
this print for content only—size & color not accurate spine = 0.62" 264 page count

Books for professionals By professionals®

Practical Ruby for System Administration
Dear Reader,

Ruby’s growth has been astronomical. While it is forgivably easy to be put off
by the hype surrounding the language, I wrote this book because Ruby makes a
real and lasting difference to my work as a system administrator. Whether I need
to rotate a log, swap out some commas, automate some SSL workflow, issue
batched commands over the network, analyze congestion data, implement
a domain-specific language, or build an entire administrative portal, Ruby is
always there supporting my efforts.

This book’s approach is to cover topics that I wish I had understood better
when I was first coming to grips with Ruby as an administrator. This book places
an equal emphasis on step-by-step examples and conceptual discussions. In
reading this book, you’ll explore subjects as diverse as safe file handling, general-
ized object storage, socket manipulation, directory service interaction, database
wrangling, data presentation techniques, and the power of metaprogramming.
You will also pick up practical tips on documentation, testing, task-oriented
scripting, performance analysis, and coding style.

Whether you come from a shell script or a Perl background, a data center or
a classroom, in this book I aspire to convince you of the power and efficacy of
this remarkable programming language in system administration and to give
you a head start on your Ruby journey.

André Ben Hamou
MSci (Hons) ARCS MRes DIC

US $44.99

Shelve in
Programming Languages

User level:
Beginner–Intermediate

Ben Ham
ou

Practical Ruby for System
 Adm

inistration

The eXperT’s Voice® in open source

Practical
Ruby for System
Administration

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

André Ben Hamou

Companion
eBook

Available

THE APRESS ROADMAP

Practical Ruby for
System Administration

Beginning Google Maps
Applications with Rails

And Ajax
Beginning Ruby

Beginning Ruby
on Rails E-CommerceBeginning Rails Practical Ruby Gems

www.apress.com

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-821-4
ISBN-10: 1-59059-821-0

9 781590 598214

54499

Apply the power and elegance of Ruby
to the job of system administration

Practical Ruby for
System Administration

■ ■ ■

André Ben Hamou

Hamou_821-0 FRONT.fm Page i Thursday, June 7, 2007 4:36 AM

Practical Ruby for System Administration

Copyright © 2007 by André Ben Hamou

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-821-4

ISBN-10 (pbk): 1-59059-821-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick
Technical Reviewer: Dee Zsombor
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,

 Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager: Denise Santoro Lincoln
Copy Edit Manager: Nicole Flores
Copy Editor: Nicole Flores
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Susan Glinert
Proofreader: April Eddy
Indexer: Broccoli Information Management
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download
section.

Hamou_821-0 FRONT.fm Page ii Thursday, June 7, 2007 4:36 AM

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com

For François.

Hamou_821-0 FRONT.fm Page iii Thursday, June 7, 2007 4:36 AM

Hamou_821-0 FRONT.fm Page iv Thursday, June 7, 2007 4:36 AM

v

Contents at a Glance

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 What Ruby Can Do for You . 1

■CHAPTER 2 Common Tasks, Quick Solutions . 15

■CHAPTER 3 A Practical Look at Performance . 23

■CHAPTER 4 The Power of Metaprogramming . 43

■CHAPTER 5 Building Files the Smart Way . 57

■CHAPTER 6 Object Storage and Retrieval . 73

■CHAPTER 7 Working with Enterprise Data . 99

■CHAPTER 8 Networking for Fun and Profit . 133

■CHAPTER 9 Network Monitoring . 155

■CHAPTER 10 Extending Ruby: A Fistful of Gems . 177

■CHAPTER 11 Testing and Documentation . 193

■CHAPTER 12 The Future of Ruby . 211

■APPENDIX Ruby Execution . 219

■INDEX . 225

Hamou_821-0 FRONT.fm Page v Thursday, June 7, 2007 4:36 AM

max
Note
Marked set by max

Hamou_821-0 FRONT.fm Page vi Thursday, June 7, 2007 4:36 AM

vii

Contents

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 What Ruby Can Do for You . 1

Hello World . 1

Ruby in a Nutcracker . 3

Objects at Rest: The Theory of Object Orientation 3

Objects in Motion: The Ruby View of OO . 5

By Invitation Only: Accessors Made Easy. 8

Blocks and the Magic of yield . 9

It Takes All Sorts: A Sensible Approach to Types 12

Ointment for the Administrator . 14

■CHAPTER 2 Common Tasks, Quick Solutions . 15

One-liners . 15

Grepping with Ruby . 15

Working with Comments . 16

Using Line Numbers . 17

Playing with Fields . 17

Smart Record Handling . 18

Creating a Customized Directory Listing . 18

Watching Commands Over Time. 19

Larger Examples . 19

Rolling Logs: A Scheduled One-liner . 19

A Ruby Springboard . 20

Quick to Write Meets Quick to Run . 21

Hamou_821-0 FRONT.fm Page vii Thursday, June 7, 2007 4:36 AM

viii ■CO N T E N T S

■CHAPTER 3 A Practical Look at Performance . 23

Scripts Can Be Faster . 23

The Numbers Game . 24

A Script vs. Standard Binaries. 25

Analyzing Performance . 27

The UNIX time Command . 27

The Benchmark Library . 27

The Profiler Library . 30

Optimization . 32

Algorithmic Optimization . 32

Linguistic Optimization . 33

Side Effect Reduction . 36

Dropping the C Bomb . 39

Ramming Speed . 41

■CHAPTER 4 The Power of Metaprogramming . 43

Flexible Method Signatures . 44

Default Values . 44

Parameter Hashes . 46

Missing Method Dynamic Dispatch . 47

Macros . 48

Module Inclusion . 48

Object Extension . 50

Domain-Specific Languages (DSLs) . 52

Plug-in API: Macros for Adding Macros . 54

Heavy Meta . 55

■CHAPTER 5 Building Files the Smart Way . 57

Safety First . 57

File Locking . 59

Safe File Operations . 63

The Pen Is Mightier Than the Words . 66

Mob the Builder: Program-Driven File Creation 66

ThundERbolts and Lightning: Template-Driven File Creation 70

When Flat Files Fall Flat . 71

Hamou_821-0 FRONT.fm Page viii Thursday, June 7, 2007 4:36 AM

■C ON TE N TS ix

■CHAPTER 6 Object Storage and Retrieval . 73

Local Disk Storage . 73

Inspection Time. 74

Marshaling Your Thoughts . 76

YAML Ain’t Markup Language . 78

Benchmarking the Alternatives . 80

Network-Aware Storage . 81

General Design Principals . 81

memcached: A Great Big Hash in the Sky . 83

Databases . 87

Object-Relational Mapping with ActiveRecord 89

Playing with the Big Boys . 97

■CHAPTER 7 Working with Enterprise Data . 99

Parsing Data . 99

Separation Is Such Sweet Sorrow: Delimited Values 100

XML . 104

Network Services . 116

Lightweight Directory Access Protocol . 116

XML Remote Procedure Call . 122

Simple Object Access Protocol . 125

Representational State Transfer . 128

Back to Basics . 132

■CHAPTER 8 Networking for Fun and Profit . 133

Basic Network I/O . 133

Socket to Me . 133

Socket Errors and Exceptions . 135

Clockwatching: Timing Out on Purpose . 135

Socket-Based Monitoring . 138

Higher-Level Network Services . 139

An Embarrassment of Protocols . 139

Building a Web Robot . 140

Throwing Together a Server . 144

Control and Monitoring . 148

Taking Command with SSH . 148

Packet Monitoring . 150

End of Line . 153

Hamou_821-0 FRONT.fm Page ix Thursday, June 7, 2007 4:36 AM

x ■CO N T E N T S

■CHAPTER 9 Network Monitoring . 155

Gathering Data . 155

Simple Network Management Protocol . 155

Secure Shell . 160

Analyzing Data . 163

Marshalling the Data . 163

Parsing Events. 164

Filtering and Assigning Events . 165

Putting It All Together. 166

Aggregate Analysis . 167

Presenting Data . 168

Charts . 169

Graphs . 174

All That Glitters . 176

■CHAPTER 10 Extending Ruby: A Fistful of Gems . 177

Managing and Using Gems . 177

Installing RubyGems . 178

The gem Command . 179

Using Gems in Your Code . 183

Accessing Documentation via gem_server 185

Creating Gems . 185

What Is a Gem, Anyway? . 185

Gathering the Files . 187

Writing the Gemspec . 188

Building the Gem . 190

Publishing the Gem . 191

A Mouthful of Jewels . 191

■CHAPTER 11 Testing and Documentation . 193

Rake . 193

The Basic Task . 193

File Tasks. 194

Ensuring That Directories Exist . 195

Generalizing with Rules . 195

Synthesizing Tasks . 196

Documenting Tasks . 198

Hamou_821-0 FRONT.fm Page x Thursday, June 7, 2007 4:36 AM

■C ON TE N TS xi

Testing . 198

Ruby’s Test Library . 199

Performing Tests. 200

Fixtures . 201

Test Suites . 202

Testing from Rake . 202

Documentation . 203

Automatic Documentation . 203

Basic Comments . 205

Headings, Separators, and Links . 207

Lists . 207

Processing Commands . 208

Documenting from Rake . 208

Mission Accomplished . 209

■CHAPTER 12 The Future of Ruby . 211

Execution Environments . 211

YARV . 211

JRuby . 212

Language Changes . 212

Arrays and Hashes . 213

Strings . 213

I/O Operations . 213

Block Argument Locality . 214

Multisplatting. 214

Object Tapping . 215

Read-Write Attributes . 215

Enumerable Upgrades . 215

begin . 216

■APPENDIX Ruby Execution . 219

■INDEX . 225

Hamou_821-0 FRONT.fm Page xi Thursday, June 7, 2007 4:36 AM

Hamou_821-0 FRONT.fm Page xii Thursday, June 7, 2007 4:36 AM

c087e0edc45aa1b66cf3625819640b92

xiii

About the Author

■ANDRÉ BEN HAMOU went to Imperial College in 1999 ostensibly to study
physics but tried not to let that get in the way of his inner geek, joining the
Department of Computing’s system support group to patch up its ailing
Mac network. Over the course of the next five years he learned some stuff,
including how to program in a few languages, how to analyze complexity,
why magnets have two ends (red and blue), why loose coupling is important
in system design, which cocktail bar is easily the best in London, on how

many levels Macs are just brilliant, why cucumbers and tumble dryers do not mix, how to use a
tape loader without losing an appendage, how to deploy databases without crying, how to model
the quantum mechanics of an infinite potential well, and why the lid of a blender should always
be secured before use.

Of all these revelations, however, one that particularly sticks out was coming to appreciate
the mind-altering brilliance of the Ruby programming language. He has been addicted ever
since, bringing it with him to his current job as chief geek for Freedom 255, a major UK ISP.

André enjoys walking, talking, and taking abusive liberties with the English language. He lives
with his imaginary cat on the south coast of England. Send muffin recipes to andre@bluetheta.com.

Hamou_821-0 FRONT.fm Page xiii Thursday, June 7, 2007 4:36 AM

mailto:andre@bluetheta.com

Hamou_821-0 FRONT.fm Page xiv Thursday, June 7, 2007 4:36 AM

xv

About the Technical Reviewer

■DEE ZSOMBOR has been a grateful Ruby programmer since 2004, when
he escaped the painful entrapment of curly-brace programming
languages. As a longtime OSS advocate, he saw the opportunity to put
his convictions to the ultimate test by cofounding PrimalGrasp LLC
(http://primalgrasp.com), a spicy software shop. PrimalGrasp proved
to be a fabulous experience, following the spirit of “small is beautiful.”
Nowadays Dee develops with Ruby, JavaScript, and Erlang, and makes
occasional contributions to the Rails framework. He enjoys mountain
biking, reading, experimenting with graphics and, when time permits,
swimming.

Hamou_821-0 FRONT.fm Page xv Thursday, June 7, 2007 4:36 AM

http://primalgrasp.com

Hamou_821-0 FRONT.fm Page xvi Thursday, June 7, 2007 4:36 AM

xvii

Acknowledgments

My experiences at Imperial College were life-changing. I’d like to thank Duncan White, on
whose shoulder many an aspiring admin has perched, and who also has a supply of the most
bizarre tomatoes ever to emerge from an English garden. For introducing me to Ruby in the first
place, I consider myself indebted to Mike Wyer, one of the smartest sysadmins I ever met and
certainly one of the most masterful administrators of clue to users. I also have to thank Tim
Southerwood, not only for demonstrating that administrators can still be mirthful and well-
balanced individuals even after years of service (hope for us all), but also for revealing that
noodles come in flavors that could blow the side off a nuclear submarine.

Other university buddies to thank include Adam Langley for the maths, the geek-a-thons,
the sparkling intellect, and the chocolate cake; Mark Thomas, whose decency, friendship, and
acumen could always be relied upon; Nick Maynard, for being good enough to laugh at my
jokes (particularly the bad ones) and for working on so many iterations of the host status moni-
toring project without tearing out my jugular; Phil Willoughby, who can spot a flaw in a design
at a thousand paces and whose cynical sense of humor always made me chuckle; Paul Jolly, for
the great debates and for providing a working environment with so many inside jokes that it
was impossible to be stressed (lart, slap, clue, sneeze, stretch, lart, wibble); Ian McCubbin, who
was the only person I knew whose body could simulate the effect of amphetamines, without
pause, for weeks at a time; and James Moody, for the truly delightful lack of sugarcoating in
his approach and for shielding the rest of us from unspeakable torment by being a Windows
administrator of considerable skill (a rare beast indeed).

On a personal level, I’d like to thank Aidan Bowen, who is one of the finest blends of boss
and good friend I’ve ever known (and who was kind enough to allow me to use examples from
my daily work in this book). I’m also thankful that I have the pleasure of knowing Alexi Tingey,
Andrew Smith, and Michael Allan, because friends this good are one of nature’s most enduring
miracles. I must thank mum as well for being so many things that I both admire and love at the
same time.

It is also important to thank the wonderful people at Apress whose skill, experience, and
patience have made this book possible. You guys rock.

Finally, I want to express my gratitude to and respect for Yukihiro Matsumoto for the creation
and nurturing of the Ruby language. Together with a brilliant and dedicated community, Matz
has given me a career, a hobby, and something to enthuse about, and for that I will always be
thankful.

Hamou_821-0 FRONT.fm Page xvii Thursday, June 7, 2007 4:36 AM

Hamou_821-0 FRONT.fm Page xviii Thursday, June 7, 2007 4:36 AM

xix

Introduction

It turns out that writing a book is pretty easy. Writing a book that is relevant to anyone but your-
self—now that’s far more difficult than I’d imagined. I love the elegance, simplicity, and power
of Ruby, and I use it every day to make systems function at the ISP where I work. You would
have thought that this combination of facts would make it straightforward to distill a few salient
chapters on the matter. It doesn’t. Indeed it took me nearly a month of trying to build a skeleton
structure for the book before I realized that the problem was one of context.

You see, the target audience for this book is obviously system administrators, but that’s
about as helpful in narrowing the focus as asking a telephone company to connect you to Bob
in Venezuela. We are an incredibly diverse bunch unified by a few common traits (if Slashdot is
any measure). We are geeky, by which I mean that we love technology and structure for their
own sake and get a kick out of problem solving. We always have too many plates spinning and
not enough time to tend to them properly. We are asked to do everything from retrieving a lost
e-mail to building a bespoke CMS from scratch, and it’s always needed yesterday, such that this
sort of thing happens far too often:

It’s 8:52 on Monday morning and Jo comes running in. Before she’s halfway into the
room she’s already blurting out, “The MD needs content mirroring on our mail servers
implemented by close of business today or we’re all getting sued!”

It’s in situations like this that it hits you: who in the name of sanity is Jo, and how does she
keep getting past security?

Looking at our jobs from an engineering perspective, the notion of rapid deployment is
so deeply ingrained in the daily routine that many if not most system administrators learn an
interpreted language in short order. The question is, which one should you choose?

I used and trusted Perl for a good few years before I switched to Ruby. The reason I switched
was inadvertently summarized by Shakespeare (thanks, Will). While the Bard was talking about
life, he might well have been describing any of my nontrivial Perl scripts when he referred to a
tale told by an idiot, full of sound and fury, signifying nothing.

Programs should be beautiful, not give you retina-detaching levels of eyestrain. As Eric
Raymond put it, “Ugly programs are like ugly suspension bridges: they’re much more liable
to collapse than pretty ones, because the way humans (especially engineer-humans) perceive
beauty is intimately related to our ability to process and understand complexity. A language
that makes it hard to write elegant code makes it hard to write good code.”

In short, administrators need a language that is as easy to think in as possible, is terse without
being cryptic, has a syntax that usually makes the “right” way to build something the same as
the “rapid” way to do so, and reads like executable metacode. Let’s face it—these criteria leave
only two mainstream languages standing: Ruby and Python. For my money, Python comes very
close but only Ruby hits the mark.

Hamou_821-0 FRONT.fm Page xix Thursday, June 7, 2007 4:36 AM

xx ■IN TR O D U CT IO N

When I started to use Ruby, I did what I suspect quite a few have done in the past. I wrote
in Ruby and thought in Perl. This does not make for convincing scripts (in much the same way
that I would have difficulty persuading you I was Carmen Miranda merely by stapling a banana
to my head). What with having to unlearn bad habits resulting from all the bookkeeping one
does in Perl, I only wish I’d appreciated the benefits of using Ruby earlier.

With all that said, I am in a position to explain the approach I’ve taken with this book. This
is the book I wish someone had handed me six years ago when I first looked over someone’s
shoulder at some Ruby and decided I had better things to do. It is not even remotely a definitive
Ruby language reference (although the first chapter tries to get you up to speed, assuming
you’ve done a fair bit of programming). It is not a recipe book for 101 different ways to create
an LDAP client. It doesn’t have whole chapters with themes like “this is how you create a user
on Linux, and Windows, and Solaris, and Mac OS X, and how you delete them, etc.” It is also not
microwave safe, nor should it be used as a floatation aid.

What I’ve tried to do is balance very conceptual, water cooler–style discussions with some
strategically placed examples, focusing on the core technologies and techniques available to a
Ruby-wielding administrator. My motivation for this approach is the conviction that, as geeks,
we never read DVD player instruction manuals. I suspect this is because we prefer to have a
general model of an abstract player in our head together with experience of what some common
buttons look like. By organizing our thinking like this, we are more adaptable in dealing with
unfamiliar systems—what Scott Adams refers to as “the knack.”

In the demanding world of system administration, you have to be able to read and write
code at speed. You need to have the knowledge of how to open a socket, lock a file, or coerce a
file format. Fundamentally, you need to be able to crack open a crazy and overflowing toolkit to
meet new and unexpected challenges. It is my hope that this book will provide you with a
couple of extra wrenches to add to your collection.

Before we begin, for those who don’t know it, here’s a completely accurate history of Ruby.

A COMPLETELY ACCURATE HISTORY OF RUBY

In olden days, life was harder. Men were real men, women were real men, and even certain protozoa were real
men. Everything was fields, and mastodons bellowed to each other across primeval swamps. It was an age of
character, of salt-of-the-earth, brine-in-the-veins, chocolate-covered-spleen-with-sprinkles people.

Among all this hardship, something subversive glimmered in the hearts of humankind. A vibrant red glow
in the darkness, filled with daring promise and gleeful abandon. A change was coming. It could be smelled on
the wind as the sort of fruity bouquet of dismembered chestnuts.

In a small settlement on the frozen edge of the Arctic Circle, a boy was born to a family of chartered accountant
trapeze artists. His birth was attended by a wise old halibut that had foreseen this event and was filled with great
rejoicing. And it came to pass that as the Matz grew, a scarlet radiance began to invest his very being.

Toiled, he did, working with the deep magic inherited from those who had gone before. He cast algorithmic
spells combining the dry and dusty with the spry and trusty until a shining crimson gem was hewn. Ruby was born.

An emergency, strokey-beard-type meeting of the establishment was hastily convened to decide upon
the best way to cope with this upstart. It was obvious that anything that made life easy and enjoyable for so
many was in flagrant violation of the puritanical ethic that prevailed. If the line between work and fun were
blurred, the universe wouldn’t make sense any more.

Hamou_821-0 FRONT.fm Page xx Thursday, June 7, 2007 4:36 AM

■I N T R OD U C T I ON xxi

One by one, the senior wizards of the age began to fall under Ruby’s winsome spell, first approaching it with
caution, then with interest, and finally with cheerful addiction. The orthodoxy hit back with a blistering antihype
campaign, reminding the faithful of the importance of what had gone before. The Ruby-ists returned a volley
of anti-antihype, threatening complete recursive collapse.

Finally, balance was reached. The upstart had become an incumbent, and everywhere signs of its positive
influence were to be found. A whole new generation of acolytes was riding the rails of power to weave highly
structured webs of data and capability. Apprentice wizards found that they could do more and go further than
they had thought possible. The future was exciting again and nothing would be the same.

Hamou_821-0 FRONT.fm Page xxi Thursday, June 7, 2007 4:36 AM

Hamou_821-0 FRONT.fm Page xxii Thursday, June 7, 2007 4:36 AM

1

■ ■ ■

C H A P T E R 1

What Ruby Can Do for You

As I mentioned in the book’s introduction, Ruby is my language of choice. It is the tool I instinc-
tively reach for first when solving system administration problems. To recap, it has principally
achieved this place in my affections by

• Making it simple to write nicely readable code

• Emphasizing convention over configuration, so a little effort goes a long way

• Offering seamless mechanisms for interfacing with C libraries

• Having syntax, extension, and execution conventions that very often make coding the
“right” way and the “quick” way the same thing

• Adopting object-oriented principles so completely that extremely powerful metapro-
gramming techniques become readily available

Of course, this enthusiasm could be the result of some sort of massive, sugar-induced hyper-
bolic fit (a kilo of chocolate muffins can sometimes have this effect on me). Thus, I devote this
first chapter to both introducing Ruby and hopefully making the case that it is everything I say
it is. In addition, since I imagine that a very large portion of the audience for this book comes
from a Perl background, I use Perl to draw attention to the syntactic and logical improvements
that Ruby makes over many such traditional languages.

Furthermore, please don’t worry if this chapter feels like a 200 mph whirlwind tour of the
language—that’s exactly what it is meant to be. The next chapter will rewind a little and get
down to the everyday basics of using Ruby.

