpers ...197
JavaScript, Ajax, and RJS ...198

Prototype helpers ..198
RJS helpers ..200

Summary ..202

Part III: Developing a Complete Rails Application 203

Chapter 6: Developing Book Shelf: The Basic Framework 205
Application Overview ...206
Creating a Skeleton for the Book Shelf Application ...211

Begin the Book Shelf project ..211
Setting up the databases ..213

Create the databases ..213
Create a Home Page ..214

Create the Home controller ...215
Create a layout and view ...216

The HTML head ..217
The body header section ..219
The body sidebar section ...219
The body content section ..220
Creating the index view template ..221

xvi

Contents

Testing the home page ...221
Add some style ..222

Set up a default route ..225
Implementing Users ..225

Create the user model ...226
Securing user passwords ..227
Generate the user model ..227
Create the user migration ..228
Add user model validations ...229

Implement user registration ..232
Create a user controller ...232
Handle the user password ...234
Create a registration view ..235
Create user home view ..238

Implement login and logout ..240
Create login action method..241
Create the logout action method ..242
Create an application login partial ...242
Test the login and logout functionality ..245

Using a before filter to protect pages ...246
Modify the application controller ..247
Add login form to the signup page ..248

Summary ..248

Chapter 7: Developing Book Shelf: Adding the Core Functionality 249
Adding Support for Books ...249
Refactor the Sidebar Code ...250
Integrating with Amazon ...252

Install Ruby/Amazon ...254
Implement the Book Shelf-Amazon interface ...256

The initialize method ...256
The find_by_keyword method ..257

Implementing a Search ...260
Create the book search form ...261
Generate the book controller and search action ...264
Create the book model ..264

Generate the book model class ..265
Create the book migration ...265
Run the migration ...266
Associate the book model and the user model ...266

Implement search logic in the book model ..267
Create the search results page ..269
Implement search results paging ...276

Implementing the Addition and Deletion of Books ..279
Adding a book...279

xvii

Contents

Deleting a book ...284
Add the delete action ...284
Update the page with RJS ..285

Displaying a User’s Books ...286
Implementing the Book Detail Page ..287
Summary ..290

Chapter 8: Developing Book Shelf: Social Support 291
Adding Social Support ..291
Implementing Tagging ..292

Installing a tagging plugin ...292
Install the acts_as_taggable_redux plugin ..293

Setting up the database for tagging support ...294
Adding tagging support to the models ...297
Adding tagging support to the controllers ...298
Creating the view layer for tagging ..301

Implementing the sidebar tag cloud view ..303
Implement tag_cloud_revised helper method ..307
Generate the tagging style sheet ...310
Implement the static tag view ..311
Make the tags editable ...313
Implement the show_for_tag view ...314

Using tags ...314
Implementing Book Reviews ...314

Implementing the review model ..315
Adding associations to the book and user models ...317
Implementing the review view ..317

Displaying reviews for a book ..318
Implementing the review entry form ...323

Implementing the review controller ..324
Adding some style ...326
Adding a book review ...327

Implementing Book Ratings ..328
Extending the Application ...329

Improving the user interface..329
Implementing an administrator interface ...329
Adding RSS feeds to the application ..330
Adding support for other book information souces ...330
Implementing recommendations and suggestions ...330
Expanding user profiles and adding avatars ...330

Summary ..331

Chapter 9: Testing the Book Shelf Application . 333
Why Test? ...333
Using Test::Unit ..336

Test assertions ...336
Test fixtures ..338

xviii

Contents

Test methods ...338
Test runners ..340
Test suites ...341

Testing in Rails ...342
Rails test directory ...342
Rails test lifecycle ..343

Setting up a Test Database ..343
Functional Tests ..345

Running a test ...347
Creating a test ...348

Setting up fixtures ...349
Writing a test method ..351
More assertion methods ...353
Verifying your test ...356

Adding more tests ...356
Add some reviews ...359
Verify the tests again ..360

Unit Tests ...361
Setting up user fixtures..363
Test authentication ..363
Test validations ...365

Test valid password ...365
Test valid login ..367
Test valid e-mail ..368

Integration Tests ...370
Running All Tests ..374
Test Coverage ...374
Debugging Techniques ..375

The Rails log files ..375
Console-based ...376
Using the debugger ...376

Summary ..377

Part IV: Advanced Rails 379

Chapter 10: Using Prototype and script.aculo.us 381
Prototype, script.aculo.us, and Rails ..382

Using Prototype and script.aculo.us from Rails ...382
Create a Rails project ...383

Include the Prototype and script.aculo.us files ...383
Prototype Overview ..384

Ruby’s influence on Prototype ...385
What is Prototype? ..385

Extensions to JavaScript ..385
Simplifying JavaScript with the dollar sign ..386

Selecting elements with $..386
Selecting elements with $$..387

xix

Contents

Creating arrays with $A ...388
Splitting strings with $w ..389
Getting form field values with $F ..389
Creating hashes with $H ...389
Creating ranges with $R ..389

More powerful arrays ..389
Enumerating an array ..390

JSON support ..391
OOP with Prototype ...392

Defining classes and inheritance ..392
Implementing class inheritance with Prototype ...393

Event Handling ...393
Ajax ..394

Ajax links ..394
Ajax link options ...395

script.aculo.us Overview ...396
Visual Effects ..396

script.aculo.us effects ..397
Effect options ..398
Using combination effects ...399

Controls ..399
Sliders ...399
Auto-completion ...401
In-place editing ...402

Implementing a single value in-place editor ...403
Drag and Drop ..406

Creating draggable elements ..406
Draggable options ..407

Creating droppable elements ...409
Droppable options ...409

Sortable lists ..409
JavaScript Testing ...411

Creating JavaScript unit tests ...411
Running JavaScript unit tests ...413

Summary ..413

Chapter 11: Extending Rails . 415
Beyond the Core ...415
Generators ..416

The generator directory structure ..417
Writing generator code..418
Creating the templates ...421
Running the new authentication generator ..424
Extending Rails::Generator::NamedBase ..425

Plugins ..425
Using the Plugin script ..426

xx

Contents

List available plugins ...427
List plugin sources ...427
Adding and removing plugin sources ..428
Discover new plugin sources ...428
Installing, removing, and updating plugins..429

Writing a plugin ..430
Write a new plugin ..431
Try out the new plugin ..433

Common techniques used to develop plugins ...435
Extending classes with mixins ...435
Opening a class ...437
Dynamic extension with callbacks and hooks ..437
Using code generation ...439

Managing plugins with Piston ...439
Summary of Useful Plugins ...440

acts_as_rateable...441
Pagination ...442

Installing will_paginate ..442
Adding pagination to your application ..442

acts_as_state_machine...444
Installing acts_as_state_machine ...444
Using acts_as_state_machine ...444

annotate_models ...446
Installing annotate_models ..446
Using annotate_models ...446

exception_notifier ...447
Installing exception_notifier ..448
Using exception_notifier ..448

resource_controller ...449
Installing resoure_controller ..449
Using resource_controller ..449

Adding user authentication ...451
Installing restful_authentication ..451
Using restful_authentication ..452

Enhanced scaffolding ..452
Streamlined ...453
ActiveScaffold ..458

Implementing content tagging ...460
Handling file uploads ..461

attachment_fu ...461
Engines ...463

Install the Engines plugin ..464
Generate the engine skeleton ...464
Move your application files into the engine ...464
Modify your environment ...465
Include your engine in your application ..465

Summary ..465

xxi

Contents

Chapter 12: Advanced Topics . 467
Beyond the Basics ...467
RESTful Rails ..468

Some advantages of RESTful architecture ..470
REST as a Web service architecture ..471
REST and representations ...471
Writing a RESTful application with Rails ...472

Rails routing and REST ..472
PUT and DELETE full disclosure ...473
Generate a RESTful resource..474

Working with Legacy Databases ..481
Override database table and field names ..482
Side by side with the legacy database ..484

Using ActionMailer ...487
Configuring a Rails application for e-mail support ..488
Generating a mailer model ..488
Writing code to send e-mail ...489
Writing code to receive e-mail ..491

ActiveResource and XML ..492
Deploying with Capistrano ...494

Installing and setting up Capistrano ..495
Running basic capistrano tasks ..496
Customizing Capistrano ..499

Summary ..500

Part V: Appendixes 503

Appendix A: Ruby Quick Reference . 505
Basic Ruby Syntax ...505

Literal expressions ...506
Arrays ..506
Boolean literals ..507
Hashes ...507
Numbers ...508
Ranges ...508
Regular expressions ...508
Strings ...510
Symbols ...511

Variable and method names ..512
Operators ..513
Method calls ..515
Special keyword expressions ...516

The if expression ...516
The unless expression ..518
The case expression ...518
The for expression ...519

xxii

Contents

The while expression ...520
The until expression ..521
Loop control keywords ..521

Assignment ...521
File input and output ..522
Exceptions ..523

Objects and Classes ...524
Defining methods ..524
Blocks ...526
Defining classes and modules ..527

Defining modules ..527
Defining classes ...528
Superclasses and self ...529
Including and extending with modules ...529
Attributes ...531
Access control ...531

Method lookup ...532

Appendix B: Ruby on Rails Guide . 535
Getting Started ..535

Standard Rails application ...536
Generators...538

Controllers and Helpers ..540
Traditional routing ..540
RESTful routing ..541
Controller variables ...543
Filters ..544
Rendering and redirecting ...544
Respond to ..546
Helpers ...547

Views ...548
ERb ...548
RJS ..549

Models ..550
Creating ..551
Reading ...553
Updating ...554
Deleting ..555
Relationships ...555

belongs_to ...556
has_one ...557
has_many ..557
has_and_belongs_to_many ...559

Database Migrations ..560
Plugins ..562

Index . 565

xxiii

In 2006, I wrote a book called the Java Phrasebook, something like a cookbook for Java. While I
was writing that, my interest and love of Ruby and the Rails framework grew tremendously.
Often during my writing, I would think how much nicer it would be to be writing a Ruby- or

Rails-related book. Early in 2007, I had to pass up my first opportunity to step into the world of
Ruby and Rails writing. The book that I was asked to write at the time, Professional Ruby on Rails,
has since been written by a very capable writer, Noel Rappin, who also contributed content to this
book.

Jump ahead a few months, and the opportunity to write this book, Ruby on Rails Bible, came along.
I knew it would be a tight fit working on this book along with a full-time job and the holidays
coming up, especially having two young children, but I took it! That is how you ended up holding
this book now.

Like many who consider themselves users and, more importantly, fans of the Ruby language, I was
pulled into the world of Ruby by the Rails framework. Prior to Rails, I had heard of Ruby but had
not used it. I first became aware of it through the writing and speaking of Dave Thomas, a tireless
advocate of Ruby well before Rails made it a marketable skill. Ruby had been around for quite
awhile before Rails but had not been able to grab the attention of the masses here in the United
States. Rails has not only brought Ruby to the masses, but it has had a tremendous influence on
the entire Web development industry. Rails clones have sprung up in many languages, including
Java, Perl, Python, and PHP. Many of the patterns and methods of Rails have influenced other
frameworks in other languages as well.

By the time you read this book, you’ll have a choice of many books on the subject of Ruby on
Rails. I hope that you find this book was worth your energy!

Who the book is for
This book is for any Web developers who are interested in learning how to create Web applica-
tions using the Ruby on Rails framework. You do not have to know Ruby to use this book. In part
I of the book, you can get an introduction to Ruby and learn enough about it to effectively create
basic Rails applications. You should have some experience with common Web development tech-
nologies such as HTML, JavaScript, and preferably some server-side language such as Java, .net,
Perl, PHP, Ruby, or any other language that you might use to write the server-side of a Web appli-
cation. Although not required, basic knowledge of DOM and CSS would also prove helpful as you
write Rails applications shown in this book.

xxiv

Introduction

How the book is organized
This book is organized into five main parts:

n Part I: First Steps with Rails

n Part II: Rails In Depth

n Part III: Developing a Complete Rails Application

n Part IV: Advanced Rails

n Part V: Appendixes

Each of these parts is broken down into several chapters.

Part I
This part of the book will teach you the underpinnings that you need to effectively develop a Ruby
on Rails application. You can learn the basics of Ruby and get your first introduction to the Rails
framework.

Part II
After you’ve been exposed to the basics of Ruby and Rails, you can immerse yourself in the details
of each of the main components that make up the Rails framework, the Model, Controller, and
View layers.

Part III
I hope you’ll enjoy reading and following along with this part of the book as much as I enjoyed
writing it! In this part, you can follow along with the development of a complete Rails application.
You’ll go from nothing up to a usable application that you can use within any group or organiza-
tion to share information about a collection of books.

Part IV
This part of the book covers more advanced Rails topics, such as extending Rails through plugins,
generators, and engines. You’ll also get an introduction to the Prototype and Scriptaculous
JavaScript libraries in this part.

Part V
If you need extra resources on the Ruby language or references for Rails, these appendixes can offer
you a quick place to look up facts in a hurry.

How to use this book
This book is organized such that it can be read from cover to cover. If you’re a new Rails developer
reading it from cover to cover is the best way to learn about Rails. If you are new to Rails but know

xxv

Introduction

Ruby already, you can skip the Ruby introduction and just read the chapters that discuss Rails. As
you read through the book, your knowledge of Rails will build with each chapter.

If you know Rails already, you may want to skip ahead to Chapter 6 and read about the develop-
ment of the Book Shelf Web application. I think you’ll find the development of that application
will interest even a seasoned Rails developer.

After you’ve read the book, it is also suitable as a Rails reference that you’ll want to keep within
reach on your bookshelf. The two appendixes at the end of the book provide a thorough reference
to both the Ruby language and the Rails API.

1

Before you can get started doing Ruby on Rails development, you have
to set up the software that you will need to develop, run, and test
your applications. There are at least three pieces of software that you

will need. They are:

n The Ruby language runtime

n The Rails framework

n A database (such as MySQL, PostgreSQL, SQLite, Oracle, and DB2)

If you install those three components, you will have all that you need on your
computer to write, run, and test Ruby on Rails Web applications. If you have
past experience writing Web applications, you might be thinking that some-
thing is missing from that list, some type of HTTP and/or application server.
You would be correct in that every Web application needs a server to run;
however, the Rails framework includes a server that works very well for devel-
oping your applications. The server bundled with Rails is called WEBrick, and
it serves as both an HTTP and an application server. This makes it very easy to
set up a local development environment without having to install and config-
ure a potentially large and complex server environment.

Sometimes, it’s easier to see how the technologies fit together from a visual
perspective. Figure QS.1 shows the technology stack that makes up a Web
application built with the Rails framework. Each item in the stack has a
dependency on what lies beneath it. The middle three layers of the diagram
are the three components that you will install software for Rails, Ruby, and
the database.

Actually, to be completely accurate, a database is not required to write a
Rails Web application. It is possible to write Web applications with the Rails
framework that do not use a database. However, without a database to store
data, you are very limited in the types of applications that you can create.

IN THIS CHAPTER
Installing Instant Rails on
Windows

Installing Ruby and Rails on
Mac OS X and Linux

Setting up a development
environment

Ruby on Rails
 Quick Start

2

Ruby on Rails Quick StartQS

One of Rails’ greatest strengths is its ability to make working with a database extremely simple, and
so without a database, you are also not taking advantage of one of the best features of the Rails
framework.

 FIGURE QS.1

The Rails Application Stack

Your Web Application

Ruby on Rails

Ruby

OS (Windows, Linus, Macintosh)

Database

 For this book, the database of choice will be MySQL. MySQL is a popular open source database
that is available to everyone at no cost, and it is probably the database that most people are familiar
with. MySQL is also a database that Rails supports out-of-the-box with no extra software or librar-
ies required. It is probably the most widely used database on the Internet today. It provides a full-
featured and robust database for your applications that is easy to set up and use. Commercial
support and commercial versions of MySQL are also available through the company MySQL AB,
which was recently acquired by Sun Microsystems.

The next three major sections provide instructions for installing the required components on the
three most popular operating systems for Rails development, Windows, Linux, and Macintosh. If
you already have these components installed, you are welcome to skip these sections.

Installing Instant Rails on Windows
If you are developing on the Windows platform, there is an installer available that installs all three
of the components that you need to begin Rails development. Instant Rails provides you with
installs of:

n Ruby

n Ruby on Rails

n MySQL database

n Apache Web server

3

Ruby on Rails Quick Start QS

If you are not developing with Windows, you can skip the remainder of this section. It is conve-
nient to have a single installer for these components; however, a potential disadvantage is that
these types of installers may not always be up to date with the most current releases of all of the
individual components. They will likely install the most recent stable versions of the components,
which is what you will want in most cases.

Below are the steps for installing and configuring Instant Rails.

 1. Download Instant Rails. The first thing you should do is download the Instant Rails
installer application, from http://instantrails.rubyforge.org. At the time of
this writing,
the most recent version of Instant Rails is 2.0, and it is downloaded as InstantRails-2.0-
win.zip.

 2. Install Instant Rails. The file that you downloaded in step 1 is a compressed ZIP file that
contains everything you need to run the Instant Rails environment. Installing Instant
Rails after you have downloaded the ZIP file is as simple as extracting the contents of the
ZIP file into the directory that you want to install into. Make sure that the directory you
choose to unzip the file into does not contain any spaces. Spaces cause problems when
you try to run the Instant Rails environment.

After you have completed the Instant Rails installation steps above, you should perform the follow-
ing tasks to verify that you have everything set up correctly.

 1. Run Instant Rails. After you have extracted Instant Rails into a directory, navigate into
that directory and double-click the file InstantRails.exe. Make sure that you are logged
onto the Windows computer as an Administrator before you do this.

 The first time you run InstantRails.exe, it detects that it is a fresh installation and prompts
you to regenerate its configuration files. You see the dialog box similar to Figure QS.2. Go
ahead and click OK.

 FIGURE QS.2

The Instant Rails configuration prompt

 After the configuration is regenerated for you, you see the Instant Rails Administration
screen, shown in Figure QS.3. On that screen, confirm that it says that the Apache and
MySQL servers are started, as shown in Figure QS.3.

4

Ruby on Rails Quick StartQS

 FIGURE QS.3

The Instant Rails Administration screen

 2. Start a sample application. Now that you have the Apache and MySQL servers running,
the next verification step is to start a Rails application that is included with Instant Rails.
Instant Rails includes two sample applications, a cookbook application, and an installa-
tion of the Typo blogging system.

 Rails includes an application server that can be used during development for running
your Web applications, called WEBrick. This is the application server that I will refer to
primarily throughout this book, because it is included with every installation of Rails.
The Instant Rails package, however, includes another popular server for running Rails
applications, the Mongrel server. Mongrel can be used in place of WEBrick. Mongrel is
often preferred because it performs much better and can be easily used in conjunction
with Apache as a Web server.

 Verify the installation by starting the cookbook application. Click the “I” that you see on
the main Instant Rails Administration screen. This is the left-most icon on the top of the
screen. Clicking the “I” gives you a drop-down menu like the one you see in Figure QS.4.
From that menu, click the Rails Applications option. You get another submenu from
which you should click Manage Rails Applications.

 FIGURE QS.4

Selecting the Manage Rails Applications command

5

Ruby on Rails Quick Start QS

 This takes you to a screen similar to that shown in Figure QS.5. This is the screen that
you use to start and stop your Rails applications. In the list of applications, you should
see the two Rails applications that come with Instant Rails, cookbook, and typo-2.6.0.
Click the check box next to the cookbook application so that it is selected. Then click the
Start with Mongrel button. This starts up the Mongrel server to listen on port 3001.

 FIGURE QS.5

The Rails Applications interface

 3. View the cookbook application. After you have started the cookbook application
through the Instant Rails Administration console, you can verify that it is running by
navigating to it in your browser. Open up your browser of choice and navigate to
http://localhost:3001/. You should see the cookbook application screen shown
in Figure QS.6.

That completes the Instant Rails installation and verification.

 BitNami Ruby Stack

A rising contender to Instant Rails comes from a group called BitNami. They provide easy installations
for many open source applications and frameworks. One of the pre-packaged stacks that they provide
a simple installer for is the Ruby stack which includes everything you need to do Ruby on Rails devel-
opment, including Ruby, Rails, and MySQL. Unlike Instant Rails which is only available for the
Windows platform, the BitNami Ruby Stack is available for Windows, Linux, and Mac platforms. You
can read more about the BitNami Ruby Stack and download it from http://bitnami.
org/stack/rubystack.

6

Ruby on Rails Quick StartQS

 FIGURE QS.6

The cookbook application home screen

Installing Ruby and Rails
on Mac OS X and Linux
Both the Mac OS X and Linux systems are also popular choices for Ruby and Rails development.
Years ago, very little software development was done on a Mac computer. Things have changed
dramatically in the past few years, though. Today, the Mac is the platform of choice for many soft-
ware developers, especially Ruby and Rails developers. If you go to a conference that features a lot
of Ruby and Rails speakers, pay attention to what type of computer they are using. You will likely
notice that the vast majority of them use a Mac. Fortunately, for most Mac and Linux users, there
is very little work you need to do to begin Rails development.

Installing on Linux
Linux remains a popular operating system for software development. Linux is also fully compatible
with Ruby and Rails development. In fact, many version of Linux will come with Ruby and Rails
pre-installed. Before you attempt any installation, you’ll want to first check to see if your computer
already has Ruby and Rails.

You can find detailed information about installing Ruby and Rails on Linux here: http://
users.drew.edu/bburd/RubyOnRails/InstallingRoRinLinux.pdf.

7

Ruby on Rails Quick Start QS

Installing on Mac OS X
If you have a Mac and are running OS X 10.5 (Leopard) or later, you are in very good shape,
because your computer already has both Ruby and Rails installed on it. There is no work for you to
install Ruby and Rails on OS X 10.5 or later.

If you have OS X version 10.4 or earlier, you may have Ruby pre-installed, however it is likely a
version of Ruby that is not compatible with Rails. In that case you will want to update the Ruby on
it to be the latest stable release.

You can find detailed information about setting up Ruby and Rails on a Mac at this Apple site:
http://developer.apple.com/tools/rubyonrails.html.

Setting up a Development Environment
Now that you have the essential components installed for developing and running a Rails applica-
tion, let’s look at some other components that, while not strictly required, make for a much better
development environment.

n Source code version control

n IDE or Editor

Source code version control
After you have the components installed that you need to run a Rails application, before you write
a single line of code, the very next thing you should do is decide upon a source code version-
control application and install it.

The two most popular version-control applications are CVS and SVN. CVS stands for Concurrent
Versioning System, and SVN stands for Subversion. Most Web hosting accounts offer you the abil-
ity to set up either CVS or SVN projects within your hosting account. There are also a few compa-
nies that provide you with a free SVN project space. If you are interested in using a free SVN
account, check out these providers:

n http://beanstalkapp.com/

n https://opensvn.csie.org/

While CVS and SVN probably still remain the most used version-control systems, a new kind of
version-control system — distributed version control — is rapidly gaining popularity. A distrib-
uted version-control system uses a distributed model, whereas version control systems such as
SVN and CVS use a centralized version-control system. In a centralized version-control system
changes are always pushed only to the central repository (in fact there is only one repository in this
type of system). In a distributed version-control system, each developer maintains a complete copy
of the code repository on their computer.

8

Ruby on Rails Quick StartQS

Developers update their code with other’s changes by getting updates from the central repository.
By contrast, in a distributed version-control system, developers are allowed to push their changes
to individual developers without pushing to a central repository, since each developer maintains a
complete repository on their own computer. The distributed version-control model fits the open
source development model particularly well. How well it can work inside of an enterprise remains
to be seen.

The most popular distributed version-control system today is GIT. The GIT version-control system
is especially popular in the Ruby on Rails community; it is the official repository for the Rails
source code as well as many of the Rails plug-ins. More open-source applications are moving to
GIT every day. Git Hub is a popular hosted version of GIT that includes social networking features.
Git Hub offers both commercial plans and free plans for open source projects. Git Hub is the home
for the Rails project.

IDE or Editor?
So now that you have most of the infrastructure in place that you will need to begin writing a Rails
application, the next thing to consider is what tool you will use to actually write your code in. If
you are coming from a Java or .Net background, you are probably used to using an integrated
development environment, or IDE as they are commonly called. If you are coming from a back-
ground in Perl, PHP, or another scripting language, you probably did most of your development
using a simpler tool, perhaps just a text editor. For Rails development, you have your choice of
using either an IDE or a simple text editor.

n TextMate

n E

n Intellij IDEA

n NetBeans

n Eclipse

n Heroku

n Aptana Studio

TextMate
If you are using a Mac to do your development on, the editor of choice is TextMate. In fact, I
would venture to guess that at least 90 percent of developers who use the Macintosh for Rails
development are using TextMate (see Figure QS.7). TextMate is a powerful source code editor that
allows you to write extensions to the base environment. The extensions plug into TextMate to add
new features to the base editor. The extensions are called Bundles. You can find a great deal of
Bundles online that will let you set up TextMate to suit your preferences.

9

Ruby on Rails Quick Start QS

 FIGURE QS.7

The TextMate interface

E
The E text editor is an attempt to port the popular TextMate editor to the Windows platform. It
duplicates many of the features of TextMate and even allows you to use your TextMate Bundles.
Like TextMate, there is a small cost to purchase it.

IntelliJ IDEA
IntelliJ IDEA is a commercial IDE made by JetBrains (see Figure QS.8). Java developers rave over
the features of this IDE. I have used it myself and have to say that it is my Java IDE of choice. Many
of the other IDEs have implemented features that were first introduced by JetBrains. Version 7 of
IntelliJ IDEA added support for developing Ruby and Rails applications.

NetBeans
NetBeans is an IDE from Sun. In the past, NetBeans has been an IDE for Java development.
However with version 7.0, Sun has added Ruby and Rails support into NetBeans.

10

Ruby on Rails Quick StartQS

 FIGURE QS.8

The IntelliJ IDEA 7.0 interface

Eclipse
Eclipse is probably the most used IDE today. It is developed by the Eclipse Foundation, an open-
source initiative spearheaded by IBM. Much of the Eclipse code base was donated by IBM and was
a part of its commercial IDE product. With a plug-in, you can add full Ruby and Rails support to
the Eclipse environment. RadRails is a popular Eclipse plug-in that gives you the Ruby and Rails
support.

Heroku
Heroku provides a new and unique way of writing Rails applications. Heroku is a completely
online solution for developing applications. You do not install any software on your computer to
use Heroku, other than a Web browser. At the time of this writing, Heroku works only with the
Firefox 2 Web browser. It does not work under Internet Explorer. You can see an example of what
the Heroku interface looks like in Figure QS.9.

11

Ruby on Rails Quick Start QS

 FIGURE QS.9

The Heroku interface

Aptana Studio
Aptana Studio, a product from the company Aptana, is a very attractive option for Ruby on Rails
development. The Aptana Studio product is a stand-alone desktop IDE based on the Eclipse proj-
ect. If you are familiar with Eclipse, you will have no problem getting used to working with Aptana
Studio. It provides excellent support for front-end development, including JavaScript, CSS, and
HTML editing. The Ruby and Rails features are packaged as a plug-in to the Aptana Studio envi-
ronment. The features of Aptana Studio are also available as a plug-in for the generic Eclipse IDE.

Summary
This chapter introduced you to the environment that you will need to begin Ruby and Rails devel-
opment. At this point, you should have installed the tools that you will need to write Ruby and
Rails applications, as well as to write the code that is used in this book.

12

Ruby on Rails Quick StartQS

You also were given an overview of several version-control systems, as well as IDEs and editors that
are available for Rails development. These are important tools for any developer, and you should
choose the tools that will work best in your environment and with your team. Also, keep in mind
that Ruby and Rails development is evolving rapidly and new tools are released frequently. It is
likely that by the time you read this, there may very well be additional choices available for editing
your Ruby and Rails applications. The Internet is your best source for current information about
the latest preferred development tools.

First Steps
with Rails

IN THIS PART
Chapter 1
Learning Ruby

Chapter 2
Getting Started with Rails

15

Ruby on Rails is a Web application development framework built
using the Ruby programming language. Ruby is a dynamic language
 that was created in Japan by Yukihiro Matsumoto. You’ll often see

Matsumoto referred to simply as Matz. While Ruby had been growing and
flourishing in Japan and Europe, it took the Rails framework to finally thrust
Ruby into the limelight in the United States. Ruby is steadily growing in
popularity worldwide as a programming language of choice.

It is often described as an elegant language that allows developers to create
concise and very readable code.

If you already consider yourself a Ruby expert, you can probably skip this
chapter; otherwise, I highly recommend reading this chapter before getting
into the details of using Rails. A solid knowledge of the Ruby programming
language makes an excellent foundation for learning and using the Ruby on
Rails framework. A solid understanding of Ruby will also help you if you
want to explore the internals of Rails. Remember that Rails is an open source
project, meaning that all of its source code is available to anyone who wants
to look at it. You can learn a great deal about advanced Ruby techniques
from reading the Rails source code. The power of Ruby plays a large part in
the success of the Rails framework.

The Nature of Ruby
Programming languages tend to have various elements of commonality. I’m
not referring to the syntax of a language, but rather higher-level designs that
apply to a programming language. These elements are what make up the
nature of the language. Here you begin by learning about the nature of Ruby,

IN THIS CHAPTER
The nature of Ruby

Object Oriented Programming

The basics of Ruby

Classes, objects, and variables

Built-in classes and modules

Control flow

Organizing code with modules

Advanced Ruby techniques

Learning Ruby

16

First Steps with RailsPart I

or what kind of programming language Ruby is. Each of the characteristics you will read about in
this section will help you better understand the type of programming language that Ruby is, and
how it is different from or the same as other languages that you might have experience with. The
elements of Ruby discussed here are dynamic or static typing systems, duck typing, and compiled
or scripted language.

Dynamic or static typing
Programming languages can be classified by the type system they use. A type system defines how a
programming language classifies its data and methods into types. Examples of types used in vari-
ous languages include int, float, String, and Object. A type describes the kind of data used in a par-
ticular variable. There are two general classes of type systems that are used by programming
languages: dynamic typing and static typing. In a static typed language, the compiler enforces type
checking before run-time. In a dynamic typed language, type checking is deferred until run-time.

In a static typed system, the programmer uses variable declarations to provide type information.
For example, in Java, which is a statically typed language, variables must be declared with their
type prior to being used. Examples of statically typed languages include Java, C, C++, C#, and
Pascal.

NOTENOTE Other languages, such as OCaml and Haskell, use type inference. This is a form of
static typing where the type is determined at compile time but without the program-

mer having to declare it.

In a dynamically typed language, the programmer does not have to declare data types with variable
declarations. Data types are not known until run-time, and type checking of variables does not
occur until run-time. Examples of dynamically typed languages include Python, JavaScript, Perl,
Lisp, and Ruby.

A closely related concept is that of how strictly a type system enforces type rules. A strongly typed
system enforces type rules strongly, allowing for automatic conversions between types only when
information is not lost due to the conversion. A weakly typed system does not enforce type rules and
allows you to easily convert from one type to another without complaint. Ruby is a weakly typed,
dynamic programming language.

Languages that are statically typed are usually recommended for new developers, as they provide
more protection from run-time errors than a dynamically typed language provides. In a dynami-
cally typed language, it’s easy to make programming errors that are not detected until run-time.
However, if you have solid unit-testing practices, this can alleviate that concern. Because of this,
unit testing is even more important when you’re programming in a dynamically typed language
such as Ruby.

Duck typing
You will likely hear someone refer to Ruby as having duck typing. The term duck typing refers to
the popular quote, “If it looks like a duck and quacks like a duck, it must be a duck.” So how does
that quote have anything to do with a programming language? Let’s figure that out.

17

Learning Ruby 1

In Ruby, object instances are not forced to be of any certain type when they are used. As long as
the object being used meets the requirements of the situation in which it is being used, Ruby will
not complain. Another way of saying this is that in Ruby, an object’s type is determined by what it
can do, not by its class. Say you were calling a calculate_average method on an object. In
Ruby, as long as the object you are calling that method on implements a calculate_average
method, everything works fine.

Your code doesn’t have to require the object you are calling the calculate_average method
on to be of any certain class. You might have a method that is expecting an object of a certain class,
but if you had some code that passed in a different class of object, but implemented all the meth-
ods used within that method, the code would execute perfectly fine. This is how programming in
Ruby relates back to the quote, “If it looks like a duck and quacks like a duck, it must be a duck.”
If your objects behave like the type expected at any given place in your code, then as far as Ruby is
concerned, they are of that type, regardless of their real class.

This is very different than the way that many other languages work, including Java. In Java, you
must declare the class type of all of your method parameters. You cannot pass in an instance of a
class that does not match the class type that the method is expecting, even if that instance imple-
ments the same methods as the expected class.

Compiled or scripting language
Another way you can classify languages is by whether they require a compile step or not.
Depending on whether or not they require compilation, a language can be said to be a compiled
language or a scripting language.

Compiled languages
A compiled language requires you to perform a compile step before running the application you are
writing. The language’s run-time executable that runs applications cannot directly understand the
source code of a compiled language. The compiler converts your source code into a binary format
that can be understood by the run-time executable. After you compile your source code, you end
up with files in the compiled format, such as the .class files used by Java. Examples of compiled
languages include C, C++, C#, and Java.

Scripted languages
A scripted language does not require you to compile your source code into another form. The
source code that you write is also the code that the language’s run-time executable uses to execute
your application. The run-time executable of a scripting language is usually called an interpreter.
The interpreter interprets the source code at run-time and converts it to a format that the computer
can execute. The interpreter is specific to a particular language. Examples of scripted languages
include Perl, Python, JavaScript, and Ruby.

Compiled languages are usually faster at run-time because the code is already closer to that of the
computer, whereas code from a scripted language has to be interpreted at run-time. However,
many people believe that scripted languages make up for the run-time performance deficit by

18

First Steps with RailsPart I

being faster to develop an application in. With a compiled language, every time you make a
change, you have to go through a compile phase and an application restart to see the results of
that change. In a scripting language, your application can immediately see the results of a source
code change, as it is running directly from your source code.

Object Oriented Programming
Object oriented programming (OOP) is a style of programming that uses objects to represent data,
and actions that you can perform on that data. OOP allows you to more closely model the real
world with your objects than was possible prior to the advent of OOP. Instead of dealing with
functions and procedures when designing an application, OOP allows you to model the applica-
tion in terms of objects that make up the application’s domain. For example, if you were creating
an application that catalogued books, in an OOP design you would model the application using
objects extracted from the domain, such as Books, Titles, Inventory, and Publisher.

In OOP, you’ll often hear the terminology of sending messages to objects. Sending a message to an
object is the equivalent of asking that object to perform some action for you. The action usually
manipulates or provides you with data that the object contains. These actions are called methods.
For example, with a Book object, you might have a method called get_page_count that would
return the book’s page count.

An object can have both methods and data. An object stores data in fields called attributes.
Considering the Book object example again, a Book object may have attributes of title,
 publisher, and publication_date. Methods and attributes are the two components that
make up the definition of an object.

The objects in your application will relate to the domain your application serves. For example, if you
are writing an accounting application, you might have objects called Account, User, and Bank. Your
Account object might contain methods for depositing and withdrawing money from an account. The
attributes of the Account object might include an account number, an account name, and an account
balance. When you are writing an application using an object-oriented language, your work consists
of defining objects and using those objects to perform the logic of your application.

Ruby is a pure object-oriented programming language. In Ruby, everything is an object, including
literal strings and numeric types. Objects are at the center of all the code you will write in Ruby.
Unlike most other languages, Ruby does not have any native types that are not objects. Even
numeric types such as integers and floats are represented as objects in Ruby.

People new to Ruby often don’t initially grasp the fact that in Ruby, everything is an object. As an
example, look at the following line of code:

3.methods

This is a valid line of Ruby code that might look a bit strange to you if you’re coming to Ruby from
an object-oriented language that considers numeric values as native types instead of objects. This

19

Learning Ruby 1

line asks for the methods that are available on the 3 object. If you wanted to find out what type of
object the number 3 is, you could find that out using this line of code:

3.class

This will return the class Fixnum. In Ruby, integer numbers are instances of the Fixnum class.
The methods class and methods are available on any object that you use in Ruby.

The Basics of Ruby
Before you get into the details of working with Ruby objects, this section provides you with some
of the basics that you should be familiar with when writing and running Ruby programs. With the
knowledge that this section provides you, you should have no problem walking through the exam-
ples that are used throughout the remainder of this chapter. You’ll also know how to interactively
follow along with the examples and run them on your own computer. If you are new to Ruby, an
active learning style in which you try out the examples yourself will help you master the language
more efficiently than if you choose to only read through all of the examples.

The basics of Ruby that will prepare you to successfully learn the remainder of the language are
Ruby’s interactive shell, Ruby syntax basics, and Running Ruby programs.

Ruby’s interactive shell
Assuming that you already have Ruby installed on your computer, you have access to a powerful,
interactive Ruby-programming environment called irb. The irb environment is a command-line
Ruby interpreter that lets you enter any valid Ruby syntax and instantly see the results of your
actions. This is being covered before you even learn Ruby because of its great use as a Ruby learn-
ing tool. Throughout this chapter, you will be able to try out the short snippets of Ruby code that
are discussed so that you can interactively follow along as you read. That is a much better style of
learning than just reading through the code samples.

Use the following steps to start irb:

 1. Start irb in any command-line environment simply by typing irb. This assumes that
the bin directory of the Ruby installation is in your executable path, which would be the
case if you used an automatic installer like the one-click Ruby installer for Windows.

C:\> irb

 2. After typing irb, you should see a command prompt that looks like this:

irb(main):001:0>

 3. At the command prompt, go ahead and type the following line of Ruby code:

irb(main):001:0> puts “Hello, World”

 The puts method writes the passed-in string to the console output.

20

First Steps with RailsPart I

 4. Press Enter. You should see this:

Hello, World
=> nil
Irb(main):002:0>

You see the “Hello, World” string printed. You may not have expected the next line: => nil.
Anytime you execute a line of code in irb, the return value of the executed method is printed to the
console after any values that the method itself may have printed. The puts method always returns
a nil value. The value nil is Ruby’s equivalent to a null or empty value.

You can even create methods and then execute them within irb. Try this within irb:

irb(main):001:0> def add_nums(a,b)
irb(main):001:0> return a+b
irb(main):001:0> end
=> nil

You have just created a method named add_nums that takes two parameters. The method returns
the value of those two parameters added together. You can now try out your new method.

Make sure you are still in the same irb session and type this:

irb(main):001:0> add_nums(5,7)
=> 12

Here, you called the method that you created and passed the values 5 and 7. The method returned
the sum of those two values, 12, and so that value is printed to the console.

The irb tool will become one of your best friends as a Ruby programmer.

TIPTIP As you work through the remainder of this chapter, I strongly suggest that you leave
the irb console open and try out the small code snippets as you see them.

Ruby syntax basics
Ruby’s syntax borrows some of the best features from languages such as Java and Perl. Before you
begin to program in Ruby, there are a few basic syntax elements that you’ll learn here. These
include adding comments in Ruby, use of parentheses, use of white space, and use of semicolons.

Adding comments
A language’s support for comments allows you to add lines to your source code that the interpreter or
compiler ignores. Comments can be added to Ruby source code using the hash (or pound) symbol,
#. All text that follows a # symbol is considered a comment and ignored by the Ruby interpreter.

This is a comment in a Ruby source code file
puts ‘Camden Fisher’ # This line outputs a string to the console

21

Learning Ruby 1

As you see in the example above, a comment can be a complete line, or it can follow a line of
Ruby code.

If you have a large block of text that you want to use as a comment, instead of beginning each line
of the comment with a # symbol, you can use Ruby’s multi-line comment syntax shown here:

=begin
This is a multi-line block of comments in a Ruby source file.
 Added: January 1, 2008
 By: Timothy Fisher
=end
Puts “This is Ruby code”

The =begin marks the beginning a multi-line comment, and the =end closes the multi-line
comment.

It’s a good idea to add comments explaining any code that is not understandable simply by looking at
it. If you often find yourself writing complex code that requires comments to explain, you may con-
sider refactoring that code to make it easier to understand and eliminate the need for the comments.

Using parentheses
The use of parentheses in Ruby is most often optional. For example, when you call a method that
takes parameters, you could call it like this:

movie.set_title(“Star Wars”)

or you could call it like this without the parentheses:

movie.set_title “Star Wars”

If you are chaining methods together, you may get a warning (depending on the version of Ruby
you are using) if you do not use parentheses around your parameters. For example, if you were
writing this code:

puts movie.set_title “Star Wars”

You may see the a warning message similar to this:

warning: parenthesize argument(s) for future version

You can avoid the warning by using parentheses like this:

puts move.set_title(“Star Wars”)

It is a generally accepted convention amongst Ruby developers to use parentheses if they help a
reader understand an expression. If the parentheses add no value to the readability of an expres-
sion, your code usually looks cleaner without them.

22

First Steps with RailsPart I

Using white space
White space is not relevant in Ruby source code. You can use indentation, blank lines, and other
white space to make your code readable with no effect on its syntax. While white space has no
effect on Ruby syntax, it does have a significant effect on the readability of Ruby code. You should
therefore pick a consistent style that uses white space to enhance the readability of your code.

Common convention is to indent your class bodies, method bodies, and blocks. Here is an exam-
ple showing recommended use of white space in a class:

class
 def a_method
 puts ‘You called a method’
 end

 def b_method
 puts ‘You called b method’
 end
end

Most text editors that understand Ruby syntax will help you apply appropriate indentation of your
methods and code blocks. Many Ruby authors have adopted an informal standard in the Ruby
community of indenting with two spaces and no tabs, so this may be the standard applied in much
of the code that you find in the open source community. However, I believe that you should
choose an indentation size that works best for you and your team.

Using semicolons
Semicolons are a common indicator of a line or statement ending. In Ruby, the use of semicolons
to end your lines is not required. The only time using semicolons is required is if you want to use
more than one statement on a single line.

Take a look at a method in Ruby:

def add_super_power(power)
 @powers.add(power)
end

Notice that there are no semicolons in any of this code, and yet this is perfectly valid Ruby code.
Not requiring semicolons is part of what gives Ruby its reputation as allowing for very clean and
readable code.

Here is an example of Ruby code that would require the use of a semicolon:

def add_super_power(power)
 @powers.add(power);puts “added new power”
end

In this method, two Ruby statements are being executed in one line of code. The semicolon sepa-
rates the statements. In most cases, though, this style of coding is not recommended. Unless you

23

Learning Ruby 1

have a good reason to do otherwise, you should always give each statement its own line of code.
This avoids the use of semicolons and makes the code more readable by other developers.

Running Ruby programs
The Ruby source files that you create become the input to the Ruby interpreter. Unlike with compiled
languages, with Ruby there is no build step required prior to running your Ruby programs. Running
a Ruby program is as simple as calling the Ruby executable and passing it the name of the file con-
taining your Ruby code. The actual executable program that you use to run your Ruby source code
files is named ruby. Throughout the book, when you see ruby written in lowercase letters in the
mono-space code font, you can assume it is referring to the actual Ruby executable program.

CROSS-REFCROSS-REF Before you continue, you should have Ruby installed on your computer. Installation
instructions were provided in the Quick Start chapter. If you skipped that, now is a

good time to go back and get Ruby installed.

You also need a text editor to create your Ruby source code in. You can use any text editor that you
are comfortable with. The Quick Start chapter gave a few recommendations for good text editors to
use that feature Ruby code recognition to give you syntax highlighting and some other nice features.

At this time, you should create a directory that you can use to store all of the samples you write in
this chapter. Anytime you want to create a Ruby source file, go to that directory and create the file.
From that same directory, you can run it with the ruby program.

Let’s walk through an example of creating and running a simple Ruby program.

 1. In a text editor of your choice, create a file called test_app.rb. Enter the following
Ruby source code:

class SimpleRubyClass
 def simple_method
 puts ‘You have successfully run a Ruby program.’
 end
end

my_class = SimpleRubyClass.new
my_class.simple_method

 2. From a command line, use the Ruby interpreter to run your program.

> ruby test_app.rb

 3. You should see the output from the method you wrote.

> You have successfully run a Ruby program.

In this example, you created a simple Ruby class and two additional statements outside of the Ruby
class. When you run a Ruby source file, lines of code that are outside of a class definition are auto-
matically executed. In the file you created, the last two lines are automatically executed when you
call ruby test_app.rb. The first line executed creates an instance of the SimpleRubyClass,
and the next line calls the simple_method on that instance.

24

First Steps with RailsPart I

When you create a Ruby source file, you do not have to use any classes. Many useful scripts can be
written without using any Ruby classes at all.

Table 1.1 lists some commonly used options that you can use with the ruby interpreter. For
example, especially if you have a large program file, you might find it useful to run a syntax check
on the source file before you execute it. You can do that with the -c command-line option.

 TABLE 1.1

Command-line Options Used with the Ruby Interpreter
Option Description Usage

-c Checks the syntax of a source file without
executing it.

ruby -c test_script.rb

-e Executes code provided in quotation marks. ruby -e ‘puts “Hello World”’

-l Prints a new line after every line; also called line
mode.

ruby -l -e ‘print “Add a
newline”’

-v Displays the Ruby version information and
executes the program in verbose mode.

ruby -v

-w Provides warnings during program execution. ruby -w test_script.rb

-r Loads the extension whose name follows the -r
option.

ruby -rprofile

--version Displays Ruby version information. ruby --version

Classes, Objects, and Variables
Objects are not tacked on to the Ruby language as an afterthought as they are in some languages,
such as Perl or early versions of PHP. Nor are objects optional as they are in C++. As you learned
previously, Ruby is a pure object-oriented language. In Ruby, everything is an object. This makes
learning about objects in Ruby very important. They are the foundation for all of the code you will
write in Ruby, and so that is where you’ll now begin to explore the details of the Ruby language.

Using objects in Ruby
Since objects and classes are core to Ruby programming, Ruby provides a rich syntax for using
them. In this section, you’ll learn how to create objects and classes in Ruby. You’ll also learn how
to create methods and variables that will be contained by the classes and objects that you create.

Defining objects
Objects provide a way of modeling your application’s data and actions. In Ruby, you define the
structure of your objects inside of a class. A class is similar to the concept of a type. A class defines
a type of data structure. Looking at Figure 1.1, you see a User class that contains two attributes

25

Learning Ruby 1

(login, password) and two methods (set_password, set_login). When you use the User
class, you create an instance of the class. An instance of a class is also called an object. In Figure 1.1,
the object a_user is an instance of the User class. A class is a way of defining common behavior
for all of the objects that are of that class type. In this example, all instances of the User class will
have the login and password attributes, and the set_password and set_login methods.

 FIGURE 1.1

The User class

login
password

User

class User
 def set_password(password)
 @password = password
 end

 def set_login(login)
 @login = login
 end
end

set_password
set_login

a_user = User.new
a_user.set_password(’changeme’)

You define a class in your source code using the class keyword. The minimum code you need to
define a class is a class statement with your class name, and the end statement to close the class
definition. The following code would define a User class:

class User
end

It is usually good practice to have each of your classes defined in a separate file. The User class
would typically be stored in a file called user.rb. If you follow this recommendation, your code
becomes better organized, and thus more readable and more maintainable.

Classes are made up of attributes and methods. The remainder of this section will show you the
details of how to create each of these elements in the Ruby classes you write.

Writing methods
A class’s methods define its behavior. Methods allow Ruby classes to perform useful actions and
process data in useful ways. When you are writing a Rails application, your application’s business
logic will be contained in methods that you add to classes. In Ruby, you define methods within
classes using syntax that looks like this:

class Notifier
 def print_message
 puts ‘Wherever you go, there you are.’
 end
end

26

First Steps with RailsPart I

In this example, the class Notifier contains one method, named print_message. Take a look
at that method definition line-by-line to understand all of its parts. The first line is

def print_message

Ruby uses the def keyword to signify the start of a method definition. The def keyword is followed
by the name of the method you are defining. The method name is also used when the method is
called someplace else in your code. In this example, the method name is print_message. Your
method names should be concise, yet descriptive of the actions that are performed within the
method. While some people don’t like long method names, it is better to have longer names than
short names that do not accurately convey the purpose of a method.

The next line of the method is the first line of the method body:

puts ‘Wherever you go, there you are.’

This line prints a message to the console. The method puts is a built-in Ruby method for writing
string output to the console. In this case, the method name, print_message, is good because it
accurately describes what this method does. If you find yourself wondering what a method does
after looking at its name, perhaps you should consider renaming the method.

The method body continues until an end statement is reached. The end statement marks the end
of the method. For those coming from Java or Perl, note that you do not surround your method
body in curly braces,{ and }, as you do in those languages.

Methods with parameters
You saw an example of a very simple method in the previous section. Methods can also have data
passed to them. The data passed to a method can then be used within the body of the method.
Data values passed to a method are called parameters, or arguments, of that method. Here is an
example of a method that uses parameters:

def add_numbers(number1, number2)
 number1 + number2
end

This method, add_numbers, takes two parameters, number1 and number2. The parameters are
then used within the body of the method. The variables listed between the parentheses are called
the parameter list. Anytime you use a parameter in the body of your method, you must use the
same name for it that is given in the parameter list. Notice that in your parameter list, you do not
declare any types for the parameters as you do in Java and other statically typed languages.

You might be wondering if a return statement was accidentally left out of the previous method.
Perhaps you were expecting to see the method body written like this:

return number1 + number2

In Ruby, that line is actually equivalent to the line that does not contain the return statement. In
Ruby, the value of the last statement executed is also returned from the method. Because the

27

Learning Ruby 1

 statement number1 + number2 is the last statement in this method body, its value is returned
from the method.

Creating instances of a class
A class defines a type of object. To use an object of that type, you must create an instance of that
class. Consider a class designed to implement simple math operations. You might start with a class
defined like this:

class SimpleMath
 def add_numbers
 number1+number2
 end
end

This is the definition of a class called SimpleMath containing one method called add_numbers.
To use the SimpleMath class as an object, you have to first create an instance of it. Every class
has a method called new that is used to create instances of that class. The new method is called
without any parameters, like this:

math = SimpleMath.new

The variable math now contains an instance of the SimpleMath class. Now you can call methods
on that instance, like this:

result = math.add_numbers(3, 5)

This is the first example you’ve seen of how methods are called in Ruby. Ruby uses the dot opera-
tor (.) to indicate that what follows is the name of a method that is to be called on the object pre-
ceding the dot operator.

NOTENOTE It is common naming practice in Ruby to begin class names with an uppercase letter
and capitalize the first letter of each additional word in the class name. Instance

names, and all other variables in Ruby, should begin with a lowercase letter and have multiple
words joined with an underscore character.

Initializing instances with the initialize() method
Often, you’ll want to initialize the state of an object when you create an instance. Many languages
include a method that is called when instances are created. Often, this is called an object construc-
tor. In Ruby, the concept of a constructor is implemented with the initialize method. You can
include an initialize method in any of your classes, and it will be called when an instance is
created using the new method. For example, you could have a class defined like this:

class PhotoAlbum
 def initialize
 @album_size = 10
 end
end

28

First Steps with RailsPart I

Here, you have a PhotoAlbum class containing an initialize method that sets the album size
to 10 each time an instance of the class is created.

The initialize method can also take parameters. Instead of hard-coding an album size, you
might prefer an initialize method like this:

class PhotoAlbum
 def initialize(album_size)
 @album_size = album_size
 end
end

In this example, the initialize method takes a single parameter, the album size. You pass this
parameter to the new method when you create an instance of the PhotoAlbum class, like this:

my_photo_album = PhotoAlbum.new(20)

This creates your new instance, initialized with an album size of 20.

Instance and class methods
There are two types of methods that a class can define: instance methods and class methods.
Instance methods allow you to interact with instance objects, and class methods allow you to inter-
act with class objects.

Instance methods
In the previous example, the add_numbers method that is declared in the SimpleMath class is
called an instance method. It can only be called on instances of the SimpleMath class. Instance
methods manipulate only the instance on which they are called. An object instance must be cre-
ated in order to use instance methods.

Any method defined in a class using the simple format of the def keyword followed by a method
name is an instance method. Here is a class that contains three instance methods:

class SuperHero
 def add_power
 # method body here…
 end

 def use_power
 # method body here…
 end

 def find_enemy
 # method body here…
 end
end

29

Learning Ruby 1

The three methods defined in this class are instance methods. You must create an instance of the
SuperHero class using the new method to be able to use any of these methods. Once an instance
is created, an instance method is called using the instance variable followed by the dot operator,
like this:

spiderman = SuperHero.new
spiderman.add_power(‘super_strength’)
spiderman.use_power

The majority of the methods you write within your classes will probably be instance methods.

Class methods
There is another type of method that classes can define, called class methods. A class method can
only be called on a class and cannot be called from an object instance. You’ve already seen one
example of a class method — the new method that is used to create instances of a class.

Class methods can be defined in a few different ways. You do one of the following to define a class
method:

n Prefix a method name with the class name and the dot operator.

n Prefix a method name with the self keyword and the dot operator.

n Use class << self syntax see the following example).

When you call methods or access attributes on a class, you are not using any specific instance of
that class. Class methods are called like this:

methods = User.methods

This line calls the methods class method of the User class. This would return you an array of all
the class methods for the User class.

The first way you can define a class method is to write it with a preceding class name, like this:

class PhotoAlbum
 def PhotoAlbum.delete(album_id)
 …
 end
end

In this example, the delete method is created as a class method of the PhotoAlbum class. The
delete method cannot be called from an instance of this class. Instead, you call the delete
method as shown in the following example, passing an integer that represents the ID of an album
you want to delete:

PhotoAlbum.delete(12)

30

First Steps with RailsPart I

Another way to define a class method is to use the self keyword like this:

class PhotoAlbum
 def self.delete
 …
 end
end

This creates a delete class method for PhotoAlbum that behaves identically to the previous
 version.

The final style you see for defining class methods is useful when you have several class meth-
ods that you want to define in one class. You can define a group of class methods using the
class << self syntax like this:

class PhotoAlbum
 class << self
 def delete(album_id)
 …
 end
 …
 def move(album_id)
 …
 end
 …
 def rename(album_id)
 …
 end
 end
end

In this example, all three of the methods contained within the block surrounded by class
<< self are defined as class methods.

Instance and class variables
Just as there are two types of methods that a class can contain, there are also two types of variables
that a class can contain. The two types are the instance variables and the class variables.

Instance variables
It is very common that you’ll want to associate data with specific instances of your classes. For exam-
ple, you might have a User class, with each instance representing a different user. Each instance of
user would need its own variables to maintain its object state. Variables that are associated with an
instance of a class are called instance variables. The following is true of all instance variables:

n Instance variable names always begin with @ (the at sign).

n You can access instance variables only through the specific class instance to which they
belong. Each instance of a class has its own instance variables.

31

Learning Ruby 1

n You can define an instance variable anywhere within a class and it will still be visible to
all instance methods within the class.

To illustrate these bullet points, consider this example:

class House
 def print_value
 puts @value
 end

 def set_value(a_value)
 @value = a_value
 end
end

In this example, because of the @ symbol, you should be able to identify @value as an instance
variable. Notice that you do not have to define instance variables outside of your methods as you
do in some other languages, such as Java. Anytime you use a variable that begins with an @ sym-
bol, that variable becomes an instance variable. The print_value method accesses the same @
value variable set by the set_value method. Each instance of the House class maintains its
own copy of the @value variable.

Class variables
In addition to instance variables, a class can also define class variables. A class variable is a variable
that is shared among all instances of a class. Class variables are not referred to in relation to an
instance, as instance variables were. You reference a class variable by using the Class name and the
dot operator, like this:

total_house_value = House.total_value

Using the example of the House class again, a house’s value was stored as an instance variable.
This makes sense because each instance of the House class represents a different house, and each
house will have its own value. The total value of all houses is a good example of a field that could
be represented as a class variable. Each instance, or house, does not need to maintain its own copy
of the total house value. This value is not a data element of any individual house, but rather a data
element that describes all of the houses. Therefore, it makes sense to represent this value as a class
variable.

Class variable names start with two @ signs, @@. The class definition for the House class, including
the total value class variable, would look like this:

class House
 @@total_value = 0

 def print_value
 puts @value
 end

32

First Steps with RailsPart I

 def set_value(a_value)
 @value = a_value
 end
end

In this code example, the @@total_value class variable is initialized to a value of zero. You
must initialize class variables before they are used. To keep track of the total value of all houses,
this variable must be updated every time a house value is updated. This requires a slight modifica-
tion of the set_value method, like this:

class House
 @@total_value = 0

 def print_value
 puts @value
 end

 def set_value(a_value)
 @value = a_value
 @@total_value = @@total_value + @value
 end
end

Now, every time the value of a house is set, that value is also added to the total value of all houses,
which is tracked with the @@total_value class variable. There is actually a potential problem
with this code. Did you spot it? If the set_value method is called more than once for a single
instance — that is, a single house — rather than updating the total value with the new value being
set for that particular house, both values that you’ve set for that house are added to the total value.
This gives a false total value. Having noted that, the code accurately illustrates the use of class and
instance variables.

Getters and setters in Ruby objects
If you’ve done any amount of object-oriented program in a different language, you are probably
familiar with the terms getters and setters. Even if you are not, the concept is relatively simple. As
you’ve learned, an object instance contains data stored in instance variables. Frequent tasks that
you will want to perform are setting the value of those variables and getting the value of those
 variables. The methods that perform those actions of setting and getting the values of instance vari-
ables are known as getters and setters.

NOTENOTE Getters and setters are also sometimes referred to as accessors and mutators in
some such as C++.

In many other object-oriented languages, you must explicitly define these getter and setter meth-
ods using relatively verbose and repetitive syntax. For example, in Java you might see code that
looks like this in many of the classes:

Class JavaObject {

33

Learning Ruby 1

 String stringVal
 int intVal;

 public String getStringVal() {
 return stringVal;
 }

 public void setStringVal(String stringVal) {
 this.stringVal = stringVal;
 }

 public int getIntVal() {
 return intVal;
 }

 public void setIntVal(int intVal) {
 this.intVal = intVal;
 }
}

While these methods are relatively simple, this can be very tedious and perhaps error-prone if you
make any typographic mistakes as you write these methods for every instance variable that you
want to access outside of a class instance. These methods clutter up your class definitions with
many lines of code that do relatively little. You’ve probably also noticed that the pattern for each
instance variable getter and setter is the same. It seems that by writing all of these methods, you are
doing a task that is more ideally suited for the computer. Isn’t getting the computer to do work for
you precisely the reason you are writing a software application in the first place?

Fortunately, Ruby saves you from having to repeat these getter and setter methods in all of your
classes by giving you a built-in method that automatically generates the methods for you at run-
time. Before you see that, however, it is educational to see how you would implement getters and
setters in Ruby.

Getters in Ruby
Getters are relatively simple if you recall that methods in Ruby return the value of the last statement
executed, even if you do not include a return statement. Therefore, the above Java class could be
rewritten in Ruby like this (for the moment, you include only the getter methods, not the setters):

class RubyObject
 def string_val
 @string_val
 end

 def int_val
 @int_val
 end
end

34

First Steps with RailsPart I

In this Ruby code, notice that the instance variable names have been changed to reflect the style
commonly used in Ruby code: lowercase variable names with words separated by underscores.
Also notice that in Ruby, you do not have to declare the instance variables prior to using them.

Setters in Ruby
Let’s take a look at how you implement setters in Ruby code. With your growing knowledge of
Ruby code, your first attempt at creating a setter might look like this:

def set_string_val(new_string_val)
 @string_val = new_string_val
end

You would use this method to set the @string_val instance variable like this:

my_ruby_obj.set_string_val(‘a good string’)

This method is valid Ruby code and will work just fine, but you can do better. Keep reading to see
a more elegant way to express this setter method.

Using the equal sign in method names
Ruby allows you to define setter methods for the purpose of a more elegant setter method by using
an equal (=) sign at the end of the method name. The following example illustrates how you would
do this using an equal sign method:

def string_val=(new_string_val)
 @string_val = new_string_val
end

It doesn’t look like you’ve saved much in terms of the definition of the setter method. Its size is
similar, and some might even think this definition is a bit more complex. But, look at how this
method is used:

my_ruby_obj.string_val=(‘a good string’)

Here you see the new method being called just as the set_string_val method was called;
however, by ending the method name with an equal sign, you begin to see how this makes the
method call look less like calling a method and more like just setting the attribute value directly.
Go a step further and remember that, in Ruby, you do not have to surround your parameters with
parentheses. You can now write the setter like this:

my_ruby_obj.string_val=‘a good string’

Ruby lets you go even a step further by providing you with a syntax that is special to methods that
end with the equal sign. You can write these methods with a space between the method name and
the equal sign. For example, you could also write the setter like this:

my_ruby_obj.string_val = ‘a good string’

35

Learning Ruby 1

When the Ruby interpreter sees the string_val method followed by the =, it automatically
ignores the space and assumes you are calling the string_val= method. This line makes for a
very readable setter method. This type of special syntax is often referred to by Ruby programmers
as syntactic sugar.

The attr_ methods
Earlier, I said that you didn’t really have to write your own getter and setter methods in Ruby, and
I mentioned that there was a way to have these automatically generated for you at run-time. This is
where the attr_ methods come in. You will find yourself often using these methods.

The attr_reader method
Using the attr_reader method, you can avoid having to create getter methods for instance vari-
ables that you want to be readable from outside of your class. To use the attr_reader method,
simply call it with a symbol representing the instance variable that you want a getter method for,
like this:

class Message
 attr_reader :body

 def initialize(body)
 @body = body
 end
end

The @body instance variable is now readable from outside of the class by referencing it through an
instance, like this:

a_message = Message.new(“Dear John”)
message_body = a_message.body

The message_body variable would now contain the value “Dear John”, which was the value of
the @body instance variable.

The attr_writer method
Ruby also provides a method that will automatically create a setter method for you. The attr_
writer method creates an accessor method to allow assignment to an attribute that is equivalent
to a setter method. Using attr_writer is just as easy as attr_reader was. Take a look at this
example.

class Message
 attr_writer :body
end

a_message = Message.new
a_message.body = ‘I like school.’

36

First Steps with RailsPart I

In this example, you are able to set the body attribute of the a_message instance because an
attr_writer was created for the body attribute. In practice, you will not use the attr_
writer method very often. For attributes that you want to have both read and write access to, the
attr_accessor method, described next, is a better choice.

The attr_accessor method
If you want to use both getters and setters with instance variables, the attr_accessor method is
what you want to use. The attr_accessor method generates both getters and setters for the
instance variables you pass to it.

class Message
 attr_accessor :body, :recipients
end

Now the @body and @recipients instance variables can be read and set from outside of the class.
You get or set these instance variables just as if you were directly accessing the variable, like this:

a_message = Message.new
a_message.body = ‘’
a_message.recipients = [‘tim@timothyfisher.com’,’john@doe.com’]

You can see how easy this makes it to set instance variables without having to write any setter code
inside the class.

Inheritance
All object-oriented languages support inheritance. Inheritance is one of the ways in which classes
can be related. You may often hear the term class hierarchy, or maybe object hierarchy. A class
hierarchy is a hierarchical mapping of classes. Inheritance is the main building block of a class hier-
archy, and specifically models the IS-A relationship. For example, a baseball IS-A ball. A football
IS-A ball also.

Consider the example shown in Figure 1.2. You see the Ball class as a parent class of the
Baseball and Football classes. The Baseball and Football classes will inherit all of the
attributes and methods of the Ball class. In Figure 1.2, the Ball class has two attributes, a size
and a weight. These attributes will be inherited by both the Baseball and Football classes.
So instances of Baseball and Football will have size and weight attributes.

The Baseball and Football classes can also add their own attributes and methods to specialize
the class to their particular type. Again referring to Figure 1.2, the Baseball class has a hard_or_soft
attribute that is unique to the Baseball class. The Football class has an inflation_limit
attribute that is unique to the Football class. These attributes specify things about the specific
type of ball that the class represents that are not common to balls in general. Methods and attri-
butes that are inherited from a parent class can be used in the child class just as if they were
defined inside the child class. The parent class of an inheritance relationship is also commonly
called the base class.

37

Learning Ruby 1

 FIGURE 1.2

A class hierarchy

– size
– weight

Ball

– inflation_limit

Football

– hard_or_soft

Baseball

Inheritance is a technique that is very often used by object-oriented programmers. Rails applica-
tions rely very heavily on the use of inheritance. The classes that you write in a Rails application
gain the power of the Rails framework primarily by inheriting from existing Rails classes. When
you create a class that inherits from a parent class, you can also say that your new class extends the
parent class. Referring back to Figure 1.2, the Baseball and Football classes extend the par-
ent class, Ball.

To implement class inheritance in Ruby, you use the greater-than symbol (<) when you define
your class, like this:

class Football < Ball
 …
end

This code means that the Football class is extending or inheriting from the Ball class.

Built-in Classes and Modules
Now that you have learned the basic syntax and structure of Ruby programming, it is time to learn
about the built-in features of the language. Ruby contains a wealth of built-in capability that saves
you from having to write a tremendous amount of low-level code in your applications.

The built-in classes and modules that you’ll learn about in this section can be divided into two
areas: scalar objects and collections. As you learn about these built-in features, it’s a great idea to
follow along with an open irb session. You can type all of the code snippets used in this section
directly into irb. Lines in the code snippets that begin with => denote output that you will see in
irb if you try out the code snippet.

38

First Steps with RailsPart I

Scalar objects
Scalar objects are objects that represent single values, as opposed to collections of values. In this
section, you’ll learn about some of the built-in scalar objects that you’ll use often in Ruby pro-
grams. The scalar objects discussed here include the following:

n Strings

n Numerics

n Symbols

n Times and dates

Strings
Strings are used to represent text, or sequences of characters, in Ruby. You can create string literals
in Ruby using single or double quotes, like this:

“This is a string in Ruby.”

or like this:

‘This is a string in Ruby.’

However, there are differences in how strings are interpreted that you should be aware of so that
you can use the correct quote style in different situations.

Substitution in strings
Substitution occurs in strings when you type in one or more characters that the Ruby interpreter
will change into different characters. A backslash character followed by another character is a com-
mon indicator for string substitution. For example, in a single quoted string, you can place a single
quote inside of a string by escaping the quote with a backslash character, like this:

puts ‘I went to Dad\’s house.’

This string outputs the string value:

I went to Dad’s house.

The \’ is turned into a single quote. This allows you to use single quotes within single-quoted
strings. You can also use a backslash character within a single-quoted string by putting two back-
slashes in the string, like this:

puts ‘A backslash looks like this: \\’
=> A backslash look like this: \

These are the only two substitutions that occur in single-quoted strings. Any other backslash char-
acters remain just as you typed them.

Double-quoted strings, however, allow you to use a richer set of backslash sequences for substitu-
tion. For example, the \n sequence turns into a newline character in a double-quoted string.

39

Learning Ruby 1

String interpolation
String interpolation allows you to use Ruby expressions inside of double-quoted strings. Take a
look at the following example:

subject = ‘zombies’
puts “Timmy likes #{subject}.”

=> Timmy likes zombies.

The # and { sequences tell Ruby that what’s enclosed is a Ruby expression that you would like
evaluated, and its result is inserted into the string. In addition to using variables like this, you can
also interpolate other expressions, such as this:

puts “If you add 2 and 5 you get the value #{2+5}.”
=> If you add 2 and 5 you get the value 7.

You can skip the braces for instance, class, and global variables. For example, you could use inter-
polation with an instance variable like this:

@subject = ‘cooking’
puts “Camden likes #@subject.”

=> Camden likes cooking.

String interpolation allows you to write concise code without having to perform a lot of string con-
catenation that you might do in other languages.

String operations
Ruby provides your strings with a great deal of built-in functionality. Here are some of the more
common string methods that you’ll use:

n length

 This method returns the length of the string that it is called on.

short_str = “This is a short string.”
puts short_str.length
=> 22

n include?

 Returns true if the string it is called on contains the string passed as a parameter.

“Superman can fly”.include?(‘Superman’)
=> true

n slice

 This method returns a substring of the string that it is called on. The substring is speci-
fied by passing an argument of one of the following types: fixnum, range, regular
expression, or string. There is also a variant of this method that deletes the speci-
fied substring from the string that it is called on and returns the deleted substring. This
variant is named slice!.

40

First Steps with RailsPart I

 An example taken from the official Ruby documentation site at http://ruby-doc.org illus-
trates use of this function well:

string = “this is a string”
string.slice!(2) #=> 105
string.slice!(3..6) #=> “ is “
string.slice!(/s.*t/) #=> “sa st”
string.slice!(“r”) #=> “r”
string #=> “thing”

 In the above example, note that the end of the statements include a comment showing
what the return value of that method call would be. For example, string.slice!(2)
would return the ascii character value 105. The string #=> is commonly used to indicate
the return value of a statement in Ruby documentation.

 The fourth line of the above example containing the expression string.slice!(/
s.*t/) uses a regular expression as a parameter. In Ruby, regular expressions are cre-
ated with the / delimiter. Ruby provides strong support for using regular expressions,
and though this book does not get into the details of how to use regular expressions,
I strongly advise you to become familiar with them. Regular expressions are very useful
in any programming language.

n gsub

 This method allows you to specify a portion of a string to be replaced with a different
string. Just as with the slice method, there is a variant available that will change the
string that the method is called on. This variant is named gsub!. These methods take
two parameters. The first parameter is a regular expression or a string to match on, and
the second parameter is a string that you want to replace the matched text with. The fol-
lowing examples show how this method is used:

“hello”.gsub(/[aeiou]/, ‘*’) #=> “h*ll*”
“Superman”.gsub(“Super”, “Bat”) #=> “Batman”
“hello”.gsub(/([aeiou])/, ‘<\1>’) #=> “h<e>ll<o>”

 In the last line of the example, the replacement string is ‘<\1>’. In this string, the \1
sequence will match the result of the [aeiou] regular expression. Surrounding the reg-
ular expression in parentheses, as in this example, creates a matching group. You could
have additional matching groups in the regular expression by including additional regular
expressions surrounded by more sets of parentheses. In the replacement string, you can
match subsequent matching groups using \2, \3, and so on. See this line of code for an
example of multiple matching groups:

“hello”.gsub(/(e)(ll)/, ‘<\1><\2>’) #=> “h<e><ll>o”

 In the previous line of code, the \1 sequence matches the regular expression group (e)
and the \2 sequence matches the regular expression group (ll).

There are many more methods that you can use on String objects. For a complete description of all
of the methods available for String objects, you should refer to the official Ruby documentation for
Strings at www.ruby-doc.org/core/classes/String.html.

41

Learning Ruby 1

Numerics
Ruby has special classes that represent numbers that you use in a Ruby application. These classes
include Float, Fixnum, and Bignum. The Bignum and Fixnum classes represent integers. They
both extend the Integer class. The classes Float and Integer extend the Numeric class,
which provides basic functionality to all numeric objects.

You can find out the class that a particular number uses by calling its class method, like this:

1980.class
=> Fixnum

3.1459.class
=> Float

10000000000.class
=> Bignum

Now, take a look at a few methods that are commonly used with numbers:

n integer?

 Returns true if the number is an integer value.

1980.integer?
=> true

n round

 Rounds the number to the nearest integer.

18.3.round #=> 18
18.7.round #=> 19

n to_f

 Converts a Fixnum or Bignum to a Float.

15.to_f #=> 15.0
1000000000000.to_f #=> 1000000000000.0

n to_i

 Converts a Float to an Integer type (either Fixnum or Bignum depending on its
size). The decimal portion of the number is truncated. There is no rounding performed
during the truncation.

15.1.to_i #=> 15
15.8.to_i #=> 15

n zero?

 Reruns true if the value has a zero value, otherwise it returns false.

There are many more methods available for the numeric classes. For complete method informa-
tion, refer to the official Ruby doc Web site.

42

First Steps with RailsPart I

Symbols
If you are coming to Ruby from a Java or C language background, symbol objects are probably
going to be something new to you. You can think of symbols as placeholders for strings. Symbols
are easily recognized in Ruby code because they are always prefixed with a colon (:). You can con-
vert any string into a symbol by using the to_sym method. The following is an example of creat-
ing a symbol using this method:

city = “Detroit”
city_sym = city.to_sym
puts city_sym

The to_sym method converts the string “Detroit” into an equivalent symbol object. The sym-
bol, city_sym, contains the value :Detroit. When you print the symbol to the console using
the puts method, the console output is:

Detroit

You might be wondering why the value printed was not :Detroit. The reason why you don’t see
that value printed is because the puts method automatically converts the symbol back into a
string before printing it. The string equivalent of a symbol is the symbol value without the colon.
However, if you look at the class type of the variable city_sym, you will see that it is indeed a
Symbol object.

city_sym.class #=> Symbol

You can convert a symbol back into a string using the id2name method. Here, you see how the
:Detroit symbol is converted back to the original string value:

city_string = city_sym.id2name

When you get into Rails development, you will use symbols frequently. Although they may seem a
bit foreign at first, they are simple to use and often make for cleaner and faster code.

Times and dates
In many applications you write, you will have to work with times and dates and usually perform
some manipulation of those values. Ruby provides you with built-in classes to support times and
dates in your application. The classes that provide Ruby’s support for times and dates are Date,
Time, and DateTime. The Time class is the only one of those three that is included with the
Ruby core. The Date and DateTime classes are a part of the Ruby standard library which is
included with Ruby but they must be explicitly included using a require statement when you want
to use them. Below is an example of how you would include the Date and DateTime classes in
your code:

require ‘date’

The date library included using the above require statement will give you both the Date and the
DateTime classes.

43

Learning Ruby 1

The require statements should always be placed at the very top of your source files. You can also
use these classes within an irb session simply by using the same require syntax at the com-
mand prompt.

Below you’ll see some of the methods and features of the date and time classes. There are many
more methods available for these classes than what is covered in this book. For complete informa-
tion, refer to the official Ruby documentation site www.ruby-doc.org.

Using the Time class
You can create instances of the Time class using the new method as shown here:

time = Time.new

When you use the new method of the Time class, an instance of the Time object representing the
current time is created. To get a Time instance referring to the current time you can also use the
Time.now method. If you want to create an instance that is preset to a given time, you the Time.
local method as shown here:

time = Time.local(2008, “jun”, 22, 10, 30, 25)
#=> Sun Jun 10:30:25 -0400 2008

In this example, an instance of Time is created and set to the date June 22, 2008, and the time
10:30 and 25 seconds. The parameters passed to Time.local in this example are in this order
year, month, date, hours, minutes, and seconds.

You can also call Time.local to create a time instance with these parameters: seconds, minutes,
hour, day, month, year, day of the week, day of the year, is it daylight savings time?, and timezone.
Here is an example of how you would create the same time using these parameters:

time = Time.local(25, 30, 10, 22, “jun”, 2008, 0, 174, true,
“EST”)

#=> Sun Jun 10:30:25 -0400 2008

Once you have a Time instance created, you can easily get specific field information from it using
instance methods available. Here are some examples:

time.day #=> 22
time.yday #=> 174
time.wday #=> 0
time.year #=> 2008
time.month #=> 6
time.zone #=> “Eastern Daylight Time”
time.hour #=> 10
time.min #=> 30
time.sec #=> 25

44

First Steps with RailsPart I

You can also perform addition and subtraction of time instances. To get the difference between two
times, subtract them, as shown here:

time1 = Time.local(2008, “jun”, 22, 10, 30, 25)
time2 = Time.local(2008, “jun”, 20, 10, 30, 25)
time1 - time2 #=> 172800.0

The value returned from subtracting the two times is the time difference expressed in seconds.
Knowing that there are 86,400 seconds in a day (60*60*24), you could convert the result to days
by dividing the result by 86,400, to get two days.

You can add seconds to a time using the addition operator, as shown here:

time = Time.local(2008, “jun”, 22, 10, 30, 25)
time + 60 #=> Sun Jun 10:31:25 -0400 2008

In this example, 60 seconds are added to the time instance.

You can compare time instances using either the eql? method or the <=> operator. The eql?
method will return true if the time that it is called on and the time passed to it are both Time
objects with the same seconds and fractional seconds. The <=> operator also compares time
objects down to the fractional seconds, however its return value is different. Instead of returning
true or false, the <=> operator will return 0 if the time instances are equal, -1 if the time instance
on the left occurs before the time instance on the right, and +1 if the time instance on the left
occurs after the time instance on the right. Here are some comparison examples:

time1 = Time.local(2008, “jun”, 22, 10, 30, 25)
time2 = Time.local(2008, “aug”, 12, 10, 30, 25)
time3 = Time.local(2008, “jun”, 22, 10, 30, 25)

time1.eql? time2 #=> false
time1.eql? time3 #=> true

time1 <=> time2 #=> -1
time2 <=> time1 #=> 1
time1 <=> time3 #=> 0

Using the Date class
To create a new Date instance, you use the new method, as you did with the Time class. However,
unlike the Time class, when you create a date with the new method, you will not get the current
date. To get a meaningful date instance you should pass parameters to the new method like this:

date = Date.new(2008, 3, 12)

This creates a date instance representing March 12, 2008. The Date class represents dates only and
does not include time information. To see a string representation of the date, use the to_s method:

date.to_s #=> “2008-03-12”

45

Learning Ruby 1

There are accessor methods provided for getting the year, month, and day components of the date:

date.year #=> 2008
date.month #=> 3
date.day #=> 12

Another useful method is the next method. This method will return the next day, as shown here:

date.next.to_s #=> “2008-03-13”

In the above example, the next method is chained with the to_s method to return the string rep-
resentation of the next date. Method chaining can be a convenient way of writing concise expres-
sions in Ruby. If you want to get the next month, or perform month addition, you can use the >>
operator with the date instance. The >> operator will advance a date by the given number of
months. Similarly, the << operator will subtract the given number of months from the date. Both
of these operators will return the modified date but will not change the date instance on which
they are called. Here are some examples:

(date >> 1).to_s #=> “2008-04-12”
(date << 1).to_s #=> “2008-02-12”
date.to_s #=> “2008-03-12”

Just as with Time instances, you can test the equality of two dates using the eql? method, or the
<=> operator. The operators behave just as they do for the Time instances, except dates are com-
pared instead of times. Here are some examples:

date1 = Date.new(2008, 3, 12)
date2 = Date.new(2008, 7, 15)
date3 = Date.new(2008, 3, 12)

date1.eql? date2 #=> false
date1.eql? date3 #=> true

date1 <=> date2 #=> -1
date2 <=> date1 #=> 1
date1 <=> date3 #=> 0

Using the DateTime class
The DateTime class is a subclass of the Date class and thus inherits its methods and much of its
behaviour. The DateTime class adds time information to the date information provided by the
Date class.

You can create a DateTime instance with both date and time values set using the new method and
parameters passed in this order (year, month, day, hour, minute, second) as shown here:

date_time = DateTime.new(2008, 3, 12, 10, 30, 25)
date_time.to_s #=> “2008-03-12T10:30:25+00:00”

46

First Steps with RailsPart I

The DateTime class has access to these accessor methods for getting the time information:

date_time.hour #=> 10
date_time.min #=> 30
date_time.sec #=> 25
date_time.zone #=> “+00:00”

Formatting times and dates
All three of the time and date related classes, Time, Date, and DateTime, include a to_s method that
allows you to get a string representation of the time or date. However, the format provided by the
to_s method may not always be what you want. You can create a formatted date string using a for-
mat that you define using the strftime method that is available to all of these time and date
classes. The strftime method takes a single parameter that is the format string. The format string
can contain text and any of the format specifiers listed in Table 1.2 for printing date and time fields.

 TABLE 1.2

Date and Time Formatting Codes for Use with strftime
Format Code Description Example

%a The abbreviated weekday name Sun

%A The full weekday name Sunday

%b The abbreviated month name Jan

%B The full month name January

%c The preferred local date and time representation 03/12/08

%d Day of the month 10

%H Hour of the day, 24-hour clock 21

%I Hour of the day, 12-hour clock 10

%j Day of the year 215

%m Month of the year 11

%M Minute of the hour 25

%p Meridian indicator AM or PM

%S Second of the minute 55

%U Week number of the current year, starting with the
first Sunday as the first day of the first week

5

%W Week number of the current year, starting with the
first Monday as the first day of the first week

4

%w Day of the week (Sunday is 0) 2

%y Year without a century 95

%Y Year with century 1995

%Z Time zone name EST

47

Learning Ruby 1

Here are some examples of dates and times formatted using the strftime method:

date = Date.new(2008, 10, 18)
date.strftime(“The day is %A, %B %d %Y”)
#=> “The day is Saturday, October 18 2008

time = Time.local(2008, “jun”, 22, 10, 30, 25)
time.strftime(“Date: %a %b %d %Y, Time: %I:%M:%S”)
#=> “Date: Sun Jun 22 2008, Time: 10:30:25”

Collections
All program languages support some method of representing groups of objects or other data ele-
ments. The objects that store collections of other objects are called the collection objects. These
objects are defined by the collection classes, which are some of the most often used classes in any
programming language. In almost any application you write, you will find times when you have to
work with multiple items, and that is where collection classes help you.

Ruby provides you with built-in support for collections using the following collection classes,
which you’ll learn about in this section:

n Arrays

n Hashes

n Ranges

Arrays
The array is the most common collection class and is also one of the most often used classes in
Ruby. An array stores an ordered list of indexed values, with the index starting at 0. Ruby imple-
ments arrays using the Array class. Here is an example of how arrays are used in Ruby:

great_lakes = [“Michigan”,”Erie”,”Superior”,”Ontario”,”Huron”]
puts great_lakes[0]
puts great_lakes[4]

This code creates an array containing the names of the Great Lakes, and stores it in the great_
lakes variable. The second and third lines print the names of the first and fifth elements of the
array. The output would be:

> Michigan
> Huron

Arrays do not have to be populated when they are created. You can also create an array object
using the Array.new method, like this:

sports = Array.new

48

First Steps with RailsPart I

You can also create a new empty array using this style of declaration:

sports = []

The Array class also gives you plenty of built-in functionality. Here are some commonly used
methods that you’ll use when working with arrays:

n empty?

 Returns true if the array is empty.

sports = Array.new
puts sports.empty?
=> true

n delete

 Deletes the named element from the array and returns it.

sports = [‘Baseball’,’Football’,’Soccer’]
sports.delete(‘Soccer’)
sports
=> [‘Baseball’,’Football’]

n first

 Returns the first element of the array.

names = [‘Tim’,’John’,’Mike’]
puts names.first
=> Tim

n last

 Returns the last element of the array.

names = [‘Tim’,’John’,’Mike’]
puts names.last
=> Mike

n push

 Adds a new element to the array.

sports = [‘Baseball’,’Football’,’Soccer’]
sports.push(‘Tennis’)
=> [‘Baseball’,’Football’,’Soccer’,’Tennis’]

n size

 Returns the number of elements contained in the array.

sports = [‘Baseball’,’Football’,’Soccer’]
puts sports.size
=> 3

Hashes
Like arrays, hashes store a list of values. However, if you use a hash instead of integer indexing, a
hash lets you specify a unique index for each element that you store in the hash.

49

Learning Ruby 1

leagues = {“AL”=>”American League”, ”NL”=>”National League”}
puts leagues[“AL”]

Once you have a hash, you can retrieve the value for an element in the hash by referencing its key
value, as you see being done in the second line above. Notice that when you create a hash, you use
the curly braces to enclose the hash, but when you refer to an element of the hash, you use the
straight brackets. If you attempted to use the curly braces when referring to an element of the hash,
you would get a syntax error.

You will also often hear the contents of a hash described as key-value pairs. The terms index and key
are used interchangeably with respect to hashes.

Just as with arrays, the Hash class gives you plenty of built-in functionality. Here are some com-
monly used methods that you’ll use when working with hashes:

n empty?

 Returns true if the hash is empty.

leagues = {“AL”=>”American League”, ”NL”=>”National League”}
puts leagues.empty?
=> false

n keys

 Returns an array of the hash’s keys.

leagues = {“AL”=>”American League”, ”NL”=>”National League”}
leagues.keys
=> [‘AL’,’NL’]

n values

 Returns an array of the hash’s values.

leagues = {“AL”=>”American League”, ”NL”=>”National League”}
leagues.values
=> [‘American League’,’National League’]

n size

 Returns the number of key or value pairs contained in the hash.

leagues = {“AL”=>”American League”, ”NL”=>”National League”}
leagues.size
=> 2

Ranges
Ruby provides another type of collection that you are probably not familiar with if you are new to
Ruby: the Range class. You can use ranges to represent a sequence that has a defined start point, a
defined end point, and a well-defined procession of elements. You create a range in Ruby using a
start point, two dots, and an end point, like this:

(0..6)

50

First Steps with RailsPart I

This would create a range containing all the integer numbers from zero to six. You can verify that
you have indeed created a Range object by looking at its class, using the following code:

(0..6).class
=> Range

A good way to verify what are all of the elements contained within a range is to convert the range into
an array. You can convert the range into an array using the to_a method of the range, like this:

(0..6).to_a
=> [0,1,2,3,4,5,6]

You can use ranges not only for representing sequences of numbers, but also for representing any
elements that have a well-defined sequence. Here is an example that expresses a sequence of letters
as a range:

(‘a’..’e’).to_a
=> [‘a’,’b’,’c’,’d’,’e’]

As with the other collection types in Ruby, you get plenty of built-in functionality with the Range
class. Here are some common methods you can use with ranges:

n first

 Returns the first element of a range.

(1..6).first #=> 1

n last

 Returns the last element of a range.

(1..6).last #=> 6
(1...6).last #=> 6

 Notice that the last the last element specified in the Range declaration is returned as the
last element of the range, even if that element is not included in the range, such as when
you use the triple period range notation.

n include?

 Checks to see if the passed parameter value is included within the range.

(‘a’..’f’).include? ‘k’ #=> false
(‘a’..’f’).include? ‘d’ #=> true

 There is also a method available named member? that has the same behavior as
include?.

n each

 This method allows you to iterate through each of the elements of a range and pass them to
a block specified as a parameter. Blocks are covered later in this chapter, so if this doesn’t
make sense to you now, feel free to have another look after you’ve read about blocks.

51

Learning Ruby 1

(1..4).each do |number|
 puts number
end

 Each element of the range 1, 2, 3, 4 will be printed to the screen on a separate line using
the puts method.

n step

 Like the each method, the step method is also an iterator method. Using the step
method, you can iterate through a range using a stepping size specified by the parameter
passed.

(1..6).step(2) do |number|
 puts number
end

 This example will print out the numbers 1, 3, and 5 each on a separate line.

Control Flow
The control flow features of a programming language specify how the programming language allows
you to control the path of execution through the code that you write. For example, there may be a
group of statements that you only want to be executed under certain conditions, or there may be a
group of statements that you want to repeat until a specified condition becomes true. These are the
types of things that you will use control flow techniques to accomplish. Every programming language
has control flow features built into it, and Ruby is no exception. Ruby’s primary control flow mecha-
nisms are:

n Conditionals

n Loops

n Blocks

n Iterators

Each of these mechanisms provides a different style of controlling the flow of your application. As
you write more Ruby programs, you will find scenarios in which each of these mechanisms
becomes valuable.

Conditionals
Conditionals allow you to specify a block of code that is executed conditionally, based on the
result of some expression. Ruby supports three types of conditional statements:

n if statement

n unless statement

n case statement

52

First Steps with RailsPart I

The if statement
The if statement tests whether an expression is true or false. The expression being tested immedi-
ately follows the keyword if in a line of code. If the expression evaluates to true, the block of code
following the if statement is executed. If the expression evaluates to false, the contained block of
code is skipped.

In this example, the variable value_a is compared with the variable value_b. The statement
value_a is bigger is only executed if the statement value_a > value_b is true.

if value_a > value_b
 puts ‘value_a is bigger’
end

You can also specify a second block that is executed if the if expression evaluates to false. This is
called the else block and is preceded by an else statement, like this:

if value_a > value_b
 puts ‘value_a is bigger’
else
 puts ‘value_b is bigger’
end

In this example, the correct statement is printed, depending on the values of the two variables.

There is one more statement that you can use with an if statement. That is the elsif statement.
The elsif statement allows you to specify a block that is executed conditionally if the previous
if or elsif statement did not evaluate to true. Here is an example:

if color == ‘red’
 puts ‘The color is red’
elsif color == ‘blue’
 puts ‘The color is blue’
else
 puts ‘Could not determine color’
end

The unless statement
Another conditional supported by Ruby is the unless statement. The unless statement works
opposite to how the if statement works. The block of code contained by the unless statement is
executed only if the expression passed to the unless statement evaluates to false. Take a look at
the following example:

unless value_a > value_b
 puts ‘Value B is the larger number’
end

This code would print the message ‘Value B is the larger number’ only if the value stored in
value_b is larger than the value stored in value_a.

53

Learning Ruby 1

The case statement
The case statement allows you to compare a variable to a number of different possible values and
execute a group of methods based on which of the values it matches. This construct can replace a
series of if..else statements. Consider the following block of if..else statements:

if color == ‘red’
 puts ‘The color is red’
elsif color == ‘blue’
 puts ‘The color is blue’
elsif color == ‘green’
 puts ‘The color is green’
else
 puts ‘Unrecognized color name.’
end

In this series of if..else statements, the color variable is compared against a series of different
values to find one that matches. If it does not find a match, there is an ending else to print a
default message. This example illustrates how you could implement the very same logic using a
case statement:

case color
 when ‘red’
 puts ‘The color is red’
 when ‘blue’
 puts ‘The color is blue’
 when ‘green’
 puts ‘The color is green’
 else
 puts ‘Unrecognized color name.’
end

As you see here, after the case statement, you specify the variable that you want to match. Each
when statement is the equivalent of an elseif in the previous implementation. When a matching
condition is found, the statement or statements following that when statement (up until the next
when statement) are executed. After executing those statements, the control flow passes to the line
after the case statement’s closing end statement.

TIPTIP You can also specify groups of valid values, as in the following example:

when ‘red’,’purple’

Loops, blocks, and iterators
Loops, blocks, and iterators allow you to define sections of code that you want to execute repeat-
edly, often until a given condition is satisfied. The constructs you’ll learn about here include:

n for loops

n while and until loops

n code blocks

54

First Steps with RailsPart I

If you have experience with other programming languages, you are probably familiar with the con-
cept of for, while, and until loops. However, code blocks may be very new to you. They are a
feature that gives Ruby a great deal of its unique power and capability for writing clean, elegant,
and concise code.

for loops
The Ruby for loop allows you to execute a given block of code an amount of times specified by an
expression preceding the block. If you are used to using the for loops in Java, JavaScript, C, C++,
or a language similar to one of those, pay particular attention here, as the Ruby for loops are differ-
ent than the for loops in those languages. Here is an example of a Ruby for loop:

cities = [‘Southgate’,’Flat Rock’,’Wyandotte’,’Woodhaven’]
for city in cities
 puts city
end

Executing this loop would result in each of the city names contained in the cities array being
printed to the console. Here is another example of a for loop that iterates over a hash variable,
using both the key and value elements as variables within the block.

hash = {:r=>’red’, :b=>’blue, :y=>’yellow’}
for key,value in hash
 puts “#{key} => #{value}”
end

Executing this loop will result in the following output:

y => yellow
b => blue
r => red

while and until loops
In addition to the for loop, Ruby supports other looping constructs that are also common in
many other programming languages: the while loop and the until loop. The while and
until loops execute a block of code while a certain condition is true, or until the condition
becomes true. Here are some examples:

num = 10
while num >= 0 do
 puts num
 num = num - 1
end

num = 0
until num > 10 do
 puts num
 num = num + 1
end

55

Learning Ruby 1

Blocks
In several of the previous examples that used iterators, such as the each or step method of a
Range object, you have seen Ruby blocks in use. Blocks are groups of statements that can be
passed into a method as a parameter. They are commonly used with iterators. The each method,
which is available on any class that is enumerable in Ruby, is probably the place you will use
blocks most often. Here is an example of a block used with the each statement:

colors = [‘red’,’blue’,’yellow’,’green’]
colors.each do |color|
 puts color
 color_count = color_count + 1
end

In this example, the block is enclosed by the do and end statements. The block is passed a single
parameter which is enclosed in the pipes. The block is passed as a parameter to the each method.
Blocks can also be enclosed by curly brackets. The example below is equivalent to the previous one:

colors = [‘red’,’blue’,’yellow’,’green’]
colors.each { |color|
 puts color
 color_count = color_count + 1
}

Although not a syntax rule, common usage is to use the curly brackets around blocks when you
have a short block that will fit on the same line as the method invocation to which the block is
passed, such as this example:

colors.each { |color| puts color}

If your block spans multiple lines, the do/end syntax is preferred.

Blocks are a construct that is new to many programmers, especially those coming from Java or C
language backgrounds. They are frequently used in Ruby code so you should become very familiar
with them. I have just touched on what you can do with blocks. There is a great deal more to learn
about them. You can learn more with many good online references; just do a Google search on
Ruby Blocks.

The yield statement
You can create your own methods that accept blocks as a parameter and be able to pass parameters
into those blocks using the yield statement. Take a look at an example of a method that can
accept a block as a parameter:

class TimsBooks
 def initialize
 @books = [‘Ruby on Rails Bible’, ‘Java Phrasebook’]
 end

 def each
 @books.each {|book| yield book }

56

First Steps with RailsPart I

 end
end

books = TimsBooks.new
books.each do |book|
 puts book
end

In this example, the TimsBooks class contains an instance variable that is an array of books. The
@books variable is initialized at object creation time. The each method is implement to iterate
through the @books array and yield each book value to the block that is passed to the each method.
Toward the bottom of the example, you see how the each method can be used with an instance of
TimsBooks to print the name of each book. Using this technique you could write your own each
methods for any classes that you write that contain some data that can be iterated upon.

The yield statement calls the passed in block, passing any parameters that are passed to it along
to the block. So in the above example, each time yield is called, the block containing the puts
book statement is called passing the name of a book from the @books array. The resulting output
will be a list of the books in the @books array.

Iterators
An iterator is a method that allows you to step through a group of values in a systematic way.
Iterators are featured in many programming languages, and Ruby has rich support for them. You
have seen some of the iterator methods already. Some of the iterator methods supported by Ruby
described here.

n each

 The each method is the most common iterator. You can use the each method to step
through any element that is enumerable such as an array or hash.

students = [‘Tim’,’Camden’,’Kerry’,’Timmy’]
students.each do |student|
 puts student.name
end

n times

 The times method is an iterator used on integer values. It is used to repeatedly execute
a block of code.

3.times {puts ‘Ruby rules’}

 This will print the line ‘Ruby Rules’ three times.

n map

 The map method is commonly used with Array objects. It calls the passed block once
for each element of the array on which it is called. Its return value is a new array contain-
ing each of the values returned by the subsequent calls to the block.

[1,2,3].map {|x| x * x}
#=> [1,4,9]

57

Learning Ruby 1

 This example returns an array that contains the squares of each of the elements contained
in the original array.

n upto

 The upto method is an iterator used with elements that have some form of ordering
associated with them. Common examples of where you can use this method include inte-
gers and alphabetic characters as shown below:

4.upto(7) {|x| puts x}

‘a’.upto(‘c’) {|char| puts char}

 In the first example above, the values 4, 5, 6, and 7 are printed. In the second example,
the characters a, b, and c are printed.

Exception handling
Every good developer should be familiar with error handling techniques and know how to handle
errors that occur in a program. No matter how well you have written and tested your program, there
will always be error conditions that occur in your program. These error conditions are not always the
fault of the developer, but could be triggered by a number of things, including bad input from an
external component , unavailable external resources, or incorrect usage by the end user

Before OOP became popular, error handling was mostly accomplished using return values and
error codes. All of your functions would return a value that would indicate whether the function
succeeded or failed. On failure, the return value would contain an error code or perhaps an error
message. Unfortunately, this style of programming tends to require error-handling code around all
of your functions and within the functions. Often, the purpose of a particular function is lost in so
much error-handling code.

Object-oriented languages introduced a new style of error handling with a more object-oriented
approach. This style uses exception objects that can be thrown and caught by your code and handled
where appropriate. This style of error handling is usually referred to as exception handling. The
exception handling features of Ruby allow you to handle unexpected conditions that occur while
your code is running.

Exceptions in Ruby
In Ruby when an exceptional condition occurs, you can raise an exception using either the raise
statement or the throw statement. When you raise an exception, control flow is diverted away
from the current context to exception handling code. Exceptions that are raised can be caught with
a rescue block. Rescue blocks are created with the rescue statement. Exceptions are represented
as Exception objects. Exception objects are instances of the Exception class or a subclass of
the Exception class. Ruby includes a hierarchy of built-in exception classes. There are seven
classes that are direct subclasses of Exception. These are the following:

n NoMemoryError

n ScriptError

58

First Steps with RailsPart I

n SecurityError

n SignalException

n SystemExit

n SystemStackError

n StandardError

The StandardError exception class represents exceptions that are considered normal and that
you should attempt to handle in your application code. The other exception classes represent
lower-level and more serious errors that you most likely will not be able to recover from. Most pro-
grams do not attempt to handle these exception classes. There are many built-in subclasses of
StandardError, and you are free to also create your own subclasses to define custom excep-
tions for your application.

The Exception class defines two methods that will help you get more information
 about the problem that occurred. These two methods should be implemented by all of its subclasses.
The two methods are message and backtrace. The message method returns a string that gives
human-readable information about the cause of the exception. The backtrace method returns an
array of strings that represent the call stack at the point the exception was raised.

Using begin, raise, and rescue
The three statements that are used most often to perform exception handling in Ruby are the
raise, begin, and rescue statements. The raise statement is used to create, or throw, and
exception. You can call raise with zero, one, two, or three arguments. If you use raise with no
arguments, a RuntimeError object is raised. If you use one argument with raise, one of the fol-
lowing conditions will apply:

n If the single argument is an Exception argument, that exception is raised.

n If the argument is a string, a RuntimeError is raised and the string is set as its message.

n If the argument is an object that has an exception method, that method should return
an Exception class. The Exception class returned will be raised.

If you use raise with two arguments, the second argument should be a string that will get set as the
message of the exception defined by the first argument. Finally, you can call raise with three argu-
ments also. In that case, the first argument will define an exception class, the second argument will
define a string to be set as the exception’s message, and the third argument will contain an array of
strings which will be set as the backtrace for the exception object.

Here is an example of how you might raise a RuntimeError exception with a specified message:

raise RuntimeError, “Bad value used.”

The begin statement designates the start of a block of code for which you want to apply excep-
tion handling. The rescue statement specifies the start of a block of code that is executed if an
exceptional condition occurs within the block of code that began with the begin statement. To

59

Learning Ruby 1

illustrate the uses of exception handling in Ruby, you’ll see how exception handling is commonly
used along with Ruby’s built-in file support to catch errors that might occur when you are trying to
open a file.

def read_file(file_name)
 begin
 afile = File.open(file_name, “r”)
 buffer = afile.read(512)
 end

 rescue SystemCallError
 # handle error
 end

 rescue StandardError
 # handle error
 end

 rescue
 # default exception handler
 end
end

This method attempts to open a file with the name you pass into the method, and to read the first
512 bytes from it. An exception can be raised from within either the File.open or the afile.
read methods. If an exception is raised within either of those methods, the control flow of the
code will jump out of the begin block. The block that begins with the code rescue
SystemCallError will be executed if a SystemCallError exception is raised. If the excep-
tion raised is a StandardError exception, the block that rescues StandardError will be exe-
cuted. If the exception thrown is neither of those two types, the default exception handling block
will be executed (this is the rescue block that does not specify a parameter).

As you saw in the previous example, a rescue block can specify a specific type of exception to
handle, or not specify an exception type at all. If no exception type is specified, the block will han-
dle any exception type that has not been handled by a previous rescue block. You can specify
more than one exception type for a rescue block to handle also. For example, if you wanted to
handle SystemCallError and StandardError the same way, you might write an exception
handler like this:

rescue SystemCallError, StandardError
 # handle error
end

In many cases, you will want to get information about the exception that occurred in the rescue
block that handles it. You can access the exception object by defining a rescue block like this:

rescue => ex
 puts “#{ex.class}: #{ex.message}”
end

60

First Steps with RailsPart I

In the above example, the exception object is stored in the ex variable. You can access any of the
exception’s methods through the ex variable. If your rescue clause is for a specific type of excep-
tion, the syntax to get the exception object would look like this:

rescue ArgumentError => ex
 puts “#{ex.class}: #{ex.message}”
end

More exception handling using ensure, retry, and else
Now that you have the basics of Ruby exception handling down, let’s look at three additional state-
ments that are part of Ruby’s exception handling support. These are the ensure, retry, and
else statements.

The retry statement
If you put a retry statement inside of a rescue block, the block of code that the rescue block is
attached to will be run again. This is a good option for errors that are likely to resolve themselves.
For example, if the load on a server was too high when you called it the first time, if you wait a bit
and attempt the call again, it may succeed. The following code illustrates that scenario:

network_access_attempts = 0
begin
 network_access_attempts += 1
 open(‘http://www.timothyfisher.com/resource’) do |f|
 puts f.readlines
 end
rescue OpenURI::HTTPError => ex
 if (network_access_attempts < 4)
 sleep(100)
 retry
 else
 # handle error condition
 end
end

In the begin block of this code, it attempts to open a network resource. If an exception is thrown
while attempting to open that resource, the rescue block will be executed. Within the rescue
block, we check to see if we have attempted to access the resource less than four times. If so, the
code sleeps for 100 mS and then uses the retry statement to retry the begin block. If the same
exception occurs four times, we give up and attempt to handle the error.

The else statement
A begin-rescue code block may also include an else block. The else block will be executed
if the code in the begin block completes without raising any exceptions. Below is an example of
how you might use an else block:

begin
 network_access_attempts += 1

61

Learning Ruby 1

 open(‘http://www.timothyfisher.com/resource’) do |f|
 puts f.readlines
 end
rescue => ex
 puts ‘Error reading file’
 puts “#{ex.class}: #{ex.message}”
else
 puts ‘Successfully read the entire remote file’
end

If any exceptions are raised in the else block, they are not caught by any of the rescue state-
ments attached to the begin block.

The ensure statement
The ensure statement is used to start a block that will always be executed, no matter what hap-
pens in the preceding begin block. The ensure block will be run after the begin block com-
pletes, or after a rescue statement completes if the begin block resulted in an exception. If the
code also contains an else block, the else block will be run before the ensure block. The
ensure block will always be the last block run. If control is transferred away from the begin
block before it completes, perhaps by using a return statement, the ensure block will still be
run, however the else block would not be run in that case. An else block is only run if the
begin block runs to completion. An ensure block is always run no matter what happens in the
begin block. Here is an example of exception handling code that uses an ensure block:

begin
 file = open(“/some_file”, “w”)
 # write to the file
rescue => ex
 puts ‘Error writing file’
 puts “#{ex.class}: #{ex.message}”
else
 puts ‘Successfully updated file’
ensure
 file.close
end

In this example, the code opens a file and would then attempt to write to that file. If an exception
occurs, the exception is printed to the screen. If the write completes successfully, a success mes-
sage is printed to the screen using the else block. In either case, the ensure block runs to make
sure that the file gets closed.

The normal use of an ensure block is to ensure that your code performs necessary housekeeping
tasks, such as closing files, close database connections, or completing database transactions. Unless
an ensure block contains an explicit return statement, it will not affect the return value of your
method. For example, in the following code, the value returned will be hello and not goodbye.
If you’re wondering why hello is used as a return value, recall that the last value of a method is
also the value that gets returned. The ensure block will not overwrite that return value.

62

First Steps with RailsPart I

begin
 ‘hello’
ensure
 ‘goodbye’
end

Organizing Code with Modules
One of the most commonly touted benefits of object oriented programming is that it can result in
more reusable code. You can use reusable code in multiple applications, and it saves developers
time and money. Organizing your code into classes and separating your classes into different files
is one way of creating reusable chunks of code. Often, though, you may have a situation where you
have a bunch of methods that don’t naturally fall into a specific class, and yet they are methods
that you find yourself using again and again, perhaps in many of your classes. This is where Ruby’s
concept of a module can help you out.

A module in Ruby provides a namespace that allows you to group methods and constants together,
similar to the way a class groups methods and attributes. A Ruby module definition looks like this:

module Messaging
 def send_email
 ..
 end

 def send_im
 …
 end

 def send_text_message
 …
 end
end

This creates a Messaging module that bundles together methods related to sending a message
over various protocols, e-mail, instant messaging, or text messaging. Any place where you wanted
to use these methods, you could include this module as a mixin.

In addition to providing a convenient namespace and place to put methods and constants that do not
fall naturally into a class definition, modules also give you the ability to use mixins. The Ruby con-
cept of a mixin is a way of including methods and constants defined in a module into another module
or class. Previously you saw how to define a Messaging module. Now if you have a Notifier class
that you want to use these methods in, you would simply include this module like this:

require ‘messaging’

class Notifier

63

Learning Ruby 1

 include Messaging
 …
end

The Notifier class uses a require statement to import the file containing the Messaging
module. This example assumes that the module is stored in a file contained in the same directory
as the Notifier class, with a filename messaging.rb. The include statement imports all of
the methods contained in the Messaging module into the Notifier class.

Perhaps the most common examples of mixins are the Enumerable and Comparable modules
that are included with Ruby. These modules are mixed into quite a few classes by default, and you
can easily mix them into your own classes as well. The Enumerable module defines useful itera-
tors for any class that defines an each method. It is important to remember that the Enumerable
module does not define the each method. You must define the each method in any class that
you include the Enumerable module into. Enumerable defines methods such as all?, any?,
collect, find, find_all, include?, inject, map, and sort. See the Ruby documentation
Web site for a complete description of the methods of the Enumerable module www.ruby-
doc.org/core/classes/Enumerable.html.

The Comparable module defines general comparison methods for any class that defines the <=>
method. You can include the Comparable module into any class for which you have defined the
<=> method. The Comparable module defines methods that look like operators such as: <, <=,
==, >, and >=.

Advanced Ruby Techniques
In this section, you’ll learn some additional techniques that will be useful to you when you are
writing and studying Rails programs. The techniques described in this section are also used inter-
nally by Rails.

Variable length argument lists
All of the method examples that you’ve seen so far in this chapter have used fixed argument lists.
Ruby also supports variable length argument lists. A method that allows a variable length argument
list lets you call it with different numbers of methods in different situations. Take a look at the fol-
lowing example:

def print_strings(*strings)
 strings.each { |str| puts str }
end

This is a method that will accept a variable number of arguments. The strings variable contains
an array holding all of the arguments that are passed to this method. In the body of a method, the
each iterator is used to step through each of the strings passed in and to print its value.

64

First Steps with RailsPart I

Dynamic programming with method_missing
The method_missing method is a feature of Ruby that you will find very useful in certain situa-
tions. Before you get into the details of that, though, let’s talk about what is meant by the term
dynamic programming. Dynamic programming is a style of programming in which you create code
or change the nature of your program’s code at run-time.

If you attempt to call a method that does not exist for the object you are using it on, you normally
get an undefined method error. For example, try typing this code in irb:

class EmptyClass
end

obj = EmptyClass.new
obj.say_hello

In this code, you are attempting to call the method say_hello on an instance of the
EmptyClass. Because this method does not exist, you will see an error message like the following
printed to the console:

NoMethodError: undefined method ‘say_hello’ for
#<EmptyClass:0x28f7d64>

 from (irb):31
 from :0

Here, irb is telling you that it cannot find this method in your class. Go ahead and exit that irb
session to clear its memory and restart irb. Recreate the EmptyClass, slightly modified, as
shown here:

class EmptyClass
 def method_missing(method, *args)
 puts ‘Sorry, I could not find the method you are

calling.’
 Puts “The method you called is #{method}.”
 end
end

obj = EmptyClass.new
obj.say_hello

Now when you call the say_hello method in irb, you see this output:

Sorry, I could not find the method you are calling.
The method you called is say_hello.

As you can see, because the method you called could not be found in the EmptyClass, the
method_missing method was called. The method_missing method is called by Ruby anytime
you try to call a method that does not exist. The name of the method, and any arguments that you
passed to the method you were trying to call, are also passed to the method_missing method.

65

Learning Ruby 1

Reopening classes
In Ruby, no class definition is ever final. You can reopen the definition of any Ruby class, includ-
ing classes that you previously defined, even classes that are built into Ruby, and modify those
class definitions to change the behavior of those classes.

Let’s look at an example where you will reopen a commonly used built-in Ruby class, the String
class. Try this out by typing the following code into an irb session:

class String
 def reverse_and_capitalize
 self.reverse.capitalize
 end
end

You’ve added a new instance method named reverse_and_capitalize to the String class.
This method combines the features of the built-in reverse and capitalize methods. The
reverse_and_capitalize method is now available on any string that you create. Try it out:

str = “say hello”
str.reverse_and_capitalize
=> “Olleh yas”

You created a string object the normal way and called the new method that you added. Your method
is now a part of the String class, just like any other method that you use with the String class. In
addition to adding methods, you could also redefine a method by reopening the class.

You can use this technique to extend external libraries that you use, as well as the built-in Ruby
classes.

CAUTION CAUTION Developers have expectations from commonly used methods, and if you change
the behavior of those methods, you must make sure that it is well documented and

everyone who uses your modification is aware of those changes.

Summary
This chapter has provided you with a basic overview of the Ruby programming language. While
what it provided is far from a complete overview of Ruby, it should be more than enough to get
you started writing Rails applications, which is the ultimate goal of this book.

As you begin writing Rails applications and as you gain more experience with both Ruby and Rails,
your Ruby skills will increase, and I am certain you will seek out additional resources to further
enhance your Ruby programming skills. Programming Ruby: The Pragmatic Programmers’ Guide is
often referred to as the Ruby Bible (also commonly called the pickaxe book because of the image of a
pickaxe depicted on its cover) and is probably a book that you will want to own at some point. This
book is written by a Ruby pioneer, Dave Thomas, and was one of the first Ruby language books pub-
lished in the United States. It remains the most referenced and most used Ruby language book.

67

In the summer of 2003, David Heinemeier Hansson was building the
Basecamp Web application for a small company called 37signals. In the
process of developing Basecamp, he created a core of functionality that

he wanted to reuse on other applications he was developing. He extracted it
and turned it into an open-source project that became Ruby on Rails.

Rails was first released to the public in the summer of 2004 as version
0.5. Hansson presented Ruby on Rails at the 2004 International Ruby
Conference. Since its release, Rails has grown in popularity at an incredible
pace. Version 1.0 of Rails was released on December 13, 2005. At the time
of this writing, Rails is at version 1.2.

Rails’ growth is not limited to the existing community of Ruby developers. It
has pulled in converts from languages such as Java, PHP, and Perl, among
others. By the time you read this, there will be more books available about
Ruby on Rails than any other framework from any language. The Ruby on
Rails framework has served as a catalyst for incredible growth of awareness
and use of the Ruby programming language. The creator of the Ruby pro-
gramming language, Yukihiro Matsumoto (known online as Matz), has
referred to Rails as Ruby’s Killer App.

TIPTIP To take a look at some existing applications created using
Rails, check out the list of real-world Rails applications main-

tained on the official Ruby on Rails wiki site at http://wiki.rubyon
rails.org/rails/pages/RealWorldUsage. You can find a list of the
top 100 Rails sites, as ranked by Alexa.com, at http://rails100.
pbwiki.com. Finally, the site www.happycodr.com provides a showcase
for applications built with Rails.

IN THIS CHAPTER
What is Ruby on Rails?

Rails architecture

Rails scripts

Your first Rails application

More to get you started

Getting Started
with Rails

68

First Steps with RailsPart I

What is Ruby on Rails?
Ruby on Rails is an application framework composed of several libraries; together, these libraries
supply a complete framework for building Web applications. You can use Rails to build any kind
of Web application. Common examples of applications built using Rails include blogs, wikis (sites
that can be edited by anyone with access to them), project tracking applications, photo gallery
applications, social networking applications, and online shopping sites. Any database-backed Web
application is a good candidate for Rails development.

So what has made Rails such a popular framework over such a short span of time? A simple
response is that Rails lets you build powerful Web applications quickly and easily by doing a
majority of the work common to most Web applications. What makes Rails different from the
many other existing Web application frameworks, such as Apache Struts, Apache Cocoon, and
Perl’s Maypole, is that Rails makes development fun and easy for the developer. Rails accomplishes
this through many innovations that have not been seen before in any other framework.

The boost in productivity that can be gained by building a Web application with the Rails frame-
work is well documented and has been one of its strongest selling points. More than one case
study has shown that Web application development can be sped up by a factor of as much as ten
by using the Rails framework and the Ruby language instead of more traditional Java or .Net
architectures.

Rails provides a full-stack framework. This means that Rails provides all the pieces needed to build a
complete Web application in one package. You don’t need to cobble together several different
frameworks to get the functionality that is common to most Web applications. Using the analogy
of building a house, Rails supplies the complete plumbing, electrical, and framework already built.
You just have to add the functionality and features specific to your application. The basic functions
provided by Rails are:

n HTML templating

n Database storage and retrieval

n Handling of Web request and response

n HTML form handling

If you’ve done a significant amount of Web development in the past, with or without a framework,
you’ve probably gotten used to having to know several different languages. It is common to have to
switch back and forth between languages from task to task in typical Web application develop-
ment. For example, your database setup and access is coded in SQL, your front end may be coded
in some specific templating language, and your business logic may be in Java, .Net, or some other
programming language.

When you write a Web application using Rails, almost all of the development you do is in Ruby.
You can define your database in Ruby, access your database in Ruby, use Embedded Ruby (ERb) in
your templates, and code your business logic in Ruby. This frees your mind to focus on one lan-
guage to learn and know well.

69

Getting Started with Rails 2

Both within the Rails source code and externally, Rails espouses several design paradigms that you
will run into again and again as you develop with Ruby on Rails. The following sections describe
these paradigms.

DRY
Don’t Repeat Yourself (DRY) is a philosophy that can be seen throughout the Rails framework.
What this philosophy means is that you should not have to repeat yourself in code, configuration,
or in many cases even documentation, within a single Web application. For example, in a Rails
application, you define your database structure in one place and one place only.

You do not have your database structure defined in SQL files, configuration files, or model object
files. This saves you work and prevents errors, as well. When something in your application
changes, you only need to make the change in one place. You generally do not need to hunt
through a mess of files in a Rails application to make a change to your application.

Convention over configuration
Rails relies on accepted convention over configuration. A common characteristic of many applica-
tion frameworks is that you have to configure them using lengthy and complex XML files. Rails
does what you might think it should do in most cases without having to specify any configuration.
You are also able to override the default behavior of Rails in most areas when you need to do some-
thing that may be unconventional.

A good example of this philosophy in use within Rails is in the standard Rails routing mechanism.
Without having to type a single line of configuration, Rails figures out which classes and methods
handle every page request, simply by inspecting the URL. Rails has a standard or conventional for-
mat for specifying the URLs your application uses. The name of a controller class, an action
method, and a primary key identifying a record being worked with are specified in the URL.

Opinionated software
The development team behind Rails is not shy about admitting that Rails contains built-in opinions
of how Web applications should be developed and designed. Some developers might tell you that
an application framework should be completely free of opinions, and designed to be as flexible as
possible, accommodating any design decisions that application developers might want to use.
Rejecting that view, the developers of Rails have staked out a vision and have taken a definite side
on how applications should be developed.

The creator of Rails, David Heinemeier Hansson, has said that the opinionated software aspect of
Ruby on Rails has been a large contributor to its ease of use and its overall success. By not trying to
be all things to all people, Rails focuses on doing what it does exceptionally well, and in most cases
it succeeds with flying colors. By sacrificing some flexibility at the infrastructure layer provided by
Rails, you gain tremendous flexibility at the application layer, where you will be more productive
and better able to implement your application the way you want it sooner and better.

70

First Steps with RailsPart I

NOTENOTE Throughout the remainder of this book, David Heinemeier Hansson is referred to
by his initials DHH. This practice is common throughout Rails literature, probably

due to the length of his name. Anytime you see a reference to DHH, you now know that it refers
to the Rails creator.

The paradigm convention over configuration is a characteristic of opinionated software. By following
the opinions set forth by the designers of Rails, you gain tremendous productivity by avoiding hav-
ing to deal with configuration files. Rails also has an opinion of how your database should be
designed, including details such as table-naming conventions. If you adhere to those opinions, you
gain tremendous productivity by giving Rails the ability to automatically generate the vast majority
of your database access code.

Rails Architecture
When developers are talking about architecture, they are speaking about the way an application’s
code and other components are assembled together into a whole that makes up the application. A
good software architecture can make an application easier to develop, maintain, understand, and
extend. A good software architecture also improves the quality of an application.

The architecture of the Rails framework is one of its many strengths. It provides a solid foundation
upon which you can build your own applications.

MVC
The Model-View-Controller, or MVC, design pattern, has long been accepted as a better way to
architect software applications. MVC is accepted as a better way because it makes applications eas-
ier to develop, understand, and maintain. MVC simplifies the implementation of an application by
dividing it into several layers, each with a given role and responsibilities.

The layers that make up an MVC application are the Model, the View, and the Controller layers.
The model layer is responsible for maintaining the state of an application. It encapsulates an appli-
cation’s data and business logic for manipulating the data. The view layer provides the user inter-
face of an application. The controller layer is responsible for figuring out what to do with user and
other external input. The controller layer interprets user input and responds to user requests by
communicating with the model layer, and rendering views using the view layer.

You can think of the controller as the conductor of the application. It determines which views to
show, based on the input received.

MVC was originally created with desktop GUI applications in mind. When developers first started
writing Web applications, they took a step backward and seemed to have forgotten the benefits of
MVC. Many of the early Web applications mixed business logic, presentation, data access, and
event handling all in giant, complex script files written in languages such as PHP, Perl, and Java’s
JSP. As Web applications became larger and grew in complexity, developers and Web architects

71

Getting Started with Rails 2

realized they would need a better architecture to support these large applications. Web develop-
ment frameworks such as Struts and WebObjects began to emerge, which brought the MVC design
pattern back to Web applications.

