

THE RAILS WAY

 Addison-Wesley Professional Ruby Series
Obie Fernandez, Series Editor

The Addison-Wesley Professional Ruby Series provides readers with practical, people-oriented, and in-depth
information about applying the Ruby platform to create dynamic technology solutions. The series is based
on the premise that the need for expert reference books, written by experienced practitioners, will never be
satisfi ed solely by blogs and the Internet.

Books currently in the series

The Ruby Way: Solutions and Techniques in Ruby Programming, Second Edition
Hal Fulton, ISBN 13: 9780672328848, ©2007

RailsSpace: Building a Social Networking Website with Ruby on Rails™
Michael Hartl & Aurelius Prochazka, ISBN 13: 9780321480798, ©2008

The Rails Way
Obie Fernandez, ISBN 13: 9780321445612, ©2008

Design Patterns in Ruby
Russ Olsen, ISBN 13: 9780321490452, ©2008

 Short Cuts

Rails Routing
David A. Black • 0321509242 • ©2007

Rails Refactoring to Resources: Using CRUD and REST in Your Rails Application
Trotter Cashion • 0321501748 • ©2007

Mongrel: Serving, Deploying and Extending Your Ruby Applications
Matt Pelletier and Zed Shaw • 0321483502 • ©2007

Rails Plugins: Extending Rails Beyond the Core
James Adam • 0321483510 • ©2007

Rubyism in Rails
Jacob Harris • 0321474074 • ©2007

Troubleshooting Ruby Processes: Leveraging System Tools when the Usual Ruby Tricks Stop Working
Philippe Hanrigou • 0321544684 • ©2008

Writing Effi cient Ruby Code
Dr. Stefan Kaes • 0321540034 • ©2008

Video

RailsSpace Ruby on Rails Tutorial (Video LiveLessons)
Aurelius Prochazka • 0321517067 • ©2008

www.awprofessional.com/ruby

THE RAILS WAY

Obie Fernandez

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential dam-
ages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which
may include electronic versions and/or custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite technology book means the book is available
through Safari Bookshelf. When you buy this book, you get free access to the online edition for 45
days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find code sam-
ples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

• Go to http://www.awprofessional.com/safarienabled

• Complete the brief registration form

• Enter the coupon code 52GH-T7VF-4T1U-ATFQ-DMJH

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail
customer-service@safaribooksonline.com.

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data:

Fernandez, Obie.

The Rails way / Obie Fernandez.

p. cm.

Includes index.

ISBN 0-321-44561-9 (pbk. : alk. paper)

1. Ruby on rails (Electronic resource) 2. Object-oriented programming (Computer science) 3. Ruby (Computer pro-
gram language) 4. Web site development . 5. Application softare--Development. I. Title.

QA76.64F47 2007

005.1'17--dc22

2007039880

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0
or later (the latest version is presently available at http://www.opencontent.org/openpub/).

ISBN-13: 978-0-321-44561-9
ISBN-10: 0-321-44561-9
Text printed in the United States on recycled paper at R.R. Donnelly in Crawfordsville, IN.
First printing November 2007

Parts of this book contain material excerpted from the Ruby and Rails source code and API documentation, Copyright ©
2004-2006 by David Heinemeier Hansson under the MIT license. Chapter 18 contains material excerpted from the RSpec
source code and API documentation, Copyright © 2005-2007 The RSpec Development Team.

The MIT License reads:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, mod-
ify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE, AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT, OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OF OR OTHER DEALINGS IN THE SOFTWARE.

Associate Publisher Copy Editor

Mark Taub Margaret Berson

Acquisitions Editor Proofreader

Debra Williams Cauley Kathy Ruiz

Development Editor

Songlin Qiu

Managing Editor

Patrick Kanouse

Senior Project Editor

San Dee Phillips

Indexer

Tim Wright

Publishing Coordinator

Cindy Teeters

Book Designer

Chuti Prasertsith

Composition

Mark Shirar

Technical Reviewer

Francis Hwang

Sebastian Delmont

Wilson Bilkovich

Courtenay Gasking

Sam Aaron

Nola Stowe

Susan Potter

Jon Larkowski

This page intentionally left blank

To Desi, my love, my companion, my muse.

This page intentionally left blank

This page intentionally left blank

xii Contents

Contents

Chapter 1 Rails Environments and Configuration 1
Startup 2

Default Environment Settings 2
Mode Override 2
Rails Gem Version 2

Bootstrapping 3
RubyGems 5
Initializer 6
Default Load Paths 6
Rails, Modules, and Auto-Loading Code 7
Builtin Rails Info 8
Configuration 9

Skipping Frameworks 9
Additional Load Paths 10
Log-Level Override 10
ActiveRecord Session Store 10
Schema Dumper 11
Observers 11
Time Zones 11

Additional Configuration 13
Development Mode 14

Automatic Class Reloading 15
The Rails Class Loader 15

Test Mode 17
Production Mode 17
Logging 18

Rails Log Files 20

Contents xiii

Log File Analysis 22
Syslog 24

Conclusion 25
References 25

Chapter 2 Working with Controllers 27
The Dispatcher: Where It All Begins 28

Request Handling 28
Getting Intimate with the Dispatcher 29

Render unto View… 31
When in Doubt, Render 32
Explicit Rendering 33
Rendering Another Action’s Template 33
Rendering a Different Template Altogether 34
Rendering a Partial Template 35
Rendering Inline Template Code 35
Rendering Text 35
Rendering Other Types of Structured Data 36

:json 36
:xml 36

Rendering Nothing 36
Rendering Options 37

:content_type 37
:layout 37
:status 37

Redirecting 39
Controller/View Communication 42
Filters 43

Filter Inheritance 44
Filter Types 46

Filter Classes 46
Inline Filter Method 47

Filter Chain Ordering 47
Around Filters 48
Filter Chain Skipping 49

Filter Conditions 50
Filter Chain Halting 50

Streaming 51
send_data(data, options = {}) 51

Options for send_data 51
Usage Examples 52

send_file(path, options = {}) 52
Options for send_file 53
Usage Examples 55

Letting the Web Server Send Files 55
Conclusion 56
References 56

Chapter 3 Routing 57
The Two Purposes of Routing 58
Bound Parameters 60
Wildcard Components (“Receptors”) 61
Static Strings 62
The routes.rb File 63

The Default Route 65
Spotlight on the :id Field 66
Default Route Generation 67
Modifying the Default Route 68

The Ante-Default Route and respond_to 69
respond_to and the HTTP-Accept Header 70

The Empty Route 71
Writing Custom Routes 72
Using Static Strings 72
Using Your Own “Receptors” 73
A Note on Route Order 75
Using Regular Expressions in Routes 76
Default Parameters and the url_for Method 76

What Happened to :id? 77
Using Literal URLs 79
Route Globbing 79
Globbing Key-Value Pairs 80
Named Routes 81

xiv Contents

Creating a Named Route 81
The Question of Using name_path Versus name_url 82
Considerations 83

What to Name Your Routes 83
Argument Sugar 84
A Little More Sugar with Your Sugar? 85

The Special Scope Method with_options 86
Conclusion 88
References 88

Chapter 4 REST, Resources, and Rails 89
REST in a Rather Small Nutshell 89
REST in Rails 91
Routing and CRUD 92
Resources and Representations 93

REST Resources and Rails 93
From Named Routes to REST Support 94
Reenter the HTTP Verb 96

The Standard RESTful Controller Actions 96
The PUT and DELETE Cheat 98
Singular and Plural RESTful Routes 98
The Special Pairs: new/create and edit/update 99

Singular Resource Routes 100
Nested Resources 101

Setting :path_prefix Explicitly 103
Setting :name_prefix Explicitly 103
Specifying RESTful Controllers Explicitly 105
All Together Now 105
Considerations 107
Deep Nesting? 108

RESTful Route Customizations 110
Extra Member Routes 110
Extra Collection Routes 111
Considerations 112

Controller-Only Resources 113
Different Representations of Resources 115

Contents xv

The respond_to Method 116
Formatted Named Routes 117

The RESTful Rails Action Set 117
Index 118
Show 121
Destroy 121
New and Create 123
Edit and Update 124

Conclusion 125
Reference 126

Chapter 5 Reflecting on Rails Routing 127
Examining Routes in the Application Console 127

Dumping Routes 128
Anatomy of a Route Object 129
Recognition and Generation in the Console 132
Named Routes in the Console 134

Testing Routes 135
The Routing Navigator Plugin 136
Conclusion 137
References 137

Chapter 6 Working with ActiveRecord 139
The Basics 140
Migrations 142

Creating Migrations 143
Naming Migrations 144
Migration Pitfalls 145

Migration API 146
create_table(name, options) 147

Defining Columns 149
Column Type Mappings 150
Column Options 151
Decimal Precision 152
Column Type Gotchas 152
Custom Data Types 154
“Magic” Timestamp Columns 154

Macro-Style Methods 155
Relationship Declarations 155

xvi Contents

Convention over Configuration 156
Pluralization 157

Should I Report INFLECTOR Bugs to the Core Team? 158
Setting Names Manually 158
Legacy Naming Schemes 159

Defining Attributes 160
Default Attribute Values 160
Serialized Attributes 162

CRUD: Creating, Reading, Updating, Deleting 163
Creating New ActiveRecord Instances 163
Reading ActiveRecord Objects 164

find 164
Reading and Writing Attributes 166

Hash Notation 167
The attributes Method 168

Accessing and Manipulating Attributes Before They Are Typecast 168
Reloading 169
Dynamic Attribute-Based Finders 169
Custom SQL Queries 171
The Query Cache 172

Logging 173
Default Query Caching in Controllers 173
Limitations 174

Updating 174
Updating by Condition 176
Updating a Particular Instance 176
Updating Specific Attributes 177
Convenience Updaters 177
Controlling Access to Attributes 178
Deleting and Destroying 178

Database Locking 179
Optimistic Locking 180

Handling StaleObjectError 181
Pessimistic Locking 182
Considerations 183

Advanced Finding 183
Conditions 183

Boolean Conditions 185
Ordering of Find Results 186

Contents xvii

Random Ordering 186
Limit and Offset 186
Select Option 187
From Option 188
Group By Option 188
Locking Option 189
Joining and Including Associations 189
Read Only 189

Connections to Multiple Databases in Different Models 189
Using the Database Connection Directly 191

The DatabaseStatements Module 191
begin_db_transaction() 191
commit_db_transaction() 192
delete(sql_statement) 192
execute(sql_statement) 192
insert(sql_statement) 192
reset_sequence!(table, column, sequence = nil) 192
rollback_db_transaction() 192
select_all(sql_statement) 192
select_one(sql_statement) 193
select_value(sql_statement) 193
select_values(sql_statement) 193
update(sql_statement) 193

Other Connection Methods 194
active? 194
adapter_name 195
disconnect! and reconnect! 195
raw_connection 195
supports_count_distinct? 195
supports_migrations? 195
tables 195
verify!(timeout) 196

Other Configuration Options 196
Conclusion 197
References 198

xviii Contents

Contents xix

Chapter 7 ActiveRecord Associations 199
The Association Hierarchy 199
One-to-Many Relationships 201

Adding Associated Objects to a Collection 203
AssociationCollection Methods 204

<<(*records) and create(attributes = {}) 204
clear 205
delete(*records) and delete_all 205
destroy_all 206
length 206
replace(other_array) 206
size 206
sum(column, *options) 206
uniq 207

The belongs_to Association 207
Reloading the Association 208
Building and Creating Related Objects via the Association 208
belongs_to Options 209

:class_name 209
:conditions 210
:foreign_key 213
:counter_cache 213
:include 214
:polymorphic => true 214

The has_many Association 215
has_many Options 216

:after_add 216
:after_remove 216
:as 216
:before_add 217
:before_remove 217

:class_name 218
:conditions 218
:counter_sql 218
:delete_sql 218

:dependent => :delete_all 219
:dependent => :destroy_all 219
:dependent => :nullify 219
:exclusively_dependent 219
:extend => ExtensionModule 219
:finder_sql 219
:foreign_key 219
:group 220
:include 220
:insert_sql 223
:limit 223
:offset 223
:order 223
:select 223
:source and :source_type 223
:table_name 223
:through 224
:uniq => true 224

Proxy Methods 224
build(attributes = {}) 224
count(*args) 225
find(*args) 225

Many-to-Many Relationships 225
has_and_belongs_to_many 225

Self-Referential Relationship 226
Bidirectional Relationships 227
Custom SQL Options 229
Extra Columns on has_and_belongs_to_many Join Tables 232
“Real Join Models” and habtm 232

has_many :through 233
Join Models 233
Usage Considerations and Examples 235
Aggregating Associations 236
Join Models and Validations 237

has_many :through Options 238
:source 238

xx Contents

Contents xxi

:source_type 238
:uniq 240

One-to-One Relationships 241
has_one 241
has_one Options 244

:as 244
:class_name 244
:conditions 245
:dependent 245
:foreign_key 245
:include 245
:order 246

Unsaved Objects and Associations 246
One-to-One Associations 246
Collections 247

Association Extensions 247
The AssociationProxy Class 249

reload and reset 249
proxy_owner, proxy_reflection, and proxy_target 249

Conclusion 250
References 251

Chapter 8 ActiveRecord Validations 253
Finding Errors 253
The Simple Declarative Validations 254

validates_acceptance_of 254
Error Message 255
The accept Option 255

validates_associated 255
validates_confirmation_of 256
validates_each 256
validates_inclusion_of and validates_exclusion_of 257
validates_existence_of 257
validates_format_of 258
validates_length_of 259

xxii Contents

Constraint Options 260
Error Message Options 260

validates_numericality_of 260
validates_presence_of 261

Validating the Presence of Associated Objects 261
validates_uniqueness_of 261

Enforcing Uniqueness of Join Models 262
RecordInvalid 263

Common Validation Options 263
:allow_nil 263
:if 263
:message 263
:on 264

Conditional Validation 264
Usage and Considerations 265

Working with the Errors Object 266
Manipulating the Errors Collection 267

add_to_base(msg) 267
add(attribute, msg) 267
clear 267

Checking for Errors 267
invalid?(attribute) 267
on(attribute) 267

Custom Validation 268
Skipping Validations 269
Conclusion 270
Reference 270

Chapter 9 Advanced ActiveRecord 271
Callbacks 271

Callback Registration 272
One-Liners 273
Protected or Private 273

Matched before/after Callbacks 274
List of Callbacks 274

Halting Execution 274

Callback Usages 275
Cleaning Up Attribute Formatting with before_validate_on_create 275
Geocoding with before_save 275
Paranoia with before_destroy 277
Cleaning Up Associated Files with after_destroy 277

Special Callbacks: after_initialize and after_find 278
Callback Classes 279

Multiple Callback Methods in One Class 280
Testability 282

Observers 282
Naming Conventions 283
Registration of Observers 283
Timing 284

Single-Table Inheritance (STI) 284
Mapping Inheritance to the Database 286
STI Considerations 288
STI and Associations 288

Abstract Base Model Classes 291
Polymorphic has_many Relationships 292

In the Case of Models with Comments 293
The Interface 293
The Database Columns 294
Has_many :through and Polymorphics 295

Considerations about has_many 296
Modules for Reusing Common Behavior 296

A Review of Class Scope and Contexts 299
The included Callback 300

Modifying ActiveRecord Classes at Runtime 301
Considerations 303
Ruby and Domain-Specific Languages 303

Conclusion 305
References 305

Chapter 10 ActionView 307
ERb Basics 308

ERb Practice 308
Tightening Up ERb Output 310

Contents xxiii

Commenting Out ERb Delimiters 310
Conditional Output 311
RHTML? RXML? RJS? 311

Layouts and Templates 312
Yielding Content 313
Template Variables 315

Instance Variables 315
assigns 316
base_path 316
controller 316
flash 317
headers 318
logger 318
params 319
request and response 319
session 319

Protecting the Integrity of Your View from User-Submitted Content 319
Partials 320

Simple Use Cases 321
Reuse of Partials 322
Shared Partials 323
Passing Variables to Partials 324

The local_assigns Hash 325
Render Collections 325

The partial_counter Variable 326
Sharing Collection Partials 326

Logging 327
Caching 327

Caching in Development Mode? 328
Page Caching 328
Action Caching 328

Design Considerations 329
Fragment Caching 330

The cache Method 330
Named Fragments 331
Global Fragments 332

xxiv Contents

Contents xxv

Avoiding Extra Database Activity 333
Expiration of Cached Content 333

Expiring Pages and Actions 333
Expiring Fragments 334
Using regular expressions in expiration calls 334

Automatic Cache Expiry with Sweepers 335
Cache Logging 337
Action Cache Plugin 337
Cache Storage 338

Configuration Example 339
Limitations of File-Based Storage 339
Manual Sweeping with rake 339

Conclusion 340
References 340

Chapter 11 All About Helpers 341
ActiveRecordHelper 342

Reporting Validation Errors 342
error_message_on(object, method, prepend_text = “”, append_text = “”, css_class =
“formError”) 342
error_messages_for(*params) 343

Automatic Form Creation 344
form(name, options) 344
input(name, method, options) 346

Customizing the Way Validation Errors Are Highlighted 346
AssetTagHelper 348

Head Helpers 348
auto_discovery_link_tag(type = :rss, url_options = {}, tag_options = {}) 348
image_path(source) 350
image_tag(source, options = {}) 350
javascript_include_tag(*sources) 351
javascript_path(source) 352
stylesheet_link_tag(*sources) 352
stylesheet_path(source) 352

For Plugins Only, Add Default JavaScript Includes 352

xxvi Contents

BenchmarkHelper 353
benchmark(message = “Benchmarking”, level = :info) 353

CacheHelper 353
CaptureHelper 354

capture(&block) 354
content_for(name, &block) 354

DateHelper 355
The Date and Time Selection Helpers 355

date_select(object_name, method, options = {}) 355
datetime_select(object_name, method, options = {}) 356
time_select(object_name, method, options = {}) 356

The Individual Date and Time Select Helpers 356
select_date(date = Date.today, options = {}) 357
select_datetime(datetime = Time.now, options = {}) 357
select_day(date, options = {}) 357
select_hour(datetime, options = {}) 357
select_minute(datetime, options = {}) 357
select_month(date, options = {}) 358
select_second(datetime, options = {}) 358
select_time(datetime, options = {}) 358
select_year(date, options = {}) 359

Common Options for Date Selection Helpers 359
distance_in_time Methods with Complex Descriptive Names 359

distance_of_time_in_words(from_time, to_time = 0, include_seconds = false) 360
distance_of_time_in_words_to_now(from_time, include_seconds = false) 361

DebugHelper 361
FormHelper 362

Creating Forms for ActiveRecord Models 362
Variables Are Optional 363
Rails-Generated Form Conventions 363
Displaying Existing Values 364
Updating Multiple Objects at Once 364
Square Brackets with New Records? 365
Indexed Input Fields 366
Faux Accessors 369

How Form Helpers Get Their Values 370
FormOptionsHelper 371

Contents xxvii

Select Helpers 371
collection_select(object, attribute, collection, value_method, text_method, options = {},
html_options = {}) 372
country_select(object, attribute, priority_countries = nil, options = {}, html_options = {})
372
select(object, attribute, choices, options = {}, html_options = {}) 372
time_zone_select(object, method, priority_zones = nil, options = {}, html_options = {}) 373

Option Helpers 373
country_options_for_select(selected = nil, priority_countries = nil) 373
option_groups_from_collection_for_select(collection, group_method, group_label_method,
option_key_method, option_value_method, selected_key = nil) 373
options_for_select(container, selected = nil) 375
options_from_collection_for_select(collection, value_method, text_method, selected=nil)
377
time_zone_options_for_select(selected = nil, priority_ zones = nil, model = TimeZone) 377

FormTagHelper 378
check_box_tag(name, value = “1”, checked = false, options = {}) 378
end_form_tag 378
file_field_tag(name, options = {}) 378
form_tag(url_for_options = {}, options = {}, *parameters_for_url, &block) 379
hidden_field_tag(name, value = nil, options = {}) 380
image_submit_tag(source, options = {}) 380
password_field_tag(name = “password”, value = nil, options = {}) 380
radio_button_tag(name, value, checked = false, options = {}) 380
select_tag(name, option_tags = nil, options = {}) 380
start_form_tag 380
submit_tag(value = “Save changes”, options = {}) 381
text_area_tag(name, content = nil, options = {}) 381
text_field_tag(name, value = nil, options = {}) 381

JavaScriptHelper 381
button_to_function(name, function, html_options={}, &block) 381
define_javascript_functions() 382
escape_javascript(javascript) 382
javascript_tag(content, html_options={}) 382
link_to_function(name, function, html_options={}, &block) 382

NumberHelper 383
human_size(size, precision=1) 383
number_to_currency(number, options = {}) 383

number_to_human_size(size, precision=1) 384
number_to_percentage(number, options = {}) 384
number_to_phone(number, options = {}) 385
number_with_delimiter(number, delimiter=”,”, separator=”.”) 385
number_with_precision(number, precision=3) 385

PaginationHelper 386
will_paginate 386
paginator 387
Paginating Find 388

RecordIdentificationHelper 388
dom_class(record_or_class, prefix = nil) 389
dom_id(record, prefix = nil) 389
partial_path(record_or_class) 389

RecordTagHelper 390
content_tag_for(tag_name, record, *args, &block) 390
div_for(record, *args, &block) 391

TagHelper 391
cdata_section(content) 391
content_tag(name, content = nil, options = nil, &block) 391
escape_once(html) 392
tag(name, options = nil, open = false) 392

TextHelper 393
auto_link(text, link = :all, href_options = {}, &block) 393
concat(string, binding) 393
cycle(first_value, *values) 394
excerpt(text, phrase, radius = 100, excerpt_string = “...”) 395
highlight(text, phrases, highlighter = ‘<strong class=”highlight”>\1’) 395
markdown(text) 396
pluralize(count, singular, plural = nil) 396
reset_cycle(name = “default”) 397
sanitize(html) 397
simple_format(text) 398
strip_links(text) 398
strip_tags(html) 398
textilize(text) 399
textilize_without_paragraph(text) 399

xxviii Contents

Contents xxix

truncate(text, length = 30, truncate_string = “...”) 399
word_wrap(text, line_width = 80) 400

UrlHelper 400
button_to(name, options = {}, html_options = {}) 400
current_page?(options) 401
link_to(name, options = {}, html_options = nil) 401
link_to_if(condition, name, options = {}, html_options = {}, &block) 403
link_to_unless(condition, name, options = {}, html_options = {}, &block) 403
link_to_unless_current(name, options = {}, html_options = {}, &block) 403
mail_to(email_address, name = nil, html_options = {}) 404
url_for(options = {}) 405
Relying on Named Routes 406

Writing Your Own Helpers 407
Small Optimizations: The Title Helper 407
Encapsulating View Logic: The photo_for Helper 408
Smart View: The breadcrumbs Helper 409

Wrapping and Generalizing Partials 410
A tiles Helper 410

Explanation of the Tiles Partial Code 411
Calling the Tiles Partial Code 412
Write the Helper Method 413

Generalizing Partials 414
Lambda: the Ultimate 414
The New Tiled Helper Method 415

Conclusion 417
References 417

Chapter 12 Ajax on Rails 419
Prototype 420

FireBug 421
The Prototype API 421
Top-Level Functions 422

$(id[, id2...]) 422
$$(expr[, expr2...]) 423
$A(var) 423
$F(id) 423

$H(obj) 423
$R(start, end, exclusive) 423
Try.these(func1, func2[, func3...] 423

Class 424
Extensions to JavaScript’s Object Class 425

Object.clone(object) 425
Object.extend(destination, source) 425
Object.keys(obj) and Object.values(obj) 425
Object.inspect(param) 426

Extensions to JavaScript’s Array Class 426
array.clear() 426
array.compact() 426
array.first() and array.last() 426
array.flatten() 427
array.indexOf(object) 427
array.inspect() 427
array.reverse(inline) 427
array.shift() 428
array.without(obj1[, obj2, ...]) 428

Extensions to the document Object 428
Extensions to the Event Class 428

Event.element() 429
Event.findElement(event, tagName) 429
Event.isLeftClick(event) 429
Event.observe(element, name, observer, useCapture) and Event.stopObserving(element,
name, observer, useCapture) 429
Event.pointerX(event) and Event.pointerY(event) 430
Event.stop(event) 430

Extensions to JavaScript’s Function Class 430
function.bind(obj) 430
function.bindAsEventListener(obj) 431

Extensions to JavaScript’s Number Class 432
number.toColorPart() 432
number.succ() 433
number.times() 433

Extensions to JavaScript’s String class 433
string.camelize() 433

xxx Contents

string.dasherize() 434
string.escapeHTML() and string.unescapeHTML() 434
string.evalScripts() and string.extractScripts() 434
string.gsub(pattern, replacement) and string.sub(pattern, replacement, count) 434
string.scan(pattern, iterator) 434
string.strip() 435
string.stripScripts() and string.stripTags() 435
string.parseQuery() and string.toQueryParams() 435
string.toArray() 435
string.truncate(length, truncationString) 435
string.underscore() 436

The Ajax Object 436
Ajax.activeRequestCount 436
Ajax.getTransport() 436

Ajax.Responders 437
Ajax.Responders.register(responder) 437
Ajax.Responders.unregister(responder) 437

Enumerable 437
enumerable.each(iterator) 438
enumerable.all(iterator) 438
enumerable.any(iterator) 438
enumerable.collect(iterator) and enumerable.map(iterator) 439
enumerable.detect(iterator) and enumerable.find(iterator) 439
enumerable.eachSlice(number[, iterator]) 439
enumerable.findAll(iterator) and enumerable.select(iterator) 439
enumerable.grep(pattern[, iterator]) 440
enumerable.include(obj) and enumerable.member(obj) 440
enumerable.inGroupsOf(num[, filler]) 440
enumerable.inject(accumulator, iterator) 441
enumerable.invoke(functionName[, arg1, arg2...]) 441
enumerable.max([iterator]) and enumerable.min([iterator]) 441
enumerable.partition([iterator]) 441
enumerable.pluck(propertyName) 442
enumerable.reject(iterator) 442
enumerable.sortBy(iterator) 442
enumerable.toArray() and enumerable.entries() 442

Contents xxxi

enumerable.zip(enum1, enum2[, enum3...][, iterator]) 443
Hash 443

hash.keys() and hash.values() 443
hash.merge(another) 443
hash.toQueryString() 444

ObjectRange 444
The Prototype Object 445

The PrototypeHelper Module 445
link_to_remote 445
remote_form_for 449
periodically_call_remote 451
observe_field 451
observe_form 453

RJS—Writing Javascript in Ruby 453
RJS Templates 455
<<(javascript) 456
[](id) 457
alert(message) 457
call(function, *arguments, &block) 457
delay(seconds = 1) { ... } 458
draggable(id, options = {}) 458
drop_receiving(id, options = {}) 458
hide(*ids) 458
insert_html(position, id, *options_for_render) 458
literal(code) 459
redirect_to(location) 459
remove(*ids) 459
replace(id, *options_for_render) 460
replace_html(id, *options_for_render) 460
select(pattern) 460
show(*ids) 460
sortable(id, options = {}) 460
toggle(*ids) 461
visual_effect(name, id = nil, options = {}) 461

JSON 461
Drag and Drop 463

xxxii Contents

Sortable 465
Autocompleter 466
In-Place Editors 467
Conclusion 467
References 468

Chapter 13 Session Management 469
What to Store in the Session 470

The Current User 470
Session Use Guidelines 470

Session Options 471
Disabling Sessions for Robots 472
Selectively Enabling Sessions 473
Secure Sessions 473

Storage Mechanisms 473
ActiveRecord SessionStore 473
PStore (File-Based) 474
DRb Session Storage 475
memcache Session Storage 475
The Controversial CookieStore 476

Timing Out and Session Life Cycle 478
Session Timeout Plugin for Rails 478
Tracking Active Sessions 479
Enhanced Session Security 480
Cleaning Up Old Sessions 481

Cookies 481
Reading and Writing Cookies 482

Conclusion 483
References 483

Chapter 14 Login and Authentication 485
Acts as Authenticated 486

Installation and Setup 486
The User Model 487

Non-Database Attributes 490
Validations 492
The before_save Callback 493
The authenticate Method 494
The remember_token 495

Contents xxxiii

The Account Controller 496
Login from Cookie 498
The Current User 499

Logging In During Testing 501
Conclusion 502
References 502

Chapter 15 XML and ActiveResource 503
The to_xml Method 503

Customizing to_xml Output 505
Associations and to_xml 507
Advanced to_xml 508
Dynamic Runtime Attributes 509
Overriding to_xml 510
Learning from Array’s to_xml Method 510

The XML Builder 513
Parsing XML 515

Turning XML into Hashes 515
XmlSimple 516
Typecasting 518

ActiveResource 519
Find 519
Create 522
Update 524
Delete 524
Headers 526
Customizing 527
Hash Forms 528

Conclusion 529

Chapter 16 ActionMailer 531
Setup 531
Mailer Models 532

Preparing Outbound Email Messages 533
attachment 534
bcc 534
body 534

xxxiv Contents

cc 534
charset 534
content_type 534
from 534
headers 534
implicit_parts_order 535
mailer_name 535
mime_version 535
part 535
recipients 535
sent_on 536
subject 536
template 536

HTML Email Messages 536
Multipart Messages 537

Part Options 538
Implicit Multipart Messages 539

File Attachments 539
Actually Sending an Email 540

Receiving E-Mails 540
TMail::Mail API Reference 541

attachments 542
body 542
date 542
has_attachments? 542
multipart? 542
parts 542
subject 542
to 542

Handling Attachments 543
Configuration 543
Conclusion 544
References 544

Chapter 17 Testing 545
Rails Testing Terminology 546

So Much for Isolation... 547

Contents xxxv

Rails Mocks? 548
Real Mocks and Stubs 549
Integration Tests 550
Dealing with the Confusion 551

Test::Unit 552
Running Tests 553

Fixtures 554
CSV Fixtures 555
Accessing Fixture Records from Tests 556
Dynamic Fixture Data 556
Using Fixture Data in Development Mode 557
Generating Fixtures from Development Data 558
Fixtures Options 559
Everybody Hates Fixtures 560

Fixtures Make My Test Suite Slow 560
Fixtures Allow Invalid Data 560
Maintainability Challenges 561
Fixtures Are Brittle 561

Fixtures Really Aren’t That Bad 562
Assertions 562

Basic Assertions 562
assert and deny 562
assert_block 563
assert_empty 563
assert_equal and assert_not_equal 563
assert_in_delta and assert_in_epsilon 564
assert_include 564
assert_instance_of 564
assert_kind_of 564
assert_match and assert_no_match 564
assert_nil and assert_not_nil 565

assert_same and assert_not_same 565
assert_raise and assert_nothing_raised 565
assert_respond_to 565
flunk 565

Rails Assertions 566

xxxvi Contents

One Assertion per Test Method 566
Testing Models with Unit Tests 568

Model Testing Basics 568
Deciding What to Test 570

Testing Controllers with Functional Tests 570
Structure and Setup 570
Functional Test Methods 571
Common Assertions 572

Assert That Variables Were Assigned Properly for Use by Templates 572
Assert the HTTP Status Code of a Response and Its MIME Content Type 573
Assert the MIME Content Type of a Response (or Other Header Values) 573
Assert Rendering of a Particular Template 574
Assert Redirection to a Specified URL 574
Assert Setting of Flash Messages 574
Assert Database Changes Resulting from Actions 575
Assert Validity of a Model 575
Asserting View Output 576

Testing Views with Functional Tests 576
assert_select(selector, [*values, equality, message, &block]) 577
assert_select(element, selector, [*values, equality, message, &block]) 577
Optional Block Parameter 577
Selector Reference 578
Equality Tests 580

Testing RJS Behavior 581
assert_select_rjs(*args, &block) 581
assert_select_rjs(id) 581
assert_select_rjs(operation, id) 582
assert_select_rjs(:insert, position, id) 582

Other Selection Methods 582
assert_select_email(*args, &block) 582
assert_select_encoded(*args, &block) 582

css_select(selector, *values) and css_select(element, selector, *values) 582
Testing Routing Rules 582

assert_generates(expected_path, options, defaults={}, extras = {}, message=nil) 583
assert_recognizes(expected_options, path, extras={}, message=nil) 583
assert_routing(path, options, defaults={}, extras={}, message=nil) 584

Contents xxxvii

Rails Integration Tests 584
Basics 584
The Integration Test API 585

assert_redirected_to(options = {}, message = nil) 586
assert_response(type, message = nil) 586
assert_template(expected = nil, message = nil) 586

Working with Sessions 586
Rake Tasks Related to Testing 587
Acceptance Tests 588

Acceptance Test First? 588
Selenium 589

Basics 589
Actions and Assertions 589
Locators 590
Patterns 590
Selenium Reference 590

Getting Started 591
First Test 591

RSelenese 592
Partial Scripts 592

Conclusion 593
References 594

Chapter 18 RSpec on Rails 597
Introduction to RSpec 597

Should and Expectations 598
Predicates 599
Custom Expectation Matchers 601
Multiple Examples per Behavior 603
Shared Behaviors 604
RSpec’s Mocks and Stubs 607

Mock Objects 607
Null Objects 608
Stub Objects 608

Running Specs 610
Installing RSpec and the RSpec on Rails Plugin 613

The RSpec on Rails Plugin 613

xxxviii Contents

Generators 614
Model Specs 614
Controller Specs 617

Isolation and Integration Modes 619
Specifying Errors 620
Specifying Routes 620

View Specs 621
Assigning Instance Variables 622
Stubbing Helper Methods 623

Helper Specs 623
Scaffolding 623

RSpec Tools 624
Autotest 624
RCov 624

Conclusion 625
References 626

Chapter 19 Extending Rails with Plugins 627
Managing Plugins 628

Reusing Code 628
The Plugin Script 629

script/plugin list 629
script/plugin sources 630
script/plugin source [url [url2 [...]]] 630
script/plugin unsource [url[url2 [...]]] 631
script/plugin discover [url] 631
script/plugin install [plugin] 632
script/plugin remove [plugin] 633
script/plugin update [plugin] 633

Subversion and script/plugin 633
Checking Out a Plugin 634
script/plugin update 634
SVN Externals 635
Locking Down a Specific Version 636

Using Piston 636
Installation 636
Importing a Vendor Library 637

Contents xxxix

Converting Existing Vendor Libraries 638
Updating 638
Locking and Unlocking Revisions 639
Piston Properties 639

Writing Your Own Plugins 640
The init.rb Hook 640
The lib Directory 642
Extending Rails Classes 643
The README and MIT-LICENSE File 644
The install.rb and uninstall.rb Files 645

Installation 645
Removal 646
Common Sense Reminder 646

Custom Rake Tasks 647
The Plugin’s Rakefile 648
Testing Plugins 649

Conclusion 649
References 650

Chapter 20 Rails Production Configurations 651
A Brief History of Rails In Production 652
Some Basic Prerequisites 652
The Stack Checklist 654

Server and Network Environment 655
Standalone/Dedicated Server or VPS Slice 655
Fresh OS Install 655
Network Access 655

Web Tier 656
Application Tier 656
Database Tier 656
Monitoring 657
Version Control 657

Installations 657
Ruby 658
RubyGems 658
Rails 659
Mongrel 659

xl Contents

Mongrel Cluster 659
Nginx 659
Subversion 660
MySQL 660
Monit 661
Capistrano 661

Configurations 661
Configuring Mongrel Cluster 662
Configuring Nginx 663

nginx.conf 663
railsway.conf 664

Configuring Monit 667
Configuring Capistrano 670

Configuring init Scripts 670
Nginx init Script 670
Mongrel init Script 672
Monit Configuration 673

Deployment and Launch 675
Other Production Stack Considerations 675

Redundancy and Failover 676
Caching 676
Performance and Scalability 676
Security 677

Application Security 677
Lock Down Your Ports 678

Maintainability 678
Conclusion 678
References 679

Chapter 21 Capistrano 681
Overview of Capistrano 681

Terminology 682
The Basics 682

What Do I Need to Do to Use Capistrano? 682
What Does Capistrano Expect? 683

What Has Capistrano Done and What Hasn’t It? 684
Getting Started 684

Contents xli

Installation 684
“Capify” Your Rails Application 685
Configuring the Deployment 687

Name Your Application 687
Repository Info 687
Define Roles 687
Extra Role Properties 688

A Little Spin, Please… 688
Set Up the Deployment Machine 689

Deployment Directory Structure 689
Symbolic Links 690
Checking a New Deployment Setup 690

Deploy! 691
Overriding Capistrano Assumptions 691

Using a Remote User Account 691
Customizing the SCM System Used by Capistrano 692
Working without SCM Access from the Deployment Machine 692
What If I Don’t Store database.yml in My SCM Repository? 693

Option A: Version It Anyway, but with a Different Name 693
Option B: Store Production-Ready database.yml in the shared/config Folder 694
Option C: The Best Option: Autogenerate database.yml 694

What If My Migrations Won’t Run from 0 to 100? 696
Useful Capistrano Recipes 696

Variables and Their Scope 696
Exercise #1: Staging 698
Exercise #2: Managing Other Services 701

Multiserver Deployments 702
Transactions 703
Proxied Access to Deployment Machines 705
Conclusion 706
References 706

Chapter 22 Background Processing 707
script/runner 708

Getting Started 708
Usage Notes 709
script/runner Considerations 710

xlii Contents

DRb 710
A Simple DRb Server 711
Using DRb from Rails 711
DRb Considerations 712
Resources 713

BackgrounDRb 713
Getting Started 713
Configuration 714
Understanding BackgrounDRb 715
Using the MiddleMan 715
Caveats 717
BackGrounDRb Considerations 718

Daemons 719
Usage 719
Introducing Threads 720
Daemon Considerations 722

Conclusion 722
References 722

Appendix A ActiveSupport API Reference 723

Appendix B Rails Essentials 805

Afterword What Is the Rails Way (To You)? 815

Contents xliii

Foreword

Rails is more than programming framework for creating web applications. It’s also a frame-
work for thinking about web applications. It ships not as a blank slate equally tolerant of
every kind of expression. On the contrary, it trades that flexibility for the convenience of
“what most people need most of the time to do most things.” It’s a designer straightjacket that
sets you free from focusing on the things that just don't matter and focuses your attention on
the stuff that does.

To be able to accept that trade, you need to understand not just how to do something in
Rails, but also why it’s done like that. Only by understanding the why will you be able to con-
sistently work with the framework instead of against it. It doesn’t mean that you’ll always have
to agree with a certain choice, but you will need to agree to the overachieving principle of
conventions. You have to learn to relax and let go of your attachment to personal idiosyn-
crasies when the productivity rewards are right.

This book can help you do just that. Not only does it serve as a guide in your exploration
of the features in Rails, it also gives you a window into the mind and soul of Rails. Why we’ve
chosen to do things the way we do them, why we frown on certain widespread approaches.
It even goes so far as to include the discussions and stories of how we got there—straight from
the community participants that helped shape them.

Learning how to do Hello World in Rails has always been easy to do on your own, but
getting to know and appreciate the gestalt of Rails, less so. I applaud Obie for trying to help
you on this journey. Enjoy it.

—David Heinemeier Hansson
Creator of Ruby on Rails

xliv

xlv

Acknowledgments

A very heartfelt and special thank you goes to my editor, Debra Williams Cauley, for recog-
nizing my potential and ever-patiently guiding me through the all of the ups and downs of
getting this book finished over the course of a year and a half. She’s also one of the sweetest,
smartest women I know, and I look forward to a long and productive friendship with her.
The rest of my team at Addison-Wesley was also phenomenally helpful, patient, and always
encouraging: San Dee Phillips, Songlin Qiu, Mandie Frank, Marie McKinley, and Heather
Fox.

Of course, my family bore the brunt of my preoccupation with working on the book,
especially during the last six months (once the deadline pressure started getting really intense).
Taylor, Liam, and Desi: I love you so much. Thank you for giving me the time and tranquil-
ity to write. I’ll never be able to thank my longtime partner (and favorite Rails developer)
Desi McAdam enough for taking over practically all of my domestic duties during this time.
I also have to thank my dad Marco, for insightfully suggesting that I propose a whole Ruby
series instead of just this book.

Writing a book of this scope and magnitude is by no means a solo effort—I owe a
tremendous debt of gratitude to my extended team of contributors and reviewers. David
Black helped kickstart my early progress by contributing material about routing and con-
trollers. Fellow series authors James Adam, Trotter Cashion, and Matt Pelletier also chipped
in, with contributions about plugins, ActiveRecord, and production deployment, respec-
tively. Matt Bauer helped me finish the Ajax and XML chapters, and Jodi Showers wrote the
Capistrano chapter. Pat Maddox rescued me during a particularly bad case of writer’s block
and helped me finish the RSpec chapter, for which David Chelimsky later provided an expert
review. Charles Brian Quinn and Pratik Naik provided timely advice and contributions on
background processing. Diego Scataglini also helped with review of some of the later chap-
ters.

Francis Hwang and Sebastian Delmont provided accurate technical review, starting early
in the life of the book. They were later joined by Wilson Bilkovich and Courtenay Gasking,
who, in addition to contributing original writing and sidebar content, did a lot of work

helping me to meet final deadlines. Wilson in particular kept me laughing the whole time
with his witty comedic timing, and even rewrote the background processing chapter to incor-
porate his expert knowledge of the subject. Other valued reviewers include Sam Aaron, Nola
Stowe, and Susan Potter. In the last few weeks, my newest friend and programming pair Jon
“Lark” Larkowski has picked out a number of remaining errors that other reviewers somehow
overlooked.

The infamous Zed Shaw was my roommate during a significant amount of time I spent
working on the book and was a constant source of inspiration and motivation. Also a huuu-
uge thank you to my friends on the #caboose IRC channel for consistently providing expert
insights and opinions. Some I’ve already mentioned—others are (in no particular order): Josh
Susser (hasmanyjosh), Rick Olson (technoweenie), Ezra Zygmuntovich (ezmobius), Geoffrey
Grosenbach (topfunky), Robby Russel (robbyonrails), Jeremy Hubert, Dave Fayram (kirin-
dave), Matt Lyon (mattly), Joshua Sierles (corp), Dan Peterson (danp), Dave Astels (dastels),
Trevor Squires (protocool), David Goodlad (dgoodlad), Amy Hoy (eriberri), Josh Goebel
(Dreamer3), Evan Phoenix (evan), Ryan Davis (zenspider), Michael Schubert, Cristi Balan
(evilchelu), Jamie van Dyke (fearoffish), Nic Williams (drnick), Eric Hodel (drbrain), James
Cox (imajes), Kevin Clark (kevinclark), Thomas Fuchs (madrobby), Manfred Stienstra (man-
fred-s), Pastie Paste Bot (pastie), Evan Henshaw-Plath (rabble), Rob Orsini (rorsini), Adam
Keys (therealadam), John Athayde (boborishi), Robert Bousquet, Bryan Helkamp (brynary),
and Chad Fowler. I should also mention that David Heinemeier Hansson (nextangler) him-
self was always encouraging, and even answered a few sticky questions I had along the way.

Plenty of former colleagues from ThoughtWorks indirectly helped this book happen.
First and foremost, Martin Fowler is not only a role model and inspiration—he also helped
me secure the relationship with Addison-Wesley, and offered much personal advice and sup-
port in the early days of the project, when I really had no idea what I was getting myself into.
ThoughtWorks CEO Roy Singham recognized the potential of Rails in early 2005, once I
introduced him to David Hansson, and was subsequently steadfast in his support of my Ruby
evangelism (including doing quite a bit of it himself around the world). That was especially
important in the early times, when many other respected people at ThoughtWorks thought
Rails was nothing but hype and wouldn’t last.

There are so many others at ThoughtWorks that I must acknowledge and thank. First of
all, I’m proud to have mentored Jay Fields in Ruby, and point to him as living proof that stu-
dents can exceed their teachers. Carlos Villela is part of the reason I got interested in Ruby
again after my initial dislike of it. My buddy Upendra Kanda and I spent long solitary months
working on the first paid Rails client projects at ThoughtWorks. Hacker extraordinaire
Michael Granger taught me much about the creative possibilities with Ruby. Fred George is

xlvi Acknowledgements

a mentor and inspiration. Steve Wilkins and Fern Schiff were some of the initial supporters
of Rails on the business development side. Other enthusiastic Rails supporters at
ThoughtWorks who helped me in some way or another include Badri Janakiraman, Rohan
Kini, Kartik C, Paul Hammant, Robin Gibson, Nick Drew, Srihari Srinivasan, Julian Boot,
Jon Tirsen, Chris Stevenson, Alex Verkhovsky, Patrick Farley, Neal Ford, Ron Campbell,
Julias Shaw, David Rice, Jeff Patton (finish your book!), Kent Spillner, John Hume, Jake
Scruggs, and Stephen Chu.

My paid work with Rails has involved some pretty progressive thinkers and risk-takers on
the client side, good people who trusted me and my teams to deliver solutions with unproven
technology. I can’t possibly name everyone who fits into this category, but some stand out: I
have to thank Hank Roark, Tom Horsley, Howard Todd, Jeff Elam, and Carol Rinauro for
their unwavering support and trust at Deere. I must thank Robert Brown at Barclays for
being forward-thinking, a friend, and source of encouragement. Dirk and Brett Elmendorf at
Rackspace were terrific to work with.

InfoQ.com has also been very cooperative and understanding of my time constraints
while finishing the book. A very special thank you to Floyd Marinescu and Diana Plesa for
being so patient, as well as my team of Ruby writers, including Werner Schuster and Sebastien
Auvray.

As of the beginning of January 2007, my friend Mark Smith has given me the distinct
pleasure of working with a group of brilliant people on interesting Web 2.0 projects, based in
sunny Atlantic Beach, Florida. The First Street Live team has been incredibly supportive
100% of the time: Marian Phelan, Ryan Poland, Nick Strate, Joe Hunt, Clay Kromberg,
Dena Freeman, and everyone else… (Mark, I love you man, and we’re gonna be friends for-
ever. Thanks for the fun work environment, the book party, and constant intellectual stimu-
lation. I really don’t believe I would have been able to finish this book so successfully if I had-
n’t come down here to work for you.)

Last, but not least, I owe a heartfelt thanks to PragDave Thomas, who was quoted as say-
ing: “Obie writing a book about Rails would be like the Marquis de Sade writing a book about
table manners.”

Acknowledgements xlvii

About the Author

Obie Fernandez is a recognized tech industry leader and independent consultant. He has been
hacking computers since he got his first Commodore VIC-20 in the eighties, and found him-
self in the right place and time as a programmer on some of the first Java enterprise projects
of the mid-nineties. He moved to Atlanta, Georgia, in 1998 and gained prominence as lead
architect of local startup success MediaOcean. He also founded the Extreme Programming
(later Agile Atlanta) User Group and was that group’s president and organizer for several
years. In 2004, he made the move back into the enterprise, tackling high-risk, progressive
projects for world-renowned consultancy ThoughtWorks.

He has been evangelizing Ruby and Rails online via blog posts and publications since
early 2005, and earned himself quite a bit of notoriety (and trash talking) from his old friends
in the Java open-source community. Since then, he has presented on a regular basis at numer-
ous industry events and user group meetings, and even does the occasional training gig for
corporations and groups wanting to get into Rails development.

Nowadays, Obie specializes in the development and marketing of large-scale, web-based
applications. He still posts almost daily on various topics to his popular technology weblog,
http://obiefernandez.com.

xlviii

xlix

Introduction

In late 2004, I was consulting at one of the big American auto makers, alongside a good
friend of mine, Aslak Hellesoy.1 It was a challenging assignment, chock full of difficult polit-
ical situations, technical frustration, and crushing deadlines. Not your ordinary deadlines
either; they were the type of deadline where the client would get fined a million dollars a day
if we were late. The pressure was on!

In a moment of questionable judgment, the team agreed to base our continuous inte-
gration system on a pet project of Aslak’s named DamageControl. It was a Ruby-based ver-
sion of the venerable CruiseControl server produced by our employer, ThoughtWorks.

The problem was that DamageControl wasn’t quite what you’d call a finished product.
And like many other Ruby-related things, it just didn’t work very well on Windows. Yet for
some reason I can’t quite remember today, we had to deploy it on an old Windows 2000 serv-
er that also hosted the StarTeam source repository (yikes!).

Aslak needed help—over the course of several weeks we pair-programmed extensively on
both the application code of DamageControl and C-based internals of the Win32 process
libraries for Ruby. At the time I had eight years of serious enterprise Java programming expe-
rience under my belt and a deep love of the brilliant IntelliJ IDE. I really cannot convey how
much I hated Ruby at that point in my career.

So what changed? Well, for starters I eventually made it out of that stressful assignment
alive, and took on a relatively easy assignment overseas out of the London office of
ThoughtWorks. Within a month or so, Ruby caught my attention again, this time via con-
siderable blogsphere excitement about an up-and-coming web framework named Ruby on
Rails. I decided to give Ruby another chance. Perhaps it wasn’t so bad after all? I quickly built
an innovative social networking system for internal use at ThoughtWorks.

That first Rails experience, over the course of a few weeks in February 2005, was life-
altering. All of the best practices I had learned over the years about building web apps had
been distilled into a single framework, written in some of the most elegant and concise code

that I had ever seen in my life. My interest in Java died a sudden death (although it took me
almost another year to stop using IntelliJ). I began avidly blogging about Ruby and Rails and
evangelizing it heavily both inside and out of ThoughtWorks. The rest, as they say, is histo-
ry.

As I write this in 2007, the Rails business I pioneered at ThoughtWorks accounts for
almost half of their global revenue, and they’ve established a large product division churning
out Ruby-based commercial software. Among them is CruiseControl.rb, which I suspect is
what Aslak wanted to build all along—it has the honor of being the official continuous inte-
gration server of the Ruby on Rails core team.

Ruby and Rails
Why do experienced enterprise folks like me fall in love with Ruby and Rails? Given a set of
requirements to fulfill, the complexity of solutions created using Java and Microsoft technol-
ogy is simply unacceptable. Excess complexity overwhelms individual understanding of the
project and dramatically increases communications overhead for the team. The emphasis on
following design patterns, as well as the obsession with performance, wears down the pure joy
of application development with those platforms.

There’s no peer pressure to do anything in the Rails community. DHH (David
Heinemeier Hansson) picked a language that made him happy. Rails was born from code
that he felt was beautiful. That kind of set the tone for the Rails community. So much
about Rails is subjective. People either “get it” or they don’t. But there’s no malice from
those who do towards those who don’t, just gentle encouragement.
—Pat Maddox

Ruby is beautiful. Coding in Ruby is beautiful. Everyone I’ve known who makes the
move into Ruby says they are happier than before. For this reason more than any other, Ruby
and Rails are shaking up the status quo, especially in enterprise computing. Prior to getting
involved with Rails, I was accustomed to working on projects based on fuzzy requirements
bearing no relation to real-world needs. I was tired of mind-boggling arrays of competing
frameworks to choose from and integrate, and I was tired of ugly code.

In contrast, Ruby is a beautiful, dynamic, high-level language. Ruby code is easier to read
and write because it more closely maps to the problem domains we tackle, in a style that is
closer to human language. The enhanced readability yields many benefits, both short-term
and long-term, as code moves into production and must be understood by maintenance pro-
grammers.

l Introduction

My experience has shown me that programs written in Ruby have fewer lines of code
than comparable programs in Java and C#. Smaller codebases are easier to maintain and
long-term maintenance is widely cited as the biggest cost of successful software projects.
Smaller codebases are also faster to debug when things go wrong, even without fancy debug-
ging tools.

The Rise of Rails and Mainstream Acceptance
In ways similar to the Agile movement that helped birth it, Rails is all about catering to our
needs as application developers—not as software engineers, and certainly not as computer sci-
entists. By aggressively attacking unneeded complexity, Rails shines brightest in the people-
oriented aspects of development that really matter to the ultimate success of our projects. We
have fun when we’re programming in Rails, and that makes us want to succeed!

The tools and technical infrastructure provided by Rails are comprehensive, encouraging
us to focus on delivering business value. Ruby’s Principle of Least Surprise is embodied in the
simple and elegant design of the Rails. Best of all, Rails is completely free open-source soft-
ware, which means that when all else fails, browsing the source code can yield answers to even
the most difficult of problems.

David has occasionally mentioned that he is not particularly excited about Rails reaching
mainstream acceptance, because the competitive edge enjoyed by early adopters would be
diminished. Those early adopters have primarily been individuals and small groups of web
designers and programmers, with legions of them coming out of the PHP world.

Enterprise Adoption
Call me an idealist if you like, but I believe that even enterprise developers at large and con-
servative corporations will act to become more effective and innovative at their jobs if they
are given the tools and encouragement to do so. That’s why it seems like they’re jumping on
the Rails bandwagon in ever-greater numbers with every year that passes.

Perhaps enterprise developers will ultimately be the most vocal and enthusiastic adopters
of Ruby and Rails, because right now they are the ones who as a group stand to lose the most
from the status quo. They’re consistently the targets of mass layoffs and misguided outsourc-
ing efforts, based on assumptions such as “specification is more important than implementa-
tion” and “implementation should be mechanical and trivial.”

Introduction li

Is specification actually more important than the implementation? Not for most projects.
Is implementation of all but the simplest projects trivial? Of course not! There are significant
underlying reasons for the difficulties of software development, especially in enterprise envi-
ronments:2

• Hard-to-understand legacy systems.

• Highly complex business domains such as investment banking.

• Stakeholders and business analysts who don’t actually know what they want.

• Managers resistant to productivity because it shrinks their yearly budgets.

• End users who actively sabotage your project.

• Politics! Sticking your head out means worrying that it’ll get chopped off.

As a consultant to Fortune 1000 companies, I lived and breathed those situations on an
everyday basis for almost 10 years, eventually stumbling upon a powerful concept. There is a
viable alternative to playing it safe, an alternative so powerful that it transcends politics and
is guaranteed to bring you acclaim and open new doors of opportunity.

That alternative is being exceptional! It starts with productivity. I’m talking about becom-
ing so obviously effective at your job that nobody will ever be able to scapegoat you, to the
extent that it would be political suicide to try. I’m talking about cultivating practices that
make your results stand out so brilliantly that they bring tears of joy to even the most cyni-
cal and hardened stakeholders of your projects. I mean regularly having time to polish your
applications to a state of wonderfulness that consistently breeds passionate end users.

By simply being exceptional, you can be that individual (or team) that keeps clients
happy and paying their invoices on time, or that survives layoffs year after year, because the
decision-makers say: “Oh, there’s no way we can afford to lose them.”

Let me pause for a second. I wouldn’t blame you for regarding my words with skepticism,
but none of what I’m saying is idle hype. I’m describing my own life since moving to Ruby
on Rails. This book is intended to help you make Ruby on Rails your secret (or not-so-secret)
weapon for thriving in the treacherous world of software development.

Delivering Results
My contributors and I draw on our collective experience and industry knowledge to show you
how to deliver practical results using Ruby on Rails on your projects, giving you the ammu-
nition needed to justify your choice of technology and even defeat objections that will

lii Introduction

undoubtedly come your way. Since we know there are never any silver bullets, we’ll also warn
you about situations where choosing Rails would be a mistake.

Along the way, we’ll analyze each of the components of Rails in depth and discuss how
to extend them when the need arises. Ruby is an extremely flexible language, which means
there are myriad ways to customize the behavior of Rails yourself. As you will learn, the Ruby
way is all about giving you the freedom to find the optimal solution to the problem at hand.

As a reference work, this book functions as a guide to the Rails API and the wealth of
Ruby idioms, design approaches, libraries, and plugins useful to the Ruby on Rails enterprise
developer.

About Opinionated Software
Before going on, I should mention that part of what makes Rails exceptional is that it is opin-
ionated software, written by opinionated programmers. Likewise, this is an opinionated
book, written by opinionated writers.

Here are some of the opinions about development that influence this book. You don’t
have to agree with all of them—just be aware of their influence:

• Developer motivation and productivity trump all other factors for project success.

• The best way to keep motivated and productive is to focus on delivering business value.

• Performance means “executing as fast as possible, on a given set of resources.”

• Scalability means “executing as fast as needed, on as many resources as needed.”

• Performance is irrelevant if you can’t scale.

• If you can scale cheaply, milking every ounce of performance from your processors
should never be your first priority.

• Linking scalability to choice of development tools is a pervasive mistake in the industry
and most software does not have extreme scalability requirements.

• Performance is related to choice of language and tools because higher-level languages are
easier to write and understand. There is wide consensus that the performance problems
in most applications are caused by poorly written application code.

• Convention over configuration is a better way to write software. Huge XML configura-
tion files must be eliminated!

• Code portability, the ability to take code and run it on a different hardware platform, is
not particularly important.

Introduction liii

• It’s better to solve a problem well even if the solution only runs on one platform.
Portability is irrelevant if your project fails.

• Database portability, the ability to run the same code on different relational database sys-
tems is rarely important and is almost never achieved.

• Presentation is very important, even for small projects. If your application looks bad,
everyone will assume it is written badly.

• Allowing technology to dictate the approach to solving a business problem is usually a
bad idea; however, that advice shouldn’t be used as an excuse to stick with inferior tech-
nology.

• The benefits of generalized application components are dubious. Individual projects usu-
ally have very particular business needs and wildly different infrastructure requirements,
making parameterized reuse very difficult to achieve in practice.

Phew, that’s a lot of opinions. But don’t worry, The Rails Way is primarily a reference
work, and this list is the only one of its kind in the book. Speaking of which….

About This Book
This book is not a tutorial or basic introduction to Ruby or Rails. It is meant as a day-to-day
reference for the full-time Rails developer. At times we delve deep into the Rails codebase to
illustrate why Rails behaves the way that it does, and present snippets of actual Rails code.
The more confident reader might be able to get started in Rails using just this book, exten-
sive online resources, and his wits, but there are other publications that are more introducto-
ry in nature and might be a wee bit more appropriate for beginners.

I am a fulltime Rails application developer and so is every contributor to this book. We
do not spend our days writing books or training other people, although that is certainly some-
thing that we enjoy doing on the side.

I started writing this book mostly for myself, because I hate having to use online docu-
mentation, especially API docs, which need to be consulted over and over again. Since the
API documentation is liberally licensed (just like the rest of Rails), there are a few sections of
the book that reproduce parts of the API documentation. In practically all cases, the API doc-
umentation has been expanded and/or corrected, supplemented with additional examples
and commentary drawn from practical experience.

liv Introduction

Hopefully you are like me—I really like books that I can keep next to my keyboard, scrib-
ble notes in, and fill with bookmarks and dog-ears. When I’m coding, I want to be able to
quickly refer to both API documentation, in-depth explanations, and relevant examples.

Book Structure
I attempted to give the material a natural structure while meeting the goal of being the best-
possible Rails reference book. To that end, careful attention has been given to presenting
holistic explanations of each subsystem of Rails, including detailed API information where
appropriate. Every chapter is slightly different in scope, and I suspect that Rails is now too
big a topic to cover the whole thing in depth in just one book.

Believe me, it has not been easy coming up with a structure that makes perfect sense for
everyone. Particularly, I have noted surprise in some readers when they notice that
ActiveRecord is not covered first. Rails is foremost a web framework and at least to me, the
controller and routing implementation is the most unique, powerful, and effective feature,
with ActiveRecord following a close second.

Therefore, the flow of the book is as follows:

• The Rails environment, initialization, configuration, and logging

• The Rails dispatcher, controllers, rendering, and routing

• REST, Resources, and Rails

• ActiveRecord basics, associations, validation, and advanced techniques

• ActionView templating, caching, and helpers

• Ajax, Prototype, and Scriptaculous JavaScript libraries, and RJS

• Session management, login, and authentication

• XML and ActiveResource

• Background processing and ActionMailer

• Testing and specs (including coverage of RSpec on Rails and Selenium)

• Installing, managing, and writing your own plugins

• Rails production deployment, configurations, and Capistrano

Introduction lv

Sample Code and Listings
The domains chosen for the code samples should be familiar to almost all professional devel-
opers. They include time and expense tracking, regional data management, and blogging
applications. I don’t spend pages explaining the subtler nuances of the business logic for the
samples or justify design decisions that don’t have a direct relationship to the topic at hand.
Following in the footsteps of my series colleague Hal Fulton and The Ruby Way, most of the
snippets are not full code listings—only the relevant code is shown. Ellipses (…) denote parts
of the code that have been eliminated for clarity.

Whenever a code listing is large and significant, and I suspect that you might want to use
it verbatim in your own code, I supply a listing heading. There are not too many of those.
The whole set of code listings will not add up to a complete working system, nor are there
30 pages of sample application code in an appendix. The code listings should serve as inspi-
ration for your production-ready work, but keep in mind that it often lacks touches neces-
sary in real-world work. For example, examples of controller code are often missing pagina-
tion and access control logic, because it would detract from the point being expressed.

Plugins
Whenever you find yourself writing code that feels like plumbing, by which I mean com-
pletely unrelated to the business domain of your application, you’re probably doing too much
work. I hope that you have this book at your side when you encounter that feeling. There is
almost always some new part of the Rails API or a third-party plugin for doing exactly what
you are trying to do.

As a matter of fact, part of what sets this book apart is that I never hesitate in calling out
the availability of third-party plugins, and I even document the ones that I feel are most cru-
cial for effective Rails work. In cases where a plugin is better than the built-in Rails func-
tionality, we don’t cover the built-in Rails functionality (pagination is an example).

An average developer might see his productivity double with Rails, but I’ve seen serious
Rails developers achieve gains that are much, much higher. That’s because we follow the Don’t
Repeat Yourself (DRY) principle religiously, of which Don’t Reinvent The Wheel (DRTW) is
a close corollary. Reimplementing something when an existing implementation is good
enough is an unnecessary waste of time that nevertheless can be very tempting, since it’s such
a joy to program in Ruby.

Ruby on Rails is actually a vast ecosystem of core code, official plugins, and third-party
plugins. That ecosystem has been exploding rapidly and provides all the raw technology you
need to build even the most complicated enterprise-class web applications. My goal is to

lvi Introduction

equip you with enough knowledge that you’ll be able to avoid continuously reinventing the
wheel.

Recommended Reading and Resources
Readers may find it useful to read this book while referring to some of the excellent reference
titles listed in this section.

Most Ruby programmers always have their copy of the “Pickaxe” book nearby,
Programming Ruby (ISBN: 0-9745140-5-5), because it is a good language reference. Readers
interested in really understanding all of the nuances of Ruby programming should acquire
The Ruby Way, Second Edition (ISBN: 0-6723288-4-4).

I highly recommend Peepcode Screencasts, in-depth video presentations on a variety of
Rails subjects by the inimitable Geoffrey Grosenbach, available at http://peepcode.com.

Regarding David Heinemeier Hansson a.k.a. DHH
I had the pleasure of establishing a friendship with David Heinemeier Hansson, creator of
Rails, in early 2005, before Rails hit the mainstream and he became an International Web 2.0
Superstar. My friendship with David is a big factor in why I’m writing this book today.
David’s opinions and public statements shape the Rails world, which means he gets quoted a
lot when we discuss the nature of Rails and how to use it effectively.

David has told me on a couple of occasions that he hates the “DHH” moniker that peo-
ple tend to use instead of his long and difficult-to-spell full name. For that reason, in this
book I try to always refer to him as “David” instead of the ever-tempting “DHH.” When you
encounter references to “David” without further qualification, I’m referring to the one-and-
only David Heinemeier Hansson.

Rails is by and large still a small community, and in some cases I reference core team
members and Rails celebrities by name. A perfect example is the prodigious core-team mem-
ber, Rick Olson, whose many useful plugins had me mentioning him over and over again
throughout the text.

Goals
As stated, I hope to make this your primary working reference for Ruby on Rails. I don’t real-
ly expect too many people to read it through end to end unless they’re expanding their basic
knowledge of the Rails framework. Whatever the case may be, over time I hope this book
gives you as an application developer/programmer greater confidence in making design and
implementation decisions while working on your day-to-day tasks. After spending time with

Introduction lvii

this book, your understanding of the fundamental concepts of Rails coupled with hands-on
experience should leave you feeling comfortable working on real-world Rails projects, with
real-world demands.

If you are in an architectural or development lead role, this book is not targeted to you,
but should make you feel more comfortable discussing the pros and cons of Ruby on Rails
adoption and ways to extend Rails to meet the particular needs of the project under your
direction.

Finally, if you are a development manager, you should find the practical perspective of
the book and our coverage of testing and tools especially interesting, and hopefully get some
insight into why your developers are so excited about Ruby and Rails.

Prerequisites
The reader is assumed to have the following knowledge:

• Basic Ruby syntax and language constructs such as blocks

• Solid grasp of object-oriented principles and design patterns

• Basic understanding of relational databases and SQL

• Familiarity with how Rails applications are laid out and function

• Basic understanding of network protocols such as HTTP and SMTP

• Basic understanding of XML documents and web services

• Familiarity with transactional concepts such as ACID properties

As noted in the section “Book Structure,” this book does not progress from easy materi-
al in the front to harder material in the back. Some chapters do start out with fundamental,
almost introductory material, and push on to more advanced coverage. There are definitely
sections of the text that experienced Rails developer will gloss over. However, I believe that
there is new knowledge and inspiration in every chapter, for all skill levels.

lviii Introduction

Required Technology
A late-model Apple MacBookPro with 4GB RAM, running OSX 10.4. Just kidding, of
course. Linux is pretty good for Rails development also. Microsoft Windows—well, let me
just put it this way—your mileage may vary. I’m being nice and diplomatic in saying that. We
specifically do not discuss Rails development on Microsoft platforms in this book.3 To my
knowledge, most working Rails professionals develop and deploy on non-Microsoft plat-
forms.

References

1. Aslak is a well-known guy in Java open-source circles, primarily for writing XDoclet.

2. I’m not saying startups are much easier, but they usually have less dramatic problems.

3. For that information, try the Softies on Rails blog at http://softiesonrails.com.

Introduction lix

This page intentionally left blank

CHAPTER 1
Rails Environments and
Configuration

[Rails] gained a lot of its focus and appeal because I didn’t try to please people
who didn’t share my problems. Differentiating between production and develop-
ment was a very real problem for me, so I solved it the best way I knew how.
—David Heinemeier Hansson

Rails applications are preconfigured with three standard modes of operation: develop-
ment, test, and production. These modes are basically execution environments and have
a collection of associated settings that determine things such as which database to con-
nect to, and whether or not the classes of your application are reloaded with each
request. It is also simple to create your own custom environments if necessary.

The current environment is always specified in the environment variable
RAILS_ENV, which names the desired mode of operation and corresponds to an envi-
ronment definition file in the config/environment folder. Since the environment
settings govern some of the most fundamental aspects of Rails, such as classloading,
in order to really understand the Rails way you should really understand its environ-
ment settings.

In this chapter, we get familiar with how Rails starts up and handles requests, by
examining scripts such as boot.rb and environments.rb and the settings that make
up the three standard environment settings (modes). We also cover some of the basics
of defining your own environments, and why you might choose to do so.

Startup
Whenever you start a process to handle requests with Rails (such as a Webrick server),
one of the first things that happens is that config/environment.rb is loaded. For
instance, take a look at the top of public/dispatch.rb:

require File.dirname(__FILE__) + “/../config/environment”

Other processes that need the whole Rails environment, such as the console and
your tests, also require config/environment.rb, hence you’ll notice the require
statement at the top files such as test/test_helper.rb.

Default Environment Settings
Let’s go step by step through the settings provided in the default environment.rb
file that you get when bootstrapping a Rails 1.2 application.

Mode Override

The first setting is only applicable to people deploying on shared hosting environ-
ments. It is commented out, since it should be unusual to need to set the Rails mode
here:

Uncomment below to force Rails into production mode when

you don’t control web/app server and can’t set it the proper way

ENV[‘RAILS_ENV’] ||= ‘production’

A word of caution: If you were to set the RAILS_ENV environment variable to
production here, or the constant variable RAILS_ENV for that matter, it would cause
everything you did in Rails to run in production mode. For instance, your test suite
would not work correctly, since test_helper.rb sets RAILS_ENV to test right before
loading the environment.

Rails Gem Version

Remember that at this point, the Rails framework hasn’t been loaded—in fact, the
script has to find the framework and load it before anything else happens. This setting
tells the script which version of Rails to load:

2 1. Rails Environments and Configuration

Specifies gem version of Rails to use when vendor/rails is not

present

RAILS_GEM_VERSION = ‘1.2.3’

As you can see, at the time that I’m writing this chapter the latest released version
of Rails (that I have installed as a gem, anyway) is 1.2.3. This setting is meaningless if
you’re running edge, which is the community-accepted term meaning that you’re run-
ning a frozen snapshot of Rails out of the vendor/rails directory of your project.
You can invoke the rake rails:freeze:edge command in your project to copy the
latest repository version of Rails into vendor/rails.

Bootstrapping
The next lines of environment.rb are where the wheels really start turning, once
config/boot.rb is loaded:

Bootstrap the Rails environment, frameworks, and default

configuration

require File.join(File.dirname(__FILE__), ‘boot’)

Note that the boot script is generated as part of your Rails application, but it is
not meant to be edited. I’ll briefly describe what it does, since it may help you trou-
bleshoot a broken Rails installation.

First of all, the boot script ensures that the RAILS_ROOT environment variable is
set: It holds the path to the root of the current Rails project. RAILS_ROOT is used all
over the place in the Rails codebase for finding files, such as view templates. If it isn’t
set already, the folder one level up is specified (remember that we’re currently in the
config folder).

On non-Windows platforms, the useful standard Ruby library pathname is used
to clean up the path string by removing consecutive slashes and useless dots:

unless RUBY_PLATFORM =~ /mswin32/

require ‘pathname’

root_path = Pathname.new(root_path).cleanpath(true).to_s

end

Startup 3

Now the boot script has to figure out which version of Rails to use. The first thing
it does is to check for the existence of vendor/rails in your project, which would
mean that you’re running edge:

File.directory?(“#{RAILS_ROOT}/vendor/rails”)

That is essentially the easiest case. Unless you’re not running edge, and I’d guess
that most Rails developers do not, then the boot script has to do a little bit more work
to find Rails as a RubyGem.

Edge Rails

There’s an expression, “If you’re not on the edge, you’re
taking up too much room.” Well, for many Rails develop-
ers, being on the edge means using the latest (and hopeful-
ly, greatest) version of Ruby on Rails that’s available.

The core team of developers that maintain the Rails code-
base check their files into a publicly available Subversion
repository. Since the early days, running your application
on nonreleased Rails code in order to take advantage of
new features and bug fixes became known as running edge
rails. All you had to do was to check out the Rails codebase
into the vendor/rails directory of your application:

svn co http://dev.rubyonrails.org/svn/rails/trunk

vendor/rails

In October of 2005, tasks were added to the standard
Rails rakefile to automate the process of freezing and
unfreezing your application on a particular version of edge
rails. Those Rake tasks are rails:freeze:edge and
rails:unfreeze.

Unless you’re familiar with the phenomenon already, you
might be wondering why anyone in their right mind
would want to develop their application using what is
essentially an unstable dependency. The motivation for
most of us is to stay as current as possible with new fea-
tures, and luckily, it’s usually not a crazy decision at all.

Historically the trunk version of Rails remains quite stable.
During 2005, as Rails made the march toward a 1.0

4 1. Rails Environments and Configuration

release, I developed a project on edge for a large enterprise
client. Despite the perceived risks, there were certain criti-
cal new features and bug fixes in edge that we could not
live without. Over the course of several months, updating
our version of Rails up to a couple of times a week, there
was only one occasion on which an unexpected error
cropped up and was traced back to a problem in the Rails
codebase.

The stability of edge is primarily due to Rails’ extensive
test coverage, which effectively prevents major regressions
from creeping into the codebase. Ever since I can remem-
ber, all patches submitted to the core team must include
adequate unit and functional test coverage to even be con-
sidered. Agile practices are not simply a guideline in the
Rails world; they are orthodoxy.

Particularly after the release of Rails 1.2, it hasn’t really
made that much sense to go through the trouble of devel-
oping on edge, and the core team members actively dis-
courage mainstream Rails developers from doing so. The
officially released versions are generally good enough for
the vast majority of developers. However, edge Rails still
comes in handy sometimes. For example, it allowed us to
extensively cover Rails 2.0 features in this book prior to
the actual, official 2.0 release.

RubyGems
First, the boot script requires rubygems. You probably know about RubyGems
already, since you had to install it in order to install Rails, by invoking gem install
rails from the command line.

For reasons outside of the scope of this discussion, sometimes Rails is loaded with
just the boot script. So the next thing the boot script does is read the config/
environment.rb file as text (minus the commented lines) and parse out the
RAILS_GEM_VERSION setting with a regexp.

Startup 5

Once the boot script determines which version of Rails to load, it requires the
Rails gem. At this point, if the Rails version specified in your particular environment.rb
file is out of synch with the versions available on your workstation, you’ll have a prob-
lem, indicated by an error message similar to the following one when you try to start
a Rails server or console:

Cannot find gem for Rails =1.1.5:

Install the missing gem with ‘gem install -v=1.1.5 rails’, or

change environment.rb to define RAILS_GEM_VERSION with your

desired version.

Initializer
The boot script then requires the Rails script initializer.rb, which is responsible
for configuration and will be used next by the environment script.

Finally, the boot script tells the initializer to set up default load paths (in other
words, it constructs the classpath). The load path is assembled from the list of com-
ponent frameworks that make up Rails and the folders of your Rails application that
contain code. Remember that load paths in Ruby just specify where the require
method should look for code when invoked. Until this point, the load path was only
the current working directory.

Default Load Paths
The Rails code that specifies the load paths is pretty readable and well-commented, so
I’ll copy it instead of explaining it. See Listing 1.1.

Listing 1.1 Some of the Methods in railties/lib/initializer.rb

def default_frameworks
[:active_record, :action_controller, :action_view,
:action_mailer, :action_web_service]

end

def default_load_paths
paths = [“#{root_path}/test/mocks/#{environment}”]

6 1. Rails Environments and Configuration

Add the app’s controller directory
paths.concat(Dir[“#{root_path}/app/controllers/”])

Then components subdirectories.
paths.concat(Dir[“#{root_path}/components/[_a-z]*”])

Followed by the standard includes.
paths.concat %w(
app
app/models
app/controllers
app/helpers
app/services
app/apis
components
config
lib
vendor

).map { |dir| “#{root_path}/#{dir}” }.select { |dir|
File.directory?(dir) }

paths.concat Dir[“#{root_path}/vendor/plugins/*/lib/”]
paths.concat builtin_directories

end

def builtin_directories
Include builtins only in the development environment.
(environment == ‘development’) ?
Dir[“#{RAILTIES_PATH}/builtin/*/”] : []

end

Rails, Modules, and Auto-Loading Code
Normally in Ruby, when you want to include code from another file in your applica-
tion, you have to include a require statement. However, Rails enhances Ruby’s default
behavior by establishing a simple convention that enables Rails to automatically load
your code in most cases.

If you’ve used the Rails console at all, you’ve already seen this behavior in action:
You never have to explicitly load anything!

Startup 7

This is how it works: If Rails encounters a class or module in your code that is not
already defined, Rails uses the following convention to guess which files it should
require to load that module or class:

• If the class or module is not nested, insert an underscore between the constant’s
names and require a file of this name. For example:

• EstimationCalculator becomes require ‘estimation_calculator’

• KittTurboBoost becomes require ‘kitt_turbo_boost’

• If the class or module is nested, Rails inserts an underscore between each of the
containing modules and requires a file in the corresponding set of subdirectories.
For example:

• MacGyver::SwissArmyKnife becomes require ‘mac_gyver/swiss_army_knife’

• Some::ReallyRatherDeeply::NestedClass becomes require ‘some/

really_rather_deeply/nested_class’ and if not already loaded, Rails
would expect to find it in a file called nested_class.rb, in a directory called
really_rather_deeply, itself in the directory some of which can be found
somewhere in Ruby’s load path (e.g., one of the app subdirectories, lib, or a plu-
gin’s lib directory).

The bottom line is that you should rarely need to explicitly load Ruby code in
your Rails applications (using require) if you follow the naming conventions.

Builtin Rails Info
You might be wondering what that builtin_directories method in Listing 1.1 is
all about in the default_load_paths method. It is the place for Rails to include
application behavior (meaning models, helpers, and controllers). You can think about
it as kind of like a framework-provided plugin mechanism.

The only builtin that exists at this time is in railties/builtin/rails_info
and it isn’t particularly well-known, other than as the target of the “About your appli-
cation’s environment” link on the default “Welcome Aboard” index.html page that
can be seen in a newly created Rails application.

To check it out, fire up any Rails application in development mode and go to
http://localhost:3000/rails/info/properties via your browser. You’ll see a diagnostic

8 1. Rails Environments and Configuration

screen with a dump of significant version numbers and settings that looks something
like this:

Ruby version 1.8.5 (i686-darwin8.8.1)

RubyGems version 0.9.0

Rails version 1.2.0

Active Record version 1.14.4

Action Pack version 1.12.5

Action Web Service version 1.1.6

Action Mailer version 1.2.5

Active Support version 1.3.1

Edge Rails revision 33

Application root /Users/obie/prorails/time_and_expenses

Environment development

Database adapter mysql

Database schema version 8

Configuration
Back to the environment script, where we’re about to get into developer-defined set-
tings. The next couple of lines read as follows:

Rails::Initializer.run do |config|

Settings in config/environments/* take precedence over

those specified here

The comment reminds you that the settings in the mode-specific environment
files will take precedence over settings in environment.rb, which is essentially
because they are loaded afterward and will overwrite your settings.

Skipping Frameworks

The first setting gives you the option of not loading parts of the Rails that you might
not be using. (Ruby is, of course, interpreted, and if you can get away with a smaller-
sized codebase for the interpreter to parse, you should do so, simply for performance
reasons.) Quite a few Rails applications do not use email or Web services, which is why
they are given as examples:

Skip frameworks you’re not going to use (only works if

using vendor/rails)

config.frameworks -= [:action_web_service, :action_mailer]

Startup 9

Additional Load Paths

In the rare case of needing to add to the default load paths, the option is given to do
so next:

Add additional load paths for your own custom dirs

config.load_paths += %W(#{RAILS_ROOT}/extras)

In case you didn’t know, the %W functions as a whitespace-delimited array literal
and is used quite often in the Rails codebase for convenience. (I do admit it was a lit-
tle off-putting for me at first as a long-time Java programmer.)

I’m tempted to say that the additional load paths option is not really needed, since
you’ll want to extend Rails by writing plugins, which have their own convention for
load paths. Chapter 19, “Extending Rails with Plugins,” covers the subject, and a
companion book to this one in the Addison-Wesley Professional Ruby Series, Rails
Plugins: Extending Rails Beyond the Core (ISBN: 0-321-48351-0) by James Adam, is
an exhaustive reference about authoring plugins.

Notice how the last two settings were not settings in the traditional sense of plain
assignment of an option value to a property. Rails takes full advantage of Ruby in let-
ting you remove and add from an array in its configuration object.

Log-Level Override

The default log level is :debug and you can override it if necessary.

Force all environments to use the same logger level

(by default production uses :info, the others :debug)

config.log_level = :debug

This book covers use of the Rails logger in-depth later on in this chapter.

ActiveRecord Session Store

If you want to store user sessions in the database (and you definitely do in almost all
production scenarios), this is where to set that option:

Use the database for sessions instead of the file system

(create the session table with ‘rake db:sessions:create’)

config.action_controller.session_store = :active_record_store

10 1. Rails Environments and Configuration

This book covers configuration and implications of ActiveRecord session store
in Chapter 13, “Session Management.”

Schema Dumper

Every time you run tests, Rails dumps the schema of your development database and
copies it to the test database using an autogenerated schema.rb script. It looks very
similar to an ActiveRecord migration script; in fact, it uses the same API.

You might find it necessary to revert to the older style of dumping the schema
using SQL, if you’re doing things that are incompatible with the schema dumper code
(see the comment).

Use SQL instead of Active Record’s schema dumper when creating the

test database. This is necessary if your schema can’t be completely

dumped by the schema dumper, for example, if you have constraints

or db-specific column types

config.active_record.schema_format = :sql

Observers

ActiveRecord observers are first-class objects in your Rails applications that perform
specific tasks such as clearing caches and managing denormalized data. The examples
in the default environment.rb are just that, examples of classes that you might the-
oretically be writing in your application as observers. (There aren’t actually cacher or
garbage_collector observers provided by Rails, but don’t take that to mean that
Ruby doesn’t do garbage collection!)

Activate observers that should always be running

config.active_record.observers = :cacher, :garbage_collector

This book covers ActiveRecord observers in-depth in Chapter 9, “Advanced
ActiveRecord.”

Time Zones

The default time zone for Rails is local time (using Time.local), that is, the same
time zone as your server. You can change the time zone that Rails picks up as your local
time zone by modifying the TZ environment variable.

Startup 11

The list of time zones is typically in your /usr/share/zoneinfo folder. If you’re
on a Mac, check the contents of /usr/share/zoneinfo/zone.tab for a list of valid
zone names. Keep in mind that this solution, and particularly what values to use, is
operating system-specific and said operating system might have already set it to the
appropriate value on your behalf.

You can set the value of TZ code anywhere, but if you want to change it for your
entire web application, you might as well put it in environment.rb, near the other
time zone settings.

ENV[‘TZ’] = ‘US/Eastern’

What if you want to support user-specific time zones? The first step is to tell
ActiveRecord to record time in the database as UTC (using Time.utc).

Make Active Record use UTC-base instead of local time

config.active_record.default_timezone = :utc

Then you’ll need a way to convert back and forth to a time zone specified in asso-
ciation with your user. Unfortunately, the standard Rails TimeZone class doesn’t han-
dle Daylight Saving Time (DST), which frankly makes it quite useless.

There is a pure-Ruby gem called TZInfo1 with a TimeZone class that does cor-
rectly handle DST and can be dropped in as a replacement to the one in Rails. To use
it in your application you will need to install both the tzinfo gem and the tzinfo_
timezone plugin. However, that solution is pure Ruby and reportedly quite slow
(although it might be fast enough for your needs).

Wait a minute—doesn’t Ruby’s Time class already understand how to deal with
DST correctly?

>> Time.now

=> Mon Nov 27 16:32:51 -0500 2006

>> Time.now.getgm

=> Mon Nov 27 21:32:56 UTC 2006

The output in the console listing is in fact correct. So writing our own conversion
routine shouldn’t be too hard, should it?

In a post to the rails-mailing-list in August 20062, Grzegorz Daniluk gives us an
example of how to do just that (and benchmarks it at seven to nine times faster than

12 1. Rails Environments and Configuration

TZInfo). You would add the following code to one of your application’s helper mod-
ules or put it in its own class within the lib folder:

to convert posted date/time to UTC and save to DB

def user2utc(t)

ENV[“TZ”] = current_user.time_zone_name

res = Time.local(t.year, t.month, t.day, t.hour, t.min, t.sec).utc

ENV[“TZ”] = “UTC”

res

end

to display date/time in a view

def utc2user(t)

ENV[“TZ”] = current_user.time_zone_name

res = t.getlocal

ENV[“TZ”] = “UTC”

res

end

In a detailed response to the mailing list, the author of TZInfo, Philip Ross,
informs us that the preceding solution does not work for Windows users.3 He also
comments about the handling of invalid times: “Another area TZInfo improves upon
using the TZ environment variable is in its handling of invalid and ambiguous local
times (i.e., during the transitions to and from daylight savings). Time.local always
returns a time regardless of whether it was invalid or ambiguous. TZInfo reports
invalid times and allows the ambiguity to be resolved by specifying whether to use the
DST or non-DST time or running a block to do the selection.”

To summarize, don’t use Windows. No, just kidding. The real lesson from this
issue is that handling time zones correctly is not an easy affair and should be consid-
ered very carefully.

Additional Configuration
That does it for the configuration options for which we get examples in the default
environment.rb. There are additional options, which I suspect that you will rarely
need to use or know about. If you want to see the whole list, look at the source
code and docs for the Configuration class starting around line 400 of the file
railties/lib/initializer.rb.

Startup 13

Remember we said that the value of the RAILS_ENV environment variable dictates
which additional environment settings are loaded next? So now let’s review the default
settings for each of Rails’ standard modes.

Development Mode
Development is Rails’ default mode and the one in which you will spend most of your
time as a developer:

Settings specified here will take precedence over those in

config/environment.rb

In the development environment your application’s code is reloaded on

every request. This slows down response time but is perfect for

development since you don’t have to restart the webserver when you

make code changes.

config.cache_classes = false

Log error messages when you accidentally call methods on nil.

config.whiny_nils = true

Enable the breakpoint server that script/breakpointer connects to

config.breakpoint_server = true

Show full error reports and disable caching

config.action_controller.consider_all_requests_local = true

config.action_controller.perform_caching = false

config.action_view.cache_template_extensions = false

config.action_view.debug_rjs = true

Don’t care if the mailer can’t send

config.action_mailer.raise_delivery_errors = false

In the following sections I cover the important settings in depth, starting with the
caching of classes: the setting that makes Rails’ dynamic class reloading possible.

14 1. Rails Environments and Configuration

Automatic Class Reloading
One of the signature benefits of using Rails is the quick feedback cycle whenever
you’re working in development mode. Make changes to your code, hit Reload in the
browser, and Shazam! Magically, the changes are reflected in your application. This
behavior is governed by the config.cache_classes setting, which you see is set to
false at the top of config/environments/development.rb.

Without getting into too much nitty-gritty detail, when the config.cache_
classes setting is true, Rails will use Ruby’s require statement to do its class load-
ing, and when it is false, it will use load instead.

When you require a Ruby file, the interpreter executes and caches it. If the file is
required again (as in subsequent requests), the interpreter ignores the request state-
ment and moves on. When you load a Ruby file, the interpreter executes the file again,
no matter how many times it has been loaded before.

Now it’s time to examine the Rails class-loading behavior a bit more in depth,
because sometimes you won’t be able to get certain things to reload automatically and
it will drive you crazy unless you understand how class loading works!

The Rails Class Loader
In plain old Ruby, a script file doesn’t need to be named in any particular way that
matches its contents. In Rails, however, you’ll notice that there’s almost always a direct
correlation between the name of a Ruby file and the class contained within. Rails takes
advantage of the fact that Ruby provides a callback mechanism for missing constants.
When Rails encounters an undefined constant in the code, it uses a classloader rou-
tine based on file-naming conventions to find and require the needed Ruby script.

How does the classloader know where to search? We already covered it earlier in
the chapter where we discussed the role of initializer.rb in the Rails startup
process. Rails has the concept of load paths, and the default load paths include the
base directories of just about anywhere you would think of adding code to your Rails
application.

The default_load_paths method shows you the order in which Rails searches
the directories in its load path. We’ll dissect the source of this method here and explain
the reason behind each part of the load path.

Development Mode 15

The test/mocks directory (covered more extensively in Chapter 17, “Testing,”)
is provided to give you the ability to override the behavior of standard Rails classes.

paths = [“#{root_path}/test/mocks/#{environment}”]

Add the app’s controller directory

paths.concat(Dir[“#{root_path}/app/controllers/”])

Then components subdirectories.

paths.concat(Dir[“#{root_path}/components/[_a-z]*”])

Followed by the standard includes.

paths.concat %w(

app

app/models

app/controllers

app/helpers

app/services

app/apis

components

config

lib

vendor

).map { |dir| “#{root_path}/#{dir}” }.select { |dir|

File.directory?(dir) }

paths.concat Dir[“#{root_path}/vendor/plugins/*/lib/”]

paths.concat builtin_directories

end

Want to see the contents of your project’s load path? Just fire up the console and
type $: as follows:

$ console

Loading development environment.

>> $:

=> [“/usr/local/lib/ruby/gems/1.8/gems/ ... # about 20 lines of output

I snipped the console output to save space. A typical Rails project load path will
usually have 30 or more items in its load path. Try it and see.

16 1. Rails Environments and Configuration

Test Mode
Whenever you run Rails in test mode, that is, the value of the RAILS_ENV environ-
ment value is test, then the following settings are in effect:

Settings specified here will take precedence over those in

config/environment.rb

The test environment is used exclusively to run your application’s

test suite. You never need to work with it otherwise. Remember that

your test database is “scratch space” for the test suite and is wiped

and recreated between test runs. Don’t rely on the data there!

config.cache_classes = true

Log error messages when you accidentally call methods on nil.

config.whiny_nils = true

Show full error reports and disable caching

config.action_controller.consider_all_requests_local = true

config.action_controller.perform_caching = false

Tell ActionMailer not to deliver emails to the real world.

The :test delivery method accumulates sent emails in the

ActionMailer::Base.deliveries array.

config.action_mailer.delivery_method = :test

Most people get by without ever needing to modify their test environment settings.

Production Mode
Finally, production mode is what you want your Rails application running in when-
ever it is deployed to its hosting environment and serving public requests. There are a
number of significant ways that production mode differs from the other modes, not
least of which is the speed boost you get from not reloading all of your application
classes for every request.

Settings specified here will take precedence over those

in config/environment.rb

Production Mode 17

The production environment is meant for finished, “live” apps.

Code is not reloaded between requests

config.cache_classes = true

Use a different logger for distributed setups

config.logger = SyslogLogger.new

Full error reports are disabled and caching is turned on

config.action_controller.consider_all_requests_local = false

config.action_controller.perform_caching = true

Enable serving of images, stylesheets, and javascripts

from an asset server

config.action_controller.asset_host = “http://assets.example.com”

Disable delivery errors, bad email addresses will be ignored

config.action_mailer.raise_delivery_errors = false

Custom Environments

If necessary, you can create additional environments for
your Rails app to run by cloning one of the existing envi-
ronment files in the config/environments directory of
your application. The most common use case for custom
environments is in setting up additional production con-
figurations, such as for staging and QA deployments.

Do you have access to the production database from your
development workstation? Then a triage environment
might make sense. Use the normal environment settings
for development mode, but point its database connection
to a production database server. It’s a potentially life-saving
combination when you need to quickly diagnose issues in
production.

Logging
Most programming contexts in Rails (models, controllers, view templates) have a
logger attribute, which holds a reference to a logger conforming to the interface of
Log4r or the default Ruby 1.8+ Logger class. Can’t get a reference to logger some-
where in your code? The RAILS_DEFAULT_LOGGER global variable has a reference to
the logger that you can use anywhere. It even has its own TextMate shortcut (rdb →).

18 1. Rails Environments and Configuration

It’s really easy to create a new Logger in Ruby, as shown in the following example:

$ irb

> require ‘logger’

=> true

irb(main):002:0> logger = Logger.new STDOUT

=> #<Logger:0x32db4c @level=0, @progname=nil, @logdev=

#<Logger::LogDevice:0x32d9bc ... >

> logger.warn “do not want!!!”

W, [2007-06-06T17:25:35.666927 #7303] WARN -- : do not want!!!

=> true

> logger.info “in your logger, giving info”

I, [2007-06-06T17:25:50.787598 #7303] INFO -- : in your logger, giving

your info

=> true

Typically, you add a message to the log using the logger whenever the need aris-
es, using a method corresponding to the severity of the log message. The standard log-
ger’s severities are (in increasingly severe order):

• debug Use the debug level to capture data and application state useful for
debugging problems later on. This level is not usually captured in production
logs.

• info Use info level to capture informational messages. I like to use this log level
for time-stamping non-ordinary events that are still within the bounds of good
application behavior.

• warn Use the warn level to capture things that are out of the ordinary and might
be worth investigating. Sometimes I’ll throw in a logged warning when guard
clauses in my code keep a client from doing something they weren’t supposed to
do. My goal is to alert whoever’s maintaining the application about a malicious
user or bug in the user interface, as in the following example:

def create

begin

@group.add_member(current_user)

flash[:notice] = “Successfully joined #{@scene.display_name}”

Logging 19

rescue ActiveRecord::RecordInvalid

flash[:error] = “You are already a member of #{@group.name}”

logger.warn “A user tried to join a group twice. UI should

not have allowed it.”

end

redirect_to :back

end

• error Use the error log level to capture information about error conditions that
don’t require a server restart.

• fatal The worst-case imaginable has happened—your application is now dead
and manual intervention is necessary to restart it.

Rails Log Files
The log folder of your Rails application holds three log files corresponding to each of
the standard environments, plus a log and pid file for Mongrel. Log files can grow very
large over time. A rake task is provided for easily clearing the log files:

rake log:clear # Truncates all *.log files in log/ to zero bytes

The contents of log/development.log are very useful while you’re working.
Many Rails coders leave a terminal window open with a continuous tail of the devel-
opment log open while they’re coding:

$ tail -f log/development.log

User Load (0.000522) SELECT * FROM users WHERE (users.`id` = 1)

CACHE (0.000000) SELECT * FROM users WHERE (users.`id` = 1)

All sorts of valuable information are available in the development log. For
instance, every time you make a request, a bunch of useful information about it shows
up in the log. Here’s a sample from one of my projects, followed by a list of all the
data items it contains:

Processing UserPhotosController#show (for 127.0.0.1 at 2007-06-06

17:43:13) [GET]

Session ID: b362cf038810bb8dec076fcdaec3c009

20 1. Rails Environments and Configuration

Parameters: {“/users/8-Obie-Fernandez/photos/406”=>nil,

“action”=>”show”, “id”=>”406”, “controller”=>”user_photos”,

“user_id”=>”8-Obie-Fernandez”}

User Load (0.000477) SELECT * FROM users WHERE (users.`id` = 8)

Photo Columns (0.003182) SHOW FIELDS FROM photos

Photo Load (0.000949) SELECT * FROM photos WHERE (photos.`id` = 406

AND (photos.resource_id = 8 AND photos.resource_type = ‘User’))

Rendering template within layouts/application

Rendering photos/show

CACHE (0.000000) SELECT * FROM users WHERE (users.`id` = 8)

Rendered adsense/_medium_rectangle (0.00155)

User Load (0.000541) SELECT * FROM users WHERE (users.`id` = 8)

LIMIT 1

Message Columns (0.002225) SHOW FIELDS FROM messages

SQL (0.000439) SELECT count(*) AS count_all FROM messages WHERE

(messages.receiver_id = 8 AND (messages.`read` = 0))

Rendered layouts/_header (0.02535)

Rendered adsense/_leaderboard (0.00043)

Rendered layouts/_footer (0.00085)

Completed in 0.09895 (10 reqs/sec) | Rendering: 0.03740 (37%) | DB:

0.01233 (12%) | 200 OK [http://localhost/users/8-Obie-

Fernandez/photos/406]

User Columns (0.004578) SHOW FIELDS FROM users

• The controller and action that were invoked

• The remote IP address of the computer making the request

• A timestamp indicating when the request happened

• The session ID associated with the request

• The hash of parameters associated with the request

• Database request information including the time and the SQL statement
executed

• Query cache hit info including time and the SQL statement triggering results
from the cache instead of a roundtrip to the database

• Rendering information for each template involved in rendering the view output
and time consumed by each

Logging 21

• Total time used in completing the request with corresponding request-per-second
figures

• Analysis of the time spent in database operations versus rendering

• The HTTP status code and URL of the response sent back to the client

Log File Analysis
A number of informal analyses can be easily performed using just the development log
output and some common sense.

• Performance One of the more obvious analyses would be a study of the per-
formance of your application. The faster your requests execute, the more requests
you can serve with a given Rails process. That’s why performance figures are often
expressed in terms of requests per second. Find the queries and rendering sections
that are taking a long time and figure out why.

It’s important to realize that the times reported by the logger are not super-
accurate. In fact, they’re wrong more often than not, if simply for the reason that
it’s very difficult to measure the timing of something from within itself. Add up
the percentage of rendering and database times for any given request and it will
not always be close to 100%.

However, despite not being accurate in a purely objective sense, the reported
times are perfect for making subjective comparisons within the same application.
They give you a way of gauging whether an action is taking longer than it used
to, or whether it is relatively faster or slower than another action, and so on.

• SQL queries ActiveRecord not behaving as expected? The fact that SQL gen-
erated by ActiveRecord is logged can often help you debug problems caused by
complicated queries.

• Identification of N+1 select problems Whenever you are displaying a record
along with an associated collection of records, there’s a chance that you will have
a so-called N+1 select problem. You’ll recognize the problem by a series of many
SELECT statements, with the only difference being the value of the primary key.

22 1. Rails Environments and Configuration

For example, here’s a snippet of some log output from a real Rails application
showing an N+1 select issue in the way that FlickrPhoto instances are being loaded:

FlickrPhoto Load (0.001395) SELECT * FROM flickr_photos WHERE

(flickr_photos.resource_id = 15749 AND flickr_photos.resource_type =

‘Place’ AND (flickr_photos.`profile` = 1)) ORDER BY updated_at desc

LIMIT 1

FlickrPhoto Load (0.001734) SELECT * FROM flickr_photos WHERE

(flickr_photos.resource_id = 15785 AND flickr_photos.resource_type =

‘Place’ AND (flickr_photos.`profile` = 1)) ORDER BY updated_at desc

LIMIT 1

FlickrPhoto Load (0.001440) SELECT * FROM flickr_photos WHERE

(flickr_photos.resource_id = 15831 AND flickr_photos.resource_type =

‘Place’ AND (flickr_photos.`profile` = 1)) ORDER BY updated_at desc

LIMIT 1

… and so on and so forth, for pages and pages of log output. Look familiar?
Luckily, each of those database queries is executing very quickly, around 0.0015

seconds each. That’s because 1) MySQL is extraordinarily fast for small SELECT state-
ments and 2) my Rails process is on the same physical machine as the database.

Still, accumulate enough of those N queries and they add up quickly to eat away
at performance. Absent the mitigating factors I mentioned, I would have a serious per-
formance problem to address. The problem would be especially severe if the database
was on a separate machine, giving me network latency to deal with on each of those
queries.

N+1 select issues are not the end of the world. A lot of times all it takes is prop-
er use of an :include option on a particular find method call to alleviate the
problem.

• Separation of concerns A well-designed model-view-controller application fol-
lows certain protocols related to which logical tier does database operations (that
would be the model) versus rendering tasks (the view). Generally speaking, you
want your controller to cause the loading of all of the data that is going to be
needed for rendering from the database. In Rails, it is accomplished by controller
code that queries the model for needed data and stores that data in instance vari-
ables to be consumed by the view.

Logging 23

Database access during rendering is usually considered a bad practice. Calling
find methods directly from template code violates proper separation of concerns and
is a maintainability nightmare.4

However, there are plenty of opportunities for implicit database access during
view rendering to creep into your codebase, encapsulated by the model, and perhaps
triggered by lazy loading of associations. Can we conclusively call it a bad practice? It’s
hard to say so definitively. There are cases (such as usage of fragment caching) where
it makes sense to have database operations happening during view rendering.

Using Alternate Logging Schemes

It’s easy! Just assign a class compatible with Ruby’s Logger
to one of the various logger class variables, such as
ActiveRecord::Base.logger.

A quick hack based on the ability to swap loggers is one
demonstrated by David at various events, including his
keynote at Railsconf 2007. During a console session,
assign a new Logger instance pointing to STDOUT to
ActiveRecord::Base.logger in order to see the SQL
being generated right in your console. Jamis has a com-
plete write-up of the technique and more at http://
weblog.jamisbuck.org/2007/1/31/more-on-watching-
activerecord.

Syslog
UNIX-like systems have a system service called syslog. For various reasons, it might
be a better choice for production logging of your Rails applications.

• Finer-grained control over logging levels and content.

• Consolidation of logger output for multiple Rails applications.

• If you’re using remote syslog capabilities of many systems, consolidation of logger
output for multiple Rails application servers is possible. Contrast with having to
handle individual log files on each application server box separately.

You can use Eric Hodel’s SyslogLogger5 to interface your Rails application to sys-
log. Setup will involve downloading the library, requiring it in your environ-
ment.rb file, and replacing the RAILS_DEFAULT_LOGGER instance.

24 1. Rails Environments and Configuration

Conclusion
We’ve kicked off our Rails journey by reviewing the different environments in which
Rails executes and how it loads its dependencies, including your application code. An
in-depth look at environment.rb and its per-mode variants revealed how we can
customize Rails behavior to our taste. In discussing the version of Rails libraries used
for a particular project, we also had an opportunity to discuss running edge and
whether it might make sense for your project.

We also learned about the Rails startup process by actually taking a peek at some
of its source code. (Throughout the rest of the book, we’ll dive into Rails source code
wherever it makes sense to do so.)

In Chapter 2, “Working with Controllers,” we continue our journey by delving
into the Rails dispatcher and the ActionController framework.

References

1. http://tzinfo.rubyforge.org/

2. www.ruby-forum.com/topic/79431

3. http://article.gmane.org/gmane.comp.lang.ruby.rails/75790

4. Practically every PHP application ever written has this problem.

5. http://seattlerb.rubyforge.org/SyslogLogger/

Conclusion 25

This page intentionally left blank

CHAPTER 2
Working with Controllers

Remove all Business Logic from your Controllers and put it in the model. Your
Controllers are only responsible for mapping between URLs (including other
HTTP Request data), coordinating with your Models and your Views, and chan-
neling that back to an HTTP response. Along the way, Controllers may do
Access Control, but little more. These instructions are precise, but following
them requires intuition and subtle reasoning.
—Nick Kallen, Pivotal Labs
http://www.pivotalblabs.com/articles/2007/07/16/the-controller-formula

Like any computer program, your Rails application involves the flow of control from
one part of your code to another. The flow of program control gets pretty complex
with Rails applications. There are many bits and pieces in the framework, many of
which execute each other. And part of the framework’s job is to figure out, on the fly,
what your application files are called and what’s in them, which of course varies from
one application to another.

The heart of it all, though, is pretty easy to identify: It’s the controller. When
someone connects to your application, what they’re basically doing is asking the appli-
cation to execute a controller action. Yes, there are different flavors of how this can
happen, and edge cases where it doesn’t exactly happen at all… but if you know how
controllers fit into the application life cycle, you can anchor everything else around that
knowledge. That’s why we’re covering controllers first, before the rest of the Rails APIs.

Controllers are the “C” in “MVC.” They’re the first port of call, after the dis-
patcher, for the incoming request. They’re in charge of the flow of the program: They

pull information out of the database (generally through the use of the ActiveRecord
interface), and they make that information available to the views.

Controllers are also very closely linked to views—more closely than they’re linked
to models. It’s possible to write the entire model layer of an application before you cre-
ate a single controller, or to have different people working on the controller and model
layers who never meet or talk to each other. Views and controllers, however, are more
tightly coupled. They share a lot of information, mainly through instance variables.
That means that the names you choose for your variables in the controller will have
an effect on what you do in the view.

In this chapter, we’re going to look at what happens on the way to a controller
action being executed, and what happens as a result. In the middle, we’ll take a long
look at how controller classes themselves are set up, particularly in regard to the many
different ways that we can render views. We’ll wrap up the chapter with a couple of
additional topics related to controllers: filters and streaming.

The Dispatcher: Where It All Begins
Rails is used to build web-based applications, so before anything else happens, and for
anything that does happen, a web server—Apache, Lighttpd, Nginx, and so on—han-
dles a request. The server then forwards that request to the Rails application, where it
is handled by the dispatcher.

Request Handling
As the request is handled, the server passes off some information to the dispatcher,
principally

• The request URI (http://localhost:3000/timesheets/show/3, or whatever)

• The CGI environment (bindings of CGI parameter names to values)

The dispatcher’s job is to

• Figure out which controller is involved in the request

• Figure out which action should be executed

28 2. Working with Controllers

• Load the appropriate controller file, which will contain a Ruby class definition for
a controller class (TimesheetsController, for example)

• Create an instance of the controller class

• Tell that instance to execute the appropriate action

All of this happens quickly, behind the scenes. It’s unlikely that you would ever
need to dig into the source code for the dispatcher; it’s the sort of thing that you can
take for granted to just work. However, to really understand the Rails way, it is impor-
tant to know what’s going on with the dispatcher. In particular, it’s important to
remember that the various parts of your application are just bits (sometimes long bits)
of Ruby code, and that they’re getting loaded into a running Ruby interpreter.

Getting Intimate with the Dispatcher
For instructional purposes let’s trigger the Rails dispatching mechanism manually. It
will give you a good feel for the flow of program control in Rails.

We’ll do this little exercise from the ground up, starting with a new Rails appli-
cation:

$ rails dispatch_me

Now, create a single controller, with an index action:

$ cd dispatch_me/

$ ruby ./script/generate controller demo index

If you look at the controller you just generated, in app/controllers/
demo_controller.rb, you’ll see that it has an index action:

class DemoController < ApplicationController

def index

end

end

There’s also a view template file, app/views/demo/index.rhtml, correspon-
ding to the action, and also created automatically, courtesy of the generate script.

The Dispatcher: Where It All Begins 29

That template file contains some placeholder language. Just to see things more clear-
ly, let’s replace it with something we’ll definitely recognize when we see it again. Delete
the lines in index.rhtml and enter the following:

Hello!

Not much of a design accomplishment, but it will do the trick. Now that we’ve
got a set of dominos lined up, it’s just a matter of pushing over the first one: the dis-
patcher. To do that, start by firing up the Rails console from your Rails application
directory. Type ruby script/console from a command prompt:

$ ruby script/console

Loading development environment.

>>

We’re now inside the beating heart of a Rails application and it’s waiting to receive
instructions.

There are a pair of environment variables that would normally be set by the web
server passing the request to the Rails dispatcher. Since we’re going to be invoking the
dispatcher manually, we have to set those environment variables manually:

>> ENV[‘REQUEST_URI’] = “/demo/index”

=> “/demo/index”

>> ENV[‘REQUEST_METHOD’] = “get”

=> “get”

We’re now ready to fool the dispatcher into thinking it’s getting a request.
Actually, it is getting a request. It’s just that it’s coming from someone sitting at the
console, rather than from a web server.

Here’s the command:

>> Dispatcher.dispatch

And here’s the response from the Rails application:

Content-Type: text/html; charset=utf-8

Set-Cookie: _dispatch_me_session_id=336c1302296ab4fa1b0d838d; path=/

Status: 200 OK

Cache-Control: no-cache

30 2. Working with Controllers

Content-Length: 7

Hello!

We’ve executed the dispatch class method of the Ruby class Dispatcher, and
as a result, the index action got executed and the index template (such as it is) got
rendered and the results of the rendering got wrapped in some HTTP headers and
returned.

Just think: If you were a web server, rather than a human, and you had just done
the same thing, you could now return that document, headers and “Hello!” and all,
to a client. And that’s exactly what happens. Have a look in the public subdirectory
of dispatch_me (or any other Rails application). Among other things, you’ll see these
dispatcher files:

$ ls dispatch.*

dispatch.cgi dispatch.fcgi dispatch.rb

Every time a Rails request comes in, the web server hands control to one of those
files. Which file depends on the exact server configuration. Ultimately, they all do the
same thing: They call Dispatcher.dispatch, just as you did from the console.

You can follow the trail of bread crumbs even further, if you look at
public/.htaccess and your server configuration. But for purposes of understand-
ing the chain of events in a Rails request, and the role of the controller, the peek under
the hood we’ve just done is sufficient.

Render unto View…
The goal of the typical controller action is to render a view template—that is, to fill
out the template and hand the results, usually an HTML document, back to the serv-
er for delivery to the client.

Oddly—at least it might strike you as a bit odd, though not illogical—you don’t
actually need to define a controller action, as long as you’ve got a template that matches
the action name.

You can try this out in under-the-hood mode. Go into app/controller/
demo_controller.rb, and delete the index action so that the file will look empty,
like this:

class DemoController < ApplicationController

end

Render unto View… 31

Don’t delete app/views/demo/index.rhtml, and then try the console exercise
(Dispatcher.dispatch and all that) again. You’ll see the same result.

By the way, make sure you reload the console when you make changes—it doesn’t
react to changes in source code automatically. The easiest way to reload the console is
simply to type reload!. But be aware that any existing instances of ActiveRecord
objects that you’re holding on to will also need to be reloaded (using their individual
reload methods). Sometimes it’s simpler to just exit the console and start it up again.

When in Doubt, Render
Rails knows that when it gets a request for the index action of the demo controller,
what really matters is handing something back to the server. So if there’s no index
action in the controller file, Rails shrugs and says, “Well, let’s just assume that if there
were an index action, it would be empty anyway, and I’d just render index.rhtml.
So that’s what I’ll do.”

You can learn something from an empty controller action, though. Let’s go back
to this version of the demo controller:

class DemoController < ApplicationController

def index

end

end

What you learn from seeing the empty action is that, at the end of every controller
action, if nothing else is specified, the default behavior is to render the template whose
name matches the name of the controller and action. In this case, that means app/
views/demo/index.rhtml.

In other words, every controller action has an implicit render command in it.
And render is actually a real method. You could write the preceding example like
this:

def index

render :template => “demo/index”

end

You don’t have to, though, because it’s assumed that that’s what you want, and
that is part of what Rails people are talking about when they discuss convention over
configuration. Don’t force the developer to add code that could simply be assumed by
convention.

32 2. Working with Controllers

The render command, however, does more than just provide a way of telling
Rails to do what it was going to do anyway.

Explicit Rendering
Rendering a template is like putting on a shirt: If you don’t like the first one you find
in your closet—the default, so to speak—you can reach for another one and put it on
instead.

If a controller action doesn’t want to render its default template, it can render a
different one by calling the render method explicitly. Any template file in the
app/views directory tree is available. (Actually, that’s not exactly true. Any template
on the whole system is available!) But why would you want your controller action to
render a template other than its default? There are several reasons, and by looking at
some of them, we can cover all of the handy features of the controller’s render
method.

Rendering Another Action’s Template
A common reason for rendering an entirely different template is to redisplay a form,
when it gets submitted with invalid data and needs correction. In such circumstances,
the usual web strategy is to redisplay the form with the submitted data, and trigger the
simultaneous display of some error information, so that the user can correct the form
and resubmit.

The reason that process involves rendering another template is that the action that
processes the form and the action that displays the form may be—and often are—dif-
ferent from each other. Therefore, the action that processes the form needs a way to
redisplay the original (form) template, instead of treating the form submission as suc-
cessful and moving on to whatever the next screen might be.

Wow, that was a mouthful of an explanation. Here’s a practical example:

class EventController < ActionController::Base

def new

This (empty) action renders the new.rhtml template, which

contains the form for inputting information about the new

event record and is not actually needed.

end

Render unto View… 33

def create

This method processes the form input. The input is available via

the params hash, in the nested hash hanging off the :event key.

@event = Event.new(params[:event])

if @event.save

flash[:notice] = “Event created!”

redirect_to :controller => “main” # ignore this line for now

else

render :action => “new” # doesn’t execute the new method!

end

end

end

On failure, that is, if @event.save does not return true, we render the “new”
template, new.rhtml, again. Assuming new.rhtml has been written correctly, this
will automatically include the display of error information embedded in the new (but
unsaved) Event object, @event.

Note that the template itself, new.rhtml, doesn’t “know” that it’s been rendered
by the create action rather than the new action. It just does its job: It fills out and
expands and interpolates, based on the instructions it contains and the data (in this
case, @event) that the controller has passed to it.

Rendering a Different Template Altogether
In a similar fashion, if you are rendering a template for a different action, it is possi-
ble to render any template in the system by calling render with either a :template
or :file option pointing to the desired template file.

The :template option takes a path relative to the template root (app/views,
unless you changed it, which would be extremely unusual), whereas :file takes an
absolute filesystem path.

Admittedly, the :template option is rarely used by the majority of Rails develop-
ers.

render :template => “abuse/report” # renders

app/views/abuse/report.rhtml

render :file => “/railsapps/myweb/app/views/templates/common.rhtml”

34 2. Working with Controllers

Rendering a Partial Template
Another option is to render a partial template (usually referred to simply as a “par-
tial”). In general, usage of partial templates allows you to organize your template code
into small files, which helps you to avoid clutter and encourages you to break your
template code up into reusable modules.

Partial rendering from a controller is mostly used in conjunction with AJAX calls
that need to dynamically update segments of an already displayed page. The tech-
nique, along with generic use of partials in views, is covered in greater detail in
Chapter 10, “ActionView.”

Rendering Inline Template Code
Occasionally, you need to send the browser the result of translating a snippet of tem-
plate code, too small to merit its own partial. I admit that this practice is contentious,
because it is a flagrant violation of proper separation of concerns between the MVC
layers.

One common use case for inline rendering, and probably the only reason it was
introduced to begin with, is when using one of the Rails AJAX view helpers, such as
auto_complete_result (covered in Chapter 12, “Ajax on Rails”).

render :inline => “<%= auto_complete_result(@headings, ‘name’) %>”

Rails treats the inline code exactly as if it were a view template.

Courtenay Says…

If you were one of my employees, I’d reprimand you for
using view code in the controller, even if it is only one
line.

Try to keep your view-related code in the views!

Rendering Text
What if you simply need to send plain text back to the browser, particularly when
responding to AJAX and certain types of web service requests?

render :text => ‘Submission accepted’

Render unto View… 35

Rendering Other Types of Structured Data
The render command also accepts a series of (convenience) options for returning
structured data such as JSON or XML. The content-type of the response will be set
appropriately and additional options apply.

:json

JSON1 is a small subset of JavaScript selected for its usability as a lightweight data-
interchange format. It is mostly used as a way of sending data down to JavaScript code
running in a rich web application via AJAX calls. ActiveRecord has built-in support
for conversion to JSON, which makes Rails an ideal platform for serving up JSON
data, as in the following example:

render :json => @record.to_json

:xml

ActiveRecord also has built-in support for conversion to XML, as in the following
example:

render :xml => @record.to_xml

We cover XML-related topics like this one extensively in Chapter 15, “XML and
ActiveResource.”

Rendering Nothing
On rare occasions, you don’t want to render anything at all. (To avoid a bug in Safari,
rendering nothing actually means sending a single space character back to the browser.)

render :nothing => true, :status => 401 # Unauthorized

It’s worth noting that, as illustrated in this snippet, render :nothing => true
is often used in conjunction with an HTTP status code (as covered in the next sec-
tion, “Rendering Options”).

36 2. Working with Controllers

Rendering Options
Most calls to the render method accept additional options. Here they are in alpha-
betical order.

:content_type

All content flying around the web is associated with a MIME type2. For instance,
HTML content is labeled with a content-type of text/html. However, there are
occasions where you want to send the client something other than HTML. Rails does-
n’t validate the format of the MIME identifier you pass to the :content_type
option, so make sure it is valid.

:layout

By default, Rails has conventions regarding the layout template it chooses to wrap
your response in, and those conventions are covered in detail in Chapter 10,
“ActionView.” The :layout option allows you to specify whether you want a layout
template to be rendered or not.

:status

The HTTP protocol includes many standard status codes3 indicating a variety of con-
ditions in response to a client’s request. Rails will automatically use the appropriate
status for most common cases, such as 200 OK for a successful request.

The theory and techniques involved in properly using the full range of HTTP sta-
tus codes would require a dedicated chapter, perhaps an entire book. For your con-
venience, Table 2.1 demonstrates a couple of codes that I’ve occasionally found useful
in my day-to-day Rails programming.

Render unto View… 37

Table 2.1 Common HTTP Status Codes

Status Code Description

307 Temporary Redirect Occasionally, you need to temporarily redirect the user to
The requested resource a different action, perhaps while some long-running
resides temporarily under process is happening or while the account of a particular
a different URI. resource’s owner is suspended.

This particular status code dictates that an HTTP response header
named Location contain the URI of the resource that the client
redirects to. Since the render method doesn’t take a hash of
response header fields, you have to set them manually prior to
invoking render. Luckily, the response hash is in scope within
controller methods, as in the following example:

def paid_resource

if current_user.account_expired?

response.headers[‘Location’] =

account_url(current_user)

render :text => “Account expired”, :status => 307

end

end

401 Unauthorized Sometimes a user will not provide credentials to view a restricted
resource or their authentication and/or authorization will fail.
Assuming using a Basic or Digest HTTP Authentication scheme,
when that happens you should probably return a 401.

403 Forbidden I like to use 403 in conjunction with a short render :text
The server understood message in situations where the client has requested a resource that
the request, but is is not normally available via the web application’s interface.
refusing to fulfill it. In other words, the request appears to have happened via artificial

means. A human or robot, for reasons innocent or guilty (it doesn’t
matter) is trying to trick the server into doing something it isn’t sup-
posed to do.

For example, my current Rails application is public-facing and is
visited by the GoogleBot on a daily basis. Probably due to a bug
existing at some point, the URL /favorites was indexed.
Unfortunately, /favorites is only supposed to be available to
logged-in users. However, once Google knows about a URL it will
keep coming back for it in the future. This is how I told it to stop:

def index

return render :nothing => true,

:status => 403 unless logged_in?

@favorites = current_user.favorites.find(:all)

end

38 2. Working with Controllers

Status Code Description

404 Not Found You may choose to use 404 when a resource of a specific given ID
The server cannot find does not exist in your database (whether due to it being an invalid
the resource you requested. ID or due to the resource having been deleted).

For example, “GET /people/2349594934896107” doesn’t exist in
our database at all, so what do we display? Do we render a show
view with a flash message saying no person with that ID exists? Not
in our RESTful world—a 404 would be better.
Moreover, if we happen to be using something like acts_as_
paranoid and we know that the resource used to exist in the past,
we could respond with 410 Gone.

503 Service Unavailable The 503 code comes in very handy when taking a site down for
The server is temporarily maintenance, particularly when upgrading RESTful web services.
unavailable. One of this book’s reviewers, Susan Potter, shares the following sug-

gestion:

For my projects, I create a stub Rails application that responds with a
503 for each valid type of request that comes in. Clients of my servic-
es are usually services themselves or other applications, so this helps
client developers that consume my web services know that this is a
temporary blip and should be due to scheduled maintenance (and a
good reminder for them to check the emails I sent them over the
weekend instead of ignoring them).

Redirecting
The life cycle of a Rails application is divided into requests. Every time there’s a new
request, we’re starting again.

Rendering a template, whether the default one or an alternate one—or, for that
matter, rendering a partial or some text or anything—is the final step in the handling
of a request. Redirecting, however, means terminating the current request and initiat-
ing a new one.

Look again at the example of the form-handling create method:

def create

@event = Event.new(params[:event])

if @event.save

flash[:notice] = “Event created!”

Redirecting 39

redirect_to :controller => “main”

else

render :action => “new”

end

end

If the save operation succeeds, we store a message in the flash hash and redi-
rect_to a completely new action. In this case, it’s the index action (not specified,
but that’s the default) of the main controller.

The logic here is that if the new Event record gets saved, the next order of busi-
ness is to take the user back to the top-level view. Why not just render the
main/index.rhtml template?

if @event.save

flash[:notice] = “Event created!”

render :controller => “main”, :action => “index”

...

Courtenay Says…

Remember that code after a redirect or render call will still
be run, and the application will wait until it’s complete
before sending that data to the browser.

If you have complex logic, you’ll often want to return after
a redirect or render nested inside a series of if statements
to prevent a DoubleRenderError:
def show

@user = User.find(params[:id])

if @user.activated?

render :action => ‘activated’ and return

end

case @user.info

...

end

end

The result of this would be that main/index.rhtml template would, indeed, be
rendered. But there are some pitfalls. For instance, let’s say that the main/index
action looks like this:

40 2. Working with Controllers

def index

@events = Event.find(:all)

end

If you render the index.rhtml from the event/create action, the
main/index action will not be executed. So @events won’t be initialized. That means
that index.rhtml will blow up, because (presumably) it’s planning to make use of
@events:

<h1>Schedule Manager</h1>

<p>Here are your current events:</p>

<% @events.each do |event| %>

some kind of display HTML would go here

<% end %>

That’s why you have to redirect to main/index, instead of just borrowing its tem-
plate. The redirect_to command clears the decks: It creates a new request, triggers
a new action, and starts from scratch in deciding what to render.

Sebastian Says…

Which redirect is the right one?

When you use Rails’ redirect_to method, you tell the
user agent (i.e., the browser) to perform a new request for
a different URL. That response can actually mean differ-
ent things, and it’s why modern HTTP has four different
status codes for redirection.

The old HTTP 1.0 had two codes: 301, aka “Moved
Permanently,” and 302, aka “Moved Temporarily.” A per-
manent redirect meant that the user agent should forget
about the old URL and use the new one from now on,
updating any references it might have kept (i.e., a book-
mark, or in the case of Google, its search databases). A
temporary redirect was a “one-time only” affair. The origi-
nal URL was still valid, but for this particular request the
user agent should fetch a new resource from the redirec-
tion URL.

But there was a problem: If the original request had been a
POST, what method should be used for the redirected
request? For permanent redirects it was safe to assume the

Redirecting 41

42 2. Working with Controllers

new request should be a GET, since that was the case in
all usage scenarios. But temporary redirects were used both
for redirecting to a view of a resource that had just been
modified in the original POST request (which happens to
be the most common usage pattern), and also for redirect-
ing the entire original POST request to a new URL that
would take care of it.

HTTP 1.1 solved this problem with the introduction of
two new status codes: 303, meaning “See Other,” and 307
meaning “Temporary Redirect.” A 303 redirect would tell
the user agent to perform a GET request, regardless of
what the original verb was, whereas a 307 would always
use the same method used for the original request.

These days, most browsers handle 302 redirects the same
way as 303, with a GET request, which is the argument
used by the Rails Core team to keep using 302 in redi-
rect_to. A 303 status would be the better alternative,
because it leaves no room for interpretation (or confu-
sion), but I guess nobody has found it annoying enough
to push for a patch.

If you ever need a 307 redirect, say, to continue processing
a POST request in a different action, you can always
accomplish your own custom redirect by assigning a path
to response.header[“Location”] and then rendering
with render :status => 307.

Controller/View Communication
When a view template is rendered, it generally makes use of data that the controller
has pulled from the database. In other words, the controller gets what it needs from
the model layer, and hands it off to the view.

The way Rails implements controller-to-view data handoffs is through instance
variables. Typically, a controller action initializes one or more instance variables. Those
instance variables can then be used by the view.

There’s a bit of irony (and possible confusion for newcomers) in the choice of
instance variables to share data between controllers and views. The main reason that
instance variables exist is so that objects (whether Controller objects, String

objects, and so on) can hold on to data that they don’t share with other objects. When
your controller action is executed, everything is happening in the context of a con-
troller object—an instance of, say, DemoController or EventController.
“Context,” here, includes the fact that every instance variable in the code belongs to
the controller instance.

When the view template is rendered, the context is that of a different object, an
instance of ActionView::Base. That instance has its own instance variables, and
does not have access to those of the controller object.

So instance variables, on the face of it, are about the worst choice for a way for
two objects to share data. However, it’s possible to make it happen—or make it appear
to happen. What Rails does is to loop through the controller object’s variables and, for
each one, create an instance variable for the view object, with the same name and con-
taining the same data.

It’s kind of labor-intensive, for the framework: It’s like copying over a grocery list
by hand. But the end result is that things are easier for you, the programmer. If you’re
a Ruby purist, you might wince a little bit at the thought of instance variables serving
to connect objects, rather than separate them. On the other hand, being a Ruby purist
should also include understanding the fact that you can do lots of different things in
Ruby—such as copying instance variables in a loop. So there’s nothing really un-
Ruby-like about it. And it does provide a seamless connection, from the programmer’s
perspective, between a controller and the template it’s rendering.

Filters
Filters enable controllers to run shared pre- and post-processing code for its actions.
These filters can be used to do authentication, caching, or auditing before the intend-
ed action is performed. Filter methods are macro-style, that is, they appear at the top
of your controller method, inside the class context, before method definitions. We also
leave off the parentheses around the method arguments, to emphasize their declara-
tive nature, like this:

before_filter :require_authentication

As with many other macro-style methods in Rails, you can pass as many symbols
as you want to the filter method:

before_filter :security_scan, :audit, :compress

Filters 43

Or you can break them out into separate lines, like this:

before_filter :security_scan

before_filter :audit

before_filter :compress

In contrast to the somewhat similar callback methods of ActiveRecord, you
can’t implement a filter method on a controller by adding a method named
before_filter or after_filter.

You should make your filter methods protected or private; otherwise, they
might be callable as public actions on your controller (via the default route).

Importantly, filters have access to the request, response, and all the instance vari-
ables set by other filters in the chain or by the action (in the case of after filters).
Filters can set instance variables to be used by the requested action, and often do so.

Courtenay Says…

Some of us like to use before filters to load the records
for single-record operations, where there is some kind of
complex logic. Instance variables set in a filter are of
course available to any actions.

This is a contentious issue; some developers believe that
database actions should stay out of filters and be specified
in the action method.
before_filter :load_product, :only => [:show,

:edit, :update, :destroy]

def load_product

@product =

current_user.products.find_by_permalink(params[:id]

)

redirect_to :action => ‘index’ and return false

unless @product.active?

end

Filter Inheritance
Controller inheritance hierarchies share filters downward. Your average Rails applica-
tion has an ApplicationController from which all other controllers inherit, so if

44 2. Working with Controllers

you wanted to add filters that are always run no matter what, that would be the place
to do so.

class ApplicationController < ActionController::Base

after_filter :compress

Subclasses can also add and/or skip already defined filters without affecting the
superclass. For example, consider the two related classes in Listing 2.1, and how they
interact.

Listing 2.1 A Pair of Cooperating before Filters

class BankController < ActionController::Base

before_filter :audit

private

def audit
record this controller’s actions and parameters in an audit log

end

end

class VaultController < BankController

before_filter :verify_credentials

private

def verify_credentials
make sure the user is allowed into the vault

end

end

Any actions performed on BankController (or any of its subclasses) will cause
the audit method to be called before the requested action is executed. On the
VaultController, first the audit method is called, followed by the verify_
credentials method, because that’s the order in which the filters were specified.

Filters 45

(Filters are executed in the class context where they’re declared, and the
BankController has to be loaded before VaultController, since it’s the parent
class.)

If the audit method happens to return false for whatever reason, verify_
credentials and the requested action are never called. This is called halting the fil-
ter chain and when it happens, if you look in your development log, you’ll see a mes-
sage to the effect that such-and-such a filter halted request processing.

Filter Types
A filter can take one of three forms: method reference (symbol), external class, or
inline method (proc). The first is by far the most common and works by referencing
a protected or private method somewhere in the inheritance hierarchy of the con-
troller. In the bank example in Listing 2.1, both BankController and
VaultController use this form.

Filter Classes

Using an external class makes for more easily reused generic filters, such as output
compression. External filter classes are implemented by having a static filter method
on any class and then passing this class to the filter method, as in Listing 2.2.

Listing 2.2 An Output Compression Filter

class OutputCompressionFilter
def self.filter(controller)
controller.response.body = compress(controller.response.body)

end
end

class NewspaperController < ActionController::Base
after_filter OutputCompressionFilter

end

The self.filter method of the Filter class is passed the controller instance
it is filtering, which gives it access to all aspects of the controller and can manipulate
them as it sees fit.

46 2. Working with Controllers

Inline Filter Method

The inline method (using a block parameter to the filter method) can be used to
quickly do something small that doesn’t require a lot of explanation, or just as a quick
test. It works like this:

class WeblogController < ActionController::Base

before_filter {|controller| false if controller.params[“stop”]}

end

As you can see, the block expects to be passed the controller after it has assigned
the request to the internal variables. This means that the block has access to both the
request and response objects complete with convenience methods for params, session,
template, and assigns. Note that the inline method doesn’t strictly have to be a
block—any object that responds to call such as a Proc or an Method object will do.

Around filters behave a little differently than normal before and after filters
with regard to filter types. The section dedicated to around_filters elaborates on
the topic.

Filter Chain Ordering
Using before_filter and after_filter appends the specified filters to the exist-
ing chain. That‘s usually just fine, but sometimes you care more about the order in
which the filters are executed. When that’s the case, you can use
prepend_before_filter and prepend_after_filter. Filters added by these
methods will be put at the beginning of their respective chain and executed before the
rest, like the example in Listing 2.3.

Listing 2.3 An Example of Prepending before Filters

class ShoppingController < ActionController::Base
before_filter :verify_open_shop

class CheckoutController < ShoppingController
prepend_before_filter :ensure_items_in_cart, :ensure_items_in_stock

The filter chain for the CheckoutController is now :ensure_items_in_cart,
:ensure_items_in_stock, :verify_open_shop. So if either of the ensure filters

Filters 47

returns false, we’ll never get around to seeing if the shop is open or not; the filter
chain will be halted.

You may pass multiple filter arguments of each type as well as a filter block. If a
block is given, it is treated as the last argument.

Around Filters
Around filters wrap an action, executing code both before and after the action that
they wrap. They may be declared as method references, blocks, or objects responding
to filter or to both before and after.

To use a method as an around_filter, pass a symbol naming the Ruby method.
Use yield (or block.call) within the method to run the action.

For example, Listing 2.4 has an around filter that logs exceptions (not that you
need to do anything like this in your application; it’s just an example).

Listing 2.4 An around Filter to Log Exceptions

around_filter :catch_exceptions

private

def catch_exceptions
yield

rescue => exception
logger.debug “Caught exception! #{exception}”
raise

end

To use a block as an around_filter, pass a block taking as args both the con-
troller and the action block. You can’t call yield directly from an around_filter
block; explicitly call the action block instead:

around_filter do |controller, action|

logger.debug “before #{controller.action_name}”

action.call

logger.debug “after #{controller.action_name}”

end

To use a filter object with around_filter, pass an object responding to :filter
or both :before and :after. With a filter method, yield to the block like this:

48 2. Working with Controllers

around_filter BenchmarkingFilter

class BenchmarkingFilter

def self.filter(controller, &block)

Benchmark.measure(&block)

end

end

A filter object with before and after methods is peculiar in that you must
explicitly return true from the before method if you want the after method to
run.

around_filter Authorizer

class Authorizer

This will run before the action. Returning false aborts the action

def before(controller)

if user.authorized?

return true

else

redirect_to login_url

return false

end

end

def after(controller)

runs after the action only if the before returned true

end

end

Filter Chain Skipping
Declaring a filter on a base class conveniently applies to its subclasses, but sometimes
a subclass should skip some of the filters it inherits from a superclass:

class ApplicationController < ActionController::Base

before_filter :authenticate

around_filter :catch_exceptions

end

class SignupController < ApplicationController

Filters 49

skip_before_filter :authenticate

end

class ProjectsController < ApplicationController

skip_filter :catch_exceptions

end

Filter Conditions
Filters may be limited to specific actions by declaring the actions to include or exclude.
Both options accept single actions (like :only => :index) or arrays of actions
(:except => [:foo, :bar]).

class Journal < ActionController::Base

before_filter :authorize, :only => [:edit, :delete]

around_filter :except => :index do |controller, action_block|

results = Profiler.run(&action_block)

controller.response.sub! “</body>”, “#{results}</body>”

end

private

def authorize

Redirect to login unless authenticated.

end

end

Filter Chain Halting
The before_filter and around_filter methods may halt the request before the
body of a controller action method is run. This is useful, for example, to deny access
to unauthenticated users.

As mentioned before, all you have to do to halt the filter chain is to return false
from the filter. Calling render or redirect_to will also halt the filter chain.

After filters will not be executed if the filter chain is halted. Around filters halt
the request unless the action block is called.

50 2. Working with Controllers

If an around filter returns before yielding, it is effectively halting the chain and
any after filters will not be run.

If a before filter returns false, the second half of any around filters will still run,
but the action method itself will not run, and neither will any after filters.

Streaming
It’s a little-known fact that Rails has some built-in support for streaming binary con-
tent back to the browser, instead of rendering view templates. Streaming comes
in handy whenever you need to send dynamically generated files to the browser
(e.g., images, PDF files) and Rails supports it with two methods in the
ActionController::Streaming module: send_data and send_file.

One of these methods is useful, but the other one should not be used under
almost any circumstance. Let’s cover the useful one first.

send_data(data, options = {})

The send_data method allows you to send textual or binary data to the user as a
named file. You can set options that affect the content type and apparent filename,
and alter whether an attempt is made to display the data inline with other content in
the browser or the user is prompted to download it as an attachment.

Options for send_data

The send_data method has the following options:

• :filename Suggests a filename for the browser to use.

• :type Specifies an HTTP content type. Defaults to ‘application/octet-
stream’.

• :disposition Specifies whether the file will be shown inline or downloaded.
Valid values are inline and attachment (default).

• :status Specifies the status code to send with the response. Defaults to ‘200
OK’.

Streaming 51

Usage Examples

Creating a download of a dynamically generated tarball might look like this:

send_data generate_tgz(‘dir’), :filename => ‘dir.tgz’

Listing 2.5 has an example of sending a dynamic image to the browser—it’s a par-
tial implementation of a captcha system, used to prevent malicious bots from abusing
your web application.

Listing 2.5 A Captcha Controller Using RMagick and send_data

require ‘RMagick’

class CaptchaController < ApplicationController

def image
create an RMagic canvas and render difficult to read text on it
...
image = canvas.flatten_images
image.format = “JPG”

send it to the browser
send_data(image.to_blob, :disposition => ‘inline’,

:type => ‘image/jpg’)
end

end

send_file(path, options = {})

The send_file method streams a file 4096 bytes at a time down to the client. The
API docs say, “This way the whole file doesn’t need to be read into memory at once,
which makes it feasible to send even very large files.”

Unfortunately, that isn’t true. When you use send_file in a Rails app that runs
on Mongrel, which most people do nowadays, the whole file is indeed read into mem-
ory! Therefore, using send_file to send big files will give you big headaches. The fol-
lowing section discusses how you can get your web server to serve files directly.

52 2. Working with Controllers

Security Alert

Note that the send_file method can be used to read any
file accessible to the user running the Rails server process,
so be extremely careful to sanitize4 the path parameter if
it’s in any way coming from an untrusted web page.

Options for send_file

In case you do decide to use send_file (and don’t say I didn’t warn you), here are
the options that it understands:

• :filename suggests a filename for the browser to use. Defaults to
File.basename(path).

• :type specifies an HTTP content type. Defaults to ‘application/
octet-stream’.

• :disposition specifies whether the file will be shown inline or downloaded.
Valid values are ‘inline’ and ‘attachment’ (default).

• :stream specifies whether to send the file to the user agent as it is read (true) or
to read the entire file before sending (false). Defaults to true.

• :buffer_size specifies size (in bytes) of the buffer used to stream the file.
Defaults to 4096.

• :status specifies the status code to send with the response. Defaults to ‘200
OK’.

• :url_based_filename should be set to true if you want the browser to guess
the filename from the URL, which is necessary for i18n filenames on certain
browsers (setting :filename overrides this option).

Most of these options are processed and set on the response object by the private
method send_file_headers! of the ActionController::Streaming module, so
if you’re using the web server to send files, you might want to crack open the Rails
source code and take a look at it. There’s also a lot more to read about the other
Content-* HTTP headers5 if you’d like to provide the user with more information that
Rails doesn’t natively support (such as Content-Description).

Streaming 53

Courtenay Says…

There are very few legitimate reasons to serve static files
through Rails.

Very, very few.

If you simply must use send_data or send_file, I
strongly recommend you cache the file after sending it.
There are a few ways to do this. (Remember that a cor-
rectly configured web server will serve files in public/
and bypass rails.)

You can just copy the file to the public directory:
public_dir = File.join(RAILS_ROOT, ‘public’,

controller_path)

FileUtils.mkdir_p(public_dir)

FileUtils.cp(filename, File.join(public_dir,

filename))

All subsequent views of this resource will be served by the
web server.

Alternatively, you can try using the caches_page direc-
tive, which will automatically do something similar for
you. (Caching is covered in Chapter 10.

Finally, be aware that the document may be cached by proxies and browsers. The
Pragma and Cache-Control headers declare how the file may be cached by intermedi-
aries. They default to require clients to validate with the server before releasing cached
responses.6

More Reasons to Hate Internet Explorer

The default Content-Type and Content-Disposition head-
ers are set to support downloads of arbitrary binary files in
as many browsers as possible. As if you needed more rea-
sons to hate Internet Explorer, versions 4, 5, 5.5, and 6 of
that godforsaken browser are all known to have a variety
of download-handling quirks, especially when download-
ing via HTTPS.

54 2. Working with Controllers

Usage Examples

Here’s the simplest example, just a simple zip file download:

send_file ‘/path/to.zip’

Sending a JPG to be displayed inline requires specification of the MIME content-
type:

send_file ‘/path/to.jpg’,

:type => ‘image/jpeg’,

:disposition => ‘inline’

This will show a 404 HTML page in the browser. We append a charset decla-
ration to the MIME type information:

send_file ‘/path/to/404.html,

:type => ‘text/html; charset=utf-8’,

:status => 404

How about streaming an FLV file to a browser-based Flash video player?

send_file @video_file.path,

:filename => video_file.title + ‘.flv’,

:type => ‘video/x-flv’,

:disposition => ‘inline’

Letting the Web Server Send Files
The solution to the memory-consumption problems inherent to send_file is to
leverage functionality provided by Apache, Lighttpd, and Nginx that allows you to
serve files directly from the web server, even if they’re not in a public document direc-
tory. The technique works by setting a special HTTP request header with the path to
the file you want the web server to send along to the client.

Here’s how you do it in Apache and Lighttpd:

response.headers[‘X-Sendfile’] = path

And here’s how you do it with Nginx:

response.headers[‘X-Accel-Redirect’] = path

Streaming 55

In both cases, you want to end your controller action method by telling Rails to
not bother sending anything, since the web server will handle it.

render :nothing => true

Regardless of how you do it, you may wonder why you would need a mechanism
to send files to the browser anyway, since it already has one built in—requesting files
from the public directory. Well, lots of times a web application will front files that
need to be protected from public access.7 (That’s practically every porn site in exis-
tence!)

Conclusion
In this chapter, we covered some concepts at the very core of how Rails works: the dis-
patcher and how controllers render views. Importantly, we covered the use of con-
troller action filters, which you will use constantly, for all sorts of purposes. The
ActionController API is fundamental knowledge, which you need to understand
well along your way to becoming an expert Rails programmer.

Moving on, we’ll continue with another subject that is closely related to the dis-
patcher and controllers, in fact it’s how Rails figures out how to respond to requests:
the Routing system.

References

1. For more information on JSON go to http://www.json.org/.

2. MIME is specified in five RFC documents, so it is much more convenient to point you to a
rather good description of MIME provided by Wikipedia at http://en.wikipedia.org/
wiki/MIME.

3. For a full list of HTTP status codes, consult the spec at http://www.w3.org/
Protocols/rfc2616/rfc2616-sec10.html.

4. Heiko Webers has the best write-up about sanitizing filenames at
http://www.rorsecurity.info/2007/03/27/working-with-files-in-rails/.

5. See the official spec at http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

6. See http://www.mnot.net/cache_docs/ for an overview of web caching.

7. Ben Curtis writes up an excellent approach to securing downloads at
http://www.bencurtis.com/archives/2006/11/serving-protected-downloads-with-rails/.

56 2. Working with Controllers

CHAPTER 3
Routing

I dreamed a thousand new paths. . . I woke and walked my old one.
—Chinese proverb

The routing system in Rails is the system that examines the URL of an incoming
request and determines what action should be taken by the application. And it does a
good bit more than that. Rails routing can be a bit of a tough nut to crack. But it turns
out that most of the toughness resides in a small number of concepts. After you’ve got
a handle on those, the rest falls into place nicely.

This chapter will introduce you to the principal techniques for defining and
manipulating routes. The next chapter will build on this knowledge to explore the
facilities Rails offers in support of writing applications that comply with the principles
of Representational State Transfer (REST). As you’ll see, those facilities can be of
tremendous use to you even if you’re not planning to scale the heights of REST theo-
rization.

Many of the examples in these two chapters are based on a small auction applica-
tion. The examples are kept simple enough that they should be comprehensible on
their own. The basic idea is that there are auctions; each auction involves auctioning
off an item; there are users; and users submit bids. That’s most of it.

The triggering of a controller action is the main event in the life cycle of a con-
nection to a Rails application. So it makes sense that the process by which Rails deter-
mines which controller and which action to execute must be very important. That
process is embodied in the routing system.

The routing system maps URLs to actions. It does this by applying rules—rules
that you specify, using Ruby commands, in the configuration file config/
routes.rb. If you don’t override the file’s default rules, you’ll get some reasonable
behavior. But it doesn’t take much work to write some custom rules and reap the ben-
efits of the flexibility of the routing system.

Moreover, the routing system actually does two things: It maps requests to
actions, and it writes URLs for you for use as arguments to methods like link_to,
redirect_to, and form_tag. The routing system knows how to turn a visitor’s
request URL into a controller/action sequence. It also knows how to manufacture
URL strings based on your specifications.

When you do this:

<%= link_to “Items”, :controller => “items”, :action => “list” %>

the routing system provides the following URL to the link_to helper:

http://localhost:3000/items/list

The routing system is thus a powerful, two-way routing complex. It recognizes
URLs, routing them appropriately; and it generates URLs, using the routing rules as a
template or blueprint for the generated string. We’ll keep an eye on both of these
important purposes of the routing system as we proceed.

The Two Purposes of Routing
Recognizing URLs is useful because it’s how your application decides what it’s sup-
posed to do when a particular request comes in:

http://localhost:3000/myrecipes/apples What do we do now?!

Generating URLs is useful because it allows you to use relatively high-level syn-
tax in your view templates and controllers when you need to insert a URL—so you
don’t have to do this:

My Apple Recipes

Not much fun having to type this out by hand!

58 3. Routing

The routing system deals with both of these issues: how to interpret (recognize) a
request URL and how to write (generate) a URL. It performs both of these functions
based on rules that you provide. The rules are inserted into the file config/
routes.rb, using a special syntax. (Actually it’s just Ruby program code, but it uses
special methods and parameters.)

Each rule—or, to use the more common term, simply each route—includes a pattern
string, which will be used both as a template for matching URLs and as a blueprint
for writing them. The pattern string contains a mixture of static substrings, forward
slashes (it’s mimicking URL syntax), and wildcard positional parameters that serve as
“receptors” for corresponding values in a URL, for purposes of both recognition and
generation.

A route can also include one or more bound parameters, in form of key/value
pairs in a hash. The fate of these key/value pairs depends on what the key is. A cou-
ple of keys (:controller and :action) are “magic,” and determine what’s actually
going to happen. Other keys (:blah, :whatever, etc.) get stashed for future refer-
ence.

Putting some flesh on the bones of this description, here’s a sample route, related
to the preceding examples:

map.connect ‘myrecipes/:ingredient’,

:controller => “recipes”,

:action => “show”

In this example, you can see:

• A static string (myrecipes)

• A wildcard URL component (:ingredient)

• Bound parameters (:controller => “recipes”, :action => “show”)

Routes have a pretty rich syntax—this one isn’t by any means the most complex
(nor the most simple)—because they have to do so much. A single route, like the one
in this example, has to provide enough information both to match an existing URL
and to manufacture a new one. The route syntax is engineered to address both of these
processes.

It’s actually not hard to grasp, if you take each type of field in turn. We’ll do a run-
through using the “ingredient” route. Don’t worry if it doesn’t all sink in the first time

The Two Purposes of Routing 59

through. We’ll be unpacking and expanding on the techniques and details throughout
the chapter.

As we go through the route anatomy, we’ll look at the role of each part in both
URL recognition and URL generation. Keep in mind that this is just an introducto-
ry example. You can do lots of different things with routes, but examining this exam-
ple will give you a good start in seeing how it all works.

Bound Parameters
If we’re speaking about route recognition, the bound parameters—key/value pairs in
the hash of options at the end of the route’s argument list—determine what’s going to
happen if and when this route matches an incoming URL. Let’s say someone requests
this URL from their web browser:

http://localhost:3000/myrecipes/apples

This URL will match the ingredient route. The result will be that the show action
of the recipes controller will be executed. To see why, look at the route again:

map.connect ‘myrecipes/:ingredient’,

:controller => “recipes”,

:action => “show”

The :controller and :action keys are bound: This route, when matched by
a URL, will always take the visitor to exactly that controller and that action. You’ll see
techniques for matching controller and action based on wildcard matching shortly. In
this example, though, there’s no wildcard involved. The controller and action are hard-
coded.

Now, when you’re generating a URL for use in your code, you provide values for
all the necessary bound parameters. That way, the routing system can do enough
match-ups to find the route you want. (In fact, Rails will complain by raising an
exception if you don’t supply enough values to satisfy a route.)

The parameters are usually bundled in a hash. For example, to generate a URL
from the ingredient route, you’d do something like this:

<%= link_to “Recipe for apples”,

:controller => “recipes”,

:action => “show”,

:ingredient => “apples” %>

60 3. Routing

The values “recipes” and “show” for :controller and :action will match
the ingredient route, which contains the same values for the same parameters. That
means that the pattern string in that route will serve as the template—the blueprint—
for the generated URL.

The use of a hash to specify URL components is common to all the methods that
produce URLs (link_to, redirect_to, form_for, etc.). Underneath, these meth-
ods are making their own calls to url_for, a lower-level URL generation method that
we’ll talk about more a little further on.

We’ve left :ingredient hanging. It’s a wildcard component of the pattern string.

Wildcard Components (“Receptors”)
The symbol :ingredient inside the quoted pattern in the route is a wildcard param-
eter (or variable). You can think of it as a receptor: Its job is to be latched onto by a
value. Which value latches onto which wildcard is determined positionally, lining the
URL up with the pattern string:

http://localhost:3000/myrecipes/apples Someone connects to this URL...

‘myrecipes/:ingredient’ which matches this pattern string

The :ingredient receptor, in this example, receives the value apples from the
URL. What that means for you is that the value params[:ingredient]will be set to
the string “apples”. You can access that value inside your recipes/show action.
When you generate a URL, you have to supply values that will attach to the recep-
tors—the wildcard symbols inside the pattern string. You do this using key => value
syntax. That’s the meaning of the last line in the preceding example:

<%= link_to “My Apple Recipes”,

:controller => “recipes”,

:action => “show”,

:ingredient => “apples” %>

In this call to link_to, we’ve provided values for three parameters. Two of them
are going to match hard-coded, bound parameters in the route; the third, :ingredient,
will be assigned to the slot in the URL corresponding to the :ingredient slot in the
pattern string.

Wildcard Components (“Receptors”) 61

But they’re all just hash key/value pairs. The call to link_to doesn’t “know”
whether it’s supplying hard-coded or wildcard values. It just knows (or hopes!) that
these three values, tied to these three keys, will suffice to pinpoint a route—and there-
fore a pattern string, and therefore a blueprint for a URL.

Static Strings
Our sample route contains a static string inside the pattern string: recipes.

map.connect ‘myrecipes/:ingredient’,

:controller => “recipes”,

:action => “show”

This string anchors the recognition process. When the routing system sees a URL
that starts /recipes, it will match that to the static string in the ingredient route. Any
URL that does not contain the static string recipes in the leftmost slot will not
match this route.

As for URL generation, static strings in the route simply get placed, positionally,
in the URL that the routing system generates. Thus the link_to example we’ve been
considering

<%= link_to “My Apple Recipes”,

:controller => “recipes”,

:action => “show”,

:ingredient => “apples” %>

will generate the following HTML:

My Apple Recipes

The string myrecipes did not appear in the link_to call. The parameters of the
link_to call triggered a match to the ingredients route. The URL generator then
used that route’s pattern string as the blueprint for the URL it generated. The pattern
string stipulates the substring myrecipes.