Hello World
Why don’t we jump straight in with the example we all know and love? Here’s the Ruby to dump
the phrase “hello world” in the terminal:

$ ruby -e 'puts "hello world"'
hello world

As you might have guessed, the -e flag instructs the Ruby interpreter to execute whatever
script follows (inside the single quotes in this case). For more on the command line options of
the Ruby interpreter, do a man ruby. Anyone who’s ever programmed in C will recognize the

Hamou_821-0 C01.fm Page 1 Friday, May 18, 2007 4:20 AM

2 CH AP T E R 1 ■ W H AT R U B Y C AN DO F OR Y O U

puts command. It is shorthand for “put string” (the string being the collection of characters
inside the double quotes).

RI: THE RUBY REFERENCE

Before we delve too deeply into Ruby’s built-in methods, classes, and other such foppery, it is essential that
you be comfortable using the rather spiffy command line Ruby reference tool called ri that ships as part of
the standard Ruby distribution. This is one of the best ways to learn about what the various parts of the core
and standard Ruby libraries do. Want to know what the String class does? Simply invoke ri String. What
if you know you want the reference for puts but can’t remember which module/class it belongs to? A simple
ri puts will list the possibilities.

If you are dealing with a class that has both a class method and an object method named the same thing,
asking for ri SomeClass.some_method is ambiguous. ri will warn you of this if you attempt it and show
you the alternatives, which are disambiguated through a conventional punctuation meme:

• SomeClass::some_method for class methods

• SomeClass#some_method for object methods

Make sure that you get into the habit of using such lookups anytime I mention a new class or method
you don’t recognize or you want to learn more about.

Now only the most extreme of masochists and some of my best friends use one-liners for
all their scripting needs. A script is more usually kept in its own little text file. So create a plain
text file called hello.rb in your editor of choice that looks like this:

#!/usr/bin/env ruby –w
puts "hello world"

I’m going to assume that, as a system administrator, you are familiar with the purpose of
the first line in designating which interpreter to use for the rest of the file and how to make the
file executable with a quick chmod u+x hello.rb.

The –w is quite important. It can be loosely thought of as “warnings mode” but is more
properly defined as an instruction to go into verbose mode. The practical upshot of this is to
display lots of warnings if you do something suspect. I always have this flag in my scripts unless
forced to remove it by badly written libraries that vomit hundreds of warnings when used (yes,
these sorts of libraries exist even in the much-vaunted Ruby universe, demonstrating the ines-
capable ubiquity of truly awful programmers).

All of that said, now that you have an executable file with some valid Ruby in it and a proper
shebang line (i.e., the #! syntax) at the beginning, you can treat it as though it were like any
other executable:

$./hello.rb
hello world

Hamou_821-0 C01.fm Page 2 Friday, May 18, 2007 4:20 AM

CH AP T E R 1 ■ W H AT R U B Y C AN DO F OR Y O U 3

■Tip If your platform doesn’t support the #!/usr/bin/env convention, then don’t forget that the script
can be run by passing it to the Ruby interpreter manually: <path_to_ruby_interpreter> -w hello.rb.

Let the rejoicing begin. Our first Ruby script is written and does what it’s supposed to—
nothing that is of any conceivable use whatsoever.

One approach to executing Ruby code that I haven’t covered is the interactive Ruby shell
irb, which is another standard part of the Ruby distribution. Because Ruby is interpreted rather
than compiled, it can be executed one line at a time. Thus invoking the irb utility presents you
with a command prompt at which you can start typing Ruby code. Pressing Enter wakes up
the interpreter, which picks up where it left off and executes your code. It even shows you the
inspected version of the last thing evaluated.

$ irb
irb(main):001:0> word = "lobotomy"
=> "lobotomy"
irb(main):002:0> word.reverse
=> "ymotobol"

Type exit or press Ctrl+D to quit the interpreter. Additionally, if your distribution was
compiled with readline support, you will be able to use the up and down arrow keys to cycle
through your command history or press Ctrl+A/Ctrl+E to jump to the start/end of the line. You’ll
find out pretty quickly if your irb doesn’t have such support (like the build that comes with
Mac OS X), as odd escape characters will appear when you try to perform any of these actions.

Make sure you have a terminal open with irb running when browsing code in this book.
This will allow you practice as you go without having to create, save, and execute scripts. So
equipped, we can embark on a headlong tour of the language.

Ruby in a Nutcracker
Ruby is an object-oriented (OO) programming language—a very object-oriented programming
language. It is often surprising for those new to Ruby (but experienced in other languages that
claim to be object oriented) just how pure Ruby’s OO credentials are. To understand what this
means and how it affects our approach to programming, it is first necessary to engage in a
quick summary of object orientation.

Objects at Rest: The Theory of Object Orientation
Although experience may vary, I suspect that by the time most programmers get to their tenth-ever
program, they have already started to fathom the power of abstraction. Simply put, abstraction is
the ability to treat something as a black box, not caring about its internal workings. When throwing
a stick for your dog, you probably don’t keep a model of how her nervous system works going
in your head. For the purpose of the game, she is simply a dog and all the complexity of being
a slobbering pet with a vast array of biological mechanisms under the surface is irrelevant.

Hamou_821-0 C01.fm Page 3 Friday, May 18, 2007 4:20 AM

4 CH AP T E R 1 ■ W H AT R U B Y C AN DO F OR Y O U

You do not have to care about her inner workings as long as she responds to certain
commands and gives particular responses. In this sense, your view of her obeys the fundamental
goal of OO design: encapsulation. If in some ultrabizarre parallel universe it was impossible
to play catch with her without direct control of her nervous system (like some kind of puppet
master), the game would be fearsome in its complexity. On the other hand, if you could cope
with this breach of encapsulation, you could make her perform feats that might not otherwise
be possible in our universe.

Having beaten that metaphor to death, I hope that the parallels in programming are apparent.
I have heard it argued that the art of programming is inherently the art of managed complexity.
Instead of having programs that exist as one gargantuan list of commands and data, we should
break them up into logical chunks with well-defined interfaces because

• It becomes easier to get an overview of the functionality of the program and thus under-
stand its mechanics.

• It allows the programmer to concentrate only on the code necessary to achieve one small
piece of functionality at a time.

• Having well-defined interfaces between the chunks makes for easier proofreading and
testing to catch logical and semantic mistakes.

• Encapsulation of both operations and data means less repetition of complex stretches of
code (i.e., the code becomes less “noisy”).

Appreciating these points, we can now talk about an object in the formal sense. An object
is an entity that adheres to the preceding principles (see Figure 1-1). It has some internal set of
data that we have no direct access to and provides a set of methods for us to use in interacting
with it. An object is an instance of a class. That is to say that any given object is of a certain class
(a dog, a vegetable, etc.) and that it has been produced or brought to life in some way.

Figure 1-1. The strict demarcation of object data through the use of methods

Any language that claims to be OO has some mechanism for defining a class to have certain
methods, constants, and data. These items can exist both at the class level and at the object
level. What do I mean by this? If you think of a class as a factory that knows how to build objects

Scripts

Class/Object
Methods

Class/Object
Data

Internal Implementation
(Here There Be Dragonnes)

External Interface

Hamou_821-0 C01.fm Page 4 Friday, May 18, 2007 4:20 AM

CH AP T E R 1 ■ W H AT R U B Y C AN DO F OR Y O U 5

of a certain type, then it makes sense that it will have at least one method of its own. This method
is often called new in OO languages and is simply that which constructs an object of the pertinent
class. Thus new would be a class method and, if it produced a car, drive would be an example of
an object method.

In addition, every OO language I’ve ever used allows for the concept of a subclass. If we
were modeling a fruit bowl, we might suddenly realize that whereas both oranges and apples
can rot, only oranges really need to be peeled before consumption. Thus we might create a fruit
class that implements the rot method and then orange and apple subclasses, of which only the
former will have the additional peel method that neither its parent nor sibling implements (see
Figure 1-2). This idea of a class family is another important example of how object-oriented
programming encourages you to write as little code as possible and reuse it as often as is
appropriate.

Figure 1-2. Fruity method inheritance

Informally, if a language implements functions and has some means for structuring data,
then it is possible to adopt these programming patterns, whether the language claims to be OO
or not. Indeed, as I wrote more and more C, I found myself creating libraries that followed
these principles. Where I got into a mess, it was almost always because I had broken the encap-
sulation for the sake of expediency or (even worse) performance. I had experienced one of
those moments of frustration when you look at the code you’ve written and decide it will be too
time consuming/complex/bothersome to stick to the carefully defined interfaces. So I pulled
on my latex gloves and penetrated the exterior.

If you’ve done the same, rest assured that the blame does not lie entirely with you. How
easy a language makes it to get things done is critical to sticking with patterns like abstracted
interfaces. If you have to jump through countless hoops to create a more elegant program, then
you will start taking shortcuts. That’s human nature.

Given this point, let’s see what Ruby has to offer.

Objects in Motion: The Ruby View of OO
You may not realize it, but that one line of code in the Hello World example contained both an
object and an OO method call. puts may look like an ordinary function, but all “functions” in
Ruby are actually methods defined as part of a class. It turns out that puts is a method inside a
module called Kernel, which has all kinds of useful functions that allow trivial bits of code to
feel non-OO. The question is, how did Ruby know that we were referring to the puts method
belonging to Kernel and not some other one?

Ruby has a cute method resolution mechanism, which means that puts is semantically the
same as self.puts or, if that method doesn’t exist, Kernel.puts. self is an OO convention for
referring to the current object of context. In the case of our Hello World example, self would

Fruit
rot

Orange
peel

Apple
cover_in_toffee

Hamou_821-0 C01.fm Page 5 Friday, May 18, 2007 4:20 AM

6 CH AP T E R 1 ■ W H AT R U B Y C AN DO F OR Y O U

refer to an object called main (which is provided implicitly by the interpreter) because we are in
the context of the main program flow and not (for example) in a specific class or module definition.
This object does not implement the method puts, so we fall back to Kernel’s puts method.

The other object in the example was "hello world" itself, which was naturally of class
String. To demonstrate this, we can use a method call to give each word a capital letter at the
beginning:

puts "hello world".capitalize

Kernel’s puts is a convenience method that assumes we want to dump our string to standard
out. What if we wanted to dump the string to standard error instead? It turns out that the actual
puts method is provided by the IO class, and there are global objects of this class defined for
each of the normal UNIX file-handles: $stdin, $stdout, and $stderr.

■Note The use of a $ symbol at the front of a variable denotes that it is global. This often catches Perl users
out—it has nothing to do with the type of the object. You will also have noticed that object names are all lowercase,
whereas class names start with a capital letter. This convention is derived from the fact that classes are often
thought of as constants, and constants are written completely capitalized in Ruby: PI = 3.14159.

Given the existence of these global objects, the solution should be clear enough:

$stderr.puts "hello world"

Imagine for a moment that Kernel didn’t provide a puts method. How might we implement it?
We would need to define a method called puts that took a single argument (the thing to be put).
In addition, to make it as convenient as the canonical method, it needs to be added to the instance
of Kernel we are in the context of. This sounds involved. It isn’t.

def puts(thing)
 $stdout.puts(thing)
end

If this snippet were placed at the top of our script before puts "hello world", the script
would work identically apart from throwing up a warning about redefining an existing method.
What method? Kernel’s of course. A method definition in the context of the main program flow
automatically gets added to the Kernel module.

Something else to notice is that I’ve explicitly drawn attention to the fact that IO’s puts is a
function by placing brackets around its one argument. I’ve done this to emphasize that, in Ruby,
such bracketing is optional where it is not ambiguous to omit it. In practice, most program-
mers have a traditional mental list of calls like puts and system that are left unbracketed for no
particularly good reason (except maybe reducing code noise).

Now it is all very well sleeping in Kernel’s spare room, but we need to know how to acquire
some space of our own. In short, how do we define a class? Well, one of the best things about
modern interpreted OO languages like Python and Ruby is that class definitions are just that: a
complete listing of the class that acts as its own definition. There are no separate header files,

Hamou_821-0 C01.fm Page 6 Friday, May 18, 2007 4:20 AM

CH AP T E R 1 ■ W H AT R U B Y C AN DO F OR Y O U 7

template nonsense, or burnt offerings that have to be made to create a new class. Here’s the
Ruby way:

class Dog
end

No, I’m not rationing my code. That really is a complete declaration for the class Dog. Of
course, it doesn’t do a lot, but we can fix that:

class Dog
 def speak
 "woof"
 end
end

which could be used as follows:

d = Dog.new
puts d.speak

or just

puts Dog.new.speak

How about some data in our object? We should be able to decide what kind of sound to
emit based on the size of the dog. We should also be able to set the size when we create the dog
and perhaps allow the dog to grow:

class Dog
 def initialize(metres)
 @size = metres
 end

 def grow(metres)
 @size += metres
 end

 def speak
 if @size < 0.2 then "yap"
 elsif @size < 1 then "woof"
 else "ROOOOOAAAARRR!"
 end
 end
end

The initialize method is special in the sense that it is called whenever an object is created
with a call to the class’s new method. Note that new passes all of its arguments to initialize
without modification. Inside our initialize method, we set an instance variable called @size
to the value passed to us during construction.

Hamou_821-0 C01.fm Page 7 Friday, May 18, 2007 4:20 AM

8 CH AP T E R 1 ■ W H AT R U B Y C AN DO F OR Y O U

■Note In Ruby, instance variables (i.e., those belonging to a particular object rather than the class as a
whole) are denoted with an @ symbol. Again, this can catch out Perl programmers, as it has nothing to do with
the type of object the variable refers to. Additionally, classes can have variables. These have @@ in front of
them. They are awarded two @ symbols rather than one because, as class variables, they are so much more
important than the lowly object variables.

As required by the doctrine of encapsulation, if I attempt something like Dog.new.size = 4
in my program, an exception will be raised complaining that there is no such method for setting
the size defined by the class. Thus an instance variable is truly private to that instance unless
specified otherwise.

The rest of the code should be familiar to most programmers. The += construction in grow
is a shorthand for “add a certain value to me and set me to the result” as per C. The conditional
block in speak is self-explanatory; it simply selects the course of action based on the value of
@size.

■Note Newcomers to Ruby who are refugees from other languages often get confused about which values
are considered true or false in Boolean expressions. It’s very simple. nil and false (which, incidentally, are
instances of NilClass and FalseClass, respectively) are false. Anything else is true.

By Invitation Only: Accessors Made Easy
Sometimes, it is appropriate to have direct-read or even direct-write access to an instance vari-
able inside an object. In such cases, we need to define accessor methods that act like proxies,
reading and writing data on our behalf:

class Dog
 # other methods here

 def size
 return @size
 end

 def size=(metres)
 @size = metres
 end
end

We can now get and set the value of @size. Notice that, in Ruby, even setting something
with an = is actually a method call, so that second method in the preceding code is invoked
whenever we write something like lucy.size = 2. Of course, having these methods around
allows us to perform intermediary steps (such as autoconverting between meters on the
outside and feet internally). However, a lot of the time we will want the equivalents of the

Hamou_821-0 C01.fm Page 8 Friday, May 18, 2007 4:20 AM

CH AP T E R 1 ■ W H AT R U B Y C AN DO F OR Y O U 9

simple methods just shown. Since it would be a pain and rather noisy to have to write these in
full every time, Ruby provides some convenience macros (which are actually just class
methods themselves), as shown in Table 1-1.

Armed with these convenience methods, our six lines of accessor code reduce to the following:

class Dog
 # other methods here

 attr_accessor :size
end

Note the use of a symbol, denoted by :. Symbols as defined by Ruby exist for somewhat
advanced reasons but tend to be employed when referring to something unique within a
particular namespace, mostly because they end up looking cleaner than something in double
quotes. For now, I advise you to just accept this syntax style for what it is until we cover it in
more detail in Chapter 3.

Blocks and the Magic of yield
Looking back over my C and Perl code, one of the first places that encapsulation suffers is in
sections that call for iteration. Consider this bit of C:

int i;
for(i = 0; i < message_count; i++) {
 char *m = messages[i];
 puts (m);
}

The basic idea here is to iterate over a collection of strings and dump them to the terminal.
The first thing to notice is how noisy it is. There is a lot of scaffolding here just to set up the itera-
tion. That scaffolding is a by-product of intimate assumptions made about the structure of the
collection of messages (in this case an array of char *) and how to iterate through it.

The goal we are trying to achieve here is buried under bookkeeping code and, if we ever
move from C-style arrays to (for example) a linked-list structure, this code will break. Perl improves
upon this by providing standard types that can be iterated over:

foreach $member (@members) {
 print $member . "\n";
}

Table 1-1. Ruby’s Built-in Accessor Macros

Function Purpose

attr_reader Creates a getter method for a given variable

attr_writer Creates a setter method for a given variable

attr_accessor Creates both methods for a given variable

Hamou_821-0 C01.fm Page 9 Friday, May 18, 2007 4:20 AM

10 CH AP T E R 1 ■ W H AT R U B Y C AN DO F OR Y O U

The problem is that iteration is still bound up in the foreach directive (which happens to
understand arrays and hashes). If we needed to add further types that supported iteration, we’d
have to either dive into the source code for foreach and add cases for our object or create
specific iterator structures that allow for this kind of construction:

my $next = create_iterator(raw_member_data)
while(my $member = $next->()) {
 print $member . "\n";
}

Wouldn’t it be great if we could just have a collection object that stores our items in such a
way that we could run a bit of code for each item without having the first clue how the collec-
tion itself is structured? Cue the Ruby Array class:

messages.each { |m| puts m }

Apart from being about fifty times clearer, this invocation demonstrates proper abstraction
principles. Array itself is responsible for working out how to iterate over the objects it contains.
This may seem like a subtle distinction, but it has potentially enormous consequences.

The code inside the braces is a block (see the sidebar “Block Styles” for more information).
Blocks can be passed around like any other object and have some really useful properties. When a
block is called, it can be passed arguments just like any method. In fact, in many ways, a block
could be thought of as a nameless method. Array invokes this particular block with one argu-
ment, the next item in the iteration, which we give a convenient name and are then able to use.

BLOCK STYLES

Ruby has two syntaxes for delineating a block. The preferred approach will likely be less familiar to C and Perl
users and is called a do-end:

[1, 2, 3].each do |number|
 puts number
end

Ruby’s second block style uses the more traditional braces syntax:

[1, 2, 3].each { |number| puts number }

The Ruby convention is to use the second type only in situations where the block contains a single line
of code with no side effects (it doesn’t alter any data outside the scope of the iteration itself). This is mostly
because it makes code more readable, but also because do-end has a higher precedence than brace blocks.
This means that the former does what you expect more often when writing otherwise ambiguous code.

What’s critical to understand here is that the array is doing the iterating rather than us, so
we don’t have to know anything about it. Some of you may be wondering whether that breaks
the ability to skip to the next item or break out of the iteration as per C. Of course the answer is
no: Ruby implements both the next and break keywords for just such a purpose.

Hamou_821-0 C01.fm Page 10 Friday, May 18, 2007 4:20 AM

CH AP T E R 1 ■ W H AT R U B Y C AN DO F OR Y O U 11

Moving on, what’s really interesting is what’s going on inside Array#each. First, each is just
another method. There is nothing special about it in this respect. It takes no conventional argu-
ments, but it does expect a block and works somewhat like this:

class Array
 def each
 # some logic to move through the array and for each item...
 yield item

 return self
 end
end

Note that this is a conceptual representation only. The actual method is implemented in
low-level C. Also notice that we ensure each returns the array when finished (as per the semantics
of the real Array#each). This allows us to add an instruction to clear the message array on the
same line: messages.each { |m| puts m }.clear.

The magic is all driven from the yield command, which invokes the associated block, passing
it the appropriate variables. This idea of having two sections of code that can bounce back and
forth between each other is more formally known as coroutine support, and of all the features
that set Ruby apart, the fact that this is so easy to do is probably my favorite. It dramatically cuts
down on code for all manner of iterative procedures, allowing you to approach such problems
more naturally.

For example, take map, which is another method available to arrays. Imagine we want to
take an array of numbers and multiply them all by 2, returning a new array of the results. This
is achieved with this unbelievably simple bit of code:

numbers.map { |n| n * 2 }

Note that there is no specific assignment or return statement employed. yield actually
returns the value of the last evaluated bit of code in the block (this is a recurring theme throughout
the language). Hence, map could be implemented like this:

class Array
 def map
 new_array = []
 each do |item|
 new_array << yield item
 end
 return new_array
 end
end

There are a couple of points worth making about this bit of code. The shorthand for an
array involves the use of square brackets. The value of [] is identical to what you would get by
calling Array.new. Also, note the use of each without an apparent object. Remember that Ruby
will implicitly add self onto such method calls, so this call is in fact self.each. The << is another
shorthand method defined by Array for adding an item onto the end of the array in question.

Array also implements a method called map!, which places the new values in the existing
array, overwriting the old ones. See the sidebar “Punctuated Methods” for more details.

Hamou_821-0 C01.fm Page 11 Friday, May 18, 2007 4:20 AM

12 CH AP T E R 1 ■ W H AT R U B Y C AN DO F OR Y O U

PUNCTUATED METHODS

In naming methods, Ruby has a couple of conventions that make code easier to read at a glance. If a method
name ends with a question mark, such as Array.empty?, it always returns a Boolean result. If it ends with
an exclamation point, such as String.chomp!, it will alter the object in question directly rather than returning an
altered copy. In other words, exclaimed methods are destructive.

It Takes All Sorts: A Sensible Approach to Types
Remembering that the only way for objects and code to interact with each other is via methods,
Ruby implements the most elegant approach to types I’ve ever seen. As previously stated,
everything is just an object. The whole point of typing is that it empowers you to know what
behavior and properties to expect from the variables you’re operating on. Ruby flips this on its
head and, in so doing, remains far more faithful to the tenets of encapsulation.

Think about numbers for a second. When playing with numbers, all I actually care about
are the operations I can do with them. Can I add them together? If the answer is yes, then that’s
great. If one is actually implemented as an integer in hardware and the other as some horribly
convoluted string of bytes in memory, it doesn’t matter as long as they respond to the relevant
methods and behave as expected under them.