The MVC design pattern, as applied to a Web application, is shown graphically in Figure 2.1. In
the context of a Web application, the view layer represents the Web pages that make up the user
interface of a Web application. The controller layer handles the HTTP requests and communicates
with the model layer. The model layer communicates with a database and performs necessary busi-
ness logic required to manipulate the data.

 FIGURE 2.1

MVC architecture of a Web application

Controller

Request

Browser Response

Model

Database

View

Rails and MVC
The MVC design pattern is at the core of the Rails framework. By using Ruby on Rails, your Web
application will also use the MVC design pattern. The implementation of Rails is divided into
libraries based around each layer of the MVC pattern. Model, view, and controller layer separation
is very visible to Rails application developers. Most classes that you will write while building a Rails
application will be one of these three types and, as discussed later in this chapter, they are even
organized into model, view, and controller directories.

The ActiveRecord library provides the foundation of the model layer. ActiveRecord, and the model
classes that you build on top of ActiveRecord, provide the model layer of your application. This
layer provides object relational mapping (ORM) between Rails classes and the database you use, such
as MySQL, Oracle, or some other database. An ORM maps relational database structures to an
object hierarchy. It is possible to build a Rails application that does not use a database, but that is
not common. If you were not using a database, your model layer might use some other form of
persistent storage, or perhaps just provide business logic if your application does not provide any
persistent storage.

72

First Steps with RailsPart I

NOTENOTE ActiveRecord is based on a design pattern by Martin Fowler. You can read more
about the ActiveRecord design pattern at www.martinfowler.com/eaaCatalog/

activeRecord.html.

The view layer of a Rails application is implemented in ERB template files. These files contain a
mixture of HTML and embedded Ruby code (ERb), and are similar to JSP, ASP, or PHP files. There
are two other built-in template file types that Rails supports. One file type is RXML files, which
give you an easy way to create XML files using Ruby code.

The other file type is RJS files, which allow you to create JavaScript fragments using Ruby code. RJS
stands for Ruby JavaScript. The JavaScript fragments are executed in the client browser just as
JavaScript embedded in an HTML file is. The use of RJS is a common technique used for creating
AJAX features. The Rails code that implements this feature comes from a library called Action Pack.

CROSS-REFCROSS-REF For more information on using RJS to create AJAX features, see Chapter 5.

The Rails controller implementation, also part of the Action Pack library, insulates developers from
having to deal with CGI and related request and response data, including form data. Controllers
handle incoming browser requests, call appropriate functions on model objects, and render your
view templates into pure HTML, which the Web server then returns to the browser.

Rails provides you with very simple methods for getting data sent from a Web page, and simple
methods for returning data for presentation in Web pages. In the course of developing a Rails
application, you will write many controller classes. Controller classes are written in pure Ruby and
contain methods referred to as actions. Generally, a single controller corresponds to a single Web
page, and each action corresponds to an action that you can perform on that Web page.

Figure 2.2 shows how a Rails application implements the MVC design pattern, and how requests
are routed from a browser through the application.

 FIGURE 2.2

Ruby on Rails MVC implementation

Browser

ActiveRecord

Controllers View

rhtml
rxml
rjs

Action Pack

Database

73

Getting Started with Rails 2

All Rails applications are laid out in an identical style in terms of directory structure and locations
of files. Following is an overview of the standard directory structure of a Rails application. Later in
this chapter, when you create your first Rails application, you can see how easy it is to automati-
cally generate this entire directory tree. Each directory and its contents are described here:

n app: Where all the application’s MVC code goes

n config: Application configuration files

n db: Database schema and migration files

n doc: Documentation for your application

n lib: Application-specific custom code that isn’t part of your MVC code

n log: The application log files automatically created by Rails

n public: JavaScript, CSS, images, and other static files

n script: Rails scripts for code generation, debugging, and performance utilities

n test: Unit-test related code and related files

n tmp: Cache, session information, and socket files used by the Web server

n vendor: Where Rails plug-ins are installed

Rails Scripts
In addition to providing an application development framework that you use to write your Web
application, Rails also provides some excellent tools that assist you in the process of developing
your application. These tools are packaged as scripts that you run from the command-line of what-
ever operating system you develop on.

The most important scripts to become familiar with and use regularly in your development are:

n Rails Console

n WEBrick Web server

n Generators

n Migrations

Each of these script types is described in the next section.

Rails Console
The Rails Console is a command-line utility that lets you run a Rails application in a full Rails envi-
ronment right from the command-line. This is an invaluable tool for debugging during the devel-
opment process. You may recall that the last chapter introduced the Interactive Ruby console (irb).
The Rails Console is an extension of irb, offering all the features of irb along with the ability to
auto-load your complete Rails application environment, including all its classes and components.
Using the Rails Console, you can walk through your application step-by-step and look at its state
at any point of execution.

74

First Steps with RailsPart I

WEBrick
WEBrick is a Web server included with the Rails framework, and is ideal for local developer test-
ing. The WEBrick server is written in pure Ruby and runs on any platform that you develop on,
including Windows, Mac, or Unix. Rails is configured to automatically make use of the WEBrick
server. Alternatively, if you have the Mongrel or lighttpd sever installed on your system, Rails uses
either of those servers.

A really great feature about WEBrick, Mongrel, and lighttpd is that they all feature automatic
reloading of code. This means that when you change your source code, you do not have to restart
the server to have it take effect. You can immediately reload a Web page to see any of your changes
take effect.

Generators
Rails includes code generation scripts, which are used to automatically generate model and con-
troller classes for your application. Code generation is an important part of Rails that can increase
your productivity when developing Web applications. By running a simple command-line script,
you can generate skeleton files for all of your model and controller classes.

The code generation script also generates database migration files for each model it generates, as
well as unit tests and associated fixtures. With more experience, you can even write your own gen-
erators to automatically generate pieces of your application that you find yourself using frequently.

CROSS-REFCROSS-REF For more information about writing your own generators, check out Chapter 11.

Migrations
Migrations are a very cool feature of Rails that can make your life simpler and easier. They bring
the principle of DRY to life. Migrations are pure Ruby code that define the structure of a database.
When you use migrations, you no longer have to write SQL to create your database. Over the
course of a project, it is very common for your database schema to evolve as you learn more about
your problem domain.

Migrations are written such that each change you make to your database schema is isolated in a
separate migration file, which has a method to implement or reverse the change. This makes it an
easy process to roll forward or backward across revisions of your project’s schema. Migration files
are run with a special Rails script.

Your First Rails Application
At this point, although this chapter has barely scratched the surface of Rails and has not yet gone
into any detail on any of the components that make up Rails, you can write your first Rails applica-
tion. This section shows you how easy it is to write a simple Rails application, and how quickly
you can get up and running with a basic application skeleton. The application you create in this
section even includes a database.

75

Getting Started with Rails 2

As you work through this application, you are very much encouraged to follow along on your
computer and build the application as you read this section. Reading coupled with practice is a
much more efficient way of learning than through reading alone. However, for those who just want
to download the completed application, you can find it on this book’s Web site, rubyonrails
bible.com. Even if you download the completed application, you should still read through this
section, as it presents many general Rails development concepts in the context of developing the
application.

If you’ve been reading this book from the start, you should already have a working installation of
Rails and MySQL on your computer. If you do not yet have Rails or MySQL installed and need
help getting them installed, see this book’s Quick Start chapter for complete installation
instructions.

Each of the following five steps is described in the sections that follow.

 1. Create the project using the rails command.

 2. Set up the database.

 3. Create the model.

 4. Create the controller and views.

 5. Style the application.

Create the project
The first step in creating a Rails application is to use the rails command-line program to gener-
ate the directory structure for your application. For your first Rails application, this section walks
you through steps to create a very simplified version of a contact list manager.

This application implements a reasonable amount of real-world functionality, while remaining sim-
ple enough to not make your learning curve too steep. First create a directory called rails_
projects that will serve as the root of the Rails projects that you can build throughout this book.
After you’ve created the rails_projects directory, navigate into that directory and run the
rails project generation script, as shown here:

cd rails_projects
rails contactlist
 create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 create config/environments
 create config/initializers
 create db
 create doc
 create lib
 …
 create log/production.log
 create log/development.log
 create log/test.log

76

First Steps with RailsPart I

This script creates a directory called contactlist inside your rails_projects directory.
Inside the contactlist directory, you can see that the rails command created the complete
Rails standard directory structure that is common to all Rails applications. Standard versions of
many files required by Rails were also created and put in their appropriate directories.

For example, the last three files created are the Rails log files. A separate log file is created for each
environment used in the standard development process: development, test, and production. This
simple command has done a tremendous amount of work for you. It also provides the benefit of
creating a standard directory structure that is common across all Rails applications.

If you work on several Rails applications, you can always rely on files being located in the same
places, no matter what the application is. Although it is easy to take this for granted, few other
frameworks prior to Rails enforced such a practice. If you’ve spent a lot of time developing Java
applications, you never know where you are going to find a given file or what the directory struc-
ture might look like as you transition across Java projects.

As mentioned earlier, Rails is compatible with many different Web servers. For your first applica-
tion, stay with the Web server that is distributed with Rails, WEBrick. This allows you to launch
the Web server to test out your application at any time without going through the trouble of
installing another Web server. Now that you’ve generated the skeleton of your first application,
start WEBrick and see what you’ve achieved with a single command.

ruby script/server Webrick
 Booting WEBrick
 Rails application started on http://0.0.0.0:3000
 Ctrl-C to shutdown server; call with --help for options
 ..

The script/server command tells Rails to start up the server specified as a parameter, in this
case WEBrick. In UNIX environments, you normally would not have to precede the command
with ruby, so you could just type ./script/server Webrick. Also, the server name parame-
ter is not required if WEBrick is the only server you have configured for your Rails application. As
a result, this command would also start the WEBrick server: ruby script/server.

By default, WEBrick always binds to port 3000. If you want to change the default port assignment,
you can do that in the environment.rb file, which is covered later in this book. You can also
specify a different port from the command-line when you start up the server using the -p option
as shown here:

ruby script/server -p 80

This command would start the server bound to port 80.

Now open your browser of choice and navigate to http://localhost:3000 to see the screen
shown in Figure 2.3. You can see that by simply running the Rails generation script, you have the
skeleton of a working Web application with no additional work yet on your part. Of course, a skel-
eton is all the application is in its current form. Now comes the more interesting task of actually
making your application do something useful, or at least useful in the context of saying you wrote
your first Rails application.

77

Getting Started with Rails 2

If you look back at the console window where you started the server, you can see that some log
messages have printed. As your Rails application runs, it continuously outputs messages to this
window, which allows you to trace your application and figure out what it is doing.

Note that the default Rails Web page shown in Figure 2.3 also lists the typical steps involved in get-
ting your application built. Follow the steps shown in this figure for the remainder of this section.

NOTENOTE Throughout the rest of this chapter, the root directory, rails_projects/
contactlist, will not be specified. When you see a directory mentioned, such as

app/models, you should assume that it is located in the rails_projects/contactlist
directory unless otherwise specified.

 FIGURE 2.3

The default Rails application start page

Set up the database
Begin by creating a simple database using MySQL with one table that will hold a list of contacts. In
this database, titled contactlist_development, create one table with the name contacts. This
table will hold contact information for your application. Use the command-line interface of MySQL
to do this:

78

First Steps with RailsPart I

mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.0.45-community-nt MySQL Community Edition (GPL)

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> create database contactlist_development;
Query OK, 1 row affected (0.29 sec)

mysql> use contactlist_development;
Database changed
mysql> create table contacts (
 -> id int not null auto_increment,
 -> first_name varchar(100) not null,
 -> last_name varchar(100) not null,
 -> address varchar(255) not null,
 -> city varchar(100) not null,
 -> state varchar(2) not null,
 -> country varchar(100) not null,
 -> phone varchar(15) not null,
 -> email varchar(100),
 -> primary key(id));
Query OK, 0 rows affected (0.40 sec)

You can verify that you created the database and table correctly using the Show and Describe com-
mands, as shown here:

mysql> show tables;
+-----------------------------------+
| Tables_in_contactlist_development |
+-----------------------------------+
| contacts |
+-----------------------------------+
1 row in set (0.00 sec)

mysql> describe contacts;
+------------+--------------+------+-----+---------+-------------

---+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------------

---+
id	int(11)	NO	PRI	NULL	auto_increment
first_name	varchar(100)	NO			
last_name	varchar(100)	NO			
address	varchar(255)	NO			
city	varchar(100)	NO			
state	varchar(2)	NO			

79

Getting Started with Rails 2

country	varchar(100)	NO			
phone	varchar(15)	NO			
email	varchar(100)	NO		NULL	
+------------+--------------+------+-----+---------+-------------

---+
9 rows in set (0.02 sec)

You should now have your database completely set up and ready to use. The database is strategi-
cally named contactlist_development, which is the same name you gave to your project,
with the addition of the development suffix. This allows you to take advantage of more Rails
automation, or convention-over-configuration, magic.

Rails automatically looks for databases that have the same name as the project, plus the environ-
ment suffixes (_development, _test, _production). Of course, if you want to use a differ-
ent name for your database, you are able to do that by specifying the name of your database in the
config/database.yml file.

CROSS-REFCROSS-REF In Chapter 3 you will learn an easier way to create your database without having to
use the mysql command-line application at all. Instead you will use a simple rake

task to create the database.

Create the model
Now that you have a working database, the next step in creating your Rails application is to create
your model classes. In case you forgot, the model classes are responsible for managing an applica-
tion’s data and business logic. If you were to look at a description of the business problem your
application is trying to solve, the model classes will usually correspond to the nouns that show up
in that description.

For a contact list application, the most obvious noun that would show up would be the noun, con-
tact. Rails gives you a generate script which allows you to automatically generate class files for
models, views, and controllers.

The generate script is located in the script directory at the root of your Rails application. The first
generate script parameter is the name of the object type you want to generate, in this case a model
object. The second parameter is the name you want to give the model that is generated. Use the
name Contact for your model class. This parameter is case-insensitive, and so you could specify it
as either Contact or contact.

Using the generate script, go ahead and create the Contact model.

ruby script/generate model Contact
exists app/models/
exists test/unit/
exists test/fixtures/
create app/models/contact.rb
create test/unit/contact_test.rb
create test/fixtures/contacts.yml
create db/migrate
create db/migrate/001_create_contacts.rb

80

First Steps with RailsPart I

Notice that the choice of the name Contact for the model class is the same name given to the name
of the table minus the plural. This is not an accident. By giving the model the same name as your
table name, Rails provides you with a wealth of functionality for this model object, without having
to write any code yourself. Again, you see an example of convention over configuration here. By
sticking with the Rails conventions for naming database tables and model classes, you will gain a
great deal of functionality with no configuration required.

Notice that by running this generate script, Rails created four files. The first file created,
contact.rb, is your model object. This was created in the app/models directory. The app
directory is the home for all of an application’s model, view, and controller classes.

The second file created is the contact_test.rb file. This file contains the skeleton for a unit
test that you can use to write unit tests in for the Contact object. This was created in the test/
unit directory. Rails places all test-related files into the project’s test directory. The subdirectory
of test, called unit, contains unit test files. The third file created is another test-related file,
contacts.yml. This file is called a fixture file, which is used to set up test data for your unit
tests. Fixtures are covered in more detail later in this book.

CROSS-REFCROSS-REF Developer testing in a Rails application is covered in detail in chapter 9. Developer
testing includes unit, functional, and integration testing. Rails provides built-in sup-

port for each of these types of tests.

The fourth file created is a migration class, 001_create_contacts.rb. This contains an empty
migration class that you could use to create a migration for creating the contacts table in the data-
base. Because you already did that using MySQL, you don’t need to worry about the migration file
in this chapter.

CROSS-REFCROSS-REF For more information about cover migrations, check out the details of the model
layer, as discussed in Chapter 3.

Take a look at the contents of the app/models/contact.rb file. Your file should look like this:

class Contact < ActiveRecord::Base
end

Were you expecting to see more? This is an empty class definition of a class called Contact that
extends from the ActiveRecord::Base class. While this doesn’t look like it provides much
functionality, your class has gained quite a bit of functionality just by extending from the
ActiveRecord::Base class. Thanks to magic provided by ActiveRecord, your Contact class
now fully understands the contacts table that you created in the database earlier. You can use this
class to create Contact objects, read contact records from the database, and store contact data to
the database. All this without writing a single line of model code.

You probably want to see this for yourself, so start the Rails Console and play around with your
new Contact class a little.

81

Getting Started with Rails 2

 1. Start the Rails Console. From the root directory of your contactlist project, type this:

ruby script/console
Loading development environment
>>

 This starts up the Rails Console and loads your application’s environment.

 2. Create a new Contact model object. At the >> prompt, you can now type any valid
Ruby syntax. Try this:

>> my_contact = Contact.new
=> #<Contact:0x476d488 @attributes={“city”=>””, “country”=>””,

“first_name”=>””, “address”=>””, “last_name”=>””,
“email”=>nil, “state”=>””}, @new_record=true>

>>

After you type the first line, the second line shown above is the response you get. Throughout this
book and while you’re in the Rails Console, you can differentiate input that you type from output
by the prompt preceding the line. The >> prompt is the input line prompt. The => prompt begins
lines that contain the Console output.

The Rails Console always prints the final return value of whatever method was executed by the
statement you typed. In this example, what you see is the notation for a Contact object instance.
The Contact.new statement caused a new instance of Contact to be created and returned. This
instance contains an attribute for each field that you created in the contacts database table. This is
the first proof you have that the Contact object really has been tied to the contacts database table,
through no code of your own. The hexadecimal number near the beginning of the return value fol-
lowing #<Contact: is probably a different value on your computer. This is the address that is
assigned to the object that was created. You usually don’t have to pay much attention to that
number.

 3. Continue by assigning some values to the object’s attributes. As you type each of the
lines below, you will see the attribute value printed as output:

>> my_contact.first_name = ‘Timothy’
>> my_contact.last_name = ‘Fisher’
>> my_contact.address = ‘25296 Hunter Lane’
>> my_contact.city = ‘Flat Rock’
>> my_contact.state = ‘MI’
>> my_contact.country = ‘USA’
>> my_contact.phone = ‘555-555-5555’
>> my_contact.email = ‘tim@timothyfisher.com’

 4. Save the contact object. Run the object’s save method to have this data saved to the
database. The save method is inherited from the ActiveRecord::Base class.

>> my_contact.save
=> true

82

First Steps with RailsPart I

You have now created a new contact using the Contact model object. By calling it save method,
a new record has been created in your contactlist_development database. Now you can use
the Contact object to find and retrieve from the database the record that you just created. To do
this, use a class method of Contact called find.

 1. Load your contact object from the database. Make sure you are still in the Rails
Console, and then try this:

>> result = Contact.find(:first)
=> #<Contact:0x474c864 @attributes={“city”=>”Flat Rock”,

“country”=>”USA”, “id”=>”1”, “phone”=>”555-555-5555”,
“first_name”=>”Timothy”, “address”=>”25296 Hunter Lane”,
“last_name”=>”Fisher”, “email”=>”tim@timothyfisher.com”,
“state”=>”MI”}>

>>

 An instance of the Contact class representing the data record found in the database is
returned and printed to the console after executing the find method. The single argu-
ment you passed to the find method is :first. This is a Ruby symbol that the find
method interprets to mean ‘find the first row in the contacts table.’

 2. Print an attribute. Try printing the first_name attribute of the result object to ver-
ify that it contains the data you expect:

>> puts result.first_name
Timothy
=> nil
>>

 As you can see, the value Timothy is printed to the screen by the puts command. The
return value of puts is always nil. That is why you also see nil printed following the
first_name value.

Now you’ve created your Contact model object and convinced yourself that it is connected to the
contacts table through some Rails code contained in the ActiveRecord::Base class.

Create the controller and views
You have a database and you have a model class. Now you need a way to talk to the model class
from a Web application. This is where you use the controller and view layers of the MVC architec-
ture. The controller you create will allow you to perform three of the four standard create, read,
update, and delete (CRUD) operations on your contact list data. You will implement create, read,
and update. Because this controller provides functionality related to the Contact model, call the
controller the ContactController.

If you look at sample Rails code, you’ll find that some developers would name the controller
ContactsController instead of ContactController. Note the difference in plurality. Later
in this chapter, you will see an example of Rails scaffolding which automatically creates controllers
for your model objects. When you generate scaffolding, a pluralized controller is created.
Pluralizing the controller name would seem to make sense as it is a controller that allows you to
work with your contacts. I believe it is easy to justify either name, so my suggestion is to use the
naming style you prefer and stick with it.

83

Getting Started with Rails 2

Just as you used the generate script to create your model class, use the generate script to create the
controller and view classes. You simply have to change the first parameter to the generate script to
the word controller, and Rails will generate the controller class given the name you pass as the
second parameter. When you specify your controller name to the generator, you do not append
the word Controller. For example, for the ContactController, you would just use the word
Contact. Go ahead and generate your controller now:

ruby script/generate controller Contact
exists app/controllers/
exists app/helpers/
create app/views/contact
exists test/functional
create app/controllers/contact_controller.rb
create test/functional/contact_controller_test.rb
create app/helpers/contact_helper.rb

From the output you see after generating your controller, notice that Rails has generated more
than just your controller object; Rails has also created a directory to hold views, a helper file, and
a functional test file. These are objects that you generally always need to use in conjunction with
a controller, and so the developers of Rails have simplified your life by just creating them all at
once —you don’t have to do any extra work. The app/views/contact folder will hold the
html.erb view files associated with this controller.

The controller object is in the app/controllers/contact_controller.rb file. Take a look
at that file. You should see this:

class ContactController < ApplicationController
end

After having seen the model file, perhaps you’re not surprised to see such a short file. The
ContactController class extends the ApplicationController class. You can find the
ApplicationController class in the app/controllers directory with the filename
application.rb. The ApplicationController class is where you place functionality that
you want to be available to all of your application’s controllers. If you were to look at the
ApplicationController class, you would see that it inherits from another Rails class,
ActionController::Base. ActionController::Base is a Rails class that provides all
controllers with methods for performing common Web programming tasks, such as accessing form
and session data.

To implement the required functionality for the contact list application, you will be adding the fol-
lowing methods to the controller class: index, show, new, create, and update. In many Rails
applications it is common convention to use a method named index as the method that displays a
list of all the objects of a given type. So for your application, the index method will display a list
of all available contacts. The functionality of the other methods should be self-explanatory based
on their name.

Open the contact_controller.rb file and add these methods, as shown here:

84

First Steps with RailsPart I

class ContactController < ApplicationController
 def index
 end

 def show
 end

 def new
 end
 def create
 end

 def update
 end
end

Each of these methods will handle a different type of request from the browser. There will also be a
view template associated with the index, show, and new methods. The create and update
methods to not need view templates because they simply process the forms displayed by new and
show respectively and then redirect the user to the index method to show all contacts again.

By default, Rails looks for a view template that contains the same name as the controller method
and renders that template after running the controller method. As a result, the index method
would render a template located in app/views/contact with the name index.html.erb.
Methods in a controller class that handle Web requests are called actions in Rails nomenclature.

You have created actions for index, show, new, create, and update in the
ContactController. As you complete the remainder of the Contacts application in this chap-
ter, you’ll implement these actions to perform the following functions:

n index: This action is called to display a list of all contacts stored in the database.

n show: This action is called to display the details of a selected contact. The details are dis-
played on an editable form that the user can also use to make updates to the contact.

n new: This action is used to display a form that will be used by the user to create a new
contact. Do not confuse this instance method with the class method named new that is
common to all classes.

n create: This action is called to process the request to create a new contact.

n update: This action is called to process the request to update an existing contact.

From these descriptions, note that show and update form a related pair of actions, as do new and
create. The show action will always be called before the update action is called, and the new
action will always be called before the create action is called. In both of these instances, one
action displays a form, and the other action processes the form submit.

85

Getting Started with Rails 2

Implementing the index action
First, focus on the index method. The index method prints a list of all the contacts stored in the
database.

Create the index action. Open up the app/controllers/contact_controller.rb class
and create the index method as shown here:

def index
 @contacts = Contact.find(:all)
end

The single line you’ve added to the index method is enough for your application to be able to
retrieve all of the contact records contained in the database. This is done using the find class
method on the Contact class. The parameter :all tells the find method that you want it to
return all of the contacts that it finds. The contacts are returned as an array of Contact objects
and stored in the @contacts instance variable.

Recall that in Ruby, the @ symbol preceding a variable name makes that variable an instance variable.
It is very important that you store the results of Contact.find(:all) into an instance variable
because instance variables are also accessible from the view templates. This bit of controller code has
made the list of contacts available to your index view template, which you will implement next.

You need to create a view template to display the contacts, but before you do that, you’ve now
reached a good point in your application to discuss how Rails routes to a specific controller and
method based on a URL. The routing mechanism that Rails uses is another example of the frame-
work’s use of convention over configuration. By default, Rails uses the following pattern to decide
where to route URLs:

www.someapp.com/controller/method/id

The first path element in the above example URL controller is the name of the controller to
use. The second path element method is the specific method contained in the controller to call. A
method in a controller class that handles requests and can be routed to directly is also often
referred to in Rails as an action.

Finally, the id is the id of an element that is passed to the method as a parameter called id. Not all of
the controller methods require the id to be passed, and so that element is optional. The method
index is a default action in Rails and can be omitted if you want to call that action. As a result, if you
pass only a controller name in your URL, your request is routed to the default action name index.

Try starting the server again, and view the application to this point in the browser to see what kind
of results you’ve achieved. This is also a good check to make sure you’ve done everything right up
to this point. Start the server with this command:

ruby script/server

Once you see the response messages telling you that the server has successfully started, open a
browser and navigate to this address: http://localhost:3000/contact/index.

86

First Steps with RailsPart I

Based on what was discussed about how Rails routes URLs, you should be able to realize that this
URL will route to the index method of the Contact controller. You should see the message shown
in Figure 2.4. This screen tells you that Rails is trying to render a template located in app/views/
contact/index.html.erb.

Because you have not yet created that template, you get the Template is missing error display.
Since index is the default method for a controller, you could also have navigated to it without
specifying the action, like this: http://localhost:3000/contact.

 FIGURE 2.4

The Missing Template page

Create the index template. In order to display the list of records on a Web page, you now need to
create an index.html.erb template in the app/views/contact directory.

Create a file called index.html.erb in the app/views/contact directory. Type the follow-
ing line into it and then save it:

My Contacts

Now go back to your browser, still pointing at http://localhost:3000/contact/index,
and refresh the page. You should see the contents of the index.html.erb file displayed.

You’ve now reached an important milestone in your development. You have successfully routed a
URL to a method in a controller that you wrote, and a view template that you wrote. You still can’t
see the list of contacts that you are after, though, and so you need to go back into index.html.
erb and do the real work of displaying the contact list. Type this code into index.html.erb:

87

Getting Started with Rails 2

<h1>My Contact List</h1>
<% if @contacts.blank? %>
 <p>No contacts to display.</p>
<% else %>
 <ul id=”contacts”>
 <% @contacts.each do |c| %>

 <%= link_to c.first_name+’ ‘+c.last_name,
 {:action => ‘show’, :id => c.id} -%>

 <% end %>

<% end %>
<p><%= link_to “New Contact”, {:action => ‘new’ } %></p>

Now if you refresh the browser, you should see the screen shown in Figure 2.5. If you have been
following along with this example, the contact list should contain the single record that you cre-
ated in the database earlier when you were testing the Contact model class using the Rails
Console. The contact should be a link, and you should also see a New Contact link. Let me walk
you through the code that you typed in to get this screen.

First, I’ll explain some embedded Ruby (ERb) syntax. Notice that several lines in the above code
are surrounded by <% %> and <%= %>. These symbols let Rails know that what’s enclosed is Ruby
code, which should be interpreted prior to returning the page. The <% %> syntax surrounds Ruby
statements that do not return strings to be displayed. The <%= %> syntax surrounds Ruby state-
ments that result in a string that is inserted into the HTML at the location of the statements.

Look at lines 2 and 3:

<% if @contacts.blank? %>
 <p>No contacts to display.</p>

 FIGURE 2.5

The ContactList list view

88

First Steps with RailsPart I

Check to see if the @contacts array is blank or empty. The blank? method returns true if the
array is empty; otherwise, it returns false. If the array is empty, the message “No contacts to
display” appears on the screen.

The next portion of the code, lines 5 to 11, is reached if the @contacts array contains one or
more items:

<ul id=”contacts”>
 <% @contacts.each do |c| %>

 <%= link_to c.first_name+’ ‘+c.last_name,
 {:action => ‘show’, :id => c.id} -%>

 <% end %>

This block of code creates an unordered list that contains a list item for each of the contacts in the
@contacts array. The each method is an iterator that steps through each of the items contained
in the @contacts array. For each item in the array, the block of code surrounded by the do and
end statements is executed. Immediately following the do statement is the syntax |c|. This means
that each item in the @contacts array is placed in the c variable.

For each item, the Rails link_to helper method is used, which creates an HTML link. The first
parameter passed to link_to is the text that is placed between the <a> and tags. The sec-
ond parameter specifies the action that is called when the link is clicked. For example, this code:

<%= link_to ‘Timothy Fisher’, {:action => ‘show’, :id => 1} -%>

ends up on the resulting Web page as:

Timothy Fisher

For each of the contacts, then, a link is created containing the contact’s first and last name joined
together. The href of the link will consist of contact/show/ followed by the id of the contact
being displayed.

In the last line of the template:

<p><%= link_to “New Contact”, {:action => ‘new’ } %></p>

you again use the link_to method to create a link for adding a new contact. This link displays
the text New Contact and calls the action new when clicked.

You now have a completed list view. No matter how many contacts you have in the database, this
simple view displays a list of all the contacts. When you click any contact, you are routed to the
show action. That action should cause the Web application to display a page that can be used to
view and edit the details of a contact. Next you’ll implement the new action and its associated view
template so that you will be able to add additional entries into your contacts database.

89

Getting Started with Rails 2

Implementing the new action
With what you have implemented so far, you can start the contact list application and view a list of
all of your contacts. Now let’s go ahead and create the controller method and view template that
will allow you to display a form from which a user can create a new contact.

 1. Create the new action. Open up the contact_controller.rb file and modify the
new method to look like this:

def new
 @contact = Contact.new
end

 The single line in the new method creates a new Contact object that will be used to
hold the new contact information you create. Next, you’ll create a view template to dis-
play the new contact form in the browser.

 2. Create the new template. In the app/views/contact directory, create a new file
named new.html.erb. This will be the template for creating a new contact. Type the
following code into this file:

<h1>Create New Contact</h1>
<% form_for :contact, :url => {action=>’create’} do |f|
 <p><label for=”contact_first_name”>First Name:</label>
 <%= f.text_field ‘contact’, ‘first_name’ %></p>

 <p><label for=”contact_last_name”>Last Name:</label>
 <%= f.text_field ‘contact’, ‘last_name’ %></p>

 <p><label for=”contact_address”>Address:</label>
 <%= f.text_field ‘contact’, ‘address’ %></p>

 <p><label for=”contact_city”>City:</label>
 <%= f.text_field ‘contact’, ‘city’ %></p>

 <p><label for=”contact_state”>State:</label>
 <%= f.text_field ‘contact’, ‘state’ %></p>

 <p><label for=”contact_country”>Country:</label>
 <%= text_field ‘contact’, ‘country’ %></p>

 <p><label for=”contact_phone”>Phone:</label>
 <%= f.text_field ‘contact’, ‘phone’ %></p>

 <p><label for=”contact_email”>Email:</label>
 <%= f.text_field ‘contact’, ‘email’ %></p>

 <%= f.submit “Create” %>
<% end %>

<p><%= link_to ‘Back’, {:action => ‘index’} %></p>

90

First Steps with RailsPart I

Now let’s walk through the code you created in the new.html.erb template. There are really
only a few interesting things going on in this template. First, look at the second line of the
template:

<% form_for :contact, :url => :action=>’create’ do |f| %>

In this line, you use a Rails helper method form_for. This method creates the opening tag for an
HTML form. You pass three parameters to the form_for tag. The first parameter specifies the
object type for which the form is being created. In this case that is a contact object. The second
parameter specifies where the form should be submitted. In this case, the form is submitted to the
create action.

Since a controller is not specified it will default to the current controller, which is the contact con-
troller. The last parameter that is passed to the form_for tag is the code block that begins with
the do |f| statement. Inside the block is where you will specify the body of the form.

Now look at the contents of the form that you are creating. Within the form body, you see several
repetitions of the following lines, one for each field in the contacts table:

<p><label for=”contact_first_name”>First Name:</label>
 <%= f.text_field ‘first_name’ %></p>

These lines create an HTML label tag and an HTML text input field. The input field is created using
another Rails method called text_field which is called on the form_builder which was
passed into the block as the f variable. The text_field method takes a single parameter. The
parameter is the name of the attribute that this text field will contain. The output of the text_
field method will be HTML code like the following:

<input id=”contact_first_name” name=”contact[first_name]”
size=”30” type=”text” value=”” />

After all of the labels and text fields, the last three lines of the new template contain this code:

 <%= f.submit “Create” %>
<% end %>
<p><%= link_to ‘Back’, {:action => ‘index’} %></p>

Here you see another Rails helper method. The submit method creates a form submit button. The
button will use the parameter to the submit method as its label. The end statement ends the con-
tents of the form block. Finally, the last line of the template uses the Rails helper method link_
to to create a link back to the index view.

When a user clicks the Create button on this form, the data will be submitted to the create
action of the Contact controller. The create action will handle the record creation for creating
a new contact. In the next section you’ll create the create action.

Make sure your WEBrick server is still running and go back to the contact list page. Now click the
New Contact link, and you should see the new contact screen shown in Figure 2.6.

91

Getting Started with Rails 2

 FIGURE 2.6

The ContactList new contact view

You should see the new contact form with a blank edit field for all of the attributes of the new con-
tact. Don’t click the Create button just yet. You need to create the create action next so that your
application correctly handles the creation of a new contact.

Implementing the Create action
In the previous section you created the new action and a view template that allows you to display
an empty form that the user can use to create new contact records. The form you created will get
submit to the create action of the contact_controller. That is a method you have not writ-
ten yet, so that will be the next action method that you will create.

Create the create action. Open up the contact_controller.rb file and add a create
method using the code below:

def create
 @contact = Contact.new(params[:contact])
 if @contact.save!
 redirect_to :action => “index”
 else
 render :action => “new”
 end
end

92

First Steps with RailsPart I

In this create method, you create a new instance of a Contact object passing the parameters
from the new form into the Contact.new method. After creating the new Contact instance and
setting it to the @contact instance variable, you attempt to save that using the save! instance
method.

If the save! method returns successfully the redirect_to method is used to redirect the user
back to the index method which will show the list page. The list should now contain the new
contact that was created. If the save! method does not return successfully, the new form is
re-rendered.

Create a few new contacts using the new contact page and make sure that everything works as
expected. After you create a new contact, you should see the new contact listed along with your
other contacts on the contacts list page. If you see any errors reported, or if the contacts are not
being created as expected, read back through the previous sections, and make sure that you’ve
done everything correctly up to this point.

Implementing the show action
At this point, your application is able to display a list of contacts, and you are able to create new
contacts using a new contact form. You do not yet have a way to view and edit existing contacts. In
this section, you’ll take the first step towards creating the view and edit functionality by creating
the show action. The show action will display a form containing an existing record’s attributes.
From the show form you can update the contact and then submit those changes to the update
method that you’ll implement in the next section.

 1. Create the show action. Go back to the contact_controller.rb file. Create the
show method so that it now looks like this:

def show
 @contact = Contact.find(params[:id])
end

 The show method uses the Contact.find(params[:id]) statement to find the con-
tact whose id matches the id passed on the URL. If found, the contact is loaded into the
@contact instance variable. The find method accepting the contact id is another
method provided to all model classes that extend ActiveRecord::Base. Because you
know that instance variables are also accessible from the view templates, you now have
what you need to proceed with creating the view template to display the contact’s details.

 2. Create the show template. As you create the view, remember that it also has to support
editing of the contact data, not just a static display. In the app/views/contact direc-
tory, create a file called show.html.erb with the following content:

<h1>View/Edit Contact</h1>
<% form_for :contact, @contact, :url => {:action=>’update’,

:id=>@contact.id} do |f| %>
 <p><label for=”contact_first_name”>First Name:</label>
 <%= f.text_field ‘contact’, ‘first_name’ %></p>

93

Getting Started with Rails 2

 <p><label for=”contact_last_name”>Last Name:</label>
 <%= f.text_field ‘contact’, ‘last_name’ %></p>

 <p><label for=”contact_address”>Address:</label>
 <%= f.text_field ‘contact’, ‘address’ %></p>

 <p><label for=”contact_city”>City:</label>
 <%= f.text_field ‘contact’, ‘city’ %></p>

 <p><label for=”contact_state”>State:</label>
 <%= f.text_field ‘contact’, ‘state’ %></p>

 <p><label for=”contact_country”>Country:</label>
 <%= f.text_field ‘contact’, ‘country’ %></p>

 <p><label for=”contact_phone”>Phone:</label>
 <%= f.text_field ‘contact’, ‘phone’ %></p>

 <p><label for=”contact_email”>Email:</label>
 <%= f.text_field ‘contact’, ‘email’ %></p>

 <%= f.submit “Update” %>
<% end %>

<p><%= link_to ‘Back’, {:action => ‘index’} %></p>

Assuming your server is still running, go back to the contact list screen from Figure 2.5 and click
the contact, Timothy Fisher. Clicking the contact takes you to the show action, and you should
now see the view shown in Figure 2.7. On this screen, you see a label and edit field for each of the
contact’s attributes. There is also an Update button, and a link back to the contact list screen.

Now take a closer look at the code in the show view template. Notice that this code is almost iden-
tical to the code you used in the new template. The only differences are a different page title in the
first line, <h1>View/Edit Contact</h1>, different parameters for the form_for method,
and a different label on the Submit button, Update. Let’s take a look at the form_for line that is
used in this template:

<% form_for: contact, @contact, :url => {:action=>’update’, :id=>@
contact.id} do |f| %>

Here you are passing four parameters to the form_for tag. This is one more than what was
passed for the new template. The first parameter specifies the object type for which the form is
being created. In this case that is a contact object.

The second parameter specifies a specific object instance that will be used to populate the form ele-
ments in the form that is created. Remember that in the show action, you set an @contact
instance variable to contain the contact instance that the user clicked on. That object instance is
used to populate the contact form.

94

First Steps with RailsPart I

 FIGURE 2.7

The ContactList View/Edit contact view

The third parameter specifies where the form should be submitted. In this case, the form is submit-
ted to the update action, and an id is also specified so that the update action will be able to
retrieve the correct contact to update it. Since a controller is not specified it will default to the cur-
rent controller, which is the contact controller.

The last parameter that is passed to the form_for tag is the code block that begins with the do
|f| statement. Inside the block is where you will specify the body of the form.

With the exception of a different label on the form submit button, the contents of the form code
block is identical to what you saw for the new form. However, since you passed an instance vari-
able that holds a valid contact object, each of the form input fields will be pre-populated with the
values of that contact instance.

If you remember that one of the core philosophies that drive Rails development is Don’t Repeat
Yourself, or DRY, you might be thinking at this point that there is an awful lot of duplication
between the show.html.erb and new.html.erb templates. In Chapter 5, you will learn about
another Rails technology called partials that will allow you to eliminate all of the duplication for
cases such as this one where you have duplicated code between two or more views.

Implementing the update action
In the previous section you implemented the show action. This action allowed you to click on an
existing contact and be taken to a form where you can view and change the details of an existing

95

Getting Started with Rails 2

contact. Now you will implement the update action which will handle the submission of the form
displayed by the show action to make changes to a contact.

Create the update action. Open up the contact_controller.rb file and add an update
method using the code below:

def update
 @contact = Contact.find(params[:id])
 @contact.attributes = params[:contact]
 @contact.save!
 redirect_to :action => “index”
end

In this method, you first find the correct Contact object to update using the Contact.find
method with the id of the contact that was edited. Remember that you specified the id of the con-
tact being edited along with the update action in the form_for tag of the show template. After
you have the correct contact instance, you update its attributes using the attributes= method
of the contact instance.

You specify the new attributes by grabbing them from the request parameters using the syntax
params[:contact]. The attributes= method is provided by ActiveRecord::Base to all
of your model classes. Using this method is a quick way to update all of a model object’s attributes
with a single line of code. With the contact’s attributes updated, you’ll then call the save! method
to save the new attributes to the database. Finally, the user is redirected back to the main contact
list using the redirect_to method with the :action=>”index” parameter.

This completes the implementation of the show and edit functionality. Now you can try out the
new functionality by clicking a contact from the contact list view. You should be taken to the con-
tact display/edit view. From that view, go ahead and edit a few of the contact’s fields and then click
the update button. If you changed the contact’s name, you should see that reflected in the display
of the contat list. You can verify changes to other attributes by viewing the contact’s details again
by clicking on that contact again.

Assuming all went well for you, you have now completed the functionality that you originally set
out to implement, that is the ability to create, view, and update contacts in your contact list appli-
cation. If all did not go well and your show-and-edit functionality does not seem to work as adver-
tised, I’d suggest that you double-check all of your code and make sure you did not skip any steps
in the previous sections. In most cases, the error screens that Rails presents when something does
go wrong are informative enough to be able to quickly diagnose a problem.

What you have accomplished
Let’s recap what you have been able to accomplish so far. From absolutely nothing, you have cre-
ated a new Rails application, and a MySQL database to serve as a Contact List application. With the
Contact List application, you can show a list of contacts stored in the database, view and edit an
existing contact, and create a new contact. If you’ve been creating the application as you read this,
you were probably able to create everything in less than one hour. Not bad for your first

96

First Steps with RailsPart I

experience with writing a Rails application. Now to finish off this first application, add a bit of style
so that it looks better. You’ll do that in the next section.

Style the application
You have a complete application that meets the requirements set forth when you started develop-
ing it, but most people would find it lacking in appeal. The look and feel of an application is often
an important part of whether or not it is successful.

A Rails application is typically styled using CSS style sheets. When you created the project, the
public/stylesheets directory was created. This is the directory where you will place any
style sheets that you create.

You want to be able to include a style sheet in every page without having to modify every view
template file to link the style sheet. Rails gives you the answer you need through another file type
called layouts.

You can put boilerplate HTML in a layout file and have that included in all of your view templates.
The layout file can include content that goes both before and after the content of your view tem-
plates. The content in a layout file wraps the view templates with which it is associated. If you cre-
ate a layout file with the same name as your controller, it is used automatically with all of the views
associated with that controller. If you want to give the layout file a different name, you can specify
the name of a layout file in any controller class.

If you want a layout file to apply to all of your view templates, regardless of the controller, you can
use a layout file named application.html.erb in the application/views/layouts
directory. This layout will be applied to all of your views that do not have a more specific layout
file specified. If you have an application layout file and a controller specific layout file, the control-
ler specific layout file will be used for views rendered from that controller.

To style the contact list application, you will create an application.html.erb layout file that
will be used for each of your view templates.

CROSS-REFCROSS-REF Specifying the name of a layout file in any controller class is covered in Chapter 4,
along with details about the controllers.

Create a layout template. In the app/views/layouts directory, create a file called
application.html.erb. Type the following content into the file:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
 <head>
 <title>Contact List Manager</title>
 <%= stylesheet_link_tag ‘styles’ %>
 </head>
 <body>

97

Getting Started with Rails 2

 <%= yield %>
 </body>
</html>

This provides the standard template for an HTML Web page. Now, all of your views rendered by
the contact controller will be wrapped with this code and be a little more standards-compliant. The
content of a view template is inserted where the <%= yield %> statement is also.

In the HTML HEAD section, a title is provided in the layout so that the title bar in the browser will
show your application name as Contact List Manager. Finally, the layout includes a style sheet
using a Rails helper method, stylesheet_link_tag.

The stylesheet_link_tag helper method allows you to easily link to a CSS style sheet with-
out having to remember the standard HTML method of doing so. The parameter passed to this
method specifies the name of your style sheet without the .css extension. Rails looks for style
sheets in the public/stylesheets directory of your project. So with the link you’ve added to
your layout template, Rails will look for a file named styles.css in the public/
stylesheets directory.

NOTENOTE Within layout templates in older Rails application code, you might see the line <%=
@content_for_layout %> instead of <%= yield %>. In new applications, the

preferred method for indicating where content is inserted in a layout is to use <%= yield %>
instead of <%= @content_for_layout %>. The <%= yield %> method is more indicative of the
fact that Ruby blocks are involved in how the content insertion happens, because the yield key-
word is associated with Ruby blocks.

Create a stylesheet. Create the styles.css file in public/stylesheets and begin adding
some style to the application. Use the following content:

body {
 font-family: “Trebuchet MS”;
}

h1 {
 font-weight: bold;
 text-align:center;
}

ul {
 font-size: 1.2em;
 line-height: 1.5em;
}

label {
 float: left;
 width: 125px;
 font-weight: bold;
}

98

First Steps with RailsPart I

input {
 float: left;
 width: 170px;
}

a, a:visited {
 color: blue;
 font-weight: bold;
}

form {
 float:left;
 margin-bottom: 20px;
}

p {
 clear:both;
 float: left;
 margin-top: 0px;
 margin-bottom: 10px;
}

#contact_submit {
 clear: both;
 float: left;
 width: 75px;
 margin-top: 15px;
 margin-left: 220px;
}

It is not a goal of this book to teach CSS skills, so I will not walk through the details of the CSS
style sheet. However, CSS is an important skill for any Web developer to have. The style sheet
shown above is fairly basic and should not be confusing to a Web developer. If you are not familiar
with any of the styles used in this style sheet, it would be a very good idea for you to pick up a
book about CSS and polish up on that skill. Whether it is your job to develop front-end code or
not, you will find it helpful to understand basic CSS styling.

Now if you reload the application, you should see a nicer looking index view and much nicer look-
ing form views also. On the form views, each of your text input boxes should be aligned on the
left. With a bit of CSS styling you can turn any Web page into something that is nicer to look at.

WebScaffolding
Now that you’ve completed your first basic Rails application, here’s another bit of Rails magic. You
could have generated the model, controller, and view classes that you needed using a single Rails
generator script called scaffolding. Scaffolding is an excellent resource for quickly prototyping an
application or to get something up and running in the early stages of application development.

99

Getting Started with Rails 2

Let’s walk through a quick example of how you might start an application using the Rails scaffold-
ing generator. From a command-line, use the rails command to create a new Rails project:

> rails scaffold_test

That will create the skeleton for a new Rails project for you. For this example, let’s assume you
were creating an interface to manage a list of users. Use the scaffold generator to create complete
scaffolding for a User model:

> ruby script/generate scaffold User name:string email:string
birthdate:date

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/users
 exists app/views/layouts/
 exists test/functional/
 exists test/unit/
 create app/views/users/index.html.erb
 create app/views/users/show.html.erb
 create app/views/users/new.html.erb
 create app/views/users/edit.html.erb
 create app/views/layouts/users.html.erb
 create public/stylesheets/scaffold.css
 dependency model
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/user.rb
 create test/unit/user_test.rb
 create test/fixtures/users.yml
 create db/migrate
 create db/migrate/001_create_users.rb
 create app/controllers/users_controller.rb
 create test/functional/users_controller_test.rb
 create app/helpers/users_helper.rb
 route map.resources :users

As you see by the output of this command, the scaffold generator creates quite a few files for you
with no additional work. You get everything that you need to support a users model including a
controller, a helper, the model class, views, and tests.

Now take a look at a few of the files that were generated for you. First, open up the User model
from app/models/user.rb. Your file should be similar to this:

class User < ActiveRecord::Base
end

100

First Steps with RailsPart I

There is nothing too interesting here. This looks just like a model class that is generated with the
regular model generator. Now, open up the UsersController from app/controllers/
users_controller.rb. You should see the code shown in Listing 2.1.

 LISTING 2.1

app/controllers/users_controller.rb

class UsersController < ApplicationController
 # GET /users
 # GET /users.xml
 def index
 @users = User.find(:all)

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @users }
 end
 end

 # GET /users/1
 # GET /users/1.xml
 def show
 @user = User.find(params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml => @user }
 end
 end

 # GET /users/new
 # GET /users/new.xml
 def new
 @user = User.new

 respond_to do |format|
 format.html # new.html.erb
 format.xml { render :xml => @user }
 end
 end

 # GET /users/1/edit
 def edit
 @user = User.find(params[:id])
 end

 # POST /users
 # POST /users.xml
 def create

101

Getting Started with Rails 2

 @user = User.new(params[:user])

 respond_to do |format|
 if @user.save
 flash[:notice] = ‘User was successfully created.’
 format.html { redirect_to(@user) }

format.xml { render :xml => @user, :status => :created, :location =>
@user }

 else
 format.html { render :action => “new” }

format.xml { render :xml => @user.errors, :status => :unprocessable_
entity }

 end
 end
 end

 # PUT /users/1
 # PUT /users/1.xml
 def update
 @user = User.find(params[:id])

 respond_to do |format|
 if @user.update_attributes(params[:user])
 flash[:notice] = ‘User was successfully updated.’
 format.html { redirect_to(@user) }
 format.xml { head :ok }
 else
 format.html { render :action => “edit” }

format.xml { render :xml => @user.errors, :status => :unprocessable_
entity }

 end
 end
 end

 # DELETE /users/1
 # DELETE /users/1.xml
 def destroy
 @user = User.find(params[:id])
 @user.destroy

 respond_to do |format|
 format.html { redirect_to(users_url) }
 format.xml { head :ok }
 end
 end
end

102

First Steps with RailsPart I

Now you see the real power of the scaffold generator. The users controller contains a complete
implementation of all of the CRUD methods for users. The methods implemented for you include:
index, show, new, edit, create, update, and destroy. The implementation of these meth-
ods uses the RESTful architecture style which is covered in detail in Chapter 12.

In addition to a controller that implements all of the CRUD methods, the scaffold generator also
creates view templates for you that correspond to all of the CRUD methods. Within the app/views
directory, you should see the following subdirectories and files:

-- layouts
------ users.html.erb
-- users
------ edit.html.erb
------ index.html.erb
------ new.html.erb
------ show.html.erb

With the controller methods and the view templates created by the scaffold generator, you have a
complete implementation of the CRUD functionality for a given model. Many developers like to
start their projects by generating scaffolding for all of their model objects. This gives them a head
start on development and an excellent code base to build upon.

CROSS-REFCROSS-REF In Chapter 11, you can read about some additional scaffolding implementations that
are available as Rails plugins. These external scaffolding plugins generally will gen-

erate richer user interfaces in the view templates.

More to Get You Started
On the Web, you can find many excellent learning resources to get you started with Rails develop-
ment. The Official Ruby on Rails Web site (www.rubyonrails.org) is the first place to look. A
sampling of the learning resources you can find on this site includes the following:

n Creating a Weblog in 15 minutes: This shows you how to create a simple Web log
application from scratch in less than 15 minutes. The Web log you create includes a com-
ments feature and an administration interface.

n Putting Flickr on Rails: In this, you’ll create a photo search application that makes use
of the public API to the popular photo-sharing site, Flickr.com.

n Evolving your database schema without a sweat: This 20-minute tutorial provides a
great overview of the features available for managing your database schema using Rails
migrations.

There are several very good Rails presentations on the Ruby on Rails site, and many excellent Rails
resources are also available on other Web sites. If you do a Google search on Rails and tutorials
you can find many excellent Rails tutorials, some emphasizing a certain feature, and others more

103

Getting Started with Rails 2

general in nature. An excellent site with many online forums dedicated to Rails is the Rails Forum,
available at www.railsforum.com.

You may also be interested in the Ruby on Rails mailing list. You can find more information about
this at www.rubyonrails.org/community. Be warned, though, that the mailing list tends to
generate a tremendous amount of traffic, so you may want to set up a filter to automatically sort
these messages into a folder of their own or just subscribe to the weekly digest.

If you like to chat with live peers, you can also find the official Rails IRC channel on the irc.
freenode.net server, with the channel name #rubyonrails. There are also many good Rails
forums on various sites. Just doing a Rails search on Google should be enough to get you started
with exploring what is available.

Summary
This chapter provides an overview of Ruby on Rails, a little bit of its history, and an introduction to
what it provides and how it is architected. You were also shown how to write your very first Rails
application. The steps you used to create the simple Rails application built in this chapter are the
same steps that you will usually follow to begin development of any Rails application that you
write. The steps to follow are:

 1. Use the Rails command to create the project directory structure and default files.

 2. Create the database for your project.

 3. Create one or more model objects.

 4. Create one or more controller objects.

 5. Create and style your views.

With the relatively small number of lines of code that you have to actually write, you can create a
Web application that allows users to view a list of contacts, add new contacts to a database, view a
contact’s details, and edit a contact.

Rails In Depth

IN THIS PART
Chapter 3
Using Active Record

Chapter 4
Controller: In Depth

Chapter 5
View: In Depth

107

Rails applications implement the model-view-controller (MVC) design
pattern. The model layer of an MVC application implements the
 application’s business logic and encapsulates the application’s data.

This is often the most significant part of an application. It is this layer that
should contain the core of your functionality. The view and controller layers
could be replaced to re-implement your application in another environment,
such as when converting a desktop application to a Web application; how-
ever, the model layer can ideally remain intact across these different operat-
ing environments.

Rails implements the model layer primarily using a component called Active
Record. Active Record provides a powerful abstraction layer and is often
referred to as elegant because of its use of the following techniques:

n Convention over configuration: If you follow Active Record’s con-
ventions, you’ll save yourself from having to write many lines of
configuration code. Active Record is able to automatically discover
the details of your database schema and provide you with simple
functionality for accessing and managing your data.

n Metaprogramming: Using metaprogramming, Active Record
dynamically adds features to your model classes, saving you from
having to write common code over and over again. For example,
Active Record adds attributes to your model objects for every col-
umn in your database tables.

n Domain-specific language: Rails implements a domain-specific
language (DSL) for managing your data. Rails extends Ruby to
implement a DSL, making actions such as adding validations and
relationships to your objects seem like part of the language.

The model layer is also usually a good place to start your application
development.

IN THIS CHAPTER
What is Active Record?

Active Record basics

Setting up a model

Using migrations

Create, read, update, and
delete

Defining relationships

Implementing validations

Custom validations

Advanced Active Record

Using
Active Record

108

Rails In DepthPart II

What is Active Record?
In object-oriented programming, data structures are represented by a hierarchy of classes. In a
database, data is most often stored in a set of relational database tables. There is an inherent mis-
match between your program’s object view and the database’s relational view of data. Over the
years, there have been many attempts to reconcile this mismatch, including attempts to create
object databases. For the most part, object databases never took off. A primary reason for this was
the already established base of relational databases and tools supporting them. Another solution to
this mismatch problem is through the use of Object-relational-mapping tools. Object relational
mapping (ORM) is the mapping of relational database tables to object-oriented classes.

A good ORM hides the details of your database’s relational data behind your object hierarchy. This
is precisely what you get in a Rails application. One of the most important components of Rails is
the Active Record library. Active Record implements an ORM for Rails applications.

As you can see in Figure 3.1, an ORM provides the mapping layer between how a database works
with its data and how an object-oriented application works with its data. An ORM maps database
tables to classes, database table rows to objects, and database table columns to object attributes.
This is precisely the mapping that Active Record carries out for you. By using Active Record, your
application does not have to deal with database constructs such as tables, rows, or columns at all.
Your application only deals with classes, objects, and attributes. Active Record maps these to their
database equivalents for you.

 FIGURE 3.1

Object relational mapping

Object Oriented Application

Classes
Objects

Attributes
Ruby, Java, etc.

Database

Tables
Rows

Columns
SQL

ORM

The pattern upon which the Active Record library is based is not unique to Rails; Active Record is
based on a design pattern created by Martin Fowler that also goes by the name Active Record. It is
from this design pattern that the Active Record library got its name.

There are many ORM implementations available in different languages. What makes Active Record
special is its ease of use and the power you get from it with very few lines of code. Unlike most
other ORM implementations, you don’t have to write lines upon lines of configuration code to set
up Active Record. In fact, Active Record will work in your application with absolutely no configu-
ration at all, if you follow recommended naming schemes in your database and classes.

109

Using Active Record 3

Another feature of Active Record that makes it easier for you to work with is its implementation of
a domain-specific language (DSL) for working with your application’s data. A DSL is a programming
language intended for use in a specific problem domain. In general, Ruby’s syntax makes it easy to
create DSLs. The DSL nature of Active Record means that you can use dynamically generated
methods, such as find_by_first_name(‘tim’), to retrieve a record by a column name. You
can also perform tasks such as modeling an association between tables with the method has_one
or has_many followed by the name of another model class. Many of the things you will do with
Active Record methods will feel like they are a part of the language you are using. This is a side
effect of the nature of a DSL.

Active Record Basics
In this section, you can learn some of the basics of Active Record prior to employing them in the
sections that follow. Some basics I cover here are classes, objects, and naming conventions.

Active Record Classes and Objects
Active Record is implemented in Rails as a set of base classes from which your model objects
extend. Each table in your database is generally represented by a class that extends an Active
Record base class. Simply by extending the Active Record base classes, your model objects inherit a
wealth of functionality. In fact, your model objects may be as simple as this:

class Book < ActiveRecord::Base
end

This empty class definition is enough to give your Book class quite a bit of functionality merely by
extending the ActiveRecord::Base class. By using ActiveRecord::Base, Rails knows
that this class wraps a database table named books. Active Record will dynamically add metadata
to this class for all of the table columns that are in the books table. This includes data such as col-
umn names, types, and lengths. Active Record also adds attributes to your class for each of the col-
umns in the database.

Active Record manages database connections for your application. You don’t have to write any
code to set up database connections or to manage those in your Rails application. Basically, all of
the details related to working with a database are hidden from you, the developer, by Active
Record. As a developer, you work with objects and do not have to deal with things like database
connections, tables, columns, and SQL statements.

Active Record naming conventions
Active Record makes heavy use of the convention-over-configuration principle. If you follow a few
simple naming conventions, you can take advantage of many dynamic features of Active Record
with no configuration required.

110

Rails In DepthPart II

Class and table names
Your database tables should be named with the plural form of the names of your model classes.
For example, if you want a model class named Book, you would create a corresponding table
named books. By using this convention, Rails is able to automatically find the table that corre-
sponds to your model class without having to write any configuration code. Rails even supports
many irregular plural nouns, such as ‘people’ being the plural of ‘person.’

NOTENOTE Rails does not know about all irregular pluralizations, but for the cases when Rails
doesn’t know the plural form of a model you want to use, you can tell Rails about

your custom pluralizations. To define your own pluralizations, you add code to the config/
environment.rb file, like this:

Inflector.inflections do |inflect|
 inflect.irregular ‘sheep’, ‘sheeps’
end

In this example, you are telling Rails to use the word ‘sheeps’ as the plural form of the word
‘sheep’. You can add as many singular/plural definitions as you want within a single Inflector.
inflections block.

You should name your database tables with all lowercase table names and underscore-separated
words. The corresponding model classes use camel-casing. Camel-casing is a style of joining words
where underscores are removed, and multiple words are joined together with the first letter of each
word capitalized. For example, a database table named comic_books, would correspond to a
model named ComicBook.

In some cases, such as when you are working with a legacy database, you may not have the free-
dom of naming the database tables yourself. In that case, you can override the default table name
that Rails expects for a particular model by using the set_table_name method. The following
code specifies that the Shape class should use the shape_items table.

class Shape < ActiveRecord::Base
 set_table_name ‘shape_items’
end

TIPTIP If you don’t like giving your database tables plural names, you can configure Rails
to work with singular-named database tables by adding this line to config/

environment.rb:

ActiveRecord::Base.pluralize_table_names = false

Table keys
There are two types of database keys for which naming is important in Rails: primary keys and for-
eign keys.

111

Using Active Record 3

Primary keys
The primary key is what uniquely identifies each row in a database table. Your tables should have a
primary key with the column name id. The id column should be an integer type and should be
auto-incrementing. Rails will automatically use this column as a unique identifier. Rails migrations,
which are discussed later in this chapter, automatically create a primary key column named id for
each table that is created. If you want to use a different field as the primary key for a table, Rails
allows that, but with some restrictions. See the sidebar “Using Alternate Primary Keys with Rails”
for more information.

Using Alternate Primary Keys with Rails
By default, Rails uses a field called id as the primary key for all of your database tables. Rails migra-
tions generate this field automatically so you do not have to specify it in your table creation migra-
tions. While this field is suitable for most purposes, there may be times when you have to work with
a legacy database for which you do not get to choose the primary key fields. As with many other
things in Rails, you can override the default Rails primary key field name and specify any field for a
particular model. You do this using the set_primary_key method in the model class definition
that wraps the table for which you want an alternate primary key.

For example, say you had a table named images that contained a primary key field named image_
id. In the Image model class, you would use this code:

class Image < ActiveRecord::Base
 set_primary_key “image_id”
end

The most notable restriction on using alternate primary keys in Rails is that you cannot use compos-
ite keys as primary keys. Composite keys are keys that use more than one database column. For
example, a key that used the image_id field and the created_at field in combination would not
be allowed as a primary key in a Rails application. This is a restriction that is often criticized by both
Rails enthusiasts and antagonists. It is a restriction that is not likely to change in the near future,
though, so if you’re writing a Rails application, you will need to deal with it or have a strategy to
overcome it. (There is a Rails plugin available that extends the database layer of Rails to support
composite primary keys. If you are interested in this plugin, you can find out more about it at
http://compositekeys.rubyforge.org. In Chapter 11 you will learn more about using plu-
gins with Rails.)

Your application can use a composite key as long as it is not the primary key. As a result, if you need
a composite key, perhaps you have the flexibility to add a new field to serve as your primary key.

If you do override the primary key column name, you also become responsible for creating unique
primary key values. Rails will not automatically generate a primary key value for any table that con-
tains a non-default primary key name.

When you work with a non-default primary key field name, you still refer to the primary key attri-
bute as id when you set the primary key value for an object . However, any other time you refer to
the primary key attribute, you use the name that you assigned that field in the set_primary_key
method.

112

Rails In DepthPart II

Foreign keys
Foreign keys are used in a table to identify a row in another table that is related to the row contain-
ing the foreign key. For example, in Figure 3.2, the book_id column in the pages table is a for-
eign key that relates a row in the pages table to a row in the books table. Foreign keys in a Rails
application should be named with the singular name of the referenced table followed by id, just as
book_id is named in Figure 3.2.

 FIGURE 3.2

Primary and foreign keys

ID: PRIMARY KEY

books

ID: PRIMARY KEY

pages

book_id: FOREIGN KEY

Setting up a Model
If you followed along with the development of your first Rails application in Chapter 2, you saw a
simple example of generating a model using the Rails script/generate script. Here you will
use the Rails script/generate script again to create a model class used throughout this chap-
ter to explore the details of a Rails model layer and how Active Record helps you.

Generate a Rails project and model
Begin by using a command-line and creating a Rails project, model, and database. The command-
line feedback that you receive when you run the various commands throughout this chapter is not
always specifically shown in this book; if you see feedback that is not shown in this book as you
run the commands, don’t be surprised. You should expect Rails to generate feedback from its com-
mands, similar to what you saw in Chapter 2.

 1. Create a new Rails project that you will use for the examples in this chapter. This
creates the skeleton of a new Rails application, along with the correct Rails application
directory structure.

rails -d mysql chapter3

 The -d option you used in the command above lets Rails know that you will be using a
MySQL database. Valid values for the database type are mysql, oracle, postgresql,
sqlite2, and sqlite3. If you do not use the -d option, the default database type is
sqlite3. This database type is used by Rails to configure a sample database configura-
tion file that you can use to specify your database server. You will see how to use that file,
database.yml, do that a bit later in this chapter.

113

Using Active Record 3

 2. Navigate into the new chapter3 directory and generate a model called
ComicBook. Use the script/generate script to do this, as shown below. This cre-
ates the ComicBook model class, a migration for creating the comic_books table, and
some related unit test files.

cd chapter3
ruby script/generate model ComicBook

 3. Create a database for use with this chapter’s examples. Now use the MySQL com-
mand-line to create a comic_books_development database. You could also use a
MySQL GUI if you have one installed that you are comfortable with.

mysql -u root -p
Enter password: << your password >>
mysql> create database comic_books_development;

You should now have the basic elements you need to follow along with the examples in this chap-
ter: a Rails project named chapter3, a model within that chapter named ComicBook, and a MySQL
database named comic_books_development.

Configure Active Record
You may have noticed that you gave your database a different name from the name you gave the
Rails project. When the database is named the same as the project, with the addition of environ-
ment suffixes (_development, _test, or _production), and you are using MySQL as your
database, you do not have to create any database configuration. For example, had you named your
database chapter3_development, you could have skipped this configuration step. However, it
is not always realistic that you can give your database the same name as the Rails project name you
choose. Often you may have to follow a company standard for naming your databases.

Because your database name is completely different than the application name, a small amount of
database configuration is required. The code that configures the databases you will use with your
Rails application is stored in a configuration file called database.yml.

In your chapter3 project directory, open the file config/database.yml and look for the sec-
tion that contains this code:

development:
 adapter: mysql
 encoding: utf8
 database: chapter3_development
 username: root
 password:
 host: localhost

This is the default database configuration that Rails created when you generated the chapter3
application. Notice the default database name of chapter3_development. The default configu-
ration also assumes that a root username is available with a blank password. The database is
assumed to be running on the same computer that you are developing on, localhost.

114

Rails In DepthPart II

You created a database named comic_books_development, so change this line:

database: chapter3_development

to use the name of your database:

database: comic_books_development

Also, if you used a username and password other than root, be sure to change those lines in the
configuration.

You may be wondering about the different database environments that have been referred to. Rails
supports the use of three separate environments for running your application in: the development,
test, and production environments. The following section has a description of the three environ-
ments supported by Rails.

Rails Development Environments
It is a good development practice to use different infrastructure environments when developing a
Web application. Each environment should contain a unique database, Web server, and other
external components that your application may require. Rails has built-in support for running your
applications in three different environments. The environments supported by Rails are called
development, test, and production. Each of these environments is described below:

n Development: This is the environment used when developing your application. You also
perform most of your debugging in this environment. In this environment, Rails reloads
classes each time you call a new action. This picks up any changes that you make to the
class files dynamically, which makes this environment ideal for debugging your code as
you write it.

n Test: This is the environment in which you test your application. Rails uses this environ-
ment when running unit, functional, and integration tests. Each time your tests are run,
the test database is completely replaced; therefore, you should be careful not to specify
the same database name for your test environment as you use for your development or
production environments.

n Production: The production environment is used by your application in production.
This must be the most robust and fault-tolerant of your environments. It should be ade-
quately scalable and be able to handle expected load. In this environment, Rails loads
your classes only once. If you make changes to your classes, they will not be picked up
unless you restart your Rails application. While not ideal for developing in, this feature
improves the performance of this environment, making it more suitable for use by end
users.

You can specify the environment that you want your application to run in by editing the config/
environment.rb file. The following line contained in that file specifies the environment that
Rails will use:

ENV[‘RAILS_ENV’] ||= ‘production’

115

Using Active Record 3

This line is commented out when you first create a Rails application. If you want to use this line to
specify your environment, make sure you uncomment the line.

The databases for each environment are configured in the config/database.yml directory of
your Rails application. You can also include environment specific configuration for your applica-
tion by adding the appropriate configuration to the files contained in your application’s config/
environments directory. This directory contains a configuration file specific to each environ-
ment; development.rb, test.rb, and production.rb.

Most of the code that you will write in this book targets the development environment. However,
when you get to Chapter 9, where testing is covered in detail, you’ll see how the test environment
is used.

Using Migrations
Rails migrations are an excellent example of the DRY philosophy applied to Rails. Remember that
DRY means Don’t Repeat Yourself. With the power of migrations, you are able to define and man-
age the evolution of your database in a single place. You do not need SQL script files, XML config-
uration files, or any other files to manage the evolution of your application’s database. Migrations
also make your database definition independent of the specific database that you decide to use.
The same migration file that you create for a MySQL database will also work with an Oracle or
PostgreSQL database.

Rails migrations are simple Ruby classes that contain instructions that create or modify your data-
base schema. You will create a new migration file for each change that you want to make to your
database schema. When you generated your model, you may have noticed that a migration file was
also created. Anytime you create a model using the Rails generator, a migration file is also created
for you. Writing a migration file is often one of the first things you will do when you begin writing
the model layer of your application.

Take a look at the migration file that was created for your ComicBook model. You’ll find the file
001_create_comic_books.rb in the db/migrate directory of your chapter3 project.

class CreateComicBooks < ActiveRecord::Migration
 def self.up
 create_table :comic_books do |t|
 t.timestamps
 end
 end

 def self.down
 drop_table :comic_books
 end
end

116

Rails In DepthPart II

The first thing you should notice is that this is a Ruby class that extends another Active Record
class, ActiveRecord::Migration. The class contains two class methods:

n self.up

 Called when a migration is applied, and used to set up your database schema elements.

n self.down

 Called when a migration is reversed. This method should undo the actions of the self.
up method.

In the auto-generated migration, the self.up method creates the comic_books table using the
create_table method. A code block is passed to this method that you will use to setup the col-
umns of the table. So far the only columns being setup are created with this line:

t.timestamps

This will automatically create two columns for the table, one named created_at and one named
updated_at. These columns will hold timestamps for row creation and update. The self.down
method drops the table.

It is always a good practice to design your data model before you create your migrations. The data
model design can be as simple as a table listing all of the columns and their data types for each of
your tables. Table 3.1 shows a data model design for the comic_books table that you will
implement.

 TABLE 3.1

Comic Book Table Defi nition
Field Name Field Type Description

id Integer The primary key

title String The title of the comic book

writer String The writer of the comic book

artist String The artist of the comic book

issue Integer Issue number of the comic book

publisher String The publisher of the comic
book

created_at Datetime Date and time that the record
was created

updated_at Datetime Date and time that the record
was updated

117

Using Active Record 3

Using the table definition provided in Table 3.1, you can now create a migration that creates the
database schema for this table.

 1. Edit the file 001_create_comic_books.rb so that it looks like this:

class CreateComicBooks < ActiveRecord::Migration
 def self.up
 create_table :comic_books do |t|
 t.string :title
 t.string :writer
 t.string :artist
 t.integer :issue
 t.string :publisher
 t.timestamps
 end
 end

 def self.down
 drop_table :comic_books
 end
end

 2. Run the migration by typing the following from a command-line. This should be run
from your chapter3 project directory.

rake db:migrate

When you run the migration above, you should see output similar to this:

== CreateComicBooks: migrating ==================================
==

-- create_table(:comic_books)
 -> 0.025s
== CreateComicBooks: migrated (0.257s)

============================

You can now take a look at the comic_books database using a GUI front-end tool or the MySQL
command-line. You can see that the comic_books table has been created with the columns you
specified in the migration.

Notice that the migration code does not specify a column for the id field. That is because the id
field is the default primary key field for all tables and is created automatically unless you specify
that it should not be created. Take a closer look at the block that you passed into the create_
table method:

t.string :title
t.string :writer
t.string :artist
t.integer :issue
t.string :publisher
t.timestamps

118

Rails In DepthPart II

Each of the lines in this block creates a new column in the table. For example in the first line, a
column named title is created with a string type. Ruby will translate this into an appropriate
database field type. In the case of MySQL this would become a varchar field. The valid field
types that you can use in migrations are: string, text, integer, float, datetime, time-
stamp, time, date, binary, and boolean. Each of these Ruby types will result in an appropri-
ate database field type. Notice that the name of the field is passed as a symbol object. If you look at
the last line in the above code you will see something slightly different. The line contains the code
t.timestamps and no field names. The t.timestamps method creates the created_at and
updated_at columns.

You used the Rake tool to run the database migration. Rake is a tool written in Ruby that is used to
perform a variety of build-related development tasks. If you are familiar with the UNIX make util-
ity, or the Java Ant utility, Rake is similar to those tools. Scripts that are run using Rake are called
Rake files. Rake files are written in pure Ruby code. Rails uses a Rake file to implement a bunch of
useful tasks. You can see more of the Rake tasks available for your Rails application by typing this:

rake --tasks

You will use a variety of rake tasks throughout this book. In addition to the db:migrate task
which you already used in this chapter, two additional rake tasks are useful to know about now.

n rake db:create:all

 This task will automatically create the databases that you have specified in your
config/database.yml file. This makes it easy for you to specify your database infor-
mation in a single place, the database.yml file and then you can use rake to create
your database anytime that you need to create it. You do not have to rely on using any
external tool, such as the MySQL command line tool.

n rake db:drop:all

 This task drops all of the databases that you have specified in your config/database.
yml file. This is useful if you feel that your database has been corrupted or somehow put
into a bad state.

The above commands create or drop all of your databases. You can also use similar commands to
create or drop a database specific to a single environment. You specify a single environment like
this:

rake db:create RAILS_ENV=development
rake db:drop RAILS_ENV=development

Schema versions
The first time you run a migration, a new table that you may not recognize is also created in your
schema. This table is called schema_info, and it keeps track of the current version of the data-
base schema. The database schema is the current structure of the database, including the tables and
columns that make up the database.

119

Using Active Record 3

Each migration file that is run creates a new database schema version. The migration you ran is
contained in the file 001_create_comic_books.rb. The 001 at the beginning of the filename
is the migration number that corresponds to the database version number that will be created after
this migration is run. Each migration that either you create or that is generated for you must have a
unique three-digit number as the first three characters of the migration filename.

Migrations that are used to create database tables commonly contain the name of the table
prepended with the word ‘Create’ following the three digit migration number, such as you see in
the file name 001_create_comic_books.rb.

Using the rake command that you used to run the migration, you can also specify a specific
schema version number to migrate up to or back to. When migrating to a version number that is
lower than the current schema version number, each of the migrations past the version that you
are migrating to will have their self.down methods executed.

The following rake command will migrate your database to a specific schema version number:

rake db:migrate VERSION=3

If your database had been at schema version 5, the self.down methods would be run on migra-
tions 004 and 005. If your schema version was 1, the self.up methods would be run on migra-
tions 002 and 003. When migrating down, such as from version 5 to version 3, the migration
self.down methods are run in reverse order. For example, the 005 migration self.down
method would run first, followed by the 004 self.down method. When migrating up, the
self.up methods are run in numerical order.

Migration methods
There are a large number of built-in migration methods available within your migration files that
you inherit from extending the ActiveRecord::Migration class. The most common methods
that you will use to manipulate tables, columns, and indexes are summarized here. For a complete
reference of available migration methods, go to http://api.rubyonrails.com/classes/
ActiveRecord/Migration.html.

Tables
Migration methods are available to create, drop, and rename a table. These methods are summa-
rized here:

create_table(table_name, options)
drop_table(table_name)
rename_table(old_name, new_name)

Each of these methods takes one or two table names as parameters. The create_table method
also takes a second parameter, called options, which is a hash containing SQL options that you
might want to use when creating your table. An example of using create_table with the
options hash is shown here:

create_table(‘tables’, {‘DEFAULT CHAR SET’=>‘UTF-8’})

120

Rails In DepthPart II

This would create a table called players and set the SQL parameter DEFAULT CHAR SET to be
UTF-8.

Columns
You can also add, rename, or remove columns from a database table using migration methods. The
migration methods to perform these tasks are as follows:

add_column(table_name, column_name, column_type, options)
rename_column(table_name, old_column_name, new_column_name)
remove_column(table_name, column_name)

When you create a column using the add_column method, the column_type can be any of the
following types: :string, :text, :integer, :float, :decimal, :datetime, :time-
stamp, :time, :date, :binary, :boolean.

The add_column method also takes an options hash that contains parameters related to the
table you are creating. For example, you can specify a default value for a column by passing an
options hash like this:

{:default => 10}

Other common option parameters are :limit and :null. These can be used to set a field size
limit and to specify whether or not a field can be set to null, respectively.

Indexes
You can add and remove database indexes using the migration methods listed here:

add_index(table_name, column_name, options)
remove_index(table_name, options)

The options parameter for both of these methods is a hash that can be used to specify the index
type and index name, such as in this example:

add_index(:comic_books, :writer, :unique=>true, :name=>’writer_
idx’)

or like below to remove an index:

remove_index(:comic_books, :name=>’writer_index’)

Inserting data with migrations
In addition to modifying your database schema, you can also insert data into your database in a
migration file. This makes it convenient to insert default data that your application might need to
run. In this section, you can create a new migration and use it to add some default data into your
comic_books database.

121

Using Active Record 3

 1. Create a new migration for inserting data. From the command-line, create the migra-
tion by running the generate migration scripts, as follows:

ruby script/generate migration AddDefaultData

 This creates a new migration file in db/migrations called 002_add_default_
data.rb. Recall that the first migration you ran was created automatically for you when
you generated the ComicBook model. You can use as many migrations as you want by
supplementing the migrations that are generated with your model classes with migrations
that you manually generate, such as the one you generated here.

 2. Edit the migration script to add data insertion. Now you should open the migration
file that you just generated in db/migrations/002_add_default_data.rb and
edit it so that it looks like this:

class AddDefaultData < ActiveRecord::Migration
 def self.up
 ComicBook.create :title=>”Spectacular Spiderman”,
 :writer=>”Roger Stern”,
 :artist=>”Marie Severin”,
 :publisher=>”Marvel”,
 :issue=>”54”
 end

 def self.down
 ComicBook.delete_all
 end
end

 3. Run the new migration to add your default data. From the command-line, run this
migration using Rake, as follows:

rake db:migrate

 4. Verify that the default data is now in your database. Using either the MySQL com-
mand-line or a GUI interface, verify that the comic_books table contains the record
added in your migration.

After going through the steps above, you could also migrate your database down by using the
command:

rake db:migrate VERSION=1

This command would run the self.down method of your migration defined in 002_add_
default_data.rb. You could then verify that the default data has been removed from your
database.

Using a migration, you were able to create default data in your database. This is a common way of
setting up default data for a Rails application. Remember that in a migration, you have full access
to all of the code, including your models. Using the power of Ruby and your model layer, you can
perform complex manipulations of your database using migrations.

122

Rails In DepthPart II

Create, Read, Update, and Delete
You may have heard the term CRUD used before when referring to database operations. CRUD is
an acronym that stands for the general categories of operations that you can perform on data stored
in a database. These categories are as follows:

n Create: Create records in the database.

n Read: Read one or more records from the database.

n Update: Update a record in the database.

n Delete: Delete a record in the database.

Rails makes it easy to perform each of these operations on your data using built-in Active Record
methods. In general, each of your model classes wraps a table in your database. For example, the
ComicBook model class that you created with the script/generate script wraps the comic_
books database table. You will use the ComicBook class and instances of that class to access data
in the comic_books table and to create new records for that table.

Each column in a database table becomes an attribute in the class that wraps that table. Your
ComicBook class will contain the following attributes: id, title, writer, artist,
publisher, issue, created_at, and updated_at.

The following subsections step through each of these operation categories, exploring the details of
each.

Creating records
There are several ways of creating new records using your Rails model classes. Each way uses a
slightly different syntax, which you can see in this section.

One of the ways in which you can create new records in Rails is by instantiating a new object, set-
ting its attributes, and then performing a save operation. The database operations necessary to
insert a record into the database are completely encapsulated behind Active Record. Within your
code, you simply deal with Ruby code and Ruby objects. This is in keeping with a good ORM
implementation.

Here is an example of creating a record in the comic_books table that you created earlier in this
chapter:

my_comic_book = ComicBook.new
my_comic_book.title = ‘Captain America’
my_comic_book.issue = 20
my_comic_book.writer = ‘Ed Brubaker’
my_comic_book.artist = ‘Mike Perkins’
my_comic_book.publisher = ‘Marvel’
my_comic_book.save

123

Using Active Record 3

This save method writes this record to the comic_books database table. The new method can
also accept a hash attribute for setting the attributes of the object instance you are creating. Let’s
add another record to the database using this style:

my_comic_book = ComicBook.new(
 :title => ‘Captain America’,
 :issue => 10,
 :writer => ‘Ed Brubaker’,
 :artist => ‘Lee Weeks’,
 :publisher => ‘Marvel’)
my_comic_book.save

Yet another way of using the new method is to pass it a block. Shown here, this technique is used
to add another comic book to your database:

ComicBook.new do |book|
 book.title = ‘Batman’
 book.issue = 18
 book.writer = ‘Bill Finger’
 book.artist = ‘Bob Kane’
 book.publisher = ‘DC’
 book.save
end

Add one more comic book to your database using this technique, which creates a model and data-
base record all in one line:

my_comic_book = ComicBook.create(
 :title => ‘Superman & Batman’,
 :issue => 2,
 :writer => ‘John Byrne’,
 :artist => ‘John Byrne’,
 :publisher => ‘DC’)

You may recall that this is the style you used to create a default database record in the second
migration you wrote. The create method both instantiates the ComicBook instance and saves the
record to the database. You can pass an array of hashes to the create method to create multiple
objects and database records with one method call. An array of object instances will be returned
from that call.

In all of these methods for creating a new object and record, Active Record automatically creates a
new unique value and sets that as the id attribute while saving the record. After performing a save,
you can then access the primary key as an attribute of the object, like this:

new_id = my_comic_book.id

124

Rails In DepthPart II

Reading data
Rails uses a combination of database introspection and metaprogramming to simplify your life as a
developer when it comes to using your model classes and objects to read data from the database.

This section details how Rails helps you read the data that is stored in the database using your Rails
model classes and built-in Rails methods. You can learn how to use column metadata, object attri-
butes, and Rails find methods in the following subsections:

n Column metadata

n Accessing attributes

n Using the find method

n Dynamic finders

n Find using SQL

Column metadata
When a model class such as ComicBook is first loaded, Rails is able to infer the database table
name to which it corresponds from the name of the class. Rails then gathers information about that
database table by querying the database system tables. Detailed information about each column of
your database table is placed into the @@columns class variable, which makes @@columns an
array of Column objects. Each of the Column objects contains the following attributes:

n name: The name of the database column.

n null: Boolean value that is true if this column attribute can be set to null.

n primary: Boolean value that is true if this column is the Rails unique identifier.

n scale: Specifies the scale for a decimal column.

n sql_type: The type of the attribute this column holds.

n precision: Specifies the precision for a decimal column.

n default: The default value specified in the table definition for the column.

Using created_at and updated_at Fields

By adding fields with the names created_at and updated_at to your database tables, you gain a
bit of free functionality from Rails. Rails automatically updates these fields every time your records
are created or updated. It is easy to add these fields from a migration using the t.timestamps
method as you used in the examples in this chapter.

You can also choose to use fields with the names created_on and updated_on. The difference is
that these fields are set with a date value, and the created_at and updated_at fields are set with
a date and time value.

125

Using Active Record 3

n type: The Ruby type that the column is represented as.

n limit: The maximum size of the attribute for this column.

Using the ComicBook model class example, the following code would print out each of these
metadata attributes, for each attribute of the ComicBook model:

ComicBook.columns.each { |column|
 puts column.name
 puts column.null
 puts column.primary
 puts column.scale
 puts column.sql_type
 puts column.precision
 puts column.default
 puts column.type
 puts column.limit
}

You may never need to use this column metadata, but it is good to know that it is available. A
common use of it is to build dynamic user interfaces. This is how Rails scaffolding is built.
Scaffolding is a built-in feature of Rails that dynamically creates a basic Web interface for your Web
application.

CROSS-REFCROSS-REF For more information regarding scaffolding, go to Chapter 11.

Accessing attributes

Attribute accessors for your Rails model classes are implemented using a Ruby metaprogramming
technique that allows Rails to dynamically attach accessors to your classes. Rails overrides the
method_missing method to implement the accessors. The method_missing method is called
anytime you call a method that does not exist for the object you are calling it on. This allows you
to access the attributes of any of your classes like this:

the_title = comic_book.title

This may look like you are just accessing an attribute of the comic_book object without going
through a method at all. If you are a Java programmer this may seem like the common way that
you access public attributes. However, keep in mind that in Ruby, you cannot access any attributes
from outside of their class unless you have explicitly created attribute accessors. From this perspec-
tive, you can think of attributes in Ruby classes as always being equivalent to private attributes in
Java classes. So in the above code, title is actually an accessor method that you are using to
access the title attribute. Because of the way the accessors are implemented, the accessor meth-
ods actually do not exist in your objects until they are called. This means that if you were to try
this:

comic_book.methods.include? ‘title’

a value of false would be returned, because the title accessor method does not yet exist. Rails
uses the same technique to implement dynamic finder methods for your objects.

126

Rails In DepthPart II

Using the find method
Active Record provides a powerful find method that you can use to find data rows in your tables.
The easiest way of finding a record in your database is to pass a primary key value to the find
method. All of your model classes include a find method that takes one or more primary key val-
ues as a parameter and returns one or more records as objects. Multiple primary keys can be
passed as an array, and an array of matching objects will be returned.

When attempting to find a record by primary key, a RecordNotFound exception is thrown if
Active Record is not able to find a row with the primary key you are searching for.

The following code either returns an object that has an id value of 5, or prints “Record Not
Found” to the console:

begin
 my_comic_book = ComicBook.find(5)
rescue
 puts “Record Not Found”
end

Finding with conditions
You can also use the find method with a first parameter of :first or :all, followed by a
:conditions parameter that specifies criteria for finding records, similar to a SQL where clause.
You could use the following code to retrieve all comic books with the ‘Captain America’ title:

ComicBook.find(:all, :conditions=>”title = ‘Captain America’”)

This call returns an array of ComicBook objects with the title of ‘Captain America’. If no rows can
be found that match the criteria, an empty array is returned. If you wanted to find only the first
record matching the criteria, you would use the find method with the :first parameter, like
this:

ComicBook.find(:first, :conditions=>”title = ‘Captain America’”)

When using the :first attribute, a single record’s object is returned instead of an array. So the
above line would return an instance of ComicBook, if a comic book with the title ‘Captain
America’ was found. If a record can not be found meeting the conditions specified, a nil value is
returned.

The :conditions parameter can also use placeholders when specifying attribute values. For
example, suppose you wanted to execute the following search:

ComicBook.find(:first,
 :conditions=>”title=‘Spiderman’ and writer=’Stan

Lee’”)

Using attribute placeholders, you could write this as follows:

title = ‘Spiderman’

127

Using Active Record 3

writer = ‘Stan Lee’
ComicBook.find(:first,
 :conditions=>[”title=? and writer=?”, title,

writer])

Using this style, the :conditions parameter is an array. The where clause is the first element in
the array, and the attribute values are the next elements in the array.

Rails automatically quotes and escapes the attribute values when you use this style. You should
always use this style when you are using attribute values that have come directly from a Web page.
If you did not use the ? placeholders and instead simply inserted the variables containing values
that a user typed, you would be opening your application up to adverse attacks.

A malicious user could gain control over your database and execute any SQL statement they
desired by submitting parameter values which themselves contained SQL commands. You may
have heard this type of attack referred to as a SQL Injection Attack. When you use the placeholder
style, Rails prevents this type of attack by quoting and escaping the attribute variables.

You can also pass the :order parameter to the find method to sort the returned objects. Here
you find all of the database rows and sort them by the issue attribute in descending order:

ComicBook.find(:all, :order => ‘issue DESC’)

There is also a find_all method that returns all of the rows in your database. You can call this
method with no parameters and all of your database rows will be returned as an array of objects.
Be wary of using this method if your database contains many rows, as this uses a lot of memory to
hold all of the objects that are created.

Dynamic finders
In addition to the basic find method, Rails creates additional finder methods dynamically that
correspond to each of the columns in your database. For example, in your ComicBook class, you
can easily find all of the comic books written by Stan Lee using this code:

results = ComicBook.find_by_writer(‘Stan Lee’)

You can use find_by method for every column in the table. These methods are dynamically cre-
ated using the method_missing technique that was also used to create attribute accessors
explained earlier in this chapter.

Now what if you want to find all of the comic books written by Stan Lee and drawn by your favor-
ite artist? Rails can help you out there, too. In addition to the single-column find_by methods,
Rails will also dynamically generate multiple-column find_by methods. You could answer your
question with the following code:

results = ComicBook.find_by_writer_and_artist(‘Stan Lee’,’Steve
Ditko’)

128

Rails In DepthPart II

In fact, Rails provides you with find_by methods using any number of your column names. Each
column name is separated from the preceding by and, as in the above two-column example. Going
a step further, you could execute the following find method, as well:

results = ComicBook.find_by_writer_and_artist_and_title(‘Stan
Lee’,’Steve Ditko’,’Spiderman’);

Find using SQL
If the find methods that Active Record provides for you do not meet your requirements, you can
resort to using raw SQL to find the records that you want. You do this by using the find_by_sql
method. This method takes a SQL statement as a parameter and executes that SQL statement. The
records retrieved by the SQL statement you passed are returned in an array from the find_by_
sql method.

Here’s an example that uses the find_by_sql method:

results = ComicBook.find_by_sql(“SELECT * from comic_books WHERE
issue>25”)

In this example, the SQL statement “SELECT * from comic_books WHERE issue>25” is
passed to the database, and the records retrieved are turned into ComicBook objects and returned
in an array.

Creating and finding data with the Rails Console
If you’ve been reading along in this chapter up to this point, you’ve learned a lot of new techniques
for creating and reading data into your application. Let’s take a break from the Rails detailed cover-
age and try out some of what you’ve learned using the Rails Console.

 1. At a command-line, start up the Rails Console for your chapter3 project. At the root
of the chapter3 project, type this:

ruby script/console

 This starts the Rails Console. Recall that the Rails Console is an interactive environment
in which you have full access to your Rails classes and the full power of Ruby.

 2. Find a record stored in the database. Earlier in this chapter, you ran a migration that
added a row to the comic_books table. Now use the find method to retrieve this
record, as shown here:

comic_book = ComicBook.find(:first)
puts comic_book.title
=> Captain America

 The first line should have found the comic book entry you created earlier, and the second
line prints the comic book’s title. You should see the comic book’s title, ‘Captain
America’, printed on the console.

129

Using Active Record 3

 3. Create a new instance of your ComicBook class. Now, create an instance of the
ComicBook class and set its attributes, like this:

comic_book = ComicBook.new
comic_book.title = ‘Spiderman’
comic_book.issue = 1
comic_book.writer = ‘Stan Lee’
comic_book.artist = ‘Steve Ditko’
comic_book.publisher = ‘Marvel’

 4. Create a new row in the database by saving the ComicBook instance.

comic_book.save

 By executing the save method, you have saved the new comic book to the database.
Your database should now contain two records. Verify that in the next step.

 5. Retrieve all database rows. Use the find_all method to get all of the rows in the
database as an array of ComicBook objects. Use the Array#length method to get a
count of objects in the database.

all_rows = ComicBook.find_all
puts all_rows.length
=> 2

 This should print a value of ‘2’ to the console, because the comic_books table should
now contain two records. If you created the comic book records that were shown in the
“Creating Records” section, you probably are up to six comic books in the database
instead of two.

 6. Retrieve a database row by its primary key. Use the find method and the id from the
comic book you saved in Step 3 to retrieve that item from the database.

id = comic_book.id
new_comic_book = ComicBook.find(id)
puts new_comic_book.writer
=> Stan Lee

 This should have found the comic book that you created in Step 1 and printed its writer
to the console.

 7. Retrieve a database row using a dynamic finder method. Use one of the dynamic
finder methods, such as find_by_title shown here, to retrieve the new record by its
title.

a_comic = ComicBook.find_by_title(‘Spiderman’)
puts a_comic.issue
=> 1

 This should have found the comic book that you created in Step 1 and printed its issue
number to the console.

By now, you’ve learned how to create and retrieve records from your database the Rails way. Next,
you’ll learn how to update and delete records.

130

Rails In DepthPart II

Updating records
After you’ve made changes to a model, you usually want to save those changes back to the data-
base. With Rails, you update your database records just by working with your model classes. You
do not have to write any SQL code to perform database updates.

Before you can update a record, you first need to retrieve it. Here you retrieve the first record in
the database and change the issue number:

comic = ComicBook.find(:first)
comic.issue = 100
comic.save

This code is very simple. You retrieve the desired record from the database, update one or more
attributes on the returned object, and then perform a save.

You can simplify the above code even further by using the update_attribute method, as
shown here:

comic = ComicBook.find(:first)
comic.update_attribute :issue, 100

The update_attribute method allows you to set the value of an attribute and save the
changed value back to the database in one step.

Deleting records
Rails has two methods for deleting objects from your database. These methods are slightly different
in their behavior, and are as follows:

n delete: Aborts on minor errors.

n destroy: Does not abort unless there is a critical database error.

You can call either of these methods on any of your model object instances, such as your comic
book instance:

comic.destroy

After calling the method, the record associated with the object is deleted from the database
immediately.

Using development log files
Rails insulates you, the developer, from having to write SQL statements to access your database.
However, there are times when you’re debugging an application and you’d like to know what SQL
Rails is using internally. For this purpose, the place to look is the development log file.

Open up the development.log file in the chapter3/log directory. You should see some-
thing similar to Figure 3.3.

131

Using Active Record 3

 FIGURE 3.3

The development.log file

The development.log file contains every SQL statement that is sent to the database server,
including the details of how long it took to execute each SQL statement.

This level of logging would impact the performance of your production environment. You’d also
end up with a very large log file that you’d somehow have to manage. For these reasons, you only
get the SQL statement logging when you are in the development environment.

Defining Relationships
Modeling data relationships in your classes is an important part of mapping data that is stored in a
relational database. The word relational implies that there are relations among the database tables
that contain your data. Active Record provides powerful yet very easy-to-use syntax for represent-
ing data relationships in your model classes.

You define relationships in your data models using the data modeling domain-specific language
(DSL) that is built into Active Record. Throughout this section, you can see examples of how
Active Record’s DSL makes data modeling easy for you, the developer.

The relationships that you’ll define are of the following types:

n One-to-one

n Many-to-one

n Many-to-many

To implement these relationship types, Rails uses the following methods, which make up the Rails
association DSL:

132

Rails In DepthPart II

n belongs_to

n has_one

n has_many

n has_and_belongs_to_many

n acts_as_list

n acts_as_tree

You use these methods within your model classes to create associations. As you use these methods,
their use may seem more like a natural part of the language, as opposed to the fact that you are
explicitly calling methods. This is the hallmark of a well-designed DSL. Each of the methods is
used with the form shown here:

<relationship> <relationship_target> <named parameters>

For example, a typical use of the has_many method would look like this:

has_many :chapters :order=>position

In this example, the relationship is has_many, the relationship target is :chapters and
:order=>position is a named parameter that specifies how the associated chapters should be
ordered. The following sections cover in more detail how these methods are used for each of the
relationship types.

One-to-one relationships
The one-to-one relationship is the simplest relationship, and can be modeled as shown in Figure 3.4.
This type of relationship implies that there is a one-to-one correspondence between objects of one
type and objects of another type. A one-to-zero-or-one relationship is actually modeled in the same
way. In a one-to-zero-or-one relationship, one side of the relation can be empty.

The example used in Figure 3.4 considers books and their cover images. Assuming that the same
image is never used on two different book covers, there is always a one-to-one relationship
between books and cover images. Another way of saying this is that a book has one cover image,
and a cover image belongs to one book.

Modeling this type of relationship in a Rails application requires a foreign key in one of the data-
base tables and the use of some Rails DSL magic in your model classes. The foreign key should be
used in the table that represents the zero-or-one side of the relationship. If it is a strict one-to-one
relationship, one of the objects will usually seem to be naturally more dominant. The foreign key
goes with the table of the less dominant object.

In the example of Figure 3.4, the cover_images table contains a foreign key book_id associat-
ing a cover_image with a specific book.

133

Using Active Record 3

 FIGURE 3.4

One-to-one relationship

id:

cover_images

book_id:

id:

books

class CoverImage

book

belongs_to :book

class Book

cover_image

has_one :cover_image

The Book class uses the has_one method to create the relationship with a CoverImage object:

class Book < ActiveRecord::Base
 has_one :cover_image
end

Methods added by has_one
The has_one method causes the following methods to be automatically added to the Book class:

n cover_image

 Returns the associated CoverImage object, or nil if no object is associated.

n cover_image=

 Assigns the CoverImage associate object, extracts the primary key, sets it as the foreign
key, and saves the Book object.

n cover_image.nil?

 Returns true if there is no associated CoverImage object.

n build_cover_image(attributes={})

 Returns a new CoverImage object that has been instantiated with attributes and
linked to this Book object through a foreign key, but has not yet been saved. This will
only work if the association already exists. It will not work if the association is nil.

n create_cover_image

 Returns a new CoverImage object that has been instantiated with attributes, linked
to this Book object through a foreign key, and that has already been saved. Notice how
this is different from the build_cover_image method, in that this method saves the
associated CoverImage instance that is returned.

These methods are all related to the associated class, which is the CoverImage class. For general
purposes, replace the text cover_image in the methods above with the singular form of the asso-
ciated class for whatever classes you are associating with the has_one relationship to get the
methods added.

134

Rails In DepthPart II

The CoverImage class also requires some special Rails code. For this side of the relationship, you
use the belongs_to method, like this:

class CoverImage < ActiveRecord::Base
 belongs_to :book
end

Methods added by belongs_to
The belongs_to method causes the following methods to be automatically added to the
CoverImage class:

n book

 Returns the associated Book object, or nil if no object is associated.

n book=

 Assigns the Book associate object, extracts the primary key, sets it as the foreign key.

n book.nil?

 Returns true if there is no associated Book object.

n build_book(attributes={})

 Returns a new Book object that has been instantiated with attributes and linked to
this Book object through a foreign key, but has not yet been saved.

n create_book

 Returns a new Book object that has been instantiated with attributes, linked to this
CoverImage object through a foreign key, and that has already been saved. Notice how
this is different from the build_book method, in that this method saves the associated
Book instance that is returned.

These methods are all related to the associated class, which is the Book class. For general purposes,
replace the text book in the methods above with the singular form of the associated class for what-
ever classes you are associating with the belongs_to relationship to get the methods added.

Many-to-one relationships
The many-to-one relationship is the most common type of data relationship. The simplest way of
explaining a many-to-one relationship is with a picture. Figure 3.5 shows a many-to-one relation-
ship that exists between books and chapters. A book represents the ‘one’ side of the relationship,
and the chapters are the ‘many’ side of the relationship; one book contains many chapters.

Both chapters and books are models in your Rails application. In your database, each of the models is
represented in a separate table. Databases use a concept called foreign keys to create a relationship
between two tables. A foreign key is a column in one table that points to a row in a different table. In a
Rails application, the foreign keys must be named with the singular form name of the table they are
pointing to, followed by _id. For example, the foreign key column in the chapter’s table would be
named book_id. This column specifies the book that a chapter is contained within.

135

Using Active Record 3

 FIGURE 3.5

Many-to-one relationship

id:

chapters

book_id:

id:

books

class Chapter

book

belongs_to :book

class Book

chapters[]

has_many :chapters

In addition to setting up your database schema in the correct way to model a many-to-one rela-
tionship, you also add special code to your model classes in a Rails application. Using the books
and chapters example, your Book class would look like this:

class Book < ActiveRecord::Base
 has_many :chapters
end

The has_many method indicates that a book has many chapters.

Methods added by has_many
By using the has_many method, the following methods are added to your Book class:

n collection

 Returns an array of all the associated objects. An empty array is returned if none are
found.

n collection<<(object,..)

 Adds one or more objects to the collection by setting their foreign keys to the collection’s
primary key.

n collection.delete(object,..)

 Removes one or more objects from the collection by setting their foreign keys to NULL.
This will also destroy the objects if they are declared as belongs_to and dependent on
this model.

n collection=objects

 Replaces the collection’s content by deleting and adding objects as appropriate.

n collection.singular_ids

 Returns an array of the associated objects’ ids.

n collection.singular_ids=ids

 Replace the collection with the objects identified by the primary keys in ids.

136

Rails In DepthPart II

n collection.clear

 Remove every object from the collection. This associated objects are destroyed if they are
associated with :dependent => :destroy, or deleted from the database if associated
with :dependent => :delete_all, otherwise their foreign keys are set to NULL.

n collection.empty?

 Returns true if there are no associated objects.

n collection.size

 Returns the number of associated objects.

n collection.find

 Finds an associated object using the same rules as when you use the find method from
one of your Active Record models directly.

n collection.build(attributes = {})

 Returns one or more new objects of the collection type that have been instantiated with
attributes and linked to this object through a foreign key, but have not yet been
saved. This will only work if the associated object already exists and is not nil.

n collection.create(attributes = {})

 Returns a new object of the collection type that has been instantiated with attributes,
linked to this object through a foreign key, and that has already been saved. This will
only work if the associated object already exists and is not nil.

Where the collection is referenced, in the case of the Book class this would be chapters.
For example to determine how many chapters are associated with a given book, you could use this
method:

chapter_count = book.chapters.size

 You also add code to the Chapter model, which would look like this:

class Chapter < ActiveRecord::Base
 belongs_to :book
end

Here you used the belongs_to method, which is the other side of a has_many relationship.

Methods added by belongs_to
You have already seen the methods that are added by the belongs_to relationship previously
when we discussed the has_one and belongs_to relationships.

Many-to-many relationships
In a many-to-many relationship, each side of the relationship can point to more than one related
object. Again, the best way to illustrate this kind of relationship is through a picture. Let’s look at
the many-to-many relationship in Figure 3.6. This example uses a Book and a Store model. A store

137

Using Active Record 3

contains many books, and thus it’s easy to understand this ‘many’ side of the relationship. Looking
at the relationship from the other direction, a book is usually sold in many different stores. Because
both objects can be related to many of the other objects, you have a many-to-many relationship.

In a many-to-one relationship, a foreign key was used to model the relationship in the database. A
many-to-many relationship must be modeled in the database using a slightly more complex tech-
nique. You use a relationship join table to model the many-to-many relationship. In Figure 3.6 this
join table is shown as books_stores. In order for Rails to recognize the table and correctly build
the association, this join table should be named with the names of the two related tables in alpha-
betical order and separated by an underscore. Thus in this case, you end up with the table named
books_stores. You would create this table using a migration, just as you create regular model
object tables. However, you do not need to generate a model class to represent this table.

 FIGURE 3.6

Many-to-many relationship

book_id:

books_stores

store_id:

id: id:

books

class Store

books[]

has_and_belongs_to_many : books

class Book

stores[]

has_and_belongs_to_many : stores

stores

As with the other Rails recognized relationships, you also have to add some code to each of the
related models. The method call that you will add to each model is the same in this case. It is the
has_and_belongs_to_many method. You will often see this shortened as HABTM in discus-
sions online. So following through with the example shown in Figure 3.6, you would add this
method to each of the Book and Store classes.

class Book < ActiveRecord::Base
 has_and_belongs_to_many :stores
end

class Store < ActiveRecord::Base
 has_and_belongs_to_many :books
end

Methods added by has_and_belongs_to_many
By using the has_and_belongs_to_many method, the following methods are added to your
Book and Store classes:

138

Rails In DepthPart II

n collection

 Returns an array of all the associated objects. An empty array is returned if none are
found.

n collection<<(object,..)

 Adds one or more objects to the collection by creating associations in the join table
(collection.push and collection.concat are aliases to this method).

n collection.delete(object,..)

 Removes one or more objects from the collection by removing their associations from the
join table. This does not destroy the objects.

n collection=objects

 Replaces the collection’s content by deleting and adding objects as appropriate.

n collection.singular_ids

 Returns an array of the associated objects’ ids.

n collection.singular_ids=ids

 Replace the collection with the objects identified by the primary keys in ids.

n collection.clear

 Remove every object from the collection. This does not destroy the objects.

n collection.empty?

 Returns true if there are no associated objects.

n collection.size

 Returns the number of associated objects.

n collection.find(id)

 Finds an associated object responding to the id and that meets the condition that it has
to be associated with this object.

n collection.build(attributes = {})

 Returns a new object of the collection type that has been instantiated with attributes
and linked to this object through the join table, but has not yet been saved.

n collection.create(attributes = {})

 Returns a new object of the collection type that has been instantiated with attributes,
linked to this object through the join table, and that has already been saved.

Where the collection is referenced, in the case of the Book class this would be stores, and
in the case of the Store class, this would be books. For example to determine how many stores
are associated with a given book, you could use this method:

store_count = book.stores.size

and to find the number of books in a given store, you could use this method:

book_count = store.books.size

139

Using Active Record 3

Implementing Validations
Validations allow you to define valid states for each of your Active Record model classes. Rails
makes it easy to add validations to your model classes. As you saw with modeling relationships in
Rails, you make use of more of Active Record’s domain-specific language to model validations in
your Rails application. You can do several kinds of validations using the built-in validation DSL.

When an attribute in one of your Active Record model classes fails a validation, that is considered
an error. Each of your Active Record model classes maintains a collection of errors in an attribute
called errors. This makes it easy for you to display appropriate error information to the users of
your application when validation errors occur.

Now let’s look at some examples of how you might use validations in your code. Remember the
example of comic books that you worked with in previous sections of this chapter? Add a valida-
tion to ensure that a comic book always contains a title. Open the app/models/comic_book.
rb file and edit it as follows:

class ComicBook < ActiveRecord::Base
 validates_presence_of :title
end

The validates_presence_of method adds a validation to the ComicBook class that will
make sure every comic book has a title. If you attempt to save a ComicBook instance that does
not contain a title, you will get an error preventing the record from being saved. There is a method
available to you named valid? that you can use to test the validity of your attributes at any time.
The valid? method will run the validations and return true or false indicating whether the vali-
dations passed for the model instance on which it was called. In the example below, you would get
a return value of false when you call the valid? method.

comic = ComicBook.new
comic.valid? #=> false

You could then look at the errors collection to see what the validation problems are.

comic.errors.each_full do |message|
 puts message
end

Since you have only defined one validation for the ComicBook class, this would print the follow-
ing message:

Title can’t be blank

If you had defined additional validations, you would see an error message for each validation that was
unsuccessful. This is very useful to use when displaying errors to the user of a Web application.

There are also methods available on the errors collection that are useful for obtaining additional
information about your validation errors. The method invalid? allows you to pass it a specific
attribute name and it will return true or false to tell you whether that specific attribute is valid or
not. Using the comic book example, you could use this method like this:

140

Rails In DepthPart II

comic = ComicBook.new
comic.valid?
comic.errors.invalid?(title) #=> true

Calling invalid? on the title attribute returns true since that attribute does not pass the vali-
dates_presence_of validation. If you want to get the error message associated with a specific
attribute, you can use the on method as shown here:

comic = ComicBook.new
comic.valid?
comic.errors.on(:title) #=> can’t be blank

This returns the string “can’t be blank”. Notice that the word “Title” is not a part of the
string that is returned.

Note that you can only call these methods on the errors collection after you have performed a
validation, such as by using the valid? method.

The next validation method we’ll look at is the validates_format_of method. This method is
useful for ensuring that an attribute conforms to a specific format. One of the places this is used
most often is to validate the format of an email address. Below is an example of how you
might use the validates_format_of method within a User class to validate an email
attribute.

class User < ActiveRecord::Base
 validates_format_of :email
end

Rails includes many more built-in validation methods. These are briefly described in Table 3.2. For
complete details of how these methods work and the options that you can use with these, you
should refer to the Rails documentation on validations available online at the following URL:

http://api.rubyonrails.org/classes/ActiveRecord/Validations/
ClassMethods.html

If you want to save an object despite any validation errors that you might have you can call the
save method with an argument of false. The line below will force the object to be saved even with
validation errors:

comic = ComicBook.new
comic.save(false)

141

Using Active Record 3

 TABLE 3.2

Rails Built-in Validation Methods
Method Description

validates_
acceptance_of

This validation is best described using an example. You could use this validation to
validate that the user has accepted a terms of service agreement by checking a check
box.

validates_associated Validates whether associated objects are all valid themselves. Works with any kind
of association.

validates_
confirmation_of

Allows you to validate that the user has confirmed fields such as a password or email
address in a second entry field.

validates_each Validates each attribute against a block.

validates_
exclusion_of

Validates that an attribute is not in a particular enumerable object.

validates_format_of Validates the value of an attribute using a regular expression to insure it is of the
correct format.

validates_inclusion_
of

Validates whether the value of an attribute is available in a particular enumerable
object.

validates_length_of Validates that the length of an attribute matches length restrictions specified.

validates_
numericality_of

Validates whether an attribute is numeric.

validates_presence_
of

Validates that the attribute is not blank.

validates_size_of This is an alias for validates_length_of

validates_
uniqueness_of

Validates that an attribute is unique in the database.

Custom Validations
If you find that the built-in validation methods do not meet your needs, you can create custom val-
idations that still allow you to use Rails errors collection and validations mechanics. You do this by
defining a validate method for the Active Record class that you want the custom validations on.
In this validate method you can check the state of multiple attributes and manipulate the errors
collection as needed.

This might be very useful for cases when you want to determine the validity of your object based
on the values of multiple attributes. For example, suppose you want to be sure that a user has
either entered a login name, or an email address when registering. You could do this with the fol-
lowing custom validation:

142

Rails In DepthPart II

Class User < ActiveRecord::Base
 def validate
 if login.blank? && email.blank?

errors.add_to_base(“You must enter either a login or an email
address”)

 end
 end
end

If both the login and the email are blank, an error message is added to the errors collection.
This is done using the add_to_base method of the errors collection. This method allows you
to add an error message that is not associated with a specific attribute, but instead it is associated
with the object as a whole.

If you wanted to add your own error message specific to an attribute, you can do that using the
add method of the errors collection. This method takes the name of an attribute and the error
message you want to associate with that attribute as parameters. Below is an example of how you
might use this method:

comic_book.errors.add(‘login’, ‘You must enter a login name’)

There is one more method that you’ll find handy when using the errors collection. That is the
clear method. The clear method will clear the errors collection of all errors. To repopulate
it, you must validate the object again through either built-in or custom validations, or simply add
error messages to it manually using the above add methods.

comic_book.errors.clear

Advanced Active Record
You can create many very powerful Web applications using only the techniques and methods that
were covered in the previous sections of this chapter. However, there are times when you may want to
implement more advanced data related code. This section walks you through several more advanced
things that you can do with Active Record. You’ll learn how to implement single table inheritance, how
to use composition, and how to implement transactions using Active Record and Rails.

Single table inheritance
Active Record uses a database technique called single table inheritance to support inheritance in
your model classes. With single table inheritance, a class and all of its descendents use the same
database table. For example, the ComicBook model that you’ve been working with in this chapter
could have extended a model class called Book, because a comic book is a type of book. Your
application might also work with other types of books, such as text books. You might have a
TextBook model which also extends the Book model. With single table inheritance, books,
comic books, and text books would be stored in the same table. See Figure 3.7 for an example of
how the classes and database should be laid out.

143

Using Active Record 3

 FIGURE 3.7

Single table inheritance

title
author

Book

TextBook

Subject
grade_level

ComicBook

artist

Id

books

1

2

type

ComicBook

TextBook

title

Spiderman

Easy Math

author

S. Lee

J. Doe

artist

M. Bagley

subject

Math

grade_level

4

Notice that the common table is given the plural name of the base class. In this case, the table is
named books. The books table contains a column named type, which specifies for a particular
record whether that record is a text book or a comic book. Active Record automatically manages
the type column.

Your model classes would be defined like this:

class ComicBook < Book
end

class TextBook < Book
end

class Book < ActiveRecord::Base
end

If you perform a query using the Book class, it returns both text books and comic books. A query
using the ComicBook class returns only comic books and a query using the TextBook class
returns only text books, as expected.

If you ever need to see the type field, you cannot access it using book.type because the type field
is a class attribute. However, you can access it from your objects like this:

 book[:type]

The above line would return the type of the object, either ComicBook or TextBook.

144

Rails In DepthPart II

Composition
Composition is a design pattern in which you have one class composed of several other classes. Note
that this is not the same as inheritance, in which a subclass extends a base class. With composition,
you have a main class and one or more component classes. This design pattern is also referred to as
aggregation.

Rails implements the composition pattern using one table that is mapped to multiple classes.
Consider the example of a Book that is composed of a Publisher. Figure 3.8 shows how the
classes and database table would be laid out. As you can see, the books table contains columns for
attributes that exist in both the Book and Publisher classes. You would implement the compo-
sition in your Book model class like this:

class Book < ActiveRecord::Base
 composed_of :publisher, :class_name => “Publisher”,
 :mapping => [[:publisher_name, :name],
 [:publisher_country, :country]]
End

 FIGURE 3.8

Rails implementation of the Composition Pattern

id
title
author
publisher

Book

name
country

Publisher

Id

books

title

author

publisher_name

publisher_country

The first parameter to composed_of is the name that the component class is referred to by the
main class. In this example, because the first parameter to composed_of and the component
class name are the same, you could have eliminated the :class_name parameter. By default,
Rails looks for a class that contains the same name as the first parameter to composed_of.

The :class_name parameter allows you to override the Rails default and use a different name
from that of the class as the first parameter. For example, you could have used this line:

 composed_of :publisher_info, :class_name => “Publisher”,

145

Using Active Record 3

The second parameter to composed_of specifies the attribute mappings. The :mapping array
associates columns in the books database with attributes in the Publisher class. For the map-
ping in this example, the publisher_name column in the books table is mapped to the name
attribute of the Publisher class, and the publisher_country column is mapped to the
country attribute of the Publisher class.

You also have to add some code to your component class, Publisher. Publisher would look
like this:

class Publisher
 def initialize(name, country)
 @ name = name
 @ country = country
 end

 attr_reader : name,: country
end

You must create an initialize method that contains a parameter for each attribute that the
component represents. Within the initialize method, you have to create instance attributes
for each of the component attributes.

Rails adds accessors to the main class for the component class and each of its attributes. You could
access the Publisher object from an instance of the Book class using: book.publisher. You
can also set the publisher of a book using this code:

book.publisher = Publisher.new(’’, ’’, ’’)

You access each of the attributes in the component class through the parent class attribute of the
main class. From an instance of the Book class, you would access the Publisher attributes like
this:

pub_name = book.publisher. name
pub_country = abook.publisher. country

Composition is often used when you have a class that you want to use across many models. An
often-cited example is the case of a Person and Address class. A Person is composed of an
Address. In this example, you might want to also use the Address class across other models.
The Business and Museum classes might also be composed of an Address. Employing compo-
sition in this example would save you from having to repeat the attributes and behavior contained
in the Address model in all of the models that are composed with it.

Transactions
Many applications that you write will require the use of database transactions. Transactions are a
way of grouping database actions together, such that they either all execute as expected, or none of
them execute in the case of an error.

146

Rails In DepthPart II

Rails supports transactions using a transaction class method that is available on all model classes
that extend ActiveRecord::Base. A typical example of when transactions are required is when
you are working with bank accounts. When you transfer money from one account to another, that
process can be broken down into the following actions:

 1. Subtract the transfer amount from the account that you are transferring from.

 2. Add the transfer amount to the account that you are transferring to.

If the first action, subtracting the money from the ‘from’ account succeeded, but the second action
of adding the money to the ‘to’ account failed, you would have many unhappy customers if your
application did not make use of transactions. If both of these actions were wrapped in a transac-
tion, a failure in the second action would cause the first action to be undone, or rolled back. A roll
back is a database term for undoing an action that was performed on the database.

Using this example, in your Rails application, you would likely have a class named Account. The
Account class would have a transfer method implemented as follows:

def transfer(from, to, amount)
 Account.transaction do
 from.withdraw(amount)
 to.deposit(amount)
 end
end

Now if any failures occur in either of the method calls contained in the block that begins with the
Account.transaction do line, all of the database actions will be rolled back. Therefore, either
both the withdrawal and deposit actions succeed, or they are both rolled back. This is exactly the
behavior that you were seeking.

Summary
This chapter explored the details of Active Record and how you can use its features to create the
model layer of your Web application. You were shown how to use Active Record to perform the
following tasks:

n Create models for your application using the Rails script/generate script

n Use Rails migrations to create and modify your database

n Find records in your database using a variety of ActiveRecord methods

n Update and delete rows in your database

n Model your database relations using ActiveRecord methods

n Add data validations to your model classes

You also learned how to use some advanced features of Rails, including Single Table Inheritance,
Composition, and Transactions. Active Record allows you to create the model layer of your Web
applications with ease and simplicity.

147

In this chapter, you will learn about the controller layer of the MVC
framework implemented in Rails applications. The controller layer of an
MVC application is responsible for figuring out what to do with external

input. The controller layer interprets user input and responds to user
requests by communicating with the model layer, and rendering views using
the view layer. You can think of the controller as the conductor of the appli-
cation; it determines which views to show based on the input received.

The controller layer should be the only layer of your application that knows
the client is actually a Web browser. All interaction with the Web server and
knowledge of such interaction should be confined to methods in your con-
troller classes. This layer should not contain a great deal of your business
logic; the business logic should be contained within your model layer.
Theoretically, you could rewrite the controller layer to adapt the application
to a different platform, such as a non-browser environment.

Rails implements the controller layer primarily using a component called
ActionController. ActionController is joined with ActionView to make up the
Action Pack component of Rails. Action Pack provides the functionality for
processing incoming requests from the browser and for generating responses
to the browser.

What is ActionController?
In Rails, your application’s controller and view layers use the Action Pack
components of Rails. Controllers are implemented using the

IN THIS CHAPTER
What is ActionController?

All about routing

Creating and using controllers

Using filters

Working with sessions

Caching

Controller:
In Depth

148

Rails In DepthPart II

ActionController component of Action Pack. The ActionController component provides you with
an easy-to-use functionality related to the following areas:

n Routing

n Interfacing with the Web server

n Using sessions

n Cache management

n Rendering view templates

Throughout this chapter, you can learn how ActionController helps you with each of these tasks.