URL recognition and URL generation, then, are the two jobs of the routing sys-
tem. It’s a bit like the address book stored in a cell phone. When you select “Gavin”
from your contact list, the phone looks up the phone number. And when Gavin calls
you, the phone figures out from the number provided by caller ID that the caller is

62 3. Routing

Gavin; that is, it recognizes the number and maps it to the value “Gavin”, which is
displayed on the phone’s screen.

Rails routing is a bit more complex than cell phone address book mapping,
because there are variables involved. It’s not just a one-to-one mapping. But the basic
idea is the same: recognize what comes in as requests, and generate what goes into the
code as HTML.

We’re going to turn next to the routing rules themselves. As we go, you should
keep the dual purpose of recognition/generation in mind. There are two principles
that are particularly useful to remember:

• The same rule governs both recognition and generation. The whole system is set
up so that you don’t have to write rules twice. You write each rule once, and the
logic flows through it in both directions.

• The URLs that are generated by the routing system (via link_to and friends)
only make sense to the routing system. The path recipes/apples, which the sys-
tem generates, contains not a shred of a clue as to what’s supposed to happen—
except insofar as it maps to a routing rule. The routing rule then provides the nec-
essary information to trigger a controller action. Someone looking at the URL
without knowing the rules won’t know what the URL means.

You’ll see how these play out in detail as we proceed.

The routes.rb File
Routes are defined in the file config/routes.rb, as shown (with some extra com-
ments) in Listing 3.1. This file is created when you first create your Rails application.
It comes with a few routes already written and in most cases you’ll want to change
and/or add to the routes defined in it.

Listing 3.1 The Default routes.rb File

ActionController::Routing::Routes.draw do |map|
The priority is based upon order of creation
First created gets highest priority.

Sample of regular route:
map.connect ‘products/:id’, :controller => ‘catalog’,

:action => ‘view’

The routes.rb File 63

Keep in mind you can assign values other than
:controller and :action

Sample of named route:
map.purchase ‘products/:id/purchase’, :controller => ‘catalog’,

:action => ‘purchase’
This route can be invoked with purchase_url(:id => product.id)

You can have the root of your site routed by hooking up ‘’
-- just remember to delete public/index.html.
map.connect ‘’, :controller => “welcome”

Allow downloading Web Service WSDL as a file with an extension

instead of a file named ‘wsdl’
map.connect ‘:controller/service.wsdl’, :action => ‘wsdl’

Install the default route as the lowest priority.
map.connect ‘:controller/:action/:id.:format’
map.connect ‘:controller/:action/:id’

end

The whole thing consists of a single call to the method ActionController:
:Routing::Routes.draw. That method takes a block, and everything from the sec-
ond line of the file to the second-to-last line is body of that block.

Inside the block, you have access to a variable called map. It’s an instance of the
class ActionController::Routing::RouteSet::Mapper. Through it you config-
ure the Rails routing system: You define routing rules by calling methods on your
mapper object. In the default routes.rb file you see several calls to map.connect.
Each such call (at least, those that aren’t commented out) creates a new route by reg-
istering it with the routing system.

The routing system has to find a pattern match for a URL it’s trying to recognize,
or a parameters match for a URL it’s trying to generate. It does this by going through
the rules—the routes—in the order in which they’re defined; that is, the order in
which they appear in routes.rb. If a given route fails to match, the matching rou-
tine falls through to the next one. As soon as any route succeeds in providing the nec-
essary match, the search ends.

64 3. Routing

Courtenay Says…

Routing is probably one of the most complex parts of
Rails. In fact, for much of Rails’ history, only one person
could make any changes to the source, due to its labryn-
thine implementation. So, don’t worry too much if you
don’t grasp it immediately. Most of us still don’t.

That being said, the routes.rb syntax is pretty straight-
forward if you follow the rules. You’ll likely spend less
than 5 minutes setting up routes for a vanilla Rails project.

The Default Route
If you look at the very bottom of routes.rb you’ll see the default route:

map.connect ‘:controller/:action/:id’

The default route is in a sense the end of the journey; it defines what happens
when nothing else happens. However, it’s also a good place to start. If you understand
the default route, you’ll be able to apply that understanding to the more intricate
examples as they arise.

The default route consists of just a pattern string, containing three wildcard
“receptors.” Two of the receptors are :controller and :action. That means that
this route determines what it’s going to do based entirely on wildcards; there are no
bound parameters, no hard-coded controller or action.

Here’s a sample scenario. A request comes in with the URL:

http://localhost:3000/auctions/show/1

Let’s say it doesn’t match any other pattern. It hits the last route in the file—the
default route. There’s definitely a congruency, a match. We’ve got a route with three
receptors, and a URL with three values, and therefore three positional matches:

:controller/:action/:id

auctions / show / 1

We end up, then, with the auctions controller, the show action, and “1” for the
id value (to be stored in params[:id]). The dispatcher now knows what to do.

The routes.rb File 65

The behavior of the default route illustrates some of the specific default behaviors
of the routing system. The default action for any request, for example, is index. And,
given a wildcard like :id in the pattern string, the routing system prefers to find a
value for it, but will go ahead and assign it nil rather than give up and conclude that
there’s no match.

Table 3.1 shows some examples of URLs and how they will map to this rule, and
with what results.

Table 3.1 Default Route Examples

URL Result Value of id

Controller Action

/auctions/show/3 auctions show 3

/auctions/index auctions index nil

/auctions auctions index (default) nil

/auctions/show auctions show nil—probably an error!

The nil in the last case is probably an error because a show action with no id is
usually not what you’d want!

Spotlight on the :id Field
Note that the treatment of the :id field in the URL is not magic; it’s just treated as a
value with a name. If you wanted to, you could change the rule so that :id was
:blah—but then you’d have to remember to do this in your controller action:

@auction = Auction.find(params[:blah])

The name :id is simply a convention. It reflects the commonness of the case in
which a given action needs access to a particular database record. The main business
of the router is to determine the controller and action that will be executed. The id
field is a bit of an extra; it’s an opportunity for actions to hand a data field off to each
other.

66 3. Routing

The id field ends up in the params hash, which is automatically available to your
controller actions. In the common, classic case, you’d use the value provided to dig a
record out of the database:

class ItemsController < ApplicationController

def show

@item = Item.find(params[:id])

end

end

Default Route Generation
In addition to providing the basis for recognizing URLs, and triggering the correct
behavior, the default route also plays a role in URL generation. Here’s a link_to call
that will use the default route to generate a URL:

<%= link_to item.description,

:controller => “item”,

:action => “show”,

:id => item.id %>

This code presupposes a local variable called item, containing (we assume) an
Item object. The idea is to create a hyperlink to the show action for the item con-
troller, and to include the id of this particular item. The hyperlink, in other words,
will look something like this:

A signed picture of Houdini

This URL gets created courtesy of the route-generation mechanism. Look again
at the default route:

map.connect ‘:controller/:action/:id’

In our link_to call, we’ve provided values for all three of the fields in the pat-
tern. All that the routing system has to do is plug in those values and insert the result
into the URL:

item/show/3

The routes.rb File 67

When someone clicks on the link, that URL will be recognized—courtesy of the
other half of the routing system, the recognition facility—and the correct controller
and action will be executed, with params[:id] set to 3.

The generation of the URL, in this example, uses wildcard logic: We’ve supplied
three symbols, :controller, :action, and :id, in our pattern string, and those
symbols will be replaced, in the generated URL, by whatever values we supply.
Contrast this with our earlier example:

map.connect ‘recipes/:ingredient’,

:controller => “recipes”,

:action => “show”

To get the URL generator to choose this route, you have to specify “recipes” and
“show” for :controller and :action when you request a URL for link_to. In the
default route—and, indeed, any route that has symbols embedded in its pattern—you
still have to match, but you can use any value.

Modifying the Default Route
A good way to get a feel for the routing system is by changing things and seeing what
happens. We’ll do this with the default route. You’ll probably want to change it back…
but changing it will show you something about how routing works.

Specifically, swap :controller and :action in the pattern string:

Install the default route as the lowest priority.

map.connect ‘:action/:controller/:id’

You’ve now set the default route to have actions first. That means that where pre-
viously you might have connected to http://localhost:3000/auctions/show/3, you’ll
now need to connect to http://localhost:3000/show/auctions/3. And when you gen-
erate a URL from this route, it will come out in the /show/auctions/3 order.

It’s not particularly logical; the original default (the default default) route is bet-
ter. But it shows you a bit of what’s going on, specifically with the magic symbols
:controller and :action. Try a few more changes, and see what effect they have.
(And then put it back the way it was!)

68 3. Routing

The Ante-Default Route and respond_to
The route just before the default route (thus the “ante-default” route) looks like this:

map.connect ‘:controller/:action/:id.:format’

The .:format at the end matches a literal dot and a wildcard “format” value after
the id field. That means it will match, for example, a URL like this:

http://localhost:3000/recipe/show/3.xml

Here, params[:format] will be set to xml. The :format field is special; it has
an effect inside the controller action. That effect is related to a method called
respond_to.

The respond_to method allows you to write your action so that it will return
different results, depending on the requested format. Here’s a show action for the
items controller that offers either HTML or XML:

def show

@item = Item.find(params[:id])

respond_to do |format|

format.html

format.xml { render :xml => @item.to_xml }

end

end

The respond_to block in this example has two clauses. The HTML clause just
consists of format.html. A request for HTML will be handled by the usual render-
ing of the RHTML view template. The XML clause includes a code block; if XML is
requested, the block will be executed and the result of its execution will be returned
to the client.

Here’s a command-line illustration, using wget (slightly edited to reduce line
noise):

$ wget http://localhost:3000/items/show/3.xml -O -

Resolving localhost... 127.0.0.1, ::1

Connecting to localhost|127.0.0.1|:3000... connected.

HTTP request sent, awaiting response... 200 OK

Length: 295 [application/xml]

<item>

The Ante-Default Route and respond_to 69

<created-at type=”datetime”>2007-02-16T04:33:00-05:00</created-at>

<description>Violin treatise</description>

<id type=”integer”>3</id>

<maker>Leopold Mozart</maker>

<medium>paper</medium>

<modified-at type=”datetime”></modified-at>

<year type=”integer”>1744</year>

</item>

The .xml on the end of the URL results in respond_to choosing the “xml”
branch, and the returned document is an XML representation of the item.

respond_to and the HTTP-Accept Header
You can also trigger a branching on respond_to by setting the HTTP-Accept head-
er in the request. When you do this, there’s no need to add the .:format part of the
URL.

Here’s a wget example that does not use .xml but does set the Accept header:

wget http://localhost:3000/items/show/3 -O - —header=”Accept:

text/xml”

Resolving localhost... 127.0.0.1, ::1

Connecting to localhost|127.0.0.1|:3000... connected.

HTTP request sent, awaiting response...

200 OK

Length: 295 [application/xml]

<item>

<created-at type=”datetime”>2007-02-16T04:33:00-05:00</created-at>

<description>Violin treatise</description>

<id type=”integer”>3</id>

<maker>Leopold Mozart</maker>

<medium>paper</medium>

<modified-at type=”datetime”></modified-at>

<year type=”integer”>1744</year>

</item>

The result is exactly the same as in the previous example.

70 3. Routing

The Empty Route
Except for learning-by-doing exercises, you’re usually safe leaving the default route
alone. But there’s another route in routes.rb that plays something of a default role
and you will probably want to change it: the empty route.

A few lines up from the default route (refer to Listing 3.1) you’ll see this:

You can have the root of your site routed by hooking up ‘’

-- just remember to delete public/index.html.

map.connect ‘’, :controller => “welcome”

What you’re seeing here is the empty route—that is, a rule specifying what should
happen when someone connects to

http://localhost:3000 Note the lack of “/anything” at the end!

The empty route is sort of the opposite of the default route. Instead of saying, “I
need any three values, and I’ll use them as controller, action, and id,” the empty route
says, “I don’t want any values; I want nothing, and I already know what controller and
action I’m going to trigger!”

In a newly generated routes.rb file, the empty route is commented out, because
there’s no universal or reasonable default for it. You need to decide what this “noth-
ing” URL should do for each application you write.

Here are some examples of fairly common empty route rules:

map.connect ‘’, :controller => “main”, :action => “welcome”

map.connect ‘’, :controller => “top”, :action => “login”

map.connect ‘’, :controller => “main”

That last one will connect to main/index—index being the default action when
there’s none specified.

Note that Rails 2.0 introduces a mapper method named root which becomes the
proper way to define the empty route for a Rails application, like this:

map.root :controller => “homepage”

Defining the empty route gives people something to look at when they connect
to your site with nothing but the domain name.

The Empty Route 71

Writing Custom Routes
The default route is a very general one. Its purpose is to catch all routes that haven’t
matched already. Now we’re going to look at that already part: the routes defined ear-
lier in the routes.rb file, routes that match more narrowly than the general one at
the bottom of the file.

You’ve already seen the major components that you can put into a route: static
strings, bound parameters (usually including :controller and often including
:action), and wildcard “receptors” that get their values either positionally from a
URL, or key-wise from a URL hash in your code.

When you write your routes, you have to think like the routing system.

• On the recognition side, that means your route has to have enough information
in it—either hard-coded or waiting to receive values from the URL—to decide
which controller and action to choose. (Or at least a controller; it can default to
index if that’s what you want.)

• On the generation side, your need to make sure that your hard-coded parameters
and wildcards, taken together, provide you with enough values to pinpoint a route
to use.

As long as these things are present—and as long as your routes are listed in order
of priority (“fall-through” order)—your routes should work as desired.

Using Static Strings
Keep in mind that there’s no necessary correspondence between the number of fields
in the pattern string, the number of bound parameters, and the fact that every con-
nection needs a controller and an action.

For example, you could write a route like this:

map.connect “:id”, :controller => “auctions”, :action => “show”

which would recognize a URL like this:

http://localhost:3000/8

The routing system would set params[:id] to 8 (based on the position of the
:id “receptor,” which matches the position of “8” in the URL), and it would execute

72 3. Routing

the show action of the auctions controller. Of course, this is a bit of a stingy route,
in terms of visual information. You might want to do something more like Listing 2.2,
which is a little richer semantically-speaking:

map.connect “auctions/:id”, :controller => “auctions”, :action => “show”

This version of the route would recognize this:

http://localhost:3000/auctions/8

In this route, “auctions” is a static string. It will be looked for in the URL, for
recognition purposes; and it will be inserted into the URL when you generate it with
the following code:

<%= link_to “Auction details”,

:controller => “auctions”,

:action => “show”,

:id => auction.id %>

Using Your Own “Receptors”
So far, we’ve used the two magic parameters, :controller and :action, and the
nonmagic but standard :id. It is also possible to use your own parameters, either
hard-coded or wildcard. Doing this can help you add some expressiveness and self-
documentation to your routes, as well as to your application code.

The main reason you’d want to use your own parameters is so that you can use
them as handles in your code. For example, you might want a controller action to look
like this:

def show

@auction = Auction.find(params[:id])

@user = User.find(params[:user_id])

end

Here we’ve got the symbol :user_id showing up, along with :id, as a key to the
params hash. That means it got there, somehow. In fact, it got there the same way as

Using Your Own “Receptors” 73

the :id parameter: It appears in the pattern for the route by which we got to the show
action in the first place.

Here’s that route:

map.connect ‘auctions/:user_id/:id’,

:controller => “auctions”,

:action => “show”

This route, when faced with a URL like this

/auctions/3/1

will cause the auctions/show action to run, and will set both :user_id and :id in
the params hash. (:user_id matches 3 positionally, and :id matches 1.)

On the URL generation side, all you have to do is include a :user_id key in your
URL specs:

<%= link_to “Auction”,

:controller => “auctions”,

:action => “show”,

:user_id => current_user.id,

:id => ts.id %>

The :user_id key in the hash will match the :user_id receptor in the route
pattern. The :id key will also match, and so will the :controller and :action

parameters. The result will be a URL based on the blueprint
‘auctions/:user_id/:id’.

You can actually arbitrarily add many specifiers to a URL hash in calls to link_to
and other similar methods. Any parameters you define that aren’t found in a routing
rule will be added to the URL as a query string. For example, if you add:

:some_other_thing => “blah”

to the hash in the link_to example above, you’ll end up with this as your URL:

http://localhost:3000/auctions/3/1?some_other_thing=blah

74 3. Routing

A Note on Route Order
Routes are consulted, both for recognition and for generation, in the order they are
defined in routes.rb. The search for a match ends when the first match is found,
which means that you have to watch out for false positives.

For example, let’s say you have these two routes in your routes.rb:

map.connect “users/help”, :controller => “users”

map.connect “:controller/help”, :controller => “main”

The logic here is that if someone connects to /users/help, there’s
a users/help action to help them. But if they connect to /any_other_
controller/help, they get the help action of the main controller. Yes, it’s tricky.

Now, consider what would happen if you reversed the order of these two routes:

map.connect “:controller/help”, :controller => “main”

map.connect “users/help”, :controller => “users”

If someone connects to /users/help, that first route is going to match—because
the more specific case, handling users differently, is defined later in the file.

It’s very similar to other kinds of matching operations, like case statements:

case string

when /./

puts “Matched any character!”

when /x/

puts “Matched ‘x’!”

end

The second when will never be reached, because the first one will match ‘x’. You
always want to go from the specific or special cases, to the general case:

case string

when /x/

puts “Matched ‘x’!”

when /./

puts “Matched any character!”

end

A Note on Route Order 75

These case examples use regular expressions—/x/ and so forth—to embody pat-
terns against which a string can be tested for a match. Regular expressions actually play
a role in the routing syntax too.

Using Regular Expressions in Routes
Sometimes you want not only to recognize a route, but to recognize it at a finer-
grained level than just what components or fields it has. You can do this through the
use of regular expressions.1

For example, you could route all “show” requests so that they went to an error
action if their id fields were non-numerical. You’d do this by creating two routes, one
that handled numerical ids, and a fall-through route that handled the rest:

map.connect ‘:controller/show/:id’,

:id => /\d+/, :action => “show”

map.connect ‘:controller/show/:id’,

:action => “alt_show”

If you want to do so, mainly for clarity, you can wrap your regular expression-
based constraints in a special hash parameter named :requirements, like this:

map.connect ‘:controller/show/:id’,

:action => “show”, :requirements => { :id => /\d+/ }

Regular expressions in routes can be useful, especially when you have routes that
differ from each other only with respect to the patterns of their components. But
they’re not a full-blown substitute for data-integrity checking. A URL that matches a
route with regular expressions is like a job candidate who’s passed a first interview. You
still want to make sure that the values you’re dealing with are usable and appropriate
for your application’s domain.

Default Parameters and the url_for Method
The URL generation techniques you’re likely to use—link_to, redirect_to, and
friends—are actually wrappers around a lower-level method called url_for. It’s
worth looking at url_for on its own terms, because you learn something about how

76 3. Routing

Rails generates URLs. (And you might want to call url_for on its own at some
point.)

The url_for method’s job is to generate a URL from your specifications, mar-
ried to the rules in the route it finds to be a match. This method abhors a vacuum: In
generating a URL, it likes to fill in as many fields as possible. To that end, if it can’t
find a value for a particular field from the information in the hash you’ve given it, it
looks for a value in the current request parameters.

In other words, in the face of missing values for URL segments, url_for defaults
to the current values for :controller, :action, and, where appropriate, other
parameters required by the route.

This means that you can economize on repeating information, if you’re staying
inside the same controller. For example, inside a show view for a template belonging
to the auctions controller, you could create a link to the edit action like this:

<%= link_to “Edit auction”, :action => “edit”, :id => @auction.id %>

Assuming that this view is only ever rendered by actions in the auctions controller,
the current controller at the time of the rendering will always be auctions. Because
there’s no :controller specified in the URL hash, the generator will fall back on
auctions, and based on the default route (:controller/:action/:id), it will come
up with this (for auction 5):

Edit auction

The same is true of the action. If you don’t supply an :action key, then the cur-
rent action will be interpolated. Keep in mind, though, that it’s pretty common for
one action to render a template that belongs to another. So it’s less likely that you’ll
want to let the URL generator fall back on the current action than on the current con-
troller.

What Happened to :id?
Note that in that last example, we defaulted on :controller but we had to provide
a value for :id. That’s because of the way defaults work in the url_for method.
What happens is that the route generator marches along the template segments, from
left to right—in the default case like this:

:controller/:action/:id

Default Parameters and the url_for Method 77

And it fills in the fields based on the parameters from the current request until it
hits one where you’ve provided a value:

:controller/:action/:id

default! provided!

When it hits one that you’ve provided, it checks to see whether what you’ve pro-
vided is the default it would have used anyway. Since we’re using a show template as
our example, and the link is to an edit action, we’re not using the default value for
:action.

Once it hits a non-default value, url_for stops using defaults entirely. It figures
that once you’ve branched away from the defaults, you want to keep branching. So the
nondefault field and all fields to its right cease to fall back on the current request for
default values.

That’s why there’s a specific value for :id, even though it may well be the same
as the params[:id] value left over from the previous request.

Pop quiz: What would happen if you switched the default route to this?

map.connect ‘:controller/:id/:action’

And then you did this in the show.rhtml template:

<%= link_to “Edit this auction”, :action => “edit” %>

Answer: Since :id is no longer to the right of :action, but to its left, the gen-
erator would happily fill in both :controller and :id from their values in the cur-
rent request. It would then use “edit” in the :action field, since we’ve hard-coded
that. There’s nothing to the right of :action, so at that point everything’s done.

So if this is the show view for auction 5, we’d get the same hyperlink as before—
almost. Since the default route changed, so would the ordering of the URL fields:

Edit this auction

There’s no advantage to actually doing this. The point, rather, is to get a feel for
how the routing system works by seeing what happens when you tweak it.

78 3. Routing

Using Literal URLs
You can, if you wish, hard-code your paths and URLs as string arguments to link_to,
redirect_to, and friends. For example, instead of this:

<%= link_to “Help”, :controller => “main”, :action => “help” %>

You can write this:

<%= link_to “Help”, “/main/help” %>

However, using a literal path or URL bypasses the routing system. If you write lit-
eral URLs, you’re on your own to maintain them. (You can of course use Ruby’s string
interpolation techniques to insert values, if that’s appropriate for what you’re doing,
but really stop and think about whether you are reinventing Rails functionality if you
go down that path.)

Route Globbing
In some situations, you might want to grab one or more components of a route with-
out having to match them one by one to specific positional parameters. For example,
your URLs might reflect a directory structure. If someone connects to

/files/list/base/books/fiction/dickens

you want the files/list action to have access to all four remaining fields. But some-
times there might be only three fields:

/files/list/base/books/fiction

or five:

/files/list/base/books/fiction/dickens/little_dorrit

So you need a route that will match (in this particular case) everything after the sec-
ond URI component.

You can do that with a route glob. You “glob” the route with an asterisk:

map.connect ‘files/list/*specs’

Route Globbing 79

Now, the files/list action will have access to an array of URI fields, accessi-
ble via params[:specs]:

def list

specs = params[:specs] # e.g, [“base”, “books”, “fiction”, “dickens”]

end

The glob has to come at the end of the pattern string in the route. You cannot do
this:

map.connect ‘files/list/*specs/dickens’ # Won’t work!

The glob sponges up all the remaining URI components, and its semantics there-
fore require that it be the last thing in the pattern string.

Globbing Key-Value Pairs
Route globbing might provide the basis for a general mechanism for fielding queries
about items up for auction. Let’s say you devise a URI scheme that takes the follow-
ing form:

http://localhost:3000/items/field1/value1/field2/value2/...

Making requests in this way will return a list of all items whose fields match the
values, based on an unlimited set of pairs in the URL.

In other words, http://localhost:3000/items/year/1939/medium/wood
would generate a list of all wood items made in 1939.

The route that would accomplish this would be:

map.connect ‘items/*specs’, :controller => “items”, :action => “specify”

Of course, you’ll have to write a specify action like the one in Listing 3.2 to sup-
port this route.

80 3. Routing

Listing 3.2 The specify Action

def specify

@items = Item.find(:all, :conditions => Hash[params[:specs]])

if @items.any?

render :action => “index”

else

flash[:error] = “Can’t find items with those properties”

redirect_to :action => “index”

end
end

How about that square brackets class method on Hash, eh? It converts a one-
dimensional array of key/value pairs into a hash! Further proof that in-depth knowl-
edge of Ruby is a prerequisite for becoming an expert Rails developer.

Next stop: Named routes, a way to encapsulate your route logic in made-to-order
helper methods.

Named Routes
The topic of named routes almost deserves a chapter of its own. What you learn here
will feed directly into our examination of REST-related routing in Chapter 4.

The idea of naming a route is basically to make life easier on you, the program-
mer. There are no outwardly visible effects as far as the application is concerned. When
you name a route, a new method gets defined for use in your controllers and views;
the method is called name_url (with name being the name you gave the route), and
calling the method, with appropriate arguments, results in a URL being generated for
the route. In addition, a method called name_path also gets created; this method gen-
erates just the path part of the URL, without the protocol and host components.

Creating a Named Route
The way you name a route is by calling a method on your mapper object with the
name you want to use, instead of the usual connect:

map.help ‘help’,

:controller => “main”,

:action => “show_help”

Named Routes 81

In this example, you’ll get methods called help_url and help_path, which you
can use wherever Rails expects a URL or URL components:

<%= link_to “Help!”, help_path %>

And, of course, the usual recognition and generation rules are in effect. The pat-
tern string consists of just the static string component “help”. Therefore, the path
you’ll see in the hyperlink will be

/help

When someone clicks on the link, the show_help action of the main controller
will be invoked.

The Question of Using name_path Versus name_url
When you create a named route, you’re actually creating at least two route helper
methods. In the preceding example, those two methods are help_url and
help_path. The difference is that the _url method generates an entire URL, includ-
ing protocol and domain, whereas the _path method generates just the path part
(sometimes referred to as a relative path).

According to the HTTP spec, redirects should specify a URI, which can be inter-
preted (by some people) to mean a fully-qualified URL2. Therefore, if you want to be
pedantic about it, you probably should always use the _url version when you use a
named route as an argument to redirect_to in your controller code.

The redirect_to method seems to work perfectly with the relative paths gen-
erated by _path helpers, which makes arguments about the matter kind of pointless.
In fact, other than redirects, permalinks, and a handful of other edge cases, it’s the
Rails way to use _path instead of _url. It produces a shorter string and the user agent
(browser or otherwise) should be able to infer the fully qualified URL whenever it
needs to do so, based on the HTTP headers of the request, a base element in the doc-
ument, or the URL of the request.

As you read this book, and as you examine other code and other examples, the
main thing to remember is that help_url and help_path are basically doing the
same thing. I tend to use the _url style in general discussions about named route
techniques, but to use _path in examples that occur inside view templates (for exam-
ple, with link_to and form_for). It’s mostly a writing-style thing, based on the the-
ory that the URL version is more general and the path version more specialized. In

82 3. Routing

any case, it’s good to get used to seeing both and getting your brain to view them as
very closely connected.

Considerations
Named routes save you some effort when you need a URL generated. A named route
zeros in directly on the route you need, bypassing the matching process. That means
you don’t have to provide as much detail as you otherwise would. You have to provide
a value for any wildcard parameter in the route’s pattern string, but you don’t have to
go down the laundry list of hard-coded, bound parameters. The only reason for doing
that when you’re trying to generate a URL is to steer the routing system to the correct
route. But when you use a named route, the system already knows which rule you
want to apply, and there is a (slight) corresponding performance boost.

What to Name Your Routes
The best way to figure out what named routes you’ll need is to think top-down; that
is, think about what you want to write in your application code, and then create the
routes that will make it possible.

Take, for example, this call to link_to:

<%= link_to “Auction of #{h(auction.item.description)}”,

:controller => “auctions”,

:action => “show”,

:id => auction.id %>

The routing rule to match that path is this (generic type of route):

map.connect “auctions/:id”,

:controller => “auctions”,

:action => “show”

It seems a little heavy-handed to spell out all the routing parameters again, just so
that the routing system can figure out which route we want. And it sure would be nice
to shorten that link_to code. After all, the routing rule already specifies the con-
troller and action.

What to Name Your Routes 83

This is a good candidate for a named route. We can improve the situation by
introducing auction_path:

<%= link_to “Auction for #{h(auction.item.description)}”,

auction_path(:id => auction.id) %>

Giving the route a name is a shortcut; it takes us straight to that route, without a
long search and without having to provide a thick description of the route’s hard-
coded parameters.

Courtenay Says...

Remember to escape your item descriptions!

Links such as #{auction.item.description} should
always be wrapped in an h() method to prevent cross-site
scripting hacks (XSS). That is, unless you have some clever
way of validating your input.

The named route will be the same as the plain route—except that we replace
“connect” with the name we want to give the route:

map.auction “auctions/:id”,

:controller => “auctions”,

:action => “show”

In the view, we can now use the more compact version of link_to; and we’ll get (for
auction 3, say) this URL in the hyperlink:

http://localhost:3000/auctions/show/3

Argument Sugar
In fact, we can make the argument to auction_path even shorter. If you need to sup-
ply an id number as an argument to a named route, you can just supply the number,
without spelling out the :id key:

<%= link_to “Auction for #{h(auction.item.description)}”,

auction_path(auction.id) %>

84 3. Routing

And the syntactic sugar goes even further: You can just provide objects and Rails
will grab the id automatically.

<%= link_to “Auction for #{h(auction.item.description)}”,

auction_path(auction) %>

This principle extends to other wildcards in the pattern string of the named route.
For example, if you’ve got a route like this:

map.item ‘auction/:auction_id/item/:id’,

:controller => “items”,

:action => “show”

you’d be able to call it like this:

<%= link to item.description, item_path(@auction, item) %>

and you’d get something like this as your path (depending on the exact id numbers):

/auction/5/item/11

Here, we’re letting Rails infer the ids of both an auction object and an item object.
As long as you provide the arguments in the order in which their ids occur in the
route’s pattern string, the correct values will be dropped into place in the generated
path.

A Little More Sugar with Your Sugar?
Furthermore, it doesn’t have to be the id value that the route generator inserts into the
URL. You can override that value by defining a to_param method in your model.

Let’s say you want the description of an item to appear in the URL for the auc-
tion on that item. In the item.rb model file, you would override to_params; here,
we’ll override it so that it provides a “munged” (stripped of punctuation and joined
with hyphens) version of the description:

def to_param

description.gsub(/\s/, “-”).gsub([^\W-], ‘’).downcase

end

What to Name Your Routes 85

Subsequently, the method call item_path(@item) will produce something like
this:

/auction/3/item/cello-bow

Of course, if you’re putting things like “cello-bow” in a path field called :id, you
will need to make provisions to dig the object out again. Blog applications that use
this technique to create “slugs” for use in permanent links often have a separate data-
base column to store the “munged” version of the title that serves as part of the path.
That way, it’s possible to do something like

Item.find_by_munged_description(params[:id])

to unearth the right item. (And yes, you can call it something other than :id in the
route to make it clearer!)

Courtenay Says...

Why shouldn’t you use numeric IDs in your URLs?

First , your competitors can see just how many auctions
you create. Numeric consecutive IDs also allow people to
write automated spiders to steal your content. It’s a win-
dow into your database. And finally, words in URLs just
look better.

The Special Scope Method with_options
Sometimes you might want to create a bundle of named routes, all of which pertain
to the same controller. You can achieve this kind of batch creation of named routes via
the with_options mapping method.

Let’s say you’ve got the following named routes:

map.help ‘/help’, :controller => “main”, :action => “help”

map.contact ‘/contact’, :controller => “main”, :action => “contact”

map.about ‘/about’, :controller => “main”, :action => “about”

86 3. Routing

You can consolidate these three named routes like this:

map.with_options :controller => “main” do |main|

main.help ‘/help’, :action => “help”

main.contact ‘/contact’, :action => “contact”

main.about ‘/about’, :action => “about”

end

The three inner calls create named routes that are scoped—constrained—to use
“main” as the value for the :controller parameter, so you don’t have to write it
three times.

Note that those inner calls use main, not map, as their receiver. After the scope is
set, map calls upon the nested mapper object, main, to do the heavy lifting.

Courtenay Says...

The advanced Rails programmer, when benchmarking an
application under load, will notice that routing, route
recognition, and the url_for, link_to and related
helpers are often the slowest part of the request cycle.
(Note: This doesn’t become an issue until you are at least
into the thousands of pageviews per hour, so you can stop
prematurely optimizing now.)

Route recognition is slow because everything stops while a
route is calculated. The more routes you have, the slower
it will be. Some projects have hundreds of custom routes.

Generating URLs is slow because there are often many
occurances of link_to in a page, and it all adds up.

What does this mean for the developer? One of the first
things to do when your application starts creaking and
groaning under heavy loads (lucky you!) is to cache those
generated URLs or replace them with text. It’s only mil-
liseconds, but it all adds up.

The Special Scope Method with_options 87

Conclusion
The first half of the chapter helped you to fully understand generic routing based on
map.connect rules and how the routing system has two purposes:

• Recognizing incoming requests and mapping them to a corresponding controller
action, along with any additional variable receptors

• Recognizing URL parameters in methods such as link_to and matching them
up to a corresponding route so that proper HTML links can be generated

We built on our knowledge of generic routing by covering some advanced tech-
niques such as using regular expressions and globbing in our route definitions.

Finally, before moving on, you should make sure that you understand how named
routes work and why they make your life easier as a developer by allowing you to write
more concise view code. As you’ll see in the next chapter, when we start defining
batches of related named routes, we’re on the cusp of delving into REST.

References

1. For more on regular expressions in Ruby, see The Ruby Way by Hal Fulton, part of this series.

2. Zed Shaw, author of the Mongrel web server and expert in all matters HTTP-related, was not
able to give me a conclusive answer, which should tell you something. (About the looseness of
HTTP that is, not Zed.)

88 3. Routing

CHAPTER 4
REST, Resources, and Rails

Before REST came I (and pretty much everyone else) never really knew where to
put stuff.
—Jonas Nicklas on the Ruby on Rails mailing list

With version 1.2, Rails introduced support for designing APIs consistent with the
REST style. Representational State Transfer (REST) is a complex topic in information
theory, and a full exploration of it is well beyond the scope of this chapter.1 We‘ll touch
on some of the keystone concepts, however. And in any case, the REST facilities in
Rails can prove useful to you even if you’re not a REST expert or devotee.

The main reason is that one of the inherent problems that all web developers face
is deciding how to name and organize the resources and actions of their application.
The most common actions of all database-backed applications happen to fit well into
the REST paradigm—we’ll see what that means in a moment.

REST in a Rather Small Nutshell
REST is described by its creator, Roy T. Fielding, as a network “architectural style,”
specifically the style manifested in the architecture of the World Wide Web. Indeed,
Fielding is not only the creator of REST but also one of the authors of the HTTP pro-
tocol itself—REST and the web have a very close relationship.

Fielding defines REST as a series of constraints imposed upon the interaction
between system components: Basically, you start with the general proposition of

89

machines that can talk to each other, and you start ruling some practices in and oth-
ers out by imposing constraints.

The REST constraints include (among others)

• Use of a client-server architecture

• Stateless communication

• Explicit signaling of response cacheability

The World Wide Web allows for REST-compliant communication. It also allows
for violations of REST principles; the constraints aren’t always all there unless you put
them there. But Fielding is one of the authors of the HTTP protocol; and while he
has some criticisms of the protocol from the REST point of view (as well as criticisms
of widespread non-REST-compliant practices, such as the use of cookies), the overall
fit between REST and the web is not a coincidence.

REST is designed to help you provide services, and to provide them using the
native idioms and constructs of HTTP. You’ll find, if you look for it, lots of discussion
comparing REST to, for example, SOAP—the thrust of the pro-REST argument
being that HTTP already enables you to provide services, so you don’t need a seman-
tic layer on top of it. Just use what HTTP already gives you.

One of the payoffs of REST is that it scales relatively well for big systems, like the
web. Another is that it encourages—mandates, even—the use of stable, long-lived
identifiers (URIs). Machines talk to each other by sending requests and responses
labeled with these identifiers. Those requests and responses also contain representations
(manifestations in text, XML, graphic format, and so on) of resources (high-level, con-
ceptual descriptions of content). Ideally at least, when you ask a machine for an XML
representation of a resource—say, Romeo and Juliet—you’ll use the same identifier
every time and the same request metadata indicating that you want XML, and you’ll
get the same response. And if it’s not the same response, there’s a reason—like, the
resource you’re retrieving is a changeable one (“The current transcript for Student
#3994,” for example).

We’ll look at resources and representations further a little later on. For now,
though, let’s bring Rails back into the picture.

90 4. REST, Resources, and Rails

REST in Rails
The REST support in Rails consists of helper methods and enhancements to the rout-
ing system, designed to impose a particular style and order and logic on your con-
trollers and, consequently, on the way the world sees your application. There’s more
to it than just a set of naming conventions (though there’s that too). We’ll get to details
shortly. In the large scheme of things, the benefits that accrue to you when you use
Rails’ REST support fall into two categories:

• Convenience and automatic best practices for you

• A REST interface to your application’s services, for everyone else

You can reap the first benefit even if you’re not concerned with the second. In fact,
that’s going to be our focus here: what the REST support in Rails can do for you in
the realm of making your code nicer and your life as a Rails developer easier.

This isn’t meant to minimize the importance of REST itself, nor the seriousness
of the endeavor of providing REST-based services. Rather, it’s an expedient; we can’t
talk about everything, and this section of the book is primarily about routing and how
to do it, so we’re going to favor looking at REST in Rails from that perspective.

Moreover, the relationship between Rails and REST, while a fruitful one, is not
free of difficulties. Much Rails practice is noncompliant with the precepts of REST
from the beginning. REST involves stateless communication; every request has to
contain everything necessary for the recipient to generate the correct response. But
pretty much every nontrivial Rails program in the world uses server state to track ses-
sions. To the extent that they do, they are not adhering to the REST design. On the
client side, cookies—also used by many Rails applications—are singled out by
Fielding as a non-REST-compliant practice.

Untangling all the issues and dilemmas is beyond our scope here. Again, the focus
will be on showing you how the REST support works, and opening the door to fur-
ther study and practice—including the study of Fielding’s dissertation and the theo-
retical tenets of REST. We won’t cover everything here, but what we do cover will be
“onward compatible” with the wider topic.

The story of REST and Rails starts with CRUD…

REST in Rails 91

Routing and CRUD
The acronym CRUD (Create Read Update Delete) is the classic summary of the spec-
trum of database operations. It’s also a kind of rallying cry for Rails practitioners.
Because we address our databases through abstractions, we’re prone to forget how sim-
ple it all is. This manifests itself mainly in excessively creative names for controller
actions. There’s a temptation to call your actions add_item and replace_

email_address and things like that. But we needn’t, and usually shouldn’t, do this.
True, the controller does not map to the database, the way the model does. But things
get simpler when you name your actions after CRUD operations, or as close to the
names of those operations as you can get.

The routing system is not wired for CRUD. You can create a route that goes to
any action, whatever the action’s name. Choosing CRUD names is a matter of disci-
pline. Except… when you use the REST facilities offered by Rails, it happens auto-
matically.

REST in Rails involves standardization of action names. In fact, the heart of the
Rails’ REST support is a technique for creating bundles of named routes automati-
cally—named routes that are hard-programmed to point to a specific, predetermined
set of actions.

Here’s the logic. It’s good to give CRUD-based names to your actions. It’s con-
venient and elegant to use named routes. The REST support in Rails gives you named
routes that point to CRUD-based action names. Therefore, using the REST facilities
gives you a shortcut to some best practices.

“Shortcut” hardly describes how little work you have to do to get a big payoff. If
you put this:

map.resources :auctions

into your routes.rb files, you will have created four named routes, which, in a man-
ner to be described in this chapter, actually allow you to connect to seven controller
actions. And those actions have nice CRUD-like names, as you will see.

The term “resources” in map.resources deserves some attention.

92 4. REST, Resources, and Rails

Resources and Representations
The REST style characterizes communication between system components (where a
component is, say, a web browser or a server) as a series of requests to which the
responses are representations of resources.

A resource, in this context, is a “conceptual mapping” (Fielding). Resources them-
selves are not tied to a database, a model, or a controller. Examples of resources include

• The current time of day

• A library book’s borrowing history

• The entire text of Little Dorrit

• A map of Austin

• The inventory of a store

A resource may be singular or plural, changeable (like the time of day) or fixed
(like the text of Little Dorrit). It’s basically a high-level description of the thing you’re
trying to get hold of when you submit a request.

What you actually do get hold of is never the resource itself, but a representation
of it. This is where REST unfolds onto the myriad content types and actual deliver-
ables that are the stuff of the web. A resource may, at any given point, be available in
any number of representations (including zero). Thus your site might offer a text ver-
sion of Little Dorrit, but also an audio version. Those two versions would be under-
stood as the same resource, and would be retrieved via the same identifier (URI). The
difference in content type—one representation vs. another—would be negotiated sep-
arately in the request.

REST Resources and Rails
Like most of what’s in Rails, the Rails support for REST-compliant applications is
“opinionated”; that is, it offers a particular way of designing a REST interface, and the
more you play in its ballpark, the more convenience you reap from it. Rails applica-
tions are database-backed, and the Rails take on REST tends to associate a resource
very closely with an ActiveRecord model, or a model/controller stack.

In fact, you’ll hear people using the terminology fairly loosely—for instance, say-
ing that they have created “a Book resource.” What they really mean, in most cases, is
that they have created a Book model, a book controller with a set of CRUD actions,

Resources and Representations 93

and some named routes pertaining to that controller (courtesy of map.resources
:books). You can have a Book model and controller, but what you actually present to
the world as your resources, in the REST sense, exists at a higher level of abstraction:
Little Dorrit, borrowing history, and so on.

The best way to get a handle on the REST support in Rails is by going from the
known to the unknown—in this case, from the topic of named routes to the more spe-
cialized topic of REST.

From Named Routes to REST Support
When we first looked at named routes, we saw examples where we consolidated things
into a route name. By creating a route like this…

map.auction ‘auctions/:id’,

:controller => “auction”,

:action => “show”

you gain the ability to use nice helper methods in situations like this:

<%= link_to h(item.description), auction_path(item.auction) %>

The route ensures that a path will be generated that will trigger the show action
of the auctions controller. The attraction of this kind of named route is that it’s con-
cise and readable.

By associating the auction_path method with the auction/show action, we’ve
done ourselves a service in terms of standard database operations. Now, think in terms
of CRUD. The named route auction_path is a nice fit for a show (the, um, R in
CRUD) action. What if we wanted similarly nicely named routes for the create,
update, and delete actions?

Well, we’ve used up the route name auction_path on the show action. We could
make up names like auction_delete_path and auction_create_path… but
those are cumbersome. We really want to be able to make a call to auction_path and
have it mean different things, depending on which action we want the URL to point to.

So we need a way to differentiate one auction_path call from another. We could
differentiate between the singular (auction_path) and the plural (auctions_path).
A singular URL makes sense, semantically, when you’re doing something with a single,
existing auction object. If you’re doing something with auctions in general, the plural
makes more sense.

94 4. REST, Resources, and Rails

The kinds of things you do with auctions in general include creating. The
create action will normally occur in a form:

<% form_tag auctions_path do |f| %>

It’s plural because we’re not saying Perform an action with respect to a particular
auction, but rather With respect to the whole world of auctions, perform the action of cre-
ation. Yes, we’re creating one auction, not many. But at the time we make the call to
our named route, auctions_path, we’re addressing auctions in general.

Another case where you might want a plural named route is when you want an
overview of all of the objects of a particular kind—or, at least, some kind of general
view, rather than a display of a particular object. This kind of general view is usually
handled with an index action. Index actions typically load a lot of data into one or
more variables, and the corresponding view displays it as a list or table (possibly more
than one).

Here again, we’d like to be able to say:

<%= link_to “Click here to view all auctions”, auctions_path %>

Already, though, the strategy of breaking auction_path out into singular and
plural has hit the wall: We’ve got two places where we want to use the plural named
route. One is create; the other is index. But they’re both going to look like this:

http://localhost:3000/auctions

How is the routing system going to know that when we click on one, we mean
the create action, and when we click on the other, we mean index? We need anoth-
er data-slot, another flag, another variable on which to branch.

Luckily, we’ve got one.

Resources and Representations 95

Reenter the HTTP Verb
Form submissions are POSTs. Index actions are GETs. That means that we need to
get the routing system to realize that

/auctions submitted in a GET request!

versus

/auctions submitted in a POST request!

are two different things. We also have to get it to generate one and the same URL—
/auctions—but with a different HTTP request method, depending on the circum-
stances.

This is what the REST facility in Rails does for you. It lets you stipulate that you
want /auctions routed differently, depending on the HTTP request method. It lets
you define named routes with the same name, but with intelligence about their HTTP
verbs. In short, it uses HTTP verbs to provide that extra data slot necessary to achieve
everything you want to achieve in a concise way.

The way you do this is by using a special form of routing command:
map.resources. Here’s what it would look like for auctions:

map.resources :auctions

That’s it. Making this one call inside routes.rb is the equivalent of defining four
named routes (as you’ll see shortly). And if you mix and match those four named
routes with a variety of HTTP request methods, you end up with seven useful—very
useful—permutations.

The Standard RESTful Controller Actions
Calling map.resources :auctions involves striking a kind of deal with the rout-
ing system. The system hands you four named routes. Between them, these four routes
point to seven controller actions, depending on HTTP request method. In return, you
agree to use very specific names for your controller actions: index, create, show,
update, destroy, new, edit.

96 4. REST, Resources, and Rails

It’s not a bad bargain, since a lot of work is done for you and the action names
you have to use are nicely CRUD-like.

Table 4.1 summarizes what happens. It’s a kind of “multiplication table” showing
you what you get when you cross a given RESTful named route with a given HTTP
request method. Each box (the nonempty ones, that is) shows you, first, the URL that
the route generates and, second, the action that gets called when the route is recog-
nized. (The table uses _url rather than _path, but you get both.)

Table 4.1 RESTful Routes Table Showing Helpers, Paths, and the Resulting Controller Action

Helper Method GET POST PUT DELETE

client_url(@client) /clients/1 show /clients/1 update /clients/1 destroy

clients_url /clients index /clients create

edit_client_url(@client) /clients/1/edit edit

new_client_url /clients/new new

(The edit and new actions have unique named routes, and their URLs have a
special syntax. We’ll come back to these special cases a little later.)

Since named routes are now being crossed with HTTP request methods, you’ll
need to know how to specify the request method when you generate a URL, so that
your GET’d clients_url and your POST’d clients_url don’t trigger the same
controller action. Most of what you have to do in this regard can be summed up in a
few rules:

1. The default request method is GET.

2. In a form_tag or form_for call, the POST method will be used automatically.

3. When you need to (which is going to be mostly with PUT and DELETE opera-
tions), you can specify a request method along with the URL generated by the
named route.

An example of needing to specify a DELETE operation is a situation when you
want to trigger a destroy action with a link:

<%= link_to “Delete this auction”,:url => auction(@auction),

:method => :delete %>

The Standard RESTful Controller Actions 97

Depending on the helper method you’re using (as in the case of form_for), you
might have to put the method inside a nested hash:

<% form_for “auction”, :url => auction(@auction),

:html => { :method => :put } do |f| %>

That last example, which combined the singular named route with the PUT
method, will result in a call to the update action (as per row 2, column 4 of the table).

The PUT and DELETE Cheat
Web browsers generally don’t handle request methods other than GET and POST.
Therefore, in order to send them PUT and DELETE requests, it’s necessary for Rails
to do a little sleight of hand. It’s not anything you need to worry about, other than to
be aware of what’s going on.

A PUT or DELETE request, in the context of REST in Rails, is actually a POST
request with a hidden field called _method set to either “put” or “delete”. The Rails
application processing the request will pick up on this, and route the request appro-
priately to the update or destroy action.

You might say, then, that the REST support in Rails is ahead of its time. REST
components using HTTP should understand all of the request methods. They don’t—
so Rails forces the issue. As a developer trying to get the hang of how the named routes
map to action names, you don’t have to worry about this little cheat. And hopefully
some day it won’t be necessary any more.

Singular and Plural RESTful Routes
Some of the RESTful routes are singular; some are plural. The logic is as follows.

1. The routes for show, new, edit, and destroy are singular, because they’re work-
ing on a particular resource.

2. The rest of the routes are plural. They deal with collections of related resources.

98 4. REST, Resources, and Rails

The singular RESTful routes require an argument, because they need to know the
id of the particular member of the collection that you’re operating on. You can use
either a straightforward argument-list syntax:

item_url(@item) # show, update, or destroy, depending on HTTP verb

or you can do it hash style:

item_url(:id => @item)

You don’t have to call the id method on @item (though you can), as Rails will
figure out that that’s what you want.

The Special Pairs: new/create and edit/update

As Table 4.1 shows, new and edit obey somewhat special RESTful naming conven-
tions. The reason for this actually has to do with create and update, and how new
and edit relate to them.

Typically, create and update operations involve submitting a form. That means
that they really involve two actions—two requests—each:

1. The action that results in the display of the form

2. The action that processes the form input when the form is submitted

The way this plays out with RESTful routing is that the create action is closely
associated with a preliminary new action, and update is associated with edit. These
two actions, new and edit, are really assistant actions: All they’re supposed to do is
show the user a form, as part of the process of creating or updating a resource.

Fitting these special two-part scenarios into the landscape of resources is a little
tricky. A form for editing a resource is not, itself, really a resource. It’s more like a pre-
resource. A form for creating a new resource is sort of a resource, if you assume that
“being new”—that is, nonexistent—is something that a resource can do, and still be
a resource…

Yes, it gets a bit philosophical. But here’s the bottom line, as implemented in
RESTful Rails.

The Standard RESTful Controller Actions 99

The new action is understood to be giving you a new, single (as opposed to plu-
ral) resource. However, since the logical verb for this transaction is GET, and GETting
a single resource is already spoken for by the show action, new needs a named route
of its own.

That’s why you have to use

<%= link_to “Create a new item”, new_item_path %>

to get a link to the items/new action.
The edit action is understood not to be giving you a full-fledged resource, exact-

ly, but rather a kind of edit “flavor” of the show resource. So it uses the same URL as
show, but with a kind of modifier, in the form of /edit, hanging off the end, which
is consistent with the URL form for new:

/items/5/edit

It’s worth mentioning that prior to Rails 2.0, the edit action was set off by semi-
colons like this: /items/5;edit, a choice that may have had more to do with the
limitations of the routing system than any other loftier motives. However, the semi-
colon scheme caused more problems than it solved,2 and was scrapped in Edge Rails
right after the release of Rails 1.2.3.

The corresponding named route is edit_item_url(@item). As with new, the
named route for edit involves an extra bit of name information, to differentiate it
from the implied show of the existing RESTful route for GETting a single resource.

Singular Resource Routes
In addition to map.resources, there’s also a singular (or “singleton”) form of
resource routing: map.resource. It’s used to represent a resource that only exists once
in its given context.

A singleton resource route at the top level of your routes can be appropriate when
there’s only one resource of its type for the whole application, or perhaps per user ses-
sion.

For instance, an address book application might give each logged-in user an
address book, so you could write:

map.resource :address_book

100 4. REST, Resources, and Rails

You would get a subset of the full complement of resource routes, namely the sin-
gular ones: GET/PUT address_book_url, GET edit_address_book_url, and
PUT update_address_book_url.

Note that the method name resource, the argument to that method, and all the
named routes are in the singular. It’s assumed that you’re in a context where it’s mean-
ingful to speak of “the address book”—the one and only—because there’s a user to
which the address book is scoped. The scoping itself is not automatic; you have to
authenticate the user and retrieve the address book from (and/or save it to) the data-
base explicitly. There’s no real “magic” or mind-reading here; it’s just an additional
routing technique at your disposal if you need it.

Nested Resources
Let’s say you want to perform operations on bids: create, edit, and so forth. You know
that every bid is associated with a particular auction. That means that whenever you
do anything to a bid, you’re really doing something to an auction/bid pair—or, to look
at it another way, an auction/bid nest. Bids are at the bottom of a “drill-down” that
always passes through an auction.

What you’re aiming for here is a URL that looks like this:

/auctions/3/bids/5

What it does depends on the HTTP verb it comes with, of course. But the seman-
tics of the URL itself are: the resource that can be identified as bid 5, belonging to
auction 3.

Why not just go for bids/5 and skip the auction? For a couple of reasons. First,
the URL is more informative—longer, it’s true, but longer in the service of telling you
something about the resource. Second, thanks to the way RESTful routes are engi-
neered in Rails, this kind of URL gives you immediate access to the auction id, via
params[:auction_id].

To created nested resource routes, put this in routes.rb:

map.resources :auctions do |auction|

auction.resources :bids

end

Nested Resources 101

Note that in the inner call to resources, the receiver of the call is auction, not map.
That’s an easy thing to forget.

What that tells the mapper is that you want RESTful routes for auction resources;
that is, you want auctions_url, edit_auction_url, and all the rest of it. You also
want RESTful routes for bids: auction_bids_url, new_auction_bid_url, and so
forth.

However, the nested resource command also involves you in making a promise:
You’re promising that whenever you use the bid named routes, you will provide a auc-
tion resource in which they can be nested. In your application code, that translates
into an argument to the named route method:

<%= link_to “See all bids”, auction_bids_path(@auction) %>

When you make that call, you enable the routing system to add the /auctions/3
part before the /bids part. And, on the receiving end—in this case, in the action
bids/index, which is where that URL points, you’ll find the id of @auction in
params[:auction_id]. (It’s a plural RESTful route, using GET. See Table 4.1 again
if you forgot.)

You can nest to any depth. Each level of nesting adds one to the number of argu-
ments you have to supply to the nested routes. This means that for the singular routes
(show, edit, destroy), you need at least two arguments, as in Listing 4.1.

Listing 4.1 Passing Two Parameters to Identify a Nested Resource Using link_to

<%= link_to “Delete this bid”,
auction_bid_path(@auction, @bid), :method => :delete %>

This will enable the routing system to get the information it needs (essentially
@auction.id and @bid.id) in order to generate the route.

If you prefer, you can also make the same call using hash-style method arguments,
but most people don’t because it’s longer code:

auction_bid_path(:auction => @auction, :bid => @bid)

102 4. REST, Resources, and Rails

Setting :path_prefix Explicitly
You can also achieve the nested route effect by specifying the :path_prefix option
to your resource mapping call explicitly. Here’s how you’d do this for the auctions/bids
nest:

map.resources :auctions

map.resources :bids, :path_prefix => “auctions/:auction_id”

What you’re saying here is that you want all of the bids URLs to include the stat-
ic string “auctions” and a value for auction_id—in other words, to contain the con-
textual information necessary to associate the bid collection or member with a partic-
ular auction.

The main difference between this technique and regular nesting of resources has
to do with the naming of the helper methods that are generated. Nested resources
automatically get a name prefix corresponding to their parent resource. (See
auction_bid_path in Listing 4.1.)

You’re likely to see the nesting technique more often than the explicit setting of
:path_prefix, because it’s usually easier just to let the routing system figure it out
from the way you’ve nested your resources. Plus, as we’ll see in a moment, it’s easy to
get rid of the extra prefixes if you want to do so.

Setting :name_prefix Explicitly
Sometimes you might want to nest a particular resource inside more than one other
resource. Or you might want to access a resource through a nested route sometimes,
and directly other times. You might even want your named route helpers to point to
different resources depending on the context in which they are executed.3 The
:name_prefix makes it all possible, since it lets you control the way that named
route helper methods are generated.

Let’s say you want to get at bids through auctions, as in the preceding examples,
but also just by themselves. In other words, you want to be able to recognize and gen-
erate both:

/auctions/2/bids/5 and /bids/5

The first thought might be bid_path(@auction, @bid) for the first helper,
and bid_path(@bid) for the second. It seems logical to assume that if you want a

Nested Resources 103

route to bid that doesn’t pass through the auction nest, you’d just leave out the auc-
tion parameter.

Given the automatic name-prefixing behavior of the routing system, you’d have
to override the name_prefix of bids to make it all work as desired, as in Listing 4.2.

Listing 4.2 Overriding name_prefix in a Nested Route

map.resources :auctions do |auction|

auction.resources :bids, :name_prefix => nil
end

I will warn you, as someone who has used this technique extensively in real appli-
cations, that when you eliminate name prefixing, debugging route problems gets an
order of magnitude harder. As they say, your mileage may vary.

As an example, what if we wanted a different way to access bids, via the person
who made them, instead of in the context of auctions? See Listing 4.3.

Listing 4.3 Overriding name_prefix in a Nested Route

map.resources :auctions do |auction|

auction.resources :bids, :name_prefix => nil

end

map.resource :people do |people|

people.resources :bids, :name_prefix => nil # are you sure?
end

Amazingly, the code in Listing 4.3 should4 work just fine, and generate the fol-
lowing route helpers:

bid_path(@auction, @bid) # /auctions/1/bids/1

bid_path(@person, @bid) # /people/1/bids/1

The thing is that your controller and view code might start getting a wee bit com-
plex if you go down this route (pardon the pun).

First of all, your controller code would have to check for the presence of
params[:auction_id] versus params[:person_id] and load the context accord-
ingly. The view templates would probably need to do similar checking, in order to

104 4. REST, Resources, and Rails

display correctly. At worst your code would end up with tons of if/else statements
cluttering things up!

Whenever you’re programming dual functionality like that, you’re probably doing
something wrong. Luckily, we can also specify which controller we would like to be
involved in each of our routes explicitly.

Specifying RESTful Controllers Explicitly
Something we haven’t yet discussed is how RESTful routes are mapped to a given con-
troller. It was just presented as something that happens automatically, which in fact it
does, based on the name of the resource.

Going back to our recurring example, given the following nested route:

map.resources :auctions do |auction|

auction.resources :bids

end

…there are two controllers that come into play, the AuctionsController and the
BidsController.

You could explicitly specify which controller to use with the :controller_name
option of the resources method. Having the option means you can name the (user-
facing) resource whatever you want, and keep the name of your controller aligned
with different naming standards, for example:

map.resources :my_auctions, :controller => :auctions do |auction|

auction.resources :my_bids, :controller => :bids

end

All Together Now
Now that we know about the :name_prefix, :path_prefix, and :controller
options, we can bring it all together to show why having such fine-grained control
over RESTful routes is useful.

For example, we can improve what we were trying to do in Listing 4.3, by using
the :controller option. See Listing 4.4.

Nested Resources 105

Listing 4.4 Multiple Nested Bids Resources, with Explicit Controller

map.resources :auctions do |auction|

auction.resources :bids, :name_prefix => nil,

:controller => :auction_bids

end

map.resource :people do |people|

people.resources :bids, :name_prefix => nil,

:controller => :person_bids
end

Realistically, the AuctionBidsController and PersonBidsController

would extend the same parent class BidsController, as in Listing 4.5, and leverage
before filters to load things correctly.

Listing 4.5 Subclassing Controllers for Use with Nested Routes

class BidsController < ApplicationController

before_filter :load_parent

before_filter :load_bid

protected

def load_parent

overriden in subclasses

end

def load_bid

@bids = @parent.bids

end

end

class AuctionBidsController < BidsController

protected

def load_parent

@parent = @auction = Auction.find(params[:auction_id])

end

106 4. REST, Resources, and Rails

end

class PersonBidsController < BidsController

protected

def load_parent

@parent = @person = Person.find(params[:person_id])

end

end

Note that that although it is customary to provide name-style options as symbols,
the :controller option does understand strings, as you would need to use if you
were specifying a namespaced controller, like this example, which sets up an adminis-
trative route for auctions:

map.resources :auctions,

:controller => ‘admin/auctions’, # Admin::AuctionsController

:name_prefix => ‘admin_’,

:path_prefix => ‘admin’

Considerations
Is nesting worth it? For single routes, a nested route usually doesn’t tell you anything
you wouldn’t be able to figure out anyway. After all, a bid belongs to an auction.
That means you can access bid.auction_id just as easily as you can params
[:auction_id], assuming you have a bid object already.

Furthermore, the bid object doesn’t depend on the nesting. You’ll get
params[:id] set to 5, and you can dig that record out of the database directly. You
don’t need to know what auction it belongs to.

Bid.find(params[:id])

A common rationale for judicious use of nested resources, and the one most often
issued by David, is the ease with which you can enforce permissions and context-based
constraints. Typically, a nested resource should only be accessible in the context of its

Nested Resources 107

parent resource, and it’s really easy to enforce that in your code based on the way
that you load the nested resource using the parent’s ActiveRecord association
(see Listing 4.6).

Listing 4.6 Loading a Nested Resource Using the Parent’s has_many Association

@auction = Auction.find(params[:auction_id])
@bid = @auction.bids.find(params[:id]) # prevents auction/bid mismatch

If you want to add a bid to an auction, your nested resource URL would be:

http://localhost:3000/auctions/5/bids/new

The auction is identified in the URL rather than having to clutter your new bid
form data with hidden fields, name your action add_bid and stash the user in :id,
or any other non-RESTful practice.

Deep Nesting?
Jamis Buck is a very influential figure in the Rails community, almost as much as
David himself. In February 2007, via his blog,5 he basically told us that deep nesting
was a bad thing, and proposed the following rule of thumb: Resources should never be
nested more than one level deep.

That advice is based on experience and concerns about practicality. The helper
methods for routes nested more than two levels deep become long and unwieldy. It’s
easy to make mistakes with them and hard to figure out what’s wrong when they don’t
work as expected.

Assume that in our application example, bids have multiple comments. We could
nest comments under bids in the routing like this:

map.resources :auctions do |auctions|

auctions.resources :bids do |bids|

bids.resources :comments

end

end

However, we’d have to start resorting to all sort of options to avoid having a
auction_bid_comments_path helper to deal with. (Actually, that’s not too bad, but
I’ve seen and written much worse.)

108 4. REST, Resources, and Rails

Instead, Jamis would have us do the following:

map.resources :auctions do |auctions|

auctions.resources :bids

end

map.resources :bids do |bids|

bids.resources :comments

end

map.resources :comments

Notice that each resource (except auction) is defined twice, once in the top-level
namespace, and one in its context. The rationale? When it comes to parent-child
scope, you really only need two levels to work with. The resulting URLs are shorter,
and the helper methods are easier to work with.

auctions_path # /auctions

auctions_path(1) # /auctions/1

auction_bids_path(1) # /auctions/1/bids

bid_path(2) # /bids/2

bid_comments_path(3) # /bids/3/comments

comment_path(4) # /comments/4

I personally don’t follow Jamis’ guideline all the time in my projects, but I have
noticed something about limiting the depth of your nested resources—it makes it all
the more palatable to keep those handy-dandy name prefixes in place, instead of lop-
ping them off with :name_prefix => nil. And trust me, those name prefixes do
help with maintainability of your codebase in the long run.

Courtenay Says...

Many of us disagree with the venerable Jamis. Want to get
into fisticuffs at a Rails conference? Ask people whether
they believe routes should be nested more than one layer
deep.

Nested Resources 109

RESTful Route Customizations
Rails’ RESTful routes give you a pretty nice package of named routes, hard-wired to
call certain very useful and common controller actions—the CRUD superset you’ve
already learned about. Sometimes, however, you want to customize things a little
more, while still taking advantage of the RESTful route naming conventions and the
“multiplication table” approach to mixing named routes and HTTP request methods.

The techniques for doing this are useful when, for example, you’ve got more than
one way of viewing a resource that might be described as “showing.” You can’t (or
shouldn’t) use the show action itself for more than one such view. Instead, you need
to think in terms of different perspectives on a resource, and create URLs for each one.

Extra Member Routes
For example, let’s say we want to make it possible to retract a bid. The basic nested
route for bids looks like this:

map.resources :auctions do |a|

a.resources :bids

end

We’d like to have a retract action that shows a form (and perhaps does some
screening for retractability). The retract isn’t the same as destroy; it’s more like a
portal to destroy. It’s similar to edit, which serves as a form portal to update.

Following the parallel with edit/update, we want a URL that looks like this:

/auctions/3/bids/5/retract

and a helper method called retract_bid_url. The way you achieve this is by spec-
ifying an extra :member route for the bids, as in Listing 4.7.:

Listing 4.7 Adding an Extra Member Route

map.resources :auctions do |a|

a.resources :bids, :member => { :retract => :get }
end

110 4. REST, Resources, and Rails

Then you can add a retraction link to your view with the following code:

<%= link_to “Retract”, retract_bid_path(auction, bid) %>

and the URL generated will include the /retract modifier. That said, you should
probably let that link pull up a retraction form (and not trigger the retraction process
itself!). The reason I say that is because, according to the tenets of HTTP, GET
requests should not modify the state of the server—that’s what POST requests are for.

Is it enough to add a :method option to link_to?

<%= link_to “Retract”, retract_bid_path(auction,bid), :method=>:post

%>

Not quite. Remember that in Listing 4.7 we defined the retract route as a :get,
so a POST will not be recognized by the routing system. The solution is to define the
extra member route as mapping to any HTTP verb, like this:

map.resources :auctions do |a|

a.resources :bids, :member => { :retract => :any }

end

Extra Collection Routes
You can also use this routing technique to add routes that conceptually apply to an
entire collection of resources:

map.resources :auctions, :collection => { :terminate => :any }

This example will give you a terminate_auctions_path method, which will
produce a URL mapping to the terminate action of the auctions controller. (A
slightly bizarre example, perhaps, but the idea is that it would enable you to end all
auctions at once.)

Thus you can fine-tune the routing behavior—even the RESTful routing behav-
ior—of your application, so that you can arrange for special and specialized cases while
still thinking in terms of resources.

RESTful Route Customizations 111

Considerations
During a discussion of RESTful routing on the Rails mailing list,6 Josh Susser
proposed flipping the syntax for custom actions so that they would be keyed on the
HTTP verb and accept an array of action names, like this:

map.resources :comments,

:member => { :get => :reply,

:post => [:reply, :spawn, :split] }

Among other reasons, Josh cited how it would simplify the practice of writing so-
called post-backs, dual-purpose controller actions that handle both GET and POST
requests in one method.

The response from David was not a positive one. After expressing his position
against post-backs, he said: “I’m starting to think that explicitly ignoring [post-backs]
with map.resources is a feature.”

Later in the thread, continuing to defend the API, David added, “If you’re writ-
ing so many additional methods that the repetition is beginning to bug you, you
should revisit your intentions. You’re probably not being as RESTful as you could be.”
(italics mine)

The last sentence is key. Adding extra actions corrupts the elegance of your over-
all RESTful application design, because it leads you away from finding all of the
resources lurking in your domain.

Keeping in mind that real applications are more complicated than code examples
in a reference book, let’s see what would happen if we had to model retractions strict-
ly using resources. Rather than tacking a retract action onto the BidsController,
we might feel compelled to introduce a retraction resource, associated with bids, and
write a RetractionController to handle it.

map.resources :bids do |bids|

bids.resource :retraction

end

RetractionController could now be in charge of everything having to do
with retraction activities, rather than having that functionality mixed into
BidsController. And if you think about it, something as weighty as bid retraction

112 4. REST, Resources, and Rails

would eventually accumulate quite a bit of logic. Some would call breaking it out into
its own controller proper separation of concerns or even just good object-orientation.

I can’t help but continue the story of that fateful mailing list thread, because it led
to a priceless moment in Rails community history, which added to our reputation as
an opinionated bunch!

Josh replied, “Just checking… You think that code that is less readable and more
tedious to write is an advantage? I guess from the perspective of macro-optimization
versus micro-optimization I wouldn’t argue with you, but I think that’s a hell of a way
to encourage people to do the right thing. If going RESTful is all that, you shouldn’t
need to rely on syntactic vinegar to force people to do it the right way. Now, if you were
to say that organizing the actions hash as {:action => method, ...} is desirable
because it guarantees an action only is used once, then sure, that makes sense.” (ital-
ics mine)

David did indeed see the less readable and more tedious code as an advantage in
this particular case, and he latched on to the syntactic vinegar term with enthusiasm.
About two months later, he wrote one of his most famous blog entries about the con-
cept (excerpted here):

Syntactic sugar has long hogged the spotlight in discussions of framework and
language design. It holds the power to turn idioms into conventions, to promote
a common style through beauty, brevity, and ease of use. We all love syntactic
sugar—and we want it all: the terrifying lows, the dizzying highs, the creamy
middles. It’s what makes languages such as Ruby taste ever so sweet in compari-
son to the plain alternatives.

But sugar is not all we need. Good design lies not only in emphasizing the prop-
er, but de-emphasizing the improper too. Just as we can sprinkle syntactic sugar
across a certain style or approach to promote its use, we can add syntactic vinegar
to discourage it as well. It’s more sparingly used, but that makes it no less impor-
tant. … http://www.loudthinking.com/arc/2006_10.html

Controller-Only Resources
The word “resource” has a substantive, noun-like flavor that puts one in mind of data-
base tables and records. However, a REST resource does not have to map directly to
an ActiveRecord model. Resources are high-level representations of what’s available
through your web application. Database operations just happen to be one of the ways
that you store and retrieve the data you need to generate representations of resources.

Controller-Only Resources 113

A REST resource doesn’t necessarily have to map directly to a controller, either, at
least not in theory. As we learned in relation to the :path_prefix and :controller

options of map.resources, you could, if you wanted to, provide REST services
whose public identifiers (URIs) did not match the names of your controllers at all.

What all of this adds up to is that you might have occasion to create a set of
resource routes, and a matching controller, that don’t correspond to any model in your
application at all. There’s nothing wrong with a full resource/controller/model stack
where everything matches by name. But you may find cases where the resources you’re
representing can be encapsulated in a controller but not a model.

An example in the auction application is the sessions controller. Assume a
routes.rb file containing this line:

map.resource :session

It maps the URL /session to a SessionController as a singleton resource,
yet there’s no Session model. (By the way, it’s properly defined as a singleton resource
because from the user’s perspective there is only one session.)

Why go the RESTful style for authentication? If you think about it, user sessions
can be created and destroyed. The creation of a session takes place when a user logs
in; when the user logs out, the session is destroyed. The RESTful Rails practice of pair-
ing a new action and view with a create action can be followed! The user login form
can be the session-creating form, housed in the template file such as
session/new.rhtml (see Listing 4.8).

Listing 4.8 A RESTful Login Screen

<h1>Log in</h1>

<% form_for :user, :url => session_path do |f| %>

<p>Login: <%= f.text_field :login %></p>

<p>Password: <%= f.password_field :password %></p>

<%= submit_tag “Log in” %>
<% end %>

When the form is submitted, the input is handled by the create method of the
sessions controller in Listing 4.9.

114 4. REST, Resources, and Rails

Listing 4.9 A RESTful Login Action

def create

@user = User.find_by_login(params[:user][:login])

if @user and @user.authorize(params[:user][:password])

flash[:notice] = “Welcome, #{@user.first_name}!”

redirect_to home_url

else

flash[:notice] = “Login invalid.”

redirect_to :action => “new”

end
end

Nothing is written to any database table in this action, but it’s worthy of the name
create by virtue of the fact that it creates a session. Furthermore, if you did at some
point decide that sessions should be stored in the database, you’d already have a nice-
ly abstracted handling layer.

It pays to remain open-minded, then, about the possibility that CRUD as an
action-naming philosophy and CRUD as actual database operations may sometimes
occur independently of each other—and the possibility that the resource-handling
facilities in Rails might usefully be associated with a controller that has no correspon-
ding model. Creating a session isn’t the most shining example of REST-compliant
practices, since REST mandates stateless transfers of representations of resources…
But it’s a good illustration of why, and how, you might make design decisions involv-
ing routes and resources that don’t implicate the whole application stack.

Sticking to CRUD-like action names is, in general, a good idea. As long as you’re
doing lots of creating and destroying anyway, it’s easier to think of a user logging in as
the creation of a session, than to come up with a whole new semantic category for it.
Rather than the new concept of “user logs in,” just think of it as a new occurrence of
the old concept, “session gets created.”

Different Representations of Resources
One of the precepts of REST is that the components in a REST-based system
exchange representations of resources. The distinction between resources and their rep-
resentations is vital.

Different Representations of Resources 115

As a client or consumer of REST services, you don’t actually retrieve a resource
from a server; you retrieve representations of that resource. You also provide represen-
tations: A form submission, for example, sends the server a representation of a
resource, together with a request—for example, PUT—that this representation be
used as the basis for updating the resource. Representations are the exchange curren-
cy of resource management.

The respond_to Method
The ability to return different representations in RESTful Rails practice is based on
the respond_to method in the controller, which, as you’ve seen, allows you to return
different responses depending on what the client wants. Moreover, when you create
resource routes you automatically get URL recognition for URLs ending with a dot
and a :format parameter.

For example, assume that you have map.resources :auctions in your routes
file and some respond_to logic in the AuctionsController like this:

def index

@auctions = Auction.find(:all)

respond_to do |format|

format.html

format.xml { render :xml => @auctions.to_xml }

end

end

Now, you’ll now be able to connect to this URL: http://localhost:3000/
auctions.xml

The resource routing will ensure that the index action gets executed. It will also
recognize the .xml at the end of the route and interact with respond_to according-
ly, returning the XML representation.

Of course, all of this is URL recognition. What if you want to generate a URL
ending in .xml?

116 4. REST, Resources, and Rails

Formatted Named Routes
The resource routing facility also gives you .:format-flavored versions of its named
routes. Let’s say you want a link to the XML representation of a resource. You can
achieve this by using the formatted_ version of the RESTful named route:

<%= link_to “XML version of this auction”,

formatted_auction_path(@auction, “xml”) %>

This will generate the following HTML:

XML version of this auction

When followed, this link will trigger the XML clause of the respond_to block
in the show action of the auctions controller. The resulting XML may not look like
much in a browser, but the named route is there if you want it.

The circuit is now complete: You can generate URLs that point to a specific
response type, and you can honor requests for different types by using respond_to.
And if the request wants to specify its desired response by using the Accept header
instead, it can do that too. All told, the routing system and the resource routing facil-
ities built on top of it give you quite a set of powerful, concise tools for differentiat-
ing among requests and, therefore, being able to serve up different representations.

The RESTful Rails Action Set
Rails’ REST facilities, ultimately, are about named routes and the controller actions to
which they point. The more you use RESTful Rails, the more you get to know each
of the seven RESTful actions. How they work across different controllers (and differ-
ent applications) is of course somewhat different. Still, perhaps because there’s a finite
number of them and their roles are fairly well-delineated, each of the seven tends to
have fairly consistent properties and a characteristic “feel” to it.

We’re going to take a look at each of the seven actions, with examples and com-
ments. You’ve encountered all of them already, particularly in Chapter 2, “Working
with Controllers,” but here you’ll get some “backstory” and start to get a sense of the
characteristic usage of them and issues and choices associated with them.

The RESTful Rails Action Set 117

Index
Typically, an index action provides a representation of a plural (or collection) resource.
The index representation will usually be generic and public. The index action shows
the world the most neutral representation possible.

A typical index action looks like this:

class AuctionsController < ApplicationController

def index

@auctions = Auction.find(:all)

end

...

end

The view template will display public information about each auction, with links
to specific information about each one, and to public profiles of the sellers.

Although index is best thought of as public, you’ll certainly encounter situations
where you want to display a representation of a collection, but in a restricted way. For
example, users should be able to see a listing of all their bids. But you don’t want every-
one seeing everyone else’s lists.

The best strategy here is to slam down the gate at the latest possible point. You
can use RESTful routing to help you.

Let’s say we want each user to see his or her bid history. We could decide that the
index action of the bids controller will be filtered through the current user (@user).
The problem with that, though, is that it rules out a more public use of that action.
What if we want a public collection view that shows all the current highest bids?
Maybe even a redirect to the auction index view. The point is to keep things as pub-
lic as possible for as long as possible.

There are a couple of ways to do this. One way is to test for the presence of a
logged-in user, and decide what to show based on that. But that’s not going to work
here. For one thing, the logged-in user might want to see the more public view. For
another, the more dependence on server-side state we can eliminate or consolidate, the
better.

118 4. REST, Resources, and Rails

So let’s look at the two bid lists, not as a public and private version of the same
resource, but as different resources. We can encapsulate the difference directly in the
routing:

map.resources :auctions do |auctions|

auctions.resources :bids, :collection => { :manage => :get }

end

We can now organize the bids controller in such a way that access is nicely lay-
ered, using filters only where necessary and eliminating conditional branching in the
actions themselves:

class BidsController < ApplicationController

before_filter :load_auction

before_filter :check_authorization, :only => :manage

def index

@bids = Bid.find(:all)

end

def manage

@bids = @auction.bids

end

...

protected

def load_auction

@auction = Auction.find(params[:auction_id])

end

def check_authorization

@auction.authorized?(current_user)

end

end

There’s now a clear distinction between /bids and /bids/manage and the role
that they play in your application.

The RESTful Rails Action Set 119

Courtenay Says…

Some developers believe that using filters to load data is a
travesty against all that is good and pure. If your coworker
or boss is of this persuasion, make sure your finds are
within the action like this:
def show

@auction = Auction.find(params[:id])

unless auction.authorized?(current_user)

... # access_denied

end
end

An alternate way of doing this is to add a method to the
User class, because the user object should be responsible
for authorization:
class User < ActiveRecord::Base

def find_authorized_auction(auction_id)

auction = Auction.find(auction_id)

return auction.authorized?(self) && auction

end

end

And call it from the AuctionController like this:
def show

@auction = current_user.find_authorized_auction

(params[:id]) else

raise ActiveRecord::RecordNotFound

end
end

You could even add a method to the Auction model,
since it’s this model that controls access to its data.
def self.find_authorized(id, user)

auction = find(id)

return auction.authorized?(user) && auction
end

On the named route side, we’ve now got bids_url and manage_bids_url.
We’ve thus preserved the public, stateless face of the /bids resource, and quarantined
as much stateful behavior as possible into a discrete subresource, /bids/manage. Don’t
fret if this mentality doesn’t come to you naturally—it’s part of the REST learning curve.

120 4. REST, Resources, and Rails

If I were dogmatic about REST, I might find it ironic, even distasteful, to discuss
REST-related techniques in the context of quarantining stateful behavior, since
RESTful requests are not supposed to depend on session state to begin with. It goes
to show, however, that the REST facilities available to you in Rails can, so to speak,
gracefully degrade, in situations where you need to depart from a strictly REST-
compliant interface.

Show
The RESTful show action is the singular flavor of a resource. That generally translates
to a representation of information about one object, one member of a collection. Like
index, show is triggered by a GET request.

A typical—one might say classic—show action looks like this:

class AuctionController < ApplicationController

def show

@auction = Auction.find(params[:id])

end

end

Of course, the show action might depend on before_filters as a way of not
having to load the shown resource explicitly in the show action. You might want to
differentiate between publicly available profiles, perhaps based on a different route,
and the profile of the current user, which might include modification rights and per-
haps different information.

As with index actions, it’s good to make your show actions as public as possible,
and offload the administrative and privileged views into either a different controller or
a different action.

Destroy
Destroy actions are good candidates for administrative safeguarding, though of course
it depends on what you’re destroying. You might want something like the code in
Listing 4.10 to protect the destroy action.

Listing 4.10 Safeguarding the destroy Action

class UsersController < ApplicationController
before_filter :admin_required, :only => :destroy

The RESTful Rails Action Set 121

A typical destroy action might look like this, assuming that @user was already
loaded by a before filter:

def destroy

@user.destroy

flash[:notice] = “User deleted!”

redirect_to users_url

end

This approach might be reflected in a simple administrative interface like this:

<h1>Users</h1>

<% @users.each do |user| %>

<p><%= link_to h(user.whole_name), user_path(user) %>

<%= link_to(“delete”, user_path(user), :method => :delete) if

current_user.admin? %></p>

<% end %>

That delete link appears, depending on the whether current user is an admin.
In fact, the most striking thing about the RESTful destroy sequence in Rails is

what happens in the view that contains the links to the action. Here’s the HTML from
one time through the loop. Be warned: It’s longer than you might think.

<p>Emma Knight Peel

<a href=”http://localhost:3000/users/2” onclick=”var f =

document.createElement(‘form’); f.style.display = ‘none’;

this.parentNode.appendChild(f); f.method = ‘POST’; f.action =

this.href;var m = document.createElement(‘input’);

m.setAttribute(‘type’, ‘hidden’); m.setAttribute(‘name’, ‘_method’);

m.setAttribute(‘value’, ‘delete’); f.appendChild(m);f.submit();return

false;”>Delete)</p>

Why so much code—JavaScript, yet!—for two little links? The first link is han-
dled quickly; it’s just a link to the show view for the user. The reason the second link
is so long is this. DELETE submissions are dangerous. Rails wants to make them as hard
as possible to spoof or trigger accidentally—for instance, by a crawler or bot sending
requests to your site. So when you specify the DELETE method, a whole JavaScript
script is generated inside your HTML document. This script actually wraps your link
in a form. Since bots don’t submit forms, this gives a layer of protection to your code.

122 4. REST, Resources, and Rails

New and Create
As you’ve already seen, the new and create actions go together in RESTful Rails. A
“new resource” is really just a virtual entity waiting to be created. Accordingly, the new
action customarily presents a form, and create creates a new record, based on the
form input.

Let’s say you want a user to be able to create (that is, start) an auction. You’re going
to need

1. A new action, which will display a form

2. A create action, which will create a new Auction object based on the form input,
and proceed to a view (show action) of that auction.

The new action doesn’t have to do much. In fact, it has to do nothing. Like any
empty action, it can even be left out. Rails will still figure out that you want to render
the new.erb.html view.

The new.erb.html template might look like Listing 4.11. Notice that some of
the input fields are namespaced to :item (courtesy of the fields_for helper
method) and some are namespaced to :auction (courtesy of form_for). That’s
because an item and an auction really get created in tandem.

Listing 4.11 A New Auction Form

<h1>Create a new auction</h1>

<%= error_messages_for :auction %>

<% form_for :auction, :url => auctions_path do |f| %>

<% fields_for :item do |i| %>

<p>Item description: <%= i.text_field “description” %></p>

<p>Item maker: <%= i.text_field “maker” %></p>

<p>Item medium: <%= i.text_field “medium” %></p>

<p>Item year: <%= i.text_field “year” %></p>

<% end %>

<p>Reserve: <%= f.text_field “reserve” %></p>

<p>Bid increment: <%= f.text_field “incr” %></p>

<p>Starting bid: <%= f.text_field “starting_bid” %></p>

<p>End time: <%= f.datetime_select “end_time” %>

<%= submit_tag “Create” %>
<% end %>

The RESTful Rails Action Set 123

The form action here is expressed by the named route auctions, coupled with the
fact that this is a form and will therefore automatically generate a POST request.

Once the information is filled out, it’s time for the main event: the create
action. Unlike new, this action has something to do.

def create

@auction = current_user.auctions.build(params[:auction])

@item = @auction.build_item(params[:item])

if @auction.save

flash[:notice] = “Auction started!”

redirect_to auction_url(@auction)

else

render :action => “new”

end

end

Having used both an “auction” namespace and an “item” namespace for our
input fields, we can piggyback on both, via the params hash, to instantiate a new
Auction object from the current user’s auctions association and hang an Item object
off it with build_item. This is a convenient way to operate on two associated objects
at once. If @auction.save fails for any reason, the associated item will not be creat-
ed, so we don’t have to worry about cleaning up after a failure.

When the save succeeds, both auction and item will be created.

Edit and Update
Like new and create, the edit and update actions go together: edit provides a
form, and update processes the form input.

The form for editing a record is very similar to the form for creating one. (In fact,
you can put much of it in a partial template and use it for both; that’s left as an exer-
cise for the reader.) Here’s what edit.html.erb might look like for editing an item:

<h1>Edit Item</h1>

<% form_for :item, :url => item_path(@item),

:html => { :method => :put } do |item| %>

124 4. REST, Resources, and Rails

<p>Description: <%= item.text_field “description” %></p>

<p>Maker: <%= item.text_field “maker” %></p>

<p>Medium: <%= item.text_field “medium” %></p>

<p>Year: <%= item.text_field “year” %></p>

<p><%= submit_tag “Save Changes” %></p>

<% end %>

The main difference between this form and the form for specifying a new item
(Listing 4.11) is which named RESTful route you use, and the fact that for the
update action, you have to specify the PUT request method. That will have the effect
of steering the dispatcher to the update method.

Conclusion
In this chapter, we tackled the tough subject of using REST principles to guide the
design of our Rails applications, mainly as they apply to the routing system and con-
troller actions. We learned how the foundation of RESTful Rails is the
map.resources method in your routes file, and how to use the numerous options
available to make sure that you can structure your application exactly how it needs to
be structured. We also learned how in some cases, David and Rails core team apply
syntactic vinegar to keep us from straying down the wrong path.

One of the challenges of writing and maintaining serious Rails applications is the
routing system, namely understanding it and being able to figure out mistakes that
you will undoubtedly make during the course of day-to-day development. It’s such a
crucial topic for the Rails developer that we have an entire chapter devoted to it.

Conclusion 125

Reference

1. For those interested in REST, the canonical text is Roy Fielding’s dissertation, which you can find
at http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm. In particular, you’ll probably want
to focus on Chapters 5 and 6 of the dissertation, which cover REST and its relation to HTTP.
You’ll also find an enormous amount of information, and links to more, on the REST wiki at
http://rest.blueoxen.net/cgi-bin/wiki.pl.

2. In addition to being weird, the semicolon had a number of significant problems. For instance, it
wreaked havoc on caching. Safari users were not able to authenticate URLs with semicolons in
them. Also, various web servers (most damningly Mongrel) correctly consider the semicolon to be
part of the query string, since that character is reserved for delimiting the start of path parameters
(specific to a path element in between slashes, as opposed to request parameters that come after a
‘?’ character).

3. Trevor Squires has a great plugin called ResourceFu that makes this technique possible, which is
available at http://agilewebdevelopment.com/plugins/resource_fu.

4. I can only say should work, because routing code is historically some of the most volatile in the
entire Rails codebase, so whether it works depends on your version of Rails. I know for a fact that
it doesn’t work in Rails 1.2.3.

5. http://weblog.jamisbuck.org/2007/2/5/nesting-resources

6. Read the full thread at http://www.ruby-forum.com/topic/75356.

126 4. REST, Resources, and Rails

CHAPTER 5
Reflecting on Rails Routing

You are in a maze of twisty little passages, all alike.
—Adventure (late 70s-era computer game)

In this context, reflecting doesn’t mean pondering; it means examining, testing, and
troubleshooting. The routing system gives you numerous points of entry for reflection
of this kind—and there are some handy plugins that can help you further.

We’re not going to look at every technique and/or plugin, but in this chapter
you’ll become acquainted with several important facilities that will help you make sure
your routes are doing what you think they’re doing, and how to figure out why they’re
not if they’re not.

We’ll also take a look at the source code for the routing system, including the
RESTful routing facilities.

Examining Routes in the Application Console
Coming full circle to the approach we took at the beginning of the book with respect
to the dispatcher, you can examine the workings of the routing system in the applica-
tion console. This can help with troubleshooting, and can also help you learn about
the routing system.

Dumping Routes
Let’s start by examining all the available routes. To do this, you need to get hold of the
current RouteSet object:

$ ruby script/console

Loading development environment.

>> rs = ActionController::Routing::Routes

You’ll see a rather huge amount of output—a screen dump of all the defined
routes. You can, however, get this dump in a more readable form:

>> puts rs.routes

This will give you a kind of chart of all the defined routes:

GET /bids/ {:controller=>”bids”, :action=>”index”}

GET /bids.:format/ {:controller=>”bids”, :action=>”index”}

POST /bids/ {:controller=>”bids”, :action=>”create”}

POST /bids.:format/ {:controller=>”bids”, :action=>”create”}

GET /bids/new/ {:controller=>”bids”, :action=>”new”}

GET /bids/new.:format/ {:controller=>”bids”, :action=>”new”}

GET /bids/:id;edit/ {:controller=>”bids”, :action=>”edit”}

GET /bids/:id.:format;edit {:controller=>”bids”, :action=>”edit”}

etc.

The amount of information may be greater than you need, but it can be enlight-
ening to see it in this form. You get a graphic sense of the fact that each route includes
a request method, a URL pattern, and parameters specifying the controller/action
sequence.

You can also look at named routes in a similar format. With named routes it pays
to neaten up the format a bit. As you iterate through the routes, you get a name and
a route for each one. You can use this information to output a chart:

rs.named_routes.each {|name, r| printf(“%-30s %s\n”, name, r) }; nil

The nil at the end is to stop irb from outputting the actual return value of the
call to each, which would push the interesting stuff off the screen.

128 5. Reflecting on Rails Routing

The result looks like this (modified to look decent on this page):

history ANY /history/:id/ {:controller=>”auctions”,

:action=>”history”}

new_us GET /users/new/ {:controller=>”users”, :action=>”new”}

new_auction GET /auctions/new/ {:controller=>”auctions”,

:action=>”new”}

etc.

The upshot of this is that you can get a lot of routing information in the console,
and slice and dice it any way you need. But what about the “raw” information? That
original screen dump contained some important elements too:

#<ActionController::Routing::Route:0x275bb7c

@requirements={:controller=>”bids”, :action=>”create”},

@to_s=”POST /bids.:format/ {:controller=>\”bids\”,

:action=>\”create\”}”,

@significant_keys=[:format, :controller, :action],

@conditions={:method=>:post},

@segments=[#<ActionController::Routing::DividerSegment:0x275d65c

@raw=true, @is_optional=false, @value=”/”>,

#<ActionController::Routing::StaticSegment:0x275d274

@is_optional=false, @value=”bids”>,

#<ActionController::Routing::DividerSegment:0x275ce78 @raw=true,

@is_optional=false, @value=”.”>,

#<ActionController::Routing::DynamicSegment:0x275cdc4

@is_optional=false, @key=:format>,

#<ActionController::Routing::DividerSegment:0x275c798 @raw=true,

@is_optional=true, @value=”/”>]>

Anatomy of a Route Object
The best way to see what’s going on here is to look at a YAML (Yet Another Markup
Language) representation of this particular route. Here’s the output of a to_yaml
operation, together with some comments. There’s a lot of information here, but you
can learn a lot by looking it over. You’re seeing a kind of X-ray of how a route is con-
structed.

Examining Routes in the Application Console 129

The whole thing is a Route object

-- !ruby/object:actionController::Routing::Route

This route only recognizes PUT requests.

conditions:

:method: :put

The basic chain of events upon recognition, and the hooks for

matching when generating.

requirements:

:controller: bids

:action: update

The segments. This is the formal definition of the pattern string.

Everything is accounted for, including the dividers (the forward

slashes).

Note that each segment is an instance of a particular class:

DividerSegment, StaticSegment, or DynamicSegment.

If you read along, you can reconstruct the possible values

of the pattern.

Note the regexp field, automatically inserted, constraining the

possible values of the :id segment.

segments:

- !ruby/object:actionController::Routing::DividerSegment

is_optional: false

raw: true

value: /

- !ruby/object:actionController::Routing::StaticSegment

is_optional: false

value: auctions

- !ruby/object:actionController::Routing::DividerSegment

is_optional: false

raw: true

value: /

- !ruby/object:actionController::Routing::DynamicSegment

is_optional: false

key: :auction_id

130 5. Reflecting on Rails Routing

- !ruby/object:actionController::Routing::DividerSegment

is_optional: false

raw: true

value: /

- !ruby/object:actionController::Routing::StaticSegment

is_optional: false

value: bids

- !ruby/object:actionController::Routing::DividerSegment

is_optional: false

raw: true

value: /

- !ruby/object:actionController::Routing::DynamicSegment

is_optional: false

key: :id

regexp: !ruby/regexp /[^\/;.,?]+/

- !ruby/object:actionController::Routing::DividerSegment

is_optional: true

raw: true

value: /

significant_keys:

- :auction_id

- :id

- :controller

- :action

(This should be on one line; it’s split here for formatting

reasons.)

to_s: PUT /auctions/:auction_id/bids/:id/

{:controller=>”bids” :action=>”update”}

The storage of segments in a collection enables the routing system to perform
recognition and generation, since the segments can be traversed both in an attempt to
match the segments from a candidate URL, and to output a URL using the segments
as a template or blueprint.

You can, of course, find out more about the inner workings of routes by looking
in the routing source code. We’re not going to go into it in depth here, but have a look
at the files routing.rb and resources.rb in the ActionController source tree.
You’ll see the definitions of Routing, RouteSet, the various Segment classes, and
more. If you want to learn more about how the source code functions, there’s a series
of blog posts by Jamis Buck, Rails core team member, which will give you a good guid-
ed tour.1

Examining Routes in the Application Console 131

There’s more you can do in the console: You can directly execute recognition and
generation of URLs.

Recognition and Generation in the Console
To do manual recognition and generation in the console, let’s first scope our console
session to the RouteSet object. (If you’ve never seen this technique, you’ll be learn-
ing a nice IRB trick along the way.)

$./script/console

Loading development environment.

>> irb ActionController::Routing::Routes

>>

By giving the irb command inside IRB, we’ve set the default object—self—to
the route set. This saves some typing as we proceed to give commands.

To see a route generated from parameters, feed the parameters to the generate
method. Here are some annotated examples.

Here’s a nested resource routes for bids. The create action generates a collection
URL; there’s no :id field. But there is an :auction_id field, to achieve the nesting.

>> generate(:controller => “bids”, :auction_id => 3, :action =>

“create”)

=> “/auctions/3/bids”

Here are our two custom action routes for bids, nested inside users. In each
case (retract and manage), providing the appropriate action name is enough to trig-
ger the use of the extra path segment in the URL.

>> generate(:controller => “bids”, :user_id => 3, :id => 4, :action =>

“retract”)

=> “/users/3/bids/4/retract”

>> generate(:controller => “bids”, :user_id => 3, :action => “manage”)

=> “/users/3/bids/manage”

Remember the bid history action “history” in the auctions controller? Here’s how
to generate the URL for it.

>> generate(:controller => “auctions”, :action => “history”, :id => 3)

=> “/history/3”

132 5. Reflecting on Rails Routing

These next two examples use the item_year route that requires a year parameter
consisting of four digits. Note that the generation fails when the year doesn’t match
this pattern; the year value is added to the query string, rather than included as a URL
segment.

>> generate(:controller => “items”, :action => “item_year”, :year =>

1939)

=> “/item_year/1939”

>> generate(:controller => “items”, :action => “item_year”, :year =>

19393)

=> “/items/item_year?year=19393”

You can go in the other direction too, starting with paths and seeing how they
play out in terms of controller, action, and parameters, according to the route recog-
nition system.

The top-level path, as defined by us in routes.rb:

>> recognize_path(“/”)

=> {:controller=>”auctions”, :action=>”index”}

Similar results come from the auctions resource, called in the plural with the GET
request method.

>> recognize_path(“/auctions”, :method => :get)

=> {:controller=>”auctions”, :action=>”index”}

With the POST method, the result is different: It’s routed to the create action.

>> recognize_path(“/auctions”, :method => :post)

=> {:controller=>”auctions”, :action=>”create”}

The same logic applies to a plural POST request in a nested route.

>> recognize_path(“/auctions/3/bids”, :method => :post)

=> {:controller=>”bids”, :action=>”create”, :auction_id=>”3”}

The custom actions are recognized and broken down into the appropriate con-
troller and action parameters.

>> recognize_path(“/users/3/bids/1/retract”, :method => :get)

=> {:controller=>”bids”, :user_id=>”3”, :action=>”retract”, :id=>”1”}

Examining Routes in the Application Console 133

Here’s our history route, bound to the auctions controller.

>> recognize_path(“/history/3”)

=> {:controller=>”auctions”, :action=>”history”, :id=>”3”}

The item_year route only recognizes paths with four-digit numbers in the
:year position. In the second of these two examples, the system reports failure: there’s
no appropriate route.

>> recognize_path(“/item_year/1939”)

=> {:controller=>”items”, :action=>”item_year”, :year=>”1939”}

>> recognize_path(“/item_year/19393”)

ActionController::RoutingError: no route found to match

“/item_year/19393” with {}

Named Routes in the Console
You can also execute named routes in the console. The easiest way to do this is to
include the module ActionController::UrlWriter, and then set the default host
value to anything (just to suppress errors):

>> include ActionController::UrlWriter

=> Object

>> default_url_options[:host] = “example.com”

=> “example.com”

Now you can call named routes and see their return values—that is, the URLs
they generate.

>> auction_url(1)

=> “http://example.com/auctions/1”

>> formatted_auction_url(1,”xml”)

=> “http://example.com/auctions/1.xml”

>> formatted_auctions_url(“xml”)

=> “http://example.com/auctions.xml”

134 5. Reflecting on Rails Routing

As always, the application console can help you both learn and debug. If you keep
your routes.rb file open in one window and the console in another, you’ll make
rapid progress in getting a feel for how the recognition and generation of routes dove-
tail with each other. Sadly, the console doesn’t seem to reload the routing table auto-
matically. Not even the reload! method seems to force it to be read again.

The console is good for learning and ad-hoc testing, but there are also facilities
for the more systematic process of testing routes.

Testing Routes
The testing system gives you some facilities for testing routes:

• assert_generates

• assert_recognizes

• assert_routing

The third of these, assert_routing, is really the first two rolled into one: You
give it a path and some parameters, and it tests both the recognition of the path, mak-
ing sure it resolves to the parameters you’ve given, and the generation of the path from
the parameters. Testing and specifying of routing is covered in detail in Chapters 17,
“Testing,” and 18, “RSpec on Rails,” of this book.

Exactly which tests you write for your routes, and how many tests, is up to you.
Ideally, of course, your test suite would include at least every permutation that you’re
actually using in your application. If you want to see a rather thorough set of routing
tests, have a look at the file routing.rb, in the test subdirectory of your ActionPack
installation. At last count it was 1881 lines long. It’s testing the actual framework, so
you’re not expected (or advised!) to duplicate it in your own tests—but, like the other
Rails framework test files, it might give you some ideas and will certainly illustrate the
process of test-driven development for you.

Testing Routes 135

A Word about Argument Syntax

Don’t forget Ruby’s rule about hashes in argument lists:

If the last argument in the list is a hash, you can omit the
curly braces.

That’s why you can do this:
assert_generates(user_retract_bid_path(3,1),

:controller => “bids”,

:action => “retract”,

:id => “1”, :user_id => “3”)

If you use a hash anywhere except in the last position, you
have to wrap it in curly braces. That’s why you must do
this:

assert_recognizes({:controller => “auctions”,

:action => “show”,

:id => auction.id.to_s },

auction_path(auction))

Here, auction_path(auction) is the last argument, so
the hash has to use the curly braces.

If you ever get slightly mysterious syntax errors pertaining
to your argument lists, make sure you’re not violating the
hash rule.

The Routing Navigator Plugin
Rick Olson, one of the Rails core developers, has written a plugin called Routing
Navigator that gives you a deluxe version of the kind of information you can get by
examining routes in the console—right in your browser.

To install the Routing Navigator plugin, give this command from the top level of
your Rails application directory:

./script/plugin install

http://svn.techno-weenie.net/projects/plugins/routing_navigator/

Now, you have to tell one or more controllers that you want them to show you
the route information you crave. In auction_controller.rb, for example, put this
line:

routing_navigator :on

136 5. Reflecting on Rails Routing

at the beginning of the controller class definition (right where you’d put
before_filters and other class methods). This is definitely something that you
want to do on an occasional basis during development; you don’t want to leave rout-
ing navigation on in a production application.

The Recognize and Generate buttons give you input boxes where you can put
paths (for recognition) or parameters (for generation) and have the operations per-
formed for you. It’s similar to doing the same thing in the application console, but a
lot slicker.

The last button is Routing Navigator. This takes you to a new page, which
includes every single route, named or not, defined for your application. Above the list
of routes is the Routing Viewer utility. You can input paths and/or route parameters,
and perform recognition and generation operations.

The list of all available routes at the bottom of the viewer can get quite long. But
you can filter it, using another of the input windows—the one labeled “YAML to fil-
ter routes by requirements.” For example, if you put controller: bids into this
window, and hit the Filter button, the list at the bottom will be refreshed to include
only those routes that pertain to the bids controller.

The Routing Navigator is a fine debugging tool, and it’s worthwhile to spend
some time working with it just for learning.

Conclusion
This brings us to the end of our tour of Rails routing, RESTful and otherwise. As you
develop Rails applications, you’re sure to find some favorites among the various idioms
and techniques available to you; and there’s a whole world of existing code to which
you can look for examples. If you keep the fundamentals in mind, you’ll find that your
routing skills will develop nicely and will greatly enhance the look and logic of your
code.

Happy routing!

References

1. http://weblog.jamisbuck.org/2006/10/4/under-the-hood-route-recognition-in-rails.

Conclusion 137

This page intentionally left blank

CHAPTER 6
Working with
ActiveRecord

An object that wraps a row in a database table or view, encapsulates the database
access, and adds domain logic on that data.
– Martin Fowler, P of EA

The Active Record pattern, identified by Martin Fowler in his seminal work, Patterns
of Enterprise Architecture, maps one domain class to one database table, and one
instance of that class to each row of that database. It is a simple approach that, while
not perfectly applicable in all cases, provides a powerful framework for database access
and object persistence in your application.

Rails’ ActiveRecord framework includes mechanisms for representing models and
their relationships, CRUD (Create, Read, Update and Delete) operations, complex
searches, validation, callbacks, and many more features. It relies heavily on “conven-
tion over configuration,” so it’s easiest to use when you’re creating a new database
schema that can follow those conventions. However, ActiveRecord also provides con-
figuration settings that let you adapt it to work well with legacy database schemas that
don’t necessarily conform to Rails conventions.

According to Martin Fowler, delivering the keynote address at the inaugural Rails
conference in 2006, Ruby on Rails has successfully taken the Active Record pattern
much further than anyone imagined it could go. It shows you what you can achieve

when you have a single-minded focus on a set of ideals, which in the case of Rails is
simplicity.

The Basics
For the sake of completeness, let’s begin with the real basics of how ActiveRecord
works. In order to create a new model class, the first thing you do is to declare it as a
subclass of ActiveRecord::Base, using Ruby’s class extension syntax:

class Client < ActiveRecord::Base

end

By convention, an ActiveRecord class named Client will be mapped to the
clients table. Rails understands pluralization, as covered in the section
“Pluralization” in this chapter. Also by convention, ActiveRecord will expect an id col-
umn to use as primary key. It should be an integer and incrementing of the key should
be managed automatically by the database server when creating new records. Note
how the class itself makes no mention of the table name, columns, or their datatypes.

Each instance of an ActiveRecord class provides access to the data from one row
of the backing database table, in an object-oriented manner. The columns of that row
are represented as attributes of the object, using straightforward type conversions (i.e.
ruby strings for varchars, Ruby dates for dates, and so on), and with no default data
validation. Attributes are inferred from the column definition pertaining to the tables
with which they’re linked. Adding, removing, and changing attributes and their types
are done by changing the columns of the table in the database.

When you’re running a Rails server in development mode, changes to the database
schema are reflected in the Active Record objects immediately, via the web browser.
However, if you make changes to the schema while you have your Rails console run-
ning, the changes will not be reflected automatically, although it is possible to pick up
changes manually by typing Dispatcher.reset_application! at the console.

The Rails way of doing things is to use code generation to produce boilerplate code.
As a result, you’ll hardly ever create a file for your model class and enter the class declara-
tion yourself. It’s just so much easier to use the Rails model generator instead.

For instance, let’s use the model generator to create our Client class and review
the resulting files that are created:

$ script/generate model client

exists app/models/

exists test/unit/

140 6. Working with ActiveRecord

exists test/fixtures/

create app/models/client.rb

create test/unit/client_test.rb

create test/fixtures/clients.yml

exists db/migrate

create db/migrate/002_create_clients.rb

The file containing our new model class is client.rb:

class Client < ActiveRecord::Base

end

Nice and simple. Let’s see what else was created. There’s a unit test skeleton in
client_test.rb:

require File.dirname(__FILE__) + ‘/../test_helper’

class ClientTest < Test::Unit::TestCase

fixtures :clients

Replace this with your real tests.

def test_truth

assert true

end

end

It asks us to replace the test_truth method with real tests. Right now we’re just
taking a glance at the generated code, so we’ll move on. Notice ClientTest refer-
ences a fixture file, clients.yml:

Read about fixtures at

http://ar.rubyonrails.org/classes/Fixtures.html

one:

id: 1

two:

id: 2

Not much there at all, just some ids. Unit tests and fixtures are covered in Chapter
17, “Testing.”

The Basics 141

Finally, there is a migration file named 002_create_clients.rb:

class CreateClients < ActiveRecord::Migration

def self.up

create_table :clients do |t|

t.column :name, :string

end

end

def self.down

drop_table :clients

end

end

Migrations is the mechanism used in Rails to create and evolve your database
schema, without which you wouldn’t have ActiveRecord models. (Well, they’d be very
boring.) That being the case, let’s go ahead and examine migrations in depth.

Courtenay Says..…

ActiveRecord is a great example of the Rails “Golden
Path”—that is, if you keep within its limitations, you can
go far. Stray from the path, and you’ll probably get stuck
in the mud. This Golden Path involves many conven-
tions, like naming your tables in the plural form (“users”).

It’s common for new developers to Rails and rival web-
framework evangelists to complain about how tables must
be named in a particular manner, how there are no con-
straints in the database layer, that foreign keys are handled
all wrong, enterprise systems must have composite primary
keys, and more.

Get the complaining out of your system now, because all
these defaults are simply defaults, and in most cases can be
overridden with a single line of code or a plugin.

Migrations
It’s a fact of life that the database schema of your application will evolve over the
course of development. Tables are added, names of columns are changed, things are

142 6. Working with ActiveRecord

dropped—you get the picture. Without strict conventions and process discipline for
the application developers to follow, keeping the database schema in proper lock-step
with application code is traditionally a very troublesome job.

Migrations are Rails’ way of helping you to evolve the database schema of your
application (also known as its DDL) without having to drop and re-create the database
each time you make a change. And not having to drop and recreate the database each
time a change happens means that you don’t lose your development data—which may
or may not be that important, but is usually very convenient. The only changes made
when you execute a migration are those necessary to move the schema from one ver-
sion to another, whether that move is forward or backward in time.

Creating Migrations
Rails provides a generator for creating migrations. Here is its help text at the com-
mand line:

$ script/generate migration

Usage: script/generate migration MigrationName [options]

Rails Info:

-v, --version Show the Rails version and quit.

-h, --help Show this help message and quit.

General Options:

-p, --pretend Run but do not make any changes.

-f, --force Overwrite files that already

exist.

-s, --skip Skip files that already exist.

-q, --quiet Suppress normal output.

-t, --backtrace Debugging: show backtrace on

errors.

-c, --svn Modify files with subversion.

(Note: svn must be in path)

Description:

The migration generator creates a stub for a new database

migration.

The generator takes a migration name as its argument. The

migration

name may be given in CamelCase or under_score.

Migrations 143

The generator creates a migration class in db/migrate prefixed by

its number in the queue.

Example:

./script/generate migration AddSslFlag

With 4 existing migrations, this will create an AddSslFlag

migration

in the file db/migrate/005_add_ssl_flag.rb

As you can see, all you have to do is provide a descriptive name for the migration in
CamelCase, and the generator does the rest. We only invoke this generator directly
when we want to change attributes of an existing table.

As we discussed earlier in the chapter, other generators, such as the model gener-
ator, also create migration scripts for you, unless you specify the --skip-migration
option.

Naming Migrations

The sequential aspect of migrations is accomplished via a simple numbering scheme
baked into the name of the migration file, and automatically handled by the migra-
tion generator.

By convention, the file name begins with a three-digit version number (padded
with zeros) followed by the name of the migration class, separated with underscores.
(Note: The name of the file does need to match the name of the class or the migration
will fail.)

The migrations generator handles checking to see what the next sequence num-
ber should be, based on the value of a special table in the database that Rails main-
tains. It is named schema_info and it is very simple:

mysql> desc schema_info;

+—————————+—————————+——————+————-+————————-+——————-+

| Field | Type | Null | Key | Default | Extra |

+—————————+—————————+——————+————-+————————-+——————-+

| version | int(11) | YES | | NULL | |

+—————————+—————————+——————+————-+————————-+——————-+

1 row in set (0.00 sec)

It only contains one column, and one row—the current migration version of your
application.

144 6. Working with ActiveRecord

The descriptive part of the migration name is up to you, but most Rails develop-
ers that I know try to make it match the schema operation (in simple cases) or at least
allude to what’s going on inside (in more complex cases).

Migration Pitfalls

If you only ever write Rails programs by yourself, there are no pitfalls to the sequen-
tially numbered naming scheme, and you should skip this little section. Problems can
and do crop up when you’re working together with other programmers on the same
project, especially big teams with lots of other developers. I’m not talking about prob-
lems with the migrations API of Rails itself; it’s just that the overall problem of main-
taining and evolving database schemas is hard and not completely solved yet.

My old ThoughtWorks partner-in-crime Jay Fields has been leading big Rails
teams and writes in his blog about the troubles faced with Rails migrations on his
team:

Migrations are great, but they do come at a cost. When working with a
large team (my current team size is 14 and growing) migration conflicts
happen. This can be mitigated with communication, but migrations can
definitely be a bottleneck. Also, the process of creating a migration can be
painful on a large team. Before creating a migration you should always
update from source control to ensure you get all the migrations checked in
by your teammates. Then, the best case scenario is when you can create a
migration that doesn’t change anything and immediately check it in.
Checking in a new migration immediately helps ensure you don’t block
other teammates from creating migrations; however, it’s not always as sim-
ple as adding a new table. Migrations that alter the database structure
often break several tests. Obviously, you can’t check those migrations in
until you fix all the breaking tests, which can take time. During this time,
database changes are blocked for the entire team.1

Another manifestation of the same problem happens when you have development
happening in multiple code branches that need to be updated, and has been described
as nightmarish (see the comments to Jay’s blog entry for more on that subject).

Unfortunately there is no straightforward solution to this problem, other than
designing the entire database up-front prior to implementing your application, and
that would have its own big set of problems (too big to broach here). I can tell you

Migrations 145

from experience that doing enough analysis up-front to have at least a rough, but fair-
ly complete database schema ready before diving into application code is quite useful.

It’s also useful to call out to your fellow developers whenever you’re about to
embark on the creation of a new migration, so that two of you don’t inadvertently try
to commit the same migration number later on, which would lead to drama.

Sebastian Says..…

One trick we use (based on Conor Hunt’s idea) is to have
an svn hook script check new migrations being added to
the repository and prevent duplicate numbers.

Another trick is to have a single member of the team be
responsible for migrations. Developers would create and
test migrations locally and then email them to the “coordi-
nator” for checking (and proper numbering).

Courtenay Says..…

Keeping your database schema in revision control far out-
weighs the difficulties that arise when a team changes the
schema in an ad-hoc fashion. Pipelining database changes
through code revisions prevents the dreaded question
“Who added this field?”

As usual, there are multiple Rails plugins related to this
issue. One, which I wrote, is called
IndependentMigrations. Simply put, it lets you have mul-
tiple migrations with the same number. Other plugins
allow migrations keyed by timestamp. Read more about
my plugin and alternatives at http://blog.caboo.se/
articles/2007/3/27/independent-migrations-plugin.

Migration API
Getting back to the Migration API itself, here is the 002_create_clients.rb file again,
from earlier in the chapter, after adding four column definitions for the clients
table:

class CreateClients < ActiveRecord::Migration

def self.up

create_table :clients do |t|

146 6. Working with ActiveRecord

t.column :name, :string

t.column :code, :string

t.column :created_at, :datetime

t.column :updated_at, :datetime

end

end

def self.down

drop_table :clients

end

end

As you can see in the example, migration directives happen within two class
method definitions, self.up and self.down. If we go to the command line in our
project folder and type rake db:migrate, the clients table will be created. Rails
gives us informative output during the migration process so that we see what is going
on:

$ rake db:migrate

(in /Users/obie/prorails/time_and_expenses)

== 2 CreateClients: migrating

==

-- create_table(:clients)

-> 0.0448s

== 2 CreateClients: migrated (0.0450s)

=================================

Normally, only the code in the up method is run, but if you ever need to rollback
to an earlier version of the schema, the down method specifies how to undo what hap-
pened in up.

To execute a rollback, use the migrate task, but pass it a version number to roll-
back to, as in rake db:migrate VERSION=1.

create_table(name, options)

The create_table method needs at minimum a name for the table and a block
containing column definitions. Why do we specify identifiers with symbols instead of
strings? Both will work, but symbols require one less keystroke.2

Migrations 147

The create_table method makes a huge, but usually true assumption that we
want an autoincrementing, integer-typed, primary key. That is why you don’t see it
declared in the list of columns. If that assumption happens to be wrong, it’s time to
pass create_table some options in a hash.

For example, how would you define a simple join table consisting of two foreign
key columns and not needing its own primary key? Just pass the create_table
method an :id option set to false, as a boolean, not a symbol! It will stop the migra-
tion from autogenerating a primary key altogether:

create_table :ingredients_recipes, :id => false do |t|

t.column :ingredient_id, :integer

t.column :recipe_id, :integer

end

If all you want to do is change the name of the primary key column from its
default of ‘id’, pass the :id option a symbol instead. For example, let’s say your cor-
poration mandates that primary keys follow the pattern tablename_id. Then the earli-
er example would look as follows:

create_table :clients, :id => :clients_id do |t|

t.column :name, :string

t.column :code, :string

t.column :created_at, :datetime

t.column :updated_at, :datetime

end

The :force => true option tells the migration to go ahead and drop the table
being defined if it exists. Be careful with this one, since it will produce (possibly
unwanted) data loss when run in production. As far as I know, the :force option is
mostly useful for making sure that the migration puts the database in a known state,
but isn’t all that useful on a daily basis.

The :options option allows you to append custom instructions to the SQL
CREATE statement and is useful for adding database-specific commands to your
migration. Depending on the database you’re using, you might be able to specify
things such as character set, collation, comments, min/max sizes, and many other
properties using this option.

The :temporary => true option specifies creation of a temporary table that
will only exist during the current connection to the database. In other words, it only
exists during the migration. In advanced scenarios, this option might be useful for
migrating big sets of data from one table to another, but is not commonly used.

148 6. Working with ActiveRecord

Migrations 149

Sebastian Says…

A little known fact is that you can remove files from your
migration directories (while still keeping the higher-
numbered ones) to keep the db/migrate folder to a
manageable size. You can move the older migrations to a
db/archived_migrations folder or something like that.

If you want to make absolutely sure your code is deploy-
able from scratch, you can replace the lowest-numbered
migration with a “recreate all” migration based on the
contents of schema.rb.

Defining Columns
Columns can be added to a table using either the column method, inside the block of
a create_table statement, or with the add_column method. Other than taking the
name of the table to add the column to as its first argument, the methods work iden-
tically.

create_table :clients do |t|

t.column :name, :string

end

add_column :clients, :code, :string

add_column :clients, :created_at, :datetime

The first (or second) parameter obviously specifies the name of the column, and
the second (or third) obviously specifies its type. The SQL92 standard defines funda-
mental data types, but each database implementation has its own variation on the
standards.

If you’re familiar with database column types, when you examine the preceding
example it might strike you as a little weird that there is a database column declared
as type string, since databases don’t have string columns—they have char or varchars
types.

Column Type Mappings

The reason for declaring a database column as type string is that Rails migrations are
meant to be database-agnostic. That’s why you could (as I’ve done on occasion) devel-
op using Postgres as your database and deploy in production to Oracle.

A complete discussion of how to go about choosing the right data type for your
application needs is outside the scope of this book. However, it is useful to have a ref-
erence of how migration’s generic types map to database-specific types. The mappings
for the databases most commonly used with Rails are in Table 6.1.

Table 6.1 Column Mappings for the Databases Most Commonly Used with Rails

Migration type MySQL Postgres SQLite Oracle
Ruby class

:binary blob bytea blob blob
String

:boolean tinyint(1) boolean boolean number(1)
Boolean

:date date date date date
Date

:datetime datetime timestamp datetime date
Time

:decimal decimal decimal decimal decimal
BigDecimal

:float float float float number
Float

:integer int(11) integer integer number(38)
Fixnum

:string varchar(255) character varchar(255) varchar2(255)
String varying (255)

:text text clob(32768) text clob
String

:time time time time date
Time

:timestamp datetime timestamp datetime date
Time

150 6. Working with ActiveRecord

Each connection adapter class has a native_database_types hash which estab-
lishes the mapping described in Table 6.1. If you need to look up the mappings for a
database not listed in Table 6.1, you can pop open the adapter Ruby code and find the
native_database_types hash, like the following one inside the
SQLServerAdapter class within sqlserver_adapter.rb:

def native_database_types

{

:primary_key => “int NOT NULL IDENTITY(1, 1) PRIMARY KEY”,

:string => { :name => “varchar”, :limit => 255 },

:text => { :name => “text” },

:integer => { :name => “int” },

:float => { :name => “float”, :limit => 8 },

:decimal => { :name => “decimal” },

:datetime => { :name => “datetime” },

:timestamp => { :name => “datetime” },

:time => { :name => “datetime” },

:date => { :name => “datetime” },

:binary => { :name => “image”},

:boolean => { :name => “bit”}

}

end

Column Options

For many column types, just specifying type is not enough information. All column
declarations accept the following options:

:default => value

Sets a default to be used as the initial value of the column for new rows. You don’t
ever need to explicitly set the default value to null. Just leave off this option to get a
null default value.

:limit => size

Adds a size parameter to string, text, binary, or integer columns. Its meaning
varies depending on the column type that it is applied to. Generally speaking, limits
for string types refers to number of characters, whereas for other types it specifies the
number of bytes used to store the value in the database.

:null => true

Makes the column required at the database level by adding a not null
constraint.

Migrations 151

Decimal Precision

Columns declared as type :decimal accept the following options:
:precision => number

Precision is the total number of digits in a number.
:scale => number

Scale is the number of digits to the right of the decimal point. For example, the
number 123.45 has a precision of 5 and a scale of 2. Logically, the scale cannot be larg-
er than the precision.

NOTE

Decimal types pose a serious opportunity for data loss
during migrations of production data between different
kinds of databases. For example, the default precisions
between Oracle and SQL Server can cause the migration
process to truncate and change the value of your numeric
data. It’s always a good idea to specify precision details for
your data.

Column Type Gotchas

The choice of column type is not necessarily a simple choice and depends on both the
database you’re using and the requirements of your application.

• :binary Depending on your particular usage scenario, storing binary data in the
database can cause big performance problems. Rails isn’t choosy when it loads
objects from the database, and putting large binary attributes on commonly used
models will increase the load on your database server significantly.

• :boolean The way that boolean values are stored varies from database to data-
base. Some use 1 and 0 integer values to represent true and false, respectively.
Others use characters such as T and F. Rails handles the mapping between Ruby’s
true and false very well, so you don’t need to worry about the underlying
scheme yourself. Setting attributes directly to database values such as 1 or F may
work correctly, but is considered an anti-pattern.

• :date, :datetime and :time Trying to store dates on databases that don’t have a
native date type, such as Microsoft SQL Server, can be problematic. The Ruby
class that Rails maps to datetime columns is Time, which has the limitation of
not working with year values prior to 1970. Ruby’s DateTime class does work with

152 6. Working with ActiveRecord

year values prior to 1970, so why doesn’t Rails just use DateTime instead? The
answer has to do with performance. Under the covers, Time is implemented in C
and is very fast, whereas DateTime is written in pure Ruby and is comparatively
slow.
To make ActiveRecord map to DateTime instead of Time, drop the code

from Listing 6.1 into a file in your lib/ directory and require it from config/
environment.rb.

Listing 6.1 Map Dates to DateTime Instead of Time

require ‘date’
It’s necessary to do this, because Time doesn’t
support dates before 1970...

class ActiveRecord::ConnectionAdapters::Column
def self.string_to_time(string)
return string unless string.is_a?(String)
time_array = ParseDate.parsedate(string)[0..5]
begin
Time.send(Base.default_timezone, *time_array)

rescue
DateTime.new(*time_array) rescue nil

end
end
end

• :decimal Older versions of Rails (prior to 1.2) did not support the fixed-
precision :decimal type and as a result many old Rails applications incorrectly
used :float datatypes. Floating-point numbers are by nature imprecise, so it is
important to choose :decimal instead of :float for most business-related applications.

• :float Don’t use floats to store currency3 values, or more accurately, any type of
data that needs fixed precision. Since floating-point numbers are pretty much
approximations, any single representation of a number as a float is probably okay.
However, once you start doing mathematical operations or comparisons with
float values, it is ridiculously easy to introduce difficult to diagnose bugs into your
application.

• :integer and :string There aren’t many gotchas that I can think of when it
comes to integers and strings. They are the basic data building blocks of your
application, and many Rails developers leave off the size specification, which
results in the default maximum sizes of 11 digits and 255 characters, respectively.

Migrations 153

You should keep in mind that you won’t get an error if you try to store values that
exceed the maximum size defined for the database column, which again, is 255 char-
acters by default. Your string will simply get truncated. Use validations to make sure
that user-entered data does not exceed the maximum size allowed.

• :text There have been reports of text fields slowing down query performance,
enough to be a consideration for applications that need to scale to high loads. If
you must use a text column in a performance-critical application, put it in a sep-
arate table.

• :timestamp As of Rails 1.2, when creating new records, ActiveRecord may not
work very well with default database values that are generated with functions, as
in the case of timestamp columns on Postgres. The issue is that instead of leaving
those columns out of the insert statement, Rails supplies a null value, which
may cause the default value to be ignored.

Custom Data Types

If use of database-specific datatypes (such as :double, for higher precision than
:float) is critical to your project, use the config.active_record.schema_for-
mat = :sql setting in config/environment.rb to make Rails dump schema infor-
mation in native SQL DDL format rather than its own cross-platform compatible
Ruby code, via the schema.rb file.

“Magic” Timestamp Columns

Rails does magic with datetime columns, if they’re named a certain way. Active Record
will automatically timestamp create operations if the table has columns named
created_at or created_on. The same applies to updates when there are columns
named updated_at or updated_on.

Note that created_at and updated_at should be defined as datetime-type
columns not timestamps in your migration.

Automatic timestamping can be turned off globally, by setting the following vari-
able in config/environment.rb

ActiveRecord::Base.record_timestamps = false

154 6. Working with ActiveRecord

Via inheritance, the preceding code turns off timestamps for all models, but you
can also do it on a case-by-case basis by setting record_timestamps to false in spe-
cific models. Timestamps are in the local timezone by default, but can use UTC by
setting ActiveRecord::Base.default_timezone = :utc.

Macro-Style Methods
Most of the important classes you write while coding a Rails application are config-
ured using what I call macro-style method invocations (also known in some circles as
a domain-specific language or DSL). Basically, the idea is to have a highly readable
block of code at the top of your class that makes it immediately clear how it is con-
figured.

Macro-style invocations are usually placed at the top of the file, and for good rea-
son. Those methods declaratively tell Rails how to manage instances, perform data val-
idation and callbacks, and relate with other models. Many of them do some amount
of metaprogramming, meaning that they participate in adding behavior to your class at
runtime, in the form of additional instance variables and methods.

Relationship Declarations
For example, look at the Client class with some relationships declared. Don’t worry
about the meaning of those declarations just yet, because we’ll talk about them exten-
sively in Chapter 7, “ActiveRecord Associations.” All I want to do right now is to illus-
trate what I’m talking about when I say macro-style:

class Client < ActiveRecord::Base

has_many :billing_codes

has_many :billable_weeks

has_many :timesheets, :through => :billable_weeks

end

As a result of those three has_many declarations, the Client class gains at least
three new attributes, proxy objects that let you manipulate the associated collections
interactively.

I still remember the first time I sat with an experienced Java programmer friend
of mine to teach him some Ruby and Rails. After minutes of profound confusion, an
almost visible light bulb appeared over his head as he proclaimed, “Oh! They’re meth-
ods!”

Macro-Style Methods 155

Indeed, they’re regular old method calls, in the context of the class object. We
leave the parentheses off to emphasize the declarative intention. That’s a style issue,
but it just doesn’t feel right to me with the parentheses in place, as in the following
code snippet:

class Client < ActiveRecord::Base

has_many(:billing_codes)

has_many(:billable_weeks)

has_many(:timesheets, :through => :billable_weeks)

end

When the Ruby interpreter loads client.rb, it executes those has_many methods,
which, again, are defined as class methods of ActiveRecord’s Base class. They are
executed in the context of the Client class, adding attributes that are subsequently
available to Client instances. It’s a programming model that is potentially strange to
newcomers, but quickly becomes second-nature to the Rails programmer.

Convention over Configuration
Convention over configuration is one of Rails’ guiding principles. If we follow Rails con-
ventions, very little explicit configuration is needed, which stands in stark contrast to
the reams of configuration that are required to get even a simple application running
in other technologies.

It’s not that a newly bootstrapped Rails application comes with default configura-
tion in place already, reflecting the conventions that will be used. It’s that the conven-
tions are baked into the framework, actually hard-coded into its behavior, and you
need to override the default behavior with explicit configuration when applicable.

It’s also worth mentioning that most configuration happens in close proximity to
what you’re configuring. You will see associations, validations, and callback declarations
at the top of most ActiveRecord models.

I suspect that the first explicit configuration (over convention) that many of us
deal with in ActiveRecord is the mapping between class name and database table, since
by default Rails assumes that our database name is simply the pluralized form of our
class name. And since the issue of pluralization trips up so many beginning Rails
developers, we’ll cover it here before going further with ActiveRecord.

156 6. Working with ActiveRecord

Pluralization
Rails has a class named Inflector whose responsibility is to transform strings
(words) from singular to plural, class names to table names, modularized class names
to ones without, and class names to foreign keys, etc. (Some of its operations have
funny names, such as dasherize.)

The default inflections for pluralization and singularization of uncountable words
are kept in an interesting file inside your Rails installation, named inflections.rb.

Most of the time the Inflector class does a decent job of figuring out the plu-
ralized table name for a given class, but occasionally it won’t. This is one of the first
stumbling blocks for many new Rails users, but it is not necessary to panic. With a lit-
tle ad-hoc testing beforehand, it’s easy to find out how Inflector will react to cer-
tain words. We just need to use the Rails console, which by the way is one of the best
things about working in Rails.

You fire up the console from your command prompt using the executable Ruby
script located at script/console in your project directory.

$ script/console

>> Inflector.pluralize “project”

=> “projects”

>> Inflector.pluralize “virus”

=> “viri”

>> Inflector.pluralize “pensum”

=> “pensums”

As you can see in the example, Inflector is pretty smart, pluralizing “virus” as
“viri”; but if you know your Latin you have already noticed that the plural “pensum”
should actually be “pensa”. Needless to say, the inflector does not know Latin.

However, you can teach the inflector new tricks either by adding new pattern
rules, by pointing out an exception, or by declaring certain words un-pluralizable. The
preferred place to do that is inside the config/environment.rb file, where a com-
mented example is already provided.

Inflector.inflections do |inflect|

inflect.plural /^(.*)um$/i, ‘\1a’

inflect.singular /^(.*)a/i, ‘\1um’

inflect.irregular ‘album’, ‘albums’

inflect.uncountable %w(valium)

end

Macro-Style Methods 157

By the way, as of Rails 1.2 the pluralizer takes already pluralized strings and…does
nothing with them, which is probably best. Older versions of Rails were not as smart
about that.

>> “territories”.pluralize

=> “territories”

>> “queries”.pluralize

=> “queries”

For a long list of pluralizations correctly handled by Inflector, take a look
inside activesupport/test/inflector_test.rb. I found some of them pretty interesting,
such as:

“datum” => “data”,

“medium” => “media”,

“analysis” => “analyses”

Should I Report INFLECTOR Bugs to the Core Team?

According to Michael Koziarski, one of the members of the Rails core team, you
shouldn’t report issues with Inflector: “The inflector is basically frozen, prior to 1.0
we’d add lots of new rules to fix bugs, and just end up enraging people who looked at
the old output and named their tables accordingly. You can add those exceptions your-
self in environment.rb.”

Setting Names Manually
Now that we understand inflection, let’s get back to configuration of ActiveRecord
model classes. The set_table_name and set_primary_key methods let you bypass
Rails conventions and explicitly define the table name for the model, and the column
name for its primary key.

For example purposes (only!), let’s say I had some icky naming convention that I
was forced to follow for my database tables, that differed from ActiveRecord’s con-
vention. I might have to do the following:

class Client < ActiveRecord::Base

set_table_name “CLIENT”

set_primary_key “CLIENT_ID”

end

158 6. Working with ActiveRecord

The set_table_name and set_primary_key methods let you use any table
and primary names you’d like, but you’ll have to specify them explicitly in your model
class. It’s only a couple of extra lines per model, but on a large application it adds
unnecessary complexity, so don’t do it if you don’t absolutely have to.

When you’re not at liberty to dictate the naming guidelines for your database
schema, such as when a separate DBA group controls all database schemas, then you
probably don’t have a choice. But if you have flexibility, you should really just follow
Rails’ conventions. They might not be what you’re used to, but following them will
save you time and unnecessary headaches.

Legacy Naming Schemes
If you are working with legacy schemas, you may be tempted to automatically
set_table_name everywhere, whether you need it or not. Before you get accustomed
to doing that, learn the additional options available that might just be more DRY and
make your life easier.

Let’s assume you need to turn off table pluralization altogether; you would set the
following attribute to false at the bottom of config/environment.rb:

ActiveRecord::Base.pluralize_table_names = false

There are various other useful attributes of ActiveRecord::Base, provided for
configuring Rails to work with legacy naming schemes.

• primary_key_prefix_type Accessor for the prefix type that will be prepend-
ed to every primary key column name. If :table_name is specified, the
ActiveRecord will look for “tableid” instead of “id” as the primary column. If
:table_name_with_underscore is specified, ActiveRecord will look for
“table_id” instead of “id”.

• table_name_prefix Some departments prefix table names with the name of
the database. Set this attribute accordingly to avoid having to include the prefix
in all of your model class names.

• table_name_suffix Similar to prefix, but adds a common ending to all table
names.

• underscore_table_names Set to false to prevent ActiveRecord from
underscoring compound table names.

Macro-Style Methods 159

Defining Attributes
The list of attributes associated with an ActiveRecord model class is not coded explic-
itly. At runtime, the ActiveRecord model examines the database schema directly from
the server. Adding, removing, and changing attributes and their type is done by
manipulating the database itself, either directly using SQL commands or GUI tools,
but ideally via ActiveRecord migrations.

The practical implication of the ActiveRecord pattern is that you have to define
your database table structure and make sure it actually exists in the database prior to
working with your persistent models. Some people may have issues with that design
philosophy, especially if they’re coming from a background in top-down design.

The Rails way is undoubtedly to have model classes that map closely to your data-
base schema. On the other hand, remember you can have models that are simple Ruby
classes and do not extend ActiveRecord::Base. Among other things, it is common to
use non-ActiveRecord model classes to encapsulate data and logic for the view layer.

Default Attribute Values
Migrations let you define default attribute values by passing a :default option to the
column method, but most of the time you’ll want to set default attribute values at the
model layer, not the database layer. Default values are part of your domain logic and
should be kept together with the rest of the domain logic of your application, in the
model layer.

A common example is the case when your model should return the string ‘n/a’
instead of a nil (or empty) string for an attribute that has not been populated yet.
Seems simple enough and it’s a good place to start looking into how attributes exist at
runtime.

To begin, let’s whip up a quick test case describing the desired behavior.

class SpecificationTest < Test::Unit::TestCase

def test_default_string_for_tolerance_should_be_na

spec = Specification.new

assert_equal ‘n/a’, spec.tolerance

end

end

We run that test and it fails, as expected. ActiveRecord doesn’t provide us with any
class-level methods to define default values for models declaratively. So it seems we’ll
have to create an explicit attribute accessor that provides a default value.

160 6. Working with ActiveRecord

Normally, attribute accessors are handled magically by ActiveRecord’s internals,
but in this case we’re overriding the magic with an explicit getter. All we need to do is
to define a method with the same name as the attribute and use Ruby’s or operator,
which will short-circuit if @tolerance is not nil.

class Specification < ActiveRecord::Base

def tolerance

@tolerance or ‘n/a’

end

end

Now we run the test and it passes. Great. Are we done? Not quite. We should test
a case when the real tolerance value should be returned. I’ll add another test for a spec-
ification with a not-nil tolerance value and also go ahead and make my test method
names a little more descriptive.

class SpecificationTest < Test::Unit::TestCase

def test_default_string_for_tolerance_should_return_na_when_nil

spec = Specification.new

assert_equal ‘n/a’, spec.tolerance

end

def test_tolerance_value_should_be_returned_when_not_nil

spec = Specification.new(:tolerance => ‘0.01mm’)

assert_equal ‘0.01mm’, spec.tolerance

end

end

Uh-oh. The second test fails. Seems our default ‘n/a’ string is being returned no
matter what. That means that @tolerance must not get set. Should we even know
that it is getting set or not? It is an implementation detail of ActiveRecord, is it not?

The fact that Rails does not use instance variables like @tolerance to store the
model attributes is in fact an implementation detail. But model instances have a cou-
ple of methods, write_attribute and read_attribute, conveniently provided
by ActiveRecord for the purposes of overriding default accessors, which is exactly what
we’re trying to do. Let’s fix our Specification class.

class Specification < ActiveRecord::Base

def tolerance

read_attribute(:tolerance) or ‘n/a’

end

end

Defining Attributes 161

Now the test passes. How about a simple example of using write_attribute?

class SillyFortuneCookie < ActiveRecord::Base

def message=(txt)

write_attribute(:message, txt + ‘ in bed’)

end

end

Alternatively, both of these examples could have been written with the shorter
forms of reading and writing attributes, using square brackets.

class Specification < ActiveRecord::Base

def tolerance

self[:tolerance] or ‘n/a’

end

end

class SillyFortuneCookie < ActiveRecord::Base

def message=(txt)

self[:message] = txt + ‘ in bed’

end

end

Serialized Attributes
One of ActiveRecord’s coolest features (IMO) is the ability to mark a column of type
“text” as being serialized. Whatever object (more accurately, graph of objects) that you
assign to that attribute should be represented in the database as YAML, which is
Ruby’s native serialization format.

Sebastian Says…

TEXT columns usually have a maximum size of 64K and
if your serialized attributes exceeds the size constraints,
you’ll run into a lot of errors.

On the other hand, if your serialized attributes are that
big, you might want to rethink what you’re doing—At
least move them into a separate table and use a larger col-
umn type if your server allows it.

162 6. Working with ActiveRecord

CRUD: Creating, Reading, Updating, Deleting
The four standard operations of a database system combine to form a popular
acronym: CRUD.

It sounds somewhat negative, because as a synonym for ‘garbage’ or ‘unwanted
accumulation’ the word ‘crud’ in English has a rather bad connotation. However, in
Rails circles, use of the word CRUD is benign. In fact, as we’ll see in later chapters,
designing your app to function primarily as CRUD operations is considered a best
practice!

Creating New ActiveRecord Instances
The most straightforward way to create a new instance of an ActiveRecord model is
by using a regular Ruby constructor, the class method new. New objects can be instan-
tiated as either empty (by omitting parameters) or pre-set with attributes, but not yet
saved. Just pass a hash with key names matching the associated table column names.
In both instances, valid attribute keys are determined by the column names of the
associated table—hence you can’t have attributes that aren’t part of the table columns.

Newly constructed, unsaved ActiveRecord objects have a @new_record attribute
that can be queried using the method new_record?:

>> c = Client.new

=> #<Client:0x2515584 @new_record=true, @attributes={“name”=>nil,

“code”=>nil}>

>> c.new_record?

=> true

ActiveRecord constructors take an optional block, which can be used to do addi-
tional initialization. The block is executed after any passed-in attributes are set on the
instance:

>> c = Client.new do |client|

?> client.name = “Nile River Co.”

>> client.code = “NRC”

>> end

=> #<Client:0x24e8764 @new_record=true, @attributes={“name”=>”Nile

River Co.”, “code”=>”NRC”}>

CRUD: Creating, Reading, Updating, Deleting 163

ActiveRecord has a handy-dandy create class method that creates a new
instance, persists it to the database, and returns it in one operation:

>> c = Client.create(:name => “Nile River, Co.”, :code => “NRC”)

=> #<Client:0x4229490 @new_record_before_save=true, @new_record=false,

@errors=#<ActiveRecord::Errors:0x42287ac @errors={},

@base=#<Client:0x4229490 ...>>, @attributes={“name”=>”Nile River,

Co.”, “updated_at”=>Mon Jun 04 22:24:27 UTC 2007, “code”=>”NRC”,

“id”=>1, “created_at”=>Mon Jun 04 22:24:27 UTC 2007}>

The create method doesn’t take a block. It probably should, as it feels like a nat-
ural place for a block to initialize the object before saving it, but alas it doesn’t.

Reading ActiveRecord Objects
Reading data from the database into ActiveRecord object instances is very easy and
convenient. The primary mechanism is the find method, which hides SQL SELECT
operations from the developer.

find

Finding an existing object by its primary key is very simple, and is probably one of the
first things we all learn about Rails when we first pick up the framework. Just invoke
find with the key of the specific instance you want to retrieve. Remember that if an
instance is not found, a RecordNotFound exception is raised.

>> first_project = Project.find(1)

>> boom_client = Client.find(99)

ActiveRecord::RecordNotFound: Couldn’t find Client with ID=99

from

/vendor/rails/activerecord/lib/active_record/base.rb:1028:in

`find_one’

from

/vendor/rails/activerecord/lib/active_record/base.rb:1011:in

`find_from_ids’

from

/vendor/rails/activerecord/lib/active_record/base.rb:416:in `find’

from (irb):

164 6. Working with ActiveRecord

The find method also understands a pair of specially designated Ruby symbols,
:first and :all:

>> all_clients = Client.find(:all)

=> [#<Client:0x250e004 @attributes={“name”=>”Paper Jam Printers”,

“code”=>”PJP”, “id”=>”1”}>, #<Client:0x250de88

@attributes={“name”=>”Goodness Steaks”, “code”=>”GOOD_STEAKS”,

“id”=>”2”}>]

>> first_client = Client.find(:first)

=> #<Client:0x2508244 @attributes={“name”=>”Paper Jam Printers”,

“code”=>”PJP”, “id”=>”1”}>

Somewhat surprisingly to me, there is no :last parameter, but you can do a last
query pretty easily using the :order option:

>> all_clients = Client.find(:first, :order => ‘id desc’)

=> #<Client:0x2508244 @attributes={“name”=>”Paper Jam Printers”,

“code”=>”PJP”, “id”=>”1”}>

By the way, it is entirely common for methods in Ruby to return different types
depending on the parameters used, as illustrated in the example. Depending on how
find is invoked, you will get either a single ActiveRecord object or an array of them.

Finally, the find method also understands arrays of keys, and throws a
RecordNotFound exception if it can’t find all of the keys specified:

>> first_couple_of_clients = Client.find(1, 2)

[#<Client:0x24d667c @attributes={“name”=>”Paper Jam Printers”,

“code”=>”PJP”, “id”=>”1”}>, #<Client:0x24d65b4 @attributes={“name”=>

“Goodness Steaks”, “code”=>”GOOD_STEAKS”, “id”=>”2”}>]

>> first_few_clients = Client.find(1, 2, 3)

ActiveRecord::RecordNotFound: Couldn’t find all Clients with IDs

(1,2,3)

from /vendor/rails/activerecord/lib/active_record/base.rb:1042:in

`find_some’

from /vendor/rails/activerecord/lib/active_record/base.rb:1014:in

`find_from_ids’

from /vendor/rails/activerecord/lib/active_record/base.rb:416:in

`find’

from (irb):9

CRUD: Creating, Reading, Updating, Deleting 165

Reading and Writing Attributes
After you have retrieved a model instance from the database, you can access each of its
columns in several ways. The easiest (and clearest to read) is simply with dot notation:

>> first_client.name

=> “Paper Jam Printers”

>> first_client.code

=> “PJP”

The private read_attribute method of ActiveRecord, covered briefly in an ear-
lier section, is useful to know about, and comes in handy when you want to override
a default attribute accessor. To illustrate, while still in the Rails console, I’ll go ahead
and reopen the Client class on the fly and override the name accessor to return the
value from the database, but reversed:

>> class Client

>> def name

>> read_attribute(:name).reverse

>> end

>> end

=> nil

>> first_client.name

=> “sretnirP maJ repaP”

Hopefully it’s not too painfully obvious for me to demonstrate why you need
read_attribute in that scenario:

>> class Client

>> def name

>> self.name.reverse

>> end

>> end

=> nil

>> first_client.name

SystemStackError: stack level too deep

from (irb):21:in `name’

from (irb):21:in `name’

from (irb):24

166 6. Working with ActiveRecord

As can be expected by the existence of a read_attribute method, there is a
write_attribute method that lets you change attribute values.

project = Project.new

project.write_attribute(:name, “A New Project”)

Just as with attribute getter methods, you can override the setter methods and
provide your own behavior:

class Project

The description for a project cannot be changed to a blank string

def description=(new_value)

self[:description] = new_value unless new_value.blank?

end

end

The preceding example illustrates a way to do basic validation, since it checks to
make sure that a value is not blank before allowing assignment. However, as we’ll see
later in the book, there are better ways to do this.

Hash Notation

Yet another way to access attributes is using the [attribute_name] operator, which
lets you access the attribute as if it were a regular hash.

>> first_client[‘name’]

=> “Paper Jam Printers”

>> first_client[:name]

=> “Paper Jam Printers”

String Versus Symbol

Many Rails methods accept symbol and string parameters
interchangeably, and that is potentially very confusing.
Which is more correct?

The general rule is to use symbols when the string is a
name for something, and a string when it’s a value. You
should probably be using symbols when it comes to keys
of options hashes and the like.

CRUD: Creating, Reading, Updating, Deleting 167

Common sense dictates picking one convention and stick-
ing to it in your application, but most Rails people will
use symbols everywhere possible.

The attributes Method

There is also an attributes method that returns a hash with each attribute and its
corresponding value as returned by read_attribute. If you use your own custom
attribute reader and writer methods, it’s important to remember that attributes will
not use custom attribute readers when accessing its values, but attributes= (which
lets you do mass assignment) does invoke custom attribute writers.

>> first_client.attributes

=> {“name”=>”Paper Jam Printers”, “code”=>”PJP”, “id”=>1}

Being able to grab a hash of all attributes at once is useful when you want to iter-
ate over all of them or pass them in bulk to another function. Note that the hash
returned from attributes is not a reference to an internal structure of the
ActiveRecord object—it is copied, which means that changing its values will have no
effect on the object it came from:

>> atts = first_client.attributes

=> {“name”=>”Paper Jam Printers”, “code”=>”PJP”, “id”=>1}

>> atts[“name”] = “Def Jam Printers”

=> “Def Jam Printers”

>> first_client.attributes

=> {“name”=>”Paper Jam Printers”, “code”=>”PJP”, “id”=>1}

To make changes to an ActiveRecord object’s attributes in bulk, it is possible to
pass a hash to the attributes writer.

Accessing and Manipulating Attributes Before They Are
Typecast
The ActiveRecord connection adapters fetch results as strings and Rails takes care of
converting them to other datatypes if necessary, based on the type of the database col-
umn. For instance, integer types are cast to instances of Ruby’s Fixnum class, and so on.

168 6. Working with ActiveRecord

Even if you’re working with a new instance of an ActiveRecord object, and have
passed in constructor values as strings, they will be typecast to their proper type when
you try to access those values as attributes.

Sometimes you want to be able to read (or manipulate) the raw attribute data
without having the column-determined typecast run its course first, and that can be
done by using the <attribute>_before_type_cast accessors that are automati-
cally created in your model.

For example, consider the need to deal with currency strings typed in by your end
users. Unless you are encapsulating currency values in a currency class (highly recom-
mended, by the way) you need to deal with those pesky dollar signs and commas.
Assuming that our Timesheet model had a rate attribute defined as a :decimal type,
the following code would strip out the extraneous characters before typecasting for the
save operation:

class Timesheet < ActiveRecord::Base

before_save :fix_rate

def fix_rate

rate_before_type_cast.tr!(‘$,’,’’)

end

end

Reloading
The reload method does a query to the database and resets the attributes of an
ActiveRecord object. The optional options argument is passed to find when reloading
so you may do, for example, record.reload(:lock => true) to reload the same
record with an exclusive row lock. (See the section “Database Locking” later in this
chapter.)

Dynamic Attribute-Based Finders
Since one of the most common operations in many applications is to simply query
based on one or two columns, Rails has an easy and effective way to do these queries
without having to resort to the conditions parameter of find. They work thanks to
the magic of Ruby’s method_missing callback, which is executed whenever you
invoke a method that hasn’t been defined yet.

CRUD: Creating, Reading, Updating, Deleting 169

Dynamic finder methods begin with find_by_ or find_all_by_, indicating
whether you want a single value or array of results returned. The semantics are simi-
lar to calling find with the :first versus the :all option.

>> City.find_by_name(“Hackensack”)

=> #<City:0x3205244 @attributes={“name” => “Hackensack”, “latitude” =>

“40.8858330000”, “id” => “15942”, “longitude” => “-74.0438890000”,

“state” => “NJ” }>

>> City.find_all_by_name(“Atlanta”).collect(&:state)

=> [“GA”, “MI”, “TX”]

It’s also possible to use multiple attributes in the same find by separating them
with “and”, so you get finders like Person.find_by_user_name_and_password or
even Payment.find_by_purchaser_and_state_and_country.

Dynamic finders have the benefits of being shorter and easier to read and under-
stand. Instead of writing Person.find(:first, [“user_name = ? AND pass-
word = ?”, user_name, password]), try writing Person.find_by_user_
name_and_password(user_name, password).

>> City.find_by_name_and_state(“Atlanta”, “TX”)

=> #<City:0x31faeac @attributes={ “name” => “Atlanta”, “latitude” =>

“33.1136110000”, “id” => “25269”, “longitude” => “-94.1641670000”,

“state” => “TX”}>

You can even customize dynamic finder calls with options, just like regular find-
er methods! Payment.find_all_by_amount is actually Payment.find_

all_by_amount(amount, options). And the full interface to Person.find_
by_user_name is actually Person.find_by_user_name(user_name, options).
So you can call Payment.find_all_by_amount(50, :order => “created_on”).

The same dynamic finder style can be used to create the object if it doesn’t already
exist. This dynamic finder is called with find_or_create_by_ and will return the
object if it already exists and otherwise creates it, then returns it. Use the
find_or_initialize_by_ finder if you want to return a new record without saving
it first.

170 6. Working with ActiveRecord

Custom SQL Queries
The find_by_sql class method takes a SQL select query and returns an array of
ActiveRecord objects based on the results. Here’s a barebones example, which you
would never actually need to do in a real application:

>> Client.find_by_sql(“select * from clients”)

=> [#<Client:0x4217024 @attributes={“name”=>”Nile River, Co.”,

“updated_at”=>”2007-06-04 22:24:27”, “code”=>”NRC”, “id”=>”1”,

“created_at”=>”2007-06-04 22:24:27”}>, #<Client:0x4216ffc

@attributes={“name”=>”Amazon, Co.”, “updated_at”=>”2007-06-04

22:26:22”,

“code”=>”AMZ”, “id”=>”2”, “created_at”=>”2007-06-04 22:26:22”}>]

I can’t stress this enough: You should take care to use find_by_sql only when you
really need it! For one, it reduces database portability—when you use ActiveRecord’s
normal find operations, Rails takes care of handling differences between the underly-
ing databases for you.