Thus Ruby implements what is referred to as duck typing. If it looks like a duck and quacks
like a duck, then it’s a duck. Anything else is just semantic wrangling or philosophical pontifi-
cation, and the busy system administrator has time for neither. It is as though the spirit of the
Turing test for intelligence has been applied to the Ruby type system.

The result of this eminently commonsense approach is that types work for you (in the
form of subclassing and variation), rather than the other way around. Type purists may argue
that strong types make for strong code, but such purists would be missing the point that this is
not weak typing in any way, shape, or form. Objects have a definite class, but the practice of
interacting with them doesn’t rely on them having that class in the way other languages do.

How about a practical example? Take the Dog class from earlier. Imagine that we have a
particularly pathological keeper who only feeds the animals under his care if they can prove
they’re alive by making a noise. By default, an animal will emit no sound when asked to. We
start with a parent Animal class:

class Animal
 def speak
 end
end

from which we derive three specific subclasses of animal: Cat, Dog, and SpinyLobster.

class Cat < Animal
 def speak
 "miaow"
 end
end

Hamou_821-0 C01.fm Page 12 Friday, May 18, 2007 4:20 AM

CH AP T E R 1 ■ W H AT R U B Y C AN DO F OR Y O U 13

class Dog < Animal
 # methods as before
end

class SpinyLobster < Animal
end

Since both Cat and Dog implement the speak method, their satiation is guaranteed. However,
pity the poor starving crustacean, as he does not have a speak method of his own and will auto-
matically fall back on his parent class’s implementation—a desperate silence. The point is that,
as far as our tyrannical keeper is concerned, an animal is any entity that implements the speak
method (even by proxy) and a feedable animal is one whose speak method does something
specific. Beyond that, he doesn’t need or wish to know the details of the class he’s interacting with.

Incidentally, this idea of using parent classes to define default/abstract behavior is an oft-
used and powerful design pattern that allows for separation of policy and implementation. In
particular, one often wishes to retain the abstract behavior of a particular method but augment
it in some way within the subclass. For this reason, the super keyword exists:

class Host
 def describe
 puts @ip_address
 end
end

class Printer < Host
 def describe
 puts "Printer..."
 super
 puts @default_queue_name
 end
end

In this example, calling the describe method of a printer dumps a string, calls the parent
class’s version of describe (dumping the IP address), and then finally dumps some other infor-
mation. Semantically super is a call of the parent’s method of the same name with all of the
arguments passed unchanged. If you have a different method signature in the subclass (which
is inadvisable but sometimes unavoidable), super can be called like any other method call:

class Parent
 def foobar(a, b)
 end
end

class Child < Parent
 def foobar(c, a, b)
 super(a, b)
 end
end

Hamou_821-0 C01.fm Page 13 Friday, May 18, 2007 4:20 AM

14 CH AP T E R 1 ■ W H AT R U B Y C AN DO F OR Y O U

Duck typing is an important concept, but it could be argued that the previous examples
don’t really show it off. After all, such feats can be accomplished in C++, Java, C#, or any stati-
cally typed language that implements objects. Ruby is genuinely duck typed because the typing
strategy applies to everything, including method signatures. You couldn’t do this in most
languages:

def puts_all(collection)
 collection.each { |item| puts item }
end

puts_all([1, 2, 3, 4])
puts_all("line1\nline2\nline3")
puts_all(some_other_collection_object)

Here, instead of having to declare that puts_all takes an Array (or some subclass of Array),
we can treat it as taking any object that responds to each returning items that implement the
standard string conversion method to_s. That’s real duck typing.

Ointment for the Administrator
As indicated in the introduction, this book is not intended to provide an exhaustive reference
to the Ruby language and its hundreds of standard classes. Rather, this chapter has provided a
quick overview of some of the features that cause me as a system administrator to hold Ruby in
high esteem.

You’ve seen how to execute Ruby code in a variety of useful ways, and you’ve learned
about the role of the handy ri tool for looking up class and method definitions. Most impor-
tant, you’ve seen that Ruby’s emphasis on strong object orientation, coroutines, and other
linguistic conveniences lead to code that is both leaner and meaner.

As we proceed, we’ll pick up some more examples along the way and you’ll get a taste for the
Ruby way of writing various bits of code you might be used to implementing in other languages.

For now, it’s time to stop talking exclusively in abstracts and move on to the next chapter,
in which you’ll get a deeper understanding of Ruby’s execution environment and write some
quick code snippets that could be useful during an administrator’s day.

Hamou_821-0 C01.fm Page 14 Friday, May 18, 2007 4:20 AM

15

■ ■ ■

C H A P T E R 2

Common Tasks,
Quick Solutions

Much of this book is devoted to writing “proper” code in nice little scripts and demonstrating
how much easier Ruby makes this process. Even so, there will always be times when you just
want to remove the commas from something or quickly rotate a log. Thus this relatively short
chapter sits in deference to the needs of the ten-second script.

The bulk of the chapter uses one-liners to introduce the various command line flags, execution
semantics, and variables available in the context of really quick scripting. For a more systematic
overview of these entities, refer to the appendix.

One-liners
Did you hear the one about the priest and the oversized cucumber? No? Consider yourself very
lucky.

In the previous chapter, the first example was a one-liner. It involved executing the Ruby
interpreter and passing it a script to run with the -e flag. Just as you would expect, an executing
Ruby script is a standard process. It has an environment, standard file descriptors (in, out, and
error), and the ability to process command line arguments. So we could have written the output of
the script to a file instead of to the console using standard shell redirection:

$ ruby -e 'puts "hello world"' > /tmp/hello

Equally, we could have taken in some data and processed it as part of a pipeline:

$ ls -l | ruby -e '...' | grep pron

Grepping with Ruby
We’ll begin our tour with a pure Ruby alternative to grep, which will print out the contents of
each line of a file where the line matches some regular expression:

ruby -ne 'puts $_ if $_ =~ /foot/' /usr/share/dict/words

In understanding this snippet, the regular expression /foot/ should be clear enough
(match any string containing foot). The real question concerns $_ and where it has suddenly
appeared from. Your sense of the code should tell you that $_ is somehow being made equal to

Hamou_821-0 C02.fm Page 15 Tuesday, May 22, 2007 6:02 AM

16 CH AP T E R 2 ■ CO M M ON TA SK S , Q U I CK SO L U T IO N S

the contents of each line. The path /usr/share/dict/words at the end of the command allows
you to deduce which file’s lines are being iterated over.

The -n flag is where the magic lies. This flag places an implicit while gets ... end block
around the code specified with -e. A quick inspection of ri Kernel.gets tells you that gets
iterates over every line of every file specified on the command line and shoves its contents into
the global variable $_.

The fact that gets abstracts away the number of files originally specified means that we
can find matches from multiple files at once (just like the real grep):

$ ruby -ne 'puts $_ if $_ =~ /andre/' /etc/passwd /etc/group

Working with Comments
Lots of different interpreted languages use a single # to indicate the beginning of a comment.
Imagine that we wished to comment out every line of a file in this way. We could use -n to
iterate over all the lines and then print out each modified line, but there is a slightly shorter
syntax available.

The behavior of doing something to $_ and then printing it out is catered for by the -p flag,
which has the exact semantics of -n with the added bonus of a print $_ at the end of each loop.
Hence we can comment a file like so:

$ ruby -pe '$_ = "#" + $_' ruby_script.rb

In a situation calling for a command like this one, we probably want to overwrite the old
file with the new data. Of course, there’s nothing stopping us from using ordinary shell redirection
by adding a > ruby_script.rb on to the end. The problem with such an approach is that it
doesn’t scale to multiple files. Ruby has a special flag for requesting an in-place edit:

$ ruby -i.bak -pe '$_ = "#" + $_' *.rb

An added -i here allows us to write back to files from standard out, editing them in place.
The extra .bak specifies to keep the original files safe by appending .bak to their paths. Note
that this specification of backup extension must be right up against the -i flag. Be careful not
to leave a space.

I also draw your attention to the *.rb at the end of the line. As usual, the shell will expand this
globbing pattern so that the Ruby interpreter actually sees a list of matching paths. Kernel.gets
keeps track of the current file being processed through a special global variable called $<. This
variable has all kinds of useful methods pertinent to the file that is currently being processed,
including $<.file (an IO object for the file) and $<.filename (which should speak for itself).

Of course, in-place operations aren’t restricted to adding information. If we revert to the
plain -n approach, we could strip all of the comment lines (lines starting with a #) out of a set of
files:

$ ruby -i.bak -ne 'puts $_ unless $_ =~ /^#/' *.rb

This is really just our original grep example with a specific regular expression and a bit of
in-place goodness.

Hamou_821-0 C02.fm Page 16 Tuesday, May 22, 2007 6:02 AM

CH AP T E R 2 ■ CO M M ON TA SK S , QU I CK SO L U T IO N S 17

Using Line Numbers
Another interesting global variable is $., which is synonymous with $<.lineno—the line number of
the file currently being processed through Kernel.gets. Taking the in-placing (-i) and implicit
printing (-p) ideas, we could add line numbers to some files like this:

$ ruby -i.bak -pe '$_ = $. + ": " + $_' file1 file2

Having a unique line number to work with can be useful in all kinds of snippets. Imagine
we have a file called user_info. This file is a line feed–separated list of records that consist of
whitespace-separated fields:

Anthony [TAB] Burgess [TAB] ab152 [TAB] 500MB [LF]
Marcus [TAB] Aurelius [TAB] ma841 [TAB] 150MB [LF]
...

We could use the fact that there is one line per user to split each user’s information into
separate numbered files. In doing so, we would need to explicitly open each file (having deter-
mined its name) and then write the data to it:

$ ruby -ne 'open("/tmp/user_#{$.}", "w") { |f| f.puts $_ }' user_info

As discussed, the filename is constructed from the line number $.—giving a name like
/tmp/user_5—and this path is opened for writing (w). Within the block attached to the open
command, we dump the contents of the line ($_) to the file descriptor f.

Playing with Fields
Expanding on the previous example a little, we could make it so that each generated file contains
the four fields on separate lines instead of being present as one tab-separated line. The naïve
way to do this would be to add a split command when we’re about to write out $_:

$ ruby -ne 'open("/tmp/user_#{$.}", "w") { |f| f.puts $_.split }' user_info

The $_.split will yield an array formed by splitting the line on whitespace (split’s default
behavior). Passing an array to puts causes each item to be printed on a new line and the job’s
done. However, there is a slightly more clever way to achieve the same effect.

Ruby accepts an autosplit flag (-a), which will split up the contents of $_ into an array
called $F (think Fields). It does the exact same splitting operation we did explicitly earlier, so it’s
perfect for our needs:

$ ruby -a -ne 'open("/tmp/user_#{$.}", "w") { |f| f.puts $F }' user_info

This snippet contains so much implicit behavior that it provides an excellent jumping-off
point for an in-depth discussion on field separation at the beginning of Chapter 7. I recommend
reading ahead now if you’ve had any trouble following along here.

A commonly requested favor that system administrators learn to dread is that of wrangling
some horrible address book format into something useful. Suppose we have this address book
export and need to coerce it into a more manageable form for an existing contacts spreadsheet,
which puts surname before first name and takes tab-separated values. Here’s the incoming data:

Hamou_821-0 C02.fm Page 17 Tuesday, May 22, 2007 6:02 AM

18 CH AP T E R 2 ■ CO M M ON TA SK S , Q U I CK SO L U T IO N S

Lucy,Brown,42 Peanut Avenue,Snoopville
Jon,Bovi,69 Rock Place,Prince Albert Sound

We’ll need to split each line based on commas, switch the first two fields around, print the
resulting array out joined with tabs, and shove the contents back into the same file. Using all of
the approaches we’ve discussed thus far, this chunk of Ruby emerges:

$ ruby -a -F, -i -ne 'puts $F.values_at(1, 0, 2, 3).join("\t")' contacts

As a sentence this would be, “For every line in the file contacts, autosplit it into an array of
fields named $F (-a) using commas as field separators (-F,), and output a single line consisting
of the second, first, third, and fourth fields joined together with tab characters, overwriting the
original file in place (-i).”

Smart Record Handling
Dealing with record-oriented files is a big part of what one-liners end up being used for. So far
we’ve assumed that such files will break up their records with UNIX line feeds. If that is not the
case, we need to be able to specify a different record separator. In the same way that we were
able to use -F to override the default field separator, judicious use of -0 will do the trick where
records are concerned.

This flag is the number zero and should be immediately followed by the octal character
code of the desired record separator. Firing up my terminal and performing a man ascii tells
me that the octal character code for an old Mac-style carriage return ("\r") is 015. Thus we
could search through a carriage return–laden file by modifying our original grep example:

$ ruby -015 -ne 'puts $_ if $_ =~ /foot/' /usr/share/dict/mac_words

There are a couple of special cases to be aware of when using -0. Passed a value of zero
(-00), Ruby goes into paragraph mode, where each record is considered to be separated by two
default record separators (e.g., "\n\n"). Since 511 is not a valid character code, passing -0777
will guarantee that the entire input file is read in as one record.

With the record separator under control, it would be nice to have some of the repetition
taken out of common record operations. Specifically, there are a number of cases where we’d
like to edit each line in place without the record separator getting in the way. When the editing
is done and the line is ready to be committed, we’d like to have the separator added back on to
the end automatically. This can be achieved with the -l option:

$ ruby -015 -l -pe '$_ = $_.size' /usr/share/dict/mac_words

This example correctly derives the size of each line without its line ending and prints out
the line with the number instead of the word. The original line ending is preserved.

Creating a Customized Directory Listing
Aside from actual files, there are a number of directory operations you might wish to perform
with one-liners. For example, this will create a list of all the C source files in a directory whose
size is bigger than 1KB and sort them by modification time:

ruby -e 'puts Dir["*.c"].find{|f| File.size(f) > 1024}.sort{|f1,f2|➥

 File.mtime(f1) <=> File.mtime(f2)}'

Hamou_821-0 C02.fm Page 18 Tuesday, May 22, 2007 6:02 AM

CH AP T E R 2 ■ CO M M ON TA SK S , QU I CK SO L U T IO N S 19

Note that this line is a little longer and a little less efficient than it needs to be. One oft-
overlooked method available to Array (as it mixes in Enumerable) is sort_by. This allows you to
generate a key for each object in the collection and then have that collection sorted based on
the standard comparison of those keys. In the Perl world, this is referred to as the Schwarzian
transform and it works like this:

ruby -e 'puts Dir["*.c"].find{|f| File.size(f) > 1024}.sort_by{|f| File.mtime(f)}'

The added efficiency comes from the fact that we only ever interrogate each file’s modified
time once to generate the key. Since all the keys are generated before sorting commences, this
approach can be unacceptably memory hungry for large collections. As usual, it’s a balance of
memory and time.

Watching Commands Over Time
Ruby one-liners can provide a whole host of useful abilities outside of file system operations. I
don’t believe I’ve ever come across a full-blown Linux distribution that didn’t include the watch
utility. This tool runs a specified command with a given frequency, placing its output on a nice
fresh console page. Classically it gets used to monitor obvious things like the sizes of files in a
particular directory. For reasons passing understanding, Apple doesn’t currently ship it as part
of OS X, which is kind of annoying. So I often used to do something like this:

ruby -e 'system "clear; ls -lahG" while sleep 1'

Note the use here of both the system method (which executes a specified command from
within a shell) and the reversed construction of the while loop. The reason this code can be so
compact is that the sleep occurring at the start of each loop actually forms the condition used to
decide whether the while loop should continue. This works because sleep returns the number of
seconds slept and any integer always evaluates as true.

As for my use of this command, I soon realized how often I was typing all this, and so now
a watch.rb sits in my home folder aliased in my shell as watch.

Larger Examples
I have to be careful in presenting extended examples of quick Ruby scripts because I am in
danger of falling outside the scope of the chapter. It is important to transition to full-blown
scripts as soon as possible to avoid the creation of arduous and error-prone 15-line one-liners.
In that spirit, I present two quick examples: one that stretches the limit of a one-liner and one
that breaks into a proper script.

Rolling Logs: A Scheduled One-liner
One of the more useful aspects of a one-liner is that it can sit quite happily in any configuration
file setting that takes a command line invocation as one of its arguments. In particular I am
thinking of that perennial friend of the system administrator: cron.

Suppose a particular program generates a sizeable number of logs, and we want to make
sure that the log file is never bigger than about 10MB and that any archive is done on a rota-
tional basis:

Hamou_821-0 C02.fm Page 19 Tuesday, May 22, 2007 6:02 AM

20 CH AP T E R 2 ■ CO M M ON TA SK S , Q U I CK SO L U T IO N S

ruby -rfileutils -e 'f = ARGV[0];➥

 FileUtils.mv(f, f + Time.now.strftime(".%Y%m%dT%H%M%S")➥

 if File.exist?(f) and File.size(f) > 10485760' /var/log/silly.log

Picking this apart, you’ll first notice that we require the FileUtils library, which has a
number of platform-independent convenience functions for common file operations. Aside
from that, our one-liner is actually a two-liner (which sits on one virtual line through the use of
a semicolon). We could have specified the two lines with two separate -e constructions, but
that would have just been a waste of characters when the objective is to create the shortest line
possible.

The first bit simply gives the single argument (the file to be rotated) a more palatable name
(f). The second part will change that file’s name appropriately if it exists and is over 10MB, thus
completing the script.

Now it turns out that we’d like to apply this script to many log files specified in a batch file,
/etc/rotate-logs. This is a set of newline-separated paths to logs to be rotated. Fortunately,
the magical powers of -n mean we need to make only a couple of tiny changes:

ruby -rfileutils -lne 'f = $_;➥

 FileUtils.mv(f, f + Time.now.strftime(".%Y%m%dT%H%M%S")➥

 if File.exist?(f) and File.size(f) > 10485760' /etc/rotate-logs

So now our bit of code sits nestled inside a looping read of each line in the configuration
file. In addition, we’ve employed an -l to ensure that we don’t have to worry about line endings
infecting our filenames.

■Caution This log rotator is for example purposes only. In practice, it lacks a number of pretty essential
features that can be found in proper tools like logrotate, including coping with unusual permissions issues
and handling signals.

A Ruby Springboard
Often, it’s automation of the little things that brings the most relief from the misery of repetition.
As a Ruby user, I was forever doing this sort of thing:

1. Open an editor.

2. Create a new file.

3. Throw a shebang line at it: #!/usr/bin/env ruby.

4. Save the file as something.rb.

5. Switch to the console and render the script executable: chmod 755 something.rb.

6. Start writing the actual script.

Hamou_821-0 C02.fm Page 20 Tuesday, May 22, 2007 6:02 AM

CH AP T E R 2 ■ CO M M ON TA SK S , QU I CK SO L U T IO N S 21

What became painfully obvious was that only step 6 should involve any real work, and yet
I was losing time and flow going through this whole procedure for every new script. It is a credit
to my dim-wittedness that it took me a few weeks to ask myself whether Ruby might solve this
problem for me.

The solution was to treat the first five steps as a single “black box” action. In other words, I
didn’t care how I reached stage 6 as long as all the previous steps had been completed. Thus
was born rnew.rb, which is aliased in my shell to rnew (see Listing 2-1).

Listing 2-1. An Executable Ruby Script Generator

#!/usr/bin/env ruby -w

path = ARGV[0]
fail "specify filename to create" unless path

File.open(path, "w") { |f| f.puts "#!/usr/bin/env ruby -w" }
File.chmod(0755, path)
system "open", path

Running through it quickly, the script takes one argument (the path of the filename to be
created) and checks to make sure this is provided. If so, it creates the specified file, writing a
shebang line to it. Then the file is rendered executable. Finally, the editor is invoked with the
file. Mac OS X provides the open command, which basically does what a double-click would do:
opens the default application for the given file. On other systems, you would likely substitute
open for either ENV["EDITOR"] (if you have this environment variable set to something appropriate)
or the name of an explicitly chosen editor like xemacs.

Quick to Write Meets Quick to Run
Hopefully my distaste toward throwaway coding didn’t completely distract from the concepts
presented. Indeed, that nasty taste is already fading, assisted capably by a Malibu and Ribena.
The art of the ten-second script is one every decent system administrator should have down in
their language of choice. After all, you never know when that next dodgy export is going to
come your way, followed by a user pleading for its complete coercion within a few minutes.

In this chapter, we’ve knocked together some sample one-liners and created a couple of
semiuseful miniscripts. The next chapter is all about measuring and improving the performance
of your scripts as well as convincing skeptics that a good script can be faster than some written-
in-C tools under the right circumstances.

Before we get there, however, I’d like to leave a parting gift to the ghost of one-liners past.
It has nothing to do with Ruby but is rather one of the first ultracompact bits of code I ever
came across. It is written for the bash shell, and I still think it’s as beautiful as the day I first saw
it. See if you can work out what it does (I advise handling it with care):

:(){ :|:& };:

Hamou_821-0 C02.fm Page 21 Tuesday, May 22, 2007 6:02 AM

Hamou_821-0 C02.fm Page 22 Tuesday, May 22, 2007 6:02 AM

23

■ ■ ■

C H A P T E R 3

A Practical Look
at Performance

This chapter covers both the analysis and the optimization of script performance. We will
warm up with some scenarios in which a good script can outpace a traditional pipeline of C
applications. With this musing undertaken, we will proceed to tour the available analysis tools
and apply them to a sample script. Finally, we will look at some algorithmic and linguistic opti-
mization strategies.

It may come as a surprise to many that I would choose to talk about performance issues so
early in the book. Scripting languages have a reputation for being slower than “real” languages
like C. The problem with such thinking is that it is far too simplistic. I hope to demonstrate that,
in the right circumstances and with a little care, scripts can give traditional compiled programs
a decent run for their money.

More specifically, I have been harping on about the idea that Ruby tends to facilitate writing
things correctly the first time. In turn, I assert that this means that Ruby libraries/scripts tend
to go through a lot of scaling in their particular fields of application. This is certainly my expe-
rience. Keeping an eye on how code performs is really quite important as part of the ongoing
development cycle.

From a design perspective, it’s also important to be able to appreciate what the limits of
a tool are versus its benefits. In my head, the first three chapters of this book are “why Ruby
is cool,” “some basic stuff you can do with Ruby and a quick rundown of how a Ruby process
works,” and “deciding systematically whether to switch to/away from Ruby for a given job.” To
borrow a truly virulent phrase from marketing droids, it’s important to “manage expectations”
or you’ll just end up disappointed with a great language.