In a typical Rails application, you might have many controller classes. Each of your application’s
model classes will typically have a controller class for working with that model. For example, you
might have defined a user model or a book model. You would probably also want to create a
UserController class and a BookController class. These controller classes would handle
requests to show, create, update, and delete these types of model objects. Each controller class you
write will inherit from the Rails class, ActionController::Base. This is how your controller
classes gain the power of Rails.

All About Routing
A Web application receives requests from a browser, takes action to process those requests, and
returns a response that is directed back to the browser. Sitting in between the browser and the
Web application is usually a Web server. The Web server passes the browser requests to your Rails
Web application, but once they are passed into your application, where do they go from there? The
ActionController component uses a routing subsystem to route the Web requests to the appropri-
ate method in your Rails application. The routing subsystem routes requests to methods that are
called action methods. The action methods are contained in controller classes.

The action methods in your application’s controller classes receive the incoming requests and
invoke methods contained in other layers of the application, such as the model layer; using the
view layer, a response is generated and returned to the requesting browser.

The Rails routing mechanism is very flexible and can be adapted to meet any special requirements
that you might have. However, you can get basic routing functionality immediately without having
to write a single line of configuration code. The basic routing functionality is useful for many com-
plete Web applications that you may write.

Let’s start by looking at an example request from the browser to this URL:

www.bookstore.com/book/show/1234

149

Controller: In Depth 4

This request is received by the Web server and passed to the routing subsystem of Rails. The rout-
ing subsystem interprets this as a request to invoke the show method of the BookController
class and pass an id parameter of 1234. The flow of events that occur when this request is
received looks like this:

 1. The Web server passes the request to the Rails routing subsystem.

 2. The routing subsystem parses the request, identifying the requested controller and
action.

 3. A new instance of the requested controller is created.

 4. The process method of the controller is called and is passed request and response
details.

 5. The controller calls the specified action method.

CROSS-REFCROSS-REF For more information on templates, see Chapter 5.

Observe the pattern here in relation to how the request was routed:

http://server_url/controller name/action name/optional id

This is the default routing mechanism that is built into Rails. The first path element following the
server URL is the name of a controller to invoke. The second path element is an action contained
within that controller, and the last path element is the id of a data item. Not all of your actions
will require a parameter, and so the id path element is optional. For example, a request to list all
of the books contained in the store might look like this:

http://www.bookstore.com/book/list

Defining custom routes
You do not have to use the default routing mechanism if it does not meet your needs. Let’s look at
an example of where you might want to define a custom routing mechanism. You might have a
Web application that lets users view articles posted on previous days. Perhaps you want to be able
to accept URLs that look like this sample:

http://myarticles.com/article/2008/1/20

You would like this to be interpreted as a request for articles that were created on the date
1/20/2008, and so the general routing pattern would look like this:

http://myarticles.com/article/year/month/day

So how do you tell Rails about that routing pattern? The answer is through a file that was gener-
ated when you generated the Rails skeleton for your application using the rails command. This
file is the routes.rb file found in the config subdirectory of your Web application directory.
Open up config/routes.rb and take a look at the default routes. You should see these routes
already defined:

150

Rails In DepthPart II

 map.connect ‘:controller/:action/:id.:format’
 map.connect ‘:controller/:action/:id’

Each of the map.connect statements defines a route that connects URLs to controllers and
actions. The string passed to the map.connect method specifies a pattern to match the URL
against. The routes you see defined look for three path elements. The path elements are mapped to
the fields named in this string and placed into a parameters hash. For example, the path book/
show/1234 produces the following parameters hash:

@params = { :controller => ‘book’
 :action => ‘show’
 :id => 1234 }

The routing subsystem then invokes the show method of the store controller and passes a
parameter of :id with a value of 1234.

Now that you understand how the default route is implemented, let’s figure out how you would
define a route to map the URL containing year, month, and date path elements. Remember that, as
in the case of the default route, you must pass a route pattern string to the map.connect method.
The pattern string matching the desired URLs would look like this:

“article/:year/:month/:day”

This pattern matches the path elements of the URLs that you want to use. If you create a route
using this string passed to the map.connect method, does that define a complete route? If you
think it does, let me ask this: What action method would these requests be routed to? This route
pattern does not include an action name. Therefore, you know the route is not complete as is. The
pattern string is complete, though. It contains enough information to match the desired URL for-
mat. You need to pass an additional parameter to map.connect to specify an action. This would
give you a route that looks like this:

map.connect “article/:year/:month/:day”,
 :controller => “article”,
 :action => “show_date”

This route works as long as the URL always contains a year, a month, and a date. Suppose you
want to also allow users to enter only a year, or only a year and month, and see the articles corre-
sponding to those timeframes. To make that work, you can tell the route that the :day and
:month elements do not have to be there, or in Ruby code, you can say that these elements can
have a nil value. You would now modify the route to look like this:

map.connect “article/:year/:month/:day”,
 :controller => “article”,
 :action => “show_date”,
 :day => nil,
 :month => nil

151

Controller: In Depth 4

Now things are beginning to look pretty good, but what if someone tried to use a URL that looked
like this:

http://myarticles.com/article/8

This URL doesn’t look like it is meant for the route you just defined. However, remember when
you said that the :day and :month elements are not required, and the route was modified to
allow those elements to not be present? Given that, this URL can match the route you defined. It
would interpret the value 8 as the :year parameter. This is probably not what you want, though.
The route would be better if it restricted the date fields to be valid date values. Let’s add that vali-
dation by modifying the route to look like this:

map.connect “ article/:year/:month/:day”,
 :controller => “ article”,
 :action => “show_date”,
 :requirements => { :year => /(19|20)\d\d/,
 :month => /[01]?\d/,
 :day => /[0-3]?\d/ },
 :day => nil,
 :month => nil

Now, a :requirements parameter is added that specifies requirements for the :year, :month,
and :day fields. Regular expressions are used to make sure that each of the date fields contains a
valid value. Now you have a well-defined route for accepting requests like the one you originally
specified:

http://myarticles.com/article/2008/1/20

Defining a custom default route
Now you understand a bit about how requests are routed to your controllers and actions in a Rails
application. Routing is accomplished by parsing path elements of a URL to map a request to a con-
troller and action method. This convention is okay for most of your Web application, but what
about your application’s home page? Typically, you want the home page to be routable just by
going to your application’s server URL without specifying any path elements. For example, the
home page for myarticles.com should be reachable by using this simple URL:

http://www.myarticles.com

Further suppose that your home page featured some dynamic functionality that required process-
ing by your code. How would Rails know what controller and method to route the home page
request to? The answer is to define a route that matches a URL with no path elements, like this:

map.connect “”,
:controller => “home”,
:action => “index”

152

Rails In DepthPart II

By specifying an empty pattern string, this pattern matches against any URL that it sees, including
the home page request with no path elements. It tells the routing subsystem to send this request to
the index method of the home controller.

CAUTION CAUTION You must also delete public/index.html in order for the default route to work. This
is because Rails will bypass the routing mechanism for any html files that it finds

directly in the public directory.

Be careful where you place this in the routes.rb file, though. If a URL matches multiple routes
defined in routes.rb, the first one matched will be the route used. This is important to keep in
mind. If you placed this route as the first route listed in your routes.rb file, this would catch
every request, and every request would end up getting routed to the index method of the home
controller. You would want to list this route at the end of all your routes.

Using named routes
The routes that you’ve seen so far are called anonymous routes. There is also a way of creating a
named route. A named route will allow you to simplify the URLs that you use in your code.

Named routes are very simple to create. Instead of using the method map.connect in your
routes.rb file, you replace the word connect with the name you want to give to that route.
For example, you could create a named route for the year/month/date articles route that was cre-
ated previously by renaming it like this:

map.dates “ article/:year/:month/:day”,
 :controller => “ article”,
 :action => “show_date”,
 :requirements => { :year => /(19|20)\d\d/,
 :month => /[01]?\d/,
 :day => /[0-3]?\d/ },
 :day => nil,
 :month => nil

You should also rename your home page route to home, like this:

map.home “”,
:controller => “home”,
:action => “index”

This creates a name route called home that will use the home controller and the index action.
Next, you’ll see how useful named routes can be.

Within the code that you write, either in classes or view templates, you’ll often need to specify
links. Especially for situations where there is a link that you find yourself using over and over
again, such as a link to an action that is accessible from every page, it is useful to have a way of
specifying that link without having to hardcode the full URL into every page template. Named
routes give you the ability to specify a link URL using a convenient name.

153

Controller: In Depth 4

Without taking advantage of a named route, you might have a link specified like this repeated in
many of your template files:

<%= link_to ‘Home’, :controller => ‘home’, :action => ‘index’ %>

However, if you take advantage of the named route you created above using map.home in the
routes.rb file, this link can be specified like this:

<%= link_to ‘Home’, home_url %>

By using home_url, Rails knows that you are referring to the route named home and will auto-
matically use the controller and method specified in that route. Not only does this reduce the
amount of code that you have to type, but it also abstracts the home page link into a single place—
the named route. If you decided to change the name of the controller or action method used to
display the home page, you will not have to change all of your view templates that use that link.
You only have to change the named route.

You can use named routes to generate URLs in your controller code by using the name of the route
followed by _url. For example, in the previous link, you used the home_url method to create a
link to the home page of the application.

You can also pass parameters to the URL generation methods as a hash to specify details of the
URL. For example, here is how you could create a URL to request all articles for the year 2007
using the dates route that you created earlier:

@articles_2007 = dates_url(:year => 2007)

The parameter :year maps to the :year parameter that you defined in the dates route definition.
You can also pass in parameters that are not defined in the route and they will be appended to the
query string as additional parameters. For example, consider the following code:

@articles_2007 = dates_url(:year => 2007, :group_by => ‘weekday’)

This would result in having an additional parameter named group_by passed into your action
method. You could then use this additional parameter to construct an appropriate query.

Constructing URLs with url_for
Rails provides a method named url_for that allows you another way of constructing URLs
within your code. Recall the route that is defined for you when you first generate a new Rails
application:

map.connect ‘:controller/:action/:id’

Assume that somewhere in your code, you want to create a URL that would map to the action and
controller specified in that route. The url_for method constructs a URL given a set of options
that you pass to it.

154

Rails In DepthPart II

@link = url_for(:controller=>”article”, :action=>”show”,
:id=>123)

This would create a link in the @link variable with a value similar to this:

http://www.myapp.com/article/show/123

The url_for method takes the parameters passed to it and creates a URL that maps those param-
eters to a pattern specified in one of your routes. This abstracts the details of how your URLs are
specified out of your code. The details of your URLs have to exist in one place only, your
routes.rb file.

In addition to specifying the controller and action when you call the url_for method, there are a
number of additional parameters that url_for supports that allow you to customize the URLs
that it generates. These options are listed in Table 4.1.

 TABLE 4.1

url_for Supported Parameters
Option Data Type Description

:anchor String Adds an anchor name to the generated
URL.

:host String Sets the host and port name used in the
generated URL.

:only_path Boolean Specifices that only the path should be
generated. The protocol, host name, and
port are left out of the generated URL.

:protocol String Sets the protocol used in the Generated
URL, that is, ‘https.’

:user String Used for inline HTTP authentication.
(used only if :password is also present)

:password String Used for inline HTTP authentication.
(used only if :user is also present)

:escape Boolean Determines whether the returned URL
will be HTML escaped or not. (true by
default)

:trailing_slash Boolean Appends a slash to the generated URL.

CROSS-REFCROSS-REF With the release of Rails 2.0 a new style of routing become popular. That style is
called RESTful routes. This is a way of constructing routes that correspond to a

RESTful architecture. RESTful architecture and routes are covered in Chapter 12.

155

Controller: In Depth 4

Creating and Using Controllers
Now that you understand routes, you should know how requests end up in the action methods of
your controller classes. Now let’s see what your controller methods do with those requests.

Generating controllers
Controller classes can be automatically generated for you using the Rails script/generate
script. You pass the controller parameter and the name of the controller you want to generate to
the script like this:

ruby script/generate controller User

You would run the previous command from the root of your Rails application directory. If you
run this command, you will see output similar to this:

exists app/controllers/
exists app/helpers/
create app/views/user
exists test/functional/
create app/controllers/user_controller.rb
create test/functional/user_controller_test.rb
create app/helpers/user_helper.rb

Three files are created by running the script: the controller class file, a functional test file for the
controller, and a helper file. The controller file is what you want to look at now, so open up the
app/controllers/user_controller.rb file. The file should look like this:

class UserController < ApplicationController
end

The only thing you see in this file is that it is a class that extends the ApplicationController
class. The ApplicationController class was automatically generated by Rails when you cre-
ated the application skeleton using the rails command. Take a look at that file, which you can
find in app/controllers/application.rb:

Filters added to this controller apply to all controllers in
the application.

Likewise, all the methods added will be available for all
controllers.

class ApplicationController < ActionController::Base
 helper :all # include all helpers, all the time

 # See ActionController::RequestForgeryProtection for details
 # Uncomment the :secret if you’re not using the cookie session

store
 protect_from_forgery # :secret =>

‘7dbe320f76e9f0135ab2eb16457a5b20’
end

156

Rails In DepthPart II

The ApplicationController extends a Rails internal class called
ActionController::Base. Extending this class is what gives your controllers all of the built-
in functionality that they have, which you’ll learn about in this chapter. In the
ApplicationController, you see a method named protect_from_forgery being called.
This method adds protection from malicious attacks against your application.

A common type of attack that is carried out against Web applications is called a cross-site request
forgery (CSRF). This type of attack is prevented by adding a token based on the current session to
all forms and Ajax requests. This allows your controllers to accept only the requests that contain
this forgery protection token.

There is a parameter named :secret that is commented out by default. The :secret parameter
can be used to specify a salt value which is used to generate the forgery protection token. The salt
value assists in making the token more secure. If you do a Google search on CSRF you can learn
more about this kind of attack.

In the ApplicationController, you also see a call to the method helper with a parameter
of :all being passed. This makes all of the helper classes available to all of your controllers.

Take a look at the helper file that was created by the generator. Open up app/helpers/user_
helper.rb.

module UserHelper
end

This is an empty Ruby module. Helper modules are where you will place methods that you want to
share across your view templates. Often, you’ll need a method that is used by all of the view tem-
plates associated with the controller. All of the methods that you put into the helper modules are
automatically made available to all of the view templates associated with that controller.

CROSS-REFCROSS-REF You can start defining methods for the helper files in Chapter 5 when views are
covered.

If you know the names of some of the action methods that you want to include in your controller
class, you can also specify those to the script/generate script and have stubs for those meth-
ods created, as well. For example, run this generate command:

ruby script/generate controller Book list show new

This creates a Book controller class for you with method stubs for each of the method names you
passed: list, show, and new. Your generated controller class will look like this:

class BookController < ApplicationController
 def list
 end

 def show
 end

157

Controller: In Depth 4

 def new
 end
end

You might have also noticed that a few additional files were created corresponding to each of the
action methods:

app/views/book/list.html.erb
app/views/book/show.html.erb
app/views/book/new.html.erb

These are Rails view templates, which you will use to describe the pages rendered as a result of
each of those actions. You’ll learn more about the view templates in Chapter 5 when views are cov-
ered in depth. For the remainder of this chapter, it’s safe to ignore those files.

That’s all you need to get started with creating a controller class. In the remainder of this chapter,
you’ll see how you can build up the empty controller class to handle all of your browser requests.

Action methods
Methods contained in your controllers that have requests routed to them are called action methods.
Note that not all methods in your controllers are necessarily action methods. You may have some
helper methods used by your action methods that are never routed to.

As you saw in the previous section, you can have the script/generate script create stubs for
your action methods, or you can hand-code any action methods that you want to add. Action
methods are defined just like any standard instance method. What makes action methods different
is that they are able to use functionality provided to your class by Rails to access the Web request
and response information.

Naming Your Controllers and Actions

You may come across many different opinions of how you should name your controllers and actions
in a Rails application. I believe that your naming style is important to the readability and maintain-
ability of your application, and thus worth discussing.

Controller classes should be named with nouns, while action methods should be named with verbs.
If you find yourself needing to use a verb-noun combination as the name of your actions, this is often
characteristic of needing a new controller. For example, consider a controller, properly named using
a noun as User. Also assume that you have a page that shows a user’s profile and a different page
that shows a user’s address information. You might have methods in your User controller to display
these pages named show and show_address. The second method, show_address, is an example
of a verb-noun combination that might indicate the need for a new controller. Rather than have both
of these methods in the User controller, it is probably a good idea to use two controllers — one
named User and the other named Address. Now each of these controllers can have a show
method without requiring the verb-noun action name.

158

Rails In DepthPart II

Rails provides built-in functionality to allow you to easily perform the following functions in the
action methods of your controllers:

n Use request parameters submitted by the browser.

n Render a template in response to a request.

n Send a redirect to the requesting browser.

n Send short feedback messages to the browser.

Using request parameters
Many of the requests that your action methods will receive will contain request parameters submit-
ted by the browser, which you will need to process the requested action. This includes parameters
submitted in a URL using an HTTP GET request, and parameters contained in the HTTP header of
a POST request. As an example, assume the following URL is passed to your Rails application:

http://www.myapp.com/user/show/123

Using the default route, Rails will route this request to the show method of your
UserController class. A user id is also passed to the show method. The show method should
look up the user identified by that user id and display details about that user. Let’s start creating a
show method to perform those actions:

class UserController < ApplicationController
 def show
 end
end

The first thing you need to do is get the user id that is passed to the show method. Rails makes all
of the request parameters available through a params hash. Obtain the user id from the params
hash in your show method:

class UserController < ApplicationController
 def show
 user_id = params[:id]
 end
end

Recall from the earlier discussion of Rails routing mechanisms that the id parameter passed in the
URL path is made available as the :id parameter. You could then use a model class to retrieve the
user corresponding to that id:

class UserController < ApplicationController
 def show
 user_id = params[:id]
 @user = User.find(user_id)
 end
end

159

Controller: In Depth 4

Assuming, you have a User model, calling its find method and passing the user id will retrieve
the User object for the desired user. Notice that an instance variable, @user, receives the
returned User object. Any instance variables are automatically available to your view templates.
By setting the User object as an instance variable, your view template will be able to use that
object to display information about the user.

Rendering templates
Rails templates define the views of your Rails application. At the end of your action, you typically
will render a template to return a new Web page to the user. Continuing with the example request
to display information about a particular user through the show method, add a render call to dis-
play a user view template:

class UserController < ApplicationController
 def show
 user_id = params[:id]
 @user = User.find(user_id)
 render :template => “show”
 end
end

Here the render method is called with an options hash containing a single value, the name of a
template to render. In this case, the show template is specified. This would cause the view template
stored in app/views/user/show.html.erb to be rendered. While this correctly illustrates
how to render a template, if the template you want to render is named the same as the action
method, the render call is not necessary. By default, an action method that does not perform any
renders or redirects will render a template containing the same name as the action method, if such
a template exists. With that in mind, modify the method to only call the render method if the user
being looked up is not found:

class UserController < ApplicationController
 def show
 if !@user = User.find(params[:id])
 render :template => “user_not_found”
 end
 end
end

Now if the user is found, no explicit render is called, so the default show.html.erb template
will be rendered, which is what you want. However, if the user is not found, a template named
user_not_found.html.erb will be rendered. This template could contain an error message
for the user. One other change was made here. Instead of using a temporary user_id local vari-
able to hold the user id value, the params[:id] value is now passed directly to the User.find
method, saving you a line of code.

CROSS-REFCROSS-REF Where views are covered in Chapter 5, you can see many more ways to use the
render method to create other responses.

160

Rails In DepthPart II

Redirects
In addition to rendering a template, Rails also has built-in functionality that allows you to easily
send a redirect to the browser. Let’s look at an example of where you might want to use a redirect:

def create
 @book = Book.new(params[:book])
 if @book.save
 redirect_to :action=>’show’, :id=>@book.id
 else
 redirect_to :action=>’new’
 end
end

In this example, a new Book object is created and saved. If the save operation is successful, the
user is redirected to the show page to show the details of the new book. If the save is not success-
ful, the user is redirected back to the new book page so that the user can try again. Like the ren-
der method, the redirect_to method takes an options hash to determine where it should
redirect the browser to. In this first use of redirect_to above, an :action and an :id value
are passed. This instructs the browser to redirect to the action method specified. Because a control-
ler is not specified, the same controller that contains this create method is assumed. You could
have also passed a :controller value to redirect to a method in a different controller.

The :id parameter passed to redirect_to is also passed on to the show method. There is also
a shortcut you can use to specify the book’s id. You could write the redirect_to method like
this:

redirect_to :action=>’show’, :id=>@book

Just by passing the @book object as the :id value, Rails extracts the id value from the @book
object and uses that as the value for the :id parameter.

Sending feedback with flash
The flash feature of Rails is a way of passing simple feedback messages from your application back
to the browser. Do not confuse this use of the word flash, with the name of the Flash Web devel-
opment technology from Adobe. They are not related. In this case, flash is the name for an internal
storage container used by Rails to store temporary display data. The flash area is implemented as a
special kind of hash, and you work with it much like you work with a regular hash in Ruby.

Data that is stored into the flash is kept for the duration of one action, and then it is removed. The
flash is a convenient place to store short status messages that need to be communicated from one
action to the next. Examples of where flash is commonly used include displaying results of a login
attempt, results of a file upload, or results of a form submission.

You populate the flash in a controller method by using a symbol key value passed to flash, like
this:

flash[:login_result] = ‘Successful Login’

161

Controller: In Depth 4

Take a look at a controller method that uses the flash:

def login
 if login_user
 flash[:notice] = ‘Successful Login’
 redirect_to :action=>’home’
 else
 flash[:notice] = ‘Your login attempt was unsuccessful’
 redirect_to :action=>’create’
 end
end

Here, the result of a login attempt is stored in a flash :notice parameter. The flash parameters
you use can be any name you choose, but it is common practice to use :notice, :warning, and
:error to denote common types of status messages.

The data you store in flash is then used within your view templates. Although view templates are
covered in detail in Chapter 5, let’s preview a portion of a view template that uses the flash:

<div>
 <h1>The Book Store</h1>
 <% unless flash[:notice].blank? %>
 <div id=”notification”><%= flash[:notice] %></div>
 <% end %>
</div>

This small template snippet displays the flash[:notice] string unless it is blank. This snippet
could be put into your layout templates so that the notice would be displayed on any of your views
that included a notice. This also gives a reason for using standard names for your flash messages,
such as the recommended :notice, :warning, and :error. If the flash names were page-
specific, you wouldn’t be able to use this snippet in a common layout file.

Using flash.now and flash.keep
Normally any data that you store into the flash area is cleared after one request. If you would like
to extend the life of data stored in the flash, you can do that using the flash.keep method. The
flash.keep method will extend the life of the flash for one additional request.

In the previous examples where flash was used, after storing a string into flash, the next page was
displayed by using a redirect. Remember that when storing data in the flash, it is kept for the life of
one action (that is, one request). If, in the controller where you set the flash, you rendered a tem-
plate instead of doing a redirect, the flash would still be kept until the next page request, which is
probably not what you wanted. If you are rendering a template instead of redirecting when you set
flash, you should use the flash.now method. The flash.now method changes the behavior of
the flash so that the data is kept for only the current request.

162

Rails In DepthPart II

Sending other types of data to the browser
You’ve seen how to render templates and send redirects to the browser. Both of these actions nor-
mally result in a new HTML page being displayed. However, Rails also assists you if you want to
send non-HTML data to the browser from an action method.

Returning text
If you want to return text to the browser from one of your action methods, you use the render
method with the :text hash key, like this:

render :text => “hello, world”

This will send the specified text to the browser without being wrapped in any template or layout.
This can be useful for testing purposes.

Returning JSON data
If you are using Ajax in your Web application, you may often want to render JSON data from your
action methods. This can be done using the :json parameter with the render method as shown
here:

render :json => {:name => “Timothy”}

This will return the specified hash as a JSON encoded string. This also sets the content type for the
HTTP response as application/json.

Rendering a specific file
If you want to render a template that is not located in the normal place that Rails looks for view
templates, or you want to render some other type of file, you can use the render method with the
:file parameter.

Renders the template located at the absolute path specified
render :file => “c:/path/to/some/template.erb”

The call to render above will render the Erb template stored in the non-standard location speci-
fied.

Returning XML
Returning XML content to the browser is no more difficult than returning text or JSON data was.
You use the render method with the :xml parameter like this:

render :xml => book.to_xml

This returns the XML string generated by the book.to_xml method to the browser. The correct
HTTP content type for XML data, text/xml, is also set for you.

163

Controller: In Depth 4

Using Filters
Filters are methods that are run before or after a controller’s action methods are executed. Filters
are very useful when you want to ensure that a given block of code is run, no matter what action
method is called. Rails supports three types of filter methods:

n Before filters

n After filters

n Around filters

Before filters
Before filters are executed before the code in the controller action is executed. Filters are defined at
the top of a controller class that calls them. To set up a before filter, you call the before_filter
method and pass it a symbol that represents the method to be executed before action methods.
Here is an example of how you would use a before filter:

class UserController < ApplicationController
 before_filter :verify_logged_in
 def verify_logged_in
 …
 end
end

In this example, the method verify_logged_in is applied as a before filter. Before any of the
action methods are called, the verify_logged_in method is called.

Instead of passing a symbol to the before_filter method, you could pass a snippet of Ruby
code that would be executed as the before filter.

You may not want a filter to apply to all of the action methods in a controller. For example, if the
UserController class had an action method named login, which handled the logging in of a
user, you obviously would not want to apply the verify_logged_in filter before calling that
action. You can exclude methods from a filter by passing the :except parameter, like this:

before_filter :verify_logged_in, :except => :login

Now the filter is called before all of the controller’s action methods, except for the login method.
You can also pass a comma-separated list of methods to exclude:

before_filter :verify_logged_in, :except => :login, :list

If you find the list of exclusions growing to the point that you want more methods without the fil-
ter than you have the filter being applied to, you can use the :only parameter, which has the
opposite effect. When you pass the :only parameter, all action methods will be excluded from
the filter, except for those specified in the :only parameter:

164

Rails In DepthPart II

before_filter :verify_logged_in, :only => :show, :edit

In this example, the verify_logged_in filter method is called only before the show and edit
methods. It is not called before any other action methods in the controller.

After filters
After filters are executed after the code in the controller action is executed. As with before filters,
you define after filters at the top of the controller class in which they are called. You use the
after_filter method to set up an after filter, like this:

class PhotoController < ApplicationController
 after_filter :resize_photo
 def resize_photo
 …
 end
end

The setup is identical to the way you set up before filters. The method represented by the symbol
passed to after_filter is executed after your controller action methods. Like with the
before_filter method, you could pass a snippet of Ruby code instead of a symbol to the
after_filter method.

You can also use the :except and :only parameters with after filters, just as they are used with
before filters.

Around filters
Around filters contain code that is executed both before and after the controller’s code is executed.
Around filters are useful when you would otherwise want to use both a before and an after filter.
The way you implement an around filter is different and a bit more complex than how before and
after filters are implemented. A common way to implement an around filter is to define a special
class that contains before and after methods. Let’s walk through the implementation of a com-
mon example of where around filters are used to provide logging for your controllers.

First, create a logging class that contains a before and after method:

class ActionLogger
 def before(controller)
 @start_time = Time.new
 end

 def after(controller)
 @end_time = Time.now
 @elapsed_time = @end_time.to_f - @start_time.to_f
 @action = controller.action_name

165

Controller: In Depth 4

 # next save this logging detail to a file or database
table

 end
end

In this ActionLogger class, the before method captures the time an action is started, and the
after method captures the time an action completes, the elapsed time, and the name of the
action that is being executed. You could then write this data to a log file, or perhaps use a log
model that you would create an instance of here and save it with this data.

Now, look at how you use the ActionLogger class as an around filter. In your controller class,
simply add the around_filter method and pass an instance of the ActionLogger as a
parameter, like this:

class PhotoController < ApplicationController
 around_filter ActionLogger.new
end

The ActionLogger will now be called before and after all of the action methods that you add to
the PhotoController class.

You can also pass method references and blocks to the around_filter method. If you pass a
method reference, the reference must point to a method that has a call to the yield method to
call the action being called. The example below is borrowed from the Rails API documentation.
This shows how you might use an around filter to catch exceptions from your action methods.

around_filter :catch_exceptions

private
def catch_exceptions
 yield
rescue => exception
 logger.debug “Caught exception! #{exception}”
 raise
end

This provides simple exception handling for all of your action methods.

The final way of using an around filter is by passing a block to the around_filter method.
When you pass a code block to the around_filter method, the block explicitly calls the action
using action.call instead of using the yield method. Below is an example that logs a before
and after message around each action method call.

around_filter do |controller, action|
 logger.debug “before #{controller.action_name}”
 action.call
 logger.debug “after #{controller.action_name}”
end

166

Rails In DepthPart II

Protecting filter methods
Something that I haven’t talked about yet is the fact that you can potentially route to any method
(that you put into a controller class) from a browser. For example, assume that you have the
default route defined:

map.connect ‘:controller/:action/:id’

You could type the following address in your browser to make a direct call to the after filter
method that was defined in the previous section:

www.myapp.com/photo/resize_photo

However, when you defined the resize_photo filter method, you probably did not intend this
method to be routable from a browser call. In this case, how can you prevent this method from
being routable?

The answer goes back to something that is common in most object-oriented programming lan-
guages: the ability to protect methods within a class. All methods contained in Ruby classes have
one of these protection levels:

n Public: These methods are accessible by any external class or method that uses the class
in which they are defined.

n Protected: These methods are accessible only within the class in which they are defined,
and in classes that inherit from the class in which they are defined.

n Private: These methods are only accessible within the class in which they are defined. No
external class or method can call these methods.

By default, methods are always public, meaning that any external class or method can access them.
You can declare methods as protected or private by putting a protected or private keyword
before the methods that you want to protect. This example contains protected and private
methods:

class SuperHero
 def say_hello
 …
 end

 protected
 def use_power
 …
 end

 private
 def get_real_identity
 …
 end

167

Controller: In Depth 4

 def assign_sidekick
 …
 end
end

This class has one protected method and two private methods. In the SuperHero class, because
you don’t want just anyone to know a hero’s true identity, the get_real_identity method is
made a private method. Only other methods within the SuperHero class can call it. The use_
power method can be called only by methods within the SuperHero class or methods in classes
that inherit from the SuperHero class.

NOTENOTE Protected and private methods are not routable from the browser.

Getting back to the discussion of filter methods, anytime you define a filter method, you should
make it a protected or private method, as you normally do not want your filter methods to be
routable from the browser.

Working with Sessions
Sessions are a common technique in Web applications to remember data that you want to preserve
across multiple requests. Remember that the underlying protocol of the Web, HTTP, is a stateless
protocol, meaning that each request to the server is like calling a new invocation of your applica-
tion. Inherently, there is no memory or state preserved across requests. This was fine when the
Web was used mostly as a home for static informational pages without a lot of dynamic content.

However, as the Web became more dynamic and Web applications became more popular, the
need to maintain state across multiple browser requests became pressing. This is where the session
comes in handy. The session is a container that allows you to store information that you want to
use across multiple requests. The session data is stored either in the server’s file system, the server’s
memory, or in a database.

Sessions are commonly used to store information about a user’s browsing session. For example,
when a user logs into your application, information about that user is saved to the session so that
the user can navigate around within the Web application without having to log in for each new
page request. Without sessions, your Web application would not be able to remember the user as
they browsed through various pages of the Web application. Sessions are also commonly used to
store shopping cart information on a shopping site, as well as user preferences.

Each session stored on the server, either in the database or in the file system, is identified by a
unique id. The unique id is stored in a session cookie that is sent to the browser. The browser
returns this session cookie with each page request so that the server can look up the session and
preserve state across requests.

Rails has built-in support that makes using a session simple in a Rails application. Rails automati-
cally creates a session for each user of your application. You store information into the session by

168

Rails In DepthPart II

using the session hash. The session hash is used just like any regular Ruby hash. For exam-
ple, you can store a user’s id into the session like this:

session[:user_id] = @user.id

As a result of storing this to the session hash, the user id is saved to the session store and is
available to future requests. Retrieving information from the session is just as easy, using standard
hash access techniques like this:

user_id = session[:user_id]

You may have noticed a directory called tmp in your Rails application directory tree. This is the
directory in which the session data is stored. There are actually three choices for where Rails stores
session data. The available options are as follows:

n File system

n Database

n In memory

The file system is used by default and requires no additional configuration. This is sufficient for
development, testing, and many small-scale Web applications. You run into problems with storing
the session on the file system if you have a Web application that is load balanced and served off of
multiple servers, as is commonly done for performance reasons. In this situation, not all requests
are routed to the same physical server. Your application exists on multiple physical servers, and a
load-balancing router will route Web requests across the different instances of your application.

If your session is stored on the file system and a user is routed to a different physical server during
a browsing session, the application will not be able to find the session associated with that user.
This makes storing the session in the database a popular alternative for Rails production environ-
ments. Rails also allows you to store session information in memory. This option performs very
well because reading and writing from memory is a very fast operation, compared to reading and
writing to disk.

Using the ActiveRecord session storage
As its name implies, the ActiveRecord session storage uses ActiveRecord to store the session data
into a table in your database. By having the session stored in the database, it becomes accessible
from multiple computers and thus works well in an environment where you have load-balanced
servers.

Let’s look at how you set up a Rails application to use ActiveRecord session storage. There are a
few simple steps to follow, which are described here:

169

Controller: In Depth 4

 1. Create a migration to set up session storage in your database. Just as you use migra-
tions to set up the database tables that hold your application’s data, you can also use a
migration to create the session data table. In fact, you can create this migration automati-
cally using this rake command:

rake db:sessions:create RAILS_ENV=production

 2. Apply the session setup migration. Now you can run the rake migrate command to
apply the new migration, like this:

rake db:migrate RAILS_ENV=production

 3. Configure Rails to use ActiveRecord session storage. Next, you have to tell Rails that
you are using ActiveRecord session storage. You do this by editing the config/envi-
ronment.rb file. Simply remove the comment from the following line:

Config.action_controller.session_store = :active_record_store

 4. Restart the application. This is the last thing you need to do. After the application is
restarted, sessions will be stored in the database. How you restart the server depends on
the server that you are using. To restart a Rails application that is using the WEBrick
server, stop the existing server by pressing Ctrl+C in the console window in which you
started the server and restart it with the following:

ruby script/server

Using MemCached session storage
MemCached is used to provide the in-memory session storage option. MemCached is based on
software that was originally developed by Danga Interactive for the LiveJournal blog-hosting Web
site. When using MemCached, sessions are stored in your server’s memory and are never written to
disk. Because this option does not require any hard disk I/O, it is much faster than the other
options. For more information about using Memcached see the Ruby on Rails wiki site, and the
Memcached home page:

http://wiki.rubyonrails.org/rails/pages/MemCached

www.danga.com/memcached/

Caching
Caching is an important technique that you can use to increase the performance of any Web appli-
cation. Caching speeds up Web applications by storing the result of calculations, renderings, and
database calls for subsequent requests. The Action Controller component of Rails includes built-in
support for caching in your Rails applications.

Rails support for caching is available at these three levels of granularity:

170

Rails In DepthPart II

n Page

n Action

n Fragment

Page caching
Page caching is a caching technique where the entire output of an action is stored as an HTML file
that the Web server can serve without having to go through Rails to call the action again. Using
this technique can improve performance by as much as 100 times over having to always dynami-
cally generate the content. Unfortunately, this technique is only useful for stateless pages that do
not differentiate between application users. Applications in which a user logs in and is given
unique views of data are not a candidate for this technique. Applications that do not require a user
logon to view data, such as wikis and blogs, may benefit from this technique.

You can turn on page caching for any methods in your controller classes by using the caches_
page method call. You pass the actions that you want to cache as parameters to caches_page.
You do not have to include all of your controller’s actions. Here is an example:

class BlogController < ActionController::Base
 caches_page :show, :new

 def show
 …
 end

 def new
 …
 end
end

This causes the results of the show and new methods to be cached. The first time the actions are
run, the HTML result is cached. This HTML cache file will be returned on subsequent calls to these
methods without having to call the actions again.

You can expire cached pages by deleting the cached file. When a cached file is deleted, it is regen-
erated on the next call to the action to which it applies. To delete a cached page, you use the
expire_page method. A common time to delete a cached page is when you perform an update
to the page that is cached. In your update action method, you would also delete the cached page
like this:

 class BlogController < ActionController::Base
 def update
 …
 expire_page :action => “show”, :id => params[:id]
 redirect_to :action => “show”, :id => params[:id]
 end
 end

171

Controller: In Depth 4

The action and id for which the page has been cached are passed to the expire_page method to
delete the cached page. You can then perform a redirect to regenerate the newly updated page and
thus create a new cached page.

Action caching
As with page caching, action caching saves the entire output of an action response. The difference
is that with action caching, the action calls are still routed to the controller so that any filters can
still be applied. This is useful when you have a filter setup to provide a restriction on who can view
the cached action.

 class BookController < ApplicationController
 before_filter :authenticate
 caches_action :show, :list
 end

In this example, the methods show and list require that the user is authenticated before the
methods are called. This is accomplished with the authenticate before filter. If, the show and
list actions were cached using page caching, the before filter would never be called once the page
was cached. Therefore, to preserve the authentication requirement, these pages must be cached
using the action caching technique.

Fragment caching
Fragment caching is used to cache blocks within templates rather than caching the entire output of
an action method. This technique is useful when certain parts of an action change frequently and
would be difficult to cache, and other parts remain relatively static and thus can be cached.
Fragment caching is done in view templates instead of the controller classes as the other forms of
caching were.

A fragment cache is designated with a cache_do block. The lines inside the block enclosed in the
cache_do statement will be cached. Here is an example of code that you might use in a view
template:

 Welcome <%= @user.name %>
 <% cache do %>
 Please choose a topic:
 <%= render :partial => “topic”, :collection => @topics %>
 <% end %>

In this example, the first line displays a user’s name. Because the name is different for every user
that logs in, this is not a good candidate for caching. Following the user’s name, a list of topics is
displayed. Because the list of topics remains relatively static, this is a good candidate for caching,
and thus the lines that display the topic lists are wrapped with the cache_do statement.

172

Rails In DepthPart II

Summary
In this chapter, you learned how Rails helps you to implement the controller layer in an MVC Web
application. The ActionController component of Rails is what allows you to easily create control-
lers for your applications.

Some of the topics that are related to the controller layer of a Web application that you learned
about in this chapter are: routing, creating and using controllers in a Rails application, using filters,
sessions, and content caching. These are all topics that you will find yourself making use of over
and over again as you develop real world Rails applications.

You have now learned about how Rails helps you create the model and controller layers of your
Web application. In the next chapter, you will learn how Rails helps you with the final layer of
your MVC Web application, the view layer. The view layer is closely related to the controller layer
and it is a good idea to have the knowledge you gained in this chapter fresh in your mind as you
read that chapter.

173

So far you’ve read about the model and controller layers of a Rails
application. There is one layer remaining to discuss in an MVC
(Model-View-Controller) application. That is the view layer. The view

layer is the layer that presents your application to the end users. Although
this layer shouldn’t handle any of your application’s business or processing
logic, it is at least as important to the success of an application as the model
and controller layers. You may have the greatest technology in the world, but
if you can’t present it in a way that is easy to use and appealing, ultimately
your technology will go unused.

Rails offers you a number of tools that will assist you in creating a well-
designed, maintainable and rich view layer.

ActionView
The Rails component that manages the view layer of your application is
called ActionView. ActionView is what provides you with most of the tech-
nologies that you will read about in the remainder of this chapter. These
technologies include the following:

n Embedded Ruby (ERb)

n Layout templates

n Partial templates

n Helper methods

In a Rails application, your view templates are placed into a directory under
the app directory called views. Within the views directory, each control-
ler has its own subdirectory for views relating to actions in that controller. In

IN THIS CHAPTER
ActionView

Embedded Ruby

Layouts

Partials

Helpers

JavaScript, Ajax, and RJS

View:
In Depth

174

Rails In DepthPart II

addition, there is a special controller called layouts which contains the common layouts used
throughout the application. You can create your own subdirectories for other shared view files. In
an application that has a BooksController, a UsersController, and an ImagesController, your view
directory would look like this:

app
 |-- views
 |-- book
 |-- image
 |-- user
 |-- layout
 |-- shared

The book, image, and user directories hold views that are rendered by their corresponding con-
trollers. The layout directory holds layout files, which you’ll learn more about later in this chapter.
The shared directory is not created automatically, but you’ll end up using it in many of the appli-
cations that you write. The shared directory holds partial views — another Rails view technology
that you’ll learn about in this chapter — that are used by views from multiple directories.

Getting to the view
Recall from Chapter 4 that views are rendered by actions contained in controller classes. If the view
to be rendered is not explicitly declared by an action, Rails looks for a view with the same base
name as the action method contained in the view directory corresponding to the controller name.
In Chapter 4, you saw the following controller code:

class UsersController < ApplicationController
 def show
 user_id = params[:id]
 @user = User.find(user_id)
 render :action => “show”
 end
end

In this example, the render statement is not actually required because it is reiterating the default
by telling Rails to render a template with the name show. Since this is the same name as the action
method, Rails will look for this template by default even if the render line were omitted. Because
this is the UserController, Rails will look for the show template in app/views/users/show.
html.erb.

An individual controller method can only call render or redirect_to one time during any
particular call to the method. This applies only to render calls in the controller that render a full
file — the view code can render as many partial views as needed. Performing a second render or
redirect in the controller will result in an exception. However, calling render or redirect does not
automatically stop execution of the method. The recommended idiom for ensuring exit from a
method after a render looks like this:

175

View: In Depth 5

def conditional
 if params[:id].blank?
 render :action => “nothing” and return
 end
 render :action => “conditional”
end

The and return at the end of the first render line ensures that the method will be exited.
Again, the last line is a repetition of the default action and is included here for clarity.

Rendering options
The render method has more than one trick up its sleeve. There are a several different options
you can use in your controllers and views to specify different kinds of output. The render
method takes an option hash as its arguments (some types also take a block argument). Although
the order of the hash is unimportant, by convention the type of the render is the first argument.

As alluded to earlier, the default type of render is :action, where the value is the name of the
action file to render. The following call:

render :action => “show”

will cause Rails to render the file app/views/<controller_name>/show.html.erb (but
see the next section for how the format of the output can be changed.). By default, the layout of
the current controller is used, however the optional argument :layout allows you to specify the
string name of a layout to use instead. It’s fairly unusual for this to be used explicitly, normally
code that chooses to render the view from another action will just redirect to that action.

There are two other ways to specify an entire template file as the target of the rendering. The first
is render :template => “controller/template”. The :template option is identical to
:action, except that it requires you to specify the entire path to the template from within the
views directory (minus the .erb extension). This allows you to specify a template in a different
directory.

The layout from the current controller is applied. The other method is render :file. The value
for file is the absolute filename of a file somewhere that you want to use as the template. Passing
the second argument :use_full_path => true causes file to search relative to the views direc-
tory and add the correct extension — in other words, behaving just like render :template. By
default no layout is used, the argument :layout => true causes the current controller layout to
be used. The :file and :template versions of render are used very rarely — I don’t think I’ve
ever seen a legitimate usage in production code. Redirects and partial rendering are the preferred
methods.

Any template system needs a way to allow common parts of templates to be extracted and inserted
into the full template. The most commonly used method within Rails to manage this is the partial
template. A partial template is just like any other ERb file in your views directory, except that the
names of partial templates are required to begin with an underscore character (_).

176

Rails In DepthPart II

There are two common use cases for partial templates. Within an ERb view file, partial templates
are invoked to allow sharing of a piece of view code used multiple times. Within a controller, call-
ing a partial template most often means that the partial page view is being sent back to the browser
as the result of an Ajax call.

The syntax in both cases is the same:

render :partial => “partial_name”

You do not include the leading underscore in the partial name when you invoke a partial; Rails will
add that for you.

There are two less frequently used methods for rendering a piece of text. The call render :text
=> string will place the value of the string in the output stream. The string can be a double-
quoted Ruby string with interpolation. This is generally used for short Ajax or error messages.

A similar argument render :inline => “<%= hello %>, takes an inline ERb string, processes
it, and returns the result to the output stream. If there is a second argument :type => :builder
than the string is evaluated by Ruby’s Builder module instead of ERb. In both the text and inline
case, it is assumed that the layout is not to be added unless explicitly specified as in a partial render.

Two types of standard render output different formats than the standard HTML: :xml and :json.
In both cases, the value of the argument is an object to be converted to the specified format. You
do not need to explicitly perform the conversion; Rails will do it for you.

Finally, :render :update triggers Ruby JavaScript (RJS) processing, which will be discussed in
detail later in this chapter.

All render methods, by default, return an HTTP status code of 200 if successful. This can be over-
ridden in all render methods by explicitly passing a :status option with the code you want
returned. Also, the method render_to_string takes all the same arguments as the ordinary
render, but returns the value as a string without outputting the value to the response object.

Responding to different formats
Prior to Rails version 2.0, view templates were named with the extension .rhtml. So in this exam-
ple, the show template would have been in a file named show.rhtml. Rails 2.0 changed the naming
of view templates to use the .html.erb extension. This extension gives a better indication of the
templating technology being used, which is embedded Ruby or ERb.

Now although .html.erb is the most common extension for a Rails view file, the general form is
.<format>.<mechanism>, where the format usually represents the MIME type of the file being
created, and the mechanism is the template engine used to create the file. So, a .html.erb file is
an ERb file that renders into an HTML file, while a .js.erb file renders to JavaScript and rss.
erb renders to an RSS file. Standard Rails comes with a second mechanism option, the Builder
module, which is most often used to create XML files. You can specify a builder file with the exten-
sion .builder. Other template engines, such as Markaby or Haml, are available as plugins that
register their own extensions.

177

View: In Depth 5

A file whose name ends in .erb without a format will match any requested format. This is useful
if you have an file that is rendered in response to both a regular controller call (which is an HTML
request looking for html.erb) and an Ajax call (which is a JavaScript request looking for js.
erb). A file that is just plain .erb will be found by both requests.

You’ll notices that this naming is another example of Rails using convention over configuration.
The name of your view file specifies both the kind of request it responds to and the method used
to render it. That’s a nice shortcut, and it allows an elegant way to have the same controller action
emit multiple formats from the same data. The controller method respond_to allows the same
controller to easily serve separate output depending on the incoming request.

The most basic respond_to looks like this:

def index
 @users = User.find(:all)
 respond_to do |format|
 format.html
 format.xml { render :xml => @users }
 end
end

Conceptually, what’s going on here is very similar to a case expression on the format of the incom-
ing request. Each expression inside the block represents a format that the method can handle.
When a request comes in, the matching expression is fired — if the expression has a block, as the
.xml expression does in this example, then the block is invoked.

If the expression does not have a block, like the .html expression in this example, then default
behavior is invoked. This means that Rails will search for a file in the app/views/<controller>
directory for a file that matches the controller method name and the format — in this case index.
html.erb or index.html.builder — and the file will be rendered. If the format requested
does not have a matching expression inside the respond_to block, then Rails will respond with
an error.

The exact implementation isn’t quite identical to a case statement. The block passed to the
respond_to method is invoked with an object of the Rails core type Responder. Inside the
block, the Responder object can be called with methods matching known MIME types. For each
method called, the Responder object determines what it’s response would be — either the
passed block or the default behavior.

After the block is invoked, the respond_to method invokes the response matching the actual
user request type. The relevant point is that, although the respond_to call looks and acts some-
thing like a case statement, the internal mechanism is quite different — the respond_to call will
not short-circuit. If you have any other code inside the respond_to block, that code will always
be called, even if it is after a format call that matches the current user request.

In normal usage, the requested format is inferred from the extension of the URL in the browser
request, so users/index.html returns the HTML version, while users/index.xml returns

178

Rails In DepthPart II

the XML version. By default, Rails recognizes eight format extensions (see Table 5.1). It is the
responsibility of your application to ensure that your response is a valid example of the requested
format.

 TABLE 5.1

Format Extensions
MIME Type Format

atom Syndication feed in Atom format.

html Regular HTML. The default for normal requests if no other format is specified.

ics iCalendar standard format for calendar data.

js JavaScript. The default for Ajax requests if no other format is specified.

rss RSS syndication feed.

text Plain text, assumed not to be parsed by the browser for output

xml An XML file that isn’t an Atom or RSS feed.

yaml A YAML file.

Although the format is usually inferred from the file extension of the URL, it can also be passed in
the query string portion of the URL like any other parameter, as in user/index?format=html.
The format can also be set or changed programmatically in your Rails controller code by setting the
attribute request.format.

You can also add additional formats on your own to augment the eight that Rails provides. The file
config/initializers/mime_types.rb is the place to put any MIME customization that
you are looking for. (In older versions of Rails, this code is placed in config/environment.b.)

There are two different commands. If you are creating a file extension for a MIME type not covered
in the original list, you use something like the following:

Mime::Type.register “image/png”, :png

The first argument is the MIME type, and the second argument is the file extension that you are
registering. After this line of code, the format object inside a respond_to block will add the
format.png method, which works exactly like the existing eight methods.

Sometimes, you need to create a new file extension that represents a new context for an existing
MIME type — the way that, for example, atom and rss are new contexts for xml documents.
Here’s the canonical example:

Mime::Type.register_alias “text/html”, :iphone

179

View: In Depth 5

You want to be able to serve specialized content an iPhone using the same respond_to structure,
but the output to the iPhone is just another kind of HTML. No problem, just tell Rails that your
new pseudo-MIME type is an alias of an existing type, and everything will work out just fine. This
example is also a use case for changing the response type programmatically — when you detect the
iPhone browser, you can change the format to iphone and serve the specialized content.

Embedded Ruby
ActionView uses the Embedded Ruby (ERb) library to provide you with a complete templating sys-
tem for creating the Web pages that will make up the presentation layer of your application. The
Embedded Ruby library allows you to mix Ruby code along with HTML inside of your view tem-
plates. If you are familiar with Java, the Rails template mechanism with embedded Ruby is similar
to what you get in Java with JSPs and their use of embedded Java.

NOTENOTE Embedded Ruby predates the Rails framework. It is implemented as a stand-alone
Ruby library that can just as easily be used outside of a Rails application. The

embedded Ruby library makes a powerful templating mechanism for any type of templating
engine that you want to create.

Take a look at how you embed Ruby code inside of a Rails view template.

Users

<% users.each do |user| %>
<%= user.name %>
<% end %>

The template mixes regular HTML code along with Ruby code embedded in <% and %> delimiters.
If you look closely at the code, you’ll actually notice that in line 4, the Ruby code block begins with
the <%= delimiter instead of just <%. If the Ruby code begins with the <%= delimiter, the return
value of the code will be included in the HTML page. So in this example, the result of calling user.
name is included in the HTML page. Assume that the users array contains three users with the names,
Tim Fisher, Scott Deming, and Tom Fisher. The HTML code generated by the above template code
would be as follows (allowing for some white space cleanup):

Users

Tim Fisher
Scott Deming
Tom Fisher

The return value of ERb segments that begin with the <% delimiter is discarded and does not
become a part of the generated HTML code. However, variables declared or set in those segments
are available to later parts of the ERb template.

180

Rails In DepthPart II

Within a Rails ERb template, you have access to any instance variable of the controller that invoked
the template — typically, these instance variables are set in the controller method before the view
is invoked. The controller object itself is available as the variable controller. Several of the con-
troller objects are accessible as variables as well, including params, session, logger, request,
and response. If the ERb template is called as a partial, then further local variables can be made
available to the template when it is invoked.

You can place any valid Ruby code in a view template between the <% or <%= delimiters, there are
no technical limitations on the code. However, do not consider that as encouragement to put as
much Ruby code as you can in your templates. Rails best practice is to avoid putting extensive
amounts of code in your actual ERb template (this is consistent with best practice in other web
application engines).

You should limit the Ruby code that you use in your view templates to code that creates your view
only. Even complex view code should probably be moved to a helper module, which will be dis-
cussed in more detail later in this chapter. You should be careful not to include any business logic
inside of your view templates. Business logic should be confined to the actual model objects.

Mixing business logic in your view code is almost always a bad idea and will usually cause head-
aches down the road for the following reasons:

n Ruby code inside of view templates is harder to test.

n The resulting code, with multiple layers of Ruby and HTML indentation, quickly
becomes nearly impossible to read.

n You are breaking the MVC architecture by putting business logic into the view layer, mak-
ing it hard to find any of your business logic should you ever have to change it in any way.

n Business code embedded in view logic is nearly impossible to refactor into cleaner struc-
tures. You will become trapped by early decisions that you can’t undo without breaking
code.

n With business logic in your view layer, there is now a tighter coupling between your view
and model layers. Remember that the ideal situation is low coupling between the MVC
layers of your application. Tight coupling makes it difficult to modify the view code as
well. Remember the iPhone example earlier? It’s much easier to add support for a new
view context if the view code is nice and separate from the rest of the world.

Even though you’ve been warned against overusing embedded Ruby, it is nice to know that you
have the full power of the Ruby language in your templates for when you need it.

Using the <%- and -%> delimiters
Often you will have lines in your templates that contain Ruby statements that do not result in any-
thing being printed to the HTML output, such as this one:

<% users.each do |user| %>

181

View: In Depth 5

In those instances, a blank line is inserted into the generated HTML output where the lines occur.
For the template segment that I’ve been discussing, the actual generated HTML output, including
blank lines, would look like this:

Users

Tim Fisher
Scott Deming
Tom Fisher

Notice that there is a blank line in the HTML code where the two lines that are surrounded by the
<% and %> delimiters are. If you are using a lot of embedded Ruby lines, this can bloat your HTML
output and make the source view harder to read. If you have enough of them, this can even
increase the amount of time it takes to serve your page.

Note, however, that these blank lines are not displayed on the page since empty lines in an HTML
file are not printed to the browser screen. Even so, it’s often useful to be able to clean up the white
space a bit.

ERb provides a way to prevent these blank lines from being inserted into the generated HTML out-
put: Instead of using the <% and %> delimiters, use <% and -%> as delimiters — adding the minus
sign to the end delimiter. This prevents a newline character from being inserted into the generated
HTML output where an ERb template would otherwise emit a blank line. Proper use of these
delimiters can allow you to create better-formatted HTML code for your view templates.

Commenting out embedded Ruby
If you want to disable a line of embedded Ruby code, you can use the standard Ruby comment
symbol, #. This prevents the following embedded Ruby segment from having any effect. This
works on both outputting and non-outputting code segments, that is, segments that begin with
either <%= or <%. Take a look at the following example:

<%# if name == ‘Tim’ %>
I am <%=# name %>
<%# end %>

The generated HTML output of this code block would be the following:

I am

The first line, the conditional statement, has no effect on whether the second line is displayed
because it is commented out. The name variable is also not printed because that segment is also
commented out.

182

Rails In DepthPart II

Layouts
In a Web application, it is considered good practice to reuse a common template across multiple
pages of your site, such that the common features are in one shared file. Quite often, the entire site
will have a common template applied. The common template contains the basic layout of your
Web site. For example, each page may include a header section at the top displaying your com-
pany logo and some navigation, a footer section at the bottom displaying copyright information,
and a sidebar area on the left or right displaying navigation and other links.

The HTML skeleton code that defines the overall structure of your Web pages is often known as
the layout. Using a layout, you can define your site’s common structures in a single place and have
that template used by all of your pages to avoid having to duplicate code in each of your view tem-
plates. Like many things that are done often, and involve consolidating common code, using lay-
outs is very easy in Rails.

Inside the app/views directory is a standard directory named layouts. You will put your lay-
out templates into the layouts directory.

Listing 5.1 shows an example of a typical application.html.erb file. This is a layout file that
you will create yourself in Chapters 6 through 8 as you write a complete Rails application. This
layout contains elements that are common to many layout templates that you will create. These
common elements include the following:

n An HTTP doctype declaration at the top of the file

n The standard html, head, and body tags

n Standard head elements, including page title, JavaScript include tags, and Stylesheet
include tags

n Layout of the body content. In this template, the body is divided into three main sections,
a header, a sidebar, and a content section. In many applications, you might also want a
footer section.

The header section displays a logo and then either a sign in or sign out link, depending on whether
or not a user is currently logged in (the logged_in? method would most likely be defined in the
ApplicationHelper class. You don’t see the contents of the sidebar, as that is rendered as a
partial. The content section starts with a display of flash notices and error messages, if any have
been specified by the controller action. The most important line in this template is the one that
specifies the location of the body content of the page looks like this:

<%= yield %>

This line instructs Rails to insert the content of the template being requested at this location, in
exactly the same way that a regular Ruby method yields control to a block argument. In this case,
the ERb layout template acts as a method and the bock being invoked is the output as specified
by the controller action. Most often it’s another ERb template, but any Rails render activity could
be included there.

183

View: In Depth 5

 LISTING 5.1

application.html.erb Layout Template

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
 <title><%= @title %></title>
 <%= stylesheet_link_tag “style” %>
 <%= javascript_include_tag :defaults %>
</head>

<body>
 <div id=”header”>
 <div id=”logo_image”>
 <%= link_to image_tag(‘main_logo.png’),
 {:controller=>’home’, :action=>’index’} %>
 </div>
 <% if !logged_in? %>
 <%= render :partial=>”user/signin” %>
 <% else %>
 <div id=”user_menu”>
 <%= link_to ‘Logout’, :controller=>’user’,
 :action=>’logout’ %>
 </div>
 <% end %>
 <div style=”clear: both; height: 0px;”></div>
 </div>

 <%= render :partial=>”shared/sidebar” %>

 <div id=”Content”>
 <% if flash[:notice] -%>
 <div id=”notice”><%= flash[:notice] %></div>
 <% end -%>
 <% if flash[:error] -%>
 <div id=”error”><%= flash[:error] %></div>
 <% end -%>
 <%= yield %>
 </div>
</body>
</html>

184

Rails In DepthPart II

Take a look toward the top of the sample file and notice the one instance variable referenced in the
layout file — @title. Normally, you try to minimize the usage of instance variables in layouts.
Each instance variable used is a dependence requiring each and every controller action that uses
this layout to define the variable. The variable must be declared either in the controller action or
in the view that is the main part of the action. In other words, each view file could start with the
line <% @title = “something” %>, and that variable reference would be available in the layout.

A common practice is to specify the instance variable in a before filter, which itself might redirect
to another method that is overridden in each specific controller. Another option is to call a helper
method in the layout instead of using an instance variable directly.

The layout file includes required JavaScript and CSS files by using the Rails helper methods
javascript_include_tag and stylesheet_include_tag, both of which work similarly.
Each method takes a list of source files. If an absolute path is not specified, then the appropriate
public directory of your Rails application is assumed. If a file extension is not specified, then the
normal extension for that file type is assumed.

The JavaScript include method takes a special argument :defaults, which causes the standard
Prototype and Scriptaculous libraries (prototype.js and effects.js) to be included. In
addition, if the file public/application.js exists, it is included in the defaults. In both the
JavaScript and CSS methods, passing the argument :all will automatically include all files in the
Rails public directory. For JavaScript files, the default files are guaranteed to be included first, so it
is safe to use when other files have dependencies on Prototype or Scriptaculous. As with many
other tag helpers, an optional hash argument at the end will be passed on as attributes of the HTML
tag being created.

Both the JavaScript and CSS helpers take an optional argument :cache => true. If this argument
is present, and if the global property ActionController::Base.perform_caching is also
true, then Rails will roll all the files being included into one single file. This reduces the number
of HTTP connections required to get the content, and can also reduce the total amount of data sent
if your web server compresses response data. The default name of the resulting file is all.js or
all.css. If you want to use an alternate name for the file, use that name instead of true as the
value of the cache argument.

Another header tag that you might include in a layout is auto_discovery_link_tag, which
returns an HTML link tag, suitable for browser auto detection of an RSS or Atom feed. The method
takes three arguments. The first is the type of link, which can by :rss or :atom. The second
argument is a URL, and takes any of the normal mechanisms for specifying a URL. The final argu-
ment is a hash allowing you to specify one of three options, :rel specifies the rel attribute in the
tag and defaults to alternate, :title allows you to specify the title of the feed as it shows up
in the browser pulldown — the default is the same as the the link type. Finally, :type allows you
to specify a MIME type, if the default is unsuitable for some reason.

Under normal circumstances, the layout associated with a given controller action is the layout for that
controller, app/views/layout/<controller>.<format>.erb. If there isn’t a layout for the
given controller, then Rails will look for a file named application.<format>.erb. If no layout
is specified and the default file is also not specified, then no layout will be rendered. The format is
significant here, you can have different layouts for the same controller but with different formats.

185

View: In Depth 5

The layout can be specified in two places. Controllers have a class method called layout which
allows you to specify either the string name of the layout you wish to use or the symbol name of a
method which dynamically returns the name of the layout to use. The latter method allows you to
dynamically switch layouts based on runtime criteria. The layout method also takes the common
conditional options :except and :only. The value of each option is a symbol or list of symbols
corresponding to actions in the controller. The :only option specifies that the layout is for only
those symbols, while the :except option specifies that the layout is for all symbols except those
specified.

A layout can also be specified in any render call with the optional argument :layout, the value
of which is the name of the layout to be used. The value :layout => false indicates that no
layout should be used.

Partials
Partials, which have already been mentioned earlier in the chapter, are sub templates that allow
you to organize your view template code in much the same way that classes and methods allow you
to organize your Ruby code. If you have a common part of your view that is used on multiple pages,
it is a good idea to put the block of template code that created that view component into a partial.
Also, if you have a very large template, you can usually break it into more readable and maintain-
able chunks by using partials.

Partials can be invoked from anywhere inside a view, where you’d normally use them in conjunc-
tion with ERb’s output delimiter.

<%= render :partial => “some_partial” %>

This command causes Rails to go off and render the file _some_partial in the same directory as
the view making the call. The leading underscore in the file name is what makes it a partial — you
don’t add the underscore to the name when you reference it in a render call.

If no directory is specified, the view directory of the current controller is assumed, however you
can specify other directories relative to the view directory, such as shared/partial_name.
Again, the leading underscore is not included.

By default, any instance variable already declared in the controller action or view is visible from the
partial and local variables declared in the controller or view are not available in the partial. However,
it’s usually considered poor practice to require the partial to depend on the instance variables of the
external action, and better practice to explicitly pass any needed objects to the partial.

The optional argument :object => obj places obj into the partial with the same variable name
as the partial itself. For example:

render :partial => “task”, :object => @most_recent_task

186

Rails In DepthPart II

The object @most_recent_task will be available in the partial using the local variable name
task. This is reasonably elegant, but I often find that my partial files have longer names that don’t
really work as variable names. Also, you’ll often want to pass more than one argument to a partial.
The :locals option allows you to specify a hash of objects and their new local names within the
partial:

render :partial => “display_task”,
 :locals => {:task => @task, :user => @user}

The keys in the locals hash are symbols denoting the names the variables will be available as within
the partial — it’s not unusual for the names to be identical to the instance variable names, as in
this example. The advantage of specifying the variables explicitly in the partial call is that it keeps
the partial from being dependent on the instance variables of the calling controller and allows it to
be used more flexibly.

A partial can automatically be called multiple times by using the :collection argument, which
automatically iterates and runs the partial once for each element in the collection. The following
line:

render :partial => “task”, :collection => @all_tasks

is equivalent to:

@all_tasks.each do |obj|
 render :partial => “task”, :object => obj
end

The optional argument :spacer_template specifies another partial template to to be inserted
between each object — generally these are on the order of a horizontal line, and don’t need any
arguments.

Normally, a partial render doesn’t include the layout — the assumption is that the layout has
already been taken care of someplace else. However, if you must, you can specify the layout with
the :layout option. As with other cases, a value of true indicates the current controller.

Helpers
Rails provides a very wide variety of methods designed to encapsulate and simplify common view-
layer tasks. Collectively these methods are called helpers and are available in any view template.
(They are not, however, available from inside the controller, at least not without some possibly
awkward hacking.) In addition, Rails generates an ApplicationHelper module and another
helper module for each controller. As you’ve probably guessed, those modules are all the files in
the app/helpers directory.

187

View: In Depth 5

In Rails, all of your helpers in all of your app/helper files are available to all your template files
at all times. This behavior is controlled by the following line, placed in your app/controllers/
application.rb file by Rails when the project is generated.

helper :all # include all helpers, all the time

And yes, the comment is also generated by Rails. If this line did not exist (or if you removed it),
you would get the older behavior, which is that each template would have access to methods
defined in ApplicationHelper, and all methods defined in the helper corresponding to the
controller responding to the request.

You can augment the basic behavior with additional calls to helper, which can be placed in the
application.rb file or in any individual controller. The argument to helper can be any or all
of the following (you can pass in more than one argument at a time):

n A block. Any methods defined inside the block will be available for all templates in that
controller. This looks like so:

helper do
 def header
 “<h1>Applicaton Header</h1>”
 end
end

n A constant, representing a module that has already been loaded via require. The mod-
ule is included for all templates.

n A string, such as widgets/fred. In this case, Rails will look for the file relative to the
app/helper directory, and will assume the associated module to be included is
namespaced, such as Widgets::FredHelper.

n A symbol, such as :my. In this case, Rails will require the file app/helper/
my_helper.rb and include the associated module, assumed to be MyHelper.

n The special symbol :all, which causes the behavior described earlier.

The signature for the helper method is helper(*args, &block), so while you are limited to
a single block, the remaining arguments can be included in any combination you want. You can
have more than one helper method in a controller.

Predefined Rails Helpers
To get a sense of what kind of features are placed in helpers, here’s a list of the ones that Rails
defines for you, at least as of this writing, along with the most commonly used or useful methods
in each helper module. Each of these helper modules is automatically included and available from
any template or from any of the standard helper modules. Many of them are most useful when
creating your own helper methods. It’s occasionally useful to include a specific helper module in
an unusual location — it’s often necessary to do so in order to test helper methods, for example.
Every now and then, a helper will be useful within a model and you’ll include a helper module
there, but that’s something to do sparingly.

188

Rails In DepthPart II

HTML Creation Helpers
The following helper modules all assist in the creation of HTML output. As such, they are most
often used in your own helper methods, rather than in an ERb file.

AssetTagHelper
The helpers in this module generally create HTML tags pointed at a specific resource. The most
commonly used are javascript_include_tag and stylesheet_link_tag, both of
which were discussed in the section on layouts. Another useful methods in this module is
auto_discover_link, which creates a link tag in an HTML header. Suitable for browser
discovery of RSS feeds, it takes an argument for the type of feed :rss or :atom, an argument
for the URL of the feed and an argument for any other tag options.

The module also contains the image_tag method, which creates HTML img tags, given a URL
source, and optional keys for :alt text, :size as a string of the form (width x height), and
:mouseover, which specifies an alternate image for when the mouse pointer is over the image.

RecordIdentificationHelper
The most useful method in this module is dom_id (also available in controllers), which takes an
object and an optional prefix, as in dom_id(@user, :row), and converts it to an id of the form
row_user_45, using the class of the object — if the object is new and doesn’t have an ID number
then the string is row_new_user. This would be used inside a HTML tag in ERb or in your own
helpers:

<div id=”<%= dom_id(@user, :div) %>”>

or

content_tag(:div, :id => dom_id(@user, :div))

A similar method, dom_class, does the same thing without the ID.

RecordTagHelper
This module contains two helpers that are shortcuts for using both dom_id and dom_class for
the same tag. The general one is content_tag_for(tag_name, record, *args, &block).
This method is roughly equivalent to the HTML:

<tag_name id=”dom_id(record)” class=”dom_class”>block contents</
tag>

Where the tag name is the first argument to the method. The block contents are evaluated and
placed inside the tag. A DOM prefix can be the third argument; there can also be the usual key/
value pairs that get put in the tag.

A sample usage might be:

content_tag_for(:span, @person, :name) { @person.name }

189

View: In Depth 5

This would evaluate to something like the following depending on the actual contents of the variable:

Hollis Mason

The module also contains the method div_for, which is a simplified version that always returns
div tags.

TagHelper
The most commonly used method in this module is content_tag, often used in your helpers to
build HTML output. It can be used in two forms. The first takes content as a string:

content_tag(:td, “Banana”, :class => “food”)

The first argument is the tag, the second is the content, and then the usual key/value pairs. This
call would result in:

<td class=”food”

The second form puts the content in a block. Within your helper module, the block form would
look like this:

content_tag(:td, :class => “food”) do
 “Banana”
end

See the later section on block helpers to show how this style can be used in an ERb context, rather
than a Ruby context.

A simpler method in this module, tag, works for HTML tags that have no content. Another
method cdata_section takes an argument and wraps it in an XML CDATA tag sequence.

UrlHelper
The star of this module is url_for, which converts a hash of options to a URL in ways that
you’ve already seen a few times. Remember that in a RESTful universe, the argument to url_for
can be an ActiveRecord object, the URL and controller action are defined by the HTTP method
chose.

Other related methods in this module include calls to url_for as part of their functionality.
Obviously the most commonly used is link_to, which takes a string and a url_for argument
set and creates an HTML link, the button_to method is similar but outputs a button.

The link_to_if and link_to_unless, and link_to_unless_current methods allow
you to specify alternate text if a condition is true, the latter method sets the condition to whether
the page you are on is or is not the page being linked to — commonly used in a menu or naviga-
tion structure to put a special style on the current page. And mail_to creates an email link.

190

Rails In DepthPart II

Form Creation Helpers
The following modules all contain methods specifically used to create HTML forms or form parts.

ActiveRecordHelper
These are a few relatively little-used methods. The methods error_message_on and error_
messages_for convert ActiveRecord validation errors into useful string, this is used for those
error messages displayed when a user inputs invalid information into a form. Use error_
message_on with strings for an instance variable name and method (similar to form helpers), and
error_message_for with a string or list of strings. The methods form and input are rarely
used form generation tags.

FormHelper
This module contains the bulk of form creation helpers that work with form_for and an
ActiveRecord module. Most of these methods take as arguments a symbol representing the object
and the method being mapped to the form element, however, if these methods are called inside a
form_for block, then the object is implicitly set to the object of the form_for. So:

<%= text_field(:user, :name) %>

But:

<% form_for(:user) do |f| %>
 <%= f.text_field(:name) %>
<% end %>

In the second version, the user sent to the form_for method is also associated with any helper
called via the form object inside the block.

The typical method in this module takes the object, method and an options hash to be added to
the eventual tag. These methods are:

n check_box

 Also takes additional parameters for the checked and unchecked value of the field. Rails
adds a hidden variable for unchecked checkboxes to ensure that a value is posted for
them.

n file_field

 File upload element. The form must be declared as multipart for this to work.

n hidden_field

 A hidden input tag.

n label

 A label tag, often associated with another input field. Takes an argument before the
options hash for the text of the label if it’s not the same as the method name.

191

View: In Depth 5

n password_field

 Text field with masked entry for passwords.

n radio_button

 Takes an extra argument before the options hash for the value of the button. All radio
buttons with the same object and method are linked, the one whose value matches the
value of the object will be selected.

n select

 Takes an argument for the caption of the select button.

n text_area

 A multi-line text entry field

n text_field

 A single-line text entry field.

The form_for method takes a series of arguments, the first of which is typically the object being
mapped to the form, if the RESTful URL for that argument is not where you want the form post to
be directed, a :url option lets you specify the destination as a hash, string, or routing method. As
just shown, the tag takes a block inside of which the fields of the form are entered.

Often, you’ll want a part of the form to be attached to another object, most typically if you want a
user to be able to enter a main object and a child object from another model at the same time. The
fields_for method allows you to wrap those fields and associate them with a separate object. It
takes the same argument structure as form_for, except without a URL.

<% form_for @user do |f|%>
 <%= f.text_field :name %>
 <% fields_for @user.address do |a| %>
 <%= a.text_field :city %>
 <% end %>
<% end %>

Note that the form elements that belong to the inner fields_for block are called on the inner
form builder object, in this case a, instead of f.

FormOptionsHelper
Methods that create various flavors of option tags to get placed inside select tags, as well as the
select helper method itself, which creates an HTML select. It is similar to the other form builder
method, but takes an extra argument before the options containing the list of option tags. The basic
form of that argument is a two-dimensional array where each element is [display, value]. If
you just want the option HTML tags from a two-dimensional array, the method options_for_
select takes a collection and an optional selected value and returns the string of tags.

f.select(:state, [[“California”, “CA”], [“Oregon”, “OR”]])

192

Rails In DepthPart II

All select tags take an option, :include_blank, which is a prompt string or true, and always is
the first element of the list, and thus what displays if there is no selected value. A similar method,
:prompt, only includes the extra element if there is no selected value.

There are a few more specialized tag methods in this module

n collection_select

 Takes an arbitrary collection of Ruby objects and converts them into a select and option
tags. The arguments are the same object and value as for any form element tag, followed
by the collection to be used, followed by a method used on those objects for the value of
each option and a method used for the text of each option, then the normal key/value pairs:

f.collection_select(:state, US_STATES, :mail_abbr, :name)

n country_select

 Returns a select tag with options for selecting many, many countries. An associated
method, country_options_for_select, returns just the option tags.

n time_zone_select

 Returns a select tag of all time zone from the time zone database and has an associated
time_zone_options_for_select method.

FormTagHelper
This module contains all the form helpers that are used in the older, form_tag style of form
creation. The primary advantage of this set of helpers as that they are not required to be attached
to an ActiveRecord object, making them more flexible. Most of these take a name, value, and
options, and are otherwise analogous to the FormHelper methods. These methods include
check_box_tag, file_field_tag, hidden_field_tag, image_submit_tag,
 password_field_tag, radio_button_tag, select_tag, submit_tag, text_
area_tag, and text_field_tag.

The form_tag method is used to create the entire form, and field_set_tag creates an HTML
fieldset. For the form, the argument is the URL being posted to.

JavaScript Creation Helpers
These helper modules are used for JavaScript and Web service support.

AtomFeedHelper
This has one method, atom_feed, and a sub module AtomFeedHelper::AtomFeedBuilder.
An instance including that module is passed the block argument of this method. You would use
this to create an Atom feed. Almost all of the action takes place in the block. The builder object
works just like the Ruby XML builder, so any unknown method call on it will result in an XML
tag. The feed.title in the following example:

atom_feed do |builder|
 feed.title(“Feed For Thought”)
end

193

View: In Depth 5

Results in the XML <title>Feed For Thought</title>. The feed helpers manage the
requirements for the header and whatnot of the feed, you need to pass it the contents. Each entry
in the feed needs to call the entry method of the builder, and then add at least a title and content
to the entry.

atom_feed do |builder|
 feed.title(“Feed For Thought”)
 @posts.each do |post|
 feed.entry(post) do |entry|
 entry.title(post.title)
 entry.content(post.content)
 end
 end
end

The Atom specification discusses all the possible fields in an Atom feed.

JavaScriptHelper
In this module, you’ll find a number of utilities for escaping JavaScript and otherwise dealing with
JavaScript strings inside your Rails program.

The most useful function here is probably javascript_tag, which takes JavaScript as either a
string or block argument and encloses it in a fully escaped script tag.

javascript_tag do
 alert(“Hey!”)
end

This module also contains link_to_function and button_to_function, the first argument
to either method is the text for the resulting link or button. The function to be called is either
passed as the next string argument, or as a block, which is evaluated as RJS (see the next section
for details). Finally, the escape_javascript function takes as string and escapes things like
HTML tags and quotation marks so the string can be passed to a JavaScript string.

PrototypeHelper
This contains a number of helpers for making Ajax and RJS calls and will be fully discussed in the
next section.

ScriptaculousHelper
This contains a number of helpers for making Ajax and RJS calls and will be fully discussed in the
next section.

Data Processing Helpers
These helper modules are used for data processing.

194

Rails In DepthPart II

CaptureHelper
The big method here is capture, which takes a block argument and returns it as a string. This is
extremely useful in writing your own block helpers and will be discussed in a bit more detail in
just a moment. A related method, content_for, takes a symbol and a block and associates them
for the life of the request, allowing you to evaluate the block later on:

content_for(:banana) { “Yum” }

And then later on:

yield :banana

DateHelper
The DateHelper module has a series of methods for evaluating dates. First, is a method that converts
a time range to text. The method distance_of_time_in_words — takes three arguments, the
start time, the end time (which defaults to now), and a boolean as to whether seconds should be
included. It returns a fuzzy time string representing the distance between the two timestamps along
the lines of “about a day” or “over 4 years” — the kind of thing you frequently see timestamping
blog posts or comments. If you are comparing the time to now, then the shortcut method time_
ago_in_words will also work.

Next up is a series of methods for picking dates in forms via a series of select tags. These elements
come in a form_for version and a form_tag version, which are slightly different.

The ActiveRecord versions are called date_select, time_select, and date_time_
select. The methods take the normal object name and method arguments. They can be specialized
by using the :discard family of options to drop the year, month, date, hour, minute, or second
options, so :discard_year => true. The :order option takes a list of the sub fields to use,
such as :order => [:day, :year]. In this version, parts not included in an order list are not
included in the generated form. The :default option sets the date and time for the initial value
of the fields if the supplied ActiveRecord doesn’t have a value. All of these methods place their
selects into the field in such a way that ActiveRecord will automatically parse them into the date
fields correctly.

The non-ActiveRecord versions are called select_date, select_time, and select_date_
time. In this version, you can still set an :order option to change the order of the fields, but
fields not included in the list are still appended to the end of the generated form.

If you want to have a form with a subset of the fields, you must build it yourself from the helper
methods select_year, select_month, select_day, select_hour, select_minute,
and select_second. All of these methods take a date or time value as their first argument, to
set the field or fields. The second argument is an options hash. These helpers generate fields with
names that match the type of field, year, month, and so on. To change the default, pass a value to
the :field_name option.

195

View: In Depth 5

NumberHelper
A few helpful methods for converting numbers to different formats.

n number_to_currency

 Takes the number and an options hash and returns a currency string. The options over-
ride the defaults, :precision => 2, :unit => ‘$’, :separator => “.”,
:delimiter => “,”.

n number_to_human_size

 Converts a file size in bytes to a human readable version, like 10GB, or 1.5 MB. The
optional second argument is the number of decimal places of precision.

n number_to_percentage

 Converts the number to a percentage string, does not multiply it by 100 — number_
to_percentage(100) returns 100.000%. There are two optional arguments, with
the defaults :precision => 3, :separator => “,”.

n number_to_phone

 Converts an integer to a phone number string, by default in the common American for-
mat of 123-456-7890. Options include :area_code => true, which puts the area
code in parentheses; :delimiter, which defaults to -; :extension, which adds an
extension; and :country_code, which adds one of those, too.

n number_with_delimiter

 Writes the number using the delimiter to separate thousands, and a separator to separate
decimals. The delimiter is the second argument, the separator the third, the default values
are the American format of comma and decimal point.

n number_with_precision

 Displays the number to an arbitrary number of decimal points, the default is 3.

SanitizeHelper
The methods in this helper are designed to strip HTML or JavaScript entities from a string, you
should always use one of these methods to qualify any text being displayed directly from user data
entry to prevent cross-site scripting attacks.

The primary method here is sanitize, which takes text as an argument and removes anything
that looks like an HTML tag, except for a few tags that are on a whitelist. If a :tags argument is
passed, then only the tags in that list are allowed, if an :attributes argument is passed then
only those attributes within the allowed HTML tags are allowed. The global white list is specified in
the attributes ActionView::Base.sanitize_allowed_tags and ActionView::Base.
sanitize_allowed_attributes. You can set custom lists in the config.rb file.

More aggressively, the method strip_tags removes all HTML tags from the text, and strip_
links removes all HTML anchor tags.

196

Rails In DepthPart II

TextHelper
This module has kind of a pot-luck set of methods for manipulating text:

n auto_link

 Takes incoming text and converts anything that looks like a URL or email address to a
link. An optional second argument can be :all, :email_addressses, or :urls,
and controls what kind of links are generated. An optional third argument is a hash
added to each link.

n concat

 Adds text to the ERb output stream, given text and a block biding. See the section on
block helpers later in this chapter for why this is useful.

n cycle

 Takes one or more text values, and returns an object. When that object is called, it
returns the strings one by one in a loop. An optional argument :name allows the cycle to
be reset with reset_cycle(name). This is often used to alternate colors in a table:

<% @books.each do |book| %>
 <tr class=”<%= cycle(“even”, “odd”) %>”>
 </tr>
<% end %>

n excerpt

 Takes some text and a phrase and returns a subset of the text centered on the phrase.
The optional third argument specifies how long the excerpt should be on each side of the
phrase, defaulting to 100 characters.

n highlight

 Takes text and a phrase and highlights all instances of the phrase, as in the display of
search results. An optional third argument can change the highlighting, which defaults to
HTML strong.

n markdown

 If the BlueCloth gem is installed, parses the given text as Markdown.

n pluralize

 Takes a number, then a singular noun. If the number is 1, then the singular is returned,
otherwise the plural form of the noun is returned. An optional third argument allows you
to specify your own plural form.

n simple_format

 Converts the given text to HTML, converting a single newline to a br tag and a double
newline to a p tag.

n textilize

 If the RedCloth gem is installed, converts the given text as Textile.

197

View: In Depth 5

Debugging Helpers
The helpers in this section assist in debugging or performance improvement.

BenchmarkHelper
The sole method in this module is benchmark, which takes a block and a text message, and logs
the amount of time it takes to run the block of code to the appropriate log file. An optional second
argument specifies the log level.

CacheHelper
The sole method in this module is cache, which allows you to cache an arbitrary fragment of a
view. The method takes an optional argument, which is a URL-style hash allowing you to uniquely
identify the fragment (it doesn’t have to be a real URL, just a unique identifier) and a block. The
result of the block is cached and inserted the next time the fragment is called without having to
evaluated the block again.

DebugHelper
The sole method in this helper is debug, which takes an object and returns a YAML-compatible
inspection of the object wrapped in a pre tag so it can be placed in your HTML output for testing.

Creating Your Own Block Helpers
Within your own helpers, you are free to write any valid Ruby you want, and use any other helpers
that might assist. There is one technique that you should know about, which is the ability to write
a helper that surrounds arbitrary ERb. For the purposes of an example, let’s say you want a helper
that creates a table row with two cells, the first has a caption, and the second has arbitrary ERb, so:

<% captioned_row “Location” do %>
 <%= f.text_field :city %>
 <%= f.text_field :city %>
 <%= f.text_field :zip %>
<% end %>

In the code snippet, the helper call is enclosed in a ERb evaluate tag not an ERb evaluate and print
tag. This means that the helper method will need to explicitly place the output text into the ERb
stream (doing an evaluate and print for blocks doesn’t work). However, the text field calls inside
the block are entered as evaluate and print, those will be dealt with as string.

The helper to process this code looks like this:

def captioned_row(caption, &block)
 caption_cell = content_tag(:td, caption)
 data_cell = content_tag(:td, capture(&block)
 row = content_tag(:tr, caption_cell + data_cell)
 concat(row, block.binding)
end

198

Rails In DepthPart II

This method uses several helpers that you have already seen. The content_tag method builds
up the HTML tags for the table cells and row. The capture method evaluates the block and
returns its result as a string — conveniently, you do not need to specify that the block should be
evaluated as ERb; it will be automatically be parsed and processed by the ERb engine. It will not,
however, be included in the page output until you call concat, which takes the text that you
want to place in the output, and the binding for the block. A block binding is something like a fro-
zen set of variable states, and the concat helper uses the block binding to get at the ERb output
stream.

JavaScript, Ajax, and RJS
One of Rails’ earliest advantages over competing frameworks was it’s embrace of Ajax as a mechanism
for interaction between the browser and the Web application. In an Ajax interaction, the browser
makes a behind-the-scenes call to the server, and uses the result to update part of the page on the
fly. Rails makes adding Ajax effects to you Web application as easy as adding regular links and
actions. This section will cover Rails support for Ajax interaction through helper methods that
generate Prototype and script.aculo.us code. Chapter 10 contains more information on the
Prototype and script.aculo.us libraries themselves, including information on the script.
aculo.us helpers that manage drag and drops.

Ruby JavaScript (RJS) is a later addition to Rails toolkit to support more complex JavaScript inter-
action by providing Ruby helpers that create JavaScript code.

Prototype Helpers
The helper methods in the PrototypeHelper module are all designed to support Ajax interaction
by generating a Prototype object that makes a remote call and evaluates the response. The basic
mechanism for most of these methods is to take a URL and a DOM ID. The URL is called when the
interaction is triggered, and the result replaces the text in the specified DOM element. Although
some of these methods have additional options for more complex interactions, the preferred mech-
anism for more complex Javascript is an RJS template call.

The Ajax helper methods take many common options. Unless otherwise specified, all of these
methods have an options argument at the end that takes a :url option to specify the server target
of the Ajax action, and an :update option to take the DOM ID to be updated — if no update is
specified, it’s assumed that further instructions will come from the JavaScript returned by the
server. If you want the text to be an insertion rather than a replacement, specify the :position
option to be :after, :before, :bottom, or :top.

Several further options allow you to specify additional JavaScript code to be executed under various
conditions. Again, RJS has largely, but not completely, rendered these obsolete. A JavaScript snippet
passed to the :condition option can halt the execution of the request before the server is con-
tacted by returning false. The :confirm option, if specified, is the text of a confirmation box that
must be okayed before the request proceeds. JavaScript, to be executed before the Ajax call is made,

199

View: In Depth 5

should be passed to the :before option. JavaScript can be executed during processing by specify-
ing the :loading, :loaded, or :interactive options. Once those are complete, any
JavaScript code passed to :after option is executed.

Additional callbacks can be based on the result of the call by passing the script to the :success
or :failure options. In either case, the code passed to the :complete option is executed after
that. In place of the success or failure options, any integer corresponding to a specific HTTP
response code can be used as an option key. Finally, two non-callback options: the :submit
options specifies the parent DOM element for any form element in the Ajax call if for some reason
the currently active form isn’t the parent; and the :with option is a JavaScript snippet that must
return a string suitable to be appended to the query string of the request.

And here are the helpers themselves, along with any further options or quirks specific to that
method;

n form_remote_tag

 The Ajax version of form_tag for non-ActiveRecord forms. Its only arguments are the
option tag, and the block that will contain the form elements. The :html option specifies
an alternate URL for browsers without JavaScript.

n link_to_remote

 The Ajax version of link_to, creates a clickable link with Ajax consequences. By default
the HTTP method of this connection is POST. The first argument is the text of the link,
the second argument is the options hash. The :html option adds additional attributes to
the anchor tag. The :href option provides an alternate target if JavaScript is not enabled.

n observe_field

 The first argument to this method is the DOM ID of a form element the second argument
is an options hash. When the form element changes — anything that would trigger a
JavaScript changed event — the URL is called and the response is evaluated. Instead of
a :url, you can specify :function, which is JavaScript code that will become the body
of a function called when the field changes.

 You may assume that the generated function will have the arguments element and
value. An additional option, :frequency, specifies the amount of time in seconds
between checks of the field. A property called :on purports to allow you to change the
event being tracked, but as of this writing, a Prototype bug prevents it from working.
Also, when specifying the :with option, you may use the JavaScript variable value,
which has the new value of the field element.

n observer_form

 Like observe_field, but the DOM ID is of an entire form, and the URL or function is
triggered if any element in the form is changed. The only difference in the options from
observe_field is that the value parameter for the :with option contains the entire
form.

200

Rails In DepthPart II

n periodically_call_remote

 Takes just the options hash as an argument. Uses the :frequency option to determine
how often, in seconds, it should make its remote call. The default is ten seconds.

n remote_form_for

 The Ajax version of form_for (also can be called as form_for_remote). The first
arguments specify the ActiveRecord, followed by the options hash, and the form block.

n remote_function

 Given the option hash, returns just the JavaScript for making the remote Ajax call, suit-
able for insertion in some other kind of user or JavaScript event.

n submit_to_remote

 Can be used to create a remote submission inside a form.

RJS helpers
RJS allows you to create a wide variety of common JavaScript Ajax functionality by writing Ruby.
RJS code can be triggered in many ways. The render :update method takes an optional block
that is evaluated as RJS:

render :update do |page|
 page.replace_html “header”, “Clicked!”
end

The page variable is the variable that can respond to the RJS generator methods and is automatically
created by render :update. The helper method doesn’t need to have the page in its arguments,
but can use page as a local variable.

If the default controller action for a JavaScript request finds a file with the extension .rjs, then
that file is evaluated as if it was inside a render :update block, complete with a page variable
created for your use inside the template. Finally, the Prototype helper update_page, takes a
block in exactly the same way as render :update and returns the created JavaScript code.

Within an RJS template the page variable has about two dozen Ruby methods that create
JavaScript. The most commonly used are probably the three that affect HTML for a given DOM id:

n insert_html

 Takes three options, a position as in the options for the Prototype helpers in the last sec-
tion, and a DOM ID to be affected. The third option is either a string to be inserted directly
or a key/value hash which is interpreted as though it was a call to render, so typically
something like :partial => ‘partial_view’. The resulting text is placed in the
DOM element as specified by the position.

201

View: In Depth 5

n replace

 The first argument is a DOM ID, the second is the text to render in the same way as in
insert_html. The text completely replaces the DOM element, including its tags, or
what JavaScript calls the outer HTML of the element.

n replace_html

 As replace, but does not effect the tag of the element. In other words, it replaces the
JavaScript inner HTML of the element.

Any RJS method that takes a DOM ID as its first element can also be accessed via an alternate
method, like so:

page.replace_html “header”, “new text”

This is equivalent to:

page[“header”].replace_html, “new text”

and:

page.select(“header”).first.replace_html, “new text”

The last version is the most flexible; the option to the select method can be any CSS-style selector.
The result is an enumeration of all matching elements. You can then deal with that enumeration
using Prototype’s iteration methods, which are very similar to Ruby’s.

The select form is often used to bulk hide or show a set of DOM elements using the RJS methods
hide, show, and toggle, which change the visibility of the DOM element passed to them. The
method remove takes the element completely out of the DOM tree. All four of these methods can
take multiple DOM IDs as arguments at one time.

The draggable, drop_receiving, and sortable methods all take a DOM ID and create a
script.aculo.us object for that DOM ID

CROSS-REFCROSS-REF For more details on creating a script.aculo.us object, see Chapter 10.

The visual_effects method gives access to the entire range of script.aculo.us visual
effects. The first argument to this method is the name of the effect, the DOM ID being affected is
the second argument, the third argument is an option hash. The exact list of visual effects is
dynamically determined by what script.aculo.us offers, but commonly used ones include
:highlight, :fade, :appear, and :puff. The script.aculo.us documentation has a
complete list.

A few methods let you include arbitrary JavaScript outside of what is provided:

n >>

 Inserts its argument as JavaScript directly to the page, as in page << “1 + 1”.

202

Rails In DepthPart II

n alert

 Sends a JavaScript alert call with the given text argument.

n assign

 The arguments are a variable name and a value and the generated JavaScript assigns that
value to that variable on the client-side.

n call

 Takes a JavaScript function and a list of arguments and inserts a call to that function into
the RJS JavaScript.

n delay

 Takes a numerical argument and a block. Waits that number of seconds on the client and
then evaluates the block

n literal

 Creates a JSON object from the given text.

n redirect_to

 Takes a Rails URL format and redirects the entire client-side browser page to that URL.

Summary
In this chapter, you learned about the view layer of a Rails application. Just as with the other layers
of your application, Rails provides significant help to you, the developer, in creating the views for
your application.

In Chapter 10, you’ll learn about the Prototype and Scriptaculous JavaScript toolkits, which are
distributed with Rails. These toolkits provide even more power to you as you develop the views for
your Web application.

Developing a
Complete Rails

Application
IN THIS PART

Chapter 6
Developing Book Shelf: The
Basic Framework

Chapter 7
Developing Book Shelf: Adding
the Core Functionality

Chapter 8
Developing Book Shelf: Social
Support

Chapter 9
Testing the Book Shelf
Application

205

This chapter marks the beginning of step-by-step development of a
complete and useful Rails application. If you are familiar with the
Web development market, you know that most of the hottest appli-

cations being developed today feature some sort of social aspect. The option
for users to provide content and interact with other users is a key component
of what is usually referred to as a Web 2.0 application. The application you
can write by following along in this chapter fits in nicely with the Web 2.0
paradigm.

This application will allow groups to create an online catalog of books. Using
the application, users can add books, share book reviews, share book ratings,
and organize the books using tags. Book Shelf, as I’ve named this application,
could be used by a user group, a community group, a school, a local library,
a workplace, or just about any group of people that have some interest in
books.

You will develop Book Shelf using an iterative process in which you will
design a feature and then code that feature. This process is repeated until all
of the required features of the application have been implemented. In this
chapter, you will put in place the basic framework of the application and
implement a user model with authentication so that a user is able to log in
to and out of the application. The development continues in the next two
chapters.

I strongly encourage you to follow along with the development of the applica-
tion and to write the code on your computer as you read about it. However, I
do recognize that this is not the best learning style for everyone who will read
this book. Therefore, if you’d like to see the complete source code for the
application, you can download it from www.rubyonrailsbible.com.

IN THIS CHAPTER
Application overview

Creating a skeleton for the
application

Create a home page

Implementing users

Developing Book Shelf:
The Basic Framework

206

Developing a Complete Rails ApplicationPart III

Application Overview
Previous chapters have covered the various features that make up Rails; in this chapter you can
learn through the experience of writing what I feel is an interesting application.

Your Book Shelf application will include the following features:

n User registration, login, and account management

n Ability to add and remove books to and from user-specific shelves

n Automatic population of book information for added books

n Ability to search the Amazon catalog to find books that a user wants to add

n Links to purchase books online

n Support for book reviews

n Tagging of books

n Rating of books

One of the best ways of communicating the goals for an application upfront is through pictures. To
give you a good idea of what is to be developed, I’ll cheat a bit here by showing you how the appli-
cation looks when it’s complete. Figures 6.1 to 6.4 show four of the Book Shelf application’s main
screens, which are described here:

n Book Shelf Home Page: The screen shown in Figure 6.1 is what users will see when
they first navigate to the Book Shelf application. This is the starting point for all users
and visitors.

n User Home Page: The page shown in Figure 6.2 is a home page for users who have
logged into the application.

n Add Book Page: The page shown in Figure 6.3 is where users can view results of
searches against the Amazon catalog and find books that they want to add to their book
shelf.

n Book Detail Page: The page shown in Figure 6.4 is where users view details about a par-
ticular book that is on someone’s shelf. This is also the page where users are able to read
and submit book reviews.

207

Developing Book Shelf: The Basic Framework 6

 FIGURE 6.1

The Book Shelf Home page

208

Developing a Complete Rails ApplicationPart III

 FIGURE 6.2

The User Home page

209

Developing Book Shelf: The Basic Framework 6

 FIGURE 6.3

The Add Book page

210

Developing a Complete Rails ApplicationPart III

 FIGURE 6.4

The Book Detail page

If you follow the development of the Book Shelf application through the next two chapters, I hope
you find something missing from the chapters. I am referring to unit tests, something that should
normally be a part of your development process. In any real application development cycle, I very
strongly recommend that you write your unit tests shortly after you implement a particular feature.

You can also practice test-driven development, in which you actually write your unit tests before
you write the code that implement the tests. Either of these development styles will produce
higher-quality code that is a great deal more maintainable. For this book, I have chosen to central-
ize the writing of tests into a chapter of its own so that the reader who wants to look up how to
write tests for a Rails application has a dedicated chapter to go to.

CROSS-REFCROSS-REF Chapter 9 includes tests for the Book Shelf application.

211

Developing Book Shelf: The Basic Framework 6

Creating a Skeleton for the Application
This section leads you through creating a skeleton for the Book Shelf application. The skeleton
will set up the application’s directory structure and provide a home for the code you will write
throughout the remainder of the chapter. You will also create application databases for three differ-
ent environments: test, development, and production.

CROSS-REFCROSS-REF This chapter assumes that you have already installed Ruby and Rails on your devel-
opment computer. If you have not, see the Quick Start chapter for help with install-

ing those components.

Begin the Book Shelf project
The project is named Book Shelf, but it is common Rails convention to give the Rails project a
name that is lowercase with underscore word separation. You can use book_shelf as the name
of the Rails project. From your project directory, open a console window and use the rails com-
mand to generate the directory structure for the Book Shelf application:

rails -d mysql book_shelf

Prior to version 2.0.2 of Rails, MySQL was the default database for a Rails application. However
as of Rails 2.0.2, SQLite is now the default database for a Rails application. If you run the rails
command above without the -d option, your database configuration file will contain setup for a
SQLite database. The -d mysql option tells Rails that you want it to setup a database configura-
tion file for use with MySQL.

Running this command will output the list of directories and files that are being created for you.
The directory structure that is created is common to all Rails applications. Inside of the directory in
which you ran the rails command you should now see a directory named book_shelf. If you
look at the drectories inside of the book_shelf directory you should see the directory structure
shown in Figure 6.5.

From within the book_shelf directory, start the WEBrick server using the script/server
command:

ruby script/server
=> Booting WEBrick
=> Rails application started on http://127.0.0.1:3000
=> Ctrl-C to shutdown server; call with --help for options
…

212

Developing a Complete Rails ApplicationPart III

 FIGURE 6.5

The Rails directory structure

When you see feedback indicating that the WEBrick server has been successfully started on port
3000, open a browser and navigate to http://localhost:3000. You should see a screen simi-
lar to the one in Figure 6.6.

 FIGURE 6.6

The Rails Welcome page

213

Developing Book Shelf: The Basic Framework 6

You have now successfully created the Book Shelf project directory and a skeletal framework
where all of the code you write will go. You’ll continue development by setting up the application’s
databases.

Setting up the databases
For any database-backed application, Rails supports three distinct environments; production,
development, and test. Each of these environments should have their own database associated with
it. In a real application, these databases may not all be on the same server. In fact it is very likely
that your development and test databases will not exist on the same server that holds your produc-
tion database. For this application, you will create all three databases on your local development
machine.

Create the databases
Prior to Rails 2.0 you would have had to create the databases yourself using either the MySQL
command-line tool, or some other tool. However, as of version 2.0 of Rails, you can easily create
the databases using a simple Rake command. The first thing you must do is make sure the data-
bases that you want created are configured in your application’s database.yml file. This is a
database configuration file contained in the book_shelf/config directory. If you open that up,
you should see something similar to Listing 6.1.

The important things to notice in the configuration are the following:

n The adapter is set to mysql. This means you will be using MySQL as your database
application.

n The database names are a concatenation of the name of the application book_shelf
with an environment name, such as book_shelf_development.

n The username and password fields should contain the username and password of a valid
MySQL user. When you first install MySQL the root user is created with no password. If
you have changed that, make sure you update this file appropriately.

n The host for each database is set to be localhost, meaning that you will be hosting all of
the databases on your local computer.

After you’ve made any necessary changes to your database configuration file, you can use Rake to
create the databases. From a command prompt use the following Rake command:

rake db:create:all

This will create each of the three databases that were specified in the database.yml file. If for some
reason, you made a mistake and need to start over, you can remove all of the databases using a
similar command, rake db:drop:all will remove all of the databases specified in database.yml.

Now that you have the application skeleton generated and the databases created, it’s time to begin
building the application.

214

Developing a Complete Rails ApplicationPart III

 LISTING 6.1

Book_shelf/config directory

development:
 adapter: mysql
 encoding: utf8
 database: book_shelf_development
 username: root
 password:

 host: localhost

Warning: The database defined as ‘test’ will be erased and
re-generated from your development database when you run ‘rake’.
Do not set this db to the same as development or production.
test:
 adapter: mysql
 encoding: utf8
 database: book_shelf_test
 username: root
 password:
 host: localhost

production:
 adapter: mysql
 encoding: utf8
 database: book_shelf_production
 username: root
 password:
 host: localhost

Create a Home Page
In the previous section, you saw that if you run the application right now, you get the Rails
Welcome default page. You will now create a home page for the Book Shelf application that the
user starts from. The end result of what you’ll create in this section is shown in Figure 6.7. It’s not
yet the final home page that you saw at the beginning of this chapter, but it is a place to start from.

215

Developing Book Shelf: The Basic Framework 6

 FIGURE 6.7

The Book Shelf home page

Now that you know what the goal is for this section, let’s talk about what you need to do to get
there. How do you display a page in a Rails application? You need to create a controller to handle
the page request coming from the browser. The controller will contain a method corresponding to
the particular action that the browser is requesting. The action method of the controller will render
a view template file that defines the page you want to display. There are three steps you need to
follow:

 1. Create a controller to handle the home page request.

 2. Create a method in the home controller to handle the home page request.

 3. Create a view template to define the page to be rendered.

Let’s get started with a home controller.

Create the Home controller
It is a good practice to create controller classes that correspond to your model classes. For example,
if you have a user model, you would also have a user controller that would provide action methods
related to working with users. However, for the home page, there is really not a specific model

216

Developing a Complete Rails ApplicationPart III

class that you want to work with yet. You can simply call the controller that renders the home page,
‘HomeController.’

In a command window, go to the book_shelf directory and use the Rails generate script to cre-
ate the HomeController class:

> ruby script/generate controller Home
 exists app/controllers/
 exists app/helpers/
 create app/views/home
 exists test/functional/
 create app/controllers/home_controller.rb
 create test/functional/home_controller_test.rb
 create app/helpers/home_helper.rb

This creates a stub for your Home controller, a functional test for the controller, a helper for the
controller, and a views/home directory where you can put view templates that will be rendered
by the Home controller.

Open up the app/controllers/home_controller.rb file, and you see a currently empty
controller class like this:

class HomeController < ApplicationController
end

You need to add a method that will handle the rendering of the Book Shelf home page. It is a stan-
dard practice to name any Web site’s start page as index. If you specify a URL containing only a
controller name with no action, Rails will, by default, route to an index action. You can name the
action method to display the home page, index. Edit the HomeController to add the index
method:

class HomeController < ApplicationController
 def index
 end
end

Notice that you did not specify any template to render. By default, a view template with the same
name as the action method will be rendered. In this case, when the index method is called, it will
try to render a template stored in app/views/home/index.html.erb.

Now that you have a controller and an action method in place, let’s move onto creating the home
page view template.

Create a layout and view
You could put all of the HTML necessary to create the home page view into a Rails view template.
However, some of the HTML is probably reusable across many of the other views that will also be
created. If you look back at the four screen shots that were shown at the beginning of this chapter,

217

Developing Book Shelf: The Basic Framework 6

you will notice that all four of those views had the same general layout. Rails has great support for
common layouts, so it makes sense to start with a Rails layout template.

Rails layouts let you put HTML and embedded Ruby content into an html.erb file that can be
used with multiple views. Layout files are just like other Rails view template files. Rails will look
in the app/views/layouts directory for a layout template that contains the same name as the
controller that is being requested. If a layout exists with the same name as the controller, Rails uses
that layout file. If Rails cannot find a layout template that matches a controller name, it uses the
layout file named application.html.erb. The application.html.erb template is a
global template within which you can put your default page layout. Unless you override this by
creating controller-specific layouts, Rails will always use the application.html.erb template.

You can also override the layout which will be used for any given controller by specifying a layout
inside of a controller file. For example, if you wanted to use a layout file named home.html.erb
with the methods in your home controller, you could modify the home controller adding the lay-
out specification like this:

class HomeController < ApplicationController
 layout ‘home’

 def index
 end
end

For this application, the home controller will use the default application.html.erb layout
file.

Create the app/views/layouts/application.html.erb file now and enter the code
shown in Listing 6.2.

This will set up the general layout across all of the application’s pages. The following sections break
down the various pieces of this layout template.

The HTML head

The HTML head defined in the layout looks like this:

<head>
 <title><%= @title %></title>
 <%= stylesheet_link_tag “style” %>

 <%= javascript_include_tag :defaults %>
</head>

The page title is set using an instance variable set by the action methods of your controllers. This
allows each page to have a unique title while still using the same layout template. The second line
of the head section links a style sheet named style.css from the public/stylesheets
directory. Notice that you do not have to specify the .css extension. Just specifying the name of
the file without the extension is enough for Rails to find the CSS file, assuming that you used the
.css extension to name the file.

218

Developing a Complete Rails ApplicationPart III

 LISTING 6.2

The Application Layout Template in app/views/layouts/application.html.erb

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
 <title><%= @title %></title>
 <%= stylesheet_link_tag “style” %>

 <%= javascript_include_tag :defaults %>

</head>

<body>
 <div id=”header”>
 <div id=”logo_image”>
 <%= link_to image_tag(‘main_logo.png’),
 {:controller=>’home’, :action=>’index’} %>
 </div>
 <div style=”clear: both; height: 0px;”></div>
 </div>

 <%= render :partial=>”shared/sidebar” %>

 <div id=”Content”>
 <% if flash[:notice] -%>
 <div id=”notice”><%= flash[:notice] %></div>
 <% end -%>
 <% if flash[:error] -%>
 <div id=”error”><%= flash[:error] %></div>
 <% end -%>
 <%= yield %>
 </div>
</body>
</html>

The last line of the head section includes default JavaScript files. Rails defines a standard set of
JavaScript files that are included with the framework as its defaults. The default JavaScript files that
will be included are as follows:

219

Developing Book Shelf: The Basic Framework 6

n application.js: This is where you write any custom JavaScript that you want to include.

n controls.js: This is a part of the Scriptaculous library.

n dragdrop.js: This is a part of the Scriptaculous library.

n effects.js: This is a part of the Scriptaculous library.

n prototype.js: This contains the Prototype library.

Prototype and Scriptaculous are powerful JavaScript libraries that make it easy for you to create
cool effects, create rich interactive features, and write well-structured JavaScript.

CROSS-REFCROSS-REF For more about the Prototype and Scriptaculous libraries, see chapter 10 of this
book.

The body header section
The HTML body section of the layout includes the main_logo.png image that links to the home
page if the user clicks it.

<div id=”header”>
 <div id=”logo_image”>
 <%= link_to image_tag(‘main_logo.png’),
 {:controller=>’home’, :action=>’index’} %>
 </div>
 <div style=”clear: both; height: 0px;”></div>
</div>

NOTENOTE You can download the main_logo.png and other image files used by this project
from the book’s Web site at www.rubyonrailsbible.com.

The link to the home page is created using the link_to helper. The index action of the home
controller is specified as the link’s target. The last div in the header section is only for layout pur-
poses. This helps to achieve the correct layout. If you are familiar with laying out pages using float-
ing elements, you are probably also familiar with the technique of using a clearing div. For those of
you not familiar with this, I’d suggest a good CSS reference book.

The body sidebar section
The sidebar defines the left menu that you see in each of the application screens. This will be ren-
dered as a partial.

<%= render :partial=>”shared/sidebar” %>

You can create the sidebar partial now. In the app/views directory, create a subdirectory named
shared. The shared directory is where you will put view partials that will be used by view tem-
plates associated with more than one controller. In the app/views/shared directory, create a
file named _sidebar.html.erb. Edit the file to look the code in Listing 6.3.

220

Developing a Complete Rails ApplicationPart III

 LISTING 6.3

_sidebar.rhtml partial

<div id=”sidebar”>
 <div id=”Menu”>
 <ul id=”home_menu”>
 <%= link_to ‘Join Now’,
 :controller=>’user’,
 :action=>’signup’ %>

 <%= link_to ‘View the Books’,
 :controller=>’book’,
 :action=>’list’ %>

 </div>
 <div style=”clear:both;”> </div>
</div>

This creates a menu with a Join Now link and a View the Books link. Notice that the Join Now link
is pointed to the signup method of the user controller. The View the Books link is pointed to the
list method of the books controller. These controllers and methods do not exist yet, but you can
anticipate their creation. Here again you see the use of the link_to helper to create the links.

The body content section
The final section of the layout template defines the main content of the pages. This section is pretty
simple. If there are any flash notice or error messages to be displayed, those display at the top of
the content section. After those messages are printed, a yield method renders content defined in
your page view templates.

<div id=”Content”>
 <% if flash[:notice] -%>
 <div id=”notice”><%= flash[:notice] %></div>
 <% end -%>
 <% if flash[:error] -%>
 <div id=”error”><%= flash[:error] %></div>
 <% end -%>
 <%= yield %>
</div>

Remember that the flash hash is a special collection that is built-in to Rails for the purposes of passing
simple messages from the controller to the views. The messages stored in flash will be automatically
removed after a single request/response cycle. The flash is not a place to store persistent messages that
you want to remember for long periods of time.

221

Developing Book Shelf: The Basic Framework 6

Creating the index view template
With the layout in place, the last task left to perform before you can view the home page is to
create an index view template in the app/views/home directory. The view template is named
index.html.erb so that it matches the name of the controller action method. Create that file
now and edit it to contain the following code:

<div class=”home_quote”>
 Share and Discover New Books
 Share your knowledge of books, add reviews, rate books,
 organize books with tags.
</div>

Testing the home page
You should have all the elements necessary to get the basic home page to come up in a browser.
From a command window, start up the WEBrick server if you do not already have it running.

> ruby script/server

Now in your browser, navigate to the index action of the home controller by typing this URL:
http://localhost:3000/home/index. If you’ve followed all the steps up to this point, you
should see a page similar to Figure 6.8.

Oops, it doesn’t quite look like the view that was shown in Figure 6.7, does it? The good news is
that the content looks correct — it’s just not styled the way you’d like it to be. That can be fixed by
defining some CSS styles, which you’ll do shortly.

There is one other problem with the page: There is no page title in the browser title bar. Remember
that in the template for this page, the title was set using an @title instance variable. However, in
the index action method of the home controller, you did not set the title. Go back and set the @
title instance variable in the index method to something like “Book Shelf.” You can do that
by modifying the index method of the home controller (app/controllers/home_
controller.rb) as shown below:

def index
 @title = ‘Book Shelf’
end

Now you can reload the page in your browser to see the title displayed in the browser title bar.

Firefox versus Internet Explorer

Most Web developers tend to prefer the Firefox Web browser over Internet Explorer. Firefox is generally
considered more standards compliant. There is also a powerful development tool available for Firefox
called Firebug which will be very useful to you as you develop Web applications. Firefox is the browser
that was used during the development of Book Shelf. Although I have tried to make sure everything
works equally well in Internet Explorer, some of the layout and style of the application may appear
slightly different from what you see in the diagrams if you are viewing the pages using Internet Explorer.

222

Developing a Complete Rails ApplicationPart III

 FIGURE 6.8

The basic home page without styling

Add some style
Remember that in the layout template, you included a link to a style sheet named style.css. Go
ahead and create that file in the public/stylesheets directory and edit it to contain the con-
tent shown in Listing 6.4. In this book, I won’t get into the details of the CSS styles. If you want to
learn more about CSS and how to style a Web application, I recommend the book, HTML, XHTML,
and CSS Bible, 4th Edition, by Steven M. Schafer.

 LISTING 6.4

Style.css

body {
 padding: 0;
 margin: 0;
 background-color: white;
 min-width: 700px;
 background-position: left top;
 background-repeat:repeat-x;
 font-family: Verdana, Arial, Helvetica, sans-serif;

223

Developing Book Shelf: The Basic Framework 6

 font-size: 80%;
}

#header {
 height: 150px;
 background: url(../images/header_bg.png) repeat-x;
}

#logo_image {
 float: left;
 position: relative;
}

#logo_image img {
 border: none;
}

#notice {
 color: red;
 font-weight: bold;
 margin-left: 30px;
 margin-bottom: 30px;
}

#error {
 color: red;
 font-weight: bold;
 margin-left: 30px;
 margin-bottom: 30px;
}

#join_now_text {
 clear: both;
 text-align: right;
}

#Content {
 margin:75px 0px 50px 220px;
 padding:5px;
}

#sidebar {
 position:absolute;
 top:230px;
 left:20px;
 width:170px;
}

#Menu {

continued

224

Developing a Complete Rails ApplicationPart III

 LISTING 6.4 (continued)

 display:block;
 float:left;
 padding:10px;
 background-color:#eee;
 border:1px dashed #999;
 line-height:17px;
 width:170px;
 margin-bottom: 20px;
}

#home_menu {
 list-style: none;
 margin: 0px;
 padding: 0px;
}

#home_menu li {
 padding-top: 20px;
 padding-bottom: 20px;
 font-size: 1.5em;
 color: blue;
}

.home_quote {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 float: left;
 margin-left: 25px;
 font-size: 12pt;
 color: #777777;
 border: 3px solid #0066cc;
 width: 75%;
 padding: 15px;
 background-color: #a6cae1;
}

.home_quote.quote_title {
 display: block;
 font-size:14pt;
 font-weight:bold;
 color:gray;
 margin-bottom: 15px;
}

Now if you’ve done everything right up to this point, your home page should look like the home
page shown in Figure 6.7. Your first task is nearly complete. There is just one more thing to do,
and that is to add a default route to the Rails configuration.

225

Developing Book Shelf: The Basic Framework 6

Set up a default route
Currently, you can navigate to the home page by specifying the home controller and action name
in the URL like this: http://localhost:3000/home/index. Since the action is named
index, you could have left the action name off. Rails will look for an action named index if no
action is specified in the URL. However, it is better to have the home page come up when the user
routes to the top level of the Web site, for example, using the URL http://localhost:3000.
In order to get that URL to navigate to your home controller, you need to set up a default route.
You can do that in this section by editing the Rails routes configuration.

Open up the config/routes.rb file. Near the top of the file, you should see these lines:

You can have the root of your site routed with map.root
-- just remember to delete public/index.html
map.root :controller => “welcome”

This defines a default or empty route that is used if there is not a controller or action specified in
the URL. You need to uncomment the line that starts with map.root. This line sets up a route to
match the empty pattern, ‘ ‘. You also need to change the name of the controller from welcome
to home. The route definition should look like this:

map.root :controller => “home”

After making that change, you can close the routes.rb file; however, if you try going to http://
localhost:3000, you still won’t get the page you are after; instead, the index.html page that
is stored in the public directory will be loaded. This is the application start page that was shown
in Figure 6.6. Any HTML files that are stored in the public directory of a Rails application will be
served directly, bypassing the Rails routing mechanism. You need to either rename or delete the
public/index.html file.

After you have either renamed or deleted the public/index.html file, go back to your browser,
and go to http://localhost:3000. Now you should see the home page that you created.
Because there was no controller or action specified in the URL, the empty route was used to map
to the home controller.

Implementing Users
Now that you have the basic framework of the Book Shelf application started, you can implement
support for users in this section. The ability to support user registration, login, and account man-
agement is a common requirement of most Web applications. This section leads you through
building a system for user registration, login, and authentication. Much of what you’ll learn and
develop in this section is applicable to any Rails application that you will write.

Some developers would stop you at this point and suggest that instead of writing your own user
authentication and login, instead you should use a Rails plug-in. There are several Rails plug-ins
available that provide this functionality for you. Several of these plug-ins are described in Chapter
11 of this book. My advice is to first implement a user authentication and login system yourself at
least once so that you learn how these things work in a Rails application.

226

Developing a Complete Rails ApplicationPart III

Once you feel that you understand the basics of authentication and user login, it is a good idea to
save yourself time and use one of the popular Rails plug-ins. Creating your own authentication sys-
tem in the remainder of this chapter will be valuable experience that you can apply to existing
authentication plug-ins that you want to evaluate.

The steps in this section to implement user accounts are as follows:

n Create the user model

n Implement user registration

n Implement login and logout

These steps require creating a user model, a user controller, and a few view templates. Begin with
creating the user model.

Create the user model
The first thing you need to do to add user support is create the user model. However, before you
create the user model, it’s a good idea to think about what type of information you want to be able
to store about each user. This becomes the user model design. Table 6.1 lists the fields, along with
a description and a data type for each of the fields that will be used in the user model of this
application.

These fields allow you to keep track of all that the application needs to know about users. Notice
that you take advantage of the created_at and upated_at fields that Rails will automatically
update for you each time a user record is created or updated.

 TABLE 6.1

The User Model
Field Description Data Type

id Primary key integer

login User login id string

first_name User’s first name string

last_name User’s last name string

email User’s e-mail address string

password_hash Hashed password string

password_salt Salt value string

login_count Count of user logins integer

last_login Date of last login datetime

created_at Date user was created datetime

updated_at Date user was updated datetime

227

Developing Book Shelf: The Basic Framework 6

Securing user passwords
The password_hash and password_salt fields allow for the secure use of passwords with-
out storing any user’s password in plain-text form. When the user submits a password, a hashing
algorithm is used to create a unique hash for that password. The password hash is stored in the
database. When the hash is created, a salt value is combined with the password. The salt value
makes a type of attack known as a dictionary attack much more difficult for hackers. In a diction-
ary attack, the attacker writes a program that scans a dictionary going through every word in an
attempt to guess your password.

However, by adding a Salt value to the password, the password is no longer recognizable as any
dictionary word even if you used a common word as your password. With this strategy, user pass-
words are never stored in the database; thus, only the users know their passwords, making for a
more secure system.

Generate the user model
Now that you have a good idea of what fields are used in the user model, go ahead and use the
script/generate command to generate the user model class. Open up a command console in
the book_shelf root directory and type this:

> ruby script/generate model User
 create app/models
 exists test/unit
 exists test/fixtures
 create app/models/user.rb
 create test/unit/user_test.rb
 create test/fixtures/users.yml
 create db/migrate
 create db/migrate/001_create_users.rb

This generates the user model class, along with a unit test file, a test fixture file, and a database
migration file for the user model.

The user model class should be in the app/models directory and will have the filename user.
rb. Rails uses the Ruby convention of naming class files using lowercase, underscore-separated
names. The filename of any given class should be the lowercase, underscore-separated form of the
class name. Open up the user.rb file, and you should see your User class similar to this:

class User < ActiveRecord::Base
end

The User class does not yet have any application-specific behavior, but don’t forget that it has a
great deal of built-in functionality as a result of extending the ActiveRecord::Base class.
Leave the User class unchanged for now, and move onto creating a migration that creates the
users database table.