Also, ActiveRecord already has a ton of built-in functionality abstracting
SELECT statements—functionality that it would be very unwise to reinvent. There
are lots of cases where at first glance it might seem that you might need to use
find_by_sql, but you actually don’t. A common case is when doing a LIKE query:

>> Client.find_by_sql(“select * from clients where code like ‘A%’”)

=> [#<Client:0x4206b34 @attributes={“name”=>”Amazon, Inc.”, ...}>]

Turns out that you can easily put that LIKE clause into a conditions option:

>> param = “A”

>> Client.find(:all, :conditions => [“code like ?”, “#{param}%”])

=> [#<Client:0x41e3594 @attributes={“name”=>”Amazon, Inc...}>] #

Right!

Under the covers, Rails sanitizes4 your SQL code, provided that you parameterize
your query. ActiveRecord executes your SQL using the connection.select_all
method, iterating over the resulting array of hashes, and invoking your ActiveRecord’s
initialize method for each row in the result set. What would the last example look
like un-parameterized?

>> param = “A”

CRUD: Creating, Reading, Updating, Deleting 171

>> Client.find(:all, :conditions => [“code like ‘#{param}%’”])

=> [#<Client:0x41e3594 @attributes={“name”=>”Amazon, Inc...}>] #

NOOOOO!

Notice the missing question mark as a variable placeholder. Always remember that
interpolating user-supplied values into a SQL fragment of any type is very unsafe! Just
imagine what would happen to your project if a malicious user called that unsafe find
with a param like this:

“Amazon’; DELETE FROM users;’

Sadly, very few people actually understand what SQL injection means. Google
can be one of your best friends in this case.

The Query Cache
By default, Rails attempts to optimize performance by turning on a simple query cache.
It is a hash stored on the current thread, one for every active database connection.
(Most Rails processes will have just one.)

Whenever a find (or any other type of select operation) happens and the query
cache is active, the corresponding result set is stored in a hash with the SQL that was
used to query for them as the key. If the same SQL statement is used again in anoth-
er operation, the cached result set is used to generate a new set of model objects
instead of hitting the database again.

You can enable the query cache manually by wrapping operations in a cache
block, as in the following example:

User.cache do

puts User.find(:first)

puts User.find(:first)

puts User.find(:first)

end

Check your development.log and you should see the following entries:

Person Load (0.000821) SELECT * FROM people LIMIT 1

CACHE (0.000000) SELECT * FROM people LIMIT 1

CACHE (0.000000) SELECT * FROM people LIMIT 1

172 6. Working with ActiveRecord

The database was queried only once. Try a similar experiment in your own con-
sole without the cache block, and you’ll see that three separate Person Load events
are logged.

Save and delete operations result in the cache being cleared, to prevent propagation
of instances with invalid states. If you find it necessary to do so for whatever reason, call
the clear_query_cache class method to clear out the query cache manually.

The ActiveRecord Context Plugin

Rick Olson extracted a plugin from his popular
Lighthouse application that allows you to easily seed the
query cache with sets of objects that you know you will
need. It’s a powerful complement to ActiveRecord’s built-
in caching support.

Learn more about it at
http://activereload.net/2007/5/23/spend-less-time-in-the-
database-and-more-time-outdoors.

Logging

The log file indicates when data is being read from the query cache instead of the data-
base. Just look for lines starting with CACHE instead of a Model Load.

Place Load (0.000420) SELECT * FROM places WHERE (places.`id` =

15749)

CACHE (0.000000) SELECT * FROM places WHERE (places.`id` = 15749)

CACHE (0.000000) SELECT * FROM places WHERE (places.`id` = 15749)

Default Query Caching in Controllers

For performance reasons, ActiveRecord’s query cache is turned on by default for the
processing of controller actions. The module SqlCache, defined in caching.rb of
ActionController, is mixed into ActionController::Base and wraps the
perform_action method using alias_method_chain:

module SqlCache

def self.included(base) #:nodoc:

base.alias_method_chain :perform_action, :caching

end

CRUD: Creating, Reading, Updating, Deleting 173

def perform_action_with_caching

ActiveRecord::Base.cache do

perform_action_without_caching

end

end

end

Limitations

The ActiveRecord query cache was purposely kept very simple. Since it literally keys
cached model instances on the SQL that was used to pull them out of the database, it
can’t connect multiple find invocations that are phrased differently but have the same
semantic meaning and results.

For example, “select foo from bar where id = 1” and “select foo from bar where id
= 1 limit 1” are considered different queries and will result in two distinct cache
entries. The active_record_context plugin5 by Rick Olson is an example of a query
cache implementation that is a little bit smarter about identity, since it keys cached
results on primary keys rather than SQL statements.

Updating
The simplest way to manipulate attribute values is simply to treat your ActiveRecord
object as a plain old Ruby object, meaning via direct assignment using
myprop=(some_value)

There are a number of other different ways to update ActiveRecord objects, as
illustrated in this section. First, let’s look at how to use the update class method of
ActiveRecord::Base

class ProjectController < ApplicationController

def update

Project.update(params[:id], params[:project])

redirect_to :action=>’settings’, :id => project.id

end

def mass_update

Project.update(params[:projects].keys, params[:projects].values])

redirect_to :action=>’index’

end

174 6. Working with ActiveRecord

end

The first form of update takes a single numeric id and a hash of attribute values,
while the second form takes a list of ids and a list of values and is useful in scenarios
where a form submission from a web page with multiple updateable rows is being
processed.

The update class method does invoke validation first and will not save a record
that fails validation. However, it returns the object whether or not the validation pass-
es. That means that if you want to know whether or not the validation passed, you
need to follow up the call to update with a call to valid?

class ProjectController < ApplicationController

def update

@project = Project.update(params[:id], params[:project])

if @project.valid? # uh-oh, do we want to run validate again?

redirect_to :action=>’settings’, :id => project.id

else

render :action => ‘edit’

end

end

end

A problem is that now we are calling valid? twice, since the update call also
called it. Perhaps a better option is to use the update_attributes instance method:

class ProjectController < ApplicationController

def update

@project = Project.find(params[:id]

if @project.update_attributes(params[:project])

redirect_to :action=>’settings’, :id => project.id

else

render :action => ‘edit’

end

end

end

And of course, if you’ve done some basic Rails programming, you’ll recognize that
idiom since it is used in the generated scaffolding code. The update_attributes
method takes a hash of attribute values, and returns true or false depending on
whether the save was successful or not, which is dependent on validation passing.

CRUD: Creating, Reading, Updating, Deleting 175

Updating by Condition
ActiveRecord has another class method useful for updating multiple records at once:
update_all. It maps closely to the way that you would think of using a SQL
update..where statement. The update_all method takes two parameters, the set part
of the SQL statement and the conditions, expressed as part of a where clause. The
method returns the number of records updated5.

I think this is one of those methods that is generally more useful in a scripting con-
text than in a controller method, but you might feel differently. Here is a quick example
of how I would reassign all the Rails projects in the system to a new project manager.

Project.update_all(“manager = ‘Ron Campbell’”, “technology =
‘Rails’”)

Updating a Particular Instance
The most basic way to update an ActiveRecord object is to manipulate its attributes
directly and then call save. It’s worth noting that save will insert a record in the data-
base if necessary or update an existing record with the same primary key.

project = Project.find(1)

project.manager = ‘Brett M.’

assert_equal true, project.save

The save method will return true if it was successful or false if it failed for any
reason. There is another method, save!, that will use exceptions instead. Which one
to use depends on whether you plan to deal with errors right away or delegate the
problem to another method further up the chain.

It’s mostly a matter of style, although the non-bang save and update methods that
return a boolean value are often used in controller actions, as the clause for an if condition:

class StoryController < ApplicationController

def points

@story = Story.find(params[:id])

if @story.update_attribute(:points, params[:value])

render :text => “#{@story.name} updated”

else

render :text => “Error updating story points”

end

end

end

176 6. Working with ActiveRecord

Updating Specific Attributes
The instance methods update_attribute and update_attributes take one
key/value pair or hash of attributes, respectively, to be updated on your model and
saved to the database in one operation.

The update_attribute method updates a single attribute and saves the record.
Updates made with this method are not subjected to validation checks! In other words,
this method allows you to persist an ActiveRecord model to the database even if the
full object isn’t valid. According to the Rails core team that behavior is by design.
Internally, this method does exactly the same as model.attribute = some_value
and then model.save(false).

On the other hand, update_attributes is subject to validation checks and is
often used on update actions and passed the params hash containing updated values.

Courtenay Says..…

If you have associations on a model, ActiveRecord auto-
matically creates convenience methods for mass assign-
ment. In other words, a Project model that has_many
:users will expose a user_ids attribute writer, which
gets used by its update_attributes method.

This is an advantage if you’re updating associations with
checkboxes, because you just name the checkboxes
project[user_ids][] and Rails will handle the magic.

In some cases, allowing the user to set associations this
way would be a security risk. You definitely want to
consider using attr_accessible to prevent mass-
assignment whenever there’s a possibility that your
application will get abused by malicious users.

Convenience Updaters
Rails provides a number of convenience update methods in the form of increment,
decrement, and toggle, which do exactly what their names suggest with numeric
and boolean attributes. Each has a bang variant (such as toggle!) that additionally
invokes save after modifying the attribute.

CRUD: Creating, Reading, Updating, Deleting 177

Controlling Access to Attributes
Constructors and update methods that take hashes to do mass assignment of attribute
values are susceptible to misuse by hackers when they are used in conjunction with
parameter hashes available in a controller method.

When you have attributes in your ActiveRecord class that you want to protect
from inadvertent or mass assignment, use one of the following two class methods to
control access to your attributes:

The attr_accessible method takes a list of attributes that will be accessible for
mass assignment. This is the more conservative choice for mass-assignment protec-
tion.

If you’d rather start from an all-open default and restrict attributes as needed, then
use attr_protected. Attributes passed to this method will be protected from mass-
assignment. Their assignment will simply be ignored. You will need to use direct
assignment methods to assign values to those attributes, as illustrated in the following
code example:

class Customer < ActiveRecord::Base

attr_protected :credit_rating

end

customer = Customer.new(:name => “Abe”, :credit_rating => “Excellent”)

customer.credit_rating # => nil

customer.attributes = { “credit_rating” => “Excellent” }

customer.credit_rating # => nil

and now, the allowed way to set a credit_rating

customer.credit_rating = “Average”

customer.credit_rating # => “Average”

Deleting and Destroying
Finally, if you want to remove a record from your database, you have two choices. If
you already have a model instance, you can destroy it:

>> bad_timesheet = Timesheet.find(1)

>> bad_timesheet.destroy

178 6. Working with ActiveRecord

=> #<Timesheet:0x2481d70 @attributes={“updated_at”=>”2006-11-21

05:40:27”, “id”=>”1”, “user_id”=>”1”, “submitted”=>nil, “created_at”=>

“2006-11-21 05:40:27”}>

The destroy method will both remove it from the database and freeze it (make
it read-only) so you won’t be able to save it again:

>> bad_timesheet.save

TypeError: can’t modify frozen hash

from activerecord/lib/active_record/base.rb:1965:in `[]=’

Alternatively, you can call destroy and delete as class methods, passing the
id(s) to delete. Both variants accept a single parameter or array of ids:

Timesheet.delete(1)

Timesheet.destroy([2, 3])

The naming might seem inconsistent, but it isn’t. The delete method uses SQL
directly and does not load any instances (hence it is faster). The destroy method does
load the instance of the ActiveRecord object and then calls destroy on it as an
instance method. The semantic differences are subtle, but come into play when you
have assigned before_destroy callbacks or have dependent associations—child
objects that should be deleted automatically along with their parent object.

Database Locking
Locking is a term for techniques that prevent concurrent users of an application from
overwriting each other’s work. ActiveRecord doesn’t normally use any type of database
locking when loading rows of model data from the database. If a given Rails applica-
tion will only ever have one user updating data at the same time, then you don’t have
to worry about locking.

When more than one user may be accessing and updating the same data simulta-
neously, then it is vitally important for you as the developer to think about concur-
rency. Ask yourself, what types of collisions or race conditions could happen if two users
were to try to update a given model at the same time?

There are a number of approaches to dealing with concurrency in database-
backed applications, two of which are natively supported by ActiveRecord: optimistic
and pessimistic locking. Other approaches exist, such as locking entire database tables.

Database Locking 179

Every approach has strengths and weaknesses, so it is likely that a given application
will use a combination of approaches for maximum reliability.

Optimistic Locking
Optimistic locking describes the strategy of detecting and resolving collisions if they
occur, and is commonly recommended in multi-user situations where collisions
should be infrequent. Database records are never actually locked in optimistic locking,
making it a bit of a misnomer.

Optimistic locking is a fairly common strategy, because so many applications are
designed such that a particular user will mostly be updating with data that conceptu-
ally belongs to him and not other users, making it rare that two users would compete
for updating the same record. The idea behind optimistic locking is that since colli-
sions should occur infrequently, we’ll simply deal with them only if they happen.

If you control your database schema, optimistic locking is really simple to imple-
ment. Just add an integer column named lock_version to a given table, with a default
value of zero.

class AddLockVersionToTimesheets < ActiveRecord::Migration

def self.up

add_column :timesheets, :lock_version, :integer, :default => 0

end

def self.down

remove_column :timesheets, :lock_version

end

end

Simply adding that lock_version column changes ActiveRecord’s behavior.
Now if the same record is loaded as two different model instances and saved differ-
ently, the first instance will win the update, and the second one will cause an
ActiveRecord::StaleObjectError to be raised.

We can illustrate optimistic locking behavior with a simple unit test:

class TimesheetTest < Test::Unit::TestCase

fixtures :timesheets, :users

180 6. Working with ActiveRecord

def test_optimistic_locking_behavior

first_instance = Timesheet.find(1)

second_instance = Timesheet.find(1)

first_instance.approver = users(:approver)

second_instance.approver = users(:approver2)

assert first_instance.save, “First instance save succeeded”

assert_raises ActiveRecord::StaleObjectError do

second_instance.save

end

end

end

The test passes, because calling save on the second instance raises the expected
ActiveRecord::StaleObjectError exception. Note that the save method (with-
out the bang) returns false and does not raise exceptions if the save fails due to valida-
tion, but other problems such as locking in this case, can indeed cause it to raise excep-
tions.

To use a database column named something other than lock_version change the
setting using set_locking_column. To make the change globally, add the following
line to environment.rb:

ActiveRecord::Base.set_locking_column ‘alternate_lock_version’

Like other ActiveRecord settings, you can also change it on a per-model basis
with a declaration in your model class:

class Timesheet < ActiveRecord::Base

set_locking_column ‘alternate_lock_version’

end

Handling StaleObjectError

Now of course, after adding optimistic locking, you don’t want to just leave it at that,
or the end user who is on the losing end of the collision would simply see an applica-
tion error screen. You should try to handle the StaleObjectError as gracefully as
possible.

Database Locking 181

Depending on the criticality of the data being updated, you might want to spend
a lot of time crafting a user-friendly solution that somehow preserves the changes that
the loser was trying to make. At minimum, if the data for the update is easily re-creatable,
let the user know why their update failed with controller code that looks something
like the following:

def update

begin

@timesheet = Timesheet.find(params[:id])

@timesheet.update_attributes(params[:timesheet])

redirect somewhere

rescue ActiveRecord::StaleObjectError

flash[:error] = “Timesheet was modified while you were editing

it.”

redirect_to :action => ‘edit’, :id => @timesheet

end

end

There are some advantages to optimistic locking. It doesn’t require any special fea-
ture in the database, and it is fairly easy to implement. As you saw in the example, very
little code is required to handle the StaleObjectError.

The disadvantages to optimistic locking are mainly that update operations are a
bit slower because the lock version must be checked, and there is the potential for a
bad user experience, since they don’t find out about the failure until after they’ve sub-
mitted potentially painful-to-lose data.

Pessimistic Locking
Pessimistic locking requires special database support (built into the major databases)
and locks down specific database rows during an update operation. It prevents anoth-
er user from reading data that is about to be updated, in order to prevent them from
working with stale data.

Pessimistic locking is a fairly new addition to Rails, and works in conjunction
with transactions as in the following example:

Timesheet.transaction do

t = Timesheet.find(1, :lock=> true)

t.approved = true

t.save!

end

182 6. Working with ActiveRecord

It’s also possible to call lock! on an existing model instance, which simply calls
reload(:lock => true) under the covers. You wouldn’t want to do that on an
instance with attribute changes since it would cause them to be discarded by the
reload.

Pessimistic locking takes place at the database level. The SELECT statement gen-
erated by ActiveRecord will have a FOR UPDATE (or similar) clause added to it, caus-
ing all other connections to be blocked from access to the rows returned by the select
statement. The lock is released once the transaction is committed. There are theoreti-
cally situations (Rails process goes boom mid-transaction?!) where the lock would not
be released until the connection is terminated or times out.

Considerations
Web applications scale best with optimistic locking, which as we’ve discussed doesn’t
really use any locking at all. However, you have to add application logic to handle fail-
ure cases. Pessimistic locking is a bit easier to implement, but can lead to situations
where one Rails process is waiting on another to release a database lock, that is, wait-
ing and not serving any other incoming requests. Remember that Rails processes are
single-threaded.

In my opinion, pessimistic locking should not be super dangerous as it is on other
platforms, since in Rails we don’t ever persist database transactions across more than a
single HTTP request. In fact, I’m pretty sure it would be impossible to do that given
the shared-nothing architecture.

A situation to be wary of would be one where you have many users competing for
access to a particular record that takes a long time to update. For best results, keep
your pessimistic-locking transactions small and make sure that they execute quickly.

Advanced Finding
In our first review of ActiveRecord’s find method, we didn’t look at the wealth of
options available in addition to finding by primary key and the :first and :all key-
word parameters.

Conditions
It’s very common to need to filter the result set of a find operation (just a SQL
SELECT under the covers) by adding conditions (to the WHERE clause).

Advanced Finding 183

ActiveRecord gives you a number of ways to do just that in the options hash option-
ally passed to the find method.

Conditions are specified in the options hash as :conditions and can be speci-
fied as a string, array, or hash representing the WHERE-part of a SQL statement. The
array form should be used when the input data is coming from the outside world, a
web form for instance, and should be sanitized prior to being sent to the database.
Insecure, outside data is called tainted.

The simple string form can be used for statements that don’t involve tainted data.
Finally, the hash form works much like the array form, except only equality is possi-
ble. If all you need is equality, versus, say LIKE criteria, I advise you to use the hash
notation, since it’s safe and arguably the most readable of the bunch.

The Rails API docs examples do a pretty good job illustrating usage of the
:conditions option:

class User < ActiveRecord::Base

def self.authenticate_unsafely(login, password)

find(:first,

:conditions => “login=’#{login}’ AND password=’#{password}’”)

end

def self.authenticate_safely(login, password)

find(:first,

:conditions => [“login= ? AND password= ?”, login, password])

end

def self.authenticate_safely_simply(login, password)

find(:first,

:conditions => {:login => login, :password => password})

end

end

The authenticate_unsafely method inserts the parameters directly into the
query and is thus susceptible to SQL-injection attacks if the user_name and password
parameters come directly from a HTTP request. A malicious end user could supply
his own evil SQL query inside the string that was intended to just be a login or pass-
word.

The authenticate_safely and authenticate_safely_simply methods-
both will sanitize the user_name and password before inserting them in the query,
which will ensure that an attacker can’t escape the query and fake the login (or worse).

184 6. Working with ActiveRecord

When using multiple parameters in the conditions, it can easily become hard to
read exactly what the fourth or fifth question mark is supposed to represent. In those
cases, you can resort to named bind variables instead. That’s done by replacing the
question marks with symbols and supplying a hash with values for the matching sym-
bol keys.

Again, the Rails API docs give us a pretty good example (modified for brevity):

Company.find(:first, [

“ name = :name AND division = :div AND created_at > :date”,

{:name => “37signals”, :div => “First”, :date => ‘2005-01-01’ }

])

During a quick discussion on IRC about this final form, Robby Russell gave
me the following clever snippet:

:conditions => [‘subject LIKE :foo OR body LIKE :foo’, {:foo =>

‘woah’}]

In other words, when you’re using named placeholders (versus question mark
characters) you can use the same bind variable more than once. Cool!

Simple hash conditions like this are very common and useful:

:conditions => {:login => login, :password => password})

They will only generate conditions based on equality with SQL’s AND operator. If
you want something other than AND, you’ll have to use one of the other forms avail-
able.

Boolean Conditions

It’s particularly important to take care in specifying conditions that include boolean
values. Databases have various different ways of representing boolean values in
columns. Some have native boolean datatypes, and others use a single character, often
‘1’ and ‘0’ or ‘T’ and ‘F’ (or even ‘Y’ and ‘N’).

Rails will transparently handle the data conversion issues for you if you use
arrayed or hash conditions and use a Ruby boolean value as your parameter:

Timesheet.find(:all, :conditions => [‘submitted=?’, true])

Advanced Finding 185

Ordering of Find Results
The :order option takes a fragment of SQL specifying the ordering of columns:

Timesheet.find(:all, :order => ‘created_at desc’)

The SQL spec defaults to ascending order if the ascending/descending option is
omitted.

Wilson Says..…

The SQL spec doesn’t prescribe any particular ordering if
no ‘order by’ clause is specified in the query. That seems to
trip people up, since the common belief is that ‘ORDER
BY id AS’ is the default.

Random Ordering

The value of the :order option is not validated by Rails, which means you can pass
any code that is understood by the underlying database, not just column/direction
tuples. An example of why that is useful is when wanting to fetch a random record:

MySQL

Timesheet.find(:first, :order => ‘RAND()’)

Postgres

Timesheet.find(:first, :order => ‘RANDOM()’)

Microsoft SQL Server

Timesheet.find(:first, :order => ‘NEWID()’)

Oracle

Timesheet.find(:first, :order => ‘dbms_random.value’)

Remember that ordering large datasets randomly is known to perform terribly on
most databases, particularly MySQL.

Limit and Offset
The :limit parameter takes an integer value establishing a limit on the number of

rows to return from the query. The :offset parameter specifies the offset from where

186 6. Working with ActiveRecord

the rows should be fetched in the result set and is 1-indexed. Together these options
are used for paging results.

For example, a find for the second page of 10 results in a list of timesheets is:

Timesheet.find(:all, :limit => 10, :offset => 11)

Depending on the particulars of your application’s data model, it may make sense
to always put some limit on the maximum amount of ActiveRecord objects fetched in
any one specific query. Letting the user trigger unbounded queries pulling thousands
of ActiveRecord objects into Rails at one time is a recipe for disaster.

Select Option
By default, the :select option is ‘*’ as in SELECT * FROM, but it can be changed if,
for example, you want to do a join, but not include the joined columns. Or you might
want to include calculated columns in the result set:

>> b = BillableWeek.find(:first, :select => “monday_hours +

tuesday_hours + wednesday_hours as three_day_total”)

=> #<BillableWeek:0x2345fd8 @attributes={“three_day_total”=>”24”}>

When using :select, as in the preceding example, keep in mind that columns
not specified in the query, whether by * or explicitly, will not be populated in the result-
ing objects! So, for instance, continuing the preceding example, trying to access
monday_hours on b has unexpected results:

>> b.monday_hours

NoMethodError: undefined method `monday_hours’ for

#<BillableWeek:0x2336f74 @attributes={“three_day_total”=>”24”}>

from activerecord/lib/active_record/base.rb:1850:in

`method_missing’

from (irb):38

To get the object’s normal columns plus the calculated column, add a *, to the
:select parameter:

:select => ‘*, monday_hours + tuesday_hours + wednesday_hours as

three_day_total’

Advanced Finding 187

From Option
The :from option specifies the table name portion of the generated SQL statement.
You can provide a custom value if you need to include extra tables for joins, or refer-
ence a database view.

Here’s an example of usage from an application that features tagging:

def find_tagged_with(list)

find(:all,

:select => “#{table_name}.*”,

:from => “#{table_name}, tags, taggings”,

:conditions =>

[“#{table_name}.#{primary_key}=taggings.taggable_id

and taggings.taggable_type = ?

and taggings.tag_id = tags.id and tags.name IN (?)”,

name, Tag.parse(list)])

end

If you’re wondering why table_name is used instead of a an explicit value, it’s
because this code is mixed into a target class using Ruby modules. That subject is cov-
ered in Chapter 9, “Advanced ActiveRecord.”

Group By Option
An attribute name by which the result should be grouped. Uses the GROUP BY SQL-
clause. Generally you’ll want to combine :group with the :select option, since valid
SQL requires that all selected columns in a grouped SELECT be either aggregate
functions or columns.

>> users = Account.find(:all,

:select => ‘name, SUM(cash) as money’,

:group => ‘name’)

=> [#<User:0x26a744 @attributes={“name”=>”Joe”, “money”=>”3500”}>,

#<User:0xaf33aa @attributes={“name”=>”Jane”, “money”=>”9245”}>]

Keep in mind that those extra columns you bring back are strings—ActiveRecord
doesn’t try to typecast them. You’ll have to use to_i and to_f to explicitly convert to
numeric types.

>> users.first.money > 1_000_000

ArgumentError: comparison of String with Fixnum failed

from (irb):8:in ‘>’

188 6. Working with ActiveRecord

Locking Option
Specifying the :lock => true option on a find operation, within the scope of a trans-
action, establishes an exclusive lock on the rows selected. This option is covered in
detail earlier in this chapter, in the section “Database Locking”.

Joining and Including Associations
The :joins option can be useful when you’re performing GROUP BY and aggregat-
ing data from other tables, but you don’t want to load the associated objects.

Buyer.find(:all,

:select => ‘buyers.id, count(carts.id) as cart_count’,

:joins => ‘left join carts on carts.buyer_id=buyers.id’,

:group => ‘buyers.id’)

However, the most common usages of the :joins and :include options are to
allow you to eager-fetch additional objects in a single SELECT statement. We cover
the subject in Chapter 7.

Read Only
Specifying the :readonly => true option marks returned objects as read-only. You
can change their attributes, you just can’t save them back to the database.

>> c = Comment.find(:first, :readonly => true)

=> #<Comment id: 1, body: “Hey beeyotch!”>

>> c.body = “Keep it clean!”

=> “Keep it clean!”

>> c.save

ActiveRecord::ReadOnlyRecord: ActiveRecord::ReadOnlyRecord

from /vendor/rails/activerecord/lib/active_record/base.rb:1958

Connections to Multiple Databases in Different
Models
Connections are usually created through ActiveRecord::Base.establish_
connection and retrieved by ActiveRecord::Base.connection. All classes inher-
iting from ActiveRecord::Base will use this connection. What if you want some of

Connections to Multiple Database in Different Models 189

your models to use a different connection? ActiveRecord allows you to add class-spe-
cific connections.

For example, let’s say you have a subclass of ActiveRecord::Base named
LegacyProject with data residing in a database apart from the one used by the rest
of your Rails application. Begin by adding details for the additional database under its
own key in database.yml. Then call LegacyProject.establish_connection to
make LegacyProject and all its subclasses use the alternate connection instead.

Incidentally, to make this example work, you must specify self.

abstract_class = true in the class context. Otherwise, Rails considers the sub-
classes of LegacyProject to be using single-table inheritance (STI), which we dis-
cuss at length in Chapter 9.

class LegacyProject < ActiveRecord::Base

establish_connection :legacy_database

self.abstract_class = true

...

end

The establish_connection method takes a string (or symbol) key pointing to
a configuration already defined in database.yml. Alternatively, you can pass it a lit-
eral hash of options, although it seems kind of messy to put this sort of configuration
data right into your model file instead of database.yml

class TempProject < ActiveRecord::Base

establish_connection(:adapter => ‘sqlite3’, :database =>

‘:memory:’)

...

end

Rails keeps database connections in a connection pool inside the
ActiveRecord::Base class instance. The connection pool is simply a Hash object
indexed by ActiveRecord class. During execution, when a connection is needed, the
retrieve_connection method walks up the class-hierarchy until a matching con-
nection is found.

190 6. Working with ActiveRecord

Using the Database Connection Directly
It is possible to use ActiveRecord’s underlying database connections directly, and
sometimes it is useful to do so from custom scripts and for one-off or ad-hoc testing.
Access the connection using the connection attribute of any ActiveRecord class. If
all your models use the same connection, then use the connection attribute of
ActiveRecord::Base.

The most basic operation that can be done with a connection is simply an
execute, from the DatabaseStatements module (detailed in the following sec-
tion). For example, Listing 6.2 shows a method that executes a SQL file statement by
statement.

Listing 6.2 Execute a SQL File Line by Line Using ActiveRecord’s Connection

def execute_sql_file(path)

File.read(path).split(‘;’).each do |sql|

begin

ActiveRecord::Base.connection.execute(#{sql}\n”) unless

sql.blank?

rescue ActiveRecord::StatementInvalid

$stderr.puts “warning: #{$!}”

end

end
end

The DatabaseStatements Module
The ActiveRecord::ConnectionAdapters::DatabaseStatements module
mixes a number of useful methods into the connection object that make it possible to
work with the database directly instead of using ActiveRecord models. I’ve purposely
left out some of the methods of this module (such as add_limit! and add_lock)
because they are used internally by Rails to construct SQL statements dynamically and
I don’t think they’re of much use to application developers.

begin_db_transaction()

Begins a database transaction manually (and turns off ActiveRecord’s default
autocommitting behavior).

Using the Database Connection Directly 191

commit_db_transaction()

Commits the transaction (and turns on ActiveRecord’s default autocommitting
behavior again).

delete(sql_statement)

Executes a SQL DELETE statement provided and returns the number of rows
affected.

execute(sql_statement)

Executes the SQL statement provided in the context of this connection. This
method is abstract in the DatabaseStatements module and is overridden by specif-
ic database adapter implementations. As such, the return type is a result set object cor-
responding to the adapter in use.

insert(sql_statement)

Executes an SQL INSERT statement and returns the last autogenerated ID from
the affected table.

reset_sequence!(table, column, sequence = nil)

Used in Oracle and Postgres; updates the named sequence to the maximum value
of the specified table’s column.

rollback_db_transaction()

Rolls back the currently active transaction (and turns on auto-committing).
Called automatically when a transaction block raises an exception or returns false.

select_all(sql_statement)

Returns an array of record hashes with the column names as keys and column val-
ues as values.

ActiveRecord::Base.connection.select_all(“select name from businesses

order by rand() limit 5”)

=> [{“name”=>”Hopkins Painting”}, {“name”=>”Whelan & Scherr”},

{“name”=>”American Top Security Svc”}, {“name”=>”Life Style Homes”},

{“name”=>”378 Liquor Wine & Beer”}]

192 6. Working with ActiveRecord

select_one(sql_statement)

Works similarly to select_all, but returns only the first row of the result set, as
a single Hash with the column names as keys and column values as values. Note that
this method does not add a limit clause to your SQL statement automatically, so con-
sider adding one to queries on large datasets.

>> ActiveRecord::Base.connection.select_one(“select name from

businesses

order by rand() limit 1”)

=> {“name”=>”New York New York Salon”}

select_value(sql_statement)

Works just like select_one, except that it returns a single value: the first column
value of the first row of the result set.

>> ActiveRecord::Base.connection.select_value(“select * from

businesses

order by rand() limit 1”)

=> “Cimino’s Pizza”

select_values(sql_statement)

Works just like select_value, except that it returns an array of the values of the
first column in all the rows of the result set.

>> ActiveRecord::Base.connection.select_values(“select * from

businesses

order by rand() limit 5”)

=> [“Ottersberg Christine E Dds”, “Bally Total Fitness”, “Behboodikah,

Mahnaz Md”, “Preferred Personnel Solutions”, “Thoroughbred Carpets”]

update(sql_statement)

Executes the update statement provided and returns the number of rows affected.
Works exactly like delete.

Using the Database Connection Directly 193

Other Connection Methods
The full list of methods available on connection, which returns an instance of the
underlying database adapter, is fairly long. Most of the Rails adapter implementations
define their own custom versions of these methods, which makes sense, since all data-
bases have slight variations in how they handle SQL and very large variations in how
they handle extended commands, such as for fetching metadata.

A peek at abstract_adapter.rb shows us the default method implementations:

...

Returns the human-readable name of the adapter. Use mixed case -

one

can always use downcase if needed.

def adapter_name

‘Abstract’

end

Does this adapter support migrations? Backend specific, as the

abstract adapter always returns +false+.

def supports_migrations?

false

end

Does this adapter support using DISTINCT within COUNT? This is

+true+

for all adapters except sqlite.

def supports_count_distinct?

true

end

...

In the following list of method descriptions and code samples, I’m accessing the
connection of our sample time_and_expenses application in the Rails console, and
I’ve assigned connection to a local variable named conn, for convenience.

active?

Indicates whether the connection is active and ready to perform queries.

194 6. Working with ActiveRecord

adapter_name

Returns the human-readable name of the adapter, as in the following example:

>> conn.adapter_name

=> “SQLite”

disconnect! and reconnect!

Closes the active connection or closes and opens a new one in its place, respec-
tively.

raw_connection

Provides access to the underlying database connection. Useful for when you need to
execute a proprietary statement or you’re using features of the Ruby database driver
that aren’t necessarily exposed in ActiveRecord. (In trying to come up with a code
sample for this method, I was able to crash the Rails console with ease—there isn’t
much in the way of error checking for exceptions that you might raise while mucking
around with raw_connection.)

supports_count_distinct?

Indicates whether the adapter supports using DISTINCT within COUNT in SQL
statements. This is true for all adapters except SQLite, which therefore requires a
workaround when doing operations such as calculations.

supports_migrations?

Indicates whether the adapter supports migrations.

tables

Produces a list of tables in the underlying database schema. It includes tables that
aren’t usually exposed as ActiveRecord models, such as schema_info and sessions.

>> conn.tables

=> [“schema_info”, “users”, “timesheets”, “expense_reports”,

“billable_weeks”, “clients”, “billing_codes”, “sessions”]

Using the Database Connection Directly 195

verify!(timeout)

Lazily verify this connection, calling active? only if it hasn’t been called for
timeout seconds.

Other Configuration Options
In addition to the configuration options used to instruct ActiveRecord on how to han-
dle naming of tables and primary keys, there are a number of other settings that gov-
ern miscellaneous functions. Set them in config/environment.rb.

ActiveRecord::Base.colorize_logging Tells Rails whether or not to use
ANSI codes to colorize the logging statements committed by the ActiveRecord con-
nection adapter. The colors make it much easier to read the logs (except on Windows)
and may complicate matters if you use software like syslog. Defaults to true. Change
to false if you view your logs with software that doesn’t understand the ANSI color
codes.

Here’s a snippet of log output with the ANSI codes visible:

^[[4;36;1mSQL (0.000000)^[[0m ^[[0;1mMysql::Error: Unknown table

‘expense_reports’: DROP TABLE expense_reports^[[0m

^[[4;35;1mSQL (0.003266)^[[0m ^[[0mCREATE TABLE expense_reports

(`id`

int(11) DEFAULT NULL auto_increment PRIMARY KEY, `user_id` int(11))

ENGINE=InnoDB^[[0m

Wilson Says…

Almost nobody I meet seems to know how to display col-
orized logs in a pager. The -R option tells less to output
“raw” control characters to the screen.

ActiveRecord::Base.default_timezone Tells Rails whether to use
Time.local (using :local) or Time.utc (using :utc) when pulling dates and times
from the database. Defaults to :local

ActiveRecord::Base.allow_concurrency Determines whether or not to
create a database connection for each thread, or to use a single shared connection for
all threads. Defaults to false and given the number of warnings and horror-stories6

that follow any mention of this option online, it would be prudent to leave it in its

196 6. Working with ActiveRecord

default setting. Setting this option to true is known to cause excessive use of database
connections.

ActiveRecord::Base.generate_read_methods Determines whether to
speed up access by generating optimized reader methods to avoid expensive calls to
method_missing when accessing attributes by name. Defaults to true.

ActiveRecord::Base.schema_format Specifies the format to use when
dumping the database schema with certain default rake tasks. Use the :sql option to
have the schema dumped as potentially database-specific SQL statements. Just beware
of incompatibilities if you’re trying to use the :sql option with different databases for
development and testing.

The default option is :ruby, which dumps the schema as an
ActiveRecord::Schema file that can be loaded into any database that supports
migrations.

Conclusion
This chapter covered the fundamentals of ActiveRecord, the framework included with
Ruby on Rails for creating database-bound model classes. We’ve learned how
ActiveRecord expresses the convention over configuration philosophy that is such an
important part of the Rails way, and how to make settings manually, which override
the conventions in place.

We’ve also looked at the methods provided by ActiveRecord::Base, the parent
class of all persistent models in Rails, which include everything you need to do basic
CRUD operations: Create, Read, Update, and Delete. Finally, we reviewed how to
drill through ActiveRecord to use the database connection whenever you need to do so.

In the following chapter, we continue our coverage of ActiveRecord by learning
about how related model objects interact via associations.

Conclusion 197

References

1. http://jayfields.blogspot.com/2006/12/rails-migrations-with-large-team-part.html

2. If you find it annoying that strings and symbols are used pretty much interchangeably throughout
Rails, welcome to the club.

3. A recommended open-source Money class is available at http://dist.leetsoft.com/api/money/.

4. Sanitization prevents SQL injection attacks. For more information about SQL injection and Rails
see http://www.rorsecurity.info/2007/05/19/sql-injection/.

5. http://activereload.net/2007/5/23/spend-less-time-in-the-database-and-more-time-outdoors.

6. Microsoft’s ADO library doesn’t support reporting back the number of affected rows, so
update_all does not work with the SQLServer adapter.

7. Read http://permalink.gmane.org/gmane.comp.lang.ruby.mongrel.general/245 for Zed Shaw’s
explanation of the dangers of allow_concurrency on the Mongrel mailing list.

198 6. Working with ActiveRecord

CHAPTER 7
ActiveRecord Associations

Any time you can rarefy something, you can create something that embodies a
concept, it gives you leverage to work with it more powerfully. That’s exactly
what’s going on with has_many :through.
—Josh Susser

Active Record associations let you declaratively express relationships between model
classes. The power and readability of the Associations API is an important part of what
makes working with Rails so special.

This chapter covers the different kinds of ActiveRecord associations available
while highlighting use cases and available customizations for each of them. We also
take a look at the classes that give us access to relationships themselves.

The Association Hierarchy
Associations typically appear as methods on ActiveRecord model objects. For exam-
ple, the method timesheets might represent the timesheets associated with a given
user.

>> user.timesheets

However, people might get confused about the type of objects that are returned
by association with these methods. This is because they have a way of masquerading
as plain old Ruby objects and arrays (depending on the type of association we’re con-
sidering). In the snippet, the timesheet method may appear to return an array of
project objects.

The console will even confirm our thoughts. Ask any association collection what
its return type is and it will tell you that it is an Array:

>> obie.timesheets.class

=> Array

It’s actually lying to you, albeit very innocently. Association methods for
has_many associations are actually instances of HasManyAssociation, shown with-
in its class hierarchy in Figure 7.1.

Figure 7.1 The Association proxies in their class hierarchy

The parent class of all associations is AssociationProxy. It contains the basic
structure and functionality of all assocation proxies. If you look near the top of its
source code excerpted in Listing 7.1, you’ll notice that it undefines a bunch of methods.

Listing 7.1 Excerpt from lib/active_record/associations/association_proxy.rb

instance_methods.each { |m|
undef_method m unless m =~ /(^__|^nil\?$|^send$|proxy_)/ }

As a result, most normal instance methods aren’t actually defined on the proxy
anymore, but are instead delegated to the target of the proxy via method_missing.
That means that a call to timesheets.class returns the class of the underlying array

200 7. ActiveRecord Associations

AssociationProxy

HasAndBelongsToManyAssociation HasOneAssociation

HasManyAssociation

AssociationCollection BelongsToAssociation

HasManyThroughAssociation BelongsToPolymorphicAssociation

rather than the proxy. You can prove that timesheet is actually a proxy by asking it
if it responds to one of AssociationProxy’s public methods, such as proxy_owner:

>> obie.timesheets.respond_to? :proxy_owner

=> true

Fortunately, it’s not the Ruby way to care about the actual class of an object. What
messages an object responds to is a lot more significant. That’s why I think it would
be a mistake to make your code depend on working with an array instead of an asso-
ciation proxy. If absolutely necessary, you can always call to_a to get an actual Array
object:

>> obie.timesheets.to_a # make absolutely sure we’re working with an

Array

=> []

The parent class of all has_many associations is AssociationCollection and most
of the methods that it defines work similarly regardless of the options declared for the
relationship. Before we get much further into the details of the association proxies, let’s
delve into the most fundamental type of association that is commonly used in Rails
applications: the has_many / belongs_to pair.

One-to-Many Relationships
In our recurring sample application, an example of a one-to-many relationship is the
association between the User, Timesheet, and ExpenseReport classes:

class User < ActiveRecord::Base

has_many :timesheets

has_many :expense_reports

end

Timesheets and expense reports should be linked in the opposite direction as well,
so that it is possible to reference the user to which a timesheet or expense report
belongs.

class Timesheet < ActiveRecord::Base

belongs_to :user

end

One-to-Many Relationships 201

class ExpenseReport < ActiveRecord::Base

belongs_to :user

end

When these relationship declarations are executed, Rails uses some metaprogram-
ming magic to dynamically add code to your models. In particular, proxy collection
objects are created that let you manipulate the relationship easily.

To demonstrate, let’s play with these relationships in the console. First, I’ll create
a user.

>> obie = User.create :login => ‘obie’, :password => ‘1234’,

:password_confirmation => ‘1234’, :email => ‘obiefernandez@gmail.com’

=> #<User:0x2995278 ...}>

Now I’ll verify that I have collections for timesheets and expense reports.

>> obie.timesheets

ActiveRecord::StatementInvalid:

SQLite3::SQLException: no such column: timesheets.user_id:

SELECT * FROM timesheets WHERE (timesheets.user_id = 1)

from /.../connection_adapters/abstract_adapter.rb:128:in `log’

As David might say, “Whoops!” I forgot to add the foreign key columns to the
timesheets and expense_reports tables, so in order to go forward I’ll generate a
migration for the changes:

$ script/generate migration add_user_foreign_keys

exists db/migrate

create db/migrate/004_add_user_foreign_keys.rb

Then I’ll open db/migrate/004_add_user_foreign_keys.rb and add the
missing columns.

class AddUserForeignKeys < ActiveRecord::Migration

def self.up

add_column :timesheets, :user_id, :integer

add_column :expense_reports, :user_id, :integer

end

def self.down

202 7. ActiveRecord Associations

remove_column :timesheets, :user_id

remove_column :expense_reports, :user_id

end

end

Running rake db:migrate applies the changes:

$ rake db:migrate

(in /Users/obie/prorails/time_and_expenses)

== AddUserForeignKeys: migrating

==

-- add_column(:timesheets, :user_id, :integer)

-> 0.0253s

-- add_column(:expense_reports, :user_id, :integer)

-> 0.0101s

== AddUserForeignKeys: migrated (0.0357s)

==

Now I should be able to add a new blank timesheet to my user and check
timesheets again to make sure it’s there:

>> obie = User.find(1)

=> #<User:0x29cc91c ... >

>> obie.timesheets << Timesheet.new

=> [#<Timesheet:0x2147524 @new_record=true, @attributes={}>]

>> obie.timesheets

=> [#<Timesheet:0x2147524 @new_record=true, @attributes={}>]

Adding Associated Objects to a Collection
According to the Rails documentation, adding an object to a has_many collection
automatically saves that object, unless the parent object (the owner of the collection)
is not yet stored in the database. Let’s make sure that’s the case using ActiveRecord’s
reload method, which re-fetches the attributes of an object from the database:

>> obie.timesheets.reload

=> [#<Timesheet:0x29b3804 @attributes={“id”=>”1”, “user_id”=>”1”}>]

There it is. The foreign key, user_id, was automatically set by the << method.

One-to-Many Relationships 203

The << method takes one or more association objects to add to the collection, and
since it flattens its argument list and inserts each record, push and concat behave
identically.

In the blank timesheet example, I could have used the create method on the
association proxy, and it would have worked essentially the same way:

>> obie.timesheets.create

=> #<Timesheet:0x248d378 @new_record=false ... >

However, be careful when deciding between << and create!. Even though at
first glance << and create do the same thing, there are several very important differ-
ences in how they’re implemented and you need to be aware of them (see the next sub-
section “AssociationCollection Methods” for more information).

AssociationCollection Methods
As illustrated in Figure 7.1, AssociationCollection has the following subclasses:
HasManyAssociation and HasAndBelongsToManyAssociation. The following
methods are inherited by and available to both of these subclasses.
(HasManyThroughAssociation defines its own very similar set methods, covered
later in the chapter.)

<<(*records) and create(attributes = {})

In Rails 1.2.3 and earlier versions, the first thing that the << method did was to load
the entire contents of the collection from the database, an operation that could be very
expensive! On the other hand, create simply invoked its counterpart on the association’s
model class, passing along the value of the foreign key, so that the link is established
in the database. Thankfully, Rails 2.0 corrects the behavior of << in that it doesn’t load
the entire collection, making it similar in function to create.

However, this is an area of Rails where you can really hurt yourself if you’re not
careful. For instance, both methods will add either a single associated object or many,
depending on whether you pass them an array or not. However, << is transactional,
and create is not.

Yet another difference has to do with association callbacks (covered in this chap-
ter’s options section for has_many). The << method triggers the :before_add and
:after_add callbacks, but the create method does not.

204 7. ActiveRecord Associations

Finally, the return value behavior of both methods varies wildly. The create
method returns the new instance created, which is what you’d expect given its coun-
terpart in ActiveRecord::Base. The << method returns the association proxy (ever
masquerading as an array), which allows chaining and is also natural behavior for a
Ruby array.

However, << will return false and not itself if any of the records being added caus-
es the operation to fail. Therefore you shouldn’t really depend on its return value being
an array that you can continue operating on in a chained fashion.

clear

Removes all records from this association by clearing the foreign key field (see
delete). If the association is configured with the :dependent option set to
:delete_all, then clear iterates over all the associated objects and invokes
destroy on each one.

The clear method is transactional.

delete(*records) and delete_all

The delete and delete_all methods are used to sever specified associations, or all
of them, respectively. Both methods operate transactionally.

It’s worth noting, for performance reasons, that calling delete_all first loads
the entire collection of associated objects into memory in order to grab their ids. Then
it executes a SQL UPDATE that sets foreign keys for all currently associated objects to
nil, effectively disassociating them from their parent. Since it loads the entire associa-
tion into memory, it would be ill-advised to use this method with an extremely large
collection of associated objects.

NOTE

The names of the delete and delete_all methods can
be misleading. By default, they don’t delete anything from
the database—they only sever associations by clearing the
foreign key field of the associated record. This behavior is
related to the :dependent option, which defaults to
:nullify. If the association is configured with the
:dependent option set to :delete_all or :destroy,
then the associated records will actually be deleted from
the database.

One-to-Many Relationships 205

destroy_all

The destroy_all method takes no parameters; it’s an all or nothing affair. When
called, it begins a transaction and invokes destroy on each object in the association,
causing them all to be deleted from the database with individual DELETE SQL state-
ments. Again, there are load issues to consider if you plan to use this method with
large association collections, since many objects will be loaded into memory at once.

length

Returns the size of the collection by loading it and calling size on the array. If you
want to use this method to check whether the association collection is empty, use
length.zero? instead of just empty?. It’s more efficient.

replace(other_array)

Replaces the collection with other_array. Works by deleting objects that exist in the
current collection, but not in other_array and inserting (using concat) objects that
don’t exist in the current collection, but do exist in other_array.

size

If the collection has already been loaded, the size method returns its size. Otherwise
a SELECT COUNT(*) query is executed to get the size of the associated collection with-
out having to load any objects.

When starting from an unloaded state where it’s likely that the collection is not
actually empty and you will need to load the collection no matter what, it’ll take one
less SELECT query if you use length.

The :uniq setting, which removes duplicates from association collections, comes
into play when calculating size—basically it will force all objects to be loaded from the
database so that Rails can remove duplicates in Ruby code.

sum(column, *options)

Calculates a summed value in the database using SQL. The first parameter should be
a symbol identifying the column to be summed. You have to provide a :group option,
so that a summation actually takes place.

total = person.accounts.sum(:credit_limit, :group => ‘accounts.firm_id’)

206 7. ActiveRecord Associations

Depending on the way your association is structured, you may need to disam-
biguate the query by prefixing the name of the table to the value you pass to :group.

uniq

Iterates over the target collection and populates a Set with the unique values present.
Keep in mind that equality of ActiveRecord objects is determined by identity,
meaning that the value of the id attribute is the same for both objects being com-
pared.

A Warning About Association Names

Don’t create associations that have the same name as
instance methods of ActiveRecord::Base. Since the
association adds a method with that name to its model, it
will override the inherited method and break things.

For instance, attributes and connection would make
really bad choices for association names.

The belongs_to Association
The belongs_to class method expresses a relationship from one ActiveRecord
object to a single associated object for which it has a foreign key attribute. The trick
to remembering whether a class “belongs to” another one is determining where the
foreign key column will reside.

Assigning an object to a belongs_to association will set its foreign key attribute
to the owner object, but will not save the record to the database automatically, as in
the following example:

>> timesheet = Timesheet.create

=> #<Timesheet:0x248f18c ... @attributes={“id”=>1409, “user_id”=>nil,

“submitted”=>nil} ...>

>> timesheet.user = obie

=> #<User:0x24f96a4 ...>

>> timesheet.user.login

=> “obie”

>> timesheet.reload

=> #<Timesheet:0x248f18c @billable_weeks=nil, @new_record=false,

@user=nil...>

The belongs_to Association 207

Defining a belongs_to relationship on a class establishes an attribute of the same
name on instances of that class. As mentioned earlier, the attribute is actually a proxy
to the related ActiveRecord object and adds capabilities useful for manipulating the
relationship.

Reloading the Association
Just invoking the attribute will query the database (if necessary) and return an instance
of the related object. The accessor method actually takes a force_reload parameter
that tells ActiveRecord whether to reload the related object, if it happens to have
been cached already by a previous access.

In the following capture from my console, I look up a timesheet and take a peek
at the object_id of its related user object. Notice that the second time I invoke the
association via user, the object_id remains the same. The related object has been
cached. However, passing true to the accessor reloads the relationship and I get a new
instance.

>> ts = Timesheet.find :first

=> #<Timesheet:0x3454554 @attributes={“updated_at”=>”2006-11-21

05:44:09”, “id”=>”3”, “user_id”=>”1”, “submitted”=>nil,

“created_at”=>”2006-11-21 05:44:09”}>

>> ts.user.object_id

=> 27421330

>> ts.user.object_id

=> 27421330

>> ts.user(true).object_id

=> 27396270

Building and Creating Related Objects via the Association
The belongs_to method does some metaprogramming and adds factory methods for
creating new instances of the related class and attaching them via the foreign key auto-
matically.

The build_association method does not save the new object, but the cre-
ate_association method does. Both methods take an optional hash of attribute
parameters with which to initialize the newly instantiated objects. Both are essential-
ly one-line conveniences, which I don’t find particularly useful, because it just doesn’t
usually make sense to create instances in that direction!

208 7. ActiveRecord Associations

To illustrate, I’ll simply show the code for building a User from a Timesheet or
creating a Client from a BillingCode, neither of which would ever happen in real
code because it just doesn’t make sense to do so:

>> ts = Timesheet.find :first

=> #<Timesheet:0x3437260 @attributes={“updated_at”=>”2006-11-21

05:44:09”, “id”=>”3”, “user_id”=>”1”, “submitted”=>nil, “created_at”

=>”2006-11-21 05:44:09”}>

>> ts.build_user

=> #<User:0x3435578 @attributes={“salt”=>nil, “updated_at”=>nil,

“crypted_password”=>nil, “remember_token_expires_at”=>nil,

“remember_token”=>nil, “login”=>nil, “created_at”=>nil, “email”=>nil},

@new_record=true>

>> bc = BillingCode.find :first

=> #<BillingCode:0x33b65e8 @attributes={“code”=>”TRAVEL”, “client_id”

=>nil, “id”=>”1”, “description”=>”Travel expenses of all sorts”}>

>> bc.create_client

=> #<Client:0x33a3074 @new_record_before_save=true,

@errors=#<ActiveRecord::Errors:0x339f3e8 @errors={},

@base=#<Client:0x33a3074 ...>>, @attributes={“name”=>nil, “code”=>nil,

“id”=>1}, @new_record=false>

You’ll find yourself creating instances of belonging objects from the has_many
side of the relationship much more often.

belongs_to Options
The following options can be passed in a hash to the belongs_to method.

:class_name

Assume for a moment that we wanted to establish another belongs_to relationship
from the Timesheet class to User, this time modeling the relationship to the
approver of the timesheet. You might start by adding an approver_id column to the
timesheets table and an authorized_approver column to the users table:

class AddApproverInfo < ActiveRecord::Migration

def self.up

The belongs_to Association 209

add_column :timesheets, :approver_id, :integer

add_column :users, :authorized_approver, :boolean

end

def self.down

remove_column :timesheets, :approver_id

remove_column :users, :authorized_approver

end

end

Then you would add a belongs_to that looks like the following:

class Timesheet < ActiveRecord::Base

belongs_to :approver

...

The thing is that Rails can’t figure out what class you’re trying to connect to with
just the information provided, because you’ve (legitimately) acted against the Rails
convention of naming a relationship according to the related class. It’s time for a
:class_name parameter.

class Timesheet < ActiveRecord::Base

belongs_to :approver, :class_name => ‘User’

...

:conditions

What about adding conditions to the belongs_to association? Rails allows us to add
conditions to a relationship that must be satisfied in order for it to be valid. The
:conditions option allows you to do just that, with the same syntax that is used
when you add conditions to a find invocation.

In the last migration, I added an authorized_approver column to the users
table and we’ll make use of it here:

class Timesheet < ActiveRecord::Base

belongs_to :approver,

:class_name => ‘User’,

:conditions => [‘authorized_approver = ?’, true]

...

end

210 7. ActiveRecord Associations

Now in order for the assignment of a user to the approver field to work, that
user must be authorized. I’ll go ahead and add a test that both indicates the intention
of my code and shows it in action.

First I need to ensure that my users fixture (users.yml) makes an authorized
approver available to my test methods. For good measure, I go ahead and add a non-
authorized user too. The following markup appears at the bottom of test/fix-
tures/users.yml:

approver:

id: 4

login: “manager”

authorized_approver: true

joe:

id: 5

login: “joe”

authorized_approver: false

Then I turn my attention to test/unit/timesheet_test.rb, where I add a
test to make sure that my application code works and is correct:

require File.dirname(__FILE__) + ‘/../test_helper’

class TimesheetTest < Test::Unit::TestCase

fixtures :users

def test_only_authorized_user_may_be_associated_as_approver

sheet = Timesheet.create

sheet.approver = users(:approver)

assert_not_nil sheet.approver, “approver assignment failed”

end

end

It’s a good start, but I also want to make sure something happens to prevent the
system from assigning a nonauthorized user to the approver field, so I add another
test:

def test_non_authorized_user_cannot_be_associated_as_approver

sheet = Timesheet.create

sheet.approver = users(:joe)

The belongs_to Association 211

assert sheet.approver.nil?, “approver assignment should have

failed”

end

I have my suspicions about the validity of that test, though, and as I half-expected,
it doesn’t really work the way I want it to work:

1) Failure:

test_non_authorized_user_cannot_be_associated_as_approver(TimesheetTest

)

[./test/unit/timesheet_test.rb:16]:

approver assignment should have failed.

<false> is not true.

The problem is that ActiveRecord (for better or worse, probably worse) allows
me to make the invalid assignment. The :conditions option only applies during the
query to get the association back from the database. I’ll have some more work ahead
of me to achieve the desired behavior, but I’ll go ahead and prove out Rails’ actual
behavior by fixing my tests:

def test_only_authorized_user_may_be_associated_as_approver

sheet = Timesheet.create

sheet.approver = users(:approver)

assert sheet.save

assert_not_nil sheet.approver(true), “approver assignment failed”

end

def test_non_authorized_user_cannot_be_associated_as_approver

sheet = Timesheet.create

sheet.approver = users(:joe)

assert sheet.save

assert sheet.approver(true).nil?, “approver assignment should fail”

end

Those two tests do pass. I went ahead and made sure to save the sheet, since just
assigning a value to it will not save the record. Then I took advantage of the
force_reload parameter to make Rails reload approver from the database, and not
just simply give me the same instance I originally assigned to it.

The lesson to learn is that :conditions on relationships never affect the assign-
ment of associated objects, only how they’re read back from the database. To enforce

212 7. ActiveRecord Associations

the rule that a timesheet approver must be authorized, you’d need to add a
before_save callback to the Timesheet class itself. Callbacks are covered in detail
at the beginning of Chapter 9, “Advanced ActiveRecord,” and since I’ve gotten us
a little bit off on a tangent, we’ll go back to the list of options available for the
belongs_to association.

:foreign_key

Specifies the name of the foreign key column that should be used to find the associ-
ated object. Rails will normally infer this setting from the name of the association, by
adding _id . You can override the inferred foreign key name with this option if nec-
essary.

without the explicit option, Rails would guess administrator_id

belongs_to :administrator, :foreign_key => ‘admin_user_id’

:counter_cache

Use this option to make Rails automatically update a counter field on the associated
object with the number of belonging objects. The option value can be true, in which
case the pluralized name of the belonging class plus _count is used, or you can sup-
ply your own column name to be used:

:counter_cache => true

:counter_cache => ‘number_of_children’

If a significant percentage of your association collections will be empty at any
given moment, you can optimize performance at the cost of some extra database stor-
age by using counter caches liberally. The reason is that when the counter cache attrib-
ute is at zero, Rails won’t even try to query the database for the associated records!

NOTE

The value of the counter cache column must be set to zero
by default in the database! Otherwise the counter caching
won’t work at all. It’s because the way that Rails imple-
ments the counter caching behavior is by adding a simple
callback that goes directly to the database with an UPDATE
command and increments the value of the counter.

The belongs_to Association 213

If you’re not careful, and neglect to set a default value of 0 for the counter cache
column on the database, or misspell the column name, the counter cache will still
seem to work! There is a magic method on all classes with has_many associations
called collection_count, just like the counter cache. It will return a correct count
value if you don’t have a counter cache option set or the counter cache column value
is null!

:include

Takes a list of second-order association names that should be eager-loaded when this
object is loaded. A SELECT statement with the necessary LEFT OUTER JOINS will be
constructed on the fly so that all the data needed to construct a whole object graph is
queried in one database request.

With judicious use of :include and careful benchmarking, you can sometimes
improve the performance of your application dramatically, mostly by eliminating N+1
queries. On the other hand, since doing huge multijoin queries and instantiating large
object trees can also get very costly, certain usages of :include can actually make your
application perform much more slowly. As they say, your mileage may vary.

Wilson Says...

If :include speeds your app up, it’s too complicated and
you should redesign it.

:polymorphic => true

Use the :polymorphic option to specify that an object is related to its association in
a polymorphic way, which is the Rails way of saying that the type of the related object
is stored in the database along with its foreign key. By making a belongs_to rela-
tionship polymorphic, you abstract out the association so that any other model in the
system can fill it.

Polymorphic associations let you trade some measure of relational integrity for the
convenience of implementation in child relationships that are reused across your
application. Common examples are models such as photo attachments, comments,
notes, line items, and so on.

Let’s illustrate by writing a Comment class that attaches to its subjects polymor-
phically. We’ll associate it to both expense reports and timesheets. Listing 7.2 has the
schema information in migration code, followed by the code for the classes involved.

214 7. ActiveRecord Associations

Notice the :subject_type column, which stores the class name of the associated
class.

Listing 7.2 Comment Class Using Polymorphic belongs_to Relationship

create_table :comments do |t|

t.column :subject, :string

t.column :body, :text

t.column :subject_id, :integer

t.column :subject_type, :string

t.column :created_at, :datetime

end

class Comment < ActiveRecord::Base

belongs_to :subject, :polymorphic => true

end

class ExpenseReport < ActiveRecord::Base

belongs_to :user

has_many :comments, :as => :subject

end

class Timesheet < ActiveRecord::Base

belongs_to :user

has_many :comments, :as => :subject
end

As you can see in the ExpenseReport and Timesheet classes of Listing 7.2,
there is a corresponding syntax where you give ActiveRecord a clue that the rela-
tionship is polymorphic by specifying :as => :subject. We haven’t even covered
has_many relationships yet, and polymorphic relationships have their own section in
Chapter 9. So before we get any further ahead of ourselves, let’s take a look at
has_many relationships.

The has_many Association
Just like it sounds, the has_many association allows you to define a relationship in
which one model has many other models that belong to it. The sheer readability of code
constructs such as has_many is a major reason that people fall in love with Rails.

The has_many Association 215

The has_many class method is often used without additional options. If Rails can
guess the type of class in the relationship from the name of the association, no addi-
tional configuration is necessary. This bit of code should look familiar by now:

class User

has_many :timesheets

has_many :expense_reports

The names of the associations can be singularized and match the names of mod-
els in the application, so everything works as expected.

has_many Options
Despite the ease of use of has_many, there is a surprising amount of power and cus-
tomization possible for those who know and understand the options available.

:after_add

Called after a record is added to the collection via the << method. Is not triggered by
the collection’s create method, so careful consideration is needed when relying on
association callbacks.

Add callback method options to a has_many by passing one or more symbols cor-
responding to method names, or Proc objects. See Listing 7.3 in the :before_add
option for an example.

:after_remove

Called after a record has been removed from the collection with the delete method.
Add callback method options to a has_many by passing one or more symbols corre-
sponding to method names, or Proc objects. See Listing 7.3 in the :before_add
option for an example.

:as

Specifies the polymorphic belongs_to association to use on the related class. (See
Chapter 9 for more about polymorphic relationships.)

216 7. ActiveRecord Associations

:before_add

Triggered when a record is added to the collection via the << method. (Remember that
concat and push are aliases of <<.) Raising an exception in the callback will stop the
object from getting added to the collection. (Basically, because the callback is triggered
right after the type mismatch check, and there is no rescue clause to be found inside <<.)

Add callback method options to a has_many by passing one or more symbols cor-
responding to method names, or Proc objects. You can set the option to either a sin-
gle callback (as a Symbol or Proc) or to an array of them.

Listing 7.3 A Simple Example of :before_add Callback Usage

has_many :unchangable_posts,

:class_name => “Post”,

:before_add => :raise_exception

private

def raise_exception(object)

raise “You can’t add a post”
end

Of course, that would have been a lot shorter code using a Proc since it’s a one
liner. The owner parameter is the object with the association. The record parameter
is the object being added.

has_many :unchangable_posts,

:class_name => “Post”,

:before_add => Proc.new {|owner, record| raise “Can’t do it!”}

One more time, with a lambda, which doesn’t check the arity of block parameters:

has_many :unchangable_posts,

:class_name => “Post”,

:before_add => lamda {raise “You can’t add a post”}

:before_remove

Called before a record is removed from a collection with the delete method. See
before_add for more information.

The has_many Association 217

:class_name

The :class_name option is common to all of the associations. It allows you to spec-
ify, as a string, the name of the class of the association, and is needed when the class
name cannot be inferred from the name of the association itself.

:conditions

The :conditions option is common to all of the associations. It allows you to add
extra conditions to the ActiveRecord-generated SQL query that bring back the objects
in the association.

You can apply extra :conditions to an association for a variety of reasons. How
about approval?

has_many :comments, :conditions => [‘approved = ?’, true]

Plus, there’s no rule that you can’t have more than one has_many association
exposing the same two related tables in different ways. Just remember that you’ll prob-
ably have to specify the class name too.

has_many :pending_comments, :conditions => [‘approved = ?’, true],

:class_name => ‘Comment’

:counter_sql

Overrides the ActiveRecord-generated SQL query that would be used to count the
number of records belonging to this association. Not necessarily needed in conjunc-
tion with the :finder_sql option, since ActiveRecord will automatically generate
counter SQL code based on the custom finder SQL statement.

As with all custom SQL specifications in ActiveRecord, you must use single-
quotes around the entire string to prevent premature interpolation. (That is, you don’t
want the string to get interpolated in the context of the class where you’re declaring
the association. You want it to get interpolated at runtime.)

has_many :things, :finder_sql => ‘select * from t where id = #{id}’

:delete_sql

Overrides the ActiveRecord-generated SQL statement that would be used to break
associations. Access to the associated model is provided via the record method.

218 7. ActiveRecord Associations

:dependent => :delete_all

All associated objects are deleted in fell swoop using a single SQL command. Note:
While this option is much faster than :destroy_all, it doesn’t trigger any destroy
callbacks on the associated objects—you should use this option very carefully. It
should only be used on associations that depend solely on the parent object.

:dependent => :destroy_all

All associated objects are destroyed along with the parent object, by iteratively calling
their destroy methods.

:dependent => :nullify

The default behavior for deleting associated records is to nullify, or clear, the foreign
key that joins them to the parent record. You should never have to specify this option
explicitly, it is only here for reference.

:exclusively_dependent

Deprecated; equivalent to :dependent => :delete_all.

:extend => ExtensionModule

Specifies a module with methods that will extend the association collection proxy.
Used as an alternative to defining additional methods in a block passed to the
has_many method itself. Discussed in the section “Association Extensions”.

:finder_sql

Specifies a complete SQL statement to fetch the association. This is a good way to load
complex associations that depend on multiple tables for their data. It’s also quite rare
to need to go this route.

Count operations are done with a SQL statement based on the query supplied via
the :finder_sql option. If ActiveRecord botches the transformation, it might be
necessary to supply an explicit :counter_sql value also.

:foreign_key

Overrides the convention-based foreign key name that would normally be used in the
SQL statement that loads the association.

The has_many Association 219

:group

An attribute name by which the result should be grouped. Uses the GROUP BY SQL
clause.

:include

Takes an array of second-order association names (as an array) that should be eager-
loaded when this collection is loaded. As with the :include option on belongs_to
associations, with judicious use of :include and careful benchmarking you can
sometimes improve the performance of your application dramatically.

To illustrate, let’s analyze how :include affects the SQL generated while navi-
gating relationships. We’ll use the following simplified versions of Timesheet,
BillableWeek, and BillingCode:

class Timesheet < ActiveRecord::Base

has_many :billable_weeks

end

class BillableWeek < ActiveRecord::Base

belongs_to :timesheet

belongs_to :billing_code

end

class BillingCode < ActiveRecord::Base

belongs_to :client

has_many :billable_weeks

end

First, I need to set up my test data, so I create a timesheet instance and add a
couple of billable weeks to it. Then I assign a billable code to each billable week, which
results in an object graph (with four objects linked together via associations).

Next I do a fancy one-line collect, which gives me an array of the billing codes
associated with the timesheet:

>> Timesheet.find(3).billable_weeks.collect{ |w| w.billing_code.code }

=> [“TRAVEL”, “DEVELOPMENT”]

220 7. ActiveRecord Associations

Without the :include option set on the billable_weeks association of
Timesheet, that operation cost me the following four database hits (copied from
log/development.log, and prettied up a little):

Timesheet Load (0.000656) SELECT * FROM timesheets

WHERE (timesheets.id = 3)

BillableWeek Load (0.001156) SELECT * FROM billable_weeks

WHERE (billable_weeks.timesheet_id = 3)

BillingCode Load (0.000485) SELECT * FROM billing_codes

WHERE (billing_codes.id = 1)

BillingCode Load (0.000439) SELECT * FROM billing_codes

WHERE (billing_codes.id = 2)

This is demonstrates the so-called “N+1 select” problem that inadvertently
plagues many systems. Anytime I need one billable week, it will cost me N select state-
ments to retrieve its associated records.

Now let’s add :include to the billable_weeks association, after which the
Timesheet class looks as follows:

class Timesheet < ActiveRecord::Base

has_many :billable_weeks, :include => [:billing_code]

end

Simple! Rerunning our test statement yields the same results in the console:

>> Timesheet.find(3).billable_weeks.collect{ |w| w.billing_code.code }

=> [“TRAVEL”, “DEVELOPMENT”]

But look at how different the generated SQL is:

Timesheet Load (0.002926) SELECT * FROM timesheets LIMIT 1

BillableWeek Load Including Associations (0.001168) SELECT

billable_weeks.”id” AS t0_r0, billable_weeks.”timesheet_id” AS t0_r1,

billable_weeks.”client_id” AS t0_r2, billable_weeks.”start_date” AS

t0_r3, billable_weeks.”billing_code_id” AS t0_r4,

billable_weeks.”monday_hours” AS t0_r5, billable_weeks.”tuesday_hours”

AS t0_r6, billable_weeks.”wednesday_hours” AS t0_r7,

The has_many Association 221

billable_weeks.”thursday_hours” AS t0_r8,

billable_weeks.”friday_hours”

AS t0_r9, billable_weeks.”saturday_hours” AS t0_r10,

billable_weeks.”sunday_hours” AS t0_r11, billing_codes.”id” AS t1_r0,

billing_codes.”client_id” AS t1_r1, billing_codes.”code” AS t1_r2,

billing_codes.”description” AS t1_r3 FROM billable_weeks LEFT OUTER

JOIN

billing_codes ON billing_codes.id = billable_weeks.billing_code_id

WHERE

(billable_weeks.timesheet_id = 3)

Rails has added a LEFT OUTER JOIN clause so that billing code data is loaded
along with billable weeks. For larger datasets, the performance improvement can be
quite dramatic!

It’s generally easy to find N+1 select issues just by watching the log scroll by while
clicking through the different screens of your application. (Of course, make sure that
you’re looking at realistic data or the exercise will be pointless.) Screens that might
benefit from eager loading will cause a flurry of single-row SELECT statements, one for
each record in a given association being used.

If you’re feeling particularly daring (perhaps masochistic is a better term) you can
try including a deep hierarchy of associations, by mixing hashes into your eager
:include array:

Post.find(:all, :include=>[:author, {:comments=>{:author=>:gravatar }}])

That example snippet will grab not only all the comments for a Post, but all the
authors and gravatar pictures as well. You can mix and match symbols, arrays and
hashes in any combination to describe the associations you want to load.

Frankly, deep :includes are not well-documented functionality and are proba-
bly more trouble than what they’re worth. The biggest problem is that pulling too
much data in one query can really kill your performance. You should always start out
with the simplest solution that will work, then use benchmarking and analysis to fig-
ure out if optimizations such as eager-loading help improve your performance.

222 7. ActiveRecord Associations

The has_many Association 223

Wilson Says...

Let people learn eager loading by crawling across broken
glass, like we did. It builds character!

:insert_sql

Overrides the ActiveRecord-generated SQL statement that would be used to create
associations. Access the associated model via the record method.

:limit

Appends a LIMIT clause to the SQL generated for loading this association.

:offset

An integer determining the offset from where the rows should be fetched.

:order

Specifies the order in which the associated objects are returned via an “ORDER BY”
sql fragment, such as “last_name, first_name DESC”.

:select

By default, this is * as in SELECT * FROM, but can be changed if you for example want
to add additional calculated columns or “piggyback” additional columns from joins
onto the associated object as its loaded.

:source and :source_type

Used exclusively as additional options to assist in using has_many :through associ-
ations with polymorphic belongs_to and is covered in detail later in the chapter.

:table_name

The :table_name option lets you override the table names (FROM clause) that will
be used in SQL statements generated for loading the association.

:through

Creates an association collection via another association. See the section in this chap-
ter entitled “has_many :through” for more information.

:uniq => true

Strips duplicate objects from the collection. Useful in conjunction with has_many
:through.

Proxy Methods
The has_many class method creates an association collection proxy, with all the meth-
ods provided by AssociationCollection and a few more methods defined in
HasManyAssociation.

build(attributes = {})

Instantiates a new object in the associated collection, and links it to the owner by spec-
ifying the value of the foreign key. Does not save the new object in the database and
the new object is not added to the association collection. As you can see in the fol-
lowing example, unless you capture the return value of build, the new object will be
lost:

>> obie.timesheets

=> <timesheets not loaded yet>

>> obie.timesheets.build

=> #<Timesheet:0x24c6b8c @new_record=true, @attributes={“user_id”=>1,

“submitted”=>nil}>

>> obie.timesheets

=> <timesheets not loaded yet>

As the online API documents point out, the build method is exactly the same as
constructing a new object and passing in the foreign key value as an attribute:

>> Timesheet.new(:user_id => 1)

=> #<Timesheet:0x24a52fc @new_record=true, @attributes={“user_id”=>1,

“submitted”=>nil}>

224 7. ActiveRecord Associations

count(*args)

Counts the number of associated records in the database using SQL.

find(*args)

Not much different here than the normal ActiveRecord find method, other than
that the scope is constrained to associated records and any additional conditions spec-
ified in the declaration of the relationship.

Remember the has_one example shown earlier in the chapter? It was somewhat
contrived, since it would have been easier to look up the last modified timesheet using
find:.

Many-to-Many Relationships
Associating persistent objects via a join table can be one of the trickier aspects of
object-relational mapping to implement correctly in a framework. Rails has a couple
of techniques that let you represent many-to-many relationships in your model. We’ll
start with the older and simpler has_and_belongs_to_many and then cover the
newer has_many :through.

has_and_belongs_to_many

The has_and_belongs_to_many method establishes a link between two associated
ActiveRecord models via an intermediate join table. Unless the join table is explic-
itly specified as an option, Rails guesses its name by concatenating the table names of
the joined classes, in alphabetical order and separated with an underscore.

For example, if I was using has_and_belongs_to_many (or habtm for short) to
establish a relationship between Timesheet and BillingCode, the join table would
be named billing_codes_timesheets and the relationship would be defined in
the models. Both the migration class and models are listed:

class CreateBillingCodesTimesheets < ActiveRecord::Migration

def self.up

create_table :billing_codes_timesheets, :id => false do |t|

t.column :billing_code_id, :integer, :null => false

t.column :timesheet_id, :integer, :null => false

end

end

Many-to-Many Relationships 225

def self.down

drop_table :billing_codes_timesheets

end

end

class Timesheet < ActiveRecord::Base

has_and_belongs_to_many :billing_codes

end

class BillingCode < ActiveRecord::Base

has_and_belongs_to_many :timesheets

end

Note that an id primary key is not needed, hence the :id => false option was
passed to the create_table method. Also, since the foreign key columns are both
needed, we pass them a :null => false option. (In real code, you would also want
to make sure both of the foreign key columns were indexed properly.)

Self-Referential Relationship

What about self-referential many-to-many relationships? Linking a model to itself via
a habtm relationship is easy—you just have to provide explicit options.

In Listing 7.4, I’ve created a join table and established a link between related
BillingCode objects. Again, both the migration and model class are listed:

Listing 7.4 Related Billing Codes

class CreateRelatedBillingCodes < ActiveRecord::Migration

def self.up

create_table :related_billing_codes, :id => false do |t|

t.column :first_billing_code_id, :integer, :null => false

t.column :second_billing_code_id, :integer, :null => false

end

end

def self.down

drop_table :related_billing_codes

end

end

class BillingCode < ActiveRecord::Base

226 7. ActiveRecord Associations

has_and_belongs_to_many :related,

:join_table => ‘related_billing_codes’,

:foreign_key => ‘first_billing_code_id’,

:association_foreign_key => ‘second_billing_code_id’,

:class_name => ‘BillingCode’
end

Bidirectional Relationships

It’s worth noting that the related relationship of the BillingCode in Listing 7.4 is
not bidirectional. Just because you associate two objects in one direction does not
mean they’ll be associated in the other direction. But what if you need to automati-
cally establish a bidirectional relationship?

First let’s write a test for the BillingCode class to prove our solution. We’ll start
by writing a couple of sample records to work with in test/fixtures/
billing_codes.yml:

travel:

code: TRAVEL

client_id:

id: 1

description: Travel expenses of all sorts

development:

code: DEVELOPMENT

client_id:

id: 2

description: Coding, etc

When we add bidirectional, we don’t want to break the normal behavior, so at first
my test method establishes that the normal habtm relationship works:

require File.dirname(__FILE__) + ‘/../test_helper’

class BillingCodeTest < Test::Unit::TestCase

fixtures :billing_codes

def test_self_referential_habtm_association

billing_codes(:travel).related << billing_codes(:development)

assert BillingCode.find(1).related.include?(BillingCode.find(2))

end

end

Many-to-Many Relationships 227

I run the test and it passes. Now I can modify the test method to add proof that
the bidirectional behavior that we’re going to add works. It ends up looking very sim-
ilar to the original method. (Normally I would lean toward only having one assertion
per test method, but in this case it makes more sense to keep them together.) The sec-
ond assert statement checks to see that the newly associated class also has its relat-
ed BillingCode in its related collection.

require File.dirname(__FILE__) + ‘/../test_helper’

class BillingCodeTest < Test::Unit::TestCase

fixtures :billing_codes

def setup

@travel = billing_codes(:travel)

@development = billing_codes(:development)

end

def test_self_referential_bidirectional_habtm_association

@travel.related << @development

assert @travel.related.include?(@development)

assert @development.related.include?(@travel)

end

end

Of course, the new test fails, since we haven’t added the new behavior yet. I’m not
entirely happy with this approach, since it involves bringing hand-coded SQL into my
otherwise beautiful Ruby code. However, the Rails way is to use SQL when it makes
sense to do so, and this is one of those cases.

Wilson Says...

If only << and create both triggered association call-
backs, we could implement this bidirectional mayhem
without writing any SQL code. Unfortunately, they don’t.
You could still do it... but as soon as someone used
create, it would miss the other side of the relationship.

228 7. ActiveRecord Associations

Custom SQL Options

To get our bidirectional, we’ll be using the :insert_sql option of
has_and_belongs_to_many to override the normal INSERT statement that Rails
would use to associate objects with each other.

Here’s a neat trick so that you don’t have to figure out the syntax of the INSERT
statement from memory. Just copy and paste the normal INSERT statement that Rails
uses. It’s not too hard to find in log/test.log if you tail the file while running the
unit test we wrote in the previous section:

INSERT INTO related_billing_codes (`first_billing_code_id`,

`second_billing_code_id`) VALUES (1, 2)

Now we just have to tweak that INSERT statement so that it adds two rows instead
of just one. You might be tempted to just add a semicolon and a second, full INSERT
statement. That won’t work, because it is invalid to stuff two statements into one using
a semicolon. Try it and see what happens if you’re curious.

After some quick googling, I found the following method of inserting multiple
rows with one SQL statement that will work for Postgres, MySQL, and DB2 data-
bases.1 It is valid according to the SQL-92 standard, just not universally supported:

:insert_sql => ‘INSERT INTO related_billing_codes

(`first_billing_code_id`, `second_billing_code_id`)

VALUES (#{id}, #{record.id}), (#{record.id}, #{id})’

There are some very important things to remember when trying to get custom
SQL options to work. The first is to use single quotes around the entire string of cus-
tom SQL. If you were to use double quotes, the string would be interpolated in the
context of the class where it is being declared, not at the time of your query like you
need it to be.

Also, while we’re on the subject of quotation marks and how to use them, note
that when I copied the INSERT query over from my log, I ended up with backtick
characters around the column names, instead of single quotes. Trying to use single-
quotes around values instead of backtick characters will fail, because the database
adapter will escape the quotes, producing invalid syntax. Yes, it’s a pain in the neck—
luckily you shouldn’t need to specify custom SQL very often.

Another thing to remember is that when your custom SQL string is interpolated,
it will happen in the context of the object holding the association. The object being

Many-to-Many Relationships 229

associated will be made available as record. If you look closely at the code listing,
you’ll notice that to establish the bidirectional link, we just added two rows in the
related_billing_codes table, one in each direction.

A quick test run confirms that our :insert_sql approach did indeed work. We
should also use the :delete_sql option to make sure that the relationship can be
broken bidirectionally as well. Again, I’ll drive the implementation in a TDD fashion,
adding the following test to BillingCodeTest:

def test_that_deletion_is_bidirectional_too

billing_codes(:travel).related << billing_codes(:development)

billing_codes(:travel).related.delete(billing_codes(:development))

assert !BillingCode.find(1).related.include?(BillingCode.find(2))

assert !BillingCode.find(2).related.include?(BillingCode.find(1))

end

It’s similar to the previous test method, except that after establishing the relation-
ship, it immediately deletes it. I expect that the first assertion will pass right away, but
the second should fail:

$ ruby test/unit/billing_code_test.rb

Loaded suite test/unit/billing_code_test

Started

.F

Finished in 0.159424 seconds.

1) Failure:

test_that_deletion_is_bidirectional_too(BillingCodeTest)

[test/unit/billing_code_test.rb:16]:

<false> is not true.

2 tests, 4 assertions, 1 failures, 0 errors

Yep, just as expected. Let’s peek at log/test.log and grab the SQL DELETE
clause that we’ll work with:

DELETE FROM related_billing_codes WHERE first_billing_code_id = 1 AND

second_billing_code_id IN (2)

230 7. ActiveRecord Associations

Hmph! This might be a little trickier than the insert. Curious about the IN oper-
ator, I take a peek inside the active_record/associations/has_and_

belongs_to_many_association.rb file and find the following relevant method:

def delete_records(records)

if sql = @reflection.options[:delete_sql]

records.each { |record|

@owner.connection.execute(interpolate_sql(sql, record))

}

else

ids = quoted_record_ids(records)

sql = “DELETE FROM #{@reflection.options[:join_table]}

WHERE #{@reflection.primary_key_name} = #{@owner.quoted_id}

AND #{@reflection.association_foreign_key} IN (#{ids})”

@owner.connection.execute(sql)

end

end

The final BillingCode class now looks like this:

class BillingCode < ActiveRecord::Base

has_and_belongs_to_many :related,

:join_table => ‘related_billing_codes’,

:foreign_key => ‘first_billing_code_id’,

:association_foreign_key => ‘second_billing_code_id’,

:class_name => ‘BillingCode’,

:insert_sql => ‘INSERT INTO related_billing_codes

(`first_billing_code_id`,

`second_billing_code_id`)

VALUES (#{id}, #{record.id}), (#{record.id},

#{id})’

end

Linking Two Existing Objects Efficiently

Prior to Rails 2.0, the << method loads the entire contents
of the associated collection from the database into memo-
ry—which, depending on how many associated records
you have in your database, could take a really long time!

Many-to-Many Relationships 231

Extra Columns on has_and_belongs_to_many Join Tables

Rails won’t have a problem with you adding as many extra columns as you want to
habtm’s join table. The extra attributes will be read in and added onto model objects
accessed via the habtm association. However, speaking from experience, the severe
annoyances you will deal with in your application code make it really unattractive to
go that route.

What kind of annoyances? For one, records returned from join tables with addi-
tional attributes will be marked as read-only, because it’s not possible to save changes
to those additional attributes.

You should also consider that the way that Rails makes those extra columns of the
join table available might cause problems in other parts of your codebase. Having
extra attributes appear magically on an object is kind of cool, but what happens when
you try to access those extra properties on an object that wasn’t fetched via the habtm
association? Kaboom! Get ready for some potentially bewildering debugging exercises.

Other than the deprecated push_with_attributes, methods of the habtm
proxy act just as they would for a has_many relationship. Similarly, habtm shares
options with has_many; only its :join_table option is unique. It allows cus-
tomization of the join table name.

To sum up, habtm is a simple way to establish a many-to-many relationship using
a join table. As long as you don’t need to capture additional data about the relation-
ship, everything is fine. The problems with habtm begin once you want to add extra
columns to the join table, after which you’ll want to upgrade the relationship to use
has_many :through instead.

“Real Join Models” and habtm

Rails 1.2 documentation advises readers that: “It’s strongly recommended that you
upgrade any [habtm] associations with attributes to a real join model.” Use of habtm,
which was one of the original innovative features in Rails, fell out of favor once the
ability to create real join models was introduced via the has_many :through associ-
ation.

Realistically, habtm is not going to be removed from Rails, for a couple of sensi-
ble reasons. First of all, plenty of legacy Rails applications need it. Second, habtm pro-
vides a way to join classes without a primary key defined on the join table, which is
occasionally useful. But most of the time you’ll find yourself wanting to model many-
to-many relationships with has_many :through.

232 7. ActiveRecord Associations

has_many :through

Well-known Rails guy and fellow cabooser Josh Susser is considered the expert on
ActiveRecord associations, even his blog is called has_many :through. His description
of the :through association2, written back when the feature was originally introduced
in Rails 1.1, is so concise and well-written that I couldn’t hope to do any better. So here
it is:

The has_many :through association allows you to specify a one-to-many rela-
tionship indirectly via an intermediate join table. In fact, you can specify more
than one such relationship via the same table, which effectively makes it a
replacement for has_and_belongs_to_many. The biggest advantage is that
the join table contains full-fledged model objects complete with primary keys and
ancillary data. No more push_with_attributes; join models just work the
same way all your other ActiveRecord models do.

Join Models

To illustrate the has_many :through association, we’ll set up a Client model so
that it has many Timesheet objects, through a normal has_many association named
billable_weeks.

class Client < ActiveRecord::Base

has_many :billable_weeks

has_many :timesheets, :through => :billable_weeks

end

The BillableWeek class was already in our sample application and is ready to be
used as a join model:

class BillableWeek < ActiveRecord::Base

belongs_to :client

belongs_to :timesheet

end

We can also set up the inverse relationship, from timesheets to clients, like this.

class Timesheet < ActiveRecord::Base

has_many :billable_weeks

has_many :clients, :through => :billable_weeks

end

Many-to-Many Relationships 233

Notice that has_many :through is always used in conjunction with a normal
has_many association. Also, notice that the normal has_many association will often
have the same name on both classes that are being joined together, which means the
:through option will read the same on both sides.

:through => :billable_weeks

How about the join model; will it always have two belongs_to associations? No.
You can also use has_many :through to easily aggregate has_many or has_one

associations on the join model. Forgive me for switching to completely nonrealistic
domain for a moment—it’s only intended to clearly demonstrate what I’m trying to
describe:

class Grandparent < ActiveRecord::Base

has_many :parents

has_many :grand_children, :through => :parents, :source => :childs

end

class Parent < ActiveRecord::Base

belongs_to :grandparent

has_many :childs

end

For the sake of clarity in later chapters, I’ll refer to this usage of has_many
:through as aggregating.

Courtenay Says...

We use has_many :through so much! It has pretty
much replaced the old has_and_belongs_to_many,
because it allows your join models to be upgraded to full
objects.

It’s like when you’re just dating someone and they start
talking about the Relationship (or, eventually, Our
Marriage). It’s an example of an association being pro-
moted to something more important than the individual
objects on each side.

234 7. ActiveRecord Associations

Usage Considerations and Examples

You can use nonaggregating has_many :through associations in almost the same
ways as any other has_many associations. The limitations have to do with handling of
unsaved records.

>> c = Client.create(:name => “Trotter’s Tomahawks”, :code => “ttom”)

=> #<Client:0x2228410...>

>> c.timesheets << Timesheet.new

ActiveRecord::HasManyThroughCantAssociateNewRecords: Cannot associate

new records through ‘Client#billable_weeks’ on ‘#’. Both records must

have an id in order to create the has_many :through record associating

them.

Hmm, seems like we had a hiccup. Unlike a normal has_many, ActiveRecord
won’t let us add an object to the the has_many :through association if both ends of
the relationship are unsaved records.

The create method saves the record before adding it, so it does work as expect-
ed, provided the parent object isn’t unsaved itself.

>> c.save

=> true

>> c.timesheets.create

=> [#<Timesheet:0x2212354 @new_record=false, @new_record_before_save=

true, @attributes={“updated_at”=>Sun Mar 18 15:37:18 UTC 2007,

“id”=>2,

“user_id”=>nil, “submitted”=>nil, “created_at”=>Sun Mar 18 15:37:18

UTC

2007}, @errors=#<ActiveRecord::Errors:0x2211940 @base=

#<Timesheet:0x2212354 ...>, @errors={}>>]

The main benefit of has_many :through is that ActiveRecord takes care of
managing the instances of the join model for you. If we call reload on the billable
_weeks association, we’ll see that there was a billable week object created for us:

>> c.billable_weeks.reload

=> [#<BillableWeek:0x139329c @attributes={“tuesday_hours”=>nil,

“start_date”=>nil, “timesheet_id”=>”2”, “billing_code_id”=>nil,

“sunday_hours”=>nil, “friday_hours”=>nil, “monday_hours”=>nil,

Many-to-Many Relationships 235

“client_id”=>”2”, “id”=>”2”, “wednesday_hours”=>nil,

“saturday_hours”=>nil, “thursday_hours”=>nil}>]

The BillableWeek object that was created is properly associated with both the
client and the Timesheet. Unfortunately, there are a lot of other attributes (e.g.,
start_date, and the hours columns) that were not populated.

One possible solution is to use create on the billable_weeks association
instead, and include the new Timesheet object as one of the supplied properties.

>> bw = c.billable_weeks.create(:start_date => Time.now,

:timesheet => Timesheet.new)

=> #<BillableWeek:0x250fe08 @timesheet=#<Timesheet:0x2510100

@new_record=false, ...>

Aggregating Associations

When you’re using has_many :through to aggregate multiple child associations,
there are more significant limitations—essentially you can query to your hearts con-
tent using find and friends, but you can’t append or create new records through
them.

For example, let’s add a billable_weeks association to our sample User class:

class User < ActiveRecord::Base

has_many :timesheets

has_many :billable_weeks, :through => :timesheets

...

The billable_weeks association aggregates all the billable week objects belong-
ing to all of the user’s timesheets.

class Timesheet < ActiveRecord::Base

belongs_to :user

has_many :billable_weeks, :include => [:billing_code]

...

Now let’s go into the Rails console and set up some example data so that we can
use the new billable_weeks collection (on User).

>> quentin = User.find :first

=> #<User id: 1, login: “quentin” ...>

236 7. ActiveRecord Associations

>> quentin.timesheets

=> []

>> ts1 = quentin.timesheets.create

=> #<Timesheet id: 1 ...>

>> ts2 = quentin.timesheets.create

=> #<Timesheet id: 2 ...>

>> ts1.billable_weeks.create(:start_date => 1.week.ago)

=> #<BillableWeek id: 1, timesheet_id: 1 ...>

>> ts2.billable_weeks.create :start_date => 2.week.ago

=> #<BillableWeek id: 2, timesheet_id: 2 ...>

>> quentin.billable_weeks

=> [#<BillableWeek id: 1, timesheet_id: 1 ...>, #<BillableWeek id: 2,

timesheet_id: 2 ...>]

Just for fun, let’s see what happens if we try to create a BillableWeek with a
User instance:

>> quentin.billable_weeks.create(:start_date => 3.weeks.ago)

NoMethodError: undefined method `user_id=’ for

#<BillableWeek:0x3f84424>

There you go… BillableWeek doesn’t belong to a user, it belongs to a timesheet,
so it doesn’t have a user_id field.

Join Models and Validations

When you append to a non-aggregating has_many :through association with <<,
ActiveRecord will always create a new join model, even if one already exists for the
two records being joined. You can add validates_uniqueness_of constraints on
the join model to keep duplicate joins from happening.

This is what such a constraint might look like on our BillableWeek join model.

validates_uniqueness_of :client_id, :scope => :timesheet_id

That says, in effect: “There should only be one of each client per timesheet.”

Many-to-Many Relationships 237

If your join model has additional attributes with their own validation logic, then
there’s another important consideration to keep in mind. Adding records directly to a
has_many :through association causes a new join model to be automatically creat-
ed with a blank set of attributes. Validations on additional columns of the join model
will probably fail. If that happens, you’ll need to add new records by creating join
model objects and associating them appropriately through their own association
proxy.

timesheet.billable_weeks.create(:start_date => 1.week.ago)

has_many :through Options
The options for has_many :through are the same as the options for has_many—
remember that :through is just an option on has_many! However, the use of some
of has_many’s options change or become more significant when :through is used.

First of all, the :class_name and :foreign_key options are no longer valid,
since they are implied from the target association on the join model.

Here are the rest of the options that have special significance together with
has_many :through.

:source

The :source option specifies which association to use on the associated class. This
option is not mandatory because normally ActiveRecord assumes that the target asso-
ciation is the singular (or plural) version of the has_many association name. If your
association names don’t match up, then you have to set :source explicitly.

For example, the following code will use the BillableWeek’s sheet association
to populate timesheets.

has_many :timesheets, :through => :billable_weeks, :source => :sheet

:source_type

The :source_type option is needed when you establish a has_many :through to
a polymorphic belongs_to association on the join model.

Consider the following example of clients and contacts:

class Client < ActiveRecord::Base

has_many :contact_cards

238 7. ActiveRecord Associations

has_many :contacts, :through => :contact_cards

end

class ContactCard < ActiveRecord::Base

belongs_to :client

belongs_to :contacts, :polymorphic => true

end

The most important fact here is that a Client has many contacts, which can
be any kind of model since they are declared polymorphically on the join model,
ContactCard. For example purposes, let’s associate people and businesses to contact
cards:

class Person < ActiveRecord::Base

has_many :contact_cards, :as => :contact

end

class Business < ActiveRecord::Base

has_many :contact_cards, :as => :contact

end

Now take a moment to consider the backflips that ActiveRecord would have to
perform in order to figure out which tables to query for a client’s contacts. It would
theoretically need to be aware of every model class that is linked to the other end of
the contacts polymorphic association.

In fact, it can’t do those kinds of backflips, which is probably a good thing as far
as performance is concerned:

>> Client.find(:first).contacts

ArgumentError: /.../active_support/core_ext/hash/keys.rb:48:

in `assert_valid_keys’: Unknown key(s): polymorphic

The only way to make this scenario work (somewhat) is to give ActiveRecord
some help by specifying which table it should search when you ask for the contacts
collection, and you do that with the source_type option. The value of the option is
the name of the target class, symbolized:

class Client < ActiveRecord::Base

has_many :people_contacts, :through => :contact_cards,

:source => :contacts, :source_type => :person

Many-to-Many Relationships 239

has_many :business_contacts, :through => :contact_cards,

:source => :contacts, :source_type => :business

end

After the :source_type is specified, the association will work as expected.

>> Client.find(:first).people_contacts.create!

[#<Person:0x223e788 @attributes={“id”=>1}, @errors=

#<ActiveRecord::Errors:0x223dc0c @errors={}, @base=

#<Person: 0x...>>, @new_record_before_save=true, @new_record=false>]

The code is a bit longer and less magical, but it works. If you’re upset that you
cannot associate people_contacts and business_contacts together in a contacts
association, you could try writing your own accessor method for a client’s contacts:

class Client < ActiveRecord::Base

def contacts

people_contacts + business_contacts

end

end

Of course, you should be aware that calling that contacts method will result in
at least two database requests and will return an Array, without the association proxy
methods that you might expect it to have.

:uniq

The :uniq option tells the association to include only unique objects. It is especially
useful when using has_many :through, since two different BillableWeeks could
reference the same Timesheet.

>> client.find(:first).timesheets.reload

[#<Timesheet:0x13e79dc @attributes={“id”=>”1”, ...}>,

#<Timesheet:0x13e79b4 @attributes={“id”=>”1”, ...}>]

It’s not extraordinary for two distinct model instances of the same database record
to be in memory at the same time—it’s just not usually desirable.

class Client < ActiveRecord::Base

has_many :timesheets, :through => :billable_weeks, :uniq => true

end

240 7. ActiveRecord Associations

After adding the :uniq option, only one instance per record is returned.

>> client.find(:first).timesheets.reload

[#<Timesheet:0x22332ac ...>]

The implementation of uniq on AssociationCollection is a neat little exam-
ple of how to build a collection of unique values in Ruby, using a Set and the inject
method. It also proves that the record’s primary key (and nothing else) is what’s being
used to establish uniqueness:

def uniq(collection = self)

seen = Set.new

collection.inject([]) do |kept, record|

unless seen.include?(record.id)

kept << record

seen << record.id

end

kept

end

end

One-to-One Relationships
One of the most basic relationship types is a one-to-one object relationship. In
ActiveRecord we declare a one-to-one relationship using the has_one and
belongs_to methods together. As in the case of a has_many relationship, you call
belongs_to on the model whose database table contains the foreign key column
linking the two records together.

has_one

Conceptually, has_one works almost exactly like has_many does, except that when
the database query is executed to retrieve the related object, a LIMIT 1 clause is added
to the generated SQL so that only one row is returned.

The name of a has_one relationship should be singular, which will make it read
naturally, for example: has one :last_timesheet, has one :primary_account,
has one :profile_photo, and so on.

One-to-One Relationships 241

Let’s take a look at has_one in action by adding avatars for our users.

class Avatar < ActiveRecord::Base

belongs_to :user

end

class User < ActiveRecord::Base

has_one :avatar

... the rest of our User code ...

end

That’s simple enough. Firing this up in script/console, we can look at some
of the new methods that has_one adds to User.

>> u = User.find(:first)

>> u.avatar

=> nil

>> u.build_avatar(:url => ‘/avatars/smiling’)

#<Avatar:0x2266bac @new_record=true, @attributes={“url”=>

“/avatars/smiling”, “user_id”=>1}>

>> u.avatar.save

=> true

As you can see, we can use build_avatar to build a new avatar object and asso-
ciate it with the user. While it’s great that has_one will associate an avatar with the
user, it isn’t really anything that has_many doesn’t already do. So let’s take a look at
what happens when we assign a new avatar to the user.

>> u = User.find(:first)

>> u.avatar

=> #<Avatar:0x2266bac @attributes={“url”=>”/avatars/smiling”,

“user_id”=>1}>

>> u.create_avatar(:url => ‘/avatars/frowning’)

=> #<Avatar:0x225071c @new_record=false, @attributes={“url”=>

“/avatars/4567”, “id”=>2, “user_id”=>1}, @errors=

#<ActiveRecord::Errors:0x224fc40 @base=#<Avatar:0x225071c ...>,

@errors={}>>

242 7. ActiveRecord Associations

>> Avatar.find(:all)

=> [#<Avatar:0x22426f8 @attributes={“url”=>”/avatars/smiling”,

“id”=>”1”, “user_id”=>nil}>, #<Avatar:0x22426d0

@attributes={“url”=>”/avatars/frowning”, “id”=>”2”, “user_id”=>”1”}>]

The last line from that script/console session is the most interesting, because
it shows that our initial avatar is now no longer associated with the user. Of course,
the previous avatar was not removed from the database, which is something that we
want in this scenario. So, we’ll use the :dependent => :destroy option to force
avatars to be destroyed when they are no longer associated with a user.

class User

has_one :avatar, :dependent => :destroy

end

With some fiddling around in the console, we can verify that it works as intended.

>> u = User.find(:first)

>> u.avatar

=> #<Avatar:0x22426d0 @attributes={“url”=>”/avatars/frowning”,

“id”=>”2”, “user_id”=>”1”}>

>> u.avatar = Avatar.create(:url => “/avatars/jumping”)

=> #<Avatar:0x22512ac @new_record=false,

@attributes={“url”=>”avatars/jumping”, “id”=>3, “user_id”=>1},

@errors=#<ActiveRecord::Errors:0x22508e8 @base=#<Avatar:0x22512ac

...>,

@errors={}>>

>> Avatar.find(:all)

=> [#<Avatar:0x22426f8 @attributes={“url”=>”/avatars/smiling”, “id”

=>”1”, “user_id”=>nil}>, #<Avatar:0x2245920 @attributes={“url”=>

“avatars/jumping”,”id”=>”3”, “user_id”=>”1”}>]

As you can see, adding :dependent => :destroy got rid of the frowning avatar,
but not the smiling avatar. Rails only destroys the avatar that was just removed from
the user, so bad data that is in your database from before will still remain. Keep this
in mind when you decide to add :dependent => :destroy and remember to man-
ually clear any bad data from before.

One-to-One Relationships 243

As I alluded to earlier, has_one is often used to single out one record of signifi-
cance alongside an already established has_many relationship. For instance, let’s say
we want to easily be able to access the last timesheet a user was working on:

class User < ActiveRecord::Base

has_many :timesheets

has_one :latest_timesheet, :class_name => ‘Timesheet’

end

I had to specify a :class_name, so that ActiveRecord knows what kind of object
we’re associating. (It can’t figure it out based on the name of the association, :latest
_timesheet.)

When adding a has_one relationship to a model that already has a has_many
defined to the same related model, it is not necessary to add another belongs_to
method call to the target object, just for the new has_one. That might seem a little
counterintuitive at first, but if you think about it, the same foreign key value is being
used to read the data from the database.

What happens when you replace an existing has_one target object with another?
A lot depends on whether the newly related object was created before or after the
object that it is replacing, because ActiveRecord doesn’t add any additional ordering
parameters to its has_one query.

has_one Options

The options for has_one associations are similar to the ones for has_many.

:as

Allows you to set up a polymorphic association, covered in Chapter 9.

:class_name

Allows you to specify the class this association uses. When you’re doing has_one
:latest_timesheet, :class_name => ‘Timesheet’, :class_name =>

‘Timesheet’ specifies that latest_timesheet is actually the last Timesheet
object in the database that is associated with this user. Normally, this option is inferred
by Rails from the name of the association.

244 7. ActiveRecord Associations

:conditions

Allows you to specify conditions that the object must meet to be included in the asso-
ciation. The conditions are specified the same as if you were using
ActiveRecord#find.

class User

has_one :manager,

:class_name => ‘Person’,

:conditions => [“type = ?”, “manager”]

end

Here manager is specified as a person object that has type = “manager”. I tend
to almost always use :conditions in conjunction with has_one. When
ActiveRecord loads the association, it’s grabbing one of potentially many rows that
have the right foreign key. Absent some explicit conditions (or perhaps an order
clause), you’re leaving it in the hands of the database to pick a row.

:dependent

The :dependent option specifies how ActiveRecord should treat associated objects
when the parent object is deleted. There are a few different values that you can pass
and they work just like the :dependent option of has_many.

If you pass :destroy to it, you tell Rails to destroy the associated object when it is
no longer associated with the primary object. Passing :delete will destroy the associated
object without calling any of Rails’ normal hooks. Finally, the default (:nullify) will
simply set the foreign key values to null so that the connection is broken.

:foreign_key

Specifies the name of the foreign key column on the association’s table.

:include

Allows you to “eagerload” additional association objects when your associated object
is loaded. See the :include option of the has_many and belongs_to associations
for more details.

One-to-One Relationships 245

:order

Allows you to specify a SQL fragment that will be used to order the results. This is an
especially useful option with has_one when trying to associate the latest of something
or another.

class User

has_one :latest_timesheet,

:class_name => ‘Timesheet’,

:order => ‘created_at desc’

end

Unsaved Objects and Associations
You can manipulate objects and associations before they are saved to the database, but
there is some special behavior you should be aware of, mostly involving the saving of
associated objects. Whether an object is considered unsaved is based on the result of
calling new_record?

One-to-One Associations
Assigning an object to a has_one association automatically saves that object and the
object being replaced (if there is one), so that their foreign key fields are updated. The
exception to this behavior is if the parent object is unsaved, since that would mean
that there is no foreign key value to set.

If save fails for either of the objects being updated (due to one of them being
invalid) the assignment operation returns false and the assignment is cancelled. That
behavior makes sense (if you think about it), but it can be the cause of much confu-
sion when you’re not aware of it. If you have an association that doesn’t seem to work,
check the validation rules of the related objects.

If you happen to want to assign an object to a has_one association without sav-
ing it, you can use the association’s build method:

user.profile_photo.build(params[:photo])

Assigning an object to a belongs_to association does not save the parent or the
associated object.

246 7. ActiveRecord Associations

Collections
Adding an object to has_many and has_and_belongs_to_many collections auto-
matically saves it, unless the parent object (the owner of the collection) is not yet
stored in the database.

If objects being added to a collection (via << or similar means) fail to save prop-
erly, then the addition operation will return false. If you want your code to be a lit-
tle more explicit, or you want to add an object to a collection without automatically
saving it, then you can use the collection’s build method. It’s exactly like create,
except that it doesn’t save.

Members of a collection are automatically saved (or updated) when their parent
is saved (or updated).

Association Extensions
The proxy objects that handle access to associations can be extended with your own
application code. You can add your own custom finders and factory methods to be
used specifically with a particular association.

For example, let’s say you wanted a concise way to refer to an account’s people by
name. You might wrap the find_or_create_by_first_name_and_last_name
method of a people collection in the following neat little package as shown in Listing
7.5.

Listing 7.5 An Association Extension on a People Collection

class Account < ActiveRecord::Base

has_many :people do

def named(name)

first_name, last_name = name.split(“ “, 2)

find_or_create_by_first_name_and_last_name(first_name,

last_name)

end

end

end

Association Extensions 247

Now we have a named method available to use on the people collection.

person = Account.find(:first).people.named(“David Heinemeier Hansson”)

person.first_name # => “David”

person.last_name # => “Heinemeier Hansson”

If you need to share the same set of extensions between many associations, you
can use specify an extension module, instead of a block with method definitions.

Here is the same feature shown in Listing 7.5, except broken out into its own
Ruby module:

module ByNameExtension

def named(name)

first_name, last_name = name.split(“ “, 2)

find_or_create_by_first_name_and_last_name(first_name, last_name)

end

end

Now we can use it to extend many different relationships, as long as they’re com-
patible. (Our contract in the example consists of the find_or_create_by_first_
name_and_last_name method.)

class Account < ActiveRecord::Base

has_many :people, :extend => ByNameExtension

end

class Company < ActiveRecord::Base

has_many :people, :extend => ByNameExtension

end

If you need to use multiple named extension modules, you can pass an array of
modules to the :extend option instead of a single module, like this:

has_many :people, :extend => [ByNameExtension, ByRecentExtension]

In the case of name conflicts, methods contained in modules added later in the
array supercede those earlier in the array.

248 7. ActiveRecord Associations

The AssociationProxy Class
AssociationProxy, the parent of all association proxies (refer to Figure 7.1 if needed),
contributes a number of useful methods that apply to most kinds of associations and
can come into play when you’re writing association extensions.

reload and reset

The reset method puts the association proxy back in its initial state, which is
unloaded (cached association objects are cleared). The reload method invokes
reset, and then loads associated objects from the database.

proxy_owner, proxy_reflection, and proxy_target

References to the internal owner, reflection, and target attributes of the associ-
ation proxy, respectively.

The proxy_owner method provides a reference to the parent object holding the
association.

The proxy_reflection object is an instace of ActiveRecord::Reflection:
:AssociationReflection and contains all of the configuration options for the
association. That includes both default settings and those that were passed to the asso-
ciation method when it was declared.3

The proxy_target is the associated array (or associated object itself in the case
of belongs_to and has_one).

It might not appear sane to expose these attributes publicly and allow their
manipulation. However, without access to them it would be much more difficult to
write advanced association extensions. The loaded?, loaded, target, and target=
methods are public for similar reasons.

The following code sample demonstrates the use of proxy_owner within a
published_prior_to extension method contributed by Wilson Bilkovich:

class ArticleCategory < ActiveRecord::Base

acts_as_tree

has_many :articles do

def published_prior_to(date, options = {})

The AssociationProxy Class 249

if proxy_owner.top_level?

Article.find_all_published_prior_to(date, :category =>

proxy_owner)

else

self is the ‘articles’ association here so we inherit its

scope

self.find(:all, options)

end

end

end # has_many :articles extension

def top_level?

do we have a parent, and is our parent the root node of the tree?

self.parent && self.parent.parent.nil?

end

end

The acts_as_tree ActiveRecord plugin extension creates a self-referential asso-
ciation based on a parent_id column. The proxy_owner reference is used to check
if the parent of this association is a “top-level” node in the tree.

Conclusion
The ability to model associations is what make ActiveRecord more than just a data-
access layer. The ease and elegance with which you can declare those associations are
what make ActiveRecord more than your ordinary object-relational mapper.

In this chapter, we covered the basics of how ActiveRecord associations work. We
started by taking a look at the class hierarchy of associations classes, starting with
AssociationProxy. Hopefully, by learning about how associations work under the
hood, you’ve picked up some enhanced understanding about their power and flexibility.

Finally, the options and methods guide for each type of association should be a
good reference guide for your day-to-day development activities.

250 7. ActiveRecord Associations

References

1. http://en.wikipedia.org/wiki/Insert_(SQL)#Multirow_inserts

2. http://blog.hasmanythrough.com/articles/2006/02/28/association-goodness

3. To learn more about how the reflection object can be useful, including an explanation on how to
establish has_many :through associations via other has_many :through associations,
check out the must-read article: http://www.pivotalblabs.com/articles/2007/08/26/ten-things-i-
hate-about-proxy-objects-part-i.

Conclusion 251

This page intentionally left blank

CHAPTER 8
ActiveRecord Validations

Computers are like Old Testament gods; lots of rules and no mercy.
—Joseph Campbell

The Validations API in ActiveRecord allows you to declaratively define valid states
for your model objects. The validation methods hook into the life cycle of an
ActiveRecord model object and are able to inspect the object to determine whether
certain attributes are set, have values in a given range, or pass any other logical hur-
dles that you specify.

In this chapter, we’ll describe the validation methods available and how to use
them effectively. We’ll explore how those validation methods interact with your
model’s attributes and how the built-in error-messaging system messages can be used
effectively in your application’s user interface to provide descriptive feedback.

Finally, we’ll also cover an important RubyGem named Validatable, which
goes beyond Rails’ native capabilities by allowing you to define different sets of vali-
dation criteria for a given model object, depending on the role it is currently playing
in your system.

Finding Errors
Validation problems are also known as (drumroll please…): errors! Every
ActiveRecord model object contains a collection of errors, accessible (unsurprising-
ly) as the errors attribute. It’s an instance of the class ActiveRecord::Errors and

it’s defined in the file lib/active_record/validations.rb along with the rest of
the validation code.

When a model object is valid, the errors collection is empty. In fact, when you
call valid? on a model object, a series of steps to find errors is taken as follows (slight-
ly simplified):

1. Clear the errors collection.

2. Run validations.

3. Return whether the model’s errors collection is now empty or not.

If the errors collection ends up empty, the object is valid. Simple as that.
In some of the validation methods described in this chapter, the ones where you

have to write the actual validation logic yourself, you mark an object invalid by adding
items to the errors collection using its add methods.

We’ll cover the methods of the Errors class in some more detail later on. It
makes more sense to look at the validation methods themselves first.

The Simple Declarative Validations
Whenever possible, you should set validations for your models declaratively by using
one or more of the following class methods available to all ActiveRecord classes.
Unless otherwise noted, all of the validates methods accept a variable number of
attributes, plus options. There are some options for these validation methods that are
common to all of them, and we’ll cover them at the end of the section.

validates_acceptance_of

Many web applications have screens in which the user is prompted to agree to terms
of service or some similar concept, usually involving a check box. No actual database
column matching the attribute declared in the validation is required; when you call
this method, it will create virtual attributes automatically for each named attribute
you specify. I see this validation as a type of syntax sugar since it is so specific to web
application programming.

class Account < ActiveRecord::Base

validates_acceptance_of :privacy_policy, :terms_of_service

end

254 8. ActiveRecord Validations

Error Message

When the validates_acceptance_of validation fails, an error message is stored in
the model object reading “attribute must be accepted.”

The accept Option

The :accept option makes it easy to change the value considered acceptance. The
default value is “1”, which matches the value supplied by check boxes generated using
Rails helper methods.

class Cancellation < ActiveRecord::Base

validates_acceptance_of :account_cancellation, :accept => ‘YES’

end

If you use the preceding example in conjunction with a text field connected to the
account_cancellation attribute, the user would have to type the word YES in
order for the cancellation object to be valid.

validates_associated

When a given model has associated model objects that also need to be valid when it
is saved, you use the validates_associated method, which works with any kind
of association. When the validation is invoked (on save, by default), the valid?
method of each associated object will be called.

class Invoice < ActiveRecord::Base

has_many :line_items

validates_associated :line_items

end

It’s worth noting that careless use of validates_associated can result in a cir-
cular dependency and cause infinite recursion. Well, not infinite, but it will blow up.
Given the preceding example, do not do the following on the LineItem class:

class LineItem < ActiveRecord::Base

belongs_to :invoice

validates_associated :invoice

end

The Simple Declarative Validations 255

This validation will not fail if the association is nil because it hasn’t been set yet.
If you want to make sure that the association is populated and valid, you have to use
validates_associated in conjunction with validates_presence_of (covered
later in this chapter).

validates_confirmation_of

The validates_confirmation_of method is another case of syntactic sugar for
web applications, since it is so common to include dual-entry text fields to make sure
that the user entered critical data such as passwords and e-mail address correctly. This
validation will create a virtual attribute for the confirmation value and compare the
two attributes to make sure they match in order for the model to be valid.

Here’s an example, using our fictional Account model again:

class Account < ActiveRecord::Base

validates_confirmation_of :email, :password

end

The user interface used to set values for the Account model would need to
include extra text fields named with a _confirmation suffix, and when submitted,
the value of those fields would have to match in order for this validation to pass.

validates_each

The validates_each method is a little more free-form than its companions in the
validation family in that it doesn’t have a predefined validation function. Instead, you
give it an array of attribute names to check, and supply a Ruby block to be used in
checking each attribute’s validity.

The block function designates the model object as valid or not by merit of adding
to its errors array or not. The return value of the block is ignored.

There aren’t too many situations where this method is necessary, but one plausi-
ble example is when interacting with external services for validation. You might wrap
the external validation in a façade specific to your application, and then call it using a
validates_each block:

class Invoice < ActiveRecord::Base

validates_each :supplier_id, :purchase_order do |record, attr,

value|

256 8. ActiveRecord Validations

record.errors.add(attr) unless PurchasingSystem.validate(attr,

value)

end

end

Notice that parameters for the model instance (record), the name of the attrib-
ute, and the value to check are passed as block parameters.

validates_inclusion_of and validates_
exclusion_of

The validates_inclusion_of method and its complement, validates_
exclusion_of, are pretty cool, but unless you’re super-thorough with your applica-
tion requirements, I’ll bet a small sum that you haven’t realized yet why you need
them.

These methods take a variable number of attribute names and an :in option.
When they run, they check to make sure that the value of the attribute is included (or
excluded, respectively) in the enumerable object passed as the :in option.

The examples in the Rails docs are probably some of the best illustrations of their
use, so I’ll take inspiration from them:

class Person < ActiveRecord::Base

validates_inclusion_of :gender, :in => [‘m’,’f’],

:message => ‘O RLY?’

class Account

validates_exclusion_of :login,

:in => [‘admin’, ‘root’, ‘superuser’],

:message => ‘Borat says “Naughty, naughty!”’

end

Notice that in the examples I’ve introduced usage of the :message option, com-
mon to all validation methods, to customize the error message constructed and added
to the Errors collection when the validation fails. We’ll cover the default error mes-
sages and how to effectively customize them a little further along in the chapter.

validates_existence_of

This validation is provided by a plugin, but I’ve found it so useful in day-to-day work
that I had to include it. It checks that a foreign key in a belongs_to association
references an exisiting record in the database. You can think of it as a foreign-key

The Simple Declarative Validations 257

constraint, except in your Rails code. It also works fine with polymorphic
belongs_to associations.

class Person < ActiveRecord::Base

belongs_to :address

validates_existence_of :address

end

Josh Susser came up with the idea and the plugin and described it on his blog:

The thing that’s always frustrated me is that there isn’t a validation to enforce that
a foreign key references a record that exists. Sure, validates_presence_
of will make sure you have a foreign key that isn’t nil. And validates_
associated will tell you if the record referenced by that key passes its own
validations. But that is either too little or too much, and what I want is in the
middle ground. So I decided it was time to roll my own.
http://blog.hasmanythrough.com/2007/7/14/validate-your-existence

To install the plugin just type the following in your project directory:

$ script/plugin install

http://svn.hasmanythrough.com/public/plugins/validates_existence/

As for options, if :allow_nil => true, then the key itself may be nil and no
validation will occur. A non-nil key will cause a query to be issued to make sure that
the foreign object exists in the database. The default error message is “does not exist”,
but can be overriden just like other validations using the :message option.

validates_format_of

To use validates_format_of, you’ll have to know how to use Ruby regular expres-
sions. Pass the method one or more attributes to check, and a regular expression as the
(required) :with option. A good example, as shown in the Rails docs, is checking for
a valid e-mail address format:

class Person < ActiveRecord::Base

validates_format_of :email,

:with => /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i

end

258 8. ActiveRecord Validations

By the way, that example is totally not an RFC-compliant email address format
checker1.

Courtenay Says...

Regular expressions are awesome but can get very com-
plex, particularly when validating domain names or email
addresses.

You can use #{} inside regular expressions, so split up
your regex into chunks like this:
validates_format_of :name, :with =>

/^((localhost)|#{DOMAIN}|#{NUMERIC_IP})#{PORT}$/

That expression is pretty straightforward and easy to
understand.

The constants themselves are not so easy to understand
but easier than if they were all jumbled in together:
PORT = /(([:]\d+)?)/

DOMAIN = /([a-z0-9\-]+\.?)*([a-z0-9]{2,})\.[a-z]{2,}/

NUMERIC_IP = /(?>(?:1?\d?\d|2[0-4]\d|25[0-

5])\.){3}(?:1?\d?\d|2[0-4]\d|25[0-

5])(?:\/(?:[12]?\d|3[012])|-(?> (?:1?\d?\d|2[0-

4]\d|25[0-5])\.){3}(?:1?\d?\d|2[0-4]\d|25[0-5]))?/

validates_length_of

The validates_length_of method takes a variety of different options to let you
concisely specify length constraints for a given attribute of your model.

class Account < ActiveRecord::Base

validates_length_of :login, :minimum => 5

end

The Simple Declarative Validations 259

Constraint Options

The :minimum and :maximum options work as expected, but don’t use them togeth-
er. To specify a range, use the :within option and pass it a Ruby range, as in the fol-
lowing example:

class Account < ActiveRecord::Base

validates_length_of :login, :within => 5..20

end

To specify an exact length of an attribute, use the :is option:

class Account < ActiveRecord::Base

validates_length_of :account_number, :is => 16

end

Error Message Options

Rails gives you the ability to generate detailed error messages for validates_length_of
via the :too_long, :too_short, and :wrong_length options. Use %d in your custom
error message as a placeholder for the number corresponding to the constraint.

class Account < ActiveRecord::Base

validates_length_of :account_number, :is => 16,

:wrong_length => “should be %d characters long”

end

validates_numericality_of

The somewhat clumsily named validates_numericality_of method is used to
ensure that an attribute can only hold a numeric value. The :integer_only option
lets you further specify that the value should only be an integral value and defaults to
false.

class Account < ActiveRecord::Base

validates_numericality_of :account_number, :integer_only => true

end

260 8. ActiveRecord Validations

validates_presence_of

Last but not least is one of the more common validation methods,
:validates_presence_of, which is used to denote mandatory attributes. This
method checks whether the attribute is blank via Rails’ blank? method, defined on
Object, which returns true for values that are nil or a blank string “”.

class Account < ActiveRecord::Base

validates_presence_of :login, :email, :account_number

end

Validating the Presence of Associated Objects

When you’re trying to ensure that an association is present, write your association
against its foreign key attribute, not the association variable itself. Note that the vali-
dation will fail in cases when both the parent and child object are unsaved (since the
foreign key will be blank).

validates_uniqueness_of

The validates_uniqueness_of method ensures that the value of an attribute is
unique for all models of the same type. This validation does not work by adding a
uniqueness constraint at the database level. It does work by constructing and execut-
ing a query looking for a matching record in the database. If any record is returned
when this method does its query, the validation fails.

class Account < ActiveRecord::Base

validates_uniqueness_of :login

end

By specifying a :scope option, additional attributes can be used to determine
uniqueness. You may pass :scope one or more attribute names as symbols (putting
multiple symbols in an array).

class Address < ActiveRecord::Base

validates_uniqueness_of :line_two, :scope => [:line_one, :city,

:zip]

end

The Simple Declarative Validations 261

It’s also possible to specify whether to make the uniqueness constraint case-
sensitive or not, via the :case_sensitive option (ignored for nontextual attributes).

Enforcing Uniqueness of Join Models

In the course of using join models (with has_many :through), it seems pretty com-
mon to need to make the relationship unique. Consider an application that models
students, courses, and registrations with the following code:

class Student < ActiveRecord::Base

has_many :registrations

has_many :courses, :through => :registrations

end

class Registration < ActiveRecord::Base

belongs_to :student

belongs_to :course

end

class Course < ActiveRecord::Base

has_many :registrations

has_many :students, :through => :registrations

end

How do you make sure that a student is not registered more than once for a partic-
ular course? The most concise way is to use validates_uniqueness_of with a
:scope constraint. The important thing to remember with this technique is to refer-
ence the foreign keys, not the names of the associations themselves:

class Registration < ActiveRecord::Base

belongs_to :student

belongs_to :course

validates_uniqueness_of :student_id, :scope => :course_id,

:message => “can only register once per

course”

end

Notice that since the default error message generated when this validation fails
would not make sense, I’ve provided a custom error message that will result in the
expression: “Student can only register once per course.”

262 8. ActiveRecord Validations

RecordInvalid

Whenever you do so-called bang operations (such as save!) or operations that save
behind the scenes, and a validation fails, you should be prepared to rescue
ActiveRecord::RecordInvalid. Validation failures will cause RecordInvalid to
be raised and its message will contain a description of the failures.

Here’s a quick example from one of my applications that has pretty restrictive val-
idations on its User model:

>> u = User.new

=> #<User ...>

>> u.save!

ActiveRecord::RecordInvalid: Validation failed: Name can’t be blank,

Password confirmation can’t be blank, Password is too short (minimum

is 5 characters), Email can’t be blank, Email address format is bad

Common Validation Options
The following options apply to all of the validation methods.

:allow_nil

In many cases, you only want to trigger a validation if a value is present and the
absence of a value is not a problem. The :allow_nil option skips the validation if
the value of the attribute is nil. Remember that this option only checks for nil, and
empty strings “” are not considered nil.

:if

The :if option is covered in the next section, “Conditional Validation.”

:message

As we’ve discussed earlier in the chapter, the way that the validation process registers
failures is by adding items to the Errors collection of the model object being
checked. Part of the error item is a specific message describing the validation failure.
All of the validation methods accept a :message option so that you can override the
default error message format.

Common Validation Options 263

class Account < ActiveRecord::Base

validates_uniqueness_of :login, :message => “is already taken”

end

:on

By default, validations are run on save (both create and update operations). If you
need to do so, for whatever reason, you can limit a given validation to just one of those
operations by passing the :on option either :create or :update.

One good use for :on => :create is in conjunction with validates_
uniqueness_of, since checking uniqueness with a query on large datasets can be
time-consuming.

class Account < ActiveRecord::Base

validates_uniqueness_of :login, :on => :create

end

But wait a minute—wouldn’t that pose a problem if the account model was
updated later on with a nonunique value? That’s where attr_protected comes in.
Sensitive attributes of your model should be protected from mass assignment using
the attr_protected method. In your controller action that creates new accounts,
you’ll have to grab the login parameter and set it manually.

Conditional Validation
All validation methods also accept an :if option, to determine at runtime (and not
during the class definition) whether the validation needs to be run or not.

The following evaluate_condition method, from ActiveRecord:

:Validations, is called with the value of the :if option as the condition param-
eter and the model object to be validated as record:

Determine from the given condition whether or not to validate the

record, (whether a block, procedure, method or string.)

def evaluate_condition(condition, record)

case condition

when Symbol: record.send(condition)

when String: eval(condition, binding)

else

if condition_block?(condition)

264 8. ActiveRecord Validations

condition.call(record)

else

raise ActiveRecordError,

“Needs to be a symbol, string (to be eval’ed), or a proc”

end

end

end

As can be discerned by the case statement in the implementation of the method,
the following three types of arguments can be supplied as an :if option:

• Symbol The name of a method to invoke as a symbol. This is probably the most
common option, and offers the best performance.

• String A snippet of Ruby code to eval might be useful when the condition is
really short, but keep in mind that eval’ing statements is relatively slow.

• Block A proc to be call’d. Perhaps the most elegant choice for one-line con-
ditionals.

Usage and Considerations
When does it make sense to use conditional validations? The answer is: whenever an
object can be validly persisted in more than one state.

A very common example, since it is used by the acts_as_authenticated plu-
gin, involves the User (or Person) model, used for login and authentication.

validates_presence_of :password, :if => :password_required?

validates_presence_of :password_confirmation, :if =>

:password_required?

validates_length_of :password, :within => 4..40,

:if=>:password_required?

validates_confirmation_of :password, :if => :password_required?

This code is not DRY (meaning that it is repetitive). You can learn how to refac-
tor it using the with_options method described in Chapter 14, “Login and
Authentication.” Usage and implementation of the acts_as_authenticated plug-
in is covered in greater detail in Chapter 14.

Conditional Validation 265

There are only two cases when a (plaintext) password field should be required in
order for the model to be valid.

protected

def password_required?

crypted_password.blank? || !password.blank?

end

The first case is if the crypted_password attribute is blank, because that means
we are dealing with a new User instance that has not been given a password yet. The
other case is when the password attribute itself is not blank; perhaps this is happen-
ing during an update operation and the user is attempting to reset her password.

Working with the Errors Object
Here’s a quick reference of the default wording for error messages, pulled straight out
of the Rails codebase:

@@default_error_messages = {

:inclusion => “is not included in the list”,

:exclusion => “is reserved”,

:invalid => “is invalid”,

:confirmation => “doesn’t match confirmation”,

:accepted => “must be accepted”,

:empty => “can’t be empty”,

:blank => “can’t be blank”,

:too_long => “is too long (maximum is %d characters)”,

:too_short => “is too short (minimum is %d characters)”,

:wrong_length => “is the wrong length (should be %d characters)”,

:taken => “has already been taken”,

:not_a_number => “is not a number”

}

As we stated previously, the name of the attribute is capitalized and prepended to
the beginning of those default error messages to create the validation failure message.
Remember, you can override the default message by using the :message option.

266 8. ActiveRecord Validations

Manipulating the Errors Collection
Some methods are provided to allow you to add validation errors to the collection
manually and alter the state of the Errors collection.

add_to_base(msg)

Adds an error message related to the object state itself and not the value of any partic-
ular attribute. Make your error messages complete sentences, because Rails does not
do any additional processing of them to make them readable.

add(attribute, msg)

Adds an error message related to a particular attribute. The message should be a sen-
tence fragment that reads naturally when prepended with the capitalized name of the
attribute.

clear

As you might expect, the clear method clears the Errors collection.

Checking for Errors
It’s also possible to check the Errors object for validation failures on specific attrib-
utes with a couple of methods.

invalid?(attribute)

Returns true or false depending on whether there are validation errors associated with
attribute.

on(attribute)

Has multiple return types depending on the state of the errors collection for an
attribute. Returns nil if no errors are associated with the specified attribute.
Returns an error message string if only one error is associated with the specified attrib-
ute. Finally, returns an array of error message strings if more than one error is associ-
ated with the specified attribute.

Working with the Errors Object 267

Custom Validation
We’ve now reached the matter of custom validation methods, which you might choose
to employ if the normal declarative validation methods are not cutting it for you.

Earlier in the chapter, I described the process used to find validation errors, with
a disclaimer that my explanation was slightly simplified. Here is the real implementa-
tion, since it is quite elegant and readable in my opinion, and helps illuminate where
custom validation logic can be added.

def valid?

errors.clear

run_validations(:validate)

validate

if new_record?

run_validations(:validate_on_create)

validate_on_create

else

run_validations(:validate_on_update)

validate_on_update

end

errors.empty?

end

There are three calls to run_validations, which is where your declarative vali-
dations have been lined up, ready to check your object, if you’ve defined any. Then
there are those three callback (abstract?) methods, that is, methods that are purposely
left without an implementation in the Validations module. They are intended to
be overwritten in your own ActiveRecord model if you need them.

Custom validation methods are useful for checking the state of your object holis-
tically, not just based on individual attributes. For lack of a better example, let’s assume
that you are dealing with a model object with a set of three integer attributes (:attr1,
:attr2, and :attr3) and a precalculated total attribute (:total). The total must
always equal the sum of the three attributes:

class CompletelyLameTotalExample < ActiveRecord::Base

def validate

if total != (attr1 + attr2 + attr3)

268 8. ActiveRecord Validations

errors.add_to_base(“The total doesn’t add up!”)

end

end

end

Remember: The way to mark an object as invalid is to add to its Errors collec-
tion. The return value of a custom validation method is not used.

Skipping Validations
The Validations module mixed into ActiveRecord::Base affects three instance
methods, as you can see in the following code snippet (from activerecord/lib/
active_record/validations.rb in the Rails codebase):

def self.included(base) # :nodoc:

base.extend ClassMethods

base.class_eval do

alias_method_chain :save, :validation

alias_method_chain :save!, :validation

alias_method_chain :update_attribute, :validation_skipping

end

end

The methods save, save!, and update_attribute are affected. The validation
process on save and save! can be skipped by passing in false as a method param-
eter.

The first time I came across save(false) in Rails code, it drove me a little batty.
I thought to myself, “I don’t remember save having a parameter,” and when I checked
the API docs, that was indeed the case! Figuring the docs must be lying, I dove into
the codebase and checked the implementation of the save method in
ActiveRecord::Base. No parameter. “WTF, welcome to the wonderful world of
Ruby,” I thought to myself. “How the heck am I not getting a 1 for 0 argument error
here?”

Eventually I figured it out, or maybe some kind #cabooser clued me in: the reg-
ular Base#save method is replaced when the validations module is mixed in, which
it is by default. As a result of using alias_method_chain, you end up with a pub-
lic, yet undocumented, save_without_validation method, which is probably a lot
more maintainable than save(false).

Skipping Validations 269

What about update_attribute? The validations module overwrites the default
implementation and makes it call save(false). It’s short, so I’ll include it here:

def update_attribute_with_validation_skipping(name, value)

send(name.to_s + ‘=’, value)

save(false)

end

That’s why update_attribute doesn’t invoke validations, yet its companion
method update_attributes does, a question that comes up quite often on the mail-
ing list. Whoever wrote the API docs believes that this behavior is “especially useful
for Boolean flags on existing records.”

I don’t know if that is entirely true or not, but I do know that it is the source of
ongoing contention in the community. Unfortunately, I don’t have much more to add
other than some simple common-sense advice: Be very careful using the
update_attribute method. It can easily persist your model objects in invalid states.

Conclusion
In this (relatively speaking) short chapter, we covered the ActiveRecord Validations
API in-depth. One of the most appealing aspects of Rails is how we can declaratively
specify the criteria for determining the validity of model objects.

Reference

1. If you need to validate addresses try the plugin at http://code.dunae.ca/validates_email_format_of.

270 8. ActiveRecord Validations

CHAPTER 9
Advanced ActiveRecord

ActiveRecord is a simple object-relational mapping (ORM) framework compared to
other popular ORM frameworks, such as Hibernate in the Java world. Don’t let that
fool you, though: Under its modest exterior, ActiveRecord has some pretty
advanced features. To really get the most effectiveness out of Rails development, you
need to have more than a basic understanding of ActiveRecord—things like know-
ing when to break out of the one-table/one-class pattern, or how to leverage Ruby
modules to keep your code clean and free of duplication.

In this chapter, we wrap up this book’s comprehensive coverage of ActiveRecord
by reviewing callbacks, observers, single-table inheritance (STI), and polymorphic
models. We also review a little bit of information about metaprogramming and Ruby
domain-specific languages (DSLs) as they relate to ActiveRecord.

Callbacks
This advanced feature of ActiveRecord allows the savvy developer to attach behav-
ior at a variety of different points along their model’s life cycle, such as after initial-
ization, before database records are inserted, updated or removed, and so on.

Callbacks can do a variety of tasks, ranging from simple things such as logging
and massaging of attribute values prior to validation, to complex calculations.
Callbacks can halt the execution of the life-cycle process taking place. Some callbacks
can even modify the behavior of the model class on the fly. We’ll cover all of those

scenarios in this section, but first let’s get a taste of what a callback looks like. Check
out the following silly example:

class Beethoven < ActiveRecord::Base

before_destroy :last_words

...

protected

def last_words

logger.info “Friends applaud, the comedy is over”

end

end

So prior to dying (ehrm, being destroy’d), the last words of the Beethoven class
will always be logged for posterity. As we’ll see soon, there are 14 different opportuni-
ties to add behavior to your model in this fashion. Before we get to that list, let’s cover
the mechanics of registering a callback.

Callback Registration
Overall, the most common way to register a callback method is to declare it at the top
of the class using a typical Rails macro-style class method. However, there’s a less ver-
bose way to do it also. Simply implement the callback as a method in your class. In
other words, I could have coded the prior example as follows:

class Beethoven < ActiveRecord::Base

...

protected

def before_destroy

logger.info “Friends applaud, the comedy is over”

end

end

272 9. Advanced ActiveRecord

This is a rare case of the less-verbose solution being bad. In fact, it is almost always
preferable, dare I say it is the Rails way, to use the callback macros over implementing
callback methods, for the following reasons:

• Macro-style callback declarations are added near the top of the class definition,
making the existence of that callback more evident versus a method body later in
the file.

• Macro-style callbacks add callback methods to a queue. That means that more
than one method can be hooked into the same slot in the life cycle. Callbacks will
be invoked in the order in which they were added to the queue.

• Callback methods for the same hook can be added to their queue at different lev-
els of an inheritance hierarchy and still work—they won’t override each other the
way that methods would.

• Callbacks defined as methods on the model are always called last.

One-Liners

Now, if (and only if) your callback routine is really short,1 you can add it by passing
a block to the callback macro. We’re talking one-liners!

class Napoleon < ActiveRecord::Base

before_destroy {|r| logger.info “Josephine...” }

...

end

Protected or Private

Except when you’re using a block, the access level for callback methods should always
be protected or private. It should never be public, since callbacks should never be
called from code outside the model.

Believe it or not, there are even more ways to implement callbacks, but we’ll cover
those techniques further along in the chapter. For now, let’s look at the lists of callback
hooks available.

Callbacks 273

Matched before/after Callbacks
In total, there are 14 types of callbacks you can register on your models! Twelve of
them are matching before/after callback pairs, such as before_validation and
after_validation. (The other two, after_initialize and after_find, are
special, and we’ll discuss them later in this section.)

List of Callbacks

This is the list of callback hooks available during a save operation. (The list varies
slightly depending on whether you’re saving a new or existing record.)

• before_validation

• before_validation_on_create

• after_validation

• after_validation_on_create

• before_save

• before_create (for new records) and before_update (for existing records)

• ActiveRecord talks to the database and actually does an INSERT or UPDATE

• after_create (for new records) and before_update (for existing records)

• after_save

Delete operations have their own two callbacks:

• before_destroy

• ActiveRecord talks to the database and actually does a DELETE

• after_destroy is called after all attributes have been frozen (read-only)

Halting Execution
If you return a Boolean false (not nil) from a callback method, ActiveRecord
halts the execution chain. No further callbacks are executed. The save method will
return false, and save! will raise a RecordNotSaved error.

274 9. Advanced ActiveRecord

Keep in mind that since the last expression of a Ruby method is returned implic-
itly, it is a pretty common bug to write a callback that halts execution unintentional-
ly. If you have an object with callbacks that mysteriously fails to save, make sure you
aren’t returning false by mistake.

Callback Usages
Of course, the callback you should use for a given situation depends on what you’re
trying to accomplish. The best I can do is to serve up some examples to inspire you
with your own code.

Cleaning Up Attribute Formatting with before_validate_on_create

The most common examples of using before_validate callbacks have to do with
cleaning up user-entered attributes. For example, the following CreditCard class (as
cited in the Rails API docs) cleans up its number attribute so that false negatives don’t
occur on validation:

class CreditCard < ActiveRecord::Base

...

private

def before_validation_on_create

Strip everything in the number except digits

self.number = number.gsub(/[^0-9]/, “”)

end

end

Geocoding with before_save

Assume that you have an application that tracks addresses and has mapping features.
Addresses should always be geocoded before saving, so that they can be displayed rap-
idly on a map later.2

As is often the case, the wording of the requirement itself points you in the direc-
tion of the before_save callback:

class Address < ActiveRecord::Base

include GeoKit::Geocoders

Callbacks 275

before_save :geolocate

validates_presence_of :line_one, :state, :zip

...

private

def geolocate

res = GoogleGeocoder.geocode(to_s)

self.latitude = res.lat

self.longitude = res.lng

end

end

Before we move on, there are a couple of additional considerations. The preced-
ing code works great if the geocoding succeeds, but what if it doesn’t? Do we still want
to allow the record to be saved? If not, we should halt the execution chain:

def geolocate

res = GoogleGeocoder.geocode(to_s)

return false if not res.success # halt execution

self.latitude = res.lat

self.longitude = res.lng

end

The only problem remaining is that we give the rest of our code (and by exten-
sion, the end user) no indication of why the chain was halted. Even though we’re not
in a validation routine, I think we can put the errors collection to good use here:

def geolocate

res = GoogleGeocoder.geocode(to_s)

if res.success

self.latitude = res.lat

self.longitude = res.lng

else

errors.add_to_base(“Geocoding failed. Please check address.”)

return false

end

end

276 9. Advanced ActiveRecord

If the geocoding fails, we add a base error message (for the whole object) and halt
execution, so that the record is not saved.

Paranoia with before_destroy

What if your application has to handle important kinds of data that, once entered,
should never be deleted? Perhaps it would make sense to hook into ActiveRecord’s
destroy mechanism and somehow mark the record as deleted instead?

The following example depends on the accounts table having a deleted_at
datetime column.

class Account < ActiveRecord::Base

...

def before_destroy

update_attribute(:deleted_at, Time.now) and return false

end

end

I chose to implement it as a callback method so that I am guaranteed it will exe-
cute last in the before_destroy queue. It returns false so that execution is halted
and the underlying record is not actually deleted from the database.3

It’s probably worth mentioning that there are ways that Rails allows you to unin-
tentionally circumvent before_destroy callbacks:

• The delete and delete_all class methods of ActiveRecord::Base are
almost identical. They remove rows directly from the database without instanti-
ating the corresponding model instances, which means no callbacks will occur.

• Model objects in associations defined with the option :dependent =>

:delete_all will be deleted directly from the database when removed from the
collection using the association’s clear or delete methods.

Cleaning Up Associated Files with after_destroy

Model objects that have files associated with them, such as attachment records and
uploaded images, can clean up after themselves when deleted using the

Callbacks 277

after_destroy callback. The following method from Rick Olson’s excellent
AttachmentFu4 plugin is a good example:

Destroys the file. Called in the after_destroy callback

def destroy_file

FileUtils.rm(full_filename)

...

rescue

logger.info “Exception destroying #{full_filename ... }”

logger.warn $!.backtrace.collect { |b| “ > #{b}” }.join(“\n”)

end

Special Callbacks: after_initialize and after_find

The after_initialize callback is invoked whenever a new ActiveRecord model
is instantiated (either from scratch or from the database). Having it available prevents
you from having to muck around with overriding the actual initialize method.

The after_find callback is invoked whenever ActiveRecord loads a model
object from the database, and is actually called before after_initialize, if both are
implemented. Because after_find and after_initialize are called for each
object found and instantiated by finders, performance constraints dictate that they can
only be added as methods, and not via the callback macros.

What if you want to run some code only the first time that a model is ever instan-
tiated, and not after each database load? There is no native callback for that scenario,
but you can do it using the after_initialize callback. Just add a condition that
checks to see if it is a new record:

def after_initialize

if new_record?

...

end

end

In a number of Rails apps that I’ve written, I’ve found it useful to capture user
preferences in a serialized hash associated with the User object. The serialize fea-
ture of ActiveRecord models makes this possible, since it transparently persists Ruby

278 9. Advanced ActiveRecord

object graphs to a text column in the database. Unfortunately, you can’t pass it a
default value, so I have to set one myself:

class User < ActiveRecord::Base

serialize :preferences # defaults to nil

...

private

def after_initialize

self.preferences ||= Hash.new

end

end

Using the after_initialize callback, I can automatically populate the pref-
erences attribute of my user model with an empty hash, so that I never have to worry
about it being nil when I access it with code such as user.preferences
[:show_help_text] = false. Of course, you would only want to store data in seri-
alized columns that you had no interest in querying with SQL in the future.

Ruby’s metaprogramming capabilities combined with the ability to run code
whenever a model is loaded using the after_find callback are a powerful mix. Since
we’re not done learning about callbacks yet, we’ll come back to uses of after_find
later on in the chapter, in the section “Modifying ActiveRecord Classes at
Runtime.”

Callback Classes
It is common enough to want to reuse callback code for more than one object that
Rails gives you a way to write callback classes. All you have to do is pass a given call-
back queue an object that responds to the name of the callback and takes the model
object as a parameter.

Here’s our paranoid example from the previous section as a callback class:

class MarkDeleted

def self.before_destroy(model)

model.update_attribute(:deleted_at, Time.now) and return false

end

end

Callbacks 279

The behavior of MarkDeleted is stateless, so I added the callback as a class
method. Now you don’t have to instantiate MarkDeleted objects for no good reason.
All you do is pass the class to the callback queue for whichever models you want to
have the mark-deleted behavior:

class Account < ActiveRecord::Base

before_destroy MarkDeleted

...

end

class Invoice < ActiveRecord::Base

before_destroy MarkDeleted

...

end

Multiple Callback Methods in One Class

There’s no rule that says you can’t have more than one callback method in a callback
class. For example, you might have special audit log requirements to implement:

class Auditor

def initialize(audit_log)

@audit_log = audit_log

end

def after_create(model)

@audit_log.created(model.inspect)

end

def after_update(model)

@audit_log.updated(model.inspect)

end

def after_destroy(model)

@audit_log.destroyed(model.inspect)

end

end

280 9. Advanced ActiveRecord

To add audit logging to an ActiveRecord class, you would do the following:

class Account < ActiveRecord::Base

after_create Auditor.new(DEFAULT_AUDIT_LOG)

after_update Auditor.new(DEFAULT_AUDIT_LOG)

after_destroy Auditor.new(DEFAULT_AUDIT_LOG)

...

end

Wow, that’s kind of ugly, having to add three Auditors on three lines. We could
extract a local variable called auditor, but it would still be repetitive. This might be
an opportunity to take advantage of Ruby’s open classes, the fact that you can modify
classes that aren’t part of your application.

Wouldn’t it be better to simply say acts_as_audited at the top of the model
that needs auditing? We can quickly add it to the ActiveRecord::Base class, so that
it’s available for all our models.

On my projects, the file where “quick and dirty” code like the method in Listing 9.1
would reside is lib/core_ext/active_record_base.rb, but you can put it any-
where you want. You could even make it a plugin (as detailed in Chapter 19, “Extending
Rails with Plugins”). Just make sure to require it from config/environment.rb or it’ll
never get loaded.

Listing 9.1 A Quick-and-Dirty “Acts As Audited” Method

class ActiveRecord::Base
def self.acts_as_audited(audit_log=DEFAULT_AUDIT_LOG)
auditor = Auditor.new(audit_log)
after_create auditor
after_update auditor
after_destroy auditor

end
end

Now, the top of Account is a lot less cluttered:

class Account < ActiveRecord::Base

acts_as_audited

...

end

Callbacks 281

Testability

When you add callback methods to a model class, you pretty much have to test that
they’re functioning correctly in conjunction with the model to which they are added.
That may or may not be a problem. In contrast, callback classes are super-easy to test
in isolation.

The following test method verifies correct operation of our Auditor callback
class (using the Mocha mocking library available at http://mocha.rubyforge.org/):

def test_auditor_logs_created

(model = mock).expects(:inspect).returns(‘foo’)

(log = mock).expects(:created).with(‘foo’)

Auditor.new(log).after_create(model)

end

Chapter 17, “Testing,” and Chapter 18, “RSpec on Rails,” cover testing with
Test::Unit and RSpec, respectively.

Observers
The single responsibility principle is a very important tenet of object-oriented pro-
gramming. It compels us to keep a class focused on a single concern. As you’ve learned
in the previous section, callbacks are a useful feature of ActiveRecord models that
allow us to hook in behavior at various points of a model object’s life cycle. Even if we
pull that extra behavior out into callback classes, the hook still requires code changes
in the model class definition itself. On the other hand, Rails gives us a way to hook in
that is completely transparent to the model class: Observers.

Here is the functionality of our old Auditor callback class as an observer of
Account objects:

class AccountObserver < ActiveRecord::Observer

def after_create(model)

DEFAULT_AUDIT_LOG.created(model.inspect)

end

def after_update(model)

DEFAULT_AUDIT_LOG.updated(model.inspect)

end

def after_destroy(model)

282 9. Advanced ActiveRecord

DEFAULT_AUDIT_LOG.destroyed(model.inspect)

end

end

Naming Conventions
When ActiveRecord::Observer is subclassed, it breaks down the name of the sub-
class by stripping off the “Observer” part. In the case of our AccountObserver in the
preceding example, it would know that you want to observe the Account class.
However, that’s not always desirable behavior. In fact, with general-purpose code such
as our Auditor, it’s positively a step backward, so it’s possible to overrule the naming
convention with the use of the observe macro-style method. We still extend
ActiveRecord::Observer, but we can call the subclass whatever we want and tell
it explicitly what to observe:

class Auditor < ActiveRecord::Observer

observe Account, Invoice, Payment

def after_create(model)

DEFAULT_AUDIT_LOG.created(model.inspect)

end

def after_update(model)

DEFAULT_AUDIT_LOG.updated(model.inspect)

end

def after_destroy(model)

DEFAULT_AUDIT_LOG.destroyed(model.inspect)

end

end

Registration of Observers
If there weren’t a place for you to tell Rails which observers to load, they would never
get loaded at all, since they’re not referenced from any other code in your application.
As mentioned in Chapter 1, “Rails Environments and Configuration,” your applica-
tion’s boilerplate config/environment.rb has a commented-out line where you
should define the observers to be loaded:

Activate observers that should always be running

config.active_record.observers = [:auditor]

Observers 283

Timing
Observers are notified before the in-object callbacks are triggered. Otherwise, it
wouldn’t be possible to act on the whole object in something like a before_destroy
observer without having the object’s own callbacks executed first.

Single-Table Inheritance (STI)
A lot of applications start out with a User model of some sort. Over time, as differ-
ent kinds of users emerge, it might make sense to make a greater distinction between
them. Admin and Guest classes are introduced, as subclasses of User. Now, the shared
behavior can reside in User, and subtype behavior can be pushed down to subclasses.
However, all user data can still reside in the users table—all you need to do is intro-
duce a type column that will hold the name of the class to be instantiated for a given
row.