Scripts Can Be Faster
“Faster than what?” I hear you cry. Obviously, if I can reduce a program to a fundamental set
of operations like a = b + c * d, then I’d probably expect to be able to make this go faster in
assembler than in C and certainly faster than it would go in Perl/Python/Ruby. The thing is
that, the higher up you go, the more abstraction there is beneath you. That is why, if I want to
add two numbers together, I don’t have to care about their size in a proper high-level language.
In Ruby, I can do this:

puts rand(2 ** 1024) + rand(2 ** 1024)

Hamou_821-0 C03.fm Page 23 Tuesday, May 22, 2007 6:03 AM

24 CH AP T E R 3 ■ A PR A CT I CAL L OO K AT P E R FO R M A N C E

and get this number (which apparently occupies 128 bytes on my machine—see Fixnum.size):

3429966951287068630763358564514779788846096591849013568626191391165527571829454840
6279314521699551934818287945335290525532810964320667210140955105086691313256066588
3083298742100203826571631598171638901862262834655630550984341139646028060594960129
03984941470697967622757742184900269963108529608773479196541427

In a lower-level language, I would have had to know in advance that the numbers I would
be dealing with might be of this obscene size and prepare accordingly. Of course, the abstrac-
tion Ruby provides (in this case via the Bignum class) is something you pay for in terms of the
extra layers of helpful code being run. If I knew I was going to be manipulating billions of these
monsters, I would want to tune a hand-written bit of C to do it.

The Numbers Game
My premise was that scripts could be faster and all I’ve done is show that they are usually more
convenient to write at the expense of some performance. However, execution time is not the
only concern. Suppose I have 1,000 pairs of 128-byte numbers to multiply and that they are
sitting in a text file. Each pair is separated by a space and followed by a newline. Ms. Ruby chal-
lenges my smug-looking, C-wielding, coffee-guzzling colleague to write a program to parse the
file, do the multiplication, and dump the resulting 256-byte-ish numbers to the console.

We start from the same position, a waiting command line in the directory with the text file.
The crowd is hushed . . . a duck quacks . . . and . . . the race is on. The C guy turns to his editor
and starts typing furiously:

#include "stdio.h"
#include "assert.h"

int main(void) {
 /* first the bit to pull in the file
 for quickness we'll assume it's called numbers.txt */
 FILE *f = fopen("numbers.txt", "r") /* open a file descriptor */
 assert (f); /* fail noisily if we couldn't open the file */

 /* need to scan the file but fscanf() isn't going to help because nobody
 defined a conversion code for a number as stupidly large as 1024 bits */
...

Meanwhile, in Ruby land, our fearless heroine thinks, “Well, it’s just an operation on a load
of two-field records—that sounds like a one-liner to me.”

$ ruby -ane 'puts $F[0].to_i * $F[1].to_i' numbers.txt

Resisting the urge to run it, Ms. Ruby reads it back to herself to make sure it makes sense.
For each line (-n) in the file(s) specified (numbers.txt), autosplit the record using default
whitespace rules and assign the array of fields to a variable called $F (-a), which should be
available to a specified bit of code to be executed (-e). That code dumps the product of the
integer conversion of the two fields to the console. Seems good. Press Return and go get a
muffin. Back in blazing-performance-ville:

Hamou_821-0 C03.fm Page 24 Tuesday, May 22, 2007 6:03 AM

CH AP T E R 3 ■ A P R A CT IC AL L O O K A T PE R FO R M A N CE 25

/* OK somebody must have a library for this
 switch to browser - Google for big number libraries */
...
/* what a fool, my system has libbignum already
 right, check the manpage for how to initialize a bignum */
...

At this point, Mr. C looks up and wonders where Ms. Ruby went. He looks with horror at
her console to see 256-byte numbers appearing in rapid succession. He calms himself with the
knowledge that it was always going to be faster to write a Ruby script to do this job, but it’s still
a scripting language. It will take forever to get to the end and . . . oh.

The C program is barely started, let alone compiled or run, while the Ruby script has been
written, run, and thought about over baked goods. Out of sheer determination, Mr. C goes on
to spend most of the next hour writing his program. Once finished, it is indeed blazingly fast,
completing 1,000 pairs in less than half a second, and Mr. C is sure he can make it faster if he
tunes it a little. Mr. C saunters over to show me this, and I demonstrate that Ms. Ruby’s script
completes its run (on my machine) in a little over 1.2 seconds. Following this, Mr. C ventures
away to find a copy of the K&R book, which he plans to roll up and use to reenact the crew-
expendability scene from Alien.

The important point is that there should be some astronomically large dataset whereby
the development time plus the execution time would be less for the C application. Exactly
where this tipping point lies depends on the numerical trends associated with scaling up the
number of pairs—a subject more suited to the next section.

Thus scripts can be so much faster to develop and yet comparable in execution perfor-
mance that they are often faster overall, even for this kind of raw numerical work. Flipping this
around, how about the complementary principle of being slower to write but much faster to
execute? I recently surprised myself by finding a great example of this.

A Script vs. Standard Binaries
The HFS+ file system supports the concept of multifork files and, although Apple now vigor-
ously discourages the practice, you’ll still find the odd resource fork lying around on a modern
Mac. As a system administrator, the portability of data is something I would love to be able to
assume. In reality it is disquieting to try and keep track of what happens to these forks across
every permutation of file system. If I were to move a directory from my hard disk across an NFS
share to a Solaris box that vended it over SMB to the NTFS file system of a Windows machine
that then burnt it to an ISO9660 file system on a CD, what would the result be (aside from a line
of judges holding up scorecards)?

Confronted by this mess, I applied the classic fatalism of an administrator and posed a
different question. If I obliterate the resource forks at source, would anything break? Even if it
did, would anyone give a flying fish stick? After all, if the resource forks are only there because
of some kind of caching, extra icon, added prettiness thing, then I might want them around on
my Mac, but I really don’t need to worry everyone else with them.

My first instinct was to recognize that I was going to be scanning a file system and that
meant the find command. A quick search through the literature revealed that on an OS X box
a resource fork can be addressed as filename/..namedfork/rsrc, which will be nonzero in size
if the fork actually exists. Equipped with these two pieces of information, I took my first stab at
the problem:

Hamou_821-0 C03.fm Page 25 Tuesday, May 22, 2007 6:03 AM

26 CH AP T E R 3 ■ A PR A CT I CAL L OO K AT P E R FO R M A N C E

$ find . -type f -exec test -s {}/..namedfork/rsrc \; -print

Briefly, this executes a recursive find in the current directory (.) for every regular file
(-type f) and executes the test utility to check for a nonzero size (-s) of the corresponding
resource fork. This took about ten seconds to construct and, when I was happy with it, I pressed
Return and waited . . . and waited . . . and waited. The fans in my machine started to whir as it
became progressively less responsive. I killed the process and sat back to have a think about it.
What had I done wrong?

Then it hit me. For every single file in the tree, I was launching an application to check the
size of the pertinent resource fork. One launch per file; tens of thousands of files. Well-written
C applications are like lightning when they’re running, but any runtime has to get going, and
launching an application (even a small one like test) takes time. As it turns out, the few system
operations it takes to test the size of a file are miniscule compared to the instantiation and tear-
down time for test.

Now I was stuck. The find utility didn’t have a specific -rsrc flag for working with such
resources, so it had to use an executable helper to test for a resource fork. I had seen that this
would be unacceptably slow. It was about this time that the Ruby-loving-puppy part of my
brain started jumping up and down. I couldn’t see that a script of mine would be faster than the
godfather of search tools that was find, but I had nothing to lose. I turned to my editor and
wrote Listing 3-1.

Listing 3-1. A Resource-Fork Search Script

#!/usr/bin/ruby -w

Dir["**/**"].each do |f|
 p f if File.ftype(f) == "file" and File.size("#{f}/..namedfork/rsrc") > 0
end

Note the use of the double-globbing pattern as the argument to Dir[], which matches
against everything in the current directory and all children, recursively. As ever, you should
take a look at ri Dir for more detail. For every file system object returned, this code dumps a
nice inspected version of the path if it is a regular file and its resource fork has some content.

I ran this code and nothing happened. I immediately assumed I’d done something wrong,
so I read over it again but really couldn’t spot the error. I switched to a different directory and
tried running it again, and again got nothing. In a moment of desperation, I moved up to the
root of my home folder and tried one final time. After a moment’s delay, I got the names of 12 files
with resource forks.

I couldn’t believe it. There wasn’t anything wrong with the code. It had scanned the hier-
archy that had completely choked my find construction so rapidly that I’d assumed it hadn’t
done anything. The breathless quality of my prose should convey that this was one of those
moments in life that caused me to stop and smile. Orders of magnitude more performance had
been achieved by changing the execution style of the program from executing thousands of
blazingly fast binaries to one moderately fast script.

Hamou_821-0 C03.fm Page 26 Tuesday, May 22, 2007 6:03 AM

CH AP T E R 3 ■ A P R A CT IC AL L O O K A T PE R FO R M A N CE 27

■Note As an aside, I was able to modify the script in Listing 3-1 trivially to delete (truncate) the resource
forks it found when supplied with a particular command line argument. The ability to make this sort of modi-
fication is, of course, exactly the sort of motivation we have for rolling our own scripts in the first place.

Analyzing Performance
There are myriad ways to approach the problem of analyzing your script’s performance. Ruby
ships with a couple of libraries that make this process easier and more productive. We’ll discuss
both simple benchmarking and more in-depth profiling in this section, but before we get to
either of these, it is worth emphasizing that for ultraquick benchmarking, the time command
that is available on most popular UNIX-like systems is still a firm favorite.

The UNIX time Command
You may not have had occasion to use time before, but it couldn’t be simpler:

$ time ruby -e '10000.times { 1 + 2 }'

On my system this yields the following:

real 0m0.283s
user 0m0.105s
sys 0m0.046s

In plain English, this busy little Ruby loop took about a third of a second to run, of which
about a tenth of a second was spent doing user operations and about a twentieth of a second
performing basic system functions. The distinction between user and system operations is
broadly of interest only if a particular operation (like memory allocation or byte copying) eats
up a lot of cycles and the system total becomes disproportionate with respect to the user total.
The value of real - (user + sys) will be the amount of time the process hung around waiting
to do something.

Basic empirical technique requires that many samples be taken under controlled condi-
tions to establish a proper measurement, and I would usually run this test a few (four or five)
times and average out the values. This can become tedious very quickly, which underlines the
fortune of having a library that can do this for us in Ruby: Benchmark.

The Benchmark Library
The concept of a code block in Ruby lends itself naturally to all kinds of operations you might
wish to do on/with such a block. This is particularly true of casual benchmarking, for example:

Hamou_821-0 C03.fm Page 27 Tuesday, May 22, 2007 6:03 AM

28 CH AP T E R 3 ■ A PR A CT I CAL L OO K AT P E R FO R M A N C E

require "benchmark"
require "pp"

integers = (1..100000).to_a
pp Benchmark.measure { integers.map { |i| i * i } }

which gives this:

#<Benchmark::Tms:0x56d4a8
 @cstime=0.0,
 @cutime=0.0,
 @label="",
 @real=0.686983108520508,
 @stime=0.02,
 @total=0.49,
 @utime=0.47>

This probably needs very little explanation. The Benchmark module’s measure method
takes a block of code to be run and keeps track of the time it spends executing user instructions,
executing system instructions, and waiting around (as previously discussed). Note that it also
keeps track of these statistics for any child processes. An object is returned that encapsulates all
of this data and that (as per normal) has a to_s method so that you can write puts Benchmark.
measure { ... } and get a quick summary of user, system, total, and real times.

Generally, this kind of analysis is performed on fairly simple blocks of code to ascertain
which algorithm/approach is faster. Benchmark provides a method that allows you to analyze
performance in batches as shown in Listing 3-2.

Listing 3-2. Benchmarking Different Algorithms

Benchmark.bm(10) do |b|
 b.report("simple") { 50000.times { 1 + 2 } }
 b.report("complex") { 50000.times { 1 + 2 + 3 - 2 - 4 + 5 - 3 } }
 b.report("stupid") { 50000.times { ("1".to_i + "2".to_i).to_s.to_i } }
end

The wrapper method (bm) supplies a reporting object (b) to its block, which can be invoked
with report and a label for each individual test. Note the 10 passed to bm, which is simply an
indication to the pretty-printer as to how much column space it should allow for each label. On
my machine, Listing 3-2 yields the following:

 user system total real
simple 0.050000 0.000000 0.050000 (0.075082)
complex 0.170000 0.000000 0.170000 (0.195587)
stupid 0.300000 0.000000 0.300000 (0.340566)

Hamou_821-0 C03.fm Page 28 Tuesday, May 22, 2007 6:03 AM

mailto:@cstime=0.0
mailto:@cutime=0.0
mailto:@real=0.686983108520508
mailto:@stime=0.02
mailto:@total=0.49
mailto:@utime=0.47

CH AP T E R 3 ■ A P R A CT IC AL L O O K A T PE R FO R M A N CE 29

To go one step further, it’s important to consider how closely you can approach controlled
conditions while testing. Apart from obvious pointers like “avoid playing Quake 4 while
performing the test,” many operations we do with scripts require initialization behavior from
the various subsystems of a machine. For example, if we were reading a file from the disk as
part of our test, that read may go slower the first time than all the subsequent ones if it lives on
a hard disk with an internal cache. Even worse, if it is a popular file, it may already be resident
in the hard disk’s memory for the first test run—leading to unpredictability in the resulting
performance data.

For just such a scenario, Benchmark has a convenience method that will “rehearse” the test
to soak up any such effects before performing a real one. The preliminary test and the proper
one aren’t different fundamentally; they just get presented as such. In a moment sublimely
lacking in marketing glitz, this method was named bmbm, as demonstrated by Listing 3-3.

Listing 3-3. A File-Reading Benchmark with a Rehearsal

Benchmark.bmbm(10) do |b|
 b.report("readlines") do
 IO.readlines("testfile").find { |line| line =~ /radish/ }
 end
 b.report("each") do
 found_line = nil
 File.open("testfile").each do |line|
 if line =~ /radish/
 found_line = line
 break
 end
 end
 end
end

Notice in this listing that, apart from the fact that we’re calling bmbm instead of bm, the usage
characteristics are identical. On my machine, the results obtained look like this:

Rehearsal ---
readlines 0.710000 0.120000 0.830000 (0.937446)
each 0.590000 0.040000 0.630000 (0.718701)
------------------------------------ total: 1.460000sec

 user system total real
readlines 0.680000 0.040000 0.720000 (0.826336)
each 0.550000 0.010000 0.560000 (0.627531)

One of the downsides of not being omniscient is that very often our intuition about what a
program is spending most of its time doing can be wrong. The Benchmark library is all well and
good for comparing potential algorithms, but how can we build a detailed picture of the execu-
tion performance of our scripts? In particular, what data can we generate that will allow us to
home in on the greediest parts of our application?

Hamou_821-0 C03.fm Page 29 Tuesday, May 22, 2007 6:03 AM

30 CH AP T E R 3 ■ A PR A CT I CAL L OO K AT P E R FO R M A N C E

■Tip As implied, this kind of benchmarking is really only useful for the coarsest of performance analyses.
For a good discussion on achieving more statistically credible benchmarking in Ruby, take a look at
http://eigenclass.org/hiki.rb?adaptative+benchmark.

The Profiler Library
The Profiler library can be wrapped around sections of code to yield data on how often particular
methods are visited and how long those visits last. Anyone familiar with profiling C applications
should be right at home with what follows. Let’s start with the easiest way to use this library as
exhibited in Listing 3-4.

Listing 3-4. Simple Profiling (Recursive Method)

require "profile"

def factorial(n)
 n > 1 ? n * factorial(n - 1) : 1
end
factorial(627)

You may notice a distinct lack of any instructions to profile anything. Thus it is kind of
magical that running this listing on my machine gives the following:

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 45.42 1.34 1.34 627 2.14 1930.22 Object#factorial
 15.93 1.81 0.47 626 0.75 1.76 Fixnum#*
 15.59 2.27 0.46 614 0.75 0.75 Bignum#*
 10.51 2.58 0.31 627 0.49 0.49 Fixnum#>
 6.78 2.78 0.20 626 0.32 0.32 Fixnum#-
 5.76 2.95 0.17 614 0.28 0.28 Bignum#coerce
 0.00 2.95 0.00 1 0.00 0.00 Module#method_added
 0.00 2.95 0.00 1 0.00 2950.00 #toplevel

The very act of require profile in Listing 3-4 places the entire script under the watchful
eye of the Profiler library, which automatically spits out its results upon completion. The
whole thing took about three seconds, of which nearly 50% of the time was spent calling our
factorial method in accordance with its frantically recursive nature. Although optimization is
the subject of the next section, this is a good opportunity to try some.

The profile identifies that the most ravenous part of our code is in the 627 calls to factorial.
One of those almost-truisms from computer science is never to choose a recursive algorithm
when an iterative one is available (to avoid enormous stacks, memory usage, object allocation,
etc.). Let’s try Listing 3-5 instead.

Hamou_821-0 C03.fm Page 30 Tuesday, May 22, 2007 6:03 AM

http://eigenclass.org/hiki.rb?adaptative+benchmark

CH AP T E R 3 ■ A P R A CT IC AL L O O K A T PE R FO R M A N CE 31

Listing 3-5. Simple Profiling (Iterative Method)

require "profile"

def factorial(n)
 (2..n).to_a.inject(1) { |product, i| product * i }
end
factorial(627)

Running this listing on my machine shows that switching to an iterative form does the
trick, bringing the execution time down from the previous 3 seconds to a more respectable
80 milliseconds:

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 50.00 0.04 0.04 1 40.00 80.00 Array#each
 50.00 0.08 0.04 614 0.07 0.07 Bignum#*
 0.00 0.08 0.00 1 0.00 80.00 Object#factorial
 0.00 0.08 0.00 1 0.00 80.00 Enumerable.inject
 0.00 0.08 0.00 1 0.00 0.00 Module#method_added
 0.00 0.08 0.00 12 0.00 0.00 Fixnum#*
 0.00 0.08 0.00 1 0.00 0.00 Range#each
 0.00 0.08 0.00 1 0.00 0.00 Enumerable.to_a
 0.00 0.08 0.00 1 0.00 80.00 #toplevel

You may be wondering (given that this is an interpreted language and all) how much of an
impact the profiling is having on the execution itself. The scholastic answer is, who on earth
knows? The assumption is that whatever impact it’s having is evenly spread so that the relative
differences between the method calls are preserved (albeit with higher total time values).

To get slightly more control over the profiling, it is necessary to perceive that the use of
require profile is actually a convenience approach. The module being employed is actually
called Profiler__ and can be used as shown in Listing 3-6.

Listing 3-6. Fine-Grained Profiling

require "profiler"

we'll assume this definition is expensive and might skew the results
def factorial(n)
 (2..n).to_a.inject(1) { |product, i| product * i }
end

hence we only want to profile this exact bit of code
Profiler__.start_profile
factorial(627)
Profiler__.stop_profile
Profiler__.print_profile($stdout)

Hamou_821-0 C03.fm Page 31 Tuesday, May 22, 2007 6:03 AM

32 CH AP T E R 3 ■ A PR A CT I CAL L OO K AT P E R FO R M A N C E

Beyond this example there’s not a lot to say. Obviously, whole books have been written on
runtime performance analysis, and I encourage you to explore the literature if you’re interested
in some of the deeper processes. Now that we have explored the main ideas and methods
employed in gauging script performance, it’s time to discuss how best to use that knowledge to
speed things up.

Optimization
Kernighan and Ritchie’s general advice on optimization was one word: don’t. Having seen
what optimization can do to the readability of a chunk of C, I completely sympathize with this
sentiment. However, we are discussing Ruby and so must recognize a fundamental difference.

Ruby’s high-level, ultraportable nature means that we don’t (normally) have access to
many of the raw operations that C programmers agonize over. Is one memory-copying strategy
better than another? Do I need to maintain a pointer reference to avoid dereferencing lookup
instructions? Should this integer be unsigned 16-bit or signed 32-bit?

Such questions are way too low-level to start with. As always, the gathered data is the key.
Attempting to optimize blindfolded may impress the circus-skills crowd, but it just makes
unnecessary work. Profile your code and work out what is genuinely slowing things down.

Once you have concluded empirically where the bottlenecks reside, there are a number
of different optimization approaches to be tried. In general, I find the following order of work
most useful:

1. Check the algorithms (what a fair chunk of computer science is about).

2. Check the expressions (ensuring that the language is being used properly).

3. Check the implicit operations (being mindful of side effects like memory allocation).

4. Kick down into C (showing that you still have 133+ h4x0r skills).

I’m going to provide a brief section on each of these approaches with examples. It is
important to remember that optimization is a very script-specific process and the following
sections describe only the most general rules of thumb. I will also say that the line between
steps 2 and 3 is at best a little blurry.

Algorithmic Optimization
You will remember from Listings 3-1, 3-4, and 3-5 that a simple change in algorithm can have
a demonstrably huge effect on performance. In fact, optimizing the algorithms employed by
code is just good practice, irrespective of language or platform (with due deference to the point
made earlier about balancing development time against execution speedup). Such optimiza-
tion can often be a tradeoff between CPU time and memory—choosing whether to employ
lookup tables instead of values that are calculated on demand, for example.

One very simple optimization that often helps improve performance is recognizing that a
number of lookups will take place and thus switching from searching to hashing. This approach
is exhibited by Listing 3-7, where paragraph is an array of individual words.

Hamou_821-0 C03.fm Page 32 Tuesday, May 22, 2007 6:03 AM

CH AP T E R 3 ■ A P R A CT IC AL L O O K A T PE R FO R M A N CE 33

Listing 3-7. Using a Hash to Speed Up Uniqueness Operations

words = []
paragraph.each do |word|
 words << word unless words.include?(word)
end

versus...
words = {}
paragraph.each do |word|
 words[word] = nil
end
words = words.keys

If I benchmark the two alternatives from this listing with the first 10,000 words from my
system dictionary, the first algorithm takes 13.42 seconds while the second takes 0.04. The
reason the first is so awful is that every time it adds a word to the array, the word has to be
checked against all the ones already added, one by one. More formally, the nth word is brute-
force checked against up to n – 1 other words (this is the worst case and does apply to this
example as the dictionary is a list of unique words). On the other hand, the whole point of a
hash lookup is to provide key-specific assignment and retrieval that should be largely unaf-
fected by the number of objects in the collection.