228

Developing a Complete Rails ApplicationPart III

Create the user migration
Each of the model classes in a Rails application is generally mapped to a database table that holds
records corresponding to instances of that model type. Table names in a Rails application are low-
ercase and the plural form of the model class name. You need a users table to hold the Book
Shelf user data that is used by the user model.

When you generated the user model, a migration file was also generated for you and placed in the
db/migrate directory of the book_shelf application directory. Open up the 001_create_
users.rb file, and you should see code similar to this:

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table :users do |t|
 t.timestamps
 end
 end

 def self.down
 drop_table :users
 end
end

This is an empty migration class that does not do anything useful yet, other than create a users table
with two timestamp columns. Remember that the t.timestamps method call in the migration will
create the updated_at and created_at columns, which Rails manages for you automatically.

The two methods, self.up and self.down, are called when the migration is applied or reversed,
respectively. The self.up method is responsible for setting up the users table completely, and
the self.down method should reverse any action taken by the self.up method.

You need to modify this migration so that it creates the users table with the fields that are speci-
fied in Table 6.1. Go ahead and modify the migration class to match this:

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table :users do |t|
 t.string :login
 t.string :first_name
 t.string :last_name
 t.string :email
 t.string :password_hash
 t.string :password_salt
 t.integer :login_count
 t.datetime :last_login
 t.timestamps
 end

229

Developing Book Shelf: The Basic Framework 6

 end

 def self.down
 drop_table :users
 end
end

Now the migration creates a column for each of the required data fields. You do not have to specify
the id column, as Rails will create that automatically when the migration is run.

Apply the migration with Rake
Now that you have a completed migration that specifies how the users table is built, you can go
ahead and apply that migration using the Rake tool. In your project’s base directory, type this:

> rake db:migrate

This runs the only migration that you have so far and creates the users table. You should see out-
put, letting you know that the users table has been created. Running this command is also a good
test of your database setup. Rake reads the database configuration information that you entered in
database.yml, so if you made any mistakes when you entered that information, they will
become apparent now.

Add user model validations
Rails model validations allow you to define field validations within a model class that will be auto-
matically enforced by Rails. Using model validations, you can enforce things such as field length
limits, field length content, and field uniqueness. For the Book Shelf user model, add the following
validations:

n Enforce minimum and maximum length of user login.

n Enforce minimum and maximum length of user password.

n Enforce presence of login and e-mail address.

n Enforce uniqueness of login and e-mail address.

n Make sure the user enters a password and a password confirmation that contain the same
value.

n Make sure the e-mail address entered conforms to a valid e-mail address format.

Each of these validations can be added using the Rails DSL that supports model validations. You
won’t have to create any if statements or even write any methods yourself to get these validations.

Open up the app/models/user.rb file and add the following validation code to the top of the
class definition, just after the class statement.

validates_length_of :login, :within => 3..40
validates_length_of :password, :within => 5..40
validates_presence_of :login, :email

230

Developing a Complete Rails ApplicationPart III

validates_uniqueness_of :login, :email
validates_confirmation_of :password
validates_format_of :email,

:with => /^([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})$/i,
 :message => “Invalid email”

A nice thing about using the Rails validation DSL is that the methods that you use to apply valida-
tions are very simple for you to read and understand what their function is. For example, even
someone not familiar with Rails could look at the first line, validates_length_of :login,
:within => 3..40, and understand that it validates the length of the login field, making sure
that it is between 3 and 40 characters in length. Similarly, the other validations are easy to read
and understand.

CROSS-REFCROSS-REF If you want to learn more about the available validations, refer back to
Chapter 3.

The last validation validates the format of the e-mail field and makes sure that it conforms to the
format of a valid e-mail address. This is probably the most complex of the validations that you
are using. This validation makes use of a regular expression. Regular expressions are text pattern
strings that are used to look for matching strings or substrings. The regular expression used in the
:with element is

/^([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})$/i

This regular expression will make sure that the email address conforms to a standard email address
format, including the @ sign, and a domain name containing a period, such as yahoo.com.

Test user validations
At this point, you should have a users database in place and a user model containing a handful of
field validations. Let’s take a moment to test those validations using the Rails Console to verify that
they work as expected.

Start up the Rails Console from the book_shelf top-level directory:

> ruby script/console

This gets you into the Rails Console environment. In the Rails Console, you have full access to all
of your application classes. Go ahead and create an instance of the user model class:

>> user = User.new

The user object echoes back to you, showing that it currently contains nil values for each of the
attributes. Before you set any of the fields, see if Rails thinks it is valid as is:

>> user.valid?

231

Developing Book Shelf: The Basic Framework 6

After entering this command, you should see the output shown in Figure 6.9. Oops, it looks like
there is a problem in your user model. Ruby is complaining that there is an undefined method,
password. This is caused by the following two validations that you added to the user model:

validates_length_of :password, :within => 5..40
validates_confirmation_of :password

These two validations validate a password field, but if you remember when you defined the
model, you did not create a field named password; instead, you just had password_salt and
password_hash. This is because the password is not directly stored in the database, and so the
user model does not know about this field yet.

The validation is attempting to get the value of the password field through an accessor-named
password, which causes the undefined method error. Because this field is not a column in the
users database table, Rails does not automatically create an accessor for this field. You can fix this
problem by explicitly creating an accessor for the password field. You also want an accessor for
a password_confirmation field. The second validation looks for both the password and
password_confirmation accessors. Add these two accessors below the validations code in the
user model, app/models/user.rb:

attr_accessor :password, :password_confirmation

Now go back to the command window, where you have the Rails Console running, and type exit
to end that session. Restart the console using ruby script/console, create a user, and try the
valid? method again:

>> user.valid?
=> false

 FIGURE 6.9

Undefined password method

232

Developing a Complete Rails ApplicationPart III

Now the method runs successfully and returns a value of false, indicating that the user object
is not currently valid. This is because it does not meet the validations that you programmed for it.
You can look at the problems that occurred during validation by looking at the user.errors
object.

>> user.errors

You’ll see error messages in the user.errors object related to the password, login, and e-mail
fields. See if you can fix the problems by setting those three fields with reasonable values:

>> user.password = ‘secret’
>> user.login = ‘john’
>> user.email = ‘john@doe.com’

Now try testing the object’s validity again:

>> user.valid?
=> true

The user object is now valid. The values you entered for the password, login, and e-mail fields
allow the user object to pass all of the defined validations.

Implement user registration
Now that the application has a user model class and an associated database table to support users,
let’s turn our attention to implementing a mechanism that will allow users to register for an account
in the Book Shelf application. The tasks that need to be completed to accomplish this are as follows:

n Create a user controller.

n Handle the user password.

n Create a registration view.

n Create the user home view.

The second task deserves a brief explanation. Recall that the database stores a password hash and a
password salt but not the password itself. However, the user will submit a password and a password
confirmation. You need to put code somewhere to take the password and create the password hash
and salt values so that they can be saved. In the second task, you will create this code to make sure
that the appropriate password fields are set and stored.

Create a user controller
You’ve already created a user model, but right now there is not a user controller. You’ll create a user
controller to serve as a home for the user-related requests, such as calls related to user registration,
logging in, and logging out. In the book_shelf directory, generate the user controller:

> ruby script/generate controller User
 exists app/controllers/

233

Developing Book Shelf: The Basic Framework 6

 exists app/helpers/
 create app/views/user
 exists test/functional
 create app/controllers/user_controller.rb
 create test/functional/user_controller_test.rb
 create app/helpers/user_helper.rb

This generates the user controller class, a functional test stub for the user controller, and a user
helper class. An empty user directory is also created under app/views in which user-related
view templates can be placed.

Open up the app/controllers/user_controller.rb file, which contains the source for
the user controller class. It should look like this:

class UserController < ApplicationController
end

This is the class definition in which you’ll add action methods to handle the user-related requests.
For now, add a signup action method to handle user registration requests:

def signup
 @title = “Signup”
 if request.post? and params[:user]
 @user = User.new(params[:user])
 if @user.save
 session[:user] = @user
 flash[:notice] = “User #{@user.login} created!”
 redirect_to :action => “home”
 else
 flash[:error] = “Signup unsuccessful”
 @user.clear_password!
 end
 end
end

The signup method handles both the request to display the registration page and the request to
register a user. The two types of requests are differentiated by the type of HTTP method call. A
request to display the registration page is sent as an HTTP GET request. A request to register a user
is sent as an HTTP POST request. In line 3 of the code, you check to see if the user parameter was
posted. If so, the user registration code is executed; otherwise, you assume a simple page request.

If the method is called using a GET request, only the line that sets the @title instance variable is
executed. This sets a page title for the registration page. Because there is no explicit call to render
a template, Rails will look for a template named signup.html.erb in the app/views/user
directory and attempt to render that view. You can create that view shortly. For now, look at the
code that is executed if the method receives a POST request:

 @user = User.new(params[:user])
 if @user.save

234

Developing a Complete Rails ApplicationPart III

 session[:user] = @user.id
 flash[:notice] = “User #{@user.login} created!”
 redirect_to :action => “home”
 else
 flash[:error] = “Signup unsuccessful”
 @user.clear_password!
 end

In this code, a new user object is created from the parameters passed from the user form. The save
method of the user object is called to attempt to save the new user to the database. If the save is
successful, three operations take place:

n The user’s id is stored into the session with the :user key.

n A notice is placed in the flash message area, saying the user has been successfully created.

n The browser is redirected to the home action of the user controller.

Because no controller is specified in the redirect_to call, the current controller, UserController,
is used. The home action should display the user’s home page. Create the home method inside of
the UserController now. Edit this file app/controllers/user_controller.rb:

def home
 @title = “BookShelf - User Home”
end

Right now, the home method only sets the @title instance variable and by default will also ren-
der a template located at app/views/user/home.html.erb. The home.html.erb template
should display a user home page. You will create this template shortly. Eventually, when books
are implemented in the application, this method will grow so that all of a user’s books are retrieved
prior to rendering the home template.

Handle the user password
Before you implement the signup and user home views, you need to add some code to properly
handle the password. Because the code will set and manipulate user model fields, the correct place
to put this code is in the user model, app/models/user.rb. You want code that will create the
password hash and password salt for you whenever the password field is set. You can do this by
creating a new setter method for the password field. You also create a method to generate the
password hash value. Add these methods to the user model:

attr_protected :password_salt

def password=(pass)
 @password=pass
 self.password_salt = User.random_string(10) if !self.password_

salt?
 self.password_hash = User.hash_password(@password, self.

password_salt)
end

235

Developing Book Shelf: The Basic Framework 6

protected

def self.hash_password(pass, password_salt)
 Digest::SHA1.hexdigest(pass+password_salt)
end

def self.random_string(len)
 #generate a random password consisting of strings and digits
 chars = (“a”..”z”).to_a + (“A”..”Z”).to_a + (“0”..”9”).to_a
 newpass = “”
 1.upto(len) { |i| newpass << chars[rand(chars.size-1)] }
 return newpass
end

The password= method is a setter method for the password field. This method creates a ran-
dom salt value and uses a hash_password method to create the password_hash field. As a
result, each time the password field is set, the password_salt and password_hash fields
are also set.

The salt value is generated using another method that is also defined above, the User.random_
string class method. The random_string method generates a random alphanumeric string,
with the length being controlled by an argument passed into the method. For the salt value, a
string length of ten is used. Notice that the salt value is generated only if the self.password_
salt value does not already exist, in other words, has a value of nil. This ensures that a new salt
value is generated only when a user is first created.

The hash_password method takes a password and a password salt value as parameters and uses
the SHA1 digesting algorithm to generate a unique hash value for the concatenation of the pass-
word and password salt values.

With these methods in place, the password will be correctly handled when a user submits a regis-
tration to the application. Next, you need to create the views that are used for registration and the
user home page.

Create a registration view
With the user controller and user model modifications in place, let’s go ahead and create the view
for the user registration process. The view is placed in the app/views/user/signup.html.
erb file to correspond to the signup method of the user controller. Create that file and type in
the code shown in Listing 6.5.

This template uses the Rails helper form_for to create an HTML form to contain all of the user
model fields. Each of the fields uses the text_field helper to generate the correct HTML for the
text input fields. The two exceptions are the password and password_confirmation fields.
These use the password_field helper to generate HTML password input fields with blocked-out
character input. Near the bottom of the form, a Submit button is created using the submit_tag
helper.

236

Developing a Complete Rails ApplicationPart III

 LISTING 6.5

signup.html.erb

<div id=”signup_content”>
 Sign-up for a BookShelf account...
 <% form_for :user, @user, :url => {:action => “signup” } do |f| %>

 <%= error_messages_for ‘user’ %>

 <div class=”signup_field”>
 <label for=”user_login”>Login:</label>
 <%= f.text_field :login %>

 </div>

 <div class=”signup_field”>
 <label for=”user_first_name”>First Name:</label>
 <%= f.text_field :first_name %>

 </div>

 <div class=”signup_field”>
 <label for=”user_last_name”>Last Name:</label>
 <%= f.text_field:last_name %>

 </div>

 <div class=”signup_field”>
 <label for=”user_email”>Email:</label>
 <%= f.text_field:email %>

 </div>

 <div class=”signup_field”>
 <label for=”user_password”>Password:</label>
 <%= f.password_field:password %>

 </div>

 <div class=”signup_field”>

<label for=”user_password_confirmation”>Password Confirmation:</
label>

 <%= f.password_field:password_confirmation %>
 </div>

 <%= submit_tag “Signup” %>
 <% end %>
</div>

237

Developing Book Shelf: The Basic Framework 6

You’re almost done with the signup page. The last task is to add some additional styles to the style
sheet that you created earlier in this chapter. Add the following style definitions to the bottom of
the public/stylesheets/style.css file:

// Implementing Registration
#signup_content {
 float: left;
 padding-left: 50px;
 width: 400px;
 text-align: right;
}

#signup_content.title, #login_content.title {
 font-weight:bold;
}

.signup_field,.login_field {
 white-space: nowrap;
 padding-bottom:.5em;
 text-align: left;
}

.signup_field label,.login_field label {
 display:block;
 float:left;
 margin-right:0.5em;
 text-align:right;
 width:12em;
}

.signup_field input,.login_field input {
 text-align: left;
}

The registration page should now be complete, so let’s try it out. Start up the WEBrick server using
the familiar ruby script/server command in the book_shelf directory, and navigate in
your browser to http://localhost:3000. You should see the Book Shelf home page that you
created earlier. From that page, click the Join Now link, and you should see the registration page
that you just completed. It should look similar to Figure 6.10.

You can try typing some values into the text fields, but don’t submit the form yet. You still have
not created the user home page that is routed to after a successful user creation. Go ahead and cre-
ate that page now.

238

Developing a Complete Rails ApplicationPart III

 FIGURE 6.10

The user registration page

Create user home view
The last view you need to create is the template for the user home page. For now, this view will be
relatively simple, but as you build out the application, you’ll add more content and features to this
page. Create the home.html.erb template in the app/views/user directory and just put a
simple welcome message as its content for now:

Welcome <%= User.find(session[:user]).first_name %>

This displays a message that welcomes the user by first name. The user’s first name is read from the
user object stored in the session.

Assuming you still have the WEBrick server running, navigate back to the registration page by
clicking the Join Now link if you are not already there. Fill out the registration form and click the
Signup button. If all goes well, you should be taken to a user home page that looks like Figure 6.11.
You should see the welcome message and the first name of the user that you signed up as.

239

Developing Book Shelf: The Basic Framework 6

 FIGURE 6.11

The user home page

This is a good start for the user home page, but notice in the sidebar menu on the left that there is
still a link that says Join Now. Because the user has already registered and has been logged into the
application, it would be nicer if this link went away. That’s not a difficult change to make, so go
ahead and do that now.

Recall that the contents of the sidebar are defined in the view partial app/views/shared/_
sidebar.html.erb. Open up that file and make the following modifications, highlighted in
bold:

<div id=”sidebar”>
 <div id=”Menu”>
 <ul id=”home_menu”>
 <% if !session[:user] %>
 <%= link_to ‘Join Now’,
 :controller=>’user’,
 :action=>’signup’ %>

 <% end %>

240

Developing a Complete Rails ApplicationPart III

 <%= link_to ‘View the Books’,
 :controller=>’book’,
 :action=>’list’ %>

 </div>
 <div style=”clear:both;”> </div>
</div>

You’ve added a snippet of Ruby to the sidebar partial which will cause the Join Now link to be
displayed only if there is no user stored in the session. This is because when a user is logged in, a
user’s id is stored in the session, so the link will never appear when a user is logged in. This is the
desired behavior. If you refresh the user home page, you should see that the Join Now link is now
gone.

The Book Shelf application now has the ability to register new users through a simple registration
form. The application also has a basic user home page, which will be extended upon in future
development. Before moving on, let’s return to our friend the Rails Console and make sure that
the user that was created is indeed in the application development database.

Start up the console from a command window by typing ruby script/console. In the console, use
the find method of the User class to find the first user record stored in the database. At this
point, your database should contain only the user that you created using the signup page in this
section.

>> user = User.find(:first)
># …
>> puts user.login
tfisher

If the user you registered is not found, go back and check all of your code to ensure that it matches
the code in the book.

Implement login and logout
Your application now allows for users to register for an account with the Book Shelf application,
but there is still not a way for existing users to log in and log out of the application. In this section,
you’ll add functionality to let users log in and log out. The tasks necessary to complete this func-
tionality are to

n Create a login action method

n Create a logout action method

n Implement a login view

You’ll add the two new action methods to the user controller and implement a login box that is
displayed in the upper-right corner of the application whenever a user is not logged in. You can
see this login box in Figure 6.1 at the beginning of this chapter.

241

Developing Book Shelf: The Basic Framework 6

Create login action method
First implement the login method in the user controller. Open up the user controller in app/
controllers/user_controller.rb and add the login method defined here:

def login

 if request.post?
 user = User.authenticate(params[:user][:login],
 params[:user][:password])
 if user
 session[:user] = user.id
 flash[:notice] = “Login successful”
 redirect_to :controller=>’user’, :action=>’home’
 else
 flash[:error] = “Login unsuccessful”
 redirect_to :controller=>’home’
 end
 end
end

The body of the method is executed only if the request is an HTTP POST. The login method
attempts to authenticate a user using the login and password passed in as request parameters. If
the authentication attempt is successful, a user id is stored in the session, a successful login notice
is placed into flash, and a redirect is sent to the browser, sending the user to the user home page. If
the authentication is not successful, a login error message is placed into flash, and a redirect back
to the application home page is sent to the browser.

The login method uses the User.authenticate method to authenticate the user. You have
not yet created this method, so go ahead and do that now. This method goes into the user model
class in the app/models/user.rb file. Add this method as defined here:

def self.authenticate(login, pass)
 u=find(:first, :conditions=>[“login = ?”, login])
 return nil if u.nil?
 return u if User.hash_password(pass, u.password_salt)==u.

password_hash
 nil
end

The authenticate method takes two parameters: a login and a password. The first thing the
method does is attempt to find a user that matches the login that is passed in. If a user cannot be
found with a matching login, a nil value is returned and the method’s work is done. If a user with
a matching login is found, the next step is to create the password hash for the password that is
passed in and see if it matches the password hash value that was stored with the user record.

If the password hashes match, the user record is returned. If the hashes do not match, the last line
of the method is reached and results in the value nil being returned from the method. As a result,

242

Developing a Complete Rails ApplicationPart III

anytime an authentication is successful, a user model object for the authenticated user is returned.
If the authentication fails for any reason, a nil value is returned.

The functionality necessary to process a user login is now complete. Next, you’ll define the logout
method before creating the login view.

Create the logout action method
The logout method handles a user’s request to log out of the application. This method is very
simple in comparison with the login method. Add the logout method defined below to the
app/controllers/user_controller.rb file:

def logout
 session[:user] = nil
 flash[:notice] = ‘Logged out’
 redirect_to :controller => ‘home’, :action => ‘index’
end

To log a user out of the application, you simply have to clear the application’s memory of the user.
When a user is logged in, that user’s id is stored in the session. This is how various methods in the
application know that a user is logged in, by checking the session[:user] variable and seeing
if it contains a user id. By setting the session[:user] variable to nil, you are effectively log-
ging the user out of the application.

With login and logout methods completed, you can move on to implement a view template that
displays the login form.

Create an application login partial
The login form is displayed in the top-right corner of any of the application’s pages when a user is
not logged in. You can see this in Figure 6.1. Because the login form is not a page itself, it is imple-
mented as a partial that you can include in the application layout. Create the partial _signin.
html.erb in the app/views/user directory. The content of the partial is shown in Listing 6.6.
Type this into your _signin.html.erb partial.

The signin partial creates a form using the Rails form_tag helper. The controller and action that
handles the form submit is passed to the form_tag helper method. Requests go to the login
method of the user controller. The form contains two fields, the user login and password, and a
Submit button.

The next thing you need to do is include the signin partial in the application layout template.
Listing 6.7 shows the revised layout template from app/views/layouts/application.
html.erb with the new code in bold. The code checks to see if a user is currently logged in by
looking for a user id in the session. If a user is logged in, a link to the logout action is displayed;
otherwise, the signin partial is rendered.

243

Developing Book Shelf: The Basic Framework 6

 LISTING 6.6

_signin.html.erb partial

<div id=”signin_section”>
 <div class=”signin_box”>
 <div id=”sign_in_title”>Sign-In</div>
 <% form_tag ({:controller=> “user”,
 :action=> “login”},

{:id=>’signin_form’}) do %> <div class=”signin_field”>
 <label for=”user_login”>Username:</label>
 <%= text_field “user”, “login”, :size => 20 %>
 </div>
 <div class=”signin_field”>
 <label for=”user_password”>Password:</label>
 <%= password_field “user”, “password”, :size => 20 %>
 </div>
 <div id=”signin_button”>
 <%= submit_tag “Login” %>
 </div>
 <% end %>
 </div>
</div>

 LISTING 6.7

application.rhtml with signin partial

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
 <title><%= @title %></title>
 <%= stylesheet_link_tag “style” %>

 <%= javascript_include_tag :defaults %>
</head>

<body>
 <div id=”header”>
 <div id=”logo_image”>
 <%= link_to image_tag(‘main_logo.png’),
 {:controller=>’home’, :action=>’index’} %>
 </div>
 <% if !session[:user] %>

continued

244

Developing a Complete Rails ApplicationPart III

 LISTING 6.7 (continued)

 <%= render :partial=>”user/signin” %>
 <% else %>
 <div id=”user_menu”><%= link_to ‘Logout’,

:controller=>’user’,
 :action=>’logout’ %></div>
 <% end %>
 <div style=”clear: both; height: 0px;”></div>
 </div>

 <%= render :partial=>”shared/sidebar” %>

 <div id=”Content”>
 <% if flash[:notice] -%>
 <div id=”notice”><%= flash[:notice] %></div>
 <% end -%>
 <% if flash[:error] -%>
 <div id=”error”><%= flash[:error] %></div>
 <% end -%>
 <%= yield %>
 </div>
</body>
</html>

Before you attempt to view the signup form on the application home page, you need to add a few
more styles to the style.css file that you’ve been working with in public/stylesheets.
Add the styles listed here:

// Implementing User Login
#user_menu {
 float:right;
 font-weight: bold;
 margin-right: 35px;
 margin-top: 15px;
}

#user_menu a, #user_menu a:visited {
 color: orange;
}

.signin_box {
 float: left;
 background: #cccccc;
 border: solid 1px #f98919;

 padding-bottom: 6px;
 padding-top: 8px;

245

Developing Book Shelf: The Basic Framework 6

 padding-right: 10px;
 margin-top: 10px;
 text-align: right;
 width: 250px;
 height: 100px;
}

#signin_form {
 margin: 0px;
 padding: 0px;
}

#signin_button {
 margin: 0px;
 padding: 0px;
}

#sign_in_title {

 padding-bottom: 5px;
 text-align:left;
 margin-left:20px;
 color: gray;
 font-weight: bold;
 font-size: 12pt;
}

#signin_section {
 float: right;
 margin-right: 25px;
}

.signin_field {
 margin-bottom: 8px;
 color:gray;
}

Now make sure the WEBrick server is running and navigate to the application home page in your
browser, http://localhost:3000. You should see the login box appearing in the upper-right
corner of the page, as shown in Figure 6.12.

Test the login and logout functionality
You should now be able to successfully log into and log out of your Book Shelf application. If you
have not already created a user by following the Join Now link, do that now. Once you have created
a user make sure that you are not already logged in. When you create a new user, the user will be
automatically logged in after creation, so click the logout link to log the user out. Now you can test
the login functionality.

246

Developing a Complete Rails ApplicationPart III

 FIGURE 6.12

The Book Shelf home page with login box

From the Book Shelf home page, enter your login and password in the login box shown in the
upper right corner of the page. Click the login button and you should be successfully logged into
the application. Upon successful login, the login box will be replaced with a Logout link. You
should also see a welcome message and the flash text “Login successful” displayed. The Join Now
link in the left-side menu will also go away when you are logged in. If you encounter any errors
during login, double-check all of the code that you created in this section and verify that you have
not made any mistakes.

After you are logged into the application, it is very simple to test the log out functionality. You sim-
ply have to click the Logout link in the upper right corner of your screen. This should display the
flash message “Logged out” and you should be taken back to the application home page showing
the login box and the Join Now menu item again.

Using a before filter to protect pages
You have a nearly complete user implementation at this point. A user is able to register for an
account with the application, and log in and log out of the application. When a user is logged in,
they are taken to a special user home page. What would happen if a logged-in user bookmarked
that user home page in their browser and attempted to return directly to that page without logging
in? You would see an application error because the application would attempt to display the user

247

Developing Book Shelf: The Basic Framework 6

welcome message when no user is logged in. This is not the behavior that is desired. This page and
other pages that are available only to logged-in users should be protected and only accessible to
users that have first logged into the application. You’ll use a Rails filter to implement that feature.
This implementation can be broken down into the following tasks:

n Define a method in the application controller, which will be called from a filter.

n Add a login form to the signup page.

Modify the application controller
A filter in Rails allows you to have a method that you define called automatically before any methods
that you specify. This will work for the requirements that you have for the current situation. Prior
to handling the request to display the user home page, you want to make sure that a user is logged in.
To do this, you can setup a method that will be called from a filter that will check to see if a user is
logged in. If a user is not logged in, instead of processing the request for the user home page, the
user will be redirected to a user login page.

To get started, edit the application controller located in app/controllers/application.rb
and create the login_required method shown below.

def login_required
 if session[:user]
 return true
 end
 flash[:notice]=’Please login to continue’
 session[:return_to]=request.request_uri
 redirect_to :controller => “user”, :action => “signup”
 return false
end

This method will be called before any controller actions that you want to protect unlogged in users
from accessing. This method checks the session to see if it contains a user id. If not, a flash notice
of ‘Please login to continue’ is set and the user is redirected to the signup page. In just a bit, you
will modify the signup page to also contain a login form for users who are already signed up. The
login_required method is placed in the application controller class because it is not specific to
any individual controller. Methods contained in the application controller can be accessed by any
of your controllers because they extend the application controller.

The next thing you will need to do is setup the actual filter using another piece of Rail’s intelligent
Web application DSL. In this case, you will use the before_filter method. For now, you just
want to protect the home action contained in the user controller. To do this, add the following line
somewhere near the top of the user controller in app/controllers/user_controller.rb.

before_filter :login_required, :only=>[‘home’]

This method will result in the login_required method being called anytime the home method
is accessed. The :only parameter tells Rails to only apply the filter to the home method. Without
the :only parameter, the filter would have been applied to all methods in the controller.

248

Developing a Complete Rails ApplicationPart III

Add login form to the signup page
The last remaining task to complete the login filter functionality is to add a login form to the
signup page. To do that, edit the signup page from app/views/user/signup.html.erb.
Add the login_content div shown below above the existing signup_content div.

<div id=”login_content”>
 Existing users, login...
 <% form_for :user, @user, :url => { :action => “login” } do

|f| %>
 <div class=”login_field”>
 <label for=”user_login”>Username:</label>
 <%= f.text_field :login %>

 </div>

 <div class=”login_field”>
 <label for=”user_password”>Password:</label>
 <%= f.password_field :password %>

 </div>

 <%= submit_tag “Login” %>

 <% end %>
</div>

This div creates a form that users can use to login from the signup page. Now if a user tries to
access a page that requires a user to be logged in for, they will be redirected to the signup page
which will allow a user to either signup if they do not have an account, or login if they already do
have an account.

In future chapters, you will apply this same method of protecting content that should only be
accessed by logged in users.

Summary
In this chapter, you started the implementation of a complete Rails application. The application
will allow users to share information about books, and contains many features common in today’s
class of Web 2.0 applications. At this point, you have generated the application skeleton, created
the database, and implemented support for user accounts for the application.

The functionality that you used to implement the user support is common to most Web applica-
tions and should be reusable by you in most other Web applications that you’ll implement in Rails.
Alternatively, you could use one of the third-party authentication solutions that were described in
this chapter.

Even if you do use an existing solution for future applications, it was very worthwhile to have gone
through the steps of implementing your own authentication solution in this chapter. The function-
ality you implemented in this chapter lies at the heart of the application’s security model and is
something that I firmly believe every developer should implement from scratch at least once before
they just pull functionality from a third-party component. Having implemented your own authen-
tication system will put you in a better position to evaluate other solutions.

249

In this chapter, you will continue development of the Book Shelf applica-
tion that you started in Chapter 6. At this point you should have a Rails
application started, with a complete user model and user authentication

implemented. In this chapter, you will take the first steps toward making the
application useful for sharing information about a collection of books. You
will implement integration with the Amazon Web Service to look up infor-
mation about books that a user wants to add to the book shelf. You will also
implement the ability to add and remove books from a user’s book shelf.
With that functionality in place, you’ll add a display of the books on a user’s
shelf to his home page. The last task of this chapter will be to implement a
detail view for a selected book. Later chapters will build upon the detail view
to add reviews and ratings.

To follow along with the development in this chapter, continue working
with the code that you started in Chapter 6.

Adding Support for Books
The tasks of this chapter all relate to the ability to add books to a user’s book
shelf. By the end of this chapter, a user will be able to search this application
for books based on keywords, add selected books to a book shelf, view books
contained on the user’s book shelf, delete books from a book shelf, and view
a book’s detail page.

The Book Shelf application gathers information about books from the Amazon
catalog of books. When a user searches for a book by keyword, it is actually
the Amazon catalog that is searched. The results from an Amazon search go
back to the user, and the user is able to select from those books the ones that

IN THIS CHAPTER
Adding support for books

Refactoring the sidebar code

Integrating with Amazon

Implementing a search

Implementing the addition and
deletion of books

Displaying a user’s books

Implementing the book detail
page

Developing Book Shelf:
Adding the Core

Functionality

250

Developing a Complete Rails ApplicationPart III

he wants to add to his shelf. If a book returned from the search is already on a user’s shelf, then that
is also indicated. Ten search results display at a time. If a search returns more than ten books, the
user is able to page through the results.

The user’s home page shows a paged view of all the books on his shelf. A user can select any
book from their shelf and open up a detailed view of that book that contains information about
the book. You will be adding reviews and ratings to the book detail view in the next chapter.

Just as the user support was broken down into a series of tasks for implementation, the goals of
this chapter are broken down into a series of tasks that you will complete as you read through.
Implementing the covered features is broken down into the following tasks:

n Refactoring the sidebar code

n Integrating with Amazon

n Implementing search capability to book shelf

n Implementing book addition and deletion to book shelf

n Displaying a user’s books on their homepage

n Implementing the book detail page

As you write the code in this chapter, feel free to stop and try things out in the Rails console any-
time you come across a piece of code that you don’t quite understand. I’ve done my best to try to
explain most of the code, but seeing output yourself never hurts.

Refactor the sidebar code
At the end of Chapter 6, the code contained in the sidebar view looked like this:

<div id=”sidebar”>
 <div id=”Menu”>
 <ul id=”home_menu”>
 <% if !session[:user] %>
 <%= link_to ‘Join Now’,
 :controller=>’user’,
 :action=>’signup’ %>

 <% end %>
 <%= link_to ‘View the Books’,
 :controller=>’book’,
 :action=>’list’ %>

 </div>
 <div style=”clear:both;”> </div>
</div>

251

Developing Book Shelf: Adding the Core Functionality 7

With this implementation, if there is not a user logged into the site the visitor will see two links,
one to Join Now, and one to View the Books. If there is a user logged in, that user will only see one
link, to View the Books. The View the Books link will show all of the books known by the applica-
tion. For logged in users, we want to add an additional link that will allow the user to see only the
books that are on his or her shelf.

Listing 7.1 shows the addition of the My Books link for logged in users. You’ll also notice that the
code has been slightly refactored into a more readable form. Update your sidebar code contained in
app/views/shared/_sidebar.html.erb to match the code listing.

 LISTING 7.1

Refactored _sidebar.html.erb

<div id=”sidebar”>
 <div id=”Menu”>
 <ul id=”user_nav_menu”>
 <% if logged_in %>

 <%= link_to ‘My Books’, :controller=>’user’,
 :action=>’home’,
 :user_id=>session[:user].id

%>

 <%= link_to ‘All Books’, :controller=>’book’,
 :action=>’list’ %>

 <% else %>
 <ul id=”home_menu”>

 <%= link_to ‘Join Now’, :controller=>’user’,
 :action=>’signup’ %>

 <%= link_to ‘View the Books’,

:controller=>’book’,
 :action=>’list’ %>

 <% end %>

 </div>
 <div style=”clear:both;”> </div>
</div>

252

Developing a Complete Rails ApplicationPart III

If you looked at Listing 7.1 closely, you probably noticed one other significant difference that was
sneaked in. At the end of Chapter 6 the sidebar was using this line to see if a user was logged in:

<% if session[:user] %>

This checks the session to see if a :user variable is set. While this works, it is a bit too closely tied
to the implementation. It would be better if we had a helper method that we could use to see if a
user is logged in or not. You can create that helper method now. Open up the file app/helpers/
application_helper.rb. This methods contained in this file will be available to all of your
view templates. Add the following method to this helper class:

def logged_in
 session[:user]?true:false
end

Now you have a helper method that your views can use instead of directly checking the session to
see if a user is logged in. In the future, if the way you implement the user logged in status changes,
you can just update this method and not worry about any checks that you have in the view templates.

Now that the sidebar contains the links you’ll need to support users, let’s look at how to integrate
with Amazon to populate the book shelf.

Integrating with Amazon
There is a wealth of information available to an application through the Amazon Web Service (AWS).
The AWS consists of a set of services that Amazon provides to Web developers. The Amazon
Associates Service (A2S) is one of those services. The A2S provides an API into Amazon’s huge
database of information about the books and other products that it sells.

The Book Shelf application uses an open source Ruby library that encapsulates and simplifies
access to the AWS. This library is called Ruby/AWS and was written by Ian MacDonald. The Ruby/
AWS library hides most of the details that you need to know to use the A2S. You can read more
about this library at its home page, www.caliban.org/ruby/ruby-aws/.

The A2S provides both a REST and a SOAP interface; Ruby/AWS uses the REST interface. Ruby/
AWS uses the REXML library to parse XML responses from Amazon. You shouldn’t have to do
anything to install REXML, as it is included with Ruby 1.8.x or later, which is also the minimum
version of Ruby that you need to use Ruby/AWS. Complete RDOC documentation for Ruby/
Amazon is available at library’s home page.

For the Book Shelf application, you’ll create a thin class that will be put into the application’s lib
directory to encapsulate access to the Ruby/AWS library. This strategy will be used rather than
making calls to Ruby/AWS directly from the Book Shelf controller or model classes. The main
reasons for taking this approach are as follows:

253

Developing Book Shelf: Adding the Core Functionality 7

 1. If you embed the Ruby/AWS code into your model classes, they become more
difficult to test independently from the Amazon interface.

 2. While Ruby/AWS seems like a good choice today to provide support for accessing
the AWS, you may prefer to use a different library or plug-in in the future.
Therefore, if you encapsulate all Amazon interfacing into a single component class, it
becomes easier to replace the Ruby/AWS plug-in in the future.

Now that you know how you are going to integrate the Book Shelf application with Amazon, let’s
get down to business by installing the Ruby/AWS library in your application directory.

Obtaining an Amazon Developer Token

Amazon has one of the most successful and well-known associate programs in the world. They have
opened up their entire product catalog to the world through a Web service interface. Many Web
sites and applications use the AWS to integrate the Amazon catalog for their own custom require-
ments. To use the AWS, you must sign up for an Amazon Web services account. You can sign up at
https://aws-portal.amazon.com/gp/aws/developer/registration/index.html. It is
an easy process to sign up and does not cost you anything. Once you have signed up, you get an
Amazon Developer Token. This is the required piece of information that you need to use the Web
services from within an application that you develop.

The AWS consists of several services and tools for developing Web applications. The particular ser-
vice that you will use to develop the Book Shelf application is the A2S. This is the service that makes
the Amazon catalog available to developers. You can read more about the A2S at www.amazon.com/
E-Commerce-Service-AWS-home-page/b/ref=sc_fe_c_0_15763381_1?ie=
UTF8&node=12738641. In the past, the A2S was called ECS. So, if you see references to the Amazon
ECS, remember that this is the same as the A2S.

Another useful site that you can get help from for using the Amazon services is the Amazon Web
Services Developer Connection site. This site provides an online AWS developer community. You
can find it at http://developer.amazonwebservices.com.

You may also want to sign up for an Amazon associates account. With an associates account, you
can earn a percentage of sales for any books that are purchased through Amazon links that your
application creates. Signing up for an associates account is also free. You can sign up for this account
at http://affiliate-program.amazon.com/gp/associates/join.

254

Developing a Complete Rails ApplicationPart III

Install Ruby/Amazon
 1. Download the Ruby/Amazon library. Go to www.caliban.org/ruby/ruby-aws/ to down-

load the library. The library is available as a tarred and gzipped file.

 2. Download the version with the .tar.gz extension. Depending on the version you
get, this file is named something like ruby-aws-0.3.0.tar.gz. At the time of this
writing, 0.3.0 was the current stable version of the library. Save this file to the book_
shelf/lib directory.

 3. Extract the library archive into the book_shelf/lib directory. If you need help
extracting the ruby-aws-0.3.0.tar.gz on Windows see the sidebar, Extracting TAR
and GZIP Files on Windows. You should see the directory structure shown in Figure 7.1
after you extract the Ruby/AWS archive.

 FIGURE 7.1

The Ruby-AWS directory

 4. Move the contents of ruby-aws-0.3.0/lib to the book_shelf/lib directory.
The Ruby/AWS library is implemented in the files contained in the ruby-aws-0.3.0/
lib directory. Place these in the book_shelf/lib directory so that they are visible to
Rails and your Book Shelf application code. The ruby-aws-0.3.0/lib directory
should contain both a file named amazon.rb and a directory named amazon. Move the
amazon.rb file and the amazon directory into the book_shelf/lib directory.

255

Developing Book Shelf: Adding the Core Functionality 7

 5. Verify the library installation. Now open up a Rails console and include the Ruby/AWS
library by using a require statement to verify that the library can be found. Figure 7.2
shows how you can verify that you are able to successfully see the Ruby/AWS library
from your Rails environment. The Request object that is instantiated is part of the
Ruby/AWS library. A successful instantiation of that object is a good sign that all is well
with your Ruby/AWS library installation.

 FIGURE 7.2

Testing the Ruby/AWS library

When you perform searches with the Ruby/AWS library it returns results as pages. Typically, each
search query will return one page of results. At the time of this writing, there is a bug in the Ruby/
AWS library that will prevent you from retrieving result pages beyond the first for searches that
have more items than what is returned in a single query. Fortunately, it is very easy to fix this bug.
Open up the file /lib/amazon/aws.rb and look at line 481. You should see this:

MinimumPrice OfferStatus Sort

Modify that line so that it also contains the keyword ItemPage. So after you modify the line, it
should look like this:

MinimumPrice OfferStatus Sort ItemPage

This line and lines above it identify valid parameters to the ItemSearch that you will use later
in this Chapter. The ItemPage is required to be able to get to result pages beyond the first. If
you want to learn more about how the Ruby/AWS library is implemented and how it works, you
should read the README file that is included with the library, and also look at the Amazon AWS
documentation.

This completes the installation of the Ruby/AWS library. Now with that library in place, you have
what you need to build an interface class that your application will use to read data from the
Amazon library.

256

Developing a Complete Rails ApplicationPart III

Implement the Book Shelf-Amazon interface
In this section, you can implement a class that encapsulates all of the Book Shelf’s application access
to Amazon. This class uses the Ruby/AWS API. This is also a reusable class that you can use in
other applications.

In the bookshelf/lib directory, create a file named amazon_interface.rb. This is where
you define the AmazonInterface class. Listing 7.2 contains the code that you want to enter for
the AmazonInterface class. You want to give users the ability to search for books based on any
keyword. For now, that is the only functionality you require from the Ruby/AWS library. In the
AmazonInterface class, you’ll create a method named find_by_keyword, which allows you
to implement that search capability. You’ll also use an initialize method to set up the interface.

The initialize method
To perform a keyword search using Ruby/AWS, you have to first create a Request object. The
Request class contains the most common search methods for searching the Amazon catalog. To
create a Request object, you pass an Amazon developer token and an Amazon associate ID. Only
the developer token is required. The associate ID parameter is optional. If you do not pass an asso-
ciate ID, the Ruby/AWS library contains a hard-coded associate ID that is used. However, by using
your own associate ID, you earn credit for any books that are purchased from Amazon through links
contained in the application. If you do not have an Amazon developer token or Amazon associate
ID, see the sidebar “Obtaining an Amazon Developer Token” for information about how to get them.
Both the developer token and the associate ID are available at no cost through a simple sign-up
process on the Amazon Web site.

Now the Request object is set up and ready to use in other methods that you add to this class to
perform searches against the Amazon catalog.

Extracting TAR and GZIP Files in Windows

If you are developing on a Windows computer, you may not know how to extract a tarred and
gzipped archive file. The tar and gzip formats are primarily used on UNIX-based systems. UNIX
includes applications to create and extract these archives with the operating system. Windows does
not include built-in support for creating or extracting these files, but there is a free solution available
to Windows developers. The 7-Zip application is a freeware archiving utility that supports both of
these formats along with several others. You can download 7-Zip from www.7-zip.org/ as either
an .exe file or an .msi file. Once downloaded, you just have to run whichever one you’ve down-
loaded to install the 7-Zip application.

There are also commercial applications available that have free trial downloads that you may want
to check out. Two of the most popular applications are WinRAR, available at www.rarlab.com,
and WinZIP, available at www.winzip.com.

257

Developing Book Shelf: Adding the Core Functionality 7

 LISTING 7.2

AmazonInterface

require ‘amazon/aws/search’

class AmazonInterface

 # don’t want to have fully qualified identifiers
 include Amazon::AWS
 include Amazon::AWS::Search

 ASSOCIATES_ID = YOUR_AMAZON_ASSOCIATE_ID
 DEV_TOKEN = YOUR_AWS_DEV_TOKEN

 def initialize
 @request = Request.new(DEV_TOKEN, ASSOCIATES_ID)
 end

 def find_by_keyword(keyword, page)
 is = ItemSearch.new(‘Books’, {‘Keywords’ => keyword })
 rg = ResponseGroup.new(‘Medium’)
 resp = @request.search(is, rg)
 products = resp.item_search_response.items.item
 end

end

The find_by_keyword method
The find_by_keyword method takes two parameters: a keyword to search on and a page num-
ber. In order to perform a search, you use three classes from the Ruby/AWS library. The classes are
ItemSearch, ResponseGroup, and the Request class that you instantiated in the initialize
method. The first thing you do is setup the search by creating an ItemSearch instance like this:

is = ItemSearch.new(‘Books’, {‘Keywords’ => keyword })

This will tell Amazon that you want to search only for books and you want to use the keywords
that have been passed into this method. For now you will ignore the page parameter. Later in this
chapter when you add support for paging you will modify this setup to include the page number
as well.

The next step in executing the search is to create a ResponseGroup instance like this:

rg = ResponseGroup.new(‘Medium’)

258

Developing a Complete Rails ApplicationPart III

This tells Amazon how much information you want it to provide in the results that it returns. For
the data requirements of the book shelf application, this should be Medium. Other options that
you could specify here are Small and Large. For more details about using these parameters take
a look at the Amazon AWS documentation at http://docs.amazonwebservices.com/
AWSECommerceService/2008-03-03/DG/.

With the ItemSearch and ResponseGroup initialized, you are now ready to execute the search
using the search method of the Request object like this:

resp = @request.search(is, rg)

You pass the ItemSearch and ResponseGroup instances that you created into the search
method. The response that contains the search results is returned from the search method.

Before explaining the last line of the find_by_keyword method, you should understand the
results that are returned from the search method. First consider the interface between Ruby/AWS
and Amazon. Recall that Ruby/AWS makes requests using the Amazon REST API, so your search
request might look like the following:

http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService
&Operation=ItemSearch&AWSAccessKeyId=[Access Key D]
&AssociateTag=[ID]&SearchIndex=Books&Keywords=ruby

In response to this request, Amazon will return results as XML data. Listing 7.3 is an example of
what your search results might look like coming from Amazon.

This response is for a Small response group. The Medium response group follows the same format
but contains much more data. Looking at just the smaller response however is good enough to
understand the results that Ruby/AWS returns. The important section to understand is the set of
<Item> elements. Each Item element specifies a book returned as part of the results.

The Ruby/AWS library converts each of the XML elements into a Ruby object. So in the response
that Ruby/AWS returns, the root object will be an ItemSearchResponse instance. That instance
will contain attributes that represent its children. The names of the attributes will be operation_
request and items. When there are multiple instances of an XML element, that element is
represented as an array of objects by the Ruby/AWS library. So for example, the items attribute
of the ItemSearchResponse class is an instance of the Items class. The items instance will
contain an array attribute named item which is an array of all of the individual book items.

This is enough explanation to understand the final line of the find_by_keyword method. This
line is shown below:

products = resp.item_search_response.items.item

259

Developing Book Shelf: Adding the Core Functionality 7

 LISTING 7.3

Amazon Search Results

<ItemSearchResponse>
 <OperationRequest>
 <HTTPHeaders>
 <Header Name=”UserAgent” Value=”Mozilla/5.0 (X11; U; en-US;

rv:1.8.1.13) Firefox/2.0.0.13”/>
 </HTTPHeaders>
 <RequestId>1TGEFS25LT11DF2222FFGT13</RequestId>
 <Arguments>
 <Argument Name=”SearchIndex” Value=”Books”/>
 <Argument Name=”Service” Value=”AWSECommerceService”/>
 <Argument Name=”ResponseGroup” Value=”Small”/>
 <Argument Name=”Operation” Value=”ItemSearch”/>
 <Argument Name=”Version” Value=”2008-03-03”/>
 <Argument Name=”AssociateTag” Value=”your_associate_tag”/>
 <Argument Name=”Keywords” Value=”Ruby”/>
 <Argument Name=”AWSAccessKeyId” Value=”01234567890123456789”/>
 </Arguments>
 <RequestProcessingTime>0.0731353958225256</RequestProcessingTime>
 </OperationRequest>
 <Items>
 <Request>
 <IsValid>True</IsValid>
 <ItemSearchRequest>
 <ResponseGroup>Small</ResponseGroup>
 <SearchIndex>Books</SearchIndex>
 <Title>Ruby</Title>
 </ItemSearchRequest>
 </Request>
 <TotalResults>87</TotalResults>
 <TotalPages>9</TotalPages>
 <Item>
 <ASIN>0439943663</ASIN>
 <DetailPageURL>
http://www.amazon.com/Ruby-Rails-Bible-Timothy-Fisher/dp/0470258225/

ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1212935000&sr=8-1
 </DetailPageURL>
 <ItemAttributes>
 <Author>Timothy Fisher</Author>
 <Manufacturer>Wiley</Manufacturer>
 <ProductGroup>Book</ProductGroup>
 <Title>Ruby on Rails Bible</Title>
 </ItemAttributes>
 </Item>

continued

260

Developing a Complete Rails ApplicationPart III

 LISTING 7.3 (continued)

 <Item>
 …
 </Item>
 …
 </Items>
</ItemSearchResponse>

First, you get the root element item_search_response. From that you grab the items attri-
bute which is equivalent to the <Items> XML element. The items attribute is an instance of
Items and contains an attribute named item. The item attribute is an array of all of the book
items. This array is what you want to return from the method.

Later in the chapter, you will use the same pattern to access the data about each book. For example,
to get the ASIN value of a book, you could use this code:

asin = resp.item_search_response.items.item[0].asin

This returns the ASIN of the first book returned. To get the book title there is one more level of
indirection. You would first have to get the ItemAttributes like this:

title = resp.item_search_response.items.item[0].item_attributes.
title

With that in mind, you should know enough about the results that you are getting from Ruby/
AWS to write the rest of the Book Shelf application. Remember, to learn more about Ruby/AWS
refer to its home page.

This completes the functionality that you need to start integrating the book functionality into the
Book Shelf application.

NOTENOTE The Ruby/AWS library contains a rich API of features and functionality. The Book
Shelf application uses only a tiny piece of what is available to you. If you are inter-

ested in exploring all the capabilities of this library, I highly recommend looking at the API docu-
mentation, which you can find at www.caliban.org/ruby/ruby-aws/.

Implementing a Search
After a user logs into the Book Shelf application, they are taken to a user home page. The left col-
umn of the user home page contains a text entry field in which a user can enter a keyword, and a
Search button to search for books containing that keyword, as shown in Figure 7.3. This is how
the user is able to pull up a list of books that they can add to the user’s shelf. In this section, you
implement the keyword entry box, the Search button, the search results page, and the necessary
back-end code to perform the book search using the Amazon interface that was developed in the
previous section.

261

Developing Book Shelf: Adding the Core Functionality 7

 FIGURE 7.3

The User home page with a book search menu

Create the book search form
Get started by adding the search feature to the left side panel. Open up the app/views/
shared/_sidebar.html.erb file and modify it so that it looks like Listing 7.4. To implement
the book search feature, add the following code to the sidebar:

 <% form_tag ({:controller=> “book”, :action=> “search”}) do %>
 <input type=”hidden” name=”page” value=”1” />
 Add Book
 <%= text_field_tag “book_keyword” %>
 <%= submit_tag “Search”, :id=>’search_button’ %>
 <% end %>

The Rails helper form_tag creates a search form. The form contains a text field containing the
keyword a user types in to search on and a submit button labeled Search. The keyword text field is
created using the text_field_tag helper method. The parameter passed to the text field helper
book_keyword becomes the name of the text field, as well as the name you use in the controller
to retrieve the value of the keyword. The submit_tag helper method creates the submit button.
The submit_tag method is passed a string that becomes the button’s label, and an id parameter
that becomes the HTML id attribute for the submit button.

262

Developing a Complete Rails ApplicationPart III

The form tag is passed a controller and action that is called when the form is submitted. In this
case, the book controller and search action are specified. Because you don’t yet have a book con-
troller or a search action, you need to implement that next (see Listing 7.4).

 LISTING 7.4

The _sidebar.html.erb File with Book Search

<div id=”sidebar”>
 <div id=”Menu”>
 <ul id=”user_nav_menu”>
 <% if logged_in %>

 <%= link_to ‘My Books’, :controller=>’user’,
 :action=>’home’,
 :user_id=>session[:user].id

%>

 <%= link_to ‘All Books’, :controller=>’book’,
 :action=>’list’ %>

<% form_tag ({:controller=> “book”, :action=> “search”}) do %>
 <input type=”hidden” name=”page” value=”1” />
 Add Book
 <%= text_field_tag “book_keyword” %>
 <%= submit_tag “Search”, :id=>’search_button’ %>
 <% end %>

 <% else %>
 <ul id=”home_menu”>

 <%= link_to ‘Join Now’, :controller=>’user’,
 :action=>’signup’ %>

 <%= link_to ‘View the Books’,

:controller=>’book’,
 :action=>’list’ %>

 <% end %>

 </div>
 <div style=”clear:both;”> </div>
</div>

263

Developing Book Shelf: Adding the Core Functionality 7

You need to add a few additional styles to your application style sheet to make sure the book
search form is nicely displayed. Add these styles to the public/stylesheets/style.css file
as shown in Listing 7.5.

 LISTING 7.5

Styles Added to public/stylesheets/style.css File

#user_nav_menu {
 list-style: none;
 margin: 0px;
 padding: 0px;
}

#user_nav_menu li {
 padding-top: 20px;
 padding-bottom: 20px;
 font-size: 1.5em;
 color: blue;
}

#user_nav_menu input {
 clear: both;
 float: left;
 width: 160px;
}

#user_nav_menu #search_button {
 width: 100px;
}

#book_search_field {
 width: 230px;
 float: left;
 margin-top: 5px;
 margin-bottom: 5px;
}

#search_button {
 float:left;
}

Now that you have the UI complete for requesting a book search, you need to implement the
server action required to perform the search.

264

Developing a Complete Rails ApplicationPart III

Generate the book controller and search action
So far, your application has a home controller and a user controller. This section leads you through
adding a book controller that handles requests related to book functionality. You can generate the
book controller class using the script/generate command:

> ruby script/generate controller Book

 exists app/controllers/
 exists app/helpers/
 create app/views/book
 exists test/functional/
 create app/controllers/book_controller.rb
 create test/functional/book_controller_test.rb
 create app/helpers/book_helper.rb

As you should expect by now, this generates not only the book controller class but also a functional
test class and a view helper class. Open up the app/controllers/book_controller.rb file
to edit the BookController class and add a method to handle the book search request.

def search
 @books = Book.search_amazon(params[:book_keyword],
 params[:page],
 session[:user])
 @title = “Book Shelf Search Results”
end

The search method calls a search_amazon class method of the book model class. You can write
this method in the next section after you generate the book model. Three parameters are passed
to the search_amazon method: the keyword the user is searching on, the result page being
requested, and the currently logged-in user. The keyword and page parameters are passed into the
search action from the search form that you previously created. Finally, the search action sets the
@title instance variable so that the results page has a proper page title.

Create the book model
The book model represents a book in the Book Shelf application. As you did with the user model,
start by defining what the book model should look like. Table 7.1 shows the fields that are in the
book model.

The fields that contain information about a book are all fields that are populated from the results of
an Amazon catalog search. Instead of storing images in the database, the application stores the URL
of the book’s images that are held on Amazon. The user_id field is a foreign key into the users
table, allowing a book to be related to a particular user.

265

Developing Book Shelf: Adding the Core Functionality 7

 TABLE 7.1

Book Model
Field Name Description Data Type

user_id ID of the user who added the book integer

title Title of the book string

author Author of the book string

release_date Book’s release date date

description Book description from Amazon text

image_url_small URL of small image from Amazon string

image_url_medium URL of medium image from Amazon string

image_url_large URL of large image from Amazon string

amazon_url URL of book’s page on Amazon string

isbn Book’s ISBN string

created_at Date and time the book was added to the shelf datetime

updated_at Time book record was updated datetime

Generate the book model class
Now that the fields for the book model are defined, you can generate the book model class using
the script/generate command:

> ruby script/generate model Book

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/book.rb
 create test/unit/book_test.rb
 create test/fixtures/books.yml
 exists db/migrate
 create db/migrate/002_create_books.rb

In addition to the book model class, a unit test file, a fixtures file, and a database migration class
are created for the book model. The migration class is usually a good place to start when you’re
implementing a model. The migration class creates the model in your database.

Create the book migration
When you generated the book model, the generate script also created a migration for the books
table. Edit the db/migrate/002_create_books.rb file, as shown here:

266

Developing a Complete Rails ApplicationPart III

class CreateBooks < ActiveRecord::Migration
 def self.up
 create_table :books do |t|
 t.references :user
 t.string :title
 t.string :author
 t.date :release_date
 t.text :description
 t.string :image_url_small, :string
 t.string :image_url_medium, :string
 t.string :image_url_large, :string
 t.string :amazon_url
 t.string :isbn
 t.timestamps
 end
 end

 def self.down
 drop_table :books
 end
end

This creates a books table containing all the fields that were specified in the model’s design from
Table 7.1. Each book record also contains a primary key ID field, which is automatically created by
the migration.

Run the migration
Using the rake tool, go ahead and run the CreateBooks migration:

> rake db:migrate

This creates the books table, as specified in the CreateBooks migration class.

Associate the book model and the user model
The book model has a many-to-many relationship with the user model. In plain English, this means
that one book can belong to many users, or many users can have the same book on their shelf.
Furthermore, one user can have many books on their shelf. To implement this association in Rails,
you use the built-in association DSL language. Open up the app/models/user.rb class and
add a has_and_belongs_to_many association by adding the following line just below the class
declaration:

has_and_belongs_to_many :books

Now you have to do the same thing for the book model to implement the other side of this associa-
tion. Open up the app/models/book.rb class and add this line just below the class declaration:

has_and_belongs_to_many :users

267

Developing Book Shelf: Adding the Core Functionality 7

Because this is a many-to-many relationship, there is one more thing you need to do to make it a
valid relationship that Rails understands. A many-to-many relationship needs a new relationship
table that maps book IDs and user IDs. Following Rails requirements for this table, it is named
books_users. Recall that the table is named by using the pluralized form of each model sepa-
rated with an underscore and in alphabetical order, so the book’s name goes first. Go ahead and
manually create a migration file named 003_create_books_users.rb in the db/migrate
directory. The migration should look similar to what you see here:

class CreateBooksUsers < ActiveRecord::Migration
 def self.up
 create_table :books_users, :id => false do |t|
 t.references :book
 t.references :user
 t.timestamps
 end
 end

 def self.down
 drop_table :books_users
 end
end

Now go ahead and run the migrations again so that the books_users table is created.

> rake db:migrate

By adding these associations to the book and user models, you are now able to access the books
associated with a user, or the users associated with a book through a simple instance attribute. For
example, you could use the following code to get a reference to a specific user’s books:

user = User.find(:first)
users_books = user.books

Implement search logic in the book model
Recall that when you completed the search action in the book controller, it contained a call to a
search_amazon method of the book model. You can now implement that method in the book
model. Listing 7.6 shows the implementation of the search_amazon method along with a method
that is used by the search_amazon method, convert_amazon_results. The search_
amazon method uses the AmazonInterface class that was implemented earlier in this chapter.

The find_by_keyword method of the AmazonInterface class returns an array of Item
instances. Instead of returning Item instances, the search_amazon method should return an
array of Book instances. This is the purpose of the convert_amazon_results method. It
converts the Amazon search results into instances of the book model.

268

Developing a Complete Rails ApplicationPart III

 LISTING 7.6

Implementing a Search in the Book Model

def Book.search_amazon(keyword, page, user_id)
 search = AmazonInterface.new
 results = search.find_by_keyword(keyword, page)
 return Book.convert_amazon_results(results, user_id)
end

 def Book.convert_amazon_results(results, user_id)
 user = User.find(user_id)
 converted_books = Array.new
 results.each do |result|
 book = user.books.find_by_isbn(result.asin.to_s)
 if (book)
 book.exists = true
 else
 book = Book.new
 book.exists = false
 end
 book.title = result.item_attributes[0].title[0].to_s
 if result.item_attributes[0].author
 book.author = result.item_attributes[0].author.join(‘,’)
 end
 book.release_date =
 result.item_attributes[0].publication_date.to_s
 if result.small_image
 book.image_url_small = result.small_image.url.to_s
 end
 if result.medium_image
 book.image_url_medium = result.medium_image.url.to_s
 end
 if result.large_image
 book.image_url_large = result.large_image.url.to_s
 end
 book.isbn = result.asin.to_s
 book.amazon_url = result.detail_page_url.to_s
 converted_books.push(book)
 end
 return converted_books
 end

Within the convert_amazon_results method, notice that there is a call to find_by_isbn
on the logged-in user’s books object. The purpose of this call is to determine whether the book is
already on the user’s shelf. If the user already has the book, an attribute of the book instance named

269

Developing Book Shelf: Adding the Core Functionality 7

exists is set to true. Be sure to add an accessor for the exist property to the book model. To
do that, add this line near the top of the app/models/book.rb class:

attr_accessor :exists

Also in the convert_amazon_results method you may have noticed the use of the to_s
method in several places. This is because the Ruby/AWS library actually returns the attributes that
you are interested in as instances of AWSObject. Fortunately, the AWSObject implements the
to_s method allowing you to get the actual string value of the attribute.

Let me take a moment to say a bit more about the exists attribute before you move on. An
instance of the book class can represent a book in either of these two states:

n A book that is contained in the Book Shelf application database

n A book that has been read from the Amazon catalog, but does not yet exist in the applica-
tion database

The exists attribute allows you to differentiate between these types of book instances. As you
will see a bit later in this Chapter, it is important to know whether or not a book is in the database
when rendering views. If a book instance is created as the result of any of the Active Record methods
that load data, such as the find methods, the exists attribute should always be set to true. To
accomplish that, you can add an Active Record observer to the book model.

Observers are callbacks that are called by Rails when a specific action occurs. The particular observer
method that helps you out here is the after_find method. If a model implements the after_
find method, it is called immediately after any record is found using one of the Rails finder meth-
ods. Edit the app/models/book.rb file and add the after_find implementation shown here:

def after_find
 self.exists = true
end

The instance being created is passed to the after_find method. This implementation just sets the
exists attribute to true for all records created as a result of an Active Record find method.

The converted array of book instances is what is returned from the search_amazon method. The
controller action can then set this array as an instance variable to make it visible to the search results
view template.

Create the search results page
With the search results action implemented in the BookController class, the next thing you
should do is implement the search results page. This is the page that is rendered after the search
results action is complete. Because the search action of the book controller does not specifically
render a template, a template with the name search.html.erb in the app/views/book
directory is rendered by default. The search action creates an instance variable named @books,
which contains an array of all the books found. This instance variable is accessed from the
search.html.erb template to display the search results.

270

Developing a Complete Rails ApplicationPart III

Listing 7.7 shows what your search.html.erb template should look like. The outer if-else
block checks to see if there are any books in the @books array. If the array is empty or null, a
message saying “No matching books found” appears. If the @books array contains one or more
books, the array is stepped through using the each method of the array. Before the @books array
is stepped through, a variable named first is set to true. This is used as a flag to indicate the
first book in the list. The first book in the list is differentiated with a different class name on the
div that wraps the book. This allows the first book in the list to be styled slightly differently than
the other books. This is useful, for example, if you want a different top margin or different pad-
ding, perhaps on the first element.

 LISTING 7.7

The app/views/book/search.html.erb File

<% if @books && @books.size > 0 %>
 <% first = true %>
 <% @books.each do |book| %>
 <% if (first == true) %>
 <% first = false %>
 <div class=”book_data_first”>
 <% else %>
 <div class=”book_data”>
 <% end %>
 <%= render :partial=>”book_detail”,
 :locals => { :book => book, :search => true } %>
 </div>
 <% end %>
<% else %>
 <%= “No matching books found.” %>
<% end %>

After the opening div statement for a book is created, a partial named book_detail is called to
render the details of the current book of the iteration. You pass the current book and a flag named
search as locals to the partial. The book_detail partial is implemented in app/views/
book/_book_detail.html.erb. Create that file and enter the code shown in Listing 7.8.

The first line of the partial displays an image of the book. This uses the image URL that was
obtained from the Amazon search. The next section of the partial shown below displays the book’s
title, author, release date, and ISBN. Remember that in the book model during the search, the
exists flag is set to true for a book if it is also found on the user’s shelf. The partial uses that flag
to determine whether to display the title as a link to the book’s record, or just text.

271

Developing Book Shelf: Adding the Core Functionality 7

 LISTING 7.8

The app/views/book/_book_detail.html.erb Partial

<div class=”book_image”><img src=”<%= book.image_url_small %>” /></div>
<div class=”book_info”>

 <% if book.exists %>
 <%= link_to book.title, { :controller => “book”,
 :action => “show”,
 :id => book.id } %>
 <% else %>
 <%= book.title %>
 <% end %>

 Author(s): <%= book.author %>

 Release Date: <%= book.release_date %>

 ISBN: <%= book.isbn %>
</div>
<% if search %>
 <div class=”add_control” id=”add_control_<%= book.isbn %>”>
 <% if !book.exists %>
 <%= link_to_remote “Add to Shelf”,
 :update => ‘add_control_’ + book.isbn,
 :url => { :controller => ‘book’,
 :action => ‘add’,
 :isbn => book.isbn } %>

 <div id=”shelf_status_<%= book.isbn %>”></div>
 <% else %>
 <%= render :partial=>’book_exists’,
 :locals => { :book => book } %>
 <% end %>
 </div>
<% else %>
 <div class=”add_control”>
 <% if session[:user] %>
 <%= link_to_remote “Delete from Shelf”,
 :url => { :controller => ‘book’,
 :action => ‘delete’,
 :isbn => book.isbn } %>
 <% end %>
 <div id=”shelf_status_<%= book.isbn %>”>
 <%= book.users.size %> Users</

span>
 </div>
 </div>
<% end %>

272

Developing a Complete Rails ApplicationPart III

If the book is on the user’s shelf, the title appears as a link to the book’s detail page.

<div class=”book_info”>

 <% if book.exists %>
 <%= link_to book.title, { :controller => “book”,
 :action => “show”,
 :id => book.id } %>
 <% else %>
 <%= book.title %>
 <% end %>

 Author(s): <%= book.author %>

 Release Date: <%= book.release_date %>

 ISBN: <%= book.isbn %>
</div>

The following portion of the partial is shown next. Recall that from the search results page, the flag
search was passed with the value true to the partial. This section of the partial displays a link to
add the book to the user’s shelf if the search flag is true. The search flag allows you to reuse this
partial when you want to display the books on a user’s shelf. In that case, you do not want to show
the add control, and so the search flag is set to false to indicate that the partial is not being called
as a result of a search (see Listing 7.9).

The add control only appears if the book is not already on the user’s shelf. In the third line of the
above code, an if statement checks the exists field to determine if the book is already on the
user’s shelf. The add control consists of a remote link that uses the link_to_remote Ajax helper
method. The link_to_remote method results in an Ajax request to the add action of the book
controller.

The book’s ISBN is also passed as a parameter. The link_to_remote method is also passed an
update parameter that tells the method to update the add control div after the Ajax method is
complete. Because the page will most often contain multiple books and multiple add controls,
the add control div is given an id attribute that consists of the string add_control_ with the
book’s ISBN appended.

If the book already exists on the user’s shelf, instead of showing the add control, another partial
called book_exists appears. The book record is passed along to that partial. You’ll see details of
that partial shortly.

Below the outermost else statement of this code block is the template that is rendered if the par-
tial is not being called as a result of a search being performed. Instead of displaying a remote link
allowing the user to add the book to her shelf, a link appears which allows the user to delete the
book from her shelf. This uses the link_to_remote method, which creates an Ajax request, just
as you use to add a book to the user’s shelf. To delete a book, the delete action of the book con-
troller is called, with the book’s ISBN also being passed to the action.

273

Developing Book Shelf: Adding the Core Functionality 7

 LISTING 7.9

<% if search %>
 <div class=”add_control” id=”add_control_<%= book.isbn %>”>
 <% if !book.exists %>
 <%= link_to_remote “Add to Shelf”,
 :update => ‘add_control_’ + book.isbn,
 :url => { :controller => ‘book’,
 :action => ‘add’,
 :isbn => book.isbn } %>

 <div id=”shelf_status_<%= book.isbn %>”></div>
 <% else %>
 <%= render :partial=>’book_exists’,
 :locals => { :book => book } %>
 <% end %>
 </div>
<% else %>
 <div class=”add_control”>
 <% if session[:user] %>
 <%= link_to_remote “Delete from Shelf”,
 :url => { :controller => ‘book’,
 :action => ‘delete’,
 :isbn => book.isbn } %>
 <% end %>
 <div id=”shelf_status_<%= book.isbn %>”>
 <%= book.users.size %>
 Users

 </div>
 </div>
<% end %>

Now let’s create the partial that appears if the book already exists on the user’s shelf. You should
create this partial, called book_exists, in app/views/book/_book_exists.html.erb.
Create that file and enter the code shown in Listing 7.10.

 LISTING 7.10

The _book_exists Partial

<%= link_to_remote “Delete from Shelf”,
 :url => { :controller => ‘book’,
 :action => ‘delete’,
 :isbn => book.isbn } %>

<div id=”shelf_status_<%= book.isbn %>”>
 On Shelf
 <%= book.users.size %> Users
</div>

274

Developing a Complete Rails ApplicationPart III

This book_exists partial displays a remote link allowing the user to delete the book from their
shelf, along with a message indicating that the book is on the shelf, and a count of the number of
users who have this same book on their shelves. The delete function is implemented using the
link_to_remote helper method again to create an Ajax request to the delete action of the
book controller. You will implement the delete action later in this Chapter.

Stop for a moment and take a look at the progress you’ve made so far to make sure everything is
working as planned. If you do not have the WEBrick server running, go ahead and start it using the
ruby script/server command and go to the application’s home page by navigating in your
browser to http://localhost:3000. Log into the application or create a new user, and you
should be taken to the user home page, which at this point should look similar to what is shown in
Figure 7.3. From that page, enter a search term, such as “ruby programming,” into the text field
in the left column. Press the Search button to use the functionality you just completed in order to
perform the search and display its results. You should see a search results page similar to what is
shown in Figure 7.4.

The results of your search appear, but the display isn’t styled quite as nicely as it could be. You
need to add a few more styles to your style sheet. Go ahead and add the styles in Listing 7.11 to
your public/stylesheets/style.css file.

 FIGURE 7.4

Search results

275

Developing Book Shelf: Adding the Core Functionality 7

 LISTING 7.11

Styles Added to public/stylesheets/style.css

.book_data_first {
 float:left;
 margin-bottom: 25px;
 border: 1px solid #cccccc;
 padding: 15px;
 width: 80%;
}

.book_data {
 float:left;
 clear:both;
 margin-bottom: 25px;
 border: 1px solid #cccccc;
 padding: 15px;
 width: 80%;
}

.book_image {
 float:left;
}

#book_image {
 float: left;
 padding: 20px;
 background-color: lightblue;
 width: 130px;
}

#book_view {
 margin-left: 25px;
}

.book_info {
 float: left;
 padding-left: 15px;
 text-align: left;
 width: 70%;
}

.book_name {
 font-weight: bold;
}

.add_control {
 color: green;

continued

276

Developing a Complete Rails ApplicationPart III

 LISTING 7.11 (continued)

 float: right;
 text-align: right;
}

#book_keyword {
 margin-top: 10px;
 margin-bottom: 10px;
}

.on_shelf {
 display: block;
 color: green;
 font-weight: bold;
 margin-top: 20px;
}

.not_on_shelf {
 display: block;
 color: red;
 margin-top: 20px;
}

With those styles added to your style sheet and the style.css file saved, reload the search results
page; it should now look like Figure 7.5. I think you’ll agree that this is a much nicer display of the
results.

Now go ahead and try to add a book to your shelf by clicking the Add to Shelf link. Oops, you’ll
notice that it doesn’t quite work as expected. Remember that when you created this link, you used
the link_to_remote helper and specified the add action of the book controller to handle this
request. However, you have not yet implemented the add action. That’s okay for now, though,
because your goal for this section is to get the search functionality working. In the next section,
you’ll complete the implementation of being able to add and remove books from a user’s shelf.

If you use the suggested keywords of “ruby programming” for your search, and you scroll down on
the search results page, you can count a total of ten books displayed. The problem is that this search
actually finds more items, but you have not implemented results paging yet. Let’s do that next.

Implement search results paging
Recall that a book search returns only the first ten results from the Amazon catalog. Currently, if a
search finds more than ten books, there is no way to display those results beyond the first ten. The
find_by_keyword method of the AmazonInterface class that you created earlier accepts a
page parameter that allows you to get results beyond the first page of results. You just need to

277

Developing Book Shelf: Adding the Core Functionality 7

implement a way of passing a page parameter from the Web page down to this search method.
Modify the search action of the book controller so that it looks like this:

def search
 @prev_page = params[:page].to_i - 1
 @next_page = params[:page].to_i + 1
 @books = Book.search_amazon(params[:book_keyword],
 params[:page],
 session[:user])
 @title = “Book Shelf Search Results”
end

The lines in bold print are new. These lines set two new instance variables that will be available
to the search results view. The @prev_page variable holds the page number of the page previous to
the one currently being viewed. The @next_page variable holds the page number of the next page
of results. You use these two variables in the results view to display paging controls above the results.

 FIGURE 7.5

Search results styled

278

Developing a Complete Rails ApplicationPart III

Now you need to make some small changes to the search results view contained in app/views/
book/search.html.erb. Open that file and add this code to the very top of the template:

<% if @prev_page > 0 %>
 <%= link_to “Prev page”, :controller=>’book’,
 :action=>’search’,
 :book_keyword=>@keyword,
 :page=>@prev_page %>
<% end %>
<% if @books && @books.size == 10 %>
 <%= link_to “Next page”, :controller=>’book’,
 :action=>’search’,
 :book_keyword=>@keyword,
 :page=>@next_page %>
<% end %>

This creates a paging control that allows a user to navigate to the next page of results or back to a
previous page. Notice that the @prev_page and the @next_page variables are used as the page
parameter that is sent to the search action.

Also modify the final else block at the bottom of the search.html.erb template to display a
slightly different message if you’re displaying an empty page as a result of the user trying to display
a next page beyond the available results.

<% else %>
 <%= “No matching books found.” unless @prev_page > 0 %>
 <%= “No additional matching books found.” unless @prev_page =

0 %>
<% end %>

Listing 7.12 shows what your search.html.erb file should look like, complete with the paging
functionality.

Assuming your server is still running, reload the Book Shelf application in your browser and navi-
gate back to the search results page. You should now see the paging links at the top of the book
results display. Perform a keyword search again using a fairly common keyword and try out the
paging links. You should be able to page forward and backward through the results.

 LISTING 7.12

The app/views/book/search.html.erb file with Paging

<% if @prev_page > 0 %>
 <%= link_to “Prev page”, :controller=>’book’,
 :action=>’search’,
 :book_keyword=>@keyword,
 :page=>@prev_page %>
<% end %>

279

Developing Book Shelf: Adding the Core Functionality 7

<% if @books.size = 10 %>
 <%= link_to “Next page”, :controller=>’book’,
 :action=>’search’,
 :book_keyword=>@keyword,
 :page=>@next_page %>
<% end %>
<% if @books && @books.size > 0 %>
 <% count = 0 %>
 <% @books.each do |book| %>
 <% if (count == 0) %>
 <% count = 1 %>
 <div class=”book_data_first”>
 <% else %>
 <div class=”book_data”>
 <% end %>
 <%= render :partial=>”book_detail”,
 :locals => { :book => book, :search => true } %>
 </div>
 <% end %>
<% else %>
 <%= “No matching books found.” unless @prev_page > 0 %>
 <%= “No additional matching books found.” unless @prev_page = 0 %>
<% end %>

Implementing the Addition
and Deletion of Books
Now the users have the ability to perform book searches based on any keyword. The results of the
search are pulled up on a list page from which they can select a book to add to their shelf. This
section guides you through implementing the functionality that allows the user to actually add a
book from the results page to their shelf. After they are able to add a book, you’ll continue the
development by adding the capability to remove a book from a user’s shelf.

Adding a book
In the previous section, when you created the book search results page, a link to add a new book
to a user’s shelf was added for every book found that is not currently on the user’s shelf. The link
uses the link_to_remote helper method.

<%= link_to_remote “Add to Shelf”,
 :update => ‘add_control_’ + book.isbn,
 :url => { :controller => ‘book’,
 :action => ‘add’,
 :isbn => book.isbn } %>

280

Developing a Complete Rails ApplicationPart III

This results in an Ajax call to the add action of the book controller. You have not yet implemented
the add action, so let’s go ahead and implement that now. Open up the app/controllers/
book_controller.rb file and create an add method using this code:

def add
 isbn = params[:isbn]
 book = Book.find_or_create_from_amazon(isbn, session[:user])
 if book.save
 render :partial=>’book_exists’, :locals => { :book =>

book }
 else
 render :text => ‘Failed to add book’
 end
end

The add method uses the isbn parameter and passes that along with the id of the current logged-
in user to a new method of the book model, find_or_create_from_amazon. The method
find_or_create_from_amazon is responsible for either looking up the book’s details from
the application’s database in the case when the same book is already on another user’s shelf, or
looking up the book’s details from Amazon when it cannot be found in the application’s database.
In either case, a book object is returned. The book is then saved.

If the save is successful, the book_exists partial is rendered back to the search results page from
which the Ajax call originated. If the save is not successful, a failure message is rendered back to
the search results page.

Now, open up the app/models/book.rb file and implement the find_or_create_from_
amazon method. Type in the following code for this method:

def Book.find_or_create_from_amazon(isbn, user_id)
 book = Book.find_or_create_by_isbn(isbn)
 if book.title
 book.users << User.find(user_id)
 else
 search = AmazonInterface.new
 books = search.find_by_isbn(isbn)
 book.set_from_amazon_result(books[0])
 book.users << User.find(user_id)
 end
 return book
end

The goal of this method is to perform one of the following tasks:

n Find the book in the application database. If found, add the current user to the book’s
users attribute.

n Find the book in the Amazon catalog. Create a book model object from the Amazon
Item record that is returned.

281

Developing Book Shelf: Adding the Core Functionality 7

The first line of the method looks up the book in the application database using the find_or_
create_by_isbn method. This is one of the dynamic find methods created as a result of the
book model extending ActiveRecord::Base. Because you are using a find_or_create
method, the book model instance is created whether or not the book is found in the database, so
you cannot simply check to see whether or not the returned record exists.

The find_or_create_by_isbn method is used because you need an instance of the book
model class in either case. So this single line of code creates the book instance that will either be
populated from the application database or later on from the result of an Amazon lookup.

To determine whether the book was found in the local database, the book’s title attribute is
checked. Because every book must have a non-blank title, this attribute is not null if the book was
found in the application database. However, if the book was not found, the title attribute is null.

Remember that books and users share a many-to-many relationship. A user can be related to a
book by adding the user instance to the book’s users attribute. This is done if the book is found
in the application database. If the book is not found in the database, the AmazonInterface class
looks up the book in the Amazon catalog. This returns an array of Item records. The book with
the matching ISBN is the first item in the resulting array.

Now you need to map the Item instance to your instance of the book class. This is done using the
set_from_amazon_result method. After mapping the result to the book instance, the current
user is associated with the book and the book is returned.

The set_from_amazon_result method used in the previous method is also a new method
that you have to add to the Book model class. This is a relatively simple method that takes fields
from the Item object and sets equivalent fields on the book instance object. Listing 7.13 shows
the code for this method.

If you looked at the code in Listing 7.13, you probably recognized that it is very similar to code that
you used in the convert_amazon_results method earlier in this Chapter. It would be a bad
programming practice to keep both of these two nearly identical chunks of code. Code duplication
is almost always a bad thing. It can often be the source of defects, and maintenance problems. In
this case, there is a simple refactoring that you can perform on the convert_amazon_results
method to remove the duplication.

Below is the refactored convert_amazon_results method. Notice that the duplicate code has
been replaced with a call to your new set_from_amazon_result method.

def Book.convert_amazon_results(results, user_id)
 user = User.find(user_id)
 converted_books = Array.new
 results.each do |result|
 book = user.books.find_by_isbn(result.asin.to_s)
 if (book)
 book.exists = true
 else

282

Developing a Complete Rails ApplicationPart III

 book = Book.new
 book.exists = false
 end
 book.set_from_amazon_result(result)
 converted_books.push(book)
 end
 return converted_books
end

 LISTING 7.13

The set_from_amazon_result method

def set_from_amazon_result(result)
 self.title = result.item_attributes.title.to_s
 if result.item_attributes[0].author
 self.author = result.item_attributes[0].author.join(‘,’)
 end
 self.release_date =
 result.item_attributes[0].publication_date.to_s

 if result.small_image
 self.image_url_small = result.small_image.url.to_s
 end
 if result.medium_image
 self.image_url_medium = result.medium_image.url.to_s
 end
 if result.large_image
 self.image_url_large = result.large_image.url.to_s
 end

 self.isbn = result.asin.to_s
 self.amazon_url = result.detail_page_url.to_send

You are nearly finished with the add functionality. You have only one more method to add. In the
find_or_create_from_amazon method, you called a find_by_isbn instance method on
the AmazonInterface class. This method has not been implemented yet, so create that now.

Open up the AmazonInterface class in lib/amazon_interface.rb and add this method
as shown here:

def find_by_isbn(isbn)

 il = ItemLookup.new(‘ASIN’, { ‘ItemId’ => isbn })
 rg = ResponseGroup.new(‘Medium’)

283

Developing Book Shelf: Adding the Core Functionality 7

 resp = @request.search(il, rg)
 products = resp.item_lookup_response.items.item
end

In the find_by_keyword method, you used the ItemSearch class from Ruby/AWS. For this
method, you use the ItemLookup class. The ItemLookup class is useful for when you have the
ASIN or ISBN of a book and want to retrieve that exact book. ASIN is equivalent to an ISBN for
books. However, Amazon gives every product an ASIN identifier, not just books; this why they call
this field an ASIN instead of an ISBN. The ASIN is passed using the ItemId hash key. The rest of
the method is identical to the find_by_keyword method. You create a ResponseGroup, per-
form the search, and return the results.

This completes the functionality required to add a book to a user’s shelf. Make sure your server is
running (start it if necessary), and navigate back to the search results page. Select a book returned
from a search you performed and attempt to add that book to your bookshelf. If all goes well, you
should see the book’s listing updated, indicating that the book is now on your shelf. The results
screen should look similar to Figure 7.6 after adding the book.

Instead of a link to add the book to your shelf, the link is changed to Delete from Shelf. This is also
a new message indicating that the book is on your shelf, along with a count of users who have that
book on their shelf.

 FIGURE 7.6

Search results after adding the book

284

Developing a Complete Rails ApplicationPart III

At this point, if you click on the My Books link, you’ll still just see a blank page. That is because
you have not yet implemented the code to display a user’s books on their home page. You will do
that after you implement the ability to delete a book from a user’s shelf.

Deleting a book
In the previous section, you gave users the ability to add books to a personal bookshelf. In this sec-
tion, you will give users the ability to delete books from their book shelf.

Earlier in this chapter, you added a delete link for books that a user adds to his shelf. That code is
shown here:

<%= link_to_remote “Delete from Shelf”,
 :url => { :controller => ‘book’,
 :action => ‘delete’,
 :isbn => book.isbn } %>

This link is shown when the user performs a book search, and a book contained in the results is
already on the user’s shelf. Later in this chapter this link will also be used within the book list dis-
played on the user’s home page.

Before you implement the functionality to delete a book, think about what should happen when
the user clicks the Delete from Shelf link. From the :url parameter in the code above, you can
assume that the delete method of the book controller class will be called, and the ISBN number
of the book that you want to delete is passed to that action. Should you delete the book from the
database in that method? Remember that the same book might also be on another user’s shelf. So
you would only want to delete the book from the books table if it is no longer on any user’s shelf.

However, you do need to break the association between the selected book and the current user. To
do that, you will delete the book from the books array attribute of the current user. Remember
that the books array attribute contains the books that are associated with the user. By deleting the
book from that array, the association record stored in the books_users table will also be deleted.

After you’ve deleted the book from the user’s books association and deleted the book record if it is
no longer associated with any other users, you need to tell the Web page to replace the Delete from
Shelf link with the Add to Shelf link, so that the user is able to add the book again if she chooses
to. It is also a good idea to give the user a message indicating that the delete happened successfully.
You will perform the web page updates using RJS.

Add the delete action
Start the implementation now by adding the delete method to the book controller. Edit the app/
controllers/book_controller.rb file to add the delete method shown below:

def delete
 @book = Book.find_by_isbn(params[:isbn])
 current_user = User.find(session[:user])

285

Developing Book Shelf: Adding the Core Functionality 7

 current_user.books.delete(@book)
 if @book.users.size == 0
 Book.delete(@book.id)
 end
end

In this method, you look up the book to be deleted using the find_by_isbn finder method.
This is one of the dynamic finders that is automatically created for you by ActiveRecord. You also
look up the current user using the user id stored in the session. Once you have those two items,
you can break the association between the book and the user by deleting the book from the user’s
books array. Finally, in the last three lines of the method, you check to see if any other users are
associated with the book. If the users count for that book is zero, you delete the book from the
database using the Book.delete method.

Update the page with RJS
In the delete action, you performed the necessary server-side operations, now you have to make
sure that the Web page is updated to reflect the current state of the book. Since it has been deleted,
the user should see a link allowing him to add it again if he chooses. You also want to show the
user an indication that the delete action was successful. Right now, the code that displays the Add
to Shelf link is embedded within the book_detail.html.erb partial. The specific section of
interest is shown here:

<%= link_to_remote “Add to Shelf”,
 :update => ‘add_control_’ + book.isbn,
 :url => { :controller => ‘book’,
 :action => ‘add’,
 :isbn => book.isbn } %>

<div id=”shelf_status_<%= book.isbn %>”></div>

So that you do not have to duplicate that block of code, it is a good idea to move it into a partial
of its own. Create a partial and name it _book_not_exists.html.erb. Make sure it is in the
app/views/book directory. After you have created that partial, go ahead and replace that block
of code in the _book_details.html.erb partial with these two lines:

<%= render :partial=>’book_not_exists’,
 :locals => { :book => book } %>

Now, you have the partial that you will display after you have deleted a book from a user’s shelf.
As I said a bit earlier, you will use RJS to perform the necessary page updates after the delete
action. RJS allows you to perform page manipulations that you would normally do with JavaScript
code. RJS actually results in JavaScript being generated.

Start by creating an RJS template in the file app/views/book/delete.rjs. Since this RJS
template has the same name as the delete action, and there are no other templates with the same
name, this template will be rendered automatically by the book controller. Type the code shown
below into the RJS template:

286

Developing a Complete Rails ApplicationPart III

display book not exists partial
page[‘add_control_’ + @book.isbn].replace_html
 :partial=>’book_not_exists’, :locals => { :book => @

book }

display book deleted message and highlight it
page[‘shelf_status_’ + @book.isbn].replace_html ‘Book Deleted’
page[‘shelf_status_’ + @book.isbn].visual_effect :highlight

You can tell from the comments, this template performs two page manipulations. First it displays
the book_not_exists partial which contains the Add to Shelf link. That is done using what is called
an element proxy. The code, page [‘add_control_’ + @book.isbn], is an element proxy
for the div element with the id equal to ‘add_control_’ followed by the isbn number of the book for
which this is being displayed. That div element currently contains the Delete from Shelf link along
with the On Shelf message and the user count for that book.

The second half of the template displays a Book Deleted message and uses a Scriptaculous visual
effect to highlight it.

Once you have this code in place, go ahead and try adding and then deleting a book. If you have
followed along closely, it should work as expected. In the next section, you’ll implement a page
that will display all of the book’s on a user’s shelf.

Displaying a User’s Books
Now that users have the ability to add and remove books from a bookshelf, go ahead and modify
the user’s home page so that the books from the user’s shelf appear on the page. The user home
page template is in app/views/user/home.html.erb. Open the file and add this line follow-
ing the welcome message line:

<%= render :partial=>’book/list_books’, :locals=>{:books=>@books}
%>

This line uses a partial to render a list of the books that are on the user’s shelf. The partial list_
books is also new and you’ll implement that shortly. First, however, you have to modify the home
action of the user controller so that it reads in the books on the user’s shelf and sets them in
an array instance variable named @books. Edit the home action of the user controller, app/
controllers/user_controller.rb:

def home
 current_user = User.find(session[:user])
 @books = current_user.books
 @title = “BookShelf - User Home”
end

287

Developing Book Shelf: Adding the Core Functionality 7

The lines in bold print are the new lines that you have to add to the method. These lines get the
current user’s books from the books association attribute of the user. Now you have to create
the new partial for listing the books.

Create the partial at app/views/book/_list_books.html.erb. Type in this code for the
implementation of the partial:

<% count = 0 %>
<% books.each do |book| %>
 <% if (count == 0) %>
 <% count = 1 %>
 <div class=”book_data_first”>
 <% else %>
 <div class=”book_data”>
 <% end %>
 <%= render :partial=>”book/book_detail”,
 :locals => { :book => book, :search => false } %>
 </div>
<% end %>
<div style=”clear:both”> </div>

That’s it! The user’s home page should now display any books that are on his shelf. Try it out by
clicking the My Books link in the left-hand navigation panel after adding a book to your shelf. This
takes you to your home page, and the newly added book should appear.

Implementing the Book Detail Page
The last task of this Chapter will be to implement a book detail page. The book detail page is a Web
page that contains detailed information about a specific book stored on a shelf in the Book Shelf
application. In this section, you’ll implement a basic book detail page that contains information
about a selected book.

CROSS-REFCROSS-REF In Chapter 8, you can extend the book detail page to include user reviews and
ratings.

In the book_detail partial, the title of a book appears as a link to the book’s detail page for
books that exist in the application database. Here is the code from that partial template:

<%= link_to book.title, { :controller => “book”,
 :action => “show”,
 :id => book.id } %>

This uses the Rails helper method link_to to create a regular link to the show action of the book
controller. The id of the book is also passed as a parameter to the request. You have not yet imple-
mented the show action, so do that now. Open up the app/controllers/book_controller.
rb file and add the show action as defined here:

288

Developing a Complete Rails ApplicationPart III

def show
 @book = Book.find(params[:id])
 @title = “Book Detail”
end

Use the find method to grab the correct book instance from the database corresponding to the
passed-in id. The book instance is made available to the view template by setting it as an instance
variable, @book. The @title instance variable is also set so that the book detail page has a title.
Because no template is explicitly rendered, a template named show.html.erb (see Listing 7.14)
in the app/views/book directory is rendered by default.

 LISTING 7.14

The /app/views/book/show.html.erb File

<div id=”book_view”>
 <div id=”book_view_upper”>
 <div id=”book_image”>
 <%= image_tag @book.image_url_medium %>
 </div>
 <div id=”book_summary”>
 <%= @book.title %>
 Author: <%= @book.author %>

 <div id=”book_details”>
 Release Date: <%= @book.release_date %>

 ISBN: <%= @book.isbn %>

 </div>
 Users: <%= @book.users.size %>

 Added to BookShelf on: <%= @book.created_at %>

 <%= link_to „Buy from Amazon“,
 @book.amazon_url,
 :class=>“action_button“ %>

 </div>
 </div>
 <div style=“clear:both;“> </div>
</div>

This view displays details about the book in a div named book_view_upper. Later, when
reviews and rating are added, there will be another div that follows this div containing the review
and ratings data. The template should be very easy for you to understand. There is nothing fancy
going on with this one, nor are there any partials being called.

Before you try out this page, you need to add a few more styles to your growing style sheet. Add
these styles to public/stylesheets/style.css:

#book_view_upper {
 float: left;
 border: solid thin #cccccc;

289

Developing Book Shelf: Adding the Core Functionality 7

 padding: 10px;
 width: 80%;
}

#book_summary {
 float: left;
 margin-left: 20px;
 line-height: 1.5em;
}

#book_summary .book_title {
 font-weight: bold;
 font-size: 12pt;
 color: #f98919;
 display: block;
 margin-bottom: 5px;
}

Now if you return to your browser and navigate to your user home page, either by logging in or
clicking the My Books link if you are already logged in, you can click the title of a book that is on
your shelf and be taken to the book detail page. You should see a book detail view similar to that
shown in Figure 7.7.

 FIGURE 7.7

Book detail view

290

Developing a Complete Rails ApplicationPart III

Summary
This chapter continued the development of the Book Shelf application. In the previous chapter, the
user model was implemented, providing full support for user authentication. In this chapter, you
added the core functionality of the application, which was the ability to add and remove books
from a user’s bookshelf. This functionality included integration with the Amazon A2S Web service
for reading information about books that a user searches for. Significant views added to the appli-
cation in this chapter were the search results page, the book display on the user’s home page, and
the book detail page. Each of these views will continue to grow as you complete the application in
the next chapter.

As you’ve been following along with the development, you may have noticed ways in which you
can improve upon the design or implementation of the application. That is a very good sign that
you are learning well, and I highly encourage you to follow your temptations and feel free to refac-
tor the application as you wish. The next chapter includes some refactoring for some of the previ-
ously implemented functionality after all of the core features are implemented.

291

In this chapter you will complete the development of the Book Shelf Web
application. With that in mind, there is a great deal to accomplish in this
chapter. In the past two chapters, you have added support for users and

basic book support. A user can log in, search for books, add books to their
shelf, remove books, and view a book detail page. Now you turn your focus
to adding features that make the application more fun and interesting to use
in a community environment. These features are commonly known as social
features and are a trademark of Web 2.0 applications.

If you want to follow along with the development in this chapter, you
can continue working with the code that you developed in Chapter 7,
or you can download the complete Chapter 7 source code from www.
rubyonrailsbible.com.

Adding Social Support
In this chapter, you will continue development of the Book Shelf application
by adding some popular social features to the application.

n Tagging: Organize your books by keywords.

n Reviews: Give users the ability to post reviews for any books in a
database.

In addition to these features, I will also get you started on how to implement
a ratings system that allows users to attach a rating to a book. The good thing
is that these features are common to many Web applications, and therefore
you can take advantage of code that has already been written, saving yourself

IN THIS CHAPTER
Adding social support

Implementing tagging

Implementing book reviews

Implementing book ratings

Extending the application

Developing Book Shelf:
Social Support

292

Developing a Complete Rails ApplicationPart III

some time and effort. You’ll use Rails plugins for the implementation of tagging and ratings. As you
add each feature to the application, you’ll notice a repetition of tasks that will become second nature
to you as you develop more Rails applications. For each feature that you want to add to a Rails
application, you generally have three tasks to implement:

n Add or modify model layer classes.

n Add methods to an existing controller or create a new controller.

n Create view templates.

Implementing Tagging
Content tagging is a popular feature of most Web 2.0 social networking applications. Tagging
allows a user to associate keywords with a piece of content. Content can then be easily categorized
and found by using the keywords or tags that have been applied.

For the Book Shelf application, users are allowed to create tags for books stored in the application.
Each user can maintain their own unique set of tags for each book on their shelf. In the left side
panel, users can view a tag cloud from which they can select a tag to view related books. The appli-
cation supports two tag cloud views: one showing the current user’s tags and the other showing all
of the tags from all users.

The steps that you will go through to implement tagging in the Book Shelf application are as follows:

n Install a tagging plugin

n Create a migration to add tagging support to the database

n Add tagging support to the model layer

n Add tagging support to the controller layer

n Implement the view layer for tagging support

To get started, choose and install a tagging plugin, which will make the task much easier than if
you were creating all of the tagging support from scratch.

Installing a tagging plugin
A Rails plugin provides the core of the tagging implementation. Because tagging is a feature that
is common across many Web applications, it is likely that someone has solved this problem for
you already and you can save yourself some work through reuse. In fact, if you search for a Rails
tagging plugin, you’ll find that it’s a problem that many people have attempted to solve and pro-
vide a plugin for. Here are some of the tagging-related plugins that I came across while writing this
application:

293

Developing Book Shelf: Social Support 8

n acts_as_taggable

n acts_as_taggable_on_steroids

n tagging

n acts_as_taggable_redux

Each of the plugins supports a slightly different feature set. One of the main features that I was
looking for was support for user-owned tags. This means that if two users add tags to a book, those
tags can be differentiated. As a result, tags are associated with both a book and a user. Each user
should be able to update the tags that they set for a book, but not change tags that other users may
have applied to a book. This seems like a relatively simple requirement that you think would be
useful in any tagging implementation.

However, at the time I was writing this portion of the Book Shelf application, of the four plugins
listed above, only the acts_as_taggable_redux plugin supported user-owned tags. Because
of that support and the fact that acts_as_taggable_redux supports all of the other tagging
requirements that you have, you’ll use this plugin to implement tagging in the Book Shelf application.

Install the acts_as_taggable_redux plugin
To install the acts_as_taggable_redux script, you will use the script/plugin command as
shown in Figure 8.1.

However, this plugin is not found in one of the preconfigured standard plugin repositories, so you
have to pass the URL of the plugins SVN repository to the script/plugin command so that it knows
where to find the plugin.

 FIGURE 8.1

Installing acts_as_taggable_redux

294

Developing a Complete Rails ApplicationPart III

The acts_as_taggable_redux plugin should now be in the vendor/plugins/acts_as_
taggable_redux directory. In the sections that follow, you’ll begin to use this plugin to set up
tagging in the Book Shelf application.

Setting up the database for tagging support
The acts_as_taggable_redux plugin that you installed includes a rake task that creates a
migration for you, which in turn creates all of the necessary tables required for tagging support. To
create the migration, run the rake task acts_as_taggable:db:create from your application
root directory, like this:

rake acts_as_taggable:db:create

After running this rake task, you will have a new migration in your db/migrate directory. The
migration will have the filename 004_acts_as_taggable_tables.rb. The migration should
look like the code in Listing 8.1.

The first thing that you might notice different about this migration is that the syntax is slightly dif-
ferent from that which you might be used to. This is because this migration uses the pre-Rails 2.0
migration syntax. For example, prior to Rails 2.0 to create a table column, the migration syntax
would look like this:

t.column :name, :string

In a migration for Rails 2.0 or later, the syntax would look like this:

t.string :name

Fortunately, the older migration syntax still works with the current version of Rails. This plugin
was created prior to the release of Rails 2.0 which is why they use the older migration syntax.
However, don’t let that scare you away. There are many great plugins that were created prior to the
release of Rails 2.0 which are still great choices.

Let’s break the migration down and look at it in several pieces. The migration class consists of two
methods, the self.up method and the self.down method. The self.down method is by far
the simpler of the two, so let’s start by looking at that one. The self.down method drops two
tables, tags, and taggings.

These are the two tables that are created in the self.up method.

def self.down
 drop_table :tags
 drop_table :taggings
end

295

Developing Book Shelf: Social Support 8

 LISTING 8.1

AddActsAsTaggableTables migration

class AddActsAsTaggableTables < ActiveRecord::Migration
 def self.up
 create_table :tags do |t|
 t.column :name, :string
 t.column :taggings_count, :integer, :default => 0, :null => false
 end
 add_index :tags, :name
 add_index :tags, :taggings_count

 create_table :taggings do |t|
 t.column :tag_id, :integer
 t.column :taggable_id, :integer
 t.column :taggable_type, :string
 t.column :user_id, :integer
 end

 # Find objects for a tag
 add_index :taggings, [:tag_id, :taggable_type]
 add_index :taggings, [:user_id, :tag_id, :taggable_type]
 # Find tags for an object
 add_index :taggings, [:taggable_id, :taggable_type]
 add_index :taggings, [:user_id, :taggable_id, :taggable_type]
 end

 def self.down
 drop_table :tags
 drop_table :taggings
 end
end

Next, look at the first part of the self.up method. It consists of these lines:

create_table :tags do |t|
 t.column :name, :string
 t.column :taggings_count, :integer, :default => 0, :null =>

false
end
add_index :tags, :name
add_index :tags, :taggings_count

This creates the tags table. Each row in the tags table contains a name column that is a string, and
a taggings_count column that is an integer. This table stores all of the tags that all of the users
of the Book Shelf application create. After the table is created, you also add two indexes to the
table, one for each of the columns. This improves the access, and sorting time for retrieving tags
from the table.

296

Developing a Complete Rails ApplicationPart III

The last part of the self.up method contains this code:

create_table :taggings do |t|
 t.column :tag_id, :integer
 t.column :taggable_id, :integer
 t.column :taggable_type, :string
 t.column :user_id, :integer
end

Find objects for a tag
add_index :taggings, [:tag_id, :taggable_type]
add_index :taggings, [:user_id, :tag_id, :taggable_type]
Find tags for an object
add_index :taggings, [:taggable_id, :taggable_type]
add_index :taggings, [:user_id, :taggable_id, :taggable_type]

Here you create the taggings table. The taggings table associates a tag with a taggable item and a
user. For the Book Shelf application, the taggable items are books. The taggings table consists of
the following columns:

n tag_id

 References a tag in the tags table.

n taggable_id

 References a tagged object. In the case of the Book Shelf application, this is a book object.
So the taggable_id will be the ID of a book.

n taggable_type

 Describes the type of object that the taggable_id points to. For the Book Shelf appli-
cation, this contains the string “Book” because the taggable items are books.

n user_id

 References a user stored in the users table.

In addition, an id column is added automatically. Four different indexes are also created on this
table to provide more efficient data access.

With this implementation of tags, your application could support tagging of a variety of object types
using the same tables. That is why the taggable_id and taggable_type columns are kept
generic. They can store references to any type of objects that you might want to make taggable in
your application.

Now that you have the migration created for the tagging implementation, go ahead and run that
migration using rake.

rake db:migrate

Your database is now set up to handle tagging of books. The next step in implementing tagging is
to add tagging support to the Book and User model classes. You’ll do that next.

297

Developing Book Shelf: Social Support 8

Adding tagging support to the models
Now that your database has the necessary tables to support tagging, the next step to implement
tagging for the Book Shelf application is to make a minor change to the Book and User model
classes. Open up the app/models/book.rb class and add this line near the top of the class,
just beneath the has_and_belongs_to_many association statement:

acts_as_taggable

This causes a bunch of methods from the acts_as_taggable_redux plugin to be mixed into
the book model. So you may be wondering how adding this single line can cause a bunch of new
methods to be mixed into your book model. What are you actually doing in terms of Ruby code
when you add the acts_as_taggable line shown here? You are calling a method with the name
acts_as_taggable. Rails looks for a class method defined on either your Book model class or
in ActiveRecord::Base with this name.

You know your book model doesn’t contain this method; after all, you never wrote this method
and you created the Book model class. ActiveRecord::Base does not know anything about
tagging, so this method is not natively a part of that class either. The answer lies in how the acts_
as_taggable_redux plugin works. Normally you won’t have to worry about the details of how
a plugin works as long as you know how to use it, but in this case, examine how the plugin works
for educational purposes. Go ahead and open up the file located at vendor/plugins/acts_
as_taggable_redux/lib/acts_as_taggable.rb. The top of the file looks like this:

module ActiveRecord
 module Acts #:nodoc:
 module Taggable #:nodoc:
 def self.included(base)
 base.extend(ClassMethods)
 end

 module ClassMethods
 def acts_as_taggable(options = {})

has_many :taggings, :as => :taggable, :dependent => :destroy,
:include => :tag

 has_many :tags, :through => :taggings

 after_save :update_tags

 extend ActiveRecord::Acts::Taggable::SingletonMethods
 include ActiveRecord::Acts::Taggable::InstanceMethods
 end
 end

The first line of the file re-opens the ActiveRecord module. This is a clue that the plugin is add-
ing new methods into ActiveRecord. A few lines down, you see this line:

module ClassMethods

298

Developing a Complete Rails ApplicationPart III

The methods contained in the block that follows are added to ActiveRecord as class methods. The
first method you see is the method you are interested in, acts_as_taggable. Looking at this
method, you see that it adds the necessary associations to the taggings and tags models. It also
adds an after_save event filter that calls update_tags so that the tags are automatically
updated anytime you perform a save on the book model.

So now you see how adding a single line that looks more like a declarative statement to your book
model is actually calling a method that gives it the extra functionality required to support tagging.
Ruby’s support for calling methods without using parentheses is a big part of what makes this
statement look like a declarative part of the language, as opposed to a method call. Methods such
as acts_as_taggable become part of the DSL (domain-specific language) of Rails.

You also need to make a similar addition to the user model. Because you will be implementing
tags that are associated to both a book and a specific user, the user needs to have a few methods
mixed into it as well. Add the acts_as_tagger method shown below to the user model in
app/models/user.rb, just beneath the has_and_belongs_to_many association statement:

acts_as_tagger

The acts_as_tagger method is also defined by the acts_as_taggable_redux plugin. This
method adds the necessary associations to the user model.

That’s it for the model classes. With those two simple one-line additions to the Book and User
model classes, you’ve given them all that’s necessary to support tagging. With the model support
for tagging in place, the next thing you do is add tagging support to the book controller.

Adding tagging support to the controllers
Now that your model classes are set up to support tags, you need to add some logic to the book
controller to handle the creation, display, and modification of tags. Open up the book controller in
app/controllers/book_controller.rb. Add the following methods to this controller.

def tag_cloud_user
 @tags = session[:user].tags
end

def tag_cloud_all
 @tags = Tag.find(:all,
 :limit => 100,
 :order => ‚taggings_count DESC‘).sort_

by(&:name)
end

def show_for_tag
 @tag = params[:id]
 @books = Book.find_tagged_with(@tag)

299

Developing Book Shelf: Social Support 8

end

def update_tags
 editor_id = params[:editorId]
 book_id = editor_id.split(‚_‘)[-1]
 tags = params[:value]
 book = Book.find(book_id)
 book.user_id = session[:user]
 book.tag_list = tags
 book.save
 render :text=>tags
end

Now let‘s walk through each of the methods that you added and understand the behavior that
you‘ve given this controller. The first two methods create tag cloud views. You‘ve probably seen a
tag cloud on a Web site before, even if you are not familiar with the term tag cloud. For example,
Figure 8.2 shows a tag cloud that you can find on the popular photo-sharing site, flickr.com.

A tag cloud shows a view of an application’s most popular tags in alphabetical or even random
order, with popularity indicated by the font size of the tags. In the Flickr example, the tag
“Wedding” is the most popular tag, meaning that this tag is the most often-used tag of those shown
in the cloud. The Book Shelf application includes a tag cloud view of the tags that users apply to
books. The book controller contains methods to create two kinds of tag clouds:

n A tag cloud representing the tags created by an individual user

n A tag cloud representing all tags created by all users

 FIGURE 8.2

A tag cloud from flickr.com

300

Developing a Complete Rails ApplicationPart III

So let’s look at these two methods now.

def tag_cloud_user
 @tags = session[:user].tags
end

def tag_cloud_all
 @tags = Tag.find(:all,
 :limit => 100,
 :order => ‚taggings_count DESC‘).sort_

by(&:name)
end

The method tag_cloud_user gets the tags for the current user and stores them in a @tags
instance variable that is available to a view. After you examine the last two methods that you added
to the book controller, you’ll create the tag-related views, which will use the @tags instance vari-
able set by these methods.

The next method you look at is show_for_tag. This method is used to show all of the books
that contain a particular tag.

def show_for_tag
 @tag = params[:id]
 @books = Book.find_tagged_with(@tag)
end

In this method, you set two instance variables, the @tag variable and the @books variable. The
@tag instance variable contains the name of the tag that the user wants to display books for. This
variable is set from the value of params[:id]. Recall from your knowledge of Rails routes that a
URL like the following one is routed to the show_for_tag method of the book controller class,
and the string ”ruby” is set as the id parameter.

http://localhost/book/show_for_tag/ruby

A bit later, you’ll see how to use this type of URL to provide links from tags to this controller
method to show all of the books that contain the tag that is clicked.

The @books instance variable contains an array of all the books containing the passed-in tag name.
The Book.find_tagged_with method is added to the book model as a result of adding the
acts_as_taggable method call to it. The instance variables are used in the show_for_tag
view template that you’ll create in the next section.

The last method that you added to the book controller is the update_tags method. This method
is called using an Ajax call to save updates that the user makes to tags for a particular book.

def update_tags
 editor_id = params[:editorId]
 book_id = editor_id.split(‘_’)[-1]

301

Developing Book Shelf: Social Support 8

 tags = params[:value]
 book = Book.find(book_id)
 book.user_id = session[:user]
 book.tag_list = tags
 book.save
 render :text=>tags
end

This method expects two parameters to be passed:

n editorId

 The editorId parameter looks like this, tag_list_5, where tag_list_ is a
constant that is always present with this parameter, and 5 is a book ID. The book ID
changes, depending on the book that tags are being edited for. This originates from the
id attribute for a particular Ajax in-place editor field.

n value

 The value parameter contains the list of tags.

Using these parameters, the correct book model is looked up, and the book’s tags are set from the
tags that were passed in the value parameter. The taggings plugin requires the user_id to be set
as an attribute on the book instance in order for the tag to be correctly associated with a user. That
is why the user_id attribute is set on the book instance. The save method is then called on the
book object to save the tag list. The list of tags is rendered back as text. This becomes the response
to the Ajax call that initiated this method. When you see the views that correspond to tagging sup-
port, the use of this method will become clearer to you.

That completes all the changes necessary to the controller layer to support tagging for the Book
Shelf application. In the next section, you’ll add tagging support to the view layer.

Creating the view layer for tagging
There are several views that you will create that are related to tagging support.

In the sidebar, you’ll create a tag cloud that shows the most popular tags, arranged alphabetically
and styled according to tag popularity. Figure 8.3 shows what this tag cloud looks like in the side-
bar. At the top are two tabs that are displayed only when a user is logged in. These tabs allow the
user to display either those tags that were created by that user, or all tags.

 FIGURE 8.3

Tags in the sidebar

302

Developing a Complete Rails ApplicationPart III

On any page that displays a book list, such as the user home page, the tags associated with a book
are displayed along with other book details in the book list view. This is also where you can edit
the tags associated with a book. Clicking the tags creates an in-place editor that is used to type in
tags. Figure 8.4 shows an example of a book listing showing tags. If you click the tags, you get the
in-place tag editor view, shown in Figure 8.5.

 FIGURE 8.4

Showing tags

 FIGURE 8.5

Editing tags

303

Developing Book Shelf: Social Support 8

The last view related to tagging that you will create is the view that allows a user to see all of the
books that have been tagged with a given tag. This is the view that renders in response to the
show_for_tag controller action.

Implementing the sidebar tag cloud view
Let’s get started with implementing the tag cloud view shown in the left sidebar of the application.
The sidebar view is defined in a partial contained in the app/views/shared folder named _
sidebar.html.erb. Currently, this file should look like that shown in Listing 8.2.

 LISTING 8.2

_sidebar.html.erb

<div id=”sidebar”>
 <div id=”Menu”>
 <ul id=”user_nav_menu”>
 <% if logged_in %>
 <%= link_to ‘My Books’, :controller=>’user’,
 :action=>’home’,
 :user_id=>session[:user]

%>
 <%= link_to ‘All Books’, :controller=>’book’,
 :action=>’list’ %>

<% form_tag ({:controller=> «book», :action=> «search»}) do %>
 <input type=»hidden» name=»page» value=»1» />
 Add Book
 <%= text_field_tag «book_keyword» %>
 <%= submit_tag «Search», :id=>’search_button’ %>
 <% end %>

 <% else %>
 <ul id=»home_menu»>
 <%= link_to ‘Join Now’, :controller=>’user’,
 :action=>’signup’ %></

li>
 <%= link_to ‘View the Books’,

:controller=>’book’,

:action=>’list’ %>

 <% end %>

 </div>
 <div style=»clear:both;»> </div>
</div>

304

Developing a Complete Rails ApplicationPart III

You could add the necessary HTML and ERb code for the tag cloud directly into this file; however,
this is a good opportunity to break this sidebar partial into a few additional partial files that will
improve the organization, maintainability, and readability of the code. Before you add the tag
cloud, let’s refactor the existing sidebar partial a bit.

Create a new partial in the app/views/shared directory and call it _nav_menu.html.erb.
This partial contains all of the code related to the navigation menu.

Copy the block of code shown in Listing 8.3 from the sidebar partial and put it into the new _
nav_menu.html.erb file:

 LISTING 8.3

_nav_menu.html.erb addition

<div id=”Menu”>
 <ul id=”user_nav_menu”>
 <% if logged_in %>
 <%= link_to ‘My Books’, :controller=>’user’,
 :action=>’home’,
 :user_id=>session[:user] %>
 <%= link_to ‘All Books’, :controller=>’book’,
 :action=>’list’ %>

 <% form_tag ({:controller=> “book”, :action=> “search”})

do %>
 <input type=”hidden” name=”page” value=”1” />
 Add Book
 <%= text_field_tag “book_keyword” %>
 <%= submit_tag “Search”, :id=>’search_button’ %>
 <% end %>

 <% else %>
 <ul id=”home_menu”>
 <%= link_to ‘Join Now’, :controller=>’user’,
 :action=>’signup’ %>
 <%= link_to ‘View the Books’, :controller=>’book’,
 :action=>’list’ %></

li>

 <% end %>

</div>

305

Developing Book Shelf: Social Support 8

Now where you copied this from the _sidebar.html.erb file, replace this block of code with a
call to the new partial like this:

<%= render :partial=>”shared/nav_menu” %>

Now your _sidebar.rhtml file is much more compact. It should look like this:

<div id=”sidebar”>
 <%= render :partial=>”shared/nav_menu” %>
 <div style=”clear:both;”> </div>
</div>

With the details of the navigation menu removed from the sidebar partial, it is easy to see at a
glance exactly what is contained in the sidebar. Right now it contains only the navigation menu.
You’ll implement the tag cloud in another partial, so go ahead and add a call to a new partial for
the tag cloud just as you did for the navigation menu. With the call to the tag cloud partial, the
sidebar looks like this:

<div id=”sidebar”>
 <%= render :partial=>”shared/nav_menu” %>
 <%= render :partial=>”shared/tag_cloud” %>
 <div style=”clear:both;”> </div>
</div>

Now you can create the tag cloud partial in the file app/views/shared/_tag_cloud.html.
erb. Edit it so that it contains this code:

<% if logged_in %>
 <%= link_to_remote ‘My Tags’,
 {:url => {:controller => ‘book’, :action => ‘tag_cloud_

user’}} ,
 :class => “tag_cloud_title_current”,
 :id => “my_tags_link” %>

 <%= link_to_remote ‘All Tags’,
 {:url => {:controller => ‘book’, :action => ‘tag_cloud_

all’}} ,
 :class => ‘tag_cloud_title’,
 :id => “all_tags_link” %>
<% end %>

<div id=”cloud_view”><%= tag_cloud_revised %></div>

The block of code that is wrapped in the check to see whether a user is logged in, displays the tabs
allowing the user to display tags specific to the logged-in user, or all of the tags in the application.
Refer back to Figure 8.3 to see an example of these tabs.

306

Developing a Complete Rails ApplicationPart III

Each tab is implemented as a link using the Rails helper method, link_to_remote. The link_
to_remote helper method creates a link that executes an Ajax call back to the server when
clicked. If the user clicks the My Tags link, the tag_cloud_user method of the book controller
is sent the Ajax request. If the user clicks the All Tags link, the tag_cloud_all method of the
book controller gets the Ajax request. You wrote both of these controller methods in the previous
section. Each of the links is also given class and id attributes to assist with styling them to look
like tabs. The two relevant controller methods are shown again here:

def tag_cloud_user
 @tags = User.find(session[:user]).tags
end

def tag_cloud_all
 @tags = Tag.find(:all,
 :limit => 100,
 :order => ‘taggings_count DESC’).sort_

by(&:name)
End

These methods each just set an instance variable containing an array of either the tags associated
with the logged-in user, or the first 100 tags contained in the application, sorted alphabetically.

Instead of rendering a view template like you usually do after a controller action, this time you use
an RJS template to accomplish the update of the tag cloud with the new set of tags. Create two new
RJS templates in the app/views/book directory and call them tag_cloud_user.rjs and
tag_cloud_all.rjs. Because these RJS templates are named the same as the controller methods,
they are called automatically after the controller methods execute. Remember that if no template is
explicitly rendered by an action method, Rails looks for a view template with the same name as the
action method. If a view template cannot be found, Rails looks for an RJS method with the same
name as the action method.

The contents of the two new RJS templates are shown in Listings 8.4 and 8.5.

 LISTING 8.4

tag_cloud_user.rjs

page[:cloud_view].replace_html tag_cloud_revised(@tags)

page[:all_tags_link].remove_class_name :tag_cloud_title_current
page[:all_tags_link].add_class_name :tag_cloud_title

page[:my_tags_link].remove_class_name :tag_cloud_title
page[:my_tags_link].add_class_name :tag_cloud_title_current

307

Developing Book Shelf: Social Support 8

 LISTING 8.5

tag_cloud_all.rjs

page[:cloud_view].replace_html tag_cloud_revised(@tags)

page[:my_tags_link].remove_class_name :tag_cloud_title_current
page[:my_tags_link].add_class_name :tag_cloud_title

page[:all_tags_link].remove_class_name :tag_cloud_title
page[:all_tags_link].add_class_name :tag_cloud_title_current

The first line of both of these templates is identical. The tag cloud is replaced with a new tag cloud
generated using the tag_cloud_revised helper method and the set of tags that was created by
the controller method called. This either contains the tags associated with the logged-in user, or all
the tags, depending on the link that was clicked. I’ll discuss the tag_cloud_ revised helper
method in just a bit.

The last four statements of each of the templates changes the CSS class name that is associated with
the all_tags_link and the my_tags_link links.

After the block inside the logged-in check, in the tag cloud partial, there is a call to the tag_
cloud_ revised helper method.

<div id=”cloud_view”><%= tag_cloud_ revised %></div>

This line is where the actual tag cloud is created and displayed. The tag_cloud_ revised
method is a helper method that is a slightly modified form of a tag_cloud helper method that is
a part of the acts_as_taggable_redux plugin

Implement tag_cloud_revised helper method
In both of the RJS templates that you just completed and in the _tag_cloud.html.erb partial,
you used a helper method named tag_cloud_revised. This is a helper method that is respon-
sible for displaying the tag cloud. This method is a modified version of the method tag_cloud
that is a part of the acts_as_taggable_redux plugin.

Let’s have a look at the tag_cloud method. You will find the method in the file vendor/
plugins/acts_as_taggable_redux/lib/acts_as_taggable_helper.rb. The
method is shown in Listing 8.6.