To continue explaining single-table inheritance, let’s turn back to our example of
a recurring Timesheet class. We need to know how many billable_hours are out-
standing for a given user. The calculation can be implemented in various ways, but in
this case we’ve chosen to write a pair of class and instance methods on the Timesheet
class:

class Timesheet < ActiveRecord::Base

...

def billable_hours_outstanding

if submitted?

billable_weeks.map(&:total_hours).sum

else

0

end

end

def self.billable_hours_outstanding_for(user)

user.timesheets.map(&:billable_hours_outstanding).sum

end

end

284 9. Advanced ActiveRecord

I’m not suggesting that this is good code. It works, but it’s inefficient and that
if/else condition is a little fishy. Its shortcomings become apparent once require-
ments emerge about marking a Timesheet as paid. It forces us to modify
Timesheet’s billable_hours_outstanding method again:

def billable_hours_outstanding

if submitted? and not paid?

billable_weeks.map(&:total_hours).sum

else

0

end

end

That latest change is a clear violation of the open-closed principle,5 which urges you
to write code that is open for extension, but closed for modification. We know that
we violated the principle, because we were forced to change the billable_hours_
outstanding method to accommodate the new Timesheet status. Though it may
not seem like a large problem in our simple example, consider the amount of condi-
tional code that will end up in the Timesheet class once we start having to imple-
ment functionality such as paid_hours and unsubmitted_hours.

So what’s the answer to this messy question of the constantly changing condi-
tional? Given that you’re reading the section of the book about single-table
inheritance, it’s probably no big surprise that we think one good answer is to use
object-oriented inheritance. To do so, let’s break our original Timesheet class into
four classes.

class Timesheet < ActiveRecord::Base

non-relevant code ommitted

def self.billable_hours_outstanding_for(user)

user.timesheets.map(&:billable_hours_outstanding).sum

end

end

class DraftTimesheet < Timesheet

def billable_hours_outstanding

0

end

end

Single-Table Inheritance (STI) 285

class SubmittedTimesheet < Timesheet

def billable_hours_outstanding

billable_weeks.map(&:total_hours).sum

end

end

Now when the requirements demand the ability to calculate partially paid
timesheets, we need only add some behavior to a PaidTimesheet class. No messy
conditional statements in sight!

class PaidTimesheet < Timesheet

def billable_hours_outstanding

billable_weeks.map(&:total_hours).sum - paid_hours

end

end

Mapping Inheritance to the Database
Mapping object inheritance effectively to a relational database is not one of those
problems with a definitive solution. We’re only going to talk about the one mapping
strategy that Rails supports natively, which is single-table inheritance, called STI for
short.

In STI, you establish one table in the database to holds all of the records for any
object in a given inheritance hierarchy. In ActiveRecord STI, that one table is
named after the top parent class of the hierarchy. In the example we’ve been consider-
ing, that table would be named timesheets.

Hey, that’s what it was called before, right? Yes, but to enable STI we have to add
a type column to contain a string representing the type of the stored object. The fol-
lowing migration would properly set up the database for our example:

class AddTypeToTimesheet < ActiveRecord::Migration

def self.up

add_column :timesheets, :type, :string

end

def self.down

remove_column :timesheets, :type

end

end

286 9. Advanced ActiveRecord

No default value is needed. Once the type column is added to an ActiveRecord
model, Rails will automatically take care of keeping it populated with the right value.
Using the console, we can see this behavior in action:

>> d = DraftTimesheet.create

>> d.type

=> ‘DraftTimesheet’

When you try to find an object using the find methods of a base STI class, Rails
will automatically instantiate objects using the appropriate subclass. This is especially
useful in cases such as the timesheet example we’ve been describing, where we retrieve
all the records for a particular user and then call methods that behave differently
depending on the object’s class.

>> Timesheet.find(:first)

=> #<DraftTimesheet:0x2212354...>

Sebastian Says…

The word “type” is a very common column name and you
might have plenty of uses for it not related to STI—which
is why it’s very likely you’ve experienced an
ActiveRecord::SubclassNotFound error. Rails will
read the “type” column of your Car class and try to find
an “SUV” class that doesn’t exist.

The solution is simple: Tell Rails to use another column
for STI with the following code:
set_inheritance_column “not_sti”

Rails won’t complain about the missing column; it will
simply ignore it.

Recently, the error message was reworded with a better
explanation, but too many developers skim error messages
and then spend an hour trying to figure out what’s wrong
with their models. (A lot of people skim sidebar columns
too when reading books, but hey, at least I am doubling
their chances of learning about this problem.)

Single-Table Inheritance (STI) 287

STI Considerations
Although Rails makes it extremely simple to use single-table inheritance, there are a
few caveats that you should keep in mind.

To begin with, you cannot have an attribute on two different subclasses with the same
name but a different type. Since Rails uses one table to store all subclasses, these attrib-
utes with the same name occupy the same column in the table. Frankly, there’s not
much of a reason why that should be a problem unless you’ve made some pretty bad
data-modeling decisions.

More importantly, you need to have one column per attribute on any subclass and
any attribute that is not shared by all the subclasses must accept nil values. In the recur-
ring example, PaidTimesheet has a paid_hours column that is not used by any of
the other subclasses. DraftTimesheet and SubmittedTimesheet will not use the
paid_hours column and leave it as null in the database. In order to validate data for
columns not shared by all subclasses, you must use ActiveRecord validations and
not the database.

Third, it is not a good idea to have subclasses with too many unique attributes. If you
do, you will have one database table with many null values in it. Normally, a tree of
subclasses with a large number of unique attributes suggests that something is wrong
with your application design and that you should refactor. If you have an STI table
that is getting out of hand, it is time to reconsider your decision to use inheritance to
solve your particular problem. Perhaps your base class is too abstract?

Finally, legacy database constraints may require a different name in the database
for the type column. In this case, you can set the new column name using the class
method set_inheritance_column in the base class. For the Timesheet example,
we could do the following:

class Timesheet < ActiveRecord::Base

set_inheritance_column ‘object_type’

end

Now Rails will automatically populate the object_type column with the
object’s type.

STI and Associations
It seems pretty common for applications, particularly data-management ones, to have
models that are very similar in terms of their data payload, mostly varying in their
behavior and associations to each other. If you used object-oriented languages prior to

288 9. Advanced ActiveRecord

Rails, you’re probably already accustomed to breaking down problem domains into
hierarchical structures.

Take for instance, a Rails application that deals with the population of states,
counties, cities, and neighborhoods. All of these are places, which might lead you to
define an STI class named Place as shown in Listing 9.2. I’ve also included the data-
base schema for clarity:6

Listing 9.2 The Places Database Schema and the Place Class

== Schema Information
#
Table name: places
#
id :integer(11) not null, primary key
region_id :integer(11)
type :string(255)
name :string(255)
description :string(255)
latitude :decimal(20, 1)
longitude :decimal(20, 1)
population :integer(11)
created_at :datetime
updated_at :datetime

class Place < ActiveRecord::Base
end

Place is in essence an abstract class. It should not be instantiated, but there is no
foolproof way to enforce that in Ruby. (No big deal, this isn’t Java!) Now let’s go ahead
and define concrete subclasses of Place:

class State < Place

has_many :counties, :foreign_key => ‘region_id’

has_many :cities, :through => :counties

end

class County < Place

belongs_to :state, :foreign_key => ‘region _id’

has_many :cities, :foreign_key => ‘region _id’

end

class City < Place

belongs_to :county, :foreign_key => ‘region _id’

end

Single-Table Inheritance (STI) 289

You might be tempted to try adding a cities association to State, knowing that
has_many :through works with both belongs_to and has_many target associa-
tions. It would make the State class look something like this:

class State < Place

has_many :counties, :foreign_key => ‘region_id’

has_many :cities, :through => :counties

end

That would certainly be cool, if it worked. Unfortunately, in this particular case,
since there’s only one underlying table that we’re querying, there simply isn’t a way to
distinguish among the different kinds of objects in the query:

Mysql::Error: Not unique table/alias: ‘places’: SELECT places.* FROM

places INNER JOIN places ON places.region_id = places.id WHERE

((places.region_id = 187912) AND ((places.type = ‘County’))) AND

((places.`type` = ‘City’))

What would we have to do to make it work? Well, the most realistic would be to
use specific foreign keys, instead of trying to overload the meaning of region_id for
all the subclasses. For starters, the places table would look like the example in Listing
9.3.

Listing 9.3 The Places Database Schema, Revised

== Schema Information
#
Table name: places
#
id :integer(11) not null, primary key
state_id :integer(11)
county_id :integer(11)
type :string(255)
name :string(255)
description :string(255)
latitude :decimal(20, 1)
longitude :decimal(20, 1)
population :integer(11)
created_at :datetime
updated_at :datetime

290 9. Advanced ActiveRecord

The subclasses would be simpler without the :foreign_key options on the asso-
ciations. Plus you could use a regular has_many relationship from State to City,
instead of the more complicated has_many :through.

class State < Place

has_many :counties

has_many :cities

end

class County < Place

belongs_to :state

has_many :cities

end

class City < Place

belongs_to :county

end

Of course, all those null columns in the places table won’t win you any friends
with relational database purists. That’s nothing, though. Just a little bit later in this
chapter we’ll take a second, more in-depth look at polymorphic has_many relation-
ships, which will make the purists positively hate you.

Abstract Base Model Classes
In contrast to single-table inheritance, it is possible for ActiveRecord models to
share common code via inheritance and still be persisted to different database tables.
The technique involves creating an abstract base model class that persistent subclass-
es will extend. It’s actually one of the simpler techniques that we broach in this
chapter.

Let’s take the Place class from the previous section (refer to Listing 9.3) and
revise it to be an abstract base class in Listing 9.4. It’s simple really—we just have to
add one line of code:

Abstract Base Model Classes 291

Listing 9.4 The Abstract Place Class

class Place < ActiveRecord::Base
self.abstract = true

end

As I said, quite simple. Marking an ActiveRecord model abstract is essentially
the opposite of making it an STI class with a type column. You’re telling Rails: “Hey,
I don’t want you to assume that there is a table named places.”

In our running example, it means we would have to establish tables for states,
counties, and cities, which might be exactly what we want. Remember though, that
we would no longer be able to query across subtypes with code like
Place.find(:all).

Abstract classes is an area of Rails where there aren’t too many hard-and-fast rules
to guide you—experience and gut feeling will help you out.

In case you haven’t noticed yet, both class and instance methods are shared down
the inheritance hierarchy of ActiveRecord models. So are constants and other class
members brought in through module inclusion. That means we can put all sorts of
code inside Place that will be useful to its subclasses.

Polymorphic has_many Relationships
Rails gives you the ability to make one class belong_to more than one type of anoth-
er class, as eloquently stated by blogger Mike Bayer:

The “polymorphic association,” on the other hand, while it bears some resem-
blance to the regular polymorphic union of a class hierarchy, is not really the
same since you’re only dealing with a particular association to a single target class
from any number of source classes, source classes which don’t have anything else
to do with each other; i.e. they aren’t in any particular inheritance relationship
and probably are all persisted in completely different tables. In this way, the poly-
morphic association has a lot less to do with object inheritance and a lot more to
do with aspect-oriented programming (AOP); a particular concept needs to be
applied to a divergent set of entities which otherwise are not directly related.
Such a concept is referred to as a cross-cutting concern, such as, all the entities in
your domain need to support a history log of all changes to a common logging
table. In the AR example, an Order and a User object are illustrated to both
require links to an Address object.7

292 9. Advanced ActiveRecord

In other words, this is not polymorphism in the typical object-oriented sense of
the word; rather, it is something unique to Rails.

In the Case of Models with Comments
In our recurring Time and Expenses example, let’s assume that we want both
BillableWeek and Timesheet to have many comments (a shared Comment class). A
naive way to solve this problem might be to have the Comment class belong to both
the BillableWeek and Timesheet classes and have billable_week_id and
timesheet_id as columns in its database table.

class Comment < ActiveRecord::Base

belongs_to :timesheet

belongs_to :expense_report

end

That approach is naive because it would be difficult to work with and hard to
extend. Among other things, you would need to add code to the application to ensure
that a Comment never belonged to both a BillableWeek and a Timesheet at the
same time. The code to figure out what a given comment is attached to would be cum-
bersome to write. Even worse, every time you want to be able to add comments to
another type of class, you’d have to add another nullable foreign key column to the
comments table.

Rails solves this problem in an elegant fashion, by allowing us to define what it
terms polymorphic associations, which we covered when we described the
:polymorphic => true option of the belongs_to association in Chapter 7,
“ActiveRecord Associations.”

The Interface

Using a polymorphic association, we need define only a single belongs_to and add
a pair of related columns to the underlying database table. From that moment on, any
class in our system can have comments attached to it (which would make it com-
mentable), without needing to alter the database schema or the Comment model itself.

class Comment < ActiveRecord::Base

belongs_to :commentable, :polymorphic => true

end

Polymorphic has_many Relationships 293

There isn’t a Commentable class (or module) in our application. We named the
association :commentable because it accurately describes the interface of objects that
will be associated in this way. The name :commentable will turn up again on the
other side of the association:

class Timesheet < ActiveRecord::Base

has_many :comments, :as => :commentable

end

class BillableWeek < ActiveRecord::Base

has_many :comments, :as => :commentable

end

Here we have the friendly has_many association using the :as option. The :as
marks this association as polymorphic, and specifies which interface we are using on
the other side of the association. While we’re on the subject, the other end of a poly-
morphic belongs_to can be either a has_many or a has_one and work identically.

The Database Columns

Here’s a migration that will create the comments table:

class CreateComments < ActiveRecord::Migration

def self.up

create_table :comments do |t|

t.column :text, :text

t.column :commentable_id, :integer

t.column :commentable_type, :string

end

end

end

As you can see, there is a column called commentable_type, which stores the
class name of associated object. We can see how this works using the Rails console:

>> c = Comment.create(:text => “I could be commenting anything.”)

>> t = TimeSheet.create

>> b = BillableWeek.create

>> c.update_attribute(:commentable, t)

=> true

>> “#{c.commentable_type}: #{c.commentable_id}”

294 9. Advanced ActiveRecord

=> “Timesheet: 1”

>> c.update_attribute(:commentable, b)

=> true

>> “#{c.commentable_type}: #{c.commentable_id}”

=> “BillableWeek: 1”

As you can tell, both the Timesheet and the BillableWeek that we played with
in the console had the same id (1). Thanks to the commentable_type attribute,
stored as a string, Rails can figure out which is the related object.

Has_many :through and Polymorphics

There are some logical limitations that come into play with polymorphic associations.
For instance, since it is impossible for Rails to know the tables necessary to join
through a polymorphic association, the following hypothetical code will not work.

class Comment < ActiveRecord::Base

belongs_to :user

belongs_to :commentable, :polymorphic => true

end

class User < ActiveRecord::Base

has_many :comments

has_many :commentables, :through => :comments

end

>> User.find(:first).comments

ActiveRecord::HasManyThroughAssociationPolymorphicError: Cannot have

a has_many :through association ‘User#commentables’ on the polymorphic

object ‘Comment#commentable’.

If you really need it, has_many :through is possible with polymorphic associa-
tions, but only by specifying exactly what type of polymorphic associations you want.
To do so, you must use the :source_type option. In most cases, you will also need
to use the :source option, since the association name will not match the interface
name used for the polymorphic association:

class User < ActiveRecord::Base

has_many :comments

has_many :commented_timesheets, :through => :comments,

:source => :commentable, :source_type => ‘Timesheet’

Polymorphic has_many Relationships 295

has_many :commented_billable_weeks, :through => :comments,

:source => :commentable, :source_type => ‘BillableWeek’

end

It’s verbose, and the whole thing is arguably starting to lose its elegance if you go
this route, but it works:

>> User.find(:first).commented_timesheets

=> [#<Timesheet:0x575b98 @attributes={}>]

Considerations about has_many
As we work toward the end of this book’s coverage of ActiveRecord, you might have
noticed that we haven’t really touched on a subject of particular importance to many
programmers: foreign-key constraints in the database. That’s mainly because use of
foreign-key constraints simply isn’t the Rails way to tackle the problem of relational
integrity. To put it mildly, that opinion is controversial and some developers have writ-
ten off Rails (and its authors) for expressing it.

There really isn’t anything stopping you from adding foreign-key constraints to
your database tables, although you’d do well to wait until after the bulk of develop-
ment is done. The exception, of course, is those polymorphic associations, which are
probably the most extreme manifestation of the Rails opinion against foreign-key con-
straints. Unless you’re armed for battle, you might not want to broach that particular
subject with your DBA.

Modules for Reusing Common Behavior
In this section, we’ll talk about one strategy for breaking out functionality that is
shared between disparate model classes. Instead of using inheritance, we’ll put the
shared code into modules.

In the section “Polymorphic has_many Relationships,” we described how to add
a commenting feature to our recurring sample Time and Expenses application. We’ll
continue fleshing out that example, since it lends itself to factoring out into modules.

The requirements we’ll implement are as follows: Both users and approvers should
be able to add their comments to a Timesheet or ExpenseReport. Also, since com-
ments are indicators that a timesheet or expense report requires extra scrutiny or pro-
cessing time, administrators of the application should be able to easily view a list of

296 9. Advanced ActiveRecord

recent comments. Human nature being what it is, administrators occasionally gloss
over the comments without actually reading them, so the requirements specify that a
mechanism should be provided for marking comments as “OK” first by the approver,
then by the administrator.

Again, here is the polymorphic has_many :as that we used as the foundation for
this functionality:

class Timesheet < ActiveRecord::Base

has_many :comments, :as => :commentable

end

class ExpenseReport < ActiveRecord::Base

has_many :comments, :as => :commentable

end

class Comment < ActiveRecord::Base

belongs_to :commentable, :polymorphic => true

end

Next we create a controller and action for the administrator that list the 10 most
recent comments with links to the item to which they are attached.

class RecentCommentsController < ApplicationController

def show

@recent_comments = Comment.find(:all, :limit => 10,

:order => ‘created_at DESC’)

end

end

Here’s some of the simple view template used to display the recent comments.

<% @recent_comments.each do |comment| %>

<h4><%= comment.created_at -%></h4>

<%= comment.text %>

<div class=”meta”>

Comment on:

<%= link_to comment.commentable.title,

content_url(comment.commentable) -%>

</div>

Modules for Reusing Common Behavior 297

<% end %>

So far, so good. The polymorphic association makes it easy to access all types of
comments in one listing. But remember each comment needs to be marked “OK” by
the approver and/or administrator. Comments should not appear once they’ve been
marked as reviewed.

We won’t go into the comment approval interface here. Suffice it to say that a
Comment has a reviewed attribute that returns true after it has been marked “OK.”

In order to find all of the unreviewed comments for an item, we can use an asso-
ciation extension by modifying the model class definitions as follows:

class Timesheet < ActiveRecord::Base

has_many :comments, :as => :commentable do

def approved

find(:all, :conditions => {:reviewed => false })

end

end

end

class ExpenseReport < ActiveRecord::Base

has_many :comments, :as => :commentable do

def approved

find(:all, :conditions => {:reviewed => false })

end

end

end

I’m not happy with this code and I hope by now you know why. It’s not DRY!
Both Timesheet and ExpenseReport currently have their own identical methods
for finding unreviewed comments. Essentially, they both share a common interface.
They’re commentable!

The way that we define common interfaces that share code in Ruby is to include
a module in each of those classes, where the module contains the code common to all
implementations of the common interface.

298 9. Advanced ActiveRecord

So let’s go ahead and define a Commentable module to do just that, and include
it in our model classes:

module Commentable

has_many :comments, :as => :commentable do

def approved

find(:all,

:conditions => [‘approved = ?’, true])

end

end

end

class Timesheet < ActiveRecord::Base

include Commentable

end

class ExpenseReport < ActiveRecord::Base

include Commentable

end

Whoops, this code doesn’t work! To fix it, we need to understand an essential
aspect of the way that Ruby interprets our code dealing with open classes.

A Review of Class Scope and Contexts
In many other interpreted, OO programming languages, you have two phases of exe-
cution—one in which the interpreter loads the class definitions and says “this is the
definition of what I have to work with,” followed by the phase in which it executes
the code. This makes it difficult (though not necessarily impossible) to add new meth-
ods to a class dynamically during execution.

In contrast, Ruby lets you add methods to a class at any time. In Ruby, when you
type class MyClass, you’re doing more than simply telling the interpreter to define
a class; you’re telling it to “execute the following code in the scope of this class.”

Let’s say you have the following Ruby script:

1 class Foo < ActiveRecord::Base

2 has_many :bars

3 end

4 class Foo

5 belongs_to :spam

6 end

Modules for Reusing Common Behavior 299

When the interpreter gets to line 1, you are telling it to execute the following code
(up to the matching end) in the context of the Foo class object. Because the Foo class
object doesn’t exist yet, it goes ahead and creates the class. At line 2, we execute the
statement has_many :bars in the context of the Foo class object. Whatever the
has_many message does, it does right now.

When we again say class Foo at line 4, we are once again telling the interpreter to
execute the following code in the context of the Foo class object, but this time, the
interpreter already knows about class Foo; it doesn’t actually create another class.
Therefore, on line 5, we are simply telling the interpreter to execute the belongs_to
:spam statement in the context of that same Foo class object.

In order to execute the has_many and belongs_to statements, those methods
need to exist in the context in which they are executed. Because these are defined as
class methods in ActiveRecord::Base, and we have previously defined class Foo as
extending ActiveRecord::Base, the code will execute without a problem.

However, when we defined our Commentable module like this:

module Commentable

has_many :comments, :as => :commentable do

def approved

find(:all,

:conditions => [‘approved = ?’, true])

end

end

end

…we get an error when it tries to execute the has_many statement. That’s because the
has_many method is not defined in the context of the Commentable module object.

Given what we now know about how Ruby is interpreting the code, we now real-
ize that what we really want is for that has_many statement to be executed in the con-
text of the including class.

The included Callback
Luckily, Ruby’s Module class defines a handy callback that we can use to do just that.
If a Module object defines the method included, it gets run whenever that module
is included in another module or class. The argument passed to this method is the
module/class object into which this module is being included.

300 9. Advanced ActiveRecord

We can define an included method on our Commentable module object so that
it executes the has_many statement in the context of the including class (Timesheet,
ExpenseReport, and so on):

module Commentable

def self.included(base)

base.class_eval do

has_many :comments, :as => :commentable do

def approved

find(:all, :conditions => [‘approved = ?’, true])

end

end

end

end

end

Now, when we include the Commentable module in our model classes, it will exe-
cute the has_many statement just as if we had typed it into each of those classes’ bodies.

Courtenay Says…

There’s a fine balance to strike here. Magic like include
Commentable certainly saves on typing and makes your
model look less complex, but it can also mean that your
association code is doing things you don’t know about.
This can lead to confusion and hours of head-scratching
while you track down code in a separate module.

My personal preference is to leave all associations in the
model, and extend them with a module. That way you can
quickly get a list of all associations just by looking at the
code.
has_many :comments, :as => :commentable, :extend =>

Commentable

Modifying ActiveRecord Classes at Runtime
The metaprogramming capabilities of Ruby, combined with the after_find call-
back, open the door to some interesting possibilities, especially if you’re willing to blur

Modifying ActiveRecord Classes at Runtime 301

your perception of the difference between code and data. I’m talking about modifying
the behavior of model classes on the fly, as they’re loaded into your application.

Listing 9.5 is a drastically simplified example of the technique, which assumes the
presence of a config column on your model. During the after_find callback, we
get a handle to the unique singleton class8 of the model instance being loaded. Then
we execute the contents of the config attribute belonging to this particular Account
instance, using Ruby’s class_eval method. Since we’re doing this using the single-
ton class for this instance, rather than the global Account class, other account
instances in the system are completely unaffected.

Listing 9.5 Runtime Metaprogramming with after_find

class Account < ActiveRecord::Base
...
private

def after_find
singleton = class << self; self; end
singleton.class_eval(config)

end
end

I used powerful techniques like this one in a supply-chain application that I wrote
for a large industrial client. A lot is a generic term in the industry used to describe a
shipment of product. Depending on the vendor and product involved, the attributes
and business logic for a given lot vary quite a bit. Since the set of vendors and prod-
ucts being handled changed on a weekly (sometimes daily) basis, the system needed
to be reconfigurable without requiring a production deployment.

Without getting into too much detail, the application allowed the maintenance
programmers to easily customize the behavior of the system by manipulating Ruby
code stored in the database, associated with whatever product the lot contained.

For example, one of the business rules associated with lots of butter being shipped
for Acme Dairy Co. might dictate a strictly integral product code, exactly 10 digits in
length. The code, stored in the database, associated with the product entry for Acme
Dairy’s butter product would therefore contain the following two lines:

302 9. Advanced ActiveRecord

validates_numericality_of :product_code, :only_integer => true

validates_length_of :product_code, :is => 10

Considerations
A relatively complete description of everything you can do with Ruby metaprogram-
ming, and how to do it correctly, would fill its own book. For instance, you might
realize that doing things like executing arbitrary Ruby code straight out of the data-
base is inherently dangerous. That’s why I emphasize again that the examples shown
here are very simplified. All I want to do is give you a taste of the possibilities.

If you do decide to begin leveraging these kinds of techniques in real-world appli-
cations, you’ll have to consider security and approval workflow and a host of other
important concerns. Instead of allowing arbitrary Ruby code to be executed, you
might feel compelled to limit it to a small subset related to the problem at hand. You
might design a compact API, or even delve into authoring a domain-specific language
(DSL), crafted specifically for expressing the business rules and behaviors that should
be loaded dynamically. Proceeding down the rabbit hole, you might write custom
parsers for your DSL that could execute it in different contexts —some for error detec-
tion and others for reporting. It’s one of those areas where the possibilities are quite
limitless.

Ruby and Domain-Specific Languages
My former colleague Jay Fields and I pioneered the mix of Ruby metaprogramming,
Rails, and internal 9 domain-specific languages while doing Rails application develop-
ment for ThoughtWorks clients. I still occasionally speak at conferences and blog
about writing DSLs in Ruby.

Jay has also continued writing and speaking about his evolution of Ruby DSL
techniques, which he calls Business Natural Languages (or BNL for short10). When
developing BNLs, you craft a domain-specific language that is not necessarily valid
Ruby syntax, but is close enough to be transformed easily into Ruby and executed at
runtime, as shown in Listing 9.6.

Modifying ActiveRecord Classes at Runtime 303

Listing 9.6 Example of Business Natural Language

employee John Doe
compensate 500 dollars for each deal closed in the past 30 days
compensate 100 dollars for each active deal that closed more than
365 days ago
compensate 5 percent of gross profits if gross profits are greater
than
1,000,000 dollars
compensate 3 percent of gross profits if gross profits are greater
than
2,000,000 dollars
compensate 1 percent of gross profits if gross profits are greater
than
3,000,000 dollars

The ability to leverage advanced techniques such as DSLs is yet another powerful
tool in the hands of experienced Rails developers.

Courtenay Says…

DSLs suck! Except the ones written by Obie, of course.

The only people who can read and write most DSLs are
their original authors. As a developer taking over a project,
it’s often quicker to just reimplement instead of learning
the quirks and exactly which words you’re allowed to use
in an existing DSL.

In fact, a lot of Ruby metaprogramming sucks too. It’s
common for people gifted with these new tools to go a
bit overboard. I consider metaprogramming, self.
included, class_eval, and friends to be a bit of a code
smell on most projects.

If you’re making a web application, future developers and
maintainers of the project will appreciate your using sim-
ple, direct, granular, and well-tested methods, rather than
monkeypatching into existing classes, or hiding associa-
tions in modules.

That said, if you can pull it off… your code will become
more powerful than you can possibly imagine.

304 9. Advanced ActiveRecord

Conclusion
With this chapter we conclude our coverage of ActiveRecord, one of the most sig-
nificant and powerful Rails frameworks. We examined how callbacks and observers let
us factor our code in a clean and object-oriented fashion. We also expanded our mod-
eling options by considering single-table inheritance and ActiveRecord’s distinctive
polymorphic relationships.

At this point in the book, we’ve covered two parts of the MVC pattern: the model
and the controller. It’s now time to delve into the third and final part: the view.

References

1. If you are browsing old Rails source code, you might come across callback macros receiving a
short string of Ruby code to be eval’d in the binding of the model object. That way of adding
callbacks was deprecated in Rails 1.2, because you’re always better off using a block in those situa-
tions.

2. I recommend the excellent GeoKit for Rails plugin available at http://
geokit.rubyforge.org/.

3. Real-life implementation of the example would also need to modify all finders to include
deleted_at is NULL conditions; otherwise, the records marked deleted would continue to
show up in the application. That’s not a trivial undertaking, and luckily you don’t need to do it
yourself. There’s a Rails plugin named ActsAsParanoid by Rick Olson that does exactly that, and
you can find it at http://svn.techno-weenie.net/projects/plugins/acts_as_paranoid.

4. Get AttachmentFu at http://svn.techno-weenie.net/projects/plugins/attachment_fu.

5. http://en.wikipedia.org/wiki/Open/closed_principle has a good summary.

6. For autogenerated schema information added to the top of your model classes, try Dave Thomas’s
annotate_models plugin at http://svn.pragprog.com/Public/plugins/
annotate_models.

7. http://techspot.zzzeek.org/?p=13

8. I don’t expect this to make sense to you, unless you are familiar with Ruby’s singleton classes, and
the ability to evaluate arbitrary strings of Ruby code at runtime. A good place to start is
http://whytheluckystiff.net/articles/seeingMetaclassesClearly.html.

9. The qualifier internal is used to differentiate a domain-specific language hosted entirely inside of a
general-purpose language, such as Ruby, from one that is completely custom and requires its own
parser implementation.

10. Googling BNL will give you tons of links to the Toronto-based band Barenaked Ladies, so you’re
better off going directly to the source at http://bnl.jayfields.com.

Conclusion 305

This page intentionally left blank

CHAPTER 10
ActionView

The very powerful and the very stupid have one thing in common. Instead of
altering their views to fit the facts, they alter the facts to fit their views...which
can be very uncomfortable if you happen to be one of the facts that needs altering.
—Doctor Who

Controllers are the skeleton and musculature of your Rails application. In which case,
models form the heart and mind, and your view templates (based on ActionView,
the third major component of Rails) are your application’s skin—the part that is visi-
ble to the outside world.

ActionView is the Rails API for putting together the visual component of your
application, namely the HTML and associated content that will be rendered in a web
browser whenever someone uses your Rails application. Actually, in this brave new
world of REST resources, ActionView is involved in generating any sort of output
you want to pour out of your app.

ActionView contains a full-featured templating system based on a Ruby library
named ERb. It takes data prepared by the controller layer and interleaves it with view
code to create a presentation layer for the end user.

In this chapter, we cover the fundamentals of the ActionView framework, from
the basics of templating, to effective use of partials, to the significant performance
boosts possible via caching.

307

ERb Basics
Inside standard Rails view template files, you’re writing code in a kind of Ruby dialect,
namely Embedded Ruby, or ERb, which is not unique to Rails. ERb is a standard
library of the Ruby distribution.

An ERb document typically contains static HTML together with Ruby code that
will be executed dynamically when the template is rendered. As I’m sure you know if
you’ve done any Rails programming at all, to insert Ruby code into an ERb document,
you place the code inside a pair of delimiters.

There are two different types of template delimiters available, which serve differ-
ent purposes, and work identically to their counterparts in JSP and ASP technologies,
which you might be familiar with already:

<% %> and <%= %>

The code between the delimiters will be executed in either case. The difference is
that the return value of the first expression is discarded, while that of the second is
inserted into the template’s output.

A very common bug during everyday Rails coding is to accidentally use the non-
outputting delimiter where you actually needed one that produces output. You’ll tear your
hair out trying to figure out why a certain value is not showing up on your screen, and
yet no errors are being generated.

ERb Practice
You can get a feel for ERb outside of Rails since the ERb interpreter is a standard part
of Ruby, and you can write and process ERb templates for practice using that inter-
preter. You simply use the command-line command erb.

For example, put the following template code in a file (demo.erb, perhaps):

Let’s list all the methods of a Ruby string.

First we need a string.

<% str = “I am a string!” %>

We’ve got one: here it is:

<%= str %>

Now, let’s see its methods:

308 10. ActionView

<% str.methods.sort[0...10].each_with_index do |m,i| %>

<%= i+1 %>. <%= m %>

<% end %>

Now, run the file through erb:

$ erb demo.erb

You’ll see the following output:

Let’s list all the methods of a Ruby string.

First we need a string.

We’ve got one: here it is:

I am a string!

Now, let’s see its methods -- or maybe just a few, so they don’t

scroll off the screen:

1. %

2. *

3. +

4. <

5. <<

6. <=

7. <=>

8. ==

9. ===

10. =~

ERb Basics 309

As you can see, all of the Ruby code inside the delimiters has been executed,
including the assignment to str and the iteration with each. Only the code inside
the equal-sign delimiters, however, has contributed to the output from the execution
of the template.

You may also notice a lot of blank lines in the output. The presence of delimited
code in the template has no special effect, one way or the other, on the line count. A
line is a line, so the following line comes through as a blank line:

<% end %>

Tightening Up ERb Output
Rails gives you a way to remove at least some of the extra blank lines, by using mod-
ified delimiters:

<%- str.methods.sort[0...10].each_with_index do |m,i| -%>

<%= i+1 %>. <%= m %>

<%- end -%>

Note the minus signs in the delimiters; they will suppress leading whitespace and
extra newlines in the output of the template. Used judiciously, they can pretty up your
template output significantly. It isn’t something that the end user cares about, but it
might help you out whenever you’re examining the HTML source code of your appli-
cation.

Commenting Out ERb Delimiters
Ruby’s commenting symbol # will work to cancel an ERb delimiter. Just insert it right
after the percent sign of the opening delimiter tag.

<%#= str %>

The contents of the commented ERb tag will be ignored. You don’t want to leave
commented-out code littering your template, but it’s useful for temporarily disabling
something.

310 10. ActionView

Conditional Output
One of the most common idioms you’ll use when coding Rails views is to condition-
ally output content to the view. The most elementary way to control conditional out-
put is to use if/else statements in conjunction with <% %> as follows:

<% if @show_subtitle %>

<h2><%= @subtitle %></h2>

<% end %>

A lot of times you can use inline if conditions and shorten your code, since the
<%= tag doesn’t care if you feed it a nil value. Just add a postfix if condition to the
statement:

<h2><%= @subtitle if @show_subtitle %></h2>

Of course, there’s a potential problem with the preceding example. The first, more
verbose, conditional output will eliminate the <h2> tags entirely, but the second
example does not.

There are a couple of ways to deal with the problem and keep it a one-liner.
First, there’s the butt-ugly solution that I’ve occasionally seen in some Rails appli-

cations, which is the only reason why I’m mentioning it here!

<%= “<h2>#{@subtitle}</h2>” if @show_subtitle %>

Aaargh! Ugly! The more elegant solution involves Rails’ content_tag helper
method.

<%= content_tag(‘h2’, @subtitle) if @show_subtitle %>

Helper methods, both the ones included in Rails and the ones that you’ll write on
your own, are your main tool for building elegant view templates. Helpers are covered
extensively in Chapter 11, “All About Helpers.”

RHTML? RXML? RJS?
As of Rails 2.0 the standard naming practice is to suffix ERb template files with .erb,
but in earlier versions of Rails, we used .rhtml.

ERb Basics 311

There are two other standard formats and suffixes for templates:

• .builder (formerly .rxml) signals Rails to execute the template with Jim
Weirich’s Builder::XmlMarkup library, used to easily create XML-based output.
Use of Builder is covered in Chapter 15, “XML and ActiveResource.”

• .rjs (unchanged) triggers Rails’ built-in JavaScript generation facilities, covered
in Chapter 12, “Ajax on Rails.”

Note that at the end of this chapter, we do a quick survey of third-party templat-
ing languages available that integrate nicely with Rails, and why you might want to
try them. For now, let’s continue with a review of layout and template usage.

Layouts and Templates
Rails has easy conventions for template usage, related to the location of templates with
the Rails project directories.

The app/views directory, shown in Figure 10.1, contains subdirectories match-
ing the name of each controller in the application. Within each controller’s view sub-
directory, you place a template named to match its corresponding action.

Figure 10.1 A typical app/views directory

The special app/views/layout directory holds layout templates, intended to be
reusable containers for your views. Again, naming conventions are used to determine
which templates to render, except this time it is the name of the controller that is used
for matching.

In the case of layouts, the inheritance hierarchy of controllers comes into play.
Most Rails applications have an application.rhtml file in their layout directory. It

312 10. ActionView

shares its name with the ApplicationController, which is typically extended by all
the other controllers in an application; therefore it is picked up as the default layout
for all views.

It is picked up, unless of course, a more specific layout template is in place, but
most of the time it makes sense to use just one application-wide template, such as the
simple one shown in Listing 10.1.

Listing 10.1 A Simple, General-Purpose application.rhtml Layout Template

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>
<title>My Rails Application</title>
<%= stylesheet_link_tag ‘scaffold’, :media => “all” %>
<%= javascript_include_tag :defaults %>
</head>
<body>
<%= yield :layout %>
</body>
</html>

The stylesheet_link_tag and javascript_include_tag methods are
helpers that automatically insert standard LINK and SCRIPT tags into your document,
for CSS and JavaScript files, respectively. The only other interesting part of that tem-
plate is the call to yield :layout, which we discuss next.

Yielding Content
The Ruby language’s built-in yield keyword is put to good use in making layout and
action templates collaborate. Notice the use of yield in the middle of the layout tem-
plate:

<body>

<%= yield :layout %>

</body>

Layouts and Templates 313

In this case, the :layout symbol is a special message to the rendering system. It
marks where to insert the output of the action’s rendered output, which is usually the
template corresponding to that action.

You can add extra places in your layout where you want to be able to yield content,
by including additional yield invocations—just make sure to use a unique identifier. A
good example is a layout that has left and right sidebar content (simplified, of course):

<body>

<div class=”left sidebar”>

<%= yield :left %>

</div>

<div id=”main_content”>

<%= yield :layout %>

</div>

<div class=”right sidebar”>

<%= yield :right %>

</div>

</body>

The center DIV element receives the main template content generated. But how
do you give Rails content for the left and right sidebars? Easy—just use the
content_for method in your template code in the following way:

<% content_for(:left) do %>

<h2>Navigation</h2>

...

<% end %>

<% content_for(:right) do %>

<h2>Help</h2>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,

sed do eiusmod tempor incididunt ut labore et dolore magna

aliqua. Ut enim ad minim veniam, quis nostrud ...

<% end %>

<h1>Page Heading</h1>

<p>The normal template content that will get yielded

to :layout</p>

...

314 10. ActionView

Besides sidebars and other types of visible content blocks, I suggest you yield for
additional content to be added to the HEAD element of your page, as shown in Listing
10.2. It’s a super-useful technique, because Internet Explorer can occasionally get very
ill-tempered about SCRIPT tags appearing outside of the HEAD element.

Listing 10.2 Yielding Additional Head Content

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>
<title>My Rails Application</title>
<%= stylesheet_link_tag ‘scaffold’, :media => “all” %>
<%= javascript_include_tag :defaults %>
<%= yield :head %>
</head>
<body>
<%= yield :layout %>
</body>
</html>

Template Variables
We’ve seen how layouts and yielding content blocks work, but other than that, how
does data get from the controller layer to the view? During preparation of the tem-
plate, instance variables set during execution of the controller action will be copied
over as instance variables of the template context.

Instance Variables

Copying of instance variables is the main form of communication from controller to
view, and frankly, that behavior is one of the most basic facts about Rails and I’m sure
that you know it:

class HelloWorldController < ActionController::Base

def index

@msg = “Hello, world!”

end

end

Layouts and Templates 315

template file /app/views/hello_world/index.html.erb

<%= @msg %>

What you might not be aware of is that a lot more than just instance variables
from the controller are copied over to the template. It’s not a good idea to depend on
some of the following objects directly, and especially not to use them to do data oper-
ations. Remember that MVC standard practice is to let the controller layer prepare
data for rendering, not the view!

assigns

Want to see everything that comes across the controller-view boundary? Throw
<%= debug(assigns) %> into your template and take a look at the output. The
assigns attribute is essentially internal to Rails and you should not use it directly in
your production code.

base_path

Local filesystem path pointing to the base directory of your application where tem-
plates are kept.

controller

The current controller instance is made available via controller, before it goes out
of scope at the end of request processing. You can take advantage of the controller’s
knowledge of its name (via the controller_name attribute) and the action that was
just performed (via the action_name attribute), in order to structure your CSS more
effectively, as shown in Listing 10.3.

Listing 10.3 Controller and Action Names as Body CSS Classes

<html>
...
<body class=”<%= controller.controller_name %>

<%= controller.action_name %>”>
...

</body>
</html>

316 10. ActionView

That would result in a BODY tag looking something like this, depending on the
action executed:

<body class=”timesheets index”>

Hopefully you already know that the C in CSS stands for cascading, which refers
to the fact that class names cascade down the tree of elements in your markup code
and are available for creation of rules. Our trick in Listing 10.3 is to automatically
include the controller and action name as classnames of your BODY element, so that
you can use them to customize look and feel of the page very flexibly later on in the
development cycle.

Here’s an example of how the technique would be used to vary the background of
header elements depending on the controller path:

body.timesheets .header {

background: url(../images/timesheet-bg.png) no-repeat left top

}

body.expense_reports .header {

background: url(../images/expense-reports-bg.png) no-repeat left top

}

flash

The flash is a view variable that you’ll definitely use on a regular basis. It has popped
up in larger code samples throughout the book so far, whenever you want to send the
user a message from the controller layer, but only for the duration of the next request.

A common Rails practice is to use flash[:notice] to hold benign notice mes-
sages, and flash[:error] for communication of a more serious nature. Personally,
I like to conditionally output both of them in DIV elements, right at the top of my
layout, and use CSS to position them, as shown in Listing 10.4.

Layouts and Templates 317

Listing 10.4 Standardized Flash Notice and Error Placement in application.html.erb

<html>
...
<body>
<%= content_tag ‘div’, h(flash[:notice]),

:class => ‘notice’, :id => ‘notice’ if flash[:notice] %>
<%= content_tag ‘div’, h(flash[:error]),

:class => ‘notice error’, :id => ‘error’ if flash[:error] %>

<%= yield :layout %>
</body>

</html>

Using the content_tag helper facilitates making the entire output conditional.
Otherwise, I’d need an if block around the HTML markup and the scheme would
get pretty messy.

headers

The headers variable holds the values of HTTP headers that accompanied the
request being processed. Not much you can do with headers in your view, other than
occasionally view them for debugging reasons. Put <%= debug(headers) %> some-
where in your layout and you’ll see output similar to the following in your browser,
after refreshing the page of course:

--

Status: 200 OK

cookie:

- - adf69ed8dd86204d1685b6635adae0d9ea8740a0

Cache-Control: no-cache

logger

Have something to record for posterity in the logs while you’re rendering the view?
Use the logger method to get the view’s Logger instance, RAILS_DEFAULT_LOGGER
unless you’ve changed it.

318 10. ActionView

params

This is the same params hash that is available in your controller, containing the
key/value pairs of your request. I’ll occasionally use a value from the params hash
directly in the view, particularly when I’m dealing with pages that are subject to fil-
tering or row sorting.

<p>Filter by month:

<%= select_tag(:month_filter,

options_for_select(@month_options, params[:month_filter])) %>

It’s very dangerous from a security perspective to put unfiltered parameter data
into the output stream of your template. The following section, “Protecting the
Integrity of Your View from User-Submitted Content,” covers that topic in depth.

request and response

The HTTP request and response objects are exposed to the view, but other than
for debugging purposes, I can’t think of any reason why you would want to use them
directly from your template.

session

The session variable is the user’s session hash. There might be situations where it’d
be okay to pull values out to affect rendering, but I shudder to think that you might
try to set values in the session from the view layer. Use with care, and primarily for
debugging, just like request and response.

Protecting the Integrity of Your View from User-Submitted
Content
If any data in your application is user-submitted, or in any way originates from a
source that you don’t trust completely, then you need to keep in mind the need to
escape and sanitize template content. Otherwise, you leave yourself wide open to a
variety of malicious hacker attacks.

Layouts and Templates 319

For example, consider the following template snippet, which copies the value of
params[:page_number] into its output quite innocently:

<h1>Search Results</h1>

<h2>Page <%= params[:page_number] %></h2>

Easy way to include the page number, right? Sure. But consider what happens if
someone submits a request to that page that embeds a SCRIPT tag and some malicious
code as the value of the page_number request parameter? Bingo! The malicious code
goes right into your template!

Fortunately, there is a very simple way to prevent this form of attack and the Rails
core developers expect you to use it very often, so they named the method with one
character: h.

<h1>Search Results</h1>

<h2>Page <%=h(params[:page_number]) %></h2>

The h method escapes HTML content—instead of passing it through as markup,
it will convert the less-than and greater-than characters into their respective character
entities, and in so doing, cripple malicious injection attacks. Of course, it doesn’t do
anything to content that doesn’t have markup.

But what if you are trying to display user-submitted HTML, as is often the case
with web applications that feature blog-style commenting facilities? In those cases, you
can try using the sanitize method of ActionView::Helpers::TextHelper. It’ll
strip out the tags most commonly used in attacks: FORM and SCRIPT, but leave others
intact. The sanitize method is covered in depth in Chapter 11.

Partials
A partial is a fragment of template code. The Rails way is to use partials to factor view
code into modular chunks that can be assembled in layouts with as little repetition as
possible. The syntax for including a partial within a template starts with render
:partial => “name”. Partial template names must begin with an underscore, which
serves to set them apart visually within a given view template directory. However, you
leave the underscore out when you refer to them.

320 10. ActionView

Simple Use Cases
The simplest partial use case is simply to extract a portion of template code. Some
developers divide their templates into logical parts by using partial extraction.
Sometimes it is easier to understand the structure of a screen if the significant parts
are factored out of it. For instance, Listing 10.5 is a simple user registration screen that
has its parts factored out into partials.

Listing 10.5 Simple User Registration Form with Partials

<h1>User Registration</h1>
<%= error_messages_for :user %>
<% form_for :user, :url => users_path do -%>
<table class=”registration”>
<tr>
<td class=”details demographics”>
<%= render :partial => ‘details’ %>
<%= render :partial => ‘demographics’ %>
</td>
<td class=”location”>
<%= render :partial => ‘location’ %>
</td>
</tr>
<tr>
<td colspan=”2”><%= render :partial => ‘opt_in’ %></td>
</tr>
<tr>
<td colspan=”2”><%= render :partial => ‘terms’ %></td>
</tr>
</table>
<p><%= submit_tag ‘Register’ %></p>

<% end -%>

While we’re at it, let me pop open one of those partials. To conserve space, we’ll
take a look at one of the smaller ones, the partial containing the opt-in check boxes of
this particular app. The source is in Listing 10.6; notice that its name begins with an
underscore.

Listing 10.6 The Opt-In Partial in the File app/views/users/_opt_in.html.erb

<fieldset id=”opt_in”>
<legend>Spam Opt In</legend>
<p><%= check_box :user, :send_event_updates %>

Send me updates about events!

<%= check_box :user, :send_site_updates%>

Notify me about new services</p>
</fieldset>

Partials 321

Personally, I like partials to be entirely contained inside a semantically significant
markup container. In the case of the opt-in partial in Listing 10.6, both check box
controls are contained inside a single <fieldset> element, which I’ve given an id
attribute. Following that rule, more as a loose guideline than anything else, helps me
to mentally identify how the contents of this partial are going to fit inside the parent
template. If we were dealing with other markup, perhaps outside of a form, I might
choose to wrap the partial markup inside a well-identified <div> container, instead of
a <fieldset>.

Why not include the <td> markup inside the partial templates? It’s a matter of
style—I like to be able to see the complete markup skeleton in one piece. In this case,
the skeleton is the table structure that you see in Listing 10.5. If portions of that table
were inside the partial templates, it would obfuscate the layout of the page. I do admit
that this is one of those areas where personal style and preference should take prece-
dence and I can only advise you as to what has worked for me, personally.

Reuse of Partials
Since the registration form is neatly factored out into its component parts, it is easy to
create a simple edit form using some of its partials, as in Listing 10.7.

Listing 10.7 Simple User Edit Form Reusing Some of the Same Partials

<h1>Edit User</h1>
<%= error_messages_for :user %>
<% form_for :user, :url => user_path(@user),

:html => { :method => :put } do -%>
<table class=”settings”>
<tr>
<td class=”details”>
<%= render :partial => ‘details’ %>
</td>
<td class=”demographics”>
<%= render :partial => ‘demographics’ %>
</td>
</tr>
<tr>
<td colspan=”2” class=”opt_in”>
<%= render :partial => ‘opt_in’ %>

</td>
</tr>
</table>
<p><%= submit_tag ‘Save Settings’ %></p>

<% end -%>

322 10. ActionView

If you compare Listings 10.5 and 10.7, you’ll notice that the structure of the table
changed a little bit in the Edit form, and it has less content than the registration form.
Perhaps the location is handled in greater detail on another screen, and certainly you
don’t want to require agreement of terms every time the user changes her settings.

Shared Partials
Until now we’ve been considering the use of partials that reside in the same directory
as their parent template. However, you can easily refer to partials that are in other
directories, just by prefixing the directory name. You still leave off the underscore,
which might feel a little weird.

Let’s add a captcha partial to the bottom of the registration form from Listing
10.5, to help prevent spammers from invading our web application:

...

<tr>

<td colspan=”2”><%= render :partial => ‘terms’ %></td>

</tr>

<tr>

<td colspan=”2”><%= render :partial => ‘shared/captcha’ %></td>

</tr>

</table>

<p><%= submit_tag ‘Register’ %></p>

<% end -%>

Since the captcha partial is used in various different parts of the application, it
makes sense to let it reside in a shared folder rather than any particular view folder.
However, you do have to be a little bit careful when you move existing template code
into a shared partial. It’s quite possible to inadvertently craft a partial that depends
implicitly on where it’s rendered.

For example, take the case of the Rails-talk mailing list member with a trouble-
some partial defined in login/_login.rhtml:

<% form_tag do %>

<label>Username:</label>

<%= text_field_tag :username, params[:username] %>

<label>Password:</label>

<%= password_field_tag :password, params[:password] %>

<%= submit_tag “Login” %>

<% end %>

Partials 323

The login form submission worked when he rendered this partial as part of the
login controller’s login action (“the login page”), but not when it was included as part
of the view for any other section of his website. The problem is that form_tag (cov-
ered in the next chapter) normally takes an optional action parameter telling it where to
post its information. If you leave out the action, the form will post back to its current
URL, which will vary for shared partials, depending on where they’re being used from.

Passing Variables to Partials
Partials inherit the instance variables available to their parent templates. That’s why the
form helpers used in the partials of Listings 10.5 and 10.7 work: They rely implicitly on
an @user variable to be in scope. I feel it’s fine to use this implicit variable sharing in
some cases, particularly when the partials are tightly bound to their parent templates.
It would be especially true in cases where the only reason you broke out partials in the
first place was to reduce the size and complexity of a particularly large template.

However, once you get into the practice of breaking out partial templates for
application-wide reuse, depending on implicitly passed variables gets a lot more dicey.
That’s why Rails supports the passing of locally scoped variables to partial templates,
as a hash parameter named :locals, as in the following snippet:

render :partial => ‘shared/address’, :locals => { :form => form }

The names and values of the :locals hash are converted into locally scoped vari-
ables (no @ sign) in the partial. Listing 10.8 is a variation on the registration template.
This time we’re using the version of form_for that yields a block parameter repre-
senting the form to its form helper methods. We’ll pass that form parameter on, too.

Listing 10.8 Simple User Registration Template Passing Form as Local Variable

<h1>User Registration</h1>
<%= error_messages_for :user %>
<% form_for :user, :url => users_path do |form| -%>
<table class=”registration”>
<tr>
<td class=”details address demographics”>
<%= render :partial => ‘details’,

:locals => {:form => form } %>
<%= render :partial => ‘shared/address’,

:locals => {:form => form } %>
</td>
</tr>
</table>
<p><%= submit_tag ‘Register’ %></p>

<% end -%>

324 10. ActionView

And finally, in Listing 10.9 we have the shared address form.

Listing 10.9 A Simple Shared Address Partial Using Local Variable

<fieldset class=”address”>
<legend>Address</legend>
<p><label>Street</label>

<%= form.text_area :street, :rows => 2, :cols => 40 %></p>

<p><label>City</label>

<%= form.text_field :city %></p>

<p><label>State</label>

<%= form.text_field :state, :size => 2 %></p>

<p><label>Zip</label>

<%= form.text_field :zip, :size => 15 %></p>

</fieldset>

The form helper methods, which we’ll cover in Chapter 11, have a variation in
which they are called on the form variable yielded by the form_for method. That is
exactly what we passed on to these partials via the :locals hash.

The local_assigns Hash

If you need to check for the presence of a certain local variable, you need to do it by
checking the local_assigns hash that is part of every template. Using defined?
variable won’t work due to limitations of the rendering system.

<% if local_assigns.has_key? :special %>

<%= special %>

<% end %>

Render Collections
One of the best uses of partials is to render collections. Once you get into the habit of
rendering collections with partials, you won’t want to go back to the relative ugliness
of cluttering your templates with for loops and each.

render :partial => ‘entry’, :collection => @entries

Simple and precise, and dependent on a naming convention. The most important
is how the object being rendered is exposed to the partial template. It is set as a local

Partials 325

variable named the same as the partial template itself. The partial corresponding to the
last code snippet would reference a local variable named entry.

<%= div_for(entry) do %>

<%= h(entry.description) %>

<%= distance_of_time_in_words_to_now entry.created_at %> ago

<% end %>

The partial_counter Variable

There’s another variable set for collection-rendered partials that doesn’t get much
attention. It’s a 0-indexed counter variable that tracks the number of times the partial
has gotten rendered. It’s useful for rendering numbered lists of things.

The name of the variable is the name of the partial, plus _counter.

<%= div_for(entry) do %>

<%= entry_counter %>:

<%= h(entry.description) %>

<%= distance_of_time_in_words_to_now entry.created_at %> ago

<% end %>

Sharing Collection Partials

If you wanted to use the same partial that you use with a collection, execpt with a sin-
gle entry object, you’d have to pass it that single instance via the :locals hash
described in the preceding section, like this:

render :partial => ‘entry’, :locals => {:entry => @entry }

I’ve also seen the following hack done as a way to avoid needing that locals
parameter:

<% entry = @entry if @entry %>

<% div_for(entry) do %>

<%= h(entry.description) %>

<%= distance_of_time_in_words_to_now entry.created_at %> ago

<% end %>

326 10. ActionView

That works, but it’s nasty, repetitive, and introduces an implicit optional depend-
ency on @entry. Don’t do stuff like that. Use the :locals parameter, as intended.

Logging
If you take a look at your development log, you’ll notice that it shows which partials
have been rendered and how long they took.

Rendering template within layouts/application

Rendering listings/index

Rendered listings/_listing (0.00663)

Rendered listings/_listing (0.00296)

Rendered listings/_listing (0.00173)

Rendered listings/_listing (0.00159)

Rendered listings/_listing (0.00154)

Rendered layouts/_login (0.02415)

Rendered layouts/_header (0.03263)

Rendered layouts/_footer (0.00114)

Caching
The Rails caching mechanism can make your production-deployed application very
responsive. Caching lets you specify that anything from entire pages down to frag-
ments of the page should be captured to disk as HTML files and sent along by your
web server on future requests with minimal involvement from Rails itself.

There are three types of caching in Rails:

• Page caching The output of an entire controller action is cached to disk, with
no further involvement by the Rails dispatcher.

• Action caching The output of an entire controller action is cached to disk,
but the Rails dispatcher is still involved in subsequent requests, and controller fil-
ters are executed.

• Fragment caching Arbitrary bits and pieces of your page’s output can be
cached to disk to save the time of having to render them in the future.

Caching 327

Caching in Development Mode?
I wanted to mention up front that caching is disabled in development mode. If you
want to play with caching, you’ll need to edit the following setting in the
config/environments/development.rb file:

config.action_controller.perform_caching = false

Of course, remember to change it back before checking it back into your project
repository, or you might face some very confusing errors down the road.1

Page Caching
The simplest form of caching is page caching, triggered by use of the caches_page
macro-style method in a controller. It tells Rails to capture the entire output of the
request to disk so that it is served up directly by the web server on subsequent requests
without the involvement of the dispatcher. Nothing will be logged to the Rails log,
nor will controller filters be triggered—absolutely nothing to do with Rails will hap-
pen, just like the static HTML files in your project’s public directory.

Action Caching
By definition, if there’s anything that has to change on every request or specific to an
end user’s view of that page, page caching is not an option. On the other hand, if all
we need to do is run some filters that check conditions before displaying the page
requested, the caches_action method will work. It’s almost like page caching,
except that controller filters are executed prior to serving the cached HTML file. That
gives you the option to do some extra processing or even redirect if necessary.

Action caching is implemented with fragment caching (covered later in this chap-
ter) and an around filter (covered in Chapter 2, “Working with Controllers”). The
cached action content is keyed based on the current host and the path, which means
that it will still work even with Rails applications serving multiple subdomains using
a DNS wildcard. Also, different representations of the same resource, such as HTML
and XML, are treated like separate requests and cached separately.

We’ll use our lil_journal2 sample application as the basis for our code snippets
in this section. The application should have public versus private entries, so for default
requests, we should run a filter that figures out whether the visitor is logged in and
redirects them to the public action if necessary. Listing 10.10 has the
EntriesController code.

328 10. ActionView

Listing 10.10 The EntriesController of lil_journal

class EntriesController < ApplicationController

before_filter :check_logged_in, :only => [:index]

caches_page :public
caches_action :index

def public
@entries = Entry.find(:all,

:limit => 10,
:conditions => {:private => false})

render :action => ‘index’
end

def index
@entries = Entry.find(:all, :limit => 10)

end

private

def check_logged_in
redirect_to :action => ‘public’ unless logged_in?

end

end

The public action displays only the public entries and is visible to anyone, which
makes it a candidate for page caching. However, since it doesn’t require its own tem-
plate, we just call render :action => ‘index’ explicitly at the end of the
public action.

Design Considerations

Knowing that your application will eventually require caching should influence your
design decisions. Projects with optional authentication often have controller actions
that are impossible to page or action-cache, because they handle both login states
internally. That would have been the case in Listing 10.10 if we had written the index
action to handle both public and private display:

def index

opts = {}

opts[:limit] = 10

Caching 329

opts[:conditions] = {:private => false } unless logged_in?

@posts = Entry.find(:all, opts)

end

Most of the time, you won’t have too many pages with completely static content
that can be cached using cache_page or cache_action, and that’s where fragment
caching comes into play.

Fragment Caching
Users are accustomed to all sorts of dynamic content on the page, and your applica-
tion layout will be filled with things like welcome messages and notification counts.
Fragment caching allows us to capture parts of the rendered page on disk and serve
them up on subsequent requests without needing to render their content again. The
performance improvement is not as dramatic as with page or action caching, since the
Rails dispatcher is still involved. However, you can still give your application a blaz-
ing speed boost by using fragment caching.

The cache Method

Fragment caching is by nature something you specify in your view template rather
than at the controller level. You do so using the cache method of ActionView. It
takes a block, which lets you wrap content that should be cached.

Once we log in to our Lil’ Journal sample application, the header section should
really display information about the logged-in user, so action-caching the index page
is out of the question. We’ll remove the action_cache directive from the
EntriesController, but leave cache_page in place for the public action. Then
we’ll go into the entries/index.html.erb template and add fragment caching, as
shown in Listing 10.11.

Listing 10.11 Lil’ Journal’s entries/index.html.erb Template with Fragment Caching

<%= content_tag :h1, “#{@user.name}’s Journal” %>
<% cache do %>
<%= render :partial => ‘entry’, :collection => @entries %>

<% end %>

330 10. ActionView

Easy as that—the HTML output of rendering the collection of entries is stored
in the fragment cache associated with the entries/index page. That’s fine if we’re
only caching one fragment of the page, but most of the time we’ll need to give the
fragment some extra identification.

Named Fragments

The cache method takes an optional name parameter.

<% cache “my_fragment” do %>

If you leave it blank, as we have in Listing 10.11, it caches its content keyed to the
URL of its parent page. That’s an acceptable solution as long as there is only one frag-
ment on the page.

If we’re caching more than one fragment on the page, we need to add an extra
identifier, so that we don’t suffer name collisions. Listing 10.12 is an enhanced version
of the entries page, where we’ve added the display of recent comments in the sidebar.

Listing 10.12 The Entries Page with Two Fragment Cache Directives

<%= content_tag :h1, “#{@user.name}’s Journal” %>

<% cache(:fragment => ‘entries’) do %>
<%= render :partial => ‘entry’, :collection => @entries %>

<% end %>

<%- content_for :sidebar -%>

<% cache(:fragment => ‘recent_comments’) do %>
<%= render :partial => ‘comment’, :collection => @recent_comments

%>
<% end %>

<% end %>

After the code in Listing 10.12 is rendered, there will be two fragments stored in
the cache, keyed as follows:

• /entries/index?fragment=entries

• /entries/index?fragment=recent_comments

Caching 331

The fact that Rails uses the page’s URL scheme to key fragments in the cache is
an elegant solution to a somewhat difficult problem. Consider for instance, what
would happen if you added pagination to the Lil’ Journal application and pulled up
the second page of entries. Without further work, a pair of additional fragments
would be correctly cached for future use:

• /entries/index?page=2&fragment=entries

• /entries/index?page=2&fragment=recent_comments

Note

Rails uses the url_for mechanism to construct unique identifiers for
fragments out of convenience. There’s no requirement that your fragment
keys correspond to actual working URLs in your application.

Global Fragments

Sometimes, you’ll want to fragment-cache content that is not specific to a single URL
of your application. To add globally keyed fragments to the cache, we’ll again use the
name parameter of the cache helper method, but this time we’ll give it a string iden-
tifier instead of a hash.

To demonstrate, let’s add a requirement that our Lil’ Journal application should
display user statistics on every page. In Listing 10.13, we cache the stats partial for
every user, using their name and a “_stats” suffix as the key.

Listing 10.13 The Entries Page with Global User Stats

<%= content_tag :h1, “#{@user.name}’s Journal” %>

<% cache(:fragment => ‘entries’) do %>
<%= render :partial => ‘entry’, :collection => @entries %>

<% end %>

<%- content_for :sidebar -%>

<% cache(@user.name + “_stats”) do %>
<%= render :partial => ‘stats’ %>

<% end %>

<% cache(:fragment => ‘recent_comments’) do %>
<%= render :partial => ‘comment’, :collection => @recent_comments %>

<% end %>

<% end %>

332 10. ActionView

There’s one part we’ve left out of our caching discussion so far, and that is the sub-
ject of expiring cached content once it is stale—once the data it is reflecting has
become out of date.

Avoiding Extra Database Activity

Once you have fragments of your view cached, it no longer makes sense to do the
database queries that supply those fragments with their data. After all, the results of
those database queries will never be used until the cached fragments are expired. The
read_fragment method lets you check for the existence of cached content, and takes
the same parameters that you used with the associated cache method.

Here’s how we would modify the index action accordingly:

def index

unless read_fragment(:fragment => ‘entries’)

@entries = Entry.find(:all, :limit => 10)

end

end

Now the finder method will only get executed if the cache needs to be refreshed.

Expiration of Cached Content
Whenever you use caching, you need to consider any and all situations that will cause
the cache to become stale, out of date. Then you need to write code that sweeps away
the old content, so to speak, making room for new content to be cached in its place.

Expiring Pages and Actions

The expire_page and expire_action methods let you explicitly delete content
from the cache, so that it is regenerated on the next request. You identify the content
to expire using the url_for conventions used elsewhere in Rails. Listing 10.14 shows
how we’ve added expiration to the create method of the entries controller.

Caching 333

Listing 10.14 The Entries create Action

1 def create
2 @entry = @user.entries.build(params[:entry])
3 if @entry.save
4 expire_page :action => ‘public’
5 redirect_to entries_path(@entry)
6 else
7 render :action => ‘new’
8 end
9 end

Notice how line 4 of Listing 10.14 explicitly expires the page associated with the
public action. If you think about it, though, it’s not only the create action that inval-
idates the cache. The update and destroy actions would invalidate it too.

In your applications, particularly if you’re doing REST-style resources, remember
that different representations of the same resource are treated like separate requests
and cached separately. If you’ve cached the XML response of an action, you’ll have to
expire it by appending :format => :xml to the action specification.

Expiring Fragments

Whoops! I almost forgot (seriously) that we also have cached fragments to clear out,
using the expire_fragment method. Now the create action looks like this:

def create

@entry = @user.entries.build(params[:entry])

if @entry.save

expire_page :action => ‘public’

expire_fragment(:fragment => ‘entries’)

expire_fragment(:fragment => (@user.name + “_stats”))

redirect_to entries_path(@entry)

else

render :action => ‘new’

end

end

Using regular expressions in expiration calls

There’s actually still (!) a serious problem with the expiration routine that we put in
the create action. Remember we said that the fragment caching of entries would

334 10. ActionView

work with pagination, and that we’d have cached fragments keyed like this:
‘/entries/index?page=2&fragment=entries’

As a result, just doing expire_fragment(:fragment => ‘entries’) will
only clear the first page from the cache. For that reason, the expire_fragment
method understands regular expressions, and we’ll need to use them in our code:

expire_fragment(r%{entries/.*})

There has to be a better way to handle invalidation than remembering to stick a
bunch of complicated expiration statements in all your action methods. Besides,
caching is a unique concern, which seems to indicate that it should be applied in a
more aspect-oriented fashion.

Automatic Cache Expiry with Sweepers
A Sweeper class is kind of like an ActiveRecord Observer object, except that it’s
specialized for use in expiring cached content. When you write a sweeper, you tell it
which of your models to observe for changes, just as you would with callback classes
and observers.

Listing 10.15 is a sweeper to keep the caching of Lil’ Journal’s entries in order.

Listing 10.15 An Entries Sweeper for Lil’ Journal

class EntrySweeper < ActionController::Caching::Sweeper
observe Entry

def expire_cached_content(entry)
expire_page :controller => ‘entries’, :action => ‘public’
expire_fragment(r%{entries/.*})
expire_fragment(:fragment => (entry.user.name + “_stats”))

end

alias_method :after_save, :expire_cached_content
alias_method :after_destroy, :expire_cached_content

end

Caching 335

Once you have a Sweeper class (put it in your app/models directory), you need
to tell your controller to use that sweeper in conjunction with its actions. Here’s the
top of the revised entries controller for Lil’ Journal:

class EntriesController < ApplicationController

before_filter :check_logged_in, :only => [:index]

caches_page :public

cache_sweeper :entry_sweeper, :only => [:create, :update, :destroy]

...

Like many other controller macros, the cache_sweeper method takes :only
and :except options. There’s no need to bother the sweeper for actions that can’t
modify the state of the application, so we do indeed include the :only option in our
example.

Like the related observers, sweepers are not limited to observing just one
model. The main thing to remember if we go down that route is that our callback
methods will need to know how to handle all of them. Ruby’s case statement may
come in handy, as shown in Listing 10.16, a full revision of the EntrySweeper, which
may now observe Comment as well as Entry objects.

Listing 10.16 The EntrySweeper Revised to Observe and Handle Both Entries and Comments

class EntrySweeper < ActionController::Caching::Sweeper
observe Entry, Comment

def expire_cached_content(record)
expire_page :controller => ‘entries’, :action => ‘public’
expire_fragment(r%{entries/.*})

user = case entry
when Entry then record.user
when Comment then record.entry.user

end

expire_fragment(:fragment => (user.name + “_stats”))
end

alias_method :after_save, :expire_cached_content
alias_method :after_destroy, :expire_cached_content

end

336 10. ActionView

Cache Logging
If you’ve turned on caching during development, you can actually monitor the Rails
log for messages about caching and expiration.

Processing Entries#index (for 127.0.0.1 at 2007-07-20 23:07:09) [GET]

...

Cached page: /entries.html (0.03949)

Processing Entries#create (for 127.0.0.1 at 2007-07-20 23:10:50)

[POST]

...

Expired page: /entries.html (0.00085)

It’s a good way to see whether your caching is actually working as expected.

Action Cache Plugin
The Action Cache plugin by Tom Fakes and Scott Laird is a recommended drop-in
replacement for the built-in Rails caching facilities. It doesn’t change the Caching API
at all, only the underlying implementation.

script/plugin install http://craz8.com/svn/trunk/plugins/action_cache

These are the major features of the Action Cache plugin:

• Stores cached entries as YAML streams (instead of just HTML) so that the
Response headers from the original response can be returned along with cached
content.

• Adds a last-modified header to the response so that clients use a get-if-
modified HTTP request. If the client already has cached content, sends a 304
Not Modified response.

• Ensures that only requests with a 200 OK status are cached. Otherwise, error
pages and empty content can get stuck in the cache (and cause difficult-to-
diagnose problems.)

• Allows developers to override Rails with their own implementation of cache key
generation.

Caching 337

• Allows an action to specify an optional Time To Live value for a response, before
cached content associated with the response will be automatically expired.

• Allows control over whether caching occurs for an action at runtime based on
request parameters. (For instance, never cache content for site administrators.)

• A new method, expire_all_actions, clears out the entire action cache con-
tents.

• Changes the expire_action implementation to actually use the Regexp frag-
ment expiry call, causing all matching cache items to be cleared. For those of you
using REST, and providing HTML, JS, and XML for the same action, all three
will be expired when you expire one of them with code like this: expire_action
:controller => ‘foo’, :action => ‘bar’

Cache Storage
Unlike session data, fragment-cached data can grow to be quite large. Rails gives you
four different options for cache storage:

• FileStore Keeps the fragments on disk in the cache_path, which works well
for all types of environments and shares the fragments for all the web server
processes running off the same application directory.

• MemoryStore Keeps the fragments in the memory, and can potentially con-
sume an unacceptable amount of memory per process.

• DRbStore Keeps the fragments in the memory of a separate, shared DRb
process. This option only keeps one cache around for all processes, but requires
that you run and manage a separate DRb process as part of your deployment
process.

• MemCacheStore Works like DRbStore, but uses a proven cache server named
memcached. I informally surveyed a bunch of Rails professionals about cache
storage, and all of them suggested that memcache is the best option.3

338 10. ActionView

Configuration Example

The :memory_store option is enabled by default.

ActionController::Base.fragment_cache_store = :memory_store

ActionController::Base.fragment_cache_store = :file_store,

“/path/to/cache/directory”

ActionController::Base.fragment_cache_store = :drb_store,

“druby://localhost:9192”

ActionController::Base.fragment_cache_store = :mem_cache_store,

“localhost”

Limitations of File-Based Storage

As long as you’re hosting your Rails application on a single server, setting up caching
is fairly straightforward and easy to implement (of course, coding it is a different
story).

If you think about the implications of running a cached application on a cluster
of distinct physical servers, you might realize that cache invalidation is going to be
painful. Unless you set up the file storage to point at a shared filesystem such as NFS
or GFS, it won’t work.

Manual Sweeping with rake

If you do choose file-based storage, you probably want to give yourself a way to man-
ually clear your application’s cached content. It’s not difficult to do using Rake. Just
add a file to the lib/tasks folder named cache.rake. You’ll be creating a task sim-
ilar to the one shown in Listing 10.17.

Listing 10.17 A cache_sweeper Custom Rake Task

desc “Manually sweep the cache”
task :cache_sweeper do
FileUtils.rm_rf Dir[File.join(RAILS_ROOT, “public”, “entries*”)]

#pages
FileUtils.rm_rf Dir[File.join(RAILS_ROOT, “tmp”, “cache*”)]

#fragments
end

Caching 339

I used entries in the example task, but remember that you may have to add one
or more of your own FileUtils.rm_rf statements corresponding to the pages that
your application is caching.

As a final note, keep in mind, that it’s common to use the FileUtils.rm_rf
brute-force approach in sweepers instead of the expire_* methods, mostly because a
lot of times it’s just easier to blow away entire cached directories and let them be
rebuilt as needed.

Conclusion
In this chapter, we’ve covered the ActionView framework with a detailed explanation
of ERb templating and how the Rails rendering system works. We’ve also covered the
use of partials in-depth, since their use is essential for effective Rails programming.

From the relatively simple principles of templating, we jumped into a complicated
subject: caching. Knowing how to implement caching will save you the day you work
on Rails application that really need to perform. Indeed, developers of high-traffic
Rails websites tend to see Rails as a very fancy HTML generation platform, which
helps them create content for caching.

Now it’s time to cover the mechanism whereby you can inject a whole bunch of
smarts into your view layer without cluttering up your templates: Helpers.

References

1. In his great screencast on the subject, Geoffrey Grosenback suggests adding another environment
mode to your project named development_with_caching, with caching turned on just for
experimentation (http://peepcode.com/products/page-action-and-fragment-caching).

2. Subversion URL: http://obiefernandez.com/svn/projects/awruby/prorails/lil_journal.

3. If you go the memcache route, definitely consider using Err the Blog’s CacheFu plugin, available
at http://require.errtheblog.com/plugins/browser/cache_fu.

340 10. ActionView

CHAPTER 11
All About Helpers

“Thank you for helping Helpers Helping the Helpless. Your help was very... help-
ful!”
—Mrs. Duong in the movie The Weekenders

We’ve already covered some of the helper methods provided by Rails to help you
assemble the user interface of your web application. This chapter lists and explains all
of the helper modules and their methods, followed by instructions on effectively cre-
ating your own helpers.

PrototypeHelper and ScriptaculousHelper were demoted out of Rails core
and are now packaged as plugins in Rails 2.0. They are used to easily add Ajax func-
tionality to your Rails application and are covered in-depth within Chapter 12, “Ajax
on Rails.”

NOTE

This chapter is essentially reference material. Although
every effort has been made to make it readable straight
through, you will notice that coverage of ActionView’s
helper modules is arranged alphabetically, starting with
ActiveRecordHelper and ending with UrlHelper.
Within each module’s section, the methods are broken up
into logical groups whenever appropriate.

ActiveRecordHelper

The ActiveRecordHelper module contains helper methods for quickly creating
forms from ActiveRecord models. The form method is able to create an entire form
for all the basic content types of a given record. However, it does not know how to
assemble user-interface components for manipulating associations. Most Rails devel-
opers assemble their own forms from scratch using methods from FormHelper,
instead of using this module.

Reporting Validation Errors
The error_message_on and error_messages_for methods help you to add for-
matted validation error information to your templates in a consistent fashion.

error_message_on(object, method, prepend_text = “”,

append_text = “”, css_class = “formError”)

Returns a DIV tag containing the error message attached to the specified method on
the object, if one exists. The contents can be specialized with parameters for pre- and
post-text and custom CSS class, as shown in the signature.

Use of this method is common when the user-interface requirements specify indi-
vidual validation messages per input field of a form, as in the following real-life example:

<div class=”form_field”>

<div class=”field_label”>

*

<label>First Name</label>

</div>

<div class=”textual”>

<%= form.text_field :first_name, :maxlength => 34, :tabindex => 1

%>

<%= error_message_on :user, :first_name %>

</div>

</div>

342 11. All About Helpers

error_messages_for(*params)

Returns a DIV tag containing all of the error messages for all of the objects held in
instance variables identified as parameters. This method is used by Rails scaffolding,
but rarely in real production applications. The Rails API documentation advises you
to use this method’s implementation as inspiration to meet your own requirements:

This is a prepackaged presentation of the errors with embedded strings and a cer-
tain HTML structure. If what you need is significantly different from the default
presentation, it makes plenty of sense to access the object.errors instance yourself
and set it up. View the source of this method to see how easy it is.

In fact, we’ll go ahead and reproduce the source of the method here with the
warning that you should not try to use it as inspiration unless you have a good grasp
of Ruby! On the other hand, if you have time to study the way that this method is
implemented, it will definitely teach you a lot about the way that Rails is implement-
ed, which is its own distinctive flavor of Ruby.

def error_messages_for(*params)

options = params.last.is_a?(Hash) ? params.pop.symbolize_keys : {}

objects = params.collect { |object_name|

instance_variable_get(“@#{object_name}”)

}.compact

count = objects.inject(0) {|sum, object| sum + object.errors.count }

unless count.zero?

html = {}

[:id, :class].each do |key|

if options.include?(key)

value = options[key]

html[key] = value unless value.blank?

else

html[key] = ‘errorExplanation’

end

end

header_message = “#{pluralize(count, ‘error’)} prohibited this

#{(options[:object_name] || params.first).to_s.gsub(‘_’, ‘ ‘)}

from being saved”

error_messages = objects.map {|object|

object.errors.full_messages.map {|msg| content_tag(:li, msg)}

}

ActiveRecordHelper 343

content_tag(:div,

content_tag(options[:header_tag] || :h2, header_message) <<

content_tag(:p, ‘There were problems with the following fields:’) <<

content_tag(:ul, error_messages), html)

else

‘’

end

end

Later on in the chapter we’ll talk extensively about writing your own helper methods.

Automatic Form Creation
The next couple of methods are used for automatic field creation by the scaffolding
code. You can try using them too, but I suspect that their usefulness is somewhat lim-
ited in real applications.

form(name, options)

Returns an entire form with input tags and everything for a named ActiveRecord
model object. Here are the code examples given in the Rails API documentation,
using a hypothetical Post object from a bulletin-board application as an example:

> form(“post”)

=> <form action=’/post/create’ method=’post’>

<p>

<label for=”post_title”>Title</label>

<input id=”post_title” name=”post[title]”

size=”30” type=”text” value=”Hello World” />

</p>

<p>

<label for=”post_body”>Body</label>

<textarea cols=”40” id=”post_body” name=”post[body]”

rows=”20”>

Back to the hill and over it again!

</textarea>

</p>

<input type=’submit’ value=’Create’ />

</form>

344 11. All About Helpers

Internally, the method calls record.new_record? to infer whether the action
for the form should be create or update. It is possible to explicitly specify the action
of the form (and the value of the submit button along with it) by using the :action
option.

If you need the form to have its enctype set to multipart, useful for file
uploads, set the options[:multipart] to true.

You can also pass in an :input_block option, using Ruby’s Proc.new idiom to
create a new anonymous code block. The block you supply will be invoked for each
content column of your model, and its return value will be inserted into the form.

> form(“entry”, :action => “sign”,

:input_block => Proc.new { |record, column|

“#{column.human_name}: #{input(record, column.name)}
” })

=> <form action=’/post/sign’ method=’post’>

Message:

<input id=”post_title” name=”post[title]” size=”30”

type=”text” value=”Hello World” />

<input type=’submit’ value=’Sign’ />

</form>

That example’s builder block, as it is referred to in the Rails API docs, uses the
input helper method, which is also part of this module, and is covered in the next
section of this chapter.

Finally, it’s also possible to add additional content to the form by giving the call
to form a block, as in the following snippet:

form(“entry”, :action => “sign”) do |s|

s << content_tag(“b”, “Department”)

s << collection_select(“department”, “id”, @departments, “id”,

“name”)

end

The block is yielded a string accumulator (named s in the example), to which you
append any additional content that you want to appear between the main input fields
and the submit tag.

ActiveRecordHelper 345

input(name, method, options)

The appropriately named input method takes some identifying information, and
automatically generates an HTML input tag based on an attribute of an
ActiveRecord model. Going back to the Post example used in the explanation of
form, here is the code snippet given in the Rails API docs:

input(“post”, “title”)

=> <input id=”post_title” name=”post[title]” size=”30”

type=”text” value=”Hello World” />

To quickly show you the types of input fields generated by this method, I’ll sim-
ply reproduce a portion of the code from the ActiveRecordHelper module itself:

def to_tag(options = {})

case column_type

when :string

field_type = @method_name.include?(“password”) ? “password” :

“text”

to_input_field_tag(field_type, options)

when :text

to_text_area_tag(options)

when :integer, :float, :decimal

to_input_field_tag(“text”, options)

when :date

to_date_select_tag(options)

when :datetime, :timestamp

to_datetime_select_tag(options)

when :time

to_time_select_tag(options)

when :boolean

to_boolean_select_tag(options)

end

end

Customizing the Way Validation Errors Are Highlighted
By default, when Rails marks a field in your form that failed a validation check, it does
so by wrapping that field in a DIV element, with the class name fieldWithErrors.

346 11. All About Helpers

This behavior is actually customizable, since it is accomplished via a Proc object
stored as a configuration property of the ActionView::Base class:

module ActionView

class Base

@@field_error_proc = Proc.new { |html_tag, instance|

“<div class=\”fieldWithErrors\”>#{html_tag}</div>”

}

cattr_accessor :field_error_proc

end

...

Armed with this knowledge, changing the validation error behavior is as simple as
overriding ActionView’s field_error_proc attribute with your own custom Proc.
I would suggest doing so either in config/environment.rb or your
ApplicationController class.

In Listing 11.1, I changed the setting so that the input fields with validation errors
are prefixed with a red ERR message.

Listing 11.1 Custom Validation Error Display

ActionView::Base.field_error_proc =
Proc.new do |html_tag,instance|
%(<div style=”color:red”>ERR</div>) + html_tag

end

It has been suggested by many people that it would have been a much better
default solution to simply add a fieldWithErrors CSS class to the input tag itself,
instead of wrapping it with an extra DIV tag. Indeed, that would have made many of
our lives easier, since an extra DIV often breaks pixel-perfect layouts. However, since
html_tag is already constructed at the time when the field_error_proc is
invoked, it is not trivial to modify its contents.

There are some solutions out there that use regular expressions and modify the
html_tag string, for instance this one, found at http://snippets.dzone.com/
tag/field_error_proc:

ActionView::Base.field_error_proc = Proc.new do |html_tag, instance|

error_style = “background-color: #ffff80”

if html_tag =~ /<(input|textarea|select)[^>]+style=/

ActiveRecordHelper 347

style_attribute = html_tag =~ /style=[‘“]/

html_tag.insert(style_attribute + 7, “#{error_style}; “)

elsif html_tag =~ /<(input|textarea|select)/

first_whitespace = html_tag =~ /\s/

html_tag[first_whitespace] = “ style=’#{error_style}’ “

end

html_tag

end

Ugly! This is certainly an area of ActionView that could use improvement.

AssetTagHelper

According to the Rails API docs, this module

Provides methods for linking an HTML page together with other assets such as
images, javascripts, stylesheets, and feeds. You can direct Rails to link to assets
from a dedicated assets server by setting ActionController::Base.asset_
host in your environment.rb. These methods do not verify the assets exist
before linking to them.

The AssetTagHelper module includes some methods that you will use on a
daily basis during active Rails development, particularly image_tag.

Head Helpers
Most of the helper methods in this module help you add content to the HEAD of your
HTML document.

auto_discovery_link_tag(type = :rss, url_options =

{}, tag_options = {})

Returns a link tag that browsers and newsreaders can use to autodetect an RSS or
ATOM feed. The type can either be :rss (default) or :atom. Control the link options
in url_for format using the url_options.

You can modify the LINK tag itself using the tag_options parameter:

• :rel Specify the relation of this link; defaults to “alternate”.

• :type Override MIME type (such as “application/atom+xml”) that Rails
would otherwise generate automatically for you.

• :title Specify the title of the link; defaults to a capitalized type.

348 11. All About Helpers

Here are examples of usages of auto_discovery_link_tag as shown in the
Rails API docs:

auto_discovery_link_tag # =>

<link rel=”alternate” type=”application/rss+xml” title=”RSS”

href=”http://www.curenthost.com/controller/action” />

auto_discovery_link_tag(:atom) # =>

<link rel=”alternate” type=”application/atom+xml” title=”ATOM”

href=”http://www.curenthost.com/controller/action” />

auto_discovery_link_tag(:rss, {:action => “feed”}) # =>

<link rel=”alternate” type=”application/rss+xml” title=”RSS”

href=”http://www.curenthost.com/controller/feed” />

auto_discovery_link_tag(:rss, {:action => “feed”}, {:title => “My

RSS”}) # =>

<link rel=”alternate” type=”application/rss+xml” title=”My RSS”

href=”http://www.curenthost.com/controller/feed” />

The Lesson of the Favorite Icon

Because of the options provided, you could theoretically use auto_discovery_
link_tag to generate a LINK tag for a favorite icon, the little image that displays in
the browser’s address bar and bookmarks:

auto_discovery_link_tag(‘image/x-icon’, ‘favicon.ico’,

:rel => ‘shortcut icon’, :title => ‘’)

<link rel=”shortcut icon” href=”favicon.ico”

type=”image/x-icon” title=””>

That said, there is very little reason, if any, to use the auto_discovery_link_tag
to generate a favorite icon link in this way, since the Rails incantation is actually longer
and more complicated than typing the actual HTML code! Neither is there anything
dynamic about the construction of this tag that requires helper logic.

I made a point of including this example to reinforce the lesson that it is not the
Rails way to use helpers to generate markup that you could otherwise go ahead and
write yourself.

AssetTagHelper 349

image_path(source)

Computes the path to an image asset in the public/images directory. Full paths
from the document root (beginning with a “/”) will be passed through. This method
is used internally by image_tag to build the image path. Passing a filename without
an extension, as was practiced in early versions of Rails, is no longer supported.

image_path(“edit.png”) # => /images/edit.png

image_path(“icons/edit.png”) # => /images/icons/edit.png

image_path(“/icons/edit.png”) # => /icons/edit.png

image_tag(source, options = {})

Returns an IMAGE tag for use in a template. The source parameter can be a full path
or a file that exists in your public images directory. You can add additional arbitrary
attributes to the IMAGE tag using the options parameter.

The following two options are treated specially:

• :alt If no alternate text is given, the filename part of the source is used, after
being capitalized and stripping off the extension.

• :size Supplied as widthxheight so “30x45” becomes the attributes
width=”30” and height=”45”. The :size option will fail silently if the value
is not in the correct format.

image_tag(“icon.png”) # =>

image_tag(“icon.png”, :size => “16x10”, :alt => “Edit Entry”) # =>

<img src=”/images/icon.png” width=”16” height=”10” alt=”Edit Entry”

/>

image_tag(“/photos/dog.jpg”, :class => ‘icon’) # =>

350 11. All About Helpers

Courtenay Says...

The image_tag method makes use of an internal method
called image_path. This helpful method determines the
path to use in the tag. Unfortunately, it also means you
can’t call a controller “image” and have it work as a
resource, due to the conflicting name.

javascript_include_tag(*sources)

Returns a SCRIPT tag for each of the sources provided. You can pass in the filename
(the .js extension is optional) of JavaScript files that exist in your
public/javascripts directory for inclusion into the current page, or you can pass
their full path, relative to your document root.

To include the Prototype and Scriptaculous JavaScript libraries in your application,
pass :defaults as the source. When you’re using :defaults, if an application.js
file exists in your public/javascripts directory, it will be included as well. You can
modify the attributes of the SCRIPT tag by passing a hash as the last argument.

javascript_include_tag “xmlhr”, :defer => ‘defer’ # =>

<script type=”text/javascript” src=”/javascripts/xmlhr.js”

defer=”defer”></script>

javascript_include_tag “common.javascript”, “/elsewhere/cools” # =>

<script type=”text/javascript”

src=”/javascripts/common.javascript”></script>

<script type=”text/javascript” src=”/elsewhere/cools.js”></script>

javascript_include_tag :defaults # =>

<script type=”text/javascript”

src=”/javascripts/prototype.js”></script>

<script type=”text/javascript”

src=”/javascripts/effects.js”></script>

...

<script type=”text/javascript”

src=”/javascripts/application.js”></script>

AssetTagHelper 351

javascript_path(source)

Computes the path to a JavaScript asset in the public/javascripts directory. If the
source filename has no extension, .js will be appended. Full paths from the docu-
ment root will be passed through. Used internally by javascript_include_tag to
build the script path.

stylesheet_link_tag(*sources)

Returns a stylesheet LINK tag for the sources specified as arguments. If you don’t spec-
ify an extension, .css will be appended automatically. Just like other helper methods
that take a variable number of arguments plus options, you can pass a hash of options
as the last argument and they will be added as attributes to the tag.

stylesheet_link_tag “style” # =>

<link href=”/stylesheets/style.css” media=”screen”

rel=”Stylesheet” type=”text/css” />

stylesheet_link_tag “style”, :media => “all” # =>

<link href=”/stylesheets/style.css” media=”all”

rel=”Stylesheet” type=”text/css” />

stylesheet_link_tag “random.styles”, “/css/stylish” # =>

<link href=”/stylesheets/random.styles” media=”screen”

rel=”Stylesheet” type=”text/css” />

<link href=”/css/stylish.css” media=”screen”

rel=”Stylesheet” type=”text/css” />

stylesheet_path(source)

Computes the path to a stylesheet asset in the public/stylesheets directory. If the
source filename has no extension, .css will be appended. Full paths from the docu-
ment root will be passed through. Used internally by stylesheet_link_tag to
build the stylesheet path.

For Plugins Only, Add Default JavaScript Includes
The register_javascript_include_default class method of ActionView:
:Helpers::AssetTagHelper lets plugin authors register one or more additional
JavaScript files to be included when javascript_include_tag :defaults is

352 11. All About Helpers

called. This method is only intended to be called from plugin initialization to register
additional .js files that the plugin installed in public/javascripts. You can find
more details about this method in Chapter 19, “Extending Rails with Plugins.”

BenchmarkHelper

One of the less frequently mentioned innovations in Rails is the usefulness of its built-
in logging facilities. The BenchmarkHelper module adds the ability to time arbitrary
bits of template code, and is useful when analyzing an application, looking for per-
formance bottlenecks.

benchmark(message = “Benchmarking”, level = :info)

Measures the execution time of a block in a template and reports the result to the log.

<% benchmark “Notes section” do %>

<%= expensive_notes_operation %>

<% end %>

The preceding example will add something like “Notes section (0.34523)” to the
log when the template is executed. It’s possible to give an optional logger level as the
second argument (:debug, :info, :warn, :error), but the default is :info.

CacheHelper

This module only contains one method, named cache. It is used to perform fragment
caching of blocks within templates, without caching the output of an entire action as
a whole. Rails also features page caching using the caches_page method of con-
trollers, where the entire output of an action is stored as a HTML file that the web
server can serve without going through the Action Pack.

In contrast, fragment caching is useful when certain elements of an action change
frequently or depend on complicated state, while other parts rarely change or can be
shared among multiple parties. The boundaries of a fragment to be cached are defined
within a view template using the cache helper method. The topic was covered in
detail in the caching section of Chapter 2, “Working with Controllers.”

CacheHelper 353

CaptureHelper

One of the great features of Rails views is that you are not limited to rendering a sin-
gle “flow” of content. Along the way, you can define blocks of template code that
should be inserted into other parts of the page during rendering using yield. The
technique is accomplished via a pair of methods from the CaptureHelper module.

capture(&block)

The capture method lets you capture part of a template’s output (inside a block) and
assign it to an instance variable. The value of that variable can subsequently be used
anywhere else on the template.

<% @message_html = capture do %>

<div>This is a message</div>

<% end %>

I don’t think that the capture method is really that useful on its own in a tem-
plate. It’s a lot more useful when you use it in your own custom helper methods. It
gives you the ability to write your own helpers that grab template content wrapped
using a block. We cover that technique later on in this chapter in the section “Writing
Your Own Helpers.”

content_for(name, &block)

We mentioned the content_for method in Chapter 10 in the section “Yielding
Content.” It allows you to designate a part of your template as content for another
part of the page. It works similarly to its sister method capture (in fact, it uses
capture itself). Instead of returning the contents of the block provided to it, it stores
the content to be retrieved using yield elsewhere in the template (or most common-
ly, in the surrounding layout).

A common example is to insert “sidebar” content into a layout. In the following
example, the link will not appear in the “flow” of the view template—it will appear
elsewhere in the template, wherever <%= yield :navigation_sidebar %>

appears.

<% content_for :navigation_sidebar do %>

<%= link_to ‘Detail Page’, item_detail_path(item) %>

<% end %>

354 11. All About Helpers

DateHelper

The DateHelper module is used primarily to create HTML select tags for differ-
ent kinds of calendar data. It also features one of the longest-named helper methods,
a beast peculiar to Rails, called distance_of_time_in_words_to_now.

The Date and Time Selection Helpers
The following methods help you create form field input tags dealing with date and
time data. All of them are prepared for multiparameter assignment to an
ActiveRecord object. That’s a fancy way of saying that even though they appear in
the HTML form as separate input fields, when they are posted back to the server, it is
understood that they refer to a single attribute of the model. That’s some Rails magic
for you!

date_select(object_name, method, options = {})

Returns a matched set of three select tags (one each for year, month, and day) pre-
selected for accessing a specified date-based attribute (identified by the method
parameter) on an object assigned to the template (identified by the object_name
parameter).

It’s possible to tailor the selects through the options hash, which accepts all the
keys that each of the individual select builders do (like :use_month_numbers for
select_month).

The date_select method also takes :discard_year, :discard_month, and
:discard_day options, which drop the corresponding select tag from the set of
three. Based on common sense, discarding the month select will also automatically
discard the day select. If the day is omitted, but not the month, Rails will assume that
the day should be the first of the month.

It’s also possible to explicitly set the order of the tags using the :order option
with an array of symbols :year, :month, and :day in the desired order. Symbols may
be omitted and the respective select tag is not included.

Passing :disabled => true as part of the options will make elements inacces-
sible for change (see Listing 11.2).

DateHelper 355

Listing 11.2 Examples of date_select

date_select(“post”, “written_on”)

date_select(“post”, “written_on”, :start_year => 1995,
:use_month_numbers => true,
:discard_day => true,
:include_blank => true)

date_select(“post”, “written_on”, :order => [:day, :month, :year])

date_select(“user”, “birthday”, :order => [:month, :day])

datetime_select(object_name, method, options = {})

Works exactly like date_select, except for the addition of hour and minute select
tags. Seconds may be added with the option :include_seconds. Along with the
addition of time information come additional discarding options: :discard_hour,
:discard_minute, and :discard_seconds.

time_select(object_name, method, options = {})

Returns a set of select tags (one for hour, minute, and optionally second) preselect-
ed for accessing a specified time-based attribute (identified by method) on an object
assigned to the template (identified by object_name). You can include the seconds
with :include_seconds.

time_select(“post”, “sunrise”)

time_select(“post”, “start_time”, :include_seconds => true)

The Individual Date and Time Select Helpers
Sometimes you need just a particular element of a date or time, and Rails obliges you
with a comprehensive set of individual date and time select helpers. In contrast to the
date and time helpers that we just looked at, the following helpers are not bound to
an instance variable on the page. Instead, they all take a date or time Ruby object as
their first parameter. (All of these methods have a set of common options, covered in
the following subsection.)

356 11. All About Helpers

select_date(date = Date.today, options = {})

Returns a set of select tags (one each for year, month, and day) preselected with the
date provided (or the current date). It’s possible to explicitly set the order of the tags
using the :order option with an array of symbols :year, :month, and :day in the
desired order.

select_datetime(datetime = Time.now, options = {})

Returns a set of select tags (one each for year, month, day, hour, and minute) pres-
elected with the datetime. Optionally add a seconds field using the :include_
seconds => true option. It’s also possible to explicitly set the order of the tags using
the :order option with an array of symbols :year, :month, and :day, :hour,
:minute, and :seconds in the desired order. You can also add character values for
the :date_separator and :time_separator options to control visual display of
the elements (they default to “/” and “:”).

select_day(date, options = {})

Returns a select tag with options for each of the days 1 through 31 with the current
day selected. The date can also be substituted for an hour number. Override the field
name using the :field_name option. It defaults to day. The date parameter may be
substituted by a value from 1 to 31.

select_hour(datetime, options = {})

Returns a select tag with options for each of the hours 0 through 23 with the cur-
rent hour selected. The datetime parameter can be substituted with an hour number
from 0 to 23.

select_minute(datetime, options = {})

Returns a select tag with options for each of the minutes 0 through 59 with the cur-
rent minute selected. Also can return a select tag with options by minute_step
from 0 through 59 with the 00 minute selected. The datetime parameter can be sub-
stituted by a seconds value of 0 to 59.

DateHelper 357

select_month(date, options = {})

Returns a select tag with options for each of the months January through December
with the current month selected. By default, the month names are presented as user
options in the drop-down selection and the month numbers (1–12) are used as values
submitted to the server.

It’s also possible to use month numbers for the presentation instead of names, by
setting :use_month_numbers => true. If you happen to want both numbers and
names, set the :add_month_numbers => true. If you would prefer to show month
names as abbreviations, set the :use_short_month key => true. Finally, if you
want to use your own month names, set the value of the :use_month_names key in
your options to an array of 12 month names.

Will use keys like “January”, “March”

select_month(Date.today)

Will use keys like “1”, “3”

select_month(Date.today, :use_month_numbers => true)

Will use keys like “1 - January”, “3 - March”

select_month(Date.today, :add_month_numbers => true)

Will use keys like “Jan”, “Mar”

select_month(Date.today, :use_short_month => true)

Will use keys like “Januar”, “Marts”

select_month(Date.today, :use_month_names => %w(Januar Februar

Marts ...))

Override the field name using the :field_name option. It defaults to month.

select_second(datetime, options = {})

Returns a select tag with options for each of the seconds 0 through 59 with the cur-
rent second selected. The datetime parameter can either be a DateTime object or a
second given as a number.

select_time(datetime, options = {})

Returns a set of HTML select tags (one for hour and minute). You can set
:add_separator key to format the output.

358 11. All About Helpers

select_year(date, options = {})

Returns a select tag with options for each of the five years on each side of the current
year, which is selected. The five-year radius can be changed using the :start_year

and :end_year options. Both ascending and descending year lists are supported by
making :start_year less than or greater than :end_year. The date parameter can
either be a Date object or a year given as a number.

ascending year values

select_year(Date.today, :start_year => 1992, :end_year => 2007)

descending year values

select_year(Date.today, :start_year => 2005, :end_year => 1900)

Common Options for Date Selection Helpers
All of the select-type methods share a number of common options that are as follows:

• :discard_type Set to true if you want to discard the type part of the select
name. If set to true, the select_month method would use simply date (which
can be overwritten using :prefix) instead of date[month].

• :field_name Allows you to override the natural name of a select tag (from
day, minute, and so on).

• :include_blank Set to true if it should be possible to set an empty date.

• :prefix Overwrites the default prefix of date used for the names of the
select tags. Specifying birthday would result in a name of birthday[month]
instead of date[month] when passed to the select_month method.

• :use_hidden Set to true to embed the value of the datetime into the page as
an HTML hidden input, instead of a select tag.

distance_in_time Methods with Complex Descriptive
Names
Some distance_in_time methods have really long, complex descriptive names that
nobody can ever remember without looking them up. Well, at least for the first dozen
times or so you might not remember.

DateHelper 359

I find the following methods to be a perfect example of the Rails way when it
comes to API design. Instead of going with a shorter and necessarily more cryptic
alternative, the framework author decided to keep the name long and descriptive. It’s
one of those cases where a nonprogrammer can look at your code and understand
what it’s doing. Well, probably.

I also find these methods remarkable in that they are part of why people some-
times consider Rails part of the Web 2.0 phenomenon. What other web framework
would include ways to humanize the display of timestamps?

distance_of_time_in_words(from_time, to_time = 0,

include_seconds = false)

Reports the approximate distance in time between two Time or Date objects or inte-
gers as seconds. Set the include_seconds parameter to true if you want more
detailed approximations when the distance is less than one minute.

Want to know how the times map out to expressions? Here is the implementa-
tion, which I think is some pretty cool Ruby code:

def distance_of_time_in_words(from_time, to_time = 0, include_seconds =

false)

from_time = from_time.to_time if from_time.respond_to?(:to_time)

to_time = to_time.to_time if to_time.respond_to?(:to_time)

d_minutes = (((to_time - from_time).abs)/60).round

d_seconds = ((to_time - from_time).abs).round

case d_minutes

when 0..1

unless include_seconds

return (d_minutes==0) ? ‘less than a minute’ : ‘1 minute’

end

case d_seconds

when 0..4 then ‘less than 5 seconds’

when 5..9 then ‘less than 10 seconds’

when 10..19 then ‘less than 20 seconds’

when 20..39 then ‘half a minute’

when 40..59 then ‘less than a minute’

else ‘1 minute’

360 11. All About Helpers

end

when 2..44 then “#{d_minutes} minutes”

when 45..89 then ‘about 1 hour’

when 90..1439 then “about #{(d_minutes.to_f/60.0).round} hours”

when 1440..2879 then ‘1 day’

when 2880..43199 then “#{(d_minutes / 1440).round} days”

when 43200..86399 then ‘about 1 month’

when 86400..525599 then “#{(d_minutes / 43200).round} months”

when 525600..1051199 then ‘about 1 year’

else “over #{(d_minutes / 525600).round}

years”

end

end

The Rails API docs ask you to note that Rails calculates one year as 365.25 days.

distance_of_time_in_words_to_now(from_time,

include_seconds = false)

Works exactly like distance_of_times_in_words except that the to_time is hard-
coded to the current time. Usually invoked on created_at or updated_at attrib-
utes of your model, followed by the string ago in your template, as in the following
example:

<%= comment.user.name %>

<small><%= distance_of_time_in_words_to_now review.created_at %>

ago</small>

DebugHelper

The DebugHelper module only contains one method, named debug. Output it in
your template, passing it an object that you want dumped to YAML and displayed in
the browser inside PRE tags. Useful for debugging during development, but not much
else.

DebugHelper 361

FormHelper

The FormHelper module provides a set of methods for working with HTML forms,
especially as they relate to ActiveRecord model objects assigned to the template. Its
methods correspond to each type of HTML input fields (such as text, password,
select, and so on) available. When the form is submitted, the value of the input fields
are bundled into the params that is passed to the controller.

There are two types of form helper methods. The types found in this module are
meant to work specifically with ActiveRecord model attributes, and the similarly
named versions in the FormTagHelper module are not.

Creating Forms for ActiveRecord Models
The core method of this helper is called form_for, and we covered it to some extent
in Chapter 4, “REST, Resources, and Rails.” You pass it the name of the model you
want to create a form for (or the model instance itself), as its first parameter, followed
by URL information for the HTML form’s action attribute. The helper method yields
a form object, on which you can invoke input helper methods, omitting their first
argument.

Assume we want a form for the user to create a new Person record and addi-
tionally assume that @person = Person.new happened in the action of the con-
troller that is rendering this template code:

<% form_for :person, @person, :url => { :action => “create” } do

|form| %>

<%= form.text_field :first_name %>

<%= form.text_field :last_name %>

<%= submit_tag ‘Create’ %>

<% end %>

This is the equivalent (old-school) version of form_for, which doesn’t use a
yielded form object and explicitly names the object being used in the input fields:

<% form_for :person, @person, :url => { :action => “create” } do %>

<%= text_field :person, :first_name %>

<%= text_field :person, :last_name %>

<%= submit_tag ‘Create’ %>

<% end %>

362 11. All About Helpers

The first version has less repetition (remember your DRY principle), but don’t
forget the more verbose style entirely—it’s necessary in some circumstances.

Variables Are Optional

If you explicitly specify the object name parameter for input fields rather than letting
them be supplied by the form, keep in mind that it doesn’t have to match a “live”
object instance in scope for the template. Rails won’t complain if the object is not
there—it will simply put blank values in the resulting form.

Rails-Generated Form Conventions

The HTML generated by the form_for invocations in the preceding example is char-
acteristic of Rails forms, and follows specific naming conventions:

<form action=”/persons/create” method=”post”>

<input id=”person_first_name” name=”person[first_name]” size=”30”

type=”text” />

<input id=”person_last_name” name=”person[last_name]” size=”30”

type=”text” />

<input name=”commit” type=”submit” value=”Create” />

</form>

When this form is submitted, the params hash will look like the following exam-
ple (using the format reflected in your development log for every request):

Parameters: {“commit”=>”Create”, “action”=>”create”,

“controller”=>”persons”,

“person”=> {“first_name”=>”William”, “last_name”=>”Smith”}}

As you can see, the params hash has a nested “person” value, which is accessed
using params[:person] in the controller. That’s pretty fundamental Rails knowl-
edge, and I’d be surprised if you didn’t know it already. I promise we won’t rehash
much more basic knowledge after the following section.

FormHelper 363

Displaying Existing Values

If you were editing an existing instance of Person, that object’s attribute values would
have been filled into the form, making the resulting HTML look something like this:

<form action=”/persons/create” method=”post”>

<input id=”person_first_name” name=”person[first_name]” size=”30”

type=”text” value=”Obie”/>

<input id=”person_last_name” name=”person[last_name]” size=”30”

type=”text” value=”Fernandez”/>

<input name=”commit” type=”submit” value=”Create” />

</form>

Okay, that’s also pretty fundamental Rails knowledge. What about if you want to
edit a new model object instance, prepopulated with certain values? Do you have to
pass the values as options to the input helper methods? No. Since the form helpers dis-
play the values of the model’s attributes, it would simply be a matter of initializing the
object with the desired values in the controller, as follows:

def new

@person = Person.new(:first_name => ‘First’, :last_name => ‘Last’)

end

Since you’re only using new, no record is persisted to the database, and your
default values magically appear in the input fields.

Updating Multiple Objects at Once

That’s all well and good for editing one object at a time. What if you want to edit mul-
tiple records at the same time? When the attribute name passed to form_for or indi-
vidual input field helper methods contains a set of square brackets, the id for the
object will be included in the autogenerated name and id attributes of the input tag.

I find this technique potentially challenging, on a couple of levels. First of all, we
usually identify attribute names using symbols, but tacking a pair of square brackets
onto a symbol (like :name[]) is invalid. We’re forced to use a string to name the
object instead:

<% form_for “person[]” do |form| %>

<% for @person in @people %>

<%= form.text_field :name %>

...

364 11. All About Helpers

Secondly, it generates HTML for the input tags looking something like this:

<input type=”text” id=”person_8_name” name=”person[8][name]”

value=”Obie Fernandez”/>

Whoa! The structure of the hash submitted to the controller is significantly dif-
ferent than what we’re used to seeing. That nested params hash will now be three lev-
els deep when it comes to the “person” and to make it more confusing, the ids of the
objects are being used as has keys:

Parameters: {“person”=>{“8”=>{“name”=>”Obie Fernandez”},

“9”=>{“name”=>”Jodi Showers”}, ...}, ... }

Now the controller code to handle the form needs to change, or you’re likely to
see a stack trace like the following one:

NoMethodError (undefined method `8=’ for #<User:0x8762174>):

/vendor/rails/activerecord/lib/active_record/base.rb:2032:in

`method_missing’

The good news is that the way that you handle that nested hash structure in your
controller’s update method is probably one of the nicest examples of how Rails is well
integrated across its MVC layers:

Person.update(params[:person].keys, params[:person].values)

Beautiful! This is the sort of thing that makes the Rails way so enjoyable.

Square Brackets with New Records?

If you have a way of inserting HTML into your document dynamically, via JavaScript
and/or AJAX techniques, you can leverage Rails’ behavior with regard to empty square
brackets.

When you’re using the square-brackets naming, Rails will happily generate
HTML for new model objects that looks like this:

<input type=”text” id=”person__name” name=”person[][name]”/>

FormHelper 365

If you were dynamically adding rows of child record entry forms to a parent form,
you could replicate that convention easily. Just make sure the names of your input
fields have the empty square brackets.

When you submit the form, the Rails request dispatcher will assume that the
value of the :person key in the params hash is supposed to be an Array, and that is
what you will have to deal with in the controller action as the value of params[:
person], an array!

Considering that the create class method of ActiveRecord models takes an
array or hashes to do multiple inserts, we have yet another one of those beautiful
examples of Rails cross-layer integration:

def add_people

Person.create(params[:person])

...

end

However, there are some drawbacks to this technique, because it only works when
all of the input fields in the person namespace have empty square brackets. Stick any
other input fields on the same object without the empty square brackets, and the Rails
dispatcher will get very, very unhappy about it:

DISPATCHER FAILSAFE RESPONSE (has cgi) Sun Jul 15 14:36:35 -0400 2007

Status: 500 Internal Server Error

Conflicting types for parameter containers. Expected an instance of

Hash but found an instance of Array. This can be caused by colliding

Array and Hash parameters like qs[]=value&qs[key]=value.

Indexed Input Fields

Okay, moving forward, here is a slightly more verbose and less magical way to define
multiple sets of input fields—use the :index option of the input field methods them-
selves. It lets you explicitly provide an identifier that will be inserted into the field
names, and in doing so opens up some interesting possibilities.

First, it lets you replicate the square brackets technique that we just discussed in
the preceding section. For example, here’s a set of name fields for a collection of people:

<% for @person in @people %>

<%= text_field :person, :name, :index => @person.id %>

...

366 11. All About Helpers

The id attribute of the person will be inserted into the parameter hash in the way
we’ve already discussed with the square brackets, and we’ll get the same nesting behavior.

Now to make it more interesting, notice that the :index option is not picky
about the type of identifier that you supply it, which makes it pretty useful for defin-
ing enumerated sets of records! That is exactly what sets it apart from the square-
brackets technique, and I’m sure I need to explain it a little more.

Consider the template code in Listing 11.3, part of a basketball tournament appli-
cation (or in a more generalized guise, any application that stores people in well-
defined roles):

Listing 11.3 Basketball Team Entry Form

<% form_for :team do |f|%>
<h2>Team Name</h2>
Name: <%= f.text_field :name %>

Coach: <%= f.text_field :coach %>
<% [“guard_1”, “guard_2”, “forward_1”, “forward_2”, “center”].each

{|role| %>
<h3><%= role.humanize %></h3>
Name: <%= text_field :players, :name, :index => role %>

<% } %>
<% end %>

That code produces the following HTML output when you run it:

<form method=”post” action=”/homepage/team”>

<h2>Team Name</h2>

Name: <input id=”team_name” type=”text” size=”30”

name=”team[name]”/>

Coach: <input id=”team_coach” type=”text” size=”30”

name=”team[coach]”/>

<h3>Guard 1</h3>

Name: <input id=”players_guard_1_name” type=”text” size=”30”

name=”players[guard_1][name]”/>

<h3>Guard 2</h3>

Name: <input id=”players_guard_2_name” type=”text” size=”30”

name=”players[guard_2][name]”/>

<h3>Forward 1</h3>

Name: <input id=”players_forward_1_name” type=”text” size=”30”

name=”players[forward_1][name]”/>

<h3>Forward 2</h3>

Name: <input id=”players_forward_2_name” type=”text” size=”30”

FormHelper 367

name=”players[forward_2][name]”/>

<h3>Center</h3>

Name: <input id=”players_center_name” type=”text” size=”30”

name=”players[center][name]”/>

</form>

Now when you submit that form (as I just did, using one of my favorite basket-
ball teams of all time), your controller action would receive the following parameters
hash. I took the liberty of formatting the log output nicely, to make sure the structure
is clear:

Parameters: {“team”=>{

“name”=>”Chicago Bulls”,

“coach”=>”Phil Jackson”},

{“players”=> {

“forward_1”=>{“name”=>”Scottie Pippen”},

“forward_2”=>{“name”=>”Horace Grant”},

“center”=>{“name”=>”Bill Cartwright”},

“guard_1”=>{“name”=>”Michael Jordan”},

“guard_2”=>{“name”=>”John Paxson”}}, ... }

I made it a point to give those text field inputs for the player’s names and ages
their own :players identifier, rather than linking them to the form’s team object.
You don’t even need to worry about initializing an @players variable for the form to
work. Form helper methods do not complain if the variable they’re supposed to reflect
is nil, provided you identify it using a symbol and not by passing the instance variable
directly to the method.

For the sake of completeness, I’ll give you some simplistic controller action code
in Listing 11.4 that is capable of handling the form submission.

Listing 11.4 Controller Action to Create Team

def create
@team = Team.create(params[:team])
params[:players].keys.each do |role|
@team.add_player(role, Player.new(params[:players][role]))

end
...

end

368 11. All About Helpers

Taking into account the nested parameters hash, we can take it apart in a loop
based on params[:players].keys and do operations per role. Of course, this code
assumes that the team has an instance method add_player(role, player), but I
think you should get my drift.

Faux Accessors

“Now hold on a second,” you are probably saying to yourself. If our example Team
model knew how to handle the setting of a players hash as part of its attributes, the
controller code could be dramatically simpler. In fact, we could knock it down to just
one line (excluding error checking and redirection):

def create

@team = Team.create(params[:team])

...

end

Impressive, huh? (It is to me!) What we need is to cheat with what Josh Susser calls
faux accessors1—setters that let you initialize parts of a model that aren’t (database-
backed) attributes. Our example Team model would need a players writer method
that understood how to add those players to itself. Perhaps it would look like the
example in Listing 11.5.

Listing 11.5 Adding Writer Methods That Understand Params Hashes

class Team < ActiveRecord::Base
has_many :positions
has_many :players, :through => :positions

def players=(players_hash)
players_hash.keys.each do |role|
positions.create(:role => role,

:player => Player.new(players_hash[role]))
end

end
end

class Position < ActiveRecord::Base
belongs_to :player
belongs_to :team

end

class Player < ActiveRecord::Base
has_many :positions
has_many :teams, :through => :positions

end

FormHelper 369

To recap, the players= writer method gets invoked as a result of calling
Team.create with the full params hash structure, which includes a nested hash of
:players. I must warn you, that your mileage may, as they say, vary with this kind
of technique. It’s perfect for the example, with its has_many :through relationship
connecting the Team, Position, and Player classes, but it may not be perfect for
your domain model. The most important idea is to keep your mind open to the pos-
sibility of writing code that is this clean. It’s the Rails way.

Courtenay Says...

Hiding your code behind a method like this will make
your code both simpler, and more powerful. You can now
test this method in isolation, and can stub it in a con-
troller test. Stubbing in this case allows you to focus on
testing the logic of the controller action, and not the
behavior of the database.

It also means you or another team member can change the
implementation without breaking unrelated tests, and it
keeps the database code where it belongs, in the model.

I’ve gotten us off on a bit of a tangent—we were talking about form helpers, so
let’s cover one more important aspect of them before moving forward.

How Form Helpers Get Their Values
A rather important lesson to learn about Rails form helper methods is that the value
they display comes directly from the database prior to “meddling” by the developer.
Unless you know what you’re doing, you may get some unexpected results if you try
to override the values to be displayed in a form.

Let’s illustrate with a LineItem model, which has a decimal rate attribute (by
merits of a rate column in its database table). We’ll override its implicit rate accessor
with one of our own:

class LineItem < ActiveRecord::Base

def rate

“A RATE”

end

end

370 11. All About Helpers

In normal situations, the overridden accessor is hiding access to the real rate
attribute, as we can illustrate using the console.

>> li = LineItem.new

=> #<LineItem:0x34b5d18>

>> li.rate

=> “A RATE”

However, suppose you were to compose a form to edit line items using form
helpers:

<%- form_for :line_item do |f| -%>

<%= f.text_field :rate %>

<%- end -%>

You would find that it works normally, as if that overridden rate accessor does-
n’t exist. The behavior is intentional, yet confusing enough that it has been reported
multiple times as a bug.2

The fact is that Rails form helpers use special methods named
attribute_before_type_cast (which are covered in Chapter 6, “Working with
ActiveRecord”). The preceding example would use the method
rate_before_type_cast, and bypass the overriding method we defined.

FormOptionsHelper

The methods in the FormOptionsHelper module are all about helping you to work
with HTML select elements, by giving you ways to turn collections of objects into
option tags.

Select Helpers
The following methods help you to create select tags based on a pair of object and
attribute identifiers.

FormOptionsHelper 371

collection_select(object, attribute, collection,

value_method, text_method, options = {},

html_options = {})

Return both select and option tags for the given object and attribute using
options_from_collection_for_select (also in this module) to generate the list
of option tags from the collection parameter.

country_select(object, attribute, priority_countries

= nil, options = {}, html_options = {})

Return select and option tags for the given object and method, using country_
options_for_select to generate the list of option tags. Note: The country values
inserted by Rails do not include standard 2-character country codes.

The priority_countries argument allows you to specify an array of country
names to display at the top of the drop-down selection for the user’s convenience:

<%= form.country_select :billing_country, [“United States”] %>

select(object, attribute, choices, options = {},

html_options = {})

Create a select tag and a series of contained option tags for the provided
object_name and attribute. The value of the attribute currently held by the object (if
any) will be selected, provided that the object is available (not nil). See
options_for_select section for the required format of the choices parameter.

Here’s a small example where the value of @person.person_id is 1:

select(“post”, “person_id”, Person.find(:all).collect {|p|

[p.name, p.id] }, { :include_blank => true })

Executing that helper code would generate the following HTML output:

<select name=”post[person_id]”>

<option value=””></option>

<option value=”1” selected=”selected”>David</option>

<option value=”2”>Sam</option>

<option value=”3”>Tobias</option>

</select>

372 11. All About Helpers

If necessary, specify :selected => value to explicitly set the selection or
:selected => nil to leave all options unselected. The :include_blank => true
option inserts a blank option tag at the beginning of the list, so that there is no pre-
selected value.

time_zone_select(object, method, priority_zones =

nil, options = {}, html_options = {})

Return select and option tags for the given object and method, using
time_zone_options_for_select to generate the list of option tags.

In addition to the :include_blank option documented in the preceding sec-
tion, this method also supports a :model option, which defaults to TimeZone. This
may be used by users to specify a different timezone model object. (See
time_zone_options_for_select section for more information.)

Option Helpers
For all of the following methods, only option tags are returned, so you have to invoke
them from within a select helper or otherwise wrap them in a select tag.

country_options_for_select(selected = nil,

priority_countries = nil)

Returns a string of option tags for pretty much any country in the world. Supply a
country name as selected to have it marked as the selected option tag. You can also
supply an array of countries as priority_countries, so that they will be listed
above the rest of the (long) list.

option_groups_from_collection_for_select(collection,

group_method, group_label_method, option_key_method,

option_value_method, selected_key = nil)

Returns a string of option tags, like options_from_collection_for_select, but
surrounds them with OPTGROUP tags. The collection should return a subarray of
items when calling group_method on it. Each group in the collection should
return its own name when calling group_label_method. The option_key_method
and option_value_method parameters are used to calculate option tag attributes.

FormOptionsHelper 373

It’s probably much easier to show in an example than to explain in words.

>> html_option_groups_from_collection(@continents, “countries”,

“continent_name”, “country_id”, “country_name”,

@selected_country.id)

This example could output the following HTML:

<optgroup label=”Africa”>

<select>Egypt</select>

<select>Rwanda</select>

...

</optgroup>

<optgroup label=”Asia”>

<select>China</select>

<select>India</select>

<select>Japan</select>

...

</optgroup>

For the sake of clarity, here are the model classes reflected in the example:

class Continent

def initialize(p_name, p_countries)

@continent_name = p_name; @countries = p_countries

end

def continent_name

@continent_name

end

def countries

@countries

end

end

class Country

def initialize(id, name)

@id, @name = id, name

end

def country_id

374 11. All About Helpers

@id

end

def country_name

@name

end

end

options_for_select(container, selected = nil)

Accepts a container (hash, array, or anything else enumerable) and returns a string of
option tags.

Given a container where the elements respond to first and last (such as a two-
element array), the “lasts” serve as option values and the “firsts” as option text. It’s not
too hard to put together an expression that constructs a two-element array using the
map and collect iterators.

For example, assume you have a collection of businesses to display, and you’re
using a select field to allow the user to filter based on the category of the businesses.
The category is not a simple string; in this example, it’s a proper model related to the
business via a belongs_to association:

class Business < ActiveRecord::Base

belongs_to :category

end

class Category < ActiveRecord::Base

has_many :businesses

def <=>(other)

end

A simplified version of the template code for displaying that collection of busi-
nesses might look like this:

<% opts = @businesses.map(&:category).sort.collect {|c| [[c.name],

[c.id]]} %>

<% select_tag(:filter, options_for_select(opts, params[:filter])) %>

FormOptionsHelper 375

The first line puts together the container expected by options_for_select
by first aggregating the category attributes of the businesses collection using map
and the nifty &:method syntax supported by Rails. The second line generates the
select tag using those options (covered later in the chapter). Realistically you want
to massage that category list a little more, so that it is ordered correctly and does not
contain duplicates:

... @businesses.map(&:category).uniq.sort.collect {...

Particularly with smaller sets of data, it’s perfectly acceptable to do this level of
data manipulation in Ruby code. And of course, you probably don’t want to ever
shove hundreds or even thousands of rows in a select tag, which means this tech-
nique is quite useful. Remember to implement the spaceship method in your model if
you need it to be sortable by the sort method.

Also, it’s worthwhile to experiment with eager loading in these cases, so you don’t
end up with an individual database query for each of the objects represented in the
select tag. In the case of our example, the controller would populate the businesses
collection using code like this:

@businesses = Business.find(:conditions => ..., :include => :category)

Hashes are turned into a form acceptable to options_for_select automatical-
ly—the keys become “firsts” and values become “lasts.”

If selected parameter is specified (with either a value or array of values for mul-
tiple selections), the matching “last” or element will get the selected attribute:

>> options_for_select([[“Dollar”, “$”], [“Kroner”, “DKK”]])

<option value=”$”>Dollar</option>

<option value=”DKK”>Kroner</option>

>> options_for_select([“VISA”, “MasterCard”], “MasterCard”)

<option>VISA</option>

<option selected=”selected”>MasterCard</option>

>> options_for_select({ “Basic” => “$20”, “Plus” => “$40” }, “$40”)

<option value=”$20”>Basic</option>

<option value=”$40” selected=”selected”>Plus</option>

>> options_for_select([“VISA”, “MasterCard”, “Discover”],

[“VISA”, “Discover”])

376 11. All About Helpers

<option selected=”selected”>VISA</option>

<option>MasterCard</option>

<option selected=”selected”>Discover</option>

A lot of people have trouble getting this method to correctly display their select-
ed item—make sure that the value you pass to selected matches the type contained
in the object collection of the select; otherwise, it won’t work. In the following
example, assuming price is a numeric value, without the to_s, selection would be
broken, since the values passed as options are all strings:

>> options_for_select({ “Basic” => “20”, “Plus” => “40” }, price.to_s)

<option value=”20”>Basic</option>

<option value=”40” selected=”selected”>Plus</option>

options_from_collection_for_select(collection,

value_method, text_method, selected=nil)

Returns a string of option tags that have been compiled by iterating over the collec-
tion and assigning the result of a call to the value_method as the option value and
the text_method as the option text. If selected is specified, the element returning a
match on value_method will get preselected.

time_zone_options_for_select(selected = nil, priority_

zones = nil, model = TimeZone)

Returns a string of option tags for pretty much any timezone in the world. Supply a
TimeZone name as selected to have it preselected. You can also supply an array of
TimeZone objects as priority_zones, so that they will be listed above the rest of the
(long) list. TimeZone.us_zones is a convenience method that gives you a list of the
U.S. timezones only.

The selected parameter must be either nil, or a string that names a TimeZone
(covered in the Appendix A, “ActiveSupport API Reference”).

By default, the model is the TimeZone constant (which can be obtained in
ActiveRecord as a value object). The only requirement is that the model parameter
be an object that responds to all, returning an array of objects representing time-
zones.

FormOptionsHelper 377

FormTagHelper

The following helper methods generate HTML form and input tags based on explic-
it naming and values, contrary to the similar methods present in FormHelper, which
require association to an ActiveRecord model instance. All of these helper methods
take an options hash, which may contain special options or simply additional attrib-
ute values that should be added to the HTML tag being generated.

check_box_tag(name, value = “1”, checked = false,

options = {})

Creates HTML for a check box input field. Unlike its fancier cousin, check_box in
FormHelper, this helper does not give you an extra hidden input field to ensure that
a false value is passed even if the check box is unchecked.

>> check_box_tag(‘remember_me’)

=> <input id=”remember_me” name=”remember_me” type=”checkbox”

value=”1”/>

>> check_box_tag(‘remember_me’, 1, true)

=> <input checked=”checked” id=”remember_me” name=”remember_me”

type=”checkbox” value=”1” />

end_form_tag

Prior to Rails 2.0, the end_form_tag was used to output the HTML string </form>
into your template, and was used in conjunction with start_form_tag. Nowadays,
we use a block to wrap the content of a form and this method is no longer needed.

file_field_tag(name, options = {})

Creates a file upload field. Remember to set your HTML form to multipart or file
uploads will mysteriously not work:

<%= form_tag { :action => “post” }, { :multipart => true } %>

<label for=”file”>File to Upload</label>

<%= file_field_tag :uploaded_data %>

<%= submit_tag %>

<%= end_form_tag %>

378 11. All About Helpers

The controller action will receive a File object pointing to the uploaded file as it
exists in a tempfile on your system. Processing of an uploaded file is beyond the scope
of this book. If you’re smart, you’ll use Rick Olson’s excellent AttachmentFu3 plugin
instead of rolling your own handler code.

form_tag(url_for_options = {}, options = {},

*parameters_for_url, &block)

Starts a FORM tag, with its action attribute set to the URL passed as the
url_for_options parameter. It is aliased as start_form_tag.

The :method option defaults to POST. Browsers handle HTTP GET and POST
natively; if you specify “put,” “delete,” or any other HTTP verb is used, a hidden
input field will be inserted with the name _method and a value corresponding to the
method supplied. The Rails request dispatcher understands the _method parameter,
which is the basis for the RESTful techniques you learned in Chapter 4.

The :multipart option allows you to specify that you will be including file-
upload fields in the form submission and the server should be ready to handle those
files accordingly.

>> form_tag(‘/posts’)

=> <form action=”/posts” method=”post”>

>> form_tag(‘/posts/1’, :method => :put)

=> <form action=”/posts/1” method=”put”>

>> form_tag(‘/upload’, :multipart => true)

=> <form action=”/upload” method=”post” enctype=”multipart/form-data”>

You might note that all parameters to form_tag are optional. If you leave them
off, you’ll get a form that posts back to the URL that it came from—a quick and dirty
solution that I use quite often when prototyping or experimenting. To quickly set up
a controller action that handles post-backs, just include an if/else condition that
checks the request method, something like this:

def add

if request.post?

handle the posted params

redirect_to :back

end

end

FormTagHelper 379

Notice that if the request is a post, I handle the form params and then redirect
back to the original URL (using redirect_to :back). Otherwise, execution simply
falls through and would render whatever template is associated with the action.

hidden_field_tag(name, value = nil, options = {})

Creates a hidden field, with parameters similar to text_field_tag.

image_submit_tag(source, options = {})

Displays an image that, when clicked, will submit the form. The interface for this
method is the same as its cousin image_tag in the AssetTagHelper module.

Image input tags are popular replacements for standard submit tags, because they
make an application look fancier. They are also used to detect the location of the
mouse cursor on click—the params hash will include x and y data.

password_field_tag(name = “password”, value = nil,

options = {})

Creates a password input field. This method is otherwise identical to
text_field_tag.

radio_button_tag(name, value, checked = false,

options = {})

Creates a radio button input field. Make sure to give all of your radio button options
the same name so that the browser will consider them linked.

select_tag(name, option_tags = nil, options = {})

Creates a drop-down selection box, or if the :multiple option is set to true, a
multiple-choice selection box. The option_tags parameter is an actual string of
option tags to put inside the select tag. You should not have to generate that string
explicitly yourself—use the helpers in FormOptions (covered in the previous section
of this chapter), which can be used to create common select boxes such as countries,
time zones, or associated records.

start_form_tag

Alias for form_tag.

380 11. All About Helpers

submit_tag(value = “Save changes”, options = {})

Creates a submit button with the text value as the caption. The option
:disable_with can be used to provide a name for disabled versions of the submit
button.

text_area_tag(name, content = nil, options = {})

Creates a multiline text input field (the TEXTAREA tag). The :size option lets you
easily specify the dimensions of the text area, instead of having to resort to explicit
:rows and :cols options.

>> <%= text_area_tag “body”, nil, :size => “25x10” %>

=> <textarea name=”body” id=”body” cols=”25” rows=”10”></textarea>

text_field_tag(name, value = nil, options = {})

Creates a standard text input field.

Courtenay Says...

Many of these functions are fine for the new Rails pro-
grammer, but real coders write their HTML tags and
Javascript by hand.

JavaScriptHelper

Provides helper methods to facilitate inclusion of JavaScript code in your templates.

button_to_function(name, function, html_options={},

&block)

Returns a button that will trigger a JavaScript function via the onclick handler. The
function argument can be left out, if you provide an update_page block contain-
ing RJS-style code. The opts hash takes optional attributes for the button tag.

button_to_function “Greeting”, “alert(‘Hello world!’)”

button_to_function “Delete”, “if (confirm(‘Really?’)) do_delete()”

JavaScriptHelper 381

button_to_function “Details” do |page|

page[:details].visual_effect :toggle_slide

end

button_to_function “Details”, :class => “details_button” do |page|

page[:details].visual_effect :toggle_slide

end

define_javascript_functions()

Includes the source code for all of your project’s JavaScript libraries inside a single
SCRIPT tag. The function first includes prototype.js and then its core extensions
(determined by filenames starting with “prototype”). Afterward, any additional scripts
in the public/javascripts will be included in undefined order.

It is much preferable to use the javascript_include_tag helper method of
AssetTagHelper to create remote SCRIPT links.

escape_javascript(javascript)

Escapes line breaks, single and double quotes for JavaScript segments.

javascript_tag(content, html_options={})

Outputs a SCRIPT tag with the content inside. The html_options are added as tag
attributes.

link_to_function(name, function, html_options={},

&block)

Returns a link that will trigger a JavaScript function using the onclick handler of the
link. A return false; statement is added, so that the browser knows to stop pro-
cessing the link click.

>> link_to_function “Greeting”, “alert(‘Hello world!’)”

=> <a onclick=”alert(‘Hello world!’); return false;”

href=”#”>Greeting

>> link_to_function(image_tag(“delete”), “if (confirm(‘Really?’))

do_delete()”)

>> <a onclick=”if (confirm(‘Really?’)) do_delete(); return false;”

382 11. All About Helpers

href=”#”>

Just like button_to_function, you can omit the function parameter and pro-
vide JavaScript RJS-style in a code block.

>> link_to_function(“Show me more”, nil, :id => “more_link”) do |page|

page[:details].visual_effect :toggle_blind

page[:more_link].replace_html “Show me less”

end

>> <a href=”#” id=”more_link” onclick=”try {

$(‘details’).visualEffect(‘toggle_blind’);

$(‘more_link’).update(‘Show me less’);

}...

NumberHelper

This module provides assistance in converting numeric data to formatted strings suit-
able for displaying in your view. Methods are provided for phone numbers, currency,
percentage, precision, positional notation, and file size.

human_size(size, precision=1)

Alias for number_to_human_size.

number_to_currency(number, options = {})

Formats a number into a currency string. You can customize the format in the options
hash.

• :precision Sets the level of precision, defaults to 2

• :unit Sets the denomination of the currency, defaults to “$”

• :separator Sets the separator between the units, defaults to “.”

• :delimiter Sets the thousands delimiter, defaults to “,”

NumberHelper 383

>> number_to_currency(1234567890.50)

=> $1,234,567,890.50

>> number_to_currency(1234567890.506)

=> $1,234,567,890.51

>> number_to_currency(1234567890.506, :precision => 3)

=> $1,234,567,890.506

>> number_to_currency(1234567890.50, :unit => “£”,

=> :separator => “,”, :delimiter => “”

=> £1234567890,50

number_to_human_size(size, precision=1)

Formats the bytes in size into a more understandable representation. Useful for report-
ing file sizes to users. This method returns nil if size cannot be converted into a num-
ber. You can change the default precision of 1.

number_to_human_size(123) => 123 Bytes

number_to_human_size(1234) => 1.2 KB

number_to_human_size(12345) => 12.1 KB

number_to_human_size(1234567) => 1.2 MB

number_to_human_size(1234567890) => 1.1 GB

number_to_human_size(1234567890123) => 1.1 TB

number_to_human_size(1234567, 2) => 1.18 MB

This method is also aliased as human_size.

number_to_percentage(number, options = {})

Formats a number as a percentage string. You can customize the format in the options
hash.

• :precision Sets the level of precision, defaults to 3

• :separator Sets the separator between the units, defaults to “.”

number_to_percentage(100) => 100.000%

number_to_percentage(100, {:precision => 0}) => 100%

number_to_percentage(302.0574, {:precision => 2}) => 302.06%

384 11. All About Helpers

number_to_phone(number, options = {})

Formats a number as a U.S. phone number. You can customize the format in the
options hash.

• :area_code Adds parentheses around the area code

• :delimiter Specifies the delimiter to use, defaults to “-”

• :extension Specifies an extension to add to the end of the generated number

• :country_code Sets the country code for the phone number

number_to_phone(1235551234) => 123-555-1234

number_to_phone(1235551234, :area_code => true) => (123) 555-1234

number_to_phone(1235551234, :delimiter => “ “) => 123 555 1234

number_with_delimiter(number, delimiter=”,”,

separator=”.”)

Formats a number with grouped thousands using a delimiter. You can customize the
format using optional delimiter and separator parameters.

• delimiter Sets the thousands delimiter, defaults to “,”

• separator Sets the separator between the units, defaults to “.”

number_with_delimiter(12345678) => 12,345,678

number_with_delimiter(12345678.05) => 12,345,678.05

number_with_delimiter(12345678, “.”) => 12.345.678

number_with_precision(number, precision=3)

Formats a number with the specified level of precision. The default level of precision
is 3.

number_with_precision(111.2345) => 111.235

number_with_precision(111.2345, 2) => 111.24

NumberHelper 385

PaginationHelper

The PaginationHelper module was removed from Rails 2. Basically, it sucked and
everyone hated it. As long as anyone can remember, the Rails way has been to not use
the pagination helper and use something else instead.

Luckily, you don’t have to roll your own pagination because there are a couple of
pagination plugins that are worth their weight in gold. We don’t cover them exten-
sively here, but I will at least point you in the right direction.

Courtenay Says

The default paginator worked well enough, but it didn’t
really scale.

will_paginate

This plugin,4 written by the guys behind the popular ERR the blog, is the pagina-
tion library of choice for most savvy Rails developers. Install it as a plugin using the
following command:

$ script/plugin install svn://errtheblog.com/svn/plugins/will_paginate

In a nutshell, will_paginate works by adding a paginate class method to your
ActiveRecord models that takes the place of find. In addition to find’s usual nam-
ing conventions, arguments, and options, it takes a :page parameter, for obvious rea-
sons.

A query in the controller might look like this:

@posts = Post.paginate_by_board_id @board.id, :page => params[:page]

View template code is not impacted very much; it just gets fewer records to dis-
play. To render the pagination control, you just have to call will_paginate with the
collection being rendered:

<%= will_paginate @posts %>

The plugin authors even give you a batch of CSS code so that you can make the
pagination control look really pretty, as shown in Figure 11.1.

386 11. All About Helpers

Figure 11.1 Pagination control formatted by CSS code

Users with search-engine optimization (SEO) concerns probably should go with
will_paginate because it generates those individually numbered page links. Search
robots see them as unique links and will keep clicking through and indexing their con-
tent. Conventional SEO wisdom is that search robots click next links only a few times
before getting bored and moving on to more interesting sites.

paginator

This project,5 by notable Rails expert Bruce Williams, is hosted on Rubyforge and
might appeal to some because of its simplicity. It’s a Rubygem, not a plugin, so you
would type sudo gem install paginator to get your hands on it.

Instead of integrating tightly with ActiveRecord, the way that will_paginate
does, the paginator library provides a neat little API to wrap the find invocation in
your controller, as follows:

def index

@pager = ::Paginator.new(Foo.count, PER_PAGE) do |offset, per_page|

Foo.find(:all, :limit => per_page, :offset => offset)

end

@page = @pager.page(params[:page])

...

end

The view code, instead of relying on special helper methods, has the @page object
at its disposal:

<% @page.items.each do |foo| %>

<%# Show something for each item %>

<% end %>

<%= @page.number %>

<%= link_to(“Prev”, foos_url(:page => @page.prev.number)) if @page.prev? %>

<%= link_to(“Next”, foos_url(:page => @page.next.number)) if@page.next? %>

PaginationHelper 387

1 2 3 4 5 6 7 13 14 Next »«Previous…

Paginating Find
If you’re adventurous, check out http://svn.cardboardrocket.com/paginating_find for
a simple pagination library that extends ActiveRecord’s find method, instead of
trying to replace it. As a project, I think it’s much less mature than will_paginate
or paginator, but looks promising.

RecordIdentificationHelper

This module, which wraps the methods of ActionController::RecordIdentifier,
encapsulates a number of naming conventions for dealing with records, like
ActiveRecords models or ActiveResource models or pretty much any other type
of model object that you want to represent in markup code (like HTML) and which
has an id attribute. These patterns are then used to try to elevate the view actions to
a higher logical level.

For example, assume that you have map.resources :posts defined in your
routes file, and code that looks like this in your view:

<% div_for(post) do %>

<%= post.body %>

<% end %>

The HTML for the DIV element would thus be rendered like this:

<div id=”post_45” class=”post”>

What a wonderful world!

</div>

Notice the convention reflected in the id attribute. Now, for the controller, which
has an AJAX-enabled destroy method. The idea is that it can be called to delete the
record and make it disappear from the page without a reload operation:

def destroy

post = Post.find(params[:id])

post.destroy

respond_to do |format|

format.html { redirect_to :back }

format.js do

Calls: new Effect.fade(‘post_45’);

render(:update) { |page| page[post].visual_effect(:fade) }

388 11. All About Helpers

end

end

end

As the preceding example shows, you can stop caring to a large extent what the
actual id of the model is (the DIV element holding the model information, that is).
You just know that one is being assigned and that the subsequent calls in RJS expect
that same naming convention and allow you to write less code if you follow it. You
can find more information on this technique in Chapter 12.

dom_class(record_or_class, prefix = nil)

The DOM class convention is to use the singular form of an object or class.

dom_class(post) # => “post”

dom_class(Person) # => “person”

If you need to address multiple instances of the same class in the same view, you
can prefix the dom_class:

dom_class(post, :edit) # => “edit_post”

dom_class(Person, :edit) # => “edit_person”

dom_id(record, prefix = nil)

The DOM class convention is to use the singular form of an object or class with the id
following an underscore. If no id is found, prefix with new_ instead.

dom_class(Post.new(:id => 45)) # => “post_45”

dom_class(Post.new) # => “new_post”

If you need to address multiple instances of the same class in the same view, you
can prefix the dom_id like this: dom_class(Post.new(:id => 45), :edit)

results in edit_post_45.

partial_path(record_or_class)

Returns plural/singular for a record or class, which is very useful for automatically ren-
dering partial templates by convention.

partial_path(post) # => “posts/post”

partial_path(Person) # => “people/person”

RecordIdentificationHelper 389

RecordTagHelper

This module is closely related to RecordIdentificationHelper in that it assists in
creation of HTML markup code that follows good, clean naming conventions.

content_tag_for(tag_name, record, *args, &block)

This helper method creates an HTML element with id and class parameters that
relate to the specified ActiveRecord object.

For instance, assuming @person is an instance of a Person class, with an id value
of 123 the following template code…

<% content_tag_for(:tr, @person) do %>

<td><%=h @person.first_name %></td>

<td><%=h @person.last_name %></td>

<% end %>

will produce the following HTML:

<tr id=”person_123” class=”person”>

...

</tr>

If you require the HTML id attribute to have a prefix, you can specify it as a third
argument:

>> content_tag_for(:tr, @person, :foo) do ...

=> <tr id=”foo_person_123” class=”person”>...

The content_tag_for helper also accepts a hash of options, which will be con-
verted to additional HTML attributes on the tag. If you specify a :class value, it will
be combined with the default class name for your object instead of replacing it (since
replacing it would defeat the purpose of the method!).

>> content_tag_for(:tr, @person, :foo, :class => ‘highlight’) do ...

=> <tr id=”foo_person_123” class=”person highlight”>...

390 11. All About Helpers

div_for(record, *args, &block)

Produces a wrapper DIV element with id and class parameters that relate to the
specified ActiveRecord object. This method is exactly like content_tag_for
except that it’s hard-coded to output DIV elements.

TagHelper

This module provides helper methods for generating HTML tags programmatically.

cdata_section(content)

Returns a CDATA section wrapping the given content. CDATA sections are used to
escape blocks of text containing characters that would otherwise be recognized as
markup. CDATA sections begin with the string <![CDATA[and end with (and may
not contain) the string]]>.

content_tag(name, content = nil, options = nil,

&block)

Returns an HTML block tag of type name surrounding the content. Add HTML
attributes by passing an attributes hash as options. Instead of passing the content as
an argument, you can also use a block to hold additional markup (and/or additional
calls to content_tag) in which case, you pass your options as the second parameter.

Here are some simple examples of using content_tag without a block:

>> content_tag(:p, “Hello world!”)

=> <p>Hello world!</p>

>> content_tag(:div, content_tag(:p, “Hello!”), :class => “message”)

=> <div class=”message”><p>Hello!</p></div>

>> content_tag(“select”, options, :multiple => true)

=> <select multiple=”multiple”>...options...</select>

TagHelper 391

Here it is with content in a block (shown as template code rather than in the
console):

<% content_tag :div, :class => “strong” do -%>

Hello world!

<% end -%>

The preceding code produces the following HTML:

<div class=”strong”><p>Hello world!</p></div>

escape_once(html)

Returns an escaped version of HTML without affecting existing escaped entities.

>> escape_once(“1 > 2 & 3”)

=> “1 < 2 & 3”

>> escape_once(“<< Accept & Checkout”)

=> “<< Accept & Checkout”

tag(name, options = nil, open = false)

Returns an empty HTML tag of type name, which by default is XHTML compliant.
Setting open to true will create an open tag compatible with HTML 4.0 and below.
Add HTML attributes by passing an attributes hash to options.

The options hash is used with attributes with no value like (disabled and
readonly), which you can give a value of true in the options hash. You can use sym-
bols or strings for the attribute names.

>> tag(“br”)

=>

>> tag(“br”, nil, true)

=>

>> tag(“input”, { :type => ‘text’, :disabled => true })

=> <input type=”text” disabled=”disabled” />

>> tag(“img”, { :src => “open.png” })

=>

392 11. All About Helpers

TextHelper

The methods in this module provide filtering, formatting, and string transformation
capabilities.

auto_link(text, link = :all, href_options = {},

&block)

Turns all URLs and e-mail addresses inside the text string into clickable links. The
link parameter is used to optionally limit what should be linked; pass it
:email_addresses or :urls. You can add HTML attributes to the generated links
using href_options.

If for whatever reason you are unhappy with the way that Rails is turning your e-
mail addresses and URLs into links, you can supply a block to this method. Each
address found is yielded and the return value of the block is used as the link text.

>> auto_link(“Go to http://obiefernandez.com and say hello to

obie@obiefernandez.com”)

=> “Go to http://www.rubyonrails.org and

say hello to obie@obiefernandez.com”

>> auto_link(“Welcome to my new blog at http://www.myblog.com/. Please

e-mail me at me@email.com.”, :all, :target => ‘_blank’) do |text|

truncate(text, 15)

end

=> “Welcome to my new blog at <a href=\”http://www.myblog.com/\”

target=\”_blank\”>http://www.m....

Please e-mail me at me@email.com.”

concat(string, binding)

The preferred method of outputting text in your views is to use the <%= expression

%> ERB syntax. The regular puts and print methods do not operate as expected in an
eRuby code block; that is, if you expected them to output to the browser. If you
absolutely must output text within a non-output code block like <% expression %>,

TextHelper 393

you can use the concat method. I’ve found that this method can be especially useful
in your own custom helper method implementations.

cycle(first_value, *values)

Creates a Cycle object whose to_s method cycles through elements of the array of
values passed to it, every time it is called. This can be used, for example, to alternate
classes for table rows.

Here’s an example that alternates CSS classes for even and odd numbers, assum-
ing that the @items variable holds an array with 1 through 4:

<table>

<% @items.each do |item| %>

<tr class=”<%= cycle(“even”, “odd”) -%>”>

<td>item</td>

</tr>

<% end %>

</table>

As you can tell from the example, you don’t have to store the reference to the cycle
in a local variable or anything like that; you just call the cycle method repeatedly.
That’s convenient, but it means that nested cycles need an identifier. The solution is
to pass cycle a :name => cycle_name option as its last parameter. Also, you can
manually reset a cycle by calling reset_cycle and passing it the name of the cycle to
reset.

For example, here is some data to iterate over:

Cycle CSS classes for rows, and text colors for values within each

row

@items = [{:first => ‘Robert’, :middle => ‘Daniel’, :last => ‘James’},

{:first => ‘Emily’, :last => ‘Hicks’},

{:first => ‘June’, :middle => ‘Dae’, :last => ‘Jones’}]

And here is the template code. Since the number of cells rendered varies, we want
to make sure to reset the colors cycle before looping:

<% @items.each do |item| %>

<tr class=”<%= cycle(“even”, “odd”, :name => “row_class”)

<% item.values.each do |value| %>

<td style=”color:<%= cycle(“red”, “green”, :name => “colors”) -%>”>

394 11. All About Helpers

<%= value %>

</td>

<% end %>

<% reset_cycle(“colors”) %>

</tr>

<% end %>

excerpt(text, phrase, radius = 100, excerpt_string =

“...”)

Extracts an excerpt from text that matches the first instance of phrase. The radius
expands the excerpt on each side of the first occurrence of phrase by the number of
characters defined in radius (which defaults to 100). If the excerpt radius overflows
the beginning or end of the text, the excerpt_string will be prepended/appended
accordingly. If the phrase isn’t found, nil is returned.

>> excerpt(‘This is an example’, ‘an’, 5)

=> “...s is an examp...”

>> excerpt(‘This is an example’, ‘is’, 5)

=> “This is an...”

>> excerpt(‘This is an example’, ‘is’)

=> “This is an example”

>> excerpt(‘This next thing is an example’, ‘ex’, 2)

=> “...next t...”

>> excerpt(‘This is also an example’, ‘an’, 8, ‘<chop> ‘)

=> “<chop> is also an example”

highlight(text, phrases, highlighter = ‘<strong

class=”highlight”>\1’)

Highlights one or more phrases everywhere in text by inserting it into a highlighter
string. The highlighter can be specialized by passing highlighter as a single-quoted
string with \1 where the phrase is to be inserted.

>> highlight(‘You searched for: rails’, ‘rails’)

=> You searched for: <strong class=”highlight”>rails

TextHelper 395

>> highlight(‘You searched for: ruby, rails, dhh’, ‘actionpack’)

=> You searched for: ruby, rails, dhh

>> highlight(‘You searched for: rails’, [‘for’, ‘rails’],

‘\1’)

=> You searched for: rails

>> highlight(‘You searched for: rails’, ‘rails’, “\1”)

=> You searched for: rails

markdown(text)

Returns the text with all the Markdown codes turned into HTML tags. This method
is only available if the BlueCloth gem is available.

>> markdown(“We are using __Markdown__ now!”)

=> “<p>We are using Markdown now!</p>”

>> markdown(“We like to _write_ `code`, not just _read_ it!”)

=> “<p>We like to write <code>code</code>, not just

read it!</p>”

>> markdown(“The [Markdown

website](http://daringfireball.net/projects/markdown/) has more

information.”)

=> “<p>The Markdown

website has more information.</p>”

>> markdown(‘![The ROR logo](http://rubyonrails.com/images/rails.png

“Ruby on Rails”)’)

=> ‘<p><img src=”http://rubyonrails.com/images/rails.png” alt=”The ROR

logo” title=”Ruby on Rails” /></p>’

pluralize(count, singular, plural = nil)

Attempts to pluralize the singular word unless count is 1. If the plural is supplied, it
will use that when count is > 1. If the ActiveSupport Inflector is loaded, it will

396 11. All About Helpers

use the Inflector to determine the plural form; otherwise, it will just add an “s” to
the singular word.