Interestingly, Ruby’s built-in Array.uniq is actually faster than either of the algorithms
thus far discussed. Reworking the example to use uniq gives simply this:

words = paragraph.uniq

The introduction of uniq is by way of making an obvious point that the built-in classes and
methods (as well as those you might get from other libraries) will have had a lot of scrutiny and
will usually be comparably fast to any algorithm you might design to do the exact same thing.
At the very least, they should be close enough to this ideal that using them would defer your
optimization focus to other sections of code.

Linguistic Optimization
Every language has its own peculiarities that can be addressed to improve performance. One
peculiarity that C and Perl programmers will be eminently familiar with is optimization of
conditionals. For example, suppose an object has three methods that all return a Boolean
value. Now imagine that the first (empty) is about ten times quicker to run than the second
(positioned?), which is five times faster than the third (made_of_diamond?). Thus if we wish to
take an action based on all of these methods returning true, we would construct a conditional:

lemon.squeeze if press.empty? and press.positioned? and press.made_of_diamond?

Ruby will evaluate this conditional from left to right so that press.empty? is handled first.
If this first method were to return false, there could be no permutation of the other two methods
that would allow the overall result to be true. Thus Ruby does not need to run the other two
methods to know that it should skip lemon.squeeze and move on. Similar logic applies to or

Hamou_821-0 C03.fm Page 33 Tuesday, May 22, 2007 6:03 AM

34 CH AP T E R 3 ■ A PR A CT I CAL L OO K AT P E R FO R M A N C E

conditions. Appreciating the strict order of evaluation (and Ruby’s ability to take this kind of
shortcut), we conclude that such multiconditionals should always be ordered from least to
most expensive.

Symbols vs. Strings

I mentioned the concept of a symbol previously and basically glossed over it. I want to come
back to it now because it is actually quite important from a performance perspective. Remember,
strings are things in either single or double quotes, whereas symbols start with a colon:

$ ruby -e 'p "hello".class, :again.class'
String
Symbol

One of the reasons symbols are so popular for things like hash keys and method arguments
(as discussed in the next chapter) is that both involve unique namespaces. The value for a
particular key in a hash is a unique thing and so, because it improves performance and makes
for less typing and easier reading, Ruby-philes tend to use symbols rather than strings for
hash keys.

You may wonder why the use of symbols improves performance. Without plumbing the
labyrinthine depths of the Ruby interpreter, it should suffice to say that symbols live in a global
symbol table, which is optimized for fast lookups and efficient storage. This is in contrast with
strings, which are genuine objects that lurk on the heap and have all of the baggage associated
therewith. Consider the benchmarks encapsulated by Listing 3-8.

Listing 3-8. Symbol vs. String Assignment

require "benchmark"

NUM_TRIALS = 10 ** 7
Benchmark.bmbm do |b|
 b.report("symbol") do
 NUM_TRIALS.times { me = :andre }
 end
 b.report("string") do
 NUM_TRIALS.times { me = "andre" }
 end
end

The code in this listing is quite simple. It causes either a symbol (:andre) or a string ("andre")
to be assigned to a variable (me). In the case of the symbol, the interpreter needs to instantiate
it only once, and then it just keeps pointing back to the symbol every time it is assigned or
otherwise used. The string, however, must be allocated as a brand-new object each time the
benchmarking loop runs, wasting time building and tearing down virtually identical objects.
The data speaks for itself. Here’s the output from Listing 3-8 on my laptop:

Hamou_821-0 C03.fm Page 34 Tuesday, May 22, 2007 6:03 AM

CH AP T E R 3 ■ A P R A CT IC AL L O O K A T PE R FO R M A N CE 35

Rehearsal --
symbol 8.030000 0.050000 8.080000 (8.736397)
string 11.700000 0.110000 11.810000 (12.980448)
-------------------------------- total: 19.890000sec

 user system total real
symbol 8.030000 0.040000 8.070000 (8.698801)
string 11.700000 0.110000 11.810000 (12.955105)

General String Operations

Regular expressions can be hairy to write and impossible to read. Indeed, you might expect one
of the simple String methods (like include?) to be faster than a Regexp with the same behavior.
The take-home warning of this subsection is to avoid making such assumptions. Have a look at
Listing 3-9.

Listing 3-9. String.include? vs. String.=~

require "benchmark"

words = IO.readlines("/usr/share/dict/words")

Benchmark.bmbm(15) do |b|
 b.report("include") do
 words.each { |w| next if w.include?("abe") }
 end
 b.report("regexp") do
 words.each { |w| next if w =~ /abe/ }
 end
end

Because there is no way to be certain what’s going on behind the scenes in either of the
cases presented in this listing (at least with access only to this code), it is difficult to predict
which of them should be faster. The C programmer in me assumes that the first should be,
because finding one string in another seems like it has to be faster than building a regular
expression matcher in memory and then executing it. However, the string ("abe") is an object,
not a C array. String.include? could be implemented on top of the regular expression library
for all we know and the regular expression parser could be really efficient. Hence the need for
benchmarking:

Hamou_821-0 C03.fm Page 35 Tuesday, May 22, 2007 6:03 AM

36 CH AP T E R 3 ■ A PR A CT I CAL L OO K AT P E R FO R M A N C E

Rehearsal --
include 0.440000 0.010000 0.450000 (0.566975)
regexp 0.330000 0.010000 0.340000 (0.392143)
--- total: 0.790000sec

 user system total real
include 0.440000 0.000000 0.440000 (0.564176)
regexp 0.330000 0.000000 0.330000 (0.430611)

There you have it: exactly the opposite of what I expected the first time I did this test. The
regular expression approach is the faster. I encourage you to consider this behavior when
writing tight parsing loops and having to choose between a regular expression and some dedi-
cated function of String.

Side Effect Reduction
High-level languages are so called because they do a lot on your behalf. This can lead to a great deal
of overhead if we are not careful about how we construct code and mindful of its implications.

Ruby is pretty adept at keeping extra operations to a minimum, so I don’t believe I’ve ever
encountered any broadly applicable optimization examples involving such reduction. On the
other hand, something that Ruby is (and most other interpreted languages are) very good at is
soaking up memory. All those objects, symbols, and dispatch tables have to live somewhere, so
it’s possible to reduce the impact of an application quite a lot by making discreet changes to
your data-handling strategy.

I will emphasize that these changes should almost always be secondary to creating easy-
to-maintain code. Such approaches tend to work around default behavior/features in the
language that you don’t need in a particular situation but probably would in general. In other
words, they can cause you to lose the aspects of Ruby that make code easy to read, write, and
supplement.

Lazy Instantiation

One of the first things we do with a Class definition in Ruby is to craft an initialize method to
set everything up ready for later use. This is very important in keeping bookkeeping code sepa-
rate from the actually useful logic of the class. However, it does kind of assume that you can
predict what you’re going to need in advance of the point of actually needing it. In practice, this
means that you have to be as pessimistic as possible in instantiating objects tracked by your
class. Consider a class as defined in Listing 3-10, which tracks employees and in turn the amounts
of money they embezzle.

Hamou_821-0 C03.fm Page 36 Tuesday, May 22, 2007 6:03 AM

CH AP T E R 3 ■ A P R A CT IC AL L O O K A T PE R FO R M A N CE 37

Listing 3-10. A Simple Class to Track an Employee’s Understanding of the Word “Fraud”

class Employee
 def initialize
 @embezzled = []
 end

 def embezzle(amount)
 @embezzled << amount
 end

 def embezzled_total
 @embezzled.inject(0) { |sum, amount| sum + amount }
 end
end

Being pragmatic, we assume that every employee will engage in enough creative book-
keeping that we perform none of our own and simply create an @embezzled array during object
initialization. Now imagine we have 22 million employees (and a personnel department the
size of Belgium). If only five of these employees are dishonest, we will create 21,999,995 empty
arrays that will always be empty.

Doubtless you see where I’m going here. Instead of creating the array to begin with, we set
@embezzled = nil and add a tiny bit of noise to our two other functions as shown in Listing 3-11.

Listing 3-11. Improving the Employee Class to Instantiate the @embezzled Array Lazily

def embezzle(amount)
 (@embezzled ||= []) << amount
end

def embezzled_total
 (@embezzled || []).inject(0) { |sum, amount| sum + amount }
end

Ruby has a marvelous syntax for coping with situations where nils might be floating
about. Examining embezzled_total first, the result of the new bracketed expression will be
whatever value @embezzled has except if it’s nil. In such an event, the bit after the logical OR
(||) takes over and the result is a new, empty Array. What I love about this convention is its
natural language–like construction: “a (or b if a is nil)”.

Moving to the embezzle method, we expand upon this syntax with an inline assignment: “a
(or b if a is nil—setting a to b’s value)”. If you think about it, it’s really just another one of those
operate-and-assign instructions. Just as a += b is short for a = a + b, so a ||= b is really
a = a || b. It’s worth noting that standard Ruby logic rules apply, so everything I’ve just described
for a variable with value nil will work equally well for one with value false.

Hamou_821-0 C03.fm Page 37 Tuesday, May 22, 2007 6:03 AM

mailto:@embezzled.inject

38 CH AP T E R 3 ■ A PR A CT I CAL L OO K AT P E R FO R M A N C E

With the improvements made, we save a whole bunch of memory. Of course, we’ve also
made adding an embezzlement amount slightly slower, as there’s now an extra conditional
check every time embezzle is called. It is possible to shortcut this disadvantage with a feat of
lunatic daring called a self-destructing method, but this is so beautifully abstract that I’m going
to save it for the next chapter.

Before moving on, I’ll draw your attention to another bit of laziness in our code. The total
amount embezzled is calculated live, on demand. This bit of lazy evaluation could also be
pivotal as a design choice. If embezzled_total were to be called frequently, it would be well
worth caching the pertinent amount rather than calculating it each time. This approach is
codified in Listing 3-12.

Listing 3-12. Exchanging Memory for Performance by Caching the Embezzlement Total

def embezzle(amount)
 (@embezzled ||= []) << amount
 (@embezzled_total ||= 0) += amount
end

def embezzled_total
 (@embezzled_total || 0)
end

In practice, nobody would write embezzled_total in full as shown in the listing. After all,
it’s very close to being the same as attr_reader :embezzled_total. Also, it may be overkill to
lazy-instantiate @embezzled_total, as Ruby really doesn’t have a lot of overhead for storing
integers (particularly small ones). Taken together, these points mean that you would likely
instantiate @embezzled_total in Employee.initialize and use the attribute reader macro to
provide access to it.

Lightweight Data Structures

For structuring data in Ruby, there are two options: formal classes and the collection classes
(Hash and Array). The collection classes tend to get used very heavily for casual data wrangling
(a vast number of small problems reduce to hash-of-array-style structures or something similar).
However, there is usually a natural tipping point where a formal class becomes the weapon
of choice. A dedicated class gives you all of the benefits of encapsulation previously enthused
about, whereas a Hash requires less code and might be faster. Consider Listing 3-13.

Listing 3-13. A Formal Class vs. a Hash

require "benchmark"

class Goat
 def initialize(name, smell)
 @name = name
 @smell = smell
 end
end

Hamou_821-0 C03.fm Page 38 Tuesday, May 22, 2007 6:03 AM

CH AP T E R 3 ■ A P R A CT IC AL L O O K A T PE R FO R M A N CE 39

Benchmark.bmbm do |b|
 hash_goats, class_goats = [], []
 b.report("hash") do
 100_000.times do
 hash_goats << {:name => "George", :smells => "Terrible" }
 end
 end
 b.report("class") do
 100_000.times do
 class_goats << Goat.new("George", "Terrible")
 end
 end
end

Since I haven’t mentioned it before, note the allowance of an underscore in numbers to
make them easier to read—one of those nice little touches in Ruby. The bare numerical results
for this battle of structures are as follows from my machine:

Rehearsal ---
hash 0.420000 0.050000 0.470000 (0.521275)
class 0.560000 0.050000 0.610000 (0.656268)
-------------------------------- total: 1.080000sec

 user system total real
hash 0.570000 0.030000 0.600000 (0.650021)
class 0.790000 0.080000 0.870000 (0.945400)

For this simple assignment, the Hash outperforms our Goat class. However, I would argue
that these kinds of results support sticking with the benefits of a full class unless there is a very
real need to squeeze every last drop of performance out of a script. As for memory usage issues,
the exact memory profile of a script is (to a large extent) up to the garbage collector. Any tests I
was able to do showed very little difference in the increase in memory associated with creating
100,000 of either of these entities.

■Tip You might also want to consider using the Struct class, which is a simple entity that allows you to
create objects with named variables (much like a struct in C). Struct objects make for a useful middle
ground as they use less memory to store their members than an equivalent class using instance variables.
Take a look at ri Struct for more information.

Dropping the C Bomb
Ruby’s ability to integrate with C applications is one of its most brilliantly executed features.
There are plenty of sources describing how to write a C extension to Ruby (or vice versa). However,

Hamou_821-0 C03.fm Page 39 Tuesday, May 22, 2007 6:03 AM

40 CH AP T E R 3 ■ A PR A CT I CAL L OO K AT P E R FO R M A N C E

since this is a section on optimization, I want to examine the usefulness of one particular
extension technique: in-lining.

Apart from being one of those words that looks like the result of someone trying to cope
with a particularly vicious Scrabble hand, in-lining is beneficial as an optimization strategy
because it is so in tune with the process of optimization itself. We identify a section of oft-run
code that needs to be tighter. We cannot find algorithmic, linguistic, or even side effect reductive
solutions. Hence, we endeavor to replace the section of code with a fearsome bit of hand-
optimized C. Note this process could apply to assembler as well, but then only four people
would ever be able to maintain your code and all of them live in institutions.

There is a marvelous gem called RubyInline (as usual, visit Chapter 10 for setup details).
This library is broadly modeled on ideas from Perl’s in-liner. What it allows you to do is to have
a block of C code sitting in the middle of your Ruby that can not only be run as though it were
inline (duh), but also bind things like C function names directly to your code so you can call
them as though they were Ruby methods. Take the set-bit counting algorithm described in
Listing 3-14.

Listing 3-14. Pure Ruby vs. In-lined C for a Given Algorithm

require "benchmark"
require "inline"

class Integer
 def count_set_bits(use_c = false)
 return csb(self) if use_c
 return 0 if self.zero?
 bits, x = 1, self
 bits += 1 while (x = x & (x - 1)).nonzero?
 bits
 end

 inline do |builder|
 builder.c "int csb(long x) {
 if (x == 0) return (x);
 int bits = 1;
 while ((x = x & (x - 1))) bits++;
 return (bits);
 }"
 end
end

Benchmark.bmbm do |b|
 b.report("ruby") { 100_000.times { 152363.count_set_bits } }
 b.report("c") { 100_000.times { 152363.count_set_bits(true) } }
end

The difference that writing the algorithm in C makes is really quite substantial:

Hamou_821-0 C03.fm Page 40 Tuesday, May 22, 2007 6:03 AM

CH AP T E R 3 ■ A P R A CT IC AL L O O K A T PE R FO R M A N CE 41

Rehearsal --
ruby 1.940000 0.020000 1.960000 (2.255809)
c 0.170000 0.000000 0.170000 (0.189972)
------------------------------- total: 2.130000sec

 user system total real
ruby 1.950000 0.020000 1.970000 (2.521235)
c 0.170000 0.000000 0.170000 (0.206750)

Obviously, system administrators don’t tend to need to optimize this sort of algorithm
very often, but timetabling or other sorts of constraint-based problems might benefit greatly
from being able to in-line small chunks of C. In addition, some institutions will have prebuilt
C/C++ libraries for doing some of their back-end work. Imagine how useful this approach would
be in preserving that work while reaping the benefits of surrounding it in a modern language.

Ramming Speed
Hopefully, you’ve picked up a sense of the ability of a Ruby script to be truly performant even
when compared with its more traditional, compiled brethren. We’ve looked at some of the
major ways in which performance can be analyzed and bottlenecks found, and we’ve explored
some of the techniques with which such problems can be alleviated.

The ability to write fast code is important, but it isn’t what makes Ruby so compelling. The
reason that Ruby adapts so well to almost any conceivable project is due to its linguistic dyna-
mism. The versatility of metaprogramming is something that Ruby provides in abundance and
can be of great use to the system administrator; thus it is the focus of the next chapter.

Hamou_821-0 C03.fm Page 41 Tuesday, May 22, 2007 6:03 AM

Hamou_821-0 C03.fm Page 42 Tuesday, May 22, 2007 6:03 AM

43

■ ■ ■

C H A P T E R 4

The Power of
Metaprogramming

So far, you’ll have acquired an impression of the basics of Ruby—its flavor, if you will. For me,
what really sets it apart is the way in which it facilitates metaprogramming. Of course, this is a
somewhat nebulous statement if one hasn’t properly defined what class of programming is
worthy of such a prefix (see the sidebar “Meta . . . What?”).

This is the last of the chapters that take a “did you know?” approach to the language itself,
identifying features that will be useful in your day-to-day programming. The concepts presented
in this chapter are not inherently system administration–specific, but they are key to writing
clean, expressive Ruby code. Moreover, the techniques discussed here can allow for some truly
powerful approaches to traditional system challenges (as you will see throughout the rest of
the book).

In this chapter I discuss things like macros, dynamic methods, and domain-specific
languages. All of these fit under the general umbrella of “code that does something with code.”
This is probably the most intuitively obvious definition of metaprogramming, and anyone
who’s ever used a #define statement in C to enable the writing of less noisy code will be
eminently familiar with such concepts.

In addition to these customary metaprogramming techniques, this chapter also examines
flexible method signatures, class extension methodologies, and even a few examples that really
show off Ruby’s near-gymnastic flexibility.

META . . . WHAT?

To be honest, this word “metaprogramming” has never been on very solid footing. Particularly over the last
few years, it seems to have come to refer to any code construction concept that hasn’t been widely used or
seen before. So you pick a language like Perl, take everything Ruby does that’s more expressive or dynamic,
and call that metaprogramming. That said, Ruby continues to surprise me with just how small it can make my
code. The ability to refactor a problem not just by juggling functions around, but by restructuring the language
almost at will makes for often remarkable productivity increases.

Because I am a bear of very little brain, it has taken my forays into Ruby coding to truly recognize that
any programming language is merely an abstraction in the same fashion as any library for that language. What
we think of as keywords or primitives in a language are nothing more than defined and abstracted functionality.

Hamou_821-0 C04.fm Page 43 Tuesday, May 22, 2007 6:04 AM

44 CH AP T E R 4 ■ T HE PO W E R O F M E T AP R O G R AM M IN G

The reason that Ruby forces this conclusion home is that it genuinely blurs the boundary between what
you think of as the language and what you refer to as a library. Ruby’s pure object-oriented nature is what
makes it possible to override and augment so much of its behavior. In other words, saying that “everything is
just an object” is actually a profoundly liberating assertion. It means that the language requires very few primitives
and that absolutely everything else can be tinkered with.

Flexible Method Signatures
One obvious benefit of Ruby’s versatility is the approach it allows when constructing and calling
methods. In this section, we’ll take a look at how to simplify and generalize method signatures
(argument patterns) with default values. We’ll also see how such signatures may be further
empowered through the use of parameter hashes. Finally, we’ll examine an extremely powerful
convention for dynamic method construction.

Default Values
One of the nicer features of C++ (and other languages) is the availability of method polymorphism.
Specifically, methods can be defined that all share the same name but that have different signa-
tures (one might take two integers while another takes three). Thus it is possible to define a
method that adapts to the number and nature of its arguments. Polymorphism support also
means that, if a method is discovered that would benefit from some extra parameter, the
behavior of the method with this parameter can be “bolted on” so as to yield extra functionality
without breaking any existing code.

■Note In the particular case of C++ (due to its static nature), method signature changes require a
recompilation and relinking of all dependent code. This can be a big hassle for large code bases.

In Ruby, such requirements are catered for a little differently. The feature of being able to
add arguments without breaking code can be looked at in reverse. In the spirit of making Ruby code
as terse as possible, methods are often designed to take as few parameters as the programmer can
get away with. In order to avoid having this lead to a paucity of control, extra parameters can
be defined along with default values. Thus the user of such a method need only specify values
for such arguments when the default values must be overridden.

Imagine a scheduling class that is initialized with starting and finishing times and is able
to determine whether a supplied time value is within the schedule’s range. Casually, this class
might be used as follows:

now = Time.now
schedule = Schedule.new(now - 3600, now + 3600)
schedule.current?(now) # => true

Before we try to build this class, take a look at the final line. For testing purposes, we might
wish to be able to specify times in the past or future at which to test the currency of the schedule.

Hamou_821-0 C04.fm Page 44 Tuesday, May 22, 2007 6:04 AM

CH AP T E R 4 ■ TH E P O W E R O F M E T AP R O G R AM M IN G 45

Hence Schedule.current? takes a parameter of the time at which the check is to be made. Over-
whelmingly, however, we are just going to want to know whether the schedule is current now (as
we do in the preceding code). It would be nice to be able to invoke current? without a parameter
and still get the same functionality. This is achieved in Listing 4-1.

Listing 4-1. A Class That Includes a Method Definition with a Default-Specified Parameter

class Schedule
 def initialize(from, to)
 @from, @to = from, to
 end

 def current?(time = Time.now)
 @from <= time and time <= @to
 end
end

As you can see from this listing, setting a parameter equal to some value specifies a default
value for that parameter. The value can be an object or an expression that returns an object.
Note that the expression in Listing 4-1 to return the current time (Time.now) is evaluated at
runtime each time the method is invoked, rather than via static substitution as seen in lesser
languages. Obviously, we are not limited to one default-valued parameter. Listing 4-2 shows a
method with two default-valued parameters.