308

Developing a Complete Rails ApplicationPart III

 LISTING 8.6

tag_cloud

def tag_cloud(options = {})
 # TODO: add options to specify different limits and sorts
 tags = Tag.find(:all,
 :limit => 100,
 :order => ‘taggings_count DESC’).sort_by(&:name)

 classes = %w(popular v-popular vv-popular vvv-popular vvvv-popular)

 max, min = 0, 0
 tags.each do |tag|
 max = tag.taggings_count if tag.taggings_count > max
 min = tag.taggings_count if tag.taggings_count < min
 end

 divisor = ((max - min) / classes.size) + 1

 html = %(<div class=”hTagcloud”>\n)
 html << %(<ul class=”popularity”>\n)
 tags.each do |tag|
 html << %()
 html << link_to(tag.name,
 tag_url(tag),
 :class => classes[(tag.taggings_count - min) /

divisor])
 html << %(\n)
 end
 html << %(\n)
 html << %(</div>\n)
end

The problem with this method is that it reads the tags itself and always reads in the first 100 tags
sorted alphabetically. There is no way to pass in a set of tags, which you need to do in order to
implement the user tags cloud. To meet the Book Shelf requirements, you should be able to pass
an array of tags into this helper method and have it build the tag cloud with the tags that are
passed in. Rather than change this existing method, I’ve opted to create a new method and give it
the name tag_cloud_revised.

The new method is shown in Listing 8.7. Be sure to add this to the acts_as_taggable_
helper.rb file.

309

Developing Book Shelf: Social Support 8

 LISTING 8.7

tag_cloud_revised

def tag_cloud_revised(tags = nil)
 if !tags
 tags = Tag.find(:all,
 :limit => 100,
 :order => ‘taggings_count DESC’).sort_by(&:name)
 end

 classes = %w(popular v-popular vv-popular vvv-popular vvvv-popular)

 max, min = 0, 0
 tags.each do |tag|
 max = tag.taggings_count if tag.taggings_count > max
 min = tag.taggings_count if tag.taggings_count < min
 end

 divisor = ((max - min) / classes.size) + 1

 html = %(<div class=”hTagcloud”>\n)
 html << %(<ul class=”popularity”>\n)
 tags.each do |tag|
 html << %()
 html << link_to(tag.name,
 ‘/book/show_for_tag/’+tag.name,
 :class => classes[(tag.taggings_count - min) /

divisor])
 html << %(\n)
 end

 html << %(\n)
 html << %(</div>\n)
end

The new method allows you to pass the array of tags into it. Alternatively, if you do not pass tags
into it, it behaves the same as the original tag_cloud method. You may have noticed that the
options parameter is omitted from the tag_cloud_revised method. That is okay as this
parameter was not used at all by the original tag_cloud method either.

As indicated in the comments preceding the tag_cloud_view method, the method is inspired
by this blog post: www.juixe.com/techknow/index.php/2006/07/15/acts-as-
taggable-tag-cloud/.

310

Developing a Complete Rails ApplicationPart III

You will make two additional small changes to the tag_cloud_revised method. You want the
method to display each tag as a link to a page that shows all of the books that have been tagged
with that specific tag. The original method uses the method tag_url as the URL connected to the
link. You should change that to the following:

‘/book/show_for_tag/’+tag.name

You will see the change in Listing 8.7. This will call the show_for_tag action of the book con-
troller to display the books that are tagged with that tag word being clicked on. The tag’s name is
passed as a parameter.

The last change you will make is to add a non-breaking space character after each tag that is dis-
played. Without the space being explicitly added, the tags will be blended together without spaces.
You can see the added just before the closing in the tag_cloud_revised
method.

Generate the tagging style sheet
At this point, you have nearly finished the tagging implementation for displaying tags in the side-
bar. However, you need a bit of CSS styling to pretty things up a bit so that your tag cloud actually
looks like a tag cloud. The acts_as_taggable_redux plugin provides you with a generator
that you use to create a style sheet that is used to style the tag cloud that will be displayed. From
the Book Shelf root directory, use rake to run this command:

rake acts_as_taggable:stylesheet:create

This creates acts_as_taggable_stylesheet.css in the public/stylesheets directory.
This file contains the basic styles for the tag cloud. Next, you have to add a link to this style sheet
to the layout template. Open up app/views/layouts/application.html.erb and add
this link into the head section:

<%= stylesheet_link_tag ‘acts_as_taggable_stylesheet’ %>

Now, you just need to add a few more styles to the application style sheet. Add these style defini-
tions to public/stylesheets/style.css (see Listing 8.8).

This completes the implementation for the tag cloud view; however, before you can test it, you
need to complete the rest of the tagging implementation in the next section so that users have a
way of creating tags.

 LISTING 8.8

public/stylesheets/style.css Addition

.tag_cloud_title, .tag_cloud_title_current {
 float: left;
 display: block;

311

Developing Book Shelf: Social Support 8

 background-color: #f98919;
 color: white;
 line-height: 2em;
 margin-bottom: 15px;
 padding-left: 5px;
 width: 40%;
 border-right: thin solid black;
 border-left: thin solid black;
}

.tag_cloud_title:hover {
 background-color: black;
 font-weight: bold;
}

.tag_cloud_title_current {
 background-color: green;
 font-weight: bold;
}

Implement the static tag view
Now that you have the tag cloud view complete, you need a way of getting tags into the applica-
tion. To accomplish this, you add a display of the tags to the book listing view. This is also where a
user can edit tags for a book. Refer back to Figures 8.4 and 8.5 for views of how this looks.

In previous sections, you implemented the necessary logic in the models and controllers layer. All
you have to do to finish the work is to modify the view layer. The list of books is displayed using
the _list_books.html.erb partial. This partial uses the _book_detail.html.erb partial
to display information for each book. In order to display tags for a book, you modify the _book_
detail.html.erb partial to include a display of the tags. Go ahead and open up app/views/
book/_book_detail.html.erb. Listing 8.9 shows what the code should look like, with the
new code appearing in bold.

 LISTING 8.9

_book_detail.html.erb

<div class=”book_image”><img src=”<%= book.image_url_small %>” /></div>
<div class=”book_info”>

 <% if book.exists %>
 <%= link_to book.title, { :controller => “book”,
 :action => “show”,
 :id => book.id } %>
 <% else %>

continued

312

Developing a Complete Rails ApplicationPart III

 LISTING 8.9 (continued)

 <%= book.title %>
 <% end %>

 Author(s): <%= book.author %>

 Release Date: <%= book.release_date %>

 ISBN: <%= book.isbn %>
</div>
<% if search %>
 <div class=”add_control” id=”add_control_<%= book.isbn %>”>
 <% if !book.exists %>
 <%= link_to_remote “Add to Shelf”,
 :update => ‘add_control_’ + book.isbn,
 :url => { :controller => ‘book’,
 :action => ‘add’,
 :isbn => book.isbn } %>

 <div id=”shelf_status_<%= book.isbn %>”></div>
 <% else %>

<%= render :partial=>’book_exists’, :locals => { :book => book } %>
 <% end %>
 </div>
<% else %>
 <div class=”add_control”>
 <% if session[:user] %>
 <%= link_to_remote “Delete from Shelf”,
 :update => ‘shelf_status_’ + book.isbn,
 :url => { :controller => ‘book’,
 :action => ‘delete’,
 :isbn => book.isbn } %>
 <% end %>
 <div id=”shelf_status_<%= book.isbn %>”>
 <%= book.users.size %> Users</

span>
 </div>
 </div>

 <div class=”tags”>
 Tags:
 <% if book.tag_list.length > 0 %>
 <span class=”tag_list” id=”tag_list_<%= book.id %>”>
 <%= book.tag_list %>

 <% else %>
 <span class=”empty_tag_list” id=”tag_list_<%= book.id %>”>
 (Click to add tags)

 <% end %>
 </div>
<% end %>

313

Developing Book Shelf: Social Support 8

The acts_as_taggable_redux plugin adds a tag_list instance method to the book model.
The tag_list method returns an array of tags associated with the book model on which it is
called. If a tag has spaces in it, that tag is wrapped in double quotes. The line <%= book.tag_
list %> outputs the tags, separated by a space. If the tag list is empty, a message appears, telling
the user to click it to add tags.

Make the tags editable
The list view now contains a static display of the tags associated with a book. With some help
from the JavaScript libraries, Prototype and Scriptaculous, you can make the tag field editable
when it’s clicked. Currently, the book list view contains a static list of the tags contained within
a span tag. Because a list typically contains multiple books, there are multiple instances of these
span tags on the page. Each is given a unique id attribute by appending the book ID to the string
“tag_list_”. Now open up the app/views/book/_list_books.html.erb file and add
this code to the bottom of the file.

<% if logged_in %>
 <script>
 document.observe(‘dom:loaded’, function() {
 <% books.each do |book| %>

new Ajax.InPlaceEditor(‘tag_list_<%= book.id %>’, ‘/
book/update_tags?authenticity_token=<%= form_authenticity_token() %>’);

 <% end %>
 });
 </script>
<% end %>

This code inserts a chunk of JavaScript into the view. The function document.observe is a
Prototype function that allows you to specify a function to be run in response to an event. In this
case, the event being watched for is dom:loaded. This event fires immediately after the HTML
document is fully loaded. So when the page is completely loaded, this code is run:

<% books.each do |book| %>
 new Ajax.InPlaceEditor(‘tag_list_<%= book.id %>’,
 ‘/book/update_tags?authenticity_token=<%=

form_authenticity_token() %>’);
<% end %>

This code uses the Ajax.InPlaceEditor method, which is provided by Scriptaculous to create
in-place editors for each of the books displayed on the list page. This method takes two parame-
ters. The first parameter is the id of an element that you want to make an in-place editor of. The
second parameter is a URL to which changed values are submitted.

Notice that you have to add an authenticity_token to the URL. This was added to Rails after
version 2.0. This is security mechanism that is normally done for you automatically when you use
the Rails form helper methods. Here you use the form_authenticity_token method to gen-
erate the required token value.

314

Developing a Complete Rails ApplicationPart III

Implement the show_for_tag view
When the user clicks on a tag in the tag cloud, a page should be shown that displays all of the
books that also have been tagged with that tag. You have already implemented the show_for_
tag action in the book controller. Now create the view in app/views/book/show_for_tag.
html.erb. For this view, enter the code shown below:

Books with tag
<%= @tag %>

<%= render :partial=>’list_books’, :locals=>{:books=>@books} %>

This view reuses the list_books partial that you created for the main book list page to display
the books associated with the selected tag.

Using tags
The Book Shelf application now has a complete implementation of content tagging. Users can add
tags to any book on their shelf and update those tags at any time. A tag cloud also appears in the
left sidebar, giving the user an overview of tags currently in use and providing an easy way for the
user to find books by tag.

Make sure that your server is running. If it is not, start it from the Book Shelf home directory using
the familiar ruby script/server command. Once the server has started, navigate to your
application by going to http://localhost:3000 in your browser. Once you have a few books
on your shelf, go ahead and add some tags and verify that the tagging behavior is working correctly.

Implementing Book Reviews
Reviewing a book is a common way of sharing information about a book. In the Book Shelf appli-
cation, users are able to view book reviews on the detail page for any book. If a user is logged in to
the application, he can also create a review for any book that he is viewing. Figure 8.6 displays a
view of the book detail page showing a book that has one review.

The implementation of book reviews consists of implementing the following pieces:

n Review model

n Review controller

n Review view

In the last section, when you implemented tagging, you started out by implementing the necessary
model changes, followed by adding controller methods, and then creating the required view and
RJS templates. To show that you don’t always have to develop your code in that order, I’ll do
things a little differently in this section.

You should generally start by implementing the model layer, so I’ll keep that step the same, but
after the model, I’ll implement the view layer. Then when you move to the controller layer, you’ll
know what methods the view layer requires.

315

Developing Book Shelf: Social Support 8

 FIGURE 8.6

A book detail page with a review

Implementing the review model
Book reviews are modeled with their own class. Use the Rails generator to create a Review model:

ruby script/generate model Review

Along with some testing files, this creates the Review model class for you in app/models/
review.rb and a migration that you will use to create the reviews table in db/migrate/
005_create_reviews.rb.

As you’ve done in the past, you should start by identifying the columns that you’ll want to create
for the Review class. Those are identified in Table 8.1. A review is associated with both a user and
a book, so you see the review model includes columns to identify the user and book. The other
fields should be self-explanatory.

Now go ahead and create the migration to implement this design. Edit the file db/
migrate/005_create_reviews.rb so that it looks like the following:

class CreateReviews < ActiveRecord::Migration
 def self.up
 create_table :reviews do |t|

316

Developing a Complete Rails ApplicationPart III

 t.references :user
 t.references :book
 t.text :body
 t.string :title
 t.timestamps
 end
 end

 def self.down
 drop_table :reviews
 end
end

 TABLE 8.1

Review model
Field Name Description Data Type

user_id ID of the user reviewing the book integer

book_id ID of the book being reviewed integer

body The body of the review text

title The title of the review string

created_at Date and time the review was created datetime

updated_at Date and time the review is updated datetime

Once you have the migration completed, run it using the db:migrate command:

rake db:migrate

This will create the reviews table for you. Now you are ready to edit the Review class. Open up
that class and edit it to contain the code shown in Listing 8.10.

 LISTING 8.10

The review model

class Review < ActiveRecord::Base

 belongs_to :user
 belongs_to :book

 validates_presence_of :body, :title, :user_id, :book_id

end

317

Developing Book Shelf: Social Support 8

You can see that this is a very simple model implementation. Most of its behavior comes from the
fact that it extends ActiveRecord::Base. Each review that is created is associated with a single
user and a single book. However, a user can create many reviews and thus is associated with zero
or more reviews.

Also, many reviews can be written for each book. Therefore, reviews have a one-to-many relation-
ship with both users and books. This relationship is modeled using the ActiveRecord method
belongs_to in the Review model class. In a minute, you’ll add the other side of these associa-
tions to the User and Book model classes.

When a user creates a book review, it is also a good idea to make sure that it contains a body and
a title. In order for the associations to work correctly, a review also must have a user_id and a
book_id set. A validator is added to the Review model to ensure the presence of these fields:

validates_presence_of :body, :title, :user_id, :book_id

Adding associations to the book and user models
Previously, you created one side of a one-to-many relationship between reviews and a book, and
between reviews and a user. Now you need to add a line of code to each of the User and Book
model classes to complete that association. Edit both the app/models/user.rb class and the
app/models/book.rb class, and add the following line inside the class definition beneath the
has_and_belongs_to association that you added to each of these classes in the last chapter:

has_many :reviews

Adding this method completes the association between reviews and users and reviews and books.
A user’s reviews are now accessible through the user model, and a book’s reviews are accessible
through the book model.

That’s all of the model layer code that is required for implementation of book reviews. Next, you’ll
implement the view layer to support display and entry of book reviews.

Implementing the review view
There are several view pieces that you have to implement to support book reviews. These different
view pieces are as follows:

n Static display of a book’s reviews on the book detail page

n The book review entry form for adding new reviews

To implement these views in a user-friendly way, I’ll use a bit of Ajax and some nifty helpers pro-
vided by Prototype and Scriptaculous.

318

Developing a Complete Rails ApplicationPart III

Displaying reviews for a book
The book detail page shows the reviews for the book being displayed. This page is also where users
can add new reviews if they are logged into the application. Initially, a book has no reviews and
the reviews section of the display looks like that shown in Figure 8.7. The count of how many
reviews exist for the book is in parentheses after the section title User Reviews. Because no reviews
have been created yet for this book, it shows a value of zero.

Also notice that there is a link below, which says, “Be the first to review this book.” This link is
what a user clicks if they want to write a review for the book. Note that the link only appears if the
user viewing the book is logged into the application.

If a book does have one or more reviews, those are displayed after the User Reviews heading, as
shown in Figure 8.8.

Notice that the text on the link to add a new review is changed from “Be the first to review this
book” to “Add a review.” Also notice that the count of reviews in parentheses shows the value 1,
indicating that there is one review for this book.

 FIGURE 8.7

A book detail with no reviews

319

Developing Book Shelf: Social Support 8

 FIGURE 8.8

A book detail with a review

Finally, the review itself is shown with the title in bold, followed by the login name of the reviewer,
and the date on which the review was submitted. The body of the review is the final piece of the
review shown. Once a review is submitted, there is no way to edit the review. That is a feature
briefly discussed in the final section of this chapter, but ultimately left to the reader to implement.

Okay, so now that you’ve seen what the views should look like, let’s get started with what you
need to do to implement those views. Your application already has a page that shows details for a
single book when a user clicks the title of the book from the book-listing screen. This is the same
page where the reviews are included.

Open up the template for that page, app/views/book/show.html.erb, and edit it to display
book reviews by adding the content shown in bold in Listing 8.11.

The code that you added designates the work of showing the book reviews to a partial named
book_reviews. Following the Rails standard of adding an underscore to the name, this is stored
in app/views/book/_book_reviews.html.erb.

Go ahead and create that file now, and edit it to contain the content shown in Listing 8.12. This is
a fairly large partial that implements the following pieces of the review display:

320

Developing a Complete Rails ApplicationPart III

n It provides some header text with a reviews label and a count of the number of reviews
that exist for the current book.

n It provides a link that a user can click to display the review entry form.

n It includes a partial to display the review entry form.

n It displays each of the reviews that exist for the current book.

 LISTING 8.11

show.html.erb Template

<div id=”book_view”>
 <div id=”book_view_upper”>
 <div id=”book_image”>
 <%= image_tag @book.image_url_medium %>
 </div>
 <div id=”book_summary”>
 <%= @book.title %>
 Author: <%= @book.author %>

 <div id=”book_details”>
 Release Date: <%= @book.release_date %>

 ISBN: <%= @book.isbn %>

 </div>
 Users: <%= @book.users.size %>

 Added to BookShelf on: <%= @book.created_at %>

 <%= link_to „Buy from Amazon“, @book.amazon_url,
 :class=>“action_button“ %>

 </div>
 </div>
 <div id=”reviews_content”>
 <%= render :partial=>’book_reviews’, :locals => { :book => @book

} %>
 </div>
 <div style=”clear:both;”> </div>
</div>

Near the top of the partial is a span element that displays the User Reviews section title, along with
a count of the reviews that are associated with the current book. Remember that books have a one-
to-many relationship with reviews. In the previous section, you modeled this relationship by adding
the has_many method to the book model. This makes the reviews associated with a given book
available as an array instance attribute on the book model.

User Reviews (<%= book.reviews.size
%>)

321

Developing Book Shelf: Social Support 8

 LISTING 8.12

_book_reviews.html.erb partial

<div id=”book_reviews”>

User Reviews (<%= book.reviews.size %>)</
span>

 <hr/>
 <% if logged_in %>
 <div id=”add_review”>
 <% if book.reviews.size == 0 %>
 <% add_review_text=”Be the first to review this book” %>
 <% else %>
 <% add_review_text=”Add a review” %>
 <% end %>

 <%= link_to_function add_review_text, “show_add_review_

form()” %>

 </div>
 <div id=”cancel_add_review” style=”display:none;”>
 <%= link_to_function “Cancel Review”, “show_add_review_

form()” %>
 </div>
 <div id=”add_review_form” style=”display:none;”>
 <%= render :partial=>”review/add_review_form”,
 :locals => { :book => book } %>
 </div>
 <% end %>
 <div id=”reviews”>
 <% book.reviews.each do |review| %>
 <div class=”review”>
 <div class=”review_header”>
 <%= review.title %></

span>

 Submitted by: <%= review.user.login %>

 Submitted at: <%= review.created_at %>

 </div>
 <%= review.body %>
 </div>
 <% end %>
 </div>
 <div style=”clear:both”> </div>
</div>

322

Developing a Complete Rails ApplicationPart III

The links to add a new review and the review entry form that would become visible when click-
ing the link are only displayed if the user is logged in. If the user is logged in, the template sets
a variable with the contents of a message that becomes the text of a link in order to display the
add review form. The link_to_function helper method is then called to create a link to a
JavaScript function.

<%= link_to_function add_review_text, “show_add_review_form()” %>

When the user clicks this link, the JavaScript function show_add_review_form is called. You
have to create the show_add_review_form function. This function should cause the add_
review_form, which is initially hidden by setting a display:none style on it, to show up.
This is a good point for you to go ahead and implement that JavaScript function so that you don’t
forget it later. Open up the public/javascripts/application.js file, which is where you
should put all of your application-specific JavaScript methods. The method that you need to create
is shown here:

function show_add_review_form() {
 if ($(‘add_review_form’).getStyle(‘display’) == ‘none’) {
 Effect.BlindDown(‘add_review_form’);
 }
 else {
 Effect.BlindUp(‘add_review_form’);
 }
 Element.toggle(‘add_review’);
 Element.toggle(‘cancel_add_review’);
}

This method actually serves two purposes: It is used to show the add review form if the user clicks
the add review link. It is also used to hide the add review form if the user clicks the cancel link
while adding a review. The interesting pieces of this method are the use of Effect.BlindDown,
Effect.BlindUp, and Element.toggle.

The first two methods, Effect.BlindDown and Effect.BlindUp, are provided by the
Scriptaculous toolkit. These methods produce a distinct style of showing and hiding the contents
of the add review form. The form gradually appears or disappears through an effect that makes the
form appear to slide upward or downward, similar to the way a window blind is raised and lowered.

The method Element.toggle is implemented by the Prototype toolkit. This method is used to
toggle the display state of the element whose id attribute is passed to it. In this example, the method
is used twice to toggle the display state of the add review link and the cancel link. These two links
are toggled in opposite directions. If the add review link is displayed, the cancel link is hidden, and
vice versa.

Now turning your attention back to the _book_reviews.html.erb partial, you see that the
add review form is rendered using another partial that you’ll create in a bit. First, look at the final

323

Developing Book Shelf: Social Support 8

piece of this partial. The contents of the bottom div element with the ID of ‘reviews’ displays
each of the reviews that exist for the current book. The code to display the reviews is fairly straight-
forward and should be easy for you to understand. The reviews for the current book are accessed
using the reviews attribute of the book model. For each review, the review title, the review’s user,
the date on which it was created, and the body of the review are displayed.

Implementing the review entry form
Now implement the partial that creates the add review entry form. Because this partial is very
specific to a review, you should create the partial in the app/views/review directory. This
directory does not yet exist, so first you’ll have to create the review directory under the app/
views directory. Next, create the partial with the name _add_review_form.html.erb.

The add review entry form should allow the user to enter a title and a body for the review. At the
bottom, the form should have a button that allows the user to submit the review. The form looks
like what you see in Figure 8.9.

 FIGURE 8.9

The review entry form

324

Developing a Complete Rails ApplicationPart III

Listing 8.13 shows the code that you should enter for this partial.

 LISTING 8.13

_add_review_form.html.erb partial

<% remote_form_for :review, @review,
 :url => { :controller => “review”,
 :action => “create” } do |f| %>
 <%= f.hidden_field(:book_id, :value=>book.id) %>
 <label>Title:</label>
 <%= f.text_field(:title, :size=>60) %>

 <label>Body:</label>

 <%= f.text_area(:body, :cols => 60, :rows => 15) %>

 <%= submit_tag ‘Create’, :id=>”review_submit_btn” %>
<% end %>

This code uses Rails helpers to create an HTML form that is submitted as an Ajax request to the
create method of the review controller. The remote_form_for helper method is used to cre-
ate the form. This helper method uses Prototype functions to create the Ajax code that submits the
contents of the form as a POST request.

This completes the implementation of the view templates for now. This is a good time to imple-
ment the review controller that is called by the add review form submission. After implementing
the review controller, you’ll actually implement one more template, which will be an RJS template
to handle the response from the form submission.

Implementing the review controller
The review controller is fairly straightforward to implement. The first thing you should do, how-
ever, is generate the controller using the following command:

ruby script/generate controller Review

Now go ahead and open up the app/controllers/review_controller.rb file and add
the create method, as shown in Listing 8.14.

325

Developing Book Shelf: Social Support 8

 LISTING 8.14

ReviewController

class ReviewController < ApplicationController

 def create
 @review = Review.new(params[:review])
 @review.user = User.find(session[:user])
 if !@review.save
 # render error message using RJS
 end
 @book = Book.find(@review.book_id)
 end

end

The create method instantiates an instance variable, @review, which is populated with the con-
tents of the review form. Because the review form does not include anything about the user and yet
you know that a review is associated with a specific user, the next line sets the currently logged-in
user as the user attribute for the @review instance.

The @review instance is saved, and if the save is not successful, a bit of RJS is rendered back to
the add review form page to display an error message. If the @review is saved successfully, an
instance variable is created, holding the book that the review is associated with. This allows the
RJS template that is rendered back to the page to rebuild the reviews listing for the current book.

Now create a file to hold the RJS template in app/views/review/create.rjs. Because the
template is given the same name as the controller method, it is rendered by default by the create
method. Listing 8.15 shows what this template should look like.

The template replaces the content of the reviews_content div with the book reviews partial.
This is the same partial that was originally rendered into that div when the page was first loaded,
and so you are essentially just refreshing the book reviews content. This causes the newly created
book review to appear and the add review form to be hidden again, thus resetting the page back to
how it looks when the page is first loaded.

 LISTING 8.15

create.rjs

page[:reviews_content].replace_html render :partial=>’book/book_reviews’,
 :locals => { :book => @book }

326

Developing a Complete Rails ApplicationPart III

Adding some style
The last thing you need to do to wrap up the implementation of book reviews is to add some more
styles to your style sheet. Open up public/stylesheets/style.css and add the new style
definitions as shown in Listing 8.16.

 LISTING 8.16

public/stylesheets/style.css Addition

#book_reviews {
 float: left;
 clear: both;
 margin-top: 25px;
 width: 100%;
}

.reviews_title {
 font-weight: bold;
 font-size: 14pt;
 color: #f98919;
}

#review_field {
 width: 200px;
}

.review {
 margin-top: 15px;
 border: solid thin gray;
 padding: 10px;
}

.review_header {
 display: block;
 border-bottom: solid thin gray;
 line-height: 1.5em;
}

.review_title {
 font-weight: bold;
 font-size: 1.2em;
}

.review_user {
 display: block;
}

.review_date {

327

Developing Book Shelf: Social Support 8

 display: block;
}

.review_body {
 display: block;
 margin-top: 20px;
}

#add_review_form {
 margin: 10px;
 margin-top: 20px;
 margin-bottom: 40px;
 border: solid thin #cccccc;
 padding: 10px;
 background-color: #ffcc99;
}

#add_review_form label {
 font-weight: bold;
}

#review_submit_btn {
 margin-top: 10px;
}

Adding a book review
You have now completed the implementation of book reviews. It’s time to try out everything you’ve
done in the past few sections to make sure that the reviews work as expected. Make sure that your
server is still running, or restart it again using ruby script/server.

Log in to the application and click the title of a book that you have added to your shelf. You should
be taken to the book detail page, similar to what you see in Figure 8.7. The book has no reviews
because you have not created any reviews yet. Click the Be the first to review this book
link to create your first review. You should see the book review form drop down into view. Go
ahead and fill out the form to create your review. When you are finished, click the Create button
and you should see the reviews section reload, now showing the review that you just created. The
view should look similar to Figure 8.8.

Here is an important point to remember: Any book can be added by more than one user to their
shelves. Each time a book is added to another user’s shelf, another row is added to the books_
users table, but there is not another book record created.

Reviews are associated with the book record. So this means that any reviews that are created for a
given book are shown anytime that book’s detail page is shown, regardless of which user’s shelf
you are requesting it from. This is exactly the behavior that you want. Any reviews that I add for
a book on my shelf become visible to all other users who have also added that book to their shelf.

328

Developing a Complete Rails ApplicationPart III

Implementing Book Ratings
So far in this chapter, you’ve implemented tagging for books and book reviews. These are both
popular features of social networking sites. In this section, I will provide you with an overview of
how you might add another popular feature of social networking sites, ratings. Ratings allow a user
to associate a simple number rating to a book. Adding a ratings system to the Book Shelf application
would be a nice addition to the reviews functionality. If you’ve ever looked up a book on Amazon,
you have probably seen the reviews and ratings system that Amazon uses. By adding a ratings fea-
ture, you can have similar functionality in Book Shelf.

There is an excellent Rails plugin available (acts_as_rateable) that will make implementing
the ratings feature not such a difficult task. You can find more information about this plugin and
download it from http://rateableplugin.rubyforge.org/.

The plugin will provide you with the server-side functionality to support ratings, but does not
provide you will a fancy user interface for setting and viewing ratings. The most common way of
allowing users to set and view ratings is through a display of stars. There is a helpful blog post
available about how to implement such a system that uses the acts_as_rateable plugin. The
blog post is available at http://blog.aisleten.com/2007/05/03/ajax-css-star-
rating-with-acts_as_rateable/.

The approach described in that post uses Ajax, CSS, and a few images to achieve the star display of
the ratings. The blog post contains step-by-step instructions for implementing the ratings feature.

A nice thing about a Rails application is that you tend to follow the same process over and over
again as you add additional features to your application. To implement the ratings feature, you fol-
low steps very similar to the steps you went through to implement tagging and reviews. To get you
started on the ratings task, below is an outline of the required steps to completely implement the
functionality.

n Install the acts_as_rateable plugin.

n Create a migration to add database support for ratings.

n Make modifications to the book model to support ratings.

n Create the ratings controller.

n Create a ratings view partial.

n Add some CSS to make it all look good.

You’ll find that these are the same steps and even the same sequence of steps that is outlined in the
blog post referred to previously.

329

Developing Book Shelf: Social Support 8

Extending the Application
Over the last three chapters, you’ve created an application that can be very useful as is. However,
there are also a great number of ways in which you could extend the application to make it even
more valuable to users. In this section, you’ll get an overview with some brief comments about a
few enhancements that you could make to the application.

Below is a summary of the enhancements that will be discussed:

n User interface improvements

n Providing an administrator interface

n RSS feeds for a user’s books

n Support for other sources of book information

n Book recommendations or suggestions

n Expanded user profiles and avatars

Improving the user interface
There are several places in the Book Shelf application where the interface is not ideal. The focus of
the development in this book was to show you general concepts of implementing an application
of this scope using the Rails framework. It was not a goal to provide a world-class user interface.
Some of the areas that immediately come to mind that could use some fixing up are as follows:

n Provide alternate views for the book list. Currently, books are presented in a vertical
list with a small image and some basic information about each book. It might be useful to
have a view that displays only the cover images of all the books in a user’s collection, or
perhaps a table listing of the books in your collection without having to show the images.

n Allow users to edit book reviews they have submitted. Presently in the application,
there is no way to edit a review once the user submits it. If the user reads it and notices
a typographic error or an incorrect fact, they have no way of going back and updating
the review. It would be a nice addition to allow reviews to be edited by the user who
submitted them.

Implementing an administrator interface
Nearly every Web application of this style that allows for user-contributed content also includes
some form of an administrator interface that can be used by the site administrator to manage the
site’s content. The current implementation of Book Shelf has no way for an administrator to man-
age the site. Some features that you might want to expose through an administrator interface
include the following:

330

Developing a Complete Rails ApplicationPart III

n Allow the administrator to manage the users. The administrator should be able to remove
user accounts, disable user accounts, reset a password, and view a list of all users.

n Allow the administrator to access and edit or remove any of the book reviews.

n Allow the administrator to access and edit the entire collection of books along with
their tags.

Adding RSS feeds to the application
Content syndication is another common feature of today’s social networking applications. RSS
which stands for Really Simple Syndication is the most common way of making a content from a
website available to other sites and feed viewers.

RSS feeds are a common feature on user start pages such as the Google home page, and the Google
Reader. Start pages and feed readers allow you to get content from all of the sites that you are inter-
ested in on one page. Syndication through RSS feeds would be a useful feature to add to the Book
Shelf application. An RSS feed for the Book Shelf application could be updated anytime a book or
book review is added to the site. This would allow users to keep track of what books and reviews
are being added without having to visit the site everyday.

Adding support for other book information sources
Currently, the Book Shelf application looks up book information using the Amazon Web service.
This is probably adequate for most users, but it is feasible that you could also extend the application
to allow for different catalog providers to be plugged into the application. In addition to commercial
sources of information, you could consider integrating with information provided by libraries. Many
public libraries today provide online access to their inventory. You may get some ideas related
to this by taking a look at the Library Lookup Project site at http://weblog.infoworld.
com/udell/stories/2002/12/11/librarylookup.html.

Implementing recommendations and suggestions
Another feature that would give the application more of a social and community aspect would be
support for book recommendations and suggestions. Give the users the ability to recommend books
to friends in the application. Also, based on a user’s current books, intelligence could be added to
the application to look for books with similar tags and suggest those to the user. The most popular
and indeed the most valuable sites today are those that provide social networking features. Today’s
web users want to interact with each other as much as they interact with the content that is provided.
Adding more social features to the application will likely make it more useful and more valuable.

Expanding user profiles and adding avatars
Currently in the application, there is no profile information stored for a user. It would probably be
a nice community type of feature to collect some profile information about users as they register.
This information could be used to build user profile pages, allowing users to know a bit about each

331

Developing Book Shelf: Social Support 8

other. A common feature on profiles today is the ability for a user to have a small photo or avatar
to represent him or her. Expanded user profiles would also help to facilitate more social network-
ing features for the application.

Summary
In this chapter, you completed the implementation of a complete real-world Rails application. This
chapter focused on adding social content features to the application. Many of the features that you
added are common in today’s popular generation of Web 2.0 applications. In the last section, you
also were given some ideas on how you can expand the Book Shelf application to make it more
usable and more useful to its users.

The application included many features that are common to today’s most popular Web 2.0-style
applications, such as content tagging and content reviews.

What you learned as you developed this application should be transferable knowledge that you can
apply to other applications that you will develop using the Rails framework. Before moving away
from the Book Shelf application completely, in the next chapter you will see how easy it can be to
write tests for a Rails application, using the Book Shelf application as the test subject.

333

Testing is a critical component of any software development project.
One of the best results of the rise in popularity of agile development
is that it has brought unit testing to the forefront of software develop-

ment. More developers regularly write unit tests today than at any time in
the history of software development.

With Rails, you have no excuses not to write tests. Rails makes it easy to
write and execute tests for your Rails applications. The framework comes
with integrated, automated testing tools built-in. Rails provides you with the
tools to write unit, functional, and integration tests. You’ll use unit tests to
validate your model classes. Functional tests allow you to test your controller
methods and verify things like responses, redirects, and HTML. Integration
tests allow you to test your application from the user’s perspective.
Integration tests cover multiple controllers and navigation across pages.

This chapter will introduce you to all of the testing capability that is built
into Rails, along with some that is not built-in but is extremely useful. In this
chapter, you will write tests for the Book Shelf application that was devel-
oped in Chapters 6, 7, and 8.

Why Test?
All too often in the past, developer testing was left to the end of a project,
and then only minimal testing was done. For the most part, application
developers relied on Quality Assurance (QA) teams to test their applications
when the coding was complete. The primary reason why developers avoided
testing was that it was considered a difficult and time-consuming task, with
very little in the way of best practices or common patterns applied.

IN THIS CHAPTER
Why test?

Using Test::Unit

Testing in Rails

Setting up a test database

Functional tests

Unit tests

Integration tests

Running all tests

Test coverage

Debugging techniques

Testing the Book Shelf
Application

334

Developing a Complete Rails ApplicationPart III

Fortunately, today, for many developers, their view of testing has made a dramatic shift. As agile
methodologies became more popular, developer testing also saw a great rise in popularity. There
are a few reasons for this:

n Agile methodologies encourage developer refactoring of code. Refactoring is a practice
in which code is modified to make improvements in its design, readability, or maintain-
ability without changing its functionality. This can be a dangerous and error-prone prac-
tice without having a safety net of unit tests that you can use to ensure that, as you
refactor, you are not breaking the application.

n About the same time agile methodologies were gaining traction, unit-testing frame-
works were also being created and quickly gaining popularity due to the ease with
which they made unit testing possible. The most popular test framework to come out
was the JUnit framework. JUnit is a Java unit-testing framework created by Kent Beck,
one of the founders of Extreme Programming, an early agile methodology. The core fea-
tures of JUnit have since been implemented in almost every other popular programming
language, including .Net, Perl, PHP, and Ruby.

n As developers have written more unit tests, they have realized that writing tests
serves another less obvious purpose: It actually makes your code better. In order to
make your code easily testable, you are forced to make your methods as simple as possi-
ble, and to adhere to rules of good encapsulation and cohesion.

Developer testing has transitioned from a task that developers had shunned to a practice that
developers actually enjoy. Good developers recognize the improvements to their code that can be
attributed to writing tests. Without tests, developers are often afraid to make large changes in a
code base for fear that something will break somewhere in the application. This, in turn, leads to
developers sticking with code that they may feel is not ideal or not the best code for the job. As a
result, the developer satisfaction and enjoyment of the project declines along with the quality of
the code.

On the other hand, if an application includes good test coverage, the developer does not have to be
afraid of making large changes to a code base. They can feel confident that any problems will be
detected by running the unit tests. Therefore, the developer is able to make improvements in the
code and fix design flaws. This makes for an enjoyable development experience. Those who are
not yet in the practice of regularly writing unit tests may be thinking, how can I ever enjoy writing
tests? My advice is to try it for a month, see what happens, and you’ll probably have the answer to
that question.

By making it easy to write tests, Rails’ built-in test support contributes to a developer joy and
higher-quality Web applications. Even if you start with a small Web application that you feel tests
may not be necessary for, it is probably still a good idea to write the tests as you develop the appli-
cation. All too often, those small, one-person developed applications become huge, successful Web
2.0 applications today. Rails also provides a measure of guilt for developers who do not write tests.
Test files and fixtures are automatically generated for you as you generate your application’s mod-
els and controllers. As a result, if you choose not to test, you’re ignoring this great support that
Rails has given you.

335

Testing the Book Shelf Application 9

Agile methodologies have also ushered in a new way of developing, called test-driven develop-
ment. Test-driven development (TDD) is a method of software development in which you write unit
tests before you write any other code. The unit tests you write will define the minimum acceptable
behavior for the code that you have to write. The general procedure you follow when doing test-
driven development is as follows:

 1. Write a unit test that tests a piece of functionality that you want to implement.

 2. Execute the unit test and verify that it fails, which it should, as you have not yet
written any code corresponding to that feature.

 3. Write the minimal code required to make the unit test pass.

 4. Repeat the execution of the unit test and verify that the test now passes.

 5. Repeat this procedure to add new features and functions.

The unit tests that you write should be derived from use cases and user stories. As you build up
the functionality of your application, you have complete test coverage and great freedom to refac-
tor and improve the code that you initially wrote to minimally pass your unit tests. Test-driven
development was first popularized by the Extreme Programming methodology and its creator,
Kent Beck. It has since been widely used outside of Extreme Programming and is often used with
other agile methodologies.

Many developers using Rails are also strong advocates of agile methodologies. As a result, while
test-driven development is not something that is Rails-specific, it is a topic that you are likely to
come across when you start looking for a Rails development job. The official Rails Web site wiki
provides an excellent starting point for using test-driven development in a Rails application:

http://wiki.rubyonrails.org/rails/pages/
HowToDoTestDrivenDevelopmentInRails

Test-driven development can be difficult to get started with for many developers, and it requires a
lot of discipline to apply it consistently. If you choose not to do test-driven development, you
should get in the practice of writing tests as soon as possible after you’ve developed each new fea-
ture in your application.

Do not wait until your application is completely developed before you decide to write tests. Three
reasons come to mind why waiting until the end is a bad idea:

 1. The motivation to write tests after you’ve completed development is very low. Most
developers will not follow through with writing tests if they feel they are done with devel-
opment.

 2. You will miss out on many of the benefits that writing unit tests provide you with
during development, such as improved design, and freedom to refactor safely.

336

Developing a Complete Rails ApplicationPart III

 3. The longer you wait after writing a specific feature, the harder it will be to go back
and fill in the tests. This is not just because you my forget the specifics of the imple-
mentation, but also because the tighter your feedback loop between coding and testing is,
the more your code will tend to be written in a way that enables testing.

Using Test::Unit
The Rails testing support uses the Ruby module Test::Unit to provide its core functionality.
Test::Unit is a framework that makes it easy to write tests for any Ruby application. The framework
allows you to write test methods that make assertions about the code you are testing. Whether
those assertions pass or fail decides the results of a test.

Test methods can be bundled together into test classes. Test classes are bundled into a test suite.
Test methods can also use test fixtures, which define test data to be used by your test methods. The
idea is that you create a suite of test classes containing test methods that use test fixtures to test
your real methods. You then run that suite of tests to get test results that tell you how many of
your tests succeeded and how many failed.

Test assertions
Assertions provide the core of the testing framework. You use assertions to check your code for
expected outcomes. When your code produces an unexpected outcome, that result is detected by
an assertion and results in a failed test. Assertions are implemented as methods in the Test::Unit
framework.

The assertion methods available in Test::Unit are described here:

n assert(boolean, message=nil)
Asserts that boolean is not false or nil.

n assert_block(message=”assert_block failed.”) {|| …}
Passes if the block yields true. This is the assertion upon which all other assertions are
based.

n assert_equal (expected, actual, message=nil)
Passes if expected == actual. The ordering of the elements here is important, because
on failure, a helpful error message is generated for you.

n assert_in_delta(expected_float, actual_float, delta, message=””)
Passes if expected_float and actual_float are equal within delta tolerance.

n assert_instance_of (some_class, object, message=””)
Passes if object.instance_of? some_class evaluates to true.

n assert_kind_of(some_class, object, message=””)
Passes if object.kind_of? some_class evaluates to true.

337

Testing the Book Shelf Application 9

n assert_match(pattern, string, message=””)
Passes if string =~ pattern evaluates to true.

n assert_nil(object, message=””)
Passes if object is nil.

n assert_no_match(regexp, string, message=””)
Passes if regexp !~ string evaluates to true.

n assert_not_equal(expected, actual, message=””)
Passes if expected != actual evaluates to true.

n assert_not_nil(object, message=””)
Passes if !object.nil? evaluates to true.

n assert_not_same(expected, actual, message=””)
Passes if !actual.equal? expected evaluates to true.

n assert_nothing_raised(*args){||..}
Passes if the block does not raise an exception.

n assert_nothing_thrown(message=””, &proc)
Passes if the block does not throw anything.

n assert_operator(object1, operator, object2, message=””)
Compares object1 with object2 using operator.
Passes if object1.send(operator, object2) is true.

n assert_raise(*args){||..}
Passes if the block raises one of the given exceptions.

n assert_raises(*args, &block)
Alias of assert_raise, deprecated in Ruby version 1.9 and to be removed in Ruby
version 2.0.

n assert_respond_to(object, method, message=””)
Passes if object.respond_to? method evaluates to true.

n assert_same(expected, actual, message=””)
Passes if actual.equal? expected evaluates to true.
This would indicate that they are the same instance.

n assert_send(send_array, message=””)
Passes if the method send returns a true value.
The send_array is composed of a receiver, a method, and arguments to the method.

n assert_throws(expected_symbol, message=””, &proc)
Passes if the block throws expected_symbol.

With these assertion methods, you’ll be able to write tests that check just about any condition that
you can think of. You’ll notice that in addition to other parameters, most of the assert methods
take a message parameter. The message parameter is a string value that will be displayed if the test
fails. This is useful when you are trying to figure out why a particular test failed.

338

Developing a Complete Rails ApplicationPart III

Test fixtures
Test fixtures are a way of representing data that is used by your application. The test fixtures are
used by your tests. As you’ll see later in this chapter, Rails will automatically generate test fixtures
for all of the model classes that you generate. Fixtures save you from having to create your own
methods of inserting and cleaning up data that is necessary only for testing.

Test methods
The tests that you write will be contained in test methods. Your test methods will be contained in
test classes. Test classes allow you to encapsulate groups of test methods that test a particular class
or feature. All of your test classes should extend the Test::Unit::TestCase class. The
Test::Unit::TestCase class includes a set of test methods that assists you in writing your
tests. Two methods from this class that are often used are the setup and teardown methods. By
overriding these methods in your test classes, you can specify code that should be run before and
after each of your test methods are run.

As of Rails 2.0, Rails provides specific subclasses of Test::Unit::TestCase that perform ini-
tialization specific to the test type. Functional tests extend ActionController::TestCase
while unit tests extend ActiveSupport::TestCase. Also new in Rails 2.0 is the ability to
specify multiple setup and teardown blocks using the syntax:

setup do … end
teardown do … end

Below is an example of a simple test class that uses setup and teardown methods and contains
two test methods.

 require ‘test/unit’

 class MyTest < Test::Unit::TestCase
 def setup
 puts ‘Starting a test method…’
 end

 def teardown
 puts ‘Completed a test method…’
 end

 def test_one
 assert(false, ‘Assertion was false.’)
 end

 def test_two
 assert(true)
 end
 end

339

Testing the Book Shelf Application 9

Each test method in the example above contains one assertion. However, in general, a test method
can contain multiple assertions. There is no limit to the number of assertions that you can perform
in each test method. The first failed assertion in the test method will cause evaluation of that test to
stop and the test system will move to the next test method. As a result, each test method should
usually test one particular feature or requirement of the class you are testing.

The test_one method in the above example will always result in a failed test. The assert
method passes only if the logical expression that is passed to it evaluates to true. In this case, the
value false is passed to assert, and thus the assertion will always fail. A failed assertion also
causes the test method that it is contained within to fail. Upon failure, the Assertion was
false. message will also be printed. The second test, test_two, will always result in a success-
ful assertion.

A new instance of your test class, MyTest, is created for each test method that runs. The setup
and teardown methods are called for each test method that you create. As a result, the lifecycle
for each test method looks like this:

 1. An instance of class MyTest is created.

 2. The setup method is run.

 3. The test method (test_one or test_two) is run.

 4. The teardown method is run.

 5. The test class object is destroyed.

This lifecycle assures that each test method is independent from other test methods.

Test::Unit provides you with a consistent framework and style for writing your unit tests.
Generally, you should follow these steps when writing tests for your application:

 1. Require ‘test/unit’ in your test script. Rails tests should also require ‘test_
helper’, a common file provided by Rails to house shared test setup and assertion
code.

 2. Create a class that subclasses Test::Unit::TestCase, or the relevant Rails subclass.

 3. Define test methods that begin with “test_”.

 4. Make assertions in your test methods.

 5. Optionally define setup and teardown methods.

 6. Run your tests.

Any methods that begin with the word “test,” such as the test_one method in the example
above, will be run automatically when you run the tests. Only these methods will be run during
the test suite.

NOTENOTE Tests are not run in the order that they are listed in the test class. Tests contained in
a test class are run in alphabetical order.

340

Developing a Complete Rails ApplicationPart III

Test runners
Now you’ve seen some of the basics about writing tests using the Test::Unit framework, but having
done that, how do you run your tests and get the results? Test::Unit has a couple of nice utility
applications for running your unit tests that will help you. These applications are called test
runners.

The most common test runner built into Test::Unit is the Test::Unit::UI::Console::Test
Runner class. This provides a console-based test runner. The console test runner is invoked auto-
matically when you run a Ruby script that requires test/unit.

In the previous section, you saw a test class named MyTest. If that class were saved in a file called
my_test.rb, you could run the tests contained within it by simply calling it as a Ruby script, like
this:

> ruby my_test.rb

Because my_test.rb includes a require statement for test/unit, the tests will be run using
the console test runner. You should see output similar to Figure 9.1 if you run the tests. Notice
that the Assertion was false message is printed. This was the message parameter that you
passed to the assert method. Also notice that the test runner tells you the exact line number in
your test file on which the failure occurred.

 FIGURE 9.1

Test runner output

341

Testing the Book Shelf Application 9

Test suites
As you write more test methods, and create more test classes, it can become burdensome to run
them one class at a time. Test suites allow you to bundle multiple test classes into a single suite. A
test suite can be passed to the run method of a test runner, and all of the test classes defined in the
suite will be run. Below is a simple example of a test suite:

require ‘test/unit/testsuite’
require ‘module_one_tests’
require ‘module_two_tests’
require ‘module_three_tests’

class TS_MyTests
 def self.suite
 suite = Test::Unit::TestSuite.new
 suite << ModuleOneTests.suite
 suite << ModuleTwoTests.suite
 suite << ModuleThreeTests.suite
 return suite
 end
end
Test::Unit::UI::Console::TestRunner.run(TS_MyTests)

This code creates a test suite called TS_MyTests. The suite bundles three test classes:
ModuleOneTests, ModuleTwoTests, and ModuleThreeTests. In the last line, the test suite
is run by passing it to the run method of the console test runner.

You may have noticed that the code to create a test suite violates the DRY principle, and seems to
require a lot of repetitive code. There is actually an easier way to create a test suite. The code below
does the same thing as the previous test suite code:

require ‘test/unit’
require ‘module_one_tests’
require ‘module_two_tests’
require ‘module_three_tests’

Wow, much simpler to write that, isn’t it? Given this set of require statements, Test::Unit is
smart enough to find all of the test cases contained in the required files, and bundles them into a
test suite for you. It will then run the suite using the console test runner.

342

Developing a Complete Rails ApplicationPart III

Testing in Rails
Rails makes writing and running tests for your application very simple. As you generate models
and controllers, the Rails generate script also generates test files that you can use to write tests in.
Rails also uses a separate database just for testing. The test database is rebuilt each time the appli-
cation’s tests are run, and so you always have a consistent database when your tests are run. This
keeps you from having to add test data to a production database, which you probably don’t want
to corrupt with test data.

Rails tests use the Ruby Test::Unit testing library, which you read about in the previous section.
You’ll normally run your Rails application tests using the Rake utility. Rails comes with built-in
tasks that let you specify which tests you want to run. Later in this chapter, when you begin writ-
ing tests, you’ll see exactly how to use Rake to run your tests.

Rails test directory
At the top level of a Rails project is a test directory that contains all of the test files that Rails gener-
ates, and which you use to build the tests for your application. Inside the test directory is the fol-
lowing directory structure:

test/
 fixtures/
 functional/
 integration/
 mocks/
 development/
 test/
 unit/

This directory structure maps to the three types of tests that Rails supports: functional, integration,
and unit tests. Later in this chapter, you’ll have the chance to write each of these types of tests for
the Book Shelf application. The test directory also contains directories for fixtures and mocks.
Fixtures are files that allow you to set up test data that can be used by your applications. Fixtures
will save you a lot of time and effort when writing Rails tests.

Normally, when you write unit tests, you have to first write code that will create test data and get
the database into a known populated state. Rails fixtures do most of that work for you. Mocks are
classes that allow you to replace dependencies that are difficult to test with. For example, like the
Book Shelf application, your application might have a class that accesses the Amazon Web Service
or another external Web service.

343

Testing the Book Shelf Application 9

In your test, if you don’t want to actually make calls to Amazon, you could implement that class as
a mock, and use the mock in your tests.

Rails test lifecycle
When you run your Rails application’s tests, a standard lifecycle is followed each time. This lifecy-
cle consists of the following steps:

 1. Load up test fixtures. This clears the database tables and loads your fixture data into the
database.

 2. If your test accesses data, it is read from the database.

 3. After your tests run, the database is rolled back to its starting state. Tests are
wrapped in transactions, making this easy for Rails.

This lifecycle is carried out for you automatically by Rails each time you run your tests using the
Rake command.

Setting Up a Test Database
As you’ve learned previously, Rails applications support several different runtime environments.
One of the environments supported is a test environment. The test environment is used when you
run your application’s tests. You define a separate database for each of your application’s environ-
ments. In this section, you will prepare a test database for the Book Shelf application that was
developed in Chapters 6, 7, and 8. You can download the completed source code for the Book
Shelf application at this book’s Web site, www.rubyonrailsbible.com.

CAUTION CAUTION Although you might be tempted to specify the same database instance for both your
development and test environments, it is very important that you do not. The test

database is completely erased each time you run your tests. In most cases, you do not want to
erase and rebuild your development database every time you run your tests. For the same rea-
son, it goes without saying that you should never specify the same database for both your test
and production environments. That would be a quick way to lose all of your production data, if
you are running unit tests periodically.

344

Developing a Complete Rails ApplicationPart III

The test database that you create here will be used for all of the tests that you’ll write later in this
chapter.

 1. Create the test database. To begin testing, the first thing you need to do is make sure
that you have created and configured a test database. Let’s go ahead and do that now for
the Book Shelf application. Open a command-line and create the MySQL test database
using the MySQL command-line program, as shown here:

>mysql -u root -p create database bookshelf_test

 If you are using a MySQL username other than ‘root,’ make sure that you use the appro-
priate username in the command above.

 The command rake db:create:all will create all the databases specified in your
database.yml file, including the test database.

 2. Configure the test database. Next, you’ll have to configure the test database in your
config/database.yml file just as you configured the development database. Below is an
example configuration for a test database from database.yml:

test:
 adapter: mysql
 database: bookshelf_test
 username: root
 password: <<your_password>>
 host: localhost

 Open up the config/database.yml config file for your Book Shelf application and
make sure that the test database is properly configured in it. Make sure you plug in your
own local database username and password. By default, MySQL is installed with a user
named “root” with an empty password. You can specify an empty password by leaving
the password field blank, like this:

 password:

 3. Prepare the test database. You can run a special Rake command to prepare the test
database. This is run from the command-line in your application’s root directory. Go to
the book_shelf directory and type this:

rake db:test:prepare

 This will copy your database schema (the tables and columns) from the development
database to the test database. If you run your tests via the standard rake commands, this
task is performed for you automatically. However, if you run your tests via an alternate
mechanism, such as the autotest gem, you may need to periodically reset the test data-
base.

Now you should have a test database created and ready for use. Next, you’ll begin writing your
first Rails tests.

345

Testing the Book Shelf Application 9

Functional Tests
Functional tests are used to test an application’s controller methods. When you generate a control-
ler class using the script/generate command, Rails also generates functional test files that you will
use to write functional tests. The functional test files are located in the test/functional subdi-
rectory within your applications directory.

Look at the book_controller_test.rb file in the test/functional directory of your
Book Shelf application:

In Rails 2.0 or higher, the file looks like this:

require ‘test_helper’

class BookControllerTest < ActionController::TestCase
 # Replace this with your real tests.
 def test_truth
 assert true
 end
end

However, the ActionController::TestCase class encapsulates a lot of behavior that used to
be included in each and every functional test file. It’s helpful to know exactly what features are
provided for you in a controller test, so lets take a look at the older version of this file.

require File.dirname(__FILE__) + ‘/../test_helper’
require ‘book_controller’

Re-raise errors caught by the controller.
class BookController; def rescue_action(e) raise e end; end

class BookControllerTest < Test::Unit::TestCase
 def setup
 @controller = BookController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 # Replace this with your real tests.
 def test_truth
 assert true
 end
end

This is the functional test stub that was created by the generate script when you generated the
book controller class. You should see similar test files for the other Book Shelf controller classes. As
is, this stub is not terribly useful, but let’s take a closer look at what it does contain.

346

Developing a Complete Rails ApplicationPart III

The first two lines of the file require the book_controller class file and a test_helper file.
The test_helper file is located at the top level of the tests directory, as the test/test_
helper.rb file. You’ll see how to use that file later in this chapter. It is a place where you can put
methods that you want to use in more than one of your tests.

require File.dirname(__FILE__) + ‘/../test_helper’
require ‘book_controller’

After the require statements, you see these two lines:

Re-raise errors caught by the controller.
class BookController; def rescue_action(e) raise e end; end

This line ensures that any exceptions that are raised by the BookController class will be
thrown from the test class as well, and not just silently ignored.

Next comes the definition of the book controller test class, shown here:

class BookControllerTest < Test::Unit::TestCase
 def setup
 @controller = BookController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 # Replace this with your real tests.
 def test_truth
 assert true
 end
end

The first thing to notice about the class is that it extends the Test::Unit::TestCase class,
which is a part of the standard Ruby unit-testing module, Test::Unit. All of the tests you write will
extend this class. The Rails testing facilities are built on top of the Test::Unit module. You can use
Test::Unit for unit testing in Ruby, even outside of Rails applications.

The test class is generated with two methods already defined, setup and test_truth. The
setup method is a place where you can put code that you want to execute before each test runs.
In this setup method, an instance of the BookController is created, along with request and
response object instances. Each of these objects will be used within the tests that you’ll write
shortly.

347

Testing the Book Shelf Application 9

The test_truth method is a simplistic test that you’ll replace when you begin writing the real
tests. This test uses the assert method to test the value true which will always be true, and thus
the test will always pass. This is the assert method from the Test::Unit::TestCase class.

Before you write any real tests, let’s look at how to run tests for a Rails application, and make sure
that what is there so far gives you passing tests.

Running a test
From the book_shelf directory, you can run an individual test such as the book controller test,
like this:

> ruby test/functional/book_controller_test.rb
Loaded suite test/functional/book_controller_test
Started
.
Finished in 1.068 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

If all goes well, you should see the output shown above, indicating success. The single period that
appears in the output after the line containing ‘Started’ indicates that the test contained one
test. A period will be output for each successful test that is run. If a test fails or results in an error,
the period will instead be the letter ‘F’ or ‘E’ to indicate failure or error, respectively. The meaning
of success is the most obvious, but what is the difference between a failing testing and an error
test? They are defined as follows:

n Failure: This means that the code completed normally, but an assertion has failed. This is
usually indicative of the code under test not performing as it should.

n Error: This means that a exception was thrown while trying to run a test, preventing the
code from completing normally.

The last line of the output gives a summary of the test results. In this case, there was 1 test run and
1 assertion, with 0 failures and 0 errors.

You normally will want to run more than a single test class or a single test suite. This is where Rake
comes in handy. Rails includes Rake scripts that will allow you to execute all of your tests at once.
To execute all of your functional tests, try this from the book_shelf directory:

> rake test:functionals

You should see output similar to that shown in Figure 9.2.

348

Developing a Complete Rails ApplicationPart III

 FIGURE 9.2

Using Rake to run functional tests

Creating a test
Go ahead now and make the BookControllerTest class more useful by creating some real
functional tests in it. After each test is written, you rerun the tests to make sure that they still pass.
The first test you write will test the list method of the BookController. The list method
looks like this:

def list
 @books = Book.find(:all)
 @books.each {|book| book.exists = true}
 @title = “Book Shelf All Books”
end

Here is what you want to test for the list method:

n Simulate the user hitting the page with a GET request.

n Verify that the list method assigns the page title, and that it has the correct value.

n Verify that the list method assigns the books variable.

n Verify that the size of the books array is what is expected.

n Check for the proper HTTP response of success.

n Verify that the correct erb template is rendered.

Before you begin writing the test, you will want to set up some test fixtures to insert some test data
into your database.

349

Testing the Book Shelf Application 9

Setting up fixtures
One of the things in the list of items to verify is the size of the books array that is assigned by the
list method. In order for this to be a value other than zero, you need to make sure that the test
database contains a few book records.

Do you have to write code to insert book records into the database? Because of the fixture support
in Rails, you do not have to write that code. Fixtures are simple text files that define test data using
the YAML format.

If you open up the fixture that was automatically generated for book, contained in test/
fixtures/books.yml, you should see this:

one:
 id: 1
two:
 id: 2

This defines two book objects, each containing only an id field. The rest of the fields for each
book record will be null. However, you can edit this file to create more realistic test data. Do that
now by editing the file to look like this:

one:
 title: Ruby on Rails Bible
 author: Timothy Fisher
 description: A book about the Rails framework.
 release_date: May 12, 2008
 image_url_small: http://www.rubyonrailsbible.com/small.jpg
 image_url_medium: http://www.rubyonrailsbible.com/medium.jpg
 image_url_large: http://www.rubyonrailsbible.com/large.jpg
 amazon_url: http://www.rubyonrailsbible.com
two:
 title: A Test Book
 author: John Tester
 description: A book about testing.
 release_date: January 1, 2007
 image_url_small: http://www.testing.com/small.jpg
 image_url_medium: http://www.testing.com/medium.jpg
 image_url_large: http://www.testing.com/large.jpg
 amazon_url: http://www.testing.com

Now the books fixtures file contains two fully described book records.

350

Developing a Complete Rails ApplicationPart III

Using Ruby in fixtures
You can also embed Ruby inside of your test fixtures, the same way you embed Ruby in rhtml
template files. You use embedded Ruby (ERb) to put Ruby in your fixtures. You won’t need this for
the fixtures that you created so far, but it can be a useful thing to know. Let’s cover it now.

ERb can only be used in YAML-formatted fixtures. You cannot use it with CVS fixtures. Below is an
example of how you might use ERb to populate date fields in your test records:

current_book_entry
 title: New and Exciting Stuff
 author: Camden Fisher
 created_at: <%= (Date.today).to_s %>
 updated_at: <%= (Date.today).to_s %>

old_book_entry
 title: The World of Ruby
 author: Timmy Fisher
 created_at: <%= (Date.today - 60).to_s %>
 updated_at: <%= (Date.today - 60).to_s %>

In this fixture, the created_at and updated_at fields are populated using the Date class
from Ruby. The first record, current_book_entry, will get the current date set for both of the
fields. The second record, old_book_entry, will get a date 60 days in the past for both of these
fields.

Another scenario that could be useful would be to use Ruby loops to generate multiple records, as
in this example:

Create a Fixture in CSV Format

Fixtures can also be created in CSV format. To create a CSV header file, the first line must contain
the field names, comma-separated, and each subsequent line must contain a comma-separated

record. For example, a simple book record fixture might be defined as follows:

id, title, author, description
1,Ruby on Rails Bible,Timothy Fisher,A book about the Rails framework.
2,A Test Book,John Tester,A book about testing.

Unlike when using the YAML format, you do not give each record a unique name in the CSV file.
Instead, unique record names are automatically generated for you by combining the model name, a
dash “-”, and an incrementing counter value. In this example, the first record would have the name
‘book-1’, and the second would have the name ‘book-2’.

351

Testing the Book Shelf Application 9

<% for i in 1..50 %>
item_<%= i %>
 title: Ruby Book <%= i %>
 author: Author <%= i %>
 created_at: <%= (Date.today - i).to_s %>
 updated_at: <%= (Date.today - i).to_s %>
<% end %>

This would save you from having to type large amounts of data when you want to simulate a lot of
records in your database.

Including fixtures in your tests
Now that you have created some book records in a books fixture, you have to make sure that fix-
ture is loaded by the book controller tests. To load a fixture in a test class, you have to use the
fixtures method, followed by the names of the fixtures that you want to load. To load the
books fixture in the book controller tests, you would modify the BookControllerTest class
to look like this:

class BookControllerTest < ActionController::TestCase

 fixtures :books

end

You can pass the fixtures method either a symbol or a string value containing the name of the
fixture to load. You can load multiple fixtures by passing them in a comma-separated list.

Writing a test method
Okay, now that you have your test database created, and some book records defined in a test fix-
ture, it’s finally time to write a real functional test. Open up the book_controller_test.rb
file and add a test_list method that looks like this:

 def test_list
 get :list
 title = assigns(:title)
 assert_equal “Book Shelf All Books”, title
 books = assigns(:books)
 assert_equal 2, books.size
 assert_response :success
 assert_template “list”
 end

In the first line of this method, the get method is called. This will simulate a GET request being
routed to the list method of the BookController class. There are five request types that you
can submit using these methods:

352

Developing a Complete Rails ApplicationPart III

n get

n post

n put

n head

n delete

Of these, you will most often be using the get and post methods. These are the most commonly
used HTTP request methods. You can also pass parameters to these methods by adding extra
parameters to the method call. For example, if you wanted to make a GET request and pass an id
parameter, you could use this line of code:

get :list, :id => 1

In the second line of the test method, you see this code: title = assigns(:title). The
assigns method is provided by Rails. This method looks for an instance variable defined in your
controller’s action method with the name passed in. In this line, title = assigns(:title),
the value of the instance variable @title which was assigned by the list action is placed into
the local variable, title.

The next line of the test method asserts that the title contains the value you expect. Then, you grab
the value of the @books instance variable and assert that it contains two elements, by using the
size method of the Array class. Recall that two is the correct number of books to expect because
you added two book records to the books fixture.

There is another way to get the values of instance variables assigned by your action methods. Rails
makes available four hashes that contain information that you might want to inspect. The four
hashes that you can use are:

n assigns: Instance variables assigned in the action that are available for the view

n cookies: Holds any cookies sent to the user on this request

n flash: Used to access messages stored in the flash area

n session: Holds objects stored in the session

Each of these hashes is also available as a method call -- in other words, you can do either of
assigns[“person”] or assigns(:person). In the specific case of assigns, the hash ver-
sion takes string keys, while the method version takes symbol keys, which is admittedly a little
odd. You’ll see some of these hashes used later in this chapter.

The last two lines of the test_list method make use of two assertions that you have not seen
before: assert_response and assert_template. In the next section, you’ll learn about
these and some additional assertions that Rails makes available specifically for testing your control-
ler methods.

353

Testing the Book Shelf Application 9

More assertion methods
The assert_response and assert_template assertions used by the test_list method
are not a part of the Test::Unit framework. These methods are defined by the ActionController
module of Rails. Rails adds the following assertions for use in testing your controllers:

n assert_dom_equal(expected, actual, message=””)
Compares two HTML strings, expected and actual, to see if they are equivalent.
Details that do not affect the HTML meaning of the string, such as order of attributes, will
not break the equivalence.

n assert_dom_not_equal(expected, actual, message=””)
Compares two HTML strings, expected and actual, to see if they are not equivalent.
Details that do not affect the HTML meaning of the string, such as order of attributes, will
not break the equivalence.

n assert_generates(expected_path, options, defaults={}, extras={},
message=nil)
Asserts that the provided options can be used to generate the provided path, passed in as
a string.

n assert_no_tag(*opts)
Asserts that the specified tag does not exist. The options are exactly as in assert_tag.
In Rails 2.x, assert_select is preferred.

n assert_recognizes(expected_options, path, extras={}, message=nil)
Asserts that the expected options, which is a hash of the form to be passed to url_for,
result in the string passed into the path argument. If the route requires a specific HTTP
action, then the path argument is a hash of the form {:path => ‘the/path’,
:method => :post}.

 Any query options that you want to test need to be passed in the extras hash, rather than
including them as part of the path string.

n assert_redirected_to(options={}, message=nil)
Asserts that the redirection options passed in as options match those of the redirect
that was the result of the last action. You do not have to specify all of the options for a
successful match, only specified conditions are tested.

 For example, the assertion assert_redirected_to(:controller => “book”)
will match the redirect of redirect_to(:controller=>”book”,
:action=>”show”).

n assert_response(type, message=nil)
Asserts that the response is one of the following types:

n :success

 Status code was 200

n :redirect

 Status code was in the 300-399 range

354

Developing a Complete Rails ApplicationPart III

n :missing

 Status code was 404

n :error

 Status code was in the 500-599 range

 You can also pass an integer as the argument, in which case the response code must
match exactly.

n assert_routing(path, options, defaults={}, extras={},
message=nil)
Asserts that the URL generated from options must be the same value as path, and that
the options recognized from path are the same as options. In other words, it performs
both the assert_recognizes and the assert_generate tests in one fell swoop.

n assert_select(element, selector, equality?, message)

 The preferred Rails 2.0 mechanism for testing HTML output. In general, it returns true if
there is an HTML tag matching the selector and the equality test is chosen. There are a
few details as seen in the sidebar “assert_select In Depth.”

n assert_select_email

 Allows you to perform tests inside the body of an e-mail that would have been sent by
the controller action. This method takes no regular arguments; all tests performed on the
body are passed as a block argument. If there is more than one delivery in the action
being tested, this assertion will be run against each of them.

n assert_select_encoded(element) { |elements| ... }

 Typically called inside an assert_select, assumes that the element is encoded HTML
(as might be passed inside an XML document, for example), decodes it, and allows you to
run further tests on the decoded element.

n assert_select_rjs(id?) {block}

n assert_select_rjs(statement, id?) {block}

n assert_select_rjs(:insert, position, id?) {block}

 The Ajax version of assert_select. As with the HTML version, if the test is written
without a block then the test just asserts the existence of a specific RJS call. If a block is
specified, then further assertions can be made on the HTML passed as part of the RJS call,
as in an insert_html call call. This includes further assert_select calls on the
generated HTML.

 In the one argument form, the test checks to see if any RJS statements have been made
against the DOM id specified. In the two argument form, it checks for the specific RJS
method of the same name and the DOM id specified. The three argument form is specific
to RJS insert calls and specifies the position within the DOM element where the insertion
is expected to take place.

355

Testing the Book Shelf Application 9

assert_select In Depth

The selector argument specifies a set of HTML tags using CSS selector syntax, normally a string,
but also possibly an HTML::Selector object. The first part of the selector is the HTML tag

being searched for. Additions to the selector narrow the scope of the match, using standard CSS
syntax to specify a CSS class (tag.class), a DOM id (tag#id), or an arbitrary attribute of the
HTML tag (a[selected=”true”]).

The equality test can also use *= meaning that the attribute contains the value ^= to test for an attri-
bute that starts with the value and $= to test for an attribute that ends with the value.

There is also a series of pseudo-elements that allow you to specify a tag from the list of matching
tags, such as form:first-child , form:last-child , form:nth-child(n) ,
form:nth-last-child(n). Also the normal CSS specifiers for tag relationships, such as h1 >
div, work as they do in a CSS page.

If no equality test is specified, then the test will pass if there is at least one HTML tag in the response
body of the controller action that matches the selector. You can get some behavior if the equality
argument is true. If the equality argument is false, you get the opposite behavior, testing that the
specified tag is not in the output.

If the equality argument is an integer, the test passes if that exact number of HTML tags matches the
selector. If the argument is a range, the test passes if the number of HTML tags is in the range. If the
argument is a string, the test passes if at least one matching HTML tag has inner text that matches the
text. If it’s a regular expression, then at least one matching HTML tag must have inner text that
matches the expression.

If you want to do more than one test on the same selector, you can pass a hash of equality tests. Pass
string or regex arguments with the key :text or :html. The integer argument can be passes as
:count, and the range argument is passed in two parts as :minimum and :maximum.

The following example searches for li elements that are direct descendants of ul elements and
have the CSS class bold. It verifies that there is exactly one such tag, and that its contents are Fred:

assert_select(“ul>li.bold”, :text => “Fred”, :count => 1

The fourth argument form that starts with an element limits the test to that element and its children.
Normally, you would not call that form directly but rather implicitly invoke it via a block argument
to another assert_select. For example:

assert_select “form”, 1 do
 assert_select “input[type=”hidden”], 1
end

In this snippet, the inner assert_select call will only match elements that are inside the element
matched by the outer call.

356

Developing a Complete Rails ApplicationPart III

n assert_tag(*opts)

 Asserts that there is a tag/node/element in the body of the response that meets all of the
given conditions (see the sidebar “assert_tag(*opts) Conditions”). The assert_select
test is preferred.

n assert_template(expected=nil, message=nil)

 Asserts that the request was rendered with the appropriate template file.

n assert_valid(record)

 Asserts that the passed-in record is valid according to Active Record — that is, it passes
all of a model’s validations.

For further details and examples using all of these assertions, see the Ruby on Rails documentation.

Verifying your test
The test_list method has accomplished what I set out to test. Here were the things that
I wanted to test for the list method, along with a brief description of how they were tested:

n Simulate the user accessing the page with a GET request. This is accomplished using
the get method.

n Verify that the list method assigns the page title, and that it has the correct value.
This is completed using the assigns hash and the assert_equal method.

n Verify that the list method assigns the books variable. This is completed using the
assigns method.

n Verify the size of the books array. This is completed with an assert_equal method.

n Check for the proper HTTP response of success. This is verified using the assert_
response method.

n Verify that the correct ERb template is rendered. This is verified using the assert_
template method.

At this point, you think the method is well tested, but you have not run the test yet to see if it
works. Let’s do that now. You should use Rake to run the functional tests and verify that your new
book controller test passes.

If you do not get passing test results, go back and look at your test code closely and make sure that
you did not make any errors.

Adding more tests
That’s one test down, but let’s keep going and add a test for the show method of the
BookController. The show method looks like this:

357

Testing the Book Shelf Application 9

assert_tag(*opts) Conditions

The conditions parameter must be a hash of any of the following keys (all are optional):

n :tag

 The node type must match the corresponding value.

n :attributes

 A hash. The node’s attributes must match the corresponding values in the hash.

n :parent

 A hash. The node’s parent must match the corresponding hash.

n :child

 A hash. At least one of the node’s immediate children must meet the criteria described by
the hash.

n :ancestor

 A hash. At least one of the node’s ancestors must meet the criteria described by the hash.

n :descendant

 A hash. At least on of the node’s descendants must meet the criteria described by the hash.

n :sibling

 A hash. At least one of the node’s siblings must meet the criteria described by the hash.

n :after

 A hash. The node must be after any sibling meeting the criteria described by the hash and
at least one sibling must match.

n :before

 A hash. The node must be before any sibling meeting the criteria described by the hash
must match.

n :children

 A hash for counting children of a node. It accepts the following keys:

n :count

 Either a number or a range that must equal or include the number of children that
match.

n :less_than

 The number of matching children must be less than this number.

n :greater_than

 The number of matching children must be greater than this number.

n :only

 Another hash consisting of keys to use to match the children; only matching children
will be counted.

358

Developing a Complete Rails ApplicationPart III

def show
 @book = Book.find(params[:id])
 @title = “Book Detail”
end

For the show method, you’ll want to verify that the @book instance variable set does indeed point
to the expected book. In this test, you’ll also see how you can verify the actual contents of the page
that is rendered.

Add the test_show method to the book_controller_test.rb file:

def test_show
 get :show, :id=>’1’
 book = assigns(:book)
 assert_equal “Ruby on Rails Bible”, book.title
 title = assigns(:title)
 assert_equal “Book Detail”, title
 assert_response :success
 assert_template “show”
end

So far in the test_show method, you see basic testing being done as you saw for the test_
list method. There is nothing new here yet. You have verified that the correct template is ren-
dered, but it would be much better if you could also verify that the rendered template displays the
data that you expect. That is where the assert_select method comes in handy.

With assert_select, you can verify the contents of the template that is returned. Edit the
test_show method to add a few tag assertions, like this:

def test_show
 get :show, :id=>’1’
 book = assigns(:book)
 assert_equal “Ruby on Rails Bible”, book.title
 title = assigns(:title)
 assert_equal “Book Detail”, title
 assert_response :success
 assert_template “show”
 assert_select “div#book_image”
 assert_select “div#book_summary”
 assert_select “div#book_reivews”
end

Now there are three assert_select calls. Each of these calls looks for a different element of the
page that is rendered. The first assert_select will verify that the page contains a div tag con-
taining an id attribute with the value book_image.

359

Testing the Book Shelf Application 9

The next two assertions verify the presence of a div tag with the id attribute containing the value
book_summary, and a div tag with the id attribute containing the value book_reviews. With
these three assertions, you have verified that the rendered page contains the correct basic structure,
and thus is most likely the correct page. Of course, you could go further and assert each element
on the page to make certain that it is built correctly.

Add some reviews
The book show page shows a book’s reviews in addition to details about the book. When the show
action of the book controller is called, books are retrieved from the database. Because books con-
tain a has_many relationship to reviews, the corresponding reviews should also be returned. It’s a
good idea to further extend the test_show method to verify that those book reviews are indeed
returned and properly displayed on the book show page.

So far, you’ve created fixtures only for book records. The test database will not contain any review
records. Go ahead and add some reviews to the test database by adding some review fixtures. Open
up test/fixtures/reviews.yml and edit it to look like this. Each review specifies the name of
the user and book fixtures to which it is related — the user and book fixtures must also exist:

one:
 user: valid_user
 book: one
 body: This is a test review.
 title: Test Review 1
two:
 user: valid_user
 book: one
 body: Another test review.
 title: Test Review 2

Now the first book defined in the books fixture will have two reviews associated with it. Let’s verify
that the has_many association on the book model is working by making sure that the book with
id = 1 also has an array of two book reviews. After adding an assertion (the bold text in the fol-
lowing code) to verify the size of the book reviews array, the test_show method will now look
like this:

def test_show
 get :show, :id=>’1’
 book = assigns(:book)
 assert_equal “Ruby on Rails Bible”, book.title
 assert_equal 2, book.reviews.size
 title = assigns(:title)
 assert_equal “Book Detail”, title
 assert_response :success
 assert_template “show”
 assert_select “div#book_image”
 assert_select “div#book_summary”
 assert_select “div#book_reivews”
end

360

Developing a Complete Rails ApplicationPart III

The last thing you’ll do to finish the test_show method is to add a few more assert_select
methods to verify that the book reviews are rendered as expected. Listing 9.1 shows the final form
of the test_show method.

 LISTING 9.1

Final test_show Method

def test_show
 get :show, :id=>’1’
 book = assigns(:book)
 assert_equal”Ruby on Rails Bible”, book.title
 assert_equal 2, book.reviews.size
 title = assigns(:title)
 assert_equal “Book Detail”, title
 assert_response :success

 assert_template “show”
 assert_select “div#book_image”
 assert_select “div#book_summary”
 assert_select “div#book_reivews”
 assert_select “div#reivews” do
 assert_select “div.review”, 2 do
 assert_select “span.review_title”
 assert_select “span.review_user”
 assert_select “span.review_body”
 end
 end

end

The first new assert that is added deserves a bit of explanation, as it is more complicated than the
previous uses of assert_select. This assertion looks for a div tag containing an id attribute
named reviews. That much you’ve seen before, but there is more. In order to match, the div tag
must also contain two child div tags, each with a class attribute named review. The last four
assertions will assure that the rendered page correctly contains the review information.

Verify the tests again
With the completed test_list and test_show methods, let’s run the functional tests again to
verify that the new tests pass. If all goes well, you will have no failures.

In a real project, you would ideally have been writing these tests either before you wrote the code
or shortly after you wrote the code. All of the controllers would have a suite of tests providing full
functional test coverage for the application. Full test coverage is not shown in this book, but if you
download the Book Shelf application from this book’s Web site, you can look through a full suite
of tests that are included.

361

Testing the Book Shelf Application 9

Unit Tests
Unit tests are used to test methods contained in your model classes. These tests are used to test the
majority of your business logic, which should be in your models. Unit testing is also the most pop-
ular form of testing that Rails supports.

While not everyone is familiar with writing functional and integration tests, most good developers
today do have some practice writing unit tests. I strongly encourage you to write all three types of
tests, but at a minimum, you should write unit tests for your applications.

Take a look at one of the unit test files that was generated for you while you were developing the
Book Shelf application. The code below is the current unit test file for the user model, contained in
test/unit/user_test.rb:

require File.dirname(__FILE__) + ‘/../test_helper’

class UserTest < ActiveSuport::TestCase
 fixtures :users

 # Replace this with your real tests.
 def test_truth
 assert true
 end
end

So far, the unit test contains only a dummy test method that will always succeed. Listing 9.2 shows
the user model code that you’ll write unit tests for.

 LISTING 9.2

User Model Code

require ‘digest/sha1’

class User < ActiveRecord::Base

 has_and_belongs_to_many :books

 validates_length_of :login, :within => 3..40
 validates_length_of :password, :within => 5..40
 validates_presence_of :login, :email, :password, :password_

confirmation, :password_salt
 validates_uniqueness_of :login, :email
 validates_confirmation_of :password
 validates_format_of :email, :with => /^([^@\s]+)@((?:[-a-z0-

9]+\.)+[a-z]{2,})$/i, :message => “Invalid email”

continued

362

Developing a Complete Rails ApplicationPart III

 LISTING 9.2 (continued)

 attr_protected :id, :password_salt

 attr_accessor :password, :password_confirmation

 def self.authenticate(login, pass)
 u=find(:first, :conditions=>[“login = ?”, login])
 return nil if u.nil?
 return u if User.encrypt(pass, u.password_salt)==u.password_hash
 nil
 end

 def password=(pass)
 @password=pass
 self.password_salt = User.random_string(10) if !self.password_salt?
 self.password_hash = User.encrypt(@password, self.password_salt)
 end

 def send_new_password
 new_pass = User.random_string(10)
 self.password = self.password_confirmation = new_pass
 self.save
 Notifications.deliver_forgot_password(self.email, self.login, new_

pass)
 end

 protected

 def self.encrypt(pass, password_salt)
 Digest::SHA1.hexdigest(pass+password_salt)
 end

 def self.random_string(len)
 #generate a random password consisting of strings and digits
 chars = (“a”..”z”).to_a + (“A”..”Z”).to_a + (“0”..”9”).to_a
 newpass = “”
 1.upto(len) { |i| newpass << chars[rand(chars.size-1)] }
 return newpass
 end
end

The User class contains the following methods, which you’ll want to test:

n self.authenticate

n password

363

Testing the Book Shelf Application 9

n self.encrypt

n self.random_string

Before you write any tests, the first thing you’ll want to do is set up some user fixtures so that you
have user records to test with.

Setting up user fixtures
As you did when writing functional tests, you should first be thinking about the test data that you
will use. Because you will be testing the user model, it makes sense that you will need some sample
user test records. Edit the users fixture, located in test/fixtures/users.yml. Add a single
user to the fixture, as defined below:

valid_user:
 login: clark
 email: clark@dailyplanet.com
 password_salt: 123
 password_hash: f2b14f68eb995facb3a1c35287b778d5bd785511 #secret

This record represents a valid user of the Book Shelf application. Because a password hash is a
common element of most authentication systems, let’s talk about how the password hash test value
was determined. Using the Book Shelf user model and the handy Rails Console application, you
can find the hash for any password and salt combination that you want.

Let’s walk through the steps:

 1. Start up the Rails Console in the book_shelf directory.

> ruby script/console

 2. Call the User.encrypt method to calculate a password hash.

>> hash = User.encrypt(‘secret’,’123’)
=> f2b14f68eb995facb3a1c35287b778d5bd785511

 The User.encrypt method calculates the password hash for the password and salt val-
ues passed in, and returns it. You can then plug this value into a user fixture. This is the
same method that the Book Shelf application will use when it calculates password hashes
at run-time.

Test authentication
Now that you have a user fixture defined, you have all you need to begin writing unit tests. Start
by writing a unit test for the authenticate method. The authenticate method is a class
method of the User class. It takes a login and password and returns a User object if the following
conditions are satisfied:

364

Developing a Complete Rails ApplicationPart III

n A user exists in the database with a login matching the login value passed in.

n The correct password value for that user is passed in.

Because you added a user to the users fixture, when these tests are run, there will be a valid user
in the test database. You can test using a valid login and password by passing in the login and pass-
word that was used in the fixture record, “clark” and “secret”. Start the test_authenti-
cate method with that test case:

def test_authenticate
 # check with a valid login and password
 assert_equal @valid_user, User.authenticate(“clark”, “secret”)
end

When you write unit tests, keep in mind that you should not only test for positive conditions, such
as whether a method works when it receives data that it expects, but you should also verify that
the method behaves as expected when it receives input that will not result in a good or passing
condition. In the case of the authenticate method, you should also verify that it works when
you pass in an invalid login, an invalid password, or both. Add those test cases to the test_
authenticate method so that it now looks like this:

def test_authenticate
 # check with a valid login and password
 assert_equal @valid_user, User.authenticate(“clark”, “secret”)

 # check with incorrect login, correct password
 assert_nil User.authenticate(“badlogin”, “secret”)

 # check with incorrect password, correct login
 assert_nil User.authenticate(“clark”, “badpassword”)

 # check with incorrect login and password
 assert_nil User.authenticate(“badlogin”, “badpassword”)
end

With those additions, you have a more thorough test for the authenticate method. The test
will make sure that authenticate returns a valid user object when it should, and it will make
sure that it does not return a user instance when it should not.

With the test_authenticate method complete, it’s time to run the unit tests to make sure
that everything works as expected. All of your unit tests can be run with a special Rake command,
just like you used to run the functional tests. Run the rake test:units command and verify
that you receive output similar to that shown in Figure 9.3.

365

Testing the Book Shelf Application 9

 FIGURE 9.3

Running unit tests, part 1

Test validations
Now that you have a test to validate the authenticate method, the next thing that you proba-
bly want to validate with some unit tests is the validations in the user model. Recall that in the user
model the following validations were defined:

validates_length_of :login, :within => 3..40
validates_length_of :password, :within => 5..40
validates_presence_of :login, :email
validates_uniqueness_of :login, :email
validates_confirmation_of :password
validates_format_of :email,
 :with => /^([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]

{2,})$/i,
 :message => “Invalid email”

These validations deal with three attributes of the user model: password, login, and email.
You’ll write tests to check that each of these attributes are properly validated.

Test valid password
The password attribute has a minimum and maximum length constraint, and a password confir-
mation constraint. The validates_confirmation_of validation will make sure that in order
to create a valid user, both a password and a password_confirmation attribute must be
present. If you consider all of these constraints, you can create the following possible password
scenarios:

n Password is too short

n Password is too long

n Password is empty

n Password confirmation is empty

n Password is valid

366

Developing a Complete Rails ApplicationPart III

The test_valid_password method should then test each of these scenarios and verify the
correct behavior. Add the test_valid_password method to the UserTest:

def test_valid_password
 u = User.new
 u.login = “tim”
 u.email = “tim@timothyfisher.com”

 # password too short
 u.password = u.password_confirmation = “a”
 assert !u.save
 assert u.errors.invalid?(‘password’)

 # password too long
 u.password = u.password_confirmation =
 “123456789012345678901234567890123456789012345”
 assert !u.save
 assert u.errors.invalid?(‘password’)

 # empty password
 u.password = u.password_confirmation = “”
 assert !u.save
 assert u.errors.invalid?(‘password’)

 # empty confirmation
 u.password = “password”
 assert !u.save
 assert u.errors.invalid?(‘password_confirmation’)

 # valid password
 u.password = u.password_confirmation = “tims_password”
 assert u.save
 assert u.errors.empty?
end

Notice the lines that look similar to this one:

assert u.errors.invalid?(‘password’)

This line looks at the errors that are a result of validating the user object’s attributes. The
invalid? method will check to see if the attribute name that is passed in is invalid. If it is
invalid, based on having run the validation, a value of true will be returned. If the field passed
into invalid? is actually valid after having run the validation, a value of false is returned.
Therefore, these assertions will pass only if the field names passed into the invalid? method are
determined to be invalid, based on the validations of the user model.

With these tests in place, you can be fairly confident that the password validations work as expected
if all the tests pass. Check that now by running the unit tests again. Once again, use the rake
test:units command from the book_shelf directory, and expect the output shown in Figure 9.4.

367

Testing the Book Shelf Application 9

 FIGURE 9.4

Running unit tests, part 2

Test valid login
Just as you were able to create a set of scenarios for passwords that could be submitted, let’s do
the same thing for the possible login values that can be submitted. The login attribute has an
additional constraint in that it must be unique. You cannot use a login that has already been used
by another user in the database. The possible login value scenarios are as follows:

n Login is too short

n Login is too long

n Login is empty

n Login is not unique

n Login is valid

The test_valid_login method will test each of these scenarios and verify the correct behavior.
Add the test_valid_login method to the UserTest:

def test_valid_login
 u = User.new
 u.password = u.password_confirmation = “cams_password”
 u.email = “camden@fisherfamily.com”

 # login too short
 u.login = “a”
 assert !u.save
 assert u.errors.invalid?(‘login’)

 # login too long
 u.login = “123456789012345678901234567890123456789012345”
 assert !u.save
 assert u.errors.invalid?(‘login’)

368

Developing a Complete Rails ApplicationPart III

 # empty login
 u.login = “”
 assert !u.save
 assert u.errors.invalid?(‘login’)

 # non-unique login
 u.login = «clark»
 u.password = u.password_confirmation = «my_password»
 assert !u.save

 # valid login
 u.login = “camden”
 assert u.save
 assert u.errors.empty?
end

After you’ve completed the test_valid_login method, turn to the now-familiar Rake utility
and make sure that all of these tests pass as expected. The expected output is shown in Figure 9.5.

 FIGURE 9.5

Running unit tests, part 3

Looking at the test results, you have now created 24 assertions, with one more set of validations to
write tests for.

Test valid e-mail
To test the e-mail validations, you’ll again start by compiling a list of possible e-mail scenarios. For
the e-mail field, there are really only three possible scenarios, defined here:

n E-mail is empty

n E-mail is invalid format

n E-mail is valid

369

Testing the Book Shelf Application 9

The test_valid_email method will test each of these scenarios and verify the correct behavior.
Add the test_valid_email method to the UserTest:

def test_valid_email
 u = User.new
 u.password = u.password_confirmation = “cams_password”
 u.login = “camden”

 # no email
 u.email = nil
 assert !u.save
 assert u.errors.invalid?(‘email’)

 # invalid email
 u.email=’camatfisherfamily.com’
 assert !u.save
 assert u.errors.invalid?(‘email’)

 # valid email
 u.email=”camden@fisherfamily.com”
 assert u.save
 assert u.errors.empty?
end

With the completion of the e-mail validation testing, you have now written unit tests to make sure
that all of the validations on the Book Shelf user model are indeed working as expected. Now’s a
good time to run the unit tests a final time to make sure that they all work as expected. Figure 9.6
shows the results you should see when you run the unit tests.

 FIGURE 9.6

Running unit tests, part 4

As with functional testing, you were walked through the process of writing unit tests for the Book
Shelf application. However, the test coverage is far from complete at this point.

370

Developing a Complete Rails ApplicationPart III

I encourage you to continue this process and write unit tests for the remaining user model meth-
ods, and then move on to the other models. At the very least, download the Book Shelf source
code from this book’s Web site and look at the complete suite of unit tests.

In the next section, you’ll see the final type of testing that Rails supports, integration tests.

Integration Tests
Integration tests allow you to test the interaction between multiple controllers. These tests allow
you to test out more complete user scenarios, or use cases from your requirements. Another way of
thinking about integration tests is that they allow you to simulate a user clicking around and
accessing various pages that make up your application.

In this section, you’ll write an integration test for the Book Shelf application to test the scenario of
having a new user register for the site. Integration tests are the only type of test for which you do
not get any starting-point files generated for you by Rails as you generate your models and control-
lers. However, there is a generate method available that you will use to create a starting point
for your integration tests.

Start by creating an integration test called new_user:

> ruby script/generate integration_test new_user

This will create a single file, new_user_test.rb, in the test/integration directory. You
will create the integration test in this new file. If you open up this test file, you’ll see what has been
created for you:

require “#{File.dirname(__FILE__)}/../test_helper”

class NewUserTest < ActionController::IntegrationTest
 # fixtures :your, :models

 # Replace this with your real tests.
 def test_truth
 assert true
 end
end

You’ll create a test called test_new_user that will test the process of a new user signing up for
the site. You’ll start with the user going to the application home page and clicking the Join Now
link:

def test_new_user
 get “home”
 assert_response :success
 assert_template “index”

371

Testing the Book Shelf Application 9

 get “/user/signup”
 assert_response :success
 assert_template “signup”
end

This looks pretty simple and very similar to test assertions that you have used in the functional
tests that you wrote. The first three lines request the application home page and verify that a suc-
cessful response is returned with the correct template rendered.

The next three lines simulate the user having clicked the “Join Now” link by requesting the signup
page. Again, the response and template rendered are checked with assertions.

After accessing the user signup page, the next thing the user would do is fill out the registration
form and click a Signup button to have the form submitted. Add code to the test to simulate that
process:

def test_new_user
 get “home”
 assert_response :success
 assert_template “index”

 get “/user/signup”
 assert_response :success
 assert_template “signup”

 post “/user/signup”, :user => {:login => ‘tfisher’,
 :first_name => ‘tom’, :last_name => ‘fisher’,
 :email => ‘tom@fisher.com’, :password => ‘password’,
 :password_confirmation => ‘password’}
 assert_response :redirect
 follow_redirect!
 assert_template “user/home”
 assert session[:user]
end

Instead of using the get method to request a page, in this new code, the post method is used to
submit form parameters to the signup action of the user controller. For the form parameters, you
specify a user with all of the fields that are displayed on the signup page filled out. Let’s take a look
at the signup action to see what should be expected next:

def signup
 @title = “Signup”
 if param_posted?(:user)
 @user = User.new(params[:user])
 if @user.save
 session[:user] = @user
 flash[:notice] = “User #{@user.login} created!”
 redirect_to :action => “home”
 else

372

Developing a Complete Rails ApplicationPart III

 flash[:error] = “Signup unsuccessful”
 @user.clear_password!
 end
 end
end

By looking at this method, you can see that if a user is saved successfully, a redirect to the home
action of the user controller occurs. Looking back at the test method, after the post is issued, you
verify that the response returned is a redirect using the assert_response :redirect state-
ment.

The next line tells the test framework to follow the redirect. After following the redirect to the
home action of the user controller, the user/home template should be rendered, and so that is
verified with another assert_template call. In the last line of the method, you see assert
session[:user]. This assertion verifies that the user has been stored in the session.

With the test as is, you have verified that the user is able to reach the home page, move to the user
signup page, and submit new user information to create a new user account. With assertions along
the way, you have verified that the correct responses and templates are received at each step.

At this point, do you know for sure that the user was successfully created? Based on having
received successful responses and the correct pages being rendered, you’d like to think so, but it
would probably be an even better idea to extend the test to have the new user log out and then log
in again. This will verify that the user is successfully able to log in to the new account.

With that complete, you should be satisfied that the new user was successfully created. Add the
following lines after the last assertion of the test_new_user method:

get “/user/logout”
assert_response :redirect
follow_redirect!
assert_template “home/index”
assert !session[:user]

You’ve seen all of these methods and assertions before, and so this code should be pretty straight-
forward. In the last line, notice that you are making sure that the user is no longer stored in the
session. Now go ahead and simulate the user logging back in using the new account to verify that
it is successful. Add these lines to the end of the method again:

post “user/login, :user => {:login=>’tfisher’,
:password=>’password’}

assert_response :redirect
follow_redirect!
assert_template “user/home”
assert session[:user]

The post method is used to submit the user login details to the login action of the user controller.
You then verify that the correct template is rendered, and you ensure that the user is stored in the
session as expected.

373

Testing the Book Shelf Application 9

With that, you have a complete and useful integration test. The completed integration test is
shown in Listing 9.3. Notice that in the integration tests, you did not dive deep into details of the
pages and instance variables with assertions. Verifying those details is the job of the functional tests
for each controller. The purpose of the integration test is to verify the flow of the application at a
higher level and across controllers.

 LISTING 9.3

Complete integration test

def test_new_user
 # visit the application home page
 get “home”
 assert_response :success
 assert_template “index”

 # request user signup form
 get “/user/signup”
 assert_response :success
assert_template “signup”

 # complete new user form and submit it
post “/user/signup”, :user => {:login => ‘tfisher’,
 :first_name => ‘tom’,
 :last_name => ‘fisher’,
 :email => ‘tom@fisher.com’,
 :password => ‘password’,
 :password_confirmation => ‘password’}
assert_response :redirect
follow_redirect!
assert_template “user/home”
assert session[:user]

 # log user out
 get “/user/logout”
 assert_response :redirect
 follow_redirect!
 assert_template “home/index”
 assert !session[:user]

 # log user back in
 post “user/login, :user => {:login=>’tfisher’, :password=>’password’}
 assert_response :redirect
 follow_redirect!
 assert_template “user/home”
 assert session[:user]
end

374

Developing a Complete Rails ApplicationPart III

Running All Tests
At this point, if you’ve been diligently following along with writing the tests for the Book Shelf
application, or if you simply downloaded the application with complete tests, then you have tests
of each type — functional, unit, and integration. While you were developing these tests, you saw
how to run each type independently.

There is also an easy way to run all of the automated tests for your application at once. In fact, the
way in which you run all tests will show you how important the Rails developers felt testing was to
development. If you run the Rake utility with no arguments, all of the tests will be run. The default
task for Rake is to run all of the tests.

Try running all tests now, and verify that you get output similar to that shown in Figure 9.7.

> rake

 FIGURE 9.7

Running all tests

Test Coverage
In this chapter, you have written a handful of tests for the Book Shelf application. However, if you
consider all of the code that you wrote in Chapters 6, 7, and 8, there is still plenty of code for
which no tests exist. A measure of how well the application code base is covered by tests is called
the test coverage. Test coverage can be a good metric to maintain over a development project.

Test coverage is a measure of how much of your code is actually exercised by your test suite. The
coverage tool runs your tests and counts which lines of code are actually touched when running
the tests and which are ignored. By definition, lines of code not touched by any of your tests are
not being properly tested.

375

Testing the Book Shelf Application 9

The standard Ruby tool for measuring test coverage is called rcov. It is available as a ruby gem or
as a native exception. If you can, install the native exception version, it’s about 100 times faster.
Instructions for downloading and installing rcov differ based on operating system, and can be
found at http://eigenclass.org/hiki.rb?rcov.

To integrate rcov with rails, you also need the rails_rcov plugin, which can be installed using
the command:

./script/plugin install http://svn.codahale.com/rails_rcov

With both of those installations taken care of, you now have the extra rake tasks
test:units:rcov, test:functionals:rcov and test:integrations:rcov. Invoking
one of these tests runs the rcov coverage test against the relevant test suite.

The output of these rake tasks is a series of HTML files. The main one, index.html, contains a
list of all files touched by the code suite. For each file, rcov reports the percentage of total lines
touched and the percentage of actual code lines touched. Ideally you are at 100 percent on both
measures. Clicking on a file name shows the source for that file color-coded — green lines are
actually touched in the code, while red ones are not.

Code coverage is a necessary, but not sufficient, condition of a good test suite. The coverage tool
does not know whether the lines are actually involved in an assertion against them, or if the test
just happens to run the line without verifying it’s functionality. You still need to write good tests,
the coverage tool will just show you places that need more focus.

If you want a really involved test of your suite coverage, look up a Ruby gem called Heckle. Heckle
will take a model or controller in your system, make a random change to it, and verify that you
then have a code failure. If you have true complete coverage, than any change in your code should
trigger a test failure somewhere.

Debugging Techniques
Debugging is a process closely related to testing, and Rails also provides you with some special
support for debugging your Rails applications.

The Rails log files
Rails automatically generates and writes to log files as your application runs. The log files are
located in the application’s top-level log directory. The information written to these files can be
one of your greatest resources in debugging problems in your application.

Each of the three environments that Rails defines — development, production, and test — has a
separate log file. These files are named development.log, production.log, and test.log.
As you develop your Rails applications, the development.log file will be the file that you are
primarily interested in. This is also the log file that contains the greatest level of detail.

376

Developing a Complete Rails ApplicationPart III

The information written to the development log files includes the following:

n Incoming request details, including any parameters that are sent.

n Any SQL queries that are performed by the application.

n The results of requests, such as page renders or redirects.

n Any information you write to the log file using the logger object.

If you are developing on a UNIX-based system, such as Linux, the tail command is very useful
for watching the log file as your Rails application runs. Using the tail command like this from
your application’s root directory will cause the log contents to be written to the console in which
this command is executed:

tail -f log/development.log

Although the tail command is not a part of Windows natively, you can install a Windows ver-
sion of tail by downloading this free version from Bare Metal Software:

www.baremetalso ft.com/baretail

Console-based
The Rails Console is perhaps the most useful debugging tool and probably the tool that you will
use the most often to debug, test, and try things out while you are coding. The Rails Console pro-
vides an interactive environment based on the Ruby irb utility.

In addition to being a command-line parser for Ruby, like irb, Rails loads your application envi-
ronment. You can use all of your Rails classes, including models and controllers within the
Console.

Using the debugger
Most developers are familiar with using a debugger, either a command-line debugger or a graphical
debugger that has been integrated into an IDE. In Rails 2.0, Rails uses the ruby-debug gem to cre-
ate a debugger. With the gem installed, start the server using the option -debugger or -u. Place
the command debugger at the breakpoint in your application.

The console that runs the server will enter the debugger, giving you commands to execute expres-
sions, check out the stack state, and step through the program. More details are available at www.
datanoise.com/ruby-debug. You should also be able to similarly invoke the debugger during tests.

377

Testing the Book Shelf Application 9

Summary
In this chapter, you’ve learned how easy Rails makes it to write tests for your Rails Web applica-
tions. Hopefully, you have also gained an appreciation for the value of writing those tests. Whether
or not a developer regularly writes unit tests for the code they write, is increasingly considered a
measure of how good a developer is. The best developers make it a regular practice to write unit
tests while they are writing the code for their applications.

You learned that Rails has built-in support for three types of testing for your applications: unit,
functional, and integration tests. Each type tests different aspects of your application and is impor-
tant to your overall testing strategy.

Debugging is a process that is closely related to testing. Ideally, the better you become with writing
tests, the less debugging you’ll have to perform. However, you will always encounter situations
where you need to debug some problems that occur with your application. Rails provides a num-
ber of features that help you debug while you are developing an application. In this chapter, you
learned how to use Rails log files, the Rails Console, and the breakpointer utility to assist with
debugging.

Advanced Rails

IN THIS PART
Chapter 10
Using Prototype and
script.aculo.us

Chapter 11
Extending Rails

Chapter 12
Advanced Topics

381

Today’s browser-based applications are becoming more dynamic,
more interactive, and richer than they have ever been before.
Alternative Web application solutions such as Flash have increased

user expectations of what is possible in a Web application. If HTML applica-
tions are to remain a viable solution for developing rich Internet applica-
tions, then web developers need to use all the power of JavaScript in ways it
has never been used before.

This chapter will introduce you to the JavaScript libraries Prototype and
script.aculo.us, and you’ll see how you can use those libraries to develop
highly interactive and rich Web 2.0-style applications built on the Rails
framework. Just as using Rails can increase your productivity when develop-
ing server-side code for your Web applications, using Prototype and script.
aculo.us will increase your productivity in writing client-side JavaScript.

Rails provides a number of useful helpers for integrating these libraries using
Ruby code, however at some point you will reach the limits of what is possi-
ble using RJS, and it’ll be time for you to work directly in JavaScript.
Knowing the details of these libraries will help you make your application
unique.

IN THIS CHAPTER
Prototype, script.aculo.us,
and Rails

Prototype overview

Extensions to JavaScript

OOP with Prototype

Event handling

Ajax

script.aculo.us overview

Visual effects

Controls

Drag and drop

JavaScript testing

Using Prototype and
script.aculo.us

382

Advanced RailsPart IV

Prototype, script.aculo.us, and Rails
The Prototype and script.aculo.us JavaScript libraries are included with the Rails distribution.
When you install Rails, you also get these libraries with nothing more to install. Rails support for
these libraries doesn’t stop there, though.

Rails also includes built-in helper methods that make using these libraries in a Rails application
very simple; in fact, some developers use these libraries without even realizing it. Many of the Rails
form and Ajax helper methods use Prototype in their implementation.

The Rails development team has done a good job of seamlessly integrating these libraries into the
Rails view layer. However, it is important to realize that even though these libraries are included
with the Rails distribution, they are not dependent on Rails, nor is their development tied to Rails.
Each of the libraries can also be used in non-Rails applications. They can be, and are, used with
applications written in Java, PHP, Python, .Net, or any other back-end language that you choose.

The reason for having two JavaScript libraries is that each of the libraries provides functionality at
a different level. The Prototype library provides lower-level functionality such as extensions to the
JavaScript language, event handling, form handling, and Ajax support. script.aculo.us provides
higher-level functionality that is aimed more at developers who want to create rich and spectacular
browser-based applications.

script.aculo.us provides functionality to help with visual effects, drag and drop, auto-completion,
element sorting, in-place editing, and rich controls. script.aculo.us is built on top of the Prototype
library. You can use Prototype on its own without script.aculo.us, but if you are using
script.aculo.us, you must also be using Prototype.

The official Web sites for each of these libraries can be found here:

n www.prototypejs.org

n http://script.aculo.us/

Using Prototype and script.aculo.us from Rails
If you’ve looked around in the public/javascripts directory of any Rails application, you’ve
probably come across these Prototype and script.aculo.us library files:

n prototype.js

n scriptaculous.js

n builder.js

n effects.js

n dragdrop.js

n slider.js

n controls.js

383

Using Prototype and script.aculo.us 10

Only the prototype.js file is a Prototype library file. The rest of the .js files are parts of the
script.aculo.us library. When you include the default JavaScript files in a Rails application by using
the following line in the HTML header section of your layout, the Prototype and script.aculo.us
libraries are automatically included and available in all of your template files:

<%= javascript_include_tag :defaults %>

Typically you would put this line in a layout file, such as the global layout file, application.
html.erb. This gives you access to the libraries from any of your view templates that use the
 layout.

In the sections that follow, you’ll learn more about how Prototype and script.aculo.us can help you
create a fantastic Web application and allow you to write cleaner and more readable JavaScript. As
you’re learning, keep in mind that this chapter is geared toward using these libraries with Rails,
and does not provide a full reference to either of these libraries.

Rails provides helpers for many of the Prototype and script.aculo.us methods and classes. The Rails
helpers generate JavaScript that uses Prototype and script.aculo.us, and so in many cases you get
the power of these libraries without having to directly use them. Where Rails helpers are available,
it is these helpers that you will primarily use in this chapter, rather than Prototype and script.
aculo.us methods directly.

Create a Rails project
Before you move, it’s a good time to create another Rails application that you can use throughout
this chapter to test the code that you’ll be learning.

 1. Create a new Rails project. Go into your projects directory and run the Rails command:

> rails dynamic_app

 2. Generate a home controller. Navigate to the dynamic_app directory and generate a
home controller:

> ruby script/generate controller Home

You’ll use this application and its home controller to display pages that contain code that you’ll
write throughout this chapter, to demonstrate the power of the Prototype and script.aculo.us
libraries.

Include the Prototype and script.aculo.us files
You have to add an include tag to your application layout template so that the Prototype and script.
aculo.us libraries are available to your view templates. Create the layout template application.
html.erb in dynamic_app/app/views/layout and include this code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html>

384

Advanced RailsPart IV

<head>
 <title>Dynamic App</title>
 <%= stylesheet_link_tag “style” %>
 <%= javascript_include_tag :defaults %>
</head>

<body>
 <%= yield %>
</body>
</html>

By passing the :defaults parameter to the javascript_include_tag, you are telling Rails
to include a standard set of JavaScript libraries in the template. The standard set of JavaScript files
includes the following:

n application.js

 A file that you use to place your custom JavaScript code in.

n prototype.js

 Implements the Prototype library.

n controls.js

 Implements the Controls functionality of the script.aculo.us library.

n dragdrop.js

 Implements the drag-and-drop functionality from script.aculo.us.

n effects.js

 Implements the visual effects functionality from script.aculo.us.

Prototype Overview
Just a few years ago, JavaScript was generally looked down upon as one of the least powerful of
programming languages, in part because complex tool support, such as editors and debuggers, was
lacking. Most developers usually avoided writing much JavaScript, preferring to do as much as
possible on the server-side. Much of the JavaScript that was created was poorly written, and hard
to read and maintain. JavaScript is a powerful language that not many people took the time to
properly learn or make use of its full power.

With the advent of Web 2.0-style applications, with their richer and more interactive browser-
based features, the necessity to use JavaScript and implement more complex behavior with it has
grown. Fortunately, some developers recognized the need for libraries that could help them write
better and more powerful JavaScript. Just as there are many libraries to help you on the back end,
there are now many library choices on the front end as well. The Prototype library was spun off
from Rails and was first released as a standalone library in 2005.

385

Using Prototype and script.aculo.us 10

Considering the great deal of functionality in Prototype, it remains relatively small in physical size.
The entire library is contained in a single JavaScript file called prototype.js. It is approximately
120KB in size, or less than 30KB if it is gzipped. Within that relatively small library, Prototype
packs a great deal of functionality.

To cover all of its functionality would require a great deal more than a single chapter of a book.
There are entire books available that cover Prototype and script.aculo.us. In this chapter, you focus
on a selection of the functionality that you’ll find most useful in implementing a Rails application.

Ruby’s influence on Prototype
Prototype was inspired by Ruby and can often feel like Ruby when you use it. Many of the addi-
tions and extensions that Prototype makes to JavaScript have a Ruby-style syntax. This makes
using Prototype even easier for Ruby developers, who find the syntax of Prototype very intuitive
and familiar.

What is Prototype?
Prototype is a JavaScript library designed to make it easier to write good JavaScript. The prototype
library provides features in these main areas:

n Extensions to JavaScript

n DOM manipulation

n Event handling

n Forms

n Ajax

Of these areas, this chapter covers extensions to JavaScript, event handling, and Ajax.

As it is important to understand what Prototype provides you as a developer, it is just as important
to understand what Prototype is not. Prototype does not provide widgets, drag and drop, or other
rich interface components. Rather, it provides the layer between a rich UI JavaScript toolkit and
raw JavaScript. Many higher-level JavaScript libraries, including script.aculo.us, use Prototype.

At the time of this book’s writing, the current version of Prototype is 1.6.0.2. This is the version
that is bundled with Rails 2.0.

Extensions to JavaScript
The Prototype library includes features that essentially extend the JavaScript language, providing a
great deal of utility functionality that you’ll use with your JavaScript.

386

Advanced RailsPart IV

One of the ways in which Prototype extends JavaScript is by enhancing JavaScript’s OOP support.
Prototype makes it easy to build classes and extend classes through inheritance. OOP in native
JavaScript uses a slightly different paradigm than most other Object-Oriented languages (prototype
instance, rather than class instance) and has been avoided by most developers.

Simplifying JavaScript with the dollar sign
Prototype offers a set of utility functions that provide shortcuts for some extremely useful methods
that you will use on a regular basis. These methods all have very short names that begin with the
dollar sign ($). The most often-used of these methods is the $ method. The other methods consist
of the $ followed by a single additional character. Table 10.1 summarizes these methods.

 TABLE 10.1

Prototype’s $ Methods
Method Name Description Sample Usage

$ Element selector, essentially equivalent to
getElementByld. Returns elements with
prototype DOM extensions.

$(‘sidebar’)

$$ Selects all elements that contain the ID passed in
using CSS3 selectors, in the order they exist in
the document.

$$(‘content_section’)

$A Converts array-compatible items to an array. $A(arguments)

$w Splits a string into an array of words. $w(‘one two three four’)

$F Extracts the current value of a form field selected
by ID.

$F(‘phone_number’)

$H Shortcut for creating new hashes. state_codes = $H

$R Creates a range. $R (1,10)

Selecting elements with $
The $ method is the most frequently used method in all of Prototype. The $ method replaces the
longer document.getElementById(id) standard method. You use the $ method like this:

content_element = $(‘content’)

Besides being a much shorter method to type, a big advantage of using the $ method over document.
getElementById() is that the $ method returns a a DOM element that has Prototype exten-
sions included. This means that the element returned by $ has access to all the additional methods
that Prototype adds to elements. These extensions include several dozen methods that can be
called on any element that has been accessed via $.

387

Using Prototype and script.aculo.us 10

Table 10.2 contains a list of some of the most interesting methods.

 TABLE 10.2

Methods to Call on Any Element Accessed by $
Method Description

element.addClassName(ccsClass) Adds the CSS class to the element.

element.ancestors() Returns all of the element’s ancestors as an array. The ancestors all
contain the Prototype extensions.

element.childElements() Returns all of the element’s children as an array. The ancestors all
contain the Prototype extensions.

element.descendents() Returns all of the element’s descendants as an array. The ancestors
all contain the Prototype extensions.

element.empty Returns true if the element only contains white space.

element.fire(event) Fires a custom event for the element.

element.getStyle(property) Returns the value of the CSS property specified.

element.hide Hides the element.

element.insert(content)

element.insert({position: content})

Inserts the content in the element at the specified position. The
position properties are as in the Rails RJS helper.

element.remove() Removes the element from the dom.

element.replace(html) Replaces the element with the HTML content specified. This
includes the tag itself.

element.show() Shows the element.

In most cases, the $ method can take either the ID of a DOM element, however you can also pass
the method an normal DOM element, in which case, the Prototype extensions will be added to the
element.

Selecting elements with $$
The $$ method allows you to select all elements on a page that match a condition that you can use
a CSS3 selector to specify. Even if the browser in which a user is running your application does not
support CSS3, these selectors still work. This is because Prototype has implemented the CSS3
selectors itself.

The current version of Prototype supports the selectors described here:

n Type: Select using tag names, such as div.

$$(‘div’)
// selects all DIVs in the document and returns them as

extended elements in
// an array.

388

Advanced RailsPart IV

n Descendant: Allows you to select descendents of a tag, as in this example:

$$(‘#content a’) // selects all link elements contained
within the

// #content element.

n Attribute: Allows you to select elements based on the presence of attributes. The full set
of CSS3 attribute selectors is supported. Some examples are shown here:

$$(‘div[class]’) // selects all div elements that contain a
class attribute.

$$(‘div[class=box]’) // selects all div elements that contain a
class attribute

 // containing the value of box.

 Additional CSS3 attribute selectors allow you to select attributes that contain a given sub-
string, attributes that start or end with a given value, attributes that do not have a given
value, and more. For the full set of CSS3 attribute selectors, see www.w3.org/TR/
css3-selectors/#attribute-selectors.

n Class: Allows you to select all elements that contain a given CSS class name.

$$(‘.odd_row’) // selects all elements that contain the CSS
class odd_row.

n Child: Similar to the descendant selector, except that the child selector selects only direct
children.

$$(‘#content>div’) // selects div elements that are direct
children of the

 // #content element.

n Sibling: The selector matches a pair of elements that both have the same parent if the
first tag comes earlier in the document than the second.

$$(‘li.first + li.second’)

The following CSS pseudo-classes have the same meaning in Prototype as they do in the CSS
 specification:

n :nth:

n :first:

n :last

n :empty:

n :enabled, :disabled, :checked:

Creating arrays with $A
The $A method converts any iterable set of items into a JavaScript Array object. You want to do
this because Prototype extends the Array class significantly, as discussed later in this chapter.

$A(document.getElementsByTagName(‘li’);

389

Using Prototype and script.aculo.us 10

Splitting strings with $w
The $w method is used to convert a string into an array. It’s the same as Ruby’s %w mechanism.

$w(‘one two three four’)
// creates an array that looks like this:
// [‘one’,’two’,’three’,’four’]

The string that you pass to the $w method is split on white space. It does not properly convert a
comma-delimited string of values.

Getting form field values with $F
The $F method allows you to retrieve the current value of any form field within a document. To
retrieve a value, you pass the ID of a form field to the $F method.

$F(‘first_name_field’)

Remember that you must pass the ID of a form field. Passing a form field’s name does not work.

Creating hashes with $H
The $H method is a shortcut for creating Prototype Hash objects. The other way of creating a
Prototype Hash object is to use the standard Hash.new() method.

Creating ranges with $R
Ranges are a programming structure that many developers are first exposed to when they learn
Ruby. The $R method allows you to create ranges in JavaScript similar to the way you create
ranges in Ruby code. You pass start and end integer values to the $R method to create a range that
spans those values.

$R(1,10)

This creates a range of integers starting at one and ending with ten. By default, the range contains
the ending number, but if the optional third argument is true, then the range does not contain
the ending value. Prototype ranges implement Prototype’s Enumerable module, and also have a
method include that takes an argument and returns true if that argument is in the range.

More powerful arrays
The JavaScript Array object is probably one of the most useful objects in JavaScript. Prototype adds
to the usefulness of JavaScript arrays by adding 35 additional methods to an array. Many of these
methods come through Prototype’s implementation of an Enumerable module, which behaves very
similar to Ruby’s enumerable functionality. Table 10.3 lists methods that are added to JavaScript
arrays by Prototype.

390

Advanced RailsPart IV

Enumerating an array
Prototype mixes the Enumerable module into JavaScript Array objects. The most common method
that is gained from Enumerable is the each method. Using the each method, you can step through
each element of an array and take action on it using a function that you pass as a parameter.

list = [‘tim’, ‘kerry’, ‘camden’, ‘timmy’];
list.each(function(val) {
 alert(val)

});

You’ll recognize this as being very similar to the each method available in Ruby. The other
Enumerable methods are not listed in the below table but are very similar to the methods provided
by Ruby’s Enumerable method.

 TABLE 10.3

Prototype’s Array Methods
Method Description

Array.from Converts an iterable item into an Array object. Equivalent to $A().

clear Clears the array of all values.

clone Returns a duplicate of the array.

compact Returns a copy of an array with any null or undefined elements removed

each Iterates through each element of an array

first Returns the first element of the array

flatten Returns a one-dimensional version of the array, with multi-dimensional elements
occurring in the same relative order.

indexOf Returns the index of an element passed in, or -1 if the element is not found

inspect Returns a string representing the values in the array

intersect Returns a new array consisting of any elements that exist both in the current array and
the one passed as a parameter

last Returns the last element of the array

lastIndexOf Returns the index of the last occurrence of the element passed in, or -1 if the element is
not found

reduce If the array has just one element, returns that element, otherwise return the array
unchanged.Turns a nested array into a flat single-level array

reverse Reverses the contents of an array

size The size of the array as an integer

toJSON Returns the array as a JSON string representation.

uniq Creates a new array with any duplicate items removed

without Returns a new array that does not contain any of the passed arguments

391

Using Prototype and script.aculo.us 10

JSON support
If you’ve developed a rich browser-based application that uses Ajax, then you are probably familiar
with JSON, which stands for JavaScript Object Notation. JSON is a method of representing objects
or text using standard JavaScript syntax. Using JSON, you can represent an arbitrary object struc-
ture including objects, strings, arrays, Booleans, or other value types as a simple string value. This
is useful for passing structured data and objects across an interface, such as when you make an
Ajax call. The use of JSON is growing, and it is rapidly displacing XML as the preferred format for
sending and receiving complex data when using Ajax.

Prototype provides the following methods for encoding JavaScript data using JSON:

Object.toJSON(obj)
array.toJSON()
date.toJSON()
hash.toJSON()
number.toJSON()
string.toJSON()

The first method, Object.toJSON, is a static method that converts whatever object you pass
into it to JSON format. The other toJSON methods are instance methods that are provided for
specific object types: Array, Date, Hash, Number, and String.