>> pluralize(1, ‘person’)

=> “1 person”

>> pluralize(2, ‘person’)

=> “2 people”

>> pluralize(3, ‘person’, ‘users’)

=> “3 users”

>> pluralize(0, ‘person’)

=> “0 people”

reset_cycle(name = “default”)

Resets a cycle (see the cycle method in this module) so that it starts cycling from its
first element the next time it is called. Pass in a name to reset a named cycle.

sanitize(html)

Sanitizes the HTML by converting <form> and <script> tags into regular text, and
removing all “on*” (e.g., onClick) attributes so that arbitrary JavaScript cannot be
executed. It also strips href and src attributes that start with “javascript:”. You
can modify what gets sanitized by defining VERBOTEN_TAGS and VERBOTEN_ATTRS

before this module is loaded.

>> sanitize(‘<script> do_nasty_stuff() </script>’)

=> <script> do_nasty_stuff() </script>

>> sanitize(‘Click here for $100’)

=> <a>Click here for $100

>> sanitize(‘Click

here!!!’)

=> Click here!!!

>> sanitize(‘’)

=>

TextHelper 397

398 11. All About Helpers

Courtenay Says...

An even better way of sanitizing is Rick Olsen’s Whitelist
plugin at http://svn.techno-weenie.net/projects/plugins/
white_list

simple_format(text)

Returns text transformed into HTML using simple formatting rules. Two or more
consecutive newlines (\n\n) are considered to denote a paragraph and thus are
wrapped in P tags. One newline (\n) is considered to be a line break and a BR tag is
appended. This method does not remove the newlines from the text.

strip_links(text)

Strips all link tags from text leaving just the link text.

>> strip_links(‘Ruby on

Rails’)

=> Ruby on Rails

>> strip_links(‘Please e-mail me at me@email.com.’)

=> Please e-mail me at me@email.com.

strip_links(‘Blog: <a href=”http://www.myblog.com/” class=”nav”

target=\”_blank\”>Visit.’)

=> Blog: Visit

strip_tags(html)

Strips all HTML tags from the HTML, including comments. This uses the
html-scanner tokenizer and so its HTML parsing ability is limited by that of html-
scanner.

>> strip_tags(“Strip <i>these</i> tags!”)

=> Strip these tags!

>> strip_tags(“Bold no more! See more

here...”)

=> Bold no more! See more here...

>> strip_tags(“<div id=’top-bar’>Welcome to my website!</div>”)

=> Welcome to my website!

textilize(text)

This method is only available if the RedCloth gem is available. It returns text with
all the Textile codes turned into HTML tags. Learn more about Textile syntax at
http://hobix.com/textile/.

>> textilize(“*This is Textile!* Rejoice!”)

=> “<p>This is Textile! Rejoice!</p>”

>> textilize(“I _love_ ROR(Ruby on Rails)!”)

=> “<p>I love <acronym title=”Ruby on

Rails”>ROR</acronym>!</p>”

>> textilize(“h2. Textile makes markup -easy- simple!”)

=> “<h2>Textile makes markup easy simple!</h2>”

>> textilize(“Visit Rails website “here”:http://www.rubyonrails.org/.)

=> “<p>Visit the Rails website here.</p>”

textilize_without_paragraph(text)

Returns the text with all the Textile codes turned into HTML tags, but without the
bounding <p> tag that RedCloth adds.

truncate(text, length = 30, truncate_string = “...”)

If text is longer than length, text will be truncated to the length specified and the
last three characters will be replaced with the truncate_string:

>> truncate(“Once upon a time in a world far far away”, 4)

=> “Once...”

>> truncate(“Once upon a time in a world far far away”)

=> “Once upon a time in a world f...”

TextHelper 399

>> truncate(“And they found that many people were sleeping better.”,

15, “... (continued)”)

=> “And they found... (continued)”

word_wrap(text, line_width = 80)

Wraps the text into lines no longer than line_width. This method breaks on the first
whitespace character that does not exceed line_width (which is 80 by default).

>> word_wrap(‘Once upon a time’, 4)

=> “Once\nupon\na\ntime”

>> word_wrap(‘Once upon a time’, 8)

=> “Once upon\na time”

>> word_wrap(‘Once upon a time’)

=> “Once upon a time”

>> word_wrap(‘Once upon a time’, 1)

=> “Once\nupon\na\ntime”

UrlHelper

This module provides a set of methods for making links and getting URLs that
depend on the routing subsystem, covered extensively in Chapters 3 through 5 of this
book.

button_to(name, options = {}, html_options = {})

Generates a form containing a single button that submits to the URL created by the
set of options. This is the safest method to ensure that links that cause changes to your
data are not triggered by search bots or accelerators. If the HTML button does not
work with your layout, you can also consider using the link_to method (also in this
module) with the :method modifier.

The options hash accepts the same options as the url_for method (also part of
this module).

400 11. All About Helpers

The generated FORM element has a class name of button-to to allow styling of
the form itself and its children. The :method and :confirm options work just like
the link_to helper. If no :method modifier is given, it defaults to performing a
POST operation. You can also disable the button by passing :disabled => true.

>> button_to “New”, :action => “new”

=> “<form method=”post” action=”/controller/new” class=”button-to”>

<div><input value=”New” type=”submit” /></div>

</form>”

>> button_to “Delete Image”, { :action => “delete”, :id => @image.id },

:confirm => “Are you sure?”, :method => :delete

=> “<form method=”post” action=”/images/delete/1” class=”button-to”>

<div>

<input type=”hidden” name=”_method” value=”delete” />

<input onclick=”return confirm(‘Are you sure?’);”

value=”Delete”

type=”submit” />

</div>

</form>”

current_page?(options)

Returns true if the current request URI was generated by the given options. For
example, let’s assume that we’re currently rendering the /shop/checkout action:

>> current_page?(:action => ‘process’)

=> false

>>current_page?(:action => ‘checkout’) # controller is implied

=> true

>> current_page?(:controller => ‘shop’, :action => ‘checkout’)

=> true

link_to(name, options = {}, html_options = nil)

One of the fundamental helper methods. Creates a link tag of the given name using a
URL created by the set of options. The valid options are covered in the description of
this module’s url_for method. It’s also possible to pass a string instead of an options

UrlHelper 401

hash to get a link tag that uses the value of the string as the href for the link. If nil is
passed as a name, the link itself will become the name.

• :confirm => ‘question?’ Adds a JavaScript confirmation prompt with the
question specified. If the user accepts, the link is processed normally; otherwise,
no action is taken.

• :popup => true Forces the link to open in a pop-up window. By passing
true, a default browser window will be opened with the URL. You can also spec-
ify a string of options to be passed to JavaScript’s window.open method.

• :method => symbol Specify an alternative HTTP verb for this request (other
than GET). This modifier will dynamically create an HTML form and immedi-
ately submit the form for processing using the HTTP verb specified (:post,
:put, :delete, or other custom string like “HEAD”, and so on).

Generally speaking, GET requests should be idempotent, that is, they do not modify
the state of any resource on the server, and can be called one or many times without
a problem. Requests that modify server-side resources or trigger dangerous actions like
deleting a record should not usually be linked to with a normal hyperlink, since search
bots and so-called browser accelerators can follow those links while spidering your site,
leaving a trail of chaos.

If the user has JavaScript disabled, the request will always fall back to using GET,
no matter what :method you have specified. This is accomplished by including a valid
href attribute. If you are relying on the POST behavior, your controller code should
check for it using the post?, delete?, or put? methods of request.

As usual, the html_options will accept a hash of HTML attributes for the link
tag.

>> link_to “Visit Other Site”, “http://www.rubyonrails.org/”,

:confirm => “Are you sure?”

=> “<a href=”http://www.rubyonrails.org/” onclick=”return confirm(‘Are

you sure?’);”>Visit Other Site”

>> link_to “Help”, { :action => “help” }, :popup => true

=> “<a href=”/testing/help/” onclick=”window.open(this.href);return

false;”>Help”

>> link_to “View Image”, { :action => “view” }, :popup =>

[‘new_window_name’, ‘height=300,width=600’]

402 11. All About Helpers

=> “<a href=”/testing/view/” onclick=”window.open(this.href,

‘new_window_name’,’height=300,width=600’);return false;”>View

Image”

>> link_to “Delete Image”, { :action => “delete”, :id => @image.id },

:confirm => “Are you sure?”, :method => :delete

=> <a href=”/testing/delete/9/” onclick=”if (confirm(‘Are you sure?’))

{

var f = document.createElement(‘form’);

f.style.display = ‘none’; this.parentNode.appendChild(f);

f.method = ‘POST’; f.action = this.href;

var m = document.createElement(‘input’); m.setAttribute(‘type’,

‘hidden’); m.setAttribute(‘name’, ‘_method’);

m.setAttribute(‘value’, ‘delete’); f.appendChild(m);f.submit();

};return false;”>Delete Image

link_to_if(condition, name, options = {},

html_options = {}, &block)

Creates a link tag using the same options as link_to if the condition is true; other-
wise, only the name is output (or block is evaluated for an alternative value, if one is
supplied).

link_to_unless(condition, name, options = {},

html_options = {}, &block)

Creates a link tag using the same options as link_to unless the condition is true, in
which case only the name is output (or block is evaluated for an alternative value, if
one is supplied).

link_to_unless_current(name, options = {},

html_options = {}, &block)

Creates a link tag using the same options as link_to unless the condition is true, in
which case only the name is output (or block is evaluated for an alternative value, if
one is supplied).

This method is actually pretty useful sometimes. Remember that the block given
to link_to_unless_current is evaluated if the current action is the action given.

UrlHelper 403

So, if we had a comments page and wanted to render a “Go Back” link instead of a
link to the comments page, we could do something like this:

<%= link_to_unless_current(“Comment”, { :controller => ‘comments’,

:action => ‘new}) do

link_to(“Go back”, { :controller => ‘posts’, :action => ‘index’

})

end %>

mail_to(email_address, name = nil, html_options = {})

Creates a mailto link tag to the specified email_address, which is also used as the
name of the link unless name is specified. Additional HTML attributes for the link
can be passed in html_options.

The mail_to helper has several techniques for hindering e-mail harvesters and
customizing the e-mail address itself by passing special keys to html_options:

• :encode This key will accept the strings “javascript” or “hex”. Passing
“javascript” will dynamically create and encode the mailto: link and then
eval it into the DOM of the page. This method will not show the link on the
page if the user has JavaScript disabled. Passing “hex” will hex-encode the
email_address before outputting the mailto: link.

• :replace_at When the link name isn’t provided, the email_address is used
for the link label. You can use this option to obfuscate the email_address by
substituting the @ sign with the string given as the value.

• :replace_dot When the link name isn’t provided, the email_address is
used for the link label. You can use this option to obfuscate the email_address
by substituting the “.” in the email with the string given as the value.

• :subject The subject line of the e-mail.

• :body The body of the e-mail.

• :cc Add cc recipients to the e-mail.

• :bcc Add bcc recipients to the e-mail.

Here are some examples of usages:

>> mail_to “me@domain.com”

=> me@domain.com

404 11. All About Helpers

>> mail_to “me@domain.com”, “My email”, :encode => “javascript”

=> <script type=”text/javascript”>eval(unescape(‘%64%6f%63...%6d%65’))

</script>

>> mail_to “me@domain.com”, “My email”, :encode => “hex”

=> My email

>> mail_to “me@domain.com”, nil, :replace_at => “_at_”, :replace_dot =>

“_dot_”, :class => “email”

=> <a href=”mailto:me@domain.com”

class=”email”>me_at_domain_dot_com

>> mail_to “me@domain.com”, “My email”, :cc => “ccaddress@domain.com”,

:subject => “This is an example email”

=> <a

href=”mailto:me@domain.com?cc=ccaddress@domain.com&subject=This%20i

s%20an%20example%20email”>My email

url_for(options = {})

The url_for method returns a URL for the set of options provided and takes the
same options as url_for in ActionController (discussed extensively in Chapter 3,
“Routing”).

Note that by default, the :only_path option is set to true so that you’ll get the
relative /controller/action instead of the fully qualified URL like http://
example.com/controller/action.

When called from a view, url_for returns an HTML-escaped URL. If you need
an unescaped URL, pass :escape => false in the options.

Here is the complete list of options accepted by url_for:

• :anchor Specifies an anchor name (#anchor) be appended to the end of the
path.

• :only_path Specifies a relative URL (omitting the protocol, host name, and
port).

• :trailing_slash Adds a trailing slash, as in “/archive/2005/”. Note that
this is currently not recommended since it breaks caching.

• :host Overrides the default (current) host if provided.

UrlHelper 405

• :protocol Overrides the default (current) protocol if provided.

• :user Inline HTTP authentication (requires :password option).

• :password Inline HTTP authentication (requires :user option).

• :escape Determines whether the returned URL will be HTML-escaped or
not.

>> url_for(:action => ‘index’)

=> /blog/

>> url_for(:action => ‘find’, :controller => ‘books’)

=> /books/find

>> url_for(:action => ‘login’, :controller => ‘members’, :only_path =>

false, :protocol => ‘https’)

=> https://www.railsapplication.com/members/login/

>> url_for(:action => ‘play’, :anchor => ‘player’)

=> /messages/play/#player

>> url_for(:action => ‘checkout’, :anchor => ‘tax&ship’)

=> /testing/jump/#tax&ship

>> url_for(:action => ‘checkout’, :anchor => ‘tax&ship’, :escape =>

false)

=> /testing/jump/#tax&ship

Relying on Named Routes

If you pass an ActiveRecord or ActiveResource model instance instead of a hash
to any method in the UrlModule that takes url_for parameters, you’ll trigger gen-
eration of a path for that record’s named route (assuming that one exists). The lookup
is based on the name of the class and is smart enough to call new_record? on the
passed model to figure out whether to reference a collection or member route.

For example, passing a Timesheet object will attempt to use the
timesheet_path route. If that object’s route is nested within another route, you’ll
have to use a path helper method explicitly, since Rails won’t be able to figure it out
automatically.

406 11. All About Helpers

>> url_for(Workshop.new)

=> /workshops

>> url_for(@workshop) # existing record

=> /workshops/5

Writing Your Own Helpers
As you develop an application in Rails, you should be on the lookout for opportuni-
ties to refactor duplicated view code into your own helper methods. As you think of
these helpers, you add them to one of the helper modules defined in the
app/helpers folder of your application.

There is an art to effectively writing helper methods, similar in nature to what it
takes to write effective APIs. Helper methods are basically a custom, application-level
API for your view code. It is difficult to teach API design in a book form. It’s the sort
of knowledge that you gain by apprenticing with more experienced programmers and
lots of trial and error. Nevertheless, in this section, we’ll review some varied use cases
and implementation styles that we hope will inspire you in your own application
design.

Small Optimizations: The Title Helper
Here is a simple helper method that has been of use to me on many projects now. It’s
called page_title and it combines two simple functions essential to a good HTML
document:

• Setting the title of the page in the document’s head

• Setting the content of the page’s h1 element

This helper assumes that you want the title and h1 elements of the page to be
the same, and has a dependency on your application template. The code for the helper
is in Listing 11.6 and would be added to app/helpers/application_helper.rb,
since it is applicable to all views.

Writing Your Own Helpers 407

Listing 11.6 The title Helper

def page_title(name)
@title = name
content_tag(“h1”, name)

end

First it sets the value of a variable named @title and then it outputs an h1 ele-
ment containing the same text. I could have used string interpolation on the second
line, such as “<h1>#{name}</h1>”, but in my opinion that would be sloppier than
using the built-in Rails helper method content_tag.

My application template looks for a @page_title to be available, in which case
it will prepend it to the site title, the name of the application:

<html>

<head>

<title><%= “#@page_title - “ if @page_title %>Site Title</title>

As should be obvious, you call the page_title method in your view template
where you want to have an h1 element:

<%= page_title “New User” %>

<%= error_messages_for :user %>

<% form_for(:user, :url => user_path) do |f| %>

...

Encapsulating View Logic: The photo_for Helper
Here’s another relatively simple helper. This time, instead of simply outputting data,
we are encapsulating some view logic that decides whether to display a user’s profile
photo or a placeholder image. It’s logic that you would otherwise have to repeat over
and over again throughout your application.

The dependency (or contract) for this particular helper is that the user object
being passed in has a profile_photo associated to it, which is an attachment model
based on Rick Olson’s excellent attachment_fu Rails plugin.3 The code in Listing
11.7 should be easy enough to understand without delving into the details of
attachment_fu. Since this is a code example, I broke out the logic for setting src
into an if/else structure; otherwise, this would be a perfect place to use Ruby’s ter-
nary operator.

408 11. All About Helpers

Listing 11.7 The photo_for Helper, Encapsulating Common View Logic

def photo_for(user, size=:thumb)
if user.profile_photo
src = user.profile_photo.public_filename(size)

else
src = ‘user_placeholder.png’
end
link_to(image_tag(src), user_path(user)

end

Smart View: The breadcrumbs Helper
Lots of web applications feature user-interface concepts called breadcrumbs. They are
made by creating a list of links, positioned near the top of the page, displaying how
far the user has navigated into a hierarchically organized application. I think it makes
sense to extract breadcrumb logic into its own helper method instead of leaving it in
a layout template.

The trick to our example implementation (shown in Listing 11.8) is to use the
presence of instance variables, based on a convention specific to your application, to
determine whether or not to add elements to an array of breadcrumb links.

Listing 11.8 breadcrumbs Helper Method for a Corporate Directory Application

1 def breadcrumbs
2 return if controller.controller_name == ‘homepage’

3 html = [link_to(‘Home’, home_path)]

4 # first level
5 html << link_to(‘Companies’, companies_path) if @companies ||

@company
6 html << link_to(@company, company_path(@company)) if @company

7 # second level
8 html << link_to(‘Departments’, departments_path) if @depts || @dept
9 html << link_to(@dept, department_path(@dept)) if @dept

10 # third and final level
11 html << link_to(‘Employees’, employees_path) if @employees ||

@employee
12 html << link_to(@employee.name, employee_path(@employee)) if

@employee

13 html.join(‘ > ‘)
14 end

Writing Your Own Helpers 409

Here’s the line-by-line explanation of the code, noting where certain application-
design assumptions are made:

On line 2, we abort execution if we’re in the context of the application’s home-
page controller, since its pages don’t ever need breadcrumbs. A simple return with no
value implicitly returns nil, which is fine for our purposes—nothing will be output
to the layout template.

On line 3 we are starting to build an array of HTML links, held in the html local
variable, which will ultimately hold the contents of our breadcrumb trail. The first
link of the breadcrumb trail always points to the home page of the application, which
of course will vary, but since it’s always there we use it to initialize the array. In this
example, it uses a named route called home_path.

After the html array is initialized, all we have to do is check for the presence of
the variables that make up the hierarchy (lines 4 to 12). It is assumed that if a depart-
ment is being displayed, its parent company will also be in scope. If an employee is
being displayed, both its department and company will be in scope as well. This is not
just an arbitrary design choice—it is a common pattern in Rails applications that are
modeled based on REST principles and using nested resource routes.

Finally, on line 13, the array of HTML links is joined with the > character, to give
the entire string the traditional breadcrumb appearance.

Wrapping and Generalizing Partials
I don’t think that partials (by themselves) lead to particularly elegant or concise tem-
plate code. Whenever there’s a shared partial template that gets used over and over
again in my application, I will take the time to wrap it up in a custom helper method
that conveys its purpose and formalizes its parameters. If appropriate, I’ll generalize its
implementation to make it more of a lightweight, reusable component.

Oh, the heresy! The word component is a dirty word among Rails cognoscenti, and
Rails components are so out of favor that I do not cover them in this book and they’ve
been removed from Rails 2.0. To be clear, I’m not talking about components in any-
thing other than the sense of an easily reusable piece of user interface.

A tiles Helper
Let’s trace the steps to writing a helper method that wraps what I consider to be a
general-purpose partial. Listing 11.9 contains code for a partial for a piece of a user

interface that is common to many applications, and generally referred to as a tile. It

410 11. All About Helpers

pairs a small thumbnail photo of something on the left side of the widget, with a
linked name and description on the right.

Tiles can also represent other models in your application, such as users and files.
As I mentioned, tiles are a very common construct in modern user interfaces and oper-
ating systems. So let’s take the cities tiles partial and transform it into something that
can be used to display other types of data.

NOTE

I realize that it’s become passé to use HTML tables and I
happen to agree that DIV-based layouts plus CSS are a lot
more fun and flexible to work with. However, for the sake
of simplicity in this example, and since the UI structure
we’re describing is tabular, I’ve decided to structure it
using a table.

Listing 11.9 A Tiles Partial, Prior to Wrapping and Generalization

1 <table class=”cities tiles”>
2 <% cities.in_groups_of(columns) do |row| -%>
3 <tr>
4 <% row.each do |city| -%>
5 <td id=”<%= dom_id(city) %>”>
6 <div class=”left”>
7 <%= image_tag city.main_photo.public_filename(:thumb) -%>
8 </div>
9 <div class=”right”>
10 <div class=”title”><%= city.name %></div>
11 <div class=”description”><%= city.description %></div>
12 </div>
13 </td>
14 <% end # row.each -%>
15 </tr>
16 <% end # in_groups_of -%>
17 </table>

Explanation of the Tiles Partial Code

Since we’re going to transform this city-specific partial into a generalized UI compo-
nent, I want to make sure that the code we start with makes absolute sense to you first.
Before proceeding, I’m going through the implementation line by line and explaining
what everything in Listing 11.9 does.

Wrapping and Generalizing Partials 411

Line 1 opens up the partial with a table element and gives it semantically signifi-
cant CSS classes so that the table and its contents can be properly styled.

Line 2 leverages a useful Array extension provided by Rails, called
in_groups_of. It uses both of our local variables: cities and columns. Both will
need to be passed into this partial using the :locals option of the render :par-
tial method. The cities variable will hold the list of cities to be displayed, and
columns is an integer number representing how many city tiles each row should con-
tain. A loop iterates over the number of rows that will be displayed in this table.

Line 3 begins a table row using the <tr> element.
Line 4 begins a loop over the tiles for each row to be displayed, yielding a city

for each.
Line 5 opens a <td> element and uses the dom_id helper method to autogener-

ate an identifier for the table cell in the style of city_98, city_99, and so on.
Line 6 opens a <div> element for the left side of the widget, and is demarcated

with the appropriate CSS class name needed so that it can be styled properly.
Line 7 calls the image_tag helper to insert a thumbnail photo of the city.
Skipping along, line 10 inserts the content for the title DIV element, in this

case, the name and state of the city.
Line 11 directly invokes the description method and finally, the remainder of

the lines in the listing simply close out the loops and container elements.

Calling the Tiles Partial Code

In order to use this partial, we have to call render :partial with the two required
parameters specified in the :locals hash:

render :partial => “cities/tiles”,

:locals => { :collection => @user.cities, :columns => 3 }

I’m guessing that most experienced Rails developers have written some partial
code similar to this and tried to figure out a way to include default values for some of
the parameters. In this case, it would be really nice to not have to specify :columns
all the time, since in most cases we want there to be three.

The problem is that since the parameters are passed via the :locals hash and
become local variables, there isn’t an easy way to insert a default value in the partial
itself. If you left off the :columns => n part of your partial call, Rails would bomb
with an exception about columns not being a local variable or method. It’s not the
same as an instance variable, which defaults to nil and can be used willy-nilly.

412 11. All About Helpers

Experienced Rubyists probably know that you can use the defined? method to
figure out whether a local variable is in scope or not, but the resulting code would be
very ugly. The following code might be considered elegant, but it doesn’t work!6

<% columns = 3 unless defined? columns %>

Instead of teaching you how to jump through annoying Ruby idiom hoops, I’ll
show you how to tackle this challenge the Rails way, and that is where we can start dis-
cussing the helper wrapping techique.

Write the Helper Method

First, I’ll add a new helper method to the CitiesHelper module of my application,
like in Listing 11.10. It’s going to be fairly simple at first. In thinking about the name
of the method, it occurs to me that I like the way that tiled(@cities) will read
instead of tiles(@cities), so I name it that way.

Listing 11.10 The CitiesHelper Tiled Method

module CitiesHelper

def tiled(cities, columns=3)
render :partial => “cities/tiles”,

:locals => { :collection => cities, :columns => columns }
end

end

Right from the start I can take care of that default columns parameter by giving
the helper method parameter for columns a default value. That’s just a normal feature
of Ruby.

Now instead of specifying the render :partial call in my view template, I can
simply write <%= tiled(@cities) %>, which is considerably more elegant and
terse. It also serves to decouple the implementation of the tiled city table from the
view. If I need to change the way that the tiled table is rendered in the future, I just
have to do it in one place: the helper method.

Wrapping and Generalizing Partials 413

Generalizing Partials
Now that we’ve set the stage, the fun can begin. The first thing we’ll do is to move the
helper method to the ApplicationHelper module so that it’s available to all view
templates. We’ll also move the partial template file to app/views/shared/_
tiled_table.html.erb to denote that it isn’t associated with a particular kind of
view, and to more accurately convey its use. As a matter of good code style, I also do
a sweep through the implementation and generalize the identifiers appropriately. The
reference to cities becomes collection. The block variable item becomes item.
Listing 11.11 has the new partial code.

Listing 11.11 Tiles Partial Code with Revised Naming

1 <table class=”tiles”>
2 <% collection.in_groups_of(columns) do |row| -%>
3 <tr>
4 <% row.each do |item| -%>
5 <td id=”<%= dom_id(item) %>”>
6 <div class=”left”>
7 <%= image_tag(item.main_photo.public_filename(:thumb)) %>
8 </div>
9 <div class=”right”>
10 <div class=”title”><%= item.name %></div>
11 <div class=”description”><%= item.description %></div>
12 </div>
13 </td>
14 <% end # row.each -%>
15 </tr>
16 <% end # in_groups_of -%>
17 </table>

There’s still the matter of a contract between this partial code and the objects that
it is rendering. Namely, they must respond to the following messages: main_photo,
name, and description. A survey of other models in my application reveals that I
need more flexibility. Some things have names, but others have titles. Sometimes I
want the description to appear under the name of the object represented, but other
times I want to be able to insert additional data about the object plus some links.

Lambda: the Ultimate

Ruby allows you to store references to anonymous methods (also known as procs or
lambdas) and call them at will whenever you want.7 Knowing this capability is there,

414 11. All About Helpers

what becomes possible? For starters, we can use lambdas to pass in blocks of code that
will fill in parts of our partial dynamically.

For example, the current code for showing the thumbnail is a big problem. Since
the code varies greatly depending on the object being handled, I want to be able to
pass in instructions for how to get a thumbnail image without having to resort to big
if/else statements or putting view logic in my model classes. Please take a moment
to understand the problem I’m describing, and then take a look at how we solve it in
Listing 11.12. Hint: The thumbnail, link, title, and description variables hold
lambdas!

Listing 11.12 Tiles Partial Code Refactored to Use Lambdas

1 <div class=”left”>
2 <%= link_to thumbnail.call(item), link.call(item) %>
3 </div>
4 <div class=”right”>
5 <div class=”title”>
6 <%= link_to title.call(item), link.call(item) %>
7 </div>
8 <div class=”description”><%= description.call(item) %></div>
9 </div>

Notice that in Listing 11.12, the contents of the left and right DIVs come from
variables containing lambdas. On line 2 we make a call to link_to and both of its
arguments are dynamic. A similar construct on line 6 takes care of generating the title
link. In both cases, the first lambda should return the output of a call to image_tag
and the second should return a URL. In all of these lambda usages, the item currently
being rendered is passed to the lambdas as a block variable.

Wilson Says...

Things like link.call(item) could potentially look
even sassier as link[item], except that you’ll shoot your
eye out doing it. (Proc#[] is an alias for Proc#call.)

The New Tiled Helper Method

If you now direct your attention to Listing 11.13, you’ll notice that the tiled method
is changed considerably. In order to keep my positional argument list down to a man-
ageable size, I’ve switched over to taking a hash of options as the last parameter to the

Wrapping and Generalizing Partials 415

method. This approach is useful and it mimics the way that almost all helper meth-
ods take options in Rails.

One of the options, :link, will always be unique to whatever we’re passing in,
and cannot simply be guessed, so I make it required by checking for it on line 3.
Default values are provided for all optional parameters, and they are all passed along
to the partial via the :locals hash given to render :partial.

Listing 11.13 The Tiled Collection Helper Method with Lambda Parameters

1 module ApplicationHelper

2 def tiled(collection, opts={})
3 raise ‘link option is required’ unless opts[:link]

4 opts[:columns] ||= 3

5 opts[:thumbnail] ||= lambda do |item|
6 image_tag(item.photo.public_filename(:thumb))
7 end

8 opts[:title] ||= lambda {|item| item.to_s }
9 opts[:description] ||= lambda {|item| item.description }

10 render :partial => “shared/tiled_table”,
11 :locals => { :collection => collection,
12 :columns => opts[:columns] || 3,
13 :thumbnail => opts[:thumbnail],
14 :title => opts[:title],
15 :description => opts[:description] }
16 end
17 end

Finally, to wrap up this example, here’s a snippet showing how to invoke our new
tiled helper method from a template:

<%= tiled(@cities, :link => lambda {|city| city_path(city)}) %>

The city_path method is available to the lambda block, since it is a closure,
meaning that it inherits the execution context in which it is created.

416 11. All About Helpers

Conclusion
This long chapter served as a thorough reference of helper methods, both those pro-
vided by Rails and ideas for ones that you will write yourself. Effective use of helper
methods lead to more elegant and maintainable view templates.

Before we fully conclude our coverage of ActionPack, (the name used to refer to
ActionController and ActionView together), we’ll jump into the world of Ajax
and Javascript. Arguably, one of the main reasons for Rails’s continued popularity is
its support for those two crucial technologies of Web 2.0.

References

1. Josh Susser tells you how to cheat and provide default values to non-column model attributes at
http://blog.hasmanythrough.com/2007/1/22/using-faux-accessors-to-initialize-values.

2. To read up on the “Form field helpers don’t use object accessors saga” check
http://dev.rubyonrails.org/ticket/2322.

3. The Attachment Fu plugin can be found at http://svn.techno-weenie.net/projects/plugins/attach-
ment_fu.

4. The WillPaginate plugin can be found at http://require.errtheblog.com/plugins/browser/
will_paginate, but you knew that already, since all Rails developers subscribe to Err the Blog.

5. The Paginator project’s homepage is http://paginator.rubyforge.org/.

6. If you want to know why it doesn’t work, you’ll have to buy the first book in this series:
The Ruby Way, Second Edition; ISBN: 0672328844.

7. If you’re familiar with Ruby already, you might know that Proc.new and its alias proc are also ways
to create anonymous blocks of code. I prefer lambda, because of subtle behavior differences.
Lambda blocks check the arity of the argument list passed to them when call is invoked, and
explicitly calling return in a lambda block works correctly.

Conclusion 417

This page intentionally left blank

CHAPTER 12
Ajax on Rails

Ajax isn’t a technology. It’s really several technologies, each flourishing in its own
right, coming together in powerful new ways
—Jesse J. Garrett, who coined the term

Ajax is an acronym that stands for Asynchronous JavaScript and XML. It encompasses
techniques that allow us to liven up web pages with behaviors that happen outside the
normal HTTP request life cycle (without a page refresh).

Some example use-cases for Ajax techniques are

• Sending form data asynchronously

• Seamless navigation of web-presented maps, as in Google Maps

• Dynamically updated lists and tables, as in Gmail and other web-based email
services

• Web-based spreadsheets

• Forms that allow in-place editing

• Live preview of formatted writing alongside a text input

Ajax is made possible by the XMLHttpRequestObject (or XHR for short), an
API that is available in all modern browsers. It allows JavaScript code on the browser
to exchange data with the server and use it to change the user interface of your appli-
cation on the fly, without needing a page refresh. Working directly with XHR in a

cross-browser-compatible way is difficult, to say the least, which is why the open-
source ecosystem flourishes with Ajax JavaScript libraries.

Incidentally, Ajax, especially in Rails, has very little to do with XML, despite its
presence there at the end of the acronym. The payload of those asynchronous requests
going back and forth to the server can be anything. Often it’s just a matter of form
parameters posted to the server, and receiving snippets of HTML back, for dynamic
insertion into the page’s DOM. Many times it even makes sense for the server to send
back data encoded in a simple kind of JavaScript called JavaScript Object Notation
(JSON).

It’s outside the scope of this book to teach you the fundamentals of JavaScript
and/or Ajax. It’s also outside of our scope to dive into the design considerations of
adding Ajax to your application, elements of which are lengthy and occasionally con-
troversial. Proper coverage of those subjects would require a whole book and there are
many such books to choose from in the marketplace. Therefore, the rest of the chap-
ter simply assumes that you understand what Ajax is and why you would use it in your
applications.

Ruby on Rails makes adding Ajax to your application very simple, because of its
smart integration with Prototype and Scriptaculous. We begin this chapter by exam-
ining the philosophy and implementation of those two important JavaScript libraries,
and follow with a comprehensive reference section covering the relevant ActionPack
helpers that enable Ajax on Rails. We also cover Rails’ RJS feature, which allows you
to invoke JavaScript with Ruby code based on the server.

To get the most benefit of this chapter, you should have at least a basic under-
standing of JavaScript programming.

Prototype
The Prototype library (located at http://prototype.conio.net) was written and is
actively maintained by Sam Stephenson, a member of the Rails core team. Prototype
is described by its creator as a “unique, easy-to-use toolkit for class-driven develop-
ment and the nicest Ajax library around.”

Prototype is distributed with Ruby on Rails and is copied into new Rails projects
as public/javascripts/prototype.js by the Rails script. Its roughly 2000 lines
of JavaScript are a powerful foundation for building all sorts of Ajax interaction with
the server and visual effects on the client. In fact, despite its close connection to Ruby
on Rails, Prototype is extremely successful in its own right as an Ajax library.

420 12. Ajax on Rails

FireBug
FireBug,1 an extremely powerful extension for Firefox, is a must-have tool for doing
Ajax work. It lets you inspect Ajax requests and probe the DOM of the page exten-
sively, even letting you change elements and CSS styles on the fly and see the results
on your browser screen. It also has a very powerful JavaScript debugger that you can
use to set watch expressions and breakpoints. See Figure 12.1.

Prototype 421

Figure 12.1 FireBug is a must-have for doing Ajax work.

FireBug’s DOM browser can be used to explore the Prototype library as it exists
at runtime in your browser page. FireBug also has an interactive console, which allows
you to experiment with JavaScript in the browser just as you would use irb in Ruby.
In some cases, the code samples in this chapter are copied from the FireBug console,
which has a >>> prompt.

For example, inspecting Prototype with the console yields the following output:

>>> Prototype

Object Version=1.5.0_rc2 BrowserFeatures=Object

As I’ve jokingly told many of my Ruby on Rails students when covering Ajax on
Rails: “Even if you don’t listen to anything else I say, use FireBug! The productivity
gains you experience will make up for my fee very quickly.”

The Prototype API
Having an understanding of the Prototype API and how it works is not strictly nec-
essary to doing Ajax on Rails, but it will help tremendously when you want to move
beyond the simple example cases and write your own JavaScript routines.

Much of prototype.js is code defining advanced object-oriented language con-
structs on top of what is already provided by JavaScript. For example, the extend
function creates a way to do inheritance. Much of Prototype will be startlingly famil-
iar to Ruby programmers, such as the inspect method on Object and the gsub
method on String. Since JavaScript functions act as closures, just like Ruby blocks,
Prototype follows the example of Ruby when it comes to array use and manipulation
with iterators, and many other aspects of its API.

The overall flavor of Prototype code is very Rubyish, making it a comfortable and
productive fit for Ruby and Rails hackers. You might even develop a liking for
JavaScript (if you didn’t have one already), which despite its humble origins and bad
reputation, is actually an extremely powerful and expressive programming language.
Never mind the function keyword everywhere in your code—it blends into the back-
ground eventually.

Top-Level Functions
The following functions are defined in the top-level context of Prototype:

$(id[, id2...])

The $ function is a shortcut and extension of one of the most commonly used func-
tions in all JavaScript browser programming: document.getElementByID. The
name is so short because it is used so often, according to one of the main principles of
effective API design.

You may pass $() one or more strings, to which it will return either one match-
ing element or an array of them, assuming the supplied ID strings match elements
present on the page. For convenience, $ will not blow up if you pass it an element
instance rather than a string in its parameters. It will simply pass the element back to
you or add it to its results list.

ID parameters without matching elements will result in undefined return val-
ues, just like with the underlying document.getElementByID function. Trying to
retrieve more than one element with the same ID will probably not work, and is
dependent on the browser implementation. It’s better to stick to well-formed markup
and not have duplicate identifiers.

422 12. Ajax on Rails

$$(expr[, expr2...])

The $$ function takes one or more CSS selector strings and returns an array of match-
ing elements from the DOM. The ability to find elements by CSS selector is one of
the most powerful features of Prototype.

$A(var)

The $A function is an alias for Array.from. It converts its parameter into an Array
object, including the functions of Enumerable. (See the section “Enumerable” in
this chapter.)

Inside Prototype, $A is mostly used for converting lists of arguments and DOM
nodes into arrays. Note that the latest versions of Prototype mix enumerable functions
right into JavaScript’s native Array object, which makes this function of very little
use.

$F(id)

The $F function is an alias for Form.Element.getValue. It returns the value of any
form field on a page, by ID. It is a useful convenience method because it works regard-
less of whether you pass it a text input, a select input, or a text area.

$H(obj)

The $H function extends a plain JavaScript object with the functions of Enumerable
and Hash making it resemble a hash in Ruby. (See the section “Hash” in this chapter.)

$R(start, end, exclusive)

The $R function is a shortcut for the ObjectRange constructor. (See the section
“ObjectRange” in this chapter.)

Try.these(func1, func2[, func3...]

This is not exactly a top-level function, but it made the most sense to me to include
it in this section, since these is the only function of the Try object.

When doing cross-browser-compatible operations, it’s quite common to need to
try a couple of different ways of doing something until one of them works. The Try
object defines a these function, to which you pass a list of functions that should be
attempted until one doesn’t throw an exception.

Prototype 423

A classic example, taken right from the Prototype codebase, is the way that you
grab a reference to the XMLHttpRequest object, which varies significantly between
Firefox and Internet Explorer:

var Ajax = {

getTransport: function() {

return Try.these(

function() {return new XMLHttpRequest()},

function() {return new ActiveXObject(‘Msxml2.XMLHTTP’)},

function() {return new ActiveXObject(‘Microsoft.XMLHTTP’)}

) || false;

},

activeRequestCount: 0

}

Class

The Class object defines a create function, used to declare new instances of Ruby-
like classes in the rest of the framework. Those classes can then declare an initialize
function to serve as an constructor when new is invoked to create a new instance,

Here is the implementation of ObjectRange as an example:

ObjectRange = Class.create();

Object.extend(ObjectRange.prototype, Enumerable);

Object.extend(ObjectRange.prototype, {

initialize: function(start, end, exclusive) {

this.start = start;

this.end = end;

this.exclusive = exclusive;

},

...

});

var $R = function(start, end, exclusive) {

return new ObjectRange(start, end, exclusive);

}

First, a class is created for ObjectRange (which would look like class
ObjectRange in Ruby). Next, the prototype object of ObjectRange is extended in

424 12. Ajax on Rails

order to establish instance methods. The functions of Enumerable are mixed in, fol-
lowed by the anonymous JavaScript object defined by the curly braces, inside of which
is the initialize function plus whatever other instance methods are needed.

Extensions to JavaScript’s Object Class
One reason that Prototype code can be so clean and concise is that it mixes functions
right into JavaScript’s base classes, such as Object.

Object.clone(object)

Returns a copy of the object supplied as a parameter, by using it to extend a new
Object instance:

clone: function(object) {

return Object.extend({}, object);

}

Object.extend(destination, source)

The extend static function literally loops through every property of the supplied
source object and copies them over to the destination object, including functions,
thereby serving as an inheritance and cloning mechanism. (JavaScript doesn’t have
built-in support for inheritance.)

The source code is instructional and simple enough to include here:

Object.extend = function(destination, source) {

for (var property in source) {

destination[property] = source[property];

}

return destination;

}

Object.keys(obj) and Object.values(obj)

Objects in JavaScript behave almost exactly like associative arrays (or hashes) in other
languages, and they’re used extensively in that fashion in JavaScript code. The keys
static function returns a list of the properties defined on an object. The values stat-
ic function returns a list of property values.

Prototype 425

Object.inspect(param)

If the parameter is undefined (which is different than null in JavaScript), the static
inspect function returns the string ‘undefined’. If the parameter is null, it returns
‘null’. If an inspect() function is defined on the parameter, it is invoked; other-
wise, toString() is called as a final resort.

Extensions to JavaScript’s Array Class
The following methods are available on arrays in addition to those defined in
Enumerable.

array.clear()

Removes all elements from the array and returns it. Interestingly enough, the imple-
mentation of this method simply sets the length of the array to zero:

clear: function() {

this.length = 0;

return this;

}

array.compact()

Removes all null and undefined elements from the array and returns it. Notice the
use of select in the implementation:

compact: function() {

return this.select(function(value) {

return value != undefined || value != null;

});

}

array.first() and array.last()

Returns the first and last elements of an array, respectively.

426 12. Ajax on Rails

array.flatten()

Takes the array and recursively flattens its contents into a new array, which is returned.
In other words, this function iterates over the elements of the source array, and for
each element that is an array, it extracts its elements into the new array to be returned.
Notice the use of inject in the implementation:

flatten: function() {

return this.inject([], function(array, value) {

return array.concat(value && value.constructor == Array ?

value.flatten() : [value]);

});

}

array.indexOf(object)

Returns the index of a particular element belonging to an array or returns -1 if the
element is not found.

indexOf: function(object) {

for (var i = 0; i < this.length; i++)

if (this[i] == object) return i;

return -1;

});

}

array.inspect()

Overrides the default inspect and prints out the elements of the array delimited by
commas.

indexOf: function() {

return ‘[‘ + this.map(Object.inspect).join(‘, ‘) + ‘]’;

}

array.reverse(inline)

Reverses the order of the array. The inline argument, which defaults to true, spec-
ifies whether to modify the receiving array or leave it in its original state.

Prototype 427

array.shift()

Removes the first element of the array and returns it, causing the size of the array to
shrink by 1.

array.without(obj1[, obj2, ...])

Removes (or subtracts) the elements specified as arguments from the receiver. Takes
either an array or list of elements to be removed, which is easily accomplished by wrap-
ping arguments in a call to $A. Notice the use of select in the implementation:

without: function() {

var values = $A(arguments);

return this.select(function(value) {

return !values.include(value);

});

}

Extensions to the document Object
The document.getElementsByClassName(className [, parentElement])

method returns a lists of elements from the DOM that have the supplied CSS
className. The optional parentElement parameter lets you limit the search to a
particular branch of the DOM instead of searching the entire document, starting from
the body element (default).

Extensions to the Event Class
The following list of constants is added to the Event class, for convenience.

Object.extend(Event, {

KEY_BACKSPACE: 8,

KEY_TAB: 9,

KEY_RETURN: 13,

KEY_ESC: 27,

KEY_LEFT: 37,

KEY_UP: 38,

KEY_RIGHT: 39,

KEY_DOWN: 40,

KEY_DELETE: 46

});

428 12. Ajax on Rails

The constants make it easy to define event handlers for keyboard events. In the
following code example, we make use of a use of a switch statement inside of a sim-
ple onKeyPress event handler to detect when the user presses Escape.

onKeyPress: function(event) {

switch(event.keyCode) {

case Event.KEY_ESC:

alert(‘Canceled’);

Event.stop(event);

}

}

Event.element()

Returns the element that originated the event.

Event.findElement(event, tagName)

Traverses the DOM tree upward, starting from the element that originated the event.
Returns the first element it finds that matches the tagName parameter (case-insensitive).
If no matching parent element is found, this function returns the element that origi-
nated the event by default instead of erroring out, which can cause some confusion.

Event.isLeftClick(event)

Returns true if a click of the left mouse button caused the event to occur.

Event.observe(element, name, observer, useCapture) and
Event.stopObserving(element, name, observer,
useCapture)

The observe function wraps the browser’s own addEventListener function, which
is part of the DOM Level 2 specification. It establishes an observer relationship
between the specified element and an observer function. The element parameter
may refer to a string ID or the element itself, quite often document in the case of
mouse and keyboard events.

The stopObserving function is essentially the same except that it disconnects
the event handler, and wraps the removeEventListener method of the DOM.

Prototype 429

The name parameter refers to a valid event name (as a string), as defined in the
DOM specification for browsers (blur, click, and so on).2

The observer parameter should be a function reference, meaning the name of a
function without parentheses (often a source of confusion!). In almost all cases, you
will want to use the bindAsEventListener function in conjunction with observe,
so that the event-handler function executes in the correct context. (See “Extensions to
JavaScript’s Function Class” in the next section.)

The useCapture option can be used to specify that the handler should be called
in the capture phase instead of the bubbling phase, and defaults to false.

Here’s an example of Event.observe taken from Scriptaculous’
AutoCompleter object:

addObservers: function(element) {

Event.observe(element, “mouseover”,

this.onHover.bindAsEventListener(this));

Event.observe(element, “click”,

this.onClick.bindAsEventListener(this));

}

Event.pointerX(event) and Event.pointerY(event)

Returns x and y coordinates of the mouse pointer on the page when the event
occurred.

Event.stop(event)

Halts propagation of an event and cancels its default behavior, whatever that might
have been.

Extensions to JavaScript’s Function Class
The following two functions are mixed into the native Function class.

function.bind(obj)

Used to bind a function into the context of the object passed as a parameter. That
parameter is almost always inevitably the value this, the current object context,
because the main use for bind is to take a function that was defined elsewhere and
make sure that it will execute with the exact context where you want it to be executed.

430 12. Ajax on Rails

For example, see the way that the registerCallback function of
PeriodicalExecuter is implemented:

registerCallback: function() {

setInterval(this.onTimerEvent.bind(this), this.frequency * 1000);

}

It is necessary to bind the onTimerEvent function to execute in the context of
whatever object the callback is being registered on, rather than the prototype object of
the PeriodicalExecuter object itself.

Use of bind is admittedly a difficult concept to grasp, unless you are an experi-
enced JavaScript programmer or have an affinity for functional programming, so don’t
fret if you don’t understand it immediately.

function.bindAsEventListener(obj)

Used to attach a function as a DOM event handler in such a way that the event
object will get passed to the function as its parameter. Used in similar fashion to bind
where you want to make sure that some method gets executed in the context of a par-
ticular instance, rather than the prototype class where it is defined. This method is not
used by the Prototype library itself, but it is used extensively in Scriptaculous and in
custom application JavaScript, whenever you want to create observer-style classes to
contain event handlers bound to elements on a page.

The following code example is a custom class designed to alert you to changes in
an input field with a customizable message:

var InputObserver = Class.create();

InputObserver.prototype = {

initialize: function(input, message) {

this.input = $(input);

this.message = message;

this.input.onchange = this.alertMessage.bindAsEventListener(this);

},

alertMessage: function(e) {

alert(this.message + ‘ (‘ + e.type + ‘)’);

}

};

var o = new InputObserver(‘id_of_some_input_field’, ‘Input field’);

Prototype 431

Extensions to JavaScript’s Number Class
The following three functions are mixed into the native Number class.

number.toColorPart()

Returns the hexadecimal representation of an integer RGB value.

toColorPart: function() {

var digits = this.toString(16);

if (this < 16) return ‘0’ + digits;

return digits;

},

Remember that numbers in JavaScript are not automatically auto-boxed, so to
speak. You have to assign the number to a variable, wrap the value in a Number
instance yourself, or simply put it in plain parentheses in order to be able to invoke
functions on it. Not convinced? You can figure it out interactively using the FireBug
console:

>>> 12.toColorPart();

missing ; before statement 12.toColorPart();

>>> n = new Number(12)

12

>>> n.toColorPart();

“0c”

>>> n = 12

12

>>> n.toColorPart();

“0c”

>>> (12).toColorPart();

“0c”

>>> 12.toColorPart

missing ; before statement 12.toColorPart

>>> (12).toColorPart

function()

432 12. Ajax on Rails

number.succ()

Simply returns the next number:

succ: function() {

return this + 1;

},

number.times()

Just like the times method available on numerics in Ruby, number.times() takes a
block of code and invokes it a number of times (according to the value of the number
it is called on). Notice the use of $R to easily create a range, and each to invoke the
supplied iterator function.

times: function(iterator) {

$R(0, this, true).each(iterator);

return this;

}

Here’s a simple example that will pop up an alert box five times. Remember that
you can’t invoke a JavaScript function directly on a raw number because it will con-
fuse the parser, hence the extra parentheses are needed:

>>> (5).times(new Function(“alert(‘yeah’)”))

5

Extensions to JavaScript’s String class
The following methods are mixed into the native String class.

string.camelize()

Turns dash-separated strings into lowerCamelCase.

>>> “about-to-be-camelized”.camelize()

“aboutToBeCamelized”

Prototype 433

string.dasherize()

Turns underscore-separated strings into dash-separated-strings.

>>> “about_to_be_dasherized”.dasherize()

“about-to-be-dasherized”

string.escapeHTML() and string.unescapeHTML()

The escapeHTML instance function escapes all HTML and XML markup in the
receiving string, by turning the angle brackets of tags into entities.

>>> ‘<script src=”http://evil.org/bad.js”/>’.escapeHTML()

“<script src=”http://evil.org/bad.js”/>”

The unescapeHTML function reverses the operation.

string.evalScripts() and string.extractScripts()

The evalScripts instance function executes any <script> tags found in the receiv-
ing string.

The extractScripts instance function returns an array of strings containing
the text of all <script> tags found in the receiving string. Note that the opening and
closing <script> tags themselves are omitted; only JavaScript code is extracted.

string.gsub(pattern, replacement) and string.sub

(pattern, replacement, count)

The gsub instance function returns a copy of the receiving string, with all occurrences
of pattern replaced with the value supplied in replacement. The receiving string is
not modified. Pattern should be a literal JavaScript regular expression, delimited with
“/” characters.

The sub function is similar to gsub, but only makes as many replacements as
specified in the count parameter, which defaults to 1.

string.scan(pattern, iterator)

The scan instance function is very similar to gsub, except that it takes an iterator
function instead of a replacement value.

434 12. Ajax on Rails

string.strip()

The strip instance function removes leading and trailing whitespace. Notice the
chained calls to replace in the implementation:

strip: function() {

return this.replace(/^\s+/, ‘’).replace(/\s+$/, ‘’);

}

string.stripScripts() and string.stripTags()

The stripScripts instance function removes <script> tags (including their con-
tent) from the receiving string. The stripTags instance function removes all HTML
and XML tags from the receiving string.

string.parseQuery() and string.toQueryParams()

Both functions turn a query string (URL request format) into a JavaScript object.

>>> “?foo=bar&da=da+do+la”.toQueryParams()

Object foo=bar da=da+do+la

string.toArray()

Returns the characters of the receiving string as an array.

string.truncate(length, truncationString)

Works just like the truncate method that Rails mixes into strings. If the receiving
string is longer than length, it will be truncated and the last three characters will be
the truncationString (defaults to an ellipse, “...”).

>>> “Mary had a little lamb”.truncate(14)

“Mary had a ...”

Prototype 435

string.underscore()

Practically a direct port of the underscore method mixed into strings in Rails. Turns
camelCase strings into underscored form. Changes :: to / to convert Ruby-style
namespaces to paths.

>>> “ActiveRecord::Foo::BarCamp”.underscore()

“active_record/foo/bar_camp”

The Ajax Object
The Ajax object has useful behavior and also serves as the root namespace for other
Ajax-related objects in Prototype.

Ajax.activeRequestCount

Holds the number of Ajax requests executing at any given moment, and there may be
more than one since they fire asynchronously. Primarily used when implementing
activity indicators (a.k.a. “spinners”), those little animated icons let the user know
when communication with the server is happening:

Ajax.Responders.register({

onCreate: function() {

if($(‘busy’) && Ajax.activeRequestCount > 0)

Effect.Appear(‘busy’, { duration:0.5, queue:’end’ });

},

onComplete: function() {

if($(‘busy’) && Ajax.activeRequestCount == 0)

Effect.Fade(‘busy’, {duration:0.5, queue:’end’ });

}

});

Ajax.getTransport()

Returns a reference to the XMLHttpRequestObject implementation provided by the
browser. You don’t normally have to use this function yourself—it’s used internally by
the other Ajax functions.

436 12. Ajax on Rails

Ajax.Responders

The Responders object manages the list of event handlers interested in notification
about Ajax-related events. The preceding code example shows Ajax.Responders
used to register a pair of custom callback functions, onCreate and onComplete,
which take care of showing and hiding a spinner graphic that indicates Ajax activity.

In addition to the static functions described in the following sections,
Ajax.Responders extends Enumerable.

Ajax.Responders.register(responder)

Adds responder objects to the list of registered responders interested in receiving
Ajax-related events. Responders are invoked in the order in which they were regis-
tered, and they should implement at least one of the following Ajax callbacks:
onCreate, onComplete, or onException.

Ajax.Responders.unregister(responder)

Removes a responder from the list of registered responders.

Enumerable

The Enumerable object is used just as you would use the Enumerable module as a
mixin in Ruby. It depends on the receiver having an _each function defined.
Prototype mixes Enumerable into quite a number of other objects, including Array,
Hash, ObjectRange, Ajax.Responders, and Element.ClassNames.

Just as in Ruby, you can mix Enumerable into your own custom JavaScript class-
es. Just provide an implementation of _each for Enumerable’s functions to use.

// Provide your custom class with an _each function

var MyCustomClass = Class.create();

MyCustomClass.prototype = {

_each: function(iterator) {

for (var i = 0, length = this.length; i < length; i++) {

iterator(this[i]);

}

}

}

// Mix in Enumerable’s iterator functions

Object.extend(MyCustomClass.prototype, Enumerable);

Prototype 437

JavaScript doesn’t support private or protected functions; therefore, functions not
intended for public use are prefixed with an underscore in Prototype.

The design of Enumerable varies from Ruby in that it provides you with a pub-
lic each function, which uses _each under the covers. Apart from that, most of the
iterator functions provided by Enumerable are very similar to their counterparts in
Ruby.

enumerable.each(iterator)

The each function takes a function reference as its iterator parameter and invokes
that function for each of its elements. The individual element is passed as the param-
eter to the iterator function.

Let’s look at a simple example, which will alert three times:

function alerter(msg) {

alert(msg);

}

[“foo”, “bar”, “baz”].each(alerter)

The way to pass a function by reference in JavaScript is to simply refer to it by
name, leaving off the parentheses.

Here are the rest of the enumerable functions. Most iterator are invoked with two
parameters: value and index.

enumerable.all(iterator)

The all function passes each element of the Enumerable object to the iterator, and
returns true if the iterator function never returns false. If the iterator param-
eter is omitted, each element itself is considered in a Boolean context. You can think
of the all function as a big Boolean AND operation.

enumerable.any(iterator)

The any function passes each element of the Enumerable object to the iterator, and
returns true if the iterator function ever returns true. If the iterator parame-
ter is omitted, each element itself is considered in a Boolean context. You can think of
the any function as a big Boolean OR operation.

438 12. Ajax on Rails

enumerable.collect(iterator) and enumerable.map(iterator)

The collect function (aliased as map) returns the results of running the iterator
function for each of the elements in an Enumerable object.

>>> $R(1,4).collect(Prototype.K) // K returns whatever you pass it

[1, 2, 3, 4]

>>> $R(1,4).collect(function(){return “cat”})

[“cat”, “cat”, “cat”, “cat”]

enumerable.detect(iterator) and enumerable.find(iterator)

The detect function (aliased as find) is used to find the first element of an enu-
merable that matches criteria defined in the iterator function.

>>> $R(1,100).detect(function(i){ return i % 5 == 0 && i % 6 == 0 })

30

enumerable.eachSlice(number[, iterator])

The eachSlice function splits the elements of the array into a number of slices as
specified by the number parameter. Then it returns the results of calling collect with
the optional iterator function, on the list of resulting slices, which effectively flattens
the result back down into a single-dimension array.

>>> $R(1,10).eachSlice(5)

[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]

>>> $R(1,10).eachSlice(2, function(slice) { return slice.first() })

[1, 3, 5, 7, 9]

enumerable.findAll(iterator) and enumerable.select

(iterator)

The findAll function (aliased as select) is used to find all of the elements of an
enumerable that match the criteria defined in the iterator function.

>>> $R(1,100).findAll(function(i){ return i % 5 == 0 && i % 6 == 0 })

[30, 60, 90]

Prototype 439

enumerable.grep(pattern[, iterator])

The grep function returns all elements of an enumerable for which the regular expres-
sion passed as the pattern parameter matches with a non-null result.

The optional iterator function is invoked for any values that matched.

>>> quote = “The truth does not change according to our ability to

stomach it”

“The truth does not change according to our ability to stomach it”

>>> quote.split(‘ ‘).grep(/\w{5}/)

[“truth”, “change”, “according”, “ability”, “stomach”]

>>> quote.split(‘ ‘).grep(/\w{5}/, function(val, i){ return i + “:” +

val })

[“1:truth”, “4:change”, “5:according”, “8:ability”, “10:stomach”]

enumerable.include(obj) and enumerable.member(obj)

The include function (aliased as member) returns true if any member of the enu-
merable equals the obj parameter. The comparison is made using the == function.

>>> [‘a’,’b’,’c’].include(‘a’)

true

>>> [‘a’,’b’,’c’].include(‘x’)

false

enumerable.inGroupsOf(num[, filler])

The inGroupsOf function is kind of like eachSlice, but does not take an iterator.
It always returns a two-dimensional array containing equal-sized groups, composed of
the enumerable’s elements. The optional filler parameter allows you to specify a
value that should be used to fill out the remaining slots, if any, on the last group, and
defaults to null.

>>> $R(1,10).inGroupsOf(3)

[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, null, null]]

>>> $R(1,10).inGroupsOf(3, 0) // pad with zeros

[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 0, 0]]

440 12. Ajax on Rails

enumerable.inject(accumulator, iterator)

The inject function combines the elements of the enumerable, applying the
iterator function to the accumulator and each element, in turn. At each iteration,
the value of accumulator is set to the value returned by the iterator function.
Unlike the Ruby version, Prototype’s inject requires an initial value for accumulator.

>>> $R(1,5).inject(0, function(acc, e) { return acc + e })

15

enumerable.invoke(functionName[, arg1, arg2...])

The invoke function invokes the function named by functionName to each element
of the enumerable and collects the results. The optional parameters will be passed as
parameters to the invoked function.

>>> $R(1,5).inject(0, function(acc, e) { return acc + e })

15

enumerable.max([iterator]) and enumerable.min([iterator])

The max and min functions are very similar to each other, and return the elements of
the enumerable of the highest and least values, respectively. An optional iterator
function can be supplied to transform the value of the element that is used for com-
parison.

>>> $R(1,5).min()

1

>>> [“1”,”2”,”3”].max(function(val) { return Number(val) })

3

enumerable.partition([iterator])

The partition function returns a two-item array. The first is an array containing the
enumerable’s elements for which the optional iterator function returned true, and
the second contains those elements for which it returned false. If an iterator is
not supplied, the Boolean value of the element itself will be used.

>>> [“1”,null,”2”,null,null].partition()

[[“1”, “2”], [null, null, null]]

Prototype 441

enumerable.pluck(propertyName)

The pluck function conveniently plucks a list of property values from an enumerable.
This is essentially a convenience method similar to collect.

>>> $$(‘script’).pluck(‘src’)

[“http://localhost:3000/javascripts/prototype.js?1165877878”,

“http://localhost:3000/javascripts/effects.js?1161572695”,

“http://localhost:3000/javascripts/dragdrop.js?1161572695”,

“http://localhost:3000/javascripts/controls.js?1161572695”,

“http://localhost:3000/javascripts/application.js?1161572695”, “”]

enumerable.reject(iterator)

The reject function returns elements of the enumerable for which the required
iterator function returns false.

enumerable.sortBy(iterator)

The sortBy function returns the elements of Enumerable sorted according to the
criteria returned by the required iterator function.

Incidentally, when I was coming up with an example for this function, I realized
that because I’m used to coding Ruby, I quite often forget to say return in the body
of the iterator function. Unfortunately, that won’t usually cause the script to fail,
and can be very confusing. Don’t forget that JavaScript functions need an explicit
return statement!

>>> linusQuote = “Software is like sex: It’s better when it’s free.”

“Software is like sex: It’s better when it’s free.”

>>> linusQuote.split(‘ ‘).sortBy(function(s,index) { return s.length })

[“is”, “it’s”, “sex:”, “It’s”, “like”, “when”, “free.”, “better”,

“Software”]

enumerable.toArray() and enumerable.entries()

The toArray function (aliased as entries) returns the elements of the enumerable
as an array.

442 12. Ajax on Rails

enumerable.zip(enum1, enum2[, enum3...][, iterator])

The interesting zip function is modeled after the Ruby iterator of the same name. It
has nothing to do with compression; rather, think of the behavior of a zipper on your
clothing. The zip function merges the elements of each enumerable supplied as a
parameter, such that the returned list has the same number of elements as the receiv-
ing enumerable does.

If the last (optional) parameter is a function, it is used as an iterator and
invoked on each array element that will be returned. The easiest way to explain is
probably to illustrate with an example, similar to the one presented in the “Pickaxe”
book (Programming Ruby):

>>> a = [4, 5, 6]

[4, 5, 6]

>>> b = [7, 8, 9]

[7, 8, 9]

>>> [1, 2, 3].zip(a, b)

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

Hash

The Object class in JavaScript, which can be created on the fly with curly-brace lit-
erals, is very close to an associative array (a.k.a. hash) already. Without modification,
it supports square-bracket notation for assignment and lookup.

Prototype gives us a Hash class that extends Enumerable and adds familiar func-
tions similar to those available in Ruby hashes.

hash.keys() and hash.values()

The keys and values functions return lists of keys and values, accordingly.

hash.merge(another)

The merge function merges values passed in from another hash into the receiver. If
any keys exist in both the receiver and passed-in hash, the value of the receiver’s entry
will be overwritten.

>>> $H({foo:’foo’, bar:’bar’}).merge({foo:’F00’, baz:’baz’})

Object foo=F00 bar=bar baz=baz

Prototype 443

hash.toQueryString()

The toQueryString function formats the key/value pairs of a hash as a query string
appropriate for appending to a URL. It comes in very handy, compared to trying to
construct query strings yourself:

>>> $H(Prototype).toQueryString()

“Version=1.5.0_rc2&BrowserFeatures=%5Bobject%20Object%5D&ScriptFragment

=(%3F%3A%3Cscript.*%3F%3E)((%0A%7C%0D%7C.)*%3F)(%3F%3A%3C%2Fscript%3E)”

ObjectRange

ObjectRange provides an easy way to create JavaScript ranges. ObjectRange does
provide a constructor but the more common way is to use $R. Prototype uses the succ
method to figure out what the next value is in the range and Prototype provides such
a method on Number and String. Prototype also mixes in Enumerable, making
ranges much more usable.

>>> $A($R(1, 5)).join(‘, ‘)

‘1, 2, 3, 4, 5’

>>> $R(1, 3).zip([‘Option A’, ‘Option B’, ‘Option C’], function(tuple) {

return tuple.join(‘ = ‘);

})

[‘1 = Option A’, ‘2 = Option B’, ‘3 = Option C’]

Special care needs to be taken when using strings in ranges as ObjectRange does
not use alphabetical boundaries but instead goes through the entire character table.
This can create a huge array if not considered.

>>> $A($R(‘a’, ‘c’))

[‘a’, ‘b’, ‘c’]

>>> $A($R(‘aa’, ‘ab’))

[..., ‘ax’, ‘ay’, ‘az’, ‘a{‘, ‘a|’, ‘a}’, ...] // A very large array

444 12. Ajax on Rails

The Prototype Object
The Prototype object holds the version number of the library as the Version prop-
erty, a regular expression snippet to match a script tag in HTML markup as
ScriptFragment, and two very simple functions.

The emptyFunction is just that: empty. The K function has nothing to do with
hyperfactorial or complex numbers; it simply returns the value that was passed into it
as an argument and is used internally by Prototype.

The PrototypeHelper Module
When we covered helper modules in Chapter 11, we purposely left out
PrototypeHelper and its companion, Scriptaculous helper. They provide an easy
way to use the Prototype and Scriptaculous Javascript libraries (respectively) to add
Ajax functionality to your application.

link_to_remote

Now that we’ve discussed the JavaScript functionality in Prototype, “All About
Helpers,” we can make a basic Ajax call. Rails minimizes the amount of JavaScript you
need to write by hand. One of the most common helper methods is
link_to_remote, which we’ll use to fetch a random number from the controller in
Listing 12.1. The controller follows RESTful principles and leverages the
respond_to method to respond to callers that expect a JavaScript response.

Listing 12.1 A Controller Method to Call Using Ajax Techniques

Class RandomsController < ApplicationController
def index
end

def new
respond_to do |wants|
wants.js { render :text => rand(1_000_000) }

end
end

end

We’ll create only an index view since the new method only renders text. In the
index view we’ll use the link_to_remote helper to generate an Ajax link to our new

The PrototypeHelper Module 445

method. The result of the request will be placed inside the div tag with the id of
result. We define what to link to using the url parameter. It accepts the same values
as the standard link_to method.

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

<%= link_to_remote ‘Random Number Please’, :url =>

new_random_path,

:update => ‘result’ %>

<div id=”result”></div>

</body>

</html>

The rendered page will look like this:

<html>

<head>

<script src=”/javascripts/prototype.js?1184547490”

type=”text/javascript”></script>

<script src=”/javascripts/effects.js?1184547490”

type=”text/javascript”></script>

<script src=”/javascripts/dragdrop.js?1184547490”

type=”text/javascript”></script>

<script src=”/javascripts/controls.js?1184547490”

type=”text/javascript”></script>

<script src=”/javascripts/application.js?1184547490”

type=”text/javascript”></script>

</head>

<body>

<a href=”#” onclick=”new Ajax.Updater(‘result’,

‘http://localhost:3000/randoms/new’, {asynchronous:true,

evalScripts:true}); return false;”>Random Number Please

<div id=”result”></div>

</body>

</html>

446 12. Ajax on Rails

The call to javascript_include_tag :defaults added the needed script
tags. Rails appends a unique number to the URL to help prevent problems caused by
the browser caching old versions of your JavaScript files.

The link_to_remote helper is highly customizable, which means that we can
use it to retain all the random numbers we’ve received. We need to change the view to
use an unordered list first and to not replace the contents of the ul tag each time we
click on the Ajax link. Instead the result should be appended below the unordered list.

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

<%= link_to_remote ‘Random Number Please’, :url =>

new_random_path,

:update => ‘result’, :position => :bottom %>

<ul id=”result”>

</body>

</html>

Next we change the controller to render a list item tag.

Class RandomsController < ApplicationController

...

def new

respond_to do |wants|

wants.js { render :text => “#{rand(1_000_000)}” }

end

end

end

Now each time we click the link, the result will be placed below the last one.
The position parameter takes for different options: :before, :after, :top, and
:bottom. The :before and :after values refer to the element, whereas the :top
and :bottom values refer to the children of the element. If we wanted the newest ran-
dom number to appear first in the list, we just need to replace :bottom with :top.

The PrototypeHelper Module 447

If we replaced it with :before, though, we would insert our list items outside the
unordered list like this:

...

15416

9871

<ul id=”result”>

...

What if a problem occurs during our Ajax request? The link_to_remote has a call-
back to handle these situations. To use it you just need to set the :failure parameter.

...

<%= link_to_remote ‘Random Number Please’, :url => new_random_path,

:update => ‘result’, :position => :bottom, :failure => “alert(‘HTTP

Error ‘ + request.status + ‘!’)” %>

...

The :failure parameter takes a JavaScript function or fragment as a value. The
callback has access to the underlying XMLHttpRequest object. In this case, the status
code is displayed but we could also display the complete response by calling
request.responseText. There are a number of other callbacks described in Table
12.1.

Table 12.1 Callback Options for link_to_remote

Parameter Description

:before Called before request is initiated.

:after Called immediately after request was initiated and before :loading.

:loading Called when the remote document is being loaded with data by the browser.

:loaded Called when the browser has finished loading the remote document.

:interactive Called when the user can interact with the remote document, even though it
has not finished loading.

:success Called when the XMLHttpRequest is completed, and the HTTP status code
is in the 2XX range.

:failure Called when the XMLHttpRequest is completed, and the HTTP status code
is not in the 2XX range.

:complete Called when the XMLHttpRequest is complete (fires after success/failure if
they are present).

448 12. Ajax on Rails

If you need more control, you can set callbacks for specific status codes. The fol-
lowing example sets a callback for a 404 status code. Note that the status code is not
a symbol but rather an integer.

...

<%= link_to_remote ‘Random Number Please’, :url => new_random_path,

:update => ‘result’, :position => :bottom, :failure => “alert(‘HTTP

Error ‘ + request.status + ‘!’)”, 404 => “alert(‘Not Found’)” %>

...

The link_to_remote method has a number of parameters to customize the
browser-side behavior. While Ajax is typically asynchronous, you can change this
behavior to be synchronous by setting :type => :synchronous. This will cause the
browser to block until the request is finished processing. You can also add a confir-
mation dialog by setting :confirm => true. If you need to perform your Ajax
request conditionally, you can set the :condition parameter to a JavaScript expres-
sion of browser-side conditions.

remote_form_for

Just as link_to has link_to_remote, form_for has remote_form_for. It takes
the same options and callbacks as link_to_remote but returns a form tag that sub-
mits the form elements using an XMLHttpRequest in the background. Just like the
form_for method, remote_form_for will present its values in the standard params
object. We can illustrate this by creating an Ajax form, which will create a new
Addition model, add the attributes together, and return the result. The controller
would look like this:

Class AdditionsController < ApplicationController

def new

@addition = Addition.new

end

def create

@addition = Addition.new(params[:addition])

respond_to do |wants|

wants.js { render :text => @addition.sum_x_and_y}

end

end

end

The PrototypeHelper Module 449

In the new view we would have:

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

<% remote_form_for :addition, @addition,

:url => additions_path,

:update => ‘result’ do |f| %>

X: <%= f.text_field :x %>

Y: <%= f.text_field :y %>

<%= submit_tag ‘Create’ %>

<% end %>

<div id=”result”></div>

</body>

</html>

The preceding view is rendered as follows:

<html>

<head>

...

</head>

<body>

<form action=”/additions/non_ajax_create” method=”post”

onsubmit=”new Ajax.Updater(‘result’, ‘/additions’,

{asynchronous:true,

evalScripts:true, parameters:Form.serialize(this)}); return false;”>

X: <input id=”addition_x” name=”addition[x]” size=”30” type=”text” />

Y: <input id=”addition_y” name=”addition[y]” size=”30” type=”text” />

<input name=”commit” type=”submit” value=”Create” />

</form>

<div id=”result”></div>

</body>

</html>

The remote_form_for can also take a “fall-through” target for browsers that
don’t support JavaScript. By default this is the same action as the one specified in the

450 12. Ajax on Rails

url parameter. To set it to something else, set the :action parameter in the html
options, like this:

...

<% remote_form_for :addition, @addition, :url => additions_path,

:update => ‘result’, :html => { :action => url_for(:controller =>

‘additions’, :action => ‘non_ajax_create’) } do |f| %>

...

Another option for submitting a form via Ajax is to use a regular form_for and
a submit_to_remote instead of a standard submit. The submit_to_remote takes
all the same options as remote_form_for.

periodically_call_remote

A common Rails Ajax method is periodically_call_remote, which will call a
URL every n number of seconds. It takes the same options and has the same callbacks
as link_to_remote. It defaults to calling the URL every 10 seconds, though you can
change that by setting the :frequency parameter. We can change the random num-
ber generator view in the previous example to fetch a new number every five seconds.
We don’t need to change the controller, just the view to it:

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

<%= periodically_call_remote :url => new_random_path, :update =>

‘result’, :frequency => 5 %>

<div id=”result”></div>

</body>

</html>

observe_field

Whereas periodically_call_remote happens every n seconds, observe_field
happens on every change in a particular form field. We can use this to display a list of

The PrototypeHelper Module 451

possible area codes as a user enters one into a text field. To do this, we’ll use the fol-
lowing index view.

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

Area Code: <%= text_field_tag ‘number’ %>

d

<%= observe_field ‘number’, :url => { :controller => ‘area_codes’,

:action => ‘show’}, :frequency => 0.25, :update => ‘

area_code_results’, :with => ‘number’ %>

</body>

</html>

In our numbers controller we’ll modify our show method.

Class AreaCodesController < ApplicationController

def show

respond_to do |wants|

wants.js {

@area_codes = AreaCode.find_like(params[:number])

`if @area_codes.empty? || params[:number].blank?

render :text => ‘ ‘

else

render :text => @area_codes.map(&:to_s).join(‘
’)

end

}

end

end

end

The observe_field method checks the DOM element identified by number
every 0.25 seconds for any changes. If the field has changed, that is, more data has
been entered into or removed from the field, an XMLHttpRequest is made. The
request is sent to the action identified by the url parameter; in this case, show on the
area codes controller. That method looks for all area codes that start with the numbers
entered so far.

452 12. Ajax on Rails

We can use the standard params object in the controller because we specified the
with parameter in the observe_field method. If we hadn’t used the with parame-
ter, we would have to look at the actual request body using something like
request.body.read. We could also send additional parameters by setting the with
parameter to something like: ‘number=’+ escape($(‘‘number’’).value) +

‘&other_value=-1’. We could then access number and other_value from the
params object once again.

By default the observe_field method will trigger on changed events for text
fields and text areas, and on clicks for radio buttons and check boxes. If you want to
use a different event, simply set the on parameter to the appropriate handler like blur
of focus. In the preceding example we make a request to a URL, but we could also have
called a JavaScript function instead. To do this we would set the function parameter to
the appropriate function like: :function => ‘update_results’. Additionally,
observe_field takes all the options that link_to_remote does.

observe_form

If you need to observe an entire form, observe_form may be a better choice than
observe_field. The observe_form takes the DOM ID of a form and watches all
elements of the form. It takes all the same options and behaves the same as
observe_field except the default value of the with parameter is the serialized value
of the form (the request string).

RJS—Writing Javascript in Ruby
Rails includes a feature called RJS, which arguably stands for Ruby JavaScript. The
RJS API generates blocks of JavaScript code based on Ruby code, thus allowing you
to manipulate a view or parts of a view from the server side.

In the area codes example of the preceding section, we rendered the result of an
area code search using render :text like this:

render :text => @area_codes.map(&:to_s).join(‘
’)

What if we also wanted to prefix the results with the number found? We might
just add that to the string we return, like this:

render :text => “Found #{area_codes.size} Results

#{@area_codes.map(&:to_s).join(‘
’)}”

RJS—Writing Javascript in Ruby 453

That works, but what if we needed to show the results count somewhere else in
the view— somewhere that a simple string concatenation like the one used in the pre-
ceding example wouldn’t work.

We could start using RJS by structuring the view template like this:

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

Area Code: <%= text_field_tag ‘number’ %>

<hr/>

<%= observe_field ‘number’, :url => { :controller => ‘area_codes’,

:action => ‘show’}, :frequency => 0.25, :with => ‘number’ %>

</body>

</html>

Now using RJS, the respond_to block in our controller might look like this:

wants.js {

@area_codes = AreaCode.find_like(params[:number])

if @area_codes.empty?

render :update do |page|

page.replace_html ‘area_code_results_message’,

‘No Results Found’

page.replace_html ‘area_code_results’, ‘’

end

else

render :update do |page|

page.replace_html ‘area_code_results_message’,

“Found #{@area_codes.size} Results”

page.replace_html ‘area_code_results’,

@area_codes.map(&:to_s).join(‘
’)

end

end

}

454 12. Ajax on Rails

Since we’re using RJS, we no longer need to use the update parameter in the
observe_field method. This is because observe_field and all the methods we’ve
talked about so far will execute any JavaScript received.

In the controller we no longer render text. Instead, the call to render :update
tells ActionController to render a block of JavaScript. Rails provides a number of
helper methods that help us create JavaScript for rendering.

The preceding code uses one of those: replace_html, which replaces the inner
HTML of the element identified in the first argument with the value of the second
argument.

We can use FireBug to see the JavaScript sent back to the browser in the response
body.

Element.update(“area_code_results_message”, “Found 41 Results”);

Element.update(“area_code_results”, “301 - MD, W Maryland: Silver

Spring, Frederick, Camp Springs, Prince George’s County (see

240)\074br/\076302 - DE, Delaware\074br/\076303 - CO, Central

Colorado:Denver (see 970, also 720 overlay)\074br/\076...

RJS Templates
We haven’t been following sane best practices, because we’re combining controller and
view logic in one place. We can fix things up by geting RJS code out of our controller
and into template files.

First we create a view called show.js.rjs that contains the following lines:

if @area_codes.empty? || params[:number].blank?

page.replace_html ‘area_code_results_message’,

‘No Results Found’

page.replace_html ‘area_code_results’, ‘’

else

page.replace_html ‘area_code_results_message’,

“Found #{@area_codes.size} Results”

page.replace_html ‘area_code_results’,

@area_codes.map(&:to_s).join(‘
’)

end

RJS—Writing Javascript in Ruby 455

Now we can clean up our controller:

class AreaCodesController < ApplicationController

def show

@area_codes = AreaCode.find(:all,

:conditions => [‘number like ?’, “#{params[:number]}%”])

end

end

The respond_to construct is gone, and we instead rely on Rails’ default behav-
ior of picking a view that matches the request. In other words, Rails will choose to
serve a JavaScript view if the request was from an XMLHttpRequest. RJS can also be
used in helpers too.

Rails comes with a number of RJS methods, which are described in the following
sections.

<<(javascript)

This method will write raw JavaScript to the page. This is useful if we have a custom
method in application.js that we want to call. For example:

// application.js

function my_method() {

alert(‘my_method called’);

}

// my_controllers.rb

class MyControllers < Application

def show

...

render :update do |page|

page << ‘my_method();’

end

...

end

end

456 12. Ajax on Rails

[](id)

This returns a reference of the element identified by id in the DOM. Further calls can
then be made on this element reference like hide, show, and so on. This behaves just
like the $(id) construct in Prototype.

render :update do |page|

page[‘my_div’].hide # same thing as $(‘my_div’).hide

end

alert(message)

This will display a JavaScript alert with the given message:

render :update do |page|

page.alert(‘Something is not right here’)

end

call(function, *arguments, &block)

Calls the JavaScript function with the given arguments if any. If a block is given, a new
JavaScript generator will be created and all generated JavaScript will be wrapped in a
function() { ... } and passed as the class final argument.

// application.js

function my_method() {

alert(‘my_method called’);

}

// my_controllers.rb

class MyControllers < Application

def show

...

render :update do |page|

page.call(‘my_method)

end

...

end

end

RJS—Writing Javascript in Ruby 457

delay(seconds = 1) { ... }

This will execute the given block after the given number of seconds have passed.

render :update do |page|

page.delay(5) {

page.visual_effect :highlight, ‘results_div’, :duration => 1.5

}

end

draggable(id, options = {})

This creates a draggable element (draggable elements are discussed in the section
“Drag and Drop.”

drop_receiving(id, options = {})

This creates a drop receiving element, which is discussed in the section “Drag and
Drop.”

hide(*ids)

Hides the elements identified by the given DOM ids.

render :update do |page|

page.hide(‘options_div’)

page.hide(‘options_form’, ‘options_message’)

end

insert_html(position, id, *options_for_
render)

Inserts HTML at the given position relative to the given element identified by the
DOM id. Position can be any one of the values shown in Table 12.2.

458 12. Ajax on Rails

Table 12.2 Options for insert_html Method

Parameter Description

:top HTML is inserted inside the element, before the element’s existing content.

:bottom HTML is inserted inside the element, after the element’s existing content.

:before HTML is inserted immediately preceding the element.

:after HTML is inserted immediately following the element.

The options_for_render can be either a string of HTML to insert or options
passed to render.

render :update do |page|

page.insert_html :after, ‘my_div’, ‘
<p>My Text</p>’

page.insert_html :before, ‘my_other_div’, :partial => ‘list_items’

end

literal(code)

This is used to pass a literal JavaScript expression as an argument to another JavaScript
generator method. The returned object will have a to_json method that will evalu-
ate to code.

redirect_to(location)

Causes the browser to redirect to the given location.

render :update do |page|

page.redirect_to ‘http://www.berlin.de’

end

remove(*ids)

Removes the given elements identified by the DOM ids.

RJS—Writing Javascript in Ruby 459

replace(id, *options_for_render)

Replaces the entire element (not just its internal HTML) identified by the DOM id
with either a string or render options set in options_for_render.

render :update do |page|

page.replace ‘my_div’, ‘<div>Message</div>’

page.replace ‘my_div’, :partial => ‘entry’

end

replace_html(id, *options_for_render)

Replaces the internal HTML identified by the DOM id with either a string or render
options set in options_for_render.

select(pattern)

Obtains a collection of element references by finding it through a CSS pattern. You
can use standard prototype enumerations with the returned collection.

render :update do |page|

page.select(‘div.header p’).first

page.select(‘div.body ul li).each do |value|

value.hide

end

end

show(*ids)

Show the given hidden elements identified by the DOM ids.

sortable(id, options = {})

Creates a sortable element that is discussed in the section “Sortable.”

460 12. Ajax on Rails

toggle(*ids)

Toggles the visibility of the elements identified by the ids. In other words, visible ele-
ments will become hidden and hidden elements will become visible.

visual_effect(name, id = nil, options = {})

This will start the named effect on the element identified by the DOM id. From RJS
you can call appear, fade, slidedown, slideup, blinddown, and blindup. Each
of these effects results in an element showing or hiding on the page. You can also call
toggle_appear, toggle_slide, and toggle_blind to toggle the effect. For a
complete list of visual effects, not just the displaying of elements, and options they
take, consult the Scriptaculous documentation. To fade an element, we would do the
following:

render :update do |page|

page.visual_effect :fade, ‘my_div’

end

JSON
JavaScript Object Notation (JSON) is a simple way to encode JavaScript objects. Rails
provides a to_json on every object. We can use JSON instead of RJS to accomplish
similar results. The main difference is where the logic lives to handle the result. Using
RJS, the logic lives in Rails. Using JSON, the logic lives in JavaScript.

To illustrate, let’s change our recurring example controller to return JSON.

class AreaCodesController < ApplicationController

def show

respond_to do |wants|

wants.json {

@area_codes=

AreaCode.find_all_by_number(params[:area_code][:number])

render :json => @area_codes.to_json

}

end

end

end

JSON 461

This will return the following:
[{attributes: {updated_at: “2007-07-22 20:47:18”, number: “340”, id:

“81”, description: “US Virgin Islands (see also 809)”, created_at:

“2007-07-22 20:47:18”, state: “VI”}}, {attributes: {updated_at: “2007-

07-22 20:47:18”, number: “341”, id: “82”, description: “(overlay on

510; SUSPENDED)”, created_at: “2007-07-22 20:47:18”, state: “CA”}},

{attributes: {updated_at: “2007-07-22 20:47:18”, number: “345”, id:

“83”, description: “Cayman Islands”, created_at: “2007-07-22

20:47:18”, state: “—”}}, {attributes: {updated_at: “2007-07-22

20:47:18”, number: “347”, id: “84”, description: “New York (overlay

for 718: NYC area, except Manhattan)”, created_at: “2007-07-22

20:47:18”, state: “NY”}}]

We now need to change our view to handle this returned JSON content.

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

Area Code: <%= text_field_tag ‘number’ %>

<hr/>

<%= observe_field ‘number’,

:url => { :controller => ‘area_codes’,:action => ‘show’},

:frequency => 0.25,

:with => ‘number’,

:complete => “process_area_codes(request)” %>

</body>

</html>

The only change is the addition of a callback to the process_area_codes
JavaScript function which we’ll define in application.js.

function process_area_codes(request) {

area_codes = request.responseText.evalJSON();

$(‘area_code_results’).innerHTML = ‘ ‘

area_codes.each(function(area_code, index) {

new Insertion.Bottom(“area_code_results”, “” +

area_code.attributes.number + “ - “ +

462 12. Ajax on Rails

area_code.attributes.state + “, “ +

area_code.attributes.description + “”);

});

}

Drag and Drop
Scriptaculous makes doing drag and drop less painful, and Rails provides a few helper
methods to make it even more painless. We can illustrate this by making the returned
list of area codes draggable to a drop area where it can be selected. First we need to
change our view.

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

Area Code: <%= text_field_tag ‘number’ %>

<hr/>

Selected: <span id=”selected” style=”padding: 0 100px; width:

200px; height: 200px; background-color: lightblue;”>

<%= drop_receiving_element ‘selected’, :onDrop =>

“function(element) { $(‘selected’).innerHTML = element.innerHTML; }”,

:accept=>’area_code’ %>

<hr/>

<%= observe_field ‘number’, :url => { :controller => ‘area_codes’,

:action => ‘show’}, :frequency => 0.25, :with => ‘number’ %>

</body>

</html>

We’ve used a JavaScript helper called drop_receiving_element to make the
element identified by the DOM ID ‘selected’ receive draggable elements of the
class ‘area_code’. We’ve further customized it by setting the onDrop parameter to
a JavaScript function to copy the dragged element’s HTML. With the drop element

Drag and Drop 463

defined, we need to change our show.js.rjs view to make each returned area code
a draggable element.

if @area_codes.empty? || params[:number].blank?

page.replace_html ‘area_code_results_message’,

‘No Results Found’

page.replace_html ‘area_code_results’, ‘’

else

page.replace_html ‘area_code_results_message’,

“Found #{@area_codes.size} Results”

page.replace_html ‘area_code_results’, ‘’

@area_codes.each do |area_code|

id = area_code.number.to_s

page.insert_html :bottom,

‘area_code_results’,

content_tag(:div,

area_code,

:id => id, :class => ‘area_code’)

page.draggable id, :revert => true

end

end

Here we iterated over the collection of area codes and made each one a draggable
div element. We set the id of the element to the area code number and set the class
to ‘area_code’. The class is important as the drop element we created in the pre-
ceding example will only accept elements whose class is ‘area_code’.

We can now refresh the page and drag an area code to the colored selected box.
This is nice, but what would be more useful is to send back to the server the area code
that was selected. We can accomplish this by changing the drop element:

<%= drop_receiving_element ‘selected’,

:onDrop => “function(element) {$(‘selected’).innerHTML =

element.innerHTML; }”,

:accept => ‘area_code’,

:url => { :controller => ‘area_codes’,

:action => ‘area_code_selected’ } %>

Now when an element is dropped, an XMLHttpRequest will be made to the
area_code_selected method. By default, the dragged element’s id is sent to the

464 12. Ajax on Rails

server, which is the area code number in this case. In our controller we can log the
selected area code.

Class AreaCodesController < ApplicationController

def area_code_selected

area_code = AreaCode.find_by_number(params[:id])

do something with area_code

render :nothing => true

end

end

Sortable
Scriptaculous and Rails builds on top of the Drag and Drop to create sortable lists. We
can use this to sort the area codes returned. First we need to change our view to use
an unordered list since the sortable JavaScript expects this.

<html>

...

<ul id=”area_code_results”>

...

</html>

In the show.js.rjs view we also know to change over to list items and make the
list sortable. We also remove the draggable declaration since we get that behavior auto-
matically when the list is declared as sortable.

if @area_codes.empty? || params[:number].blank?

...

else

...

@area_codes.each do |area_code|

id = area_code.number.to_s

page.insert_html :bottom, ‘area_code_results’, content_tag(:li,

area_code, :id => id, :class => ‘area_code’)

end

page.sortable ‘area_code_results’, :url => { :controller =>

‘area_codes’, :action => ‘sorted_area_codes’ }

end

Sortable 465

With this we can now sort the returned area code result by dragging and drop-
ping within the list. Each time we drop an area code element an XMLHttpRequest is
made to the sorted_area_codes method. We access the list order via
params[:area_code_results], which contains an array of area codes in sorted
order using the DOM ID of the area codes. If an underscore is present in the DOM
ID, only the last part of it will be serialized and sent to the server. For example, a sort-
ed element with a DOM ID of ‘string_1’ will be sent as ‘1’.

Autocompleter
While this functionality is slated for a plugin in Rails 2.0, it’s still quite useful.
Autocompleters are often used to suggest values as you enter characters into a text
field.

To return to our recurring example, we can use an autocompleter to display pos-
sible matching area codes as you type. In other words, if I enter 6, an autocompleter
will show me all area codes that start with 6. We’ll start with a special text field:

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

Area Code: <%= text_field_with_auto_complete :area_code, :number

%>

</body>

</html>

This will create a text field and associate it with an Ajax.Autocompleter that
will make an XMLHttpRequest on each keystroke to a method called auto_complete
_for_area_code_number. By default, text_field_with_auto_complete looks
for a method named auto_complete_for_#{object_name}_#{field}. This
method in our controller looks like this:

class AreaCodesController < ApplicationController

...

def auto_complete_for_area_code_number

@area_codes = AreaCode.find_by_number(params[:area_code][:number])

render :inline => “<%=auto_complete_result(@area_codes, :number)%>”

end

...

end

466 12. Ajax on Rails

We render it as an inline because auto_complete_result is an ActionView
helper and not directly available in the controller.

In-Place Editors
We can also use Rails and Scriptaculous to create in-place XMLHttpRequest editors.
Again, this functionality will be removed from Rails core and become part of a plug-
in in Rails 2.0. If we wanted to edit the descriptive text of an area code in this fash-
ion, our view would look like this:

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

Number: <%= in_place_editor_field :area_code, :number %>

State: <%= in_place_editor_field :area_code, :state%>

Description: <%= in_place_editor_field :area_code, :description %>

</body>

</html>

The in-place editor fields will by default look for a method name
set_#{object_name}_#{field}. In the case of number, this method would be
set_area_code_number, which looks like this:

Class AreaCodesController < ApplicationController

...

def set_area_code_number

@area_code = AreaCode.find(params[:id])

render :text => @area_code.number

end

...

end

Conclusion
The success of Rails is often correlated to the rise of Web 2.0, and one of the factors
linking Rails into that phenomenon is its baked-in support for Ajax. There are a ton
of books about Ajax programming, including some that are specific to using Ajax and

Conclusion 467

Rails together. It’s a big subject, but it’s a big enough part of Rails that we felt the need
to include it as part of The Rails Way.

In this chapter, you were encouraged to use the FireBug plugin for Firefox if you
aren’t doing so already. Then we provided a comple reference guide to the Prototype
JavaScript library, essential for doing Ajax programming, along with a review of the
functionality provided by the Rails PrototypeHelper module.

In the sections dealing with RJS, you learned how you can write JavaScript in
Ruby, which may come in very handy sometimes.

Finally, you learned the built-in Rails helpers for Scriptaculous effects and controls.

References

1. The first step to getting the FireBug plugin for Firefox is to visit http://www.getfirebug.com/.

2. See http://www.quirksmode.org/dom/w3c_events.html for a comprehensive explanation of DOM
events and how to use them.

468 12. Ajax on Rails

CHAPTER 13
Session Management

I’d hate to wake up some morning and find out that you weren’t you!
—Dr. Miles J. Binnell (Kevin McCarthy) in “Invasion of the Body Snatchers”
(Allied Artists, 1956)

HTTP is a stateless protocol. Without the concept of a session (a concept not unique
to Rails), there’d be no way to know that any HTTP request was related to another
one. You’d never have an easy way to know who is accessing your application!
Identification of your user (and presumably, authentication) would have to happen on
each and every request handled by the server.1

Luckily, whenever a new user accesses our Rails application, a new session is auto-
matically created. Using the session, we can maintain just enough server-side state to
make our lives as web programmers significantly easier.

We use the word session to refer both to the time that a user is actively using the
application, as well as to refer to the persistent hash data structure that we keep around
for that user. That data structure takes the form of a hash, identified by a unique ses-
sion id, a 32-character string of random hex numbers. When a new session is created,
Rails automatically sends a cookie to the browser containing the session id, for future
reference. From that point on, each request from the browser sends the session id back
to the server, and continuity can be maintained.

The Rails Way to design web applications dictates minimal use of the session for
storage of stateful data. In keeping with the “share nothing” philosophy embraced
by Rails, the proper place for persistent storage of data is the database, period. The
bottom line is that the longer you keep objects in the user’s session hash, the more

problems you create for yourself in trying to keep those objects from becoming stale
(in other words, out of date in relation to the database).

This chapter deals with matters related to session use, starting with the question
of what to put in the session.

What to Store in the Session
Deciding what to store in the session hash does not have to be super-difficult, if you
simply commit to storing as little as possible in it. Generally speaking, integers (for
key values) and short string messages are okay. Objects are not.

The Current User
There is one important integer that most Rails applications store in the session, and
that is the current_user_id. Not the current user object, but its id. Even if you roll
your own login and authentication code (which you shouldn’t do), don’t store the
entire User (or Person) in the session while the user is logged in. (See Chapter 14,
“Login and Authentication,” for more information about keeping track of the current
user.) The authentication system should take care of loading the user instance from
the database prior to each request and making it available in a consistent fashion, via
a method on your ApplicationController. In particular, following this advice will
ensure that you are able to disable access to given users without having to wait for their
session to expire.

Session Use Guidelines
Here are some more general guidelines on storing objects in the session:

• They must be serializable by Ruby’s Marshal API, which excludes certain types of
objects such as a database connection and other types of I/O objects.

• Large object graphs may exceed the size available for session storage. Whether this
limitation is in effect for you depends on the session store chosen and is covered
later in the chapter.

• Critical data should not be stored in the session, since it can be suddenly lost by
the user ending his session (by closing the browser or clearing his cookies).

470 13. Session Management

• Objects with attributes that change often should not be kept in the session. Think
of a situation where you store a model with counter cache attributes, and con-
stantly refer to it out of the session rather than pulling it from the database. The
counters would never be up-to-date.

• Modifying the structure of an object and keeping old versions of it stored in the
session is a recipe for disaster. Deployment scripts should clear old sessions to pre-
vent this sort of problem from occurring, but with certain types of session stores,
such as the cookie store, this problem is hard to mitigate. The simple answer
(again) is to just not keep objects in the session.

Session Options
A number of basic session options are available for use in controllers, via the session
class method. Calls to session can be placed in ApplicationController, or at the
top of specific controllers in your application.

For example, some applications do not need to track user sessions, in which case
you can get a tremendous performance boost by turning off that part of Rails’ request
handling:

turn off session management for all actions.

session :off

As with other configuration-type class methods in controllers, the :except and
:only options are supported:

turn off session management for all actions _except_ foo and bar.

session :off, :except => %w(foo bar)

turn off session management for only the atom and rss actions.

session :off, :only => %w(atom rss)

The :if option is also available and is useful for things like checking to see if a
particular request’s attributes merit a session or not:

the session will only be disabled for ‘foo’,

and only if it is requested as a web service

session :off, :only => :foo, :if => lambda { |req| req.parameters[:ws]

}

Session Options 471

Disabling Sessions for Robots
If you are running a public website, web-crawling and spidering agents (also known
as robots) will eventually find you. Since they don’t support cookies, every request they
make causes a new session to be created, a totally unnecessary burden on your server.

Turning off sessions specifically for robots is pretty easy, since they identify them-
selves via the user agent header of the HTTP request. All you have to do is add ses-
sion :off to your ApplicationController with a dynamic :if condition, as
showing in Listing 13.1.

Listing 13.1 Disabling Sessions for Robots by Inspecting the User Agent String

class ApplicationController < ActionController::Base
session :off, :if => lambda {|req| req.user_agent =~

/(Google|Slurp)/i}

A typical Googlebot identifies itself as: “Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)”. Yahoo’s robot identifies itself as: “Mozilla/5.0
(compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)”. It’s worth
doing some research using your web server’s access logs to determine which robots are
visiting your site and which user agent strings you need to match. Then add those
strings to the regular expression inside the lambda block.

There’s one more aspect to this technique, having to do with testing. As of this
writing, the TestRequest class does not have a user_agent method. This means
that your controller tests or specs will blow up after adding a call to req.user_agent
as shown in Listing 13.1. Thankfully, Ruby’s open classes mean we can remedy the sit-
uation with ease. Just add the code in Listing 13.2 to your test_helper.rb or
spec_helper.rb file.

Listing 13.2 Monkeypatching the TestRequest Class to include user_agent

class ActionController::TestRequest
def user_agent
“Mozilla/5.0”

end
end

472 13. Session Management

Selectively Enabling Sessions
Suppose you have a truly nonstateful application and have turned off sessions for the
entire thing in your ApplicationController:

class ApplicationController < ActionController::Base

session :off

You may still want to selectively enable sessions for certain controllers, for
instance, an administrative console. You can’t say session :on in a subclass of
ApplicationController—it won’t work, but surprisingly, you can say session

:disable => false.

class AdminController < ApplicationController

session :disable => false

Secure Sessions
Sometimes you need to set up your Rails app so that sessions only work with HTTPS:

the session will only work over HTTPS

session :session_secure => true

The :session_secure option can also be used in conjunction with :only,
:except, and :if options, to secure only specific parts of your application. Keep in
mind that your web server will need to be set up to work securely in order for this
option to work.

Storage Mechanisms
The mechanism via which sessions are persisted on your Rails server can vary and you
should pick the one most suited to your particular needs. I estimate that 80% or more
of production Rails deployments use the ActiveRecord Session Store.

ActiveRecord SessionStore

Rails’ default behavior is to store session data as files in the /tmp/sessions folder of
your project, which is fine for experimentation and very small applications. For larg-
er applications, it is advisable to minimize the amount of interaction Rails does with
the filesystem, and that includes sessions.

Storage Mechanisms 473

There are a number of options for optimizing session storage, but the most com-
mon is to use ActiveRecord so that session data is stored in the database. In fact, it’s
so common that the tools to switch over to this setup are already built into Rails.

The first step is to create the necessary migration, using a rake task provided for
that very purpose, and run the migration to actually create the new table:

$ rake db:sessions:create

exists db/migrate

create db/migrate/009_add_sessions.rb

$ rake db:migrate

(in /Users/obie/prorails/time_and_expenses)

== AddSessions: migrating

==

-- create_table(:sessions)

-> 0.0049s

-- add_index(:sessions, :session_id)

-> 0.0033s

-- add_index(:sessions, :updated_at)

-> 0.0032s

== AddSessions: migrated (0.0122s)

=====================================

The second (and final) step is to tell Rails to use the new sessions table to store
sessions, via a setting in config/environment.rb:

config.action_controller.session_store = :active_record_store

That’s all there is to it.

PStore (File-Based)
The default session storage mechanism for Rails is to keep the session data as PStore-
formatted files in a tmp directory. The files will contain the contents of session hash-
es in their native serialized form. You don’t have to change any settings to use this
option.

If you are running a high-traffic site, you definitely do not want to use this option!
It’s slow, because marshalling/unmarshalling data structures in Ruby is slow. The serv-
er will also suffer severe strainage from having to maintain thousands of session files
in a single directory, possibly running out of file descriptors. I’ve seen (and blogged

474 13. Session Management

about) a live Rails site going offline because the partition holding their session files ran
out of space!

DRb Session Storage
DRb is Ruby’s remoting service. It lets Ruby processes easily share objects over the net-
work. In order to use DRb session storage, you need to run a separate DRb server
process that will serve as the session repository. When you start bringing additional
processes into the picture, the entire deployment becomes more complicated to main-
tain properly. So unless you really need to consider this option for performance rea-
sons, you’re better off sticking with the ActiveRecord Session Store.

At the time I’m writing this, DRb session storage is really unpopular and accord-
ing to some blogs, it doesn’t even work properly. If you do want to experiment with
DRb and Rails sessions, search for the drb_server.rb script in your Rails source
code.

config.action_controller.session_store = :drb_store

If you think you’re outgrowing the ActiveRecord Session Store, look into
Stefan Kaes’ extra-super-optimized version2 or consider memcache session storage.

memcache Session Storage
If you are running an extremely high-traffic Rails deployment, you’re probably already
leveraging memcache in some way or another. memcache is a remote-process memo-
ry cache that helps power some of the most highly trafficked sites on the Internet.

The memcache session storage option lets you use your memcache server as the
repository for session data and is blazing fast. It’s also nice because it has built-in expi-
ration, meaning you don’t have to expire old sessions yourself. However, it is also
much more complicated to set up and maintain.3

config.action_controller.session_store = :mem_cache_store

In order to get the memcache session storage working, you’ll need to make sure
that memcache’s settings are included in your environment.rb file:

require ‘memcache’

memcache_options = {

:c_threshold => 10_000,

Storage Mechanisms 475

:compression => true,

:debug => false,

:namespace => :app-#{RAILS_ENV}”,

:readonly => false,

:urlencode => false

}

CACHE = MemCache.new memcache_options

CACHE.servers = ‘localhost:11211’

ActionController::Base.session_options[:expires] = 1800

ActionController::Base.session_options[:cache] = CACHE

The Controversial CookieStore
In February 2007, core-team member Jeremy Kemper made a pretty bold commit to
Rails. He changed the default session storage mechanism from the venerable PStore
to a new system based on a CookieStore. His commit message summed it up well:

Introduce a cookie-based session store as the Rails default. Sessions typically con-
tain at most a user_id and flash message; both fit within the 4K cookie size limit.
A secure hash is included with the cookie to ensure data integrity (a user cannot
alter his user_id without knowing the secret key included in the hash). If you
have more than 4K of session data or don’t want your data to be visible to the
user, pick another session store. Cookie-based sessions are dramatically faster than
the alternatives.

In order to use the CookieStore, you have to be running Rails 2.0 (where it is
the default) or add the following configuration to environment.rb:

config.action_controller.session = {

:session_key => ‘_my_app_session’,

:secret => ‘some_really_long_and_hashed_key’

}

I describe the CookieStore as controversial because of the fallout over making it
the new default session storage mechanism. For one, it imposes a very strict size limit,
only 4K. A significant size constraint like that is fine if you’re following the Rails way,
and not storing anything other than integers and short strings in the session. If you’re
bucking the guidelines, well, you might have an issue with it.

476 13. Session Management

Lots of people also complained about the inherent insecurity of storing session
information, including the current user information on the user’s browser. However,
there are security measures in place that make the cookie store hard to crack. For
instance, you’d need to be able to compromise SHA512, and that is somewhat diffi-
cult to do.

If you want better security4, for instance, you can easily override the existing hash-
ing code:

class CGI::Session::CookieStore

def generate_digest(data)

replace this line with your own encryption logic

Digest::SHA512.hexdigest “#{data}#{@secret}”

end

end

Another problem with cookie-based session storage is its vulnerability to replay
attacks, which generated an enormous message thread on the rails-core mailing list. S.
Robert James kicked off the thread5 by describing a replay attack:

Example:

1. User receives credits, stored in his session.

2. User buys something.

3. User gets his new, lower credits stored in his session.

4. Evil hacker takes his saved cookie from step #1 and pastes it back
in his browser’s cookie jar. Now he’s gotten his credits back.

This is normally solved using something called nonce —each signing
includes a once-only code, and the signer keeps track of all of the codes,
and rejects any message with the code repeated. But that’s very hard to
do here, since there may be several app servers (mongrels).

Of course, we could store the nonce in the DB—but that defeats the
entire purpose!

The short answer is: Do not store sensitive data in the session. Ever. The longer
answer is that coordination of nonces across multiple servers would require remote
process interaction on a per-request basis, which negates the benefits of using the
cookie session storage to begin with.

Storage Mechanisms 477

The cookie session storage also has potential issues with replay attacks that let
malicious users on shared computers use stolen cookies to log in to an application that
the user thought he had logged out of. The bottom line is that if you decide to use the
cookie session storage, please think long and hard about the implications of doing so.

Timing Out and Session Life Cycle
Quite often you are required to time out a user’s session if they are idle for a certain
length of time. Amazingly, this basic functionality is not available by default in Rails.
Using built-in session options, you can set a specific expiry time; however, when your
Rails application starts up in production mode, the expiry time will be set just once.
That’s fine if you are setting your expiry time far in the future (beyond the time that
you are likely to restart your server processes).

What if you want to set your timeout in the near future? Say perhaps, 20 minutes
from time of session creation? Would the following work?

class ApplicationController < ActionController::Base

session :session_expires => 20.minutes.from_now

end

The problem is that 20 minutes from now (the time that the server process is
started) will soon become a time in the past. When the session expiry date is in the
past, every new request will cause a new session to be created, and much havoc and
misery will transpire.

Session Timeout Plugin for Rails
Luckily, there is a well-proven plugin that solves our problem. It is written by Luke
Redpath and is available at http://opensource.agileevolved.com/trac/wiki/
SessionTimeout.

After installing the plugin in your application, there will be a session_
times_out_in method available for use in ApplicationController. The first
parameter is the duration in seconds after which the session should expire, and you
can use Rails’ convenience methods to keep your code very readable.

478 13. Session Management

For example, let’s implement that 20-minute timeout we were discussing a
minute ago:

class ApplicationController < ActionController::Base

session_times_out_in 20.minutes

end

The second (optional) parameter allows you to specify a callback method to be
invoked when a request comes in that causes the session to be expired. It might be nec-
essary to do some end-of-session cleanup, or redirect the user to a particular place,
things of that nature.

As is common with Rails callbacks, the second parameter value can be a symbol,
referring to a method:

class ApplicationController < ActionController::Base

session_times_out_in 20.minutes, :after_timeout => :log_timeout_msg

private

def log_timeout_msg

logger.info “Session expired”

end

end

Or you can specify a Proc or lambda. It will be passed an instance of the current
controller, which I’ve ignored in the example:

class ApplicationController < ActionController::Base

session_times_out_in 20.minutes,

:after_timeout => proc {|controller| logger.info “Session expired”

}

end

Elegant, isn’t it?

Tracking Active Sessions
Quite often we want a way to display the number of active users of an application. If
you are using ActiveRecord Session Store, this is very easy to accomplish. The

Timing Out and Session Life Cycle 479

sessions table gets created by default with an updated_at column. Assuming your
definition of active is one hour, the code to count active users would look like this:

CGI::Session::ActiveRecordStore::Session.count :conditions =>

[“updated_at > ?”, 1.hour.ago]

In fact, objects found using the Session class can be used just like any other
ActiveRecord instance. The session contents are stored in the data attribute, serial-
ized (in a non-human-readable way) into a text column, so it isn’t possible (by default)
to query sessions by their content. Want to see what it looks like?

>> CGI::Session::ActiveRecordStore::Session.find:first

=> #<CGI::Session::ActiveRecordStore::Session:0x26fe65c

@attributes={“updated_at”=>”2006-11-29 02:06:01”,

“session_id”=>”73bb9cd7fd19a5c1cae8cd0fda0cb6bb”, “id”=>”1”,

“data”=>”BAh7BiIKZmxhc2hJQzonQWN0aW9uQ29udHJvbGxlcjo6Rmxhc2g6OkZsYXNo\nSG

FzaHsABjoKQHVzZWR7AA==\n”}>

So if you want to query for data contained inside the session data, say for instance,
to display a list of names of the current users, then it’s going to take a little bit more
work. In a nutshell, you’d have to add another column to the sessions table and add
an after_filter to your ApplicationController that stores the data you want
on a per-request basis. (The full implementation is left as an exercise for the reader.)

Enhanced Session Security
Erik Elmore gives a very long and detailed description of how to write a “paranoid”
session store on his blog.6 Among other things, his implementation provides protec-
tion against session-fixation attacks (by capturing IP addresses as part of the session
record), a facility for being able to see which users are “online,” and the ability to
administratively end sessions of troublemakers. It’s also “lightning fast” because it uses
the database directly instead of instantiating ActiveRecord objects. His article may
not be entirely applicable to you, particularly since it is written for MySQL, but is def-
initely worth examination if you will be tackling advanced session work.

480 13. Session Management

Cleaning Up Old Sessions
If you’re using Luke Redpath’s session_timeout plugin and ActiveRecordStore,
cleaning up old sessions is really easy. Remember that the session timeout gives you an
:after_timeout option?

You can also write your own little utilities for maintaining your sessions. Listing
13.3 is a class that you can add to your /lib folder and invoke from the production
console or a script whenever you need to do so.

Listing 13.3 SessionMaintenance Class for Cleaning Up Old Sessions

class SessionMaintenance

def self.cleanup(period=24.hours.ago)
session_store = CGI::Session::ActiveRecordStore::Session
session_store.destroy_all([‘updated_at < ?’, period])

end

end

Cookies
This section is about using cookies, not the cookie session store. The cookie container,
as it’s known, looks like a hash, and is available via the cookies method in the scope
of controllers. Lots of Rails developers use cookies to store user preferences and other
small nonsensitive bits of data. Always be careful not to store sensitive data in cook-
ies, since they can easily be read and modified by malicious users. The database is a
more appropriate place to store sensitive data.

Contrary to what at least some developers might expect, the cookies container
is not available by default in view templates or helpers. If necessary, and in accordance
with proper model-view-controller practice, you should set an instance variable in
your controller with the value of a cookie for use in your view:

@list_mode = cookies[:list_mode] or ‘expanded’

If you are really intent on being able to access cookies in your helpers or views,
there is a simple solution. Simply declare cookies to be a helper method:

class MyController < ActionController::Base

helper_method :cookies

Cookies 481

Reading and Writing Cookies
The cookie container is filled with cookies received along with the request, and sends
out any cookies that you write to it with the response. Note that cookies are read by
value, so you won’t get the cookie object itself back, just the value it holds as a string
(or as an array of strings if it holds multiple values). That’s a limitation, but I’m not
sure how severe of a limitation it is in practice.

To create or update cookies, you simply assign values using the brackets operator.
You may assign either a single string value or a hash containing options, such as
:expires, which takes a number of seconds before which the cookie should be delet-
ed by the browser. Remember that Rails convenience methods for time are useful here:

writing a simple session cookie

cookies[:list_mode] = params[:list_mode]

specifying options, curly brackets are needed to avoid syntax error

cookies[:recheck] = {:value => “false”, :expires => Time.now +

5.minutes}

I find the :path options useful in allowing you to set options specific to partic-
ular sections or even particular records of your application. The :path option is set to
‘1’, the root of your application, by default.

The :domain option allows you to specify a domain, which is most often used
when you are serving up your application from a particular host, but want to set cook-
ies for the whole domain.

cookies[:login] = {:value => @user.security_token,

:domain => ‘.domain.com’,

:expires => Time.now.next_year }

Cookies can also be written using the :secure option, and Rails will only ever
transmit them over a secure HTTPS connection:

writing a simple session cookie

cookies[:account_number] = { :value => @account.number, :secure =>

true }

Finally, you can delete cookies using the delete method:

cookies.delete :list_mode

482 13. Session Management

Conclusion
Deciding how to use the session is one of the more challenging tasks that faces a web
application developer. That’s why we put a couple of sections about it right in the
beginning of this chapter. We also covered the various options available for configur-
ing sessions, including storage mechanisms and methods for timing out sessions and
the session lifecycle.

Moving on, we’ll continue with a related topic: login and authentication.

References

1. If you are really new to web programming and want a very thorough explanation of how web-
based session management works, you may want to read the information available at
http://www.technicalinfo.net/papers/WebBasedSessionManagement.html.

2. Find Stefan Kaes’ super-optimized ActiveRecord SessionStore at http://
railsexpress.de/blog/articles/2005/12/19/roll-your-own-sql-session-store.

3. Geoffrey Grosenbach has a fantastic tutorial on memcache basics at http://
nubyonrails.com/articles/2006/08/17/memcached-basics-for-rails.

4. My fellow cabooser Courtenay wrote a great blog post about cookie session storage at
http://blog.caboo.se/articles/2007/2/21/new-controversial-default-rails-session-storage-cookies.

5. If you want to read the whole thread (all 83 messages of it), simply search Google for “Replay
attacks with cookie session.” The results should include a link to the topic on the Ruby on Rails:
Core Google Group.

6. http://burningtimes.net/articles/2006/10/15/paranoid-rails-session-storage

Conclusion 483

This page intentionally left blank

CHAPTER 14
Login and Authentication

“Thanks goodness, there’s only about a billion of these because DHH doesn’t
think auth/auth belongs in the core.”
—Comment at http://del.icio.us/revgeorge/authentication

I bet every web app you’ve ever worked on has needed some form of user security, and
some people assume it makes sense to include some sort of standard authentication
functionality in a “kitchen-sink” framework such as Rails.

However, it turns out that user security is one of those areas of application design
that usually involves a bit more business logic than anyone realizes upfront.

David has clearly stated his opinions on the matter, to help us understand why
Rails does not include any sort of standard authentication mechanism:

Context beats consistency. Reuse only works well when the particular instances
are so similar that you’re willing to trade the small differences for the increased
productivity. That’s often the case for infrastructure, such as Rails, but rarely the
case for business logic, such as authentication and modules and components in
general.

For better or worse, we need to either write our own authentication code or look out-
side of Rails core for a suitable solution. It’s not too difficult to write your own authen-
tication code, to the extent that it isn’t really that difficult to write anything in Rails.
But why reinvent the wheel? That’s not the Rails way!

As alluded to in the chapter quote, we have many different options out there to
choose from. It seems that since authentication is one of the first features you add to

a new application, it is also one of the first projects undertaken by many an aspiring
plugin writer.

A multitude of options can be a good thing, but I contend that in this particular
case it is not. A Google search for “rails authentication” turns up over 5 million results!
Looking through the first page of results alone I can count at least ten different
approaches to tackling this problem—and what the heck is a salted password generator?

No need to worry or be confused. It turns out that Rails pros agree that the two
best authentication plugins are written by Rails core team member Rick Olson, a.k.a.
techno weenie 1. In this chapter, we take an in-depth look at both of them.

Acts as Authenticated
Acts as Authenticated is described by Rick as “a simple authentication generator
plugin.” It allows you to easily add form-based authentication to your application. It
also provides a standard API for accessing information such as whether a user is logged
in or authorized as an admin, as well as accessing the User object itself.

Courtenay Says...

Acts as Authenticated also works out-of-the-box with
HTTP Basic Authentication (a.k.a. ugly login box) so you
don’t have to do anything extra to get a protected API for
your RESTful applications. It even returns the right 401
Unauthorized response when necessary.

Installation and Setup
Install acts_as_authenticated as a plugin by invoking script/plugin install
acts_as_authenticated. First you generate skeleton code for authentication using
a Rails generator included in the plugin, and then you customize the basic imple-
mentation so that it behaves according to the needs of your particular application.

The code generator is invoked using script/generate and takes a couple of
parameters: one for model and one for controller name. We’ll invoke the generator,
specifying user and account as our desired names for our authentication model and
controller.

$ script/generate authenticated user account

exists app/models/

exists app/controllers/

486 14. Login and Authentication

exists app/helpers/

create app/views/account

exists test/functional/

exists test/unit/

create app/models/user.rb

create app/controllers/account_controller.rb

create lib/authenticated_system.rb

create lib/authenticated_test_helper.rb

create test/functional/account_controller_test.rb

create app/helpers/account_helper.rb

create test/unit/user_test.rb

create test/fixtures/users.yml

create app/views/account/index.rhtml

create app/views/account/login.rhtml

create app/views/account/signup.rhtml

create db/migrate

create db/migrate/001_create_users.rb

Somewhat similar to the way scaffolding code is generated, we see that a number
of files for a model and controller, migration, and associated tests are created. I’ll walk
you through use of the plugin and point out what we can learn from it with regard to
our own application code.

The User Model
First let’s take a look at the migration that was automatically created by the generator:
db/migrate/001_create_users.rb.

class CreateUsers < ActiveRecord::Migration

def self.up

create_table “users”, :force => true do |t|

t.column :login, :string

t.column :email, :string

t.column :crypted_password, :string, :limit => 40

t.column :salt, :string, :limit => 40

t.column :created_at, :datetime

t.column :updated_at, :datetime

t.column :remember_token, :string

t.column :remember_token_expires_at, :datetime

end

end

Acts as Authenticated 487

def self.down

drop_table “users”

end

end

The standard columns should look pretty much like ones you’d associate with a
User model. We’ll cover the meaning of crypted_password and salt a little later
on in the chapter. If you wanted additional columns, such as first and last names, just
add them to this migration.

Now we’ll open app/models/user.rb and see what our shiny new User model
looks like in Listing 14.1.

Listing 14.1 The User Model Generated by Acts As Authenticated

require ‘digest/sha1’

class User < ActiveRecord::Base
Virtual attribute for the unencrypted password
attr_accessor :password

validates_presence_of :login, :email
validates_presence_of :password,

:if => :password_required?
validates_presence_of :password_confirmation,

:if => :password_required?
validates_length_of :password, :within => 4..40,

:if => :password_required?
validates_confirmation_of :password,

:if => :password_required?
validates_length_of :login, :within => 3..40
validates_length_of :email, :within => 3..100
validates_uniqueness_of :login, :email, :case_sensitive => false

before_save :encrypt_password

Authenticates a user by their login name and unencrypted password,
returning the user or nil.
def self.authenticate(login, password)
u = find_by_login(login) # need to get the salt
u && u.authenticated?(password) ? u : nil

end

Encrypts some data with the salt.
def self.encrypt(password, salt)
Digest::SHA1.hexdigest(“—#{salt}--#{password}--”)

end

488 14. Login and Authentication

Encrypts the password with the user salt
def encrypt(password)
self.class.encrypt(password, salt)

end

def authenticated?(password)
crypted_password == encrypt(password)

end

def remember_token?
remember_token_expires_at &&
(Time.now.utc < remember_token_expires_at)
end

These create and unset the fields required
for remembering users between browser closes
def remember_me
self.remember_token_expires_at =
2.weeks.from_now.utc

self.remember_token =
encrypt(“#{email}--#{remember_token_expires_at}”)

save(false)
end

def forget_me
self.remember_token_expires_at = nil
self.remember_token = nil
save(false)

end

protected
def encrypt_password
return if password.blank?
self.salt =
Digest::SHA1.hexdigest(“--#{Time.now}--#{login}--”) if

new_record?
self.crypted_password = encrypt(password)

end

def password_required?
crypted_password.blank? || !password.blank?

end
end

Whoa! That’s certainly a lot more code than we’re used to seeing in a Rails-
generated class. Let’s analyze the User model to see what we can learn.

Acts as Authenticated 489

Non-Database Attributes

Sometimes it makes sense to add non-database attributes to your ActiveRecord
models. They’re added using attr_* macros, which you should know about from
practically every Ruby language primer in existence.

At the very top of User, notice that an attribute has been specified for :password.
Does that seem a little weird? Doesn’t the user’s password need to be kept in the
database?

It might make a little more sense if we consider that non-database attributes are
often used in ActiveRecord models to hold transient data. The password exists in
plaintext only during a request, when it is being submitted from an HTML form.
Before saving, the plaintext password string needs to be encrypted, by the
encrypt_password method.

def encrypt_password

return if password.blank?

if new_record?

self.salt = Digest::SHA1.hexdigest(“--#{Time.now.to_s}--#{login}--”)

end

self.crypted_password = encrypt(password)

end

Notice that the password property is referenced in the call to password.blank?
and encrypt(password). Since non-database attributes exist outside the knowledge
of ActiveRecord, when does the password attribute get set? Explicitly?

The fact that we have unit test coverage means we have a great way of seeing
exactly where our password attribute is set. My gut says that most of the time these
extra attributes are set via ActiveRecord constructor methods, but by using the User
unit test I can prove it to you quite vividly.

What unit test? The plugin generated one. Before changing anything, let’s run
rake test to make sure we have passing tests to begin with.

$ rake

(in /Users/obie/time_and_expense)

/opt/local/bin/ruby -Ilib:test

“/opt/local/lib/ruby/gems/1.8/gems/rake-

0.7.1/lib/rake/rake_test_loader.rb” “test/unit/user_test.rb”

Loaded suite /opt/local/lib/ruby/gems/1.8/gems/rake-

0.7.1/lib/rake/rake_test_loader

490 14. Login and Authentication

Started

..........

Finished in 0.312914 seconds.

10 tests, 17 assertions, 0 failures, 0 errors

/opt/local/bin/ruby -Ilib:test

“/opt/local/lib/ruby/gems/1.8/gems/rake-

0.7.1/lib/rake/rake_test_loader.rb”

“test/functional/account_controller_test.rb”

Loaded suite /opt/local/lib/ruby/gems/1.8/gems/rake-

0.7.1/lib/rake/rake_test_loader

Started

..............

Finished in 0.479761 seconds.

14 tests, 26 assertions, 0 failures, 0 errors

/opt/local/bin/ruby -Ilib:test

“/opt/local/lib/ruby/gems/1.8/gems/rake-

0.7.1/lib/rake/rake_test_loader.rb”

Green bar—all tests passed! That means it’s safe to do some experimentation.
Remember we were wondering about how that password attribute is used. What will
break if we change attribute_accessor to attribute_reader, thereby making
password read-only?

class User < ActiveRecord::Base

Non-database attribute for the unencrypted password

attr_reader :password

When we run the test suite again, it turns out that a whole bunch of tests broke,
effectively pointing to every place in the codebase where the value of password is set.
All of them are indeed ActiveRecord constructors.

For example, one of the errors occurs in the test for the signup method of
AccountController.

4) Error:

test_should_require_pwd_confirmation_on_signup(AccountControllerTest):

NoMethodError: undefined method `password=’ for #<User:0x2a45068>

active_record/base.rb:1842:in `method_missing’

active_record/base.rb:1657:in `attributes=’

Acts as Authenticated 491

active_record/base.rb:1656:in `attributes=’

active_record/base.rb:1490:in `initialize_without_callbacks’

active_record/callbacks.rb:225:in `initialize’

app/controllers/account_controller.rb:23:in `signup’

A quick look at the signup method confirms that the password attribute is get-
ting passed into User’s constructor, bundled into the user parameters hash that is gen-
erated when the signup form is posted submitted from the view.

def signup

@user = User.new(params[:user])

return unless request.post?

...

end

Non-database attributes are significant because they can be leveraged to mask
implementation choices from the view. In this case, it would present a security risk to
expose the salt and crypted_password properties to the view.

Validations

Turning our attention back to the User model, we see that Rick has provided sensi-
ble defaults for password validation. Of course, you have the freedom to modify these
to your heart’s content to match your own requirements and purpose.

validates_presence_of :password

:if => :password_required?

validates_presence_of :password_confirmation,

:if => :password_required?

validates_length_of :password, :within => 4..40,

:if => :password_required?

validates_confirmation_of :password,

:if => :password_required?

Those validation rules should only execute under one condition, if the crypted_
password attribute is blank and the password attribute is not. Without this condi-
tion in place, every update to the user model would reset the password.

def password_required?

crypted_password.blank? || !password.blank?

end

492 14. Login and Authentication

Conditional Callbacks

Note the use of :if parameters used on the validation methods to specify a con-
ditional callback. The symbol :password_required? identifies the method that
should be invoked to determine whether or not to enable the validation.

At first glance, it looks as if this code could be a bit DRYer, since the clause :if =>
:password_required? is repeated four times. Can we refactor it to be more concise?

looks more DRY, but will it work?

if password_required?

validates_presence_of :password

validates_presence_of :password_confirmation

validates_length_of :password, :within => 4..40,

validates_confirmation_of :password

end

No! Think about the timing of the if clause: We need to check if
password_required? during the validation step of the model’s life cycle, not at the
time that the User class is defined. It is possible to DRY up this code using Rails’
with_options method, although this might be one of those cases where the reward
does not quite justify the effort.

with_options :if => :password_required? do |u|

u.validates_presence_of :password

u.validates_presence_of :password_confirmation

u.validates_length_of :password, :within => 4..40

u.validates_confirmation_of :password

end

The before_save Callback

As covered in Chapter 2, “Working with Controllers,” callbacks allow you to point at
a method that should be invoked at a certain stage in the life cycle of an
ActiveRecord object, like this:

before_save :encrypt_password

Getting back to the User model walk-through, notice that there is a need to
encrypt the user’s password before saving a new user record to the database. The

Acts as Authenticated 493

:encrypt_password symbol points to the protected method of the same name clos-
er to the bottom of the class:

def encrypt_password

return if password.blank?

if new_record?

self.salt = Digest::SHA1.hexdigest(“--#{Time.now}--#{login}--”)

end

self.crypted_password = encrypt(password)

end

This says: “First of all, if the password is blank, don’t try to encrypt it. Otherwise,
calculate and capture the salt and crypted_password attributes for saving.”

The salt column stores a one-time hashing key, which helps to make our
authentication system more secure than if a system-wide constant were used.

The authenticate Method

Moving along, the two-line authenticate method serves as a good example of a class
method for your application code. It is a generic bit of class logic, not associated with
any particular instance. However, its implementation might be somewhat dense and
cryptic unless you know Ruby really well. I’ll try to dissect it for you.

Authenticates a user by their login name and unencrypted password,

returning the user or nil.

def self.authenticate(login, password)

u = find_by_login(login) # need to get the salt

u && u.authenticated?(password) ? u : nil

end

The first line attempts to find a user record using the login value supplied. If the
record does not exist, the finder will return nil, which will be assigned to u, causing
the && expression on line 2 to return false.

However, if a record user is found, then it is time to check the password. Rick’s
comment succinctly says: “need to get the salt,” because if we were not using a unique
salt value per user, then authentication could be done by simply querying the database
for username and the crypted password. Assuming that call to find_by_login
returned a user instance, the ternary expression on line 2 will invoke authenticated?
to determine whether to return the user instance or nil.

494 14. Login and Authentication

The remember_token

You know how a lot of web applications have a little check box under their login and
password fields so that you don’t have to authenticate manually every time? That is
accomplished via a shared secret in the form of the remember_token. Whenever the
remember_me method of User is invoked, an encrypted string is created to be stored
as a cookie on the user’s web browser. Rick’s default implementation lasts two weeks
before expiring, but you can change it to meet your need.

The forget_me method simply clears the attributes.

def remember_me

self.remember_token_expires_at = 2.weeks.from_now.utc

self.remember_token =

encrypt(“#{email}--#{remember_token_expires_at}”)

save(false)

end

def forget_me

self.remember_token_expires_at = nil

self.remember_token = nil

save(false)

end

NOTE

Here’s a bit of Rails trivia about save with a Boolean
argument, as seen in those last two methods. It means save
without running validations. I call this a bit of trivia
because the Rails API docs don’t mention that save takes
a Boolean argument. In fact that’s because the normal
implementation doesn’t—until you specify validations on
your model—meaning that the method signature of save
changes dynamically at runtime.

The remember_token? method checks to see whether we have an unexpired
token to check. Notice that by default it works with UTC, not local time.

def remember_token?

remember_token_expires_at && (Time.now.utc <

remember_token_expires_at)

end

Acts as Authenticated 495

That does it for our walk-through of the acts_as_authenticated plugin-
generated User model. Of course you can add additional application code to User to
represent your own user-related business logic.

The Account Controller
Now, let’s open up app/controllers/account_controller.rb and examine the
actions that were generated for us by the plugin, in Listing 14.2.

Listing 14.2 The AccountController Class

class AccountController < ApplicationController

Be sure to include AuthenticationSystem in Application Controller
instead of here
include AuthenticatedSystem

If you want “remember me” functionality, add this before_filter
to Application Controller
before_filter :login_from_cookie

say something nice, you goof! something sweet.
def index
redirect_to(:action => ‘signup’) unless logged_in? || User.count > 0

end

def login
return unless request.post?
self.current_user =
User.authenticate(params[:login], params[:password])

if current_user
if params[:remember_me] == “1”
self.current_user.remember_me
cookies[:auth_token] =
{ :value => self.current_user.remember_token,
:expires => self.current_user.remember_token_expires_at }

end

redirect_back_or_default(:controller => ‘/account’,
:action => ‘index’)

flash[:notice] = “Logged in successfully”
end

end

def signup
@user = User.new(params[:user])
return unless request.post?

496 14. Login and Authentication

@user.save!
self.current_user = @user
redirect_back_or_default(:controller => ‘/account’,

:action => ‘index’)
flash[:notice] = “Thanks for signing up!”
rescue ActiveRecord::RecordInvalid
render :action => ‘signup’

end

def logout
self.current_user.forget_me if logged_in?
cookies.delete :auth_token
reset_session
flash[:notice] = “You have been logged out.”
redirect_back_or_default(:controller => ‘/account’,

:action => ‘index’)
end
end

Note the important instructions given in the comments near the top of the file.
There are a couple of lines of code there that we should move to our application con-
troller.

class ApplicationController < ActionController::Base

include AuthenticatedSystem

First of all, we should include the AuthenticatedSystem module in our
ApplicationController so that its methods are available to all the controllers in
our system. The AuthenticatedSystem module gives us reader and writer methods
in our controllers for current_user (as stored in the session). It also gives us a very
useful logged_in? method. We can use these methods in the header of our applica-
tion layout, for example, to display login and logout links based on whether the user
is logged in or not:

<div id=”login_message”>

<% if logged_in? -%>

<%= “Logged in as #{current_user.name}” %> |

<%= link_to “Logout”, :controller => ‘account’, :action => ‘logout’ %>

<% else -%>

<%= link_to “Logout”, :controller => ‘account’, :action => ‘login’ %>

|

Acts as Authenticated 497

<%= link_to “Signup”, :controller => ‘account’, :action => ‘signup’ %>

<% end -%>

</div>

This brings up a very interesting and potentially puzzling question: How is it that
you can access current_user and logged_in? from the view? Controller meth-
ods (which these are, via the AuthenticatedSystem module). They should only be
available from the view if they’re declared as helper methods. Taking a quick look at
application.rb, we notice that there isn’t a call to helper_method in sight.

The answer lies near the middle of authenticated_system.rb in the
self.included method:

Inclusion hook to make #current_user and #logged_in?

available as ActionView helper methods.

def self.included(base)

base.send :helper_method, :current_user, :logged_in?

end

Aha! Personally, I don’t like putting included hooks anywhere except the top of
the modules because it can cause a bit of confusion if you don’t see them right away.

To explain, what is happening here is that when AuthenticatedSystem is
included into another class, this hook will be invoked in the class context of the object
doing the inclusion, and thus the helper_method will happen exactly as if it had
been hard-coded into the original class. A bit of metaprogramming magic? No, just
proper use of Ruby’s modules functionality and very much part of the Rails way.

Login from Cookie
Second, there’s the optional filter that enables logging in using a browser cookie,
which gives us the so-called “Remember me” functionality. For now, let’s assume that
we do intend to let users stay logged in to our application, so we move before_filter
:login_from_cookie to ApplicationController also. Let’s take a peek under
the covers at what the login_from_cookie method of AuthenticatedSystem
actually does:

When called with before_filter :login_from_cookie will check for an

:auth_token cookie and log the user back in if apropriate

def login_from_cookie

498 14. Login and Authentication

return unless cookies[:auth_token] && !logged_in?

user = User.find_by_remember_token(cookies[:auth_token])

if user && user.remember_token?

user.remember_me

self.current_user = user

cookies[:auth_token] = {

:value => self.current_user.remember_token,

:expires => self.current_user.remember_token_expires_at

}

flash[:notice] = “Logged in successfully”

end

end

This code reads fairly well, but let’s do a quick walk-through as another example
of idiomatic Ruby and Rails code, as well as usage of the cookies object.

The first line of the method demonstrates proper use of Ruby’s optional return
keyword, bailing out unless there is an :auth_token cookie and we’re not already
logged in. It’s important to not burn too many cycles before bailing out, since this line
will get executed during each request in the system.

Next step is to use the :auth_token from the cookie to look up the user from
the database. The way that the if clause is structured is a very common idiom. The
&& will short-circuit and return false if user is nil, which prevents the
NoMethodError from occurring if remember_token was invoked on nil. You’ll see
this particular idiom over and over again in Rails code and you should learn to use it
in your own coding.

If the condition passes, we call remember_me on the user object, and set it as the
current user (which is effectively what accomplishes the “login”). Finally, updated
cookie values are set and a “Logged in successfully” message is placed in flash storage
for display to the user.

The Current User
My Java-addled brain has occasionally found lines such as self.current_user =
user confusing. “Why on earth would we be setting the current user as an instance
variable on the controller!?!?” The thing is that the implementation of the
current_user reader and writer methods are more than just pedestrian getters and
setters! They actually have quite a bit of logic in them, albeit written in somewhat terse
Ruby code.

Acts as Authenticated 499

Accesses the current user from the session.

def current_user

@current_user ||=

(session[:user] && User.find_by_id(session[:user])) || :false

end

Store the given user in the session.

def current_user=(new_user)

session[:user]=

(new_user.nil? || new_user.is_a?(Symbol)) ? nil : new_user.id

@current_user = new_user

end

Wilson Says...

Apparently Rick’s text editor charges him by the line.

Once you interpret that code, you might be surprised to
realize that the current user’s id is what’s being stored in
the session, never the actual user instance. Storing the id
of an object and looking it up when needed rather than
storing the object itself is considered a Rails best-practice,
because of the problems inherent with serializing objects
and having to keep them synchronized.

Additionally, the idiomatic use of ||= ensures that the
current user is only read once from the database per
request—after the first time, it is cached as an instance
variable on the controller. By the way, new controller
instances are created by the Rails dispatcher for each
incoming request, so you don’t have to worry about that
current_user instance variable becoming a security
issue.

Based on experience, I can tell you that the
current_user method returning :false when nobody
is logged in is a pain in the butt. Think I’m being harsh?
You try maintaining all the if logged_in? checks that
you’ll need to keep non-authenticated users from blowing
up a large application with all sorts of NoMethodErrors.

One of the first things you should do to avoid that kind of
pain is to override AuthenticatedSystem’s version of

500 14. Login and Authentication

current_user on your ApplicationController. The
implementation can look mostly the same, but return a
sensible GuestUser null object instead of :false.

Accesses the current user from the session.

def current_user

@current_user ||=

(session[:user] && User.find_by_id(session

:user])) || GuestUser.new

end

Your own implementation of GuestUser will vary depending on the needs of
your application. You might be inclined to mimic the interface of a real User object,
except with empty attributes.

A different approach would be to give your GuestUser a method_missing call-
back that raises a LoginRequiredError to be rescued by the authentication system.
The idea is to automatically prompt for a login before access to a given resource can
continue, instead of having to code the particular case explicitly or even worse, cause
a server error.

Logging In During Testing
Rick also gives us a Ruby module named AuthenticatedTestHelper that we can
mix into TestUnit in our test_helper.rb file so that its methods are always avail-
able in our test cases.

class Test::Unit::TestCase

include AuthenticatedTestHelper

The most important method in that module is login_as, which you can call
from a setup method or a test case to establish a session. Pass it a User object to log
in; or (this is where your user fixtures come in pretty handy), login_as knows to ref-
erence the user fixtures (test/fixtures/users.yml) when you pass it a symbol
instead:

def setup

login_as(:quentin) # quentin was added by acts_as_authenticated

AuthenticatedTestHelper also gives you a method named authorize_as
that simulates HTTP basic authentication, instead of simply assigning the user you

Logging In During Testing 501

identify as the current_user for the session. You can use authorize_as to test con-
troller actions that will be serving web services and other users that will authenticate
via HTTP, instead of logging in via a form.

Finally, the assert_requires_login and assert_http_authentication_

required test helper methods take blocks and allow you to verify that given con-
troller actions actually force the user to log in or use basic authentication.

Conclusion
Almost every Rails application needs some sort of login and access control function-
ality. That’s why it’s so convenient to learn how to use the Acts as Authenticated plu-
gin, the main subject of this chapter. In addition to the plugin’s code generator and
user class, we also looked at the account controller it generates, how to log in from a
cookie, and how to access the current user from the rest of our application code.

References

1. Rick’s website is http://techno-weenie.net/.

502 14. Login and Authentication

CHAPTER 15
XML and ActiveResource

Structure is nothing if it is all you got. Skeletons spook people if they try to walk
around on their own. I really wonder why XML does not.
—Erik Naggum

XML doesn’t get much respect from the Rails community. It’s “enterprisey.” In the
Ruby world, that other markup language, YAML (Yet Another Markup Language),
gets a heck of a lot more attention. However, use of XML is a fact of life for many
applications, especially when it comes to interoperability with other systems. Luckily,
Ruby on Rails gives us some pretty good functionality-related to XML.

This chapter examines how to both generate and parse XML in your Rails appli-
cations, starting with a thorough examination of the to_xml method that all objects
have in Rails.

The to_xml Method
Sometimes you just want an XML representation of an object, and ActiveRecord
models provide easy, automatic XML generation via the to_xml method. Let’s play
with this method in the console and see what it can do.

I’ll fire up the console for my book-authoring sample application and find an
ActiveRecord object to manipulate.

>> Book.find(:first)

=> #<Book:0x264ebf4 @attributes={“name”=>”Professional Ruby on Rails

Developer’s Guide”, “uri”=>nil, “updated_at”=>2007-07-02T13:58:19-

05:00, “text”=>nil, “created_by”=>nil, “type”=>”Book”, “id”=>”1”,

“updated_by”=>nil, “version”=>nil, “parent_id”=>nil, “position”=>nil,

“state”=>nil, “created_at”=>2007-07-02T13:58:19-05:00}>

There we go, a Book instance. Let’s see that instance as its generic XML repre-
sentation.

>> Book.find(:first).to_xml

=> “<?xml version=\”1.0\” encoding=\”UTF-8\”?>\n<book>\n <created-at

type=\”datetime\”>2007-07-02T13:58:19-05:00</created-at>\n <created-by

type=\”integer\”>\n </created-by>\n <id type=\”integer\”>\n1 </id>\n

<name>Professional Ruby on Rails Developer’s Guide</name>\n <parent-id

type=\”integer\”>\n </parent-id>\n <position type=\”integer\”>\n

</position>\n <state></state>\n <text>Empty</text>\n <updated-at

type=\”datetime\”>2007-07-02T13:58:19-05:00</updated-at>\n <updated-by

type=\”integer\”>\n </updated-by>\n <uri></uri>\n <version

type=\”integer\”>\n </version>\n</book>\n”

Ugh, that’s ugly. Ruby’s print function might help us out here.

>> print Book.find(:first).to_xml

<?xml version=”1.0” encoding=”UTF-8”?>

<book>

<created-at type=”datetime”>2007-07-02T13:58:19-05:00</created-at>

<created-by type=”integer”></created-by>

<id type=”integer”>1</id>

<name>Professional Ruby on Rails Developer’s Guide</name>

<parent-id type=”integer”></parent-id>

<position type=”integer”></position>

<state></state>

<text>Empty</text>

<updated-at type=”datetime”>2007-07-02T13:58:19-05:00</updated-at>

<updated-by type=”integer”></updated-by>

<uri></uri>

<version type=”integer”>

</version>

</book>

Much better! So what do we have here? Looks like a fairly straightforward serial-
ized representation of our Book instance in XML.

504 15. XML and ActiveResource

Customizing to_xml Output
The standard processing instruction is at the top, followed by a tag name correspon-
ding to the class name of the object. The properties are represented as subelements,
with nonstring data fields including a type attribute. Mind you, this is the default
behavior and we can customize it with some additional parameters to the to_xml
method.

We’ll strip down that XML representation of a book to just a name and URI using
the only parameter. It’s provided in a familiar options hash, with the value of the
:only parameter as an array:

>> print Book.find(:first).to_xml(:only => [:name,:uri])

<?xml version=”1.0” encoding=”UTF-8”?>

<book>

<name>Professional Ruby on Rails Developer’s Guide</name>

<uri></uri>

</book>

Following the familiar Rails convention, the only parameter is complemented by
its inverse, except, which will exclude the specified properties.

What if I want my book title and URI as a snippet of XML that will be included
in another document? Then let’s get rid of that pesky instruction too, using the
skip_instruct parameter.

>> print Book.find(:first).to_xml(:skip_instruct => true, :only =>

[:name,:uri])

<book>

<name>Professional Ruby on Rails Developer’s Guide</name>

<uri></uri>

</book>

We can change the root element in our XML representation of Book and the
indenting from two to four spaces by using the root and indent parameters respec-
tively.

>> print Book.find(:first).to_xml(:root => ‘textbook’, :indent => 4)

<?xml version=”1.0” encoding=”UTF-8”?>

<textbook>

<created-at type=”datetime”>2007-07-02T13:58:19-05:00</created-at>

<created-by type=”integer”></created-by>

The to_xml Method 505

<id type=”integer”>1</id>

<name>Professional Ruby on Rails Developer’s Guide</name>

<parent-id type=”integer”></parent-id>

<position type=”integer”></position>

<state></state>

<text>Empty</text>

<updated-at type=”datetime”>2007-07-02T13:58:19-05:00</updated-at>

<updated-by type=”integer”></updated-by>

<uri></uri>

<version type=”integer”>

</version>

</textbook>

By default Rails converts CamelCase and underscore attribute names to dashes as
in created-at and parent-id. You can force underscore attribute names by setting
the dasherize parameter to false.

>> print Book.find(:first).to_xml(:dasherize => false, :only =>

[:created_at,:created_by])

<?xml version=”1.0” encoding=”UTF-8”?>

<book>

<created_at type=”datetime”>2007-07-02T13:58:19-05:00</created_at>

<created_by type=”integer”></created_by>

</book>

In the preceding output, the attribute type is included. This too can be config-
ured using the skip_types parameter.

>> print Book.find(:first).to_xml(:skip_types => true, :only =>

[:created_at,:created_by])

<?xml version=”1.0” encoding=”UTF-8”?>

<book>

<created-at>2007-07-02T13:58:19-05:00</created-at>

<created-by></created-by>

</book>

506 15. XML and ActiveResource

Associations and to_xml
So far we’ve only worked with a base ActiveRecord and not with any of its associa-
tions. What if we wanted an XML representation of not just a book but also its asso-
ciated chapters? Rails provides the :include parameter for just this purpose. The
:include parameter will also take an array or associations to represent in XML.

>> print Book.find(:first).to_xml(:include => :chapters)

<?xml version=”1.0” encoding=”UTF-8”?>

<book>

<created-at type=”datetime”>2007-07-02T13:58:19-05:00</created-at>

<created-by type=”integer”></created-by>

<id type=”integer”>1</id>

<name>Professional Ruby on Rails Developer’s Guide</name>

<parent-id type=”integer”></parent-id>

<position type=”integer”></position>

<state></state>

<text>Empty</text>

<updated-at type=”datetime”>2007-07-02T13:58:19-05:00</updated-at>

<updated-by type=”integer”></updated-by>

<uri></uri>

<version type=”integer”>

</version>

<chapters>

<chapter>

<name>Introduction</name>

<uri></uri>

</chapter>

<chapter>

<name>Your Rails Decision</name>

<uri></uri>

</chapter>

</chapters>

</book>

The to_xml method will also work on any array so long as each element in that
array responds to to_xml. If we try to call to_xml on an array whose elements don’t
respond to to_xml, we get this result:

>> [:cat,:dog,:ferret].to_xml

RuntimeError: Not all elements respond to to_xml

from /activesupport/lib/active_support/core_ext/array/

The to_xml Method 507

conversions.rb:48:in `to_xml’

from (irb):6

Unlike arrays, Ruby hashes are naturally representable in XML, with keys corre-
sponding to tag names, and their values corresponding to tag contents. Rails auto-
matically calls to_s on the values to get string values for them.

>> print ({:pet => ‘cat’}.to_xml)

<?xml version=”1.0” encoding=”UTF-8”?>

<hash>

<pet>cat</pet>

</hash>

Both Array and Hash objects take the same to_xml method arguments, except
:include.

Advanced to_xml

By default, ActiveRecord’s to_xml method only serializes persistent attributes into
XML. However, there are times when transient, derived, or calculated values need to
be serialized out into XML form as well. For example, our Book model could have a
method that gives the average pages per chapter.

class Book < ActiveRecord::Base

def pages_per_chapter

self.pages / self.chapters.length

end

end

To include the result of this method when we serialize the XML, we use the
:methods parameter:

>> print Book.find(:first).to_xml(:methods => :pages_per_chapter)

<?xml version=”1.0” encoding=”UTF-8”?>

<book>

<created-at type=”datetime”>2007-07-02T13:58:19-05:00</created-at>

<created-by type=”integer”></created-by>

<id type=”integer”>1</id>

<name>Professional Ruby on Rails Developer’s Guide</name>

508 15. XML and ActiveResource

<parent-id type=”integer”></parent-id>

<position type=”integer”></position>

<state></state>

<text>Empty</text>

<updated-at type=”datetime”>2007-07-02T13:58:19-05:00</updated-at>

<updated-by type=”integer”></updated-by>

<uri></uri>

<version type=”integer”></version>

<pages-per-chapter>45</pages-per-chapter>

</book>

We could also set the methods parameter to an array of method names to be
called.

Dynamic Runtime Attributes
In cases where we want to include extra elements unrelated to the object being serial-
ized, we can use the :procs option. Just pass one or more Proc instances. They will
be called with to_xml’s option hash, through which we access the underlying
XmlBuilder. (XmlBuilder provides the principal means of XML generation in Rails,
and is covered later in this chapter in the section “The XML Builder.”)

>> copyright = Proc.new {|opts|

opts[:builder].tag!(‘copyright’,’2007’)}

>> print Book.find(:first).to_xml(:procs => [copyright])

<?xml version=”1.0” encoding=”UTF-8”?>

<book>

<created-at type=”datetime”>2007-07-02T13:58:19-05:00</created-at>

<created-by type=”integer”></created-by>

<id type=”integer”>1</id>

<name>Professional Ruby on Rails Developer’s Guide</name>

<parent-id type=”integer”></parent-id>

<position type=”integer”></position>

<state></state>

<text>Empty</text>

<updated-at type=”datetime”>2007-07-02T13:58:19-05:00</updated-at>

<updated-by type=”integer”></updated-by>

<uri></uri>

<version type=”integer”></version>

<color>blue</color >

</book>

The to_xml Method 509

Unfortunately, the :procs technique is hobbled by a puzzling limitation: The
record being serialized is not exposed to the procs being passed in as arguments, so
only data external to the object may be added in this fashion.

To gain complete control over the XML serialization of Rails objects, you need to
override the to_xml method and implement it yourself.

Overriding to_xml

Sometimes you need to do something out of the ordinary when trying to represent
data in XML form. In those situations you can create the XML by hand.

class Book < ActiveRecord::Base

def to_xml(options = {})

xml = options[:builder] ||= Builder::XmlMarkup.new(options)

xml.instruct! unless options[:skip_instruct]

xml.book do

xml.tag!(:color, ‘red’)

end

end

...

end

This would give the following result:

>> print Book.find(:first).to_xml

<?xml version=”1.0” encoding=”UTF-8”?><book><color>red</color></book>

Learning from Array’s to_xml Method
Array’s to_xml method is a good example of the power and elegance possible when
programming with Ruby. Let’s take a look at the code, which exists as part of Rails
extensions to Ruby’s Array class, located in the ActiveSupport’s
core_ext/array/conversions.rb.

def to_xml(options = {})

raise “Not all elements respond to to_xml” unless all? { |e|

e.respond_to? :to_xml }

510 15. XML and ActiveResource

See how close the first line is to English? The way that the to_xml method checks
the elements of the array is a beautiful example of the readability achievable when pro-
gramming in Ruby and the level of elegance you should be shooting for in your own
code.