Listing 4-2. A Method with a Number of Default-Specified Parameters

def rolecall(person1, person2 = "Dick", person3 = "Harry")
 "#{person1}, #{person2} and #{person3}"
end

rolecall("Tom") # => "Tom, Dick and Harry"
rolecall("George", 42) # => "George, 42 and Harry"

Not only does Listing 4-2 demonstrate the overriding of default values, but it also shows
that required and optional parameters can coexist. If we tried to call rolecall with no parameters,
an exception would be raised, as there is no way for the interpreter to cope with such a call
given that at least one parameter is needed. In other words, rolecall has an arity of between
one and three (it takes between one and three arguments).

Listing 4-2 also has a sneaky example of duck typing. Because Integer and its subclasses
respond to the to_s method (which is implicitly called on the finally evaluated value of each
#{...} block in the method), we were able to pass in a number as a person’s name.

It should be evident that once a parameter is given a default value, all subsequent parameters
to the method must also have one. Otherwise, the Ruby interpreter would have to guess whether an
argument was overriding a default-valued parameter or specifying a value for its neighbor.

Whether or not this ability is particularly “meta” is debatable and really depends on the
definition of a method. Administrators used to shell scripting will recognize that this is really
nothing new (although being able to specify expressions as defaults rather than constants is
somewhat novel).

Hamou_821-0 C04.fm Page 45 Tuesday, May 22, 2007 6:04 AM

46 CH AP T E R 4 ■ T HE PO W E R O F M E T AP R O G R AM M IN G

Parameter Hashes
A more genuinely high-level time-saver is the idea of using a hash to pass optional parameters
to a method. Ruby has a nice syntactic convention such that

cook("fish", "portions" => 2, "style" => "Cajun")

is semantically identical to

cook("fish", {"portions" => 2, "style" => "Cajun"})

More properly, if the last argument in a method call is a hash, then the curly brackets may
be omitted to reduce the clutter a little. Of course, passing values in a hash allows for named
parameters, a concept that’s been repopularized by Objective-C (for one). In addition, the use
of a hash means that the user can specify only those values that she wishes to override in cases
where the method has some notion of default behavior.

We will construct a method definition that takes advantage of these concepts in just a
moment. Before we do, I want to review the concept of a Symbol. As I have mentioned previ-
ously, symbols are often used as hash keys because they have both speed and style advantages.
They are particularly appropriate in the case of parameter hashes, as the same old set of keys
will tend to be used repeatedly. Thus it makes sense to use an entity that gets allocated only
once and isn’t subject to the performance hit of a dynamically allocated, mutable string. From
here on, we’ll discard the use of strings in favor of symbols wherever possible, as in Listing 4-3.

Listing 4-3. A Skeleton Method That Uses Dynamic Parameters from a Hash

def install_package(name, params = {})
 path = (params[:path] || "/")
 receipt = (params[:receipt] || true)
 # do something with the package name, path, and receipt flag
end

The first thing to note with this listing is that we didn’t simply choose to have everything
passed dynamically. Often, there is a logical subset of parameters without which the method
makes absolutely no sense. Such parameters should be given pride of place in the method
signature as arguments in their own right (as we did for name in Listing 4-3).

This method signature also uses the concept of a default for a parameter so that it really
could be called like this:

install_package("Tux Racer")

which is in keeping with the optional nature of the rest of the arguments. Alternatively, the way
this method is constructed allows us to override items like the default installation path:

install_package("Tux Racer", :path => "/games")

The “this or that” construction use in Listing 4-3 is great for casually constructed defaults.
However, for reasons of modularity or even nonrepetition, we may wish to factor out the

Hamou_821-0 C04.fm Page 46 Tuesday, May 22, 2007 6:04 AM

CH AP T E R 4 ■ TH E P O W E R O F M E T AP R O G R AM M IN G 47

process of accumulating default values. For instance, we may end up with a series of methods
that all need the same set of parameters with the same default values. If we don’t want to step
up to full-blown configuration classes (which have always struck me as atom bombs to crack
walnuts), then we need to create a method that will ensure any unspecified setting in the parameter
hash is created with its default.

More specifically, we have some cloud of settings that we want to merge into the parameter
hash passed by the user. It turns out that the Hash class has an ideal method for this, as demon-
strated in Listing 4-4 (see ri Hash.merge for more detail).

Listing 4-4. An Outsourced Default-Setting Mechanism

def package_defaults(params)
 {:path => "/", :receipt => true}.merge(params)
end

def install_package(name, params = {})
 params = package_defaults(params)
 # do something with name, params[:path], and params[:receipt]
end

Missing Method Dynamic Dispatch
Default-valued parameters are useful, and dynamic methods using parameter hashes are kind
of neat. For genuinely impressive dynamism, though, we can turn to being able to call methods
that don’t exist.

Calling a method that doesn’t exist isn’t some Zen thing. We aren’t talking about whether
a method makes a noise like one hand clapping if it falls in the middle of a subroutine and
there’s no one around to debug it. Rather, we return to the idea that any method can be over-
ridden. In particular, Object has a method called method_missing, which is invoked when a
script calls a method that doesn’t exist. Since everything inherits from Object, any class can
override the behavior of this wonderful little method.

You may wonder what good it could possibly do to intercept what is essentially a cry of
panic from a given object. The answer lies in the method signature for method_missing:

def method_missing(symbol, *args)
 # do something with the symbol or the arguments or both
end

The first argument (symbol) is unsurprisingly the name of the method that was called.
Remember that there are very few undefinable methods in Ruby, so symbol can look like count=
or []= as well as more humdrum examples like flush. The second argument (args) is used to
soak up all arguments passed to the method in a single array.

Anyone who’s used Rails will be familiar with its dynamic finders that allow you to do
things like User.find_by_name("slartibartfast"). Although there is quite a lot of structured
complexity behind these finders, they are essentially powered by a dynamic dispatch from the
missing method routine—something like that shown in Listing 4-5.

Hamou_821-0 C04.fm Page 47 Tuesday, May 22, 2007 6:04 AM

48 CH AP T E R 4 ■ T HE PO W E R O F M E T AP R O G R AM M IN G

Listing 4-5. Skeleton Example of Dynamic Dispatch Through method_missing

def method_missing(symbol, *args)
 if symbol.to_s =~ /^find_by_(\w+)$/
 fields = $1.split("_and_")
 # build a query based on the fields and values (args)
 else super
 end
end

The first thing to watch out for with the approach demonstrated in Listing 4-5 is assuming
that a Symbol behaves exactly like a String on the grounds that they are intimately related.
Listing 4-5 contains an explicit cast (to_s) before performing the regular expression match.
This casting strategy copes with the subtle differences between symbols and strings without
making any assumptions that might lead to code fragility.

The other point of interest here is the now-familiar use of super. In this context, the use of
super means that having a method_missing override for specific method names won’t interfere
with the normal exception process for genuine miscalls. Once again the nature of object-oriented
inheritance ensures the minimum amount of code noise for the maximum amount of flexibility.

Macros
It is interesting and probably highly irrelevant that if you place the emphasis on the second
syllable of the word “macro” and give the “r” a bit of a roll, it sounds like a word in Arabic
meaning “frowned upon” or “disapproved of.” Plenty of very smart people disapprove of
macros in general, not because they are inherently bad, but rather because the line between
use and abuse is almost paper-thin. I’m not nearly as smart as those people, so I love macros
unconditionally.

We’ve already seen that Ruby has methods like attr_accessor, which somehow imbues a
class with a pair of methods for getting and setting a particular instance variable. This is a method
that builds other methods, so I’m pretty comfortable calling it a macro. The fact that it is defined
as part of the basic language might tempt us to think of it as a keyword (particularly given that
it does something so fundamental to a class). However, recalling the discussion about Ruby’s
inherent blurring of such terms, a quick ri attr_accessor reveals that it’s actually a method of
Module.

Module Inclusion
This general idea of adding bundles of functionality to a class or even an instantiated object
runs throughout the language and is fundamental to the operation of a mix-in. Ruby does not
have multiple inheritance, so acquiring abstract behavior from multiple sources requires a
different approach. A mix-in is most often a simple collection of functions that can be added to
any class that obeys a method contract. That is to say that if your class implements certain
basic methods, a whole range of behavior can be built on top of those methods. The quintes-
sential example of this is the Enumerable module.

Hamou_821-0 C04.fm Page 48 Tuesday, May 22, 2007 6:04 AM

CH AP T E R 4 ■ TH E P O W E R O F M E T AP R O G R AM M IN G 49

If you create a collection class that has an each method for iterating through the members,
you can get a number of useful methods “for free” by including the Enumerable module. These
include detect, each_with_index, include?, inject, and zip. In addition, if the objects in your
collection implement the standard comparison method (<=>), Enumerable gives you max, min,
and sort.

These methods may seem familiar as Array implements them all. It does so by including
Enumerable and implementing each. Let’s give this a try ourselves with Listing 4-6.

Listing 4-6. Skeleton Implementation of an Enumerable Collection

class Toybox
 include Enumerable
 def each
 yield toy while (toy = retrieve_toy)
 end
end

With a class definition like that in Listing 4-6, we could call toybox.include?(some_toy)
without having to write the include? method explicitly. Enumerable will use our each function
(the details of which I have left sketchy as they are unimportant) to iterate through the collection
and search for the specified toy.

Now that we’ve tried one of Ruby’s built-in modules, we’ll take the next step and create
one of our own. This module will generalize the concept of a contactable entity. This would be
of use if you had two unrelated classes that modeled users of a system and servers with auto-
mated mailboxes. In such a case, it is often difficult to factor out a superclass of both that would
implement common functionality.

Superclasses factored out to implement common functionality tend to end up with names
like Entity, which is really just another word for Object. Whenever I catch myself using such a
name, I know it’s time for a mix-in. In this instance, we’ll create a module called Contactable
with the contract shown in Table 4-1.

We might assume that a User would have both an e-mail address and a fax number, but it
is less likely that a Server would have the latter. We could make the first item of the requirements
compulsory and the second optional. Assuming that integration of this module into the existing
classes will happen at different times and that we want to break as little as possible, it would be
easiest to make each requirement optional. Thus we will only attempt to do something for each
method in the To Provide column if the corresponding requirement is met—a truly dynamic
approach exemplified by Listing 4-7.

Table 4-1. The Contract for the Contactable Module

Requires To Provide

email_address send_email

fax_number send_fax

Hamou_821-0 C04.fm Page 49 Tuesday, May 22, 2007 6:04 AM

50 CH AP T E R 4 ■ T HE PO W E R O F M E T AP R O G R AM M IN G

Listing 4-7. A Mixable Module for Sending E-mails and Faxes

module Contactable
 def send_email(subject, message, attachments = {})
 return unless respond_to?(:email_address)
 address = email_address
 raise "e-mail address not set" unless address
 # build the e-mail and send it
 end

 def send_fax(message)
 return unless respond_to?(:fax_number)
 number = fax_number
 raise "fax number not set" unless number
 # build the fax and send it (beep beep)
 end
end

When the Contactable module is included in our two classes, they gain the two defined
methods (send_email and send_fax). Note that we cache the returned value of email_address
and fax_number within the functions. This is because these methods could be doing more than
a simple retrieval operation. Assuming the worst in this respect keeps performance overheads
to a minimum.

You may be interested to learn that include is a sort of macro in itself. It is a method of the
Module class that takes one or more module names as arguments (we have only ever specified
one). For each of these modules, it invokes module.append_features(klass) on the class in
which it was invoked. In turn, append_features adds the constants, instance methods, and
module variables of the module specified to the host class.

Object Extension
By itself, the include directive will not add class methods to a particular class. A different func-
tion defined by the Object class allows you to specifically add methods to any object. That method
is called extend.

The extend method works very much like include in that it takes the set of instance methods
(but not the constants or module variables) in a module and defines them in the context of the
object from which extend was invoked. The code and output in Listing 4-8 highlight the differ-
ence between include and extend.

Listing 4-8. Inclusion vs. Extension

module Extension
 def where_am_i
 p self
 end
end

Hamou_821-0 C04.fm Page 50 Tuesday, May 22, 2007 6:04 AM

CH AP T E R 4 ■ TH E P O W E R O F M E T AP R O G R AM M IN G 51

class Rabbit
 include Extension
end

class Hat
end

Objects
Hat.new.where_am_i # => [Exception raised]
hat_extended = Hat.new
hat_extended.extend(Extension)
hat_extended.where_am_i # => #<Hat:0x1087b44>
Rabbit.new.where_am_i # => #<Rabbit:0x4bab4>

Classes
Hat.where_am_i # => [Exception raised]
Rabbit.where_am_i # => [Exception raised]

Inclusion adds instance methods to a class, whereas extension actually bolts methods
onto whatever is being extended, yielding new class methods if the entity being extended is a
class. In other words, if we had written Hat.extend(Extension)—extending the class itself—we
would have been able to call Hat.where_am_i (a class method).

If this manner of defining an empty class and then extending it seems a little cumbersome,
remember that you can create classes using Class.new. This approach gets rid of the declara-
tive style of class creation altogether and replaces it with this:

Hat = Class.new

which can even be extended inline as extend returns the object being extended:

Hat = Class.new.extend(Extension)

You’re unlikely to use this style of class creation much, but it’s handy to remember for those
times when brevity conquers all. Speaking of which, recall that extend works on any object. This
means that it is possible to mix-in methods to instantiated objects without affecting any of their
brethren, as demonstrated in Listing 4-9.

Listing 4-9. Using extend to Add Methods to Individual Objects

module AdminFunctions
 def wipe_disk(mount_path)
 # wipe the specified disk
 end
end

class User
 def admin?
 # determine whether the user is an admin or not
 end

Hamou_821-0 C04.fm Page 51 Tuesday, May 22, 2007 6:04 AM

52 CH AP T E R 4 ■ T HE PO W E R O F M E T AP R O G R AM M IN G

 def logon(name, password)
 # authenticate the user
 extend(AdminFunctions) if admin?
 end
end

Walking through this listing, a User object is defined to be instantiated without any of the
methods available to an administrator. It is only by calling logon and being designated an
administrator that the bundle of administrative functions is added to the given object and only
to that object. As you can imagine, the ability to modify the functional makeup of a class or an
object at runtime is extraordinarily powerful and opens up any number of previously obscure
design patterns. For a particular example of this, take a look at the sidebar “Self-Destructing
Methods.”

SELF-DESTRUCTING METHODS

One particularly cute example of dynamic method declaration is that of method self-redeclaration. Inside a
given method, the def construction is still valid and will run in the same context as its surrounding method.
The method defined can be anything, including the method currently being run. Thus we can ensure that a
particular function is only ever run once for any given object like this:

class Host
 def upgrade
 @version += 1
 def upgrade; end
 end
end

So Host.upgrade will increase the version number when first run but then redefine itself to do nothing
if ever called again. Note the use of a semicolon to force an end-of-line, saving a little space. It is not difficult
to imagine that you could implement an entire state machine using this technique.

Domain-Specific Languages (DSLs)
One of the reasons Rails was written in Ruby was that the possibilities so far discussed in this
chapter all come together to make the language ideal for building other languages. The practical
upshot of this can be seen in the number of macros available to an ActiveRecord subclass in
Rails. Listing 4-10 is the definition for such a subclass called User, which relies on some of
ActiveRecord’s macros to provide a shorthand for what might otherwise be a lot of code.

Listing 4-10. A Sampling of the ActiveRecord Macros in Rails

class User < ActiveRecord::Base
 acts_as_list
 belongs_to :company
 verifies_inclusion_of :office, :in => ["Geneva", "Paris", "Rome"]
end

Hamou_821-0 C04.fm Page 52 Tuesday, May 22, 2007 6:04 AM

CH AP T E R 4 ■ TH E P O W E R O F M E T AP R O G R AM M IN G 53

The lines within the User class definition in this listing add commonly used functionality
to the class but with so little noise that it is virtually impossible to misunderstand what they do
(see Chapter 6 for further discussion of ActiveRecord). This idea of designing macros around a
particular set of tasks pertinent to some problem domain is a really cool demonstration of how
useful Ruby can be. As examined in Chapter 11, the Rake system is built around a task-oriented
DSL that can easily be applied to the jobs associated with system administration.

The idea of a language designed to solve a problem is nothing new. If nothing else, this is a
pretty reasonable definition of any programming language, including Ruby. What you will see
is that Ruby is particularly suited to prototyping new languages for a few reasons:

• Few keywords mean greater freedom in the namespace.

• Brackets (and to a lesser extent braces) are considered syntactic sugar.

• Method definition, inclusion, and overriding are completely dynamic.

• Common types (arrays, hashes, strings, and numbers) have “obvious” forms.

By way of a demonstration, imagine a server configuration system built around Ruby.
Somewhere in the back of our minds we have a shorthand language we’d like to use for specifying
the capabilities of a given server. Broadly, we want to be able to name the server and then give
it particular features like this:

server "bitbucket.example.com" do |srv|
 srv.shares "/homes", :over => ["afp", "smb"], :as => "HOMES"
end

Where this example is concerned, we have the concept of a named server and at least one
method that can be used to configure it (shares). In choosing how to implement the features of
the DSL implied by our example, we should model these concepts with a class. Listing 4-11
does just that.

Listing 4-11. A Simple Server Class That Satisfies the Needs of the DSL

class Server
 def initialize(hostname)
 @hostname = hostname
 @sharepoints = {}
 end

 def shares(path, params)
 (params[:over] || []).each do |protocol|
 proto_shares = (@sharepoints[protocol] ||= {})
 share_id = (params[:as] || "UNKNOWN")
 proto_shares[share_id] = path
 end
 end
end

Hamou_821-0 C04.fm Page 53 Tuesday, May 22, 2007 6:04 AM

54 CH AP T E R 4 ■ T HE PO W E R O F M E T AP R O G R AM M IN G

Each server object tracks shares through a hash called @sharepoints. The shares method
adds the pertinent details to this hash. Notice how the names of methods are chosen so that the
DSL reads like standard English as much as possible. All that is left in this example is to provide
the server method that sits at the root of each definition. This will need to be in the global
namespace (i.e., available outside the confines of the Server class definition):

def server(hostname)
 yield Server.new(hostname)
end

This tiny snippet completes the DSL as specified, initializing one of our Server objects and
passing it to the block supplied by the client script.

■Tip The approach of configuring services through code allows for the use of dynamic values as well as
runtime validation/sanity checking. This often leads to a configuration process that is more powerful and more
resilient, which is why I revisit it throughout the book.

Plug-in API: Macros for Adding Macros
Given that everything is just an object, and that methods can be added to objects dynamically,
and that macros are just methods designed a certain way, it should be obvious that we can
write code to add macros to an object dynamically. Indeed there is no limit to the recursion of
this approach, except that which is imposed the moment that blood starts to gush from both ears.

Listing 4-10 mentions the acts_as_list macro available in Rails. I’m going to execute a
brief tour of one way to write a Rails plug-in as a means to explore pluggable functionality more
generally. For any plug-in, we ideally want it to be completely self-contained in such a way that
it can be included in our classes with the utmost simplicity. In addition, that which is included
should be limited to macros that create further functionality on an as-needed basis.

Recall that the include command actually runs Module.append_features. We can override
this call to allow us to get all the advantages of a normal inclusion (the replication of constants
in particular), while giving much tighter control of method creation. If our override’s only unique
step is to extend the class with an acts_as-style method, that method can then be defined to
add further class and instance methods.

In Listing 4-12, we overhaul the Contactable module we were playing with earlier along
theses lines.

Listing 4-12. The Contactable Module Refactored As a Plug-in

module Contactable
 def self.append_features(klass)
 super
 klass.extend(Macros)
 end

Hamou_821-0 C04.fm Page 54 Tuesday, May 22, 2007 6:04 AM

CH AP T E R 4 ■ TH E P O W E R O F M E T AP R O G R AM M IN G 55

 def Macros
 def acts_as_contactable
 extend ClassMethods
 include InstanceMethods
 end
 end

 module ClassMethods
 # none to speak of
 end

 module InstanceMethods
 # methods from listing 4-7 go here
 end
end

With the module defined in this way, inclusion into a class will only create the class method
acts_as_contactable. This method will, of course, be available to the class and all of its subclasses.
If one of the subclasses runs this method, it and it alone will be extended to include all of the
class and instance methods defined. This approach has the virtue that it nicely compartmen-
talizes individual sections of code and gives a greater degree of flexibility and control over
exactly how and when methods are added.

Heavy Meta
In this chapter we explored some of the metaprogramming concepts that Ruby facilitates.
From flexible method signatures to macro design, we have touched on some of the approaches
that Ruby-ists adopt that render their code quicker to design and maintain. Depending on your
particular language background, some or none of these ideas may be familiar to you. If bits of
it seem rather abstract, I can only ask you to stick with it, as I have used every one of the tech-
niques described in this chapter in real code and the resulting scripts have benefited enormously.

As I said at the beginning, I really don’t have a good definition of metaprogramming.
About the best description I can come up with is that by which the US Supreme Court denotes
pornography: I know it when I see it. There were lots of arcane examples of Ruby metaprogram-
ming that I decided to leave out of this chapter because it was difficult to see how they might be
of benefit to most system administrators. From a purely aesthetic perspective, however, I
encourage you to search for such whimsies if you are in the mood for some dessert.

This chapter forms the last part of the general introduction to the language. The chapters that
follow seek to apply what we have covered to more concrete topics affecting system administra-
tors. In particular, the next chapter covers an activity that many, if not most, scripts spend their
time doing: creating files.

Hamou_821-0 C04.fm Page 55 Tuesday, May 22, 2007 6:04 AM

Hamou_821-0 C04.fm Page 56 Tuesday, May 22, 2007 6:04 AM

57

■ ■ ■

C H A P T E R 5

Building Files the Smart Way

One of the most brilliant design choices found in UNIX-style operating systems is the notion
that “everything is just a file.” In other words, if your programming language can do very basic
reading/writing of files and a little string handling, you can drive the configuration and envi-
ronment of every bit of software you care about.

In this chapter, we will explore the most common file-building methodologies and find
out how to apply them the Ruby way. In particular, before getting down to writing a single byte,
we’ll discuss and create some safe file operations. Such operations are imperative in system
maintenance and administration scripts. Thus we will deal with the safety issues before
proceeding to discuss both program- and template-driven file creation.

Safety First
I remember one morning my coworkers and I were sitting around in the systems support
room chatting about something (snack foods as the key to happiness if memory serves) when
someone uttered those portentous words: “That’s odd.” Now, an experienced administrator
will tell you that these two little gems, when spoken together, are the verbal equivalent of a small
highland terrier yapping inexplicably 30 minutes before your city is leveled by an earthquake.