If you already have a JSON-encoded string, Prototype provides you with a way to decode that back
into JavaScript object structures using this method:

jsonString.evalJSON([sanitize = false])

The evalJSON method returns a JavaScript object. The method takes a single optional parameter
named sanitize. This parameter provides a measure of security for JavaScript that you are
attempting to evaluate. By setting this parameter to true, the method makes sure that the JSON
string contains only JavaScript that follows accepted syntax.

Let’s take a look at a practical example of converting a JavaScript array to JSON and back:

var book = {title: ‘Ruby on Rails Bible’,
 publisher: ‘Wiley’,
 keywords: [‘ruby’, ‘rails’, ‘programming’],
 pubDate: new Date(2008, 5,12)};
json_val = Object.toJSON(book);

// json_val =
// ‘{“title”:”Ruby on Rails Bible”, “publisher”,”Wiley”,
// “keywords”:[“ruby”,”rails”,”programming”],”pubDate”:”2008-05-

12T00:00”}’

In this example, the book object contains two string value attributes, an array attribute, and a date
attribute. Each of these are converted to JSON and represented in the json_val string. The
json_val string is returned as a single-line string. It is only shown on multiple lines in the exam-
ple to make a readable display.

392

Advanced RailsPart IV

Notice that objects or hashes are represented in JSON as data enclosed within curly brackets. Hash
keys or object attribute names are enclosed in double quotes and separated from their values with
a colon. Arrays are represented in JSON as comma-separated lists enclosed in square brackets.

OOP with Prototype
Object oriented programming (OOP) has always been possible with raw JavaScript, but Prototype
makes it easier to use OOP in all of your JavaScript code.

Defining classes and inheritance
JavaScript’s object model is a bit unusual, and may be difficult to fully understand if you are used
to more traditional class-based object-oriented structures. Object features are much more informal
in JavaScript — an object is little more than a hash associating keys with data and functions. Any
set of data and functions can be classified as an object at any time. Objects can be extended at any
time, and new instances can be created using existing images as a template.

The JavaScript object model is amazingly flexible, but one side effect is that class creation and defi-
nition is not necessarily confined to one particular place in the code (this is also true of Ruby, but
Ruby is slightly more explicit about delimiting when a class definition starts and ends). In particu-
lar, traditional JavaScript style requires you to create the constructor for an object separately from
its definition:

function Person(name) {
 this.name = name;
}
Person.prototype={
 say: function(message) {return this.name + ‘: ‘ + message;}
}

Compare that with the way you can create a class using support provided by Prototype. Prototype
provides the Class.create function that generates an object and its own instance method. The
same class definition in Prototype would look like the following:

var Person = Class.create({
 initialize: function(name) {
 this.name = name;
 },
 say: function(message) {
 return this.name + ‘: ‘ + message;
 }
});

To create a person, you would then do something like this:

var person = new Person(“Fred Flintstone”);

393

Using Prototype and script.aculo.us 10

Implementing class inheritance with Prototype
There are two ways to implement a traditional class inheritance style in Prototype. The older mech-
anism is the method Object.extend(dest, src). The destination argument is a JavaScript
object, which will receive any new data or methods defined in the source object, which is typically
a hash of some kind. This can be combined with either the traditional JavaScript class creation
mechanisms or the Prototype Class.create.

var Student = Class.create();
Student.prototype = Object.extend(new Person(), {
 initialize: function(name, grade) {
 $super(name);
 this.grade = grade;
 }
}

However, there’s a preferred way in Prototype 1.6 and higher. The Class.create() method
takes an optional first argument that is the class being overridden or the module being mixed in.

var Student = Class.create(Person, {
 initialize: function(name, grade) {
 $super(name);
 this.grade = grade;
 }
}

The second mechanism is a little bit cleaner and easier to manage.

Event Handling
Prototype provides a simple, cross-browser way to bind a function to a user event. The method is
Event.observe, which takes three arguments. The first is a DOM element, or, more likely, the
string ID of a DOM element. This is the element being observed. The second is the string name of
the event you want to watch for, typically the name of the in-tag handler minus the “on,” such as
click or change. The final argument is the function you want to invoke when the event is
observed. This can be a predefined function or an anonymous function defined in-line.

Event.observe(‘class_name_menu’, “change”,
 function() {alert(“the name changed”);};

If for some reason the function being invoked needs to access the this variable of the current
object (if perhaps you are doing form validation), then the function object needs to be call the
Prototype utility bindAsEventListener:

Event.observe(‘element’, “click”,
 observer_func.bindAsEventHandler(obj));

The resulting compound function places the object handling the event as the first argument to the
outer function.

394

Advanced RailsPart IV

Ajax
If you regularly develop Web applications, you have probably heard of Ajax over the last year or
three. Ajax has been used to create responsive Web applications that feel more like desktop appli-
cations. The term Ajax was coined by Jesse James Garret in 2005. Ajax stands for Asynchronous
JavaScript and XML. A simple explanation of Ajax is that it is a technology that allows you to send
requests to a Web server and receive responses without going through the normal full page load
mechanism.

One of the Web applications that first gave rise to the current popularity of Ajax is the Google
Maps application. Google Maps allows the user to scroll around a map and continuously receive
updated map data without performing any page loads. When you scroll a map in Google Maps,
asynchronous requests are being submitted to the Google server, and responses of updated map
data are returned to the browser. This happens without the user realizing that any client-to-server
communication is even taking place.

Another common use of Ajax that you may have come across is the live search feature. When you
begin typing a keyword in a text box that is enabled with live search, you immediately begin seeing
possible matches for your keyword with each new keystroke that you type. The matches are
retrieved through asynchronous calls to the server, with current matches being returned.

When you use only JavaScript, implementing Ajax can be a challenge. Prototype makes using Ajax
extremely easy, and Ajax support is one of the most often-used features of Prototype. When you
use Prototype and Rails together, writing Ajax calls becomes even easier. Rails includes helper
methods that generate the Prototype JavaScript calls that are necessary to communicate with the
server through Ajax. I’ll walk you through some sample Ajax implementation scenarios in this
 section.

Ajax links
With a Rails helper, creating an Ajax-enabled link is not much more difficult than creating a regu-
lar link. Let’s take a look at a simple example:

<%= link_to_remote “Get Current Date and Time”,
 :update => ‘time_and_date’,
 :url => { :action => ‘get_date_time’ } %>
<div id=”time_and_date”></div>

This example creates a “Get Current Date and Time” link that sends an Ajax call to a server method
named get_date_time. The time_and_date DIV is updated with the result of the Ajax call.
The :update argument is optional, if it’s not there, the assumption is that the server call will trig-
ger an RJS page that will handle more than a single DOM element update.

395

Using Prototype and script.aculo.us 10

Ajax link options
You can create powerful and perhaps more useful Ajax-powered links using more of the options
that are available to the link_to_remote helper method. These options include the following.
Note that many of these options can more elegantly handled in an RJS script:

n :condition

 A JavaScript expression evaluated when the user intiates the request. It must return true,
or the request is cancelled.

n :before, :after

 These options allow you to specify a function or JavaScript function that is called before
or after the Ajax call occurs.

n :success, :failure

 These options allow you to specify a JavaScript function that is called after the Ajax
method returns either successfully or with a failure. This allows you to gracefully handle
Ajax failures and perform the intended action only on successful calls. You can also use a
specific response code as a an argument, as in 404 => alertNotFound();

n :complete

 A JavaScript expression evaluated when the Ajax request is fully complete, whether it
succeeded or failed. This takes place after the success or failure option.

n :loading

 Called while the Ajax request is ongoing, typically this is a progress bar or busy cursor.

n :loaded

 Called after the remote content has been loaded.

n :interactive

 Called if the user can interact with the remote document while it is loading.

n :confirm

 The value is a string used as an alert dialog that the user must okay before the Ajax
request happens.

n :submit

 The parent of the form elements being submitted, if a form submit is happening, and if
the parent is not the current form.

n :with

 A JavaScript expression that returns a string suitable for appending on the end of the
query string of the URL request.

396

Advanced RailsPart IV

script.aculo.us Overview
The script.aculo.us library is developed in close concert with the Prototype library. Its syntax and
usage is very similar to Prototype, and, like Prototype, you will notice its Ruby influence. script.
aculo.us extends the functionality of the Prototype library by providing features in the following
categories:

n Animation framework

n Drag and drop

n Ajax controls

n DOM utilities

n Unit testing

While Prototype provides relatively low-level functionality that extends JavaScript and makes
JavaScript code easier to write and maintain, script.aculo.us provides functionality much closer to the
UI layer, allowing you to create exciting and dynamic interface elements for your Web applications.

At the time of this book’s writing, the current version of script.aculo.us is 1.8.1. This is the version
that is bundled with Rails 2.0.2.

Visual Effects
The visual effects provided by script.aculo.us are probably the most often-used part of the library.
They allow you to attach cinematic or animated effects to your JavaScript events. These effects can
be used to add visual appeal to your application and create interfaces that traditionally were only
seen in richer Flash-based applications.

Rails provides a helper method, and an RJS method to assist you in creating visual effects for DOM
elements on your Web page. Try out some of the effects that you can achieve with script.aculo.us
by creating a Web page that you can experiment on. Within the dynamic_app that you created
earlier, create a new view template in app/views/home and call it effects.erb.html. In the
template, type this code:

<div id=”red_box”>Effects</div>
<%= link_to_function “Fade”, visual_effect(:fade, :red_box) %>

You also need to add a style to your application style sheet in public/stylesheets/style.
css, as follows:

#red_box {
 width: 150px;
 height: 150px;
 background-color: red;
 color: white;
}

397

Using Prototype and script.aculo.us 10

Now make sure your Web server is running for the dynamic_app and navigate to the effects page
by going to http://localhost:3000/home/effects. You should see a page similar to
Figure 10.1, containing a red box and a link with the label Fade. If you click the Fade link, the red
box slowly fades away. When it is completely faded from view, it is removed and the Fade link
moves up on the page into the space previously occupied by the red box.

 FIGURE 10.1

A Fade effect using script.aculo.us

script.aculo.us effects
Fade is just one of many effects that are made available to you by script.aculo.us. Each of these effects
is described below. Some of the effects are describe in pairs because they provide opposite effects.
You’ll understand that better after you read the descriptions. Up-to-date listing and demos of the
effects are available at http://wiki.script.aculo.us/scriptaculous/show/
CombinationEffectsDemo.

n Fade, Appear: Gradually decreases or increases an element’s opacity until the element is
either completely visible or invisible. If the element becomes invisible, its display prop-
erty is also set to none, causing the other page elements to reflow and occupy space that
the faded element previously occupied.

n BlindUp, BlindDown: Gradually changes the height of an element while leaving the ele-
ment’s content fixed.

n SlideUp, SlideDown: Gradually changes the height of an element, where the content
appears to be sliding up or down as the height changes. To use this, you must have a
wrapper DIV surrounding the content of the target DIV.

n Shrink, Grow: Resizes an element from its center point.

n Highlight: Temporarily changes the background color of an element to a specified color,
or pale yellow by default. This effect is often used to draw the user’s attention to a tar-
geted page element.

398

Advanced RailsPart IV

n Shake: Causes an element to shake back and forth horizontally several times. This effect
is commonly used to indicate that the targeted element is invalid, such as if you are
attempting to drop a draggable element on an invalid drop point.

n Pulsate: Rapidly fades an element in and out several times. This can be used to achieve a
blinking effect on the targeted item.

n Dropout: Fades an element and also slides it downward so that it appears to drop off
the page.

n SwitchOff: Simulates an old television being shut off. It provides a quick flicker of the
element, and then the element collapses into a vertical line.

n Puff: Makes an element increase in size while also decreasing in opacity. The effect makes
the targeted element seem to disappear in a cloud.

n Squish: Resizes an element while maintaining the position of the element’s top-left corner.

n Fold: Reduces an element’s height to a thin line and then reduces its width until the ele-
ment disappears.

Effect options
Most of the script.aculo.us effects can take options that modify the behavior of the effect. Here are
some common options that you’ll find useful:

n duration: Specifies the duration in seconds for the effect. You pass the duration as a float
value. The default duration time is 1 second. An example of setting the duration from the
Rails visual_effect helper taken from the Rails API is shown here:

<%= link_to_remote “Reload”, :update => “posts”,
 :url => { :action => “reload” },

:complete => visual_effect(:highlight, “posts”, :duration =>
0.5)

 This is an example that uses Ajax with a visual effect that is executed upon completion of
the Ajax call. The visual effect applies the highlight effect to the DIV with the ID of
posts. The highlight effect is applied for 0.5 seconds.

n fps: Specifies the frames per second for an effect. The fps value defaults to 25 and can be
set to any integer value up to a maximum of 100.

n transition: Sets a function that modifies the current point of animation, which is between
0 and 1. Several transitions are available out-of-the-box, including the following:

n Effect.Transitions.sinoidal

n Effect.Transitions.linear

n Effect.Transitions.reverse

399

Using Prototype and script.aculo.us 10

n Effect.Transitions.wobble

n Effect.Transitions.flicker

 The behavior of each of these transition types is best understood by experimenting with
them, which I recommend so that you can get a feel for how these transitions modify a
particular effect.

n from: Used to specify the starting point of a transition as a float value between 0.0 and
1.0. The default value is 0.

n to: Sets the end point of a transition to a float value between 0.0 and 1.0. The default
value is 1.0.

Using combination effects
script.aculo.us effects can be used together to create even more interesting visual effects. This is
accomplished through the Effect.Parallel object, which takes an array of other effects as it’s
main argument. There isn’t as much direct Rails support for using parallel effects.

new Effect.parallel(
 [new Effect.Shake(element), new Effect.Fade(element)]);

Controls
In addition to effects, script.aculo.us provides widget-like components that you can easily integrate
into your Web pages. In this section you’ll learn how to use three controls provided by script.aculo.us:

n Sliders

n Auto-completion

n In-place editing

Sliders
Sliders are vertical or horizontal UI elements that let you set a value by sliding a visible control
along the slider element. Figure 10.2 shows you an example of several sliders implemented using
script.aculo.us.

The basic creation of a slider involves creating the slider object, the HTML DOM objects that will
interact, and the CSS that will enable them to look something like a slider. The Javascript part
looks like this:

new Control.Slider(‘thumb’, ‘axis’, {});

400

Advanced RailsPart IV

 FIGURE 10.2

Sliders in script.aculo.us

The two arguments are the DOM ids of the two parts of the slider, the third argument takes any of
a number of options that can effect behavior. Generally the DOM elements being referred to are a
set of div tags, one inside the other.

<div id=”axis”><div id=”thumb”></div></div>

Each of those elements needs CSS styles to show up, typically you use the width and height prop-
erties to size the elements, and the various color or image elements to make it look pretty. For
example:

#axis {
 width: 250px;
 height: 10px;
 background-color: black;
}
#thumb {
 width: 5px;
 height: 20px;
 background-color: yellow;
}

At this point, the axis and thumb would be drawn on the page and the thumb would move as
you’d expect.

The options passed in the creation of the JavaScript slider object control many aspects of its behav-
ior, here are some of them:

n axis: Can be either horizontal (the default) or vertical.

n range: The range of slider values, as normally defined using $R.

n sliderValue: The initial value of the control.

401

Using Prototype and script.aculo.us 10

n onChange: An event handler when controls value changes. The function invoked takes
one argument, the new value of the slider.

n onSlide: Similar to onChange, but called when the thumb is dragged.

Auto-completion
The use of auto-completion is gaining popularity for implementing searches within a Web applica-
tion. Auto-completion refers to a feature that attempts to complete a word or phrase that the user
has begun typing in a text field. For example, when auto-completion is implemented in a search
box, as the user types characters for the search keyword, the application presents the user with a
list of matches based on the characters that are currently entered. As each new character is typed,
the list of matches changes to reflect the new partial keyword entry.

script.aculo.us makes implementing auto-completion relatively painless. The script.aculo.us class
that you use to implement auto-completion is Ajax.Autocompleter. The general syntax of a
call to this method is as follows:

new Ajax.Autocompleter(text_field_id, div_to_populate_id, url,
options);

The text_field_id contains the ID of a text field in which the user types text that is auto-
completed. The div_to_populate_id contains the ID of a DIV that contains matches based on
the text that the user types. The url field points to a method on the server that handles the Ajax
calls to get matches based on the user’s current text. The last parameter, options, can contain
options that allow you to customize the behavior of the autocompleter.

In Rails, the auto_complete plugin is available from http://svn.rubyonrails.org/
rails/plugins/auto_complete (prior to Rails 2.0 it was part of the core). As I write this, it
doesn’t seem like the Rails plugins have moved to github with the rest of Rails. Anyway, using the
plugin is simplicity itself.

On the view side, the form tag:

 <%= text_field_with_auto_complete :object, :method %>

will create the autocomplete editor (yes, it will also work within form_for tags). The method
takes a number of optional tags. The most useful are listed in Table 10.4.

On the controller side, the controller declaration looks like this:

auto_complete_for :object, :method

Further options are sent as the options hash to the find command inside that method to custom-
ize SQL behavior. The default behavior is to do a LIKE “%<entry>%” critera on the selected
field, meaning that a match will be counted if the user-typed string appears anywhere in the data-
base entry. Both the entry and the database field are converted to lower case, meaning the search
will be case insensitive.

402

Advanced RailsPart IV

If you want to just match the start of the field or otherwise customize the behavior, override the
method auto_complete_for_#{object}_#{method}. The output needs to be an HTML ul
tag. The value input is in params[object][method].

 TABLE 10.4

Optional Tags for autocomplete Editor
Option Description

after_update_
element

A JavaScript expression that is called after the user makes their selection. It must be
a function object that takes two arguments — the DOM id of the autocomplete
field, and the value of the user’s selection.

frequency Time to wait after a keystroke for the Ajax request to be initiated.

indicator The DOM id of an element to show while the autocomplete request is in progress.

method HTTP action of the Ajax request, defaults to POST.

min_chars The minimum number of characters typed by the user before the control will
initiate an Ajax request.

tokens A character set that acts as a delimiter for the user input, allowing the user to auto
complete multiple values, as in the tag field of a social networking site.

with As in link_to_remote, a JavaScript expression that returns a query string to be
sent as part of the Ajax request.

In-place editing
In-place editing is a relatively recent addition to the toolset of a good Web developer. It is now
commonplace in many Web 2.0 applications. An in-place editor allows you to dynamically trans-
form a static text field into an editable text area in response to a user action. For example, on a
form that shows user information, you might implement in-place editing to allow for easy updating
of any of the fields, simply by clicking them. See Figures 10.3 and 10.4 for an example of a form
that uses in-place editing, both before and after a field has been clicked.

If you were to implement this task using raw JavaScript, it would take more code and effort that
you may think it is worth, and in many cases a developer might end up choosing another way of
editing a form, such as by using a pop-up window or even a completely different edit page.

While those can be good solutions, depending on the particular application and the target audi-
ence, in-place editing can offer a more user-friendly way of editing simple fields in a quick manner.
Fortunately, script.aculo.us makes implementing this functionality relatively easy.

NOTENOTE If you’ve heard negative feedback about the script.aculo.us in-place editor in the
past, you’ll be interested to know that the in-place editor implemented in the 1.8

version of script.aculo.us is nearly a complete rewrite of the code. The problems with the previ-
ous version have been cleaned up, and the API has also changed a bit; as a result, the in-place
editor code you see here will probably not be compatible with earlier versions of script.aculo.us.

403

Using Prototype and script.aculo.us 10

 FIGURE 10.3

In-place editing, before clicking a field

 FIGURE 10.4

In-place editing, after clicking a field

Implementing a single value in-place editor
script.aculo.us supports two basic types of in-place editors. These use two different script.aculo.us
objects, Ajax.InPlaceEditor and Ajax.InPlaceCollectionEditor. The former one is
used to create editors for text fields, and the latter one allows you to create editors for drop-down
selection lists. Here are the steps required to implement the in-place editor for a single text field:

 1. Start by creating a new view template named inplaceedit.rhtml. Make sure you
put the view template into the app/views/home directory. Edit the view template to
contain this code:

404

Advanced RailsPart IV

<h2>User Information</h2>
<label>First name:</label>
Timothy

<script>
 document.observe(‘dom:loaded’, function() {
 new Ajax.InPlaceEditor(‘first_name’, ‘/home/update’);
 });
</script>

 The view contains a single field that is currently hardcoded in the page. You implement
an in-place editor on this field so that you are able to change its value by clicking it,
entering a new text value, and pressing Return.

 2. Create a controller method to handle an Ajax update call. Open the app/
controllers/home_controller.rb file and add this method:

def update
 render :text => params[:value]
End

Make sure the Rails server is running for the dynamic_app and load the page http://local
host:3000/home/inplaceedit. You see the single static text field containing the value
Timothy. Notice that if you hover over the word Timothy, it becomes highlighted with a pale
 yellow background. You also see a tooltip that says, “Click to Edit.”

If you move off the text, the highlighting slowly fades and the tooltip is removed. If you click the
Timothy text, it is replaced with an editable text field, an OK button, and a cancel link. This edit-
able view is shown in Figure 10.5.

 FIGURE 10.5

An in-place editor with a single text field

Pressing the cancel link closes the editable text box and returns you to the original, unmodified
static text field. If you want to change the text field, you click it, enter a new value, and then press
the OK button.

405

Using Prototype and script.aculo.us 10

When you press the OK button, an Ajax call is made to the URL that you passed as the second
parameter to the Ajax.InPlaceEditor method, /home/update. This calls the update
action off the home controller. The update action simply gets the new text field value and renders
that as text. This is stored back into the original text field on the page.

Building the editor in Rails
Rails also provides a simple in-place editing plugin at http://svn.rubyonrails.org/rails/plugins/in_
place_editing. It is very similar to the autocomplete plugin. In the view, use the helper method:

<%= in_place_editor_field :object, :method %>

Table 10.5 lists the most useful options.

 TABLE 10.5

Options for Rails’ In-place Editing Plugin
Option Description

cancel_text The text for the editing form’s cancel button, defaults to “Cancel.”

click_to_edit_text Default text displayed on mouse over of the control in non-edit mode. Default is
“Click To Edit.”

cols Number of columns in the edit control, as in an HTML text control.

loading_text Text displayed while the control is retrieving data from the server via Ajax call.

load_text_url URL to retrieve the edit data, if for some reason it’s different then the default
URL. Any structure acceptable by url_for is okay here.

options Any options you want passed along to the Prototype Ajax.Updater object.

rows Number of rows to display. If greater than one, then an HTML text area is used.

save_text Text for the edit form’s save button. Defaults to “ok.”

script If true, then the control will evaluate the result of the Ajax call loading the text
as JavaScript.

with JavaScript expression returning a query string to be appended onto the Ajax
request.

And in the controller:

in_place_edit_for :object, :method

The normal behavior is to update the object with the edited value, and change the method display
back to the plain text. Again, if you want custom behavior, directly implement in_place_edit_
for_#{object}_#{method}, and have it render the text being displayed when the editor is
not in use.

406

Advanced RailsPart IV

Drag and Drop
Desktop applications have used drag-and-drop techniques to manipulate on-screen objects, mak-
ing the user interface easier and more appealing for many years now. Until recently, drag-and-drop
features were rarely seen in a Web application, except perhaps in Flash-based applications.

The JavaScript and DOM manipulation necessary to simulate this type of technique was considered
too complex and difficult to write for most developers to accomplish and achieve acceptable per-
formance with. script.aculo.us gives you the ability to add drag-and-drop capability to your Web
applications using simple JavaScript methods.

Creating draggable elements
Rails provides you with a convenient helper method for turning any standard DOM element con-
tained on your page into a draggable object. Using the dynamic_app project you created, you’ll
see how you can use Rails helpers to make creating draggable areas simple. In your dynamic_
app, create a template called dragndrop.erb.html in the app/views/home directory. Edit
the view to contain this code:

<div id=”drag_me” class=”drag_box”>Drag Me</div>
<%= draggable_element :drag_me %>

You also need to add a new style to your style.css stylesheet contained in the public/
stylesheets directory:

.drag_box {
 width: 150px;
 height: 150px;
 background-color: red;
 color: white;
}

Save the files, and start up the server for your dynamic_app using ruby script/server.
Navigate to this page by going to http://localhost:3000/home/dragndrop. You should
see a red box that you can drag around the screen, as shown in Figure 10.6.

You have to admit that was pretty easy. With the power of Rails helpers and script.aculo.us, creat-
ing elements that you can drag has now become a very simple task.

407

Using Prototype and script.aculo.us 10

 FIGURE 10.6

A draggable box

Draggable options
There are several options available for specifying the behavior of draggable elements. Options can
be passed to the draggable_element helper like this:

<%= draggable_element(“my_image”, :revert => true)

In this example, the :revert option is passed. This reverts the draggable element to its original
position after being dropped. This is useful, for example, if you want to denote dragging an item to
something like a shopping cart, but also keeping the element available in the main list of items.

The other options available to draggable elements are as follows:

n ghosting: With this option set to true, the original element is left in place and you drag a
cloned copy of it.

n handle: This option allows you to specify a sub-element to be used as a drag handle. So,
instead of dragging an element anywhere, you have to click and drag the element’s handle.

<div id=”drag_box”>
 Drag me
</div>
<%= draggable_element :drag_box, :handle => “’handle’” %>

408

Advanced RailsPart IV

 Notice that there are two sets of quotes, double and single, on the handle value. That is
not a typographic error. The handle value should be a JavaScript expression that evalu-
ates to an element ID, or an element reference. So, instead of handle, you could pass
any valid JavaScript expression that evaluated to a handle ID in its place.

n change: This option can be set to a function that is called every time the draggable ele-
ment is moved while dragging. The function gets the draggable element as a parameter.
Here is an example:

<div id=”drag_box”>Change Sample</div>
<%= draggable_element :drag_box, :change =>

“function(draggable) {
draggable.element.innerHTML=draggable.currentDelta()}” %>

 This example displays the current amount by which the draggable DIV has been dragged.

n constraint: This option can be set to horizontal or vertical and constrains the
drag to that dimension.

n snap: This option allows you to specify a grid value that causes the draggable element to
snap to a grid. For the snap value you can pass an integer, an array of the form [x,y], or a
function that is passed the current x,y coordinates of the draggable element. If you pass
an integer n, the draggable element snaps to a grid of n pixels.

 If you pass an x,y array, the grid can have different vertical and horizontal dimensions,
as specified by the values of x and y. If you pass a function, the coordinates passed to it
are offsets from the draggable element’s starting position. The function must return the
snapped coordinates.

 Here are a few examples showing the various uses of snap:

<div id=”drag_box”>Snaps to a grid of 10 pixels</div>
<%= draggable_element :drag_box, :snap => 10 %>

<div id=”drag_box”>Snaps to a grid of 10 pixels by 20 pixels</
div>

<%= draggable_element :drag_box, :snap => ‘[10,20]’ %>

<div id=”drag_box”>Snaps to a grid determined by a function</
div>

<%= draggable_element :drag_box, :snap => “function(x,y) {
 Return [x<0 ? 0 : (x>100 ? 100 : x),
 Y<0 ? 0 : (y>100 ? 100 : y];
}” %>

 In the last example, which uses the function to determine the snap coordinates, the tech-
nique shown applies boundaries to the drag region. In fact, this is the only way to apply
boundaries to a drag region. In this example, the drag region is constrained to a
100-pixel-wide box.

409

Using Prototype and script.aculo.us 10

Creating droppable elements
Just like you created a draggable element out of a DOM element, you can create a droppable ele-
ment from a standard DOM element. Droppable elements provide regions in which you can drop a
draggable element.

When a draggable element is dropped on a droppable element, you would typically perform some
action. Creating a droppable element is no more difficult than creating a draggable element. Rails
provides you with a helper that makes it easy. Add a droppable element to your dragndrop.
erb.html file with the following code:

<div id=”drop_here” class=”drop_box”>Drop here</div
<%= drop_receiving_element :drop_here, :hoverclass => ‘hover’ %>

Droppable options
In the previous example, you saw one option that you can use when creating a droppable element.
You used the hoverclass option to specify a class that is assigned to the droppable element
when a draggable item is hovered over it.

Table 10.6 shows a list of additional options that you can pass to the drop_receiving_element
helper method. The most important option is :url, which takes a url_for compatible destination,
and triggers an Ajax call to that location when the drop takes place. The other elements are passed
directly through to the script.aculo.us control.

 TABLE 10.6

Additional Options to Pass to drop_receiving_element
Method Description

accept A string or array of strings, representing the names of CSS classes. If set, those classes are
the only objects the droppable will accept.

containment Like accept, but the droppable will only except items contained by these classes.

greedy Boolean, default is false. If true, stops the search for further droppables at the drop point.

hoverclass A CSS class whose properties are added to the droppable when a valid draggable is over
it. For highlighting purposes.

overlap Can be set to horizontal or vertical, controls in which direction the draggable must be
more than halfway into the droppable before the drop counts.

Sortable lists
Often, you want to provide a user with the ability to sort a list of items. In the past this has often
been implemented by having a set of buttons adjacent to a list that allow you to move a selected
item up or down in the list. That type of implementation still exists in many applications today.

410

Advanced RailsPart IV

A more elegant way of allowing users to sort a list is to enable them to select an element, drag it to
the place in the list where it should go, and then drop it there. script.aculo.us assists you in build-
ing this type of drag-and-drop enabled sortable lists.

In order to create a sortable list, you need a view that contains an HTML list — either an ordered
or unordered list will do. Inside that list, you need to have a series of items. It also helps if you
have some way to store or some reason to care about the order in which these items are displayed.
Each item needs to have a DOM ID of the form <name>_<id>, and they all need to have the same
name. You might also want to have the whole thing surrounded by a div container. A sample view
list might look like this:

<div id=”sortable_container”>
 <ul id=”sortable”>
 <% gizmos.each.sort_by(&:position) do |gizmo| %>
 <li id=”gizmo_<%= gizmo.id %>”><%= gizmo.name %>
 <% end %>

</div>

Then you need a Rails helper to create the script.aculo.us object that manages the sorting .The
setup here is very similar to the droppable setup. You want to give the helper the DOM id of the
list, as well as a URL for the Ajax callback.

<%= sortable_element “sortable”, :url => {:action => :sorting} %>

At this point, you can drag the list elements around to change their order. The URL is called every
time the order changes. In the controller method, the variable params[:sortable_list] con-
tains an array of the IDs of the list elements as they appear in the DOM ids for the li tags.

Within the controller method, you are free to do hatever you want. Commonly, the items are
updated in the database with their new position. You can choose to redraw the list based on the
new positions, but you don’t have to. The control will maintain its own list of items client-side.

Further options that you can pass to the sortable control include but are not limited to the options
shown in Table 10.7

 TABLE 10.7

Options to Pass to the Sortable Control
Option Description

constraint As the option for draggables.

format A regular expression that controls the split between name and id in the sortable list item
DOM IDs. The expression must have two groups with the first representing the group name,
and the second representing the item id.

411

Using Prototype and script.aculo.us 10

Option Description

handle As for draggables.

hoverclass As for droppables

only As the accepts option for droppables

overlap As for droppables

tag The type of tag being sorted — for a normal list, this would be li.

JavaScript Testing
Testing should be important to any developer, but it tends to be especially important to Rails
developers, as it is well supported for all of the Ruby code that you will write in creating a Rails
application. JavaScript is often the most under-tested piece of a Web application. Sometimes
JavaScript is not tested at all.

script.aculo.us includes a unit-testing framework for Java that can help you test your JavaScript.
Unfortunately (in my opinion), the standard Rails distribution leaves out the JavaScript file that
implements the unit test framework. However, by downloading the script.aculo.us distribution
from http://script.aculo.us you can get the unittest.js file that implements the unit-
testing framework.

An alternate way of obtaining the unit test framework is by installing it as a plug-in. From your
dynamic_app directory, you can install the plug-in by using the script/plugin command,
as follows:

> ruby script/plugin install http://dev.rubyonrails.org/svn/rails/plugins/
javascript_test

In addition to the unit test library, this plug-in includes a generator that allows you to generate
unit test files for any of your application-specific JavaScript files, such as application.js.
A rake task that allows you to run all of your JavaScript tests is also included.

Creating JavaScript unit tests
With the plugin installed, you can generate a JavaScript test file by running the following gener-
ate command:

> ruby script/generate javascript_test application

This generates a test stub that you can use to write unit tests for your JavaScript methods contained
in application.js. The test stub is placed into test/javascript/application_test.
html.

412

Advanced RailsPart IV

Open up the application_test.html file, and you should see a test stub that looks similar to
Listing 10.1.

 LISTING 10.1

A JavaScript Test Stub

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
 <title>JavaScript unit test file</title>
 <meta http-equiv=“content-type“ content=“text/html; charset=utf-8“ />
 <script src=“assets/prototype.js“ type=“text/javascript“></script>
 <script src=“assets/unittest.js“ type=“text/javascript“></script>

 <script src=”../../public/javascripts/application.js” type=”text/

javascript”></script>

 <link rel=»stylesheet» href=»assets/unittest.css» type=»text/css» />
</head>
<body>

<div id=»content»>

 <div id=»header»>
 <h1>JavaScript unit test file</h1>
 <p>
 This file tests application.js.
 </p>
 </div>

 <!-- Log output -->
 <div id=»testlog»> </div>

</div>

<script type=»text/javascript»>
// <![CDATA[

 new Test.Unit.Runner({

 // replace this with your real tests

 setup: function() {

 },

413

Using Prototype and script.aculo.us 10

 teardown: function() {

 },

 testTruth: function() { with(this) {
 assert(true);
 }}

 }, «testlog»);
//]]>
</script>
</body>
</html>

The structure of this test stub is very similar to the structure of the unit tests that you wrote for
your Ruby code. The test file contains setup and teardown methods, and as many test methods
as you want to define. Each test method can contain any number of assert statements that make
assertions about your JavaScript code.

Running JavaScript unit tests
The plugin creates the rake task

rake test:javascripts

This task will run all test files in your test/javascripts directory in the supported browser
set for your developer operating system. Meaning Windows users get IE and Firefox, Mac OS X
users get Safari and Firefox, Linux users get Firefox and Konqueror. The browser windows are
opened automatically, but you have to close them yourself.

You can also run an individual test file by creating a symbolic link between the plugin’s asset direc-
tory and your test/javascripts.

ln -s vendor/plugin/javascript_test/assets test/javascript/assets

With that done, you can open your JavaScript test HTML files in the browser of your choice.

Summary
This chapter provided an overview of the functionality available in the Prototype and script.aculo.
us JavaScript libraries. Both of these libraries are included with the Rails distribution. Rails includes
a number of helper methods that make direct use of these libraries to assist you in creating rich
and dynamic Web applications.

414

Advanced RailsPart IV

You also saw how to make use of a JavaScript framework that is included with script.aculo.us and
that allows you to write unit tests for your JavaScript that look and behave very similar to the unit
tests you should already have in place for your Ruby code. This helps to fill the often unmet need
of testing your application’s JavaScript code.

Both Prototype and script.aculo.us provide a great deal more functionality than what I was able to
cover in this single chapter. These are powerful libraries that will make you a better JavaScript devel-
oper and give you the power that you need to create rich, dynamic Web applications. I encourage
you to continue to learn and explore each of these libraries and make use of their rich set of features
within your own applications.

415

A strong belief held by the creator of the Rails framework is that the
framework should be kept limited in features and focused on the
core technology related to developing database-backed Web applica-

tions. What is core technology consists of in a Web application is something
that has been and will continue to be debated by Web users and program-
mers, both in person and across the Internet. However, you are not likely to
see things like login systems, message boards, image management, or other
application-level features built into any future versions of Rails. That said, if
you develop more than one Rails application, you are likely to come across
chunks of functionality that you find yourself repeating in every application
you write. These chunks of functionality, which are not core to Rails but are
common to most of the applications you write, can be leveraged as exten-
sions to the Rails framework using Rails generators, plugins, and engines.

Rails supports an excellent model for extensibility that makes it easy to add
the specific features you want as extensions to Rails. You can then easily
reuse those extensions in your other applications, as well as make them
available to the public at large.

Beyond the Core
Rails extensions often grow out of a feature that you originally implemented
inside one or more applications prior to recognizing the value of such a fea-
ture as a reusable component. It is rare that you can plan upfront what all of
the plugins for an application will be. Often your plugins will evolve out of
your code base. In this chapter, you’ll learn about various ways of extending
the Rails framework with reusable components that you develop. You can

IN THIS CHAPTER
Beyond the core

Generators

Plugins

Summary of useful plugins

Engines

Extending Rails

416

Advanced RailsPart IV

also find many reusable extensions to Rails on the Internet. I’ll point you to some resources for
finding those extensions in this chapter.

The primary ways of extending Rails are through the following extension types:

n Generators: Allow you to easily generate classes, migrations, views, or other code using
the built-in script/generate command.

n Plugins: Are the most popular way to extend Rails with custom functionality and fea-
tures.

n Engines: Allow you to add a complete slice of functionality, including models, views,
and controllers, to an application.

In earlier version of Rails, prior to Rails 2.0, there was actually another reusable code type, known
as a component. Components were officially deprecated with the Rails 2.0 release. Components
were never really used to a great extent, and those who did use them often complained about how
slow they were. Because they are deprecated and not recommended to be used, even in earlier ver-
sions of Rails that do support them, they are not covered in this book.

Generators
Generators are used in a Rails application to automatically generate code. You are already familiar
with generating models, views, and controllers using generators that come standard with Rails. To
generate those objects, you use the script/generate command. In this section you will learn
how to create your own generators that you will be able to run using the script/generate
command.

If you or your team develop multiple Rails applications and you find yourself repeatedly creating
common pieces of code, or copying code from one project to another, then custom generators may
be a great thing for your project. However, before you make the decision to create your own gener-
ators, make sure you also understand what a Rails plugin is. You may decide that a plugin is a bet-
ter choice for what you are doing than a generator. In the next section, you’ll learn all about
writing your own Rails plugins. Generators are usually preferable if you are creating boilerplate
code or code that you will be modifying and extending with additional custom code. Common fea-
tures that you use across applications without having to modify the code are usually better candi-
dates for plugins. Plugins often include generators as part of their feature set.

The Ruby on Rails wiki, located at http://wiki.rubyonrails.org/rails/pages/
AvailableGenerators, lists some generators that are available. However, you may be writing
generators that are specific to your organization. In the next section, you will see how to write your
own Rails generator.

417

Extending Rails 11

In this section, you’ll create your own generator. To use a real-world example of code that might
end up in a generator, you’ll use the authentication code that was developed for the Book Shelf
application in Chapter 6. You’ll implement a generator that can be used to automatically generate
the models and controllers necessary to implement user authentication.

The generator directory structure
The code that makes up a generator is placed into a consistent directory structure. The structure of
a generator is shown here:

generator_name/
 |—- USAGE
 |—- generator_name_generator.rb
 |—- templates/
 |—- INSTALL
 |—- controllers/
 |—- lib/
 |—- migrate/
 |—- models/
 |—- test/
 |—- views/

Let’s look at the elements shown in this directory structure. At the top level, you have a directory
with the name of the generator. That directory contains three elements: a USAGE file, a Ruby script
file, and a templates subdirectory. The contents of the USAGE file are printed automatically if
the user calls the generator with the -h or —help option as an argument. The Ruby script file con-
tains the name of the generator with the “_generator.rb” suffix. This script contains the gener-
ator’s instructions for generating the target code.

The templates subdirectory contains the templates for all of the code that your generator will
generate. You generator could generate controllers, lib files, migrations, models, tests, or views.
When you write your generator, you will create a template for what the outputted code will look
like, and that will be placed in the subdirectory of template that corresponds to the type of file it is.

There are two choices for where you would put your generator code. If you want your generator to
be available to multiple Rails applications, you would put it in a place where Rails looks for genera-
tors. Rails automatically looks for generators that are put into a directory named .rails inside of
your user home directory. So on a UNIX-based system, this would be something like /user/
timothyf/.rails. On Windows, the directory would be in C:\Documents and Settings\
timothyf\.rails. If you want your generator to be available to just a single application, you
can put it in the application’s lib/generators directory. Generators that are part of a plugin go
in the plugin’s lib/generators directory. If you are sharing a generator among multiple proj-
ects, I’d recommend packaging it in a plugin before putting it in a .rails directory.

418

Advanced RailsPart IV

Writing generator code
After you set up the appropriate directory structure for your generator, the next thing that you’ll
typically want to do is to write the _generator.rb Ruby script file containing the instructions
for your generator. You do this by creating a class that extends one of the following:

n Rails::Generator::Base

n Rails::Generator::NamedBase

The Rails::Generator::Base class is the more generic class to extend for general-purpose gen-
erators. The Rails::Generator::NamedBase class assumes that your generator takes a single
class name as its first parameter, followed by a list of actions. For example, think of the way the gen-
erators for controllers work; you pass the name of the controller that you want to generate, followed
by a list of action methods that you want to be created within that controller. If you want to follow
that same pattern with your generator, you would extend the Rails::Generator::NamedBase
class.

To create the authentication generator, you will extend the Rails::Generator::Base class.
The first thing you need to think about when writing your generator script is: what are all of the
tasks that you want your generator to perform? Let’s list those for the authentication generator:

n Create a User model

n Create a User controller

n Create a User migration

n Create tests and fixtures

This list gives you a pretty good start at having a complete authentication system. You could also con-
sider generating the view templates for login and registration within this generator, but since the view
layer tends to be more application-specific, it will be left out of this exercise. However, if you were
developing an authentication generator for your organization, you may also want to include the
views, so that your applications have a common look to their login and registration features.

With the tasks in mind that you want the generator to perform, you can start writing the generator
script. The complete generator script for the authentication generator is shown in Listing 11.1.
Let’s walk through this script.

 LISTING 11.1

authentication_generator.rb

class AuthenticationGenerator < Rails::Generator::Base

 def initialize(runtime_args, runtime_options = {})
 super(runtime_args, runtime_options)
 @attributes = @args.select {|a| a.include?(“:”)}.map do |attribute|

419

Extending Rails 11

 Rails::Generator::GeneratedAttribute.new(*attribute.split(“:”))
 end
 end

 def manifest
 record do |m|

 # Controller
 m.file “controllers/user_controller.rb”,
 “app/controllers/user_controller.rb”

 # Models
 m.file “models/user.rb”, “app/models/user.rb”

 # Migration
 m.migration_template “migrate/create_users.rb”, “db/

migrate”,
 :assigns => {:attributes => @attributes}

 # Tests
 m.file “test/unit/user_test.rb”, “test/unit/user_test.rb”
 m.file “test/functional/user_controller_test.rb”,
 “test/functional/user_controller_test.rb”
 m.file “test/fixtures/users.yml”, “test/fixtures/users.yml”

 m.readme “INSTALL”
 end
 end

 def file_name
 “create_users”
 end
end

The initialize method of the generator takes two arguments rolled up from the command
line as specified by the user. The runtime_args is the normal arguments, as a list, and the
 runtime_options are the command options as specified with flags (such as -c or —svn,
which adds newly generated files to Subversion).

The default behavior of the initialize method is to place those arguments in instance methods
@args and @opts. This method further parses the arguments, searching for key:value pairs
and turning them into attribute objects. This allows the user to specify further arguments that can
get added to the user table of the form firstname:string, and is consistent with other genera-
tors in Rails.

420

Advanced RailsPart IV

The main thing to notice about the generator script is that it always contains a method named
manifest. The manifest method is the block of code that copies files from the templates
directory to destination directories within the Rails application. In every generator that you write,
you will always implement the manifest method. This is the method called when your generator
is run. Within the manifest method, you’ll notice that the method m.file is used over and
over again. The m.file method simply copies a file from the templates directory to a destina-
tion directory. For example, look at the following line:

m.file “models/user.rb”, “app/models/user.rb”

You can see that this line is copying the file located in templates/models/user.rb to the desti-
nation location, app/models/user.rb. The next method that you probably don’t recognize is the
m.migration_template method. This method creates a new migration using the first parameter
as the source template, and the second parameter as the destination for the migration file. The migra-
tion is created using the correct name, which includes a migration number — that is, 001_create_
users.rb (in Rails 2.1 and up, the number is a timestamp) — based on migrations that already
exist and the migration number that you are currently up to. The migration_template method evalu-
ates its template as an ERb file, with local variables passed as the :assigns option.

That leaves one other method to explain in the script, the method m.readme. This method just
prints the contents of a file. It is used to give the user additional instructions after the generator is
complete.

Table 11.1 lists all the commands that you can call in the main block of a generator file.

 TABLE 11.1

Commands to Call in a Generator File’s Main Block
Method Description

class_collisions(*class_names) Takes a list of potential class names and raises an exception if any of
the name match Rails core classes.

directory(path) Creates a new directory. The pathname is relative to the rails root.

file(source, dest, options = {}) Copies the file. The method takes an optional block with the file as the
block argument, allowing for some manipulation before the file is saved.

migration_template(template, dest,
options = {})

Parses the template as an ERb file, generates the next possible
migration file in db/migrate.

readme(source) Displays the contents of the file.

route_resources(*resources) Adds the listed resources as RESTful routes in the routes.rb file.

template(template, dest, options =
{})

Coverts the template file via ERb before copying to the destination.
Values in an :assigns option are available to the template during
parsing.

421

Extending Rails 11

Creating the templates
After you are done with the generator script, the next step is to create the templates that the gener-
ator uses as source material. For this plugin, you’ll need a template for each of the following:

n user_controller.rb controller

n user.rb model

n create_users.rb migration

n user_test.rb unit test

n user_controller_test.rb functional test

n users.yml fixture

The controller and model implementations that you will use are those that were developed in
Chapter 6 for the Book Shelf application. Listing 11.2 shows what your user_controller.rb
template should look like. The user controller contains three methods: signup, login, and
logout. Those methods will provide the necessary logic for implementing user authentication in
your application.

 LISTING 11.2

user_controller.rb Template

class UserController < ApplicationController

 def signup
 @title = “Signup”
 if param_posted?(:user)
 @user = User.new(params[:user])
 if @user.save
 session[:user] = @user
 flash[:notice] = “User #{@user.login} created!”
 redirect_to :action => “home”
 else
 flash[:error] = “Signup unsuccessful”
 @user.clear_password!
 end
 end
 end

 def login
 if request.post?
 if session[:user] = User.authenticate(params[:user][:login],
 params[:user]

[:password])
 flash[:notice] = “Login successful”

continued

422

Advanced RailsPart IV

 LISTING 11.2 (continued)

 redirect_to_stored
 else
 flash[:error] = “Login unsuccessful”
 redirect_to :controller=>’home’
 end
 end
 end

 def logout
 session[:user] = nil
 flash[:notice] = ‘Logged out’
 redirect_to :controller => ‘home’, :action => ‘index’
 end
end

The next template you’ll need is the User model template. The template for the User model is
shown in Listing 11.3, in the user.rb file.

 LISTING 11.3

user.rb Template

class User < ActiveRecord::Base

 validates_length_of :login, :within => 3..40
 validates_length_of :password, :within => 5..40
 validates_presence_of :login, :e-mail
 validates_uniqueness_of :login, :e-mail
 validates_confirmation_of :password
 validates_format_of :e-mail,
 :with => /^([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]

{2,})$/i,
 :message => “Invalid e-mail”

 attr_accessor :password, :password_confirmation
 attr_protected :password_salt

 def password=(pass)
 @password=pass
 self.password_salt = User.random_string(10) if !self.password_

salt?

self.password_hash = User.hash_password(@password, self.password_
salt)

423

Extending Rails 11

 end

 protected

 def self.hash_password(pass, password_salt)
 Digest::SHA1.hexdigest(pass+password_salt)
 end

 def self.random_string(len)
 #generate a random password consisting of strings and digits
 chars = (“a”..”z”).to_a + (“A”..”Z”).to_a + (“0”..”9”).to_a
 newpass = “”
 1.upto(len) { |i| newpass << chars[rand(chars.size-1)] }
 return newpass
 end

 def self.authenticate(login, pass)
 u=find(:first, :conditions=>[“login = ?”, login])
 return nil if u.nil?

return u if User.hash_password(pass, u.password_salt)==u.password_
hash

 nil
 end
end

This model contains some validations for the login, password, and e-mail fields, and the
methods necessary to create a hashed password and to authenticate a user. For a complete expla-
nation of the methods and attributes in this model, see Chapter 6, where it was used within the
Book Shelf application.

The create_users.rb template is shown in Listing 11.4. This template is used to create a
migration for the users table. The template contains only the fields that are essential to the authen-
tication model. This template shows how to use the extra arguments passed as the command line
by taking advantage of the ERb parser. You could enhance the migration after it is generated to
include any additional fields that you want your User model to have.

 LISTING 11.4

create_users.rb migration Template

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table :users do |t|
 t.string :login

continued

424

Advanced RailsPart IV

 LISTING 11.4 (continued)

 t.string :e-mail
 t.string :password_hash
 t.string :password_salt
 <% attributes.each do |attribute| %>
 t.<%= attribute.type %> :<%= attribute.name %>
 <% end %>
 t.timestamps
 end
 end

 def self.down
 drop_table :users
 end
end

Once you have completed the migration template, the remaining templates are the test- and fixture-
related templates. Rather than providing just test stubs like those created by the standard generators,
your authentication generator should create complete tests that provide full test coverage for the
functionality created by the generator. It is a good practice to remember that code should always be
accompanied by tests, no matter where that code is coming from. A generator should include tests for
code that it provides, a plugin should include tests for code that it creates, and you should always
write tests for the code that you write directly.

Running the new authentication generator
Once you have the generator script and the code templates all completed, you have a complete
Rails generator. You can run your generator the same way you would run one of the standard Rails
generators. Create an empty project that you will use to test the new generator.

> rails test_proj

After this is complete and you have your new test_proj directory structure set up, go ahead and
copy the generator code that you just wrote into the test_proj/lib/generators directory.
This makes the generator available to the application. Using the script/generate command,
try running your new generator. You should see the following output:

> ruby script/generator authentication
 create app/controllers/user_controller.rb
 create app/models/user.rb
 create db/migrate
 create db/migrate/001_create_users.rb
 create test/unit/user_test.rb
 create test/functional/user_controller_test.rb
 create test/fixtures/users.yml
 readme INSTALL
Contents of INSTALL file printed here

425

Extending Rails 11

The generator creates the files that you expected and places them into the appropriate places
within the application’s directory structure. After the files are copied into location, the contents of
the INSTALL file are printed to the screen.

Extending Rails::Generator::NamedBase
In this example, you build the generator script by extending Rails::Generator::Base. In
other cases, you may want to extend the class Rails::Generator::NamedBase instead.
When you use Rails::Generator::NamedBase, your generator takes a class name as its first
parameter, followed by a list of actions. You are able to use that class name passed in, both in your
generator script and within your templates.

Plugins
Once you’ve learned how to write your own generators, plugins are the next tool that you should
learn to use in your projects. Plugins are the primary Rails mechanism for extending the Rails
framework to implement features that you might find useful in more than one Rails application.
There are currently hundreds of plugins available for Rails, and there are a few different places
where you can find online directories of plugins. Check out some of these sites to get started:

n http://agilewebdevelopment.com/plugins

n http://wiki.rubyonrails.org/rails/pages/Plugins

n http://www.railslodge.com/

Figure 11.1 shows you the home page of the agilewebdevelopment.com/plugins site. At this
site, you can find an RSS feed to keep track of plugins as they are added to the directory. On the
site, you can view the highest-rated plugins and the recently added plugins. You are also able to
view plugins by category, as follows:

n Assets

n Controllers

n Internationalization

n Misc. Enhancements

n Model

n Searching and Queries

n Security

n Statistics and Logs

n Testing

n View Extensions

426

Advanced RailsPart IV

 FIGURE 11.1

agilewebdevelopment.com/plugins

These categories make it easy to find exactly the kind of plugin that you are looking for. New plu-
gins are being developed and added to the directories often, and so if you don’t find what you are
looking for today, be sure to keep an eye on the directories or search around on Google to locate
anyone who might be developing the plugin you are interested in. If you are not able to find an
existing plugin that meets your requirements, you can write your own plugin. You will learn how
to do that a bit later in this chapter.

Using the Plugin script
Throughout this book, you’ve used the script/plugin command to install plugins as needed.
The script/plugin command can also be used with a number of other options to do the fol-
lowing tasks:

n Get a list of available plugins

n Get a list of plugin sources

n Add and remove plugin sources

n Discover new plugin sources

n Install plugins

427

Extending Rails 11

n Remove plugins

n Update plugins

Several of the plugin commands use or modify a list of plugin sources sites. Plugin sources are
configured URLs which maintain a list of plugins can be found and downloaded from that site. The
plugin script automatically searches the configured sources for any plugins that you attempt to
install. This means that if you are attempting to install a plugin and it can be found at a plugin
source site, you do not have to specify a full URL to install it. For example, you could install the
acts_as_list plugin using this command, which would place the plugin source in vendor/rails/
acts_as_list:

> ruby script/plugin install acts_as_list

The acts_as_list plugin is located in one of the standard repositories that are configured as a
plugin source out-of-the-box with Rails. If you find yourself using plugins from other sources that
are not already configured as plugin sources, you can easily add those repositories as plugin
sources. In just a bit, you will see how to do that. Most plugins, however, are described and docu-
mented with the full URL of their host server, and if you have that URL, using the exact location is
preferable to just using the plugin name.

List available plugins
You can get a list of all the plugins that are currently available using the script/plugin list
command. This shows you the plugins that are available at the sources that Rails currently knows
about.

> ruby script/plugin list
acts_as_tree http://dev.rubyonrails.com/svn/rails/plugins/acts_

as_tree/
atom_feed_helper http://dev.rubyonrails.com/svn/rails/plugins/

atom_feed_helper/
auto_complete http://dev.rubyonrails.com/svn/rails/plugins/auto_

complete/
…

The results that are returned give you the name of the plugin, along with the repository in which it
can be found. All of the plugins in the list above are in the http://dev.rubyonrails.com/
svn/rails/plugins/ repository.

List plugin sources
To get a list of the plugin sources that are currently configured, you can use the script/plugin
sources command.

> ruby script/plugin sources
http://dev.rubyonrails.com/svn/rails/plugins

428

Advanced RailsPart IV

When you first install Rails, there is only a single plugin source configured: http://dev.ruby
onrails.com/svn/rails/plugin URL. This is why the previous list command listed only
plugins that were in that repository.

Adding and removing plugin sources
You may find that you are using several plugins from a particular source, or your internal organiza-
tion may have an internal source of Rails plugins. In either case, you can tell Rails about new
plugin sources using the script/plugin source command.

> ruby script/plugin source http://svn.techno-weenie.net/projects/
plugins

Added 1 repositories.

This command adds the popular svn.techno-weenie.net source to your configured list of
plugin sources. The svn.techno-weenie.net source hosts more than 30 plugins, including
some of the most popular Rails plugins, such as acts_as_authenticated, attachment_fu,
and restful_authentication. These plugins were all developed by one of the community’s
most prolific plugin developers, Rick Olson. Rick is also a member of the Rails core development
team. You can generally count on consistent quality with his plugins. After adding the svn.
techno-weenie.net source, you can view the plugins that it offers by running a script/
plugin list command.

Removing a configured plugin source is just as easy. You use the command, script/plugin
unsource, to remove a source. You can remove the previously added svn.techno-weenie.
net source using this command:

> ruby script/plugin unsource http://svn.techno-weenie.net/
projects/plugins

removed: http://svn.techno-weenie.net/projects/plugins/
Removed 1 repositories.

Discover new plugin sources
Sometimes you may not be able to find the plugin you are looking for. Rails can help you discover
new sources of plugins to find exactly what you want. The script/plugin discover com-
mand looks on the Internet for new plugins and lets you add new plugin sources to your source
list. The plugins are discovered by parsing the HTML from the the plugins page of the Rails wiki,
searching for the string “plugin” inside of any HTTP or Subversion URL. You are prompted as to
whether you want to add each plugin source that is discovered.

> ruby script/plugin discover
Add http://agilewebdevelopment.com/plugins/? [Y/n]
Add svn://rubyforge.org/var/svn/expressica/plugins/? [Y/n]
Add http://soen.ca/svn/projects/rails/plugins/? [Y/n]
Add http://technoweenie.stikipad.com/plugins/? [Y/n]
Add http://svn.techno-weenie.net/projects/plugins/? [Y/n]
Add http://svn.recentrambles.com/plugins/? [Y/n]

429

Extending Rails 11

Add http://opensvn.csie.org/rails_file_column/plugins/? [Y/n]
Add http://svn.protocool.com/public/plugins/? [Y/n]
…

You can also use a page of your choosing as the page that is scraped when searching for new
plugin sources. This can be particularly useful if your team maintains an internal wiki page that
describes plugins of interest to your team. To discover sources from your own page, simply pass its
URL to the discover command like this: ruby script/plugin discover http://www.
mycompany.com/railsplugins.

Rails then attempts to parse the page at the URL you passed and prompts you to add any URL
plugin sources that it finds, just like it did when scraping the standard Rails wiki page.

Installing, removing, and updating plugins
If you implemented the Book Shelf application that was developed in Chapters 6 to 8 of this book,
you have already used the plugin script to install plugins into your Rails application. The install
option is the option you will use most often with the plugin command. To install a plugin, you
use the script/plugin install command with the name of the plugin that you want to
install.

ruby script/plugin install acts_as_list

This causes Rails to search through the list of configured plugin sources to find a plugin with the
name you passed in. That plugin is installed into the current application if it is found. You can also
install a plugin that is not available at a configured plugin source by passing a complete URL to the
install command.

ruby script/plugin install
http://svn.techno-weenie.net/projects/plugins/acts_as_

authenticated

If you know the repository URL for a plugin that you are trying to install, it’s usually a good idea to
just go ahead and specify it, rather than hope that the plugin will be found in a configured plugin
source repository.

If you are using Subversion as your source control, then the -x option adds the plugin to your
repository as a Subversion external, meaning that the only a link to the plugin host is stored in
your repository, and the plugin is updated locally any time you update your repository. Plugins
can also be managed using a tool called Piston, which allows you to store plugin source locally, but
still get easy update behavior.

To remove an installed plugin, use the script/plugin remove command. This command
deletes the plugin from the vendor/plugins directory and also runs the plugin’s uninstall.
rb script if it has one.

> ruby script/plugin remove acts_as_taggable
Removing ‘vendor/plugins/acts_as_taggable’

430

Advanced RailsPart IV

You have now learned how easy it is to manage the plugins that your Rails application has available
to it. In the next section you will learn how to write your own plugins.

Writing a plugin
Now that you’ve seen how easy it is to add plugins to a Rails application, let’s look at what it takes
to create your own Rails plugin.

To start writing your own plugin, just as with an application, Rails gives you an easy-to-use genera-
tor for creating the structure of your new plugin. Just run the plugin generator:

> ruby script/generate plugin my_plugin
 create vendor/plugins/my_plugin/lib
 create vendor/plugins/my_plugin/tasks
 create vendor/plugins/my_plugin/test
 create vendor/plugins/my_plugin/README
 create vendor/plugins/my_plugin/MIT-LICENSE
 create vendor/plugins/my_plugin/Rakefile
 create vendor/plugins/my_plugin/init.rb
 create vendor/plugins/my_plugin/install.rb
 create vendor/plugins/my_plugin/uninstall.rb
 create vendor/plugins/my_plugin/lib/my_plugin.rb
 create vendor/plugins/my_plugin/tasks/my_plugin_tasks.rake
 create vendor/plugins/my_plugin/test/my_plugin_test.rb

You pass the name of the plugin that you want to create as a parameter to script/generate
plugin. In the above example, the plugin would be named ‘my_plugin’.

You now have a directory structure set up for writing your plugin. Let’s take a closer look at the
directories and files that make up a plugin. Here is a representation of a standard plugin:

plugin_name/
 |—- init.rb
 |—- install.rb
 |—- uninstall.rb
 |—- Rakefile
 |—- README
 |—- MIT-LICENSE
 |—- lib/
 |—- plugin_name.rb
 |—- tasks/
 |—- plugin_name_tasks.rb
 |—- test/
 |—- plugin_name_test.rb

Although this is the standard structure of a plugin and you will find many plugins that contain
each of these components, you might be surprised to find out that none of these components are
actually required. Your plugin could be nothing but a tasks directory, or perhaps a lib direc-
tory. So with that in mind, let’s examine what each of the components of a plugin is used for.

431

Extending Rails 11

n The init.rb file runs every time the Rails application in which the plugin is
installed is started. This is useful for situations where you want to dynamically modify
some other piece of code prior to your application running, such as mixing in a helper
module that all of your views can take advantage of.

n The install.rb file runs one time only when the plugin is installed into your
application. You can use this script to copy files into desired locations and print addi-
tional setup directions to the screen.

n The uninstall.rb file runs one time when you uninstall a plugin. This can be used
to remove files or to take other actions to clean up after a plugin.

n The Rakefile is commonly used to generate documentation and run tests for the
plugin.

n The README file should contain information that describes your plugin and pro-
vides installation instructions for users. RDoc format is common, but not in any
way required.

n The MIT-LICENSE file contains a copy of the MIT License, which is the default
license for your plugin. If you prefer a different license for your plugin, just delete or
replace this file with a description of your preferred license.

n The lib directory contains Ruby classes that are available to your application.

n The tasks directory can contain .rake files that extend your application with new
rake tasks. By default you get a test task and a documentation task.

n The test directory contains tests that test the functionality of your plugin. Just as
with any other code that you write, you should have a full suite of tests providing com-
plete test coverage for your plugin.

It is important to note that the install.rb file only runs if you install the plugin using the
script/plugin install command. If you install a plugin into your Rails application by man-
ually copying its files into your application’s vendor/plugins directory, the install.rb file
does not automatically run. The same holds true for the uninstall.rb file. If you manually
delete a plugin, the uninstall.rb file does not run. The proper way to uninstall a plugin is to
use the script/plugin remove command.

Write a new plugin
To show you how easy it is to write a plugin, I will walk you through the development of a simple
plugin that adds a feature to all of your ActiveRecord models, allowing you to retrieve a random
record from the database.

Because you want to add the random finder feature to all of your ActiveRecord models, you’ll
implement the feature with a module that will be mixed into the ActiveRecord::Base class,
which all of your ActiveRecord models inherit from. To get started, create a new Rails application
and generate a plugin named random_finder.

rails chapter11
cd chapter11
ruby script/generate plugin random_finder

432

Advanced RailsPart IV

After the generate script is complete, the files related to your new plugin are in the vendor/
plugins/random_finder directory. Assume this to be the root path for files are referred to in
this section.

Start by opening the file lib/random_finder.rb. In this file is where you will put the new finder
method that you want to expose to all of your ActiveRecord models. To do this, you’ll implement the
method in a module that can later be mixed into the ActiveRecord::Base class.

Listing 11.5 shows what your completed random_finder.rb file should look like.

 LISTING 11.5

random_finder.rb Plugin

module RubyOnRailsBible
 module RandomFinder

 def self.included(mod)
 mod.extend(ClassMethods)
 end

 module ClassMethods
 def find_random
 find(:first, :order => ‘rand()’)
 end
 end
 end
end

The RandomFinder module is created inside another module called RubyOnRailsBible. This
is done for name-scoping purposes. By creating a higher-level module with your organization or
company name, you can avoid naming conflicts in your plugins. The first method in the
RandomFinder module is as follows:

def self.included(mod)
 mod.extend(ClassMethods)
end

The self.included method is automatically called by Rails when this module is included in
another class or module. The module that this module is being included in is passed as an argu-
ment to self.included.

The module including RubyOnRails::RandomFinder is then extended with the methods from
RubyOnRails::RandomFinder::ClassMethods. The extend call takes all instance meth-
ods of the ClassMethods module and adds them as class methods of the mod module. This
enables you to include class level methods along with instance level methods.

433

Extending Rails 11

The RubyOnRails::RandomFinder::ClassMethods module includes a single method,
find_random. The method find_random uses the following line to return a random record:

find(:first, :order => ‘rand()’)

This line says to get the first record when the records are sorted in a random order. This results
in a random record being returned. However, there is a significant limitation to this code. The
rand() function that is being passed in the order clause only works with MySQL databases. If
your database is something other than MySQL, this code does not work. You won’t solve the data-
base independence problem here, but if you are interested in a plugin with this functionality that
does work with more databases than MySQL, check out the random_finders plugin written by
Daniel Morrison. You can get information about the random_finders plugin at http://
agilewebdevelopment.com/plugins/random_finders.

The last thing you need to do in order to make the random_finder plugin functional is to edit
the plugin’s init.rb file so that the RubyOnRailsBible::RandomFinder module is auto-
matically included in ActiveRecord::Base. The complete implementation of init.rb is
shown here.

require ‘random_finder’
ActiveRecord::Base.send(:include, RubyOnRailsBible::RandomFinder)

The RubyOnRailsBible::RandomFinder module is included in ActiveRecord::Base
by calling the ActiveRecord::Base.send method, and passing the :include argument
along with the name of the module you want included, which triggers an include call from
ActiveRecord::Base.

Try out the new plugin
You have now implemented the essential code for a functioning Rails plugin. You can test your
new plugin within the chapter11 Rails project that you created at the start of this section. First,
make sure that you have a local development database configured in the application’s config/
database.yml file, like this:

defaults: &defaults
 adapter: mysql
 username: root
 password:

development:
 database: chapter11_development
 <<: *defaults

For this exercise there is no need to create a test or production database, and so only the develop-
ment database is specified. Go ahead and use rake to create the database.

rake db:create:all

434

Advanced RailsPart IV

With your database set up, the next step is to create a simple model on which you can try out the
random finder method.

ruby script/generate model Post title:string body:text

When the model generation is complete, go ahead and run the migration to create the posts table
in your database.

rake db:migrate

The next thing you have to do is to set up some test data that you can find with the random finder
method. Go into the Rails console to create some Post records like this — the bold lines you type,
the the other lines are the console response:

ruby script/console
Loading development environment (Rails 2.0.2)
>> Post.create :title=>”Title 1”, :body=>”This is my body”
=> #<Post id: 1, title: “Title 1”, body: “This is my body”>
>> Post.create :title=>”Title 2”, :body=>”Oh, another body”
=> #<Post id: 1, title: “Title 2”, body: “Oh, another body”>
>> Post.create :title=>”Title 3”, :body=>”Yet another body”
=> #<Post id: 1, title: “Title 3”, body: “Yet another body”>

There are now three unique Post records in your database. This should be adequate to test the
find_random method created by the random_finder plugin. When your Rails application is
started, the plugin’s init.rb script is run, which causes the find_random method to become
available to any models that extend ActiveRecord::Base, such as your Post model. From
within the Rails console, try calling the find_random method a few times, again the commands
you type are in bold:

>> Post.find_random
=> #<Post id: 1, title: “Title 2”, body: “Oh, another body”>
>> Post.find_random
=> #<Post id: 1, title: “Title 1”, body: “This is my body”>
>> Post.find_random
=> #<Post id: 1, title: “Title 2”, body: “Oh, another body”>
>> Post.find_random
=> #<Post id: 1, title: “Title 3”, body: “Yet another body”>

Because the find_random method returns a random Post instance, your results will not be
identical to the results you see above. However, you should notice randomness in the results that
are returned.

Congratulations, you’ve now written your first Rails plugin. When you break it down into simple
steps as I did here, you see that writing a plugin is not very difficult. Although I didn’t include any
tests for this plugin, you should not forget to include tests with any plugins that you write. Tests
are an important part of any plugin, especially if you want to release the plugin into the wild. Many
developers do not trust a plugin that does not have any tests. In the next section you will learn
some common techniques that are often used to develop plugins.

435

Extending Rails 11

Common techniques used to develop plugins
Now that you’ve seen how to develop a plugin of your own, in this section you’ll see an overview
of some of the common techniques that can be used to develop a plugin. Because of Ruby’s
dynamic nature, it is an ideal language for implementing an extension mechanism such as what
you get with Rails plugins. Many Rails plugins take advantage of Ruby’s dynamism to add new fea-
tures by extending or modifying existing classes. The techniques that you will find the most valu-
able when you write plugins include the following:

n Extending the functionality of an existing class using modules. This is also known as
the mixin technique.

n Opening a class or module and adding new methods, or overriding existing methods.

n Extending existing code dynamically through callbacks and hooks. These techniques
include implementing methods such as method_missing, Class#inherited,
Module#const_missing, and Module#included.

n Using code generation to add new functionality.

These techniques do not have to be used independently. Quite often, a plugin will use more than
one of these techniques to implement a single plugin. In the following subsections, you’ll see
examples of how each of these techniques can be used in the development of a plugin.

Extending classes with mixins
A mixin is a module that defines one or more methods. The mixin is then included into another
class, and the module’s methods become available to the class in which it is included. Using this
technique, you can add new functionality to existing classes. The class extended most often by plu-
gins is the ActiveRecord::Base class. ActiveRecord::Base is the class from which most
of your application’s model classes extend. So by extending this class, you can effectively add to or
change the behavior of all of your application’s model classes.

Take a look at an example of how that ActiveRecord::Base is extended through a mixin in
the acts_as_rateable plugin. This is the same technique that you used in the previous section
to write your own plugin, the random_finder plugin.

First, look at the init.rb file for acts_as_rateable. The init.rb file is executed automati-
cally when the Rails application, which includes acts_as_rateable, is started. The code in
init.rb will include the Juixe::Acts::Rateable module in the ActiveRecord::Base
module.

require ‘acts_as_rateable’
ActiveRecord::Base.send(:include, Juixe::Acts::Rateable)

Now take a look at the plugin’s lib/acts_as_rateable.rb code, shown in Listing 11.6. The
first key method to understand here is the self.included method of the Juixe::Acts::
Rateable module. This method is called when the module is included in another class or mod-
ule. So when the module is included in ActiveRecord::Base as a result of the init.rb script

436

Advanced RailsPart IV

executing, this method extends ActiveRecord::Base with the methods contained in the
ClassMethods module.

The ClassMethods module contains a single method, acts_as_rateable. So now the
method acts_as_rateable becomes available to any of your models that extend
ActiveRecord::Base.

 LISTING 11.6

acts_as_rateable.rb

module Juixe
 module Acts #:nodoc:
 module Rateable #:nodoc:

 def self.included(base)
 base.extend ClassMethods
 end

 module ClassMethods
 def acts_as_rateable
 has_many :ratings, :as => :rateable, :dependent =>

true
 include Juixe::Acts::Rateable::InstanceMethods
 extend Juixe::Acts::Rateable::SingletonMethods
 end
 end

 module SingletonMethods
 …
 end

 module InstanceMethods
 …
 end
 end
 end
end

Next, let’s see what happens when a model calls the acts_as_rateable method. The first line
of the method adds a has_many association to the model that calls it. The association associates
ratings with the calling model. The next two lines add more methods to the calling model. In the
second line, some additional instance methods are included by including the Juixe::Acts::
Rateable::InstanceMethods module. That module is defined further down in the file.

437

Extending Rails 11

In Listing 11.6, the methods of the InstanceMethods module are left out for brevity. The last
line of the acts_as_rateable method adds new singleton methods to the calling model by
extending the calling class with the Juixe::Acts::Rateable::SingletonMethods mod-
ule. This module is also defined further down in the file, with the methods left out of the listing
for brevity.

The end result is that you can add a call to acts_as_rateable to any of your model classes,
and as a result, the model gains a new has_many association, along with new instance and single-
ton methods related to ratings functionality. The singleton methods behave as class methods, but
only in class that actually include acts_as_rateable.

So by looking at the code from the acts_as_rateable plugin, you’ve seen a good example of
how your plugins can use mixin modules to enhance existing code. You can use the techniques
shown in this section to extend your model classes with all sorts of specialized behavior.

Opening a class
This technique has an end effect similar to the previous technique of using module mixins. You
end up with an existing class having new or changed behavior. So, for example, you could add a
method to ActiveRecord::Base as follows:

module ActiveRecord
 class Base
 def self.find_random
 find(:first, :order => ‘rand()’)
 end
 end
end

The init.rb for this plugin would only need to require the file defining this method and the new
method is available to all ActiveRecord::Base subclasses. This technique is more direct than
the mixin technique, which is a strength and a weakness. It’s much easier to understand, and
exceptionally well suited to utility methods that you actually do want every instance of that class
to share.

On the other hand, it’s much less flexible — the typical acts_as plugin makes the addition of most
of its functionality conditional on calling the original method. That can’t easily be done through
just opening a class. Opening a class is also more susceptible to name collisions between two meth-
ods with the same name.

Dynamic extension with callbacks and hooks
Rails has an excellent event model with callback and hook methods allowing you to dynamically
tie into the framework in quite a few different places. Use of these methods provides another com-
mon style of implementing plugins. The plugin acts_as_taggable_redux, which was used in
Chapter 8 to add tagging functionality to the Book Shelf application, provides an excellent example
of this technique in a plugin.

438

Advanced RailsPart IV

Listing 11.7 shows the top portion of the file acts_as_taggable.rb from the acts_as_
taggable_redux plugin.

 LISTING 11.7

acts_as_taggable.rb

module ActiveRecord
 module Acts #:nodoc:
 module Taggable #:nodoc:
 def self.included(base)
 base.extend(ClassMethods)
 end

 module ClassMethods
 def acts_as_taggable(options = {})
 has_many :taggings, :as => :taggable,
 :dependent => :destroy, :include => :tag
 has_many :tags, :through => :taggings

 after_save :update_tags

 extend ActiveRecord::Acts::Taggable::SingletonMethod

s
 include ActiveRecord::Acts::Taggable::InstanceMethod

s
 end
 end
 …

At first glance, you will probably recognize elements of the mixin technique described in the previ-
ous section. This plugin makes use of several common techniques for adding functionality to your
application. What you should pay closer attention to for this section is the after_save method
call. That line of code tells Rails to always call the update_tags method after saving any model
that uses the acts_as_taggable method. This is how the plugin keeps tags updated every time
you make changes to a model instance without requiring any manual code modifications on your
part.

The update_tags method that is called is shown in Listing 11.8. This is added as an instance
method of the class that calls acts_as_taggable (meaning that it’s in the InstanceMethods
module included when the plugin is invoked).

So now you’ve seen another technique that developers use to add functionality to an application
dynamically. This example shows how you can hook into an application with the after_save
event method. Rails has a bunch of these event methods that allow you to hook into the Rails

439

Extending Rails 11

ActiveRecord processing cycle. For more information about these methods, refer to the Rails docu-
mentation for ActiveRecord callback methods at http://api.rubyonrails.org/classes/
ActiveRecord/Callbacks.html.

 LISTING 11.8

update_tags method

def update_tags
 if @new_tag_list
 Tag.transaction do
 unless @new_user_id
 taggings.destroy_all
 else
 taggings.find(:all,
 :conditions => “user_id = #{@new_user_id}”).each do

|tagging|
 tagging.destroy
 end
 end

 Tag.parse(@new_tag_list).each do |name|
 Tag.find_or_create_by_name(name).tag(self, @new_user_id)
 end

 tags.reset
 taggings.reset
 @new_tag_list = nil
 end
 end
end

Using code generation
Earlier in this chapter, you learned how to write a Rails code generator. Generators can also be
included within a plugin. The use of generators provides another mechanism for a plugin to add to
your existing code base and provide you with new functionality. Because you saw how to create a
generator earlier in this chapter, I will not walk you through the details again here. Just know that
a plugin can include multiple generators. You would place those generators inside of the plugins
lib/generators directory.

Managing plugins with Piston
One awkward thing about Rails plugins is that it’s somewhat challenging to keep them up to date.
Piston is a Ruby program that manages plugin information for you. Piston allows you to update all
your plugins on command, and also to freeze plugins at a specfic version. The 1.x version of Piston

440

Advanced RailsPart IV

assumes that your repository and the plugin respository are both Subversion, however the 2.x ver-
sions (in beta as of this writing) allows either side of the relationship to be managed using git.

Piston is a Ruby gem; acquire it by typing:

gem install —include-dependencies piston

If you already have plugins managed using as Subversion externals (this includes Rails itself), you
can convert them over to Piston using the command:

piston update

This should go through all your externals and convert them to be managed by piston. This will break
the external relationship, and the code files will actually be exported to your local repository — you’ll
need to commit the changes to your repository when this is complete.

New plugins, or plugins that are not run as externals are imported using a command like this —
this one works on Rails itself (or did, before Rails moved to git).

piston import http://dev.rubyonrails.org/svn/rails/trunk vendor/
rails

The first argument is the remote host of the plugin, the second is the target directory. Unlike Rails
managed plugin loading, you must specify the directory explicitly. Also, the install.rb of the
plugin is not run, so you’ll have to run that manually.

Once all your plugins have been pistonized, the command

piston update

Will check all managed plugins for updates. If you only want to check a specific plugin, specify it’s
directoy as an argument to the command.

When you are convinced that your application is near launch and you want to stop getting updates
on a specific plugin, use the command.

piston lock vendor/plugins/plugin_to_lock

Obviously, the directory can be any plugin directory or Rails itself. A locked plugin is not updated
even if a general update is requested. The piston unlock command removes the lock.

Summary of Useful Plugins
There is a large number of useful plugins already developed that you can install and use within
your applications today. These plugins can shave significant time off the development of your cus-
tom Web applications. Every Rails developer should have some familiarity with the plugins that
are available in the open source community. In this section, you’ll learn about some of the most
useful and popular plugins.

441

Extending Rails 11

The following plugins are listed here:

n acts_as_rateable

n will_paginate

n acts_as_state_machine

n annotate_models

n exception_notifier

n resource_controller

n Authentication plugins

n restful_authentication

n Enhanced Scaffolding

n streamlined

n AutoAdmin

n ExtJS Scaffold

n Lispsi

n ActiveScaffold

n Content Tagging

n acts_as_taggable_redux, acts_as_taggable_on_steroids

n has_many_polymorphs

n File Uploads

n attachment_fu

acts_as_rateable
You have probably come across many Web sites that use those fancy-looking stars or other cute
graphics for a rating system. You hover over the stars and they change color, indicating the rating
score that you want to submit. Ratings are a very useful feature of Web 2.0 applications. They let
you share with others your opinion of a product or service. If you are looking for a product or ser-
vice, a rating gives you some quick feedback as to how other users feel about it. There are a few
plugins available that make adding this kind of rating system to a Rails application quite easy. The
most popular plugin for ratings is probably the acts_as_rateable plugin.

Using acts_as_rateable, you can add ratings to any model. Once you have ratings associated
with a model, you can then search and sort, based on the ratings. The home page for this plugin is
at http://rateableplugin.rubyforge.org/. Going there takes you to the Rdoc docu-
mentation for the plugin. If you want to see a practical example of how to use this plugin, see
Chapter 8. The acts_as_rateable plugin is used to add ratings to books for the Book Shelf
application.

442

Advanced RailsPart IV

Pagination
In most real-world Web applications, you are storing some type of data in a database. Often, you
have a lot of records of a particular type, perhaps thousands of book entries, thousands of user
records, or thousands of recipes. Whatever it is that your application deals with, you need to dis-
play that information to the user. If you have thousands of records, you probably do not want to
dump them into a single Web page all at once. This would take a very long time to load and would
not be a very user-friendly experience, forcing them to scroll through a huge list of data.

A common solution to this problem is to paginate data that you are presenting to the user. This
means that you return a page containing a set number of records, and additional records are
retrieved when the user chooses to view another page of records. With this type of interface, the
user is typically able to page back and forth through these pages of data records. The implementa-
tion of this style of interface for presenting large amounts of data, and the backend logic to process
it, is what I am referring to when I say pagination.

Prior to Rails 2.0, there was a built-in mechanism for getting pagination of your model object data.
However, the built-in mechanism had a very bad reputation and many faults, the first of which was
poor performance. Pagination is no longer included in Rails as of version 2.0. Fortunately, there is are
two very good and easy-to-use plugins, will_paginate, and paginating_find, which allow
you to get easy pagination of your model data. I’ll cover will_paginate here; paginating_
find is similar.

Installing will_paginate
You can install will_paginate using the script/plugin install command.

ruby script/plugin install svn://errtheblog.com/svn/plugins/will_paginate

Adding pagination to your application
After you have the plugin installed, it’s very easy to add the pagination functionality to your appli-
cation. I’ll look at an example where I want to add pagination to a Post model. To implement
 pagination in your application, you’ll implement these three tasks:

n Define the per_page class variable in your model

n Retrieve model instances in the controller method using Post.paginate

n Use the will_paginate helper in view to display pagination controls

To add pagination to a Post model, you would start by defining how many posts you want to
appear on a single page by first defining the per_page class attribute inside of the Post model,
app/models/post.rb.

class Post < ActiveRecord::Base
 cattr_reader :per_page
 ⊥_page = 10
end

443

Extending Rails 11

Defining the per_page attribute is actually optional; if you do not define it, a default value of 30
items per page is used. The next step is to modify your posts controller method that retrieves posts
for display to use the Post.paginate method instead of the standard Post.find method. A
modified index method of app/controllers/posts_controller.rb would look like this:

def index
 @posts = Post.paginate :page => params[:page]
end

The Post.paginate method retrieves one page of results and sets them in the @posts variable.
The parameter being passed to Post.paginate is the page number of results. If you want to
order your posts, you can easily add an order parameter to the method like this:

def index
 @posts = Post.paginate :page => params[:page], :order =>

‘created_at DESC’
end

As another alternative to setting the per_page attribute in your Post model, you could also pass
the per_page count directly to the Post.paginate method, as follows:

def index
 @posts = Post.paginate :page => params[:page] , :per_page => 20
end

Just as you are able to use other forms of the find method, such as find_by_name, you can also
use different forms of paginate in order to retrieve a filtered set of posts.

@posts = Post.paginate_by_blog_id @blog.id, :page =>
params[:page]

This example would retrieve only those posts having a blog_id attribute matching the @blog.
id attribute passed in. In general, if you want to page your results, you use the paginate method
just as you would normally use the find method when you are not doing paging.

The last step to implementing paging is to use the will_paginate helper method in the view
that displays your paged results. Continuing with the posts example, because the controller
method used is the index method, the template rendered is the app/views/posts/index.
html.erb template. Add a call to the will_paginate helper where you would like the pagina-
tion controls to appear.

<p>My Posts</p>
<%= render :partial => ‘post’, :collection => @posts %>
<%= will_paginate @posts %>

In this example, the pagination controls appear following the list of posts. The pagination controls
allow you to navigate back and forth across pages.

444

Advanced RailsPart IV

With that, you now have an easy method of implementing paging across any of your model
objects. By applying some CSS styling to your data display, and pagination controls, you will have
a nice looking display of your model data.

acts_as_state_machine
In any large application, a common requirement is to be able to support one or more of your mod-
els having multiple states. This is especially true in any application that supports some form of
workflow. For example, a common feature of Web sites today is that when a user registers for the
site, their account is placed into an unvalidated state and the user has to confirm the registration
by replying to an e-mail that is automatically sent to them. Once they have replied to the e-mail (or
clicked a link contained in the e-mail), their account is placed into the active state.

The acts_as_state_machine plugin allows you to easily add this type of state machine
behavior to your models.

Installing acts_as_state_machine
To install the acts_as_state_machine plugin, use the script/plugin install command:

ruby script/plugin install http://elitists.textdriven.com/svn/plugins/acts_
as_state_machine

Using acts_as_state_machine
Listing 11.9 shows a common way of using the functionality of acts_as_state_machine with
a User model.

 LISTING 11.9

User Model with acts_as_state_machine

class User < ActiveRecord::Base

 acts_as_state_machine :initial => :pending, :column => ‘status’

 # States for the User model
 state :passive
 state :pending, :enter=>:make_activation_code
 state :valid, :enter=>:do_validate
 state :suspended
 state :deleted, :enter=>:do_delete

 event :register do
 transitions :from=>:passive,
 :to=>:pending,
 :guard=>Proc.new do
 |u| !(u.crypted_password.blank? && u.password.blank?)

445

Extending Rails 11

 end
 end

 event :activate do
 transitions :from=>:pending, :to=>:active
 end

 event :suspend do
 transitions :from=>[:passive,:pending,:active], :to=>:suspended
 end

 event :delete do
 transitions :from=>[:passive,:pending,:active, :suspended],
 :to=>:deleted
 end

 def make_activation_code
 self.deleted_at = nil
 self.activation_code = Digest::SHA1.hexdigest(

 Time.now.to_s.split(//).sort_by {rand}.join)
 end

end

Let’s take this one step at a time. At the top of the model, the method acts_as_state_machine
is called, which sets up various instance variables and methods for the state machine to work. There’s
a required option, :initial, which is starting state of the machine. The optional argument is
:column, which is the database column where the current state of each model is stored. The default
is state.

Next up, a series of state definitions, corresponding to the valid states of the system. Each state
is pretty much just a name, there are three optional callbacks for each state, :enter, :after,
and :exit. Each callback takes a method name or block.

The enter block is called for the state being entered, before the state is updated and the record is
saved, while the exit block is called for the state being left, and after the record is saved. The after
block is called on the block being entered, after the enter block. The behavior for a new object is
slightly different, so it’s best not to depend on the exact timing if you can avoid it.

At this point, you’ve defined a number of states, but no events that cause the model to move
between states. That’s next, with the series of calls to event. Each event takes a symbol as its
name and a block. Inside the block you define a number of transitions. Each transition goes
:from one or more states :to a single state. An optional :guard clause takes a method name or
block which must return true for the transition to fire.

446

Advanced RailsPart IV

Note that these blocks are invoked exactly once, at load time, and the transitions are extracted
from them at that point — if you want to have other behavior accompany the state transition, use
the state before and after callbacks.

A number of helpful instance methods are created from your states and events to help move your
model through the state machine. Each state automatically creates a boolean method of the form
pending? which returns true if the model is in that state. Each event generates an action
method of the form suspend! which triggers the appropriate state transitions and callbacks.

The action method also updates and saves the record back to the database. The method is supposed
to return true if the transition performs appropriately, but as of this writing, it can fail silently under
certain conditions. Using the action methods, you can guide the model through its life cycle.

The plugin also generates a couple of class level methods. You can use find_in_state(:all,
state, *args) to find all records in a given state — any optional arguments are passed through
to the regular find method. Similarly, count_in_state(state, *args) and calculate_
in_state(stage, *args) mimic the plain ActiveRecord versions.

annotate_models
Because of the magic of ActiveRecord, your model classes are kept very clean and free of the typical
getters and setters and attribute definitions that you would likely see in a different framework. As
nice as this is, there can be a downside to not having your model’s attributes visible anywhere in
your model classes.

Often when you are working with a project, you want to quickly have a reminder of what a partic-
ular model object’s attributes are. However, in a typical Rails application, to find out what a mod-
el’s attributes are, you have to look in the database, look at your migrations, or look in the
schema.rb file that is created for you when you run migrations. While this is not that big of a deal,
it can slow you down if you are writing code in a model and just want to look up the attributes of
that model. This is a scenario in which the annotate_models plugin becomes useful. The
annotate_models plugin adds a comment summarizing the current schema to the top of each
ActiveRecord model source file.

Installing annotate_models
To install the annotate_models plugin, use the script/plugin install command:

ruby script/plugin install http://repo.pragprog.com/svn/Public/
plugins/annotate_models

Using annotate_models
The functionality of annotate_models is provided through a rake task. To have the annotations
generated for all of your model classes, run the annotate_models rake task:

> rake annotate_models

447

Extending Rails 11

This adds a schema description comment to the top of each of your model classes. Consider a Post
model created with the following migration:

class CreatePosts < ActiveRecord::Migration
 def self.up
 create_table :posts do |t|
 t.string :title
 t.text :body
 t.timestamps
 end
 end

 def self.down
 drop_table :posts
 end
end

After running the annotate_models rake task, the following comment is added to the top of the
app/models/post.rb file:

== Schema Information
Schema version: 1
#
Table name: posts
#
id :integer not null, primary key
title :string(255)
body :text
created_at :datetime
updated_at :datetime
#

As you can see in the comments, you get the schema version, the table name, and the name and
data type of each attribute for the model. Now if I am working on code in a specific model class, I
only have to look at the top of the class file to see a complete description of the model’s attributes.

If you run the annotate_models task each time you run your migrations, you always have up-
to-date model annotations. Each time you run the annotate_models task, the schema descrip-
tion comments are completely rewritten at the top of each of your model files. So, if you added any
of your own comments into the annotation comments, they would be lost the next time you gener-
ate the annotations with the annotate_models task.

exception_notifier
Error handling is an important part of any application. With a Web application, errors can happen at
any time. It would be nice to have an easy mechanism that could notify you when errors occur in
your live applications. That is exactly what the exception_notifier plugin does for you. It adds
a mailer object that sends you e-mail notifications when errors occur in your Rails application.

448

Advanced RailsPart IV

The e-mail that is sent out includes a backtrace of the exception that occurred, along with informa-
tion about the current request, session, and environment. Through configuration, you can set the
following parameters for the exception_notifier:

n Sender e-mail address

n Recipient e-mail addresses

n Subject line prefix text

Installing exception_notifier
To install the exception_notifier plugin, use the script/plugin install command:

ruby script/plugin install http://dev.rubyonrails.org/svn/rails/
plugins/exception_notification/

Using exception_notifier
After you have installed the plugin, the first thing you need to do is to add the
ExceptionNotifiable mixin to the controller in which you want to generate error e-mails.

class ApplicationController < ActionController::Base
 include ExceptionNotifiable
end

The next step is to add the e-mail recipients into your applications configuration in config/
environment.rb.

ExceptionNotifier.exception_recipients = %w(tim@fisher.com kerry@
fisher.com)

The recipients are the only mandatory configuration that you have to add, but you can also define
the sender address and a prefix for the e-mail title like this:

defaults to exception.notifier@default.com
ExceptionNotifier.sender_address = %(“Application Error” <app.

error@myapp.com>)

defaults to “[ERROR] “
ExceptionNotifier.e-mail_prefix = “[APP] “

The plugin only sends out e-mail messages if the server IP address is not local. Local is normally
defined by the local IP of the server or 127.0.0.1, but you can add a custom IP address or range in
your controllers:

consider_local “1.2.3.4”

The string is converted to an Ruby IPAddr object, so network ranges are legal.

You can customize the actual message by placing a partial file in the app/views/exception_
notifier directory. The sections you can override are named _request, _session,

449

Extending Rails 11

_environment, and _backtrace. You can add your own sections by setting Exception
Notifier.sections value — the expected array is made up of lower-case strings. You would
then write a partial to match any new sections you might add.

Your custom partials have access to the instance variables shown in Table 11.2.

 TABLE 11.2

Instance Variables
Variable Description

@backtrace The backtrace of the exception, with file names cleaned to their absolute versions.

@controller The controller object in which the error happened

@data Optional data in the mailer object.

@exception The raised exception

@host The requesting hostname

@rails_root The Rails root directory, in canonical form.

@request The request object

@sections The list of sections written by the mailer

resource_controller
If you’ve done a lot of RESTful resource creation, you’ve probably noticed that Rails creates the
same boilerplate code for each controller you ask it to build. Technically, this would seem to be a
violation of the Don’t Repeat Yourself (DRY) principle.

There have been a couple of attempts to make a controller structure that does not repeat itself for
each an every new controller. The resource_controller plugin, created and maintained by
James Golick, is probably the most widely used plugin in this category.

Installing resource_controller
The most recent stable version of resource_controller is available at:

script/plugin install svn.jamesgolick.com/resource_controller/
tags/stable

The cutting edge version is:

script/plugin install svn.jamesgolick.com/resource_controller/
tags/trunk

Using resource_controller
Take any old controller that you want to make RESTful. Change it’s parent class like so:

class UsersController < ResourceController::Base
end

450

Advanced RailsPart IV

An alternate syntax is available if you need your controller to have a specific different parent class.

class UsersController
 restful_controller
end

Both versions are identical, as long as the restful_controller method call is the first thing in
your controller class.

And hey, that’s it, as long as you want to use all the defaults. Which you probably don’t. Luckily,
it’s really easy to customize your controller, and it helps to be able to focus on what is unique
about your controller, rather than having to wade through all the code that is identical to other
RESTful controllers.

For each of the basic RESTful actions you can create a before or after block invoked either
before or after the actual action:

save.before do
 logger.debug “about to save”
end

One quick note — one of the RESTful actions is new — Ruby doesn’t like it if you use that all by
itself, so the new action is referred to as new_action.

Each action has several optional methods you can call to customize its behavior, as shown in
Table 11.3.

 TABLE 11.3

Optional Methods to Customize Action Behavior
Hook Description

after Takes a block, which is invoked after the action completes.

before Takes a block, which is invoked before the action starts.

failure Scopes any other block to specifically be invoked if the action fails, such as create.
failure.flash = “Oops”.

flash A string placed in the flash by the action.

response Takes a block which replaces the entire respond_to block for the action.

success Scopes for actions that have succeeded. The default for methods that are not explicitly scoped
as failure.

wants Adds an individual line to the respond_to block for the action, such as new_action.
wants.js { render :partial => “javascript” }.

451

Extending Rails 11

If you have several changes for the same action, they can all go in one block:

update do
 flash = “something flashy”
 wants.xml { render :xml, @user }
end

The plugin also allows you to handle alternate mechanisms for loading your objects or collections,
nested resources, polymorphic connections, and the like.

Adding user authentication
In most applications that you will write, you will likely have the concept of users. Typically you
will give users the ability to log into your application to gain access to protected features or func-
tionality, or to provide a personalized user experience. In order to support the ability for users to
log in and log out from your application, you need to implement some form of user authentication.
User authentication allows you to confirm that a user is who they claim to be, usually by verifying
a password that the user submits.

User authentication is a very important piece of your application to get right, as it lies at the heart
of your application’s security. Fortunately, there are several authentication plugins available that
have been used in many applications and can be trusted to work well.

Whether you choose to implement user authentication for your application by using one of these
plugins, another plugin, or create your own, I believe it is important that you take a look at what
you are getting and that you take the time to understand the code. Authentication is such a key
component of your application that it is a good idea to take the time to understand how it works.
I think you’ll find that once you understand it, authentication and its implementation are not that
complex.

The restful_authentication plugin has become the most commonly used authentication
plugin in Rails 2.0.2. What’s nice about this plugin is the way that it provides a simple core of
functionality that is easily extended to the specific needs of your application. You can even use this
plugin to manage e-mail based authentication of new users.

Installing restful_authentication
Installing the plugin is normal:

script/plugin install http://svn.techno-weenie.net/projects/
plugins/restful_authentication/

To start using the basic features, run the generator:

./script/generate authenticated user sessions

The first argument is the name of the model to use for user information, the second is the name of
the controller to use for managing login and logout.

452

Advanced RailsPart IV

The migration gives you a bunch of files:

n Two library files, authenticated_system, and authenticated_test_helper
that provide system wide functionality.

n A controller that has a new method (the login screen), a create method (authentication),
and destroy (logout)

n A user model and migration

n A controller to manage CRUD for the user model

n Test files for the controllers and migration. Tests will be in RSpec if that’s what your proj-
ect seems to be using.

n If you add e-mail authentication with the generator option —include_activation,
you’ll also get a mailer object.

Be sure to run the new migrations before continuing.

Using restful_authentication
The overwhelming majority of restful_authentication functionality is in it’s controllers and in
the authenticated_system library file.

To add authentication to any controller, create a before filter that forces a user to be logged in.

before_filter :login_required

This causes the controller to require an authenticated user or else it redirects to sessions/new,
which is the login page. You can use the :only option to limit access to only a listed set of con-
troller actions. If you want different behavior when a user is not logged in, override the method
access_denied. Override the method authorized? if you want a fancier check — for one
thing, restful_controller does not handle differing levels of user access out of the box. The
currently logged in user is available using the method current_user, assuming you specified
user as the name of the model.

The user model and controller provide a form for adding new users with a login, e-mail, password,
and password confirmation. The passwords are stored in the database encrypted according to
accepted best practices, including a separate random “salt” added to the password before encryp-
tion. You can then augment the user model according to your own needs.

The session controller handles displaying the password challenge, verifying credentials, and saving
the current user into the session if the password authenticates.

Enhanced scaffolding
There are several useful Rails plugins that you can use as a replacement for the out-of-the-box scaf-
fold generating that you get with Rails. These plugins provide a much richer user interface for
interacting with your Active Record models. We’ll discuss two of the most popular plugins here.

453

Extending Rails 11

Streamlined
Like the default scaffolding, Streamlined allows you to quickly generate interfaces for your Active
Record models. According to their Web site, Streamlined aims to bring the declarative goodness of
Active Record to the view layer. It manages the presentation, creation, and editing of instances of
your models, with full-featured scaffolds that include relationship management.

The current version of Streamlined is a Rails plugin; however, earlier versions were released as a
generator. The official Web site for Streamlined is at http://streamlinedframework.org.

Following are some of the features that Streamlined presents:

n Zero-configuration relationship management

n Ajax-powered widgets and transitions

n Live data filtering

n Out-of-the-box sortable lists and pagination

n Exporting to XML, CSV, and JSON

n Declarative and easily-customizable UI development

n Cross-browser support, including Firefox, Internet Explorer, and Safari

n Pluggable CSS styling

Installing Streamlined
You can install the latest stable branch of Streamlined using this command from the root of your
Rails application:

ruby script/plugin install http://svn.streamlinedframework.org/
branches/stable/streamlined

Using Streamlined
Let’s walk through a simple example of using Streamlined with a very simple Rails application.
This example will not show you all of the features of Streamlined, but you will get an idea of how
easy it is to create a quick interface for managing your model instances. For this example, consider
an application with two models, where one is classes and the other is students. This allows you to
also see how Streamlined handles associations in the user interface.

To get started, generate a new rails application and call it students.

rails students

Next, go into the students directory and install the plugin.

ruby script/plugin install http://svn.streamlinedframework.org/
branches/stable/streamlined

454

Advanced RailsPart IV

After that, generate models for students and classes. Also generate a controller for each.

ruby script/generate model student name:string year:string
birthdate:date

ruby script/generate model course name:string capacity:integer
ruby script/generate controller courses
ruby script/generate controller students

We had to use course instead of class, because “class” is a reserved keyword in Ruby, Rails does not
let you use it as a class name.

As a result of generating the student and course models, the migrations shown in Listings 11.10
and 11.11 should have been automatically created for you. We’re still in standard Rails mode —
nothing Streamline specific has happened yet.

 LISTING 11.10

001_create_students.rb Migration

class CreateStudents < ActiveRecord::Migration
 def self.up
 create_table :students do |t|
 t.string :name
 t.string :year
 t.date :birthdate

 t.timestamps
 end
 end

 def self.down
 drop_table :students
 end
end

 LISTING 11.11

002_create_courses.rb Migration

class CreateCourses < ActiveRecord::Migration
 def self.up
 create_table :courses do |t|
 t.string :name

455

Extending Rails 11

 t.integer :capacity

 t.timestamps
 end
 end

 def self.down
 drop_table :courses
 end
end

Make sure that you have your database running (in Rails 2.0.2 and higher, the default project
 created here will use SQLite), and use the following commands to generate the databases for this
project. After generating the database, go ahead and run the migrations.

> rake db:create:all
> rake db:migrate

Then let’s quickly add a many to many relationship between students and courses.

class Student < ActiveRecord::Base
 has_and_belongs_to_many :courses
end
class Course < ActiveRecord::Base
 has_and_belongs_to_many :students
end

Because you are using the has_and_belongs_to_many association to create a many-to-many
relationship between your two models, you also need to create a mapping table in the database to
make this type of relationship work. You do not need a model class for this new table, so you can
generate just a stand-alone migration file. Use the Rails generator to create the new migration, as
follows:

ruby script/generate migration CreateCoursesStudents

This creates another migration file at db/migrate/003_create_courses_students.rb.
Open up that file and edit it to look like Listing 11.12. This migration creates the mapping table
with two columns, a reference to a course, and a reference to a student. These reference columns
are translated to a column for course_id, and a column for student_id. Also notice that
the ID column is explicitly left out of this table by passing the :id=>false parameter to the
create_table method. Recall that for mapping tables, the mapping table does not require an
ID column.

456

Advanced RailsPart IV

 LISTING 11.12

003_create_courses_students.rb Migration

class CreateCoursesStudents < ActiveRecord::Migration
 def self.up
 create_table :courses_students, :id => false do |t|
 t.references :course
 t.references :student
 end
 end

 def self.down
 drop_table :courses_students
 end
end

Because you have a new migration, you have to run the migrations again to get this new table cre-
ated. Go ahead and do that now.

rake db:migrate

Now you make the controllers streamlined enabled by specifying a special streamlined layout
and a method call to acts_as_streamlined. Add these two statements to both controllers
like this:

class CoursesController < ApplicationController
 layout “streamlined”
 acts_as_streamlined
end

And away we go. Starting the server and hitting courses, should give you something similar to
Figure 11.2:

 FIGURE 11.2

This figure shows the basic Streamlined look and feel

457

Extending Rails 11

So far, you’ve invested two lines of code in Streamlined. For that investement, you’ve got a nice
looking CSS sheet. You’ve got a top navigation and a side navigation, both of which are currently
marked “TBD”. The columns of our model are listed accurately, of course there aren’t any courses
in there to view yet. What you can’t see from the screen shot is that the table is sortable by any col-
umn by clicking on the header.

The filter text box does an Ajax filter of the items in the table. Below the table, one button takes
you to a form to add a new course, the other pops up a list of options to export the courses as
XML, CSV, JSON, or YAML. The new course form has a nice table layout, and automatically gener-
ates based on the model fields. When courses are listed in the index page, each course has nice
icons for show/edit/destroy, and an Ajax edit in the students column to let you connect courses
and students. All in all, quite a return on two lines of code.

Naturally, there are several ways to customize this layout. The side and top menus are set via helper
methods. Application wide ones can be placed in the top level application helper, versions in the
helpers for specific controllers will override. The method names are streamlined_top_menus
and streamlined_side_menus. The return value of these methods is a two-dimensional array.
Each entry in the array is a two-element list of the form [caption, url]. For example:

def streamlined_top_menus
 [[“Courses”, courses_path]]
end

The first element is a string, the second is anything that can be used as a URL — a url_for hash,
or a named route method (the example given assumes that courses has been added as a RESTful
resource in the routes.rb file.

Further customizations go in the Streamlined UI file, which you can create with a rake task:

rake streamlined:model MODEL=Course

This creates the directory app/streamlined and the file course_ui.rb. The file contains the
following:

module CourseAdditions

end
Course.class_eval { include CourseAdditions }

Streamlined.ui_for(Course) do

end

Any method in the CourseAdditions module gets mixed in as a class method of the Course
model, this is a way to keep UI related decorators and helper modules separate, while still making
them available to the model class in Streamlined.

458

Advanced RailsPart IV

One design goal of Streamlined was to give the view layer the same simple declarative syntax style
that ActiveRecord has, and the UI block in this file is where the declarations go. Inside the UI
block, the declaration:

user_columns :students, :capacity, :name

Sets the columns that are visible from any view. The pagination method specifies various
options for the index display, such as pagination :per_page => 50. And so on, check out
the Streamlined documentation for the complete list of the numerous ways that a Streamlined
application can be customized.

ActiveScaffold
Like Streamlined, ActiveScaffold is another Rails plugin that provides a method for quickly gener-
ating an administrative interface for interacting with your model instances. It has a different struc-
ture and technique than Streamlined.

Go back to the same minimal application, course model, student model, two controllers, and the
join table. Just remove the Streamlined plugin and replace it with ActiveScaffold:

script/plugin install http://activescaffold.googlecode.com/svn/
tags/active_scaffold

Where Streamlined created it’s own layout file, ActiveScaffold works within your already existing
layout file. This means you need to create a file there, in app/views/layouts/application.
html.erb. For the moment, the minimal layout file is perfectly fine:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”
lang=”en”>

<head>
 <meta http-equiv=”content-type” content=”text/

html;charset=UTF-8” />
 <title>Your Title Here</title>
 <%= javascript_include_tag :defaults %>
 <%= active_scaffold_includes %>
</head>
<body>

<%= yield %>

</body>
</html>

The important parts to include are the default JavaScripts, the active_scaffold_includes
helper tag, and, of course, the yield.

459

Extending Rails 11

You then add ActiveScaffold to a controller like so:

class StudentsController < ApplicationController
 active_scaffold
end

The active_scaffold call assumes that the associated model will have the expected name, if
not, then use the model name as an argument to the call. The resulting display looks like
Figure 11.3 — I’m showing it with the Ajax new entry form displayed.

 FIGURE 11.3

ActiveScaffold in action

This has the same basic feature set as Streamlined — display, search, view, even an Ajax view to
associate related objects.

Customizing ActiveScaffold is done via a global block placed in the ApplicationController, and
then controller specific blocks placed in each individual controller. The global one looks like this:

ActiveScaffold.set_defaults do |config|

 config.ignore_columns.add [:created_at, :updated_at]

end

In this case, you are telling ActiveScaffold to not display the timestamp columns. Individual con-
troller customizations are actually in a block argument to the active_scaffold call, and would
go something like this:

active_scaffold do |config|
 config.label = “Students”
 list.sorting = {:name => “ASC”}

460

Advanced RailsPart IV

 columns[:name].label = “Full Name”
end

Naturally, this just scratches the surface of what you can do with ActiveScaffold, check it’s online
documentation for more details.

Implementing content tagging
Tagging has become a critical part of user-created content in Web 2.0, allowing for flexible classifi-
cation and more accurate search. Originally, a Rails plugin from the core team called acts_as_
taggable managed tagging in Rails applications, however over time several plugins have
augmented or re-implemented the behavior.

The basic taggable functionality involves a table of tags that can have a polymorphic relationship
with any other object. This allows any object in the system to be associated with one or more tags.
Typically, there is functionality to find items by tag and also to create tag counts for the purposes
of building tag clouds.

The acts_as_taggable_redux plugin adds a helpful piece of functionality, specifically the
ability to associate tags to a specific user. Grab the plugin via the normal method:

script/plguin install http://svn.devjavu.com/geemus/rails/
plugins/acts_as_taggable_redux

To use the plugin, you need to create a database migration:

rake acts_as_taggable:db:create

This migration creates two tables, the Tags table, which is essentially just the name of the tag, and
a Taggings table, which is a polymorphic join table associating with another object, and also con-
taining an optional user id. After running the migration, you can make any model class taggable by
adding the following line to the model:

acts_as_tagger

With that line in place, you can then get and set the list of tags associated with the object using the
pseudo-attribute tag_list. You can set a text field to tag_list in a form, and the entered data
will be parsed and associated with the object. If you also want to associate the tags with a user id,
then the getter takes the user_id as an optional argument. In the setter, user_id is a separate
attribute added to added to taggable objects, both the user and the tags need to be set for the tags
to be associated with the specific user.

For finding items with a specific tag, the plugin adds the class method find_tagged_with,
which takes a list of tags as its argument. There are two important optional arguments. The first,
:method is :any by default, causing an object to be selected if it matches any of the tags, it can
also be set to :all, which changes the behavior to only select objects that match all the tags. The
other option, :user, is a user id to match tags against.

461

Extending Rails 11

If no user is specified, you will get all tags (not just all tags not associated with a user), so if you are
doing user-based tagging, you need to be consistent about passing in the user id.

Finally, the plugin includes a couple of helper methods for creating tag clouds, include

<%= tag_cloud %>

in a view to get an entire cloud. The plugin contains a CSS sheet you can install to get a tag cloud
like look. You’ll also need a tags controller, which will be the destination for any link created in
the cloud.

Handling file uploads
With the growing popularity of content sharing that Web 2.0 sites such as flickr.com and
youtube.com have contributed to, file uploading has become a requirement that is common to
many of the applications you will write. Because this is a common feature that many applications
require, this is the perfect example of a great feature to turn into a plugin. There are several plugins
available for dealing with file uploads, and one in particular has been extremely well received and
implemented in many Rails applications. The plugin I am talking about is attachement_fu.

attachment_fu
The attachment_fu plugin has become the most popular Rails plugin for dealing with image
uploads. This plugin makes implementing image uploads a simple and painless task. The
attachment_fu plugin lets you upload the images to your file system, your database, or
the Amazon S3 hosting cloud.

In order to use attachment_fu, you’ll need to have one of the three major Ruby image process-
ing libraries installed: RMagick, Minimagick, or ImageScience. These libraries all depend on native
image processing libraries — RMagick and Minimagick depend on ImageMagick, while
ImageScience depends on FreeImage. The details of installing the native package depend on your
operating system, the documentation for the libraries should have full information.

Assuming that you have one of those libraries installed, you can get attachment_fu via:

script/plugin install http://svn.techno-weenie.net/projects/
plugins/attachment_fu/

To use attachment_fu, you need a data model for image metadata with some specific fields,
which you can add to any migration — the table name is arbitrary, but the field names are specific.

create_table :images do |t|
 t.string :filename
 t.string :content_type
 t.integer :size
 t.integer :height
 t.integer :width
 t.integer :parent_id

462

Advanced RailsPart IV

 t.integer :thumbnail
 t.timestamps
end

Most of those should be self-explanatory — the size is the file size of the image, and parent_id
and thumbnail manage the relationship between the original image and any thumbnails auto-
matically created by attachment_fu.

Usually, images uploaded with attachment_fu are associated with a model, it’s the picture of
that thing you are selling, or the user’s buddy icon or something like that. So, in order to user
attachment_fu, you’ll also need to set up that relationship in a migration, either by including
a foreign key in the images table, or by including a key to that table in your model.

Of course, the images table itself implies a model, and it’s this model that gets the details that
-specify the attachment:

class Image < ActiveRecord::Base
 has_attachment :content_type => :image,
 :size => (1.kilobyte..10.megabytes),
 :storage => :file_system,
 :thumbnails => {:thumb => “57x57>”}

 validates_as_attachment
 # also place the relationship with the data model
end

The :content_type field can also be a specific MIME type, or a list of MIME types, the :image
symbol used, causes any image to be allowed. The :size argument takes a range, with values in
bytes, the Rails helpers are useful here. If you only want to set one bound, you can use either of the
options :min_size or :max_size instead. The :storage option, as specified, puts the files in
the public/<table> directory of your server. Images can also go to the :db_file, which
requires the database table to have a BLOB field to put the image in. You can also specify :s3,
which uses Amazon.

The :thumbnails option specifies one or more thumbnails to create, the hash key is appended
to the image name to create the thumbnail image name, and the value is the size of the thumbnail,
the value can also be a two-element list [width, height] instead of the string. The :resize_
to option changes the size of the actual image, again it takes a string or a two-element list. Finally,
the validates_as_attachment method ensures that uploaded files intended for this class
match the parameters for content and size.

To upload a file via attachment_fu, ensure that the form being used is multipart, and use the
fields_for helper to embed the image model in your data form. This form assumes the data object
has an image field representing the relationship between data and image.

<% form_for @data, :html => {:multipart => true} do |f| %>
 <%# data things #%>
 <% fields_for :image do |img| %>

463

Extending Rails 11

 Upload
 <%= img.file_field :upload_data %>
 <% end %>
<% end %>

The file_field uses the ordinary Rails helper, the field name upload_data is mandated by
attachment_fu. Given an ordinary save controller on the server, this form will upload the file, and
attachment_fu will save the file and the metadata.

The image class is given an attribute public_filename that can be used to display the image.

Engines
Rails engines provide another way to extend Rails. Engines are actually implemented as another
Rails plugin. They were created by Dr. James Adam, an active member of the Ruby community.
There is an official Web site for Rails engines at http://rails-engines.org/.

According to the front page of the engines site, “[t]he engines plugin enhances Rails plugins -
allowing sharing of code, views and other aspects of your application in a clear and managed way.”

Basically, an engine is a plugin that is meant to handle an entire MVC vertical slice of an applica-
tion. Whereas typical Rails plugins only touch the Model layer of an application, engines provide
controllers, models, and views related to a specific aspect of an application. If you find yourself
implementing the same feature over and over again in your applications, creating a Rails engine
may be a good option for you. A directory of Rails engines can be found online at the same site
that lists the Rails plugins. You can get a listing of some available engines at http://agileweb
development.com/plugins/category/10.

There are not nearly as many engines available as there are plugins. Because engines implement a
full MVC slice of an application, including controller, model, and even view code, they tend to be
more specific to a particular organization’s implementation style, and from that standpoint are
probably less reusable than Rails plugins. This explains why there are relatively few of them that
have been released publicly. However, internal to a single organization, you may find that engines
are an even better mechanism to achieve reuse than plugins.

The Engines plugin was recently updated to work with Rails 2.0. Engines 2.0 is the most recent
version of the Rails Engines plugin at the time of this writing.

The most common recommended strategy for writing your own engine is to first write the func-
tionality of your engine as a stand-alone Rails application. This makes it easier to test and convert
into an engine when you are comfortable with the way it works. Because an engine represents a
complete MVC slice of an application, this strategy seems like a good one.

464

Advanced RailsPart IV

The scope of an engine can vary wildly, from the implementation of a single logical feature such
as user authentication, to a nearly complete application, such as the substruct and tableau that
engines provide. Substruct is an e-commerce engine for Rails, and Tableau is a photo gallery
engine. You won’t write a complete application in this section, but instead, I’ll show you the steps
required to turn code that has been developed as a standard Rails application into a Rails engine.
The steps that you will go through can be broken down as follows:

n Install the engines plugin

n Generate the engine skeleton for your engine

n Move your application files into the engine directory

n Modify config/environment.rb to start your engine

n Include your engine in the application controller and helper classes

Install the Engines plugin
You install the Engines plugin exactly the same way that you install any other plugin. In fact, the
Engines plugin is just a standard plugin. It is what is enabled by the Engines plugin that goes
beyond the features of standard plugins.

ruby script/plugin install http://svn.rails-engines.org/plugins/
engines

Generate the engine skeleton
After you’ve installed the Engines plugin, you have an engine generator available that you can use
to generate the skeleton of a new engine. Use that generator to create a directory that you will use
to put your engine code into.

ruby script/generate engine MyEngine
/my_engine/
/my_engine/app
/my_engine/db
/my_engine/lib
/my_engine/public
/my_engine/tasks
/my_engine/test
/my_engine/init_engine.rb
/my_engine/install.rb
/my_engine/README

Move your application files into the engine
After you’ve generated the engine directory, the next thing to do is to move your application files
from the main app directory of your project into the vendor/plugins/my_engine directory.
You’ll want to move the following files into your engine directory:

n Move the files you want in the engine from inside of your main app directory into
 vendor/plugins/my_engine/app.

465

Extending Rails 11

n Move any migrations you have from db/migrate to vendor/plugins/my_engine/
db/migrate.

n Move any library files you have in the lib directory into vendor/plugins/my_
engine/lib.

n Move your static files from public into vendor/plugins/my_engine/lib.

n Move your tests from test into vendor/plugins/my_engine/test.

Modify your environment
After you’ve copied your application files into the engine directory, the next step is to modify the
config/environment.rb file to start up your new engine.

Engines.start :my_engine

This starts up your engine when the enclosing Rails application is started.

Include your engine in your application
The final step in setting up your new engine is to include the engine in your application controller
and helper files.

class ApplicationController < ActionController::Base
 include MyEngine
end

module ApplicationHelper
 include MyEngine
end

At this point the application behaves as before, but the engine has been extracted and is available
to be used in another application.

Summary
Ruby on Rails is one of the most innovative and productive Web development frameworks in exis-
tence. Something that has kept Rails simple, elegant, and easy to use is the core team’s reluctance
to pile on features that may not be useful to Web applications in general. Rails sticks with core fea-
tures of Web development and lets developers build the rest of an application around the frame-
work. In this chapter, you learned about three different ways in which you can extend the Rails
framework with reusable components of your own. These three styles of extending Rails are:

n Generators

n Plugins

n Engines

466

Advanced RailsPart IV

Each is useful in different situations. As you develop your own Rails applications, you should
always be considering what functionality you could package as one of these extensions to make the
current application easier to read and more maintainable, or to make development of future appli-
cations easier. Think about this in terms of development within your own organization, but also, if
you think you have developed an extension that would be useful to the Rails community at large,
consider distributing this code as open-source. That is a great way to get some recognition for
yourself or your organization and to promote more Rails development.

467

In this final chapter of the Ruby on Rails Bible, you’ll learn some addi-
tional Rails techniques that haven’t been covered yet in previous chap-
ters. While this chapter is named Advanced Topics, you should find the

time to master the topics covered here, as many of them are extremely useful
for most Rails projects.

Beyond the Basics
If you’ve been reading this book from the beginning, throughout the course
of the book you’ve learned all of the basic information you need to begin
developing real applications with Rails. However, there is still more to say
about the power and elegance of Rails. In this chapter you’ll explore some
additional technologies that you might use in a Rails application, and some
that you will most likely want to use in all of your Rails applications.

The topics that you’ll learn about in this chapter are the following:

n RESTful Rails

n Web services with Rails

n Working with legacy databases

n ActionMailer

n Deploying with Capistrano

IN THIS CHAPTER
Beyond the basics

RESTful Rails

Working with legacy databases

Using ActionMailer

ActiveResource and XML

Deploying with Capistrano

Advanced Topics

468

Advanced RailsPart IV

RESTful Rails
One of the things that any good developer strives for in the development of a Web application, or
any application for that matter, is a well-organized code base with consistent use of patterns and
naming conventions. This contributes a great deal to the overall maintainability of an application.
However, maintaining a well-defined organization and consistency in a code base, especially one
that is being worked on by multiple developers, is not an easy task. In Web development, there
have never been any widely accepted patterns for how to name models, controllers, and their
action methods. While Rails imposes a certain level of standards on the naming of classes, it
doesn’t do much for the structure inside controllers. Developers are often not sure when looking
at a code base where they should put a new action method and how that method should be
named. If this is a problem that you’ve faced, RESTful development is definitely something that
you should be interested in.

Recently, there has been a surge in popularity for a development pattern known as Representational
State Transfer (REST), and Rails has fueled its popularity. The creator of the Rails framework, David
Heinemeier Hansson, is a great proponent of RESTful development. Hansson introduced RESTful
development to the Rails community in his RailsConf keynote address of 2006, titled “A World of
Resources.” In that keynote, he challenged developers to embrace the constraints of RESTful develop-
ment. With the release of version 2 of the Rails framework, RESTful development has become the
standard way of creating a Rails application.. Before I dive into how you implement REST in a Rails
application, let’s explore the question of what RESTful development is and why developers are
excited about it.