Moving on, we see how Rails figures out what to name the container tag.

options[:root]||= all? { |e|

e.is_a?(first.class) && first.class.to_s != “Hash” } ?

first.class.to_s.underscore.pluralize : “records”

First of all, the short-circuiting OR assignment ||= either uses the provided value
for options[:root] or calculates it. This style of conditional assignment is a very
common idiom in Ruby code and one you should get accustomed to using. If
options[:root] is nil, a bit of logic takes place, starting with a check to see if all of
the elements are instances of the same class (and that those instances are not hashes).

If that condition is true, that is, if all the elements are of the same type as the first
element of the array, then the following expression generates our container tag name:
first.class.to_s.underscore.pluralize.

Otherwise, the container tag will default to the constant “records”, a fact that is
not mentioned in the Rails API documentation. When I was looking through this
code, I asked myself, “What does that first variable refer to?”

Then I remembered that this code executes in the context of an Array instance,
so first is actually a method call that returns the first element of the array.

Cool. Let’s move ahead to the next line of the to_xml method, which governs the
name used for the tags of the array’s elements: options[:children] ||=

options[:root].singularize.
That was easy. Unless it’s configured explicitly, Rails will simply use the singular

inflection of the container tag. One of the first things we learn in the Rails world is
how ActiveRecord automatically figures out plural and singular forms in relation to
class names and database tables. What many of us don’t usually realize until much later
is the importance of the Inflector class and how widely it is used in the rest of the
Rails codebase. Hopefully this walk-through is reinforcing the importance of cooper-
ating with the Rails Inflector instead of working against it by configuring names
manually.

What about the indentation? It defaults to two spaces: options[:indent] ||= 2.

The to_xml Method 511

Now things start getting a little more interesting. As we can see in the next line,
the to_xml method uses Builder::XmlMarkup to do its XML generation.

options[:builder] ||=

Builder::XmlMarkup.new(:indent => options[:indent])

The :builder option allows us to pass in an existing Builder instance instead
of using a new one, and the importance of this option will become clearer later on in
the chapter when we discuss how to integrate the use of the to_xml method into more
specialized XML generation routines.

root = options.delete(:root).to_s

children = options.delete(:children)

We’re going to need those values for root and children tag names, so we capture
them at the same time that we remove them from the options hash. This is our first
hint that the options hash is going to get reused for another call (when it comes time
to generate XML for our child elements).

if !options.has_key?(:dasherize) || options[:dasherize]

root = root.dasherize

end

The :dasherize option defaults to true, which makes sense since conventions
in the XML world dictate that compound tag names are delimited by dashes. It’s hard
to overemphasize how much of Rails’ code elegance comes from the way that its
libraries build on each other, as demonstrated by this use of the whimsically named
dasherize.

Moving on, we come to our :instruct parameter, discussed earlier in the chap-
ter. Builder has an instruct! method, which causes the XML instruction line to
be inserted. Of course, once it’s inserted, we don’t want to insert it again, which is why
the options hash that we will use recursively now gets its :skip_instruct parame-
ter hard-coded to true.

options[:builder].instruct! unless options.delete(:skip_instruct)

opts = options.merge({:skip_instruct => true, :root => children })

512 15. XML and ActiveResource

Finally, we invoke tag! on our XML builder to actually write the container
XML, followed immediately by a recursive call (via the each method) that calls
to_xml on our child elements.

options[:builder].tag!(root) { each { |e| e.to_xml(opts) } }

end

The XML Builder
As introduced in the previous section, Builder::XmlMarkup is the class used inter-
nally by Rails when it needs to generate XML. When to_xml is not enough and you
need to generate custom XML, you will use Builder instances directly. Fortunately,
the Builder API is one of the most powerful Ruby libraries available and is very easy
to use, once you get the hang of it.

The API documentation says: “All (well, almost all) methods sent to an
XmlMarkup object will be translated to the equivalent XML markup. Any method
with a block will be treated as an XML markup tag with nested markup in the block.”

That is actually a very concise way of describing how Builder works, but it is
easier to understand with some examples, again taken from Builder’s API documen-
tation. The xm variable is a Builder::XmlMarkup instance:

xm.em(“emphasized”) # => emphasized

xm.em { xm.b(“emp & bold”) } # => emph & bold

xm.a(“foo”, “href”=>”http://foo.org”)

=> foo

xm.div { br } # => <div>
</div>

xm.target(“name”=>”foo”, “option”=>”bar”)

=> <target option=”foo” name=”bar”\>

xm.instruct! # <?xml version=”1.0” encoding=”UTF-8”?>

xm.html { # <html>

xm.head { # <head>

xm.title(“History”) # <title>History</title>

} # </head>

The XML Builder 513

xm.body { # <body>

xm.comment! “HI” # <!-- HI -->

xm.h1(“Header”) # <h1>Header</h1>

xm.p(“paragraph”) # <p>paragraph</p>

} # </body>

} # </html>

A common use for using Builder::XmlBuilder is to render XML in response
to a request. Previously we talked about overriding to_xml on ActiveRecord to gen-
erate our custom XML. Another way, though not as recommended, is to use an XML
template.

We could alter our BooksController show method to use an XML template
by changing it from

def BooksController < ApplicationController

...

def show

@book = Book.find(params[:id])

respond_to do |format|

format.html

format.xml { render :xml => @book.to_xml }

end

...

end

to:

def BooksController < ApplicationController

...

def show

@book = Book.find(params[:id])

respond_to do |format|

format.html

format.xml

end

...

end

Now Rails will look for a file called show.xml.builder in the RAILS_ROOT/
views/books directory. That file contains Builder::XmlMarkup code like this:

514 15. XML and ActiveResource

xml.book {

xml.title @book.title

xml.chapters {

@book.chapters.each { |chapter|

xml.chapter {

xml.title chapter.title

}

}

}

}

In this view the variable xml is an instance of Builder::XmlMarkup. Just as in
ERb views, we have access to the instance variables we set in our controller, in this case
@book. Using the Builder in a view can provide a convenient way to generate XML.

Parsing XML
Ruby has a full-featured XML library named REXML, and covering it in any level of
detail is outside the scope of this book. If you have basic parsing needs, such as pars-
ing responses from web services, you can use the simple XML parsing capability built
into Rails.

Turning XML into Hashes
Rails lets you turn arbitrary snippets of XML markup into Ruby hashes, with the
from_xml method that it adds to the Hash class.

To demonstrate, I’ll throw together a string of simplistic XML and turn it into a
hash:

>> xml = <<-XML

<pets>

<cat>Franzi</cat>

<dog>Susie</dog>

<horse>Red</horse>

</pets>

XML

>> Hash.from_xml(xml)

=> {“pets”=>{“horse”=>”Red”, “cat”=>”Franzi”, “dog”=>”Susie”}}

Parsing XML 515

There are no options for from_xml. You can leave off the argument, pass it a
string of XML, or pass it an IO object. If you pass nothing, the from_xml method
looks for a file named scriptname.xml (or more correctly $0.xml). This isn’t imme-
diately useful in Rails, but can be handy if you use this functionality in your own
scripts outside of Rails HTTP request handling.

A more common use is to pass a string into from_xml as in the preceding exam-
ple or to pass it an IO object. This is particularly useful when parsing an XML file.

>> Hash.from_xml(File.new(‘pets.xml’)

=> {“pets”=>{“horse”=>”Red”, “cat”=>”Franzi”, “dog”=>”Susie”}}

XmlSimple

Under the covers, Rails uses a library called XmlSimple to parse XML into a Hash.

class Hash

...

def from_xml(xml)

typecast_xml_value(undasherize_keys(XmlSimple.xml_in(xml,

‘keeproot’ => true,

‘forcearray’ => false,

‘forcecontent’ => true,

‘contentkey’ => ‘__content__’)

))

end

...

end

Rails sets four parameters when using XmlSimple. The first parameter, :keeproot,
tells XmlSimple not to discard the root element, which it would otherwise do by
default.

>> XmlSimple.xml_in(‘<book title=”The Rails Way” />’, :keeproot =>

true)

=> { ‘book’ => [{‘title’ => ‘The Rails Way’}]

>> XmlSimple.xml_in(‘<book title=”The Rails Way” />’, :keeproot =>

false)

=> {‘title’ => ‘The Rails Way’}

516 15. XML and ActiveResource

The second parameter Rails sets is :forcearray, which forces nested elements
to be represented as arrays even if there is only one. XmlSimple’s default is to set this
to true. The difference is shown in the following example:

>> XmlSimple.xml_in(‘<book><chapter index=”1”/></book>’, :forcearray =>

true)

=> {“chapter”=>[{“index”=>”1”}]}

>> XmlSimple.xml_in(‘<book><chapter index=”1”/></book>’, :forcearray =>

false)

=> {“chapter” => {“index”=> “1”}}

The third parameter that’s set to true is :forcecontent, which ensures that a
content key-value pair is added to the resulting hash even if the element being parsed
has no content or attributes. By setting this parameter to true, sibling elements are
normalized, which makes the resulting hash a heck of a lot more usable, as you should
be able to deduce from the following snippet.

>> XmlSimple.xml_in(‘<book>

<chapter index=”1”>Words</chapter>

<chapter>Numbers</chapter>

</book>’, :forcecontent => true)

=> {“chapter” => [{“content”=>”Words”, “index”=>”1”},

{“content”=>”Numbers”}]}

>> XmlSimple.xml_in(‘<book>

<chapter index=”1”>Words</chapter>

<chapter>Numbers</chapter>

</book>’, :forcecontent => false)

=> {“chapter” => [{“content”=>”Words”, “index”=>”1”}, “Numbers”]}

The final parameter is :contentkey. XmlSimple by default uses the key string
‘“content” to represent the data contained within an element. Rails changes it to
“__content__” to lessen the likelihood of name clashes with actual XML tags named
“content”.

Parsing XML 517

Typecasting
When we use Hash.from_xml, the resulting hash doesn’t have any “__content__”
keys. What happened to them? Rails doesn’t pass the result of XmlSimple parsing
directly back to the caller of from_xml. Instead it sends it through a method called
typecast_xml_value, which converts the string values into proper types. This is
done by using a type attribute in the XML elements. For example, here’s the auto-
generated XML for a Book object.

>> print Book.find(:first).to_xml

<?xml version=”1.0” encoding=”UTF-8”?>

<book>

<created-at type=”datetime”>2007-07-02T13:58:19-05:00</created-at>

<created-by type=”integer”></created-by>

<id type=”integer”>1</id>

<name>Professional Ruby on Rails Developer’s Guide</name>

<parent-id type=”integer”></parent-id>

<position type=”integer”></position>

<state></state>

<text>Empty</text>

<updated-at type=”datetime”>2007-07-02T13:58:19-05:00</updated-at>

<updated-by type=”integer”></updated-by>

<uri></uri>

<version type=”integer”>

</version>

</book>

As part of the to_xml method, Rails sets attributes called type that identify the
class of the value being serialized. If we take this XML and feed it to the from_xml
method, Rails will typecast the strings to their corresponding Ruby objects:

>> Hash.from_xml(Book.find(:first).to_xml)

=> {“book”=>{“name”=>”Professional Ruby on Rails Developer’s Guide”,

“uri”=>nil, “updated_at”=>Mon Jul 02 18:58:19 UTC 2007,

“text”=>”Empty”, “created_by”=>nil, “id”=>1, “updated_by”=>nil,

“version”=>0, “parent_id”=>nil, “position”=>nil, “created_at”=>Mon Jul

02 18:58:19 UTC 2007, “state”=>nil}}

518 15. XML and ActiveResource

ActiveResource

Web applications often need to serve both users in front of web browsers and other sys-
tems via some API. Other languages accomplish this using SOAP or some form of
XML-RPC, but Rails takes a simpler approach. In Chapter 4, “REST, Resources, and
Rails,” we talked about building RESTful controllers and using respond_to to return
different representations of resources. By doing so we could connect to http://localhost:
3000/auctions.xml and get back an XML representation of all auctions in the system.
We can now write a client to consume this data using ActiveResource.

ActiveResource is a standard part of the Rails package, having replaced
ActionWebService (which is still available as a plugin). ActiveResource has com-
plete understanding of RESTful routing and XML representation. A minimal
ActiveResource for the previous auctions example is

class Auction < ActiveResource::Base

self.site = ‘http://localhost:3000’

end

To get a list of auctions we would call its find method:

>> auctions = Auction.find(:all)

ActiveResource is designed to look and feel much like ActiveRecord.

Find

ActiveResource has the same find methods as ActiveRecord, as seen in Table
15.1. The only difference is the use of :params instead of :conditions.

Table 15.1 Find methods for ActiveResource

ActiveRecord ActiveResource URL

Auction.find(:all) Auction.find(:all) GET http://localhost:3000/auctions.xml

Auction.find(1) Auction.find(1) GET http://localhost:3000/auctions/1.xml

Auction.find(:first) Auction.find(:first)GET http://localhost:3000/auctions.xml
*gets a complete list than calls first on the
returned list

ActiveResource 519

continues

Table 15.1 Continued

ActiveRecord ActiveResource URL

Auction.find(:all, Auction.find(:all, GET http://localhost:3000/
:conditions => :params => auctions.xml?first_name=Matt
{ :first_name => { :first_name =>

‘Matt’) ‘Matt’)

Item.find(:all, Item.find(:all, GET http://localhost:3000/
:conditions => :params => auctions/6/items.xml
{ :auction_id => { :auction_id =>

6 }) 6 })

Item.find(:all, Item.find(:all, GET http://localhost:3000/auctions/
:conditions => :params => 6/items.xml?used=true
{ :auction_id => { :auction_id =>

6, :used => true }) 6, :used => true })

The last two examples in Table 15.1 show how to use ActiveResource with a
nested resource. We could also create a custom used method in our items controller
like this:

class ItemController < ActiveResource::Base

def used

@items = Item.find(:all,

:conditions => {:auction_id => params[:auction_id],

:used => true })

respond_to do |format|

format.html

format.xml { render :xml => @items.to_xml }

end

end

end

In our routes.rb file we would add to our items resource like this:

map.resources :items, :member => {:used => :get }

520 15. XML and ActiveResource

With this in place we now have the following URL:

http://localhost:3000/auctions/6/items/used.xml

We can now access this URL and the data behind it using ActiveResource with
the following call:

>> used_items = Item.find(:all, :from => :used)

This custom method returns a collection of items and hence the :all parameter.
Suppose we had a custom method that returned only the newest item, as in the fol-
lowing example:

class ItemController < ActiveResource::Base

def newest

@item = Item.find(:first,

:conditions => {:auction_id => params[:auction_id]},

:order => ‘created_at DESC’,

:limit => 1)

respond_to do |format|

format.html

format.xml { render :xml => @items.to_xml }

end

end

end

We could then make the following call:

>> used_items = Item.find(:one, :from => :newest)

What’s important to note is how a request to a nonexistent item is handled. If we
tried to access an item with an id of -1 (there isn’t any such item), we would get an
HTTP 404 status code back. This is exactly what ActiveResource receives and rais-
es a ResourceNotFound exception. ActiveResource makes heavy use of the HTTP
status codes as we’ll see throughout this chapter.

ActiveResource 521

Create

ActiveResource is not limited to just retrieving data; it can also create it. If we
wanted to place a new bid on an item via ActiveResource, we would do the
following:

>> Bid.create(:username => ‘me’, :auction_id => 3, :item_id => 6,

:amount => 34.50)

This would create an HTTP POST to the URL: http://localhost:3000/auc-
tions/6/items/6.xml with the supplied data. In our controller, the following would
exist:

class BidController < ActiveResource::Base

...

def create

@bid = Bid.new(params[:bid])

respond_to do |format|

if @bid.save

flash[:notice] = ‘Bid was successfully created.’

format.html { redirect_to(@bid) }

format.xml { render :xml => @bid, :status => :created,

:location => @bid }

else

format.html { render :action => “new” }

format.xml { render :xml => @bid.errors, :status =>

:unprocessable_entity}

end

end

end

...

end

If the bid is successfully created, the newly created bid is returned with an HTTP
201 status code and the Location header is set pointing to the location of the newly
created bid. With the Location header set, we can determine what the newly created
bid’s id is. For example:

>> bid = Bid.create(:username => ‘me’, :auction_id => 3, :item_id =>

6, :amount => 34.50)

>> bid.id # => 12

>> bid.new? # => false

522 15. XML and ActiveResource

If we tried to create the preceding bid again but without a dollar amount, we
could interrogate the errors.

>> bid = Bid.create(:username => ‘me’, :auction_id => 3, :item_id => 6)

>> bid.valid? # => false

>> bid.id # => nil

>> bid.new? # => true

>> bid.errors.class # => ActiveResource::Errors

>> bid.errors.size # => 1

>> bid.errors.on_base # => “Amount can’t be blank”

>> bid.errors.full_messages # => “Amount can’t be blank”

>> bid.errors.on(:amount) # => nil

In this case a new Bid object is returned from the create method, but it’s not
valid. If we try to see what its id is we also get a nil. We can see what caused the create
to fail by calling the ActiveResources.errors method. This method behaves just
like ActiveRecord.error with one important exception. On ActiveRecord if we
called Errors.on, we would get the error for that attribute. In the preceding exam-
ple, we got a nil instead. The reason is that ActiveResource, unlike ActiveRecord,
doesn’t know what attributes there are. ActiveRecord does a SHOW FIELDS FROM
<table> to get this, but ActiveResource has no equivalent. The only way
ActiveResource knows an attribute exists is if we tell it. For example:

>> bid = Bid.create(:username => ‘me’, :auction_id => 3, :item_id =>

6, :amount => nil)

>> bid.valid? # => false

>> bid.id # => nil

>> bid.new? # => true

>> bid.errors.class # => ActiveResource::Errors

>> bid.errors.size # => 1

>> bid.errors.on_base # => “Amount can’t be blank”

>> bid.errors.full_messages # => “Amount can’t be blank”

>> bid.errors.on(:amount) # => “can’t be blank”

In this case we told ActiveResource that there is a title attribute through the
create method. As a result we can now call Errors.on without a problem.

ActiveResource 523

Update
Editing an ActiveResource follows the same ActiveRecord pattern.

>> bid = Bid.find(1)

>> bid.amount # => 10.50

>> bid.amount = 15.00

>> bid.save # => true

>> bid.reload

>> bid.amount # => 15.00

If we set the amount to nil, ActiveResource.save would return false. In this
case we could interrogate ActiveResource::Errors for the reason, just as we would
with create. An important difference between ActiveResource and
ActiveRecord is the absence of the save! and update! methods.

Delete
Removing an ActiveResource can happen in two ways. The first is without instan-
tiating the ActiveResource:

>> Bid.delete(1)

The other way requires instantiating the ActiveResource first:

>> bid = Bid.find(1)

>> bid.destroyAuthorization

ActiveResource comes with support for HTTP Basic Authentication. As a
quick reminder, Basic Authentication is accomplished by setting an HTTP header,
and as such can be easily snooped. For this reason, an HTTPS connection should be
used. With a secure connection in place, ActiveResource just needs a username and
password to connect.

Class MoneyTransfer < ActiveResource::Base

self.site = ‘https://localhost:3000’

self.username = ‘administrator’

self.password = ‘secret’

end

524 15. XML and ActiveResource

ActiveResource will now authenticate on each connection. If the username
and/or password is invalid, an ActiveResource::ClientError is generated. We
can implement Basic Authentication in our controller using a plugin.

$./script/plugin install http_authentication

Next we need to set up our controller:

class MoneyTransferController < ApplicationController

USERNAME, PASSWORD = “administrator”, “secret”

before_filter :authenticate

...

def create

@money_transfer = Bid.new(params[:money_transfer])

respond_to do |format|

if @ money_transfer.save

flash[:notice] = ‘Money Transfer was successfully created.’

format.html { redirect_to(@money_transfer) }

format.xml { render :xml => @ money_transfer, :status =>

:created, :location => @ money_transfer }

else

format.html { render :action => “new” }

format.xml { render :xml => @ money_transfer.errors, :status

=> :unprocessable_entity}

end

end

end

...

private

def authenticate

authenticate_or_request_with_http_basic do |username, password|

username == USERNAME && password == PASSWORD

end

end

end

ActiveResource 525

Headers
ActiveResource allows for the setting of HTTP headers on each request too. This
can be done in two ways. The first is to set it as a variable:

Class Auctions< ActiveResource::Base

self.site = ‘http://localhost:3000’

@headers = { ‘x-flavor’ => ‘orange’ }

end

This will cause every connection to the site to include the HTTP header: HTTP-
X-FLAVOR: orange. In our controller we could use the header value.

class AuctionController < ActiveResource::Base

...

def show

@auction = Auction.find_by_id_and_flavor(params[:bid],

request.headers[‘HTTP_X_FLAVOR’]) respond_to do |format|

format.html

format.xml { render :xml => @auction.to_xml }

end

end

...

end

The second way to set the headers for an ActiveResource is to override the
headers method.

Class Auctions< ActiveResource::Base

self.site = ‘http://localhost:3000’

def headers

{ ‘x-flavor’ => ‘orange’ }

end

end

526 15. XML and ActiveResource

Customizing
ActiveResource assumes RESTful URLs, but that doesn’t always happen.
Fortunately, you can customize the URL prefix and collection_name. Suppose we
assume the following ActiveResource:

Class OldAuctionSystem < ActiveResource::Base

self.site = ‘http://s60:3270’

self.prefix = ‘/cics/’

self.collection_name = ‘auction_pool’

end

The following URLs will be used:

OldAuctionSystem.find(:all) GET http://s60:3270/cics/auction_pool.xml
OldAuctionSystem.find(1) GET http://s60:3270/cics/auction_pool/1.xml
OldAuctionSystem.find(1).save PUT http://s60:3270/cics/auction_pool/1.xml
OldAuctionSystem.delete(1) DELETE http://s60:3270/cics/auction_pool/1.xml
OldAuctionSystem.create(...) POST http://s60:3270/cics/auction_pool.xml

We could also change the element name used to generate XML. In the preceding
ActiveResource, a create of an OldAuctionSystem would look like the follow-
ing in XML:

<?xml version=\”1.0\” encoding=\”UTF-8\”?>

<OldAuctionSystem>

<title>Auction A</title>

...

</OldAuctionSystem>

The element name can be changed with the following:

Class OldAuctionSystem < ActiveResource::Base

self.site = ‘http://s60:3270’

self.prefix = ‘/cics/’

self.element_name = ‘auction’

end

ActiveResource 527

which will produce:

<?xml version=\”1.0\” encoding=\”UTF-8\”?>

<Auction>

<title>Auction A</title>

...

</Auction>

One consequence of setting the element_name is that ActiveResource will use
the plural form to generate URLs. In this case it would be ‘auctions’ and not
‘OldAuctionSystems’. To do this you will need to set the collection_name as
well.

It is also possible to set the primary key field ActiveResource uses with

Class OldAuctionSystem < ActiveResource::Base

self.site = ‘http://s60:3270’

self.primary_key = ‘guid’

end

Hash Forms
The methods Find, Create, Save, and Delete correspond to the HTTP methods
of GET, POST, PUT, and DELETE respectively. ActiveResource has a method for
each of these HTTP methods too. They take the same arguments as Find, Create,
Save, and Delete but return a hash of the XML received. For example:

>> bid = Bid.find(1)

>> bid.class # => ActiveRecord::Base

>> bid_hash = Bid.get(1)

>> bid_hash.class # => Hash

528 15. XML and ActiveResource

Conclusion
In practice, the to_xml and from_xml methods meet the XML handling needs for
most situations that the average Rails developer will ever encounter. Their simplicity
masks a great degree of flexibility and power, and in this chapter we attempted to
explain them in sufficient detail to inspire your own exploration of XML handling in
the Ruby world.

As a pair, the to_xml and from_xml methods also enabled the creation of a
framework that makes tying Rails applications together using RESTful web services
drop-dead easy. That framework is named ActiveResource, and this chapter gave
you a crash-course introduction to it.

Conclusion 529

This page intentionally left blank

CHAPTER 16
ActionMailer

It’s a cool way to send emails without tons of code
— Jake Scruggs1

Integration with e-mail is a crucial part of most modern web application projects.
Whether it’s support for retrieving lost passwords or letting users control their
accounts via e-mail, you’ll be happy to hear that Rails offers great support for both
sending and receiving e-mail, thanks to its ActionMailer framework.

In this chapter, we’ll cover what’s needed to set up your deployment to be able to
send and receive mail with the ActionMailer framework and by writing mailer mod-
els, the entities in Rails that encapsulate code having to do with e-mail handling.

Setup
By default, Rails will try to send e-mail via SMTP (port 25) of localhost. If you are
running Rails on a host that has an SMTP daemon running and it accepts SMTP e-
mail locally, you don’t have to do anything else in order to send mail. If you don’t have
SMTP available on localhost, you have to decide how your system will send outbound
e-mail.

When not using SMTP directly, the main options are to use sendmail or to give
Rails information on how to connect to an external mail server. Most organizations
have SMTP servers available for this type of use, although it’s worth noting that due
to abuse many hosting providers have stopped offering shared SMTP service.

Mailer Models
Now that we have the mail system configured, we can go ahead and create a mailer
model that will contain code pertaining to sending and receiving a class of e-mail.
Rails provides a generator to get us started rapidly.

To demonstrate, let’s create a mailer for sending late notices to users of our time-
and-reporting sample application:

$ script/generate mailer LateNotice

exists app/models/

create app/views/late_notice

exists test/unit/

create test/fixtures/late_notice

create app/models/late_notice.rb

create test/unit/late_notice_test.rb

A view folder for the mailer is created at app/views/late_notice and the mail-
er itself is stubbed out at app/models/late_notice.rb:

class LateNotice < ActionMailer::Base

end

Kind of like a default ActiveRecord subclass, there’s not much there at the start.
What about the test? See Listing 16.1.

Listing 16.1 An ActionMailer Test

require File.dirname(__FILE__) + ‘/../test_helper’

class LateNoticeTest < Test::Unit::TestCase

FIXTURES_PATH = File.dirname(__FILE__) + ‘/../fixtures’

CHARSET = “utf-8”

include ActionMailer::Quoting

def setup

ActionMailer::Base.delivery_method = :test

ActionMailer::Base.perform_deliveries = true

ActionMailer::Base.deliveries = []

532 16. ActionMailer

@expected = TMail::Mail.new

@expected.set_content_type “text”, “plain”, { “charset” => CHARSET }

@expected.mime_version = ‘1.0’

end

private

def read_fixture(action)

IO.readlines(“#{FIXTURES_PATH}/late_notice/#{action}”)

end

def encode(subject)

quoted_printable(subject, CHARSET)

end
end

Whoa! There’s quite a lot more setup involved for this test than what we’re used
to seeing, which reflects the greater underlying complexity of working with a mail sub-
system.

Preparing Outbound Email Messages
You work with ActionMailer classes by defining public mailer methods that corre-
spond to types of e-mails that you want to send. Inside the public method, you set the
options for the message and assign any variables that will be needed by the mail mes-
sage template.

Continuing with our example, let’s write a late_timesheet mailer method that
takes user and week_of parameters. Notice that it sets the basic information needed
to send our notice e-mail (see Listing 16.2).

Listing 16.2 A mailer method

def late_timesheet(user, week_of)

recipients user.email

subject “[Time and Expenses] Late timesheet notice”

from “system@timeandexpenses.com”

body :recipient => user.name, :week => week_of
end

Mailer Models 533

Here is a list of all the mail-related options that you can set inside of mailer methods.

attachment

Specify a file attachment. Can be invoked multiple times to make multiple file attach-
ments.

bcc

Specifies blind recipient (Bcc:) addresses for the message, either as a string (for a sin-
gle address) or an array for multiple addresses.

body

Defines the body of the message. Takes a hash (in which case it specifies the variables
to pass to the template when it is rendered), or a string, in which case it specifies the
actual text of the message.

ActionMailer automatically normalizes lines for plain-text body content, that is, it
ensures that lines end with \n instead of a platform-specific character.

cc

Specifies carbon-copy recipient (Cc:) addresses for the message, either as a string (for
a single address) or an array for multiple addresses.

charset

The character set to use for the message. Defaults to the value of the
default_charset setting specified for ActionMailer::Base.

content_type

Specifies the content type for the message. Defaults to text/plain.

from

Specifies the from address for the message as a string (required).

headers

Specifies additional headers to be added to the message as a hash.

534 16. ActionMailer

implicit_parts_order

An array specifying the order in which the parts of a multipart e-mail should be sort-
ed, based on their MIME content-type. Defaults to the value of the
default_implicit_parts_order setting specified on ActionMailer::Base and
defaults to [“text/html”, “text/enriched”, “text/plain”].

mailer_name

Overrides the mailer name, which defaults to an inflected version of the mailer’s class
name and governs the location of this mailer’s templates. If you want to use a template
in a nonstandard location, you can use this to specify that location.

mime_version

Defaults to “1.0”, but may be explicitly given if needed.

part

Enables sending of multipart email messages by letting you define sets of content-
type, template, and body variables. Note that you don’t usually need to use this
method, because ActionMailer will automatically detect and use multipart tem-
plates, where each template is named after the name of the action, followed by the
content type.

On the other hand, this method is needed if you are trying to send HTML mes-
sages with inline attachments (usually image files). See the section “MultiPart
Messages” a little further along in the chapter for more information, including the part
method’s special little API.

recipients

The recipient addresses for the message, either as a string (for a single address) or an
array (for multiple addresses). Remember that this method expects actual address
strings not your application’s user objects.

recipients users.map(&:email)

Mailer Models 535

sent_on

An optional explicit sent on date for the message, usually passed Time.now. Will be
automatically set by the delivery mechanism if you don’t supply a value.

subject

The subject line for the message.

template

Specifies the template name to use for the current message. Since the template defaults
to the name of the mailer method, this option may be used to have multiple mailer
methods share the same template.

The body of the e-mail is created by using an ActionView template (regular
ERb) that has the content of the body hash parameter available as instance variables.
So the corresponding body template for the mailer method in Listing 16.2 could look
like this:

Dear <%= @recipient %>,

Your timesheet for the week of <%= @week %> is late.

And if the recipient was David, the e-mail generated would look like this:

Date: Sun, 12 Dec 2004 00:00:00 +0100

From: system@timeandexpenses.com

To: david@loudthinking.com

Subject: [Time and Expenses] Late timesheet notice

Dear David Hansson,

Your timesheet for the week of Aug 15th is late.

HTML Email Messages
To send mail as HTML, make sure your view template generates HTML and set the
content type to html in your mailer method, as shown in Listing 16.3.

536 16. ActionMailer

Listing 16.3 An HTML Mailer Method

class MyMailer < ActionMailer::Base

def signup_notification(recipient)

recipients recipient.email_address_with_name

subject “New account information”

body “account” => recipient

from “system@example.com”

content_type “text/html”

end

end

Other than the different content_type value, the process is exactly the same as
sending plaintext email. Want to embed images in the HTML that will go along with
the email (as inline attachments) and display to the end user? At the time of this writ-
ing there is an outstanding issue with ActionMailer that makes it difficult to do so.
See http://dev.rubyonrails.org/ticket/2179 for more information and a patch that pro-
vides a workaround.2

Multipart Messages
The part method is a small API in and of itself for creating multipart messages. Using
the part method, you can compose email messages made up of distinct kinds of con-
tent. A popular technique (as demonstrated in Listing 16.4) uses multiparts to send a
plaintext part along with an HTML email message, so that recipients who can only
read plaintext are not left in the dark.

Listing 16.4 A Multipart Signup Notification Mailer Method

class ApplicationMailer < ActionMailer::Base

def signup_notification(recipient)

recipients recipient.email_address_with_name

subject “New account information”

from “system@example.com”

part :content_type => “text/html”,

Mailer Models 537

:body => render_message(“signup_as_html”, :account =>

recipient)

part “text/plain” do |p|

p.body = render_message(“signup_as_plain”, :account =>

recipient)

p.transfer_encoding = “base64”

end

end

end

Part Options

The part method accepts a variety of options, either as a hash or via block initializa-
tion. (Both types of initialization are demonstrated in Listing 16.4.)

• :body Represents the body of the part, as a string! This should not be a hash (like
ActionMailer::Base.) If you want a template to be rendered into the body of
a subpart you can do it using the mailer’s render or render_template meth-
ods and assign the result to this option (like in Listing 16.4).

• :charset Specify the charset for this subpart. By default, it will be the charset
of the containing part or mailer (e.g. UTF8).

• :content_type The MIME content type of the part.

• :disposition The content disposition of this part, typically either “inline” or
“attachment.”

• :filename The filename to use for this subpart, usually attachments. The value
of this option is the filename that users will see when they try to save the attach-
ment and has nothing to do with the name of files on your server.

• :headers Specifying additional headers to include with this part as a hash.

• :transfer_encoding The transfer encoding to use for this subpart, like
“base64” or “quoted-printable”.

538 16. ActionMailer

Implicit Multipart Messages

As mentioned earlier in the chapter, multipart messages can also be used implicitly,
without invoking the part method, because ActionMailer will automatically detect
and use multipart templates, where each template is named after the name of the
action, followed by the content type. Each such detected template will be added as
separate part to the message.

For example, if the following templates existed, each would be rendered and
added as a separate part to the message, with the corresponding content type. The
same body hash is passed to each template.

• signup_notification.text.plain.erb

• signup_notification.text.html.erb

• signup_notification.text.xml.builder

• signup_notification.text.x-yaml.erb

File Attachments
Attachments can be added by using the attachment method in conjunction with the
File.read method of Ruby, or application code that generates file content. See
Listing 16.5.

Listing 16.5 Adding Attachments to an Email

class ApplicationMailer < ActionMailer::Base

def signup_notification(recipient)

recipients recipient.email_address_with_name

subject “New account information”

from “system@example.com”

attachment :content_type => “image/jpeg”,

:body => File.read(“an-image.jpg”)

attachment “application/pdf” do |a|

a.body = generate_your_pdf_here()

end
end

Mailer Models 539

end

The attachment method is really just a convenience wrapper around the part
API. The first attachment of Listing 16.5 could have been done (just a little less ele-
gantly) with the following code:

part :content_type => “image/jpeg”,

:disposition => “inline”,

:filename => “an-image.jpg”,

:transfer_encoding => “base64” do |attachment|

attachment.body = File.read(“an-image.jpg”)

end

We’ve now talked extensively about preparing email messages for sending, but
what about actually sending them to the recipients?

Actually Sending an Email
Don’t ever try to actually call the instance methods like signed_up directly. Instead,
call one of the two class methods that are generated for you based on the instance
methods defined in your mailer class. Those class methods are prefixed with deliv-
er_ and create_, respectively. Really, the main one that you care about is deliver.

For example, if you wrote a signed_up_notification instance method on a
class named ApplicationMailer, using it would look like the following example:

create a tmail object for testing

ApplicationMailer.create_signed_up_notification(“david@loudthinking.com”)

send the signed_up_notification email

ApplicationMailer.deliver_signed_up(“david@loudthinking.com”)

wrong!

ApplicationMailer.new.signed_up(“david@loudthinking.com”)

Receiving E-Mails
TMail is a Ruby library for email processing that dates back to 2003. It comes bun-
dled in Rails as an included dependency of ActionMailer. There’s really only one

540 16. ActionMailer

TMail class that you care about as a Rails developer, and that is the TMail::Mail
class.

To receive e-mails, you need to write a public method named receive on one of
your application’s ActionMailer::Base subclasses. It will take a Tmail object
instance as its single parameter. When there is incoming email to handle, you call a
class method named receive on your Mailer class. The raw email string is converted
into a Tmail object automatically and your receive method is invoked for further
processing. You don’t have to implement the receive class method yourself, it is
inherited from ActionMailer::Base.

That’s all pretty confusing to explain, but simple in practice. Listing 16.6 shows
an example.

Listing 16.6 The Simple MessageArchiver Mailer Class with a Receive Method

class MessageArchiver < ActionMailer::Base

def receive(email)

person = Person.find_by_email(email.to.first)

person.emails.create(:subject => email.subject, :body =>

email.body)

end

end

The receive class method can be the target for a Postfix recipe or any other mail-
handler process that can pipe the contents of the email to another process. The Rails
runner script makes it easy to handle incoming mail:

./script/runner ‘MessageArchiver.receive(STDIN.read)’

That way, when a message is received, the receive class method would be fed the
raw string content of the incoming email via STDIN.

TMail::Mail API Reference
Since the object representation of the incoming email message is an instance of
TMail::Message, I think it makes sense to have a reference to at least the basic attrib-
utes of that class that you will be using. The online documentation for all of TMail is

Receiving E-Mails 541

at http://i.loveruby.net/en/projects/tmail/doc/, but the following list of methods gives
you pretty much everything you need.

attachments

An array of TMail::Attachment objects associated with the message object.
TMail::Attachment extends Ruby’s own StringIO class and adds
original_filename and content_type attributes to it. Other than that, you use
it exactly as you would use any other StringIO (See Listing 16.7 for example).

body

The body text of the email message, assuming it’s a plain text single-part message.
Multipart messages will return the preamble when body is called.

date

A Time object corresponding to the value of the Date: header field.

has_attachments?

Returns true or false based on whether the message contains an attachment.

multipart?

Returns true if the message is a MIME-multipart email message.

parts

An array of TMail::Mail objects, one for each part of the MIME-multipart email
message.

subject

The subject line of the email message.

to

An array of strings representing the To: addresses associated with the message. The
cc, bcc, and from attributes function similarly for their respective address fields.

542 16. ActionMailer

Handling Attachments
Processing files attached to incoming email messages is just a matter of using the
attachments attribute of TMail, as in Listing 16.7. This example assumes that you
have a Person class, with a has_many association to an attachment_fu object
named photos.

class PhotoByEmail < ActionMailer::Base

def self.receive(email)

from = email.from.first

person = Person.find_by_email(from)

logger.warn(“Person not found [#{from}]”) and return unless person

if email.has_attachments?

email.attachments.each do |file|

person.photos.create(:uploaded_data => file)

end

end

end

end

There’s not much more to it than that, except of course to wrestle with the con-
figuration of your mail-processor (outside of Rails) since they are notoriously difficult
to configure.3 After you have your mail-processor calling the Rails runner script cor-
rectly, add a crontab so that incoming mail is handled about every five minutes or
so, depending on the needs of your application.

Configuration
Most of the time, you don’t have to configure anything specifically to get mail send-
ing to work, because your production server will have sendmail installed and
ActionMailer will happily use it to send emails.

If you don’t have sendmail installed on your server, you can try setting up Rails to
send email directly via SMTP. The ActionMailer::Base class has a hash named
smtp_settings (server_settings prior to Rails 2.0) that holds configuration
information. The settings here will vary depending on the SMTP server that you use.

The sample (as shown in Listing 16.7) demonstrates the SMTP server settings
that are available (and their default values). You’ll want to add similar code to your
config/environment.rb file:

Configuration 543

Listing 16.7 SMTP Settings for ActionMailer

ActionMailer::Base.smtp_settings = {

:address => ‘smtp.yourserver.com’, # default: localhost

:port => ‘25’, # default: 25

:domain => ‘yourserver.com’, # default:

localhost.localdomain

:user_name => ‘user’, # no default

:password => ‘password’, # no default

:authentication => :plain # :plain, :login or :cram_md5
}

Conclusion
In this chapter, we learned how Rails makes sending and receiving email easy. With
relatively little code, you can set up your application to send out email, even HTML
email with inline graphics attachments. Receiving email is even easier, except perhaps
for setting up mail-processing scripts and cron jobs. We also briefly covered the con-
figuration settings that go in your config/environment.rb file related to mail.

References

1. http://jakescruggs.blogspot.com/2007/02/actionmailer-tips.html

2. Note that a Google search on the topic of inline image attachments will usually lead you to
http://blog.caboo.se/articles/2006/02/19/how-to-send-multipart-alternative-e-mail-with-inline-
attachments, which purports to give you an easy solution to the problem, but doesn’t actually
work.

3. Rob Orsini, author of O’Reilly’s Rails Cookbook recommends getmail, which you can get from
http://pyropus.ca/software/getmail.

544 16. ActionMailer

CHAPTER 17
Testing

It’s not that Rails encourages you to do test-driven development, it’s that it makes
it difficult for you to not do test-driven development.
—Brian Eng, interviewed on the Rails podcast

Automated tests allow us to verify the functionality of our application, prevent regres-
sion (introduction of new and previously fixed bugs), and help us to keep our code
flexible. Test coverage refers to the quality and number of automated tests that we have
in relation to production code. When our test coverage is deficient, there is no proof
that the system works as intended. We could change something that breaks the appli-
cation, and not notice the failure until much time has passed, when it will be much
more difficult to diagnose and to fix.

The importance of testing your Ruby code cannot be overstated. Without a com-
piler, there is no way of knowing that the code you’ve written is even free of syntax
errors! You must assume that your code is broken until you put it through its paces.
Do you want that to happen on your development machine, under your control,
where you can diagnose problems? Or would you rather find out about errors when
your deployed application bombs the server and aggravates your bosses, colleagues,
and end users? It’s a serious issue.

David and everyone on the Rails core team are all true believers in high-quality
automated testing and they lead the community by example: Rails itself has an
extraordinary amount of test coverage. Patches, even for small fixes, are not accepted
unless they are accompanied by working test cases. From the beginning, testing has

been an integral and essential part of the Rails way, which sets Rails apart from the
majority of other frameworks out there.

When you make a habit of driving your development with testing, you end up
clarifying and elaborating your project requirements up front, instead of after your
work has been through the QA department a few times. So the act of developing tests
during coding is essentially a kind of specification activity. RSpec is a Ruby library that
takes the concept of driving development with specifications literally, and you can use
it with Rails instead of testing. Unfortunately, RSpec is not yet a mainstream choice
for Rails developers, and since this chapter’s title is “Testing,” we’ll hold off talking
about RSpec until Chapter 18, “RSpec on Rails.”

Realistically, the topics included in this chapter could fill a (large) book of their
own. It’s been a real challenge to organize the material in such a way that it makes
sense for the majority of readers. It’s also been really difficult to decide on the appro-
priate level of detail to include.

Since The Rails Way is primarily a reference work, I’ve tried to not to go off on too
many philosophical tangents related to testing, and limit the discussion to the follow-
ing topics:

• Rails testing terminology

• A review of Test::Unit, Ruby’s unit-testing framework and how it relates to
Rails

• Fixtures, for managing testing data and analysis of why everyone hates them

• Unit, functional, and integration testing with Test::Unit

• Rake tasks related to testing

• Acceptance testing and Selenium

Rails Testing Terminology
Before we go any further, I need to clarify something that tends to be very confusing
to Rails newcomers who are familiar with unit-testing orthodoxy. The standard direc-
tories of your application’s test folder are shown in Figure 17.1.

546 17. Testing

Figure 17.1 Standard directories in a Rails test folder

The terms fixtures, functional, integration, mocks, and unit all have their own spe-
cial meanings in Rails, which are either slightly different or completely divergent from
commonly accepted definitions in the greater world of software engineering. The
resulting cognitive dissonance makes Rails testing one of my least favorite aspects of
the overall framework.

So Much for Isolation...
Both unit and functional tests in Rails use the Fixtures API, which interacts with the
database. In fact, it takes quite a bit of hacking to make unit tests in Rails not involve
the database. Given that normal Rails tests never test isolated units of Ruby code, they
can’t possibly be (true) unit tests; they must all be functional tests, by traditional def-
initions of the term. Wait a minute—if they’re all functional tests, why is there a unit
folder? Ah, you see the conflict.

I’m afraid there isn’t a particularly good defense of the chosen nomenclature. Tests
that live in the unit folder are in fact functional tests of models that happen to be ori-
ented toward testing of individual methods, in the traditional unit-test way. Tests that
live in the functional folder are indeed functional tests of controllers that happen
to be oriented toward testing of individual controller actions. We give both types full
sections in this chapter.

Rails Testing Terminology 547

Rails Mocks?
The mocks folder is treated specially during test runs. Classes in it are loaded last,
meaning that they can override behavior of other classes in your system. That ability
is particularly useful when you depend on classes that do things that shouldn’t be done
during a test run, such as

• Interaction with external systems, such as payment gateways, geocoders, or other
web services

• Execution of forked or long-running processes

• Alteration of the state of the system in an unrecoverable way

Using Ruby’s open classes, you can write your own mock versions of methods that
you don’t want to actually execute during your test run. For instance, assume that you
have code that submits transactions for processing via a PaymentGateway class. Your
production code invokes the process method. Unless you mock it out, whenever you
run a test, a transaction will be sent to the actual payment gateway, which is probably
bad.

However, you can solve that problem if you monkeypatch1 PaymentGateway with
your own implementation of process, which does not actually talk to the real pay-
ment gateway. You could add a class like the following to your mocks directory.

class PaymentGateway

def process(transaction)

In ur gateway, mocking ur transactions!

end

end

The concept is somewhat reminiscent of traditional test mocking, yet has noth-
ing to do with it. (It’s actually a form of stubbing—you are stubbing out the real func-
tionality of the class.) Now, if you were doing a mock payment gateway this way for
real, you would probably give it some state, to be able to check later that process was
actually called.

class PaymentGateway

attr :processed_transaction

548 17. Testing

def process(transaction)

In ur gateway, mocking your transactions!

@processed_transaction = transaction

end

end

You see, if you didn’t check to see if process was called, you would never know
if your code is working correctly. I’m not going to go any further with this example,
or with coverage of Rails mocks in this sense. As far as I’m concerned, you should
delete the mocks directory. Nobody uses it. In fact, many of us consider this feature
of Rails an abomination that should have never seen the light of day.2

Real Mocks and Stubs
The Mocha library3 should be your choice for adding mocking to your Rails tests. It’s
actually included inside Rails as a dependency of Rails’ own test suite. However,
Mocha is a RubyGem, and you should get a copy of the latest version for yourself
using the usual gem install magic:

sudo gem install mocha

Mocha provides a unified, simple, and readable syntax for both traditional mock-
ing and for mocking with real objects. A traditional mock is an object that you can
script with expectations about which of its methods will be called during a test. If
those expectations are not met, the mock object causes the test to fail.

Mocha also gives you the ability to do stubbing, which is the act of overriding
existing methods to return known values. It even lets you mock and stub methods on
real (non-mock) classes and instances. For example, you can stub ActiveRecord
instance methods like find or association accessors and reduce dependence on com-
plicated fixture setups.

For example, here’s a real example of using Mocha to mock behavior that we real-
ly don’t want to actually trigger during a test run—that of the Google Geocoder serv-
ice. Not only would it be slow, but we would never be able to run this test successful-
ly unless we were online:

class SearchControllerTest < Test::Unit::TestCase

def test_should_geolocate_zip_codes_to_return_cities_result

res = mock(‘response’)

Rails Testing Terminology 549

res.stubs(:lat => 40, :lng => 50)

GoogleGeocoder.expects(:geocode).with(‘07601’).returns(res)

place = mock(‘place’)

Place.expects(:new).with(:lat => 40, :lng => 50).returns(place)

hackensack = mock(‘city’)

City.expects(:near).with(place, 10.miles).returns([hackensack])

post :index, :text => ‘07601’

assert_include hackensack, assigns(:places)

end

end

In case it isn’t obvious, this test checks to make sure that the search controller
invokes the geolocation service to help it find cities near a supplied zip code.

The mock method creates a new mock response object. The actual type of the
object doesn’t matter, thanks to duck typing. The stubs method tells the mock which
methods should simply return specified values if invoked, using a nice hash syntax.

I’ll stop talking about Mocha now, so we don’t get totally derailed from the over-
all subject of the chapter, which is, of course, testing. However, throughout the chap-
ter I’ve included some examples on how using Mocha makes your Rails testing tasks
easier.

Integration Tests
Rails integration tests were introduced in Rails 1.1 and are probably closest to the
actual meaning of their name in the software engineering world. They engage the
entire stack of Rails components and allow you to chain together multiple requests to
test large-scale interactions of application code.

class AdvancedTest < ActionController::IntegrationTest

fixtures :people, :forums

def test_login_and_create_forum

login_as :admin

get ‘/forums’

assert_response :success

post ‘/forums’, :forum => {:name => ‘a new forum’}

assert_response :redirect

follow_redirect!

550 17. Testing

assert_select ‘div#topics div.title:last-of-type’, ‘a new forum’

end

end

Integration tests are kind of like functional tests on steroids. You won’t need too
many of them in your projects, and you won’t want too many of them either because
they’re slow. However, they will prove their worth in helping you flush out hard-to-
find interaction bugs. There’s a whole section on integration tests later in the chapter
(“Rails Integration Tests”).

Dealing with the Confusion
Is Rails testing nomenclature confusing? Yes, clearly. Is it going to be fixed anytime
soon? Nope.4

Are there options? Of course! It wouldn’t be Ruby otherwise. However, I warn you
that going down these roads means leaving the Rails way, and your mileage may vary.

Here’s a quick rundown of your options as I see them:

• My favorite option: scrap Rails testing altogether and use RSpec instead. (Make
sure to take a quick look at the section about fixtures and integration tests in this
chapter, then skip over to the next chapter.”)

• Rename your test directories to models, controllers, views, and so on. The
resulting changes to Rake tasks are left as an exercise to the reader.

• Prohibit database access from unit tests, using advice from Jay Fields at
http://blog.jayfields.com/2006/06/ruby-on-rails-unit-tests.html.

The one option that you should never take is to ditch testing altogether.
Delivering Rails applications without automated test coverage is irresponsible and
unprofessional.

Wilson Says...

Writing applications without tests makes you a bad per-
son, incapable of love.

Rails Testing Terminology 551

Test::Unit

All standard tests in Rails extend Ruby’s built-in testing framework called
Test::Unit, which is considered part of the xUnit family. Similar frameworks exist
for all other major programming languages. If you’ve used Java’s JUnit or .NET’s
NUnit before, you should be familiar with the major concepts involved. If not, the
following review of xUnit concepts may prove valuable.

A test case is made by subclassing the Test::Unit::TestCase and populating
it with a collection of test methods that stress some aspect of your application. This is
what a test case looks like in Rails:

require File.dirname(__FILE__) + ‘/../test_helper’

class UserTest < Test::Unit::TestCase

fixtures :models

def setup

code to be run before all test methods

end

def test_some_bit_of_functionality

logic and assertions

end

def teardown

code to be run after all test methods

end

end

A test is a single public method of a test case, whose name begins with the prefix
test_ and whose body contains code that proves the correct operation of some small
part of your program. Test method names should be descriptive and describe the
intention of the test in an explicit manner. A long name such as test_only_authorized
_user_may_be_associated_as_approver is great, but a short name such as
test_works is considered bad form. It should be easy to read the test and quickly fig-
ure out what the code under test is supposed to do. To that end, keep test methods
bodies short and to the point.

552 17. Testing

An assertion is the comparison of an expected value with the result of an expres-
sion. For example, in a test you may set an attribute on a model in a way that should
fail validation, and then use an assert statement to ensure that the error message
produced is what it should be.

A setup method runs before each and every test method. A teardown runs after
each method. Setup methods are very common in Rails tests, while teardown meth-
ods are not.

A successful test is one that executes without assertion failures or exceptions
raised. Tests have two unsuccessful modes, failure and error. A test failure means that
an assertion failed, while a test error means that an exception or runtime error halted
execution of the test.

Sometimes we call a successful test run a green bar and a failing test run a red bar.
That’s based on the traditional behavior of unit-testing GUIs. When you run tests
from the command prompt, you see a series of dots appear, signaling the execution of
the individual test methods being run. The characters F and E in the series of dots
indicate failure and error status, respectively.

Test suites are collections of test cases, and in other languages they are often
defined by the developer. Standard Rails projects do not have the notion of developer-
defined test suites. Instead, collections of tests are kept in three subdirectories of the
test folder: functional, integration, and unit and are executed with rake tasks.

Running Tests
Because of the way that Test::Unit classes work, simply executing a test file from
the command line with the Ruby interpreter will run all of its test methods. It is also
possible to run a single test method, by supplying its name with an -n command-line
option:

$ ruby test/unit/timesheet_test.rb -n

test_only_authorized_user_may_be_associated_as_approver

Loaded suite test/unit/timesheet_test

Started

.

Finished in 1.093507 seconds.

1 tests, 2 assertions, 0 failures, 0 errors

Rails Testing Terminology 553

Most of the time, we run the entire test suite for our application by simply typ-
ing rake test at the command prompt in our project directory. Even just rake will
do, since test is the default task. Later on in the chapter we cover all of the test-relat-
ed Rake tasks.

Fixtures

The ability to get a named reference to a particular chunk of a known object
graph is completely killer.
—Michael Koziarski, Rails core team

In manufacturing, fixtures are used to build and test everything from circuit boards, to
electronic devices, to raw materials and finished goods. As specifically applied to soft-
ware engineering, fixtures are a mechanism for defining the baseline state of a system
prior to running tests on it.

Whenever you use Rails code generation, default fixture files for new models are
created inside the test/fixtures directory of your project and have contents that
look like Listing 17.1.

The file has a .yml extension, indicating that it is a YAML (Yet Another Markup
Language) file.5 YAML is primarily a data serialization language and has no direct rela-
tionship to XML. Its indentation-based scoping is reminiscent of Python.

Listing 17.1 A Simple YAML Fixture File Example: test/fixtures/users.yml

quentin:
id: 1
email: quentin@example.com
created_at: <%= 6.months.ago.to_s(:db) %>

newbie:
id: 2
email: newbie@domain.com
crypted_password: <%= Digest::SHA1.hexdigest(“password”) %>
created_at: <%= 1.minute.ago.to_s(:db) %>

The indentation of fields in your fixture must be consistent, or the YAML parser
will balk. Also, the indentation must not contain any tab characters. According to the
YAML spec, the amount of indentation is a presentation detail used exclusively to
delineate structure and is otherwise ignored. My advice is to stick with the two-space
indentation scheme common to the Ruby world.6

554 17. Testing

Take another look at the fixture in Listing 17.1. The file contains the contents of
the users database table, as it should exist in your test database when you run your test.
In case it’s not immediately obvious, the mapping from fixture file to database table is
based on the name of the file.

Fixtures are essentially two-dimensional serialized hashes. In our sample, the tag
quentin: is the key (name) that is used to uniquely identify the hash of properties
corresponding to the first record of our test users database table. Make it a goal to
name your fixture records in an informative and semantically meaningful way when-
ever possible. You use the key to be able to quickly get a reference to a fixture object
in your test, without having to load it via ActiveRecord.

The second-level keys (:id, :email, :created_at, etc.) must correspond to col-
umn names in the user table. As you can see in the example, it is not necessary to add
keys for every column of the mapped table; in fact you should make it a practice to
add only the minimum amount of data that you need for your testing purposes. The
:id field is always needed, and often you’ll run into problems by messing up the
sequence of ids in a way that your database will get quite upset about. We’ll cover a
technique to avoid that hassle when we talk about dynamic fixture data later on in this
section.

CSV Fixtures
Fixtures can also be formatted as comma-separated values (known as CSV). In case
you haven’t heard of it, CSV is an old, portable text file format that is best-known
nowadays as the best way to get data in and out of Microsoft Excel in a cross-platform-
compatible fashion.

Here’s the same (yet much harder to read) fixture as before, but formatted as CSV:

id, email, crypted_password, created_at

1, quentin@example.com, , <%= 6.months.ago.to_s(:db) %>

2, newbie@domain.com, <%= Digest::SHA1.hexdigest(“password”) %>,

<%= 1.minute.ago.to_s(:db) %>

Ugh, that’s ugly. Depending on the nature of your sample data, managing it with
a spreadsheet tool like Excel might make sense. However, YAML is by far a more pop-
ular choice, because it’s much more readable, and easier to edit by hand.

Fixtures 555

Accessing Fixture Records from Tests
The fact that records in a YAML fixture file are keyed with meaningful names is
another factor that makes YAML a better choice. To access a record from your fixture
file, you need to specify use of the fixture in the class context of your test. Then from
inside methods you invoke a method with the same name as your fixture file and pass
the name of the fixture record as its parameter, for example: users(:quentin) or
timesheets(:first). It’s a quick and easy way to access your sample data, and the
fact that you can choose the names means that you can give them rich semantic mean-
ing.

fixtures :users

def test_can_access_quentin_fixture

assert(users(:quentin) != nil)

end

On the other hand, names for records in CSV fixtures are automatically generat-
ed, created by deriving the class name of the fixture file and adding an incrementing
number to the end. In our example, the first fixture would be called :user_1 and the
next would be called :user_2, and so on. There’s no semantic meaning in those
names, other than knowing that we’re dealing with a user instance.

Dynamic Fixture Data
Before loading the records of a fixture into the test database, Rails runs its textual con-
tent through the ERb template parser. It means you can embed actual Ruby code in
your fixture files using <% %> and <%= %> markup, just as you do in your view tem-
plates. That dynamic behavior can be leveraged to really streamline the work involved
in using fixtures effectively.

The preceding examples have dynamic content. <%= Digest::SHA1.hexdigest
(“password”) %> saves us from having to actually do the encryption ourselves and
manually copy in an unreadable and error-prone string like
00742970dc9e6319f8019fd54864d3ea740f04b1.

Another example is how the date values are populated, by letting Rails take care
of formatting the dates the way the database expects them: <%=

5.days.ago.to_s(:db) %>

556 17. Testing

Use of dynamic content in fixtures is not limited to conversion and formatting of
values, though. You can also use looping constructs to create lots of fixture data easi-
ly. The example given in the Rails documentation demonstrates the basic technique:

<% for i in 1..1000 %>

fix_<%= i %>:

id: <%= i %>

name: guy_<%= 1 %>

<% end %>

Don’t forget that you can put any valid Ruby inside those ERb tags, which
includes defining new helper methods and including modules.

One of my biggest annoyances with fixture files used to be having to manually
maintain the id numbers in proper sequence. Then I realized I can just add an
auto_increment method to the fixture file (I shortened the fixture records them-
selves for brevity):

<%

def auto_increment

@id ||= 0; @id += 1

end

%>

quentin:

id: <%= auto_increment %>

login: quentin

aaron:

id: <%= auto_increment %>

login: aaron

If you want to make methods such as auto_increment in the preceding exam-
ple available to all of your fixture files, define them in a Ruby file called
fixture_helpers.rb. Place it in your project’s /lib directory, and make sure
they’re available by adding the line require ‘fixture_helpers’ at the top of
test/test_helper.rb.

Using Fixture Data in Development Mode
After spending much time carefully crafting sample data for testing an application, it’s
not unusual to want to dump your fixture records into the development database so
that you can use that sample data interactively via your browser or console.

Fixtures 557

The default Rails rake configuration includes a target that does exactly that.
Invoke rake db:fixtures:load from the command line to import fixture records
into the current environment. That rake target lets you pick a subset of fixtures to
load, by adding the variable expression FIXTURE=table1,table2 at the end of the
command line.

NOTE

If you’re using fixture helper methods as described in the
previous section, keep in mind that the
db:fixtures:load task doesn’t require
test_helper.rb, so you will probably need to put the
require ‘fixture_helpers’ at the bottom of
config/environments/development.rb instead.

Generating Fixtures from Development Data
By the same token, if your application has complicated relationships or you’re just too
lazy7 to manually craft your fixture files, you might be inclined to automatically gen-
erate your fixture files from data in the development database. Assuming you have a
working application already, you would be able to just point and click your way to
sample data. All you need is a way to get data out of the database and into the right
YAML format.

For whatever reason, dumping data to fixtures is not a part of core Rails.8

Considering that Rails gives you a to_yaml method on ActiveRecord models and
Hash objects, it wouldn’t be too hard to write your own Rake task. However, it’s not
necessary to do so because of a well-proven plugin written by Geoff Grosenbach. It’s
called ar_fixtures and you can install it with the following command:

$ script/plugin install http://topfunky.net/svn/plugins/ar_fixtures

Once the plugin is installed, dumping a fixture is a simple matter of invoking a
new rake task called rake db:fixtures:dump. Unlike the built-in loading rake task,
this one takes a MODEL parameter with the name of the ActiveRecord class that you
want to dump data for:

$ rake db:fixtures:dump MODEL=BillingCode

No feedback is provided, so check the fixtures file to verify what happened:

558 17. Testing

--

billing_code_00001:

code: TRAVEL

client_id:

id: 1

description: Travel expenses of all sorts

billing_code_00002:

code: DEVELOPMENT

client_id:

id: 2

description: Coding, etc.

Frankly, I’m not too thrilled about the way that the data is dumped with this plu-
gin, but it’s only because I’m picky about wanting my id column to appear first, and
things like that. I also don’t like to have entries for nil columns. Nevertheless, this plu-
gin might be a good starting point for your purposes.

By the way, you don’t need to worry about the -- characters at the top of the file.
They just indicate the beginning of a YAML document and can be safely deleted.

Fixtures Options
The use_transactional_fixtures option, present along with explanatory docu-
mentation in the standard test/test_helper.rb file of your project, governs
whether Rails will try to accelerate your tests by wrapping each test method in a trans-
action that’s rolled back on completion. The rollback speeds up execution of the test
suite, since the fixture data doesn’t have to be reloaded into the database for each test.
The default setting for this option is true.

Using transactional fixtures is important for more than just performance. Rolling
back changes after each test method ensures that you don’t write test methods that are
coupled to each other by depending on database changes that happened outside of
their scope. Interlinked test methods are notoriously difficult to debug and a horrible
practice to fall into.

The use_instantiated_fixtures setting, which is set by default to false, is
another option present in the standard test_helper.rb file. Turning on this setting
will make instance variables available automatically for each fixture record, at the cost
of severely degraded performance of your tests. It dates back to the earliest versions of
Rails, and as far as I can tell, has really fallen out of favor.

Fixtures 559

Everybody Hates Fixtures
During Railsconf 2006, one of the speakers asked, “Who in the audience likes
fixtures?”

I was standing in the back of the room, mind wandering a bit, and I’m the type
of person who doesn’t hesitate to raise his hand in public situations. As such, I found
myself in the awkward position of being one of the only people to answer affirma-
tively.

Why do so many experienced Rails people hate fixtures? There are various answers
to that question—all of them multifaceted. Here are my interpretations of the most
popular reasons to hate fixtures, followed by my own feelings on the Rails way to use
fixtures.

Fixtures Make My Test Suite Slow

This one is true. Fixtures engage the database layer, and will make large test suites bog
down in a thick soup of frenzied I/O activity. Leave fixtures out of the equation and
it’s not uncommon to have test suites with thousands of test cases that take only a few
seconds to execute. This reason is popular with the unit-testing “purist” crowd.

As a general rule, don’t include fixtures that you don’t need in your tests. If you
can manage testing using objects created “from scratch” or using only mocks and stubs
with a library such as Mocha, then it’s even better.

Fixtures Allow Invalid Data

If you’re the sort of person who stresses the importance of valid data in the database,
you probably think fixtures are downright evil. Why? Because there is no validation
that takes place when data from fixtures gets shoved into the database. Rails doesn’t
care whether you define a single column’s data on a fixture object, or all of them. It
will happily populate a row in the database with any data you give it. Pretty much the
only requirement is that the column type is compatible with what you’re trying to
stick in it. That’s pure evil.

The thing is, if you feel that strongly about not having invalid data in your data-
base, don’t write fixtures with invalid data. Problem solved.

On a related note, if this reason for hating fixtures strikes a chord with you, you
might believe in using database foreign-key constraints. Fixtures don’t work well with
foreign-key constraints, since it’s difficult to consistently define the order in which
they are loaded into the database.

560 17. Testing

Maintainability Challenges

This reason is one of the more globally applicable ones. If you try to keep a lot of data
in fixtures, you will eventually start having problems keeping it all properly main-
tained. It’s just too difficult to manage large datasets in the fixtures format… that’s
why we keep data in databases!

It’s also difficult to maintain foreign-key relationships between objects stored in
fixtures. Most of our brains are just not very good at remembering relationships based
on nothing but small integers.

In all my time doing Rails, I haven’t found any good reasons to keep more than a
few representative instances of model objects in fixture files. Go beyond a few at your
own peril.

Fixtures Are Brittle

Yet another good reason to hate fixtures is that they are brittle. Brittleness is a term
that denotes your code’s resistance to changes (or lack thereof). If any little change in
your fixtures breaks a bunch of tests, they are brittle. If you have too many brittle tests,
you will stop testing altogether, and when you die you will definitely go to hell. You
see, fixtures are evil!

Seriously, there are some good strategies for keeping fixtures unbrittle. I’ll reiter-
ate my advice to keep your set of fixtures down to a manageable size. That will reduce
the pain of having to make changes. There are also plugins available that let you define
discrete sets of fixtures,9 representing different testing scenarios, instead of having to
cram all possibilities into one global set.

Also, the fixtures_references plugin10gives you another interesting solution
to the brittleness problem, by allowing you to reference fixtures from within fixtures.
Yes, that’s right, you won’t have to cross-reference foreign keys by memory any more
if you use this plugin. Just reference the related fixture record using the same syntax
you would use in your test:

<% fixtures :employees %>

packaging:

id: 1

name: Packaging

manager_id: <%= employees(:bob)[‘id’] %>

Fixtures 561

Fixtures Really Aren’t That Bad
I’ve proven to myself on my projects that when you use a mocking framework like
Mocha, you can cut your usage of fixtures down to where they aren’t nearly as painful
as we’ve described in the preceding section.

Sometimes you can get away with using no fixtures at all, and that’s great. Other
times, they’re convenient. The key, I believe, is to keep the number of fixtures you have
to maintain down to a handful of representative cases, and stub them together as needed.

Incidentally, there are situations where fixtures are downright crucial (unless you
want to create a bunch of model objects from scratch and save them to the database
inside your test, which I hate doing). The one situation that comes to mind immedi-
ately is testing usages of find_by_sql in your model. Since you’re writing SQL, you
definitely want to run that against a real database and make sure that it works. There’s
no way of unit-testing it purely unless you parse the SQL yourself!

The bottom line: You don’t need to hate fixtures; just try to be smart about how
you use them.

Assertions
Assertion methods are the mechanism with which you actually perform verification in
your test methods. Assertion methods always take an optional (last) parameter speci-
fying a failure message. Use failure messages as insurance against confusion when
someone (perhaps even you) is trying to figure out a test failure in the future.

Basic Assertions
The Test::Unit::Assertions module (part of Ruby itself) gives you a variety of
basic assertion methods that you can use in all of your Rails tests. To preserve space,
the following list combines assertions with not variants under the same heading. I also
left out a couple that are not relevant for Rails programming.

assert and deny

If assertions were hand tools, assert and deny would be sledgehammers—blunt, to
the point, and not much use in detail-oriented work. Give assert or deny basic
Boolean expressions and they’re happy. More than any other assertions, plain-old

562 17. Testing

assert and deny deserve explicit failure messages. Otherwise you get frustrating
results like “false should be true.”

assert @user.valid?, “user was not valid”

deny @user.valid?, “user was valid”

If you use assert, by all means make sure you are passing it a Boolean value.
Remember that nil is considered false in a Boolean context. If you are purposely
checking whether an expression evaluates to nil or not, then use assert_nil or
assert_not_nil to communicate your intention.

assert_block

Check that the final return value of a block of Ruby code is true.

assert_block “Failed because couldn’t do the thing” do

do some processing required to do_the_thing

do_the_thing

end

assert_empty

Check that a collection is empty?.

assert_empty @collection

assert_equal and assert_not_equal

Takes two parameters to check for equality (or not), using the equal? method. The
first parameter is the reference value. The second is the expression to check.

assert_equal “passed”, @status

Assertions 563

assert_in_delta and assert_in_epsilon

Checks that a float value is within a certain tolerance. The Ruby docs say that assert
in_epsilon is “like assert_in_delta but better dealing with errors proportional
to the sizes of [the parameters].”

assert_in_delta(expected, actual, 0.01, message=”exceeded tolerance”)

assert_include

Checks that an item is included in a collection.

assert_include item, @collection

assert_instance_of

Checks that an object is an instance of a class (not module). The of part of the name
should help you remember that the class is the first parameter.

assert_instance_of Time, @timestamp

assert_kind_of

Checks that an object is a kind_of? class or module. Again, the of part of the name
indicates that the class or module to check comes first.

assert_instance_of Enumerable, @my_collection

assert_match and assert_no_match

Checks that a regular expression matches a given value (or not). The regular expres-
sion comes first.

assert_match /\d{5}(-\d{4})?/, “78430-9594”

564 17. Testing

assert_nil and assert_not_nil

Checks that a reference is nil (or not).

assert_not_nil User.find(:first)

assert_same and assert_not_same

Checks that two references point to the same object (or not).

assert_same “foo”.intern, “foo”.intern

assert_raise and assert_nothing_raised

Checks that exceptions are raised in the block provided (or not). I love the example
given in the Ruby docs.

assert_raise RuntimeError, LoadError do

raise ‘Boom!!!’

end

assert_respond_to

Checks that an object respond_to? a given message. The object comes first, followed
by the message.

assert_respond_to @playlist, :shuffle

flunk

Fails the test with the supplied message.

flunk “REDO FROM START”

It’s easy to make the mistake of using fail (belonging to the Kernel class, and
therefore available everywhere) instead of flunk. The fail method causes a runtime
error to be raised, which will stop your test, but with an error condition instead of a
failure.

Assertions 565

Rails Assertions
Rails adds a number of assertions that supplement the ones provided by Test::Unit.

• assert_difference and assert_no_difference

• assert_generates, assert_recognizes, and assert_routing

• assert_response and assert_redirected_to

• assert_tag (deprecated) and assert_select

• assert_template

• assert_valid

The only ones in the list that are general purpose are assert_difference and
assert_no_difference. All are covered in the following sections, with code exam-
ples and as they apply to testing specific parts of Rails.

One Assertion per Test Method

I’d rather know the first time I run the suite that 10 things are failing, not that 5
are failing and a few others may or may not be failing.
—Jay Fields

I like to make my tests as elegant and expressive as possible. The idea of limiting each
test method to one assertion is usually attributed to TDD guru Dave Astels, and has
been popularized in the Rails community by Jay Fields11 and others.

If you are following the one-assertion guideline, then rather than a single test
method that looks like this…

def test_email_address_validation

u = users(:sam)

u.email = “sam”

assert ! u.valid?

u.email = “johh.doe@google.com”

assert u.valid?

u.email = “johh_doe@mail.mx.1.google.com”

assert u.valid?

u.email = “johh_doe+crazy-iness@mail.mx.1.google.com”

assert u.valid?

u.email = “sam@@colgate.com”

assert ! u.valid?

end

566 17. Testing

you would have instead written at least five test methods, each with a better descrip-
tion of the behavior being tested. For convenience, I would also move the assignment
of a short variable for users(:sam) up to a setup method:

def setup

@sam = users(:sam)

end

def test_email_validation_fails_with_simple_string_name

@sam.email = “sam”

assert not @sam.valid? # prefer not over ! for readability

end

def

test_email_validation_should_succeed_for_valid_email_containing_dot

@sam.email = “johh.doe@google.com”

assert @sam.valid?

end

... # you get the picture, I hope

The main advantage to following the guideline is to increase maintainability of
your tests, but there are also other important benefits, such as

• You are forced to spell out the meaning of your tests in the test name, which is
output to the test results on failure. Otherwise, the intention of the assertion
would be hidden in a comment, or not present in the test at all.

• You get a more accurate picture of how broken a test is. When there are multiple
(potentially unrelated) assertions in a single test method, all it takes is for the first
assertion to break and the rest will not get executed.

• Jay also claims that following the one-assertion guideline helps him think more
critically about the design of his domain model: “Often the methods of my
domain model end up with a single responsibility.”

Let’s talk some more about testing the domain model of your Rails app, its
ActiveRecord models.

Assertions 567

Testing Models with Unit Tests
As we’ve mentioned earlier in the chapter, a Rails unit test is actually a functional test
of an ActiveRecord model. It’s not necessary to test the operation of built-in meth-
ods such as find, since those are adequately covered by the tests supplied with Rails
itself.

For example, the following test might be instructional in some way, but is alto-
gether useless for your Rails project:

def test_find

@user = User.create(:name => “John Foster”)

assert_equal @user, User.find_by_name(“John Foster”)

end

Why is it useless? It tests native functionality of Rails, which already has adequate
test coverage. Unless you hand-coded a find_by_name method, you haven’t proven
anything about your code, only that Rails behaves as expected.

It’s worth mentioning that besides instance methods, our ActiveRecord models
are also filled with declarative macro-style code at the top of their files. It’s easy to mess
up that code, so make sure to give them some test coverage too.

Model Testing Basics
Whenever you use a generator to create an ActiveRecord model, Rails automatical-
ly creates a skeleton unit test in the test/unit directory of your project. It looks
something like this:

require File.dirname(__FILE__) + ‘/../test_helper’

class BillableWeekTest < Test::Unit::TestCase

fixtures :billable_weeks

Replace this with your real tests.

def test_truth

assert true

end

end

568 17. Testing

Wilson Says...

The average Rails app would be 120% better if the default
test generated for the model was flunk “write me”
instead of assert true.

Traditionally, a unit test limits itself to testing one public method of an object and
nothing more.12 When we’re testing an ActiveRecord model in Rails, we usually
include multiple test methods for each public method, to make sure that we verify
behavior thoroughly.

Listing 17.2 contains a couple of test methods from the TimesheetTest of our
recurring sample application.

Listing 17.2 The Timesheet Model Test from the Time & Expenses Sample App

1 class TimesheetTest < Test::Unit::TestCase
2
3 fixtures :users
4
5 def test_authorized_user_may_be_associated_as_approver
6 sheet = Timesheet.create
7 sheet.approver = users(:approver)
8 assert sheet.save
9 end
10
11 def test_non_authorized_user_cannot_be_associated_as_approver
12 sheet = Timesheet.create
13 begin
14 sheet.approver = users(:joe)
15 flunk “approver assignment should have failed”
16 rescue UnauthorizedApproverException
17 # expected
18 end
29 end
20 end

As we covered earlier in the chapter, we can leverage the fixtures system to have
objects ready for testing. (Line 3 invokes fixtures :users.) You can use as many
fixtures as necessary, and the names are always plural. I didn’t load the timesheet fix-
tures because I don’t need them. A basic, newly created Timesheet instance suits my
needs just fine (lines 6 and 12).

If I wanted to use even more idiomatic Ruby in this test example, I would prob-
ably refactor lines 13–18 to use assert_raises.

Testing Models with Unit Tests 569

Deciding What to Test
The implementation that determines whether a user is an authorized approver or not
is hidden from view in this test. That may or may not be a bad thing in your case. I’m
of the opinion that it’s a good thing. This is after all a timesheet test, not a user or
authorization test. All I wanted to verify when I wrote this test case was that one
assignment succeeded, and the other didn’t. The logic for authorization is not relevant
in this test case.

Testing Controllers with Functional Tests
Whenever you use a generator to create an ActiveRecord controller, Rails automat-
ically creates a functional test for it. Functional tests let you verify that your controllers
exhibit the correct behavior in handling requests that come their way. Since the func-
tional test subsystem also invokes the view code for the actions invoked, functional
tests can include assertions on the content of the response.

Structure and Setup
Functional tests follow certain conventions, which most new Rails developers are
introduced to when they first open up a scaffolding-generated functional test. Let’s use
a functional test from an open-source bulletin board package for Rails named Beast
for our main examples.13

The top line is similar to a unit test in that it requires the common test_helper
file. Next, the controller under test is required:

require File.dirname(__FILE__) + ‘/../test_helper’

Normally, any errors raised during controller execution are rescued so that the
appropriate error page can be displayed to the user. But during testing, you want those
errors to rise all the way to the top where the test framework can register that they hap-
pened. In a great example of how useful open classes are in Ruby, the solution for our
functional tests is simply to override the rescue_action method of
ActionController.

require ‘forums_controller’

Re-raise errors caught by the controller.

class ForumsController; def rescue_action raise e end; end

570 17. Testing

Semicolons, which are optional line delimiters in Ruby, are used to keep the line
length of the file minimal.

Next up is the opening of the functional test class itself, which by naming con-
vention, starts with the name of the controller it is testing. If the test uses fixtures, they
are usually specified on the following line:

class ForumsControllerTest < Test::Unit::TestCase

fixtures :forums, :posts, :users

Functional tests always have a setup method like the following one. It sets three
required instance variables for the test, and will be run prior to each test method invo-
cation:

def setup

@controller = ForumsController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

end

You can use the @request and @response objects, but additional convenience
accessors for session, flash, and cookies are also provided. You can access those
structures at any time in your test method, whether to set values to them or make
assertions about how their state changed due to the controller action execution.

Functional Test Methods
Normally, you should have at least a couple of test methods per controller action, to
verify handling of happy path and error conditions. The general workflow of a func-
tional test method is to put any necessary preconditions into place, and then call a
method on the test itself (such as GET, POST, PUT, DELETE, or HEAD) corresponding
to the HTTP request desired. An xhr method is also provided, which lets you simu-
late an XMLHttpRequest interaction, as would occur if the browser made an Ajax
request.

The first parameter to the request method is a symbol corresponding to the name
of the action method to be tested, followed by a hash of parameters.

The following example tests that a GET request to /forums/edit/1 is successful.

def test_should_get_edit_form

login_as :aaron

Testing Controllers with Functional Tests 571

get :edit, :id => 1

assert_response :success

end

Common Assertions
The following sorts of assertions are the most common for functional tests. You may
come up with your own, but remember that controllers shouldn’t be doing much
more than invoking business logic on your models, and setting up an environment for
the view to render properly.

Assert That Variables Were Assigned Properly for Use by Templates

One of the main behaviors of controller actions that render a template is the setting
of instance variables to be used in the view. There are a variety of different ways to
make assertions of that type, but all revolve around the fact that after invoking the
controller action, the assigns method returns a hash of instance variables set for the
template.

The scaffolding code has gotten a lot of people in the habit of asserting that
assigned variables are not nil. That’s not as safe as actually making assertions about the
contents of those assigned variables.

def test_that_users_are_assigned_properly

lame assertion

assert_not_nil assigns(:users)

getting better

assert_equal 3, assigns(:users).size

best, check the contents of users but get a sane error on failure

assert_equal %w(Bobby Sammy Jonathan), assigns(:users).map(&:login)

end

As alluded to in the final comment and assertion, we’ll get a “sane error on fail-
ure” by doing a little magic with the map method, in order to check an array of names
instead of an array of objects. The thing is, when assert_equal fails, the output will

572 17. Testing

be an inspect dump of the objects that didn’t match, which for a big ActiveRecord
model can be a big multiline jumble of code that isn’t very readable.

Assert the HTTP Status Code of a Response and Its MIME Content Type

The assert_response method of functional tests is a convenience method that
asserts that the response is one of the following types:

• :success Status code was 200.

• :redirect Status code was in the 300–399 range.

• :missing Status code was 404.

• :error Status code was in the 500–599 range.

def test_should_get_index_successfully

get :index

assert_response :success

end

You can also pass an explicit status number like assert_response(501) or its
symbolic equivalent14 assert_response(:not_implemented).

Assert the MIME Content Type of a Response (or Other Header Values)

The @response object is packed with information. (Just try adding puts
@response.inspect after processing a request if you want a look.) Among the
attributes of a response is the headers hash, which can be used to verify things like
MIME content type and character encoding.

XML_UTF8 = “application/xml; charset=utf-8”

def test_should_get_index_with_xml

request.env[‘Content-Type’] = ‘application/xml’

get :index, :format => ‘xml’

assert_response :success

assert_equal XML_UTF8, @response.headers[‘Content-Type’]

end

Testing Controllers with Functional Tests 573

Assert Rendering of a Particular Template

The assert_template method makes it simple to test whether a particular template
was rendered by the action under test:

def test_get_index_should_render_index_template

get :index

assert_template ‘index’

end

Assert Redirection to a Specified URL

By the same token, the assert_redirected_to method makes it easy to verify that
the redirection options passed in match those of the redirect called in the latest action.
This match can be partial, such that assert_redirected_to(:controller =>

“weblog”) will also match the redirection of redirect_to(:controller =>

“weblog”, :action => “show”) and so on.

def test_accessing_protected_content_redirects_to_login

get :protected

assert_redirected_to :controller => “session”, :action => “new”

end

The follow_redirect method is supposed to allow you to continue making
assertions for a second action on the same controller.15 Trying to follow a redirect to
another controller will raise an error. See the section “Rails Integration Tests” later in
this chapter to learn more about making more than one request per test method.

Assert Setting of Flash Messages

The flash convenience method gives you direct access to the flash hash of the user’s
session.

def test_accessing_protected_content_redirects_to_login

post :create ... # bad attributes

assert_equal “Problem saving. Check form and try again.”,

flash[:error]

end

574 17. Testing

Assert Database Changes Resulting from Actions

The assert_difference method provides an easy way to check controller actions
that cause records to be added to the database.

assert_difference ‘Article.count’ do

post :create, :article => {...}

end

Positive or negative differences can be specified. The default is +1, but if we spec-
ify -1 then we have an easy way of testing delete operations.

assert_difference ‘Article.count’, -1 do

delete :destroy, :id => ...

end

An array of expressions can also be passed in and evaluated.

assert_difference [Report.count’, ‘AuditLog.entries.size’], +2 do

post :create, :article => {...}

end

By the way, that +2 is legal (albeit somewhat rare) Ruby syntax. While it happens
to be unnecessary in this usage, it does convey the idea of this assertion quite elo-
quently. Make readability of your code an important goal of your day-to-day coding
activities, especially in tests.

If you want to make sure that records were not added or removed from the data-
base, you can use the assert_no_difference method:

assert_no_difference ‘Article.count’ do

post :create, :article => {...} # invalid_attributes

end

Assert Validity of a Model

The assert_valid method ensures that the passed record is valid by ActiveRecord
standards and outputs error messages if it fails.

def test_create_should_assign_a_valid_model

post :create ... # good attributes

assert_valid assigns(:post)

end

Testing Controllers with Functional Tests 575

Asserting View Output

The Rails way of testing view template output is to do so within the scope of con-
troller test methods. Triggering a controller action causes the entire rendering chain to
occur, and HTML (or other type) output to be set to response.body. Rails has a
powerful API for making assertions on that output: assert_select. If you’re look-
ing through older Rails code, you might find usages of an older view assertion method
named assert_tag—it was deprecated in favor of assert_select.

Testing Views with Functional Tests
The assert_select method uses CSS selector syntax for asserting contents of
HTML or XML markup. It’s extraordinarily flexible and powerful, because CSS selec-
tion is very flexible and powerful. If you already understand CSS selector syntax (and
as a web application developer, you probably do), then assert_select should defi-
nitely be your preferred method of testing the contents of your views.16

Here are some examples, inspired by the documentation, showing how you can
test that selected element(s) exist, have specific text content, test number, and order of
elements, and more:

def test_page_has_right_title

get :index

assert_select “title”, “Welcome”

end

def test_form_includes_four_input_fields

get :new

assert_select “form input”, 4

end

def test_show_does_not_have_any_forms_in_it

get :show, :id => 1

assert_select “form”, false, “Show page must contain no forms”

end

def page_has_one_link_back_to_user_page

get :show, :id => 1

assert_select “a[href=?]”,

url_for(:controller=>”user”, :id=>user_id),

:count => 1, :text => “Back to page”

end

576 17. Testing

The assert_select method comes in two variants, and has one of the most
complicated APIs of any other Rails method that I know. It’s unusual in that the first
parameter is optional. In both forms, the value, equality, and message, as well as
block parameters are optional.

assert_select(selector, [*values, equality, message,

&block])

The first (most common) form uses the CSS selector string to select elements from
the response in the context of a functional test.

assert_select(element, selector, [*values, equality,

message, &block])

The second form, which I believe is rarely used by most developers, takes an explicit
instance of HTML::Node as the element parameter, and selects all matching elements
starting from (and including) that element and all its children in depth-first order.

Optional Block Parameter

Calling assert_select inside an assert_select block will automatically run the
assertion for each element selected by the enclosing assertion, as in the following
examples, which have the exact same behavior:

assert_select “ol > li” do |elements|

elements.each do |element|

assert_select element, “li”

end

end

use the shorter version

assert_select “ol > li” do

assert_select “li”

end

Testing Views with Functional Tests 577

Selector Reference

The assert_select method understands the set of CSS selector formats listed in
Table 17.1. Combine them to identify one or elements for assertion.

Table 17.1 CSS Selector Reference

Selector Behavior

E An element with the tag name E. (For example “DIV” matches the
first DIV17 element encountered.)

In the subsequent table entries, E may refer either to a tag name or
any other legal CSS expression identifying one or more elements to
be matched.

E F Element F present anywhere in the child hierarchy of element E.

E > F Element F as an immediate child of element E.

Example: Verify the title of a Login page:

assert_select “html:root > head > title”, “Login”

E ~ F Element F as preceded by element E.

Example: Ensure that sponsored content in a list is before unspon-
sored content:

assert_select ‘LI.sponsored ~ LI:not(.sponsored)’

E + F Element F as immediately preceded by element E.

Example: Assert that your content DIV immediately follows your
header DIV with nothing in between:

assert_select ‘DIV#header + DIV#content’

E.class
E.class. Elements attributed with a CSS class named class.
otherclass

E#myid Elements attributed with an ID equal to myid.

E[attribute] Elements with a specified attribute name.

E[attribute= Elements with an attribute matching value exactly.
“value”]

E[attribute~= Elements with an attribute containing space-delimited values,
“value”] one of which matches value exactly.

E[attribute^= Elements with an attribute value that begins with start.
“start”]

E[attribute$= Elements with an attribute value that ends with end.
“end”]

578 17. Testing

Table 17.1 CSS Selector Reference

Selector Behavior

E[attribute*= Elements with an attribute value containing the substring str.
“str”]

E[attribute|= Elements with an attribute containing a hyphen-separated list of
“value”] values beginning with value.

E:root An element that is the root element of the document.

E:first-child The first child element of E.

Note: This and other selectors like it will match multiple elements if
E matches multiple elements.

E:last-child The last child element of E.

E:nth-child(n) The n-th child of an E element starting with the
E:nth-last- first. (In CSS, n is always 1-indexed.)

child(n) The last-child variant counts up from the last child.

E:first-of-type The first sibling of type E.

Example: Assert that all drop-down selection boxes in a given
document always include a blank option at the top:

assert_select(‘SELECT OPTION:first-of-type’,’’)

E:last-of-type The last sibling(s) of type E.

E:nth-of-type(n) The n-th sibling(s) of its type. The last-of-type
E:nth-last- variant counts up from the last sibling.
of-type(n) Example: Assert the order and content of the OPTION tags for the

following SELECT markup:

<SELECT id=”filter”>

<OPTION>None</OPTION>

<OPTION>Businesses</OPTION>

<OPTION>People</OPTION>

</SELECT>

assert_select(‘SELECT#filter option:nth-of-type(1)’,

‘None’)

assert_select(‘SELECT#filter option:nth-of-type(2)’,

‘Businesses’)

assert_select(‘SELECT#filter option:nth-of-type(3)’,

‘People’)

Testing Views with Functional Tests 579

Table 17.1 CSS Selector Reference

Selector Behavior

E:only-child Elements that are the only child of its parent matching E.

E:only-of-type Elements that are the only sibling of their type matching E.

Example: Ensure that only one external JavaScript file is ever
included on the page. (A rule sometimes enforced for performance
reasons…)

assert_select(‘HEAD SCRIPT[src]:only-of-type’)

E:empty Elements that have no children (includes text nodes).

E:not(selector) Elements that do not match the selector string provided.

Sometimes you want to use a substitution value, instead of matching for the exis-
tence or count of the CSS selector string defined. In that case, you can use the ? char-
acter as a placeholder. Works with class names (.?, classname), identifier attributes
(#?, id), and regular attributes ([attr=?], string, or regexp).

assert_select “form[action=?]”, url_for(:action=>”login”) do

assert_select “input[type=text][name=username]”

assert_select “input[type=password][name=password]”

end

Equality Tests

The equality parameter is optional and can be one of the values listed in Table 17.2.
The default value is true, which means that at least one element was found match-
ing the CSS selector. If you wish to supply only one criterion for the matched ele-
ments, use the singular form. Otherwise, pass the criteria as a hash.

580 17. Testing

Table 17.2 Options for the equality Parameter of assert_select

Singular Form Hash Form Explanation

true :minimum => 1 At least one element matched

false :count => 0 No elements matched.

“something” :text => “something” All elements matched have
the text content.

/^[a-z]{2}$/i :text => /^[a-z]{2}$/i All elements matched match
the regular expression.

n :count => n Exactly n elements matched.

:minimum => n At least n elements matched.

:maximum => n At most n elements matched

n..m :minimum => n, Number of elements
:maximum => m matched falls in the

supplied Range.

Testing RJS Behavior
Variants of assert_select_rjs are used in functional tests to check RJS-style
manipulation of the view by your controllers.

assert_select_rjs(*args, &block)

Leaving off the args asserts simply that one or more elements were updated or insert-
ed via RJS. With all variants of assert_select_rjs, nested assert_select state-
ments can be used to verify the HTML payload of the update or insertion:

Check that RJS inserts or updates a list with four items.

assert_select_rjs ‘my_list’ do

assert_select “ol > li”, 4

end

assert_select_rjs(id)

Same as assert_select_rjs(*args, &block), but specifies a particular id that is
being updated or inserted.

Testing Views with Functional Tests 581

assert_select_rjs(operation, id)

Same as assert_select_rjs(*args, &block), but specifies the operation applied
to a particular id as replace, chained_replace, replace_html,
chained_replace_html, or insert_html.

assert_select_rjs(:insert, position, id)

Again same as assert_select_rjs(*args, &block), but specifies that the RJS
operation is an :insert and the position is one of :top, bottom, before, or after.

Other Selection Methods
Rounding out the assert_select code are methods for checking e-mail and encod-
ed HTML, as well a the css_select method, which is useful in conjunction with
the version of the assert_select that takes an HTML node as its first parameter.

assert_select_email(*args, &block)

Assertions on the (HTML) body of the delivered e-mail.

assert_select_encoded(*args, &block)

For operating on encoded HTML such as RSS item descriptions.

css_select(selector, *values) and css_select(element,

selector, *values)

Return arrays of selected elements that are empty if no elements selected.

Testing Routing Rules
Rails provides a set of assertions for use in functional tests that allow you to check that
your routing file is configured as you expect it to be.

582 17. Testing

assert_generates(expected_path, options, defaults={},

extras = {}, message=nil)

Asserts that the provided options can be used to generate the provided path, which is
the inverse behavior of assert_recognizes.

assert_generates(“/items”, :controller => “items”,

:action => “index”)

assert_generates(“/items/list”, :controller => “items”,

:action => “list”)

assert_generates(“/items/list/1”, :controller => “items”,

:action => “list”, :id => “1”)

assert_recognizes(expected_options, path, extras={},

message=nil)

Asserts that the routing of the given path was handled correctly and that the parsed
options match, which is the inverse behavior of assert_generates.

check the default action

assert_recognizes({:controller => ‘items’, :action => ‘index’},

‘items’)

check a specific action

assert_recognizes({:controller => ‘items’, :action => ‘list’},

‘items/list’)

check an action with a parameter

assert_recognizes({:controller => ‘items’, :action => ‘list’,

:id => ‘1’}, ‘items/list/1’)

Pass a hash in the second argument to specify the request method. This is useful
for routes requiring a specific HTTP method. The hash should contain a :path with
the incoming request path and a :method containing the required HTTP verb.

assert that POSTing to /items will call create on ItemsController

assert_recognizes({:controller => ‘items’, :action => ‘create’},

{:path => ‘items’, :method => :post})

Testing Views with Functional Tests 583

You can also pass in “extras” with a hash containing parameters that would nor-
mally be present in the query string. This can be used to assert that URL query param-
eters are added to the params hash correctly. To test query strings you must use the
extras argument; appending the query string on the path the way that you normal-
ly do in your application code will not work.

assert that a path of ‘/items/list/1?view=print’ returns correct

options

assert_recognizes({:controller => ‘items’, :action => ‘list’,

:id => ‘1’, :view => ‘print’},

‘items/list/1’, { :view => “print” })

assert_routing(path, options, defaults={}, extras={},

message=nil)

Asserts that path and options match both ways; in other words, the URL generated
from options is the same as path, and also that the options recognized from path
are the same as options. This essentially combines assert_recognizes and
assert_generates into one step.

Rails Integration Tests
Rails 1.1 introduced a built-in integration test API as a “logical progression in the exist-
ing series of available tests.”18

Integration tests differ from functional tests in that they verify interactions across
multiple browser requests, spanning any number of controllers and actions. In addi-
tion to validating functionality of the application, well-written integration tests should
help flush out whatever bugs may be lurking in your use of routing and user sessions.
When used in this way, Rails integration tests might be suitable acceptance tests for
your project.

Basics
Integration tests are kept as files in the test/integration directory. They are exe-
cuted via the rake target test:integration, or just like other Rails tests, by invok-
ing the file directly with the Ruby interpreter.

584 17. Testing

You don’t have to write the skeleton code for an integration test yourself, since a
generator is provided. Give the generator an integration test name as its argument in
CamelCase or under_score format.

$ script/generate integration_test user_groups

exists test/integration/

create test/integration/ user_groups_test.rb

The generator will create an integration test template ready for editing, such as
the following:

require “#{File.dirname(__FILE__)}/../test_helper”

class UserGroupsTest < ActionController::IntegrationTest

fixtures :your, :models

Replace this with your real tests.

def test_truth

assert true

end

end

end

So far the process is very similar to how we write tests for models and controllers,
but in order to proceed, we have to make some decisions on how we want to implement
the feature to be tested. In this sense, writing the integration test prior to implemen-
tation of a feature serves as a design and specification tool. Before going any further
with our example, let’s take a quick look at the API methods available for coding our
integration tests.

The Integration Test API
The get and post methods take a string path as their first argument and request
parameters as the second argument, as a hash. To use the familiar controller/action
hash for the first parameter instead of a literal URL string, use the url_for method.

The follow_redirect! method instructs your test to follow any redirect initi-
ated by the last request. The status method returns the HTTP status code of the last
request. When asserting a redirect, the redirect? method asserts that the status code
of the last request is equal to 300.

Rails Integration Tests 585

ActionController::Assertions::ResponseAssertions is a module con-
taining the assertions that we use in our integration tests. Remember that all assertion
methods in Rails have an optional message parameter displayed when the assertion
fails during a test run.

assert_redirected_to(options = {}, message = nil)

Asserts that the redirection options passed in match those of the redirect called in the
latest action. This match can be partial, such that assert_redirected_to
(:controller => “weblog”) will also match the redirection of
redirect_to(:controller => “weblog”, :action => “show”), and so on.

assert_response(type, message = nil)

Asserts that the HTTP response status code matches the supplied criteria. The fol-
lowing list of symbols can be used in place of an actual integer value such as
assert_response(501).

• :success Status code was 200.

• :redirect Status code was in the 300–399 range.

• :missing Status code was 404.

• :error Status code was in the 500–599 range.

assert_template(expected = nil, message = nil)

Asserts that the request was rendered with the appropriate template file.

Working with Sessions
An integration Session instance represents a set of requests and responses performed
sequentially by some virtual user. Because you can instantiate multiple sessions and
run them side by side, you can also mimic (to some limited extent) multiple simulta-
neous users interacting with your system.

Typically, you will instantiate a new session using IntegrationTest#
open_session, rather than instantiating Integration::Session directly.

586 17. Testing

Rake Tasks Related to Testing
The default Rakefile for Rails projects includes 10 tasks related to testing, as shown in
Table 17.3.

Table 17.3 Rake Testing Tasks

Target Description

rake db:test:clone The clone task re-creates the test database from the
current environment’s database schema.

rake db:test: The clone_structure task re-creates the test database
clone_structure using the structure of the development database. Similar to

db:test:clone, except that it only copies over the
schema of the database and not the contents. You shouldn’t
need to invoke either of these tasks during everyday work,
because they are dependencies of other testing tasks.

rake db:test:prepare Prepares the test database for a test run and loads the
current development schema into it. If you are running a
test directly after having made schema changes to your
database, you have to run this task first or your test will fail.

rake db:test:purge Empties the test database.

rake test The test target is marked as the default in standard Rails
rakefiles, meaning you can run it simply by typing rake
at the command line. It runs all tests in test/units and
test/functionals folders.

rake test:functionals Run only the tests in the test/functionals folder.

rake test:integration Run only the tests in the test/integration folder.

rake test:units Run only the tests in the test/units folder.

rake test:recent Run only tests that have been modified in the last 10 minutes.

rake test:uncommitted Run only the tests that are modified according
to Subversion.

Rake Tasks Related to Testing 587

Acceptance Tests
A well-written acceptance test suite is an essential ingredient in the success of any
complex software project, particularly those run on Agile principles and methodolo-
gies such as extreme programming. In fact, one of the best definitions that I’ve run
across for acceptance test is from the Extreme Programming official website:

The customer specifies scenarios to test when a user story has been correctly
implemented. A story can have one or many acceptance tests, what ever it takes
to ensure the functionality works.19

Stated simply, acceptance tests let us know that we are done implementing a given
feature, or user story, in XP lingo. Traditionally, acceptance tests consist of test
scripts—a list of actions taken by a tester (or encoded into a testing tool) to ensure
that the application works correctly. Nowadays, relying on manual acceptance testing
to verify web applications is considered a worst practice. It is slow, error-prone, and
expensive.

An individual acceptance test is useful to the developer who writes it as a design
and tasking tool. A whole suite of automated acceptance tests covering the desired
functionality of our application is a useful and continuous indicator of the state of
your project’s completion.

Acceptance Test First?
As a Rails developer working on a given user story or feature, having an automated
acceptance test keeping me focused on the task at hand helps keep my productivity at
optimal levels. The same principles of test-driven development (TDD) apply, just at a
higher conceptual level than unit tests. It’s so easy to do most stuff in Rails that you
might find it hard to limit yourself to working on a particular task at a time, and that’s
a dangerous habit to get into.

Also, experience has shown that most Rails applications (and Web 2.0 apps in
general) are data and UI-heavy. They simply don’t have a lot of business logic driving
a critical need for extensive unit tests. However, you can’t just leave parts of your appli-
cation without test coverage—in an interpreted language like Ruby, that’s a recipe for
disaster.

That’s where automated acceptance tests come in: Encode the acceptance criteria
for a given user story or feature prior to implementing it. Requirements not clear? Seek
clarity. Not sure how your application’s models and controllers need to be designed?
Go for it. Make some initial decisions and use those as the basis for your test.

588 17. Testing

Prior to working on the implementation, your acceptance test will fail near its
beginning. As you code the implementation, run the acceptance test over and over
again and watch the red bars turn into green bars. Once the whole test is green, you’re
done! In the process you’ve created an automated regression suite that yields a multi-
tude of benefits down the road.

Luckily, since so many Rails developers are fans of Agile, there are strong options
available that let you quickly and easily create acceptance test suites for your own Rails
projects.

This chapter covers the most significant options available, starting with an open-
source product called Selenium on Rails, continuing with a look at the acceptance-
testing capabilities built into Rails itself, and finishing off with descriptions of other
useful acceptance-testing tools for Rails.

Selenium
Selenium is the name of a family of testing tools featuring tests that run directly in the
web browser, exactly replicating the actions of a real user. Selenium was developed by
a team of programmers and testers at ThoughtWorks, and is designed specifically for
the acceptance testing requirements of Agile teams.

Basics
A Selenium script consists of a series of commands that manipulate and verify the state
of the web browser. There are three kinds of Selenium commands: actions, accessors,
and assertions. In the beginning, you will mostly be using actions and assertions. Most
commands take two parameters: target and value.

Some commands wait for a condition to become true, which allows Selenium to
test page transitions and Ajax functionality. Such commands will succeed immediate-
ly if the condition is already true, but they will fail and halt the test if a timeout value
is exceeded before the condition does become true.

Actions and Assertions

Actions are commands that generally manipulate the state of the application. They do
things like “open a URL” and “click a specific hyperlink.” When an action fails or
errors out, execution of the test stops.

Selenium 589

Actions with the “AndWait” suffix, such as click_and_wait, tell Selenium that
the action will cause the browser to make a call to the server, and that Selenium should
wait for a new page to load or an Ajax call to complete.

Assertions are used to verify that the state of the application conforms to what is
expected. Examples include “make sure the page title is X” and “verify that this check
box is checked.” All Selenium assertions can be used in three modes: assert, verify,
and wait_for. For example, you can assert_text, verify_text, and
wait_for_text.

When an assert fails, the test stops execution. When a verify fails, the test will
log the failure, but continue executing. Therefore, use asserts to check state that is
necessary in order to continue testing, and verifies to check things like form-field
values, which don’t necessarily mean you need to halt the test.

Locators

You target Selenium actions and assertions at some HTML element on the page under
test using element locators. There are various kinds of locator strings with their own
conventions in Selenium, but the most common are automatically understood by the
engine. Locators starting with document. are treated as a DOM traversal expression
in JavaScript. Locators starting with // are treated as a DOM traversal expression in
XPath. Any other locator string (unless prefixed) is treated as an identifier (id attrib-
ute of an element).

Patterns

Patterns are used to specify expected values of arbitrary text on the page, form field
values, specific nodes in the markup, element attributes, and so on. Selenium supports
various types of pattern including regular expressions, but most of the time your pat-
tern will simply be a text string.

Selenium Reference

A complete Selenium reference is available online.20 This chapter introduces the use of
Selenium commands, but does not provide an exhaustive usage guide for them.

590 17. Testing

Getting Started
Selenium on Rails21 is the name of the Selenium product crafted specifically for Rails
developers and is distributed as a Rails plugin. It has been designed to work seamless-
ly with the Rails testing environment and fixtures.

It’s easy to install Selenium on Rails and get started.

1. Install the core Selenium files needed by the plugin: gem install selenium

2. Install the Selenium on Rails plugin for a given project: script/plugin install
http://svn.openqa.org/svn/selenium-on-rails/selenium-on-rails/

3. Generate the test directory and a test script: script/generate selenium

first.rsel

4. Start your Rails server in its test environment: server -e test

5. Open the Selenium Test Runner in your browser: http://localhost:3000/selenium

If your installation and setup succeeded, you see the Selenium Test Runner in
your browser. You should also know that Selenium tests can be run from the com-
mand line and integrated into an automated suite of tests, but for demonstration pur-
poses we will use the built-in web interface to execute our tests.

First Test

Go ahead and click the All button in the Execute Tests control panel. Selenium will
execute the First test script, displayed in the center-top panel of the interface. Unless
the title of the page at the base URL of your Rails application reads “Home,” the test
will fail.

The first two commands of the test have a light green background color. This
indicates that they executed correctly. However, the header cell and the row contain-
ing the assertTitle command have light red backgrounds indicating failure. The
control panel in the top-right pane of the interface shows the status of the test run.

To make the test pass, open the file test/selenium/first.rsel, and edit the
assert_title command so that it checks the actual contents of the title element for
your site. In my case, I changed it to check for “Ruby on Rails: Welcome aboard.”

setup

open ‘/’

assert_title ‘Ruby on Rails: Welcome aboard’

Selenium 591

I flip back over to the browser and refresh the page so that my changes are picked
up. Now when I run the test, it should pass successfully and turn green, the color of
progress!

RSelenese
Selenium on Rails scripts are written in Ruby, using an API that the authors have nick-
named RSelenese. It is a direct port of the Selenium command language, except that
commands are Ruby-fied—lowercase and underscore-delimited rather than
CamelCase. The Selenium on Rails engine looks for RSelenese tests in the
test/selenium directory tree in files ending with the .rsel extension.

Selenium on Rails also understands HTML-formatted scripts, and will execute
any that it finds in files with an .sel extension. However, in practice you are better
off keeping as much of your application written in Ruby as possible, and tests are not
necessarily an exception to that rule. Also, since RSelenese is just plain Ruby, you can
use normal language constructs such as conditionals and loops for extra expressive
power whenever needed.

The example shows use of an iterator in RSelenese to successively open 10 pages:

(1..10).each do |num|

open :controller => ‘user’, :action => ‘list’, :page => num

end

Partial Scripts

Quite often, there are parts of your acceptance test suite that will appear identically in
each test case. To keep things DRY, you can define script partials and include them
inside test scripts. If you have some common actions you want to do in several test
cases you can put them in a separate partial test case and include them in your other
test cases.

A partial test case is just like a normal test case except that its filename starts with
an underscore.

#_login.rsel

open ‘/login’

type ‘name’, ‘john’

type ‘password’, ‘password’

click ‘submit’

592 17. Testing

To include a partial test case in a RSelenese test case, use include_partial:

include_partial ‘login’

The ability to pass variables to partials makes them even more useful. For
instance, let’s assume that we want to use the _login partial for more than just the
john user. Within the partial, put local variable placeholders for the parameters…

#_login.rsel with params

open ‘/login’

type ‘name’, name

type ‘password’, password

click ‘submit’

…and then pass values for those parameters in the call to include_partial as a
hash.

include_partial ‘login’, :name => ‘jane’, :password => ‘foo’

Conclusion
This chapter has turned out to be one of the most difficult to write in the whole book,
probably because the material in it merits a book of its own. We’ve learned quite a bit
about Rails testing, and how in order for it to be hassle-free, we have to be smart about
our use of fixtures and use third-party mocking libraries such as Mocha. We also dis-
cussed the differences between unit, functional, integration, and acceptance tests in
Rails, covering a lot of reference material along the way that will be helpful to you in
your day-to-day coding.

It turns out that many Rails developers have opted to drop Rails testing entirely
and adopt a slightly different way of thinking about how they verify their projects. The
philosophy is called behavior-driven development and the library they use is called
RSpec.

Conclusion 593

References

1. Snooty Pythonistas hate the term “monkeypatching,” which is used to describe changing imple-
mentation of classes that you didn’t write thanks to open classes. Hardcore Rubyists dislike it as
well, because they don’t think the practice is unusual enough to merit a special term. Adam Keys
suggests the term “duck-punching” is now in vogue. I simply think one word is preferable to the
mouthful: “altering the behavior of an existing class or object thanks to Ruby’s open classes.”

2. I admit that’s hyperbole. When I ran this paragraph by Rick Olson, he implicitly defended the
core team by telling me “Mocha wasn’t around then.”

3. Learn more about Mocha at http://mocha.rubyforge.org/.

4. I asked David to explain why they are categorized the way they are, and he said, “Unit tests were
chosen to imply that these tests were about dealing with individual methods of the models or
services while functional tests would deal with compositions of more elements (both controllers
and models). In practice, there’s much bleeding going on and today it could just as well have been
called models and controller tests. It’s not an area of great importance to us.”

5. See http://yaml.org for more information about YAML.

6. It is not uncommon to accidentally mess up the indentation of fixture files. Luckily, the error
message that Rails will spit out when you have a bad fixture is usually informative.

7. Hey, as a programmer it’s actually a compliment, not an insult, to be called lazy.

8. When I asked in #caboose, Courtenay said: “It’s about whether anyone in core ever wanted to
dump their fixtures to a file.” It’s probably as simple as that.

9. Improve your fixtures experience with http://thatswhatimtalkingabout.org/news/2006/8/31/fix-
ture-sets-for-rails.

10. Improve your fixtures experience even more with http://www.pluginaweek.org/2007/04/07/14-
fix-your-fixtures-with-fewer-foreign-key-ids/.

11. Jay has one of the best explanations for why you should limit the number of assertions in a sin-
gle test at http://blog.jayfields.com/2007/06/testing-one-assertion-per-test.html.

12. If dependencies external to the object under test are required in order to write a unit test, they
should be mocked or stubbed so that the correct operation of those external dependencies does
not become part of this particular test case. We’ll talk about mocks and stubs later.

13. Beast is a “small, lightweight forum in Rails with a scary name and a goal of around 500 lines of
code.” Visit http://beast.caboo.se/ for more information.

594 17. Testing

14. Browse ActionController::StatusCodes in the Rails source code for a full list of
response symbols.

15. At the time of this writing, the follow_redirect method for functional tests is broken.
See http://dev.rubyonrails.org/ticket/7997 for more information and status of this bug.

16. Incidentally, assert_select is evidence of the Rails plugin philosophy in action. It started
out as a plugin authored by Assaf Arkin and was found to be so useful that the core team rolled
it into the release of Rails 1.2 in January 2007.

17. CSS tag selectors are case-insensitive. Throughout this book we generally set off HTML tag
names in caps just for clarity’s sake.

18. Jamis has a good introduction at
http://jamis.jamisbuck.org/articles/2006/03/09/integration-testing-in-rails-1-1.

19. Definition of acceptance testing is at
http://www.extremeprogramming.org/rules/functionaltests.html.

20. Selenium reference is available at
http://release.openqa.org/selenium-core/nightly/reference.html.

21. For the Selenium on Rails plugin see http://openqa.org/selenium-on-rails/.

References 595

This page intentionally left blank

CHAPTER 18
RSpec on Rails

I do not think there is any thrill that can go through the human heart like that
felt by the inventor as he sees some creation of the brain unfolding to success.
—Nikola Tesla

RSpec is a Ruby domain-specific language for specifying the desired behavior of a
Ruby application. Its strongest appeal is that RSpec scripts tend to be very readable,
letting the authors express their intention with greater readability and fluidity than is
achievable using Test::Unit’s methods and assertions.

RSpec on Rails, a drop-in replacement for the Rails testing subsystem, was released
by the RSpec team in late 2006. It supplies verification, mocking, and stubbing fea-
tures customized for use with Rails models, controllers, and views. I’m happy to say
that I’ve been using the RSpec plugin for my Rails projects every day since it was
released, and have never needed to touch Test::Unit for anything significant again.1

RSpec is simply that good.

Introduction to RSpec
Since RSpec scripts (or specs) are so readable, I can’t really think of a better way of
introducing you to the framework than to dive into some actual specs. Along the way,
I’ll highlight the key concepts that you need to know.

Listing 18.1 is part of a real-world RSpec script defining the behavior of a
CreditCard model class.

Listing 18.1 A Description Block from Monkeycharger’s CreditCard Spec2

1 describe “A valid credit card” do
2 before(:each) do
3 @credit_card = generate_credit_card
4 end
5
6 it “should be valid after saving” do
7 @credit_card.save
8 @credit_card.should be_valid
9 end
10 end

RSpec scripts are collections of behaviors, which in turn have collections of exam-
ples. Line 1 uses the describe method to create a Behavior object under the cov-
ers. The behavior sets the context for a set of specification examples, and you should
pass it a sentence fragment that accurately describes the context you’re about to
specify.

The before method on line 2 (and its companion after) are akin to the setup
and teardown methods of xUnit frameworks like Test::Unit. They are used to set
up the state as it should be prior to running an example, and if necessary, to clean up
the state after the example has run. This particular behavior did not require an after
block. (For brevity, the source of the generate_credit_card method on line 3 is
not included in this listing. It is simply a factory method that returns instances of
CreditCard preset with known and overridable attribute values. We’ll learn more
about using helper methods to write more readable spec code later in the chapter.)

The it method on line 6 is used to create an Example object, and you also give
it a description. The idea is to complete the thought that was started in the describe
method, so that it forms a complete sentence. Our example reads “A valid credit card
should be valid after saving.” See it?

Should and Expectations
Moving on, line 7 of Listing 18.1 invokes save on the credit card object, and since
it’s an ActiveRecord model, we know that will get it validated. So all we have left is
to verify that the credit card instance is valid. Rather than xUnit-style assertions,
RSpec introduces some funky DSL-ish syntax to do verification, based on a pair of
methods called should and should_not.

598 18. RSpec on Rails

RSpec mixes should and should_not into the base Ruby Object class at run-
time so that they are available on all objects. They expect to receive Matcher objects,
which you generate using RSpec expectation syntax.

@credit_card.should be_valid

There are several ways to generate expectation matchers and pass them to should
(and should_not):

receiver.should(matcher) # the simplest example

Passes if matcher.matches?(receiver)

receiver.should == expected #any value

Passes if (receiver == expected)

receiver.should === expected #any value

Passes if (receiver === expected)

receiver.should =~ regexp

Passes if (receiver =~ regexp)

The process of learning to write expectations is probably one of the meatier parts
of the RSpec learning curve. One of the most common idioms is “should equal,” akin
to Test::Unit’s assert_equal assertion. This is how you would rewrite the “cred-
it card should be valid” assertion using should equal syntax:

@credit_card.valid?.should == true

The valid? method returns true or false and according to our spec, it should
be true. Now, why didn’t we write the expectation that way to begin with? Simply
because that question-mark-and-period combo is ugly. It works, but it’s not as elegant
or readable as saying: should be_valid. There is no predefined be_valid method
in RSpec—it is an arbitrary predicate.

Predicates
Thanks to the magic of method_missing, RSpec can support arbitrary predicates,
that is, it understands that if you invoke something that begins with be_, then it
should use the rest of the method name as a pointer to a Boolean attribute of the tar-
get object.

Introduction to RSpec 599

The simplest hard-coded predicate-style matchers are used to assert Boolean and
nil target values:

target.should be_true

target.should be_false

target.should be_nil

target.should_not be_nil

The arbitrary predicate matchers can assert against any Boolean target, and even
support parameters!

collection.should be_empty #passes if target.empty?

target.should_not be_empty # passes unless target.empty?

target.should_not be_under_age(13) # passes unless

target.under_age?(13)

As an alternative to prefixing arbitrary predicate matchers with be_, you may
choose from the indefinite article versions be_a_ and be_an_, making your specs read
much more naturally:

“a string”.should be_an_instance_of(String)

3.should be_a_kind_of(Fixnum)

3.should be_a_kind_of(Numeric)

3.should be_an_instance_of(Fixnum)

3.should_not be_instance_of(Numeric) #fails

The cleverness (madness?) doesn’t stop there. RSpec will even understand have_
prefixes as referring to predicates like has_key?:

{:foo => “foo”}.should have_key(:foo)

{:bar => “bar”}.should_not have_key(:foo)

RSpec has a number of expectation matchers for working with classes that imple-
ment module Enumerable. You can specify whether an array should include a par-
ticular element, or if a string contains a substring.

[1, 2, 3].should include(1)

[1, 2, 3].should_not include(4)

600 18. RSpec on Rails

“foobar”.should include(“bar”)

“foobar”.should_not include(“baz”)

You get a slick bit of syntactic sugar for testing the length of collections:

[1, 2, 3].should have(3).items

What if you want to specify the length of a has_many collection?
“Schedule.days.should have(3).items” is admittedly quite ugly. RSpec gives us some
more sweetness here as well.

schedule.should have(3).days # passes if schedule.days.length == 3

Custom Expectation Matchers
When you find that none of the stock expectation matchers provide a natural-feeling
expectation, you can very easily write your own. All you need to do is write a Ruby
class that implements the following four methods (only two are required):

matches?(actual)

failure_message

negative_failure_message #optional

description #optional

The example given in the RSpec API documentation is a game in which players
can be in various zones on a virtual board. To specify that a player bob should be in
zone 4, you could write a spec like this:

bob.current_zone.should eql(Zone.new(“4”))

However, it’s more expressive to say one of the following, using the custom
matcher in Listing 18.2:

bob.should be_in_zone(“4”) and bob.should_not be_in_zone(“3”)

Introduction to RSpec 601

Listing 18.2 BeInZone Custom Expectation Matcher Class

class BeInZone
def initialize(expected)
@expected = expected

end
def matches?(target)
@target = target
@target.current_zone.eql?(Zone.new(@expected))

end

def failure_message
“expected #{@target.inspect} to be in Zone #{@expected}”

end

def negative_failure_message
“expected #{@target.inspect} not to be in Zone #{@expected}”

end

end

In addition to the matcher class you would also need to write the following
method so that it’d be in scope for your spec.

def be_in_zone(expected)

BeInZone.new(expected)

end

This is normally done by including the method and the class in a module, which
is then included in your spec.

describe “Player behaviour” do

include CustomGameMatchers

...

end

Or you can include helpers globally in a spec_helper.rb file required from
your spec file(s):

Spec::Runner.configure do |config|

config.include(CustomGameMatchers)

end

602 18. RSpec on Rails

Note that you don’t have to worry about Behavior and Example object instances
while you’re writing RSpec scripts. (They are only used internally by the framework.)

Multiple Examples per Behavior
The Monkeycharger example presented in Listing 18.1 is pretty simple and only has
one example, but only because I wanted a simple introduction to the most basic con-
cepts of RSpec.

A behavior usually has more than one example in it. It’s easiest to just show you
some more code from Monkeycharger. Listing 18.3 is the next describe block of
that CreditCard spec and has five examples.

Listing 18.3 Another Description Block from Monkeycharger’s CreditCard Spec

describe CreditCard do
it “should have a valid month” do
card = generate_credit_card(:month => ‘f’)
card.errors.on(:month).should == “is not a valid month”

end

it “should have a valid year” do
card = generate_credit_card(:year => ‘asdf’)
card.errors.on(:year).should == “is not a valid year”

end

it “date should not be in the past” do
past_month = (Date.today << 2)
card = generate_credit_card(:year => past_month.year,

:month => past_month.month)
card.should_not be_valid

end

it “should have two words in the name” do
card = generate_credit_card(:name => “Sam”)
card.errors.on(:name).should == “must be two words long.”

end

it “should have two word last_name if name is three words long” do
card = generate_credit_card(:name => “Sam Van Dyk”)
card.last_name.should == “Van Dyk”

end

it “should have one word first_name if name is three words long” do
card = generate_credit_card(:name => “Sam Van Dyk”)
card.first_name.should == “Sam”

end

end

Introduction to RSpec 603

Even if you don’t know much about credit cards (or RSpec for that matter), you
should still be able to read through this spec without too much of a problem.

Plain old RSpec scripts usually need a string passed to the describe method. The
spec in Listing 18.3 happens to be an ActiveRecord model spec based on the RSpec
on Rails plugin, so it’s okay to pass it an ActiveRecord model class instead of a
description string. (More on that later when we get into Rails specifics. Right now
we’re still just getting through the basics of RSpec.)

Shared Behaviors
Often you’ll want to specify multiple behaviors that share a lot of the same behav-

ior. It would be silly to type out the same code over and over. Most programmers will
extract the common code into individual methods. However, the problem is that an
RSpec behavior contains many pieces:

• before(:all)

• before(:each)

• after(:each)

• after(:all)

• all of the expectations

• any included modules

Even with good refactoring, you’ll end up with lots of duplication. Fortunately
RSpec lets us take advantage of shared behaviors. Shared behaviors aren’t run individ-
ually, but rather are included into other behaviors. We do this by passing the :shared
=> true option to describe.

Let’s say we want to specify two classes, Teacher and Student. In addition to
their unique behavior, they have some common behavior that we’re interested in.
Instead of specifying the same behavior twice, we can create a shared behavior and
include it in each class’s specification.

describe “people in general”, :shared => true do

it “should have a name” do

@person.name.should_not be_nil

end

604 18. RSpec on Rails

it “should have an age” do

@person.age.should_not be_nil

end

end

Where does the @person instance variable come from? We never assigned it any-
where. It turns out this spec won’t run because there’s nothing to run yet. Shared
behaviors are just used to factor out common behavior specifications. We need to
write another spec that uses the shared behavior.

describe Teacher do

before(:each) do

@person = Teacher.new(“Ms. Smith”, 30, 50000)

end

it_should_behave_like “people in general”

it “should have a salary” do

@person.salary.should == 50000

end

end

The it_should_behave_like takes a string argument. RSpec then finds the
shared behavior with that name and includes it into the Teacher specification.

We can do the same thing with Student.

describe Student do

before(:each) do

@person = Student.new(“Susie”, 8, “pink”)

end

it_should_behave_like “people in general”

it “should have a favorite color” do

@person.favorite_color.should == “pink”

end

end

Passing —format specdoc (or -f s in abbreviated form) to the spec command
shows that the shared behavior is indeed included in the individual class specifications.

Introduction to RSpec 605

Teacher

- should have a name

- should have an age

- should have a salary

Student

- should have a name

- should have an age

- should have a favorite color

It’s important to note that, as of this writing, RSpec runs the before and after

methods in the order they’re defined in the spec. You can see this by adding an out-
put statement to each one.

describe “people in general”

before(:each) do

puts “shared before()”

end

after(:each) do

puts “shared after()”

end

...

end

describe Teacher do

before(:each) do

puts “teacher before()”

@person = Teacher.new(“Ms. Smith”, 30, 50000)

end

after(:each) do

puts “teacher after()”

end

it_should_behave_like “people in general”

...

end

606 18. RSpec on Rails

This will give us the following output:

teacher before()

shared before()

teacher after()

shared after()

.

Move the it_should_behave_like statement to the beginning of the spec and
notice how the shared behavior’s before method runs first.

RSpec’s Mocks and Stubs
In Chapter 17, “Testing,” we introduced the concepts of mocks and stubs in associa-
tion with the Mocha library. RSpec relies heavily on mocking and stubbing.3 It’s pos-
sible to use Mocha together with RSpec, but in our examples we’ll use RSpec’s own
mocking and stubbing facilities, which are equally powerful. Actually, they are almost
the same—mostly the method names change a little bit.

Mock Objects

To create a mock object, you simply call the mock method anywhere in a spec, and
give it a name as an optional parameter. It’s a good idea to give mock objects a name
if you will be using more than one of them in your spec. If you use multiple anony-
mous mocks, you’ll probably have a hard time telling them apart if one fails.

echo = mock(‘echo’)

Remember that you set expectations about what messages are sent to your mock
during the course of your spec—mocks will cause a spec to fail if their expectations
are not met. Where you would say expects in Mocha to set an expectation on that
mock that a message will be passed, in RSpec we say should_receive or
should_not_receive.

echo.should_receive(:sound)

Introduction to RSpec 607

Both frameworks have a chained method called with used to set expected param-
eters, and where in Mocha we would say returns to set the return value, in RSpec
we say and_return. It’s close enough that you should be able to switch between
frameworks pretty easily, if you need to do so.

echo.should_receive(:sound).with(“hey”).and_return(“hey”)

Null Objects

Occasionally you just want an object for testing purposes that accepts any message
passed to it—a pattern known as null object. It’s possible to make one using the mock
method and the :null_object option.

null_object = mock(‘null’, :null_object => true)

Stub Objects

You can easily create a stub object in RSpec via the stub factory method. You pass
stub a name (just like a mock) and default attributes as a hash.

yodeler = stub(‘yodeler’, :yodels? => true)

By the way, there’s no rule that the name parameter of a mock or stub needs to be
a string. It’s pretty typical to pass mock or stub a class reference corresponding to the
real type of object.

yodeler = stub(Yodeler, :yodels? => true)

The stub factory method is actually just a convenience—what you get back is a
Mock object, with predefined method stubs, as you can see from its implementation
shown in Listing 18.4:

Listing 18.4 File rspec/lib/spec/mocks/spec_methods.rb, Line 22

def stub(name, stubs={})
object_stub = mock(name)
stubs.each { |key, value| object_stub.stub!(key).and_return(value) }
object_stub

end

608 18. RSpec on Rails

Partial Mocking and Stubbing

See the stub! method in Listing 18.4? You can use it to
install or replace a method on any object, not just
mocks—a technique called partial mocking and stubbing.

A partial is RSpec’s way of describing an instance of an
existing class that has some mocked or stubbed behavior
set on it. Even though RSpec’s authors warn us about the
practice in their docs, the ability to do partial mocking
and stubbing is actually really crucial to RSpec working
well with Rails, particularly when it comes to interactions
involving ActiveRecord’s create and find methods.

To see RSpec mocking and stubbing in action, let’s go back and take a look at
another Monkeycharger model spec, this time for the Authorizer class. It talks to a
payment gateway and specifies how credit card transactions are handled.

You might recall that back in Chapter 17, in the “Rails Mocks?” section, we
touched on how external services need to be mocked, so that we don’t end up sending
test data to a real service. Listing 18.5 shows you this technique in action, using RSpec
mocks and stubs.

Listing 18.5 Monkeycharger’s Authorizer Model Spec

describe Authorizer, “processing a non-saved card” do

before(:each) do
@card = CreditCard.new(:name => ‘Joe Van Dyk’,

:number => ‘4111111111111111’,
:year => 2009, :month => 9,
:cvv => ‘123’)

end

it “should send authorization request to the gateway” do
$gateway.should_receive(:authorize)

.with(599, @card).and_return(successful_authorization)

Authorizer::authorize!(:credit_card => @card, :amount => ‘5.99’)
end

it “should return the transaction id it receives from the gateway” do
$gateway.should_receive(:authorize)

.with(599, @card).and_return(successful_authorization)

Authorizer::authorize!(:credit_card => @card, :amount => ‘5.99’)

Introduction to RSpec 609

.should == successful_authorization.authorization
end

it “authorize! should raise AuthorizationError on failed authorize” do
$gateway.should_receive(:authorize)

.with(599, @card).and_return(unsuccessful_authorization)

lambda {
Authorizer::authorize!(:credit_card => @card, :amount =>

‘5.99’)
}.should raise_error(AuthorizationError,

unsuccessful_authorization.message)
end

private

def successful_authorization
stub(Object, :success? => true, :authorization => ‘1234’)

end

def unsuccessful_authorization
stub(Object, :success? => false, :message => ‘reason why it

failed’)
end

end

Running Specs
Specs are executable documents. Each example block is executed inside its own object
instance, to make sure that the integrity of each is preserved (with regard to instance
variables, etc.).

If I run the credit card specs from Listings 18.1 and 18.2 using the spec
command that should have been installed on my system by RSpec, I’ll get output sim-
ilar to that of Test::Unit—familiar, comfortable, and passing… just not too
informative.

$ spec spec/models/credit_card_spec.rb

.........

Finished in 0.330223 seconds

9 examples, 0 failures

610 18. RSpec on Rails

Bye-Bye Test::Unit

In case it wasn’t obvious by now, when we’re using RSpec,
we don’t have to use Test::Unit any more. They serve
similar, mutually exclusive functions: to specify and verify
the operation of our application. Both can be used to
drive the design of an application in an evolutionary man-
ner according to the precepts of test-driven development
(TDD).

There’s a project called test/spec that implements
Behavior-Driven Development (BDD) principles on top
of Test::Unit, but at the time that I’m writing this, it’s
far behind RSpec and doesn’t seem to have much momen-
tum.

RSpec is capable of outputting results of a spec run in many formats. The tradi-
tional dots output that looks just like Test::Unit is called progress and, as we saw a
moment ago, is the default.

If we add the -fs command-line parameter to spec, we can cause it to output
the results of its run in a very different and much more interesting format, the specdoc
format. It surpasses anything that Test::Unit is capable of doing on its own “out of
the box.”

$ spec -fs spec/models/credit_card_spec.rb

A valid credit card

- should be valid

CreditCard

- should have a valid month

- should have a valid year

- date should not be in the past

- should have two words in the name

- should have two words in the last name if the name is three words

long

- should have one word in the first name if the name is three words

long

Introduction to RSpec 611

We only take Visa and MasterCard

- should not accept amex

- should not accept discover

Finished in 0.301157 seconds

9 examples, 0 failures

Nice, huh? If this is the first time you’re seeing this kind of output, I wouldn’t be
surprised if you drifted off in speculation about whether RSpec could help you deal
with sadistic PHB-imposed documentation requirements.

We can also do Ruby RDoc-style output:

$ spec -fr spec/models/authorization_spec.rb

Authorizer a non-saved card

* the gateway should receive the authorization

* authorize! should return the transaction id

* authorize! should throw an exception on a unsuccessful

authorization

Finished in 0.268268 seconds

3 examples, 0 failures

And perhaps the most beautiful output of all, color-coded HTML output, which
is what TextMate pops up in a window whenever I run a spec in the editor.

Figure 18.1 shows a successful spec run. If we had failing examples, some of those
bars would have been red. Having these sorts of self-documenting abilities is one of
the biggest wins you get in choosing RSpec. It actually compels most people to work
toward better coverage of their project. I also know from experience that development
managers tend to really appreciate RSpec’s output, even incorporating it into their
project deliverables.

Besides the different formatting, there are all sorts of other command-line options
available. Just type spec --help to see them all.

612 18. RSpec on Rails

Figure 18.1 RSpec HTML-formatted results

Installing RSpec and the RSpec on Rails Plugin
To get started with RSpec on Rails, you need to install the main RSpec library gem.
Then install the RSpec on Rails plugin4 into your project:

sudo gem install rspec

script/plugin install

svn://rubyforge.org/var/svn/rspec/tags/CURRENT/rspec_on_rails

The project leads actually advise you to install RSpec as a Rails plugin also, so that
you can have different versions on a per-project basis.

That does it for our introduction to RSpec. Now we’ll take a look at using RSpec
with Ruby on Rails.

The RSpec on Rails Plugin
The RSpec on Rails plugin provides four different contexts for specs, corresponding
to the four major kinds of objects you write in Rails. Along with the API support you
need to write Rails specs, it also provides code generators and a bundle of Rake tasks.

The RSpec on Rails Plugin 613

Generators
Assuming you have the plugin installed already, you should run the rspec generator
provided to set up your project for use with RSpec.

$ script/generate rspec

create spec

create spec/controllers

create spec/fixtures

create spec/helpers

create spec/models

create spec/views

create spec/spec_helper.rb

create spec/spec.opts

create previous_failures.txt

create script/spec_server

create script/spec

A spec directory is created, containing subdirectories for each of the four types
of specs. A bunch of additional support files are also created, which we’ll look at in
detail later on.

Model Specs
Model specs help you design and verify the domain model of your Rails application,
both ActiveRecord and your own classes. RSpec on Rails doesn’t provide too much
special functionality for model specs, because there’s not really much needed beyond
what’s provided by the base library.

An rspec_model generator is provided, which can be used in place of the default
model generator that’s included in Rails. It functions almost the same as its default
counterpart, except that it creates a stubbed-out spec in the models directory instead
of a stubbed-out test in the test directory. Pass it a class name (capitalized) and pairs of
attribute_name:type values. The datetime columns (updated_at/created_at)
are automatically added to the migration; no need to specify them.

$ script/generate rspec_model Schedule name:string

exists app/models/

exists spec/models/

exists spec/fixtures/

create app/models/schedule.rb

create spec/fixtures/schedules.yml

614 18. RSpec on Rails

create spec/models/schedule_spec.rb

exists db/migrate

create db/migrate/001_create_schedules.rb

The generated Schedule class is empty and not very interesting. The skeleton
spec/models/schedule.rb looks like this:

require File.dirname(__FILE__) + ‘/../spec_helper’

describe Schedule do

before(:each) do

@schedule = Schedule.new

end

it “should be valid” do

@schedule.should be_valid

end

end

Assume for a moment that the Schedule class has a collection of day objects.

class Schedule < ActiveRecord::Base

has_many :days

end

Let’s specify that we should be able to get a roll-up total of hours from schedule
objects. Instead of fixtures, we’ll mock out the days dependency.

require File.dirname(__FILE__) + ‘/../spec_helper’

describe Schedule do

before(:each) do

@schedule = Schedule.new

end

it “should calculate total hours” do

days_proxy = mock(‘days’)

days_proxy.should_receive(:sum).with(:hours).and_return(40)

@schedule.stub!(:days).and_return(days_proxy)

@schedule.total_hours.should == 40

end

end

The RSpec on Rails Plugin 615

Here we’ve taken advantage of the fact that association proxies in Rails are rich
objects. ActiveRecord gives us several methods for running database aggregate func-
tions. We set up an expectation that days_proxy should receive the sum method with
one argument—:hours—and return 40.

We can satisfy this specification with a very simple implementation:

class Schedule

has_many :days

def total_hours

days.sum :hours

end

end

One valid criticism of this approach is that it makes our code harder to refactor.
Our spec would fail if we changed the implementation of total_hours to use
Enumerable#inject, even though the external behavior doesn’t change.
Specifications are not only about describing the visible behavior of objects, but the
interactions between an object and its associated objects as well. Mocking the associ-
ation proxy in this case lets us clearly specify how a Schedule should interact with its
Days.

A huge benefit of mocking the days proxy is that we no longer rely on the data-
base5 in order to write our specifications and implement the total_hours method.
Our specs will run very quickly, and we don’t have any messy fixtures to deal with!

Leading mock objects advocates see mock objects as a temporary design tool. You
may have noticed that we haven’t defined the Day class yet. So another benefit of using
mock objects is that they allow us to specify behavior in true isolation, and during
design-time. There’s no need to break our design rhythm by stopping to create the Day
class and database table. This may not seem like a big deal for such a simple example,
but for more involved specifications it is really helpful to just focus on the design task
at hand. After the database and real object models exist, you can go back and replace
the mock days_proxy with calls to the real deal. This is a subtle, yet very powerful
message about mocks that is usually missed.

616 18. RSpec on Rails

Quick Mock ActiveRecord Models

mock_model(model_class, stubs = {})

The mock_model method creates mocks with autogenerat-
ed numeric ids and a number of certain common methods
stubbed out:

• id Returns the autogenerated id value

• to_param Returns the id value as a string

• new_record? Returns false

• errors Returns a stub errors collection that will
report a 0 error count

• is_a? Returns true if the parameter matches
model_class

• class Returns model_class

You should pass in any additional stubbed method values
via the stubs hash argument or set them in a block using
the yielded mock instance.

Controller Specs
RSpec gives you the ability to specify your controllers either in isolation from their
associated views or together with them, as in regular Rails tests. According to the API
docs:

Controller Specs use Spec::Rails::DSL::ControllerBehaviour, which
supports running specs for Controllers in two modes, which represent the tension
between the more granular testing common in TDD and the more high-level
testing built into rails. BDD sits somewhere in between: we want to achieve a
balance between specs that are close enough to the code to enable quick fault iso-
lation and far enough away from the code to enable refactoring with minimal
changes to the existing specs.

The Controller class is passed to the describe method like this:

describe MessagesController do

The RSpec on Rails Plugin 617

An optional second parameter can provide additional information, or you can
explicitly use the controller_name method inside a describe block to tell RSpec
which controller to use.

describe “Requesting /messages using GET” do

controller_name :messages

fixtures :people

I typically group my controller examples by action and HTTP method. Fixtures
are available if needed, like any other Rails test or spec. This example requires a
logged-in user, so I stub my application controller’s current_person accessor to
return a fixture.

before(:each) do

controller.stub!(:current_person, people(:quentin))

Next, I create a mock Message object using the mock_model method. I want this
mock message to be returned whenever Message.find is called during the spec.

@message = mock_model(Message)

Message.stub!(:find).and_return([@message])

end

Now I can start specifying the behavior of actions (in this case, the index action).
The most basic expectation is that the response should be successful, HTTP’s 200 OK
response code.

it “should be successful” do

get :index

response.should be_success

end

I also want to specify that the find method of Message is called with the prop-
er arguments.

it “should find all the messages” do

Message.should_receive(:find).with(:all).and_return [@message]

get :index

end

618 18. RSpec on Rails

Additional expectations that should be done for most controller actions include
the template to be rendered and variable assignment.

it “should render index.rhtml” do

get :index

response.should render_template(:index)

end

it “should assign the found messages for the view” do

get :index

assigns[:messages].should include(@message)

end

Previously we saw how to stub out a model’s association proxy. It would be nice
not to have to use fixtures in the controller specs. Instead of stubbing the controller’s
current_person method to return a fixture, we can have it return a mock person.

@mock_person = mock_model(Person, :name => “Quentin”)

controller.stub!(:current_person).and_return @mock_person

Isolation and Integration Modes

By default, RSpec on Rails controller specs run in isolation mode, meaning that view
templates are not involved. The benefit of this mode is that you can spec the controller
in complete isolation of the view, hence the name. Maybe you can sucker someone else
into maintaining the view specs? (The next heading in the chapter is all about spec’ing
views.)

Actually, that “sucker” comment is facetious. Having separate view specs is not as
difficult as it’s made out to be sometimes. It also provides much better fault isolation,
which is a fancy way of saying that you’ll have an easier time figuring out what’s wrong
when something fails.

If you prefer to exercise your views in conjunction with your controller logic
inside the same controller specs, just as traditional Rails functional tests do, then you
can tell RSpec on Rails to run in integration mode using the integrate_views
macro. It’s not an all-or-nothing decision—you can specify modes on a per-behavior
basis.

describe “Requesting /messages using GET” do

integrate_views

The RSpec on Rails Plugin 619

When you run integrated, the controller specs will be executed once with view
rendering turned on.

Specifying Errors

Ordinarily, Rails rescues exceptions that occur during action processing, so that it can
respond with a 501 error code and give you that great error page with the stack trace
and request variables, and so on. In order to directly specify that an action should raise
an error, you have to override the controller’s rescue_action method, by doing
something like this:

controller.class.send(:define_method, :rescue_action) { |e| raise e }

If you don’t mind just checking that the response code was an error, you can just
use the be_an_error predicate or response_code accessor of the response object:

it “should return an error in the header” do

response.should be_an_error

end

it “should return a 501” do

response.response_code.should == 501

end

Specifying Routes

One of Rails’ central components is routing. The routing mechanism is the way Rails
takes an incoming request URL and maps it to the correct controller and action.
Given its importance, it is a good idea to specify the routes in your application. You
can do this with the route_for method in a controller spec.

describe MessagesController, “routing” do

it “should map { :controller => ‘messages’, :action => ‘index’ } to

/messages” do

route_for(:controller => “messages”, :action => “index”).should ==

“/messages”

end

it “should map { :controller => ‘messages’, :action => ‘edit’,

:id => 1 }

620 18. RSpec on Rails

to /messages/1;edit” do

route_for(:controller => “messages”, :action => “edit”,

:id => 1).should == “/messages/1;edit”

end

end

View Specs
Controller specs let us integrate the view to make sure there are no errors with the
view, but we can do one better by specifying the views themselves. RSpec will let us
write a specification for a view, completely isolated from the underlying controller. We
can specify that certain tags exist and that the right data is outputted.

Let’s say we want to write a page that displays a private message sent between
members of an internet forum. RSpec creates the spec/views/messages directory
when we use the rspec_controller generator. The first thing we would do is cre-
ate a file in that directory for the show view, naming it show_rhtml_spec.rb. Next
we would set up the information to be displayed on the page.

describe “messages/show.rhtml” do

before(:each) do

@message = mock_model(Message, :subject => “RSpec rocks!”)

sender = mock_model(Person, :name => “Obie Fernandez”)

@message.stub!(:sender).and_return(sender)

recipient = mock_model(Person, :name => “Pat Maddox”)

@message.stub!(:recipient).and_return(recipient)

If you want to be a little more concise at the cost of one really long line of code
that you’ll have to break up into multiple lines, you can inline the creation of the
mocks like this:

describe “messages/show.rhtml” do

before(:each) do

@message = mock_model(Message,

:subject => “RSpec rocks!”,

:sender => mock_model(Person, :name => “Obie Fernandez”),

:recipient => mock_model(Person, :name => “Pat Maddox”))

Either way, this is standard mock usage similar to what we’ve seen before. Again,
mocking the objects used in the view allows us to completely isolate the specification.

The RSpec on Rails Plugin 621

Assigning Instance Variables

We now need to assign the message to the view. The rspec_on_rails plugin gives
us a familiar-looking assigns method, which you can treat as a hash.

assigns[:message] = @message

end

Fantastic! Now we are ready to begin specifying the view page. We’d like to spec-
ify that the message subject is displayed, wrapped in an <h1> tag. The have_tag
expectation takes two arguments—the tag selector and the content within the tag. It
wraps the assert_select functionality included with Rails testing, which we cov-
ered extensively in Chapter 17.

it “should display the message subject” do

render “messages/show”

response.should have_tag(‘h1’, ‘RSpec rocks!’)

end

HTML tags often have an ID associated with them. We would like our page to
create a <div> with the ID message_info for displaying the sender and recipient’s
names. We can pass the ID to have_tag as well.

it “should display a div with id message_info” do

render “messages/show”

response.should have_tag(‘div#message_info’)

end

What if we want to specify that the sender and recipient’s names should appear in
<h3> tags within the div?

it “should display sender and recipient names in div#message_info” do

render “messages/show”

response.should have_tag(‘div#message_info’) do

with_tag(‘h3#sender’, ‘Sender: Obie Fernandez’)

with_tag(‘h3#recipient’, ‘Recipient: Pat Maddox’)

end

end

622 18. RSpec on Rails

Stubbing Helper Methods

Note that the view specs do not mix in helper methods automatically, in order to pre-
serve isolation. If your view template code relies on helper methods, you need to mock
or stub them out on the provided template object.

The decision to mock versus stub those helper methods should depend on
whether they’re an active player in the behavior you want to specify, as in the follow-
ing example:

it “should truncate subject lines” do

template.should_receive(:truncate).exactly(2).times

render “messages/index”

end

If you forget to mock or stub helper method calls, your spec will fail with a
NoMethodError.

Helper Specs
Speaking of helpers, it’s really easy to write specs for your custom helper modules. Just
pass describe to your helper module and it will be mixed into the spec class so that
its methods are available to your example code.

describe ProfileHelper do

it “profile_photo should return nil if user’s photos is empty” do

user = mock_model(User, :photos => [])

profile_photo(user).should == nil

end

end

It’s worth noting that in contrast to view specs, all of the framework-provided
ActionView::Helper modules are mixed into helper specs, so that they’re available
to your helper code. All dynamically generated routes helper methods are added too.

Scaffolding
Rails comes with the scaffold_resource generator to easily create RESTful con-
trollers and the underlying models. The rspec_on_rails plugin provides the
rspec_scaffold generator, which does the same thing using RSpec instead of
Test::Unit.

The RSpec on Rails Plugin 623

Play around with rspec_scaffold when you have some free time—the gener-
ated specs are another source of very good example spec code for all three MVC lay-
ers. It generates specs that cover the Rails-generated code 100%, making it a very good
learning tool.

RSpec Tools
There are several open-source projects that enhance RSpec’s functionality and

your productivity. (None of these tools are unique to RSpec. In fact they all were orig-
inally written for Test::Unit.)

Autotest
The Autotest project is part of the ZenTest suite6 created by Ryan Davis and Eric
Hodel. As the name implies, it automatically runs your test suite for you. Each time
you save a file in your project, Autotest will run any spec files that may be affected by
the change. This is an excellent tool for getting in a solid red-green-refactor rhythm
because you won’t have to switch windows to manually run the tests. In fact you don’t
even need to run any command! Just cd to your project’s directory and type autospec
to kick things off.

RCov
RCov is a code coverage tool for Ruby.7 You can run it on a spec file to see how much
of your production code is covered. It provides HTML output to easily tell what code
is covered by specs and what isn’t. You can RCov individually on a spec file, or the
rspec_on_rails plugin provides the spec:rcov task for running all of your specs
under RCov. The results are outputted into a directory named coverage and contain
a set of HTML files that you can browse by opening index.html (as shown in Figure
18.2):

Heckle is part of the Seattle Ruby Brigade’s awesome collection of projects,8 and
is another code coverage tool. Instead of simply checking the scope of your tests,
Heckle helps you measure the effectiveness of your specs. It actually goes into your
code and scrambles things like variable values and if statements. If none of your specs
break, you’re missing a spec somewhere.

The current versions of RSpec have Heckle support built-in. Just experiment with
the --heckle option and see what happens.

624 18. RSpec on Rails

Figure 18.2 A sample RCov coverage reportHeckle

Conclusion
You’ve gotten a taste of the different testing experience that RSpec delivers. At first it
may seem like the same thing as Test::Unit with some words substituted and shift-
ed around. One of the key points of TDD is that it’s about design rather than testing.
This is a lesson that every good TDDer learns through lots of experience. RSpec uses
a different vocabulary and style to emphasize that point. It comes with the lesson
baked in so that you can attain the greatest benefits of TDD right away.

Conclusion 625

References

1. Well, other than to write Chapter 17, which has full coverage of Test::Unit.

2. You can grab a copy of the Monkeycharger project at http://monkeycharger.googlecode.com/.

3. Confused about the difference between mocks and stubs? Read Martin Fowler’s explanation
at http://www.martinfowler.com/articles/mocksArentStubs.html.

4. If you have firewall trouble with that plugin because of the svn:// address, please follow the
instructions at http://rspec.rubyforge.org/documentation/rails/install.html.

5. Actually that’s not quite true. ActiveRecord still connects to the database to get the column
information for Schedule. However, you could actually stub that information out as well to
completely remove dependence on the database.

6. http://rubyforge.org/projects/zentest/.

7. http://rubyforge.org/projects/rcov.

8. http://rubyforge.org/projects/seattlerb/.

626 18. RSpec on Rails

CHAPTER 19
Extending Rails with
Plugins

Once again, when we come to the creation of things by people, the form this
unfolding takes, always, is step by step to please yourself. We cannot perform the
unfolding process without knowing how to please ourselves.
—Christopher Alexander

Even though the standard Ruby on Rails APIs are very useful, sooner or later you’ll
find yourself wishing for a particular feature not in Rails core or that a bit of standard
Rails behavior were different. That’s where plugins come into play, and this book has
already described many useful plugins that you will use on a day-to-day basis to write
your Rails applications.

What about plugins as a way to accomplish reuse with our own code? Would
learning how to write plugins help us write more modular applications and better
understand how Rails itself is implemented? Absolutely!

This chapter covers the basic topics of managing plugins in your project, includ-
ing the use of a tool that some consider indispensable for the task: Piston. We’ll
also supply you with enough information to get you started writing your own Rails
plugins.

Managing Plugins
Rails 1.0 introduced a plugin system that lets developers easily add new functionality
into the framework. An official mechanism makes it feasible to extract some of the
novel, useful features you’ve come up with in your individual applications and share
those extracted solutions with other developers, as a single self-contained unit that is
easy to both maintain and share.

Plugins aren’t only useful for sharing new features: As Rails matures, more and
more focus is being placed on the use of plugins to test alterations to the Rails framework
itself. Almost any significant new piece of functionality or patch can be implemented
as a plugin and road-tested easily by a number of developers before it is considered for
inclusion in the core framework. Whether you find a bug in Rails and figure out how
to fix it or you come up with a significant feature enhancement, you will want to put
your code in a plugin for easy distribution and testing.

Of course, changing significant core behavior of the framework demands a solid
understanding of how Rails works internally and is beyond the scope of this book.
However, some of the techniques demonstrated will help you understand the way that
Rails itself is implemented, which we trust will help you start patching core behavior
the day that you need to do so.

Reusing Code
Our jobs as programmers require us to be abstract problem solvers. We solve problems
that range from searching databases to updating online to-do lists to managing user
authentication. The product of our labor is a collection of solutions, usually in the
form of an application, to a particular set of problems that we’ve been asked to solve.

However, I doubt that many of us would still be programmers if we had to solve
exactly the same problems repeatedly, day after day. Instead, we are always looking for
ways to reapply existing solutions to the problems we encounter. Your code represents
the abstract solution to a problem, and so you are often striving to either reuse this
abstraction (albeit in slightly different contexts), or refine your solution so that it can
be reused. Through reuse, you can save time, money, and effort, and give yourself the
opportunity to focus on the interesting and novel aspects of the particular problem
you’re currently trying to solve. After all, it’s coming up with interesting and novel
solutions to problems that makes us really succeessful.

628 19. Extending Rails with Plugins

The Plugin Script
Using the script/plugin command is often the simplest and easiest way to install
plugins. It should be run from the root directory of the application you are developing.