In this case, the doomsayer in question had noticed that the performance of his web browser
had become a little erratic, seeming to operate in fits and starts. No sooner had he explained
this than the guy behind me complained that his mail client had started timing out. It’s at this
point that we received our first phone call requesting support.

Two or three hours later, when the apocalypse had spent itself, we were finally in a posi-
tion to understand what had gone wrong. You see, our DNS server was driven dynamically out
of a database. Every few minutes, a little script would run to read the configuration and the
zone files, compare them with what it thought they should say according to the contents of the
database, and update them as necessary (refer to Figure 5-1). If an update did take place, the
script would nudge the name-server daemon to get it to notice the new configuration.

In theory, a single run of the script was supposed to take far less time than the interval
between such runs. In theory, it was unthinkable that more than one instance of the script
would be running at once. In theory, tomatoes are fruit. So much for theory.

Hamou_821-0 C05.fm Page 57 Wednesday, May 30, 2007 4:30 AM

58 CH AP T E R 5 ■ B U I L D I N G F I LE S T H E SM AR T W AY

Figure 5-1. The deceptively simple flow of the update script

The first instance of the script (we’ll call it A) started running and, probably due to abnormal
load on the server, got about halfway through writing an updated configuration file when a
second instance (B) was invited to the party. It read the half-written file and naturally concluded
that there was a vast swath of zones missing from the server. Hence, B leapt into action and

Script start

Read
config files

Analyze for
discrepancies

Update
needed?

Write
config files

Script stop

yes

Read
database

no

Hamou_821-0 C05.fm Page 58 Wednesday, May 30, 2007 4:30 AM

CH A PT E R 5 ■ B U I L D IN G F I L E S TH E S M AR T W AY 59

started writing a new configuration file on top of the now mostly complete one A had been
committing to disk. As A finished, it nudged the name-server daemon to let it know it should
reread its configuration files, which at this point (of course) were only halfway through being
written by B. As if by magic, a good chunk of zones suddenly went AWOL.

Now people were having problems with web access, e-mail, and even network volumes,
which all relied heavily on DNS resolution. This meant more hits of Refresh buttons and sides
of computers. The abnormally large number of demands for name resolution in turn put
increased load on the DNS server, which meant that within about 20 minutes there were four
instances of this script competing with each other, completely obliterating the zone informa-
tion on the server and pushing it to sustain maximum load. By the time one of our guys realized
it was a DNS issue and could get a remote session on the machine, an entire Whitehall farce
was going on in memory, all because of one little false assumption made by the scriptwriter.

The moral I took from this episode was an important one. When writing scripts that mess
about with files on disk, concurrency issues must be considered from the very beginning. In
other words, it is important to take explicit steps to enforce the kinds of mutually exclusive
behavior required by the script in this story. Fortunately, Ruby makes it easy to do the right
thing in this respect.

File Locking
All the mainstream operating systems implement some form of file locking and vend a pretty
simple API for using it. In the context of a file, a lock is a flag that can be requested by a process
that, in general terms, means “This lavatory is currently occupied—wait your turn.” More
specifically, there are two styles of locks supported by the UNIX locking mechanism.

A shared lock can be held by many processes at the same time. An exclusive lock can be
held by only one process at a time. You are most likely to use exclusive locking day to day, as
you generally want to just stake a claim to a file for the whole duration of the read/write portion
of your script. This is the so-called coarse locking approach and, while lacking elegance, it is
the most difficult to get wrong.

You might be wondering under what circumstances you’d use shared locking. The classic
scenario employing this approach involves a file that lots of processes want to read from and
occasionally write to. Each process acquires a shared lock while reading and then continues on
its merry way until it has finished reading, releasing the lock when done. Of course, if the file
isn’t changing, it doesn’t matter how many processes read from it simultaneously—it will
always say the same thing. However, some process now decides to modify the file. This writing
process should ask for an exclusive lock on the file and, since only one process can hold an
exclusive lock on a particular file at any one time, it will have to wait until all of the shared locks
have gone away. Thus shared locks are overwhelmingly a mechanism for ensuring read integ-
rity, whereas exclusive locks ensure both read and write integrity.

Blocking Locks

The simplest kind of locking is that which blocks your program until the lock may be granted. Have
a look at the code in Listing 5-1, which demonstrates a simple lock-write-unlock procedure.

Hamou_821-0 C05.fm Page 59 Wednesday, May 30, 2007 4:30 AM

60 CH AP T E R 5 ■ B U I L D I N G F I LE S T H E SM AR T W AY

Listing 5-1. Safe File Writing Using a Lock

File.open("/tmp/foo", "w") do |f|
 f.flock(File::LOCK_EX)
 f.puts "Locking is the key to ... pun interrupted"
 f.flock(File::LOCK_UN)
end

This code starts by attempting to open a file for writing and names the object representing
access to that file f (a file handle). Personally, I always use this block-style invocation of File.open,
as the block doesn’t execute unless the file was successfully opened with the required access
rights. Also, it makes something we’re about to do much easier.

Once we have our file handle, we call the flock method with the argument File::LOCK_EX,
requesting an exclusive lock on it (File::LOCK_SH would request a shared lock). At this point, if
any other process has any kind of lock on the file, our script will block and wait for the other
locks to be released. Once the file is clear of locks, our script can then write its little message
into the file. As a final act of tidiness, we explicitly unlock the file again, indicating that we’ve
finished with it.

Nonblocking Locks

Now what if we merely want to check whether there’s a lock and do something different if we
can’t get immediate access to the file? The flock call allows us to request this behavior with an
extra flag (File::LOCK_NB), as shown in Listing 5-2.

Listing 5-2. Locking but Not Blocking

File.open("/tmp/foo", "w") do |f|
 if f.flock(File::LOCK_EX | File::LOCK_NB)
 f.puts "I want to lock it all up in my pocket"
 f.flock(File::LOCK_UN)
 else warn "Couldn't get a lock - better luck next time"
 end
end

In this listing, we once again use the block form of File.open, but instead of the lock-write-
unlock approach we used last time we do the following:

1. Try to acquire a lock without blocking

2. If successful, write and then unlock

3. If unsuccessful, throw up a warning

Note, incidentally, the use of the bitwise OR operator (|) when selecting the behavior of
flock. This should be familiar to anyone who’s done this sort of thing in C.

Hamou_821-0 C05.fm Page 60 Wednesday, May 30, 2007 4:30 AM

CH A PT E R 5 ■ B U I L D IN G F I L E S TH E S M AR T W AY 61

Abstracted Locking

The fact that, in general terms, we always seem to end up with a lock call at the beginning of the
block and an unlock call at the end points to a possibility for abstraction. There are many ways
to do what I’m about to (see the sidebar “Open Abuse” for an alternative approach). The following
is probably the easiest to follow and provides a nice opportunity to show off the ability to add
methods to built-in classes in Ruby.

What we want to do is define a method that acts as much like open as possible, but will
implicitly give us an exclusively locked file to play with and automatically unlock it for us. Take
a look at Listing 5-3.

Listing 5-3. Extending the File Class to Include a Convenient Locked Writing Method

class File
 def File.open_locked(*args)
 File.open(args) do |f|
 begin
 f.flock(File::LOCK_EX)
 result = yield f
 ensure
 f.flock(File::LOCK_UN)
 return result
 end
 end
 end
end

As previously explored, we can extend Ruby’s built-in classes like any other class with
a simple class declaration, inside which all definitions are in the context of that class. The
method signature for open_locked uses the * construction. This simply means “gather up any
arguments passed to this method and dump them in an array.” In this case, the array is called
args, but there is nothing special about that name.

The usefulness of the args variable we define becomes obvious in the next line, where we
invoke File.open in its by now familiar block form. Essentially, we are ensuring that our function
has an identical signature to the function we’re mimicking by not giving the slightest hoot what
that signature is. It also means that any future changes to the argument structure of File.open
won’t break this code.

The actual meat of the code contains the requisite lock-operate-unlock logic. Just as with
File.open, any code using our method should present open_locked with a block of code that
accepts a file handle. The difference, of course, is that this handle will be exclusively locked
when passed by our method.

We expressly want any errors that would normally raise an exception to still do so unhin-
dered, in keeping with our mimicry of File.open. The only minor difference is that, whatever
may go wrong, if we’ve locked the file we must unlock it again. Hence the use of a begin...
ensure...end block. As you might surmise, everything within the ensure part is run irrespective
of whether an exception is in the process of being raised.

Hamou_821-0 C05.fm Page 61 Wednesday, May 30, 2007 4:30 AM

62 CH AP T E R 5 ■ B U I L D I N G F I LE S T H E SM AR T W AY

Our striving to impersonate File.open as much as possible is why we’re also careful to
preserve the result of the passed code block. Once again, this is how File.open behaves and it
allows us to do this kind of thing:

raw_data = File.open_locked("/tmp/foo") { |f| f.read }

OPEN ABUSE

Instead of creating an open-like method we could specifically override open. This would mean that File.open
itself would automatically lock and unlock files for us (just like our open_locked method). Playing with such
an important method is probably something we want to do in a fairly careful manner, as it will affect a lot of
subsequent code. On this basis, I want to emphasize that this example should be taken more as an academic
“what if” than something you would choose to do in production code. File.open is just too fundamental to
mess with in large projects without inviting trouble.

Grabbing an exclusive lock regardless of whether a read-only or read-write file handle has been requested
would needlessly degrade performance. Thus we need to achieve two things that open_locked didn’t. The
first is to override File.open correctly so that we don’t start causing warnings to appear and so that it is still
available to us internally. After all, neither you nor I have the desire to completely reimplement file operations
from scratch in any language if we don’t have to. The second goal is to be a little smarter with the type of lock
we ask for than our first attempt in Listing 5-3 (which you should read before this sidebar). Here’s a solution:

class File
 class << self
 alias open_old open
 end

 def File.open(path, mode = "r", perm = 0644)
 File.open_old(path, mode, perm) do |f|
 begin
 f.flock(mode == "r" ? LOCK_SH : LOCK_EX)
 result = yield f
 ensure
 f.flock(File::LOCK_UN)
 return result
 end
 end
 end
end

Examining the features that make this different from the open_locked solution, we first have to discuss
the aliasing process. Within the context of a class definition, a new alias to an existing instance method can
be created with the alias keyword. The problem is that the method we are trying to overwrite is a class method,
and so we have to use a somewhat advanced bit of syntax. The double chevron (<<) construction means that
we wish to extend the class in the context of its class-level namespace (the double chevron actually means
“extend the current implicit object”). Thus the aliasing is done at this level.

Hamou_821-0 C05.fm Page 62 Wednesday, May 30, 2007 4:30 AM

CH A PT E R 5 ■ B U I L D IN G F I L E S TH E S M AR T W AY 63

The rest of the code should be much easier to follow. This time we have to care about the parameters to
open, as the type of lock will depend on the mode variable. Also, for quickness, we take certain liberties with
the permissions setting just to give us something to pass to the original method without having to worry too much.

Process Locking

One cute trick I’ve seen employed quite a lot ensures that there is never more than one instance of
a script running. First, pick a location on the disk that is appropriate for the storing of process
running data. If your script is designed to run as a UNIX daemon, it will usually have a PID file
associated with it that you create in /var/run/myscript.pid, so that is an obvious choice for
this next step. Otherwise something in /tmp will do.

As early as possible in your script, get a handle to your chosen file and attempt to gain an
exclusive lock on it in the manner discussed throughout this section. If you can’t get the lock,
you know another instance of your script is already lurking somewhere in memory and the new
instance can bow out gracefully.

What if you forget to release the lock before your script exits, or the script crashes before it
has an opportunity to unlock the file? Won’t that leave you unable to run the script ever again?
The beauty of this approach is that file locks are a property of the process requesting them (at
least for our purposes). If the process goes away for whatever reason, the OS guarantees that
the lock will be released.

Locking Considerations

Whether protecting files or processes, there are a couple of points to be aware of when employing
file locks:

• UNIX-style systems treat file locking as advisory by default. The fact that you’ve been
good and wrapped your file system calls in flocks in no way implies that another appli-
cation will be blocked if it attempts to do an ordinary write to the file of interest without
any flocking.

• Some file systems have inconsistent/nonexistent support for the flock call (NFS prior to
Linux 2.6.12 in particular springs to mind), so you need to be conscious of where your
code will be deployed.

Safe File Operations
This concern over regimented access to files is all very well, but it doesn’t protect you from
one other important class of file-integrity issue: partial writes. If your script crashes halfway
through its operation, the OS will tidy up the locks and another process will be free to access
the file you were writing. Unfortunately, if you didn’t finish writing data to disk, you now have
a serious problem.

You simply cannot guarantee that your script won’t crash or run out of disk space or some
such thing. We have to find a way to make sure that a configuration file, for example, only gets
overwritten with a complete replacement or not at all. Also, it would be nice to achieve the kind
of file-locking safety we had in the previous subsection so that when we write files we can guar-
antee that no other process is reading from them.

Hamou_821-0 C05.fm Page 63 Wednesday, May 30, 2007 4:30 AM

64 CH AP T E R 5 ■ B U I L D I N G F I LE S T H E SM AR T W AY

Abstracting Safe File Operations

As before, our approach will be to add a method to the built-in File class that mimics the
behavior of File.open but that copes with our file-safety concerns transparently. The strategy
for performing a safe write will be to write all data to a temporary file and then move it on top
of the original only upon its closure.

This approach prevents partial writes, as a given file updated this way can be overwritten
only when there is a complete replacement ready. In addition, the only file system operation
that is as close to being atomic (indivisible—it either completes or it doesn’t) as we can hope
for is a move. Moving a file on disk actually does nothing of the sort; it simply changes the path
associated with the file. This means that the code shown in Listing 5-4 will provide the safe
writes we’re looking for.

Listing 5-4. Extending the File Class to Include an Anti–Partial Writes Method

require "fileutils"
require "tempfile"

class File
 def File.open_safely(path)
 result, temp_path = nil, nil
 Tempfile.open("#{$0}-#{path.hash}") do |f|
 result = yield f
 temp_path = f.path
 end
 FileUtils.move(temp_path, path)
 result
 end
end

Let’s unpick this carefully. The first thing to note is that we’ve included the functionality
provided by the FileUtils module—this is necessary for the file move we’ll be doing near the
end. Additionally, we’ll call on the services of the Tempfile class for creating the temporary file.

You should immediately notice a similarity of construction when comparing Listing 5-4 to
Listings 5-2 and 5-3. We are essentially wrapping a block operation (albeit with a single postop-
eration step) in another block-accepting method (ours).

The definition of open_safely is simpler than that of File.open because it is a specifically
write-only method. As such, it takes only one argument, namely the path of the file to be written.
We use a numeric hash of this path together with the name of the invoking application ($0) to
construct a unique path for the temporary file. Tempfile.open takes this base name and adds
the application’s PID and a unique index to it, and this forms the complete temporary filename. An
example of a path produced via this method would be /tmp/filesift-736474449.5189.1.

Tempfile.open creates this file read-writeable by the user running the script only (mode 600).
Thus we yield the handle to this file to the block our method was passed. The calling script can
write data to its heart’s content and then, once it returns, we note the result (for the same
reasons discussed previously in the context of Listing 5-3).

Hamou_821-0 C05.fm Page 64 Wednesday, May 30, 2007 4:30 AM

CH A PT E R 5 ■ B U I L D IN G F I L E S TH E S M AR T W AY 65

We also make a note of the path allocated by Tempfile. We have to get this from within the
temporary file block—we don’t necessarily know this in advance, as the index on the end of the
filename can be anything from 0 up to 9.

With the file written and the result secure, all that remains is to move the temporary file
over the top of the original. This is accomplished through one of the nice convenience methods
of the FileUtils module—in this case, FileUtils.move. You should take a look at ri FileUtils
to see a complete list of the rather handy set of methods provided by this module.

The more astute among you may be wondering what happened to the locking code. Didn’t
we still want that kind of protection? Remember that we are creating a brand-new file—nothing
else will be reading from or writing to it because no other process should have the vaguest clue
that it exists. Once the move has happened, the original file will actually hang around if any
other processes have file handles to it—implying read safety on an albeit out-of-date copy of
the file. In other words, since the moving of the file is atomic and it doesn’t destroy any currently
occurring access to the old file, we get concurrency protections automatically.

Using the Abstraction

Given the functionality provided by the code in Listing 5-4, it would be useful to consider an
example of its use. In particular, because this file-safety approach compensates for the broadest
spectrum of potential mishaps, it is the one I use almost all the time.

A recent example of this was the building of /etc/passwd on a Linux box. As you will doubt-
less be aware, this file contains the definition of the set of users on such a machine together
with pertinent information such as their UID, home directory, and default shell.

In this case, I was presented with a challenge to build this file based on the contents of a
CSV export from a central management system. I will not show the steps taken to parse to CSV
file, as this subject is covered extensively in Chapter 7. Instead, we enter the fray in Listing 5-5
with an array called users that is populated with one hash per user. In turn, each hash has all
the data needed to construct dynamic bits of the appropriate line in /etc/passwd.

Listing 5-5. Safely Writing /etc/passwd

require "safe_file" # this will be the code from Listing 5-4

FIELDS = [:login, :password, :uid, :gid, :name, :homedir, :shell]

File.open_safely("/etc/passwd") do |passwd|
 users.each do |user|
 passwd.puts user.values_at(*FIELDS).join(":")
 end
end

As you can see in this listing, there is not a lot of work involved in actually creating the file.
For each user, the defined set of field names (FIELDS) is used to pick out the relevant fields from
the hash containing the user’s information. Note the use of * to unpack the array object into a
list of arguments to be passed to Hash.values_at. The array thus generated is joined together
with semicolons in accordance with the format used by /etc/passwd.

Hamou_821-0 C05.fm Page 65 Wednesday, May 30, 2007 4:30 AM

66 CH AP T E R 5 ■ B U I L D I N G F I LE S T H E SM AR T W AY

As we would demand from any decent abstraction, all the hard work of ensuring the file is
written safely and completely (or not at all) is handled by the open_safely method we wrote in
Listing 5-4. This leaves us to concentrate on getting the format of the file right.

The Pen Is Mightier Than the Words
Now that a snug feeling of safety permeates the way we interact with files on disk, it’s time to
create some. Conceivably, there are thousands of different formats of file you might wish to
create in myriad bizarre ways. You’ll understand then that it is a continuing surprise to me that
there is basically only one big choice when setting out to design your file-writing scripts. You’re
either a builder or a templater (which is almost certainly not a real word).

This section is intended to provide a flavor of the sorts of file creation approaches available
in Ruby. It does not go into detail about any particular technology; rather, it presents a concep-
tual overview of the kinds of subtasks system administrators often find themselves doing when
generating files.

Mob the Builder: Program-Driven File Creation
The first approach is usually typified by writing a lot more code than data. Every time you write
a script that does something like puts "fish-sticks: 8", you are engaging in an excruciatingly
simple form of the builder pattern. You are telling your script not only what to write, but also
exactly when to write it.

When Ruby-ists talk of builders, however, they rarely include such trivialities. The acco-
lade of “proper builder library” tends to be reserved for honking great kitchen-sinks of modules
bristling with classes that allow you to use tiny drops of code to create vast oceans of data.

Builders tend to exist for document formats designed to hold highly structured data. The
API usually gives you a means to construct a version of the document in memory that uses
formal object relationships and other niceties of the language to track the structure. Once the
data has been built up in this manner, there is often one big, thrilling write command that will
give you a text/binary dump of the file in the appropriate format to reproduce the given data
structure.

Building XML

Probably the best-known builder tools are the various XML building libraries. The need to
write XML is becoming more and more essential all the time, as everyone and his monkey
decide that it is the one true way to exchange data (more on this in Chapter 7). Hence, making
it easy for poor system administrators is essential. Listing 5-6 is a quick example using the well-
known Builder library (http://builder.rubyforge.org) to produce a tiny, headless XHTML
document.

Listing 5-6. Building an XHTML Document

require "builder"

builder = Builder::XmlMarkup.new
page = builder.html do |html|

Hamou_821-0 C05.fm Page 66 Wednesday, May 30, 2007 4:30 AM

http://builder.rubyforge.org

CH A PT E R 5 ■ B U I L D IN G F I L E S TH E S M AR T W AY 67

 html.head { |head| head.title("Users") }
 html.body { |body| body.a("bob", "href" => "b1") }
end

This listing demonstrates the use of Ruby structural formalisms (mostly blocks) to specify
the construction of an XML document. We start by initializing a builder object that is respon-
sible for doing the actual building. Note that the initialization step can be used to do things like
specify an output file handle and default indentation policy. See the documentation for more
detail.

Thus initialized, the page is constructed as the output of a set of nestled Builder commands.
Note the ability to refer to the names of elements (head, body) without special quoting. Builder
is using the method_missing approach discussed in Chapter 4 to provide an on-demand domain-
specific language whereby any unknown method name is treated as an instruction to open a
new child XML element with that name.

Simple string content is added by providing a single argument to one of these method
calls, as seen in head.title("Users"). Any properties to go inside the tag are specified using a
hash after this initial string, as demonstrated in the next line where an href is specified for the
link. This is akin to the flexible method signature approach also discussed in Chapter 4.

Given the code as written in Listing 5-6, the output will look like this:

<html><head><title>Users</title></head><body>bob</body></html>

Building Images

Perhaps a better example of the way in which a builder can be helpful in abstracting away the
complexity of a genuinely inscrutable file format is seen with an early Ruby interface to the
popular GD (www.boutell.com/gd/) library. This library provides a mechanism for translating
individual drawing commands into a rasterized image, and an example of just this is shown in
Listing 5-7.

Listing 5-7. Using GD to Build a GIF

require "GD"

image = GD::Image.new(100, 100) # create an empty canvas, 100 pixels square
red = image.colorAllocate(255, 0, 0) # define the color red as RGB(255, 0, 0)
image.rectangle(25, 25, 75, 75, red) # draw a red square in a particular place
image.gif STDOUT # dump the GIF of this drawing to standard out

What I love about this approach to drawing is that I don’t have to give a flying walnut about
how the GIF format works in order to produce one. It’s like playing with Logo (http://el.
media.mit.edu/Logo-foundation/) all over again. This kind of abstraction is often one of the
biggest advantages of Builder libraries. Much more detail on this subject can be found in
Chapter 9.