NOTENOTE You can download David Heinemeier Hansson’s “A World of Resources” presenta-
tion from http://media.rubyonrails.org/presentations/worldofre-

sources.pdf.

The term REST was coined by Roy Fielding in his Ph.D. dissertation. Roy Fielding was also one
of the creators of the HTTP protocol. REST describes a method of architecting software, built
around the concept of resources, rather than the concept of actions. REST happens to be a very
good fit for Web application development. Although REST itself is not explicitly tied to the Web or
Web application development, it is within the context of the Web and Web applications that I will
discuss it. Within the REST architecture, requests from the browser use a standard set HTTP meth-
ods to manipulate an application’s resources.

Most Web developers are familiar with just two of the available HTTP methods, the GET and POST
methods. However, the HTTP protocol defines eight methods: GET, POST, PUT, DELETE, HEAD,
TRACE, OPTIONS, and CONNECT. REST is concerned with the first four of these methods, GET,
POST, PUT, and DELETE. These are the methods that a RESTful Web application uses to manipu-
late resources. REST happens to be a very good fit for database-backed Web applications. In a
database-backed Web application, resources map well to models, which in turn map well to data-
base tables.

469

Advanced Topics 12

NOTENOTE In his dissertation, Roy Fielding also discusses Stateless Communication as being a
constraint of a REST architecture. However, nearly every Web application relies on

maintaining state to some extent. State is typically stored in cookies and sessions in a Web appli-
cation. Any Web application that relies on state is officially not completely compliant with REST;
however, that doesn’t stop most people from referring to these techniques as REST-based, even
though they are not 100 percent true to the REST architecture.

In a traditional Web application developed in a framework such as Rails, a request would specify
an action and a resource to perform the action on. For example, the following is a common URL
found in a Rails application:

http://www.myapp.com/book/show/5

This URL tells the Rails backend to use the show method of the book controller to display the
book resource that has an ID of 5. An application developed using REST would not specify the
action in the URL. Instead, the URL would specify only the resource. The action is determined
by the HTTP method with which the request is submitted. For example, a RESTful equivalent of
the above URL would be the following:

http://www.myapp.com/book/5

This request would be submitted using the HTTP GET method and routed to the correct method,
show, based on having come from a GET request. Let’s expand on the example of manipulating a
book resource, and look at how you would perform other actions on a book resource using
RESTful development. Table 12.1 shows how various actions performed on a resource are mapped
to URLs and HTTP methods.

 TABLE 12.1

Actions and HTTP Methods in a RESTful Application
Action URL HTTP Method

show www.myapp.com/book/5 GET

destroy www.myapp.com/book/5 DELETE

update www.myapp.com/book/5 POST

create www.myapp.com/book PUT

Notice that the URL for performing show, destroy, and update on a resource is identical.
These requests are routed to the correct controller action based on a combination of the URL and
the HTTP method that is used to submit them.

470

Advanced RailsPart IV

So the idea is that you would apply this pattern throughout your Web application’s architecture.
Every controller would consist of the same standard set of methods, show, destroy, update,
and create… (index, edit and new also get their own standard URLs). The application frame-
work routes to the correct method, based on looking at both the URL and the HTTP method used
for incoming requests. Suddenly, you have great consistency in your Web applications.

All of your controllers are implemented in the same style and contain the same set of methods. You
may be thinking about now that it is not very likely that you can actually implement an entire Web
application using just resources with matched controllers and that small set of controller actions.
You may find that you need a few additional controller methods, but you will be surprised at how
far you can get by consistently following the RESTful pattern. You will find that this architecture
also cleans up your controller and model designs.

In addition, keep in mind as you develop that not every resource is necessarily backed by a data-
base table. You may have resources that are not stored in the database as models, yet you still fol-
low this same resource/model matched with a controller implementation pattern — for example,
the Session resource in the RESTful Authentication plugin described in Chapter 11, or search,
which is often implemented as a separate search RESTful controller even if searches are not stored
in the database.

Some advantages of RESTful architecture
So what are some of the advantages that you get from using this RESTful development approach?

n Well-defined and consistent application design: RESTful architecture defines a stan-
dard way of implementing controllers and access to models in a Web application.
Applications that consistently follow this architecture end up with a very clean, very
maintainable code base that is also easy to read and understand.

 Traditionally, when you have a Web development project that is worked on by several
people, maybe not all concurrently, each may bring their own style of how they use con-
trollers, what names they give to controller methods, what they determine are models,
and so on. The RESTful approach makes it much easier for every developer that comes
onto a project to maintain a very consistent implementation style, and thus preserve a
solid architecture across the application.

 With a RESTful architecture, you know where to put your code. Every application that
implements a RESTful architecture has a consistent design, and developers know exactly
where to put code.

n CRUD-based controllers: Controllers can map one-to-one to a model. Each controller
contains the code necessary to manipulate a specific model through the standard CRUD
methods, create, show, update, and destroy.

n Clean URLs: Because URLs used in a RESTful application represent resources and not
actions, they are less verbose and always follow a consistent format of a controller fol-
lowed by the ID of a resource to manipulate.

471

Advanced Topics 12

n Ease of integration: Because of the application’s consistent API with pre-defined
resource and action method names, it becomes easier for third-party applications to
 integrate with your RESTful application through a REST-based Web service.

REST as a Web service architecture
While REST is an excellent fit for database-backed Web applications, it is probably an even stron-
ger fit for Web services. The REST architecture provides an excellent platform for providing ser-
vices. After all, Web services are essentially APIs that let you manipulate some form of resource.
Rather than create another layer on top of HTTP, as the SOAP Web service protocol does, REST-
based Web services rely on the existing functionality of HTTP to provide Web services.

Because REST uses what is already built into HTTP, rather than layering another semantic layer on
top of it as SOAP does, REST is a much simpler architecture for implementing Web services. The
most popular consumer-facing Web services, such as those provided by Amazon, Google, Yahoo,
and others, all offer a REST-based interface. REST is more popular than SOAP today for imple-
menting commercial Web services. Considering the book example again, you could easily imagine
a Web service API that used URLs identical to those that a browser uses to get HTML content — in
Rails, the same RESTful controller actions with xml at the end of the request URL is enough to get
you full XML Web service responsiveness. This gets into the next topic of interest related to REST,
that of representation.

REST and representations
When you request a page using a RESTful architecture, the page that is returned can be considered
a representation of the resource that you are requesting. However, think of an HTML page as just
one possible representation of any given resource. Other representations might include an XML
document, a text document, or a block of JSON-encoded JavaScript.

Using the RESTful architecture, you would request a different representation of a resource using
the same method, but by passing a different piece of metadata to the server, thus indicating the
representation that you would like to have returned. For example, the following two requests
would both be routed to the same controller and action method:

http://www.myapp.com/book/5
http://www.myapp.com/book/5.xml

The first request would return an HTML representation of the book resource. The second request
would return an XML representation of the book resource — Chapter 5 showed the Rails mecha-
nism for easily managing this. The ease of adding output mechanisms is another advantage of a
RESTful architecture. The same controllers and actions can be used to deliver a variety of response
representations — including HTML, RSS, and XML. This makes implementing Web services in a
RESTful architecture extremely easy, and again maintains a consistent design style.

472

Advanced RailsPart IV

Writing a RESTful application with Rails
As I mentioned earlier, with the release of Rails 2.0, REST has been adopted as the standard archi-
tecture for a Rails application. What does that mean? Rails provides a set of tools that makes build-
ing RESTful-style applications easy for the developer.

When you use the scaffold generator to automatically create the CRUD skeleton of your appli-
cation for a given resource, the controller and action methods generated are RESTful. In versions
of Rails that supported REST prior to version 2.0, you had to explicitly say that you wanted your
scaffolding to be REST-based by using the scaffold_resource generator. In just a bit, you’ll
get a chance to use the scaffold generator to create a REST implementation for a resource in a
real Rails application.

Rails routing and REST
In Table 12.1, you saw how REST uses a URL and an HTTP method to route to a specific action
method. That table actually doesn’t give you the complete story for how Rails maps URLs and
HTTP methods to actions and controllers. In a standard RESTful Rails application, each controller
has not just four, but seven actions. These actions are show, update, destroy, index, cre-
ate, edit, and new.

Here is a description of the purpose for each of these actions. These map directly to CRUD actions
for an ActiveRecord model, but RESTful resources may also interpret these categories a little more
loosely for implicit server resources that aren’t directly in the database:

n show

 This action is used to display a specific instance of a resource.

n update

 This action is used to perform an update on a resource.

n destroy

 This action is used to delete an instance of a resource.

n index

 This action displays a list of all of the resources of a given type.

n create

 This action creates a new instance of a resource.

n edit

 This action returns a page that allows the user to make updates to a resource.

n new

 This action returns a page that allows the user to create a new instance of a resource.

The new and create actions together are used to create a new resource instance. The new action
presents you with the form that you use to create the resource, and the create action handles the

473

Advanced Topics 12

form submission to actually create the new resource in the database. Similarly, the edit and
update actions are used to update an existing resource. The edit action presents you with the
form that you can use to make changes to the resource, and the update action handles the form
submission, saving updates to the database.

However, Rails still just uses the same four HTTP methods, GET, POST, PUT, and DELETE, to
route to the seven supported actions. To accomplish this, Rails actually uses the GET method for
multiple actions.

Table 12.2 shows how URLs and HTTP methods are routed to specific actions in a Rails application.

Rails also creates dynamic methods for the routes. In addition, methods such as link_to and
form_for will infer the path from the resource, so link_to(@book), will be assumed to be a
show action on the books controller.

 TABLE 12.2

RESTful Routes in a Rails Application
Action URL HTTP Method Named Method

show www.myapp.com/books/1 GET book_path(@book)

update www.myapp.com/books/1 PUT book_path(@book)

destroy www.myapp.com/books/1 DELETE book_path(@book)

index www.myapp.com/books GET destroy_book_path(@book)

create www.myapp.com/books POST books_path

edit www.myapp.com/books/1/edit GET edit_book_path(@book)

new www.myapp.com/books/new GET new_book_path

Notice that the show, index, edit, and new actions all use the GET method. However, they are
each differentiated in Rails by the URL that is used. To support the edit and new methods, the
pureness of RESTful URLs is actually broken a bit, as these actions require that the action name be
used in the URL so that they can be differentiated from the show and index actions.

You can also add your custom actions to a restful controller, which gives you a custom named
method matching that action. There’s a purity vs. practicality tradeoff here — I find extra actions
useful for, say, Ajax actions that update partial forms that don’t quite justify their own controller.

PUT and DELETE full disclosure
So far, I’ve talked about using four HTTP methods in combination with specific URLs to route to a
set of standard action methods. There is, however, one problem in the actual implementation of
the system that I’ve described. The current generation of Web browsers does not handle the PUT
and DELETE methods. This means that in the real world, you are stuck with using only GET and

474

Advanced RailsPart IV

POST. The good news is that this does not change anything for you as a developer of a Rails appli-
cation. As far as you are concerned, the URLs and HTTP methods and routes described in Table 12.2
are still completely valid.

Rails simulates the PUT and DELETE methods by inserting a hidden field called _method set to
either put or delete. The Rails routing mechanism gets these requests and properly routes them to
the actions that are shown in Table 12.2, just as if these were coming in as PUT or DELETE requests.
There is nothing that you, as a developer, have to do to handle these requests any differently.

Generate a RESTful resource
In this section, you’ll create the start of a RESTful Rails application. To get started, create a Rails
application and call it restful_cookbook.

> rails restful_cookbook

This gives you the standard skeleton for a Rails application. So far, there is nothing RESTful about
this application. Because this is a cookbook application, it is easy to imagine what some of its
model or resource objects will be. Rails provides you with two generators that allow you to create
a RESTful resource:

n scaffold: The scaffold generator creates an entire resource, including all the code
that is necessary to perform the basic CRUD operations on it in a RESTful way. Specific
files that are created include a model, a migration, a controller, views, and a full test suite.

n resource: The resource generator creates a model, migration, controller, and test
stubs, but does not provide the code necessary to perform the CRUD operations. Also, no
views are generated.

Let’s use the scaffold generator to create a resource named Recipe.

> cd restful_cookbook
> ruby script/generate scaffold Recipe
 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/recipes
 exists app/views/layouts
 exists test/functional
 exists test/unit
 create app/views/recipes/index.html.erb
 create app/views/recipes/show.html.erb
 create app/views/recipes/new.html.erb
 create app/views/recipes/edit.html.erb
 create app/views/layouts/recipes.html.erb
 identical public/stylesheets/scaffold.css
dependency model
 exists app/models/
 exists test/unit/

475

Advanced Topics 12

 exists test/fixtures/
 create app/models/recipe.rb
 create test/unit/recipe_test.rb
 create test/fixtures/recipes.yml
 exists db/migrate
 create db/migrate/001_create_recipes.rb
 create app/controllers/recipes_controller.rb
 create test/functional/recipes_controller_test.rb
 create app/helpers/recipes_helper.rb
 route map.resources :recipes

Looking through the output printed to the screen, you can see all of the files that have been gener-
ated by the scaffold generator. You should see the model, controller, views, and test suite files.
In just a bit, you’ll take a look at some of those, but let’s start with the last line of the output
above — the line that says:

route map.resources :recipes

This line causes a single line to be added to the config/routes.rb file. The line added is

map.resources :recipes

This single line automatically creates the entire routing schema necessary to handle the CRUD
methods in a RESTful manner. The RESTful routes shown in Table 12.2 are enabled for the Recipe
resource by this line.

Without any further arguments, the resources call creates routing for the seven basic RESTful
methods in Table 12.2. However, the method takes several optional arguments that allow you to
create custom behavior and actions. Which argument you choose depends on what kind of action
you want to create.

For typical controller actions that would manage a single object (such as edit), you use the argu-
ment :member. An action created with this option will have a URL based on the singular name of
the controller and will expect an object id, as in recipe/print/32. Actions which, like index,
manage on a list of objects are created with the :collection option, these URLs use the plural
form of the controller name as in recipes/search_results. Finally, alternate actions that
work with new objects are created using the :new option and create a URL of the form recipes/
new/from_scratch.

The value you should pass to all these arguments is the same: a hash where the keys are the
name of the new actions and the values are the HTTP method used to access them, for example,
:member => {:print => :get}.You’ll also get a helper method like recipe_print_url,
recipes_search_results_url, or recipes_new_from_scratch_url.

Note that to use additional actions in your RESTful controller using REST helpers, they must be
declared in the routes.rb file — however, you can always fall back on the more traditional
controller/action URL format even within an otherwise RESTful controller. I personally find
that Ajax callbacks to update part of a display don’t always fit easily in the RESTful structure.

476

Advanced RailsPart IV

There are two variations on the ordinary map.resources call. If the resource in question doesn’t
have meaningful group behavior and is a true singleton, you should declare it using the singular
call map.resource. The singular resource call will create all the RESTful routes and helpers
except the index and index-related ones. For example, the RESTful Authentication plugin uses a
singular resource to manage the session controller.

Sometimes you will have a resource that only makes sense as a part of a parent resource. For exam-
ple, in a project management application, a task may only exist as part of a project. You can express
that relationship in a RESTful system by nesting the child resource inside the parent like so:

map.resources :projects do |project|
 project.resources :tasks
end

Nesting a resource makes no difference in what is generated for the parent resource, however all
the child helper methods now take an instance of the parent resource as an argument. So while
the show helper method for a project is still project_url(@project), the method for a task
is project_task_url(@project, @task). If you are attempting to infer the URL within
a link_to or form_for helper, again the parent syntax is unchanged, link_to(“show
 project”, @project), while a link to the child resource requires a parent, link_to(“show
task”, [@project, @task]).

Custom actions can be added to either the parent or the child resource, using the syntax already
described. Overall, nested resources are a powerful way to specify a relationship within your appli-
cation, but since they do impose a fairly strong constraint on access to the child resource, you need
to be sure that the relationship between the two models is consistent and constant. I also find the
nested path names tend to quickly lose the value of being a shortcut.

The resources method can be customized in a couple of further ways. If, for some reason, the
controller attached to your resource is different than the name of the resource in the code, you can
specify the controller name with the :controller option — I believe this was added to support
foreign language URL names.

The :name_prefix option allows you to change the prefix used in the helper methods, if you
don’t want it to match the resource name. The option :path_prefix is sort of the generic ver-
sion of nesting resources, allowing you to specify a string that will be part of the URL before the
part that controls the routing.

Now, take a look at the controller generated for the RESTful scaffolding of your recipes resource.
Open up app/controllers/recipes_controller.rb. You should see code similar to
Listing 12.1.

The first thing you should notice is that methods have been created for all of the standard RESTful
CRUD actions: index, show, new, edit, create, update, and destroy. Comments before
the definition of each of these methods show you how the action is called from a URL.

477

Advanced Topics 12

Also, notice that at the bottom of each of the methods is a respond_to block. The respond_to
block, described in Chapter 5 allows you to handle requests for different response formats within
the same method. The generated code includes handling of both HTML and XML response
requests.

The scaffold generator also created all of the views necessary for the CRUD actions. The views
created are edit.html.erb, index.html.erb, new.html.erb, and show.html.erb. The
views are shown in Listings 12.2 through 12.5.

For the most part, there is nothing unique or different about these views. However, there are some
URL helpers that are used within links. These are the URL helpers that were created by the map.
resources method in the routes configuration, for example form_for(@recipe) in the
edit view.

 LISTING 12.1

recipes_controller.rb

class RecipesController < ApplicationController
 # GET /recipes
 # GET /recipes.xml
 def index
 @recipes = Recipe.find(:all)

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @recipes }
 end
 end

 # GET /recipes/1
 # GET /recipes/1.xml
 def show
 @recipe = Recipe.find(params[:id])

 respond_to do |format|
 format.html # show.html.erb
 format.xml { render :xml => @recipe }
 end
 end

 # GET /recipes/new
 # GET /recipes/new.xml
 def new
 @recipe = Recipe.new

 respond_to do |format|

continued

478

Advanced RailsPart IV

 LISTING 12.1 (continued)

 format.html # new.html.erb
 format.xml { render :xml => @recipe }
 end
 end

 # GET /recipes/1/edit
 def edit
 @recipe = Recipe.find(params[:id])
 end

 # POST /recipes
 # POST /recipes.xml
 def create
 @recipe = Recipe.new(params[:recipe])

 respond_to do |format|
 if @recipe.save
 flash[:notice] = ‘Recipe was successfully created.’
 format.html {redirect_to(@recipe) }
 format.xml {render :xml => @recipe,
 :status => :created,
 :location => @recipe }
 else
 format.html {render :action => “new” }
 format.xml {render :xml => @recipe.errors,
 :status => :unprocessable_entity }
 end
 end
 end

 # PUT /recipes/1
 # PUT /recipes/1.xml
 def update
 @recipe = Recipe.find(params[:id])

 respond_to do |format|
 if @recipe.update_attributes(params[:recipe])
 flash[:notice] = ‘Recipe was successfully updated.’
 format.html {redirect_to(@recipe) }
 format.xml {head :ok }
 else
 format.html {render :action => “edit” }
 format.xml {render :xml => @recipe.errors,
 :status => :unprocessable_entity }
 end
 end
 end

479

Advanced Topics 12

 # DELETE /recipes/1
 # DELETE /recipes/1.xml
 def destroy
 @recipe = Recipe.find(params[:id])
 @recipe.destroy

 respond_to do |format|
 format.html { redirect_to(recipes_url) }
 format.xml { head :ok }
 end
 end
end

 LISTING 12.2

edit.html.erb

<h1>Editing recipe</h1>

<%= error_messages_for :recipe %>

<% form_for(@recipe) do |f| %>
 <p>
 <%= f.submit “Update” %>
 </p>
<% end %>

<%= link_to ‘Show’, @recipe %> |
<%= link_to ‘Back’, recipes_path %>

 LISTING 12.3

index.html.erb

<h1>Listing recipes</h1>

<table>
 <tr>
 </tr>

<% for recipe in @recipes %>
 <tr>

continued

480

Advanced RailsPart IV

 LISTING 12.3 (continued)

 <td><%= link_to ‘Show’, recipe %></td>
 <td><%= link_to ‘Edit’, edit_recipe_path(recipe) %></td>
 <td><%= link_to ‘Destroy’, recipe, :confirm => ‘Are you sure?’,

:method => :delete %></td>
 </tr>
<% end %>
</table>

<%= link_to ‘New recipe’, new_recipe_path %>

Unlike many code generation techniques from the past, all of the code that has been generated by
the scaffold controller follows a consistent design pattern and gives you a very usable code base
to build your application from.

REST is clearly the application structure of the future within Rails, since it is now the default struc-
ture for generated scaffolding. That said, there still is, as I write this, less than a year of experience
with REST as the official, blessed Rails architecture (it was available as a plugin for some time
before Rails 2.0 was released). I think it’s fair to say that the best-practice usage of REST within a
complex Web application is still being developed.

 LISTING 12.4

new.html.erb

<h1>New recipe</h1>

<%= error_messages_for :recipe %>

<% form_for(@recipe) do |f| %>
 <p>
 <%= f.submit “Create” %>
 </p>
<% end %>

<%= link_to ‘Back’, recipes_path %>

481

Advanced Topics 12

 LISTING 12.5

show.html.erb

<%= link_to ‘Edit’, edit_recipe_path(@recipe) %> |
<%= link_to ‘Back’, recipes_path %>

Within the context of the seven actions that it defines, the consistency and clarity of the REST archi-
tecture is great to work with. As I’ve alluded to, I’ve had some issues trying to adapt functionality into
the REST structure — sometimes with really elegant results, sometimes less so. REST does encourage
a thin controller/fat model structure that is in keeping with solid practice for Rails applications.

Using REST is recommended for the basic CRUD actions, and it’s often worth the time to see what
other functionality can be considered in terms of basic actions in it’s own resource.

Working with Legacy Databases
Ideally, you’ll have the opportunity to design your application’s database when you create a new
Rails application. By using standard naming and schema conventions, you can save yourself work.
However, in the real world, especially in large organizations, you will often have to write an appli-
cation that works with an existing or legacy database.

The database may use table and column names that are very different from what Rails expects to
see by default. In that case, is Rails a bad framework choice? Fortunately, the answer to that ques-
tion is no, having to work with a legacy database does not make Rails a bad choice of framework.
There are still plenty of useful features in Rails that make it worth having to do a bit of additional
work to configure the framework to work with your legacy database.

The main problem with dealing with a Legacy database is the main strength of using Rails —
 convention over configuration. Rails has a specific set of conventions that it imposes on database
table and column structure.

A database created without the intent of being used in a Rails application is unlikely to be consis-
tent with those conventions. In particular, a database created under what you might call a typical
classic IT department style will not match Rails default structure. Happily, while Rails does have
strong opinions on default structure, it is also simple to override the defaults to support whatever
the legacy database wants to throw at you.

482

Advanced RailsPart IV

In particular, Rails allows you to:

n Override default database table names

n Override primary key field names

n Override foreign key field names

If your application is going to generate new data models that need to be stored in a database, you
have the additional decision as to whether to create a second database for your new data. This
decision may be made by outside forces — for instance, you may not have the access or permission
needed to add new tables to the legacy database, or your Rails application may be seen as the even-
tual successor to the legacy database.

In any case, Rails can manage multiple database connections in a single application with a little bit
of code.

Starting with the assumption that you are only using the one legacy database, exactly how you set
up the database.yml file depends on how you can use the existing database. Presumably the
production version of your application would connect to the production version of the database.

You’ll likely want just the schema of the legacy database to support a test database for unit tests. If
the database is relatively small, a copy of the data (or a subset of the data) may be appropriate for
the development version. Otherwise, you might have to start with the schema and seed it with
some basic data to support development. You never want to use the real production database for
development.

Override database table and field names
Rails naming conventions for databases and models can be summarized as follows:

n Database tables have plural names, and their associated model class has the singular form
of the same name.

n The primary key of every database table is expected to be named id.

n A column with a name of the form model_id is expected to represent a foreign key for
the model table.

n A join table is expected to have the name of the two database tables being joined (in other
words, the plural names) in alphabetical order.

It’s not just legacy databases that violate this naming structure, by the way. Most commonly, a Rails
database might use a non-standard name for a foreign key where the tables have multiple links, or
where the connection has a more specific logical name in the context of the relationship then the
foreign model has in general.

If your legacy database has more egregious departure from Rails’ expectations, you can modify
where Rails looks for database information at two different levels. The ActiveRecord::Base class has

483

Advanced Topics 12

a couple of properties that allow you to change database defaults throughout your application (see
Table 12.3. This is useful if you are only using the legacy database (or, I suppose, if you are creat-
ing a new database, but don’t like Rails conventions). These properties are most usefully set in the
environment.rb file so they take effect when your application is loaded.

 TABLE 12.3

ActiveRecord::Base Properties
Property Description

pluralize_tablenames Manages the default naming of databse tables. If explicitly set to false, then
Rails will assume that database table names are singular.

primary_key_prefix_table Set this property to one of two preset values to capture common naming
conventions for primary keys. If the value is :table_name, then primary keys are
of the form bookid. If the value is :table_name_with_underscore, then primary
keys are globally assumed to be of the form book_id.

table_name_prefix A global prefix to all table names that should not be included when searching
for an associated model.

table_name_suffix A global suffix to all table names that should not be included when searching
for an associated model.

However, there are many circumstances where changing global defaults will not be effective in
mapping the legacy database. Your alternative option is to set the table names and primary keys on
a model by model basis.

Within each model, the class properties set_table_name and set_primary_key can be used
to customize the naming convention mapping that model to a database table. A sample usage
would look like this:

class Book < ActiveRecord::Base
 set_table_name “book_data”
 set_primary_key “book_key”
end

Remember, the use of these properties is not limited to dealing with legacy databases, but with any
naming oddities you choose to impose on databases you create.

Non-standard choices in the naming of foreign keys is noted in the declaration of the relationship
in the ActiveRecord classes — the naming changes need to be noted on both sides of the relation-
ship. The options for each kind of relationship are listed in Table 12.4.

484

Advanced RailsPart IV

 TABLE 12.4

Relationship Options
Relationship Customization Options

belongs_to :class_name If the name of the other model is not the expected form based on the
name of the association.

:foreign_key The name of the foreign key column in this databse table, if it isn’t of
the form association_id.

has_and_
belongs_to_
many

:association_foreign_key The name of the foreign key column in the join table
pointing at the other end of the relationship.

:class_name If the name of the other model is not the expected form based on the
name of the association.

:finder_sql A manual SQL statement used to retriev the associated models.

:foreign_key The name of the foreign key column pointing to this model in the join
table.

:join_table The name of the join table.

Note that both ends of the relationship must be consistently named

has_many :class_name If the name of the other model is not the expected form based on the
name of the association.

:finder_sql A manual SQL statement used to retriev the associated models.

:foreign_key The name of the foreign key in the other table pointing at this model.

has_one :class_name If the name of the other model is not the expected form based on the
name of the association.

:foreign_key The name of the foreign key in the other table pointing at this model.

This set of methods, options, and properties should allow you to link up with any database that
gets thrown at you.

Side by side with the legacy database
Even if you are working with a legacy database, you may still want to create a second database
using Rails conventions for data that is specific to your Rails application. Just to name one possible
situation, the legacy database could be an existing book catalog shared by many different applica-
tions, and it might make sense to keep your user information in a database specific to your Web
application. Rails can manage the case where there is more then one database in the system, but
there are some tricks to managing it properly.

485

Advanced Topics 12

In the database.yml file, set up your new Rails database as the default development, test, and
production environments, and set up the legacy database with a differently named set of environ-
ments. Continuing with the assumption that the legacy is some kind of centralized catalog, that
would give you catalog_development, catalog_production, and catalog_test, all
pointing to some version of the legacy database.

Now, each ActiveRecord model in your application will point to a exactly one table in one of the
two databases. The models that point to the Rails database don’t need any special treatment, but
the models that point to the legacy database are going to need to explicitly mention to Rails. The
best way to handle this if you have multiple legacy ActiveRecords is to create a common parent
class for all of them. The parent class only needs to contain the line of code that establish the con-
nection, for example:

class LegacyBase < ActiveRecord::Base
 self.abstract_class = true
 establish_connection “catalog_#{RAILS_ENV}”
end

There are two additional things to note. The abstract_class line is there to tell Rails that
LegacyBase really is an abstract class that will have no instances, specifically that keeps ActiveRecord
from searching the database for a table named legacy_bases. In the next line, the #{RAILS_ENV}
within the string ensures that the Rails application will always connect to the appropriate version of the
database for the environment, whether you are in production, development, or test mode.

You do lose a couple of Rails automation features when using a second database, whether or not it’s
legacy. The automatic features of the Rails test environment assume the regular database connections.
This means, for example, that the rake test:prepare task which automatically reloads the data-
base from the schema won’t run on your second database. You also won’t get automatic loading of
fixtures. The fixture loading is also kind of balky in any case where the table name does not match
the ActiveRecord model name — meaning any case where you’ve changed the naming default.

You can work around this by changing the naming defaults in the test classes. I recommend doing
this all at once in the test_helper.rb file:

def self.set_fixture_classes
 set_fixture_class :legacy_database_table => LegacyClassName
end

You can include as many table/class pairs as you want in the call to set_fixture_class. To
actually load the fixtures in the legacy test database, you need to explicitly load them. Again,
include the following method in the test_helper.rb file:

def load_external_fixtures(*tables)
 fixture_root = File.join(RAILS_ROOT, ‘test’, ‘fixtures’)
 Fixtures.create_fixtures(fixture_root, tables) do
 LegacyBase.connection
 end
end

486

Advanced RailsPart IV

This works in all ways, except that you don’t get the special helper methods that Rails uses to allow
direct access to fixtures, you’ll need to explicitly find the data from the database. Also, you need to
be a little careful with the ordering of the tables — if there’s a hard foreign key constraint you’ll
need to put the required class before the class that requires it.

You’ll also need to explicitly remove the classes, again in the test helper. Foreign key constraints
will need to be in the reverse order for teardown then for load.

def teardown_fixture_data(*classes)
 classes.each do |klass|
 klass.delete_all
 end
end

Then you need to explicitly call this in your test classes:

class LegacyTest < ActiveSupport::TestCase
 set_fixture_classes

 def setup
 load_external_fixtures(“table_1”, “table_2”)
 end

 def teardown
 cleanup(Class2, Class2)
 end
end

The reason why you want to do the declaration in the helper rather than in the individual classes is
simply that a single test will likely load multiple fixture classes, and it’s easier to only have to type
the messy table/class pairs once. You should also be able to explicitly call the set_fixture_
class at the class level in the test helper, rather than just inside a method.

It is actually possible to define a relationship between two ActiveRecord models that live in differ-
ent databases, as long as ActiveRecord does not need to perform an SQL JOIN command to mange
the data. In practice, this means that one-to-one or one-to-many relationships are fine, but many-
to-many relationships are problematic.

You can work around this limitation by creating a proxy object in your local database. The local
table would only generally only have one column, the remote ID of the legacy model. You also
need a join table that joins the proxy id to the legacy model id. That lets you set up a structure like
this (these class declarations would of course normally be in their respective app/model files):

class LegacyProxy
 belongs_to :legacy_model
end

class LegacyModel
 has_one :legacy_proxy
end

487

Advanced Topics 12

This sets up an ordinary one-to-one relationship between the proxy in your local database, and the
actual model in the legacy database. Now, a class that wants to have a many-to-many relationship
with the legacy model can declare a relationship with the proxy — the join table here is whatever
name you give to the join table:

class LegacyModelGroup
 has_and_belongs_to_many :legacy_proxies,

 :join_table => “legacy_join_table”

def legacy_models
 legacy_proxies.collect {|p| p.legacy_model}
end

end

Long term, you might want to make your life easier by defining accessors on the proxy object that
defer to the legacy model, but you certainly don’t need to do that to make this setup useful.

Using ActionMailer
Even with all of the emerging technologies for interacting and collaborating with those around you,
one of the Internet’s first technologies, e-mail, is still the most popular way of communicating
online. Sending and receiving e-mail is also a common requirement of most Web applications that
you will develop. Some of the uses for e-mail in Web applications are:

n To provide a confirmation step as part of a user registration process.

n As a notification channel when something goes wrong with the application.

n To provide a lost password reminder.

Rails provides built-in support for sending and receiving e-mail. In this section, you’ll see how easy
it is to include e-mail in a Rails application. The steps I’ll cover are:

n Configuring your Rails application for e-mail support.

n Generating a mailer model.

n Writing code to send e-mail.

n Writing code to receive e-mail.

n Handling e-mail attachments.

Configuring a Rails application for e-mail support
Rails has built-in support for sending outbound e-mails using either SMTP or SendMail. You can
configure the mechanism you prefer by adding a single line to your application’s config/
environment.rb file. If you want to use SMTP, add this line to your environment.rb file:

config.action_mailer.delivery_method = :smtp

488

Advanced RailsPart IV

Or, if you want to use SendMail for your outbound e-mails, add this line:

config.action_mailer.delivery_method = :sendmail

The config.action_mailer call will actually trigger a class method on ActionMailer::Base.
In most cases, you won’t want to put this setting in the global environment.rb file.

Your email settings will probably change for each Rails environment — your production mail
server is probably not accessible during development, and you probably don’t want to be sending
live emails during testing. Place the mailer configuration in the conifg/environment directory
in the file corresponding to the environment you want to configure.

If you choose SMTP, you also have to add some additional code to configure your SMTP settings.
You will add a block of code similar to the following to set up your SMTP options:

config.action_mailer.server_settings = {
 :address => “my.smtpserver.com”,
 :port => 25,
 :domain => “My Domain”,
 :authentication => :login,
 :user_name => “username”,
 :password => “password”
}

By default the test environment in config/environment/test.rb sets the mail settings like this:

config.action_mailer.delivery_method = :test

This prevents test mails from being sent out, and instead puts the mail messages in a class property
of each ActionMailer class, named deliveries.

You can also configure whether Rails will consider it an error if the mail message can’t be sent, this
setting is off in the development environment:

config.action_mailer.raise_delivery_errors = false

Generating a mailer model
After you have your e-mail server properly configured in the environment.rb file, the next step
in adding e-mail support to your application is to generate a mailer model using the script/
generate mailer command.

> ruby script/generate mailer RegistrationNotice
 exists app/models/
 create app/views/registration_notice
 exists test/unit/
 create test/fixtures/registration_notice
 create app/models/registration_notice.rb
 create test/unit/registration_notice_test.rb

489

Advanced Topics 12

If you look at the model that is generated, you see that it is very similar to ActiveRecord-based
models. It should look like this:

class RegistrationNotice < ActionMailer::Base
end

As with the ActiveRecord model classes, this class extends a Rails class, ActionMailer::Base,
which provides the core of the class’s functionality. The unit test file that is created is a simple stub,
similar to what you get with the ActiveRecord generator.

Writing code to send e-mail
Now that you have a RegistrationNotice mailer, you have the classes that you need to begin
writing the e-mail code. Within the RegistrationNotice class, you add mailer methods that
correspond to individual e-mail types that you want to support. In the mailer method, you set up
the e-mail message by assigning values to variables representing attributes of the email to be sent.
Let’s look at an example of what a user registration e-mail mailer method might look like in the
RegistrationNotice model that was created in the previous step:

def user_registered(user)
 recipients user.email
 subject = “Activate your Account”
 from = “site@myWeb.com”
 body :recipient => user.name
end

In this method, you are setting four variables related to the e-mail message: the recipients, subject,
from, and body. There are actually many more options that can be set for an e-mail, as described
below:

n attachment: Use this option to specify a file attachment. You can call this multiple times
to specify more than one attachment for an e-mail message. The argument to this method
is a hash with keys like :content_type and :body.

n bcc: Use this to specify a blind carbon-copy recipient for an e-mail message. You can pass
a recipient parameter as a string for a single e-mail address, or an array of addresses.

n body: This variable is used to define the body of the e-mail message. You can pass either
a string or a hash value for the body. If you pass a string, the string’s value becomes the
actual text of the e-mail message. If you pass a hash, the hash should contain variables
that will be passed to an e-mail template. The hash variables will be merged with the tem-
plate to create the text of the e-mail message. You’ll see more about this when I discuss
e-mail templates a bit later.

n cc: Use this to specify a carbon-copy recipient for an e-mail message. You can pass a
recipient parameter as a string for a single e-mail address, or an array of addresses.

490

Advanced RailsPart IV

n charset: Use this to specify the character set for the e-mail message. You can set a
default_charset setting for the ActionMailer::Base class that will be the
default value for the character set.

n content_type: Use this to specify the content type of the e-mail message. If not specified,
the content type defaults to text/plain. A global default can be set in the environment
configuration.

n from: Use this to specify the from address for the e-mail message. The address is speci-
fied as a string value.

n headers: You can use this to specify additional headers that you want to be added to the
e-mail message. The additional headers are specified in a hash value.

n implicit_parts_order: This is used to specify the order in which the parts of a multi-part
e-mail should be sorted. You specify the sort order as an array of content types. The
default sort order is: [“text/html”, “text/enriched”, “text/plain”]. The
default sort order can be set with the default_implicit_parts_order variable on
the ActionMailer::Base class.

n mailer_name: You can use this to override the default mailer name. This name tells Rails
where it can find the mailer’s templates. By default, the name used will be an inflected
version of the mailer’s class name.

n mime_version: This is used to specify the MIME version you want to use. This defaults
to version 1.0.

n part: Can be used to specify a single part of a multipart message, options include
:content_type, and :body.

n recipients: The email or list of email addresses to which the message will be sent.

n sent_on: The date the email was sent, as shown in the recipient’s browser. You don’t
need to set this unless you are doing something weird, normally, it’ll be sent by the mail
server when the message is sent.

n subject: The subject of the message.

In order to actually generate the message and send it, you don’t call the mailer method directly —
Rails creates a couple of wrapper methods that use the mailer method as part of the creation
and delivery of the actual email message. These messages are of the form create_user_
registered and deliver_user_registered. The create version merely creates the email
message object, while the deliver version creates the object and immediately sends it.

If you use the create version, you then send it using a structure like the following:

email = RegistrationNotice.create_user_notified(user)
RegistrationNotice.deliver(email)

This allows you to further process the email object before delivery if you want. Otherwise, the one
line version just looks like this:

email = RegistrationNotice.deliver_user_notified(user)

491

Advanced Topics 12

If the body attribute of your mailer method is a hash, then Rails expects the actual body of the mail
message to be in an ERb template located at app/views/registration_notice/user_
notfied.html.erb. That’s if you are sending an HTML email, the file name of the template for
a text email would more properly end .text.erb or .plain.erb.

Rails will implicitly set the outgoing context type of the mail message to match the type extension
of the ERb file, so choose wisely. Rails also allows you to have multiple templates for a single mes-
sage, for example, both user_notified.text.erb and user_notified.html.erb. If
Rails notices multiple templates, the mailer will assemble the message into a multi-part message,
and let the user’s client sort it out, giving the user control over whether to view the message in
HTML or plain text.

This works nicely with attachments, which are specified in the mailer method using the
 attachment method. The :content_type is the MIME type of the attachment, the :body
is the actual data, often acquired via File.read, and the :filename can also be specified.
Multiple attachments can be added to a single message.

Writing code to receive e-mail
Writing code to receive e-mails through Rails is not any more difficult than it is to send e-mails. In
fact, because there are fewer options to specify, it is probably easier to write the code to receive
e-mails. Within an ActionMailer::Base subclass, if you specify a method named receive, it
will be called with the email message already parsed into an email object exactly like the ones you
would create in order to send an email. For example, the following snippet takes in a message and
adds it to the database attached to the person who sent it.

def receive(email)
 person = Person.find_by_email(email.to.first)
 person.emails.create(:subject => email.subject, :body => email.

body)
end

The tricky part is coaxing your email server to cause this method to be invoked when an email is
received. The general form of this problem is well out of scope, however if you can access the
email address you will be watching via IMAP, you can use the Ruby Net::IMAP library to fetch
mail. The following code was adapted from the Rails wiki:

require ‘net/imap’
imap = Net::IMAP.new(‘email_host_name’)
imap.authenticate(‘LOGIN’, username, password)
imap.select(‘INBOX’)
imap.search([‘ALL’]).each do |id|
 message = imap.fetch(id, ‘RFC822’)[0].attr[‘RFC822’]
 RegistrationNotice.receive(message)
 imap.store(message_id, “+FLAGS”, [:Deleted])
end
imap.expunge()

492

Advanced RailsPart IV

A similar script could use NET::POP3. All you need to do is use a cron job or something similar to
run this script periodically — note this script deletes emails as it reads them, which you might
want to modify if you think you’ll need access to the messages later on.

ActiveResource and XML
ActiveResource is the client-side complement to REST. A server using REST allows for a consistent
interface to resources on the server, and makes it trivially easy to send out resource data as XML.
Well, if you can send that data out, you’d also like to have some way to read the data and convert
it from XML to a useful object. This is where ActiveResource comes in.

ActiveResource makes interacting with a remote Web service easier in almost exactly the same way
as ActiveRecord makes interacting with a relational database easier. It provides a consistent inter-
face for finding, updating, creating, and removing resources exposed by the Web service, all in a
stateless system that uses existing Web standards and is fairly easy to implement.

You would use ActiveResource as part of a Web-services architecture. For example, a book buying
application might receive information about individual books from a Web application provided by
a publisher or distributor. If that Web application exposes a RESTful interface that returns HTML,
than your Web application can use ActiveResource to easily read that data.

ActiveResource is not tied to the rest of Rails however, you could also use it in the context of a
command line or GUI application. For example, Twitter is, as of this writing, one of the most heav-
ily trafficked Ruby on Rails applications going. Its external API is largely RESTful, and therefore a
potential Ruby-based desktop client for Twitter could use ActiveResource to take the API results
and turn them into objects.

The most basic ActiveResource script looks something like this:

require ‘active_resource’

class Book < ActiveResource::Base
 self.site = http://remote.restfulsite.com
end

That’s all you need to do to set up the ActiveResource object. Note that the require statement
assumes that ActiveResource is in your path somehow, normally it lives at <rails>/activere
source/lib/active_resource.rb where <rails> is either the vendor/rails directory
of a Rails application or the root of the Rails gem in your Ruby home directory. Then you declare
the Resource class as a subclass of ActiveResource::Base. This is different from any
ActiveRecord class you might have named Book.

At the risk of repeating myself, this book class is backed by the RESTful server, not by the data-
base. The site property specifies exactly which RESTful server will back this particular resource.
If all your resources come from the same site, then you can specify the remote URL globally by set-
ting ActiveResource::Base.site.

493

Advanced Topics 12

So far, this code has accomplished nothing other than setting up a connection. But actually using
the connection is pretty simple. You can try the following:

books = Book.find(:all)

In the background, this line makes a remote HTTP call to http://remote.restfulsite.
com/books.xml, parses the returned XML and converts it into ActiveResource objects. You have
more or less the same implicit attributes that you would have in an ActiveRecord object, so you
could do something like books.map(&:title), but based on the attributes included in the
XML output.

The find functionality in ActiveResource is much less extensive than ActiveRecord. This makes sense,
since the expressiveness of a relational database is much greater than that of a RESTful server — in a
database there is more of an ability to set filters and sort and the like. In a RESTful server, you basi-
cally have:

Book.find(:all)
Book.find(12)
Book.find(:first)
Book.find(:one)

The first line, as seen earlier, returns all books as delineated by the index method of the remote
server. The second line takes a single resource ID, and calls the show method on the remote
server, returning XML data for a single item. The :first option retrieves all data from the index
method, but only returns the first element, it’s not clear in what circumstance that’s actually very
useful. The :one modifier is largely used with custom actions as a signal to ActiveRecord that
exactly one record will be returned.

Beyond that, you’re somewhat at the mercy of what the server implementation has provided. Any
key/value pairs you add to any of the find methods are added to the URL as part of the query
string, so if the server methods allow you to specify, say, sort order, or a limit, or the like, you can
access that functionality from ActiveResource. You can also use the option :from to specify a spe-
cific URL for that one find query. This is the mechanism for sending a request to a custom action
defined on the server.

Book.find(:one, :from => “remote.restfulsite.com/book/best_
seller.xml”)

Again, though, you’re limited to what the server has chosen to implement.

Once you’ve gotten your resource, you can use it like any other Rails object. Remember, though,
that it is not the server-side ActiveRecord object, and any functionality built into that model will
not exist on the client-side ActiveResource unless you explicitly put it there. If you are writing both
sides of the client-server application, it’s probably a good idea to take the functionality that could
potentially be of use to both ActiveRecord and ActiveResource flavors of your model and put them
in a common module that could be included by both.

494

Advanced RailsPart IV

The downloaded resource will not, by default, include information about any related classes, again,
even when there are specific ActiveRecord relationship defined server-side. The server could
choose to include related objects in the XML being retrieved, but that’s not the basic feature set.
Ordinarily, recovering the related objects requires an additional call back to the server.

You can also perform the rest of the basic CRUD family of actions from your active resource. You
can save the item back via the save method, which triggers an update call on the remote server,
you can also use the create method in the same way as you would in ActiveRecord, to instantiate
a new resource and save it back to the data store, in this case, by triggering a create call on the
remote server.

Although you cannot automatically do client-side validation of your resource, the normal
ActiveRecord validation will be performed server-side when the object is saved. Deletion is man-
aged similarly to ActiveRecord, via a class level delete(id) method, or an instance level
destroy method.

Deploying with Capistrano
For a long time, the deployment was the most difficult part of creating a working Rails application.
Part of this pain was caused by the difficulty in getting a Rails application to run consistently in a
shared hosting environment, which, due to their low cost, is where most developers who are new
to Rails start off. While the number of shared hosting providers that support Rails applications is
growing, it is still low, and those that do, have had plenty of issues with application performance
and reliability. However, the new mod_rails Apache module, in early release as of this writing,
may go a long way toward improving Rails performance on shared hosts.

General deployment has become much easier using a tool named Capistrano. Capistrano was cre-
ated by Rails developer Jamis Buck, who originally gave it the name Switchtower. Just as Rails itself
was extracted from a real project and was developed to fulfill real project needs, Capistrano was
originally created by Buck to support the Basecamp application for 37 Signals.

Capistrano can be used to automate the deployment of your Web application. It was developed for
use with Rails applications, but there is actually nothing to prevent you from using Capistrano as a
deployment tool for Web applications that are not Rails applications. Capistrano’s greatest
strengths are it’s ability to manage simultaneous deployment to multiple servers at once, even if the
servers have different roles, and also it’s ability to quickly roll the deployment back to a previous
known state in case of emergency.

The basic structure of Capistrano is for the developer to initiate a task on the local development
box — either a predefined task, or one written using a task syntax similar to Rake. To run the task,
Capistrano makes a remote connection to one, some, or all of the servers it knows about, and runs
some set of tasks on that remote server. These tasks might include retrieving source code, running
a database migration, or restarting the Web server.

495

Advanced Topics 12

Installing and setting up Capistrano
Capistrano is distributed as a Ruby gem. As of this writing, the current version is 2.3.

> gem install Capistrano

To use Capistrano, certain things need to be true about your development and deployment envi-
ronments. You need to be using some kind of source control, Subversion is the default, but many
other popular systems are also supported, including Git, CVS, Mercruial, and Perforce.

NOTENOTE Technically, Capistrano recently added a no-source control mode, but that’s
intended just for emergencies and is not recommended for regular use. Capistrano

interfaces with your source control system to perform a clean checkout of your code every time
you request a deployment, this prevents issues with the previous deployment from bleeding into
the newest version.

On the server side, you need at least one server to start, and you need a network address that can
access that server. Obviously, the server needs to be able to run Rails. Less obviously, the server
needs to be able to communicate via SSH. Capistrano sends commands to servers via a standard
Unix SSH shell. The preferred target of a Capistrano deploy is Linux, although Mac OS X servers
also should meet the standard. If your server is running MS Windows, you’ll need to run Cygwin
or some other Unix shell program to be able to use Capistrano. Capistrano prefers to have the
login to the remote machines managed with public keys, although you can use password access if
you’d prefer. If you have multiple servers, the same password must work on all of them.

Once Capistrano is installed, you start using it by typing the command capify . from your Rails
root directory.

capify .
[add] writing ‘./Capfile’
[add] writing ‘./config/deploy.rb’
 [done] capified!

As you can see from the snippet, Capistrano will create two files, the Capfile’s primary purpose
is to load the deploy.rb file, which contains the actual deployment recipe. The Capistrano
deployment file is just a Ruby file, with some custom structure behind it to allow you to create
your own build tasks in addition to the standard ones.

The standard deployment file has a number of different settings and variables you’ll need to adapt
to the specifics of your application. The two most important are right at the top:

set :application, “set your application name here”
set :repository, “set your repository location here”

The application name is arbitrary, but is used as the root directory of your application files on the
servers being deployed to. The repository variable has a URL for the code repository, which must
be visible from the server being deployed to, not the development machine being deployed from.

496

Advanced RailsPart IV

You can also specify the remote directory location and the source control system being used, but
Capistrano provides a default value for both (the default source control system is Subversion).

If you need to specify the username or password to your Subversion repository, you can use the
same set syntax the attribute names are :svn_user and :svn_password. Instead of taking a
string as the value of the property, you can also pass a block, which enables the following work-
around if you don’t want to place the Subversion password in the text file.

set :svn_password, Proc.new do
 Capistrano::CLI.password_prompt(‘enter password: ‘)
end

The next most important thing you need to tell Capistrano is the location and types of your servers.
The default in the file looks like this:

role :app, “your app-server here”
role :web, “your web-server here”
role :db, “your db-server here”, :primary => true

Capistrano allows you to group your servers into roles. The naming of the roles is basically arbi-
trary, but the default convention separates your application into Web servers and database servers,
or application servers that manage both. Normally, you’d start with on server, place it’s address in
the :app role, and comment out the other two lines. As your deployment gets bigger, you’d add
additional servers to that line.

When you get to the point where different servers are playing different roles, then you split the list
as needed. Capistrano’s normal behavior is to run a command on all servers listed in all roles.
Specific tasks, however, can be customized to run for a specific role or roles — it would make no
sense to run database migrations on a server that didn’t have a database, for example.

A role named :gateway, if it exists, is expected to have a single server, and Capistrano will route
access to all other servers through that machine.

Running basic Capistrano tasks
The first thing you need to do when you add a new server to your deployment is run the
Capistrano setup task:

cap deploy:setup

The general form of a Capistrano command is very similar to a Rake command, cap is invoked,
the first argument is the task to run, further options pass various options to the command.

The setup command creates a directory structure for your application. Figure 12.1 shows the
directory structure.

497

Advanced Topics 12

 FIGURE 12.1

Directory structure for your application

<App Root>

sharedreleases

pidslogsystem

Each deployment you make to a server using Capistrano gets it’s own new directory under
releases. The top level directory has a symbolic link called current that always points to
the most recent release directory. Files that would be shared across deployments are placed in the
shared directory — Capistrano also manages the appropriate links from each deployment to the
shared directories.

The setup command must be run on any server before you can deploy to it, however there is no
harm from running it on servers that have already been set up.

Assuming you are starting from a basic, single server deployment, the first deploy task you run is a
cold deploy, meaning that a Web server is not already running on the server.

cap deploy:cold

This performs three tasks, each of which can also be triggered as separate Capistrano tasks:

n deploy:update

 Retrieves a current checkout from your source control system and manages the symbolic
linc manipulation

n deploy:migrate

 Runs a rake db:migrate on the remote server. This will fail if the database.yml
file is not properly configured for production mode. In a complicated deployment, it’s a
common practice to dynamically generate the database.yml file from a custom
Capistrano task.

n deploy:start

 Starts the Web server. This task assumes that there is a script in your application’s
script directory named spin. This script will be run to start the server — a simple
way to start is just to defer to the standard script/process/spawner, which starts a
small mongrel cluster. If you’re fine with just a normal mongrel deployment, which is
plausible for a staging server, I guess, you can override the command using something
like this:

498

Advanced RailsPart IV

namespace :deploy do
 task :start, :roles => :app do
 invoke_command “mongrel_rails start -C #{mongrel_file}”,
 :via => run_method
 end
end

Once you have the Web server running on the remote box, then you’ve entered the realm of hot
deployment:

cap deploy

A hot deployment is the same as a cold deploy except that the database migrations are not per-
formed (you need cap deploy:migrations to specifically do a hot deploy with database migra-
tions. Also, instead of deploy:start, it calls deploy:restart, , which calls the standard
Rails script/process/reaper. This should stop anything that looks a Rails server process, then start
them up again. It’s designed to work with the spawner script. Again, you can customize behavior
to match your own needs.

Should you notice a problem in the deploy and you need to go back to the previous known state,
you run the following command:

cap rollback

This command deletes the current codebase, and points the current symbolic link back to the
previous version, then restarts the Web server using the same deploy:restart task used in a
hot deployment.

This section has covered the most commonly used Capistrano commands, here are a couple of oth-
ers that you might find useful:

n deploy:check

 Tests for a series of prerequisites on the remote machine including the directory struc-
ture. You can add tests by adding commands to your deploy file of the form depend
:type name. The type can be one of :gem, :command, or :directory, and any fur-
ther options are used to specify the name of the dependency being checked, like depend
:gem “chronic”.

n deploy:cleanup

 Removes all but the last five non-current deploys from the remote server.

n deploy:upload

 A one-off task that uploads all the files and directories in a comma-delimited list stored in
the FILES environment variable, as in cap deploy:upload FILES=”db/
schema.rb”.

n invoke

 Runs an arbitrary command, stored in the COMMAND environment variable.

499

Advanced Topics 12

Customizing Capistrano
There are two ways to customize Capistrano’s behavior, setting variables and creating your own
tasks. Many tasks depend on variables that can be set either at the command line or in your
Capistrano recipe. Capistrano variables are either environment variables or Capistrano variables.
Environment variables are declared in your script using the following syntax:

ENV[“FILES”] = “app/views, app/models”

And are added at the command line using the syntax:

cap invoke COMMAND=”script/process/reaper”

Capistrano variables are set in the recipe as follows:

set :svn_user, “hmason”

Such variables are set at the command line using one of the two forms:

cap deploy -s svn_user=hmason
cap deploy -S svn user=hmason

The difference between the two forms is when the variable set is applied. The lower-case form is
applied after the recipe file loads, so that the command line setting overrides any setting in the
actual recipe script. The upper-case form loads the command line variables first, so any setting in
the script overrides the command line.

Setting variables is nice, but the real power of Capistrano comes in the ability to write your own
custom tasks and assign them as dependencies to any Capistrano task. The syntax for writing a
new task is extremely similar to Rake. Here’s a sample task that generates a database.yml file —
it assumes you have some way of specifying the database host for each server and that YAML has
been loaded:

desc “create database.yml”
task :create_database_yml, :roles => [:app, :db] do
 yaml = {
 :production => {
 :adapter => mysql
 :database => my_production
 :host => find_host($HOSTNAME) ## This is your method to

write
 :username => ‘fred’
 :password => ‘dref’
 }
 }
 put YAML::dump(buffer), “#{release_path}/config/databse.yml”,
 :mode => 0664
end

500

Advanced RailsPart IV

As in Rake, the desc method sets the comment for the next task definition to come down the
pike. Unlike Rake, task dependencies are not set in the task definition. Instead, the task definition
allows you to optionally specify which server roles the task applies to — in this case, the task only
applies to servers that have database. Also, whereas if you define a Rake task multiple times, it will
combine the definitions, a second definition of a Capistrano task will completely override the origi-
nal task.

Capistrano has a couple of handy helper methods that manage server side activities, the previous
snippet shows put, which places content in a file. Another commonly used one is run, which
runs a shell command on all the servers affected by the task.

As with any build system, it’s helpful to automatically set up dependencies so that a task will
always run before or after another task. In Capistrano, this is done by placing a declaration to that
effect in the recipe script. The general form is one of the following

after ‘existing_task’, ‘new_task’
before ‘existing_task’, ‘new_task’

You can include more than one new task by continuing to add the tasks as further arguments to
the command. As is probably clear, new tasks specified as before are guaranteed to run before
the actual task, and new tasks specified as after will always run after the existing task. You can
have both a before and after on the same task, and the before and after declarations do compose,
so you can have more than one of them for the same task and they will not override each other.
Instead of a list of tasks, you can also pass a block.

This just scratches the surface of what you can do with Capistrano, each deployment is different,
and getting your needs exactly right is not trivial. Check out Capistrano online for more complex
details.

Summary
In this chapter, I covered some topics that are important to developing an application with Rails
that had not yet been covered in previous chapters.

Representational State Transfer (REST) is a pattern for structuring your Web application that is
rapidly becoming standard for Rails. For a Rails programmer, REST simplifies the URL and action
structure of your controllers, and provides for a consistent interface to the resources reached via
the controller.

REST also enables your application to act as a Web service. A Rails application can act as the con-
sumer of a RESTful Web service using the ActiveResource library, which provides an ActiveRecord
style interface to a remote resource.

501

Advanced Topics 12

Sometimes you will be forced to use a legacy database that does not conform to Rails naming con-
ventions. Rails provides hook methods to override standard naming to match whatever you have.
You can also maintain multiple databases from within the same application.

Applications can send email using the ActionMailer library, which is something of a mashup
between a model and view, and which allows you to specify the details of an email message. You
can even use ERb syntax to create a template defining the message. The email message can also
have a file attachment.

Capistrano has become the default tool for specifying the details of Rails deployments to remote
servers. It allows you to run the same deployment script transparently across multiple servers. You
have a wide range of customization options to adapt the script to the needs of your deployment.

Appendixes

IN THIS PART
Appendix A
Ruby Quick Reference

Appendix B
Ruby on Rails Guide

505

Basic Ruby Syntax

The Ruby language is made up of expressions. Each expression returns
a value. Even elements that are just statements in other languages,
such as if and for, are expressions in Ruby that return values.

Ruby is a pure object-oriented language. Every variable or constant in Ruby
is an object, and there are no basic non-object types. Every variable or literal
responds to the basic method call syntax.

A simple Ruby expression is one of the following:

n A literal. Ruby has literal syntax for arrays, hashes, numbers,
ranges, regular expressions, strings, and symbols.

n The name of an existing variable or constant.

n A method call, which combines the name of an existing vari-
able or constant with a method name. The basic form of a
method call is <receiver>.<method>(<arguments>).
Variants on this form will be discussed later.

n One of several special expressions invoked by the use of a key-
word such as if, case, or while.

Complex expressions can be built using Ruby operators. Variable assignment
using = is considered to be a type of operator. Most expressions can also
have arbitrarily complex expressions within them — for example, the argu-
ments of a method call are all themselves expressions.

IN THIS APPENDIX
Basic Ruby syntax

Objects and classes

Ruby Quick Reference

506

AppendixesPart V

A Ruby expression ends with a line break unless the Ruby interpreter has a reason to believe the
expression is intended to continue. The expression continues if there is an open delimiter such as a
quotation mark, parenthesis, bracket, or brace. The expression also continues if the last character
in the line is a comma or operator. A complex expression such as an if statement is usually
expected to cross over multiple lines. An expression can be forced to continue to the next line by
ending a line with a backslash character.

Multiple expressions can be placed on the same line by separating the expressions with a semicolon.

Literal expressions
Ruby has several different mechanisms to create literal objects. In addition to expected literals for
number and string, Ruby literals can also create arrays, Booleans , hashes, ranges, regular expres-
sions, and symbols.

Arrays
A literal array is created by enclosing the elements in brackets. Inside the brackets, the elements
are separated by commas. Each element can be an arbitrarily complex Ruby expression. The result
is an instance of the class Array. For example, lool at the array defined here:

x = [1, “hello”, fred]

It contains three elements: a number, a string, and a variable.

If the elements of the array are all strings, Ruby provides a shortcut syntax, using the notation %w
followed by an arbitrary delimiter. Elements in the array are separated by a space, and the strings
are interpreted as literals. A backslash character can be used to insert a space inside an element,
rather than treat the space as a delimiter.

>> %w{zot jenny max butch peabody}
=> [“zot”, “jenny”, “max”, “butch”, “peabody”]

>> %w(zot jenny max butch peabody arthur\ dekker)
=> [“zot”, “jenny”, “max”, “butch”, “peabody”, “arthur dekker”]

A second form, with a capital %W, allows for string interpolation rules to be obeyed inside the
array — it’s the equivalent of a double-quoted string. See the Strings section for full details.

>> %W(a b #{1 + 1} c)
=> [“a”, “b”, “2”, “c”]

Adding elements to the end of an array is managed with the push method or the following operator:

<<.[1, 2, 3].push(4)
[1, 3, 3] << 4

507

Ruby Quick Reference A

Removing the last element from the array is managed with the method pop. The methods shift
and unshift provide similar functionality for the beginning of the array.

An arbitrary element in the array can be accessed using index lookup. The first element of the array
is at index 0. A positive integer indicates the index from the start of the array, returning nil if the
integer is greater than the size of the array. The index -1 is the last element of the array; other nega-
tive integers are counted from the end of the array.

The expression inside the brackets can be a Ruby range, in which case the sub-array corresponding
to the indexes in the range is returned. Less commonly, the index expression can be two integers
separated by a comma [index, length], which returns a sub-array starting at the index for the
given length.

[1, 2, 3][0] = 1
[1, 2, 3][-1] = 3
[1, 2, 3][0..1] = [1, 2]
[1, 2, 3][0, 1] = [1]

Arrays provide a number of different methods that allow enumeration over the contents of the
array. Many of these are provided by the Enumerable module. The methods include each,
which iterates over the contents of the array, map, which applies a block to each element of the
array and returns the resulting list, and select, which applies a block to each element of the
array and returns those elements for which the result is true.

Boolean literals
Ruby defines the special variables true and false, which correspond to the expected Boolean
values. They are the sole instances of the classes TrueClass and FalseClass. Ruby also defines
the special value nil, which is the sole instance of the class NilClass.

The value nil also evaluates to false when evaluated in a Boolean expression. Unlike other script-
ing languages, no other values in Ruby are treated as false. All values other than false and nil
are considered to be logically true.

Hashes
A hash literal contains a series of key/value pairs inside braces. The key and value are separated by
=> and each pair is separated by a comma. The key and value can be arbitrary Ruby expressions.

>> {:a => 1, “b” => “fred”}
=> {:a=>1, “b”=>”fred”}

The => sequence can be replaced by a comma; this should only be done if you don’t want anybody
to read your code. The created object is an instance of the class Hash. Ideally, a hash key is an
immutable object, such as a symbol or number.

Hash elements are accessed and set through bracket index lookup: hash[key]. The methods
keys and values return a list of the appropriate elements, and the method has_key? returns
true if the key is in the hash.

508

AppendixesPart V

Numbers
Ruby’s number literals are straightforward. An integer is any sequence of digits. A sign character
can be the first character. Integer literals can be written to other bases by starting the numbers with
a leading 0 for octal, a 0x for hexadecimal, and a 0b for binary. Decimal numbers can also be indi-
cated with 0d. Underscore characters are ignored in integer literals and therefore are often used as
group separators. Integer literals create instances of the class Fixnum, unless the literal is outside
the range of Fixnum, in which case the literal is of type Bignum.

>> 100 => 100
>> -100 => -100
>> 0100 => 64
>> 0x100 => 256
>> 0b100 => 4
>> 987_123 => 987123

Floating point literals are a sequence of digits containing a decimal point. There must be at least
one digit on either side of the decimal point, or else you get a syntax error. A floating point literal
is converted to an instance of the class Float.

>> 1.3 => 1.3
>> 1.3e2 => 130.0

Ranges
A Ruby range literal can be indicated in one of two ways. The range consists of two expressions
separated by either two or three dots. The two-dot version creates a range that includes the value
in the second expression, while the three-dot version excludes the final value.

Ranges are normally used as compact storage for a long sequence of consecutive values, which can
be iterated over and converted to arrays. The following example shows the difference between the
two- and three-dot versions by showing the difference in the array that is created from the range.

>> x = 1..10 => 1..10
>> x.to_a => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>> y = 1...10 => 1...10
>> y.to_a => [1, 2, 3, 4, 5, 6, 7, 8, 9]

The expressions that make up the two ends of the range can be arbitrarily complex. The range
ends are most commonly integers, but any class that implements the method succ can act as a
range boundary.

NOTENOTE Dates and strings are also often used as range boundaries.

Regular expressions
A regular expression literal can be created by placing a regular expression pattern inside a pair of
forward slashes, as follows:

/ab*d/

509

Ruby Quick Reference A

Ruby also offers an arbitrary delimiter marker for regular expressions %r, which is often used if the
expression pattern itself contains a lot of slashes.

%r{ab*d}

Regular expression literals are converted to instances of the class Regexp. Regular expressions are
used to perform complex pattern matches against strings. In Ruby, these matches are performed
using either the operator =~ or the method Regexp.match. Most characters in the regular
expression match against the same character in the test string; however, several special character
forms augment the basic behavior.

After the ending delimiter of the literal, one or more characters can be used to indicate optional
regular expression behavior. The three most common options are as follows:

i The pattern match is case sensitive

m The pattern match is assumed to encompass multiple lines. Practically, this means that the
dot special character matches newline characters.

x Literal white space in the pattern is ignored, allowing you to use spacing to make the
expression easier to read. Spaces in the pattern can be included by using a special pattern
such as \s.

Regular expression literals are converted to instances of the class Regexp.

Within a regular expression literal, the following 14 characters have special meaning:

() [] { } . * ? | + \ $ ^

To actually include one of those characters literally in the pattern, they must be escaped using a
backslash, as in * or \\. Each of the delimiter pairs indicates something different within a regular
expression.

Parentheses have their normal function of grouping elements to indicate the scope of operators.
For example, /face*/ matches the string faceeee, while /(face)*/ matches the string
facefaceface. In addition, parentheses cause a portion of the matched string to be saved for
use either within the regular expression pattern or after the match is complete. The groups can be
referred to using special variables of the form \1 and \2 during the pattern, and $1 and $2 after
the match, as in the following example:

>> /(.*)c(.*)/ =~ “abcde” => 0
>> $1 => “ab”
>> $2 => “de”

Variables are numbered based on the position of the opening parenthesis — in the pattern /
((.*)c)(.*)/, the variable $1 includes c.

Brackets are used to mark a set of characters that can match the string at that point, so /[abcd]/
matches a, b, c, or d. That pattern could also be written /[a-d]/; the hyphen indicates an inclu-
sive sequence of characters.

510

AppendixesPart V

Multiple sequences can be in one set, and so /[a-zA-z]/ matches any upper- or lowercase letter.
If the set starts with a ^, then the pattern matches only characters that are not in the set, so
/[^a-zA-z]/ matches non-alphabetic characters. Also, within brackets, all special characters,
except the right bracket and hyphen, can appear without being escaped.

Braces are used to indicate the number of times a sub-pattern must exist in the match. The basic
form is /[a-z]{3}/, which would indicate that exactly three characters must be in the matching
string. A range can be indicated with {3,5}, and a minimum value can be indicated with the form
{3,}. Braces are also used as part of the #{expr} interpolation, which is the same in regular
expressions as it is in double-quoted strings.

There are three shortcuts for indicating commonly used ranges for a match. The character
means “zero or more,” and so the regex /a[a-z]/ matches any string that contains an a
followed by zero or more lowercase letters. The character + means “one or more” and the
character ? means “zero or one.”

By default, the * and + characters are “greedy,” meaning that they match as much of the string as
they can. This can be an issue if there is more than one potential stopping place for the sub-pattern.
You can change the default behavior by putting a ? after the * or +. In the first example following,
the [a-z]* pattern matches past the first b and stops at the last possible point, before the second b.
In the second, non-greedy example, the pattern stops at the first point, before the first b.

>> /a([a-z]*)b/ =~ “aabceb” => 0
>> $1 => “abce”
>> /a([a-z]*?)b/ =~ “aabceb” => 0
>> $1 => “a”

There are several shortcuts to denote common character sequences. The special character ^
matches the beginning of the string, while $ matches the end. Many programmers prefer to use the
slightly less cryptic synonyms \A and \z. The variant \Z matches the entire string except for a
trailing newline character. The sequence \b matches a word boundary; \d matches any digit and
is the same as [0-9].

The sequence \s matches the white space characters space, tab, newline, carriage return, and line
feed; it is the same as [\f\n\r\t]. The sequence \w matches “word” characters, meaning
[a-zA-Z0-9_]. All four of these sequences are negated by replacing the lowercase character with
an uppercase one, and so \D matches any non-digit, or [^0-9].

Finally, the pipe character indicates a logical or, and so /a|b/ matches a or b.

Strings
There are several different ways to write literal strings in Ruby. The simplest is to use single quota-
tion marks. Within a single-quoted string literal, only two interpolations are performed. A \’ is
used to insert a literal single quote, and a \\ is used to insert a literal backslash.

>> ‘hello’ => “hello”
>> isn\’t’ => “isn’t”

511

Ruby Quick Reference A

>> ‘nip\\tuck’ => “nip\\tuck”
>> ‘nip\\tuck’.size => 8

In a single quoted string, backslashes that are not used as an escape are treated as literals, but con-
verted to the escape format in the irb output, so the third and fourth examples evaluate to the same
result. In the final example, the irb output preserves the escape sequence in the return value — the
resulting string only has one backslash, as shown by the size method.)

With a double-quoted string literal, the full complement of escape characters, such as \n for
 newline and \t for tab, are substituted (backslashes that are not part of an escape sequence are
ignored). In addition, the sequence #{expr} is replaced in the string by the value of the expres-
sion; the value is converted to a string if needed. For example,

>> “ab#{1 + 1}c” => “ab2c”

There are generic delimiter forms for both string forms, %q for single-quote and %Q for double-
quote. The double-quote form can also be written as just %, as in the following example:

>> %q(ab#{1 + 1}c) => “ab\#{1 + 1}c”
>> %Q(ab#{1 + 1}c) => “ab2c”
>> %(ab#{1 + 1}c) => “ab2c”

Ruby also supports Perl-style here docs. A here doc starts with << and an identifier, and continues
over multiple lines until the identifier is reached.

<<DOC
all this is
in the here
doc string
DOC

If there is a hyphen before the identifier, then the closing identifier can be indented;

<<-DOC
 this can be indentd
DOC

Otherwise, it must start at the beginning of a line. By default, the string is interpreted according to
double-quote rules; however, if the identifier is encased in quotation marks, then the here doc is
interpreted according to the style of quotation marks used.

Symbols
A symbol in Ruby is an immutable string, similar to an interned string in other languages. In addi-
tion, all instances of a symbol with the same value are guaranteed to point to the same internal
object. Symbols are used by Ruby as the internal representation of method and variable names.
Because they are immutable, they are commonly used as hash keys.

512

AppendixesPart V

A symbol is formed by a colon, followed by a name or string literal. The string literal is interpreted
according to the normal string rules. It does not matter how the symbol is constructed in deter-
mining its value; all three of the following are the same symbol:

:person2person
:’person2person’
:”person#{1+1}person”

One important note about symbols: the Symbol class does not implement the <=> operator,
meaning that a list of symbols cannot be sorted using the sort method alone.

Variable and method names
Ruby variable names are typical of identifiers and consist of lowercase letters, uppercase letters,
digits, and the underscore character, with the following restrictions:

n A local variable name must begin with either a lowercase letter or (much more
rarely) an underscore. By convention, local variables use underscores to separate words
(as in this_is_a_name), rather than interCaps.

n An instance variable for an object starts with an @ sign, as in @thingy. By conven-
tion, instance variables are lowercase and use underscores to separate words.

n Class variables for objects start with @@, and are otherwise identical to instance
variables.

n Constant values must start with a capital letter. By convention, constants that have
normal object values are in all capitals with underscores to separate words. The capital-
ized initial letter is a marker to Ruby that the value is constant.

n Class and module names are a special case of constant values. Class and module
names must also begin with a capital letter. By convention, class and module names are
mixed case.

n Ruby has global variables, which begin with $. Normally, global variables are rarely
used within a Ruby program; however, there are several standard global variables, of
which perhaps the most commonly used are $1, $2, and so on, which contain regular
expression matches.

Ruby method names come in two forms. The main form is similar to a local variable, starting with
a lowercase letter or underscore, and conventionally having underscores separating words. Unlike
a local variable, a method name may end with a question mark (?) or exclamation point (!).

By convention, a method ending with a question mark, such as nil?, returns a Boolean value. An
exclamation point is usually used to indicate a variant of a method that changes the receiving
object in place, rather than returning a changed copy, for example sort and sort!. An exclama-
tion point is sometimes used more generally to indicate any method that makes a destructive
change on the receiving object.

513

Ruby Quick Reference A

Method names can also end with an equals sign (=). This is interpreted to mean that the method is
a setter method and is called as the left side of an assignment statement, rather than through a nor-
mal method call. So, a method defined as def name= would be called in a line of code as follows:

obj.full_name = “Scott McCloud”

It is possible for a method and a local variable with the same name to co-exist in the same scope.
Under normal circumstances, Ruby does a fine job of resolving ambiguity. The most common
 confusing case is something similar to the previous example, but without an explicit receiver, as
follows:

full_name = “Perry Mason”

Ruby interprets this as an assignment to a new local variable called full_name. However, you
might want it to call the setter method full_name= for the current value of self. In this one
case, you must include the self value explicitly to invoke the setter, as follows:

self.full_name = “Perry Mason”

Method names can also be the symbols of one of the operators that is listed in the following sec-
tion as capable of being overridden. The method declaration is just the symbol for the operator,
as follows:

def +(other)

Therefore, the following line

a + b

calls the + method for object a if it exists (if the method doesn’t exist, you get an error). Many of
the operators are defined at the Object level, and are valid for all Ruby objects.

Operators
Ruby operators include the typical set, as well as a few Ruby-specific ones. Following is the list,
from highest to lowest priority. However, if you are depending on the details of the priority list in
your code, you’re probably writing hard-to-read code. Throw in a couple of parentheses.

Table A.1shows the Ruby operators and their meanings in commonly used classes. All elements in
the same table row have the same priority. Unless otherwise indicated, the operators can be over-
ridden as Ruby methods using the same symbol.

514

AppendixesPart V

 TABLE A.1

Ruby Operators and Their Meanings
Operator Definition

:: Module and class scope resolution. This operator cannot be overridden.

[] Array or hash element lookup, overridden by directories to indicate file globbing, as in
dir[file”file.*”].

[]= Array or hash element assignment.

** Raising to a power. For example, 2 ** 3 = 8.

~ Bitwise complement for numbers. Pattern negation for regular expressions and strings.

! Logical negation.

+ Unary plus. When overriding this method, use the method name +@, as in def +@.

- Unary minus. When overriding this method, use the method name -@, as in def -@.

* Multiplication. Overridden for arrays and strings to indicate repetition; for example, [a, b] * 3
= [a, b, a, b, a, b] “fred” * 2 = “fredfred”.

/ Division. If both operands are integers, then so is the result.

% Modulus. Overridden by strings to provide sprintf formatting.

+ Binary addition. For arrays and strings indicates concatenation.

- Binary subtraction. For arrays, implements set difference.

<< Bitwise left shift. Left shift is overridden by Array to implement push, by String to implement
append, and by IO objects to indicate writing to the output.

>> Bitwise right shift.

& Logical and for Booleans; bitwise and for integers. For arrays, overridden to mean set
intersection.

^ Exclusive logical or for Booleans; exclusive bitwise or for integers.

| Inclusive logical or for Booleans; inclusive bitwise or for integers. For arrays indicates set
union.

> Greater than. For most objects, all the comparison methods are defined in terms of <=> by
mixing in the Comparable module.

>= Greater than or equal to. For most objects, all the comparison methods are defined in terms of
<=> by mixing in the Comparable module.

< Less than. For most objects, all the comparison methods are defined in terms of <=> by
mixing in the Comparable module.

<= Less than or equal to. For most objects, all the comparison methods are defined in terms of
<=> by mixing in the Comparable module.

<=> Comparison operator. Returns -1, 0, or 1 depending on relationship between operands.

== Equal.

515

Ruby Quick Reference A

Operator Definition

!= Not equal. Implemented in terms of ==. May not be overridden as a method.

=== Equal for purposes of case statement.

=~ Pattern match.

!~ Not pattern match. Implemented in terms of =~; may not be overridden.

&& Logical and. May not be overridden as a method.

|| Logical or. May not be overridden.

.. Inclusive range operator. Cannot be overridden.

… Exclusive range operator. Cannot be overridden.

? : Ternary operator. May not be overridden.

= Assignment. Variant forms are /=, *=, %=, +=, -= , |=, &=, ||=, &&=, **=, >>=, <<=. None of
these may be overridden as such, but the variant forms are defined in terms of their other
operators.

defined? Returns Boolean true if the symbol is defined, as in x defined?

not Logical not. May not be overridden.

and, or Logical operators. May not be overridden.

Method calls
The basic form of a Ruby method call is as follows:

receiver.method

This indicates that the method is called on the receiver. See the “Objects and Classes” section for a
discussion of how the class structure is searched to find the method.

There are a number of optional elements in the method call. The receiver can be omitted, in which
case self is assumed for the current context. As a matter of convention, self is only explicitly
used as a receiver where it is necessary to avoid ambiguity.

Arguments can be passed to the method; they are placed in a comma-delimited list.

receiver.method(arg1, arg2)

The parentheses may be omitted if doing so does not introduce ambiguity. By convention, empty
pairs of parentheses are always omitted.

There are a few special argument forms, the calling forms will be discussed here. The “Defining
Methods” section will discuss their meaning when responding to a call with special arguments.
After the explicit arguments, a series of key/value pairs can be added:

receiver.method(arg1, arg2, key1 => val1, key2 => val2)

516

AppendixesPart V

The key/value pairs are merged into a single hash object before being passed to the receiver.

An array can also be added with the * syntax.

x = [3, 4]
receiver.method(arg1, arg2, *x)

In this case, the array is unrolled and the elements of the array are passed to the receiver as indi-
vidual arguments — the receiver in this case would get four arguments. Technically, the array
 rollup can only appear after the key/value pairs; however, it’s almost unheard of for a method to
have both.

The final optional argument to the method is a block, which can be defined in three different ways.
First, the block can be an instance of the class Proc, in which case the argument must be preceded
with an ampersand:

receiver.method(arg1, arg2, &proc)

The second and third ways define the block outside the argument list using either of the following
syntax forms:

receiver.method(arg1, arg2) {|block_arg| ...}
receiver.method(arg1, arg2) do |block_arg| end

The technical difference between the braces and the do/end syntax is that the braces have higher
priority. However, that is unlikely to be an issue in typical Ruby code. By convention, the do/end
form is used for multiline blocks, and the braces are used for single-line blocks.

NOTENOTE You will occasionally see the convention that braces are used in any case where you
intend to chain the return value of the method call with the block, regardless of

how many lines the block takes.

See the “Defining Methods” section for information on how these argument types are defined and
used within objects.

Special keyword expressions
Much of Ruby’s control flow is managed by special expressions based on keywords. This section
will discuss them.

The if expression
An if expression allows for conditional evaluation. The most basic form of the expression is as
 follows:

if <boolean expression>
 <body...>
end

517

Ruby Quick Reference A

If the Boolean expression evaluates to true, then the body expressions are evaluated.

An if expression can be written on a single line, in which case the keyword then must separate
the Boolean expression and the body.

if <boolean expression> then <body...> end

The if expression takes an optional else clause, which is evaluated if the Boolean expression
evaluates to false.

if <boolean expression>
 <body...>
else
 <else body...>
end

If there are multiple else clauses, then the keyword for separating them is elsif. The body cor-
responding to the first Boolean expression to return true is executed. If none of the Boolean expres-
sions return true, then the else clause is evaluated if one has been included.

if <boolean expression>
 <body...>
elsif <another boolean>
 <another body>
elsif <yet again>
 <yet again body>
else
 <else body>
end

The if expression as a whole returns the value of the final expression of the evaluated block. This
means that an if expression is commonly used as a more-readable replacement for the ternary
operator:

result = if <boolean> then <true exp> else <false exp> end

An if expression can also be used after another expression, in which case the expression is only
evaluated when the if expression is true. In the following line of code, the expression is com-
pletely skipped if the Boolean is false.

<expression> if <boolean>

This version is commonly used as a guard clause at the top of a method, as follows:

return if foo.nil?

518

AppendixesPart V

The unless expression
Ruby provides an unless expression as a shortcut for if not. The unless expression is the
exact opposite of an if; the body is only evaluated if the Boolean expression is false.

unless <boolean expression>
 <body>
end

In normal usage, the unless expression is preferred to a simple if not. The unless expression
allows for an optional else statement, but that usage is not recommended. There is no unless
equivalent to an elsif clause.

The unless expression also has a modifier form, which evaluates its attached expression only
when the Boolean is false.

<expression> unless <boolean>

The case expression
Ruby has a very flexible case statement. The basic form is as follows:

case <value expression>
when <expression1>
 <expression1 body>
when <expression2>
 <expression2 body>
end

The value expression is evaluated and compared to each when expression. The first when expres-
sion to be case-equal to the value expression has its body executed. No other clauses are executed.
(Note the indentation style — the when clauses are at the same indent level as the case line.) The
when clause and the body can be on the same line, but they must be separated by the keyword
then.

The equality test for a case expression is unusual. The special operator === is used to evaluate
whether two clauses are equivalent for the purposes of a case statement. For most objects, the
=== operator is equivalent to the == operator, but there are three standard classes that override
=== in an interesting way.

The Range class overrides === to match any number in the range, allowing you to write the
 following:

case bowling_score
when 0..100 then “Not very good”
when 101..200 then “Good”
when 200..299 then “Very Good”
when 300 then “Perfect”
end

519

Ruby Quick Reference A

The Regexp class overrides === to perform a string match, allowing you to write the following:

case name
when /$A[A-M]/ then “In first half of alphabet”
when /$A[N-Z]/ then “In last half of alphabet”
end

Somewhat less interestingly, Module and Class override the === operator to indicate that the
value class is either equal to or a subclass of the class in the when clause.

As with the if and unless expressions, the value of the case expression is the value of the last
expression evaluated in the chosen clause.

Ruby allows you to place an else clause at the end of the case expression, which is evaluated if
none of the other clauses match.

case name
when “fred” then “Hi Fred”
when “barney” then “Hi Barney”
else “Hi”
end

You can also place multiple matching expressions in a single when clause, separated by a comma.
The associated expressions are evaluated if any of the expressions in the list match the initial value:

when “fred”, “barney” then “Hi Guy”

Finally, you can also have a case statement without an initial value in the case clause. In this sit-
uation, each when clause contains one or more complete Boolean expressions; if any of them are
true, then the associated expressions are evaluated.

case
when obj.nil?, obj.size > 3 then “do something”
when obj.size = 5 then “do something else”
else “shrug your shoulders”
end

The for expression
Ruby has a basic for loop expression.

for <loop variable> in <enumerable exp>
 <body expressions>
end

The loop variable is any valid local variable name. The expression must evaluate to an object that
responds to the method each, which includes an array or any Ruby Enumerable. The body of
the loop is evaluated once for each element in the enumerable expression, with the loop variable
being set to each element in turn. This is almost exactly equivalent to the each method with a

520

AppendixesPart V

block (except for one minor detail: local variables created inside the body of the for expression
are available outside it, while local variables created in an each block are not). In normal Ruby
practice, calling the each method is preferred.

If the elements of the enumerable expression are themselves enumerable, they can all be assigned
separately in the declaration of the for expression:

for x, y in [[1, 2], [3, 4]]
 p “(#{x}, #{y})”
end

The entire for expression can be placed on a single line, in which case the list is separated from
the body by the keyword do.

for x in [1, 2, 3] do p x ** 2 end

The while expression
Ruby’s while expression is extremely simple.

while <boolean expression>
 <body>
end

The Boolean expression is evaluated first; if it is true, then the body is evaluated. The body contin-
ues to be evaluated until the Boolean expression is false at the end of a loop (or until the loop is
exited through a loop control keyword).

The entire expression can be placed on a single line, in which case the Boolean expression and the
body must be separated by the keyword do.

while obj.incomplete? do obj.task end

The while expression also has a modifier version that comes at the end of an expression. The pre-
ceding expression is evaluated repeatedly until the Boolean expression is false.

obj.task while obj.incomplete?

If the preceding expression is a block denoted by a begin/end pair, then the block is always
evaluated at least once, regardless of the value of the Boolean expression:

begin
 obj.task1
 obj.task2
end while obj.incomplete?

The return value for a normally exited while expression is nil.

521

Ruby Quick Reference A

The until expression
Ruby offers the until expression, which is the exact opposite of the while expression, looping
over the body of the loop as long as the Boolean expression is false:

until <boolean-expression>
 <body>
end

The single line and modifier versions of the until expression have the same syntax as the while
versions.

Loop control keywords
Any Ruby loop can be controlled from within the loop with one of the following four keywords:
break, next, redo, and retry. These keywords work within for loops, while loops, and
until loops, as well as Enumerable each loops and their variants.

The keyword break ends the loop at the point it is evaluated. The break keyword may take an
optional argument. Within a for, while, or until loop (but not in an each loop), the value of
that argument is returned as the value of the loop, allowing you to distinguish an exit that was the
result of a break from a normal exit.

The keyword next causes the next iteration of the loop to start immediately. The keyword redo
causes the current iteration of the loop to start again from the top of the loop. The keyword retry
starts the entire loop over, returning the Boolean or list expression to its initial value.

Assignment
There are a couple of nuances to Ruby assignment that you should know. The most basic form of
assignment has a variable name on the left and an expression on the right.

score = 27

From that point, the name takes the value of the right-hand expression. Technically, it takes a
 reference to the object that is the result of the right-hand expression.

You can make multiple assignments in the same line:

score, location = 27, “Soldier Field”

The right side can also be an array with the same meaning — in fact, the previous form is con-
verted internally into the following form:

score, location = [27, “Soldier Field”]

This can also include variable swapping:

x, y = y, x

522

AppendixesPart V

If the two sides are unbalanced, extra names on the left side are set to nil, and extra names on the
right side are ignored. The last value on the left can have an asterisk preceding it, in which case it
behaves like it would in a method argument list and takes any and all extra values on the right side
as an array. The last value on the right side can also be prefixed with an asterisk, in which case it
behaves like a method call and unrolls its values out of the array to be assigned one by one.

If the left-hand value is an object attribute, then Ruby looks for an appropriate setter method for
that object. In the following example, Ruby calls the method score= on the instance obj with the
argument 27.

obj.score = 27

Similarly, a bracket reference on the left side triggers a call to the appropriate []= method. The argu-
ments to that method are, in order, any value that appears inside the brackets and then the value on
the right side of the assignment.

File input and output
A file can be opened by calling the method File.new.

File.new(filename, mode)

The method returns an instance of class File. The mode is a short string that indicates what oper-
ations can be performed on the file. If the mode is r, then the file is read-only. This is the default
mode value if none is specified. If the mode is w, then the file is opened for writing. A non-existent
file is created and an existing file is emptied. Somewhat less common is a, which opens an existing
file for writing at the end; a non-existent file is still created.

To write string data to a file, you use the method write, or the shortcut operator <<. Note that
you have to explicitly include the newline characters. If the expression being written is not a string,
then it is converted before being written.

f.write(“log file\n”)
f << “the next thing\n”

Files implement the method each, which enumerates over the file line-by-line. The use of each
allows all the methods of Enumerable to be used for files.

To read the data, you can use the method readline, which returns a whole line, the method
readchar which reads a single character, or the method read(int), which reads an arbitrary
number of bytes.

When you are done with the file, close it with the method close. The “open, then do something,
then close” structure is so common that Ruby provides a shortcut.

File.open(filename, mode) do |f|
 ## f is the File object, do things with it
end

523

Ruby Quick Reference A

The open method takes a block. The requested file is opened before the block is executed and
closed when the block is complete.

Exceptions
Raising an exception in Ruby is done by calling the method raise, which is of the class Kernel,
and is thus available anywhere in a Ruby program. The common usage of the method takes as an
argument either one of the following:

n The class Exception or one of its subclasses

n An instance of the class Exception or one of its subclasses

An optional second argument is a string message for the exception; an optional third argument is a
stack trace.

Handling an exception can take place inside any method without explicitly entering an exception-
aware block. The keywords begin and end also denote the borders of a block that can handle
exceptions. To actually handle an exception, use the keyword rescue to start a block that will be
invoked when an exception is raised

def this_method_could_break
 <normal method body>
rescue
 <exceptional code>
end

Note the indentation — the rescue clause is outdented to the same level as the def or begin
statement.

The rescue keyword takes an optional list of Exception classes that are handled by the rescue
clause. If no classes are specified, then StandardError is the default class, which catches nearly all
errors in typical usage. Multiple rescue clauses may be specified, each with its own response block
of code. The rescue keyword and the associated code may be on the same line, in which case they
must be separated with the keyword then.

If specific exception lists are specified, then the list of exceptions can be ended with the phrase =>
varname, in which case the variable name is assigned the value of the exception. Even if a variable
is not specified, the current exception is always available in the global variable $!.

After all the rescue clauses, there are two optional clauses that may be added. The keyword
else is used to introduce code that is invoked if no exceptions are raised in the main body of the
code. The keyword ensure marks code that is always executed at the end of the method or block,
regardless of whether or not an exception was raised.

def method
 <body>
rescue

524

AppendixesPart V

 <exception>
else
 <no exception>
ensure
 <always>
end

Objects and Classes
Every value in Ruby is an object, including classes and methods. In this section, you will see how
methods, classes, and modules are defined and how they relate to one another.

Defining methods
Methods are defined using the keyword def. The most basic form is as follows:

def <methodname>
 <body>
end

The limitations on the method name are described in the previous section on variable names. A
method defined in this way inside a class or module definition creates an instance method for that
class or module. A method defined outside a class or module definition is effectively global to the
Ruby program. Technically, it’s a method of the class Object.

The return value of a method is the value of the last expression evaluated. You can exit the method
at any time by using the keyword return with an optional value. If no value is specified, then the
return value is nil. Most Ruby programmers do not explicitly use return in places where it
would be redundant. In the following example, the method explicitly returns 0 if the argument is
nil; otherwise, it implicitly returns two times the argument.

def example(argument)
 return 0 if argument.nil?
 argument * 2
end

The first variant to the structure involves placing a constant or expression before the method name,
separated by a dot. This form is most often used to create class methods:

class User
 def self.total_count
 <method body>
 end
end

525

Ruby Quick Reference A

With the preceding definition, you can then call the method User.total_count. Generically, this
structure binds the method to the object preceding the method name and with that object alone —
only that one object can invoke the method definition. In the previous case, within the class defini-
tion, self is set to the class User, and so the method total_count is uniquely associated with
the class (the declaration def User.total_count would have the same affect). However, you can
also use the form to define a method that is specific to a single instance of a class.

ted = User.new
robin = User.new

def ted.go_to_work
 <body>
end

After this definition, the method call ted.go_to_work is successful, while the method call
robin.go_to_work is not.

Method arguments are normally defined in a comma-delimited list:

def method(arg1, arg2, arg3)

Any argument can have an optional default value, which can be a constant or expression. The
default value is used if the calling argument list doesn’t contain all the arguments. Normally, argu-
ments with default values are placed after all the arguments that don’t have default values. The fol-
lowing method can be called with one, two, or three arguments.

def method(arg1, arg2 = 7, arg3 = 2)
 p “#{arg1} #{arg2} #{arg3}”
end
method(1) ==> “1 7 2”
method(1, 2) ==> “1 2 2”
method(1, 2, 3) ==> “1 2 3”

The default value expression can use any argument name defined earlier in the list, meaning that,
in the previous example, the default for arg3 could be defined as, say, arg2 * 3.

The final argument can optionally be an array argument, denoted by putting an asterisk before the
argument name. This argument absorbs any remaining values from the method call into an array.
It’s typical to give an array value the default value of an empty array:

def method(arg1, *arg2 = [])
method(1, 2, 3, 4) ## arg1 = 1, arg2 = [2, 3, 4]

If you expect callers of the method to use the key/value feature to roll up arguments into a hash,
it’s customary to signal that by giving the last method the default value of an empty hash:

def method(arg1, arg2 = {})
method(1, :a => 3, :b => 4) ## arg1 = 1, arg2 = {:a => 3, :b => 4}

The final optional argument to a method is a block, which is the subject of the next section.

526

AppendixesPart V

Blocks
A Ruby block is a sequence of executable code that can be defined in one place and executed later
on. As mentioned earlier, a block can be defined after a method call using one of two possible syn-
taxes. In both cases, arguments to the block are placed between pipe characters. Block argument
lists cannot have default values or array lists.

receiver.method(arg1, arg2) {|block_arg| ...}
receiver.method(arg1, arg2) do |block_arg| end

Within a block, you can place any arbitrary Ruby code. The block retains its context when it’s called,
and so any local variables that are visible from where the block is defined are still available when the
block is called. This includes the values of self and super. Take the following example:

def outer_method
 alpha = 1
 beta = 2
 [:a, :b, :c].each {|e| p alpha * beta }
end

The values alpha and beta are defined outside the block, but can still be used inside the block
even though the block is eventually executed inside the Array#each method.

Like other Ruby constructs, the value of the block when executed is the value of the last expression
inside the block.

The block argument does not need to be specified in the argument list of the method being called.
Instead, the block is just invoked using the keyword yield, which causes the block to be exe-
cuted at that point. Any arguments that come after the yield are passed directly to the block.

def block_thingy
 block_value = yield(1, 2)
 p block_value
end
block_thingy {|a, b| a + b}

==> 3

In this example, the existence of the block is only important in the yield statement, which passes
the values 1 and 2 to the block, which adds them.

To determine whether a block has been passed to a method, call block_given? at any point; it
returns true if the current method is called with a block argument.

If the final argument of a method is preceded by an ampersand, then the method does check for a
block argument in the argument call. The block is converted to an instance of the class Proc and
can be invoked using the method Proc#call. The following example is functionally equivalent
to the previous one.

527

Ruby Quick Reference A

def proc_thingy(&a_proc)
 proc_value = a_proc.call(1, 2)
 p proc_value
end
proc_thingy {|a, b| a + b}

The conversion works both ways; a Proc value can be passed inside an argument list with an
ampersand preceding it and is treated like an ordinary block by the receiving method. In this
example, the block_thingy method is called with an explicit Proc object, which it treats
exactly as though a block has been declared:

def proc_thingy(&a_proc)
 block_thingy(&a_proc)
end

Internally, the method to_proc is called on the value after the ampersand, which leads to some
interesting possibilities. For example, Rails ActiveSupport extends the class Symbol to override
to_proc, such that the following two declarations are equivalent:

 [1, 2, 3].map {|i| i.sqrt }
[1, 2, 3].map(&:sqrt)

In the first example, the normal syntax is used to declare a block. In the second example, the
ampersand triggers a to_proc call on the symbol :sqrt, which converts the symbol into a one-
argument block where the argument’s method, named :sqrt, is called — identical to the first
 version. When used judiciously, the symbol-to-proc trick makes for some nicely readable code.
This extension has been added to the core for Ruby 1.9.

Defining classes and modules
In Ruby, classes and modules are related concepts. A module has all the abilities of a class except
for the ability to create instances. Instead, modules can be included inside classes to provide addi-
tional functionality.

Defining modules
A module is defined using the following syntax:

module <ModuleName>
 <all kinds of goodness>

end

The module name is a constant, and must begin with a capital letter.

All expressions inside the module are executed when the module is loaded. Specifically, the mod-
ule can include classes, other modules, instance methods defined with def, and module methods
defined with def self.

528

AppendixesPart V

Constants defined within the module, including nested modules and classes, are accessible through
the :: scope resolution operator, as in Module::InnerModule::Class. Module-level meth-
ods are available through normal method syntax — Module.method. Instance methods in the
module are only accessible from an instance of a class that includes the module.

Defining classes
The class definition syntax starts similar to the module syntax:

class <ClassName>
 <class things>
end

Again, the code inside the class definition is actually executed. Constants and module-level meth-
ods are defined as in modules, instance methods are accessible to any instance of the class. In par-
ticular, many lines of code inside a class definition that look like declarations, such as attribute
listings or scope descriptions, are actually method calls to either the class Class or Module.

The biggest difference between a class and a module is that a class can create instances of itself
using the method new. Under normal circumstances, you would not override the new method. If
you want your class to perform initialization when a new instance is created, override the instance
method initialize.

class Animal
 def initialize(name)
 @name = name
 end
end
scooby = Animal.new(“Scooby-Doo”)

At the end of this code snippet, scooby is an instance of Animal, and its name attribute is set to
Scooby-Doo. At this, point, the attribute is still private.

By default, the class is placed inside the current module at the location where the class is defined.
However, you can explicitly place the class inside a specific module by including the module as
part of the class name with the scope resolution operator:

class OuterModule::InnerModule::NewClass

To explicitly place the class at the top-level module, prefix the class name with just ::.

An alternate syntax allows access to the singleton classes referred to earlier for binding methods to
a specific instance. The form discussed previously,

def obj.method
 <method body>
end

is equivalent to the following:

529

Ruby Quick Reference A

class << obj
 def method
 <method body>
 end
end

Within the class << obj block, any code that is legal within a class can be placed. Methods
defined within the block are bound to the specific object mentioned in the class declaration. This
mechanism is frequently used with a class as the object:

class Animal
 class << self
 def this_is_a_class_method
 @count = @count + 1
 end
 end
end

The method defined in the inner class block is accessible as a class method Animal.this_is_a_
class_method. The reason why this mechanism is sometimes used to define class methods is
that, by using this method, each subclass of Animal gets its own copy of the instance variables,
and can maintain separate values.

Superclasses and self
A class can have a special relationship with a class known as its superclass. The class inherits behav-
ior from the superclass, meaning that instances of the subclass can access any methods defined in
the superclass. To define this relationship, use the following form:

class Subclass < Superclass
The superclass is usually the constant name of the class in question, although it technically can be
any expression that returns a class object. If no superclass is specified, the class is assumed to have
Object as its superclass. Object’s superclass is nil.

The special variable self always refers to the current object whose code is being executed. Within
an instance method, self is the receiver of that method call. Within the parts of a class definition
that are outside instance methods, self is the class object itself.

The special method super is available inside any method definition and causes the same method
name to be called in the superclass. If super is called with no arguments, then the original argu-
ments to the subclass method are automatically passed to the superclass method. If explicit argu-
ments are used for the super call, then those arguments are passed to the superclass method,
allowing for the case where the superclass method may have a different argument signature than
the subclass method.

Including and extending with modules
Previously, you saw that instance methods declared within a module can only be declared by an
instance; however, modules cannot create instances of their own. In order for instance methods in
a module to be accessible, the module needs to be mixed into a class.

530

AppendixesPart V

The most common way to mix in a module is with the include method, if the following module
is defined in any_module.rb:

module AnyModule

 def self.total_modulate
 p “calling the class method”
 end

 def modulate
 p “modulating”
 end
end

Then you can write the following in a different file:

require ‘any_module’
class AnyClass
 include AnyModule
end

x = AnyClass.new
x.modulate
AnyModule.total_modulate ### NOT AnyClass.total_modulate

By including the method, instances of the class can respond to instance methods in the module.
The instance of AnyClass can call the modulate method, even though it is defined in
AnyModule.

The require method takes the filename where the module is defined, minus the .rb extension.
You only need to call require if the module’s file has not already been loaded — if the module
was loaded at startup, then require may not be needed.

Rails, for example, provides special functionality to look for unknown modules, such that modules
on the Rails load path can be found and loaded without needing require.

However, while using include adds instance methods to the including class, it does not add class
methods, and so the total_modulate method is still only accessible through the AnyModule
module. In order to add a module’s methods as class methods, use the extend method. If a mod-
ule is extended into a class, then instance methods of the module become class methods of the
class. Class methods of the module still do not become class methods of the class:

class AnyClass
 extend AnyModule
end

AnyClass.modulate
AnyModule.total_modulate ### NOT AnyClass.total_modulate

531

Ruby Quick Reference A

Attributes
An instance variable can be declared for the current class at any time by prefixing the variable
name with an @. This is usually done in the initialize method, but it can be done inside any
method:

def doing_things
 @name = “fred”
end

The new instance variable is available wherever the object is used. Using an instance variable never
raises an exception in Ruby; if the variable has not been explicitly created, its value is nil.

Ruby instance variables are never accessible outside the class they are a part of. In order for other
classes to see the value, they must call a method that returns or changes the value. The standard
getters and setters in Ruby look like this:

def name
 @name
end

def name=(val)
 @name = val
end

It’s tedious to have to write all that for each instance variable, and so Ruby gives you a shortcut:

attr_accessor :name, :date, :score

The attr_accessor method takes one or more symbols as arguments, and creates standard
 getters and setters for each symbol for the instance variable of the same name. If you only want
a getter, or only a setter, you can use the variants attr_reader and attr_writer.

Access control
Ruby objects have access control modifiers that can prevent outside objects from calling methods
in the class. The default access is public, which means that any other object can call the method.
The next level of strictness is protected, which means that the method can only be called inside
the body of the class or one of its subclasses.

However, the protected method can be called on any instance of the class that happens to be avail-
able in the method body. A private method can only be called by implicit lookup where the
method has no receiver, meaning that the private method can only be called on the self object in
the current context.

The difference between protected and private may seem odd. Take a look at the following
example of a comparison operator (assume that outside is a different instance of the same class):

def <=>(outside)
 key <=> outside.key
end

532

AppendixesPart V

The comparison checks how the local value of the key attribute compares to the value of the
 outside object. The local value, key, is accessible no matter what the access of the key method
is. If key is declared to be public, then outside.key is legal because all public access is legal.
If key is protected, then outside.key is still legal, because it is being called inside the class,
even though it is not the instance that is currently self.

However, if key is private, then outside.key is not legal, because a private call can only
be made with an implicit self. The initial call to just key is still legal, because that call is an
implicit self.

There are two ways to define access control. The most common way is to just include the method call
public, protected, or private, with no arguments anywhere in the class. From that point, all
methods have the newly declared access level, until the next no-argument access control method is
called. If the access control method is called with arguments, then those arguments are the symbols
of methods to be given the access. In the following example, protected_method is, well, pro-
tected because of its location, and thing is private because of the explicit call in the last line.

class Example
 def initialize
 end

 def thing
 end

 protected

 def protected_method
 end

 private :thing
end

Method lookup
The following is a complete list of the steps Ruby takes to find the definition of a method.

For an instance method, the receiving object is either the object explicitly designated as the recipi-
ent of the method, or implicitly, the current value of self. All method matches are on the name
only, not the number or type of arguments. The search path is as follows for an instance method:

 1. The singleton class of the receiving object, if it exists.

 2. The class of the receiving object, looking for an instance method.

 3. Any module included in the class of the receiving object, looking for the instance
method. If more than one module is included, they are searched in order.

 4. The superclass of the receiving object, looking for an instance method.

533

Ruby Quick Reference A

 5. Steps 3 and 4 are repeated for modules included in the superclass, and then the
superclass of the superclass. This continues until the lookup reaches the class Object.

 6. If the class Object doesn’t have the method, the class Kernel is checked.

 7. If the method doesn’t exist there, then the special method method_missing is
called, starting at the receiving object, and continuing along the same lookup mech-
anism until an implementation is found. (Object is guaranteed to have one.) Inside
method_missing, the program gets a last chance to do something, based on the
method name and arguments rather than throwing an exception.

 8. If nothing is found, an exception is thrown.

The lookup path for a class method is slightly different. In this case, the recipient class is the class
being sent the message, as in Employee.total_count.

 1. The class is searched for a class method of the same name.

 2. All superclasses are searched for a class method. Notice that included modules are not
searched in this path. An extended module technically adds its methods directly into the
namespace of the extending class, and thus would be found just by walking up the regu-
lar class hierarchy.

 3. Eventually, the superclasses reach Object. If Object does not define the class
method, then the next step is to search for instance methods of the class Class.
(Remember, classes are objects, too.)

 4. The path from there is instance methods of Class, instance methods of Module,
instance methods of Object, and instance methods of Kernel, in that order.

 5. If nothing is found, then a class version of method_missing is searched for, start-
ing at the original recipient class.

Module methods are similar to class methods, except that modules don’t have superclasses, and so
the search path is simply module method of the module, instance methods of Module, instance
methods of Object, and instance methods of Kernel, then method_missing.

535

This appendix contains a reference for the most commonly used fea-
tures and attributes of Rails. It is not exhaustive, but is intended to be
a good first place to look for many frequently performed tasks. This

guide is based on Rails 2.0.2. For exhaustive and up-to-the minute informa-
tion, check out the official Rails documentation.

Getting Started
In order to run Ruby on Rails, you need to install the following:

n Ruby. Version 1.8.6 is the officially recommended version for Rails
2.0.2. A binary installer is available for Windows XP and Vista.
Most Linux distributions either include Ruby or have a binary
package available. Mac OS X 10.5 ships with a suitable version of
Ruby installed, but the version in Mac OS X 10.4.x needs to be
modified slightly. See the Ruby on Rails download page (www.
rubyonrails.org/down) for more details.

n The RubyGems package manager. This should be included with
any binary distribution, but can also be downloaded from
http://docs.rubygems.org.

n Rails. This is most easily installed through RubyGems and the
command gem install rails. (On some systems, you may be
required to run this command as sudo.)

n A database. Rails works with all of the most commonly available
relational database systems. The Rails default for new programs as
of version 2.0.2 is SQLite; however, MySQL is probably most com-
mon for typical deployments. You need to install the database, as

IN THIS APPENDIX
Getting started

Controllers and helpers

Views

Models

Database migrations

Plugins

Ruby on Rails Guide

536

AppendixesPart V

well as a Ruby gem that allows Ruby programs to interact with the database. As of Rails
2.0.2, commercial databases such as SQL Server and Oracle also require Rails adapters
that are distributed as gems.

n A Web server. Rails is distributed with WEBrick, which is slow, but enough to manage
initial development. However, downloading Mongrel (gem install mongrel) is
recommended for development.

Standard Rails application
Create your Rails application with the command, rails <root directory>.

The most common usage is to run the command from the parent directory of the intended root
and use the name of the project as the directory, as in rails twitter.

The Rails command takes a few optional arguments; the most commonly used is -d, which speci-
fies the database to configure Rails against. The default is sqlite3; other options are mysql,
oracle, postgresql, and sqlite2. You can get a complete list of command line arguments
with rails --help:.

The rails command creates the skeleton of a new Rails application. The top level contains a
README file and a Rakefile. Table B.1 shows the directories and files created by the command,
along with their standard usage:

 TABLE B.1

Directories and Files Created by rails Command
Location Description

app/controllers All controllers go in this directory. The naming convention for the classes in
this directory is of the form UsersController in a file named users_
controller.rb. Initially, this file contains application.rb, which loads
ApplicationController, the parent class to all controllers in the application
(and yes, that does break the naming convention).

app/helpers All helper files go in this directory. Typically, each controller has one helper in a
filename of the form users_helper.rb, and that file loads a module named
UsersHelper. Initially, the directory contains application_helper.rb,
which is available to all controllers in the system.

app/models All ActiveRecord model files go in this directory; filenames are of the form user.
rb, loading a class called User. Model names tend to be singular; controller names
tend to be plural. This directory starts off empty.

app/views All view files go here, whether they are erb, rjs, or something else. Each controller
gets a separate subdirectory, of the form app/views/users. To start, this directory
contains one subdirectory, app/views/layouts, which contains background
layout files for the application.

537

Ruby on Rails Guide B

Location Description

config Contains a number of configuration files. The ones you deal with the most are
database.yml (containing the database connection information), environment.
rb (containing global configuration), and routes.rb (containing the rules
for converting URL requests to controller calls). The subdirectory config/
environments contains load requirements for individual environments. There
are also a few other less frequently used configuration files in this directory.

db Contains database files. This directory starts off empty. Eventually, this directory will
contain schema.rb, with a definition of the current schema, as well as all migra-
tion files in the subdirectory db/migrate.

doc Will contain any RDoc files you generate from this application. Initially, this direc-
tory contains a README file.

lib Files you create that don’t correspond to the subdirectories of app should go here.
Initially, this directory contains lib/tasks, which is the place to put custom Rake
files.

log Contains log files, one for each environment type, plus one for the server.

public Contains all static files. The main directory contains an index file and error files;
subdirectories public/images, public/javascripts, and public/
stylesheets are the expected location for static files of those various types. The
JavaScript directory starts off with Prototype and script.aculo.us files.

script Contains the basic scripts that you will use to control your application, including
console (which starts an IRB session with the Rails environment loaded),
generate (which triggers generation of standard files), plugin (which manages
Rails plugins), and server (which starts the Web server).

test/fixtures Fixture data for testing purposes, in YAML format. This directory has one file per
model (more or less), named with the form users.yml.

test/functional Functional test classes, in general one test class per controller, of the form users_
controller_test.rb, with a class named UserControllerTest.

test/integra-
tion

Integration test classes, created explicitly by generating new tests using script/
generator.

test/mocks Mock classes that shadow actual user classes for all tests. Use only for large subsys-
tems that you don’t want to actually run during testing, for example, an external
credit card payment system. More fine-grained mock objects should be defined in
the individual tests.

test/unit Unit test classes, typically one per module. Filenames are of the form user_test.
rb, and class names are of the form UserTest.

tmp Temporary files. Subdirectories are cache, pids, sessions, and sockets.
Under normal circumstances, you don’t need to deal with these files.

vendor/plugins Storage for all installed plugins. Each plugin gets its own subdirectory.

vendor/rails Not created by default, but an installation of Rails in this directory will override the
system-wide gem version installed with Ruby. This allows each project on your
computer to run its own version of Rails.

538

AppendixesPart V

Generators
A generator is a special script provided by Rails that creates standard files for different kinds of
Rails constructs. To invoke a generator, assuming that you are already in the root directory of your
Rails application, the general form is as follows:

script/generate <generator name> <further arguments>

Rails provides the standard generators shown in Table B.2. In most cases, the name can be either
camelCased or underscored, and Rails will switch between the two versions to create the appropri-
ate file and class names.

 TABLE B.2

Standard Generators
Generator Description (first line is usage)

controller controller <controller name> [<view1> <view2>…]

Creates a controller package based on the given controller name. Assuming the
controller name is users, the controller is placed at app/controllers/
users_controller.rb. You also get a helper at app/helpers/users_
helper.rb, a directory for view files, app/views/users, and a functional
test class at test/functional/users_controller_test.rb. Each
specified view after the controller name gets a file of the form app/views/
users/view.html.erb.

All files contain the appropriate class or module declaration — if views are
specified, the controller gets an action for each view.

integration_test integration_test <test name>

Creates a skeleton integration test at test/integration/test_name.rb.

mailer mailer <mailer name> [<email1> <email2>…]

Creates a new ActionMailer structure. The mailer itself goes in app/models/
mailer_name.rb. and a unit test goes at text/fixtures/mailer_
name_test.rb. Each of the optional emails specified creates an entry in the
mailer, a test case in the unit tests, a view in app/views/mailer_name/
email_name, and a test fixture file at test/fixtures/mailer_name/
email_name.yml.

migration migration <migration_name> [<col>:<type>…]

Creates a data migration in the file db/migrate/xxx_migration_name.
rb, where xxx is the next available migration number. The optional col:type
arguments are only used if the migration name is of the form add_<anything>_
to_<model> or remove_<anything>_from_<model>, in which case, the
attributes will be added appropriately to the migration.

Note: in Rails 2.1 and higher the migration names are of the form db/migrate/
yymmddhhss_migration_name.rb, where the name is prefixed by a time-
stamp instead of a single number.

539

Ruby on Rails Guide B

Generator Description (first line is usage)

model model <model_name> [<col>:<type>…][options]

Creates an ActiveRecord model in app/models/model_name.rb. You also
get a migration at db/migrate/xxx_add_model_names.rb, which creates
the table for the model. Test files are created at test/fixtures/model_
name.yml and test/unit/model_name_test.rb. Any column and type
pairs that are included are incorporated into the migration and the fixture file.

The option --skip_fixtures prevents generation of the fixture file,
--skip_migration prevents generation of the migration file, and -skip_
timestamps prevents timestamp attributes from being added to the fixture file.

observer observer observer_name

Creates a new ActiveRecord Observer at app/models/observer_name.rb
and an associated test at test/unit/observer_name_test.rb.

plugin plugin plugin_name [--with_generator]

Creates the skeleton for a new plugin in vendor/plugins/plugin_name.
This involves several files. If --with_generator is specified, then a genera-
tor skeleton is included in the plugin.

resource resource resource_name [<col>:<type>…][options]

Creates a RESTful resource. This starts creating a model as though the same
options had been passed to the model generator. Then a controller, helper, and
functional test are created as though the controller generator were called with
the plural form of resource_name. Finally, the routes.rb file is updated
with a RESTful route declaration for resource_name.

scaffold scaffold resource_name [<col>:<type>…][options]

Like using the resource generator; however, the generated controller is filled
with skeleton implementations of the seven basic RESTful actions. The func-
tional test contains nearly complete coverage of the generated controller, and
view files are created for the edit, index, new, and show actions. A layout
file is added at app/views/layouts/resource_names.html.erb, and
a style sheet is added at public/stylesheets/scaffold.css.

session_migration session_migration

Creates the data migration necessary to store session data through
ActiveRecordStore.

All generators take some standard options, as shown in Table B.3. Many of these have to do with
how they behave when encountering files that already exist. The default behavior is to prompt for
a decision from the user on any file that already exists.

540

AppendixesPart V

 TABLE B.3

Standard Generator Options
Option Description

-c, --svn Automatically add all new files to the subversion repository.

-f, --force Automatically overwrite any files that already exist.

-p, --pretend Show the list of changes, but don’t make any.

-q, --quiet Run without output.

-s, --skip Automatically skip any file that already exists.

-t, --backtrace Show a backtrace if the generator hits an error.

Controllers and Helpers
The controller is the first point of contact between the user request and your Rails application.
(The Rails framework has already been at work behind the scenes converting the request into Ruby
objects and method calls.)

Traditional routing
When the user makes a request to a Rails application, Rails converts the request to a controller and
action through the rules in the routes.rb file. The blank project has two routes:

map.connect ‘:controller/:action/:id’
map.connect ‘:controller/:action/:id.:format’

The map.connect call takes two parameters: a string representing the path and a hash of options.
The path segments are either strings, which much be matched literally by the incoming request, or
symbols. A symbol segment takes the value in that part of the incoming path and converts it to a
Ruby variable in the params hash. The special value :controller in the path is converted to
the controller that should respond to the request, and the special value :action is converted to
the action within that controller which should respond.

In the second line, a URL that has an extension (users/show/3.xml) will have the extension
mapped to the parameter :format. In other words, the first line above converts a route such as
users/show/3 to the users_controller and the action show, and the params hash con-
tains the pair id => 3.

The optional hash after the string is used to fill in any other parameters that are not set in the
string. The :controller must be set, or alternately, a default can be set in the routing file using
a rule of the form map.root :controller => “users”. The :action defaults to ‘index’ if
not set.

541

Ruby on Rails Guide B

A common use of routing is to move parameters that would ordinarily be in a query string into a
more elegant URL. For example, if you want to have a type parameter for users/show, you could
create a route like one of these:

map.connect ‘users/:action/:id/:type’, :controller => “users”
map.connect ‘:controller/:action/:id/:type’

Both of these routes will map users/show/23/student with :type being set to student.
The first route will only work for the users controller, and the second one will work for any con-
troller. Another way to do this would be something like this:

map.connect ‘students/:id’, :controller => “users”,
 :action => “show”, :type => “student”

That route would map a URL of the form students/23 and set the controller, action, and type as
specified in the options hash.

If you use a name other than connect as the method to map, a named route is created that gets
its own helper methods that you can call to generate the URL.

map.students ‘students/:id’, :controller => “users”,
 :action => “show”, :type => “student”

This route could then be accessed in code with a call like students_url(:id => 23).

RESTful routing
The current trend in Rails programming is to structure controllers more consistently using the
Representational State Transfer (REST) protocol. By using REST, a single line in the routes file
generates several standard actions in the controller.

To add a RESTful resource to your application, add a line to your routes.rb file of the following
form:

map.resources :users

This line is added automatically by Rails if you create the resource through the resource or
scaffold generators.

Routes for a RESTful controller are different than standard routes. The controller action is not
placed explicitly in the URL, but is inferred from the URL combined with the HTTP action of the
request. You are probably familiar with GET requests being used for standard requests and POST
used for form submissions. Rails with REST also uses the PUT and DELETE actions. (Where there
is no direct browser support for these actions, Rails fakes it.)

For each of the seven basic REST actions, Rails creates a way to get to that action, and creates a
path and URL method that calculates the route. Table B.4 shows the relationship between the URL
and HTTP method, the controller action, and the Rails path and URL methods.

542

AppendixesPart V

 TABLE B.4

RESTful Action URLs and Methods

URL Called
HTTP
Method

Controller
Action Path Method URL Method

/users/1 GET show user_path(1) user_url(1)

/users/1 PUT update user_path(1) user_url(1)

/users/1 DELETE destroy user_path(1) user_url(1)

/users GET index users_path users_url

/users POST create users_path users_path

/users/new GET new new_user_path new_user_url

/users/1/edit GET edit edit_user_path(1) edit_user_url(1)

In addition to the path and URL methods, you can also pass ActiveRecord objects to any method
that expects a url_for style hash, such as link_to and form_for, and Rails will infer the URL
from the combination of the object’s class, the ID, and the HTTP method requested. So the follow-
ing code,

link_to “User”, @user

will generate a GET link to users/1 (or whatever @user.id is), which will be the show action.