Before getting into gory details, here is an example of script/plugin in action:

$ cd /Users/obie/time_and_expenses

$ script/plugin install acts_as_taggable

+./acts_as_taggable/init.rb

+./acts_as_taggable/lib/README

+./acts_as_taggable/lib/acts_as_taggable.rb

+./acts_as_taggable/lib/tag.rb

+./acts_as_taggable/lib/tagging.rb

+./acts_as_taggable/test/acts_as_taggable_test.rb

Checking the vendor/plugins directory after running this script, you can see
that a new directory has appeared named acts_as_taggable.

Where did these files come from? How did script/plugin know where to go
to download acts_as_taggable? To understand what’s really going on under the
hood here, let’s examine the plugin script’s commands a bit more closely.

In the following sections, we cover each command in depth:

script/plugin list

Finding a list of all the available plugins is simple, using the list command:

$ script/plugin list

account_location

http://dev.rubyonrails.com/svn/rails/plugins/account_location/

acts_as_taggable

http://dev.rubyonrails.com/svn/rails/plugins/acts_as_taggable/

browser_filters

http://dev.rubyonrails.com/svn/rails/plugins/browser_filters/

continuous_builder

http://dev.rubyonrails.com/svn/rails/plugins/continuous_builder/

deadlock_retry

http://dev.rubyonrails.com/svn/rails/plugins/deadlock_retry/

exception_notification

http://dev.rubyonrails.com/svn/rails/plugins/exception_notification/

localization

http://dev.rubyonrails.com/svn/rails/plugins/localization/

...

Managing Plugins 629

This command returns a list of available plugins, along with the URL where that
plugin can be found. If you take a closer look at the list of URLs, it should be clear
that groups of plugins are often located under the same base URL: http://dev.
rubyonrails.com/svn/rails/plugins, for instance. This URL is called a source, and the
list command uses a collection of these when searching for plugins.

For example, when running script/plugin install acts_as_taggable ear-
lier, the command checked each source in turn for one that contains a directory of the
name specified—in this case, acts_as_taggable. The script found one under the
source URL http://dev.rubyonrails.com/svn/ rails/plugins, and downloaded that direc-
tory to your local machine, giving you a copy of the acts_as_taggable plugin.

script/plugin sources

You can examine the list of all the plugin sources Rails will currently search when
looking for plugins by using the sources command:

$ script/plugin sources

http://dev.rubyonrails.com/svn/rails/plugins/

http://svn.techno-weenie.net/projects/plugins/

http://svn.protocool.com/rails/plugins/

http://svn.rails-engines.org/plugins/

http://lesscode.org/svn/rtomayko/rails/plugins/

...

Note that you may see more or fewer URLs than this; don’t worry, that’s perfect-
ly normal. This list is stored in a file on your local machine, and can be examined
directly by opening it in any text editor. On Mac OS X and Linux, the file is located
at: ~/.rails-plugin-sources

script/plugin source [url [url2 [...]]]

It’s possible to add a new plugin source manually, using the source command:

$ script/plugin source http://www.our-server.com/plugins/

Added 1 repositories.

The URL for the source includes everything up to but not including the name of
your plugin itself. You can verify this by running script/plugin sources after-
ward; the added URL should be there at the end of the list.

630 19. Extending Rails with Plugins

When this command fails, the URL specified has probably already been added as
a source. In fact, that’s one of its only failure modes, which conveniently brings us to
the unsource command.

script/plugin unsource [url[url2 [...]]]

Imagine that you’ve added a plugin source with the following command:

$ script/plugin source http:///www.our-server.com/plugins/

Added 1 repositories.

The triple slash (///) between http and www means that this URL isn’t going to
work properly, so you need to remove this source and add a corrected version. The
source command’s destructive twin, unsource, removes URLs from the list of active
plugin sources:

$ script/plugin unsource http:///www.our-server.com/plugins/

Removed 1 repositories.

You can ensure that the source has been removed by using script/plugin
sources again. For both the source and unsource commands, multiple URLs
can be given and each will be added (or removed) from the source list.

script/plugin discover [url]

The discover command checks via the Internet for any new plugin, and lets you add
new sources for plugins to your collection. These sources are actually found by scrap-
ing the “Plugins” page on the Rails wiki1 for the string “plugin” on any HTTP or
Subversion URL. As you can see, each of the URLs returned matches this pattern:

$ script/plugin discover

Add http://opensvn.csie.org/rails_file_column/plugins/? [Y/n] y

Add http://svn.protocool.com/rails/plugins/? [Y/n] y

Add svn://rubyforge.org//var/svn/laszlo-plugin/rails/plugins/? [Y/n] y

Add http://svn.hasmanythrough.com/public/plugins/? [Y/n] y

Add http://lesscode.org/svn/rtomayko/rails/plugins/? [Y/n] y

...

Managing Plugins 631

You can supply your own plugin source page for script/plugin discover to
scrape. Supplying the URL as an argument causes the discover command to use
your page, rather than the Rails wiki, when it attempts to discover new plugin sources:

$ script/plugin discover http://internaldev.railsco.com/railsplugins

This can be especially effective if you maintain a list of sources you find useful and
wish to share them with all of the developers on your team, for instance.

script/plugin install [plugin]

We’ve already seen this command in action, but install still has some tricks up its
sleeve that will prove very useful. When using the install command, typically you
supply it with a single argument, specifying the name of the plugin to download and
install, for example:

$ script/plugin install simply_restful

As seen earlier, this command relies on the plugin being available from the list of
sources you’ve manually added or discovered. On many occasions, you will bypass the
source list and install a plugin directly from a known URL, by supplying it as an argu-
ment to the command:

$ script/plugin install

http://www.pheonix.org/plugins/acts_as_macgyver

+./vendor/plugins/acts_as_macgyver/init.rb

+./vendor/plugins/acts_as_macgyver/lib/mac_gyver/chemistry.rb

+./vendor/plugins/acts_as_macgyver/lib/mac_gyver/swiss_army_knife.rb

+./vendor/plugins/acts_as_macgyver/assets/toothpick.jpg

+./vendor/plugins/acts_as_macgyver/assets/busted_up_bike_frame.html

+./vendor/plugins/acts_as_macgyver/assets/fire_extinguisher.css

By specifying the direct URL explicitly, you can install the plugin without search-
ing the list of sources for a match. Perhaps most usefully, avoiding a search through
the list of sources can save a lot of time.

This isn’t the end of the install command’s talents, but those more advanced
features are discussed later in the section “Subversion and script/plugin.”

632 19. Extending Rails with Plugins

script/plugin remove [plugin]

Quite appropriately, this command performs the opposite of install: It removes the
plugin from vendor/plugins:2

$script/plugin -v remove acts_as_taggable

Removing ‘vendor/plugins/acts_as_taggable’

A quick inspection of your vendor/plugins directory shows that the
acts_as_taggable folder has indeed been removed completely.

Running the remove command will also run the plugin’s uninstall.rb script,
if it has one.

script/plugin update [plugin]

Intuitively you might expect that running a command like $ script/plugin

update acts_as_taggable will update your version of acts_as_taggable to the
latest release, should any update exist, but that isn’t quite the case, unless you have
used one of the Subversion installation methods covered in the following section.

If you have installed your plugin using the simple, standard methods described so
far, you can update the plugin in place by using the install command with the force
flag:

$ script/plugin -f install my_plugin

The inclusion of the -f flag will force the plugin to be removed and then rein-
stalled.

Subversion and script/plugin
As mentioned earlier, most of the plugin sources you encounter will actually be
Subversion repositories. Why is this useful for plugin users? Most importantly, because
you don’t have to be a developer contributing to a repository to receive updates from
it; you can maintain a copy of a plugin that can be easily (or even automatically)
updated when the plugin author adds new features, fixes bugs, and generally updates
the central plugin code.

Before you can use Subversion, you need to ensure that it has been installed on
your local systems. The Subversion project can be found at http://subversion.tigris.org,
where they maintain a number of binary distributions of the Subversion tools. If you’re

Managing Plugins 633

running on Linux or Mac OS X, chances are that you already have it installed, but
Windows users will almost certainly need to use one of the prebuilt installers available
on the Subversion web site.

Checking Out a Plugin

When you run the install command without any options, it will produce a direct
copy of the plugin files and place them in a folder under vendor/plugins. You will
have to check the plugin’s files into your own Subversion repository, and there will not
be any direct link between the plugin’s files and where they came from, except your
memory and any documentation the author may have supplied, which can get some-
what problematic when you want to update this plugin with bug fixes or new features.

A possibly better option is to use Subversion to check out a copy of the code to
your application and keep additional information that can be used to determine the
current version of the plugin and where the plugin came from. This information can
also be used to automatically update the plugin to the latest version from the reposi-
tory.

To install a plugin by checking it out via Subversion, add the -o flag when run-
ning the install command:

$ script/plugin install -o white_list

A t_and_e/vendor/plugins/white_list/test

A t_and_e/vendor/plugins/white_list/test/white_list_test.rb

A t_and_e/vendor/plugins/white_list/Rakefile

A t_and_e/vendor/plugins/white_list/init.rb

A t_and_e/vendor/plugins/white_list/lib

A t_and_e/vendor/plugins/white_list/lib/white_list_helper.rb

A t_and_e/vendor/plugins/white_list/README

Checked out revision 2517.

In the example, the white_list plugin is now checked out to my working direc-
tory, beneath the plugins folder, but it isn’t linked in any way to my project or my own
source control.

script/plugin update

When you’re using Subversion to download your plugins, the update command
becomes useful. When you run the update command against a plugin installed with
the -o flag, the plugin script instructs Subversion (via the svn command) to connect

634 19. Extending Rails with Plugins

to that plugin’s Subversion repository and download any changes, updating your copy
to the latest version. As with the install -o command, you can use the -r param-
eter to specify a specific revision to update to.

SVN Externals

While using Subversion with the install –o command is somewhat useful, it may
cause you some grief when you try deploying your application. Remember that other
than the existence of that plugin’s files in your local working directory, it isn’t linked
to your project in any way. Therefore, you will need to install each of the plugins man-
ually on the target server all over again when you attempt to deploy. Not good.

What we really need is some way of stating, as part of our application, that ver-
sion X of plugin Y is needed wherever the application is expected to run. One way to
achieve that outcome is to use a somewhat advanced feature of Subversion named
externals.

When you set svn:externals properties on source-controlled folders of your
application, you are effectively telling Subversion, “Whenever you check out or update
this code, also check out or update this plugin from this other repository.”

The plugin install script takes an -x parameter that tells it to do just that.

$ script/plugin install -x continuous_builder

A t_and_e/vendor/plugins/continuous_builder/tasks

A t_and_e/vendor/plugins/continuous_builder/tasks/test_build.rake

A t_and_e/vendor/plugins/continuous_builder/lib

A t_and_e/vendor/plugins/continuous_builder/lib/marshmallow.rb

A t_and_e/vendor/plugins/continuous_builder/lib/builder.rb

A t_and_e/vendor/plugins/builder/README.txt

Checked out revision 5651.

Running svn propget svn:externals allows you to see the properties that
have been set for a given source-controlled directory. We’ll run it on the vendor/
plugins directory of our application:

$ svn propget svn:externals vendor/plugins/ continuous_builder

http://dev.rubyonrails.com/svn/rails/plugins/continuous_builder

Because we installed the continuous builder plugin using the -x option, whenev-
er you check out your application from the repository (including on a production
server), that plugin will automatically be checked out also. However, it’s still not an

Managing Plugins 635

ideal solution, because the version that will be checked out is the latest HEAD revi-
sion of the plugin, not necessarily one that we’ve proven works correctly with our
application.

Locking Down a Specific Version

As with the install –o and update commands, you can specify a specific revision
to link via svn:externals by using the –r flag with a version number. When the
-r flag is used, the specified plugin version will be used even when the plugin author
releases a new version.

If you think about the chaos that could ensue from dependencies of your applica-
tion being updated to new, potentially unstable versions without your explicit knowl-
edge, you’ll understand why it’s a good practice to lock down specific revisions of your
plugins. However, there’s an even simpler way to manage plugin dependencies.

Using Piston
The free open-source utility Piston (http://piston.rubyforge.org/) makes managing the
versions of libraries in your project’s vendor folder (Rails, Gems, and Plugins) much
less time-consuming and error-prone than working directly with Subversion.

Piston imports copies of dependent libraries into your own repository instead of
linking to them via svn:externals properties. However, Piston also keeps metada-
ta having to do with the source and revision number of the dependency as Subversion
properties associated with the imported content. Piston’s hybrid solution works out
quite well in practice.

For example, since the plugin code becomes part of your source code repository,
you can make changes to it as needed. (Local changes are not possible when using
svn:externals.) When the day comes that you want to update the plugin to a newer
version, in order to pick up bug fixes or new features, Piston will automatically merge
your compatible local changes with the updated versions.

Installation
Piston is distributed as a RubyGem. Installation is as simple as typing gem install
piston:

$ sudo gem install —include-dependencies piston

Need to update 13 gems from http://gems.rubyforge.org

636 19. Extending Rails with Plugins

.............

complete

Successfully installed piston-1.2.1

After installation, a new executable named piston will be available on your com-
mand line, with the following commands:

$ piston

Available commands are:

convert Converts existing svn:externals into Piston managed

folders

help Returns detailed help on a specific command

import Prepares a folder for merge tracking

lock Lock one or more folders to their current revision

status Determines the current status of each pistoned

directory

unlock Undoes the changes enabled by lock

update Updates all or specified folders to the latest revision

Importing a Vendor Library
The import command tells Piston to add a vendor library to your project. For exam-
ple, let’s use Piston to make our sample project run EdgeRails, meaning that Rails is
executed out of the vendor/rails folder instead of wherever it is installed as a
RubyGem:

$ piston import http://dev.rubyonrails.org/svn/rails/trunk

vendor/rails

Exported r5731 from ‘http://dev.rubyonrails.org/svn/rails/trunk’ to

‘vendor/rails’

Piston does not commit anything to Subversion on its own. To make Piston
changes permanent, you need to check in the changes yourself.

$ svn commit -m “Importing local copy of Rails”

Also, don’t forget that unlike Rails’ own plugin script, Piston takes a second argu-
ment specifying the target directory to install the library into (and if you leave the
parameter off, it will default to the current directory).

Using Piston 637

For example, here’s how you would install Rick Olsen’s excellent white_list
plugin, from the projects directory:

$ piston import

http://svn.techno-

weenie.net/projects/plugins/white_list/vendor/plugins/white_list

Exported r2562 from

‘http://svn.techno-weenie.net/projects/plugins/white_list’ to

‘vendor/plugins/white_list’

Converting Existing Vendor Libraries
If you’ve already been using svn:externals to link plugins into the source code of
your project, the first thing you should do is to convert those over to Piston, by invok-
ing the piston convert command from your project directory:

$ piston convert

Importing ‘http://macromates.com/svn/Bundles/trunk/Bundles/

Rails.tmbundle/Support/plugins/footnotes’ to vendor/plugins/footnotes

(-r 6038)

Exported r6038 from ‘http://macromates.com/svn/Bundles/trunk/Bundles/

Rails.tmbundle/Support/plugins/footnotes’ to ‘vendor/plugins/footnotes’

Importing ‘http://dev.rubyonrails.com/svn/rails/plugins/

continuous_builder’ to vendor/plugins/continuous_builder (-r 5280)

Exported r5280 from ‘http://dev.rubyonrails.com/svn/rails/plugins/

continuous_builder’ to ‘vendor/plugins/continuous_builder’

Done converting existing svn:externals to Piston

Again, remember that it’s necessary to check in the resulting changes to your proj-
ect files after running Piston.

Updating
When you want to get the latest changes from a remote repository for a library
installed with Piston, use the update command:

638 19. Extending Rails with Plugins

$ piston update vendor/plugins/white_list/

Processing ‘vendor/plugins/white_list/’...

Fetching remote repository’s latest revision and UUID

Restoring remote repository to known state at r2562

Updating remote repository to r2384

Processing adds/deletes

Removing temporary files / folders

Updating Piston properties

Updated to r2384 (0 changes)

Locking and Unlocking Revisions
You can prevent a local Piston-managed folder from updating by using the piston
lock command. And once a folder is locked, you can unlock it by using the piston
_unlock command. Locking functionality is provided as an extra precaution available
to teams of Rails developers. If you know that updating a plugin will break the appli-
cation, you can lock it and other developers will get an error if they try to update with-
out unlocking.

Piston Properties
If we use svn proplist to examine the properties for vendor/plugins/continuous
_builder, we’ll see that Piston stores its own properties for each plugin folder rather
than on the plugins folder itself:

$ svn proplist —verbose vendor/plugins/continuous_builder/

Properties on ‘vendor/plugins/continuous_builder’:

piston:root :

http://dev.rubyonrails.com/svn/rails/plugins/continuous_builder

piston:local-revision : 105

piston:uuid : 5ecf4fe2-1ee6-0310-87b1-e25e094e27de

piston:remote-revision : 5280

Using Piston 639

Writing Your Own Plugins
At some point in your Rails career, you might find that you want to share common
code among similar projects that you’re involved with. Or if you’ve come up with
something particularly innovative, you might wonder if it would make sense to share
it with the rest of the world.

Rails makes it easy to become a plugin author. It even includes a plugin generator
script that sets up the basic directory structure and files that you need to get started:

$ script/generate plugin my_plugin

create vendor/plugins/my_plugin/lib

create vendor/plugins/my_plugin/tasks

create vendor/plugins/my_plugin/test

create vendor/plugins/my_plugin/README

create vendor/plugins/my_plugin/MIT-LICENSE

create vendor/plugins/my_plugin/Rakefile

create vendor/plugins/my_plugin/init.rb

create vendor/plugins/my_plugin/install.rb

create vendor/plugins/my_plugin/uninstall.rb

create vendor/plugins/my_plugin/lib/my_plugin.rb

create vendor/plugins/my_plugin/tasks/my_plugin_tasks.rake

create vendor/plugins/my_plugin/test/my_plugin_test.rb

The generator gives you the entire set of possible plugin directories and starter
files, even including a /tasks folder for your plugin’s custom rake tasks. The
install.rb and uninstall.rb are optional one-time setup and teardown scripts
that can do anything you want them to do. You don’t have to use everything that’s cre-
ated by the plugin generator.

The two defining aspects of a plugin are the presence of the init.rb file and of
a directory in the plugin called lib. If neither of these exists, Rails will not recognize
that subdirectory of vendor/plugins as a plugin. In fact, many popular plugins con-
sist only of an init.rb script and some files in lib.

The init.rb Hook
If you pop open the boilerplate init.rb file that Rails generated for you, you’ll read
a simple instruction.

insert hook code here

640 19. Extending Rails with Plugins

Hook code means code that hooks into the Rails initialization routines. To see a
quick example of hook code in action, just go ahead and generate a plugin in one of
your projects and add the following line to its init.rb:

puts “Current Rails version: #{Rails::VERSION::STRING}”

Congratulations, you’ve written your first simple plugin. Run the Rails console
and see what I mean:

$ script/console

Loading development environment.

Current Rails version: 1.2.3

>>

Code that’s added to init.rb is run at startup. (That’s any sort of Rails startup,
including server, console, and script/runner.) Most plugins have their require
statements in init.rb.

A few special variables are available to your code in init.rb having to do with
the plugin itself:

• name—The name of your plugin (‘my_plugin’ in our simple example).

• director—The directory in which the plugin exists, which is useful in case you
need to read or write nonstandard files in your plugin’s directory.

• loaded_plugins—A Set containing all the names of plugins that have already
been loaded, including the current one being initialized.

• config—The configuration object created in environment.rb. (See Chapter 1,
“Rails Environments and Configuration,” as well as the online API docs for
Rails::Configuration to learn more about what’s available via config.)

Our simple example is just that, simple. Most of the time you want a plugin to
provide new functionality to the rest of your application or modify the Rails libraries
in more interesting ways than printing out a version number on startup.

Writing Your Own Plugins 641

The lib Directory
The lib directory of your plugin is added to Ruby’s load path before init.rb is run.
That means that you can require your code without needing to jump through hoops
specifying the load path:

require File.dirname(__FILE__) + ‘/lib/my_plugin’ # unnecessary

Assuming your lib directory contains a file named my_plugin.rb, your
init.rb just needs to read:

require ‘my_plugin’

Simple. You can bundle any class or Ruby code in a plugin’s lib folder and then load
it in init.rb (or allow other developers to optionally load it in environment.rb)
using Ruby’s require statement. This is the simplest way to share Ruby code among
multiple Rails applications.

It’s typical for plugins to alter or enhance the behavior or existing Ruby classes. As
a simple example, Listing 19.1 is the source of a plugin that gives ActiveRecord class-
es a cursorlike iterator. (Please note that a smarter implementation of this technique
might incorporate transactions, error-handling, and batching. See http://
weblog.jamisbuck.org/2007/4/6/faking-cursors-in-activerecord for more on the sub-
ject.)

Listing 19.1 Adding Each to ActiveRecord Classes

in file vendor/plugins/my_plugin/my_plugin.rb

class ActiveRecord::Base

def self.each
ids = connection.select_values(“select id from #{table_name}”)
ids.each do |id|
yield find(id)

end
ids.size

end

end

642 19. Extending Rails with Plugins

In addition to opening existing classes to add or modify behavior, there are at least
three other ways used by plugins to extend Rails functionality:

• Mixins, which describes inclusion of modules into existing classes

• Dynamic extension through Ruby’s callbacks and hooks such as method_missing,
const_missing, and included

• Dynamic extension using runtime evaluation with methods such as eval,
class_eval, and instance_eval

Extending Rails Classes
The way that we re-open the ActiveRecord::Base class in Listing 19.1 and simply
add a method to it is simple, but most plugins follow a pattern used internally in Rails
and split their methods into two modules, one each for class and instance methods.
We’ll go ahead and add a useful to_param instance method to all our ActiveRecord
objects too3.

Let’s rework my_plugin so that it follows that style. First, after requiring
‘my_plugin’ in init.rb, we’ll send an include message to the ActiveRecord class
itself:

ActiveRecord::Base.send(:include, MyPlugin)

There’s also another way of accomplishing the same result, which you might
encounter when browsing through the source code of popular plugins4:

ActiveRecord::Base.class_eval do

include MyPlugin

end

Now we need to write a MyPlugin module to house the class and instance vari-
ables with which we will extend ActiveRecord::Base. See Listing 19.2.

Writing Your Own Plugins 643

Listing 19.2 Extensions to ActiveRecord::Base

module MyPlugin
def self.included(base)
base.extend(ClassMethods)
base.send(:include, InstanceMethods)

end

module ClassMethods
def each
ids = connection.select_values(“select id from #{table_name}”)
ids.each do |id|
yield find(id)

end
ids.size

end
end

module InstanceMethods
def to_param
has_name? ? “#{id}-#{name.gsub(/[^a-z0-9]+/i, ‘-’)}” : super

end

private

def has_name?
respond_to?(:name) and not new_record?

end

end
end

You can use similar techniques to extend controllers and views.5 For instance, if
you want to add custom helper methods available in all your view templates, you can
extend ActionView like this:

ActionView::Base.send(:include, MyPlugin::MySpecialHelper)

Now that we’ve covered the fundamentals of writing Rails plugins (init.rb and
the contents of the lib directory), we can take a look at the other files that are creat-
ed by the plugin generator script.

The README and MIT-LICENSE File
The first thing that developers do when they encounter a new plugin is to take a look
in the README file. It’s tempting to ignore this file, but at the very least, you should

644 19. Extending Rails with Plugins

add a simple description of the what the plugin does, for future reference. The README
file is also read and processed by Ruby’s RDoc tool, when you generate documenta-
tion for your plugin using the doc:: Rake tasks. It’s worth learning some fundamen-
tals of RDoc formatting if you want the information that you put in the README file
to look polished and inviting later.

Rails is open-sourced under the extremely liberal and open MIT license, as are
most of the popular plugins available. In his keynote address to Railsconf 2007, David
announced that the plugin generator will auto-generate an MIT license for the file, to
help to solve the problem of plugins being distributed without an open-source license.
Of course, you can still change the license to whatever you want, but the MIT license
is definitely considered the Rails way.

The install.rb and uninstall.rb Files
This pair of files is placed in the root of the plugin directory along with init.rb and
README. Just as the init.rb file can be used to perform a set of actions each time the
server starts, these files can be used to ensure that prerequisites of your plugin are in
place when the plugin is installed using the script/plugin install command and
that your plugin cleans up after itself when it is uninstalled using script/
plugin remove.

Installation

For example, you might develop a plugin that generates intermediate data stored as
temporary files in an application. For this plugin to work, it might require a tempo-
rary directory to exist before the data can be generated by the plugin—the perfect
opportunity to use install.rb. See Listing 19.3.

Listing 19.3 Creating a Temporary Directory During Plugin Installation

require ‘fileutils’
FileUtils.mkdir_p File.join(RAILS_ROOT, ‘tmp’, ‘my_plugin_data’)

By adding these lines to your plugin’s install.rb file, the directory tmp/my_
plugin_data will be created in any Rails application in which the plugin is installed.

Writing Your Own Plugins 645

This fire-once action can be used for any number of purposes, including but not lim-
ited to the following:

• Copying asset files (HTML, CSS, and so on) into the public directory

• Checking for the existence of dependencies (for example, RMagick)

• Installing other requisite plugins (see Listing 19.4)

Listing 19.4 Installing a Prerequisite Plugin

Install the engines plugin unless it is already present
unless File.exist?(File.dirname(__FILE__) + “/../engines”)
Commands::Plugin.parse!([‘install’,
‘http://svn.rails-engines.org/plugins/engines’])

end

Listing 19.4 demonstrates how with creativity and a little digging through the
Rails source code, you can find and reuse functionality such as the parse! directive
of Commands::Plugin.

Removal

As mentioned, the script/plugin remove command checks for the presence of a
file called uninstall.rb when removing a plugin. If this file is present, it will be
evaluated just prior to the plugin files actually being deleted. Typically, this is useful
for reversing any actions performed when the plugin was installed. This can be handy
for removing any directories or specific data files that your plugin might have created
when installed, or while the application was running.

Common Sense Reminder

What might not be so obvious about this scheme is that it isn’t foolproof. Users of plu-
gins often skip the installation routines without meaning to do so. Because plugins are
almost always distributed via Subversion, it is trivial to add a plugin to your project
with a simple checkout:

$ svn co http://plugins.com/svn/whoops vendor/plugins/whoops # no install

646 19. Extending Rails with Plugins

Or perhaps even more common is to add a plugin to your project by copying it
over from another Rails project using the filesystem. I know I’ve done this many times.
Same situation applies to plugin removal—a developer that doesn’t know any better
might uninstall a plugin from his project simply by deleting its folder from the vendor/
plugins directory, in which case the uninstall.rb script would never run.

If as a plugin writer you are concerned about making sure that your install and/or
uninstall scripts are actually executed, it’s probably worthwile to stress the point in
your announcements to the community and within the plugin documentation itself,
such as the README file.

Custom Rake Tasks
It is often useful to include Rake tasks in plugins. For example, if your plugin stores
files in a temporary directory (such as /tmp), you can include a helpful task for clear-
ing out those temporary files without having to dig around in the plugin code to find
out where the files are stored. Rake tasks such as this should be defined in a .rake file
in your plugin’s tasks folder (see Listing 19.5).

Listing 19.5 A Plugin’s Cleanup Rake Task

vendor/plugins/my_plugin/tasks/my_plugin.rake

namespace :my_plugin do

desc ‘Clear out the temporary files’
task :cleanup => :environment do
Dir[File.join(RAILS_ROOT, ‘tmp’, ‘my_plugin_data’)].each do |f|
FileUtils.rm(f)

end
end

end

Rake tasks added via plugins are listed alongside their standard Rails brothers and
sister when you run rake -T to list all the tasks in a project. (In the following snip-
pet, I limited Rake’s output by passing a string argument to use for matching task
names):

$ rake –T my_plugin

rake my_plugin:cleanup # Clear out the temporary files

Writing Your Own Plugins 647

The Plugin’s Rakefile
Generated plugins get their own little Rakefile, which can be used from within the
plugin’s directory to run its tests and generate its RDoc documentation (see Listing
19.6).

Listing 19.6 A Generated Plugin Rakefile

require ‘rake’
require ‘rake/testtask’
require ‘rake/rdoctask’

desc ‘Default: run unit tests.’
task :default => :test

desc ‘Test the my_plugin plugin.’
Rake::TestTask.new(:test) do |t|
t.libs << ‘lib’
t.pattern = ‘test/**/*_test.rb’
t.verbose = true

end

desc ‘Generate documentation for the my_plugin plugin.’
Rake::RDocTask.new(:rdoc) do |rdoc|
rdoc.rdoc_dir = ‘rdoc’
rdoc.title = ‘MyPlugin’
rdoc.options << ‘--line-numbers’ << ‘--inline-source’
rdoc.rdoc_files.include(‘README’)
rdoc.rdoc_files.include(‘lib/**/*.rb’)

end

While we’re on the subject, I’ll also mention that Rails has its own default rake
tasks related to plugins, and they’re fairly self-explanatory:

$ rake -T plugin

rake doc:clobber_plugins # Remove plugin documentation

rake doc:plugins # Generate docs for installed plugins

rake test:plugins # Run the plugin tests in

vendor/plugins/*/**/test

(or specify with PLUGIN=name)

648 19. Extending Rails with Plugins

Before closing this section, let’s make the distinction between a plugin’s Rakefile
and any .rake files in the tasks folder clear:

• Use Rakefile for tasks that operate on the plugin’s source files, such as special test-
ing or documentation. These must be run from the plugin’s directory.

• Use tasks/*.rake for tasks that are part of the development or deployment of
the application itself in which the plugin is installed. These will be shown in the
output of rake –T, the list of all Rake tasks for this application.

Testing Plugins
Last, but not least, after you’ve written your plugin, it’s essential that you provide tests
that verify its behavior. Writing tests for plugins is for the most part identical to any
testing in Rails or Ruby and for the most part the methods used to test both are the
same. However, because plugins cannot often predict the exact environment in which
they are run, they require extra precautions to ensure that the test behavior of your
plugin code is isolated from the rest of the application.

There is a subtle distinction between running plugin tests using the global
test:plugins rake task and via the plugin’s own Rakefile. Although the former
can test all installed plugins at the same time, the internal Rakefile can and should
be exploited to add any specific tasks your plugin requires to be tested properly.

Techniques used in testing plugins properly include bootstrapping a separate
database for testing plugins in complete isolation. This is particularly useful when a
plugin augments ActiveRecord with additional functionality, because you need to test
the new methods in a controlled environment, minimizing the interaction with other
plugins and the application’s own test data.

As you can imagine, testing of plugins is a lengthy topic that is primarily of inter-
est to plugin authors. Unfortunately, I must leave further analysis of the subject out of
this book for reasons of practicality and overall length.

Conclusion
You have now learned about all the basic aspects of Rails plugins. You learned how to
install them, including use of the Piston tool to help you manage plugin versions. You
also learned the fundamentals of writing your own plugins—probably enough to get
you started.

Conclusion 649

To cover everything related to Rails plugins would require its own book and
would go beyond the needs of most Rails developers. To that end, we did not cover
testing plugins or the more advanced techniques employed by plugin developers. We
also did not discuss topics related to the life of a plugin beyond its initial development.

For in-depth learning about extending Rails with plugins, I strongly recommend
the Addison-Wesley publication Rails Plugins by James Adam, who is considered the
world’s top expert on the subject.

References

1. http://wiki.rubyonrails.org/rails/pages/Plugins

2. The -v flag turns on verbose mode, and is only present in the example because the remove com-
mand does not normally give any feedback; without -v, it would be difficult to demonstrate that
anything had actually happened.

3. See http://www.jroller.com/obie/entry/seo_optimization_of_urls_in for an explanation of how
smart use of the to_param method can help your search engine optimization efforts on public-
facing websites.

4. Jay Fields has a good blog post about the motivations behind using the various types of code
extension at http://blog.jayfields.com/2007/01/class-reopening-hints.html.

5. Alex Young’s http://alexyoung.org/articles/show/40/a_taxonomy_of_rails_plugins covers a variety
of different kinds of Rails plugins, including a useful explanation of how to handle passed-in
options for runtime-configuration.

650 19. Extending Rails with Plugins

CHAPTER 20
Rails Production
Configurations

Persons grouped around a fire or candle for warmth or light are less able to pur-
sue independent thoughts, or even tasks, than people supplied with electric light.
In the same way, the social and educational patterns latent in automation are
those of self-employment and artistic autonomy.
—Marshall McLuhan

One frequently overlooked aspect of building a Rails application is, believe it or not,
launching and running it in production. In some cases you may not be responsible for
this part of your project, but it is important to understand how a modern web appli-
cation operates in a production environment. In this chapter we’re going to show you
how to build a simple production “stack,” and how to get your Rails application run-
ning on it. Many concerns play a role in how you design your production stack. We
are going to stick with a basic, common configuration so that you can understand the
key components and best practices. We will review some of the common concerns that
require more complex configurations, which will be helpful if this is your first pro-
duction deployment.

Even if you have run a Rails app in a production environment before, you will
probably find this chapter worth reading, as we discuss some simple ways to automate
your production system and keep its configuration clean and simple.

A Brief History of Rails In Production
Fortunately it has become a relatively straightforward procedure to get a Rails appli-
cation running in a production environment, but that has not always been the case.
Many of the time-saving design philosophies and best practices that are essential to
Rails, including the well-known maxims like “convention over configuration” and
“don’t repeat yourself,” have also made their way into production configurations and
deployment practices as well. Another way of saying this would be that automation is
key. Rails enables developers to focus on the unique behavior of their application and
automates the rest of the application behavior for you. In the same vein, tools like
Mongrel, Mongrel Cluster, and Capistrano simplify and automate the tedious parts of
running an application in production. Many of the lessons that have been learned
about running a Rails app in production have been baked into tools like Capistrano,
Mongrel, and Mongrel Cluster.

When Rails first came out, your options for running it behind a real web server
like Apache were limited to CGI, Apache’s mod_ruby, or FastCGI (aka FCGI), all of
which had their shortcomings. Scripts in your Rails script directory like spawner and
reaper were just workarounds for FastCGI issues.

In 2006 Zed Shaw wrote a production-capable, mostly Ruby HTTP web server
called Mongrel. Mongrel was designed from the start to replace the existing options
while staying small and simple. Instead of forcing a front-facing web server like
Apache to convert an incoming HTTP request to CGI just in order to load the Ruby
environment, Mongrel,1 as an HTTP-speaking Ruby process, could speak to Apache
directly. In doing so, Mongrel cut out two middlemen (converting the request from
HTTP to CGI, and loading Ruby), reduced the number of moving parts, increased
the reliability and predictability of the production environment, and sped up the per-
formance. It also provided a fast web server for local development.

Some Basic Prerequisites
In order to successfully set up the production stack we’re going to build, you’ll need
at least the following:

• A working understanding of Unix

By a large margin most Rails applications in production are running on some vari-
ant of Unix (FreeBSD, OSX, Solaris, any Linux distro, etc.). Unless you have
some severe production environment constraints (i.e., you work at a big company

652 20. Rails Production Configurations

and are trying to sneak Rails through the back door), you should be setting your
application up on Unix too. We’ll assume that you understand how to use the
command-line interface, and you can execute basic commands, install packages,
start/stop services, and so on. The examples we list in this chapter will be through
the Bash shell.2

• Access to a fresh server with sudo access

We’ll be installing everything onto one server, so you’ll need to have access to one
and be able to install software and perform deployments onto it. We’ll list the spe-
cific applications and types of access in the section “The Stack Checklist.” There
are hosting options we’ll list as well, in case you weren’t able to find any via your
favorite search engine.

• Respect for the production environment and a strong desire to learn

Hopefully, your Rails application will live a long, healthy life in production. If
you are not usually the person who is responsible for handling the production life
cycle of an application, it’s critical to understand how important this part is. You
should avoid thinking about the setup and maintenance of your production envi-
ronment as a chore. These tasks may not be as fun as writing an application, but
they are at least as important. Like any technology (e.g., cars, ships, etc.), after
your app is out in the open it will take on a different set of concerns. This is par-
ticularly important for modern web applications, which undergo frequent
changes and iterative development cycles. Your production life cycle will feed back
into your development life cycle, and so on.

If you have ever run or maintained an application in production before, you
understand how many of the peskier bugs arise here, and that this is the last place
you want cluttered, poorly organized logs and configuration files getting in your
way when you are the one getting up at 4 a.m. if something blows up. Respecting
the importance and cleanliness of your production environment will inevitably
save many headaches down the line, and many of the best practices you’ll find
here (and in the tools and libraries we recommend) are the product of learning
how to avoid them.

Some Basic Prerequisites 653

• Willingness to shed old habits and learn new ones

One key concept in production environments is automation. Automate every-
thing! All of the deployments and configurations make your life simple by doing
all of the work for you. If you like to tweak files by hand or modify deployments
already on the server, you will need to break those old habits. These kinds of
behaviors (which we have seen in developers and sysadmins alike) will make your
production environment brittle, unpredictable, and otherwise doomed.

The ability to operate a heavily automated production system requires you to use
it as much as possible and remove any chance of manual human interference. You
may think it’s faster to make a quick change by hand by editing some file on the
live production server, but those habits result in death by a thousand cuts. They
are difficult to track over time, and automated systems do not respond well to
manual changes.

• Willing suspension of disbelief

This is somewhat of a corollary to the preceding point. Sometimes developers and
system administrators like to complicate things, especially when they think they
have a better way. If you are one of these people (even if you think you aren’t) and
read this chapter and think our approach is wrong, overly simplified, or whatev-
er, just take it easy. Most simple Rails applications run on environments just like
this, and the packages we recommend are among the most heavily used by pro-
fessional Rails hosting environments. For example, some people don’t like the idea
of using any web server other than Apache, usually because it’s been around for
years and it’s the only thing they know. Don’t be afraid of Nginx; you might actu-
ally like it after you see how simple and fast (and bug-free) it is.

The Stack Checklist
Before we get into the details of the software you’ll need, we’ll cover the general
assumptions about what kind of configuration we’re going to build. As we said earli-
er, there are many ways to build a production stack, so we’re sticking with a simple,
proven configuration that will work well for many Rails applications.

The following sections describe the key components for the production stack we’ll
be building. You will notice that in addition to the standard Web, Application, and
Database tiers we also discuss two other critical parts that are frequently left out of dis-
cussion: the server and network environment and monitoring components.

654 20. Rails Production Configurations

Server and Network Environment
Of course, we need to run our application somewhere…

Standalone/Dedicated Server or VPS Slice

Since we are going to run everything from one server, you will need to have access to
either a dedicated server, or a VPS slice. Some VPS hosting services are already tailored
for hosting Rails applications and will take care of all the dirty work for you (e.g., Rails
Machine, EngineYard, or Slicehost). For our purposes we’re going to start from a
naked server and work our way up, though ultimately the configuration will largely be
the same.

Fresh OS Install

A fresh install of any popular Linux distro should work. We prefer Debian, Gentoo,
CentOS, or RedHat. Some of us have personal preferences for other distros, but these
are usually the ones hosting companies prefer to use.

Depending on your comfort level or preference, you can install the required pack-
ages using your favorite package manager or you can compile them from source. In
our examples we’ll compile from source or install precompiled binaries (e.g., MySQL),
for the sake of staying simple.

As we mentioned at the beginning of the chapter, you’ll need to have a user with
sudo privileges (or just root). If you don’t have this, it’s not impossible to get a Rails
app running, but you’ll need to coordinate with the sysadmin who does have sudo
access to make sure everything can be installed correctly.

Network Access

We are running everything from one server, but you’ll still need to get to it for admin-
istration, and since it’s a web site, your users will need to get to it through a browser.
You will need SSH access, and ports 80 and 443 open. If your server is running behind
a firewall, the firewall will need to keep those open. We strongly recommend running
SSH on a nonstandard port, just to avoid some common security attacks. See the secu-
rity section for more details on ports.

The Stack Checklist 655

Web Tier
The current best practice for running your Rails application in production is to use a
fast “static” web server like Apache or Nginx running in the front that points to a clus-
ter of mongrels running in the back. The fast web server will receive an incoming
request and reverse-proxy it to one of the available Mongrel processes when appropri-
ate (e.g., you can set up the rules so it will serve static assets or cached files directly).
This approach is used by most professional Rails hosting companies and in many pro-
duction clusters and is much more reliable than FastCGI, SCGI, or any of the previ-
ous approaches.

Apache 2.2.x and Nginx are the two preferred web servers to run in the front.
We’re going to use Nginx here, because it is fast, stable, far less complicated than
Apache, and it has a tiny memory footprint. It’s relatively new to the Western hemi-
sphere, but the Nginx site states that about one-fifth of Russian websites are running
on it.3 One critical reason we prefer it to Apache is that its reverse-proxying is less
error-prone. Apache is still a good solution, but if you only prefer it because you
already know it, we suggest giving Nginx a chance. You’ll be happily surprised. If you
must use Apache, the Mongrel site has some excellent resources about how to set up
mod_proxy_balancer to talk to your Mongrel Cluster.4

Application Tier
The tools that you need to run at the application tier are minimal. Ruby, RubyGems,
Rails, and their dependent gems will be enough to get you going. We’ll list the spe-
cific gems needed for running the stack in the “Installations” section, but you should
know which gems your own application is dependent upon.

Our configuration will be based on the deployment of a simple, single Rails appli-
cation. If you have more complex requirements, such as a BackrounDRb process, or
cron jobs, and so on, you will have to handle those details yourself. Keep in mind that
if you have a more complex configuration you’ll need to make sure your Capistrano
tasks are all set up properly. You can read more about Capistrano in the next chapter.

Database Tier
Most Rails applications use a single database. In a simple production configuration
like ours we will run the database on the same server. In more complex configurations
you can set up your database to address redundancy, failover, or performance

656 20. Rails Production Configurations

concerns. As long as you’re doing a simple database server setup, this won’t change
much from your local development environment.

We recommend the MySQL version 5.x branch; however, version 4.x is largely
interchangeable and will work well for most projects. You will know your own appli-
cation’s database requirements, so if you prefer another database, make sure you have
reviewed Rails support for it.

Monitoring
Monitoring tools are not technically required in order to run a production environ-
ment, but in the interest of best practices we’re making them required here. Running
your Rails application without them will be like driving a car without any gauges.
Since this is a production environment, you’ll probably want to know when the site
becomes unavailable, or when someone uploads a file and it pegs the CPU or MySQL
processes.

Version Control
We recommend Subversion for version control. You will likely already have your
application in version control (and if you don’t, now is a good time to start). We also
recommend storing other important files in version control, which we discuss later in
the section “Configurations.”

Installations
In this section we’re going to install all of the necessary applications and tools before
you can perform a deployment. Before you begin you should make sure you meet the
requirements described in the preceding section, or know enough to work within your
own constraints.

In this section we’re installing the tools directly from source, but you can install
them using your favorite package manager if you prefer. In some cases the package
managers make it easier to maintain subsequent updates, but they tend to be a few
revisions behind what are sometimes important updates to tools.

Installations 657

Note

Everyone has their preferences about where to store
libraries on their systems. If you prefer to install into dif-
ferent paths than what you see here, feel free. We’re going
to install into /usr/local and will be putting the appli-
cation in /var/www/apps/railsway/, which you will
see referenced in some of the configurations.

Ruby
The current recommended version of Ruby is the 1.8.5 branch. There have been some
problems reported with Ruby 1.8.6, so unless you are fully confident that 1.8.6 works
fine in your development and staging environments, we recommend sticking with the
latest patch release from the 1.8.5 branch. As of this writing, the latest patch release is 52.

The following commands will download and install Ruby from source.

$ curl -O ftp://ftp.ruby-lang.org/pub/ruby/1.8/ruby-1.8.5-p52.tar.gz

$ tar zxvf ruby-1.8.5-p52.tar.gz

...

$ cd ruby-1.8.5-p52

$./configure —prefix=/usr/local

$ make

$ sudo make install

RubyGems
The current version of RubyGems is 0.9.4. Once you install this, all other Ruby-related
libraries can be installed by installing gems. The following commands will download
and install RubyGems from source. Once it is installed, RubyGems can upgrade itself
when new versions are released.

$ curl -O http://files.rubyforge.mmmultiworks.com/rubygems/rubygems-

0.9.4.tgz

$ tar zxvf rubygems-0.9.4.tgz

...

$ cd rubygems-0.9.4

$ sudo ruby setup.rb

...

658 20. Rails Production Configurations

Rails
We are working on the latest 1.2.x version, which at the time of this writing is 1.2.3.
The -y switch here is the equivalent of –include-dependencies. The following
command will install the Rails gems (one for each subframework) into your system
gems.

$ sudo gem install rails -y

Mongrel
We are using Mongrel 1.0.1, which is the version most widely used in production
environments. On your local development machine you usually call the
mongrel_rails (or script/server) command directly. Once we set up the init
scripts later in the chapter, you will use that to control the start, stop, and restart of
the cluster. The following command installs the Mongrel gem and its dependencies.

$ sudo gem install mongrel -y

Mongrel Cluster
Mongrel Cluster is a gem that allows you to run a set of mongrel processes with a com-
mon configuration so they can be proxied to from Nginx. We are using version 1.0.2.

The following command will install the mongrel_cluster gem, which will
allow you to configure and run mongrels in a “pack.” When we set up the static web
server we will point to a configured mongrel_cluster configuration. Mongrel
Cluster’s commands will automatically be available to you through Mongrel’s
mongrel_rails command.

$ sudo gem install mongrel_cluster -y

Nginx
Nginx is the fast, simple, static web server that will sit at the front of your production
environment. It will be responsible for handling incoming HTTP requests, either on
its own (such as for static assets on disk already) or by proxying the requests to one of

Installations 659

the mongrel processes running in the mongrel cluster. The following commands will
download and compile the source for the current stable 0.5.x branch of Nginx.

$ curl -O http://sysoev.ru/nginx/nginx-0.5.28.tar.gz

$ tar zxvf nginx-0.5.28.tar.gz

$ cd nginx-0.5.28

$./configure --sbin-path=/usr/local/sbin --with-http_ssl_module

...

$ make

...

$ sudo make install

Subversion
Version control should be part of your standard arsenal. You can use other version
management systems with Capistrano but Subversion is the preferred default. The fol-
lowing commands will download and install Subversion and some of its additional
dependencies from source:

$ curl -O http://subversion.tigris.org/downloads/subversion-

1.4.4.tar.gz

$ curl -O http://subversion.tigris.org/downloads/subversion-deps-

1.4.4.tar.gz

$ tar zxvf subversion-1.4.4.tar.gz

$ tar zxvf subversion-deps-1.4.4.tar.gz

$ cd subversion-1.4.4

$./configure --prefix=/usr/local --with-openssl --with-ssl --with-zlib

...

$ make

...

$ sudo make install

MySQL
MySQL 5.x can be installed using your package manager, from source, or from the
precompiled binaries for your platform. The way you install it depends on your pref-
erences and constraints. For our purposes we’ll install the generic binaries.

You can find the appropriate package at http://dev.mysql.com/downloads/
mysql/5.0.html.

660 20. Rails Production Configurations

We strongly recommend that you lock down your MySQL installation by setting
a root password and limiting access to the local machine. You can find out more about
MySQL at http://www.securityfocus.com/infocus/1726.

Monit
Monit5 is an excellent monitoring tool for managing processes and keeping tabs on
your resource usage. Monit is highly configurable and can be set up to notify you
based on many key metrics (CPU usage, disk usage, and so on). The following com-
mands will download and install Monit from source files.

$ curl -O http://www.tildeslash.com/monit/dist/monit-4.9.tar.gz

$ tar zxvf monit-4.9.tar.gz

...

$ cd monit-4.9

$./configure

...

$ make

...

$ sudo make install

...

Capistrano
You do not need to install Capistrano on the server, only on your local machine. We
are using the latest version of Capistrano, which right now is 2.x. We cover Capistrano
thoroughly in Chapter 21, “Capistrano.” The following command will download and
install the Capistrano Ruby gem and its dependencies:

$ sudo gem install capistrano -y

Configurations
Now that we have everything installed, we’re going to set up the configurations for
each of the tools. For most straightforward Rails applications you will only need to
configure a few things: Mongrel Cluster, Nginx, and Monit.

Configurations 661

One technique for simplifying and automating your system is to keep a deploy
directory right in your config/ directory of your app, and use a separate subdirecto-
ry for each of the deployments you have (e.g., dev, staging, production). Each
subdirectory will have its own copy of mongrel_cluster.yml, database.yml,
nginx.conf, railsway.conf, and so on. In your post-deploy Capistrano tasks you
can push these files into /var/www/railsway/shared/config and symlink to
them from where they are expected (e.g., /etc/nginx/nginx.conf ->

/var/www/railsway/shared/config/nginx.conf).

Configuring Mongrel Cluster
We’re going to generate a basic mongrel_cluster config file using the mongrel clus-
ter gem’s configure command. You can always write and edit this configuration by
hand, but it’s convenient to generate at least the initial version. You can do this like so:

$ mongrel_rails cluster::configure -p 8000 -e production \

-a 127.0.0.1 -N 2 --user deploy --group deploy \

-P /var/www/apps/railsway/shared/pids/mongrel.pid \

-c /var/www/apps/railsway/current

That will produce the file mongrel_cluster.yml, whose contents are shown in
the following listing. You can store it in the shared directory of your Capistrano
deployment tree (e.g., /var/www/railsway/shared/config/mongrel_

cluster.yml).

—-

cwd: /var/www/apps/railsway/current

port: ‘8000’

user: deploy

group: deploy

environment: production

address: 127.0.0.1

pid_file: /var/www/apps/railsway/shared/pids/mongrel.pid

servers: 2

662 20. Rails Production Configurations

Configuring Nginx
We’re going to split the total Nginx configuration into two separate files: nginx.conf
and railsway.conf. This pattern is a simple way to keep the application-specific
details out of the global config file.

nginx.conf

This is your primary Nginx configuration file. It sets up the pid, basic logging, gzip
compression, and mime-types. Notice at the bottom that it includes the railsway.conf
file. You could just as easily paste the contents of railsway.conf in its place, but by
keeping it separate it will be easier to read and change over time. This approach also
works well when you have multiple applications running on the same server.

user and group to run as

user deploy deploy;

number of nginx workers

worker_processes 4;

pid of nginx master process

pid /var/run/nginx.pid;

error_log /var/log/nginx/default.error.log debug;

Number of worker connections. 1024 is a good default

events {

worker_connections 8192;

use epoll; # linux only!

}

start the http module where we config http access.

http {

pull in mime-types. You can break out your config

into as many include’s as you want to make it cleaner

include /etc/nginx/mime.types;

set a default type for the rare situation that

nothing matches from the mime-type include

default_type application/octet-stream;

configure log format

log_format main ‘$remote_addr - $remote_user [$time_local] ‘

‘’$request’ $status $body_bytes_sent

‘$http_referer’ ‘

‘’$http_user_agent’ ‘$http_x_forwarded_for’’;

no sendfile on OSX

sendfile on;

These are good default values.

Configurations 663

tcp_nopush on;

tcp_nodelay on;

output compression saves bandwidth

gzip on;

gzip_http_version 1.0;

gzip_comp_level 2;

gzip_proxied any;

gzip_types text/plain text/html text/css application/

x-javascript text/xml application/xml application/xml+rss text/

javascript;

access_log /var/log/nginx.default.access.log main;

error_log /var/log/nginx.default.error.log info;

Hosted applications

include /etc/nginx/railsway.conf;

}

railsway.conf

This is your specific application’s config file. It will be included inside the main
nginx.conf in the preceding listing. Just as in Apache, when you have SSL set up,
you need to basically copy the set of configuration details. We include an example of
an SSL config here, but if you don’t need SSL you can just remove it.

upstream railsway {

server 127.0.0.1:8000;

server 127.0.0.1:8001;

}

server {

port to listen on. Can also be set to an IP:PORT

listen 80 default;

Set the max size for file uploads to 50Mb

client_max_body_size 50M;

sets the domain[s] that this vhost server requests for

server_name railsway.com;

doc root

root /var/www/apps/railsway/current/public;

vhost specific logs

access_log /var/www/apps/railsway/shared/log/railsway.access.log

main;

error_log /var/www/apps/railsway/shared/log/railsway.error.log

notice;

664 20. Rails Production Configurations

this rewrites all the requests to the maintenance.html

page if it exists in the doc root. This is for capistrano’s

disable web task

if (-f $document_root/system/maintenance.html) {

rewrite ^(.*)$ /system/maintenance.html last;

break;

}

Block access to paths containing .svn

location ~* ^.*\.svn.*$ {

internal;

}

location / {

index index.html index.htm;

Forward the user’s IP address to Rails

proxy_set_header X-Real-IP $remote_addr;

needed for HTTPS

proxy_set_header X_FORWARDED_PROTO https;

proxy_set_header X-Forwarded-For

$proxy_add_x_forwarded_for;

proxy_set_header Host $http_host;

proxy_redirect false;

proxy_max_temp_file_size 0;

location ~ ^/(images|javascripts|stylesheets)/ {

expires 10y;

}

if (-f $request_filename) {

break;

}

if (-f $request_filename/index.html) {

rewrite (.*) $1/index.html break;

}

if (-f $request_filename.html) {

rewrite (.*) $1.html break;

}

if (! -f $request_filename) {

proxy_pass http://railsway;

break;

}

}

error_page 500 502 503 504 /500.html;

location = /500.html {

root /var/www/apps/railsway/current/public;

}

Configurations 665

}

server {

port to listen on. Can also be set to an IP:PORT

listen 443 default;

Set the max size for file uploads to 50Mb

client_max_body_size 50M;

sets the domain[s] that this vhost server requests for

server_name railsway.com;

SSL certificate configuration

ssl on;

ssl_certificate /etc/nginx/ssl/railsway.cert;

ssl_certificate_key /etc/nginx/ssl/railsway.key;

keepalive_timeout 70;

add_header Front-End-Https on;

doc root

root /var/www/apps/railsway/current/public;

vhost specific logs

access_log /var/www/apps/railsway/shared/log/railsway.access.log

main;

error_log /var/www/apps/railsway/shared/log/railsway.error.log

notice;

this rewrites all the requests to the maintenance.html

page if it exists in the doc root. This is for capistrano’s

disable web task

if (-f $document_root/system/maintenance.html) {

rewrite ^(.*)$ /system/maintenance.html last;

break;

}

Block access to paths containing .svn

location ~* ^.*\.svn.*$ {

internal;

}

location / {

index index.html index.htm;

Forward the user’s IP address to Rails

proxy_set_header X-Real-IP $remote_addr;

needed for HTTPS

proxy_set_header X_FORWARDED_PROTO https;

proxy_set_header X-Forwarded-For

$proxy_add_x_forwarded_for;

proxy_set_header Host $http_host;

proxy_redirect false;

proxy_max_temp_file_size 0;

666 20. Rails Production Configurations

location ~ ^/(images|javascripts|stylesheets)/ {

expires 10y;

}

if (-f $request_filename) {

break;

}

Rails page caching, part 1

Add ‘/index.html’ to the end of the current request’s path

in the URL

and look for that file on the file system.

if (-f $request_filename/index.html) {

rewrite (.*) $1/index.html break;

}

Rails page caching, part 2

if (-f $request_filename.html) {

rewrite (.*) $1.html break;

}

if (! -f $request_filename) {

proxy_pass http://railsway;

break;

}

}

error_page 500 502 503 504 /500.html;

location = /500.html {

root /var/www/apps/railsway/current/public;

}

}

You can test the configs by running the following command against them:

$ sudo /usr/local/sbin/nginx -t -c config/nginx.conf

Configuring Monit
Monit’s configuration file is quite easy to read. This fairly extensive configuration
example will check the key processes on your server in one-minute intervals and alert
you if any of the conditions you specify are met. You can check system- or process-
level usage of disk, CPU, and average load. You can check whether processes are run-
ning, and you can even see if a process has been restarted a certain number of times

Configurations 667

within a given number of intervals. You can find more examples of useful Monit con-
figurations in the example monitrc included with the tool’s source.

set daemon 60 # Poll at 1-minute intervals

set logfile /var/log/monit.log

set alert monit-alerts@railsway.com

set mail-format {

from: monit@railsway.com

subject: $SERVICE service - $EVENT

message: $ACTION $SERVICE on $HOST: $DESCRIPTION

}

set httpd port 1380

allow localhost # Allow localhost to connect

check system railsway.com

alert monit-alerts@railsway.com but not on { instance }

if loadavg(1min) > 4 for 3 cycles then alert

if loadavg(5min) > 3 for 3 cycles then alert

if memory usage > 80% for 3 cycles then alert

if cpu usage (user) > 70% for 5 cycles then alert

if cpu usage (system) > 30% for 5 cycles then alert

if cpu usage (wait) > 20% for 5 cycles then alert

check process nginx with pidfile /var/run/nginx.pid

start program = “/etc/init.d/nginx start”

stop program = “/etc/init.d/nginx stop”

if 2 restarts within 3 cycles then timeout

if failed host localhost port 80 protocol http then restart

if failed host localhost port 443 then restart

check process sendmail with pidfile /var/run/sendmail.pid

start program = “/etc/init.d/sendmail start”

stop program = “/etc/init.d/sendmail stop”

check process mysql with pidfile /var/run/mysqld/mysqld.pid

start program = “/etc/init.d/mysqld start”

stop program = “/etc/init.d/mysqld stop”

check process mongrel_8000 with pidfile /var/www/railsway/shared/pids/

mongrel.8000.pid

668 20. Rails Production Configurations

start program = “/usr/bin/mongrel_rails cluster::start -C

/var/www/railsway/shared/config/mongrel_cluster.yml --clean --only

8000”

stop program = “/usr/bin/mongrel_rails cluster::stop -C

/var/www/railsway/shared/config/mongrel_cluster.yml --clean --only

8000”

if failed port 8000 protocol http

with timeout 10 seconds

then restart

if totalmem is greater than 128 MB for 4 cycles then restart

eating up memory?

if cpu is greater than 60% for 2 cycles then alert

send an email to admin

if cpu is greater than 90% for 5 cycles then restart

hung process?

if loadavg(5min) greater than 10 for 8 cycles then restart

bad, bad, bad

if 3 restarts within 5 cycles then timeout

something is wrong, call the sys-admin

group mongrel

check process mongrel_8001 with pidfile /var/www/railsway/shared/

pids/mongrel.8001.pid

start program = “/usr/bin/mongrel_rails cluster::start -C /var/www/

railsway/shared/config/mongrel_cluster.yml --clean --only 8001”

stop program = “/usr/bin/mongrel_rails cluster::stop -C /var/www/

railsway/shared/config/mongrel_cluster.yml --clean --only 8001”

if failed port 8001 protocol http

with timeout 10 seconds

then restart

if totalmem is greater than 128 MB for 4 cycles then restart

eating up memory?

if cpu is greater than 60% for 2 cycles then alert

send an email to admin

if cpu is greater than 90% for 5 cycles then restart

hung process?

if loadavg(5min) greater than 10 for 8 cycles then restart

bad, bad, bad

if 3 restarts within 5 cycles then timeout

something is wrong, call the sys-admin

group mongrel

Configurations 669

Configuring Capistrano
Capistrano will play an essential role in your complete production system. See the next
chapter for details on how you can set up your deployment configuration to work with
your application and production environment.

Configuring init Scripts
As we mentioned earlier in this chapter, many of the time- and cost-saving benefits of
setting up your production environment the way we are recommending are based on
automation. Process management is a good candidate for heavy automation. This is
done using init scripts, which serve two purposes: They are run on system startup
(when your server boots), and they are run either through the shell (by you, manual-
ly when necessary) or when you execute Capistrano commands when running
start/stop/restart tasks. We include code samples for Mongrel, Monit, and Nginx,
though the last two are shell scripts and are OS-specific. The Mongrel init script is
written in Ruby and is generic enough for general use.

Nginx init Script
You will want to find an Nginx init script so you can start, stop, or reconfigure
Nginx. You should find one (using your friendly search engine) that is specific to the
OS you are using. The following example is for CentOS. This file should be named
/etc/init.d/nginx.

#!/bin/sh

v1.0

nginx - Start, stop, or reconfigure nginx

#

chkconfig: - 60 50

description: nginx [engine x] is light http web/proxy server

that answers incoming ftp service requests.

processname: nginx

config: /etc/nginx/nginx.conf

pidfile: /var/run/nginx.pid

Source function library.

. /etc/rc.d/init.d/functions

Source networking configuration.

670 20. Rails Production Configurations

. /etc/sysconfig/network

Check that networking is up.

[${NETWORKING} = “no”] && exit 0

BINARY=/usr/sbin/nginx

CONF_FILE=/etc/nginx/nginx.conf

PID_FILE=/var/run/nginx.pid

[-x $BINARY] || exit 0

RETVAL=0

prog=”nginx”

start() {

Start daemons.

if [-e $BINARY] ; then

echo -n $”Starting $prog: “

$BINARY -c $CONF_FILE

RETVAL=$?

[$RETVAL -eq 0] && {

touch /var/lock/subsys/$prog

success $”$prog”

}

echo

else

RETVAL=1

fi

return $RETVAL

}

stop() {

Stop daemons.

echo -n $”Shutting down $prog: “

kill -s QUIT `cat $PID_FILE 2>/dev/null`

RETVAL=$?

echo

[$RETVAL -eq 0] && rm -f /var/lock/subsys/$prog

return $RETVAL

}

See how we were called.

case “$1” in

Configuring init Scripts 671

start)

start

;;

stop)

stop

;;

reconfigure)

if [-f /var/lock/subsys/$prog]; then

kill -s HUP `cat $PID_FILE 2>/dev/null`

RETVAL=$?

fi

;;

status)

status $prog

RETVAL=$?

;;

*)

echo $”Usage: $0 {start|stop|reconfigure|status}”

exit 1

esac

exit $RETVAL

Mongrel init Script
This Ruby script goes in /etc/init.d/mongrel (your OS may have a different place
to store init scripts). You can use it to start, stop, and restart mongrel processes. If you
place this script in init.d, it will be run when the server boots.

#! /usr/bin/env ruby

#

mongrel Startup script for Mongrel clusters.

#

chkconfig: 345 85 00

#

description: mongrel_cluster manages multiple Mongrel

processes for use \

behind a load balancer.

#

MONGREL_RAILS = ‘/usr/bin/mongrel_rails’

CONF_FILE = ‘/etc/railsway/mongrel_cluster.yml’

672 20. Rails Production Configurations

SUBSYS = ‘/var/lock/subsys/mongrel’

SUDO = ‘/usr/bin/sudo’

case ARGV.first

when ‘start’

‘#{MONGREL_RAILS} cluster::start -C #{CONF_FILE}’

‘#{SUDO} touch #{SUBSYS}’

when ‘stop’

‘#{MONGREL_RAILS} cluster::stop -C #{CONF_FILE}’

‘#{SUDO} rm -f #{SUBSYS}’

when ‘restart’

‘#{MONGREL_RAILS} cluster::restart -C #{CONF_FILE}’

when ‘status’

‘#{MONGREL_RAILS} cluster::status -C #{CONF_FILE}’

else

puts ‘Usage: /etc/init.d/mongrel {start—stop—restart—status}’

exit 1

end

exit $?

Monit Configuration
You will also want to have your init script for Monit. If you use Monit to manage
your processes, then Monit will actually call the other scripts in the Capistrano tasks.
You will want to make sure that Monit is responsible for starting, stopping, and
restarting tasks, because if you stop the process manually, Monit will discover at the
next specified interval that the process is not running and will start it back up. This
behavior is sometimes exactly what you do not want to happen if you are having issues
on your production server and need to stop a process.

As with the Nginx init script previously, this script is specific to CentOS. You
can find one specific to your OS online.

#! /bin/sh

#

monit Monitor Unix systems

#

Author: Clinton Work, <work@scripty.com>

#

chkconfig: 2345 98 02

description: Monit is a utility for managing and monitoring

processes,

Configuring init Scripts 673

files, directories and devices on a Unix system.

processname: monit

pidfile: /var/run/monit.pid

config: /etc/mcommons/monitrc

Source function library.

. /etc/rc.d/init.d/functions

Source networking configuration.

. /etc/sysconfig/network

MONIT=/usr/local/bin/monit

CONFIG=/etc/monitrc

Source monit configuration.

if [-f /etc/sysconfig/monit] ; then

. /etc/sysconfig/monit

fi

[-f $MONIT] || exit 0

RETVAL=0

See how we were called.

case “$1” in

start)

echo -n “Starting monit: “

daemon $NICELEVEL $MONIT -c $CONFIG

RETVAL=$?

echo

[$RETVAL = 0] && touch /var/lock/subsys/monit

;;

stop)

echo -n “Stopping monit: “

killproc monit

RETVAL=$?

echo

[$RETVAL = 0] && rm -f /var/lock/subsys/monit

;;

restart)

$0 stop

$0 start

RETVAL=$?

674 20. Rails Production Configurations

;;

condrestart)

[-e /var/lock/subsys/monit] && $0 restart

;;

status)

status monit

RETVAL=$?

;;

*)

echo “Usage: $0 {start|stop|restart|condrestart|status}”

exit 1

esac

exit $RETVAL

Deployment and Launch
Now that you have your server running, you should be ready to try deploying to it.
We are going to defer to Chapter 21 for instructions in setting up your application for
deployments. You can see from the directory structure we’ve referred to that we are
expecting to run the application from the base directory of /var/www/apps/railsway,
and that we expect you to use monit to control your process management.

You should be aware of where the logs will be stored for your application, for the
Mongrels, for Nginx, for Monit, and so on. These are often the first place you need
to look when troubleshooting. You can use curl to hit your site quickly without need-
ing to use a browser.

Other Production Stack Considerations
The following kinds of concerns should always be factored into how you design your
production environment. Each of these topics on their own can result in huge labor
and hardware costs, depending on your level of priority and, in some cases, paranoia.
Be aware that addressing these concerns is always a compromise of time, money, and
efficiency.

Other Production Stack Considerations 675

Redundancy and Failover
What happens if the database goes down, or if a disk fails? Redundancy and failover
concerns deal with your ability to react to a failure at one or more levels of software
or hardware. We are not going to cover these topics here, as there are many levels of
redundancy and failover at each level of your production stack.

Caching
Caching is intended to improve the performance of your system by storing the results
of common requests and making them easier and faster to access than processing the
entire request from scratch. Common ways to cache include storing previous HTTP
responses as HTML files on disk (aka page caching), storing them in memory (e.g.,
Memcache), and so on. There are many ways to cache at each level of your produc-
tion configuration. You can read an excellent tutorial on caching in Rails at
http://www.railsenvy.com/2007/2/28/rails-caching-tutorial.

Performance and Scalability
The terms “performance” and “scaling” are often used interchangeably, and although
they are related, they represent different concerns and have different solutions.
Performance is a measure of the behavior of a given “unit” of resources. For example,
you can benchmark the performance of the login system receiving 20,000 requests for
the login page within one minute, running on a single web server and database con-
nection. Repeated benchmarks across various parts of the application stack will estab-
lish the baseline performance you can expect from a single “unit” of resources.

Scalability, on the other hand, refers to how efficiently the system architecture can
grow in proportion to increasing demand. In other words, it is a measure of change in
the ratio between units of demand and units of resources as the units of demand
increase. For example, let’s say you have a three-server stack, with one box each for
web, app, and database tiers. If that stack can handle 1,000 req/sec based on your per-
formance measurements, how much hardware will you need to handle 2,000 req/sec?
Ideally an architecture should be able to scale “horizontally” (i.e., proportionately),
meaning that you could add more “units” of resources without reducing the perform-
ance of the entire system. In the preceding example, that would mean we just double
the hardware, but it is not always that simple.

In practical production environments, your ability to scale easily will depend on
a number of factors. Some aspects of scaling behavior depend on the overall behavior

676 20. Rails Production Configurations

of your application. For example, write-heavy applications (i.e., those that perform a lot
of database INSERTs)—such as social networks or financial transaction applications—
will require more complex database cluster solutions than read-heavy applications
such as blog or news aggregators. Another factor in scaling behavior is that different
parts of your application may scale at different rates. Vendor or third-party integration
points—such as a mail delivery vendor, an e-commerce payment gateway, or external
asset storage service—will often scale at different rates than the rest of your applica-
tion.

You can read more about these at http://en.wikipedia.org/wiki/Scalability. Scaling
a stack is far too intricate a topic to be able to cover with any depth in this chapter,
but you can find some excellent resources online by searching for presentations and
blog posts that deal with it. Rails uses “share-nothing architecture” similar to its
LAMP-stack predecessors, which has proven to be an effective, low-cost way to struc-
ture an application. This approach has evolved as the web industry has matured over
the past decade or so, and works well for many applications. Many of the veterans of
the “share-nothing architecture” earned their badges with LAMP, but you can apply
most of their wisdom to Rails without losing much value. Because our production
stack is simple, it will not be difficult to change into more complex configurations
later.

Security
It is largely impossible to address security here with any degree of depth, but it is prob-
ably worth noting the following simple steps to at least protect yourself from obvious
attacks.

Application Security

You can lock down your server and network and bury the hardware in an old missile
silo, but that won’t keep you safe if your application is open for attacks. Fortunately,
Rails’ tools and methods will make it easy to keep your application relatively safe out
of the box, and by employing some best practices you can avoid the most common
attacks, such as SQL injection and Cross-Site Scripting (XSS). You can find out more
from the ROR security blog at http://www.rorsecurity.info.

Other Production Stack Considerations 677

Lock Down Your Ports

You should lock down your ports so that you can only access 80, 443, and your non-
standard SSH port. If you have a firewall and can configure it yourself, this should be
done at the firewall level. If you do not have access to the firewall you can lock down
these ports at the server level using iptables.6

Maintainability
After you actually launch your application, you’ll want to keep tabs on it and gener-
ally keep your system clean. You’ll also want it to be pretty straightforward to hunt
down problems and troubleshoot them when they happen. All kinds of odd things
happen in production environments that are tough or impossible to reproduce on
your local development machine.

Conclusion
Setting up your production environment is not as daunting an endeavor as it used to
be. Developers and sysadmins tend to stick to what they know, which is understand-
ably all too easy in our age of specialties. Rails, for its part, has helped to chip away at
this tendency by encouraging developers to crawl out of their holes and play DBA,
sysadmin, or “front-end designer” by simply putting them within reach. In general,
the web as a production, publication, and distribution medium has vastly simplified
the skills and efforts required to get ideas, products, and services out into the open.
Rails and the wealth of libraries and tools that developers have created to support it
have served this paradigm well by simplifying even the most mundane areas of web
development such as deployments and system administration.

In this chapter we have reviewed the key technical and philosophical components
of setting up a modern production environment. There are, of course, millions of pos-
sible permutations, a few of which will be most suitable for your needs. Even if you
use PostgreSQL, FreeBSD, and Perforce, you should be able to adapt our recom-
mended configuration for your own system easily. You should always seek the advice
of your peers, especially if this is your first production environment setup, but you can
consider the approach that we’re recommending as the generally accepted best prac-
tices, at least for Rails applications.

The big remaining step of getting your application into production is the actual
configuration of your application with Capistrano, so it can be deployed to your fancy
new production environment. We cover this in the next chapter.

678 20. Rails Production Configurations

References

1. Mongrel project homepage: http://mongrel.rubyforge.org

2. Information about the Bash shell: http://en.wikipedia.org/wiki/Bash

3. Nginx project homepage: http://nginx.net

4. Instructions for setting up Apache to talk to a Mongrel Cluster using mod_proxy_balancer:
http://mongrel.rubyforge.org/docs/apache.html

5. iptables project homepage: http://www.netfilter.org/projects/iptables/index.html

6. Monit project homepage: http://www.tildeslash.com/monit/

Conclusion 679

This page intentionally left blank

CHAPTER 21
Capistrano

“When we .NET developers say that getting into Rails is tough, this is the kind
of stuff we’re talking about. [...] It’s the Linux shell, server applications, and other
things we’re not used to that trip us up.”
—Brian Eng http://www.softiesonrails.com/2007/4/5/the-absolute-moron-s-
guide-to-capistrano

Need being the great mother of invention, the story goes that in his work for 37sig-
nals, Jamis created Switchtower (later renamed to Capistrano1) when Basecamp grew
to be hosted on more than one production server. It’s a tool for automating tasks on
remote servers.

Although Capistrano is now firmly established as the standard solution to Rails
deployment challenges, its multiserver transactional approach to running remote
commands lends it to a fairly broad range of deployment scenarios.

This chapter delves into Capistrano (version 22), clearly showing how it works out
of the box to solve tricky and time-consuming activities. We also show what it does-
n’t do for you and how you can extend it by crafting your own deployment recipes to
customize Capistrano’s capabilities. In conclusion, we’ll explore a few great recipes cre-
ated by the Capistrano community that have gained broad acceptance.

Overview of Capistrano
We’ll start with a high-level overview of Capistrano. The first stop on that journey is
to take stock of Capistrano’s domain-specific terminology.

Terminology
Capistrano has its own vocabulary that distinguishes it from simply being an exten-
sion of Rake, on which it is based:

• One or many deployment machines are the computers to which we will deploy.

• Recipes are what tasks are to Rake. Whether they represent a single task or more,
a recipe provides a desirable solution. Recipes are made up of tasks.

• Tasks are atomic units of functionality, and exist to be called directly by an end
user, or internally by another task. Tasks sit within namespaces.

• A Capistrano namespace groups tasks logically. In this way a task name may be
repeated within another namespace and are a great way for contributing authors
to add recipes without the fear of task-name collisions.

• Roles such as :app and :db are means by which we can group task execution—
we can target the running of a task within a role—so that the task runs only
against that role. You can think of them as a task qualifier where the qualifier is
generally a class of deployment machine such as :app, :db, or :web for which
the task will run.

• Variables are global variables available to the rest of the script.

The Basics
The first time I sat down to use Capistrano, I asked myself: What do I need to do to
use Capistrano? What does it expect of my app? Of my server? And when a deploy-
ment is finished, what has Capistrano done and what hasn’t it?

The following sections answer these questions and should set in place the larger
view of Capistrano in your project development workflow.

What Do I Need to Do to Use Capistrano?

First, it’s important to note that Capistrano is only installed on your development (or
“deploy from”) computer. Capistrano has no requirements to be installed on the
deployment machine itself. It operates solely on its core requirements and assumptions
of the deployment machine, and executes commands to the deployment machines
through an established and secure SSH infrastructure.

682 21. Capistrano

So, the short answer is to consider the assumptions and requirements and address
them. You’ll likely find your first few deployments are a little rough—trial and error.
But over time I bet you’ll find Capistrano to be your key deployment ally.

What Does Capistrano Expect?

Some requirements are mandatory and some are baseline assumptions that can be
overridden. This core philosophy encourages best practices while not locking you in
to them.

Capistrano’s core requirements are that

• You are using SSH to access the remote machine.

• The deployment machine has a POSIX3-compatible shell.

• If you’re using passwords, that all deployment machines have the same password
(PKI is the recommended solution). 4

The following assumptions are overridable:

• You want to deploy a Rails application.

• You’re using Subversion to manage source code.

• You’ve got your production environment already built (operating system, Ruby,
Rails, other gems, database, web/app/db servers).

• Passwords are the same for your deployment machine and your svn repository.

• You’ve created the deployment database plus a user that can access it.

• You have all config files in subversions ready to run in your production environ-
ment (which includes user/passwords for the aforementioned deployment data-
base).

• Your migrations will run from 0 to 100 (deploy:migrate).

• Your web/app servers are configured with a spin script to start/stop/restart the
web app.

As mentioned, these requirements and assumptions are the defaults. If they don’t
suit you, stay tuned, because we’ll show you how to build tasks and callbacks to cus-
tomize Capistrano to suit your specific needs.

Overview of Capistrano 683

What Has Capistrano Done and What Hasn’t It?
When you’re done getting Capistrano and its requirements addressed (either directly
or through customization), you’re left in deployment Nirvana. Okay, that’s a little
strong, but your code will be deployed from your repository, migrations run, Apache
and your app server (Mongrel, fastcgi) will be booted, and well… now you’re
deployed, and ready for that next deployment event.

So now you can start doing great things like updating your servers with the latest
svn check-in using cap deploy:update, or go full out and update to the latest
release and restart your app servers using cap deploy. You can even put up a main-
tenance page during extended downtime using cap deploy:web:disable, and roll
back when you mess up a deployment, using cap deploy:rollback.

If you’ve got multiple servers to manage, the commands don’t change, just your
setup. Just a little config-file tweaking and you’re using cap deploy and cap

deploy:invoke to run arbitrary commands on all servers simultaneously.

Getting Started
Now that we’ve taken seen the view from 10,000 feet, we’re now going to get on the
ground. For the sake of this first exercise, we’re going to take for granted that all of
Capistrano’s expectations as described in the last section have been met.

Installation
To get started, let’s install Capistrano:

$ sudo gem install capistrano

Install required dependency net-ssh? [Yn]

Install required dependency net-sftp? [Yn]

Install required dependency highline? [Yn]

Successfully installed capistrano-2.0

Running cap with the --tasks switch will tell us what tasks Capistrano knows
about.

$ cap --tasks

cap invoke #Invoke a single command on the remote servers.

cap shell #Begin an interactive Capistrano session.

684 21. Capistrano

Learn more about each with the explain switch(-e):

cap -e command #ie. cap -e deploy:pending:diff

Both of these are general-purpose, built-in tasks that allow you to run one or more
commands on the deployment machines. The invoke task will run a single com-
mand, while shell opens up an irb-like command-prompt where you can issue mul-
tiple commands. But where are all the great things you can do with Capistrano?

“Capify” Your Rails Application
In order to prepare your project for deployment, Capistrano provides us with the
capify command, which builds the basic configuration files, and with a little bit of
editing on our part our app will be ready to deploy. Taking my_project, previously
configured as per Capistrano’s assumptions, we’ll create two files:

$ cd my_project

$ capify .

[add] writing `./Capfile’

[add] writing `./config/deploy.rb’

[done] capified!

Now before we look at the two files created, let’s run cap --tasks again.

$ cap --tasks

cap deploy #Deploys your project.

cap deploy:check #Test deployment dependencies.

cap deploy:cleanup #Clean up old releases.

cap deploy:cold #Deploys and starts a ‘cold’ application.

cap deploy:migrate #Run the migrate rake task.

cap deploy:migrations #Deploy and run pending migrations.

cap deploy:pending #Displays the commits since your last deploy.

cap deploy:pending:diff #Displays the diff’ since your last deploy.

cap deploy:restart #Restarts your application.

cap deploy:rollback #Rolls back to a previous version and restarts.

cap deploy:rollback_code #Rolls back to the previously deployed version.

cap deploy:setup #Prepares one or more servers for deployment.

cap deploy:start #Start the application servers.

cap deploy:stop #Stop the application servers.

cap deploy:symlink #Updates the symlink to the deployed version.

cap deploy:update #Copies your project and updates the symlink.

cap deploy:update_code #Copies your project to the remote servers.

Getting Started 685

cap deploy:upload #Copy files to the currently deployed version.

cap deploy:web:disable #Present a maintenance page to visitors.

cap deploy:web:enable #Makes the application web-accessible again.

cap invoke #Invoke a single command on the remote servers.

cap shell #Begin an interactive Capistrano session.

Now that’s more like it! But where did these new tasks come from? For that
answer, we’ll look at Capfile:

$ cat Capfile

require ‘capistrano/version’

load ‘deploy’ if respond_to?(:namespace) # cap2 differentiator

load ‘config/deploy’

It’s short! As you can see, the cap command loads up recipes by reading the
Capfile in the present directory. Just like Rake, Capistrano will search up the direc-
tory tree until it finds a Capfile, which means you can run cap in a subdirectory of
your project.

The Capfile built by capify loads up a bunch of standard Capistrano recipes
in deploy, plus it also loads up your project-specific recipes in config/deploy:

my_project> $ cat config/deploy.rb

set :application, “set your application name here”

set :repository, “set your repository location here”

If you aren’t deploying to /u/apps/#{application} on the target

servers (which is the default), you can specify the actual location

via the :deploy_to variable:

set :deploy_to, “/var/www/#{application}”

If you aren’t using Subversion to manage your source code, specify

your SCM below:

set :scm, :subversion

role :app, “your app-server here”

role :web, “your web-server here”

role :db, “your db-server here”, :primary => true

686 21. Capistrano

Configuring the Deployment
Minor edits to the boilerplate config/deploy.rb file are all that’s required to pre-
pare your app for deployment. The deploy.rb file describes your application deploy-
ment in simple-to-read language.

Name Your Application

The first basic setting is the name of your application:

set :application, “set your application name here” # used as a folder

name

Although the help text in deploy.rb has spaces in the application name, you
probably don’t want them, because the application name will be used as a directory
name on the deployment machine.

Repository Info

Next, we need to tell Capistrano where to find the source code for your application:

set :repository, “set your repository location here”

Assuming a Subversion server, set :repository to a Subversion URL (whether
HTTP, svn, or svn+ssh). Another built-in assumption is that the username and pass-
word for the Subversion account are the same as those of your deploy user. The login
name of the user running Capistrano will be used to connect to svn, and you will be
prompted if your svn server requires authentication.

Define Roles

Next we’re going to point Capistrano at the domain name or IP address of your
deployment machine(s). Capistrano will SSH to this address to perform the actions
that you script. For this easy case, all three Roles (or classes) of machines will be the
same.

role :app, “my_deployment_machine” #or you can use an IP address

role :web, “my_deployment_machine”

role :db, “my_deployment_machine”, :primary => true

Getting Started 687

Roles are a powerful means by which we can target execution of specific tasks on
a class of machines. For instance, we can use deploy shell to run a grep on all :app
machines.

Extra Role Properties

In our example, the :db role is marked with the option :primary => true. This
attribute indicates the primary database server. Certain tasks, such as database migra-
tions, will only run on the primary database server, since the most common database-
clustering scenario calls for slaves to synch up with the primary. You can also specify
that a given role is a slave (using :slave => true) so that you can target certain types
of tasks, such as backups. Think of these attributes as qualifiers of the Role for finer
grain control, and although there are standard qualifiers provided by Capistrano, you
can define your own.

That’s it! Once the name of the application, the source-control information, and
roles are defined, you are done with configuration.

A Little Spin, Please…
After a successful deploy, Capistrano is going to try to start (spin) your application. By
default, it will look for ./script/spin, expecting that file to contain a script to start
your application servers. It’s your job to write that script (since Rails doesn’t come with
one), starting the app server of your choice. The easiest approach is to have your spin
script talk to the spawner script, provided by Rails, since it knows how to fire up both
FCGI and Mongrel.

You can read about the spawner tool easily; just type script/process/spawn-
er --help at the console. A simple spin script to call spawner to start Mongrel5 will
look like this:

/deploy_to/current/script/process/spawner -p 8256 -i 2

Add that line of code as ./script/spin to your repository, and upon a success-
ful deploy, Capistrano will start two Mongrel instances, listening on ports 8256 and
8257. The distinct advantage of using the standard Rails spawner is that it will track
the process ids, which means other standard Rails scripts are available. This includes
script/reaper, used for restarting, monitoring, and stopping application server
instances.

688 21. Capistrano

If you decide to step outside the tightly integrated spin solution, perhaps because
you want to roll in some background process management, or you want to use a third-
party startup script such as mongrel_cluster, then you’ll have to override the stan-
dard deploy tasks. Later on in the chapter, in Baking Exercise #2, we’ll show you how
to do just that.

Set Up the Deployment Machine
Now that we’ve got our default configuration in place, and all assumptions are cov-
ered, we can ask Capistrano to set up our deployment machine. What does setup
mean? The deploy:setup task essentially creates the directory structure that holds
your application deployments.

$ cap deploy:setup

Deployment Directory Structure

After running deploy:setup, SSH over to your deployment server, and peruse the
directory structure that was created. The default is /var/www/apps/application_name,
containing the following subdirectories:

releases

current

shared

shared/log

shared/system

shared/pids

This structure bears some discussion. Whenever you deploy, Capistrano checks
out (or exports) your project from svn, and places the files in the releases folder,
each in its own release folder named based on the current date and time. After this hap-
pens successfully, Capistrano builds a link from the releases folder to
application_name/current, where your currently deployed web application is found.

Getting Started 689

Symbolic Links

Capistrano also makes the following symbolic links on each deployment:

• application_name/shared/log is linked to your current project’s log direc-
tory, so that logs persist across releases.

• application_name/shared/pids is linked to your current project’s tmp/pids
directory.

• application_name/shared/system is linked to your current projects pub-
lic/system directory. This is where Capistrano stores HTML files that show
your project in maintenance mode. (See cap deploy:web:disable/enable.)

Checking a New Deployment Setup

Before we move on to our first deploy, Capistrano provides us with the
deploy:check task to verify that all assumptions and pieces are in place:

cap --quiet deploy:check # quiet shuts out the verbosity

In addition to the default permissions checking, utilities (svn), and others
required, deploy:check also provides a means to verify application-specific depend-
encies. These can be nicely declared within your deploy.rb, and that works for both
local and remote dependencies:

depend :remote, :gem, “runt”, “>= 0.3.0”

depend :remote, :directory, :writeable, /var/www/current/config

depend :remote, :command, “monit”

depend :local, :command, “svn”

When a dependency fails during the deploy:check task, you’ll see a message like
the following one:

The following dependencies failed. Please check them and try again:

--> gem `runt’ >= 0.3.0 could not be found (my_deployment_machine)

690 21. Capistrano

Deploy!
If you’ve done everything correctly up to now in setting up your application’s
deploy.rb script and you have set up the remote machines, then you’re ready to actu-
ally do a deployment.

On a first deploy of this app, we’ll run cap deploy:cold —otherwise we’d run
the default task cap deploy. The only difference between these two is that cap
deploy will try to shut down your server first, which won’t work since it isn’t running
yet.

$ cap deploy:cold # cold will “svn co”, run migrations, link this

release

to the current and start your servers

In most cases, you will be asked to enter the password to your svn server. This is
a case where it is extremely handy to have set up SSH keys on the local and client
machine so that you authenticate automatically with certificates instead of having to
enter passwords multiple times.

If all went well, you shouldn’t see any error messages, and a browser session will
show your app is up. If not, read the verbose output, go over the assumptions, and
start again.

Overriding Capistrano Assumptions
Now that we’ve learned how to use Capistrano with its standard assumptions, we’ll
take a look at scenarios in which they need to be worked around. Some scenarios
involve simply setting additional Capistrano variables, while others involve overriding
existing tasks or hooking into callback functions. Some scenarios require entirely new
tasks to be defined.

Using a Remote User Account
To use a remote user account other than the currently logged-in user, just set the
:user variable to the desired remote user account name.

set :user, “deploy”

Overriding Capistrano Assumptions 691

That was simple, and also makes an important point. Capistrano tries to simpli-
fy working outside the stated assumptions. Another example would be changing the
source-control system to something other than Subversion.

Customizing the SCM System Used by Capistrano
Although the default SCM system is Subversion, Perforce, Bzr, and Darcs are also sup-
ported.

set :scm, :subversion # default. :perforce, :bzr, :darcs

You can also customize the deployment strategy, and we do not recommend that
you stick with the default, which is :checkout, since it is very inefficient. All those
little .svn directories chew up disk space like crazy! Instead, try the :export option,
which will do an svn export of your codebase into the release directory. The
:remote_cache performs well also, since it makes a copy of the last release, and then
executes svn up to get the latest code, but we like :export best.

set :deploy_via, :checkout # default

set :deploy_via, :export

set :deploy_via, :remote_cache # copies from cache, then svn up

Working without SCM Access from the Deployment Machine
Sometimes, particularly for security reasons, you don’t have (or want) access to SCM
on your deployment machine. For these cases, Capistrano provides a means to
deploy_via :copy. The :copy strategy tars and gzips your project before using
SFTP to upload it to the release directory on the remote machine. In the rare case that
your local machine does not have the required binaries, you can tell Capistrano to use
Ruby’s internal zip library.

set :deploy_via, :copy # local scm check out.

Cap will tar/gzip sftp to deployment machine

set :copy_strategy, :export # changes deploy_via :copy to :export

instead of default scm check out

set :copy_compression, :zip # if you don’t have tar/gzip binaries,

Cap will zip for you

692 21. Capistrano

Hopefully you are noticing that although Capistrano’s assumptions are good
defaults, you have a great deal of flexibility in specifying alternatives, without having
to write your own tasks.

What If I Don’t Store database.yml in My SCM
Repository?
People sometimes leave configuration files such as database.yml out of the reposi-
tory for a number of reasons, among them security concerns. We don’t advise this
practice, since it complicates distributed development and local config requirements.
However, learning how to work around the challenge posed by nonversioned config-
uration files provides us a valuable and realistic opportunity to teach you how to move
beyond basic understanding of Capistrano.

Note that out of the following three options, there is only one that is really good
in our opinion. However, you stand to learn from all three.

Option A: Version It Anyway, but with a Different Name

In this option, you add a file like production.database.yml to the repository, and
then rename it to database.yml automatically on deployment. We might have got-
ten to this challenge because we didn’t want passwords in our repository to begin with,
but at least some Rails developers will feel this is a legitimate solution. After all, the
more popular reason to leave database.yml out of the repository is so that each
developer on a team can have their own local database connection configuration.

• Pros Easy solution. No default configuration; just create the additional task and
add a file named production.database.yml to the repository.

• Cons Plaintext passwords in the repository, which could be a big problem in
some shops.

To implement this option, add a file named production.database.yml to the
repository and give it your production database details. Then add the task definition
(as shown in Listing 21.1) to config/deploy.rb.

Listing 21.1 Copying a production.database.yml Configuration after Code Update

task :after_update_code, :roles => :app do
run “cp #{release_path}/config/production.database.yml

#{release_path}/config/database.yml”
end

Overriding Capistrano Assumptions 693

Tasks named :after_update_code function as callbacks, invoked after the code
for the new release is updated. Here we also see demonstrated the run command,
which gives you an idea of how easy it is to run commands remotely.

Option B: Store Production-Ready database.yml in the shared/config Folder

Here’s another solution, but take heed that it isn’t the best one either. We’re giving it
to you mainly to demonstrate the :after_symlink callback.

• Pros No username and password information stored in your repository.

• Cons Requires manually copying configuration files to the deployment
machine.

To implement this option, add the following task to config/deploy.rb:

task :after_symlink, :roles => :app do

run “cp #{shared_path}/config/database.yml

#{release_path}/config/database.yml”

end

then...

a. cap setup

b. copy production-ready database.yml file to the shared/config

folder

c. cap cold_deploy

Option C: The Best Option: Autogenerate database.yml

This one just sounds so right that we hope you don’t even consider the other two. You
autogenerate database.yml (as shown in Listing 21.2) and put it in the shared con-
fig directory on the remote machine. Then you link it to your release’s config folder.

• Pros Easy reuse, flexibility, and no passwords in the repository.

• Cons A little harder to code, but we only do this once.6

694 21. Capistrano

Listing 21.2 Create database.yml in Shared Path Based on Template

require ‘erb’

before “deploy:setup”, :db
after “deploy:update_code”, “db:symlink”

namespace :db do
desc “Create database yaml in shared path”
task :default do
db_config = ERB.new <<-EOF
base: &base
adapter: mysql
socket: /tmp/mysql.sock
username: #{user}
password: #{password}

development:
database: #{application}_dev
<<: *base

test:
database: #{application}_test
<<: *base

production:
database: #{application}_prod
<<: *base

EOF

run “mkdir -p #{shared_path}/config”
put db_config.result, “#{shared_path}/config/database.yml”

end

desc “Make symlink for database yaml”
task :symlink do
run “ln -nfs #{shared_path}/config/database.yml

#{release_path}/config/database.yml”
end

end

Then to use your new .yml file, execute the following commands:

$ cap deploy:setup

$ cap deploy:update

Overriding Capistrano Assumptions 695

What If My Migrations Won’t Run from 0 to 100?
The Capistrano recipe deploy:migrations expects a database.yml production-
specified database, does a deployment as usual, and runs any pending migrations.
Unfortunately, it is pretty common to get yourself into a situation where your whole
suite of migrations won’t run without an error.

One possible solution is to create a task that sets up your database using
db/schema.rb, a Ruby script that (using the Migrations API) handily stores the most
recently migrated version of your database schema (DDL). The Capistrano task in
Listing 21.3 loads the schema.

Listing 21.3 Load Database Schema Remotely Using schema.rb

namespace :deploy do
desc “runs ‘rake db:schema:load’ for current release”
task :load_schema, :roles => :db do

rake = fetch(:rake, “rake”)
rails_env = fetch(:rails_env, “production”)

run “cd #{current_release}; #{rake} RAILS_ENV=#{rails_env}
db:schema:load”
end

end

Run the task in two steps: cap deploy:cold followed by cap

deploy:load_schema.

Useful Capistrano Recipes
One of the greatest things about Capistrano is the ease with which we can roll our own
recipes. But before we do, there are some things we need to clear up about variables.

Variables and Their Scope
There are two ways we can specify variables. One is from the recipe definitions (as
we’ve already seen in this chapter). The other is from the command line.

From the command line we can set variable values using either an -s or -S switch.
Typing cap -s foo=bar is equivalent to having set :foo, “bar” after all your
recipes are loaded, and cap -S foo=bar does so before recipes are loaded.

696 21. Capistrano

As with Rake, you can also specify variables within the OS environment. As this
is a little tougher in Windows, Capistrano command-line switches are a better cross-
platform solution.

Whenever possible, I prefer to create specific Capistrano tasks that set common
variables rather than depend on shell scripts or command-line operations. This keeps
the deployment knowledge within Capistrano, and not spread around your environ-
ment.

A topic that deserves a little investigation at this time is the scoping of Capistrano
variables. Are variables local to the task? Local to the namespace? Or global to
Capistrano in general? To figure out this bit of undocumented Capistrano, we’re going
to write some tasks (Listing 21.4) to play with the possibilities. We’ll start by creating
two namespaces (:one and :two) and assign identically named variables (:var_one)
to them. Then we’ll set and get those values from a third namespace. The resulting val-
ues should teach us much about Capistrano’s scoping rules.

Listing 21.4 Exploring Scoping of Capistrano Variables

namespace :one do
task :default do
set :var_one, “var_one value”

end
end

namespace :two do
task :default do
set :var_one, “var_two value”

end
end

namespace :three do
task :default do
puts “!!!! one.var_one == #{one.var_one}”
puts “!!!! global name space var_one == #{var_one}”

two.default

puts “!!!! one.var_one == #{one.var_one}”
puts “!!!! two.var_one == #{two.var_one}”
puts “!!!! global name space var_one == #{var_one}”

end
end

before “deploy:update”, :one
before “deploy:update”, :two
after “deploy:update”, :three

$cap deploy:update

Useful Capistrano Recipes 697

Running the code in Listing 21.4 dumps the following output to the console:

* executing `three’ # run one

!!!! one.var_one == var_one value

!!!! global name space var_one == var_one value

* executing `two’ # run two

!!!! one.var_one == var_two value

!!!! two.var_one == var_two value

!!!! global name space var_one == var_two value

What does this mean? First we can see that referencing one.var_one and (the
global) var_one returns the same value; looks as if they’re one and the same. Taking
a second kick at it, in the second run we call task two.default. Setting only
two.var_one confirms that there isn’t a local variable namespace—but simply one
global namespace for variables.

In the preceding tester code you may have noticed the funny two.default call
in the example—this is simply the way to call namespaced tasks. In the case of default,
we use the explicit name (merely two won’t resolve as it does in the namespace syntax
shortcut :two).

In summary, we have shown that variables aren’t scoped by namespace; referenc-
ing them by namespace will always return the global value and will probably confuse
you and others down the line. But be aware that scoped variables are planned for a
future version of Capistrano.

Exercise #1: Staging
A particularly useful trick with Capistrano is the ability to initialize a starting config-
uration for tasks. A great use for such preinitialization is for setting up the environ-
ment for which we will be deploying.
We can do this in two ways; first, using the -S switch to set an initial value:

$ cap -S app_server=the_rails_way.com,secure_ssh_port=8256 deploy

The deploy task will be run with the app_server and secure_ssh_port

parameters set. This strategy rapidly gets out of hand as we need new parameters. Do
we need an additional shell script to hold those parameters? Yuck! Capistrano can be
a powerful friend, especially if you don’t distribute your deployment logic.

698 21. Capistrano

The second, and much more DRY, method is to code tasks that define each of
your staging environments, so that you can say something like cap production

deploy, letting the production task setup the needed variables, just as we show you
in Listing 21.5.

Listing 21.5 Production and Staging Environment Tasks

desc “deploy to the production environment”
task :production do

set :tag, “release-1.0” unless variables[:tag]
set :domain, “the-rails-way.com”
set :repository, “http://svn.nnovation.ca/svn/the-rails-

way/tags/#{tag}”
set :rails_env, “production”
set :app_server, “the-rails-way.net”
set :secure_ssh_port, 8256

role :app, “#{app_server}:#{secure_ssh_port}”
role :web, “#{app_server}:#{secure_ssh_port}”
role :db, “#{app_server}:#{secure_ssh_port}”, :primary => true

end

desc “deploy to the staging environment”
task :staging do
set :domain, “staging.the-rails-way.com”
set :repository, “http://svn.nnovation.ca/svn/the-rails-way/trunk”
set :rails_env, “development”
set :app_server, “staging.the-rails-way.com”
set :secure_ssh_port, 8256

role :app, “#{app_server}:#{secure_ssh_port}”
role :web, “#{app_server}:#{secure_ssh_port}”
role :db, “#{app_server}:#{secure_ssh_port}”, :primary => true

end

Thus, we can deploy very concisely and without worrying about command-line
parameters.

$ cap staging deploy # trunk to staging

$ cap production deploy # tags/release-1.0 to production

Now I don’t know about you, but those repetitive role assignments smell a little.
How about we just move them out of the tasks, perhaps below the two task defini-
tions? We tried, and learned an important lesson when Capistrano reported that
app_server and secure_ssh_port weren’t understood. Is it a matter of scoping? Is
our execution order off?

Useful Capistrano Recipes 699

The answer is that both scoping and execution order are coming into play. When
you move the role assignments out of the task’s do..end blocks into the main body
of the script, you are changing the timing of their evaluation. Those lines will in fact
execute prior to the code that is inside of the task definition. So in this particular case,
the role assignments would get executed before an app_server value is set.

Luckily for us, the solution is pretty simple and simplifies our code nicely. We’ll
do a Capistrano version of an extract method refactoring, except with an additional task
instead of a method.

Define a task named :finalize_staging_init, and then add a call to it at the
end of the staging and production tasks.

task :staging do

set :domain, “staging.the-rails-way.com”

set :repository, “http://svn.nnovation.ca/svn/the-rails-way/trunk”

set :rails_env, “development”

set :app_server, “staging.the-rails-way.com”

set :secure_ssh_port, 8256

finalize_staging_init

end

task :production do

set :tag, “release-1.0” unless variables[:tag]

set :domain, “the-rails-way.com”

set :repository, “http://svn.nnovation.ca/svn/the-rails-

way/tags/#{tag}”

set :rails_env, “production”

set :app_server, “the-rails-way.net”

set :secure_ssh_port, 8256

finalize_staging_init

end

task :finalize_staging_init do

role :app, “#{app_server}:#{secure_ssh_port}”

role :web, “#{app_server}:#{secure_ssh_port}”

role :db, “#{app_server}:#{secure_ssh_port}”, :primary => true

end

700 21. Capistrano

Exercise #2: Managing Other Services
A typical Rails deployment scenario involves a cluster of Mongrels, and perhaps some
additional processes such as backgroundrb, memcache, and search engine daemons.

The canned deploy:start, :stop, and :start take care of a single Mongrel
instance fronted by Apache. In this exercise, as shown in Listing 21.6, we’re going to
override the default tasks, and insert our own to manage a Mongrel cluster and a
BackgrounDRb installation; however, note that this recipe doesn’t manage Apache, as
I rarely bring it up or down. At this point you should know enough about Capistrano
to understand the recipe and easily bake in Apache support.

Listing 21.6 A Comprehensive Deploy Task

namespace :deploy do

desc “Restart the Mongrel cluster and backgroundrb”
task :restart, :roles => :app do
stop
start

end

desc “Start the mongrel cluster and backgroundrb”
task :start, :roles => :app do
start_mongrel
start_backgroundrb

end

desc “Stop the mongrel cluster and backgroundrb”
task :stop, :roles => :app do
stop_mongrel
stop_backgroundrb

end

desc “Start Mongrel”
task :start_mongrel, :roles => :app do
begin
run “mongrel_cluster_ctl start -c #{app_mongrel_config_dir}”

rescue RuntimeError => e
puts e
puts “Mongrel appears to be down already. “

end
end

desc “Stop Mongrel”
task :stop_mongrel, :roles => :app do
begin
run “mongrel_cluster_ctl stop -c #{app_mongrel_config_dir}”

Useful Capistrano Recipes 701

rescue RuntimeError => e
puts e
puts “Mongrel appears to be down already. “

end
end

desc “Start the backgroundrb server”
task :start_backgroundrb , :roles => :app do
begin
puts “starting brb in folder #{current_path}”
run “cd #{current_path} && RAILS_ENV=#{rails_env} nohup

./script/backgroundrb start > /dev/null 2>&1”
rescue RuntimeError => e
puts e
puts “Problems starting backgroundrb – running already?”

end
end

desc “Stop the backgroundrb server”
task :stop_backgroundrb , :roles => :app do
begin
puts “stopping brb in folder #{current_path}”
run “cd #{current_path} && ./script/backgroundrb stop”

rescue RuntimeError => e
puts e
puts “Backgroundrb appears to be down already.”

end
end

end

Multiserver Deployments
Things are going great on your one server. But as life would have it, business is boom-
ing and you decide to build out a cluster of servers. Some are specialized to serve your
application, while others are specialized to run the web server, and one is specifically
for running asynchronous processing, and so forth. A booming business sure is nice,
but traditional deployment is not fun at all. Deploying to 10 machines? Well, might
you be tempted to call in sick on deployment day?

Not with Capistrano! It was built right from the beginning to handle multiserver
deployments. Jamis really wanted to make deploying to 100 machines as easy as
deploying to one. In fact, many people claim that is exactly where Capistrano shines
brightest.

702 21. Capistrano

Capistrano succeeds so well in its multiserver handling that you won’t notice the
difference either from the command line or in writing the task definitions. The secret
sauce to multiserver deployments lies in the role7 command, by which we can assign
one or more deployment machines per task. When a task with many machines quali-
fies for simultaneous execution, each server assigned to the role will have the task exe-
cuted—in parallel!

role :app, “uno.booming-biz.com”, “dos.booming-biz.com”

role :db, “kahuna.booming-biz.com”, :primary => true

Adding a second (or third) server to our deployment means it will automatically
be executed by all qualifying tasks. More specifically this means that all referenced
tasks will execute on your newly added server—all tasks that either specifically require
the :app role plus all tasks that don’t indicate a qualifying role.

namespace :monitor

task :exceptions :roles => :app do

run “grep ‘Exception’ #{shared_path}/log/*.log”

end

end

As an example, running cap monitor:exceptions will run against the entire
:app role of machines you throw at it. Capistrano will grep all log files in parallel,
streaming a merged result back to your terminal.

Capistrano’s adherence to the DRY principle means that you can scale your phys-
ical deployment with zero impact on deployment rules and very little impact on your
deployment configuration.

What about the impact on your deployment process? More machines means that
mistakes and unexpected errors have bigger negative consequences, right? Not neces-
sarily, since Capistrano has a feature that is usually associated with databases, not
deployment systems: Transactions!

Transactions
Although a failed or incomplete install on one deployment machine can be tough to
restore, consider when you have many more, each with their own particular flavor of
install failure. Capistrano provides tasks with a transaction infrastructure that wraps
and protects key deployment commands. It also has unique on_rollback handlers to

Transactions 703

ensure that we can recover from a disastrous deployment scenario with as little collat-
eral damage as possible.

For example, look at the code for the :update_code and :symlink tasks—both
have on_rollback blocks that clean up their respective actions, if necessary. This
bears some similarity to the up-and-down migration methods of ActiveRecord.

namespace :deploy do

task :update do

transaction do

update_code

symlink

end

end

task :update_code do

on_rollback { run “rm -rf #{release_path}” }

strategy.deploy!

finalize_update

end

task :symlink, :except => { :no_release => true } do

on_rollback do

run “rm -f #{current_path}”

run “ln -s #{previous_release} #{current_path}; true”

end

run “rm -f #{current_path} && ln -s #{release_path} #{current_path}”

end

end

The preceding example is yanked right from Capistrano’s source code8—the
:update task uses your SCM strategy of choice to update the deployed codebase, and
then sets up the symbolic links of the newly installed application to the ./current
folder.

But what if our app failed to deploy at strategy.deploy!, perhaps because of
problems connecting to the Subversion server? Would the deploy continue creating
symlinks? Or perhaps the subversion deploy worked, but the symlinks failed to hap-
pen? Either scenario would leave our application in a fractured state. The problem

704 21. Capistrano

would be compounded if we deployed successfully to one deployment machine, but
failed on the second—problems would not necessarily be apparent right away!

task :update_code do

on_rollback { run “rm -rf #{release_path}” }

strategy.deploy!

finalize_update

end

To mitigate the risks of failure and handle the greatest number of reasons for pos-
sible failure, the :update task is wrapped in a transaction. If a fault condition were to
occur, each and every on_rollback block would be called, in reverse. That’s why each
on_rollback block should be designed to algorithmically reverse the current task’s
operation.

For example, the preceding on_rollback block removes all files possible created
by both strategy.deploy! and finalize_update, correcting a potentially frac-
tured deployment.

The transaction system employed by Capistrano isn’t like any that you may have
encountered before. For example, it doesn’t keep track of local or remote object
changes. The simple but effective transaction system puts you in control of the roll-
back. It should also be said that Capistrano doesn’t place migrations under transac-
tion—DDL transactions aren’t widely supported by databases,9 which makes it very
difficult to roll back a failed migration.

Proxied Access to Deployment Machines
Real-world deployments often protect application servers through the use of secure
proxies and firewalls. The result is that we won’t be able to SSH directly to the deploy-
ment machine. However, don’t let that stop you from using Capistrano, thanks to its
support for proxied access to deployment machines using the :gateway setting:

set :gateway, ‘gateway.booming-biz.com’

role :app, “192.168.1.100”, “192.168.1.101”

role :db, “192.168.1.200”, :primary => true

Setting a :gateway will cause all requests to tunnel securely to your roled
machines through the specified gateway proxy machines. The assumption made by
Capistrano is that the roled hosts are not directly accessible, and so to access them it

Proxied Access to Deployment Machines 705

must first establish a connection to gateway.booming-biz.com and establish SSH
tunnels from there.

It’s magical—well, the magic of port forwarding anyway.10 Other than making
sure that the roled machines can be reached through TCP/IP, there’s very little you
need to do to support the gateway capability. In fact if you’re using passwords to
authenticate there’s nothing else—you will be prompted. But if you’re using PKI,
you’ll have to add the public key of your gateway server to your nonpublic roled
servers.

Conclusion
This chapter gave you a crash course in using Capistrano to automate your Rails
deployment tasks. It should have also pointed you in the right direction to begin using
Capistrano as your systems administration helper, given its ability to reliably automate
tasks and execute tasks in parallel across one or dozens of remote servers.

References

1. Switchtower, the original name, was changed to Capistrano in response to a trademark violation.
For details see http://weblog.rubyonrails.org/2006/3/6/switchtower-is-now-capistrano.

2. Since it is well documented on the web, but now obsolete, we omit coverage of Capistrano 1.x.
The site capify.org provides ample upgrade instructions for developers wanting to migrate to the
latest versions of Capistrano.

3. This means “you,” Windows, although some have had success with cygwin.

4. This probably doesn’t need to be said, but please, please consider PKI—you’re gonna seriously
reduce the possibility of break-ins.

5. Although Mongrel is today’s best-of-show choice, fastcgi can be as easily configured.

6. http://shanesbrain.net/articles/2007/05/30/database-yml-management-with-capistrano-2-0

7. You can also use the :host qualifier for a task, but rolling host assignments up to the role will
simplify your life when you roll out more servers.

8. Use gem environment to find the gem source, and pore over Capistrano’s source code. This
is a great way to learn.

9. MySQL doesn’t, but I understand that Postgres may support DDL transactions.

10. For all the gory details, read Jamis Buck’s post: http://weblog.jamisbuck.org/2006/9/26/inside-
capistrano-the-gateway-implementation.

706 21. Capistrano

CHAPTER 22
Background Processing

Waiting for railsapplication.com…
—The status bar of your user’s web browser

On the web, your users find out that your application is working at exactly one time—
when your program responds to a request. The classic example of this is credit card
processing. Which would you prefer to use: a site that says “Now processing your
transaction” alongside a soothing animation, or one that shows a blank page?

In addition to such user experience situations, your application may have require-
ments that simply cannot be satisfied in a few seconds. Perhaps you run a popular site
that allows users to upload video files and share them with others. You’ll need to con-
vert various types of video content into Flash. No server you can buy is fast enough to
perform this work while the user’s web browser waits.

Do either of these scenarios sound familiar? If so, it is probably time to think
about performing work in the background of your application. In this chapter, back-
ground refers to anything that happens outside of the normal HTTP request/response
cycle. Most developers will need to design and implement background processing at
some point. Luckily, Rails and Ruby have several libraries and techniques for back-
ground processing, including:

• script/runner—Built into Rails

• DRb—A proven distributed processing library by Masatoshi Seki

• BackgrounDRb—A plugin written by Ezra Zygmuntowicz and maintained
by Skaar

• Daemons—Makes it easy to create long-running system services. Written by
Thomas Uehlinger

With these tools, you can easily add background processing to your Rails appli-
cations. This chapter aims to teach you enough about each one that you can decide
which makes sense for your particular application.

script/runner

Rails comes with a built-in tool for running tasks independent of the web cycle. The
runner script simply loads the default Rails environment and then executes some spec-
ified Ruby code. Popular uses include

• Importing “batch” external data

• Executing any (class) method in your models

• Running intensive calculations, delivering e-mails in batches, or executing
scheduled tasks

Usages involving script/runner that you should avoid at all costs are

• Processing incoming e-mail

• Tasks that take longer to run as your database grows

Getting Started
For example, let us suppose that you have a model called “Report.” The Report model
has a class method called generate_rankings, which you can call from the com-
mand line using

$ ruby script/runner ‘Report.generate_rankings’

Since we have access to all of Rails, we can even use the ActiveRecord finder
methods to extract data from our application:1

$ ruby script/runner ‘User.find(:all).map(&:email).each { |e| \

puts “<#{e}>”}’

708 22. Background Processing

<charles.quinn@highgroove.com>

<me@seebq.com>

<bill.gates@microsoft.com>

...

<obie@obiefernandez.com>

This example demonstrates that we have access to the User model and are able to
execute arbitrary Rails code. In this case, we’ve collected some e-mail addresses that we
can now spam to our heart’s content. (Just kidding!)

Usage Notes
There are some things to remember when using script/runner. You must specify
the production environment using the -e option; otherwise, it defaults to develop-
ment. The script/runner help option tells us:

$ script/runner -h

Usage: script/runner [options] (‘Some.ruby(code)’ or a

filename)

-e, --environment=name Specifies the environment for the

runner

to operate in (test/development/

production)

Default: development

You can also use runner as a shebang line for your scripts like this:

#!/usr/bin/env /path/to/script/runner

Using script/runner, we can easily script any batch operations that need to run
using cron or another system scheduler.

For example, you might calculate the most popular or highest-ranking product in
your e-commerce application every few minutes or nightly, rather than make an
expensive query on every request:

$ script/runner –e production ‘Product.calculate_top_ranking’

script/runner 709

A sample crontab to run that script might look like this:

0 */5 * * * root /usr/local/bin/ruby \

/apps/exampledotcom/current/script/runner -e production \

‘Product.calculate_top_ranking’

The script will run every five hours to update the Product model’s top rankings.

script/runner Considerations
On the positive side: It doesn’t get any easier and there are no additional libraries to
install. That’s about it.

As for negatives: The script/runner process loads the entire Rails environment.
For some tasks, particularly short-lived ones, that can be quite wasteful of resources.

Also, nothing prevents multiple copies of the same script from running simulta-
neously, which can be catastrophically bad, depending on the contents of the script.

Wilson Says…

Do not process incoming e-mail with script/runner.
This is a Denial of Service attack waiting to happen.
Use Fetcher (or something like it) instead:
http://slantwisedesign.com/rdoc/fetcher/

The bottom line is, use script/runner for short tasks that need to run infre-
quently.

DRb
You might already know that you can use DRb as a session container for Rails with a
little bit of configuration, but out of the box, it comes ready to process simple
TCIP/IP requests and perform some background heavy lifting.

DRb literally stands for “Distributed Ruby.” It is a library that allows you to send
and receive messages from remote Ruby objects via TCP/IP. Sound kind of like
RPC, CORBA, or Java’s RMI? Probably so. This is Ruby’s simple as dirt answer
to all of the above.—Chad Fowler’s Intro to DRb
(http://chadfowler.com/ruby/drb.html)

710 22. Background Processing

A Simple DRb Server
Let’s create a DRb server that performs a simple calculation. We will run this server
on localhost, but keep in mind that it could be run on one or more remote servers to
distribute the load or provide fault tolerance.

Create a file named distributed_server.rb and give it the contents of Listing
22.1.

Listing 22.1 A Simple DRb Calculation Service

#!/usr/bin/env ruby -w
DRb server

load DRb
require ‘drb’

class DistributedServer
def perform_calculation(num)
num * num
end
end

DRb.start_service(“druby://localhost:9000”,
DistributedServer.new)
puts “Starting DRb server at: #{DRb.uri}”

DRb.thread.join

After making this file executable (chmod +x, or equivalent), run it so that it lis-
tens on port 9000 for requests:

$./distributed_server

Starting DRb server at: druby://localhost:9000

Using DRb from Rails
Now, to call this code from Rails, we can require the DRb library at the top of a con-
troller where we plan to use it:

require ‘drb’

class MessagesController < ApplicationController

DRb 711

To add an action in the controller to invoke a method on our distributed server,
you would write an action method such as this one:

def calculation

DRb.start_service

drb_client = DRbObject.new(nil, ‘druby://localhost:9000’)

@calculation = drb_client.perform_calculation(5)

end

We now have access to a @calculation instance variable that the distributed
server actually processed for us. This is a trivial example, but it demonstrates how sim-
ple it is to farm out processes to a distributed server.

This code will still be executed as part of the normal Rails request/response cycle.
Rails will wait for the DRb perform_calculation method to complete before pro-
cessing any view templates or sending any data to the user agent. We may be able to
leverage the power of several other servers by using this technique, but it’s still not pre-
cisely what most people mean by background processing. To complete our journey to
the dark side, we need to implement some kind of job control to wrap around this
code.

The good news is that it’s easy to do, but the better news is that someone’s already
done it. More on that in the next section, “BackgrounDRb.”

DRb Considerations
On the positive side: DRb is part of the Ruby Standard Library, so there is nothing
extra to install. Extremely reliable. Suitable for persistent processes that can return
results quickly to the caller.

On the negative side: DRb is a relatively “low-level” library and does not provide
any job control or configuration file support. Using it directly requires you to invent
your own conventions for port numbers, class names, and so on.

Use DRb when you need to implement your own load balancing, or when no
other solution offers enough control.

712 22. Background Processing

Resources
For a more in-depth understanding of how DRb operates, and what is going on in
these code samples, see the following web articles:

• An Introduction to DRb by Eric Hodel at http://segment7.net/projects/ruby/drb
/introduction.html

• Intro to DRb by Chad Fowler at http://chadfowler.com/ruby/drb.html

• Distributed Ruby in a Nutshell by Frank Spychalski at http://amazing-
development.com/archives/2006/03/16/rails-and-distributed-ruby-in-a-nutshell/

BackgrounDRb
BackgrounDRb is a “Ruby job server and scheduler” available at http://backgroundrb.
devjavu.com/. The principal use case for the BackgrounDRb plugin for Rails is
“divorcing long-running tasks from the Rails request/response cycle.”2

In addition to supporting asynchronous background processing, BackgrounDRb
(along with Ajax code in your Rails application) is commonly used to support status
updates and indicators. BackgrounDRb is frequently used to provide progress bars
during large file uploads.

BackgrounDRb received a major rewrite for the 0.2.x branch that completely
altered the previous version’s job creation and execution. Job processing now uses mul-
tiple processes instead of a single, threaded process. Results are also stored in a Result
worker, to allow each job its own process from which to store and retrieve results. It
has an active community, and an open source repository with good test/rspec coverage.

Getting Started
BackgrounDRb can be run standalone or as a Rails plugin. It has two package depend-
encies, installable as gems: Slave 1.1.0 (or higher) and Daemons 1.0.2 (or higher).
Install it into an existing Rails application by running the following command:

svn co http://svn.devjavu.com/backgroundrb/tags/release-0.2.1

vendor/plugins/backgroundrb

BackgrounDRb 713

Note that using the following command

script/plugin install svn://rubyforge.org//var/svn/backgroundrb

installs the older, single-process version of BackgrounDRb, which you don’t want. We’ll
cover the newer 0.2.x version only, since current documentation and development
occurs there.

Verify that the tests run by visiting the plugin directory. You will need the RSpec
gem installed if you wish to do this.

$ rake

(in /Users/your_login/your_app/vendor/plugins/backgroundrb)

/usr/local/bin/ruby -Ilib:lib “test/backgroundrb_test.rb”

“test/scheduler_test.rb”

Loaded suite /usr/local/lib/ruby/gems/1.8/gems/rake-

0.7.1/lib/rake/rake_test_loader

Started

..................

Finished in 3.107323 seconds.

18 tests, 26 assertions, 0 failures, 0 errors

Assuming that all tests pass, change back to your RAILS_ROOT and run rake
backgroundrb:setup to install BackgrounDRb’s configuration file, scripts, and
directories for tasks and workers.

Configuration
The default config/backgroundrb.yml file will look like this:

:rails_env: development

:host: localhost

:port: 2000

The default BackgrounDRb server runs in the development environment, and lis-
tens on the localhost server on port 2000. A move to production requires you to

714 22. Background Processing

update this rails_env variable. The official BackgrounDRb documentation included
with the distribution has more details.

Understanding BackgrounDRb
The heart of BackgrounDRb is the MiddleMan class, which facilitates the creation of
workers, keeps track of them, and provides access to their results.

BackgrounDRb allows us to define workers, which are classes containing the code
that we would like to execute in the background. By default they will be stored in the
lib/workers directory of your Rails project.

These workers will be subclasses of one of two base classes provided by the plugin:

• BackgrounDRb::Worker::Base—Simple workers needing minimal environmental
setup

• BackgrounDRb::Worker::RailsBase—Workers that need access to a fully con-
figured Rails environment

Workers that subclass RailsBase will consume more resources than Base work-
ers, so if you do not need access to ActiveRecord models or other Rails facilities, try
to use the simple worker class.

If workers need to return their output to our application, we can use their
results method when we invoke them. It operates like a normal Hash object, but
behind the scenes it is a special Result worker. We can also create log messages via
the BackgrounDRb logger method.

Each worker needs to define a do_work method that accepts a single args param-
eter. BackgrounDRb will automatically call this method when a worker is initialized.
Typically this method should be kept simple, and will call other methods you define
in order to perform its work.

Using the MiddleMan
Let’s create a worker in our new lib/workers directory. We’ll use the provided
generator to create the base class:

$script/generate worker Counter

BackgrounDRb 715

We’ll add some code to make it count to 10000, to simulate a long-running task.
Real-life examples include processing an uploaded file, converting an image, or gen-
erating and sending a report. In Listing 22.2, we will shove all of the code into the
do_work method, but in your own code you will want to adhere to normal model
design principles and factor out your code appropriately.

Listing 22.2 CounterWorker Class Counts Up to 10,000

class CounterWorker < BackgrounDRb::Worker::RailsBase
def do_work(args)
logger.info ‘Starting the CounterWorker’
1.upto 10_000 do |x|
results[:count] = x
logger.info “Count: #{x}”
end
logger.info ‘Finished counting to 10,000’
end

end

CounterWorker.register

With a worker ready to go, we can fire up the BackgrounDRb server:

$ ruby script/backgroundrb start

Check to see that the BackgrounDRb processes are running by using the ps com-
mand:3

$ps aux | grep background

you 617 0.6 -0.2 3628 ?? R 4:20PM 0:00.23

backgroundrb

you 618 0.0 -0.7 14640 ?? S 4:20PM 0:00.10

backgroundrb_logger

you 619 0.0 -0.7 14572 ?? S 4:20PM 0:00.09

backgroundrb_results

Now, we can trigger the worker from a controller action. The new_worker class
method of MiddleMan instantiates a new worker and returns a “key” that will allow
us to refer to it later.

716 22. Background Processing

Here we create a new CounterWorker and store its key in the session for later use:

def start_counting

session[:key] = MiddleMan.new_worker(:class =>

:counter_worker)

redirect_to :action => ‘check_counter’

end

We’ll go ahead and create another action to check the status of the worker. We
must use the key that we saved moments ago to fetch the running worker, and then
use the results method to access the current value of the counter:

def check_counter

count_worker = MiddleMan.worker(session[:key])

@count = count_worker.results[:count]

end

The corresponding view (for check_counter) could be this simple:

<p>We’re currently counting. We’re at <%= @count %>.</p>

Inside the start_counting action, the new_worker method immediately calls
the do_work method we defined in the CounterWorker class. This is a nonblocking
call, and our web application happily continues along and redirects us, while the
worker chugs along counting.

If we hit the Refresh button on the check_counter action to reload the results
of the worker, it will show the @count variable increasing, as the background process
progresses with its job.

Caveats
Unfortunately, changes to the workers require BackgrounDRb to be restarted. They
are loaded once and then cached, just like your ActiveRecord models in production
mode.

If you get an error like this

/usr/local/lib/ruby/site_ruby/1.8/rubygems/custom_require.rb:

27:in `gem_original_require’: no such file to load — slave

(LoadError)

remember that BackgrounDRb depends on the slave and daemons gems.

BackgrounDRb 717

If the backgroundrb process should exit or die, the process ID files will need to
be cleaned up. You’ll know that it happened if subsequent attempts to start the serv-
ice result in

ERROR: there is already one or more instance(s) of the program

running

To remove the log/backgroundrb.pid and log/backgroundrb.ppid, we can
use the convenient, built-in zap command:

$ script/backgroundrb zap

BackgrounDRb should start normally after the old files are zapped.

BackGrounDRb Considerations
On the positive side:

• Provides job control and asynchronous invocation right out of the box.

• Popular, with many code samples posted on the web.

• Optimal for “event-based” tasks, such as those that occur every time a user hits a
particular action.

As for negatives:

• The current version is considered “experimental” by the maintainers. You may end
up needing to change your worker or action code as the API evolves.

• Support for scheduled tasks is new, and may not be as stable as the rest of the code-
base.

• Some configuration options are baked in and may be difficult to customize if your
production environment is unusual.

All things considered, BackgrounDRb seems perfect for tasks that need to be ini-
tiated from a controller action or a model callback.

718 22. Background Processing

Daemons
The website http://daemons.rubyforge.org/ offers an excellent Ruby library that lets
you “daemonize” your script for easy management and maintainability.

Usage
The script in Listing 22.3 is a simple example of how to use the daemons library to
run a scheduled task.

Listing 22.3 A Simple Use of Daemons to Update RSS Feeds in the Background

require ‘daemons’

class BackgroundTasks
include Singleton
def update_rss_feeds
loop do
Feed.update_all
sleep 10
end
end
end

Daemons.run_proc(‘BackgroundTasks’) do
BackgroundTasks.instance.update_rss_feeds
end

The script defines a simple task, update_rss_feeds, and runs it in a loop. If
you save it as background_tasks.rb and run it without any options like this:

script/runner background_tasks.rb

it will show you all options provided by the daemons library:

Usage: BackgroundTasks <command> <options> -- <application

options>

* where <command> is one of:

start start an instance of the application

stop stop all instances of the application

restart stop all instances and restart them afterwards

run start the application and stay on top

Daemons 719

zap set the application to a stopped state

* and where <options> may contain several of the following:

-t, --ontop Stay on top (does not daemonize)

-f, --force Force operation

Common options:

-h, --help Show this message

--version Show version

You can control your background task process using simple commands.
The Daemon library also guarantees that only one copy of your task is running at

a time, which prevents the need for control logic that tends to creep into
script/runner or cron scripts.

Introducing Threads
The preceding example demonstrates the control that the Daemons library provides.
However, as written, it doesn’t do much. Let’s modify the script to make it fetch e-
mails from an external server as well (as shown in Listing 22.4). Since fetching e-mail
happens to use the network, we’ll use threads to get more work done in less time.

Listing 22.4 The Threaded E-mail Fetcher

require ‘thread’
require ‘daemons’

class BackgroundTasks
include Singleton

def initialize
ActiveRecord::Base.allow_concurrency = true
end

def run
threads = []
[:update_rss_feeds, :update_emails].each do |task|
threads << Thread.new do
self.send task
end
end
threads.each {|t| t.join }
end

720 22. Background Processing

Listing 22.4 The Threaded E-mail Fetcher

protected
def update_rss_feeds
loop do
Feed.update_all
sleep 10
end
end

def update_emails
loop do
User.find(:all, :conditions => “email IS NOT NULL”).each do

|user|
user.fetch_emails
end
sleep 60
end
end
end

Daemons.run_proc(‘BackgroundTasks’) do
BackgroundTasks.instance.start
end

An important thing to notice about the code in Listing 22.4 is that we added

ActiveRecord::Base.allow_concurrency = true

to the initialize method. That is a critical step for using ActiveRecord concur-
rently in multiple threads. Among other things, the setting gives each thread its own
database connection. Forgetting this step can lead to data corruption and other hor-
rors. Consider yourself warned!

Wilson Says…

If your concurrent ActiveRecord code has bugs, you
may face the indignity of running out of database connec-
tions. You should be careful about exception handling
while using threads.

You may also want to call ActiveRecord::Base.verify
_active_connections! as part of your processing loop
to clear out any stale connections. This method is moder-
ately expensive to execute, but is fairly essential if you
enable ActiveRecord concurrency.

Daemons 721

The daemon we have just written has only the most trivial scheduling support.
Your application may need something more robust than sleep 60. If this is the case,
you may want to consider using the unfortunately named OpenWFEru library avail-
able at http://openwferu.rubyforge.org/scheduler.html, which provides a wide variety
of scheduling possibilities.

Daemon Considerations
Daemons are the most cost-effective way to implement background-processing code
that needs to run continuously, and they offer precise control over which libraries you
load, and which settings you configure.

Daemons are also easy to manage with monitoring tools like monit:
http://www.tildeslash.com/monit/.

On the negative side, setting up daemons is not as automatic as BackgrounDRb
or as simple as script/runner. (Fundamentalist programmers might be scared to
work on them too.)

Consider using Daemons whenever you need something to run continuously.

Conclusion
In this chapter, our final one of the book, we’ve covered extending Rails with behavior
that runs in a context external to normal request processing, that is in the background.
The topic runs deep, and we’ve just skimmed across the surface of what is possible.

References

1. Be careful to escape any characters that have specific meaning to your shell.

2. http://backgroundrb.rubyforge.org/

3. Windows users can use the tasklist command to get similar results.

722 22. Background Processing

APPENDIX A
ActiveSupport
API Reference

ActiveSupport is a Rails library containing utility classes and extensions to Ruby’s
built-in libraries. It usually doesn’t get much attention on its own—you might even
call its modules the supporting cast members of the Rails ensemble.

However, ActiveSupport’s low profile doesn’t diminish its importance in day-
to-day Rails programming. To ensure that this book is 100 percent useful as a pro-
gramming companion, here is a complete, enhanced version of the Rails
ActiveSupport API reference, supplemented where appropriate with real-life exam-
ple usages and commentary.

Direct extensions of Ruby classes and modules are listed under headings accord-
ing to class or module name. Extensions made via mixin module appear under head-
ings according to their ActiveSupport module name.

NOTE

This API reference was prepared based on revision 7360 of
Edge Rails (prior to Rails 2.0). A few obscure methods
have been judged inconsequential and omitted because
they are old and currently unused in the Rails codebase.

Array

Rails only adds one method directly to the Array class: blank?.

Public Instance Methods

blank?

Returns true if the array is empty.

Array::Conversions (in
ActiveSupport::CoreExtensions)
Provides methods for converting Ruby arrays into other formats.

Public Instance Methods

to_formatted_s(format = :default)

Two formats are supported, :default and :db.
The :default format delegates to the normal to_s method for an array, which

simply concatenates the contents into one mashed-up string.
The much more interesting :db option returns “null” if the array is empty, or

concatenates the id fields of its member elements into a comma-delimited string like
this:

collect { |element| element.id }.join(“,”)

to_param

Converts its string elements into a slash-delimited string (used to generate URL
paths).

>> [“riding”,”high”,”and”,”I”,”want”,”to”,”make”].to_param

=> “riding/high/and/I/want/to/make”

724 A. ActiveSupport API Reference

to_sentence(options = {})

Converts the array to a comma-separated sentence in which the last element is joined
by the connector word.

>> %w(alcohol tobacco firearms).to_sentence

=> “alcohol, tobacco, and firearms”

The following options are available for to_sentence:

• :connector—The word used to join the last element in arrays with two or more
elements (default: “and”).

• :skip_last_comma—Set this option to true to return “a, b and c” instead of “a,
b, and c.”

to_xml(options = {}) {|xml if block_given?| ...}

As covered in Chapter 15, “XML and ActiveResource,” the to_xml method on Array
can be used to create an XML collection by iteratively calling to_xml on its members,
and wrapping the entire thing in an enclosing element.

All of the array elements must respond to to_xml.

>> [“riding”,”high”].to_xml

RuntimeError: Not all elements respond to to_xml

The preceding example yields the Builder object to an optional block so that
arbitrary markup can be inserted at the bottom of the generated XML, as the last child
of the enclosing element.

The following code

{:foo => “foo”, :bar => :bar}.to_xml do |xml|

xml.did_it “again”

end

outputs the following XML:

<?xml version=”1.0” encoding=”UTF-8”?>

<hash>

<bar:bar/>

Array::Conversions (in ActiveSupport::CoreExtensions) 725

<foo>foo</foo>

<did_it>again</did_it>

</hash>

The options for to_xml are:

• :builder—Defaults to a new instance of Builder::XmlMarkup. Specify explic-
itly if you’re calling to_xml on this array as part of a larger XML construction
routine.

• :children—Sets the name to use for element tags explicitly. Defaults to singu-
larized version of the :root name by default.

• :dasherize—Whether or not to turn underscores to dashes in tag names
(defaults to true).

• :indent—Indent level to use for generated XML (defaults to two spaces).

• :root—The tag name to use for the enclosing element. If no :root is supplied
and all members of the array are of the same class, the dashed, pluralized form of
the first element’s class name is used as a default. Otherwise the default :root is
records.

• :skip_instruct—Whether or not to generate an XML instruction tag by call-
ing instruct! on Builder.

• :skip_types—Whether or not to include a type=”array” attribute on the
enclosing element.

Array::ExtractOptions (in
ActiveSupport::CoreExtensions)
Provides a method for extracting Rails-style options from a variable-length set of argu-
ment parameters.

726 A. ActiveSupport API Reference

Public Instance Methods

extract_options!

Extracts options from a variable set of arguments. It’s a bang method because it
removes and returns the last element in the array if it’s a hash; otherwise, it returns a
blank hash and the source array is unmodified.

def options(*args)

args.extract_options!

end

options(1, 2) # => {}

options(1, 2, :a => :b) # => {:a=>:b}

Array::Grouping (in
ActiveSupport::CoreExtensions)
Provides a couple of methods used for splitting array elements into logical groupings.

Public Instance Methods

in_groups_of(number, fill_with = nil) {|group| ...}

A true Rails superstar, the in_groups_of method splits an array into groups of the
specified number size, padding any remaining slots. The fill_with parameter is used
for padding and defaults to nil.

If a block is provided, it is called with each group; otherwise, a two-dimensional
array is returned.

>> %w(1 2 3 4 5 6 7).in_groups_of(3)

=> [[1, 2, 3], [4, 5, 6], [7, nil, nil]

>> %w(1 2 3).in_groups_of(2, ‘ ’) {|group| puts group }

[1, 2]

[3, “ ”]

Array::Grouping (in ActiveSupport::CoreExtensions) 727

>> %w(1 2 3).in_groups_of(2, false) {|group| puts group }

[1, 2]

[3]

The in_groups_of method is particularly useful for batch-processing model
objects and generating table rows in view templates.

split(value = nil, &block)

Divides an array into one or more subarrays based on a delimiting value:

[1, 2, 3, 4, 5].split(3) #=> [[1, 2], [4, 5]]

or the result of an optional block:

(1..8).to_a.split { |i| i % 3 == 0 } # => [[1, 2], [4, 5], [7, 8]]

CachingTools::HashCaching (in ActiveSupport)
Provides a method that simplifies the caching of method invocations using nested
default hashes. According to the API docs, “This pattern is useful, common practice
in Ruby, and unsightly when done manually.”

That may be the case, but this module appears to be somewhat useless, since its
sole method, hash_cache, is not automatically accessible in any Rails context, and
examination of the Rails codebase reveals that it is not used internally (except in its
unit tests).

Public Instance Methods

hash_cache(method_name, options = {})

Dynamically creates a nested hash structure used to cache calls to method_name. The
cache method is named method_name_cache unless :as => :alternate_name is
given.

For example, the following slow_method

def slow_method(a, b)

a ** b

end

728 A. ActiveSupport API Reference

can be cached by calling hash_cache :slow_method, which will define the method
slow_method_cache.

We can then calculate (and cache) the result of a ** b using this syntax:

slow_method_cache[a][b]

The hash structure is created using nested calls to Hash.new with initializer
blocks, so the hash structure returned by slow_method_cache for the example looks
like this:

Hash.new do |as, a|

as[a] = Hash.new do |bs, b|

bs[b] = slow_method(a, b)

end

end

The implementation of hash_cache uses heavy Ruby metaprogramming.
Generated code is compressed into a single line to maintain sensible backtrace signa-
tures in the case of exceptions.

Class

Rails extends Ruby’s Class object with a number of methods.

Public Instance Methods

cattr_accessor(*syms)

Defines one or more class attribute reader and writer methods in the style of the native
attr* accessors for instance attributes. Used extensively throughout the Rails code-
base to save option settings. Values are shared by reference with subclasses, which is
very different than class_inheritable_accessor.

cattr_reader(*syms)

Defines one or more class attribute reader methods.

cattr_writer(*syms)

Defines one or more class attribute writer methods.

Class 729

class_inheritable_accessor(*syms)

Allows attributes to be shared within an inheritance hierarchy, but each descendant
gets a copy of its parents’ attributes, instead of just a pointer to the same. This means
that the child can add elements to, for example, an array without those additions
being shared with either its parent, siblings, or children, which is unlike the regular
class-level attributes, which are shared across the entire hierarchy.

class_inheritable_array

Convenience method that sets up an inheritable reader and writer and defaults it to
an empty array so that you don’t have to initialize it yourself.

class_inheritable_hash

Convenience method that sets up an inheritable reader and writer and defaults it to
an empty hash so that you don’t have to initialize it yourself.

class_inheritable_reader(*syms)

Defines one or more inheritable class attribute writer methods.

class_inheritable_writer(*syms)

Defines one or more inheritable class attribute writer methods.

const_missing(class_id)

The const_missing callback is invoked when Ruby can’t find a specified constant in
the current scope, which is what makes Rails autoclassloading possible. See the
Dependencies module for more detail.

remove_class(*klasses)

Removes the constant associated with the specified classes so that they effectively
become inaccessible and unusable.

remove_subclasses

Removes all subclasses of this class.

subclasses

Returns all subclasses of this class.

730 A. ActiveSupport API Reference

CGI::EscapeSkippingSlashes (in
ActiveSupport::CoreExtensions)

Public Instance Methods

escape_skipping_slashes(str)

Takes a string to be used as a URL and escapes any non-letter or non-number char-
acters in it (except for slashes).

>> CGI.escape_skipping_slashes “/amc/shows/mad men on thursday nights”

=> “/amc/shows/mad+men+on+thursday+nights”

Date::Behavior (in
ActiveSupport::CoreExtensions)

Public Instance Methods

acts_like_date?

Simply returns true to enable more predictable duck-typing on Date-like classes.

>> Date.today.acts_like_date? #=> true

Date::Calculations (in
ActiveSupport::CoreExtensions)
Enables the use of calculations with Date objects.

Date::Calculations (in ActiveSupport::CoreExtensions) 731

Public Instance Methods

+ (other)

Rails extends the existing + operator so that a since calculation is performed when
the other argument is an instance of ActiveSupport::Duration (the type of
object returned by methods such as 10.minutes and 9.months).

>> Date.today + 1.day == Date.today.tomorrow

=> true

advance(options)

Provides precise Date calculations for years, months, and days. The options param-
eter takes a hash with any of these keys: :months, :days, :years.

>> Date.new(2006, 2, 28) == Date.new(2005, 2, 28).advance(:years => 1)

=> true

ago(seconds)

Converts Date to a Time (or DateTime if necessary) with the time portion set to the
beginning of the day (0:00) and then subtracts the specified number of seconds.

>> Time.local(2005, 2, 20, 23, 59, 15) == Date.new(2005, 2, 21).ago(45)

=> true

at_beginning_of_day, at_midnight, beginning_of_day, and

midnight

Converts Date to a Time (or DateTime if necessary) with the time portion set to the
beginning of the day (0:00).

>> Time.local(2005,2,21,0,0,0) == Date.new(2005,2,21).beginning_of_day

=> true

732 A. ActiveSupport API Reference

at_beginning_of_month and beginning_of_month

Returns a new DateTime representing the start of the month (1st of the month; time
set to 0:00).

>> Date.new(2005, 2, 1) == Date.new(2005,2,21).beginning_of_month

=> true

at_beginning_of_quarter and beginning_of_quarter

Returns a new Date/DateTime representing the start of the calendar-based quarter
(1st of January, April, July, and October).

>> Date.new(2005, 4, 1) == Date.new(2005, 6, 30).beginning_of_quarter

=> true

at_beginning_of_week, beginning_of_week, and monday

Returns a new Date (or DateTime) representing the beginning of the week.
(Calculation is Monday-based.)

>> Date.new(2005, 1, 31) == Date.new(2005, 2, 4).beginning_of_week

=> true

at_beginning_of_year and beginning_of_year

Returns a new Date/DateTime representing the start of the calendar year (1st of
January).

>> Date.new(2005, 1, 1) == Date.new(2005, 2, 22).beginning_of_year

=> true

at_end_of_month and end_of_month

Returns a new Date/DateTime representing the last day of the calendar month.

>> Date.new(2005, 3, 31) == Date.new(2005,3,20).end_of_month

=> true

Date::Calculations (in ActiveSupport::CoreExtensions) 733

change(options)

Returns a new Date where one or more of the elements have been changed according
to the options parameter.

The valid options are :year, :month, and :day.

>> Date.new(2007, 5, 12).change(:day => 1) == Date.new(2007, 5, 1)

=> true

>> Date.new(2007, 5, 12).change(:year => 2005, :month => 1) == ➥

Date.new(2005, 1, 12)

=> true

end_of_day()

Converts Date to a Time (or DateTime if necessary) with the time portion set to the
end of the day (23:59:59).

>> Time.local(2005,2,21,23,59,59) == Date.new(2005, 2, 21).end_of_day

=> true

in(seconds) and since(seconds)

Converts Date to a Time (or DateTime if necessary) with the time portion set to the
beginning of the day (0:00) and then adds the specified number of seconds.

>> Time.local(2005, 2, 21, 0, 0, 45) == Date.new(2005, 2, 21).since(45)

=> true

last_month()

Syntax sugar for months_ago(1).

last_year()

Syntax sugar for years_ago(1).

734 A. ActiveSupport API Reference

months_ago(months)

Returns a new Date (or DateTime) representing the time a number of specified
months ago.

>> Date.new(2005, 1, 1) == Date.new(2005, 3, 1).months_ago(2)

=> true

months_since(months)

Returns a new Date (or DateTime) representing the time a number of specified
months into the past or the future. Supply a negative number of months to go back
to the past.

>> Date.today.months_ago(1) == Date.today.months_since(-1)

=> true

next_month()

Syntax sugar for months_since(1).

next_week(day = :monday)

Returns a new Date (or DateTime) representing the start of the given day in the fol-
lowing calendar week. Default day of the week may be overridden with a symbolized
day name.

>> Date.new(2005, 3, 4) == Date.new(2005, 2, 22).next_week(:friday)

=> true

next_year()

Syntax sugar for years_since(1).

tomorrow()

Convenience method that returns a new Date (or DateTime) representing the time
one day in the future.

>> Date.new(2007, 3, 2) == Date.new(2007, 2, 28).tomorrow.tomorrow

=> true

Date::Calculations (in ActiveSupport::CoreExtensions) 735

years_ago(years)

Returns a new Date (or DateTime) representing the time a number of specified years
ago.

>> Date.new(2000, 6, 5) == Date.new(2007, 6, 5).years_ago(7)

=> true

years_since(years)

Returns a new Date (or DateTime) representing the time a number of specified years
into the future.

>> Date.new(2007, 6, 5) == Date.new(2006, 6, 5).years_since(1)

=> true

yesterday()

Convenience method that returns a new Date (or DateTime) representing the time
one day ago.

>> Date.new(2007, 2, 21) == Date.new(2007, 2, 22).yesterday

=> true

Date::Conversions (in
ActiveSupport::CoreExtensions)
This module mixes methods into Date that are useful for getting dates in different
convenient string representations and as other objects.

Constants

The DATE_FORMATS constant holds a hash of formats used in conjunction with the
to_formatted_s method.

DATE_FORMATS = {

:short => “%e %b”,

:long => “%B %e, %Y”,

736 A. ActiveSupport API Reference

:db => “%Y-%m-%d”,

:long_ordinal => lambda {|date| date.strftime(“%B ➥

#{date.day.ordinalize}, %Y”) }, # => “April 25th, 2007”

:rfc822 => “%e %b %Y” }

Public Instance Methods

to_date

Used in order to keep Time, Date, and DateTime objects interchangeable in conver-
sions.

to_datetime

Converts a Date object into a Ruby DateTime object. The time is set to beginning of
day.

to_formatted_s(format = :default)

Converts a Date object into its string representation, according to the predefined for-
mats in the DATE_FORMATS constant. (Aliased as to_s. Original to_s is aliased as
to_default_s.)

def test_to_s

date = Date.new(2005, 2, 21)

assert_equal “2005-02-21”, date.to_s

assert_equal “21 Feb”, date.to_s(:short)

assert_equal “February 21, 2005”, date.to_s(:long)

assert_equal “February 21st, 2005”, date.to_s(:long_ordinal)

assert_equal “2005-02-21”, date.to_s(:db)

assert_equal “21 Feb 2005”, date.to_s(:rfc822)

end

to_time(timezone = :local)

Converts a Date object into a Ruby Time object; time is set to beginning of day. The
time zone can be :local or :utc.

>> Time.local(2005, 2, 21) == Date.new(2005, 2, 21).to_time

=> true

Date::Conversions (in ActiveSupport::CoreExtensions) 737

xmlschema

Returns a string that represents the time as defined by XML Schema (also known as
iso8601):

CCYY-MM-DDThh:mm:ssTZD

If the Date object is a UTC time, Z is used as TZD. Otherwise [+-]hh:mm is
used to indicate the hours offset.

DateTime::Calculations (in
ActiveSupport::CoreExtensions)
Enables the use of time calculations within DateTime itself.

Public Instance Methods

at_beginning_of_day, at_midnight, beginning_of_day,

midnight

Convenience methods that all represent the start of a day (00:00). Implemented sim-
ply as change(:hour => 0).

advance(options)

Uses Date to provide precise Time calculations for years, months, and days. The
options parameter takes a hash with any of the keys :months, :days, and :years.

ago(seconds)

Returns a new DateTime representing the time a number of seconds ago. The oppo-
site of since.

change(options)

Returns a new DateTime where one or more of the elements have been changed
according to the options parameter. The valid date options are :year, :month,
:day. The valid time options are :hour, :min, :sec, :offset, and :start.

738 A. ActiveSupport API Reference

end_of_day

Convenience method that represents the end of a day (23:59:59). Implemented sim-
ply as change(:hour => 23, :min => 59, :sec => 59).

seconds_since_midnight

Returns how many seconds have passed since midnight.

since(seconds)

Returns a new DateTime representing the time a number of seconds since the
instance time. The opposite of ago.

DateTime::Conversions (in
ActiveSupport::CoreExtensions)

Public Instance Methods

readable_inspect

Overrides the default inspect method with a human-readable one that looks like this:

Mon, 21 Feb 2005 14:30:00 +0000

to_date

Converts self to a Ruby Date object, discarding time data.

to_datetime

Returns self to be able to keep Time, Date, and DateTime classes interchangeable
on conversions.

to_formatted_s(format=:default)

See the options on to_formatted_s of the Time class.

DateTime::Conversions (in ActiveSupport::CoreExtensions) 739

to_time

Attempts to convert self to a Ruby Time object. Returns self if out of range of
Ruby Time class. If self.offset is 0, will attempt to cast as a UTC time; otherwise,
will attempt to cast in local timezone.

Dependencies (in ActiveSupport)
Contains the logic for Rails’ automatic classloading mechanism, which is what makes
it possible to reference any constant in the Rails varied loadpaths without ever need-
ing to issue a require directive.

This module extends itself, a cool hack that you can use with modules that you
want to use elsewhere in your codebase in a functional manner:

module Dependencies

extend self

As a result, you can call methods directly on the module constant, à la Java static
class methods, like this:

Dependencies.search_for_file(‘.erb’)

You shouldn’t need to use this module in day-to-day Rails coding—it’s mostly for
internal use by Rails and plugins. On occasion, it might also be useful to understand
the workings of this module when debugging tricky class-loading problems.

Module Attributes

Several of these attributes are set based on Configuration settings declared in your
various environment files, as described in Chapter 1, “Rails Environments and
Configuration.”

autoloaded_constants

An array of qualified constant names that have been loaded. Adding a name to this
array will cause it to be unloaded the next time Dependencies are cleared.

clear

Clears the list of currently loaded classes and removes unloadable constants.

740 A. ActiveSupport API Reference

constant_watch_stack

An internal stack used to record which constants are loaded by any block.

explicitly_unloadable_constants

An array of constant names that need to be unloaded on every request. Used to allow
arbitrary constants to be marked for unloading.

history

The Set of all files ever loaded.

load_once_paths

The Set of directories from which automatically loaded constants are loaded only
once. All directories in this set must also be present in +load_paths+.

load_paths

The Set of directories from which Rails may automatically load files. Files under these
directories will be reloaded on each request in development mode, unless the directo-
ry also appears in load_once_paths.

loaded

The Set of all files currently loaded.

log_activity

Set this option to true to enable logging of const_missing and file loads. (Defaults
to false.)

mechanism

A setting that determines whether files are loaded (default) or required. This attribute
determines whether Rails reloads classes per request, as in development mode.

warnings_on_first_load

A setting that determines whether Ruby warnings should be activated on the first load
of dependent files. Defaults to true.

Dependencies (in ActiveSupport) 741

Public Instance Methods

associate_with(file_name)

Invokes depend_on with swallow_load_errors set to true. Wrapped by the
require_association method of Object.

autoload_module!(into, const_name, qualified_name,

path_suffix)

Attempts to autoload the provided module name by searching for a directory match-
ing the expected path suffix. If found, the module is created and assigned to into’s
constants with the name +const_name+. Provided that the directory was loaded from
a reloadable base path, it is added to the set of constants that are to be unloaded.

autoloadable_module?(path_suffix)

Checks whether the provided path_suffix corresponds to an autoloadable module.
Instead of returning a Boolean, the autoload base for this module is returned.

autoloaded?(constant)

Determines if the specified constant has been automatically loaded.

depend_on(file_name, swallow_load_errors = false)

Searches for the file_name specified and uses require_or_load to establish a new
dependency. The swallow_load_errors argument specifies whether LoadError
should be suppressed. Wrapped by the require_dependency method of Object.

load?

Returns true if mechanism is set to :load.

load_file(path, const_paths =

loadable_constants_for_path(path))

Loads the file at the specified path. The const_paths is a set of fully qualified con-
stant names to load. When the file is loading, Dependencies will watch for the addition

742 A. ActiveSupport API Reference

of these constants. Each one that is defined will be marked as autoloaded, and will be
removed when Dependencies.clear is next called.

If the second parameter is left off, Dependencies will construct a set of names
that the file at path may define. See loadable_constants_for_path for more
details.

load_once_path?(path)

Returns true if the specified path appears in the load_once_path list.

load_missing_constant(mod, const_name)

Loads the constant named const_name, which is missing from mod. If it is not pos-
sible to load the constant from mod, try its parent module by calling const_missing
on it.

loadable_constants_for_path(path, bases = load_paths)

Returns an array of constants, based on a specified filesystem path to a Ruby file,
which would cause Dependencies to attempt to load the file.

mark_for_unload(constant)

Marks the specified constant for unloading. The constant will be unloaded on each
request, not just the next one.

new_constants_in(*descs) {...}

Runs the provided block and detects the new constants that were loaded during its
execution. Constants may only be regarded as new once. If the block calls new_
constants_in again, the constants defined within the inner call will not be report-
ed in this one.

If the provided block does not run to completion, and instead raises an exception,
any new constants are regarded as being only partially defined and will be removed
immediately.

qualified_const_defined?(path)

Returns true if the provided constant path is defined?

Dependencies (in ActiveSupport) 743

qualified_name_for(parent_module, constant_name)

Returns a qualified path for the specified parent_module and constant_name.

remove_unloadable_constants!

Removes the constants that have been autoloaded, and those that have been marked
for unloading.

require_or_load(file_name, const_path = nil)

Implements the main classloading mechanism. Wrapped by the require_or_load
method of Object.

search_for_file(path_suffix)

Searches for a file in load_paths matching the provided path_suffix.

will_unload?(constant)

Returns true if the specified constant is queued for unloading on the next request.

Deprecation (in ActiveSupport)
This module provides Rails core and application developers with a formal mechanism
to be able to explicitly state what methods are deprecated. (Deprecation means to
mark for future deletion.) Rails will helpfully log a warning message when deprecated
methods are called.

All you do to mark a method as deprecated is to call deprecate and pass it the
name of the method as a symbol. Make sure to add your call to deprecate after the
method definition.

deprecate :subject_of_regret

The deprecate method is mixed into Ruby’s Module class so that it’s available
everywhere.

Deprecation::Assertions (in ActiveSupport)
This module provides assertions that allow testing deprecation of methods.

744 A. ActiveSupport API Reference

Public Instance Methods

assert_deprecated(match = nil) { ... }

Asserts that the code in the block triggered a deprecation warning. The optional
match argument allows the assertion to be more specific to a given method name. Just
supply a regular expression to use in matching the name of the method(s) expected to
be deprecated.

def test_that_subject_of_regret_is_deprecated

assert_deprecated do

subject_of_regret

end

end

assert_not_deprecated { ... }

Asserts that the code in the block does not use any deprecated methods.

Duration (in ActiveSupport)
Provides accurate date and time measurements using the advance method of Date
and Time. It mainly supports the methods on Numeric, such as in this example:

1.month.ago # equivalent to Time.now.advance(:months => -1)

Public Instance Methods

+ (other)

Adds another Duration or a Numeric to this Duration. Numeric values are treated
as seconds.

- (other)

Subtracts another Duration or a Numeric to this Duration. Numeric values are
treated as seconds.

Duration (in ActiveSupport) 745

ago(time = Time.now)

Calculates a new Time or Date that is as far in the past as this Duration represents.

birth = 35.years.ago

from_now(time = Time.now)

Alias for since, which reads a little bit more naturally when using the default
Time.now as the time argument.

expiration = 1.year.from_now

inspect

Calculates the time resulting from a Duration expression and formats it as a string
appropriate for display in the console. (Remember that IRB and the Rails console
automatically invoke inspect on objects returned to them. You can use that trick
with your own objects.)

>> 10.years.ago

=> Sun Aug 31 17:34:15 -0400 1997

since(time = Time.now)

Calculates a new Time or Date that is as far in the future as this Duration represents.

expiration = 1.year.since(account.created_at)

until(time = Time.now)

Alias for ago. Reads a little more naturally when specifying a time argument instead
of using the default value, Time.now.

membership_duration = created_at.until(expires_at)

746 A. ActiveSupport API Reference

Enumerable

Extensions to Ruby’s built-in Enumerable module, which gives arrays and other types
of collections iteration abilities.

Public Instance Methods

group_by(&block)

Collects an enumerable into sets, grouped by the result of a block. Useful, for exam-
ple, for grouping records by date like this:

latest_transcripts.group_by(&:day).each do |day, transcripts|

puts “[#{day}] #{transcripts.map(&:class).join ‘, ‘}”

end

“[2006-03-01] Transcript”

“[2006-02-28] Transcript”

“[2006-02-27] Transcript, Transcript”

“[2006-02-26] Transcript, Transcript”

“[2006-02-25] Transcript”

“[2006-02-24] Transcript, Transcript”

“[2006-02-23] Transcript”

Uses Ruby’s own group_by in versions 1.9 and above.

sum(default = 0, &block)

Calculates a sum from the elements of an enumerable, based on a block.

payments.sum(&:price)

It’s easier to understand than Ruby’s clumsier inject method:

payments.inject { |sum, p| sum + p.price }

Use full block syntax (instead of the to_proc hack) to do more complicated cal-
culations:

payments.sum { |p| p.price * p.tax_rate }

Duration (in ActiveSupport) 747

Also, sum can calculate results without the use of a block:

[5, 15, 10].sum # => 30

The default identity (a fancy way of saying, “the sum of an empty list”) is 0.
However, you can override it with anything you want by passing a default argu-
ment:

[].sum(Payment.new(0)) { |i| i.amount } # => Payment.new(0)

index_by

Converts an enumerable to a hash, based on a block that identifies the keys. The most
common usage is with a single attribute name:

>> people.index_by(&:login)

=> { “nextangle” => <Person ...>, “chad” => <Person ...>}

Use full block syntax (instead of the to_proc hack) to generate more complex
keys:

>> people.index_by { |p| “#{p.first_name} #{p.last_name}” }

=> {“Chad Fowler” => <Person ...>, “David Hansson” => <Person ...>}

Exception

Extensions to Ruby’s Exception class.

Public Instance Methods

application_backtrace

Returns the backtrace of an exception without lines pointing to files in the following
directories: generated, vendor, dispatch, ruby, or script.

blame_file!(file)

Used to blame a particular file as being the source of the exception.

748 A. ActiveSupport API Reference

blamed_files

Returns the array of files that have been blamed as the source of an exception.

copy_blame!(other)

Copies an array of blamed files from one exception to another.

framework_backtrace

The opposite of application_backtrace: returns the backtrace of an exception
with only lines pointing to files in the following directories: generated, vendor,
dispatch, ruby, or script.

FalseClass

Remember that everything in Ruby is an object, even the literal false, which is a spe-
cial reference to a singleton instance of the FalseClass.

Public Instance Methods

blank?

Always returns true.

File

Provides an atomic_write method to Ruby’s File class.

Public Instance Methods

atomic_write(file_name, temp_dir = Dir.tmpdir)

Writes to a file atomically, by writing to a temp file first and then renaming to the tar-
get file_name. Useful for situations where you need to absolutely prevent other
processes or threads from seeing half-written files.

File.atomic_write(“important.file”) do |file|

file.write(“hello”)

end

File 749

If your temp directory is not on the same filesystem as the file you’re trying to
write, you can provide a different temporary directory with the temp_dir argument.

File.atomic_write(“/data/something.imporant”, “/data/tmp”) do |f|

file.write(“hello”)

end

Hash

Hashes are used throughout Rails, yet ActiveSupport only adds one extra method
directly to their class.

Public Instance Methods

blank?

Aliased to empty? and returns true if the hash has no elements.

Hash::ClassMethods (in
ActiveRecord::CoreExtensions)
Provides a from_xml method that can quickly turn properly formatted XML into a
nested hash structure.

Public Class Methods

from_xml(xml)

Parses arbitrary strings of XML markup into nested Ruby arrays and hashes. Works
great for quick-and-dirty integration of REST-style web services.

Here’s a quick example in the console with some random XML content. The
XML only has to be well-formed markup.

>> xml = %(<people>

<person id=”1”>

<name><family>Boss</family> <given>Big</given></name>

<email>chief@foo.com</email>

750 A. ActiveSupport API Reference

</person>

<person id=”2”>

<name>

<family>Worker</family>

<given>Two</given></name>

<email>two@foo.com</email>

</person>

</people>)

=> “<people>...</people>”

>> h = Hash.from_xml(xml)

=> {“people”=>{“person”=>[{“name”=>{“given”=>”Big”, “family”=>”Boss”},

“id”=>”1”, “email”=>”chief@foo.com”}, {“name”=>{“given”=>”Two”,

“family”=>”Worker”}, “id”=>”2”, “email”=>”two@foo.com”}]}}

Now you can easily access the data from the XML:

>> h[“people”][“person”].first[“name”][“given”] => “Big”

Hash::Conversions (in
ActiveSupport::CoreExtensions)
Provides methods for transformations of hashes into other forms.

Constants

The XML_TYPE_NAMES hash shows how Ruby classes are mapped to XML schema
types.

XML_TYPE_NAMES = {

“Fixnum” => “integer”,

“Bignum” => “integer”,

“BigDecimal” => “decimal”,

“Float” => “float”,

“Date” => “date”,

“DateTime” => “datetime”,

“Time” => “datetime”,

“TrueClass” => “boolean”,

“FalseClass” => “boolean”

}

Hash::Conversions (in ActiveSupport::CoreExtensions) 751

The XML_FORMATTING hash contains the set of procs that are used to convert cer-
tain kinds of Ruby objects to XML string value representations.

XML_FORMATTING = {

“date” => Proc.new { |date| date.to_s(:db) },

“datetime” => Proc.new { |time| time.xmlschema },

“binary” => Proc.new { |binary| Base64.encode64(binary) },

“yaml” => Proc.new { |yaml| yaml.to_yaml }

}

The XML_PARSING hash contains the set of procs used to convert XML string val-
ues into Ruby objects.

XML_PARSING = {

“date” => Proc.new { |date| ::Date.parse(date) },

“datetime” => Proc.new { |time| ::Time.parse(time).utc },

“integer” => Proc.new { |integer| integer.to_i },

“float” => Proc.new { |float| float.to_f },

“decimal” => Proc.new { |number| BigDecimal(number) },

“boolean” => Proc.new do |boolean|

%w(1 true).include?(boolean.strip)

end,

“string” => Proc.new { |string| string.to_s },

“yaml” => Proc.new { |yaml| YAML::load(yaml) rescue yaml },

“base64Binary” => Proc.new { |bin| Base64.decode64(bin) },

“file” => Proc.new do |file, entity|

f = StringIO.new(Base64.decode64(file))

eval “def f.original_filename()

‘#{entity[“name”]}’ || ‘untitled’

end”

eval “def f.content_type()

‘#{entity[“content_type”]}’ || ‘application/octet-stream’

end”

f

end

}

XML_PARSING.update(

“double” => XML_PARSING[“float”],

“dateTime” => XML_PARSING[“datetime”]

)

752 A. ActiveSupport API Reference

Public Instance Methods

to_query

Collects the keys and values of a hash and composes a URL-style query string using
ampersand and equal-sign characters.

>> {:foo => “hello”, :bar => “goodbye”}.to_query

=> “bar=goodbye&foo=hello”

to_xml(options={})

Collects the keys and values of a hash and composes a simple XML representation.

>> print ({:greetings => {

:english => “hello”,

:spanish => “hola”}}).to_xml

<?xml version=”1.0” encoding=”UTF-8”?>

<hash>

<greetings>

<english>hello</english>

<spanish>hola</spanish>

</greetings>

</hash>

See the description of the Array::Conversions to_xml method for a full list
of options.

Hash::Diff (in
ActiveSupport::CoreExtensions)
Provides a method for getting the difference between one hash and another.

Hash::Diff (in ActiveSupport::CoreExtensions) 753

Public Instance Methods

diff(hash2)

A method for getting the difference between one hash and another. Returns the dif-
ference between a hash and the one passed in as a parameter.

A quick example in the console:

>> {:a => :b}.diff({:a => :b})

=> {}

>> {:a => :b}.diff({:a => :c})

=> {:a=>:b}

Hash::Except (in
ActiveSupport::CoreExtensions)
Returns a hash that includes everything but the given keys. Useful for quickly exclud-
ing certain key values from a hash like this:

@person.update_attributes(params[:person].except(:admin))

Public Instance Methods

except(*keys)

Returns a new hash without the specified keys, leaving the original unmodified.

except!(*keys)

Destructively removes the specified keys from the hash.

754 A. ActiveSupport API Reference

Hash::Keys (in
ActiveSupport::CoreExtensions)
Provides methods that operate on the keys of a hash. The stringify and symbol-

ize methods are used liberally throughout the Rails codebase, which is why it gener-
ally doesn’t matter if you pass option names as strings or symbols.

You can use assert_valid_keys method in your own application code, which
takes Rails-style option hashes.

Public Instance Methods

assert_valid_keys(*valid_keys)

Raises an ArgumentError if the hash contains any keys not specified in valid_keys.

def my_method(some_value, options={})

options.assert_valid_keys(:my_conditions, :my_order, ...)

...

end

stringify_keys

Returns a new copy of the hash with all keys converted to strings.

stringify_keys!

Destructively converts all keys in the hash to strings.

symbolize_keys and to_options

Returns a new hash with all keys converted to symbols.

symbolize_keys! and to_options!

Destructively converts all keys in the hash to symbols.

Hash::Keys (in ActiveSupport::CoreExtensions) 755

Hash::ReverseMerge (in
ActiveSupport::CoreExtensions)
Allows for reverse merging where it’s the keys in the calling hash that win over those
in the other_hash. This is particularly useful for initializing an incoming option
hash with default values like this:

def setup(options = {})

options.reverse_merge! :size => 25, :velocity => 10

end

In the example, the default :size and :velocity are only set if the options
passed in don’t already have those keys set.

Public Instance Methods

reverse_merge(other_hash)

Returns a merged version of two hashes, using key values in the other_hash as
defaults, leaving the original hash unmodified.

reverse_merge!(other_hash) and reverse_update

Destructive versions of reverse_merge; both modify the original hash in place.

Hash::Slice (in
ActiveSupport::CoreExtensions)
Methods to slice a hash to include only the specified keys. Useful for limiting an
options hash to valid keys before passing to a method, like this:

def search(criteria = {})

assert_valid_keys(:mass, :velocity, :time)

end

search(options.slice(:mass, :velocity, :time))

756 A. ActiveSupport API Reference

Public Instance Methods

slice(*keys)

Returns a new hash containing only the specified keys.

slice!(*keys)

Destructive version of slice; modifies the original hash in place, removing any keys
not specified in keys.

HashWithIndifferentAccess

A subclass of Hash used internally by Rails. As stated in the source file:

This class has dubious semantics and we only have it so that people can write
params[:key] instead of params[‘key’].

Inflector::Inflections (in ActiveSupport)
The Inflections class transforms words from singular to plural, class names to table
names, modularized class names to ones without, and class names to foreign keys. The
default inflections for pluralization, singularization, and uncountable words are kept
in activesupport/lib/active_support/inflections.rb.

A singleton instance of Inflections is yielded by Inflector.inflections,
which can then be used to specify additional inflection rules in your config/
environment.rb file.

Here are some examples:

Inflector.inflections do |inflect|

inflect.plural /^(ox)$/i, ‘\1en’

inflect.singular /^(ox)en/i, ‘\1’

inflect.irregular ‘octopus’, ‘octopi’

inflect.uncountable “equipment”

end

New rules are added at the top. So in the example, the irregular rule for octopus
will now be the first of the pluralization and singularization rules that are checked

Inflector::Inflections (in ActiveSupport) 757

when an inflection happens. That way Rails can guarantee that your rules run before
any of the rules that may already have been loaded.

Public Instance Methods

This API reference lists the inflections methods themselves in the modules where they
are actually used: Numeric::Inflections and String::Inflections.

irregular(singular, plural)

Specifies a new irregular that applies to both pluralization and singularization at the
same time. The singular and plural arguments must be strings, not regular expres-
sions. Simply pass the irregular word in singular and plural form.

irregular ‘octopus’, ‘octopi’

irregular ‘person’, ‘people’

plural(rule, replacement)

Specifies a new pluralization rule and its replacement. The rule can either be a string
or a regular expression. The replacement should always be a string and may include
references to the matched data from the rule by using backslash-number syntax, like
this:

Inflector.inflections do |inflect|

inflect.plural /^(ox)$/i, ‘\1en’

end

singular(rule, replacement)

Specifies a new singularization rule and its replacement. The rule can either be a
string or a regular expression. The replacement should always be a string and may
include references to the matched data from the rule by using backslash-number syn-
tax, like this:

Inflector.inflections do |inflect|

inflect.singular /^(ox)en/i, ‘\1’

end

758 A. ActiveSupport API Reference

uncountable(*words)

Adds uncountable words that should not be inflected to the list of inflection rules.

uncountable “money”

uncountable “money”, “information”

uncountable %w(money information rice)

Integer::EvenOdd (in
ActiveSupport::CoreExtensions)
Methods to check whether an integer is even, odd, or a multiple of another number.

Public Instance Methods

even?

Returns true if the integer is even. Zero is considered even.1

1.even? # => false

multiple_of?(number)

Returns true if the integer is a multiple of number.

9.multiple_of? 3 # => true

odd?

Returns true if the integer is odd.

1.odd? # => false

Integer::EvenOdd (in ActiveSupport::CoreExtensions) 759

Integer::Inflections (in
ActiveSupport::CoreExtensions)
Provides an ordinal inflection to Ruby’s integers.

Public Instance Methods

ordinalize

Turns an integer into an ordinal string used to denote the position in an ordered
sequence such as 1st, 2nd, 3rd, 4th.

1.ordinalize # => “1st”

2.ordinalize # => “2nd”

1002.ordinalize # => “1002nd”

1003.ordinalize # => “1003rd”

JSON (in ActiveSupport)
JSON stands for “JavaScript Object Notation,” and can be used to serialize data. It is
more lightweight than XML and can be easily parsed by JavaScript interpreters, since
it is JavaScript’s object literal format.

{ drink: “too much”, smoke: “too much” }

Ruby might get better built-in support for JSON in versions 1.9 and above, since
literal hash notation that looks exactly like JavaScript’s is being added to the language.

{ :drink: “too much”, :smoke: “too much” } # valid hash in Ruby 1.9

Lately JSON has become a popular data transport for Ajax applications. Chapter 12,
“Ajax on Rails,” has a section specifically about JSON.

Constants

The following words will cause problems if you try to use them as identifiers in your
JSON-encoded data, because they are reserved words in JavaScript.

760 A. ActiveSupport API Reference

RESERVED_WORDS = %w(

abstract delete goto private transient

boolean do if protected try

break double implements public typeof

byte else import return var

case enum in short void

catch export instanceof static volatile

char extends int super while

class final interface switch with

const finally long synchronized

continue float native this

debugger for new throw

default function package throws

)

Module Attributes

unquote_hash_key_identifiers

When this attribute is set to true, the to_json method on Hash will omit quoting
string or symbol keys, provided that the resulting keys are valid JavaScript identifiers.
Note that this is technically improper JSON (all object keys are supposed to be quot-
ed), so if you need strict JSON compliance, set this option to false.

ActiveSupport::JSON.unquote_hash_key_identifiers = false

Class Methods

decode(json)

Converts a JSON string into a Ruby object. Decoding is accomplished via intermedi-
ate conversion to YAML, which is very close to JSON, syntactically speaking.

Raises ParseError if invalid JSON is provided.

JSON (in ActiveSupport) 761

encode(object)

Converts a Ruby object into a string of JSON.

>> print ActiveSupport::JSON.encode(:drink => “too much”)

{drink: “too much” }

In practice, it can be quite difficult to encode ActiveRecord models as JSON
because associations lead to circular dependencies:

ActiveSupport::JSON::CircularReferenceError: object references itself

A probable solution is to write custom Ruby classes that contain only the data that
you need to serialize.

reserved_word?(word)

Returns true if the word is a reserved word in JavaScript and will cause problems if
used in JSON-encoded data.

valid_identifier?(str)

Returns true if str is a valid JSON identifier (including reserved word check).

Kernel

Methods added to Ruby’s Kernel class are available in all contexts.

Public Instance Methods

daemonize

Turns the current script into a daemon process that detaches from the console. It can
be shut down with a TERM signal.

The source provides pretty much all the explanation you need:

def daemonize

exit if fork # Parent exits, child continues

Process.setsid # Become session leader

exit if fork # Zap session leader

762 A. ActiveSupport API Reference

Dir.chdir “/” # Release old working directory

File.umask 0000 # Ensure sensible umask

STDIN.reopen “/dev/null” # Free file descriptors and...

STDOUT.reopen “/dev/null”, “a” # point them somewhere sensible.

STDERR.reopen STDOUT # TODO: better to go to a logfile

trap(“TERM”) { exit }

end

debugger

Starts a debugging session if ruby-debug has been loaded. Calls script/server —
debugger to start Mongrel with the debugger (Rails 2.0 only).

enable_warnings {...}

Sets $VERBOSE to true for the duration of the block and back to its original value after-
ward.

require_library_or_gem

Requires a library with fallback to RubyGems. Warnings during library loading are
silenced to increase signal/noise for application warnings.

silence_stream(stream) { ... }

Silences any stream for the duration of the block.

silence_stream(STDOUT) do

puts ‘This will never be seen’

end

puts ‘But this will’

silence_warnings { ... }

Sets $VERBOSE to false for the duration of the block and back to its original value
afterward.

Kernel 763

suppress(*exception_classes) { ... }

A method that should be named swallow. Suppresses raising of any exception class-
es specified inside of a block. Use with caution.

Logger

Extensions to the built-in Ruby logger, accessible via the logger property in various
Rails contexts such as ActiveRecord models and controller classes. Always accessible
via the constant RAILS_DEFAULT_LOGGER. Use of the logger is explained in Chapter 1.

To use the default log formatter as defined in the Ruby core, you need to set a for-
matter for the logger as in the following example:

logger.formatter = Formatter.new

You can then specify properties such as the datetime format, for example:

logger.datetime_format = “%Y-%m-%d”

Public Instance Methods

around_debug(start_message, end_message) { ... }

Streamlines the all-too-common pattern of wrapping a few lines of code in comments
that indicate the beginning and end of a routine, as follows:

logger.debug “Start rendering component (#{options.inspect}): “

result = render_component_stuff(...)

logger.debug “\n\nEnd of component rendering”

result

The same code would be written with around_debug like this:

around_debug “Start rendering component (#{options.inspect}):”,

“End of component rendering” do

render_component_stuff(...)

end

764 A. ActiveSupport API Reference

around_error, around_fatal, and around_info

See as around_debug except with a different log-level.

datetime_format

Gets the current logging datetime format. Returns nil if the formatter does not sup-
port datetime formatting.

datetime_format=(datetime_format)

Sets the format string passed to strftime to generate the log’s timestamp string.

formatter

Gets the current formatter. The Rails default formatter is a SimpleFormatter, which
only displays the log message.

silence(temporary_level = Logger::ERROR)

Silences the logger for the duration of a block provided.

RAILS_DEFAULT_LOGGER.silence do

some particularly verbose (or secret) operation

end

Module

Extensions to Ruby’s Module class, available in all contexts.

Public Instance Methods

alias_attribute(new_name, old_name)

This super-useful method allows you to easily make aliases for attributes, including
their reader, writer, and query methods.

In the following example, the Content class is serving as the base class for Email
using STI, but e-mails should have a subject, not a title:

class Content < ActiveRecord::Base

has column named ‘title’

Module 765

end

class Email < Content

alias_attribute :subject, :title

end

As a result of the alias_attribute, you can see in the following example that
the title and subject attributes become interchangeable:

>> e = Email.find(:first)

>> e.title

=> “Superstars”

>> e.subject

=> “Superstars”

>> e.subject?

=> true

>> e.subject = “Megastars”

=> “Megastars”

>> e.title

=> “Megastars”

alias_method_chain(target, feature)

Encapsulates the following common pattern:

alias_method :foo_without_feature, :foo

alias_method :foo, :foo_with_feature

With alias_method_chain, you simply do one line of code and both aliases are
set up for you:

alias_method_chain :foo, :feature

Query and bang methods keep the same punctuation. The following syntax

alias_method_chain :foo?, :feature

766 A. ActiveSupport API Reference

is equivalent to

alias_method :foo_without_feature?, :foo?

alias_method :foo?, :foo_with_feature?

so you can safely chain foo, foo?, and foo!.

as_load_path

Returns the load path string corresponding to this module.

attr_accessor_with_default(sym, default = nil,

&block)

Declares an attribute accessor with an initial default return value.
To give attribute :age the initial value 25, you would write the following:

class Person

attr_accessor_with_default :age, 25

end

To give attribute :element_name a dynamic default value, evaluated in scope of
self, you would write

attr_accessor_with_default(:element_name) { name.underscore }

attr_internal

Alias for attr_internal_accessor.

attr_internal_accessor(*attrs)

Declares attributes backed by internal instance variables names (using an @_ naming
convention). Basically just a mechanism to enhance controlled access to sensitive
attributes.

For instance, Object’s copy_instance_variables_from will not copy inter-
nal instance variables.

Module 767

attr_internal_reader(*attrs)

Declares an attribute reader backed by an internally named instance variable.

attr_internal_writer(*attrs)

Declares an attribute writer backed by an internally named instance variable.

const_missing(class_id)

The const_missing callback is invoked when Ruby can’t find a specified constant in
the current scope, which is what makes Rails autoclassloading possible. See the
Dependencies module for more detail.

delegate(*methods)

Provides a delegate class method to easily expose contained objects’ methods as your
own. Pass one or more methods (specified as symbols or strings) and the name of the
target object as the final :to option (also a symbol or string). At least one method and
the :to option are required.

Delegation is particularly useful in conjunction with ActiveRecord associations:

class Greeter < ActiveRecord::Base

def hello

“hello”

end

def goodbye

“goodbye”

end

end

class LazyFoo < ActiveRecord::Base

belongs_to :greeter

delegate :hello, :to => :greeter

end

Multiple delegates to the same target are allowed:

class Foo < ActiveRecord::Base

belongs_to :greeter

delegate :hello, :goodbye, :to => :greeter

end

768 A. ActiveSupport API Reference

deprecate(*method_names)

Declares that a method has been deprecated. See Deprecation for more information
and usage instructions.

included_in_classes

Returns a list of classes in which this module is included, using Ruby’s ObjectSpace.

local_constants

Returns the constants that have been defined locally by this object and not in an
ancestor. This method may miss some constants if their definition in the ancestor is
identical to their definition in the receiver.

mattr_accessor(*syms)

Defines one or more module attribute reader and writer methods in the style of the
native attr* accessors for instance attributes.

mattr_reader(*syms)

Defines one or more module attribute reader methods.

mattr_writer(*syms)

Defines one or more module attribute writer methods.

parent

Returns the module that contains this one; if this is a root module, such as
::MyModule, then Object is returned.

parents

Returns all the parents of this module, ordered from nested outward. The receiver is
not contained within the result.

unloadable(const_desc = self)

Marks a given constant as unloadable, to be removed each time dependencies are
cleared. See unloadable in Object for additional details.

Module 769

MissingSourceFile

The LoadError raised by Rails when its name-based classloading mechanism fails to
find a class. An explanation of how Rails looks for and loads classes is in Chapter 1,
in the “Rails, Modules, and Auto-Loading Code” section.

Multibyte::Chars (in ActiveSupport)
The chars proxy enables you to work transparently with multibyte encodings in the
Ruby String class without having extensive knowledge about encoding.

A Chars object accepts a string upon initialization and proxies String methods
in an encoding-safe manner. All the normal String methods are proxied through the
Chars object, and can be accessed through the chars method. Methods that would
normally return a String object now return a Chars object so that methods can be
chained together safely.

>> “The Perfect String”.chars.downcase.strip.normalize

=> “the perfect string”

Chars objects are perfectly interchangeable with String objects as long as no
explicit class checks are made. If certain methods do explicitly check the class, call
to_s before you pass Chars objects to them, to go back to a normal String object:

bad.explicit_checking_method(“T”.chars.downcase.to_s)

The actual operations on the string are delegated to handlers. Theoretically han-
dlers can be implemented for any encoding, but the default handler handles UTF-8.
This handler is set during initialization.

Note that a few methods are defined on Chars instead of the handler because
they are defined on Object or Kernel and method_missing (the method used for
delegation) can’t catch them.

Class Methods

handler=(klass)

If you want to implement your own handler or use a third-party one, you can set it
on the Chars class manually:

ActiveSupport::Multibyte::Chars.handler = MyHandler

770 A. ActiveSupport API Reference

Look at the UTF8Handler source for an example of how to implement your own
handler. If you implement your own handler to work on anything but UTF-8, you
probably also want to override the handler on Chars.

Public Instance Methods

<=> (other)

Returns -1, 0, or +1 depending on whether the Chars object is to be sorted before,
equal to, or after the object on the right side of the operation. In other words, it works
exactly as you would expect it to.

=~ (other)

Like String’s version, only this method returns the character offset (in codepoints)
instead of a byte offset.

gsub(*a, &b)

Works exactly the same as gsub on a normal string.

handler

Returns the proper handler for the contained string depending on $KCODE and the
encoding of the string. This method is used internally by Rails to always redirect mes-
sages to the proper classes depending on the context.

method_missing(m, *a, &b)

Tries to forward all undefined methods to the designated handler. When a method is
not defined on the handler, it sends it to the contained string instead. Also responsi-
ble for making the bang (!) methods destructive, since a handler doesn’t have access
to change an enclosed string instance.

respond_to?(method)

Makes duck-typing with String possible.

Multibyte::Chars (in ActiveSupport) 771

split(*args)

Works just like the normal String’s split method, with the exception that the items
in the resulting list are Chars instances instead of String, which makes chaining calls
easier.

string

The contained String instance. You shouldn’t need to do anything with it via the
Chars object.

NilClass

Remember that everything in Ruby is an object, even nil, which is a special reference
to a singleton instance of the NilClass.

Besides blank?, the extensions to nil try to raise more descriptive error mes-
sages, to help Rails newbies. The aim is to ensure that when developers pass nil to
methods unintentionally, instead of NoMethodError and the name of some method
used by the framework, they’ll see a message explaining what type of object was
expected. The behavior was named whiny nil as an inside joke.

Method missing magic is used to capture the method that was erroneously
invoked on nil. The method name is looked up in a hash containing method names
indexed to Rails classes, so that a helpful suggestion can be attempted.

If you’ve done any amount of Rails programming, you’re probably familiar with
the output of this error-helping process, as the description of a NoMethodError:

You have a nil object when you didn’t expect it! You might have expected an
instance of class_name. The error occurred while evaluating nil.method_name.

The whiny nil behavior can be controlled in the individual environment con-
figurations with the following line:

config.whiny_nils = true

Rails has it set to true by default in development and test modes, and false in
production mode.

772 A. ActiveSupport API Reference

Public Instance Methods

blank?

Always returns true.

id

Raises a message along the lines of: Called id for nil, which would

mistakenly be 4 -- if you really wanted the id of nil, use object_id.

Numeric

As with Hash, ActiveSupport only adds the blank? method directly to the Numeric
class.

Public Instance Methods

blank?

Always returns false.

Numeric::Bytes (in
ActiveSupport::CoreExtensions)
Enables the use of byte calculations and declarations, like 45.bytes +

2.6.megabytes.

Public Instance Methods

byte and bytes

Returns the value of self.

kilobyte and kilobytes

Returns self * 1024.

Numeric::Bytes (in ActiveSupport::CoreExtensions) 773

megabyte and megabytes

Returns self * 1024.kilobytes.

gigabyte and gigabytes

Returns self * 1024.megabytes.

terabyte and terabytes

Returns self * 1024.gigabytes.

petabyte and petabytes

Returns self * 1024.terabytes.

exabyte and exabytes2

Returns self * 1024.petabytes.

Numeric::Time (in
ActiveSupport::CoreExtensions)
Syntax sugar that enables the use of seconds-based time calculations and declarations
directly on numbers, like this:

1.minute + 45.seconds == 105.seconds #=> true

The methods in this module use Time’s advance method for precise date calcu-
lations as well as adding or subtracting their results from a Time object:

equivalent to Time.now.advance(:months => 1)

1.month.from_now

equivalent to Time.now.advance(:years => 2)

2.years.from_now

equivalent to Time.now.advance(:months => 4, :years => 5)

(4.months + 5.years).from_now

774 A. ActiveSupport API Reference

While these methods provide precise calculation when used as in the example,
care should be taken concerning loss of precision when typecasting them to integral
values. Ruby’s core Date and Time classes should be used for high-precision date and
time arithmetic.

Public Instance Methods

ago and until

Appends to a numeric time value to express a moment in the past.

10.minutes.ago

day and days

A duration equivalent to self * 24.hours.

fortnight and fortnights

A duration equivalent to self * 2.weeks.

from_now(time = Time.now) and since(time = Time.now)

An amount of time in the future, from a specified time (which defaults to Time.now).

hour and hours

A duration equivalent to self * 3600.seconds.

minute and minutes

A duration equivalent to self * 60.seconds.

month and months

A duration equivalent to self * 30.days.

second and seconds

A duration in seconds equal to self.

Numeric::Time (in ActiveSupport::CoreExtensions) 775

week and weeks

A duration equivalent to self * 7.days.

year and years

A duration equivalent to self * 365.25.days.

Object

Rails mixes quite a few methods into the Object class, meaning they are available via
every other object at runtime.

Public Instance Methods

`(command)

Makes backticks behave (somewhat more) similarly on all platforms. On win32
`nonexistent_command` raises Errno::ENOENT; on UNIX, the spawned shell
prints a message to STDERR and sets $?. Emulates UNIX on the former but not the
latter, by making win32 print a message to STDERR.

acts_like?(duck)

A duck-type assistant method, with a really simple implementation:

def acts_like?(duck)

respond_to? “acts_like_#{duck}?”

end

ActiveSupport extends Date to define an acts_like_date? method, and
extends Time to define acts_like_time?. As a result, we can do
x.acts_like?(:time) and y.acts_like?(:date) to do duck-type-safe compar-
isons, since classes that we want to act like Time simply need to define an
acts_like_time? method that returns true.

blank?

An empty string (“”), a string with only whitespace (“ “), nil, an empty array
([]), and an empty hash ({}) are all considered blank.

776 A. ActiveSupport API Reference

Works by calling strip (to remove whitespace) if that method is available, and
then calling empty?. If no empty? method is available, simply returns the negation
of self.

copy_instance_variables_from(object, exclude = [])

Useful to copy instance variables from one object to another.

extended_by

Returns an array of modules that are in the ancestors of a given object.
To illustrate, here’s a list of modules included in a Person class belonging to one

of my real projects. Is the list bigger than you might expect?

>> Person.find(:first).extended_by.sort_by(&:name)

=> [ActiveRecord::Acts::List, ActiveRecord::Acts::NestedSet,

ActiveRecord::Acts::Tree, ActiveRecord::Aggregations,

ActiveRecord::Associations, ActiveRecord::AttributeMethods,

ActiveRecord::Calculations, ActiveRecord::Callbacks,

ActiveRecord::Locking::Optimistic, ActiveRecord::Locking::Pessimistic,

ActiveRecord::Observing, ActiveRecord::Reflection,

ActiveRecord::Timestamp, ActiveRecord::Transactions,

ActiveRecord::Validations, ActiveRecord::XmlSerialization, Base64,

Base64::Deprecated, ERB::Util, GeoKit::ActsAsMappable, LatLongZoom,

PP::ObjectMixin, PhotosMixin, Reloadable::Deprecated,

ScottBarron::Acts::StateMachine, UJS::BehaviourHelper, UJS::Helpers,

UJS::JavascriptProxies, WhiteListHelper, WillPaginate::Finder]

extend_with_included_modules_from(object)

Invokes extend on an object with each module included by the object argument,
with a really simple implementation:

def extend_with_included_modules_from(object)

object.extended_by.each { |mod| extend mod }

end

Object 777

instance_exec(*arguments, &block)

The instance_exec method allows you to (somewhat efficiently) take a block of
Ruby code and execute it in the context of another object.

>> t = Tag.find(:first)

=> #<Tag id: 1, name: “politics”>

>> t.instance_exec { name }

=> “politics”

instance_values

Returns instance variables of an object as a hash.

>> Tag.find(:first).instance_values

=> {“attributes” => {“name” => “politics”, “id” => “1”}}

load(file, *extras)

Rails overrides Ruby’s built-in load method to tie it into the Dependencies subsystem.

require(file, *extras)

Rails overrides Ruby’s built-in require method to tie it into the Dependencies sub-
system.

require_association(file_name)

Used internally by Rails. Invokes Dependencies.associate_with (file_name).

require_dependency(file_name)

Used internally by Rails. Invokes Dependencies.depend_on(file_name).

require_or_load(file_name)

Used internally by Rails. Invokes Dependencies.require_or_load(file_name).

778 A. ActiveSupport API Reference

returning(value) { ... }

A Ruby-ized realization of the K combinator, courtesy of Mikael Brockman. Simplifies
the idiom where you know you will want to return a certain object; you just want to
do a couple of things to it first, like this:

def foo

returning values = [] do

values << ‘bar’

values << ‘baz’

end

end

foo # => [‘bar’, ‘baz’]

A slightly more elegant way to access the returning value is via block variable.
Here is the same example again, but with a block variable for values:

def foo

returning [] do |values|

values << ‘bar’

values << ‘baz’

end

end

foo # => [‘bar’, ‘baz’]

unloadable(const_desc)

Marks the specified constant as unloadable. Unloadable constants are removed each
time dependencies are cleared.

Note that marking a constant for unloading need only be done once. Setup or init
scripts may list each unloadable constant that will need unloading; constants marked
in this way will be removed on every subsequent Dependencies.clear, as opposed
to the first clear only.

The provided constant descriptor const_desc may be a (nonanonymous) mod-
ule or class, or a qualified constant name as a string or symbol.

Returns true if the constant was not previously marked for unloading, false
otherwise.

Object 779

with_options(options)

An elegant way to refactor out common options.

with_options(:class_name => ‘Comment’, :order => ‘id desc’) do |post|

post.has_many :approved, :conditions => [‘approved = ?’, true]

post.has_many :unapproved, :conditions => [‘approved = ?’, false]

post.has_many :all_comments

end

Can also be used with an explicit receiver, which will be passed as a block
parameter:

map.with_options :controller => “people” do |people|

people.connect “/people”, :action => “index”

people.connect “/people/:id”, :action => “show”

end

OrderedHash (in ActiveSupport)
A hash implementation as a subclass of Ruby Array. Preserves ordering of its ele-
ments, in contrast to normal Ruby hashes. It’s namespaced to prevent conflicts with
other implementations. You can assign it to a top-level namespace if you don’t want
to constantly use the fully qualified name:

OrderedHash = ActiveSupport::OrderedHash

The normal square bracket operators are implemented, but otherwise, it’s an
Array.

>> oh = ActiveSupport::OrderedHash.new

=> []

>> oh[:one] = 1

=> 1

>> oh[:two] = 2

=> 2

>> oh[:three] = 3

=> 3

>> oh

=> [[:one, 1], [:two, 2], [:three, 3]]

780 A. ActiveSupport API Reference

OrderedOptions (in ActiveSupport)
A subclass of OrderedHash that adds a method-missing implementation so that hash
elements can be accessed and modified using normal attribute semantics, dot-notation:

def method_missing(name, *args)

if name.to_s =~ /(.*)=$/

self[$1.to_sym] = args.first

else

self[name]

end

end

Rails trivia: The initializer.rb file contains an exact duplicate of this class,
except in the Rails namespace. The reason? It’s needed before ActiveSupport is
loaded, as part of the startup process.

Proc

Extensions to Ruby’s Proc class that make instance_exec magic possible.

Public Instance Methods

bind(object) { ... }

Facilitates binding of a proc to an arbitrary object, so that it executes in that object’s
context when it is called. This technique makes the instance_exec method of
Object possible.

To demonstrate in the following example, we first verify that name is not defined
in the current context. Then we create a Proc object that invokes name, and show that
it still generates a NameError when we call it.

>> name

NameError: undefined local variable or method `name’ ...

>> p = Proc.new { name }

=> #<Proc:0x031bf5b4@(irb):15>

>> p.call

NameError: undefined local variable or method `name’ ...

Proc 781

Now, we use the bind method to easily call our proc in the context of two sepa-
rate objects that do define name:

>> p.bind(Person.find(:first)).call

=> “Admin”

>> p.bind(Tag.find(:first)).call

=> “politics”

The clever implementation works by first defining a new method on the target
object using a generated unique name and the body of the proc. Then a reference to
the new Method instance is saved, and it is removed from the target object using
remove_method. Finally, the target object is bound to the new method and returned,
so that call executes the proc in the context of the target object.

Range

Extensions to Ruby’s Range class.

Constants

The DATE_FORMATS constant holds a single proc used to convert a range into a SQL
expression:

DATE_FORMATS = {

:db => Proc.new {|start, stop|

“BETWEEN ‘#{start.to_s(:db)}’ AND ‘#{stop.to_s(:db)}’”

}

}

Public Instance Methods

to_formatted_s(format = :default)

Generates a formatted string representation of the range.

>> (20.days.ago..10.days.ago).to_formatted_s

=> “Fri Aug 10 22:12:33 -0400 2007..Mon Aug 20 22:12:33 -0400 2007”

>> (20.days.ago..10.days.ago).to_formatted_s(:db)

=> “BETWEEN ‘2007-08-10 22:12:36’ AND ‘2007-08-20 22:12:36’”

782 A. ActiveSupport API Reference

String

Extensions to Ruby’s String class.

Public Instance Methods

at(position)

Returns the character at position, treating the string as an array (where 0 is the first
character). Returns nil if the position exceeds the length of the string.

“hello”.at(0) # => “h”

“hello”.at(4) # => “o”

“hello”.at(10) # => nil

blank?

Returns the result of empty? (stripping whitespace, if needed).

first(number)

Returns the first number of characters in a string.

“hello”.first # => “h”

“hello”.first(2) # => “he”

“hello”.first(10) # => “hello”

from(position)

Returns the remaining characters of a string from the position, treating the string
as an array (where 0 is the first character). Returns nil if the position exceeds the
length of the string.

“hello”.at(0) # => “hello”

“hello”.at(2) # => “llo”

“hello”.at(10) # => nil

String 783

last(number)

Returns the last number of characters in a string.

“hello”.last # => “o”

“hello”.last(2) # => “lo”

“hello”.last(10) # => “hello”

to(position)

Returns the beginning of the string up to the position treating the string as an array
(where 0 is the first character). Doesn’t produce an error when the position exceeds
the length of the string.

“hello”.at(0) # => “h”

“hello”.at(2) # => “hel”

“hello”.at(10) # => “hello”

to_date

Uses ParseDate.parsedate to turn a string into a Date.

to_datetime

Uses ParseDate.parsedate to turn a string into a DateTime.

to_time(form = :utc)

Uses ParseDate.parsedate to turn a string into a Time either using either :utc
(default) or :local.

String::Inflections (in
ActiveSupport::CoreExtensions)
String inflections define new methods on the String class to transform names for dif-
ferent purposes.

For instance, you can figure out the name of a database from the name of a class:

“ScaleScore”.tableize => “scale_scores”

784 A. ActiveSupport API Reference

If you get frustrated by the limitations of Rails inflections, try the most excellent
Linguistics library by Michael Granger at http://www.deveiate.org/projects/
Linguistics. It doesn’t do all of the same inflections as Rails, but the ones that it does
do, it does better. (See titleize for an example.)

Public Instance Methods

camelize(first_letter = :upper)

By default, camelize converts strings to UpperCamelCase. If the argument to
camelize is set to :lower, then camelize produces lowerCamelCase. The
camelize method will also convert “/” to “::”, which is useful for converting paths to
namespaces.

“active_record”.camelize #=> “ActiveRecord”

“active_record”.camelize(:lower) #=> “activeRecord”

“active_record/errors”.camelize #=> “ActiveRecord::Errors”

“active_record/errors”.camelize(:lower) #=> “activeRecord::Errors”

classify

Creates a class name from a table name; used by ActiveRecord to turn table names
to model classes. Note that the classify method returns a string and not a Class.
(To convert to an actual class, follow classify with constantize.)

“egg_and_hams”.classify #=> “EggAndHam”

“post”.classify #=> “Post”

constantize

The constantize method tries to find a declared constant with the name specified
in the string. It raises a NameError if a matching constant is not located.

“Module”.constantize #=> Module

“Class”.constantize #=> Class

String::Inflections (in ActiveSupport::CoreExtensions) 785

dasherize

Replaces underscores with dashes in the string.

“puni_puni” #=> “puni-puni”

demodulize

Removes the module prefixes from a fully qualified module or class name.

>> “ActiveRecord::CoreExtensions::String::Inflections”.demodulize

=> “Inflections”

“Inflections”.demodulize #=> “Inflections”

foreign_key(separate_class_name_and_id_with_

underscore = true)

Creates a foreign key name from a class name.

“Message”.foreign_key #=> “message_id”

“Message”.foreign_key(false) #=> “messageid”

“Admin::Post”.foreign_key #=> “post_id”

humanize

Capitalizes the first word of a string, turns underscores into spaces, and strips _id.
Similar to the titleize method in that it is intended for creating pretty output.

“employee_salary” #=> “Employee salary”

“author_id” #=> “Author”

pluralize

Returns the plural form of the word in the string.

“post”.pluralize #=> “posts”

“octopus”.pluralize #=> “octopi”

786 A. ActiveSupport API Reference

“sheep”.pluralize #=> “sheep”

“words”.pluralize #=> “words”

“the blue mailman”.pluralize #=> “the blue mailmen”

“CamelOctopus”.pluralize #=> “CamelOctopi”

singularize

The reverse of pluralize; returns the singular form of a word in a string.

“posts”.singularize #=> “post”

“octopi”.singularize #=> “octopus”

“sheep”.singluarize #=> “sheep”

“word”.singluarize #=> “word”

“the blue mailmen”.singularize #=> “the blue mailman”

“CamelOctopi”.singularize #=> “CamelOctopus”

tableize

Creates a plural and underscored database table name based on Rails conventions.
Used by ActiveRecord to determine the proper table name for a model class. This
method uses the pluralize method on the last word in the string.

“RawScaledScorer”.tableize #=> “raw_scaled_scorers”

“egg_and_ham”.tableize #=> “egg_and_hams”

“fancyCategory”.tableize #=> “fancy_categories”

titlecase

Alias for titleize.

titleize

Capitalizes all the words and replaces some characters in the string to create a nicer-
looking title. The titleize method is meant for creating pretty output and is not
used in the Rails internals.

>> “The light on the beach was like a sinus headache”.titleize

=> “The Light On The Beach Was Like A Sinus Headache”

String::Inflections (in ActiveSupport::CoreExtensions) 787

It’s also not perfect. Among other things, it capitalizes words inside the sentence
that it probably shouldn’t, like “a” and “the.” It also has a hard time with apostrophes:

>> “Her uncle’s cousin’s record albums”.titleize

=> “Her Uncle’S Cousin’S Record Albums”

The Linguistics gem mentioned in the beginning of this section has an excel-
lent proper_noun method that in my experience works much better than titleize:

>> “Her uncle’s cousin’s record albums”.en.proper_noun

=> “Her Uncle’s Cousin’s Record Albums”

underscore

The reverse of camelize. Makes an underscored form from the expression in the
string. Changes “::” to “/” to convert namespaces to paths.

“ActiveRecord”.underscore #=> “active_record”

“ActiveRecord::Errors”.underscore #=> active_record/errors

String::Iterators (in
ActiveSupport::CoreExtensions)
Contains a custom string iterator that can be used to operate on each character of a
string sequentially, in a Unicode-safe fashion.

Public Instance Methods

each_char { |char| ... }

Yields a single-character string for each character in the string. When $KCODE equals
‘UTF8’, multibyte characters are yielded appropriately.

String::StartsEndsWith (in
ActiveSupport::CoreExtensions)
Provides String with additional condition methods.

788 A. ActiveSupport API Reference

Public Instance Methods

starts_with?(prefix)

Returns true if the string starts with the specified prefix.

ends_with?(suffix)

Returns true if the string ends with the specified suffix.

String::Unicode (in
ActiveSupport::CoreExtensions)
Defines methods for handling Unicode strings.

Public Instance Methods

chars

The chars method returns an instance of the ActiveSupport::Multibyte::Chars
class, a Unicode-safe proxy encapsulating the original string. Unicode versions of all
the String methods are defined on the chars proxy, which gives you assurance that
you won’t end up with garbled or ruined string data.

Undefined methods are forwarded to String, so all of the string overrides can
also be called through the chars proxy with confidence.

Here are some examples:

name = ‘Claus Müller’

name.reverse #=> “rell??M sualC” # garbled!!

name.length #=> 13 # wrong!!

name.chars.reverse.to_s #=> “rellüM sualC”

name.chars.length #=> 12

All the methods on the chars proxy that normally return a string will return a
chars proxy object instead. This allows method chaining on the result of any of these
methods without a problem.

name.chars.reverse.length #=> 12

String::Unicode (in ActiveSupport::CoreExtensions) 789

The Char proxy class tries to be as interchangeable with String as possible: sort-
ing and comparing between String and Chars objects work as expected. The bang
(!) methods change the internal string representation in the Chars object.
Interoperability problems should be resolved easily with a to_s call.

For more information about the methods defined on the Chars proxy, see
Multibyte::Chars and Multibyte::Handlers::UTF8Handler.

is_utf8?(suffix)

Returns true if the string has UTF-8 semantics, versus strings that are simply being
used as byte streams.

Symbol

Extensions to Ruby’s built-in Symbol class.

Public Instance Methods

to_proc

Infamous Rails syntax sugar. Turns a symbol into a simple proc, which is especially
useful for enumerations.

The same as people.collect { |p| p.name }

people.collect(&:name)

The same as people.select { |p| p.manager? }.collect { |p| p.salary }

people.select(&:manager?).collect(&:salary)

Test::Unit::Assertions

Rails adds a number of assertions to the basic ones provided with Test::Unit.

790 A. ActiveSupport API Reference

Public Instance Methods

assert_difference(expressions, difference = 1,

message = nil, &block)

Tests whether a numeric difference in the return value of an expression is a result of
what is evaluated in the yielded block. (Easier to demonstrate than to explain!)

The following example eval’s the expression Article.count and saves the result.
Then it yields to the block, which will execute the post :create and return control
to the assert_difference method. At that point, Article.count is eval’d again,
and the difference is asserted to be 1 (the default difference).

assert_difference ‘Article.count’ do

post :create, :article => {...}

end

Any arbitrary expression can be passed in and evaluated:

assert_difference ‘assigns(:article).comments(:reload).size’ do

post :create, :comment => {...}

end

Arbitrary difference values may be specified. The default is +1, but negative num-
bers are okay too:

assert_difference ‘Article.count’, -1 do

post :delete, :id => ...

end

An array of expressions can also be passed in—each will be evaluated:

assert_difference [‘Article.count’, ‘Post.count’], +2 do

post :create, :article => {...}

end

A error message can be specified:

assert_difference ‘Article.count’, -1, “Article should be destroyed” do

post :delete, :id => ...

end

Test::Unit::Assertions 791

assert_no_difference(expressions, message = nil,

&block)

Tests that the return value of the supplied expression does not change as a result of
what is evaluated in the yielded block.

assert_no_difference ‘Article.count’ do

post :create, :article => invalid_attributes

end

Time::Calculations (in
ActiveSupport::CoreExtensions)
Extensions to Ruby’s built-in Time class.

Class Methods

days_in_month(month, year = nil)

Returns the number of days in the given month. If a year is given, February will return
the correct number of days for leap years. Otherwise, this method will always report
February as having 28 days.

local_time(*args)

Wraps the class method time_with_datetime_fallback with utc_or_local

argument set to :local.

time_with_datetime_fallback(utc_or_local, year,

month=1, day=1, hour=0, min=0, sec=0, usec=0)

Returns a new Time if the requested year can be accommodated by Ruby’s Time class.
The range of the Time class is either 1970..2038 or 1902..2038, depending on the
host system’s architecture. Years outside the supported range will return a DateTime
object.

792 A. ActiveSupport API Reference

utc_time(*args)

Wraps the class method time_with_datetime_fallback with utc_or_local

argument set to :utc.

Public Instance Methods

+ (other)

Implemented by the plus_with_duration method. It allows addition of times like
this:

expiration_time = Time.now + 3.days

- (other)

Implemented by the minus_with_duration method. It allows addition of times like
this:

two_weeks_ago = Time.now - 2.weeks

advance(options)

Provides precise Time calculations. The options parameter takes a hash with any of
the keys :months, :days, :years, :hour, :min, :sec, and :usec.

ago(seconds)

Returns a new Time representing the time a number of seconds into the past; this is
basically a wrapper around the Numeric extension of the same name. For the best
accuracy, do not use this method in combination with x.months; use months_ago
instead!

at_beginning of_day

Alias for beginning_of_day.

Time::Calculations (in ActiveSupport::CoreExtensions) 793

at_beginning of_month

Alias for beginning_of_month.

at_beginning of_week

Alias for beginning_of_week.

at_beginning of_year

Alias for beginning_of_year.

at_end of_day

Alias for end_of_day.

at_end of_month

Alias for end_of_month.

at_end of_week

Alias for end_of_week.

at_end of_year

Alias for end_of_year.

beginning of_day

Returns a new Time representing the “start” of the current instance’s day, hard-coded
to 00:00 hours.

beginning of_month

Returns a new Time representing the start of the month (1st of the month, 00:00
hours).

beginning_of_quarter

Returns a new Time representing the start of the calendar quarter (1st of January,
April, July, October, 00:00 hours).

794 A. ActiveSupport API Reference

beginning of_week

Returns a new Time representing the “start” of the current instance’s week, hard-coded
to Monday at 00:00 hours.

beginning of_year

Returns a new Time representing the start of the year (1st of January, 00:00 hours).

change(options)

Returns a new Time where one or more of the elements have been changed according
to the options parameter. The valid date options are :year, :month, :day. The
valid time options are :hour, :min, :sec, :offset, and :start.

end_of_day

Returns a new Time representing the end of the day (23:59:59).

end_of_month

Returns a new Time representing the end of the month (last day of the month, 00:00
hours).

last_month

Convenience method for months_ago(1).

last_year

Convenience method for years_ago(1).

monday

Alias for beginning of_week.

months_ago(months)

Returns a new Time representing the time a number of specified months into the past.

Time::Calculations (in ActiveSupport::CoreExtensions) 795

months_since(months)

The opposite of months_ago. Returns a new Time representing the time a number of
specified months into the future.

next_month

Convenience method for months_since(1).

next_year

Convenience method for years_since(1).

seconds_since_midnight

Returns the number of seconds that have transpired since midnight.

since(seconds)

Returns a new Time representing the time a number of seconds into the future start-
ing from the instance time. This method is basically a wrapper around the Numeric
extension of the same name. For best accuracy, do not use this method in combina-
tion with x.months; use months_since instead!

tomorrow

Convenience method for self.since(1.day).

years_ago(years)

Returns a new Time representing the time a number of specified years into the past.

years_since(years)

The opposite of years_ago. Returns a new Time representing the time a number of
specified years into the future.

yesterday

Convenience method for self.ago(1.day).

796 A. ActiveSupport API Reference

Time::Conversions (in
ActiveSupport::CoreExtensions)
Extensions to Ruby’s Time class to convert time objects into different convenient
string representations and other objects.

Constants

The DATE_FORMATS hash holds formatting patterns used by the to_formatted_s
method to convert a Time object into a string representation:

DATE_FORMATS = {

:db => “%Y-%m-%d %H:%M:%S”,

:time => “%H:%M”,

:short => “%d %b %H:%M”,

:long => “%B %d, %Y %H:%M”,

:long_ordinal => lambda { |time|

time.strftime(“%B #{time.day.ordinalize}, %Y %H:%M”) },

:rfc822 => “%a, %d %b %Y %H:%M:%S %z”

}

Public Instance Methods

to_date

Returns a new Date object based on a Time, discarding time data.

to_datetime

Returns a new DateTime object based on a Time, preserving the utc offset. Basically
a wrapper around the DateTime.civil factory method:

DateTime.civil(year, month, day, hour, min, sec, Rational(utc_offset,

86400), 0)

Time::Conversions (in ActiveSupport::CoreExtensions) 797

to_formatted_s(format = :default)

Converts a Time object into a string representation. The :default option corre-
sponds to the Time object’s own to_s method.

>> Time.now.to_formatted_s(:long_ordinal)

=> “August 31st, 2007 15:00”

to_time

Returns self.

TimeZone

A value object representing a timezone. A timezone is simply a named offset (in sec-
onds) from GMT. Note that two timezone objects are only equivalent if they have
both the same offset and the same name.

When you have users spread out across the world, you generally want to store
times on the server as UTC time, and store the user’s timezone offset in association
with their user accounts. That way, whenever you display a time for a user, you can
adjust the time stored on the server to their local timezone.

Peter Marklund has a concise tutorial on the technique that you’ll want to read at
http://www.marklunds.com/articles/one/311. Pay attention to his advice to use the
TZInfo Ruby library—it understands how to deal with Daylight Savings Time,
whereas the Rails version does not.

Peter’s tutorial covers everything from setting up TZInfo to adding timezone data
to your User class with composed_of, and UI issues such as collecting the user’s time
zone setting using a Rails time_zone_select helper method.

Constants

US_ZONES is a regular expression that matches the names of all timezones in the USA.

US_ZONES = /US|Arizona|Indiana|Hawaii|Alaska/

798 A. ActiveSupport API Reference

Class Methods

[] (arg)

Locates a specific timezone object. If the argument is a string, it is interpreted to mean
the name of the timezone to locate.

>> TimeZone[‘Dublin’]

=> #<TimeZone:0x3208390 @name=”Dublin”, @utc_offset=0>

If it is a numeric value it is either the hour offset, or the second offset, of the timezone
to find. (The first one with that offset will be returned.)

Returns nil if no such timezone is known to the system.

all

Returns an array of all TimeZone objects. There are multiple TimeZone objects per
timezone (in many cases) to make it easier for users to find their own timezone.

This is the full array of timezone data included in the TimeZone class:

[[-43_200, “International Date Line West”],

[-39_600, “Midway Island”, “Samoa”],

[-36_000, “Hawaii”],

[-32_400, “Alaska”],

[-28_800, “Pacific Time (US & Canada)”, “Tijuana”],

[-25_200, “Mountain Time (US & Canada)”, “Chihuahua”, “La Paz”,

“Mazatlan”, “Arizona”],

[-21_600, “Central Time (US & Canada)”, “Saskatchewan”,

“Guadalajara”,

“Mexico City”, “Monterrey”, “Central America”],

[-18_000, “Eastern Time (US & Canada)”, “Indiana (East)”, “Bogota”,

“Lima”, “Quito”],

[-14_400, “Atlantic Time (Canada)”, “Caracas”, “La Paz”, “Santiago”],

[-12_600, “Newfoundland”],

[-10_800, “Brasilia”, “Buenos Aires”, “Georgetown”, “Greenland”],

[-7_200, “Mid-Atlantic”],

[-3_600, “Azores”, “Cape Verde Is.”],

[0, “Dublin”, “Edinburgh”, “Lisbon”, “London”, “Casablanca”,

“Monrovia”],

TimeZone 799

[3_600, “Belgrade”, “Bratislava”, “Budapest”, “Ljubljana”, “Prague”,

“Sarajevo”, “Skopje”, “Warsaw”, “Zagreb”, “Brussels”,

“Copenhagen”, “Madrid”, “Paris”, “Amsterdam”, “Berlin”,

“Bern”, “Rome”, “Stockholm”, “Vienna”,

“West Central Africa”],

[7_200, “Bucharest”, “Cairo”, “Helsinki”, “Kyev”, “Riga”, “Sofia”,

“Tallinn”, “Vilnius”, “Athens”, “Istanbul”, “Minsk”,

“Jerusalem”, “Harare”, “Pretoria”],

[10_800, “Moscow”, “St. Petersburg”, “Volgograd”, “Kuwait”,

“Riyadh”,

“Nairobi”, “Baghdad”],

[12_600, “Tehran”],

[14_400, “Abu Dhabi”, “Muscat”, “Baku”, “Tbilisi”, “Yerevan”],

[16_200, “Kabul”],

[18_000, “Ekaterinburg”, “Islamabad”, “Karachi”, “Tashkent”],

[19_800, “Chennai”, “Kolkata”, “Mumbai”, “New Delhi”],

[20_700, “Kathmandu”],

[21_600, “Astana”, “Dhaka”, “Sri Jayawardenepura”, “Almaty”,

“Novosibirsk”],

[23_400, “Rangoon”],

[25_200, “Bangkok”, “Hanoi”, “Jakarta”, “Krasnoyarsk”],

[28_800, “Beijing”, “Chongqing”, “Hong Kong”, “Urumqi”,

“Kuala Lumpur”, “Singapore”, “Taipei”, “Perth”, “Irkutsk”,

“Ulaan Bataar”],

[32_400, “Seoul”, “Osaka”, “Sapporo”, “Tokyo”, “Yakutsk”],

[34_200, “Darwin”, “Adelaide”],

[36_000, “Canberra”, “Melbourne”, “Sydney”, “Brisbane”, “Hobart”,

“Vladivostok”, “Guam”, “Port Moresby”],

[39_600, “Magadan”, “Solomon Is.”, “New Caledonia”],

[43_200, “Fiji”, “Kamchatka”, “Marshall Is.”, “Auckland”,

“Wellington”],

[46_800, “Nuku’alofa”]]

create(name, offset)

Creates a new TimeZone instance with the given name and offset.

>> TimeZone.create(“Atlanta”, -5.hours)

=> #<TimeZone:0x31e6d44 @name=”Atlanta”, @utc_offset=-18000 seconds>

800 A. ActiveSupport API Reference

new(name)

Returns a TimeZone instance with the given name, or nil if no such TimeZone
instance exists. This method exists to support the use of this class with the
composed_of macro-style method on ActiveRecord models, like this:

class Person < ActiveRecord::Base

composed_of :tz, :class_name => ‘TimeZone’,

:mapping => %w(time_zone name)

end

us_zones

A convenience method for returning a collection of TimeZone objects for timezones
in the USA.

>> TimeZone.us_zones.map(&:name)

=> [“Hawaii”, “Alaska”, “Pacific Time (US & Canada)”, “Arizona”,

“Mountain Time (US & Canada)”, “Central Time (US & Canada)”, “Eastern

Time (US & Canada)”, “Indiana (East)”]

Public Instance Methods

<=> (other)

Compares this timezone to the parameter. The two are compared first based on their
offsets, and then by name.

adjust(time)

Adjusts the given time to this timezone.

>> TimeZone[‘Fiji’].adjust(Time.now)

=> Sat Sep 01 10:42:42 UTC 2007

TimeZone 801

formatted_offset(colon = true)

Returns the offset of this timezone as a formatted string, in the format HH:MM. If the
offset is zero, this method will return an empty string. If colon is false, a colon will
not be inserted into the output.

initialize(name, utc_offset)

This constructor is used via TimeZone.create. Instantiates a new TimeZone object
with the given name and offset. The offset is the number of seconds that this time-
zone is offset from UTC (GMT). Seconds were chosen as the offset unit because that
is the unit that Ruby uses to represent timezone offsets (see Time’s utc_offset
method).

now

Returns Time.now adjusted to this timezone.

>> Time.now

=> Fri Aug 31 22:39:58 -0400 2007

>> TimeZone[‘Fiji’].now

=> Sat Sep 01 14:40:00 UTC 2007

to_s

Returns a textual representation of this timezone.

TimeZone[‘Dublin’].to_s #=> “(GMT) Dublin”

today

Returns the current date in this timezone.

>> Date.today.to_s

=> “2007-08-31”

>> TimeZone[‘Fiji’].today.to_s

=> “2007-09-01”

802 A. ActiveSupport API Reference

TrueClass

Remember that everything in Ruby is an object, even true, which is a special refer-
ence to a singleton instance of the TrueClass.

Public Instance Methods

blank?

Always returns false.

References

1. For an interesting summary of why zero is considered by many to be an even number, read
http://ask.yahoo.com/20020909.html.

2. Bytes Trivia: According to an IDC study commissioned by storage vendor EMC, 161 exabytes of
digital information were created and copied in 2006. One exabyte equals a billion gigabytes. By
2010, IDC expects the volume of annual data created and copied to rise sixfold to 988 exabytes.

TrueClass 803

This page intentionally left blank

APPENDIX B
Rails Essentials

Chances are you learned about Rails from watching one of David’s screencasts or one
of the many tutorials available on the web. You might even have worked your way
through Agile Web Development with Rails, which has sold so many copies that it is rac-
ing to the top of the list of most successful programming books of all time.

This appendix is a potpourri of essential bits of knowledge and tools that you
need to be an effective, professional Rails developer—crucial information that all
those introductions and tutorials do not tell you.

Edge Rails
Edge is the term used by the community to refer to the latest revision of Rails kept in
the repository, as maintained by DHH and the Rails core team. Most Rails pros run
on edge so that they can stay in tune with the latest improvements and bugfixes to the
codebase. As a result, a lot of the most useful Rails plugins require you to run on edge
in order to work.

In order to use EdgeRails you include a copy of Rails within your application
rather than using the version installed on your machine as a library. Doing so is as easy
as typing rake rails:freeze:edge from your command line inside a Rails project
directory. That rake task will use Subversion to check out Rails into the vendor/
rails directory of your project. From that moment on, anything Rails-related that
you do (console, server, etc.) in that project will use edge Rails rather than whatever
version you have installed as a gem.

If you’re an experienced developer, you might be questioning the wisdom of using
the latest unreleased version of Rails as it exists in the HEAD branch of the Ruby on
Rails repository. Isn’t that dangerous to your productivity? What if changes to the
repository actually break your application? It does happen occasionally, which is why
you don’t want to track the latest version of Rails with every update to your codebase.

The answer is to pick a particular revision number of edge that is considered rel-
atively stable. You do that by passing a variable to the freeze edge rake task, as follows:

rake rails:freeze:edge REVISION=1234

Wait a minute—how are you supposed to figure out what the latest stable revi-
sion is? And if any of those revisions really were stable, why wouldn’t they be released?
I admit that I don’t have particularly good answers for you. Figuring out which revi-
sion of edge to use is more of an art than a science, and it changes with each project
depending on your needs. Most of the time I start with the latest revision available at
the time that I bootstrap my project and leave it there, only upgrading to a more
recent version if I need to do so.

The Rails core team follows very strict policies regarding test coverage, which
means that very few commits actually “break the build.” Even though edge tends to
be fairly stable, official releases have tended to lag behind edge at least a few months
or more. A number of continuous-integration servers are set up to automatically test
each version of the Rails trunk codebase against different database adapters. They send
their broken-build notifications to the rails-core mailing list, which you can subscribe
to at http://lists.rubyonrails.org/mailman/listinfo/rails-core.

Environmental Concerns
No, I’m not about to go off on a tangent about carbon credits and global warming. As
a Rails pro, you’re going to spend a lot of time using the command line, so you might
as well save yourself as much confusion and extra typing as possible. The following lit-
tle tips and tricks should make your life easier and more enjoyable.

Aliases
At minimum you should add aliases for starting your Rails server and console to your
shell’s execution environment. Geoffrey Grosenbach suggests1 alias ss ‘./

script/server’ and alias sc ‘./script/console’.

806 B. Rails Essentials

Color
PJ Hyett and Chris Wanstrath, authors of the blog Err,2 have provided the communi-
ty with valuable, colorful essentials. First install the color gem:

sudo gem install color —source require.errtheblog.com

Now it’s a cinch to make any string appear a different color in the terminal win-
dow, because methods for ANSI colors have been added to the String class.

Redgreen
While we’re at it, let’s also make our test-run results show in red and green. Again we
use an Err gem:

sudo gem install redgreen —source require.errtheblog.com

Then open test_helper.rb in your nearest Rails project. Add require ‘red-
green’ to it; right under require ‘test_help’ will do. Now when you run your
test suite, successful runs will print in green and failures/errors in red.

Essential Plugins
Some plugins are so valuable that (arguably) they should be a part of the core Rails
distribution. However, because of the “less is more” philosophy of the core team, the
Rails core distribution is actually shrinking, not growing.

The following sections are a list of what I (and the readers of my blog) consider
to be essential plugins for the Rails pro to be aware of and use on a regular basis.

For the complete list of suggestions submitted for this section, read the comments
on my blog post at http://www.jroller.com/obie/entry/rails_plugins_worth_their_
something.

ActiveRecord Defaults
http://svn.viney.net.nz/things/rails/plugins/active_record_defaults

This plugin allows you to easily specify default values for attributes on new model
objects.

Essential Plugins 807

Debug View Helpers
script/plugin install debug_view_helper

This plugin makes it easy to add a button that will pop up a window with the fol-
lowing debugging information, which we are accustomed to seeing on development
mode error screens:

• Request parameters

• Session variables

• Flash variables

• Assigned template variables

Exception Notification
http://svn.rubyonrails.org/rails/plugins/exception_notification

This plugin, written by Rails core team member Jamis Buck, automatically sends you
an e-mail whenever exceptions are raised on your site. It makes a remarkably adequate
QA department for those lower-budget internal projects that can afford to be unsta-
ble. Will save your ass on those projects that can’t.

Exception Logger
http://svn.techno-weenie.net/projects/plugins/exception_logger

According to Bryan Helmkamp, “I’d recommend exception_logger over excep-
tion_notification. The feeds and web UI are killer features.”

Has Finder
gem install has_finder

This plugin is an extension to ActiveRecord that makes it easy to create custom
finder and count methods on your ActiveRecord models. Read all about it at
http://www.pivotalblabs.com/articles/2007/09/02/hasfinder-its-now-easier-than-
ever-to-create-complex-re-usable-sql-queries.

808 B. Rails Essentials

Has Many Polymorphs
http://blog.evanweaver.com/files/doc/fauna/has_many_polymorphs

An ActiveRecord plugin for self-referential and double-sided polymorphic associa-
tions. However, the simplest way to describe it is to say that has_many_polymorphs is
like a has_many :through where the belongs_to target is a polymorphic association.
Want to know more? Read Pratik’s tutorial at http://m.onkey.org/2007/8/14/
excuse-me-wtf-is-polymorphs.

Query Trace
https://terralien.devguard.com/svn/projects/plugins/query_trace

The Rails development log already captures SQL statements generated by
ActiveRecord. This little plugin by well-known Rubyist Nathaniel Talbott appends
a short backtrace to every one of those log statements. It doesn’t seem like a big deal,
until you’re trying to find the source of a nasty N+1 select problem or attempting to
debug anything related to caching.

Spider Tester
http://sample.caboo.se/plugins/court3nay/spider_test

SpiderTester is an automated integration-testing script written by Courtenay that iter-
ates over every page in your application.

It performs a few valuable tasks for you:

• Parses the HTML of every page, so if you have invalid HTML, you will be
warned.

• Finds every link within your site and follows it, whether static or dynamic.

• Finds every Ajax.Updater link and follows it.

• Finds every form and tries to submit it, filling in values where possible.

This plugin is helpful in determining

• Missing static pages (.HTML).

• Poor code coverage—forgot to test a file? Don’t wait for a user to find it.

• Simple fuzzing of form values.

Essential Plugins 809

• Automated testing of form paths. Often we have forms that point to incorrect
locations, and until now this has been impossible to test in an automated fashion
or without being strongly coupled to your code.

Other Plugins
Descriptions of other useful plugins are included throughout the book where appro-
priate.

Screencasts
Screencasts are videos distributed online that teach you a narrowly focused topic of
interest by capturing actual screen output (hence the name) while the author explains
concepts and writes code.

PeepCode Screencasts
http://peepcode.com/

Ruby on Rails Podcast producer Geoffrey Grosenbach describes his PeepCode screen-
casts as “a high-intensity way to learn Ruby on Rails website development.”

In reality, he uses his extensive knowledge and soothing voice to gently guide view-
ers into some of the deeper areas of Rails know-how. A new hour-long video screen-
cast is released each month. They cost 9 USD each, but are well worth the expense in
my opinion.

Railcasts
http://railscasts.com/

Short on cash? Host Ryan Bates posts a new screencast almost every week for free.
Episodes are shorter and more narrowly focused than the PeepCode ones, and target-
ed at intermediate Ruby on Rails developers.

Subversion
In the last several years, Subversion (SVN) has become the predominant source-
control management (SCM) system, and for good reasons. It is fast, stable, and is a
huge improvement over its predecessor, CVS.

The Rails world is wedded to Subversion in various ways, particularly with its plu-
gin system, which depends on Subversion to pull down plugin files from repositories.

810 B. Rails Essentials

What to do if you’re stuck having to use an evil SCM, such as ClearCase or
StarTeam (and you can’t move to a more sensible employer)? One strategy that has
been successful at times is to establish an SVN repository that you control for day-to-
day development, and only check in packaged releases of your application to the main
SCM.

Rake Tasks for Subversion
A number of bloggers have suggested custom rake tasks that make working with
Subversion more convenient. Create a lib/tasks/svn.rake file in your Rails proj-
ect and add the following task definitions to it.

Listing B.1 is a task that automatically sets up a new Rails project with the prop-
er subversion repository settings, including ignores.

Listing B.1 Configure Subversion for Rails Custom Rake Task

namespace :rails do
desc “Configure Subversion for Rails”
task :configure_for_svn do
system “svn propset svn:ignore -R ‘.DS_Store’ . --force”
system “svn update”
system “svn commit -m ‘ignore all .DS_Store files’”
system “svn remove log/* --force”
system “svn commit -m ‘removing all log files from subversion’”
system “svn propset svn:ignore ‘*.log’ log/ --force”
system “svn update log/”
system “svn commit -m ‘Ignoring all files in /log/ ending in .log’”
system “svn propset svn:ignore ‘*’ tmp/sessions tmp/cache

tmp/sockets”
system “svn commit -m ‘Ignoring all files in /tmp/’”
system “svn propset svn:ignore ‘*.db’ db/ --force”
system “svn update db/”
system “svn commit -m ‘Ignoring all files in /db/ ending in .db’”
system “svn move config/database.yml config/database.example --

force”
system “svn commit -m ‘Moving database.yml to database.example to

provide a template for anyone who checks out the code’”
system ‘svn propset svn:ignore “locomotive.yml\ndatabase.yml”

config/ —force’
system “svn update config/”
system “svn commit -m ‘Ignoring locomotive.yml and database.yml’”
system “script/plugin install -x ➥

http://dev.rubyonrails.org/svn/rails/plugins/exception_notification/”
end

end

Subversion 811

Listing B.2 declares an svn namespace and five tasks related to checking status,
adding and deleting working files, and checking in code.

Listing B.2 Useful Subversion Rake Tasks

namespace :svn do
task :st do
puts %x[svn st]

end

task :up do
puts %x[svn up]

end

task :add do
%x[svn st].split(/\n/).each do |line|
trimmed_line = line.delete(‘?’).lstrip
if line[0,1] =~ /\?/
%x[svn add #{trimmed_line}]
puts %[added #{trimmed_line}]

end
end

end

task :delete do
%x[svn st].split(/\n/).each do |line|
trimmed_line = line.delete(‘!’).lstrip
if line[0,1] =~ /\!/
%x[svn rm #{trimmed_line}]
puts %[removed #{trimmed_line}]

end
end

end
end

desc “Run before checking in”
task :pc => [‘svn:add’, ‘svn:delete’, ‘svn:up’, :default, ‘svn:st’]

WorkingWithRails.com
A comprehensive survey and description of the Rails community online would take
too much time to compile and get out of date quickly, but I do want to highlight
workingwithrails.com (or WWR for short), an open database of all things related to
the people and groups doing Rails development. It is lovingly crafted (with Rails) by
Martin Sadler and his UK-based company DSC.

812 B. Rails Essentials

Over time, I've found that WWR is one of the most effective ways to get your
name out there and identify yourself as a member of the professional Rails communi-
ty, especially if you're soliciting work as an independent contractor. If you're hiring,
or looking for good people to work with, WWR is also a fantastic resource for iden-
tifying popular members of the community and talented developers in your local area.

If you enjoyed this book and found it useful, please consider recommending its
author, contributors, and principle reviewers:

http://www.workingwithrails.com/person/5391-obie-fernandez
http://www.workingwithrails.com/person/8048-matt-bauer
http://www.workingwithrails.com/person/5747-david-a-black
http://www.workingwithrails.com/person/5541-trotter-cashion
http://www.workingwithrails.com/person/1363-matt-pelletier
http://www.workingwithrails.com/person/4746-jodi-showers
http://www.workingwithrails.com/person/5137-james-adam
http://www.workingwithrails.com/person/848-pat-maddox
http://www.workingwithrails.com/person/582-sebastian-delmont
http://www.workingwithrails.com/person/5167-sam-aaron

Using Subversion Hooks
If you want to take your use of Subversion on Rails projects to the next level, check
out the excellent article at http://railspikes.com/2007/8/20/subversion-hooks-in-ruby.

1. http://nubyonrails.com/articles/2006/01/19/sxsw-aliases

2. http://errtheblog.com/

813

This page intentionally left blank

AFTERWORD

What Is the Rails Way
(To You)?

I love the Ruby community. It’s vibrant, witty, and smart. Truly, our community is one
of the best aspects of working with Rails and no small part of its success. As I was near-
ing completion of this book, I felt a strong urge to include the community in what-
ever way possible, to give readers a taste of what it’s like, and then it hit me. We all
know that there is a Rails way, and yet it is an intensely personal experience, subject
to interpretation and joyful exposition. What better way to end the book than with a
collection of your thoughts!

So I asked and boy, did you all respond. I hope you enjoy reading the following
series of quotes, quips, and essays as much as I did.

Obie Fernandez, Jacksonville Beach (September 12, 2007)

My first thought was “The Rails way is happiness,” but then I remembered a poem
that I really like by Edgar Allen Poe. The poem Eleonora started off with him talking
about madness and intelligence and how it might be that they are one and the same.
He goes on to talk about and give a sense of pity for those who can only dream by
night. I am glad I am one of the ones who can dream by day as well as by night. I
know the secret!

Men have called me mad; but the question is not yet settled, whether madness is
or is not the loftiest intelligence—whether much that is glorious—whether all
that is profound—does not spring from disease of thought—from moods of
mind exalted at the expense of the general intellect. They who dream by day are
cognizant of many things which escape those who dream only by night. In their
gray visions they obtain glimpses of eternity, and thrill, in awakening, to find that
they have been upon the verge of the great secret.
—Edgar Allen Poe

Desi McAdam, my favorite Rails developer

The creators of Rails were so unhappy with every existing tool for developing web
applications that they started from scratch. As should by now be clear by the length
of this book, that was a serious undertaking. How much better would PHP be if they
had contributed patches instead of writing Rails?

Perhaps a little, but probably not enough for outsiders to notice. To paraphrase
the shopkeeper in Whisper of the Heart: “You could polish rough ore, but what you’d
get would be worthless. The smaller gem inside is purer. It takes time and effort to
find it.” Rails teaches us that sometimes you must discard what you are used to seeing
before you can find what you are looking for.

The Ruby way is to polish a stone until you find the jewel within it. Ruby and
Rails, for all their power and elegance, cannot stop you from writing cluttered,
unreadable code. Only you can decide when the code you have written is as polished
as you can make it. Ruby asks us to challenge ourselves to create elegant systems that
are pleasant to use and to look upon. Rails asks us to constantly test our assumptions,
and to not be afraid to discard large sections of code if they displease us.

These two forces, discontent with the current state of affairs and constant self-
criticism of your own work, are what have made Ruby and Rails such popular and
powerful tools. If you can recognize these forces in yourself, you will write better code.
If you can harness them, you will have found the Rails way, even if that leads you to
write something better to replace Rails itself.

Wilson Bilkovich, Rails myrmidon and Rubinius core developer

816 Afterword: What Is the Rails Way (To You)?

When I’m working in Ruby on Rails, I feel like I’m sketching with well-sharpened
pencils on quality paper, with a good eraser by my side. I’m able to rough out my idea
very quickly to see if it has merit. If not, the application can be tossed without too
much grief, because a minimal amount of effort was expended initially. If things are
working out, I’m able to refine what I like and delete what I don’t, building up the
same application from prototype to production with the tightest design spirals I’ve
ever experienced developing software.

Dan Gebhardt

The wise student hears of the Rails way and embraces it.
The average student hears of the Rails way and forgets it.
The foolish student hears of the Rails way and laughs aloud.
But if there were no laughter, there would be no Rails way.

Jon Larkowski, with apologies to Lao-Tzu

I have been a .NET developer for the past several years. I have spent every day with
.NET in one form or the other but when asked why I do it, my usual response is, “it
pays the bills.” I don’t say I love the technology but that it is a means to an end. I still
do it every day until there is something better I can do every day.

I think I see a light at the end of the long tunnel that has been my career and it’s
Ruby and Ruby on Rails. When using them the experience is very satisfying, very Zen-
like, almost to the extreme of being philosophical in nature. When I am asked by my
peers as to what Rails brings to me I often find it hard to explain in words they may
understand. I realize I explain it as finding a religion, where it is not just the text or
the way it is delivered but includes those who share the experience, making it very
whole.

The Rails way, or the experience, is about finding passion and the feeling you are
doing the right thing. The technology makes it good but the community makes it
great.

My involvement in Rails has only been the past year or so but having 20-plus
years of software development experience, I have the insight to know when I have
found something great.

Rob Bazinet, a software developer currently enjoying learning Ruby and Rails

Afterword: What Is the Rails Way (To You)? 817

The Rails way is M: Magical V: Velocity Focused C: Community Driven

Matt Margolis

Freeing yourself from decision-making; that is the Rails way. All the important choic-
es have already been made for you, and instead of deciding which technology to adopt
or what application structure you should adopt, you sit down and hack. As you expe-
rience the development process, you extend Rails, making plugins to fill the need. It
is Zen development.

Ben Stiglitz

I’m fairly new to web development. I wasn’t doing web dev with Perl CGI scripts, or
PHP, or even much with J2EE. Rails was my introduction to serious web develop-
ment. For me, Rails made web development something that I didn’t have to try and
avoid.

I can’t help but compare Rails to C. I learned C fairly early in my lifelong love
affair with programming. Raw power, expressiveness (I was previously using mainly
assembly language), being able to do some cool stuff very quickly. Smalltalk gave me
the same feeling all over again. Rails gives me that feeling again… Ruby, of course is
a big part of that… the ability to accomplish much in very little time, with very little
code.

To me the Rails way is about how it feels. Rampant productivity, flow, expres-
siveness, malleability, few hurdles or roadblocks…

The Rails way is like blasting down the coastal California highway on a sunny day
in a Corvette convertible with the top down.

Dave Astels, author of TDD: A Practical Guide and Test Mercenary at Google, Inc.

The Rails way is …

To go out of the way to help without expectation.

To embrace ideas both new and old.

To realize we all have better things to do.

Jim Remsik, a.Net Developer with a job change in the near future

818 Afterword: What Is the Rails Way (To You)?

OK, so what is this “Rails way” that people speak of? Is there, in fact, such a thing,
and if so, is it actually definable? I believe that the “Rails way” is a subjective concept,
and as such I’d like to explain what it means to me. If we ever meet, I’d love to know
what it means to you.

Let’s start with a simple, almost embarrassing analogy. Let’s talk locomotives, car-
riages, trains, and railways. No, I’m not talking about the small models that your dad
painstakingly paints and crafts in the garage. I’m talking about the real deal. Big huge
powerful engines. Tracks laid for miles. Cargo. Passengers. The heavy, sooty smell of
smoke, steam, and coal. Technology that powered the industrial revolution.
Technology that people constantly challenged, improved, and reinvented. It’s still hap-
pening today. For example, in terms of technology, the Transrapid Shanghai Maglev
Train is a far cry from the steam locomotives that operated along the English railways
during the early nineteenth century. Books similar to this one were written about the
technology behind railways, for the people interested in or building with the technol-
ogy. However, for the majority of people, the technology behind railways isn’t their
focus. It’s what railways enable that is interesting: holidays to the seaside, visiting
Gran, shipping goods to new markets, being able to live farther from work. Now, what
I personally think is interesting about railways is the inherent limitations; the fact that
they limit where you can travel. Your choice of destinations is essentially decided for
you. The decisions were made when the tracks were laid and the stations were built.
People decided that you’d want to travel from London to Newcastle.

“Gah, the gall!” you might cry. “I want complete control of where I can go,” you
might suggest. After all, choice is freedom, right?

Ruby on Rails is similarly limiting. It lays the tracks down for you. It tells you
where to go. Of course, you’re not strictly limited to following its direction—you can
go where you want. However, I’m sure that riding a train over rough undulating ter-
rain won’t be the most comfortable journey you’ve ever had. This leads to an impor-
tant question: “How do I know that Rails is taking me in the right direction?” Clearly
this is a subjective question. The answer really depends on your own definition of
“right.” However, for me it was most certainly the right direction. Let me give you a
little bit of context:

So, I was well into my Ph.D. studies. I had implemented a prototype in Java to
evaluate my ideas. The only problem was that the Java system was a house of cards
constantly falling over. Looking back in retrospect, I think that it was mostly to do
with the fact that my ideas were in a state of flux: They were constantly changing.
After all, I was researching. Unfortunately, the Java code base I had written became

Afterword: What Is the Rails Way (To You)? 819

complicated and convoluted with all the changes. In an ideal imaginary world I would
have just conjured up new ideas which, in order to be evaluated, would be magically
implemented by some AI research bot. Clearly this wasn’t the case, and I had to write
my own code. However, with the Java implementation, the code started to control my
ideas rather than the ideas controlling the code. For example, I’d find myself saying
things like “It would be great to be able to do this, but that would be too hard, or take
too long to implement.” It caused me a great amount of frustration, followed by a fair
amount of depression.

Now, I’m not trying to get all emo on you. Go and find someone who’s done a
Ph.D. and you’ll see that each and every one of them had some kind of depression
during the course of their research. I hope you’ll excuse the mild tautology, but it’s just
a depressing reality of the nature of Ph.D.’s. In my case, my depression grew from
being frustrated with my tools, and not knowing where to turn next to fix the big mess
I was in. I was lost, and without direction.

Somehow, I stumbled across Rails. I’m not sure what attracted me to it. Perhaps
it was because I had already been using and enjoying the simple wiki Instiki for a while
(one of the first-ever Rails applications). Perhaps it was the strong sense of communi-
ty. Perhaps it was the smart, interesting, and often funny blog posts. Perhaps it was the
sheer excitement and thrill displayed by people using Rails. “Whoops,” I forgot the
fact that it could have also been the eye-opening screencasts. In fairness, it was prob-
ably a healthy dose of each of these things. Rails offered me a lot of what I was want-
ing: an intelligent, excited community of interesting people focusing on a framework
that allowed useful things to be built remarkably quickly and effortlessly. I needed
some of that!

The next year or so were lost years in terms of research; I hardly progressed.
However, I learned a lot more about programming than I had done in any other similar
period of time. I devoured blog posts and books like I had been starved of informa-
tion. Learning Ruby really opened my mind to the interesting facets of programming
languages. Suddenly I could see that programming didn’t just have to be an engineering
task; there were many other aspects. It was also an art, a craft, even a study of language
itself. The philosophies behind Rails such as “Convention over Configuration” and
“Don’t Repeat Yourself ” didn’t just make sense; they were obviously sensible. My eyes
were starting to open. Everything that the Rails community did and talked about
seemed interesting. It’s almost as if they acted as a wonderful filter of what to read and
learn, and most importantly it was a filter I grew to trust.

820 Afterword: What Is the Rails Way (To You)?

Let’s return to the discussion about trains and freedom: “Railways limit where you
can travel,” and “your choice of destinations is essentially decided for you.” We dis-
cussed that possible retorts to these statements would be phrases like “I want complete
control of where I can go,” and “choice is freedom.” Well, look at it from my context.
I had complete choice and freedom of where I could go with my research. That wasn’t
my problem. My problem was that I didn’t know which way to go, and so I was going
nowhere. Having too many unclear and unknown options was essentially blinding my
way.

After my Rails hiatus, I returned back to my research with renewed vigor and
strength. I decided to scrap my implementation, and completely rebuild it using Ruby
and Rails. I rebuilt it in a fraction of the time it took to implement the original, with
a fraction of the original code-base. What’s more, the new implementation was com-
pletely tested, so the house-of-cards scenario was no more, and get this, I actually
enjoyed building it. I enjoyed working on something that had once been such a frus-
tration and cause of depression. It turned out that using Rails as a filter on the set of
possible implementation options didn’t feel at all restrictive or imprisoning; it actual-
ly gave me clarity and direction. I believe that this is part of what people refer to as
the Rails way, which for me is only the start of an exciting and promising journey.

Sam Aaron, who doesn’t do short answers ☺

Ruby on Rails demonstrates that quick need not be dirty, and best practices need not
be complex. It is the perfect example of the 80/20 principle in the modern world of
web applications—Rails doesn’t meet everyone’s needs, but when it does it is a sweet
solution indeed.

Gabe da Silveira, available at websaviour.com

Rails and Ruby, Ruby and Rails, what can I say?
I’ve been an object-oriented programmer for 30-odd years. I was one of the lucky

guys who was part of the Smalltalk community in its heyday. I grudgingly took up
Java work when “write once run anywhere” took over the world.

Then I retired and went back to playing with technology according to my own
whims, and picked up the odd job every now and then to pick up a stray buck.

I played with various open source web apps, some good, others not so much. I
run a wiki based in mediawiki, and was actively playing with that code for a while. It

Afterword: What Is the Rails Way (To You)? 821

shows that well-written code can even be obtained in PHP. On the other hand a few
consulting experiences reacquainted me with the horrors of what hacked-together
code could produce.

Along the way, one of my buddies asked me if I’d played with Ruby, so I took a
look. Somehow I felt strangely at home. Ruby took enough OO ideas from Smalltalk,
sprinkled in some advanced ideas like modules and singleton methods, and added
some, mostly good, stuff from Perl. I’d looked at python too, but Ruby just felt more
complete and comfortable.

Then I got a Rails gig, adding some new features to an existing app. In comparison
to an earlier similar job to try to extend a PHP mission-critical app, this was heaven.
Instead of spending all my time just trying to figure out what the code was supposed
to be doing, the Rails code was obvious both in the code and its structure. Best of all
there were TEST CASES. A great boon to the new kid on a project.

Of course that code didn’t get the way it was just because it was written using
Rails, but it sure helped. Another thing which Ruby, and Rails in particular, shares
with Smalltalk is that there is quite a lot of good code in the literature to read, under-
stand, and use as a source of exemplars.

It’s not that you can’t write awful Rails code, but you have to work at it a little
harder! If you trust your sense of smell when you find yourself working in Rails, you
know that you are probably doing something wrong, and should look for examples of
how others solved similar problems; and you’re very likely to find those examples with-
out much looking.

Rick DeNatale, retired IBM Smalltalk Guru, principal of DenHaven Consulting and
Terralien crew member

At numerous sweet at the mid-night
I say I love Rails
The night also becomes thus beautiful
The stars cannot help but blinking eye
The beautiful Rails world
I love you
I asked myself over and over again
I don’t love you to love who
I love you, Rails

Hackem, university student in China

822 Afterword: What Is the Rails Way (To You)?

In my experience, first as an employee, and now as a company owner, the Rails way
can be summed up with Three Cs—collaboration, consistency, and contribution.

Collaboration: Doing things “the Rails way” means not only tighter collaboration
between team members, but also tighter collaboration with our clients. Between team
members, there’s a tangible feeling of excitement in using Rails to its fullest potential,
resulting in code reviews that are dynamic and educational, instead of mind-numbing
or incomprehensible. In client interactions, it means more frequent release cycles, and
feedback at earlier stages. We hit a lot closer to the moving target with Rails than we
did with PHP.

Consistency: Coming from a background in a variety of languages and frame-
works which did not take an opinionated stance, I’m all too familiar with how hard it
can be to decipher another programmer’s coding style. Embracing the Rails way has
reduced the time we spend explaining ourselves to each other, and simply puts us all
on the same page. This has been invaluable to us.

Contribution: By doing things the Rails way we’re in a much better position to
give back to the community. While I’ve been a consumer of open source software for
at least the past dozen years, Ruby on Rails is the first open source project to which
I’ve contributed patches (and felt the joy of seeing those patches merged into the Rails
core). Contribution is possible at any level, too. Plugins, gems, documentation, blog
entries about new discoveries, or even just volunteering to speak at local Rails events.
The cooperative spirit that seems to emerge from the Rails way is one I’ve not seen
paralleled in any other software project, and I’m excited to be a part of it.

Jared Haworth, founder of Alloy Code, a web development company based in Raleigh, NC

For me, the Rails way represents freedom. The freedom to concentrate on writing
solutions and not compiler fodder. The freedom to learn one underlying language and
not esoteric configuration file formats. The freedom to mold said language and solu-
tion like a lump of clay into an elegant piece of software and not be thwarted by lan-
guage or API designers who feel they know best. The freedom to have fun, again, to
not mind the long, hard hours put into crafting a beautiful piece of software. The free-
dom to return to the familiar land of dynamic languages.

Mel Riffe, former Smalltalk programmer

Afterword: What Is the Rails Way (To You)? 823

The Rails way is about finding the most beautiful answer to any problem. These solu-
tions are not found by one-off hackery, but by building upon smart conventions and
principles with other developers. It’s about keeping the obscurists out and bringing the
artists in. Viva la Rails way!

Hampton Catlin, self-proclaimed Ruby Prophet

Rails has taken me places that I had forgotten existed. I recall a time not so long ago
when I sat up late at night slowly grasping the joy of software creation. College was a
time for exploration, for pushing the limits of my mind and my capabilities.

Then Corporation and Comfort snatched me from Excitement and Growth.
Education was pushed back in my mind as I was molded into a standards-based
automaton. Work just enough to impress, but don’t even attempt to wow. Good
enough was great and great was a pipe dream.

The epiphany that I was whiling away my passion for a consistent paycheck
arrived suspiciously close to the moment I discovered Rails. Rails led me away from
Corporation and back toward Fulfillment. Ruby slapped me in the face and left me
smiling at the sting.

Barry Hess, who can be found speaking in tongues at bjhess.com

Rails has strong opinions about a particular way of rapidly building end-to-end appli-
cations from the simple to the complex with minimal effort and tight integration.
Each developer should experience the Rails way of building web applications so they
can decide if that way can be their way, and to learn what they can from that approach
to take forward into their own work.

Geoffrey Wiseman, software development generalist and writer/editor at large

The Rails way is being part of a community dedicated to helping each other work
smarter, build better products, and have more fun doing it. It’s about the freedom of
not being beholden to any single company. The Rails way is a path beaten out by peo-
ple who care about beauty and craftsmanship in software development, and when you
walk it, you do your part to mark it for those who will follow.

Luke Melia, railing away in NYC

824 Afterword: What Is the Rails Way (To You)?

Rails—beauty in code
Creative, fun, and perfect
Future that is pure

David Parker, all you need to know at davidwparker.com

I started programming when I was 13—I remember that summer well; it was the end
of playing outside and skinned knees for me. I found the BASIC Programming book
for our TRS-80. My monitor was a TV, my files were saved on a cassette tape, and my
printer contained 5-inch wide thermal paper. I was hooked on programming. Over
time, I upgraded my computers as well as my programming skills, learning more ver-
sions of Basic and C/C++. After four years of Pascal and one semester of Java in col-
lege, I picked up a PHP book and learned PHP and landed my first job. As I grew as
a developer and became more familiar with web development, I struggled with good
design such as MVC, database rows to objects and templates. I tried to come up with
a web framework and experimented with a few. None of them made it simple enough
or even logical enough. The typical CRUD part of development wore on me because
it was so tedious and repetitive. Web development for me became boring and such a
drag! I entered into about two years of what I call “programmer depression” where I
was not excited about anything code-related and I would come home from work and
not even turn my computer on.

Programming communities are inspiring. In 2006, I reconnected with developer
and friend Keith Casey after a few years where we had no contact. He was involved in
some open source projects, including DotProject, a LAMP-based project management
application. I did some contract work with him and got involved in the open source
community and participating in the forums for projects by helping answer questions
and discuss design. He encouraged me to attend local user group meetings in Chicago.
I found the Chicago PHP group and met some Perl programmers (shh, don’t tell any-
one there were Perl people at a PHP meeting!) and started learning Perl, then later
found the Ruby group. I was soon attending three user group meetings a month—
Ruby, Perl, and PHP. Occasionally, I visited the Python group. I was learning new
things and being around other programmers both in person and through open source
projects. At that time, I was the only programmer in the company and I was starved
for some geek conversation. PHP is nice for some applications because it’s so easily
supported on most web servers. Perl I loved because of its testing libraries and its flex-
ibility and I learned a lot about design. Rails I loved because it made MVC make sense

Afterword: What Is the Rails Way (To You)? 825

to me; ActiveRecord lets me map database rows to objects with ease. Scaffolding
made getting basic CRUD done quickly, leaving me the time and freedom to work on
the business logic of the application. Programming was fun again!

Rails is agile. As my growth as a developer continued, I learned the agile/scrum
process and Rails was a natural fit. Scaffolding helps me to prototype quickly and get
feedback from the customer early in the process. One day, a business analyst came to
the developers needing an application and was trying to explain what he needed. We
had a similar application already, but he just needed a few things changed, which
would unfortunately require significant redesign. After hearing him talk for 15 min-
utes, I walked to my desk and with the help of Streamlined created a basic Rails appli-
cation with a few controllers and models. I had created a nearly complete site within
the hour. I showed it to him and after I customized the forms the way he wanted and
added a few more features, I had a production-level application deployed in about 18
hours.

Rails allows rapid development. Another thing I’ve learned is that managers who
are used to languages other than Ruby may have a hard time with the rapid develop-
ment of Rails. In one case, I had some tasks for a project and was given a lecture about
how it’s too much work for the hours estimated. Further, I could not possibly be cre-
ating quality code if I did manage to get it done within that time frame. I knew I could
do it and with quality code! I left that meeting with determination and even took the
time to explain the process to a person new to Rails as I created my RESTful Rails site,
used scaffolding, then customized the parts that were particular to my needs. I ran the
tests (46 of ’em!) and it was done. Just in case there was criticism about my code being
high quality I ran rcov (a test coverage tool) on my tests and had 100% test cover-
age. How ya like them apples?

Rails has given me confidence and boldness. Normally I am a very timid person
and don’t often initiate conversations with strangers. One day, I’m on my daily com-
mute via train to Chicago when someone sat next to me with a Play Station Portable
(PSP) in a unique case. I asked him about his case and talked about how I am going
to steal my husband’s PSP one of these days and put linux on it. He said he was a
mainframe programmer and didn’t like it at all. He wanted to get into web develop-
ment. So I immediately start in about Rails, sharing the highlights of the framework
and how much I like it. He started writing down notes. I told him what sites to go to
for more info, what books to read, and I even let him watch the classic “Rails Blog in
15 Minutes” video on my laptop. I keep watching for him on the train to ask if he’s
tried it yet!

826 Afterword: What Is the Rails Way (To You)?

More than anything, I try to use the right tool for the job. I like multiple lan-
guages and Ruby with Rails is the one I choose for web development in most cases. I
may choose PHP for a site if it has only one dynamic page or a site that just needs an
email form. Perl is great for system tasks or data processing. Each of these languages
has their strengths and I will not put anyone down who thinks otherwise. I think the
biggest problem is the lack of community among developers across languages. It’s usu-
ally someone trying to point out why X language is no good. Come on guys… that
doesn’t help anyone. You can learn from other languages even if it’s not your primary
language. Sometimes when I am programming in one language I think of how I would
do it in another. Often, thinking “outside the box” like this will guide me to the right
solution.

Rails has definitely inspired me and changed the way I think about web develop-
ment. The community surrounding Ruby/Rails is outstanding and that makes me a
better programmer.

Nola Stowe, Language Geek

The Rails way is pragmatic to its core, born from the twin forces of deep experience
and the need to solve the real-world programming problems at hand. It dumps con-
ventional wisdom on how things ought to be done and, instead, takes a fresh look at
the mitigating the real impediments to developer productivity.

Curt Hibbs, author of the most successful online tutorials for Rails

Some days, I think it means expressive, iterative, simple, elegant web development.
Some days, I think it means ignoring decades of collective wisdom and inventing

a wheel made of cornstarch—it’s more lightweight, and we’re probably not going too
far, so why overengineer?

Some days, I think it means “F*** you.”
It’s one of those days.

Jay Levitt, former chief mail systems architect at America Online, lives in Boston, MA

Afterword: What Is the Rails Way (To You)? 827

The Rails way is all about making programmers happy. It’s about automating,
abstracting, and refactoring until a web application can be written in the fewest num-
ber of lines needed to get the job done. It’s about making it easier to write the right
kind of code than the wrong kind.

And when programmers are happy, they can focus on writing great applications
that make the user happy, too!

Geoffrey Grosenbach, PeepCode Publishing and voice of the Ruby on Rails podcast

“c7Fd9uk3nu4ck0td8iv9oz1nv0ak5ljjSw2iv6mu9pz1ly3im0cq7il4ta2y”.gsub(/\w\d/,
’’).gsub(‘jj’,’ ‘)

Jeremy Hubert, being his silly self

Working with Rails feels like pair programming with a talented, experienced, and
opinionated web developer. If you can swallow your pride and follow Rails’ lead, great
productivity gains await you. If you have strong opinions about web development and
database design, there are going to be arguments, and your productivity will languish.
Initially, developing the Rails way means humbling yourself, surrendering to the opin-
ions of Rails, and seeing web development through Rails’ eyes. But take heart! As you
learn Ruby, your arguments with Rails will begin turning in your favor. Eventually,
developing the Rails way means listening to Rails’ opinions, picking your battles, and
through the power of Ruby, bending Rails to your will.

Dave Hoover, software craftsman

There’s a line at the beginning of the SICP lectures—a famous course on functional
programming—where Harold Abelson is defining “computer science” for his class:

“Computer science” is a terrible name for this business. First of all, it’s not a sci-
ence; it might be engineering, or it might be art… It’s also not very much about
computers, in the same sense that physics is not really about particle accelerators,
and biology is not really about microscopes and Petri dishes, and geometry is not
really about using surveying instruments.

The reason that we think that computer science is about computers is pretty
much the same reason that the Egyptians thought that measuring their plots after

828 Afterword: What Is the Rails Way (To You)?

the flooding of the Nile was about surveying instruments, and not geometry:
When some field is just getting started, and you don’t really understand it very
well, it’s very easy to confuse the essence of what you’re doing with the tools that
you use.

In the same way, my sense of “the Rails way” is not really about Rails, Ruby, or
any of these new tools we’re using. Its “essence” is an uncompromising drive to opti-
mize for productivity and happiness. It’s a hard-learned pragmatism: Processes for peo-
ple who refuse to solve the same problem twice, who are annoyed enough by the speed
bumps their tools sometimes introduce that they happily gas up the steamroller.

A necessary corollary to the idea that Rails’ secret sauce is distinct from the code
frozen to our vendor directories is that one day, a better instantiation of these prac-
tices will come along. I love Ruby, Rails, and their communities, but I know that we’ll
all move on at some point. When that day comes, and some new 10-minute screen-
cast makes us squeal like kids, we should have the sense to jump into it head-first, with
the same abandon with which we dropped all that stuff we used to do for a living.

Chris Kampmeier blogs at http://www.shiftcommathree.com

If DHH ain’t doing it, you don’t do it. (Seems every time some clever fellow gets into
trouble it’s because of that.)
Zed Shaw, author of Mongrel web server

Afterword: What Is the Rails Way (To You)? 829

This page intentionally left blank

831

Symbols & Numerics

(pound sign) delimiter, 310
- (minus sign) delimiter, 310

307 redirects, 42

A

abstract base model classes, 291-292
acceptance tests, 588-589
AccountController class, Acts_as_Authenticated

method, 496-498
Action Cache plugin, 337-338
action caching, 328-330
ActionMailer framework, setting up, 531
actions (Selenium), 589
ActionView, 308
Active Record framework, 140-142, 158

attributes
default values, 160-162
serialized, 162

configuring, 196-197
CRUD, 163-178
database connections, 189-196
database locking, 179

optimistic locking, 180-182
pessimistic locking, 182

database schema, naming conventions, 159
finders

conditions, 183-185
options, 187-189
parameters, 186
results, ordering, 186

macro-style methods, 155
convention over configuration, 156
pluralization, 157-158
relationship declarations, 155-156

Migration API, 146-148
migrations, 142-145

columns, defining, 149-155
query cache, 172-174

ActiveRecord
abstract base model classes, 291-292
callback registration, 272-273

before after/callbacks, 274
callbacks, 271

after_find callback, 278-279
after_initialize callback, 278
classes, 279-282
halting execution, 274
usage examples, 275-278

classes, modifying at runtime, 301-304
common behavior, reusing, 296-301
observers, 282

naming conventions, 283
registration, 283

Index

polymorphic has_many relationships, 292-296
STI, 284-291

inheritance, mapping to database, 286-287
ActiveRecord models, creating forms, 362-369
ActiveRecord SessionStore, 473-474
ActiveRecordHelper module, 342-345, 347-348
ActiveResource, 519

Create method, 522-523
customizing, 527-528
Delete method, 524-525
Find methods, 519-521
headers, 526
Update method, 524

ActiveSupport library, 726-739, 759
Array class, 724
Class object, 729-730
default log formatter, 764-765
dependencies, 740

module attributes, 740-741
public instance methods, 742-743

Deprecation module, 744-745
Enumerable module, 747-748
Exception module, 748
FalseClass module, 749
File module, 749
Hash module, 750-757
Inflections class, 757-759
Module class, 765-769
NilClass, 772-773
Numeric class, 773-776
Object class, 776-777, 779
Proc class, 781-782
Range class, 782
String class, 783-790
Symbol class, 790
Time class, 792-798

active_record_defaults plugin, 807
acts-as-authenticated plugin

AccountController class, 496-498
authenticate method, 494
before-save callback, 493
current user, 499-501
installing, 486-487
login from cookie, 498-499
remember token, 495

User model, 487-492
validation rules, 492

Adam, James, 650
adding

classes to mocks folder, 548-549
load paths, 10
plugin sources, 630

after_find callback, 278-279
after_initialize callback, 278
Ajax, Prototype, 420-421

Class object, 424
Enumerable object, 437-443
Firebug, 421
Hash class, 443
Object class, 425-426
Prototype object, 445
Responders object, 437
top-level functions, 422-424

alert() method (RJS), 457
aliases, 806
analyzing log files, 22-23
ante-default route, 69-70

respond to method, 70
APIs

integration test API, 585-586
Migration, 146-148
Prototype, 421

Class object, 424
Object class, 425-426
top-level functions, 422-424

RSelenese, 592
partial test cases, 592-593

application console
route objects, 129-131
routes

dumping, 128-129
manual recognition and generation, 132-134
named routes, executing, 134-135

application.rhtml layout template, 312-313
arbitrary predicates, 599-601
arguments

for named routes, 84-85
hashes, syntax, 136

around filters, 48
Array class

832 Index

ActiveSupport library, 724
JavaScript extensions, 426-428
to_xml method, 510-513

assertions, 553, 562-566
assert_block, 563
for functional tests, 572-576
one-assertion guideline, 566-567

assert_block assertion, 563
AssetTagHelper module, 348-352
assigning instance variables to view specs, 622
associated objects, validating presence of, 261
AssociationProxy class, 249-250
associations, 199

belongs_to, 207-208
options, 209-215

class hierarchy, 199-201
extensions, 247-248
has_many, 215

options, 216-224
proxy methods, 224-225

many-to-many relationships, 225
has_and_belongs_to_many method, 225-

232
through association, 233-241

objects, adding to collection, 203-207
one-to-many relationships, 201-203
one-to-one relationships, 241

has_one relationship, 241-246
unsaved, 246

Astels, Dave, 566
attribute-based finders, 170
attributes

default values, 160-162
serialized, 162

attributes method, 168
authenticate method, acts as authenticated, 494
AuthenticatedTestHelper module, 501-502
auto-loading classes and modules, 8
autocompleters, 466-467
automatic class reloading, 15
Autotest project, 624
auto_discovery_link_tag method, 348
auto_link method, 393

B

BackgounDRb, adding background processing
to applications, 713-718

background processing
with BackgounDRb, 713-718
with daemons, 719-722
with DRb, 710-712
with script/runner, 708-710

Bates, Ryan, 810
BDD (Behavior-Driven Development), 611
before save callback, Acts as Authenticated, 493
before/after callbacks, 274
behaviors, 598, 603-604

shared behaviors, 604-607
belongs_to association, 207-208

options, 209-215
benchmark method, 353
BenchmarkHelper module, 353
bidirectional relationships, 227-228
Bilkovich, Wilson, 249
BNL (Business Natural Languages), 303
boot script, initializer.rb file, 6
bootstrapping, 3

auto-loading classes and modules, 8
initializer.rb file, 6

default load paths, 6-7
mode override, 2
Rails gem version, 2
RubyGems, 5

bound parameters for routes, 60-61
breadcrumbs help method, writing, 409-410
Buck, Jamis, 108, 131, 808
Builder API, 513-515
building production stack, required compo-

nents, 655
application tier, 656
database tier, 656
monitoring tools, 657
web tier, 656

builtins, 8
button_to method, 400

Index 833

C

caching, 327
Action Cache plugin, 337-338
action caching, 328, 330
cache logging, 337
content expiration, 333-334

fragments, 334
Sweeper class, 335-336

fragment caching, 330
global fragments, 332-333
named fragments, 331-332
storage, 338-340

page caching, 328
call() method (RJS), 457
callback registration, 272-273

before/after callbacks, 274
callbacks, 271

after_find, 278-279
after_initialize, 278
classes, 279-282
halting execution, 274
usage examples, 275-278

capify command, 685-686
Capistrano, 681

capify command, 685-686
configuring, 670
database schema, loading, 696
database.yml, storing, 693-695
deploying, 687-688, 691

via :copy, 692
deployment maching, setting up, 689

symbolic links, 690
gateway setting, 705
installing, 661, 684
multiserver deployments, 702-703
preinitialization, 698, 700
recipes, managing Mongrel clusters, 701-702
remote user accounts, 691
requirements for using, 682-684
SCM System, customizing, 692
spawner script, 688
transactions, 703-705
variables, 696-698

CaptureHelper module, 354

check_box_tag method, 378
class loader, 15-16
Class object (Prototype), 424
classes

abstract base model classes, 291-292
adding to mocks folder, 548-549
AssociationProxy, 249-250
auto-loading code, 8
callback classes, 279-282
extending, 644
external filter classes, 46

cleaning up sessions, 481
collections

associated objects, adding, 203-207
proxy collection objects, 202
rendering, 325-327

color gem, 807
columns

adding to has_and_belongs_to_many_join
tables, 232

defining, 149-155
commands

capify (Capistrano), 685-686
discover, 631
erb, 308
install, 632
list, 629-630
piston lock, 639
piston unlock, 639
redirect to, 41
remove, 633
render, 33
script/plugin, 629
source, 630
sources, 630
unsource, 631

concat method, 393
conditional callbacks, 493
conditional output, 311
conditional validation, 264

when to use, 265-266
configuring

BackgrounDRb, 714
Capistrano, 670
Mongrel, init script, 672-673
Mongrel Cluster, 662

834 Index

Monit, 667-669
init script, 673-675

Nginx, 663-667
init script, 670-672

SMTP servers, 543
constants, JSON, 760
content_tag_for method, 390
controller-only resources, 113-115
controllers, 28-31

filters, 43-44
around filters, 48
conditions, 50
external filter classes, 46
filter chain halting, 50
filter chain ordering, 47-48
filter chain skipping, 49
halting the filter chain, 46
inheritance, 44-46
inline filter method, 47

functional testing, 570-571
assertions, 572-576
methods, 571

instance variables, 42-43
namespaced controllers, 107
post-backs, 112
requests, redirecting, 39-42
REST actions, 96-98

explicitly specifying, 105
session class method, 471
specs, 617-619
streaming, 51

send data() method, 51-52
send file() method, 52-55

templates, rendering, 33-36
view templates, 31

convention over configuration, 32
converting

numeric data to formatted strings,
NumberHelper module, 383-385

vendor libraries to Piston, 638
XML to Ruby hashes, 515-516

cookies, 481
reading, 482
writing, 482

CookieStore session storage, 476-478
create actions, 123-124

Create method (ActiveResource), 522-523
creating

mailer model, 532-533
migrations, 143-144
named routes, 81-83

route helper methods, 82
via with options mapping method, 86-87

sortable lists, 465-466
CRUD (Create Read Update Delete),

92, 168-172
creating, 163
deleting, 178
reading, 164-168
updating, 174-178

CSV fixtures, 555
current user, Acts as Authenticated, 499-501
current user id, storing in session hash, 470
current_page? method, 401
custom actions (REST), syntax, 112-113
custom expectation matchers, 601-603
custom parameters, receptors, 73-74
custom routes, writing, 72
custom SQL queries, 171-172
custom validation, 268-269
customizing

ActiveResource, 527-528
environments, 18
SCM System (Capistrano), 692
to_xml method output, 505-506
validation error behavior, 347-348

cycle method, 394

D

daemons, adding background processing to
applications, 719-722

database locking, 179
optimistic locking, 180-182
pessimistic locking, 182

database schema
Active Record framework, 140-142, 158

attributes, 160-162
configuring, 196-197
connections, 189-196

Index 835

CRUD, 163-178
database locking, 179-182
finders, 183-189
macro-style methods, 155-158
Migration API, 146-148
migrations, 142-145, 149-155
naming conventions, 159
query cache, 172-174

database.yml, storing, 693-695
DateHelper module, 355-361
Davis, Ryan, 624
DebugHelper module, 361
debug_view_helper plugin, 808
deep nesting, 108-109
default load paths (initializer.rb file), 6-7
default log formatter, 764-765
default routes (routes.rb file), 65-66

ante-default route, 69-70
resond to method, 70

generating, 67-68
id field, 66, 77-78
modifying, 68

delay() method (RJS), 458
Delete method (ActiveResource), 524-525
DELETE requests, handling with REST, 98
delimiters, 308, 310

blank lines, removing, 310
deploying

Capistrano, 687-688, 691
multiserver deployments, 702-703
via :copy, 692

production environment
Capistrano installation procedures, 661
Mongrel installation procedures, 659
Monit installation procedures, 661
MySQL installation procedures, 660
Nginx installation procedures, 659
predeployment concerns, 676-677
Ruby installation procedures, 658
RubyGems installation procedures, 658
Subversion installation procedures, 660

deployment machine (Capistrano), setting up,
689-690

destroy actions, 121-122
destroy method, 179

development mode, 14
automatic class reloading, 15
caching, 328
class loader, 15-16

development mode:fixtures, 557
disabling sessions for robots, 472
discover command, 631
dispatcher, 29-31
distance_of_time_in_words method, 360
div_for method, 391
dom_class method, 389
dom_id method, 389
draggable() method (RJS), 458
dragging and dropping, 463-464
DRb (Distributed Ruby)

adding background processing to applications,
710-712

session storage, 475
drop_receiving() method (RJS), 458
DSL (Domain-Specific Language), 155
dumping

routes, 128-129
schema, 11

dynamic fixture content, 556-557

E

edge rails, 5, 805-806
applications, freezing/unfreezing, 4

edit actions, 124-125
edit/update operations (REST), 99-100
email

file attachments
receiving, 543
sending, 539-540

receiving, 541-543
sending, 540
SMTP servers, configuring, 543
TMail methods, 542

empty routes, 71
enabling sessions, 473
end_form_tag method, 378
enforcing uniqueness of join models, 262
Enumerable object (prototype), 437-443

836 Index

environment.rb file
log-level, overriding, 10
overriding, 9-11
production mode, 2-4
TZ environment variable, 12-13

environments, customizing, 18
ERb (Embedded Ruby), 308

delimiters, 310
erb command, 308
errors, 266

conditional validation, 264
when to use, 265-266

custom validation, 268-269
Errors collection, manipulating, 267
finding, 254
skipping validation, 269-270
validation methods

allow_nil option, 263
message option, 263
on option, 264
RecordInvalid, 263
validates_acceptance_of, 254
validates_associated, 255-256
validates_confirmation_of, 256
validates_each, 256
validates_exclusion_of, 257
validates_existence_of, 257
validates_format_of, 258-259
validates_inclusion_of, 257
validates_length_of, 259-260
validates_numericality_of, 260
validates_presence_of, 261
validates_uniqueness_of, 261-262

error_messages_for method, 342-343
error_message_on method, 342-343
Event class (JavaScript), extensions, 428-430
examples of callback usage, 275-278
exception_logger plugin, 808
exception_notification plugin, 808
excerpt method, 395
executing, named routes in application console,

134-135
expectations, 599

custom expectation matchers, 601-603

expiring cached content, 333-334
fragments, 334
Sweeper class, 335-336

explicitly specifying RESTful controllers, 105
extending classes, 644
extensions to associations, 247-248
external filter classes, 46
externals, 635

F

faux accessors, 369-370
Fielding, Roy T., 89
Fields, Jay, 566
file attachments

receiving, 543
sending, 539-540

file_field_tag method, 378
filters, 43-44

around filters, 48
conditions, 50
external filter classes, 46
filter chain halting, 50
filter chain ordering, 47-48
filter chain skipping, 49
halting the filter chain, 46
inheritance, 44-46
inline filter method, 47

Find methods (ActiveResource), 519-521
finders

attribute-based, 170
conditions, 183-185
options, 187-189
parameters, 186
results, ordering, 186

finding errors, 254
FireBug, 421
fixtures, 554

accessing from tests, 556
CSV fixtures, 555
disadvantages of, 560-561
dynamic content, 556-557
generating from development data, 558-559
in development mode, 557
options, 559

Index 837

forcing plugin reinstallation, 633
form method, 344-345
form tags (HTML), generating, 378-381
formatted named routes, 117
FormHelper module, 362-370

faux accessors, 370
FormOptionsHelper module, 371-377
FormTagHelper module, 378-381
form_tag method, 379
Fowler, Martin, 139
fragment caching, 330

global fragments, 332-333
named fragments, 331-332
storage, 338-340

frameworks, skipping, 9
freezing/unfreezing applications, 4
Function class (JavaScript), extensions, 430-431
functional tests, 570-571, 576-580

assertions, 572-576
equality parameter, 580-581
methods, 571
RJS behavior, testing, 581-582
routing rules, testing, 582-584
selection methods, 582

functions (prototype), 422-424

G

gateway capability (Capistrano), 705
gems

color gem, 807
Rails versions, 2

generating
fixtures from development data, 558-559
HTML tags, 378-381

TagHelper module, 391-392
routes, 132-134

generating default route, 67-68
generators, 614
globs

key value pairs, globbing, 80-81
route globbing, 79-80

green bars, 553
Grosenbach, Geoffrey, 806

H

h method, 319
halting

callback execution, 274
filter chain, 46

Hash class (prototype), 443
hashes, syntax, 136
has_and_belongs_to_many method, 225-228

columns, adding to join tables, 232
custom SQL options, 229-231

has_finder plugin, 808
has_many association, 215

options, 216-224
proxy methods, 224-225

has_many_polymorphs plugin, 809
has_one relationship, 241-244

options, 244-246
HEAD element, yielding additional content,

315
headers (ActiveResource), setting, 526
Helmkamp, Bryan, 808
helper methods, 311

breadcrumbs, writing, 409-410
photo_for, writing, 408
stubbing, 623
tiles, writing, 410-416
title helper, writing, 407-408

helper modules
ActiveRecordHelper, 342-348
AssetTagHelper, 348-352
BenchmarkHelper, 353
CaptureHelper, 354
DateHelper, 355-361
DebugHelper, 361
FormHelper, 362-369

faux accessors, 370
FormOptionsHelper, 371-377
FormTagHelper, 378-381
JavaScriptHelper, 381-383
NumberHelper, 383, 385
PaginationHelper, 386-388
PrototypeHelper

link_to_remote method, 445-449
observe_field method, 451-453

838 Index

observe_form method, 453
periodically_call_remote method, 451
remote_form_for method, 449-451

RecordIdentificationHelper, 388-389
RecordTagHelper, 390-391
TagHelper, 391-392
TextHelper, 393-400
UrlHelper, 400-406
writing, 407

helper specs, 623
hide() method (RJS), 458
highlight method, 395
Hodel, Eric, 624
hook code, 641
HTML

adding content to HEAD, 348
form tags, generating, 378-381
input tags, generating, 378-381
messages, sending, 536-537
select helper methods, 371-373
select tags, creating for calendar data, 355-359
TagHelper module, 391-392
tags, generating, 391-392

HTTP requests, processing using REST, 98
HTTP status codes, 37

for redirection, 41-42
HTTPS, securing sessions, 473
Hyett, PJ, 807

I

image_path method, 350
image_tag method, 350
implicit multipart messages, 539
importing vendor libraries into Piston, 637
in-place editors, 467
index actions, 118-121
inflections, 157-158
Inflections class (ActiveSupport Library), 757-

759
Inflector class, 511
inheritance, 44-46

STI, 284-291
mapping to the database, 286-287

init scripts, configuring
Mongrel, 672-673
Monit, 673-675
Nginx, 670-672

init.rb file, 640
initializer.rb file, 6

default load paths, 6-7
injection attacks, preventing, 319
inline filter method, 47
inline rendering, 35
input method, 346
input tags (HTML), generating, 378-381
insert_html() method (RJS), 458
install command, 632
install.rb file, 645-647
installing

Capistrano, 661, 684
Mongrel, 659
Mongrel Cluster, 659
Monit, 661
MySQL, 660
Nginx, 659
Piston, 636
plugins, 629

Acts as Authenticated, 486-487
Routing Navigator, 136

RSpec, 613
Ruby, 658
RubyGems, 658
Selenium on Rails, 591
Subversion, 660

instance variables, 42-43, 315-319
assigning to view specs, 622

integration mode (RSpec on Rails), 619
integration tests, 550-551, 584-586

sessions, 586
invalid?() method, 267
isolation mode (RSpec on Rails), 619

J-K

JavaScript
Array class extensions, 426-428
Event class extensions, 428-430
Function class extensions, 430-431
JSON, 461-462

Index 839

Number class extensions, 432-433
RJS, 453-455

alert() method, 457
call() method, 457
delay() method, 458
draggable() method, 458
drop_receiving() method, 458
hide() method, 458
insert_html() method, 458
literal() method, 459
redirect_to() method, 459
remove() method, 459
replace() method, 460
replace_html() method, 460
select() method, 460
show() method, 460
sortable() method, 460
templates, 455-456
toggle() method, 461
visual_effect() method, 461

String class extensions, 433-436
JavaScriptHelper module, 381-383
javascript_include_tag method, 351
javascript_path method, 352
join models, enforcing uniqueness, 262
JSON (JavaScript Object Notation),

420, 461-462, 760
class methods, 761-762
constants, 760
rendering, 36

Kernel class
public instance methods, 762-764

key-value pairs, globbing, 80-81
keywords, yield, 313
Koziarski, Michael, 158

L

lambdas, 415
layouts, application.rhtml layout template,

312-313
legacy naming schemes, 159
link_to method, 401-402
link_to_remote method, 445-449

list command, 629-630
listing available plugins, 629-630
literal() method (RJS), 459
load paths, 15

adding, 10
class loader, 15-16

locators (Selenium), 590
locking, 179

optimistic locking, 180-182
pessimistic locking, 182

locking down plugin versions, 636
locking Piston revisions, 639
log files, 20-22

analyzing, 22-23
log level, overriding, 10
logging, 18

log files, 20-22
analyzing, 22-23

severity levels, 19
Syslog, 24

logging partials, 327
login from cookie, Acts as Authenticated,

498-499

M

macro-style methods, 43, 155
convention over configuration, 156
pluralization, 157-158
relationship declarations, 155-156

mailer methods, 533
email

receiving, 541-543
sending, 540

file attachments, sending, 539-540
HTML messages, sending, 536-537
multipart messages, sending, 537-539
options, 534-536

mailer models, 531
creating, 532-533

mail_to method, 404-405
manipulating Errors collection, 267
manual route recognition and generation,

132-134

840 Index

many-to-many relationships, 225
has_and_belongs_to_many method, 225-228
columns, adding to join tables, 232
custom SQL options, 229-231

through association, 233-238
options, 238-241

markdown method, 396
Marklund, Peter, 798
memcache session storage, 475-476
messages

error messages, 266
validating, 267

metaprogramming, 155
methods

assertion methods, 562-565
assert_block, 563

attributes, 168
auto_discovery_link_tag method, 348
auto_link, 393
benchmark, 353
button_to, 400
check_box_tag, 378
concat, 393
content_tag_for, 390
Create, 522-523
current_page?, 401
cycle, 394
delete, 524-525
destroy, 179
distance_of_time_in_words, 360
div_for, 391
dom_class, 389
dom_id, 389
end_form_tag, 378
error_messages_for, 342-343
error_message_on, 342-343
excerpt, 395
file_field_tag, 378
Find, 519-521
for functional tests, 571
form, 344-345
form_tag, 379
h, 319
has_and_belongs_to_many method, 225-228
helper methods, 311

writing, 407-416

highlight, 395
image_path, 350
image_tag, 350
inline filter method, 47
input, 346
javascript_include_tag, 351
javascript_path, 352
lambdas, 415
link_to, 401-402
macro-style, 43, 155

convention over configuration, 156
pluralization, 157-158
relationship declarations, 155-156

mailer methods, 533
email, receiving, 541-543
email, sending, 540
file attachments, sending, 539-540
HTML messages, sending, 536-537
multipart messages, sending, 537-539
options, 534-536

mail_to, 404-405
markdown, 396
mock_model, 617
partial_path, 389
pluralize, 396
public instance methods, 726
reload, 169
render

:content type option, 37
:layout option, 37
:status option, 37-39

reset_cycle, 397
respond_to, 69-70

resource representations, 116
route helper methods, 82
sanitize, 397
select helper methods, 371-373
send data(), 51-52
send file(), 52-55
setup methods, 553
simple_format, 398
strip_links, 398
strip_tags, 398
stylesheet_link_tag, 352
textilize, 399

Index 841

textilize_without_paragraph, 399
TMail, 542
to_xml, 503-504

include parameter, 507-508
methods parameter, 508-509
output, customizing, 505-506
overriding, 510
procs parameter, 509-510

truncate, 399
update, 524
url_for, 76-77, 405-406
validation errors

skipping validations, 269-270
validation methods

:allow_nil option, 263
:message option, 263
:on option, 264
conditional validation, 264-266
custom validation, 268-269
RecordInvalid, 263
validates_acceptance_of, 254
validates_associated, 255-256
validates_confirmation_of, 256
validates_each, 256
validates_exclusion_of, 257
validates_existence_of, 257
validates_format_of, 258-259
validates_inclusion_of, 257
validates_length_of, 259-260
validates_numericality_of, 260
validates_presence_of, 261
validates_uniqueness_of, 261-262

word_wrap, 400
methods:invalid?(), 267
methods:on(), 267
Migration API, 146-148
migrations, 142

caveats, 145
columns, creating, 149-155
creating, 143-144
naming, 144

MIT-LICENSE files, 644
Mocha library, 549

stubbing, 549-550
mocking

mock objects, 607-608

partial mocking, 609-610
mocks folder, adding classes, 548-549
mock_model method, 617
model classes, associations, 199

belongs_to, 207-215
class hierarchy, 199-201
extensions, 247-248
has_many, 215-225
many_to_many relationships, 225-232
objects, adding to collection, 203-207
one_to_many relationships, 201-203
one_to_one relationships, 241-246
model specs, 614-616

models, unit testing, 568-569
modifying ActiveRecord classes at runtime,

301-304
modifying default route, 68
Module class, 765-769
modules

AuthenticatedTestHelper, 501-502
auto-loading code, 8

Mongrel, 652
init script, configuring, 672-673
installing, 659

Mongrel Cluster
configuring, 662
installing, 659

Monit
configuring, 667, 669
init script, configuring, 673-675
installing, 661

multipart messages
implicit multipart messages, 539
sending, 537-539

multiserver deployments (Capistrano), 702-703
MySQL, installing, 660

N

named routes, 81, 94-95
arguments, 84-85
creating, 81-87

route helper methods, 82
executing in application console, 134-135

namespaced controllers, 107

842 Index

naming conventions
for database schema, 159
for observers, 283
for migrations, 144
for routes, 83-84

nested resources, 101-103, 106-108
:name_prefix option, 103-105
:path_prefix option, 103

deep nesting, 108-109
new actions, 123-124
new/create operations (REST), 99-100
Nginx

configuring, 663-667
init script, configuring, 670-672
installing, 659

Nilclass, 772-773
null objects, 608
Number class (JavaScript), extensions, 432-433
NumberHelper module, 383-385
Numeric class (ActiveSupport library), 773-776

O

Object class (ActiveSupport library), 776-779
Object class (Prototype), 425-426
objects

adding to collection, 203-207
errors, finding, 254
storing in session hash, 470

observers, 11, 282
naming conventions, 283
registration, 283

observe_field method, 451-453
observe_form method, 453
Olson, Rick, 136, 486
on() method, 267
one-to-many relationships, 201-203
one-to-one relationships, 241

has_one relationship, 241-244
options, 244-246

optimistic locking, 180-182
options

for belongs_to associations, 209-215
for has_many associations, 216-224

for has_one relationships, 244-246
for mailer methods, 534-536
for through associations, 238-241

ORM frameworks, ActiveRecord
abstract base model classes, 291-292
before/after callbacks, 274
callbacks, 271, 275-282

halting execution, 274
registration, 272-273

classes, modifying at runtime, 301-304
common behavior, reusing, 296-301
observers, 282-283
polymorphic has_many relationships, 292-296
STI, 284-291

overriding
environment.rb file, 9-11

TZ code, 12-13
to_xml method, 510

P

page caching, 328
PaginationHelper module, 386-388
parameters, 60-61

receptors, 73-74
wildcard parameters for routes, 61-62

parsing XML, 515-518
XmlSimple library, 516-517

partial mocking, 609-610
partial stubbing, 609-610
partial templates

inline rendering, 35
rendering, 35

partial test cases, 592-593
partials, 320-322

collections, rendering, 325-327
logging, 327
passing variables to, 324-325
reusing, 322
shared, 323-324

partial_path method, 389
passing variables to partials, 324-325
patterns (Selenium), 590
PeepCode screencast, 810

Index 843

performance of applications, analyzing, 22
periodically_call_remote method, 451
pessimistic locking, 182
photo_for method, writing, 408
Piston

installing, 636
properties, 639
revisions, locking and unlocking, 639
vendor libraries,

converting, 638
importing, 637
updating, 638

piston lock command, 639
plugins, 628

Action Cache plugin, 337-338
active_record_defaults, 807
Acts as Authenticated

AccountController class, 496-498
authenticate method, 494
before save callback, 493
current user, 499-501
installing, 486-487
login from cookie, 498-499
remember token, 495
User model, 487-492
validation rules, 492

checking out via Subversion, 634
debug_view_helper, 808
exception_logger, 808
exception_notification, 808
has_finder, 808
has_many_polymorphs, 809
installing, 629-632
listing, 629-630
locking down, 636
Piston, properties, 639
query_trace, 809
Rake tasks, 647

Rakefiles, 648-649
reinstalling, 633
removing, 633
Routing Navigator, 137

installing, 136
RSpec on Rails, 613

generators, 614
model specs, 614-616

session timeout, 478-479
sources, adding, 630
sources, removing, 631
Subversion externals, 635
testing, 649
updating, 634
will_paginate, 386
writing, 640, 644-647

Rake tasks, 647
Rakefiles, 649

plural REST routes, 98-99
pluralization, 157-158
pluralize method, 396
polymorphic associations, 293-296
polymorphic has_many relationships, 292-296
post-backs, 112
predicates, 599-601
preinitializing Capistrano, 698-700
prerequisites for production environment,

652-654
Proc class (ActiveSupport library), 781-782
processing order of routes, 75-76
production environment, 652

caching, 676
components of, 655

application tier, 656
database tier, 656
monitoring tools, 657
web tier, 656

performance issues, 676-677
predeployment concerns, 676-677
prerequisites, 652-654
redundancy, 676
scalability issues, 676-677

production mode, 2-4, 17
Prototype, 420-421

Ajax object, 436
Class object, 424
Enumerable object, 437-443
Firebug, 421
Hash class, 443
Object class, 425-426
Prototype object, 445
Responders object, 437
top-level functions, 422-424

844 Index

Prototype object, 445
PrototypeHelper module

observe_field method, 451-453
observe_form method, 453

link_to_remote method, 445-449
periodically_call_remote method, 451
remote_form_for method, 449-451

proxy collection objects, 202
proxy methods for has_many associations,

224-225
PStore files, 474
public instance methods, 726
PUT requests, handling with REST, 98

Q-R

query cache, 172-174
query_trace plugin, 809

Railcasts, 810
Rake tasks, 647

freezing/unfreezing, 4
Rakefiles, 648-649

rake tests, 587
for SVN, 811-812

Rakefiles, 648-649
Range class (ActiveSupport library), 782
RCov, 624
reading cookies, 482
README files, 644
receiving email, 541-543

file attachments, 543
TMail methods, 542

receptors, 61-62, 73-74
recipes (Capistrano), managing Mongrel clus-

ters, 701-702
RecordIdentificationHelper module, 388-389
RecordInvalid method, 263
RecordTagHelper module, 390-391
red bars, 553
redirect to command, 41
redirecting

HTTP status codes, 41-42
requests, 39-42

redirect_to() method (RJS), 459

Redpath, Luke, 478
registration of observers, 283
regular expressions in routes, 76
reinstalling plugins, 633
reload method, 169
remember token, acts as authenticated, 495
remote user accounts (Capistrano), 691
remote_form_for method, 449-451
remove command, 633
remove() method (RJS), 459
removing

blank lines from output, 310
plugin sources, 631
plugins, 633

render command, 33
render method. See also rendering

:content type option, 37
:layout option, 37
:status option, 37-39

rendering
collections, 325-327
templates, 33-34

inline rendering, 35
partial templates, 35
structured data, 36
text rendering, 35

view templates, 31
replace() method (RJS), 460
replace_html() method (RJS), 460
representations of resources, 115
request handling, 28
requests

dispatcher, 29-31
redirecting, 39-42

requirements for using Capistrano, 682-684
reset_cycle method, 397
resources (REST), 93

controller-only, 113-115
nested, 101-108

deep nesting, 108-109
name_prefix option, 103-105
path_prefix option, 103

representations of, 115
respond to method, 69-70
Responders object (Prototype), 437

Index 845

respond_to method, resource representations,
116

REST, 91
controller actions, 96-98
controllers

explicitly specifying, 105
post-backs, 112

create action, 123-124
custom actions, syntax, 112-113
destroy action, 121-122
edit action, 124-125
edit/update operations, 99-100
formatted named routes, 117
HTTP requests, 96-98
index action, 118-121
named routes, 95
new action, 123-124
new/create operations, 99-100
plural routes, 98-99
resources, 93

controller-only, 113-115
nested, 101-109
representations of, 115

route customizations
extra collection routes, 111
extra member routes, 110-111

show action, 121
singular resource routes, 100-101
singular routes, 98-99
syntactic vinegar, 113
update action, 124-125

REST (Representational State Transfer), 57, 89
reusing

common behavior, 296-301
code, 628
partials, 322

REXML, 515
RJS (Ruby JavaScript), 453-456

alert() method, 457
call() method, 457
delay() method, 458
draggable() method, 458
drop_receiving() method, 458
hide() method, 458
insert_html() method, 458

literal() method, 459
redirect_to() method, 459
remove() method, 459
replace() method, 460
replace_html() method, 460
select() method, 460
show() method, 460
sortable() method, 460
templates, 455-456
toggle() method, 461
visual_effect() method, 461

RJS behavior, testing, 581-582
robots, disabling sessions, 472
route customizations (REST)

extra collection routes, 111
extra member routes, 110-111

route globbing, 79-80
globbing key-value pairs, 80-81

route objects, 129-131
routes

bound parameters, 59-61
custom routes, writing, 72
default routes, :id value, 77-78
dumping, 128-129
empty routes, 71
literal URLs, 79
manual recognition and generation in applica-

tion console, 132-134
named routes, 81

arguments, 84-85
creating, 81-83
creating via with options mapping method,

86-87
executing in application console, 134-135

naming, 83-84
processing order, 75-76
regular expressions, 76
routes.rb file, 63-64

ante-default route, 69-70
default route, 65-68

static strings, 62-63, 72-73
syntax, 59
testing, 135
url for method, 76-77
wildcard parameters, 61-62

846 Index

routes.rb file, 63-64
ante-default route, 69-70

respond to method, 70
custom routes, writing, 72
default route, 65-66

:id field, 66
generating, 67-68
modifying, 68

empty routes, 71
routing, 59

receptors, 73-74
Routing Navigator plugin, 137

installing, 136
routing rules, testing, 582-584
RSelenese, 592

partial test cases, 592-593
RSpec, 546

arbitrary predicates, 599-601
Autotest project, 624
behaviors, 603-604

shared behaviors, 604-607
controller specs, 617-619
expectations, custom expectation matchers,

601-603
installing, 613
mock objects, 607-608
null objects, 608
partial mocking, 609-610
partial stubbing, 609-610
RCov, 624
running specs, 610
scaffolding, 623
specdoc format, 611-612
specs, helper specs, 623
stub objects, 608
view specs, 621

helper methods, stubbing, 623
instance variables, assigning, 622

RSpec on Rails, 613
errors, specifying, 620
generators, 614
model specs, 614-616
integration mode, 619
isolation mode, 619
routes, specifying, 620

RSpec scripts, 597
expectations, 599

Ruby, installing, 658

RubyGems, 5
installing, 658

running edge rails, 4
running specs, 610

S

sanitize method, 397
scaffolding, 623
schema dumping, 11
SCM System (Capistrano), customizing, 692
scoping Capistrano variables, 696-698
screencasts, 810
script/plugin command, 629
script/runner, adding background processing to

applications, 708-710
Scriptaculous

dragging and dropping, 463-464
in-place editors, 467
sortable lists, creating, 465-466

scripts
RSpec, 597

expectation matchers, 599
spawner script, 688
SpiderTester, 809

securing sessions, 480
select helper methods, 371-373
select tags (HTML), creating for calendar data,

355-359
select() method (RJS), 460
Selenium, 589

actions, 589
assertions, 590
locators, 590
patterns, 590
RSelenese, partial test cases, 592-593

Selenium on Rails, 591
self-referential relationships, 226
send data() method, 51-52
send file() method, 52-55
sending

email, 540
file attachments, 539-540
HTML messages, 536-537
multipart messages, 537-539

serialized attributes, 162

Index 847

session hash
current user id, storing, 470
objects, storing, 470

session id, 469
sessions, 469, 586

cleaning up, 481
enabling, 473
for robots, disabling, 472
options, 471
securing, 480
securing with HTTPS, 473
storing

DRb session storage, 475
in ActiveRecord, 473-474
in CookieStore, 476-478
in memcache, 475-476
in PStore files, 474

timing out, 478-479
tracking, 479-480

setting up ActionMailer framework, 531
setup methods, 553
shared behaviors, 604-607
shared partials, 323-324
shared secrets, 495
Shaw, Zed, 652
show actions, 121
show() method (RJS), 460
simple_format method, 398
single responsibility principle, 282
singular resource routes, 100-101
singular REST routes, 98-99
skipping

error validation, 269-270
frameworks, 9

SMTP server, configuring, 543
sortable lists, creating, 465-466
sortable() method (RJS), 460
sources command, 630
spec method, specdoc format, 611-612
specdoc format (spec method), 611-612
specs, 597

controller specs, 617-619
expectations, 599
helper specs, 623
model specs, 614-616
running specs, 610

view specs, 621
helper methods, stubbing, 623
instance variables, assigning, 622

SpiderTester script, 809
SQL

custom options, 229-231
custom queries, 171-172

static strings, 62-63, 72-73
Stephenson, Sam, 420
STI (single-table inheritance), 284-291

inheritance, mapping to the database, 286-287
storing

database.yml, 693-695
sessions

ActiveRecord, 473-474
CookieStore, 476-478
current user id, 470
DRb session storage, 475
memcache, 475-476
objects, 470
PStore files, 474

streaming, 51
send data() method, 51-52
send file() method, 52-55

String class (ActiveSupport library), 783-790
String class (JavaScript), extensions, 433-436
strings, typecasting, 518
strip_links method, 398
strip_tags method, 398
structured date, rendering, 36
stub objects, 608

partial stubbing, 609-610
stubbing, 549-550
stylesheet_link_tag method, 352
stylesheet_path method, 352
Subversion, 810-811

externals, 635
installing, 660
plugins, updating, 634
rake tests, 811-812
website, 633

suffixes for templates, 312
Susser, Josh, 112, 233, 369
SVN (Subversion). See Subversion
Sweeper class, 335-336
Symbol class (ActiveSupport library), 790

848 Index

syntactic sugar, 113
syntactic vinegar, 113
syntax

for custom REST actions, 112-113
for hashes in arguments, 136

Syslog, 24

T

TagHelper module, 391-392
templates

application.rhtml layout template, 312-313
delimiters, 308-310
partials, 320-322

collections, rendering, 325-327
logging, 327
passing variables to, 324-325
reusing, 322
shared partials, 323-324

rendering, 33-35
RJS, 455-456
structured data, rendering, 36
suffixes, 312
text, rendering, 35
variables, 315

instance variables, 315-319
test mode, 17
test suites, 553
testing, 553

acceptance tests, 588-589
assertions, 562-566

assert, 563
one-assertion guideline, 566-567

errors, 553
failures, 553
fixtures, 554-556

CSV fixtures, 555
disadvantages of, 560-561
dynamic content, 556-557
generating from development data, 558-559
in development mode, 557
options, 559

functional tests, 570-571, 576-580
assertions, 572-576
equality parameter, 580-581

methods, 571
routing rules, testing, 582-584
selection methods, 582
testing RJS behavior, 581-582

integration tests, 550-551, 584-586
plugins, 649
Selenium, 589

actions, 589
assertions, 590
locators, 590
patterns, 590

routes, 135
unit tests, 568-569
with Rake, 587
XUnit framework, 552

text, rendering, 35
TextHelper module, 393-400
textilize method, 399
textilize_without_paragraph method, 399
tiles help method, writing, 410-416
time and date information, creating HTML

select tags, 355-359
Time class (ActiveSupport library), 792-798
time zones, 798-802
timing out sessions, 478-479
TMail, 540

file attachments, receiving, 543
methods, 542

toggle() method (RJS), 461
to_xml method, 503-504

Array class, 510-513
:include parameter, 507-508
:methods parameter, 508-509
:procs parameter, 509-510
output, customizing, 505-506
overriding, 510

tracking sessions, 479-480
transactional fixtures, 559
transactions (Capistrano), 703-705
truncate method, 399
typecasting strings, 518
TZ (time zone) code, overriding in environ-

ment.rb file, 12-13

Index 849

U

unfreezing edge rails applications, 4
uninstall.rb file, 645-647
uniqueness of join models, enforcing, 262
unit tests, 568-569
unlocking Piston revisions, 639
unsaved associations, 246
unsource command, 631
update actions, 124-125
Update method (ActiveResource), 524
updating plugins, 634
url for method, 76-77
UrlHelper module, 400-406
URLs, generating, 133-134
url_for method, 405-406
User model, Acts as Authenticated, 487-492
user-submitted content, preventing injection

attacks, 319

V

validates_acceptance_of method, 254
validates_associated method, 255-256
validates_confirmation_of method, 256
validates_each method, 256
validates_exclusion_of method, 257
validates_existence-of method, 257
validates_format_of method, 258-259
validates_inclusion_of method, 257
validates_length_of method, 259-260
validates_numericality_of method, 260
validates_presence_of method, 261
validates_uniqueness_of method, 261-262
validation errors

reporting, 342-343
skipping validation, 269-270

validation methods
allow_nil option, 263
conditional validation, 264

when to use, 265-266
custom validation, 268-269

message option, 263
on option, 264

validation rules, Acts as Authenticated, 492
variables, 315

instance variables, 315-319
passing to partials, 324-325

variables (Capistrano), 696-698
vendor libraries

converting to Piston, 638
importing into Piston, 637

view specs, 621
helper methods, stubbing, 623
instance variables, assigning, 622

view templates, rendering, 31
viewing generated routes, 132
views

functional testing, 576-580
equality parameter, 580-581
routing rules, testing, 582-584
selection methods, 582

instance variables, 42-43
visual_effect() method (RJS), 461

W

Wanstrath, Chris, 807
websites, Subversion project, 633
whiny nil, 772
wildcard parameters for routes, 61-62
Williams, Bruce, 387
will_paginate plugin, 386
word_wrap method, 400
writing

cookies, 482
custom routes, 72
helper methods, 407-408

breadcrumbs, 409-410
photo_for, 408
tiles, 410-416

helper modules, 407
writing plugins, 640, 644-647

Rake tasks, 647
Rakefiles, 649

850 Index

X-Y-Z

XML
Builder API, 513-515
parsing, 516-518
parsing into Ruby hashes, 515-517
rendering, 36
to_xml method, 503-504

include parameter, 507-508
methods parameter, 508-509
output, customizing, 505-506
procs parameter, 509-510

XmlSimple library, 516-517
XUnit framework, 552

YAML (Yet Another Markup Language), 554
yield keyword, 313
yielding additional HEAD element content, 315

Index 851