You can add your own actions to the resource by modifying the resources call in the routes.
rb. Each of the available options adds a method for a particular kind of resource call, as described
in Table B.5.

 TABLE B.5

Methods for Resource Calls
Option Description URL Form

:collection Adds actions that apply to a list of models in the
resource, such as index.

users/<action>

:member Adds actions that apply to a single saved instance of the
resource, such as show.

users/<id>/<action>

:new Adds actions that apply to an instance of the resource
that has not yet been saved.

users/new/<action>

543

Ruby on Rails Guide B

In each case, the value for each option is a hash of method names, with the values being the HTTP
verbs to be used when calling that method. So, if you wanted to add a print action for your users,
it would look like this:

map.resources :users, :method => {:print => :get }

This would generate new methods, print_user_url and print_user_path. If you are hav-
ing trouble keeping track of the routes you have created, the command rake routes will print a
list of all of them.

Controller variables
Within a controller action, there are several instance attribute methods that provide important
information about the request. The most important are listed in Table B.6.

 TABLE B.6

Instance Attribute Methods
Method Description

cookies Allows you to read and write browser cookies. The cookies are presented in your code as a
hash where the keys are strings or symbols corresponding to specific cookies, user =
cookies[:user_id]. The value of the cookie is always a string.

When setting a value through the form cookies[:user_id] = @current_user.id, the
right side of the assignment can be a string, in which case it is the value of the cookie, or a
hash. In this case, the key :value is the value of the cookie, and other keys in the hash let you
set the options :domain and :path to specify the extent of the cookie, :expires to set the
expiration time, and :secure, which, if true, causes the cookie to only be sent if the request is
through HTTPS.

logger Always available logger object, which responds to the messages fatal, error, info, and
warn (in decreasing severity). Log level is specified in the environment file for the running Rails
environment (production, development, or test), and if the log message is severe enough, it is
written to the log file for the running Rails environment.

params Hash containing the parameters for the request, after Rails has done some processing. Items are
placed into the params hash by being in the URL query string, in a form field, or converted from
the URL through a symbol entry in a Rails route. Keys can be accessed either as strings or as
symbols. The values are always strings.

request An object representing the HTTP request (class ActionController::AbstractRequest).
This has various useful attributes and methods, including xhr?, which returns true if the request
has come through an Ajax request. It also allows access to the raw query string and URL data.

session A session object stored by Rails and tied to the sender of the request. You can freely set and
read objects to the session. Keys are typically strings or symbols. The values can be anything,
but common practice is to limit them to simple Ruby types (meaning, store the ActiveRecord’s
ID rather than the actual ActiveRecord).

There are several options for storing session information. The Rails 2.0 default is to store it in a
cookie on the user’s browser. Sessions can also be stored as ActiveRecords objects in your database.

544

AppendixesPart V

Filters
You will often need to do the same repetitive task on multiple actions in a controller; a common
example is the need to verify the current user’s credentials before allowing access to a page.
Typically, you would manage this by creating a common method to be called by each controller
action. However, you can avoid the repetitive nature of including a common method call by using
controller filters.

The most common usage of a filter takes a symbol as an argument, with the following form:

before_filter :authenticate_user
after_filter :log_results
around_filter :manage_resources

A before_filter specifies a method name to be run before the controller action is called, and
an after_filter specifies a method name to be run after the controller method is complete.
The most common alternate form specifies a block in place of the method name, with the same
semantics. An around_filter specifies code that runs before and after the controller action.
The method or block for an around_filter must contain a yield call in the method or block,
which is where the actual controller action is invoked.

Multiple filters can be specified, in which case the filters are run in the order specified. (Both
before and after have a prepend_ version that puts that filter at the beginning of the list
rather than the end.) A before or around_filter can end filter processing by explicitly
rendering or redirecting the request; further filters are not processed. An around_filter can
also end filter processing by bypassing the yield call to the actual action.

The scope of a filter can be managed by passing one of two optional key/value pairs to the filter
call. The :only option takes one or more actions and means that the filter is only applied to those
actions. The :except option takes one or more actions and means that the filter is applied to all
actions except those actions.

before_filter :authenticate_user, :except => :index
after_filter :log_results, :only => [:create, :update]

Rendering and redirecting
A controller action can perform exactly one redirect or render. A redirect is managed through the
method redirect_to. The first parameter to that method is anything that Rails can convert
to a URL — it can be an ActiveRecord object converted to a RESTful action, the standard
:controller, :action style hash, a string, or the special symbol :back, which redirects
back to the referrer URL.

You can also specify a :status option (which must be last), if the default status code (302) is not
what you want.The default response for a controller is formed by rendering the view in app/
views/<controller>/<action>.<format>.erb. The format for most requests is html.

545

Ruby on Rails Guide B

There are several ways to specify alternative behavior through the render method. The render
method takes a series of key/value pairs as arguments, one of which specifies the type of rendering
to be performed.

If the render contains a pair of the form :action => “show”, then the given action is rendered
for the current controller; a :controller option can also be specified. The layout is assumed to
be the layout matching the controller, unless otherwise specified with the key :layout. A value
of false indicates no layout, and a value of true indicates the current layout.

Less commonly, a template render can be indicated by the keys :template or :file, both of
which take a path string as a value. The :template version takes a path that is relative to the
application root, does not include the file extension, and applies the current layout unless other-
wise specified. The :file version takes an absolute path, with extension, and applies no layout
unless otherwise specified.

A partial template can be rendered directly from the controller if the render command has a
:partial key. If the key :object is set, then the value of that key is the main value of the
partial template. The file name for a partial begins with an underscore character. In the following
snippet, Rails will render the partial view at app/views/<controller_name>/_user_
name_display.html.erb.

render :partial => “user_name_display”, :object => @current_user

If the key :collection is set, then the partial template is run once with its object set to each
object in the collection in turn. If a :spacer_template option is set, then that partial template
is inserted between each object. The :locals option takes a hash value and sets values that are
accessible locally inside the partial template. Unless otherwise specified, partial rendering does not
include a layout.

Less commonly, small amounts of text can be rendered with the :text or :inline options.
The :text option takes a string value (which can have double-quote interpolation), and renders it
directly, without including a layout unless one is explicitly specified. The :inline option takes a
string of ERb and renders it using the ERb parser. A :locals option can be used to assign values
to variables referenced in the ERb string.

Other kinds of output can be specified with the :json or :xml options. The argument to those
options is evaluated with the method to_json or to_xml, and the resulting text is output to the
browser.

The :update option takes a block as an argument. Inside that block, RJS processing is used,
which is described in more detail in the next section.

render :update do |page|
 page.visual_effect :puff, ‘deleted_item’
end

546

AppendixesPart V

Respond to
Rails allows you to easily adapt your RESTful controller actions to handle multiple types of output
requests using the respond_to method. A sample usage is as follows:

def show
 @user = User.find(param[:id])
 respond_to do |format|
 format.html # default
 format.xml { render :xml => @user)
 end
end

The respond_to method uses Ruby blocks and method calls in a slightly unusual way. The basic
idea is that inside the respond_to block, the various formats that are expected outputs of the
controller action are listed. Each format can have an optional block attached to it.

If the format is specified without a block, then the default behavior for that action is executed, which
typically involves searching for a view matching the action name and selected format. If the format
is specified with a block, then the block is executed.

In the previous example, if the controller action is called using the default URL of a GET request to
user/1, which the RESTful route resolves as a show action, then the expected output format is
HTML, and the format.html line is triggered. Although they look something like a where
clause, technically each of those lines is a separate method call.

Because there is no block, the default HTML action is taken, which is the rendering of app/
views/show.html.erb. If the action is called using the URL user/1.xml, then the XML line
is the one that triggers, and the render :xml action is performed.

By default, there are eight formats that can be used inside a respond_to call, as shown in
Table B.7.

You can add your own format for any MIME type. To do so, add a line of the following form to
your environment.rb file:

Mime::Type.register “image/png”, :png

The first argument is the actual mime type; the second is the symbol for how you want to refer to
the type within the respond_to block.

547

Ruby on Rails Guide B

 TABLE B.7

Formats to Use Inside a respond_to Call
Format Notes

atom Used for syndication feeds in Atom format.

html Ordinary HTML. This is the default if no extension is placed on the URL.

ics Standard iCalendar format for calendar data.

js JavaScript or Ajax. All Ajax calls from Rails helpers come in with this format. This can mean
either that the call is a Web service or RJS call expecting JavaScript output, or that the call is
from something like a link_to_remote and expects HTML output.

rss Used for syndication feeds in RSS format.

text Plain text, including, say, a CSV file.

xml Used for generic XML output that is not a syndication feed.

yaml Used for YAML syndication.

Helpers
Each controller has a helper module. Any method defined within that helper is available to be
called from any view template of that controller (but not within the controller itself). The top-level
helper ApplicationHelper is available in any template. If you would like to make a custom
helper available inside a controller (this can be either another controller’s helper, or a module of
your own creation), then the method helper can be called inside the controller. If the helper
module is within one of the Rails standard auto-load locations, then the method can be called with
the module name:

helper OtherHelper, ThirdHelper

If the module is outside known Rails locations, then the method can be passed a string or symbol.
The string _helper is appended to the name, the resulting filename is required, and the associated
class name is included. The following line of code requires the file common/common_helper.rb
and includes the module CommonHelper.

helper “common/common”

The special symbol :all causes all helper modules in the app/helper directory to be included.

Within a helper method, all instance variables defined in the template are available (although it’s
considered better practice not to rely on your own instance variables within a helper). The tem-
plate itself is available as the instance variable @template.

548

AppendixesPart V

A helper method can be called with a block of ERb text as an argument.

<% something_helpery do %>
 Text, can be plain text or with ERB markup
<% end %>

The helper method can use the normal yield syntax to trigger output of the ERb. This is typi-
cally used for conditional processing of the ERb text.

def something_helpery
 yield if is_logged_in?
end

The helper can also be declared with an explicit block argument.

def something_helpery(&block)
end

Within the method, the block can be run through the ERb parser and the value placed in a variable
using the standard helper method capture.

output = capture(&block)

The text can then be placed in the template’s output stream using the method concat:

concat(output, block.binding)

Views
Rails provides a couple of different mechanisms for template-bases output.

ERb
Embedded Ruby (ERb) predates Rails as the standard mechanism for merging text output with
Ruby logic. Within Rails, any output file with an .erb extension is evaluated within Rails. The
extension before the .erb file is intended to show what kind of file is the expected output of the
template, as in html.erb. In addition to view files, all fixture files are also evaluated using the
ERb parser, as are files used as part of a generator.

Processing in ERb is invoked by including the code inside a pair of delimiters starting with <%.
Table B.8 gives a complete list of ERb’s delimiter pairs.

In all cases, if the end delimiter is preceded with a minus sign, -%>, then the newline character
after the closing delimiter is not included in the final output. This can be helpful if you’d like to
keep a lot of spurious white space out of your HTML output.

549

Ruby on Rails Guide B

 TABLE B.8

ERb Delimiter Pairs
Delimiter Pair Meaning

<% %> Interpret the text inside the delimiters as Ruby code. This places no text in the output.

<%= %> Interpret the text inside the delimiters as Ruby code and include the output of the expres-
sion in the template as a string.

<%# %> Comment. Text inside this pair is ignored during processing.

<%% %%> Insert a literal <% or %> in the output.

RJS
An RJS file is a Rails mechanism for generating simple JavaScript calls from your Ruby application.
The RJS file can be the default response to an Ajax or JavaScript call. Also, RJS commands can be
used within the block of a render :update call.

Inside the RJS block, a local variable called page is available. The page variable can receive sev-
eral methods, which are used to generate JavaScript that is returned back to the client browser and
executed there. Table B.9 describes methods available in RJS code.

 TABLE B.9

Methods Available in RJS Code
Method Name Description

<< Takes a string argument, assumed to be JavaScript code, and inserts it directly into
the output headed for the browser.

alert Takes a string argument, and generates code for a JavaScript alert box.

assign Takes two arguments, a string or symbol variable name and a value, and generates
JavaScript to create a variable with that name and value.

call Takes the name of a JavaScript function, assumed to be in scope in the client page,
and the arguments to that function. This generates a JavaScript function call.

delay Takes an amount of time in seconds and a block. This halts processing for the length
of time, and then executes the block.

draggable Takes a string DOM ID. This makes the browser element corresponding to that ID a
script.aculo.us draggable element.

drop-receiving Takes a string DOM ID. This makes the browser element corresponding to that ID a
script.aculo.us drop-receiving element.

hide Takes a DOM ID. This hides the browser element with that ID.

continued

550

AppendixesPart V

 TABLE B.9 (continued)

Method Name Description

insert_html Takes a DOM ID, a location argument, and text. The location argument can be
:before, :after, :top, or :bottom. The text is placed in the element with that
ID relative to the existing text. The before and after symbols indicate placement
outside the existing tag, while the others place the new text inside the tag.

remove Takes a DOM ID and removes that element from the DOM.

replace Takes a DOM ID and some text and completely replaces the existing element with
the new text.

replace_html Takes a DOM ID and some text and replaces the text inside the element with the
new text, leaving the outer tag intact.

select Takes a selector with CCS-style syntax and a block. On the client side, the code exe-
cutes the block for each DOM element that matches the selector.

show Takes a DOM ID. This shows the browser element with that ID.

toggle Takes a DOM ID. This toggles the visible status of the browser element with that ID.

visual_effect Takes the name of a script.aculo.us visual effect, a DOM ID, and optional
arguments. The visual effect is applied to the element. Any optional arguments are
applied to the script.aculo.us effect object.

Any method that takes a DOM ID as its initial argument,

page.hide “user_1”

can also be accessed through the alternate form,

page[“user_1”].hide

Models
Rails data models are instances of ActiveRecord::Base. By default, an ActiveRecord corresponds
to an entry in a database table. The name of the table is plural, users, and the name of the
ActiveRecord class is singular, User. Each column in the database is available in the record object
through a standard Ruby getter and setter method of the same name, user.name or user.name
= “fred”.

In addition, there is a test method for each attribute of the form user.name? that is equivalent to
user.name.blank?. Every attribute also has a variant of the form name_before_type_
cast, which access the database value as a string before Rails converts it to its Ruby type. To
access an attribute directly without going through the getter or setter, use the form user[:name].

NOTENOTE ActiveRecord database attributes are not accessible as normal instance variables.

551

Ruby on Rails Guide B

ActiveRecord provides support in Ruby for standard CRUD actions (create, read, update, and
delete) as applied to database records.

Creating
Creating a new ActiveRecord object is done through the standard new method. Attributes of the
object can be initialized by passing them as key/value pairs.

user.new(:name => “fred”, :role => “writer”)

ActiveRecord objects are sent to the database with the save method, which serializes the instance
to the database, creating a new database record or updating an existing one, as needed. A record
that has not yet been saved has an id of nil, and responds true to the new_record? method.

The save method returns true if the save is successful, and false if it is not (a variant, save!
raises an exception on failure). The most common way for a save to fail is if it does not pass the
ActiveRecord validations defined on the object, such as validate_presence_of. If the save is
unsuccessful, then calling the errors method on the object shows which validations failed.

Table B.10 shows the existing validations that can be defined for your models. Each validation is a
class method that is callable from your ActiveRecord. You can include as many as you want.

Most of these validations take an option called :on, which determines when the validation is trig-
gered. It defaults to :save, but other values are :create and :update. (Save includes both cre-
ate and update.) The option :if takes a method name or block; the validation is performed if the
method or block returns true. Conversely, the :unless option takes the same arguments but
only fires the validation if the method or block returns :false. The :message option specifies
the error message to display if the validation fails.

The method create is equivalent to new followed by save, and takes the same options as new.

 TABLE B.10

Existing ActiveRecord Validations
Method Description

validate Takes either a block or a list of method names to be called on save
to perform arbitrary validation. Sibling methods validate_on_
update and validate_on_create are only called in response
to the associated event.

validates_acceptance_of Primary argument is an attribute name, as from a form submission;
the goal is to verify that the user has checked a check box or the
like. By default, this assumes that the incoming value is supposed to
be “1”; this can be changed with the :accept option.

continued

552

AppendixesPart V

 TABLE B.10 (continued)

Method Description

validates_associated Arguments are a list of one or more names of associations to this
object. This asserts that the objects on the other end of the associa-
tions are valid.

validates_confirmation_of Argument is an attribute name. This is designed to test the common
pattern of a password or e-mail that must match a confirmation field.
It validates that if there is a second attribute named <attribute>_
confirmation, then the two attributes match. (If the confirmation
attribute is blank, then the validation is not performed.)

validates_each Similar to validate, but takes a list of attribute names and tests them
against a block.

validates_exclusion_of The main argument is a list of attribute names, and you also need to
pass the argument :in, which takes any enumerable object. The
validation verifies that the attribute is not a member of the enumer-
able. The options :allow_nil and :allow_blank can be set to
true to allow those value sets.

validates_format_of Takes a list of attribute names and the option :with, which is a
regular expression. This validates that the attributes match the regu-
lar expression.

validates_inclusion_of The opposite of validates_exclusion_of — this takes the
same objects but validates that the value is in the enumerable.

validates_length_of

validates_size_of

Two names, same method. This takes a list of attributes and one of
several options, validating that the length of the attribute value
matches the option. Options include :is for an exact value,
:minimum and :maximum to set single boundaries, and :in to
specify a range value. The :allow_nil and :allow_blank
options can also be used.

validates_numericality_of Takes a list of attributes and options. This validates that the attri-
butes are numbers, by default Floats, but the option :only_
integer can be set to true to limit the value to integers. The
:allow_nil option can be used. The options :equal_to,
:greater_than, :greater_than_and_equal_to, :less_
than, and :less_than_and_equal_to can limit the available
range, as can the options :odd and :even.

validates_presence_of Validates that all options listed are not blank.

validates_uniqueness_of Validates that every ActiveRecord in the database table has a unique
value for the given attributes. The :allow_nil and :allow_
blank options can also be used. The check is case-sensitive by
default, but the :case_sensitive option can be set to false.

553

Ruby on Rails Guide B

Reading
The workhorse method for retrieving records from the database is the find method, in its multi-
faceted glory. The most basic form of the find method takes one or more integers, and returns the
records in the database that have matching IDs. Multiple arguments can be presented as a list of
arguments or as an array, but not as a range.

User.find(10)
User.find(10, 11, 12)
User.find([10, 11, 12])

If the first argument to find is the special symbol :all, then all records are returned (the
:conditions option can be used to limit this). If the first argument is the symbol :first,
then the first matching record is returned. In Rails 2.1 User.all is a shortcut for User.
find(:all), and User.first is a shortcut for User.find(:first).

The find method takes multiple optional arguments that affect the underlying SQL query. Table
B.11 contains a list of all the options that are recognized.

If those options are not enough, the method find_by_sql allows you to specify a raw SQL com-
mand as is.

For common cases where your search is based on the record being equal to one or more specific
attributes, Rails allows you to build up dynamic method names, based on the attribute names. In
other words, a find method of the form,

User.find(:all, :conditions => {:name => “fred”})

can also be written as

User.find_all_by_name(“fred”)

The dynamic method must start with find_by (which finds a single element), find_all_by
(which finds all elements), or find_or_create_by (which finds a single element, creating it
if it is not there). After that, any number of attributes can be strung together, separated by and, as
in find_all_by_last_name_and_home_state(“Smith”, “AZ”). Each attribute has an
associated argument in the argument list. After those arguments, any of the find optional argu-
ments can be used.

554

AppendixesPart V

 TABLE B.11

Optional Arguments Affecting Underlying SQL Query
Option Description

:conditions A wrapper for the WHERE clause of the SQL statement in one of many different formats.
If the value is a hash, then the condition is key = value for each entry in the hash. If the
value is a list, the first element of the list is a valid SQL string with values represented by a
question mark (?). Subsequent entries in the list are the values used to fill the placehold-
ing question marks, in order. If the value is a string, it is inserted in the SQL statement as
is. The string version is not recommended because it bypasses Rails security features on
the clause.

:from The table or view name to search in the database, in the event that you don’t want to
search the default table. (This could be used to search a specialized view in the database.)

:group Wrapper around the SQL GROUP BY clause. If this clause is selected, then the result is a
not a list, but rather a hash of ActiveRecords with the keys set to the group values.

:include One or more of the ActiveRecord associations for this model. Those associations are
automatically joined to the result set, and the subordinate ActiveRecord objects are cre-
ated as part of this find call. (This uses a left outer join.) This could save a lot of database
accesses in the case where you would find an ActiveRecord and then loop over all the
associated objects.

:joins An SQL string that is inserted into the find statement to provide an arbitrary join.
This is used in cases where typical ActiveRecord associations are not flexible enough.
Alternately, this can take a list of associations, as in :include, but performing a left
inner join.

:limit The maximum number of rows to return. This is useful for paginating.

:lock A string of SQL specifying a non-standard lock that should be placed on the database
table during the operation.

:offset The row at which results should begin to be returned. Rows before this number are
ignored. This is used with :limit for paginating.

:order This string becomes the SQL ORDER BY clause.

:readonly If true, then the resulting ActiveRecord objects are read-only.

:select Becomes the SELECT clause of the SQL statement, in the case where the default (*) is not
acceptable. This is often used to limit the returned columns for performance purposes.

Updating
A record can be updated directly with the class methods update and update_all. The update
method takes an id and a hash of attributes, and applies the hash to the record with that ID.

User.update(12, {:home_state => “IL”})

The update_all method is a thin wrapper around an SQL UPDATE statement. The first argu-
ment is the SQL string corresponding to the values to be changed, and the second argument is the
SQL string corresponding to the WHERE clause of the update.

555

Ruby on Rails Guide B

Individual records can be updated with the method update_attribute, which takes two argu-
ments, name and value. Alternately, the method update_attributes takes a hash and
applies all the key/value pairs to the object and then saves the object.

Deleting
Deletion has a similar set of class and instance methods to update. The class methods delete and
destroy take an ID and remove the associated object from the database. The delete method is
just an SQL call, but destroy loads the ActiveRecord object first. They both have associated
methods delete_all and destroy_all, which take a string argument to be sent to the WHERE
clause of the SQL command.

Instances also respond to the destroy method to remove themselves from the database.

Relationships
Rails allows you to specify the relationships between various models in your application. These
relationships assume specific foreign key or join table structures in your database. When the rela-
tionship is specified, a number of additional methods are added to your model to support working
with related objects.

There are four class methods that Rails uses to specify a relationship, each of which takes several
options and which generates a series of methods. These methods are belongs_to, has_one,
has_many, and has_and_belongs_to_many. All of these methods take a single name, repre-
senting the other side of the relationship. Each method takes a hash of options. The options shown
in Table B.12 are common to all four methods.

 TABLE B.12

Options Common to All Four Class Methods
Method Description

class_name The name of the model class on the other side of the association, only needed if the name
is not the Rails default.

conditions A conditions structure, exactly as would be passed to find. This is used to limit the
set of objects in the other class that are included in the association, for instance, to limit
the associaton to only the most recently added objects.

foreign_key Specifies the column name of the foreign key, if it is not the Rails default. This applies to
the part of the model with the foreign key. If one-half of the relationship is a belongs_
to, then both sides of the relationship need to specify the actual foreign key.

include Lists any other associations of the related object that should be eagerly loaded when the
related object is loaded.

order An SQL string to specify the order that the associated objects are presented in.

556

AppendixesPart V

belongs_to
The belongs_to relationship is one side of a one-to-one or one-to-many relationship. Specifically,
it’s the side of the relationship that has the foreign key in its table. The name used is the singular
name of the other model. A call of the form

belongs_to :school

implies that the table in question has an integer column school_id and that there is another
model School with a database table schools. The naming conventions can be changed through
options to the method.

In addition to the common options, the belongs_to method takes the options shown in Table B.13.

 TABLE B.13

Options for the belongs_to Method
Method Description

counter_cache If set to true, caches a count of the number of associated objects in the model;
this cache is updated when associated objects are added to or deleted from the
database. This assumes that there is another column in the database table named
<association>_count. The name of a custom column for the counter_cache
can be passed to the method instead of true.

polymorphic If set to true, then the relationship is polymorphic, meaning that the associated
object can be of more than one possible type. In this case, the name of the associa-
tion does not reflect a specific class, but is instead a generic name for all associated
objects, such as taggable. This assumes that the model has an additional string
column named <association>_type.

A belongs_to relationship creates the following methods, based on the name of the association.
If the declaration was belongs_to :school, then you get the options shown in Table B.14.

 TABLE B.14

Options for belongs_to_:school Method
Method Description

school Getter method returns the associated object.

school= Setter method. The assigned value must be of the correct type.

school.nil? Returns true if there is no associated object.

build_school Creates a new School object, and takes options equivalent to School.new.

create_school Creates and saves a new School object, equivalent to School.create.

557

Ruby on Rails Guide B

has_one
A has_one relationship is the half of a one-to-one relationship that does not contain the foreign
key in its table. In other words, the declaration in the User class,

has_one :school

indicates that there is a School model, and that model contains a user_id column. (Compare
that to the expectation of belongs_to.) The name in a has_one relationship is the singular
form of the model name.

The has_one method takes all of the common options listed previously, even order. In the con-
text of a relationship that expects only one method, the order option breaks ties, and so :order
=> “created_at DESC” creates a relationship with the most recently added model on the other
side that associates with the given object. Table B. 15 lists the options that are specific to the has_
one relationship declaration.

 TABLE B.15

Options Specifi c to has_one
Option Description

as Used if the relationship is polymorphic, the :as argument takes the name of the associa-
tion as specified on the belongs_to side, for example, :as => :taggable.

dependent By default, the object with the foreign key is not changed if this object is deleted. If the
dependent option is set to :delete, then the associated object is deleted when this object
is deleted; if the option is set to :nullify, then the associated object has the foreign key
ID column set to SQL null.

A has_one association gives its model the same set of methods as the belongs_to association.

has_many
A has_many relationship is similar to a has_one relationship, except that it assumes that there
will be more than one object with the foreign key relationship. Like has_one, the declaration in
the User class,

has_many :schools

indicates that there is a School model, and that model contains a user_id column. However,
the methods added from has_many work as an array of School objects, not a single object. The
model name in a has_many call is the plural form of the name.

In addition to the common arguments, has_many also takes the options shown in Table B.16.

558

AppendixesPart V

 TABLE B.16

Options for the has_many Method
Option Description

as Just like as in a has_one method call.

counter_sql Specifies an entire custom SQL statement to use for getting the number of related objects.
If finder_sql is specified, but counter_sql is not, then the counter statement is
inferred from the find statement.

dependent Exactly as the has_one option, except the valid values are :delete_all to delete all
objects, :destroy to delete the objects through their own destroy method, and
:nullify to change the foreign keys to SQL null.

extend The argument is a module. Any method defined in the module is added to the association
object, such that the method can be called as obj.association.method. Given
the user/schools example, a sample method would be accessed as user.schools.
<method>. The same functionality can be achieved by passing a block to the has_
many call; any method defined in the block is also added to the association object.

finder_sql An entire SQL statement used to find the objects in the association.

group Exactly as the group option for find. If specified, the association is hash-like, rather
than array-like.

limit Exactly as the limit option for find.

offset Exactly as the offset option for find.

select Exactly as the select option for find.

source Used in a through association to specify a non-standard name for the association on the
other side of the relationship.

source_type Used in a through query where the other side of the relationship is polymorphic.

through The option is an intermediate model for the relationship. The intermediate model is
essentially a join table that has extra information about the relationship, but by using a
has_many :through, this object can manipulate objects on the far end of the relation-
ship through the intermediate object. So, for example, if the user/school relationship was
on some kind of resume site, there might be a join table that would have to know what
years the user attended the school. In this case, the relationship between user and schools
would be has_many schools :through => :years_attended.

uniq If true, then duplicate objects are not included in the relationship.

The has_many relationship creates an attribute in the ActiveRecord model that is an array-like
container for the related objects. The object is Enumerable, and so all those methods work on
the attribute.

In addition, the following methods are available on the ActiveRecord model itself, again using the
User has_many :schools example. Because the use of has_many :through indicates an
intermediate join table, some methods are not available. Table B.17 lists the methods that are
available on the class that declares the association.

559

Ruby on Rails Guide B

 TABLE B.17

Methods Available for Classes that Declare Association
Method Description

schools Getter method returning the relationship object.

schools= Setter method. This expects a list of records of the type of the associated object. The setter
is not available in a has_many :through relationship.

school_ids Returns a list of IDs, equivalent to schools.map(&:id).

school_ids= Sets the list of IDs, equivalent to schools = School.find(id1, id2…). This
method is not available in a has_many :through relationship.

The association object has some additional methods of interest, as shown in Table B.18.

 TABLE B.18

Methods for the Association Object
Method Description

schools << Adds a new element to the association (in other words, it changes its foreign key
value).

schools.build Creates a new member of the association, with the foreign key value set. This takes
options as the new method would.

schools.clear Removes all objects from the association by changing their foreign keys. This method
is not available in a has_many :through relationship.

schools.create Like build, but saves the new object to the database. This method is not available
in a has_many :through relationship.

schools.delete Removes objects from the association by deleting them from the database.

schools.empty? Returns true if there are no associated objects.

schools.find Specialized version of find that always includes a constraint on the foreign key.
Takes all find options. In other words, user.schools.find(:all) is equal to
Schools.find(:all, :conditions => {:user_id = user.id}), but is
easier to read and more secure.

schools.size Returns the number of associated objects.

has_and_belongs_to_many
A has_and_belongs_to_many (often abbreviated HABTM) relationship indicates a many-to-
many relationship between two models. The implication of a HABTM relationship is that the other
side of the relationship has a reciprocal HABTM relationship, and that there is a join table in the

560

AppendixesPart V

database linking the IDs of the tables. By default, the name of this table is the pluralized names of
the two models in alphabetical order. So, the declaration in class User,

has_and_belongs_to_many :schools

implies that the School class has a HABTM relationship back to User. In the database, there
will be a table named schools_users, which will have exactly two columns: school_id and
user_id. If the join table has more data of its own, then the relationship should be managed with
the has_many :through construct.

The has_and_belongs_to_many method takes almost the exact same set of options as has_
many. It takes all options of has_many, except :as, :counter_sql, :dependent, :source,
:source_type, and :through. It adds the options shown in Table B.19.

 TABLE B.19

Options for the has_and_belongs_to_many Method
Option Description

association_foreign_key The foreign key used in the join table for the other half of the
association.

delete_sql A complete SQL statement used to customize the database call to
remove elements from the join table.

insert_sql A complete SQL statement used to customize the database call to add
elements to the join table.

join_table The name of the join table, if it does not match the expected default.

The set of methods added by a has_and_belongs_to_many call is exactly the same as that
added by a has_many call.

Database Migrations
Rails allows you to modify your database schema using migrations. A migration is a subclass of the
Rails class ActiveRecord::Migration, which is placed in the directory db/migrations.
The name of each migration begins with a number, as in 001_create_users.rb for the migra-
tion named CreateUsers.

The number indicates a version number for the underlying database schema. Rails tracks the cur-
rent version number of the running database and the rake task db:migrate brings the database
in line with the most current migration. With an argument, as in db:migrate VERSION=12, the
task moves the database backward or forward to the specified version. The task

561

Ruby on Rails Guide B

db:migrate:redo undoes the most current migration and reapplies it, and db:migrate:
reset drops the database, then recreates it and resets the database from version 1.

A database migration defines two class methods. The method self.up is called when the migra-
tion is invoked to move the database version upward, as in normal usage. The method self.
down is called when the migration is invoked to move the database version downward, as during a
rollback. Typically the down method reverses the effect of the up method. If the migration is not
reversible for some reason, then the down method should raise an ActiveRecord::Irrevers
ibleMigration exception.

Within a migration, you can create, drop, or rename tables, add, remove, or change columns, and
add and remove indexes. You can also execute an arbitrary SQL statement.

The syntax for creating tables is the method create_table. Normally this method takes a single
argument: the name of the new table. It can also take an options hash of SQL fragments that are
part of the SQL table declaration. The create table method takes a block that allows you to
add columns to the table. The basic structure looks like this:

create_table :users do |t|
 t.integer school_id
 t.string :first_name
 t.integer :year_of_birth
end

Within a create_table block, you can use the column method or one of its derivatives (the
derivatives are shown in the example). The column method takes two arguments: the first is a
symbol representing the name of the new column, and the second is a symbol representing its
type. Valid types are binary, boolean, date, datetime, decimal, float, integer,
string, text, time, and timestamp.

Optional key/value pairs specify certain features of the column. The most commonly used are
:default, which specifies a default value, and :null which is a Boolean that controls whether
the column allows null values. Numerical types can also set :limit, :precision, and :scale.

There are a few methods that can be called inside create_table that are shortcuts to calling
column. As shown in the previous code snippet, any type that can be a second argument to
column can also be a method, with the name of the column as the first argument, as in t.
string :first_name.

Any option that can be passed to column can also be passed to these methods. The special
method t.timestamps creates the timestamp columns created_at and updated_at, which
are automatically managed by Rails. The special method references (aliased as belongs_to)
takes the name of one or more other tables and creates a foreign key _id column for that relation-
ship, and so t.references :school would create the integer column school_id.

If the option :polymorphic => true is also passed, then a string _type column is also created.

562

AppendixesPart V

If you add a column in the up method, you typically remove it in the down method, by calling
drop_table, which simply takes the table name as an argument. You can also change a table
name with rename_table(old, new); again, the down method would typically reverse that.

Managing columns outside a create_table block starts with the add_column method. It is
identical to the column method inside the create_table block, except that a table is now an
additional first argument, as in add_column :users, :last_name, :string. The available
options are identical between the two methods.

When a column is added in the up method, it is typically removed in the down method by calling
remove_column with the table name and column name as arguments. A column can be renamed
with rename_column; the arguments are the table name, the existing column name, and the new
column name. The type of a column can be changed with change_column; the arguments are
table name, column name, new type, and then any of the previously listed column options.

Database indexes can be added with add_index; the arguments are the table name, and either a
single column name or an array of column names representing the set of columns to be indexed.
Optional values are :name, which gives the index a non-standard name (by default, Rails creates a
name, based on the columns involved) and :unique, which, if true, causes the database to vali-
date that every row has a unique set of values for the associated columns.

Within a migration, you also have access to the entire Rails environment, including any ActiveRecord
models, such as models whose database is defined or modified earlier in the same migration. (If the
modification is done outside a create_table method, then you need to call the class method
reset_column_information in order to work with the updated model. This makes migrations
an excellent place to initialize data, move data into your database from another source, or other-
wise manage data as well as schemas.

Plugins
Rails plugins are used to extend the functionality of a Rails application in many different ways,
from just adding a rake task, to user authentication, to UI features, to internationalization. Plugins
are typically installed using a command-line command of the form,

script/plugin install http://plugin.url.com

Under normal circumstances, the plugin URL is a Subversion or in Rails 2.1, a Git repository.
Subversion installation is managed as a Subversion export, meaning the files need to be manually
loaded and managed for your source control. If the repository is Subversion, augmenting this com-
mand with the -o option causes the download to be a Subversion checkout, meaning that reposi-
tory information for the remote repository is included.

Using the -x command causes the plugin to be loaded as a Subversion external, meaning that a
reference to the remote repository is all that is stored locally. Plugins added as externals are auto-
matically updated when you update your Subversion working copy. Other plugins can be updated

563

Ruby on Rails Guide B

through the command script/plugin update. Without arguments, that command acts on all
plugins. With a list of one or more plugin names, it only acts on those plugins. A plugin can be
removed using script/plugin remove <plugin_name>. Rails handles any needed
Subversion commands to remove the plugin cleanly.

If the plugin is in a known repository, the name of the plugin can be used instead of its URL loca-
tion, and the known repositories are queried to find the plugin. The command script/plugin
sources gives the current list of repositories, and script/plugin discover goes to a known
page in the Rails Wiki server to get a more up-to-date list. Entering “script/plugin list” gives a list of
all known plugins at the known repositories.

565

Symbols and Numeric
<%- -%> delimiters, view templates, 180–181
<% %>, embedded Ruby code delimiters, 87
<%= %>, embedded Ruby code delimiters, 87
{ } (braces)

block delimiters, 55
enclosing hashes, 49
expression indicator, 39
method body syntax, 26
method calls, 516
in regular expressions, 510

[] (brackets)
enclosing hash elements, 49
in regular expressions, 509

& (ampersand), block arguments, 526
* (asterisk), in regular expressions, 510
@ (at sign), variable names, 30, 512, 531
@@ (at signs), variable names, 31, 512
\ (backslash)

escape character, 38
as literal character, 38

^ (caret), in regular expressions, 510
: (colon), symbol names, 42, 512
$ (dollar sign)

global variable names, 512
in regular expressions, 510

. (dot), dot operator, 27
“ (double quotes), string literals, 38
=> (equal, greater-than), input prompt, 81
= (equal sign)

defining setter methods, 34
method names, 513
in names, 34–35

=== (equal signs), in case statements, 518–519
! (exclamation point), method names, 512
/ (forward slash), delimiter, 508–509
> (greater-than sign), inheritance, 37
>> (greater-than signs), input prompt, 81
#=> (hash, equal... sign), return value indicator, 40

(hash, pound sign)
comment delimiter, 20–21
expression indicator, 39

<=> (less than, equal...)
date comparison, 45
time comparison, 44

$ method, 386–387
$$ method, 387–388
<< method, 201, 549
$ methods, 386–389
() (parentheses)

method calls, 515
in regular expressions, 509
syntax, 21

| (pipe character)
block delimiter, 526
in pattern matching, 510

+ (plus sign), in regular expressions, 510
? (question mark)

method names, 512
in regular expressions, 510

‘ (single quotes), string literals, 38
/ (slash), regular expression indicator, 40
_ (underscore)

in integer literals, 508
method names, 512
in names, 27
partial template names, 175
variable names, 512

; (semicolon)
avoiding, 23
ending lines or statements, 22
separating statements, 22

A
\A, in pattern matching, 510
$A method, 388
A2S (Amazon Associates Service), 252
accept option, 409
access control, classes, 531

566

IndexA

accessors. See getters
Action Pack library, 72
ActionController, 147–148
ActionMailer

from address, 490
attachments, 489
bcc (blind carbon copy), 489
body of message, 489
cc (carbon copy), 489
character set, specifying, 490
configuring, 487–488
content type, specifying, 490
headers, 490
mailer model, generating, 488–489
mailer name, overriding, 490
MIME version, specifying, 490
multi-part messages, sorting, 490
outbound e-mail, configuring, 487–488
overview, 487
receiving e-mail, code for, 491–492
recipients list, 490
send date, 490
sending e-mail, code for, 489–491
SMTP versus SendMail, 487–488
subject line, 490

actions. See also controller layer, action methods; filters for
action methods; methods; specific actions.

definition, 72
naming conventions, 157
output, caching, 170–171
RESTful Rails, 469
RESTful resources, customizing, 476

ActionView. See also view layer
ERb (Embedded Ruby) code, 179–181
file extensions, 176–177
formats, 176–179
layouts, 182–185. See also view templates
overview, 173–174
rendering views, 174–176
respond_to method, 177
view templates. See also layouts

<%- -%> delimiters, 180–181
blank lines, 181
commenting out ERb, 181
ERb (Embedded Ruby) code, 179–181
newline character, suppressing, 181
partial templates, 175–176, 185–186

ActionView, helper methods
<< method, 201
Ajax, 198–200
alert method, 202
assign method, 202
benchmarks, 197
block arguments, converting to strings, 194
block helpers, creating, 197–198
caching view fragments, 197
call method, 202
data processing, 193–195
debugging, 197
delay method, 202
error messages, converting to strings, 190
forms

changes, monitoring, 199
check boxes, 190, 192
country, selecting, 191–192
creating, 200
dates, constructing, 194
dates, selecting, 194
field labels, 190
hidden fields, 190, 192
objects, selecting, 191–192
password masking, 191–192
radio buttons, 191–192
remote submission, 200
selecting buttons, 191
text input, 191–192
time range, converting to text, 194
time zone, selecting, 191–192

HTML anchor tags, stripping, 195
HTML creation, 188–189
HTML entities, stripping, 195
insert_html method, 200
JavaScript, 192–193, 201–202
JavaScript entities, stripping, 195
literal method, 202
numbers, 195
objects, preparing for inspection, 197
overview, 186–187
predefined modules, 188–200. See also specific modules
redirect_to method, 202
replace method, 201
replace_html method, 201
RJS (Ruby JavaScript), 200–201
strings, 195
table colors, alternating, 196

567

Index A

text, 196
timestamps, distance between, 194

ActiveRecord. See also CRUD (create, read, update, delete),
ActiveRecord

aggregations, 144–145
classes, 109
classes composing classes, 144–145. See also inheritance
composite primary keys, 111
composition design pattern, 144–145
configuring, 113–114
convention over configuration, 107
database transactions, 145–146
description, 108–109
development environment, 114–115
DSL (domain-specific language), 107, 109
environments, 114–115
metaprogramming, 107
migrations, 115–121
model, creating, 112–113
naming conventions, 109–112
objects, 109
ORM (object relational mapping), 108–109
overriding primary keys, 111
primary keys, 111
production environment, 114–115
projects, creating, 112–113
session storage, 168–169
single table inheritance, 142–143
test environment, 114–115

ActiveRecord library, 71–72
ActiveRecordHelper module, 190
ActiveResource and XML, 492–494. See also REST

(Representational State Transfer)
ActiveScaffold, 458–460
acts_as_list method, 132
acts_as_rateable plugin, 441
acts_as_state_machine plugin, 444–446
acts_as_taggable plugin, 293, 297–298, 460–461
acts_as_taggable_on_steroids plugin, 293
acts_as_taggable_redux plugin, 293–294, 460–461
acts_as_tagger plugin, 298
acts_as_tree method, 132
Adam, James, 463
add method, 269–284
add_column method, 120
add_index method, 120

adding
array elements, 48
book reviews to Book Shelf, 323–324, 327
books to Book Shelf, 269–284
columns to databases, 120
date values, 45–46
indexes, database, 120
plugin sources, 428
tests to functional testing, 357–360
time values, 44
time values to date values, 45–46

after filters, 164
:after key, 356
:after option, 395
after_filter method, 164, 544
aggregations, 144–145
agile methodologies, 334
Ajax

Google maps, 394
helper methods, 198–200
links, 394–395
live search feature, 394
options, 395
overview, 394

alert calls, JavaScript, 202
alert method, 202, 549
Amazon Associates Service (A2S), 252
Amazon Developer Token, obtaining, 253
Amazon integration. See Book Shelf, Amazon integration;

searching Amazon
Amazon Web Service (AWS), 252
AmazonInterface class, 256–260
ampersand (&), block arguments, 526
:ancestor key, 356
:anchor parameter, 154
annotate_models plugin, 446–447
anonymous routes, 152
Ant utility. See Rake tool
API for Amazon.com, 252
app directory, 73
appear effect, 397
application configuration files, location, 73
applications. See projects
applications.js file, 219
Aptana Studio IDE, 11
architecture, 70–73
archiving files, 256

568

IndexA

argument lists, variable length, 63
arguments. See parameters
around filters, 164–165
around_filter method, 165, 544
Array class, 47–48
array methods, JavaScript extensions, 390
Array.from method, 390
arrays. See also hashes; ranges

adding elements, 48
Array class, 47–48
built-in methods, 48
clearing, 390
converting to JSON, 390, 391
converting from ranges, 50
counting elements, 48
creating, 47–48
definition, 47
deleting elements, 48
duplicate items, removing, 390
duplicating, 390
element index, getting, 390
empty, 48
enumerating, 390
first element, getting, 390
getting elements, 48
indexing, 47
iterating through, 390
iterators for, 56
JavaScript extensions, 388–391
last element, getting, 390
literal expressions, 506–507
multidimensional, flattening, 390
multiple, intersecting elements, 390
nested, flattening, 390
null elements, removing, 390
reversing, 390
size, getting, 390
starting index, 47
undefined elements, removing, 390

array.toJSON method, 391
assert assertion, 336
assert_block assertion, 336
assert_dom_equal assertion, 353
assert_dom_not_equal assertion, 353
assert_equal assertion, 336
assert_generates assertion, 353
assert_in_delta assertion, 336

assert_instance_of assertion, 336
assertions. See also specific assertions

functional test, 353–357
maximum number of, 339
unit test, 336–337

assert_kind_of assertion, 336
assert_match assertion, 337
assert_nil assertion, 337
assert_no_match assertion, 337
assert_no_tag assertion, 353
assert_not_equal assertion, 337
assert_nothing_raised assertion, 337
assert_nothing_thrown assertion, 337
assert_not_nil assertion, 337
assert_not_same assertion, 337
assert_operator assertion, 337
assert_raise assertion, 337
assert_recognizes assertion, 353
assert_redirected_to assertion, 353
assert_respond_to assertion, 337
assert_response assertion, 353, 355
assert_routing assertion, 355
assert_same assertion, 337
assert_select assertion, 354, 355
assert_select_email assertion, 355
assert_select_encoded assertion, 355
assert_select_rjs assertion, 355
assert_send assertion, 337
assert_tag assertion, 356–357
assert_template assertion, 357
assert_throws assertion, 337
assert_valid assertion, 357
AssetTagHelper module, 188
assign method, 202, 549
assignments, syntax, 521–522
assigns hash, 352
asterisk (*), in regular expressions, 510
at sign (@), variable names, 30, 512, 531
at signs (@@), variable names, 31, 512
.atom file extension, 178
atom_feed method, 192–193
AtomFeedBuilder module, 192–193
AtomFeedHelper module, 192–193
attachment_fu plugin, 461–463
attachments, e-mail, 489
attr_accessor method, 36, 531
attribute selector, 387

569

Index B

attributes. See also validation, attributes; specific attributes
classes, 531
database columns, 124
displaying, 92–94
metadata, 124–125
null, 124
objects, 18
reading, 125

:attributes key, 356
attr_reader method, 35
attr_writer method, 35–36
authenticate method, 241–242, 363–365
authentication

RESTful, plugin for, 451–452
restful_authentication plugin, 451–452
unit testing, 363–365
unit tests, 363–365
users

authenticate method, 241–242, 363–365
plugin for, 451–452

auto-completion, 401–402
auto_discover_link method, 188
auto_link method, 196
avatars, 331
AWS (Amazon Web Service), 252

B
\b, in pattern matching, 510
backslash (\)

escape character, 38
as literal character, 38

backtrace method, 58
base classes, 36–37
bcc (blind carbon copy), e-mail, 489
before filters, 163–164, 246–248
:before key, 356
:before option, 395
before_filter method, 163–164, 246–248, 544
=begin, multi-line comments, 21
begin statement, 58–60
belongs_to method, 132, 134, 136, 556
belongs_to relationship, legacy databases, 484
benchmark method, 197
BenchmarkHelper module, 197
benchmarks, 197
Bignum class, 41
BitNami Ruby Stack, 5
blank lines, 22, 181

blind carbon copy (bcc), e-mail, 489
BlindDown effect, 397
BlindUp effect, 397
blocks

{ } (curly brackets), 55
arguments, converting to strings, 194
definition, 55, 526
description, 526–527
evaluation, delay period, 202
helpers, creating, 197–198
passing to methods, 55–56
spanning lines, 55
syntax, 55
within templates, caching, 171
yield statement, 55–56

body content, template, 220
body of message, e-mail, 489
book method, 134
book= method, 134
Book Shelf. See also testing

add method, 269–284
adding books, 269–284
administrator interface, 329–330
book detail page, 287–289
book information sources, 330. See also Book Shelf,

Amazon integration
book list, alternate views, 329
convert_amazon_results method, 281–282
delete method, 284–286
deleting books, 284–286
displaying user’s books, 284–286
find_by_isbn method, 282–283
find_or_create_by_isbn method, 281
RSS feeds, 330
set_from_amazon_result method, 281–282
source code, 343
user interface improvements, 329–330

Book Shelf, Amazon integration. See also searching Amazon
A2S (Amazon Associates Service), 252
Amazon Developer Token, obtaining, 253
AmazonInterface class, 256–260
API for Amazon.com, 252
associate program, joining, 253
AWS (Amazon Web Service), 252
initialize method, 257
My Books link, 251–252
Ruby/AWS library, 252, 254–255
View the Books link, 251–252
viewing books, 251–252

570

IndexB

Book Shelf, framework. See also home page, creating
controller class, 215–216, 247–248
databases, creating, 213–214
directory structure, creating, 211–213
layout template, 217–221
migration, 228–229
project, creating, 211
skeleton, creating, 211–213
testing

login function, 245–246
logout function, 245–246
new home page, 221
validations, 230–232

validations
creating, 229–230
e-mail addresses, 230
passwords, 231
testing, 230–232

Book Shelf, social networking. See also tagging content
avatars, 331
book ratings, 328
book recommendations, 330
book reviews

adding, 323–324, 327
associating reviews with users, 317
displaying, 318–323
editing, 329
illustrations, 314, 315, 318, 319
review controller, 324–325
review entry form, 322–324
review model, 315–317
review view, 317–324
stylesheet, 326

user profiles, 330–331
book.nil? method, 134
books and publications

HTML, XHTML, and CSS Bible, 4th Edition, 222
“A World of Resources,” 468

Boolean, literal expressions, 507
braces ({ })

block delimiters, 55
enclosing hashes, 49
expression indicator, 39
method body syntax, 26
method calls, 516
in regular expressions, 510

brackets ([])
enclosing hash elements, 49
in regular expressions, 509

break keyword, 521

Buck, James, 494
build_book method, 134
build_cover_image method, 133
business logic, in view code, 180. See also ActiveRecord;

model layer
buttons, radio, 191–192
button_to method, 193
bytes, converting to decimal, 195

C
-c option, 24
cache method, 197
CacheHelper module, 197
caches_page method, 170
caching, 170–171, 197
call method, 202, 549
callbacks, plugin for, 437–439
calling methods, 29, 515–516
camel-casing, 110
Capistrano, 494–500
capture method, 194
CaptureHelper module, 194
caret (^), in regular expressions, 510
case sensitivity, regular expression, 509
case statement, 53, 519
cc (carbon copy), e-mail, 489
chaining methods, 45
change option, 408
character representation. See strings
character set, specifying for e-mail, 490
check boxes, 190, 192
check command, 498
check_box method, 190
check_box_tag method, 192
:checked pseudo-class, 388
child classes, 36–37
:child key, 356
child selector, 387
:children key, 356
class << self block, 30
class hierarchy, 36
class keyword, 25
class methods, 29–30, 532–533
class selector, 387
classes. See also collections; methods; scalar objects

> (greater-than sign), inheritance, 37
access control, 531
ActiveRecord, 109
attributes, 531

571

Index C

base, 36–37
child, 36–37
composing classes, 144–145. See also inheritance
controllers

creating, 215–216
generator scripts, 83
generators, 83
modifying, 247–248

defining, 25, 528–529
definition, 24
extending

definition, 37
with mixins, 435–437
with modules, 529–530

file organization, 25
including, with modules, 529–530
inheritance, 36–37, 529
instances. See also objects; variables

creating, 27–28
definition, 25
initialize method, 27–28, 531
initializing, 27–28, 531
naming conventions, 27
new method, 27–28
object constructors, 27–28

versus modules, 528
naming conventions, 27, 110
opening, plugin for, 437
parent, 36–37
placing at top-level module, 528–529
redefining, 65
reopening, 65
representing numbers, 41
self variable, 529
superclasses, 529
user model, 227

classes, defining, 392–393
cleanup command, 498
clear method, 142, 390
clone method, 390
code files, location, 73
code generators, 74
cold deployment, 497
collection method, 135, 138
collection<< method, 135, 138
collection.build method, 136, 138
collection.clear method, 136, 138
collection.create method, 136, 138

collection.delete method, 135, 138
collection.empty? method, 136, 138
collection.find method, 136, 138
collection=objects method, 135, 138
collections. See also scalar objects

arrays, 47–48. See also hashes
hashes, 48–49. See also arrays
ranges, 49–51

collection_select method, 192
collection.singular_ids method, 135, 138
collection.singular_ids=ids method, 135, 138
collection.size method, 136, 138
colon (:), symbol names, 42, 512
columns, database. See databases, columns
command-line, script utility, 73
command-line options, 24
commenting out ERb, 181
comments, syntax, 20–21
compact method, 390
Comparable module, 63
:complete option, 395
components, 416, 430–431
composite primary keys, 111
composition design pattern, 144–145
concat method, 196
Concurrent Versioning System (CVS), 7
:condition option, 395
conditionals, 51–53. See also expressions, conditional
config directory, 73
configuring, databases, 213–214
:confirm option, 395
constraint option, 408, 410
contact manager. See also CRUD (create, read, update,

delete), contact manager
business logic, 79–82
controllers, 82–85
databases

detecting, 79
naming, 79
retrieving records from, 82
setting up, 77–79

directory structure, creating, 75–76
editing contacts, 84, 94–95
file locations, 76
files generated, 80
fixture files, 80
layout templates, 96–98
log files, 76

572

IndexC

contact manager (continued)
look and feel, 96–98
migration class file, 80
model classes, creating, 79–82
model classes, naming, 80
model object file, 80
port assignment, 76
project, creating, 75–77
project skeleton, creating, 98–102
rails command, 75
routing mechanism, 85
scaffolding, 98–102
script/server command, 76
server, starting, 76
start page, default, 77
steps, overview, 75
stylesheets, 96–98
test-related files, 80
unit-test skeleton file, 80
view templates, 84
views, creating, 82–84
WebScaffolding, 98–102

contacts. See also contact manager
attributes, displaying, 92–94
creating, 84, 89–92
editing, 84, 94–95
printing, 85–88
reading, 84, 85–88, 92–94
updating, 84, 94–95

containment option, 409
content tagging, plugin for, 460–461
content type, specifying, e-mail, 490
<%=@content_for_layout%> code, 97
content_tag method, 189
content_tag_for method, 188
control flow

blocks, 55–56. See also iterators
conditionals, 51–53, 516–521
iterators, 56–57. See also blocks
loops, 54, 519–521

control.js file, 219
controller classes

creating, 215–216
generator scripts, 83
generators, 83
modifying, 247–248

controller generator, 538

controller layer
ActionController, 147–148
definition, 70
routing

anonymous routes, 152
custom default routes, defining, 151–152
custom routes, defining, 149–151
flow of events, 149
named routes, 152–153
url_for method, 153–154
URLs, constructing, 153–154

session data, storing, 167–169
controller layer, action methods

data, sending to the browser, 160–162
definition, 157
feedback, sending, 160–161
files, sending to the browser, 162
filters

before, 163–164, 246–248
after, 164
after_filter method, 164
around, 164–165
around_filter method, 165
before_filter method, 163–164, 246–248
definition, 163
private method, 166–167, 531
protected method, 166–167, 531
protection levels, 166–167
public method, 166–167, 531

flash feature, 160–161
flash.keep, 161
flash.now, 161
JSON data, sending to the browser, 162
naming conventions, 157
redirects, 160
redirect_to, 160
render, 159
templates, rendering, 159
text, sending to the browser, 162
upon request parameters, 158–159
XML content, sending to the browser, 162

controllers
creating, 82–84, 155–157
helper modules, 547–548
instance attribute methods, 543
naming conventions, 157
RESTful routing, 541–543

573

Index C

routing mechanism, 85
traditional routing, 540–541
variables, 543

controls
auto-completion, 401–402
in-place editing, 402–405
sliders, 399–400

convention over configuration, 69–70, 107
convert_amazon_results method, 267–269, 281–282
cookies hash, 352
cookies method, 543
:count key, 356
counting, array elements, 48
country, selecting from forms, 191–192
country_select method, 192
cover_image method, 133
cover_image= method, 133
cover_image.nil? method, 133
create, read, update, delete (CRUD). See CRUD (create, read,

update, delete)
create action, 84, 91–92, 469–470, 472–473
create_book method, 134
create_cover_image method, 133
created_at field, 124, 226
create_table method, 119–120
creating. See also CRUD (create, read, update, delete)

ActiveRecord models and projects, 112–113
arrays, 47–48
block helpers, 197–198
book models, 264–267
Capistrano tasks, 499–500
contacts, 84, 89–92
controller classes, 215–216
controllers, 82–84, 155–157, 264
database models, 112–113
database records, 122–124
database schema, 117. See also migrations
database tables, 119–120
databases, 118, 213–214, 551–552
date values, in forms, 194
deployment tasks, 499–500
directory structure, 75–76, 211–213
draggable elements, 406–408
droppable elements, 408
engines, 463–465
forms, Ajax, 200
functional tests

fixtures, 349–351
hashes, 352

keys, 356
request types, 351–352
test methods, 351–352

hashes, 49, 389
home pages

Book Shelf, 238–240
controller class, modifying, 247–248
examples, 207–208, 215, 239
layout template, body sidebar, 250–252

HTML helper methods, 188–189
index templates, 86
instances of classes, 27–28
instances of RESTful resources, 472–473
JavaScript

extensions, 388–389
fragments, 72
helper methods, 192–193

links, Ajax, 199
mailer model, 488–489
methods

class, 28–30
dynamic program, 64
instance, 28–30
with irb, 20
overview, 25–26

model classes, 74, 79–82
models, database, 112–113
plugins, 431–433
projects

ActiveRecord, 112–113
Book Shelf, 211
contact manager, 75–77
Ruby on Rails, 75–77

Prototype objects, 198–200
Rails applications

directories and files, 536–537
generators, 538–540
rails command, 75, 536–537

ranges, 49–50, 389
RESTful resources, 474–481
Ruby programs, 23–24
search action, 264
search forms, 261–263
search results page, 269–276
skeletons, 74–77, 98–102, 211–213
tables, database, 119–120
tags, 296
templates for generators, 421
URLs, 153–154, 189

574

IndexC

creating (continued)
user models, 227
validations, 229–230
views

overview, 82–84
tag clouds, 303–307
tagging content, 301–314

CRUD (create, read, update, delete), ActiveRecord
created_at field, 124
creating database records, 122–124
database updates, timestamping, 124
reading data

attributes, 125
column metadata, 124–125
dynamic finders, 127–128
find method, 126–127
find_all method, 127
find_by method, 127–128
find_by-SQL method, 127–128
finding records, 126–128
sorting returned objects, 127

updated_at field, 124
CRUD (create, read, update, delete), contact manager

contacts
attributes, displaying, 92–94
creating, 84, 89–92
printing, 85–88
reading, 84, 85–88, 92–94
updating, 84, 94–95

create action, 84, 91–92
definition, 82
index action, 84, 85–88
index template, creating, 86
new action, 84, 89–91
show action, 84, 92–94
Template is missing error, 86
update action, 84, 94–95

CRUD (create, read, update, delete), sample application
contacts

attributes, displaying, 92–94
creating, 84, 89–92
printing, 85–88
reading, 84, 85–88, 92–94
updating, 84, 94–95

create action, 84, 91–92
definition, 82
generator scripts, 102
index action, 84, 85–88

index template, creating, 86
new action, 84, 89–91
show action, 84, 92–94
Template is missing error, 86
update action, 84, 94–95

currency values, formatting, 195
CVS (Concurrent Versioning System), 7
cycle method, 196

D
\D, in pattern matching, 510
data

inserting into databases, 120–121
sending to the browser, 160–162

data models. See ActiveRecord; model layer
data processing, 193–195
data relationships

common options, 555
foreign keys, 134–135
legacy databases, 484, 486
many-to-many, 136–138
many-to-one, 134–136
methods

acts_as_list, 132
acts_as_tree, 132
belongs_to, 132, 134, 136, 556
book, 134
book=, 134
book.nil?, 134
build_book, 134
build_cover_image, 133
collection, 135, 138
collection<<, 135, 138
collection.build, 136, 138
collection.clear, 136, 138
collection.create, 136, 138
collection.delete, 135, 138
collection.empty?, 136, 138
collection.find, 136, 138
collection=objects, 135, 138
collection.singular_ids, 135, 138
collection.singular_ids=ids, 135, 138
collection.size, 136, 138
cover_image, 133
cover_image=, 133
cover_image.nil?, 133
create_book, 134
create_cover_image, 133

575

Index D

has_and_belongs_to_many, 132, 137–138,
559–560

has_many, 132, 135–136, 557–559
has_one, 132, 133, 557

one-to-one, 132–134
data structures, mapping to object hierarchies, 71
database schema

creating, 117
definition, 118
location, 73
migrations, 117–119
online resources, 102
versions, 118–119

databases
aggregations, 144–145
columns

adding, 120
attribute type, 124
decimal precision, 124
decimal scale, 124
default value, 124
maximum size, 125
metadata, reading, 124–125
metadata attributes, 124–125
migrating, 120
names, 124
null attributes, 124
removing, 120
renaming, 120
Ruby type, 125
as unique identifiers, 124

composite primary keys, 111
composition design pattern, 144–145
configuring, 213–214
creating, 213–214
deleting records, 130
detecting, 79
environments, 213–214
finding, by name, 79
finding records, 126–129
legacy

alongside Rails databases, 484–487
automation features, 485
belongs_to relationship, 484
field names, overriding, 482–484
fixture loading, automatic, 485
has_and_belongs_to_many relationship, 484
has_many relationship, 484
has_one relationship, 484

many-to-many relationship, 486
naming conventions, 482–484
overview, 481–482
pluralize_tablenames property, 483
primary_key_prefix_table property, 483
relationship options, 484, 486
table names, overriding, 482–484
table_name_prefix property, 483
table_name_suffix property, 483

migrations
adding columns, 120
columns, 120
data, inserting, 120–121
indexes, adding and removing, 120
Migration class, 116
naming conventions, 119
overview, 115–116
removing columns, 120
renaming columns, 120
Ruby on Rails, 560–562
running with Rake, 118
schema, 117–119
schema_info table, 118–119
self.down method, 116
self.up method, 116
tables, 119–120

models, creating, 112–113
MySQL, 2
MySQLite, 211
naming conventions, 110–112
objects, 109
ORM (object relational mapping), 71, 108–109
overriding primary keys, 111
primary keys, 111
Rails applications, default, 211
Rails data

alongside legacy data, 484–487
creating, 551–552
deleting, 555
overview, 550–551
reading, 553–554
relationships, 555–560
updating, 554–555
validations, 551–552

reading data
attributes, 125
column metadata, 124–125
dynamic finders, 127–128
find method, 126–127

576

IndexD

databases (continued)
find_all method, 127
find_by method, 127–128
find_by-SQL method, 127–128
finding records, 126–129
sorting returned objects, 127

records, creating, 122–124
relational, 71, 108–109
retrieving records from, 82
setting up, 77–79
single table inheritance, 142–143
sorting returned objects, 127
table names, overriding, 110
tables

alternating colors, 196
create_table method, 119–120
creating, 119–120
dropping, 119–120
drop_table method, 119–120
methods, 119–120
names, overriding, 110, 482–484
naming conventions, 110
rename_table method, 119–120
renaming, 119–120

tables, naming conventions, 110
transactions, 145–146
updates, timestamping, 124
updating, 130

date, e-mail sent, 490
date and time

date values
>> (greater-than signs), date incrementing, 45
<< (less-than signs), date decrementing, 45
advancing by increments, 45
comparing, 45
current date, getting, 44–45
Date class, 44–45
DateTime class, 45–46
in forms, 194
next day, getting, 45
time values, adding, 45–46

time values
converting to text, 194
date values, adding, 45–46
selecting on forms, 194

timestamps
database updates, 124
distance between, 194

timezones, selecting on forms, 191–192

DateHelper module, 194
date_select method, 194
date_time method, 194
date.toJSON method, 391
db directory, 73
debug method, 197
debugging, 197, 375–376
DebugHelper module, 197
decimal separators, specifying, 195
def keyword, 26
default attribute, 124
delay method, 202, 549
DELETE method, 468–469, 473–474
delete method

arrays, 48
Book Shelf, 284–286
HTTP request type, 352
Rails, 130

deleting. See also CRUD (create, read, update, delete)
array elements, 48
books from Book Shelf, 284–286
columns, database, 120
database records, 130
indexes, database, 120
plugin sources, 428
plugins, 429
Rails data, 555
RESTful resources, 472–473
substrings, 39–40

deployment, 494–500
:descendant key, 356
descendant selector, 387
destroy action, 130, 469–470, 472–473
development environment, 7–11, 114–115
DHH. See Hansson, David Heinemeier
directory structure. See also specific directories

architecture, 73
Book Shelf, 211–213
Capistrano deployment, 496–497
contact manager, 75–76
creating, contact list manager, 75–76
generators, 417
plugins, 430

:disabled pseudo-class, 388
distance_of_time_in_words method, 194
doc directory, 73
documentation files, location, 73
dollar sign ($)

global variable names, 512
in regular expressions, 510

577

Index E

domain-specific language (DSL), 107, 109
dom_id method, 188
Don’t Repeat Yourself (DRY) philosophy, 69
dot (.), dot operator, 27
double quotes (“), string literals, 38
drag and drop

accept option, 409
change option, 408
constraint option, 408, 410
containment option, 409
direction constraint, 408, 410
drag handles, 407–408, 411
draggable elements, creating, 406–408
droppable elements, creating, 408
format option, 410
ghosting option, 406
greedy option, 409
handle option, 407–408, 411
hoverclass option, 409, 411
only option, 411
overlap option, 409, 411
snap option, 408
snap to grid, 408
sortable lists, 409–411
tag option, 411

drag handles, 407–408, 411
dragdrop.js file, 219
draggable elements, creating, 406–408
draggable method, 549
dropout effect, 398
droppable elements, creating, 408
dropping database tables, 119–120
drop-receiving method, 549
drop_table method, 119–120
DRY (Don’t Repeat Yourself) philosophy, 69
DSL (domain-specific language), 107, 109
duck typing, 16–17
duration option, 398
dynamic code extension, plugin for, 437–439
dynamic finders, 127–128
dynamic programming, 64
dynamic typing, 16

E
E (error) indicator, 347
E editor, 9
-e option, 24

each method, 50, 56, 390
Eclipse Foundation, 10
Eclipse IDE, 10
edit action, 472–473
editing

book reviews, 329
in place, 402–405

editors
E, 9
versus IDEs, 8–11
in-place editing, 402–405
Mac based, 8
TextMate, 8–9
Windows based, 9

effects.js file, 219
else statement, 60–61
e-mail

addresses
from, 490
converting to links, 196
validating, 230

attachments, 489
bcc (blind carbon copy), 489
body of message, 489
cc (carbon copy), 489
character set, specifying, 490
configuring, 487–488
content type, specifying, 490
headers, 490
mailer model, generating, 488–489
mailer name, overriding, 490
MIME version, specifying, 490
multi-part messages, sorting, 490
outbound e-mail, configuring, 487–488
overview, 487
receiving e-mail, code for, 491–492
recipients list, 490
send date, 490
sending e-mail, code for, 489–491
SMTP versus SendMail, 487–488
subject line, 490
unit test, 368–370

e-mail field, 226
empty? method, 48
:empty pseudo-class, 388
:enabled pseudo-class, 388
=end, multi-line comments, 21
engines, 463–465. See also generators; plugins

578

IndexE

ensure blocks, 61–62
ensure statement, 61–62
Enumerable module, 63
environments

ActiveRecord, 114–115
databases, 213–214
development, 7–8, 114–115
production, 114–115
test, 114–115

eql? method, 44–45
equal, greater-than (=>), input prompt, 81
equal sign (=)

defining setter methods, 34
method names, 513
in names, 34–35

equal signs (===), in case statements, 518–519
ERb (Embedded Ruby) code, 179–181
.erb file extension, 177
ERB template files, 72
error handling. See exception handling
error information, from attribute validation, 139
error messages

converting to strings, 190
customizing, 142
Template is missing, 86
warning: parenthesize argument(s)..., 21

error_message_on method, 190
error_messages_for method, 190
:escape parameter, 154
escaping

JavaScript, 193
reserved characters, regular expression, 509

event handling, JavaScript extensions, 393
exception handling

backtrace method, 58
begin statement, 58–60
else statement, 60–61
e-mail notification, plugin for, 447–449
enabling, 58–59
ensure blocks, 61–62
ensure statement, 61–62
error information, getting, 58
Exception objects, 57
Exception subclasses, 57
message method, 58
NoMemoryError class, 57
object oriented, 57
post-error housecleaning, 61–62
raise method, 58–60, 523–524

raising exceptions, 58–60, 523–524
rescue blocks, 58–60
rescue statement, 58–60
retry statement, 60
ScriptError class, 57
SecurityError class, 58
SignalExceptionError class, 58
StandardError class, 58
SystemExit class, 58
SystemStackError class, 58
throw statement, 57
throwing exceptions, 58–60, 523–524

Exception objects, 57
Exception subclasses, 57
exception_notifier plugin, 447–449
excerpt method, 196
exclamation point (!), method names, 512
executing, Ruby programs, 23–24
executing code, repeating with iterators, 56
expire_page method, 170
expressions

conditional
break keyword, 521
case statement, 519
if statement, 516–517
for loop, 519–520
loop keywords, 521
next keyword, 521
redo keyword, 521
retry keyword, 521
unless statement, 517
until loop, 521
while loop, 520

literal
arrays, 506–507
Boolean, 507
floating point, 508
hashes, 507
numbers, 508
ranges, 508
regular expression, 508–510
strings, 510–511
symbols, 511–512

on multiple lines, 506
syntax, 506
types of, 505

extending classes, 37, 529–530
extensions, loading, 24
extracting archived files, 256

579

Index F

F
F (failure) indicator, 347
$F method, 389
fade effect, 397
:failure option, 395
feedback, sending, 160–161
field labels, forms, 190
field names, overriding in legacy databases, 482–484
Fielding, Roy, 469
file extensions, 176–177. See also specific extensions
file I/O, 522–523
file locations, 73, 76
:file option, 175
:file parameter, 162
file_field method, 190
file_field_tag method, 192
files, sending to the browser, 162
filtering pages, 246–248
filters for action methods

after, 164
after_filter method, 164, 544
around, 164–165
around_filter method, 165, 544
before, 163–164, 246–248
before_filter method, 163–164, 246–248, 544
definition, 163
description, 544
multiple, 544
private method, 166–167, 531
protected method, 166–167, 531
protection levels, 166–167
public method, 166–167, 531
scope, specifying, 544

find method, 126–129
find_all method, 127
find_by method, 127–128
find_by_isbn method, 282–283
find_by_keyword method, 257
find_by-SQL method, 127–128
finding database records, 126–129
find_or_create_by_isbn method, 281
first method, 48, 50, 390
:first pseudo-class, 388
first_name field, 226
Fixnum class, 41
fixture files, 80

fixtures
automatic loading in legacy databases, 485
functional tests, 349–351
unit tests, 338, 363

flash feature, 160–161
flash hash, 352
flash.keep method, 161
flash.now method, 161
flatten method, 390
Flickr on Rails, online resources, 102
Float class, 41
floating numbers, converting to integers, 41
floating point, literal expressions, 508
flow control. See control flow
fold effect, 398
folders. See directory structure
for loop, 519–520
foreign keys, 111, 134–135
format option, 410
formats, ActionView, 176–179
form_for method, 90, 190–191
FormHelper module, 190–191
FormOptionsHelper module, 191–192
forms

Ajax, 199–200
changes, monitoring, 199
check boxes, 190, 192
country, selecting, 191–192
creating, 200
dates, constructing or selecting, 194
field labels, 190
field values, getting, 389
hidden fields, 190, 192
objects, selecting, 191–192
password masking, 191–192
radio buttons, 191–192
remote submission, 200
for searches, 261–263
selecting buttons, 191
submit buttons, 90
submitting remotely, 200
text input, 191–192
time range, converting to text, 194
time values, selecting, 194
time zone, selecting, 191–192
user input, 191–192

FormTagHelper module, 192

580

IndexF

forward slash (/), delimiter, 508–509
Fowler, Martin, 72
fps (frames per second) option, 398
fragment caching, 171
from address, e-mail, 490
from option, 399
full-stack framework, 68
function calls, JavaScript, 202
functional testing. See testing, functional

G
Garrett, Jesse James, 394
generator scripts

code, 74
controller classes, 83
CRUD functions, 102
model classes, 79–82
project skeletons, 74–77, 98–102
scaffolding, 98–102
view classes, 83
view templates, 102
WebScaffolding, 98–102

generators. See also engines; plugins
code, 74
commands, main block, 420
controller classes, 83
CRUD functions, 102
manifest method, 420
m.migration_template method, 420
model classes, 79–82
m.readme method, 420
online resources, 416
options, 540
overview, 416
in plugins, 439
project skeletons, 74–77, 98–102
Rails applications, 538–540
readme file, 420
running, 424–425
scaffolding, 98–102
standard, 538–539
templates, copying files from, 420
templates, creating, 421
view classes, 83
view templates, 102
WebScaffolding, 98–102
writing, 417–421

GET method, 468–469, 473
get method, 352

getter methods, 35–36
getters, 32–36
getting, variable values, 32–36
ghosting option, 406
Git Hub, 8
GIT version control, 8
Golick, James, 449
Google maps, 394
:greater_than key, 356
greater-than sign (>), inheritance, 37
greater-than signs (>>), input prompt, 81
greedy option, 409
grouping, regular expression elements, 509
grow effect, 397
gsub - method, 40
gsub! method, 40
GZIP files, extracting, 256

H
$H method, 389
HABTM method. See has_and_belongs_to_many

method
handle option, 407–408, 411
Hansson, David Heinemeier

“A World of Resources,” 468
inventing Ruby on Rails, 67
on opinionated software, 69
on RESTful development, 468

has_and_belongs_to_many method, 132, 137–138,
559–560

has_and_belongs_to_many relationship,
legacy databases, 484

hash, equal... sign (#=>), return value indicator, 40
Hash class, 49
hash sign (#)

comment delimiter, 20–21
expression indicator, 39

hashes. See also arrays; ranges
{ } (curly brackets), enclosing hashes, 49
[] (straight brackets), enclosing hash elements, 49
creating, 49, 389
definition, 48
empty, checking for, 49
functional tests, 352
indexes, 49
iterators for, 56
keys, counting, 49
keys, getting, 49
key-value pairs, 49

581

Index I

literal expressions, 507
size, determining, 49
values, getting, 49

hash_password method, 235
hash.toJSON method, 391
has_many method, 132, 135–136, 557–559
has_many relationship, legacy databases, 484
has_one method, 132, 133, 557
has_one relationship, legacy databases, 484
head method, 352
header, template, 219
headers, e-mail, 490
helper methods. See ActionView, helper methods
helper modules, controllers, 547–548
Heroku IDE, 10–11
hidden form fields, 190, 192
hidden_field method, 190
hidden_field_tag method, 192
hide method, 549
highlight effect, 397
highlight method, 196
highlighting text, 196
home page, creating

Book Shelf, 238–240
controller class, creating, 215–216
controller class, modifying, 247–248
default route, setting up, 225
examples, 207–208, 215, 239
layout template. See also styles

body content, 220
body header, 219
body sidebar, 219–220, 250–252
code sample, 217–218
HTML head, 218
index view template, 221
page title, 218

styles, 222–224. See also templates
testing the page, 221

hooks, plugin for, 437–439
:host parameter, 154
hot deployment, 498
hoverclass option, 409, 411
HTML

anchor tags, stripping from strings, 195
converting text to, 196
creating, helper methods for, 188–189
entities, stripping from strings, 195
stripping from strings, 195

HTML, XHTML, and CSS Bible, 4th Edition, 222

.html file extension, 178

.html.erb file extension, 176
HTTP methods, 468–469

I
.ics file extension, 178
id field, 226
id2name method, 42
IDEs, 8–11
if statement, 52, 516–517
if...else statements, 53
ImageScience library, 461
image_submit_tag method, 192
include? method, 39, 50
including, classes with modules, 529–530
indenting code lines, 22
index action, 84, 85–88, 472–473
index template, creating, 86
index templates, 86
index view template, 221
indexes

arrays, 47
database, 120
hashes, 49

indexOf method, 390
inheritance

definition, 36
overview, 36–37
Prototype, 392–393
self variable, 529
single table, 142–143

initialize method, 27–28, 257, 531
initializing

classes, 531
instances, 27–28

init.rb file, 431
:inline option, 176
in-place editing, 402–405
input handling. See controller layer
insert-html method, 550
insert_html method, 200
inspect method, 390
installing

Capistrano, 495–496
content-tagging plugin, 292–294
Instant Rails on Windows, 2–6
plugins, 429
Ruby on Rails on Linux, 6

582

IndexI

installing (continued)
Ruby on Rails on Mac OS X, 7
Ruby/AWS library, 254–255

install.rb file, 431
instance methods, 28–29, 532–533
instance variables, 30–31
instances

creating, 27–28
definition, 25
initialize method, 27–28
initializing, 27–28
naming conventions, 27
new method, 27–28
object constructors, 27–28

Instant Rails installer, 3
integer? method, 41
integer values, iterators for, 56
integers. See also numbers

bases, 508
converting to floating numbers, 41
identifying, 41

integration testing, 370–373
integration_test generator, 538
Intellij IDEA IDE, 9–10
:interactive option, 395
Internet resources. See online resources
intersect method, 390
invalid? method, 139–140
invoke command, 498
I/O, file, 522–523
irb, 19–20
IRC channel for Ruby on Rails, 103
irregular plurals, naming conventions, 110
iterators

for arrays, 56
definition, 56
each method, 56
for hashes, 56
for integer values, 56
map method, 56–57
for ordered elements, 57
repeatedly executing code, 56
times method, 56
upto method, 57

J
JavaScript. See also RJS (Ruby JavaScript)

creating, 192–193
fragments, creating, 72
helper methods, 192–193, 201–202

alert calls, 202
testing, 411–413

JavaScript extensions
$ methods, 386–389
array methods, 390
arrays, 388–391
array.toJSON method, 391
attribute selector, 387
:checked pseudo-class, 388
child selector, 387
class selector, 387
classes, defining, 392–393
date.toJSON method, 391
descendant selector, 387
:disabled pseudo-class, 388
:empty pseudo-class, 388
:enabled pseudo-class, 388
event handling, 393
:first pseudo-class, 388
form field values, getting, 389
hashes, creating, 389
hash.toJSON method, 391
inheritance, 392–393
JSON support, 391–392
:last pseudo-class, 388
:nth pseudo-class, 388
number.toJSON method, 391
Object.toJSON method, 391
OOP (object-oriented programming), 392–393
ranges, creating, 389
selecting page elements, 386–388
sibling selector, 387
strings, converting to arrays, 389
string.toJSON method, 391
type selector, 387

JavaScript libraries. See Prototype; script.aculo.us
JavaScriptHelper module, 193
javascript_include_tag method, 188
javascript_tag method, 193
JetBrains, 9
.js file extension, 178

583

Index M

JSON (JavaScript Object Notation)
converting arrays, 390, 391
data, sending to the browser, 162
definition, 391
objects, converting text to, 202
Prototype library support, 391–392

:json option, 176
:json parameter, 162

K
keys

composite primary, 111
foreign, 111, 134–135
functional tests, 356
hashes, 49
naming conventions, 111–112
overriding primary, 111
primary, 111
table, 110–112

key-value pairs, hashes, 49

L
-l option, 24
label method, 190
labels, form fields, 190
languages. See programming languages
last method, 48, 50, 390
:last pseudo-class, 388
lastIndexOf method, 390
last_login field, 226
last_name field, 226
layout templates

body content, 220
body header, 219
body sidebar, 219–220, 250–252
code sample, 217–218
contact manager, 96–98
content insertion point, indicating, 97
<%=@content_for_layout%> code, 97
HTML head, 218
index view template, 221
page title, 218
stylesheets, 97–98

layouts, ActionView, 182–185
legacy databases. See databases, legacy
length method, 39

less than, equal... (<=>)
date comparison, 45
time comparison, 44

:less_than key, 356
lib directory, 73, 431
libraries. See also Prototype library; script.aculo.us library

Action Pack, 72
ActiveRecord, 71–72
architecture, 71–72
ImageScience, 461
Minimagick, 461
required for plugins, 461
RMagick, 461
Ruby/AWS, 252, 254–255

Library Lookup Project, 330
limit attribute, 125
line mode, 24
links, Ajax, 394–395
link_to method, 193
link_to_if method, 189
link_to_remote method, 199, 306–307
link_to_unless method, 189
link_to_unless_current method, 189
Linux, Ruby on Rails, 6
literal expressions. See expressions, literal
literal method, 202
:loaded option, 395
:loading option, 395
log directory, 73
log files, 76, 130–131
logger method, 543
login, unit test, 367–368
login field, 226
login form, on signup page, 248
login function, 241–242
login method, 241–242
login partial form, 242–245
login_count field, 226
logout function, 242, 245–246
logout method, 242
loop keywords, 521
loops, 54, 519–521

M
MacDonald, Ian, 252
mailer generator, 538
mailer name, overriding, 490

584

IndexM

mailing list for Ruby on Rails, 103
mail_to method, 189
make utility. See Rake tool
manifest method, 420
many-to-many relationship, legacy databases, 486
many-to-many relationships, 136–138
many-to-one relationships, 134–136
map method, 56–57
Markdown, converting text to, 196
markdown method, 196
masking passwords, 191–192
Matsumoto, Yukihiro, 15
Matz, 15
Memcached session storage, 169
message method, 58
messages, sending to objects, 18. See also error messages
metaprogramming, 107
method_div_for method, 189
method_missing method, 64
methods. See also actions; ActionView, helper methods;

modules; specific methods.
. (dot), dot operator, 27
{ } (curly braces), 26
= (equal sign), in names, 34–35
blocks, passing to, 55–56, 516, 526–527
calling, 29, 515–516
chaining, 45
class, definition, 29–30
class, looking up, 532–533
defining, 25–26, 28–30, 64, 524–525
definition, 18
getter, 35–36
instance, definition, 28–29
instance, looking up, 532–533
missing, 64
modifying at runtime, 64
naming conventions, 512–513
parameter lists, 26
parameters

blocks, passing as, 55–56
definition, 26
syntax, 26, 525

private method, 166–167, 531
protected method, 166–167, 531
protection levels, 166–167
public method, 166–167, 531
return statements, 26

return values, 524–525
setter, 34–36

migrate command, 497
Migration class, 116
migration class file, example, 80
migration files, location, 73
migration generator, 538
migrations. See also ActiveRecord, migrations; databases,

migrations
Book Shelf, 228–229
books, Book Shelf, 265–266
database deployment, 497
deployment, 497
scripts, 74
user model, 228–229

MIME version, specifying, 490
Minimagick library, 461
MIT-LICENSE file, 431
mixins, 62–63
m.migration_template method, 420
mocks, 343
model classes, 74, 79–82
model generator, 539
model layer, 70, 71–72. See also ActiveRecord
model object file, 80
models

ActiveRecord, creating, 112–113
commenting, plugin for, 446–447
databases, creating, 112–113
Rails data, 550–560

modules. See also mixins
versus classes, 528
Comparable, 63
defining, 62, 527–528
definition, 62
Enumerable, 63
mixins, 62–63
naming conventions, 527
top-level, placing a class at, 528–529

Mongrel Web server, 536
m.readme method, 420
mutators. See setters
MVC (Model-View-Controller) design pattern, 70–73
MySQL, 2
MySQLite, 211

585

Index O

N
name attribute, 124
named routes, 152–153
naming conventions

actions, 157
ActiveRecord, 110–112
ambiguity, resolving, 513
camel-casing, 110
classes, 27, 110
controllers, 157
database tables, 80
databases, 110–112
file extensions, 177
foreign keys, 111
instances, 27
irregular plurals, 110
legacy databases, 482–484
methods, 512–513
migrations, 119
model classes, 80
partial templates, 175–176
pluralizations, 110
primary keys, 111
projects, 211
singular versus plural, 82, 110
table keys, 110–112
tables, 110
user model classes, 227
variables, 27, 512–513

NetBeans IDE, 9
new action, 84, 89–91, 472–473
new method, 27–28
newline character, suppressing, 181
next keyword, 521
NoMemoryError class, 57
:nth pseudo-class, 388
null attribute, 124
NumberHelper module, 195
numbering, variables, 509
numbers

bases, 508
built-in methods, 41
bytes, converting to decimal, 195
class, determining, 41
currency, 195
decimal separators, 195
floating, 41
helper methods, 195

integers, 41
literal expressions, 508
percentages, 195
phone numbers, 195
precision, 195
representing with classes, 41
rounding, 41
thousands separators, 195
zero value, detecting, 41

number_to_currency method, 195
number_to_human_size method, 195
number.toJSON method, 391
number_to_percentage method, 195
number_to_phone method, 195
number_with_delimiter method, 195
number_with_precision method, 195
numeric values, validating, 141

O
object constructors, 27–28
object relational mapping (ORM), 71, 108–109
object-oriented programming (OOP). See OOP

(object-oriented programming)
objects. See also attributes; instances; methods;

scalar objects
ActiveRecord, 109
attributes, 18
databases, 109
defining, 24–25
in Ruby, 18–19
sending messages to, 18
type, determining, 19

Object.toJSON method, 391
observe_field method, 199
observer generator, 539
observer_form method, 199
one-to-one relationships, 132–134
online resources

Amazon Developer Token, 253
Amazon Web services accounts, 253
Amazon Web Services Developer Connection, 253
attribute validation, 140
BitNami Ruby Stack, 5
Book Shelf source code, 343
database schema, 102
Flickr on Rails, 102
generators, 416

586

IndexO

online resources (continued)
Instant Rails installer, 3
learning resources, 102
Library Lookup Project, 330
Mongrel Web server, 536
Prototype, 382
Rails applications, 67
Rails IRC channel, 103
Rails plugins, 425
Ruby download page, 535
Ruby on Rails, Linux, 6
Ruby on Rails, Mac, 7
Ruby on Rails mailing list, 103
script.aculo.us visual effect demos, 397
script.aculo.us Web site, 382
Streamlined, 453
string objects, 40
SVN, free account, 7
“A World of Resources,” 468

:only key, 356
only option, 411
:only_path parameter, 154
OOP (object-oriented programming). See also classes;

methods; objects; variables
overview, 18–19
Prototype, 392–393

operators, 513–515
opinionated software, 69–70
ORM (object relational mapping), 71, 108–109
outbound e-mail, configuring, 487–488
overlap option, 409, 411

P
page caching, 170
page title, template, 218
paginating_find plugin, 442–444
pagination, plugin for, 442–444
parameter lists, 26
parameters

blocks, passing as, 55–56
definition, 26
methods, syntax, 525syntax, 26
upon request, 158–159

params method, 543
parent classes, 36–37
:parent key, 356

parentheses (())
method calls, 515
in regular expressions, 509
syntax, 21

:partial option, 176
partial view templates

definition, 175
naming conventions, 175–176
organizing view template code, 185–186

:password parameter, 154
password_field method, 191
password_field_tag method, 192
password_hash field, 226–227
passwords

masking, 191–192
registration, 234–235
security, 226–227
unit test, 365–367
validating, 231

password_salt field, 226–227
pattern matching, 509–510
percentages, formatting, 195
performance. See caching
periodically_call_remote method, 200
phone numbers, formatting, 195
pipe character (|)

block delimiter, 526
in pattern matching, 510

Piston program, 439–440
plugin files, location, 73
plugin generator, 539
plugins. See also engines; generators

acts_as_rateable, 441
acts_as_state_machine, 444–446
acts_as_taggable, 293, 297–298, 460–461
acts_as_taggable_on_steroids, 293
acts_as_taggable_redux, 293–294, 460–461
acts_as_tagger, 298
annotate_models, 446–447
attachment_fu, 461–463
available, listing, 427
available online, 425
components, 430–431
directory structure, 430
exception_notifier, 447–449
generators included in, 439
ImageScience library, 461

587

Index P

init.rb file, 431
installing, 429
install.rb file, 431
lib directory, 431
libraries required, 461
managing, 439–440
Minimagick library, 461
MIT-LICENSE file, 431
overview, 425–426
paginating_find, 442–444
Piston program, 439–440
Rakefile file, 431
README file, 431
removing, 429
resource_controller, 449–451
restful_authentication, 451–452
RMagick library, 461
Ruby on Rails, 562–563
script/plugin command, 425
script/plugin discover command, 428–429
script/plugin install command, 429
script/plugin list command, 427
script/plugin remove command, 429
script/plugin source command, 428
script/plugin sources command, 427–428
sources, 427–429
tagging, 293
tagging content, 292–294
tasks directory, 431
test directory, 431
uninstall.rb file, 431
updating, 429
uses for

callbacks, 437–439
classes, extending with mixins, 435–437
classes, opening, 437
content tagging, 460–461
dynamic code extension, 437–439
exception handling, e-mail notification, 447–449
hooks, 437–439
models, commenting, 446–447
pagination, 442–444
rating systems, 441
RESTful resource controllers, 449–451
scaffolding, ActiveScaffold, 458–460
scaffolding, Streamlined, 453–458
state machine support, 444–446
tag clouds, 461

uploading files, 461–463
user authentication, 451–452

will_paginate, 442–444
writing, 431–433

pluralizations, 110, 196, 483. See also singular versus plural
pluralize method, 196
pluralize_tablenames property, 483
plus sign (+), in regular expressions, 510
port assignment, 76
POST method, 468–469, 473
post method, 352
pound, equal... sign (#=>), return value indicator, 40
pound sign (#)

comment delimiter, 20–21
expression indicator, 39

precision attribute, 124
precision of numbers, specifying, 195
primary attribute, 124
primary keys, 111
primary_key_prefix_table property, 483
printing, contacts, 85–88
private method, 166–167, 531
production environment, 114–115
programming languages. See also OOP (object-oriented

programming)
compiled, 17
interpreters, 17
scripted, 17–18

projects. See also databases
creating

ActiveRecord, 112–113
contact list manager, 75–77
online book shelf, 211

directory structure, creating
Book Shelf, 211–213
contact list manager, 75–76

naming, 211
skeletons, creating

Book Shelf, 211–213
contact list manager, 74–77
scaffolding, 98–102
WebScaffolding, 98–102

protected method, 166–167, 531
protecting pages, 246–248
protection levels, 166–167
:protocol parameter, 154
Prototype library

definition, 385
files, 382–383

588

IndexP

Protoctype library (continued)
including, 383–384
objects, creating, 198–200
overview, 384–385
Ruby’s influence on, 385
Web site for, 382

Prototype library, JavaScript extensions
$ methods, 386–389
array methods, 390
arrays, 388–391
array.toJSON method, 391
attribute selector, 387
:checked pseudo-class, 388
child selector, 387
class selector, 387
classes, defining, 392–393
date.toJSON method, 391
descendant selector, 387
:disabled pseudo-class, 388
:empty pseudo-class, 388
:enabled pseudo-class, 388
event handling, 393
:first pseudo-class, 388
form field values, getting, 389
hashes, creating, 389
hash.toJSON method, 391
inheritance, 392–393
JSON support, 391–392
:last pseudo-class, 388
:nth pseudo-class, 388
number.toJSON method, 391
Object.toJSON method, 391
OOP (object-oriented programming), 392–393
ranges, creating, 389
selecting page elements, 386–388
sibling selector, 387
strings, converting to arrays, 389
string.toJSON method, 391
type selector, 387

PrototypeHelper module, 198–200
prototype.js file, 219
public directory, 73
public method, 166–167, 531
puff effect, 398
pulsate effect, 398
push method, 48
PUT method, 468–469, 473–474
put method, 352, 500

Q
question mark (?)

method names, 512
in regular expressions, 510

quick start
BitNami Ruby Stack, 5
development environment, setting up

IDE versus editor, 8–11
version control, 7–8

installing
Instant Rails on Windows, 2–6
Ruby on Rails on Linux, 6
Ruby on Rails on Mac OS X, 7

Ruby on Rails components, 1
sample application, starting, 4

R
$R, 389
-r option, 24
%r (regular expression delimiter), 509
radio buttons, 191–192
radio_button method, 191
radio_button_tag method, 192
RadRails plugin, 10
Rails. See also REST (Representational State Transfer);

RESTful Rails; Ruby on Rails
IRC channel, 103
log files, debugging with, 375–376
testing in, 342–343

Rails applications
creating

directories and files, 536–537
generators, 538–540
rails command, 75, 536–537

default database, 211
online resources, 67

rails command, 75, 536–537
Rails Console

debugging with, 376
definition, 73
delete method, 130
deleting records, 130
destroy method, 130
development log files, 130–131
find method, 128–129
finding records, 128–129

589

Index R

update-attribute method, 130
updating records, 130

Rails extensions. See engines; generators; plugins
raise method, 523–524
raise statement, 58–60
raising exceptions, 523–524
Rake tool, 118
Rakefile file, 431
random_string method, 235
Range class, 49–51
ranges. See also arrays; hashes

converting to arrays, 50
creating, 49–50, 389
definition, 49
first element, getting, 50
iterating through, 50–51
last element, getting, 50
literal expressions, 508
values, checking for, 50

rating systems, plugin for, 441
reading, contacts, 84, 85–88, 92–94
reading data. See also CRUD (create, read, update, delete)

attributes, 125
column metadata, 124–125
dynamic finders, 127–128
find method, 126–127
find_all method, 127
find_by method, 127–128
find_by-SQL method, 127–128
finding database records, 126–129
Rails databases, 553–554
sorting returned objects, 127

README file, 431
readme file, generators, 420
receiving e-mail, code for, 491–492
recipients list, e-mail, 490
RecordIdentificationHelper module, 188
records, creating, 122–124
RecordTagHelper module, 188–189
redirecting, 544–545
redirects, 160
redirect_to method, 160, 202
redo keyword, 521
reduce method, 390
registration, user account

controller, 232–234
passwords, 234–235
view, 235–238

regular expressions, 508–510

relationships, data. See data relationships
remote form submission, 200
remote_form_for method, 200
remote_function method, 200
remove method, 550
remove_column method, 120
remove_index method, 120
rename_column method, 120
rename_table method, 119–120
renaming tables and columns, 119–120
render method, 159, 175–176
rendering views, 174–176, 544–545
reopening classes, 65
replace method, 201, 550
replace_html method, 201, 550
Representational State Transfer (REST). See REST

(Representational State Transfer); RESTful Rails
request method, 543
request types, functional tests, 351–352
require statement, 42–43
rescue blocks, 58–60
rescue statement, 58–60
reserved characters, regular expressions, 509
resource generator, 474–481, 539
resource_controller plugin, 449–451
resources, RESTful. See also REST (Representational State

Transfer); RESTful Rails
creating instances, 472–473
custom actions, 476
deleting instances, 472–473
displaying instances, 472–473
generating, 474–481
listing, by type, 472–473
nesting, 476
resource generator, 474–481
resources method, customizing, 476
scaffold generator, 474–481
updating, 472–473

resources method, customizing, 476
respond_to method, 177, 546–547
REST (Representational State Transfer). See also

ActiveResource; RESTful Rails
application design consistency, 470
architectural advantages, 470–471
clean URLs, 470
CRUD-based controllers, 470
integration ease, 471
representations, 471
Web service architecture, 471

590

IndexR

RESTful Rails. See also resources, RESTful
actions, 469
create action, 469–470, 472–473
DELETE method, 468–469, 473–474
destroy action, 469–470, 472–473
edit action, 472–473
GET method, 468–469, 473
HTTP methods, 468–469
index action, 472–473
new action, 472–473
output requests, responding to, 546–547
POST method, 468–469, 473
PUT method, 468–469, 473–474
respond_to method, 546–547
routing, 472–473
show action, 469–470, 472–473
update action, 469–470, 472–473

RESTful resource controllers, plugin for, 449–451
restful_authentication plugin, 451–452
retry keyword, 521
retry statement, 60
return statements, 26
return values, methods, 524–525
.rhtml file extension, 176
RJS (Ruby JavaScript). See also JavaScript

files, 72
helper methods, 200
HTML, inserting or replacing, 200–201
templates, 549–550
views, 549–550

RMagick library, 461
rollback command, 498
rolling back deployment, 498
round method, 41
rounding numbers, 41
routing

anonymous routes, 152
custom default routes, defining, 151–152
custom routes, defining, 149–151
default route, setting up, 225
flow of events, 149
named routes, 152–153
RESTful, 541–543
RESTful Rails, 472–473
traditional, 540–541
url_for method, 153–154
URLs, constructing, 153–154

.rss file extension, 178

Ruby. See also Rails
command-line options, 24
creating Ruby programs, 23–24
extensions, loading, 24
irb, 19–20
line mode, 24
running Ruby programs, 23–24
source files, checking syntax, 24
syntax, 20–23
verbose mode, 24
version information, displaying, 24
warning messages, enabling, 24

Ruby download page, 535
ruby executable, definition, 23
Ruby JavaScript (RJS). See RJS (Ruby JavaScript)
Ruby on Rails. See also scripts

application stack, 1–2
applications, 68. See also Book Shelf; contact manager
architecture, 70–73
convention over configuration, 69–70
creator of, 15
current version, 67
definition, 15, 68
DRY (Don’t Repeat Yourself) philosophy, 69
first release, 67
full-stack framework, 68
functions, 68
IRC channel, 103
mailing list, 103
online resources, 67
opinionated software, 69–70
prerequisites, 535–536

Ruby/AWS library
description, 252
installing, 254–255

ruby-debug gem, debugging with, 376
RubyGems package manager, 535
run method, 500

S
\s, in pattern matching, 510
sanitize method, 195
SanitizeHelper module, 195
save, forcing after errors, 140
scaffold generator, 474–481, 539
scaffolding, 98–102

591

Index S

scaffolding enhancements, plugins for
ActiveScaffold, 458–460
Streamlined, 453–458

scalar objects. See also collections; objects
date and time

date values, 44–46
formatting, 46–47
overview, 42–43
required classes, 42–43
strftime method, 46–47
string representation, 46–47
time values, 43–46

numerics, 41
strings

{ } (curly brackets), expression indicator, 39
\ (backslash), escape character, 38
\ (backslash), literal character, 38
“ (double quotes), string literals, 38
(hash, pound sign), expression indicator, 39
‘ (single quotes), string literals, 38
built-in methods, 39–40
converting to/from symbols, 42
definition, 38
escaping reserved characters, 38
interpolation, 39
length, getting, 39
literals, 38
\n, insert newline character, 38
substitution, 38
substrings, 39–40

symbols, 42
scale attribute, 124
Schafer, Stephen M., 222
schema. See database schema
schema_info table, 118–119
script directory, 73
script.aculo.us, testing JavaScript, 411–413
script.aculo.us library

controls
auto-completion, 401–402
in-place editing, 402–405
sliders, 399–400

drag and drop
accept option, 409
change option, 408
constraint option, 408, 410
containment option, 409

direction constraint, 408, 410
drag handles, 407–408, 411
draggable elements, creating, 406–408
droppable elements, creating, 408
format option, 410
ghosting option, 406
greedy option, 409
handle option, 407–408, 411
hoverclass option, 409, 411
only option, 411
overlap option, 409, 411
snap option, 408
snap to grid, 408
sortable lists, 409–411
tag option, 411

including, 383–384
library files, 382–383
overview, 396
visual effects, 396–399
Web site for, 382

ScriptaculousHelper module, 193
ScriptError class, 57
script/plugin command, 425
script/plugin discover command, 428–429
script/plugin install command, 429
script/plugin list command, 427
script/plugin remove command, 429
script/plugin source command, 428
script/plugin sources command, 427–428
scripts

command-line utility, 73
files, location, 73
generators

code, 74
controller classes, 83
CRUD functions, 102
model classes, 79–82
scaffolding, 98–102
view classes, 83
view templates, 102
WebScaffolding, 98–102

migrations, 74
Rails Console, 73
Web server, 74
WEBrick, 74, 76

script/server command, 76
search_amazon method, 267–269

592

IndexS

searching Amazon. See also Book Shelf, Amazon integration
book migration, 265–266
book model

associating with user model, 266–267
creating, 264–267
search logic, implementation, 267–269

controllers, creating, 264
convert_amazon_results method, 267–269
find_by_keyword method, 257
by keyword, 257–260
results already on user’s shelf, 273–276
results page, creating, 269–276
results paging, 276–279
search action, creating, 264
search form, creating, 261–263
search_amazon method, 267–269

:secret parameter, 156
security

CSRF (cross-site request forgery) attack, 156
passwords

masking, 191–192
registration, 234–235
security, 226–227
unit test, 365–367
validating, 231

:secret parameter, 156
SQL Injection Attack, 127

SecurityError class, 58
select method, 191, 550
select_day method, 194
select_hour method, 194
selecting buttons, 191
selecting page elements, 386–388
select_minute method, 194
select_month method, 194
select_second method, 194
select_tag method, 192
select_year method, 194
self keyword, 30
self variable, 529
self.down method, 116
self.up method, 116
semicolon (;)

avoiding, 23
ending lines or statements, 22
separating statements, 22

sending e-mail, code for, 489–491
SendMail versus SMTP, 487–488

server, starting, 76
servers, grouping, 496
session data, storing, 167–169
session hash, 352
session method, 543
session storage, 167–169
session_migration generator, 539
set_from_amazon_result method, 281–282
set_primary_key method, 111
set_table_name method, 110
setter methods, 34–36
setters, 32–36
setting, variable values, 32–36
setup command, 496–497
shake effect, 398
show action, 84, 92–94, 469–470, 472–473
show method, 550
show_for_tag method, 300, 314
shrink effect, 397
:sibling key, 356
sibling selector, 387
sidebar

modifying, 250–252
tag clouds

displaying the cloud, 307–313
link_to_remote method, 306–307
static tag view, 311–313
tag_cloud_all method, 306–307
tag_cloud_revised method, 307–310
tag_cloud_user method, 306–307
view, creating, 303–307

template, 219–220
SignalExceptionError class, 58
simple_format method, 196
single quotes (‘), string literals, 38
single table inheritance, 142–143
singular versus plural

irregular plurals, 110
naming conventions, 110
pluralizations, defining, 110
pluralizing nouns, helper method, 196

singular versus plural naming conventions, 82
size method, 48, 390
skeletons

Book Shelf, 211–213
contact list manager, 74–77
creating, Book Shelf, 211–213
generators, 74–77, 98–102

593

Index T

scaffolding, 98–102
unit-test, 80
WebScaffolding, 98–102

slash (/), regular expression indicator, 40
slice - method, 39
slice! method, 39
SlideDown effect, 397
sliders, 399–400
SlideUp effect, 397
SMTP versus SendMail, 487–488
snap to grid, 408
snap option, 408
social networking. See also tagging content

avatars, 331
book ratings, 328
book recommendations, 330
book reviews

adding, 323–324, 327
associating reviews with users, 317
displaying, 318–323
editing, 329
illustrations, 314, 315, 318, 319
review controller, 324–325
review entry form, 322–324
review model, 315–317
review view, 317–324
stylesheet, 326

user profiles, 330–331
sortable lists, 409–411
sorting, returned database objects, 127
source files, checking syntax, 24
special effects, 396–399
SQL Injection Attack, 127
sql_type attribute, 124
squish effect, 398
StandardError class, 58
start command, 497
start page, default, 77
state machine support, plugin for, 444–446
static files, location, 73
static typing, 16
step method, 51
Streamlined, 453–458
string objects, online resources, 40
strings

\ (backslash), escape character, 38
\ (backslash), literal character, 38
{ } (curly brackets), expression indicator, 39

“ (double quotes), string literals, 38
(hash, pound sign), expression indicator, 39
‘ (single quotes), string literals, 38
built-in methods, 39–40
converting to arrays, 389
converting to/from symbols, 42
definition, 38
escaping reserved characters, 38
helper methods, 195
HTML anchor tags, stripping, 195
HTML entities, stripping, 195
interpolation, 39
JavaScript entities, stripping, 195
length, getting, 39
literal expressions, 510–511
literals, 38
\n, insert newline character, 38
stripping HTML, 195
substitution, 38
substrings, 39–40

string.toJSON method, 391
strip_tags method, 195
strongly typed systems, 16
styles, Book Shelf, 222–224
stylesheet_link_tag method, 188
stylesheets, 96–98
subject line, e-mail, 490
submit buttons, on forms, 90
submit method, 90
:submit option, 395
submit_tag method, 192
submitting forms remotely, 200
submit_to_remote method, 200
:success option, 395
superclasses, 529
SVN (Subversion), 7
SwitchOff effect, 398
Switchtower. See Capistrano
symbols, literal expressions, 511–512
SystemExit class, 58
SystemStackError class, 58

T
table keys, naming conventions, 110–112
table_name_prefix property, 483
table_name_suffix property, 483
tables, database. See databases, tables

594

IndexT

tag clouds
definition, 299
illustration, 299
plugin for, 461
in the sidebar

displaying the cloud, 307–313
link_to_remote method, 306–307
static tag view, 311–313
tag_cloud_all method, 306–307
tag_cloud_revised method, 307–310
tag_cloud_user method, 306–307
view, creating, 303–307

stylesheet for, 310–311
tag_cloud_user method, 300

:tag key, 356
tag option, 411
tag_cloud_all method, 306–307
tag_cloud_revised method, 307–310
tag_cloud_user method, 300, 306–307
tagging content. See also Book Shelf, social networking

acts_as_taggable plugin, 293, 297–298
acts_as_taggable_on_steroids plugin, 293
acts_as_taggable_redux plugin, 293–294
acts_as_tagger plugin, 298
books, displaying by tag, 300, 314
controller support for, 298–301
database migration, 294–296
model support for, 297–298
plugin, installing, 292–294
show_for_tag method, 300, 314
tagging plugin, 293
tags

creating, 296
displaying, 311–313
in-place editors, 313
making editable, 313
updates, saving, 300–301

update_tags method, 300–301
views, creating, 301–314

tagging content, tag clouds
definition, 299
illustration, 299
in the sidebar

displaying the cloud, 307–313
link_to_remote method, 306–307
static tag view, 311–313
tag_cloud_all method, 306–307
tag_cloud_revised method, 307–310
tag_cloud_user method, 306–307
view, creating, 303–307

stylesheet for, 310–311
tag_cloud_user method, 300

tagging plugin, 293
TagHelper module, 189
tags

creating, 296
displaying, 311–313
in-place editors, 313
making editable, 313
updates, saving, 300–301

TAR files, extracting, 256
tasks directory, 431
TDD (test-driven development), 335–336
template files, 72
Template is missing error, 86
:template option, 175
templates

copying files from, 420
ERb (Embedded Ruby), 548–549
ERB template files, 72
file extensions, 176
files, 72
for generators, creating, 421
index, 86
layout

body content, 220
body header, 219
body sidebar, 219–220, 250–252
code sample, 217–218
contact manager, 96–98
content insertion point, indicating, 97
<%=@content_for_layout%> code, 97
HTML head, 218
index view template, 221
page title, 218
stylesheets, 97–98

rendering, 159
RJS (Ruby JavaScript), 549–550
views

<%- -%> delimiters, 180–181
blank lines, 181
commenting out ERb, 181
ERb (Embedded Ruby) code, 179–181
generating, 102
locating, 84
newline character, suppressing, 181
partial templates, 175–176, 185–186

test assertions. See assertions

595

Index T

test coverage, 374–375
test directory, 73, 431
test environment, 114–115
test runners, 340–341
test suites, 341–342
test-driven development (TDD), 335–336
testing

agile methodologies, 334
coverage, 374–375
database for, 343–344
debugging, tools for, 375–376
at the end of development, 335–336
general steps, 339
integration, 370–373
login function, 245–246
logout function, 245–246
new home page, 221
order of execution, 339
purpose of, 333–334
in Rails, 343
running tests, 347–348, 374
TDD (test-driven development), 335–336
validations, 230–232

testing, functional
adding tests, 357–360
creating tests

fixtures, 349–351
hashes, 352
keys, 356
request types, 351–352
test methods, 351–352

E (error) indicator, 347
F (failure) indicator, 347
overview, 345–347
purpose of, 343
running tests, 347–348
verifying tests, 357

testing, unit
assertions

definition, 336
maximum number of, 339
Test::Unit module, 336–337

authenticate method, 363–365
authentication, 363–365
fixtures, 338, 363
JavaScript, 411–413
overview, 361–363

purpose of, 361
test classes, overview, 338–339
test methods, 338–339
test runners, 340–341
test suites, 341–342
Test::Unit module, 336–342
validation

e-mail, 368–370
login, 367–368
passwords, 365–367
test_valid_email method, 369–370
test_valid_login method, 367–368
test_valid_password method, 366
validates_confirmation_of method, 365

test-related files, 80
Test::Unit module, 336–337
test_valid_email method, 369–370
test_valid_login method, 367–368
test_valid_password method, 366
text, helper methods

converting to JSON object, 202
e-mail addresses, converting to links, 196
in ERb output, 196
excerpts, extracting, 196
highlighting, 196
HTML conversion, 196
input on forms, 191–192
Markdown conversion, 196
pluralizing nouns, 196
Textile conversion, 196
URLs, converting to links, 196

text, sending to the browser, 162
.text file extension, 178
:text option, 176
:text parameter, 162
text representation. See strings
text_area method, 191
text_area_tag method, 192
text-field method, 90
text_field method, 191
text_field_tag method, 192
TextHelper module, 196
Textile, converting text to, 196
textilize method, 196
thousands separators, specifying, 195
throw statement, 57
throwing exceptions, 58–60, 523–524

596

IndexT

time values. See also date and time
converting to text, 194
date values, adding, 45–46
scalar objects, 43–46
selecting on forms, 194

times method, 56
time_select method, 194
timestamps

database updates, 124
distance between, 194

timezones, selecting on forms, 191–192
time_zone_select method, 192
tmp directory, 73
to option, 399
to_a method, 50
to_f method, 41
toggle method, 550
to_i method, 41
toJSON method, 390
to_sym method, 42
:trailing_slash parameter, 154
transactions, 145–146
transition option, 398–399
true/false evaluation. See conditionals
type attribute, 125
type inference, 16
type selector, 387
type systems, 16–17
types, definition, 16
typing, 16–17

U
underscore (_)

in integer literals, 508
method names, 512
in names, 27
partial template names, 175
variable names, 512

uninstall.rb file, 431
uniq method, 390
unit testing. See testing, unit
unit-test files, location, 73
unit-test skeleton file, 80
unless statement, 52, 517
until loop, 54, 521
update action, 84, 94–95, 469–470, 472–473
update command, 497

update-attribute method, 130
updated_at field, 124, 226
updates, timestamping, 124
update_tags method, 300–301
updating. See also CRUD (create, read, update, delete)

contacts, 84, 94–95
database records, 130
databases, 130
plugins, 429
Rails data, 554–555
RESTful resources, 472–473

upload command, 498
uploading files, deployment, 498
uploading files, plugin for, 461–463
upon request parameters, 158–159
upto method, 57
url_for method, 153–154, 189
UrlHelper module, 189
URLs

constructing, 153–154, 189
converting to links, 196
redirection, JavaScript, 202

user authentication. See authentication, users
user interface. See ActionView; view layer
user model. See also home page

authenticate method, 241–242
authentication, 241–242
class, 227
created_at field, 226
e-mail field, 226
field descriptions, 226
filtering pages, 246–248
first_name field, 226
id field, 226
last_login field, 226
last_name field, 226
login field, 226
login form, on signup page, 248
login function, 241–242
login method, 241–242
login partial form, 242–245
login_count field, 226
logout function, 242, 245–246
logout method, 242
migration, 228–229
password_hash field, 226–227
passwords, 226–227
password_salt field, 226–227

597

Index V

protecting pages, 246–248
registration

controller, 232–234
passwords, 234–235
view, 235–238

updated_at field, 226
validations

creating, 229–230
e-mail addresses, 230
passwords, 231
testing, 230–232

:user parameter, 154
user profiles, 330–331

V
-v option, 24
valid? method, 139
validate method, 551
validates_acceptance_of method, 141, 551
validates_associated method, 141, 552
validates_confirmation_of method, 141, 365, 552
validates_each method, 141, 552
validates_exclusion_of method, 141, 552
validates_format_of method, 141, 552
validates_inclusion_of method, 141, 552
validates_length_of method, 141, 552
validates_numericality_of method, 141, 552
validates_presence_of method, 139, 141, 552
validates_size_of method, 141, 552
validates_uniqueness_of method, 141, 552
validation

attributes
absence of, 141, 552
associated objects, 141, 552
against a block, 141, 552
built-in methods, 141
clear method, 142
clearing errors, 142
custom validations, 141–142
e-mail confirmation, 141, 552
error information, 139
error messages, customizing, 142
exclusion, 141, 552
forcing a save after errors, 140
format, 140–141, 552
implementing, 139–142
inclusion, 141, 552

invalid? method, 139–140
length, 141, 552
numeric values, 141, 552
online resources, 140
password confirmation, 141, 552
presence of, 139, 141, 552
size, 141, 552
uniqueness, 141, 552
user acceptance, 141, 551
user confirmation, 141, 552

e-mail addresses, 230
passwords, 231
testing, 230–232
unit tests

e-mail, 368–370
login, 367–368
passwords, 365–367
test_valid_email method, 369–370
test_valid_login method, 367–368
test_valid_password method, 366
validates_confirmation_of method, 365

validations, creating, 229–230
variables

assigning values to, JavaScript, 202
class, 31–32
controllers, 543
defining, 30–32
getting values, 32–36
instance, 30–31
naming conventions, 27, 512–513
numbering, 509
setting values, 32–36

vendor directory, 73
verbose mode, 24
version control, 7–8, 67
version information, displaying, 24
--version option, 24
view classes, generator scripts, 83
view layer, 70, 72. See also ActionView
view templates. See also partial view templates

<%- -%> delimiters, 180–181
blank lines, 181
commenting out ERb, 181
ERb (Embedded Ruby) code, 179–181
generating, 102
locating, 84
newline character, suppressing, 181
partial templates, 175–176, 185–186

598

IndexV

views
creating, 82–84
ERb (Embedded Ruby), 548–549
rendering, 174–176, 544–545
RJS (Ruby JavaScript), 549–550

visual effects, 396–399
visual_effect method, 550

W
\w, in pattern matching, 510
$W method, 389
-w option, 24
warning: parenthesize argument(s)... message, 21
warning messages, enabling, 24
weakly typed systems, 16
Web resources. See online resources
Web servers

cold deployment, 497
hot deployment, 498
starting, 497
WEBrick, 74, 76

WEBrick, 74, 76
WebScaffolding, 98–102
while loop, 54, 520
white space, 22

will_paginate plugin, 442–444
:with option, 395
without method, 390
“A World of Resources,” 468

X
XML

and ActiveResource, 492–494
content, sending to the browser, 162

.xml file extension, 178
:xml option, 176
:xml parameter, 162

Y
.yaml file extension, 178
yield statement, 55–56

Z
\Z, in pattern matching, 510
\z, in pattern matching, 510
zero? method, 41
zero value, detecting, 41
zipped files, extracting, 256

	Ruby On Rails Bible
	About the Author
	Credits
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	Ruby on Rails Quick Start
	Installing Instant Rails on Windows
	Installing Ruby and Rails on Mac OS X and Linux
	Setting up a Development Environment
	Summary

	Part I: First Steps with Rails
	Chapter 1: Learning Ruby
	The Nature of Ruby
	Object Oriented Programming
	The Basics of Ruby
	Classes, Objects, and Variables
	Built-in Classes and Modules
	Control Flow
	Organizing Code with Modules
	Advanced Ruby Techniques
	Summary

	Chapter 2: Getting Started with Rails
	What is Ruby on Rails?
	Rails Architecture
	Rails Scripts
	Your First Rails Application
	More to Get You Started
	Summary

	Part II: Rails In Depth
	Chapter 3: Using Active Record
	What is Active Record?
	Active Record Basics
	Setting up a Model
	Using Migrations
	Create, Read, Update, and Delete
	Defining Relationships
	Implementing Validations
	Custom Validations
	Advanced Active Record
	Summary

	Chapter 4: Controller: In Depth
	What is ActionController?
	All About Routing
	Creating and Using Controllers
	Using Filters
	Working with Sessions
	Caching
	Summary

	Chapter 5: View: In Depth
	ActionView
	Embedded Ruby
	Layouts
	Partials
	Helpers
	JavaScript, Ajax, and RJS
	Summary

	Part III: Developing a Complete Rails Application
	Chapter 6: Developing Book Shelf: The Basic Framework
	Application Overview
	Creating a Skeleton for the Application
	Create a Home Page
	Implementing Users
	Summary

	Chapter 7 :Developing Book Shelf: Adding the Core Functionality
	Adding Support for Books
	Refactor the sidebar code
	Integrating with Amazon
	Implementing a Search
	Implementing the Addition and Deletion of Books
	Displaying a User’s Books
	Implementing the Book Detail Page
	Summary

	Chapter 8: Developing Book Shelf: Social Support
	Adding Social Support
	Implementing Tagging
	Implementing Book Reviews
	Implementing Book Ratings
	Extending the Application
	Summary

	Chapter 9: Testing the Book Shelf Application
	Why Test?
	Using Test:: Unit
	Testing in Rails
	Setting Up a Test Database
	Functional Tests
	Unit Tests
	Integration Tests
	Running All Tests
	Test Coverage
	Debugging Techniques
	Summary

	Part IV: Advanced Rails
	Chapter 10: Using Prototype and script.aculo.us
	Prototype, script.aculo.us, and Rails
	Prototype Overview
	Extensions to JavaScript
	OOP with Prototype
	Event Handling
	Ajax
	script. aculo. us Overview
	Visual Effects
	Controls
	Drag and Drop
	JavaScript Testing
	Summary

	Chapter 11: Extending Rails
	Beyond the Core
	Generators
	Plugins
	Summary of Useful Plugins
	Engines
	Summary

	Chapter 12: Advanced Topics
	Beyond the Basics
	RESTful Rails
	Working with Legacy Databases
	Using ActionMailer
	ActiveResource and XML
	Deploying with Capistrano
	Summary

	Part V: Appendixes
	Appendix A: Ruby Quick Reference
	Basic Ruby Syntax
	Objects and Classes

	Appendix B: Ruby on Rails Guide
	Getting Started
	Controllers and Helpers
	Views
	Models
	Database Migrations
	Plugins

	Index