Hamou_821-0 C05.fm Page 67 Wednesday, May 30, 2007 4:30 AM

http://www.boutell.com/gd
http://el.media.mit.edu/Logo-foundation
http://el.media.mit.edu/Logo-foundation

68 CH AP T E R 5 ■ B U I L D I N G F I LE S T H E SM AR T W AY

Building Repetitive Text Files

The other place you find a little code to generate a lot of data is when generating files with a
lot of repetition. For example, I recently had to build a file that mapped every IP address in a
certain subnet to a particular time of day. I leave it as an exercise for the reader’s paranoia to
decide why one might require the script shown in Listing 5-8.

Listing 5-8. Building a File with Repetitive, Programmatically Defined Contents

seconds_per_ip = 60 * 60 * 24 / 254.0

File.open("config.txt", "w") do |f|
 1.upto(254) do |d|
 seconds = (d - 1) * seconds_per_ip
 hrs = seconds / (60 * 60)
 mins = (seconds / 60) % 60
 secs = seconds % 60
 f.puts "1.2.3.#{d} " + sprintf("%.2i:%.2i:%.2i", hrs, mins, secs)
 end
end

This listing shouldn’t be too difficult to follow. It opens a file, and then iterates through the
set of numbers from 1 to 254, using those numbers to determine both the IP address and an
appropriate time of day. Note again that, because of the block structure of the File.open invo-
cation, the script will do no work if the file fails to open for writing—exactly as we’d want.

Building/Changing Text Files Using a Policy

The final pertinent example is where a script essentially acts as a conversion tool, taking a set
of structured data and wrangling it into a different format or updating some of the values as
they go past. This sort of script usually does a few things a lot of times, implying repetition of
operations rather than data. Take as an example the code in Listing 5-9 that I use to scan all of
my C source files in a given directory and check that the copyright notices are up to date.

Listing 5-9. Using Ruby As a Line Editor to Update Copyright Notices

Dir["*.[c|h]"].each do |path|
 lines = IO.readlines(path)

 line_number, first_year = nil, nil
 lines.each_with_index do |line, i|
 next unless line =~ /Copyright (\d+)/
 line_number, first_year = i, $1.to_i
 break
 end

 this_year = Time.now.year
 expected_notice = if first_year and first_year < this_year
 "// Copyright #{first_year}-#{this_year} Andre Ben Hamou"

Hamou_821-0 C05.fm Page 68 Wednesday, May 30, 2007 4:30 AM

CH A PT E R 5 ■ B U I L D IN G F I L E S TH E S M AR T W AY 69

 else "// Copyright #{this_year} Andre Ben Hamou"
 end

 if line_number
 next if lines[line_number].chomp == expected_notice
 lines[line_number] = expected_notice
 else lines.unshift(expected_notice)
 end

 puts "Updating #{path.inspect}"
 File.open(path, "w") { |f| f.puts lines }
end

This is not the most elegant of scripts, but it took about two minutes to write and has proven
invaluable ever since. Because it demonstrates a number of useful Ruby-isms, I’m going to take
a few moments to explain it, beginning with the very useful Dir class.

Anyone familiar with the command line will know about globbing patterns. These are the
standard means for selecting files on the basis of patterns within file paths. So the invocation
on the first line retrieves every path matching anything.c or anything.h as an array we can
iterate through.

■Tip Going deeper into the Dir invocation at the top of Listing 5-9, you might be tempted to think that the
use of square brackets in this manner is hard-coded into the language somehow. In fact, this operator and
many others that have to be special in other languages can be overridden in Ruby. Simply use a method defi-
nition of the form def [](key) or def []=(key, value).

For each of the paths generated, we read every line of the corresponding file into an array.
For such trivial access to files, particularly where you will be fiddling with the contents on a
line-by-line basis, you’ll find yourself enjoying the convenience of IO.readlines quite a bit.

The next task of this script is to scan through the source file looking for the copyright notice.
Note the use of each_with_index, which is available to any class that includes the behavior from
the rather useful Enumerable module. We use this method because we’re going to need to
remember what line the copyright notice was on for later.

Within the line-iterating block, we use the facility of being able to state conditionals after
the block of code they refer to (go back and look if you don’t believe me). This convention
makes that line very easy to read—an inherent good. It also means less nesting of code, as we
only do the rest of the block if the line matches the regular expression.

If a match is found, we assume that it will be the only one, note its position and first stated
year, and then break out of our iteration. After all, there is no more scanning to be done. Why
waste time doing so?

A rather useful property of the Ruby way of doing things is that blocks, procedures, and
other logical groupings of code almost always return the value of the last expression evaluated
within them. In the previous section, the methods had an explicit return at the end of them to

Hamou_821-0 C05.fm Page 69 Wednesday, May 30, 2007 4:30 AM

70 CH AP T E R 5 ■ B U I L D I N G F I LE S T H E SM AR T W AY

make it obvious to the beginner what was being returned. Had I removed this keyword and
simply left the variable in question by itself, the code would have been semantically identical.

It turns out that we can treat an if-elsif-else-end block like this as well. So rather than
waste code by having to explicitly assign the correct string to expected_notice in both branches
of the conditional, we can think about it more abstractly. Specifically, we can assign the value
of the last evaluated expression in the conditional to the variable. Pretty neat.

Following on from this, the script now tests to see whether any copyright notice was found
in the source file. If so, and it was correct, we jump to the next file and start again. Note that the
next in this case refers to the most local iteration we are doing, which is the walk through the
path names. If the line needs updating, we overwrite it in memory. If no copyright notice was
found, we shove the correct notice at the top of the set of lines.

If we’re still executing the block at this point, then we’ve done something that requires
updating the file on disk. We do so and dump a quick note to that effect for the operator.
Mission accomplished.

Some of you may be familiar with source control systems that use placeholders in the
comments so that scripts can insert copyright and other information. In other words, the source
file is basically still a source file, but it contains little pockets of metainformation designed to
be substituted for actual information. Such schemes are the very essence of the second file-
creation concept: templates.

ThundERbolts and Lightning: Template-Driven File Creation
Already in this book, we have gained much utility from the Ruby feature for inserting dynamic
values into strings. This pattern of having a moderate amount of static data with a few dynamic
bits is most conducive to the template approach. Think about this code snippet:

nouns = ["mind", "body", "soul", "independence", "shock", "fishcakes"]
puts "Randomness is a state of #{nouns[rand(nouns.size)]}."

Here we define a list of (in)appropriate nouns for our sentence and then, just before printing it
out, we insert a random noun as the last word. For simple substitutions, this is a great way to
build what is after all a dynamic string (since at least one character is built programmatically).
This is the template pattern in action.

Web developers who have been held hostage by PHP will recognize one of its few genuine
strengths is that it allows you to do something like this:

<p>Today we celebrate the first, glorious anniversary of <? amusing_event ?>.</p>

The ability to in-line small chunks of code into other data is what made PHP so popular
for rapid web development (and rightly so). It should come as no surprise that very early on
the Ruby community decided it needed an equivalent system. Thus Embedded Ruby (ERb for
short) was born.

Anyone who has constructed a site in Rails will be eminently familiar with the use of ERb.
Ruby code gets wrapped in either a <% code_here %>-style block if you need to perform some
logical operation that has no direct output for the page or a <%= code_here %> to specifically
insert the string value of the last evaluation in the code block. As an example, I might want the
title of my web page to include the time it was rendered. The following snippet achieves this:

Hamou_821-0 C05.fm Page 70 Wednesday, May 30, 2007 4:30 AM

CH A PT E R 5 ■ B U I L D IN G F I L E S TH E S M AR T W AY 71

<head>
 <title>15 Ways to Slice a Mango - <%= Time.now %></title>
</head>

It occurred to me almost as soon as I saw this style of file creation that it could be enor-
mously useful for configuration files. Take my message-of-the-day file sitting at /etc/motd. I
would quite like this file to be updated periodically with some dynamic information, but I have
an overall layout that I like and don’t want to have to re-create in code. So I have an ERb version
that looks like this:

*** Welcome to <%= `/bin/hostname -s` %> ***

There are <%= `/usr/bin/who`.split("\n").size %> active sessions as of➥

 <%= Time.now %>.

Remember - nothing unreal exists so if you see Santa in here, give him a wave.

ERb can be invoked within a script as part of a more complex procedure (try unpicking the
Rails view system if you have a spare week), but in this case we just want to parse the entire file and
do the ERb substitution. If your system has a build of Ruby, it will almost certainly have the erb
script installed. Mine does and so, every quarter of an hour, it runs erb /etc/motd.erb > /etc/motd.

You might well imagine a huge configuration file like the one for the SSH daemon whereby
we want to set up defaults for the vast majority of settings but need a couple to be dynamically
generated. Or how about belly-dancer files, which have static tops and tails but dynamic
middles? They always bring a smile to my face.

■Note The main reason I’ve ended up disliking PHP has very little to do with fundamental problems in the
language and far more to do with emotional baggage. It’s the prospect of having to debug yet another 650KB
monolithic dino dung-ball of PHP that has been driving most of a web site for a few years that brings me out
in a cold sweat. The reason such carbuncles exist is that PHP put an emphasis on in-lining, and then lots of
happy-go-lucky web designers got so used to thinking in these terms they didn’t stop to consider the point at
which the use of templates by themselves becomes hopelessly unwieldy. Let their mistake be our education.

When Flat Files Fall Flat
In this chapter, we took a detailed look at how to deal with files safely, based on the argument
that proficiency in handling files defensively is essential due to the pervasive nature of file
manipulation within a system administrator’s daily work. Such file operation safety has been
achieved both via canonical file locking and the use of temporary files to prevent partial writes.
We also saw how to add methods providing such functionality to the core Ruby File class as
part of a convenient abstraction.

We engaged in a high-level discussion of the most common approaches to creating files
via building and templating. The Builder library example hopefully provided a sense of how
complex XML might be built with simple Ruby. In addition, we saw that templating can make

Hamou_821-0 C05.fm Page 71 Wednesday, May 30, 2007 4:30 AM

72 CH AP T E R 5 ■ B U I L D I N G F I LE S T H E SM AR T W AY

for an extremely easy-to-maintain mechanism when dealing with documents whose contents
have extensive static sections.

The remarkably powerful convention of file-based configuration allows you to place all
kinds of weird and wonderful abstractions on top of the basic business of configuring your
applications and daemons. However, there rapidly comes a point where data needs to exist
independently of a single computer. We have concentrated on writing files, but where is the
data coming from?

More and more, new versions of software seem to be moving away from basic text files to
database-held configuration. Conceivably, this could be a problem as no interface can be as
commonly accessible as a simple file. However, as long as the interfaces are still well under-
stood and supported, this design choice can offer some real advantages in terms of speed and
functionality. The next chapter will shine a spotlight on such storage choices as we move from
flat files to a cloud of data.

Hamou_821-0 C05.fm Page 72 Wednesday, May 30, 2007 4:30 AM

73

■ ■ ■

C H A P T E R 6

Object Storage and Retrieval

Data, data, everywhere, but not a byte to eat. How we store, organize, and access data can
determine the future success of software systems and thus the organizations that rely on them
so heavily. Choosing poorly in these respects can doom us to a long, agonizing information
death as complexity, inefficiency, and competing constraints spiral out of control.

This chapter explores the myriad choices available for keeping your 1s and 0s safe, easy to
work with, and able to scale up to meet demand. In particular, the focus is on approaches that
force us to do as little thinking as possible about the actual mechanics of object storage. Very
often we are constrained by the data storage choices made by others. Occasionally, we get to
make such choices from day one.

Thus the solutions presented here are a selection of those we might consider when we
need to store real objects and their associated properties (including child objects in the case of
collections). The assumption will be that a “good” solution for these kinds of problems is one
where we are not making low-level decisions about how our objects should be serialized. We
can just think in terms of something similar to an object.commit operation and its corresponding
object.retrieve.

The strategies for object storage broadly divide into two camps: local disk and network
aware. Of course, the ability to do things like mount a remote file system and operate on its files
blurs the boundaries between these two camps a little. Nonetheless, these two approaches
tend to lend themselves naturally to particular classes of problem, and so each one gets a section
in this chapter.

In the local disk section, I discuss three potential approaches to object storage: pure Ruby,
Marshal, and YAML. For the network-aware contingent, I discuss the possibilities engendered
through memcached and finish off with a fairly in-depth discussion on the vexed subject of SQL
and ActiveRecord.

Local Disk Storage
Most system administration scripts that need storage begin their lives quite content to keep
their data on the local disk. Many require no more than this over the entire course of their exist-
ence. This is bread-and-butter stuff.

Throughout this section I use a running example to give some grounding to the three
different approaches discussed. In this example, we’ve been charged with implementing a
script that will keep an eye on computer usage in a busy lab. This script will run periodically,
checking to see how long a given user has been logged in. This information will then be committed

Hamou_821-0 C06.fm Page 73 Wednesday, May 30, 2007 4:37 AM

74 CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L

to disk so that some other watchdog process can use it to decide whether or not to boot off
the user.

Obviously, how we store this data is going to change between each subsection—providing
some illustration of the differences between the solutions. A summary comparison of perfor-
mance between the methods is at the end of the section.

Inspection Time
By now you will be more than familiar with the ability to invoke some_object.inspect to return
a string representation of that object. You’ve likely used the shortcut p some_object to print out
such inspection strings on many occasions. Let’s think for a moment how that could be useful
in storing data.

If the inspected form of an object is identical to that which you would write to create it in
Ruby, we have an interesting possibility. Consider an ordinary array consisting of three usernames:

names = ["ne1", "4ab", "jfk"]

If I were to write p names on the next line of a script, the output would be as follows:

["ne1", "4ab", "jfk"]

Thus for an array of strings, the inspected form is identical to the Ruby needed to
construct it. This is what we would expect, of course. It makes sense to have Array.inspect
(and String.inspect) work this way for consistency’s sake if nothing else.

Not everything can be expressed as an array of strings. What about something more complex:

scores = {:adam => 15, :brett => 12.2, :chris => [-5, 8.5]}

This little beauty is a hash using symbols as keys and an integer, a floating-point number,
and an array of both of these as values. Let’s try inspecting this with p scores:

{:adam => 15, :brett => 12.2, :chris => [-5, 8.5]}

Is there no limit to the usefulness of inspect? Well, let’s try a much simpler example:
p Time.now.

Mon Mar 26 15:31:02 +0100 2007

Self-evidently, if I were to write the_time = Mon Mar 26 15:31:02 +0100 2007 in a script,
I’d get a very loud complaint from the interpreter. For objects of class Time, the symmetry
between the forms for instantiation and inspection is lost.

Before we proceed, then, it’s important to identify which built-in classes do hold such
symmetry. The list of common ones is short and rather obvious:

• String: "hello"

• Symbol: :joust

• Integer: 5 or -2

• Float: 3.8 or -22.7

Hamou_821-0 C06.fm Page 74 Wednesday, May 30, 2007 4:37 AM

CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L 75

• Array: [1, 2, 3]

• Hash: {:a => "apple", :b => "banana"}

There are a couple of others (like Rational), but you probably won’t need them much. In
any case, the point is that if you have an arbitrarily complex data structure, as long as it contains
objects only of the listed classes and is not fraught with values that are inherently impossible to
serialize (like Π), its inspected form will be a valid constructor for it.

Storage

From the previous discussion, it shouldn’t be hard to see how easily we might store a highly
structured object on disk. All we need to do is inspect it and write the resulting string to a file:

ug = {:users => some_array_of_hashes, :groups => likewise}
File.open_safely("/tmp/users_groups") { |f| f.puts ug.inspect }

Note the use of File.open_safely, which we built in the previous chapter. When dealing
with the reading/writing of one file by multiple processes, as we will be in our example, the use
of safe file operations is non-negotiable.

Speaking of our example, we’ll write out the list of currently logged-in users together with
how many minutes they’ve been logged in as a hash. For auditing purposes, the file path will
contain a time component so that there is a distinct, recoverable set of data each time we run
the check:

login_times = {"roger" => 17, "dodger" => 69, ...}
path = File.join("reports", Time.now.strftime("%Y%m%dT%H:%M:%S"))
File.open_safely(path) { |f| f.puts login_times.inspect }

If the methods used to construct the path are unfamiliar to you, I suggest looking at
ri File.join and ri Time.strftime.

Retrieval

At this point, we have a file on disk that contains the pure Ruby needed to encode for our
login_times data structure. Now we need to know how to read it back into memory. In order to
do so, we want a method in Ruby that will take a string and run it as though it was part of the
script.

Kernel.eval provides this highly useful behavior. Equipped with this method, recovery of
our object could not be simpler. For each file created by our storage method, we just read the
string in and evaluate it:

Dir["reports/*"].each do |path|
 login_times = eval(File.read(path))
 # do something with login_times
end

Pros and Cons

This pure Ruby approach to object storage is obviously quite convenient. The storage and
retrieval go as fast as the inspection methods of the objects and the Ruby interpreter’s own

Hamou_821-0 C06.fm Page 75 Wednesday, May 30, 2007 4:37 AM

76 CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L

parser. In addition, the file produced will be readable by anyone who can understand (or
quickly interpret) basic Ruby syntax.

This approach does have a couple of downsides, however. The contents of the file are basi-
cally being executed as though they comprised a first-class Ruby script. What’s more, this is
happening in the application context of our own script. Unless care is taken over permissions
and data integrity, this is a potential security nightmare.

The other obvious problem is the limited (although admittedly still useful) range of classes
that can be stored in this manner. The most obvious missing class in the case of our login
example is Time. You can easily imagine wanting to track the session instantiation time for a
particular user, but as you have already seen, Time is not symmetric under inspection.

What we need, then, is an approach that allows for more classes and that (if something
goes wrong) leads to unreadable data rather than a compromised program.

Marshaling Your Thoughts
Ruby ships with a library that is able to convert collections of Ruby objects into a stream of
bytes. The Marshal class provides both serialization and recovery of trees of objects, including
those of classes you create yourself.

Almost all of the built-in classes “just work” when marshaled. The obvious exceptions to
this rule are those classes it just wouldn’t make sense to be able to serialize (bindings, proce-
dure or method objects, instances of class IO, or singleton objects).

In addition, Marshal is quite clever about serializing classes it ostensibly knows nothing
about. It accomplishes this by storing the name of the class of an object together with its
attribute data, which covers the serialization needs of most simple classes.

Storage

If you were to guess the syntax for how to dump (serialize) a Ruby object with Marshal, you’d
probably venture one of two possibilities: some_object.dump or Marshal.dump(some_object).
The first one is wrong (although not completely, as you will see). The second form is the right
one, so in the context of our running example, we store the users and groups information like
this:

ugt = {:users => some_array_of_hashes_including_times, :groups => likewise}
File.open_safely("/tmp/users_groups") { |f| f.puts Marshal.dump(ugt) }

Since marshaling is the more canonical approach to storing objects, Marshal.dump can take
an additional argument of the IO object to write out to. Hence the second line of our code
becomes slightly simpler:

File.open_safely("/tmp/users_groups") { |f| Marshal.dump(ugt, f) }

For completeness, I will just mention that a third argument can be supplied to Marshal.dump.
This is an integer controlling how many levels deep to go in the object tree when serializing.
The default value (-1) signifies limitless recursion.

Hamou_821-0 C06.fm Page 76 Wednesday, May 30, 2007 4:37 AM

CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L 77

Retrieval

Having seen how we store objects, it is not a particularly fiendish challenge to work out how we
get them back again. Marshal.load is the ticket. This method takes one required and one optional
argument. We’ll start with the mandatory one first: the specification of the source data.

Just as there were two forms of dumping (returning a string or writing to a file), so too are
there two forms of loading. Thus the first argument can be

• Any object that responds to to_s (which obviously includes strings)

• An IO object to read the marshaled data from

Since we will be retrieving objects from the disk in our example, it makes sense to use the
second approach. Borrowing the code from the previous subsection, we can load up an array
of reports in just one line:

Dir["reports/*"].map { |path| Marshal.load(File.open(path)) }

I referenced a potential second argument to Marshal.load. This parameter allows you to
pass in a Proc object, which will be called for each object loaded, which can be useful if the
objects need a bit of tweaking or indexing before use.

Customized Marshaling

During the guessing of the syntax for serialization, I mentioned that the form some_object.dump
wasn’t completely wrong. I also referred in the introduction to the fact that Marshal will have a
pretty good stab at wrangling objects you’ve created even if they don’t inherit from String or
Array or something.

There are occasions, however, when you need to override the default behavior of Marshal.
Perhaps objects of your class have a lot of cached data that could be recalculated at recovery
rather than filling up the serialization stream. If you do need to customize the marshaling
process, then there are two special methods you should implement: _dump and _load.

The instance method _dump will be invoked with one argument (the integer depth limit as
previously discussed) and should return a String, which sufficiently encodes all of the infor-
mation necessary to recover the object (and any children/referenced objects as appropriate
given the depth limit).

The class method _load will be passed the dumped contents and should return an object
of this class.

Pros and Cons

Marshaling is a good storage mechanism. It is roughly as fast as the pure Ruby approach (more
on this later). It is flexible enough to handle just about any class you might throw at it while still
being quite space efficient.

This efficiency does come with some strings attached, however. The format is not human
readable unless you are doing at least geek factor 8. In fact, it’s worse than this; you have to
know something about the classes you’re deserializing before you do so, or you might never be
able to recover an object. At least with the pure Ruby approach, the classes are well understood
and could be reconstructed without much difficulty.

Hamou_821-0 C06.fm Page 77 Wednesday, May 30, 2007 4:37 AM

78 CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L

Additionally, because the binary serialization strategy for the built-in classes might well
change (and has been known to), the Marshal library places a version specifier at the front of
any serialized stream. You can get more detail on this by reading ri Marshal, but suffice it to
say that Marshal can occasionally be very sensitive to version changes in Ruby.

Having said all this, it is apparent that what’s needed is a happy medium that is easy to
parse with a good standard set of notations for common classes. It should be human readable
but every bit as extensible as Marshal (following the same general usage pattern if possible).
This is where YAML steps up to the plate.

YAML Ain’t Markup Language
The intent of the YAML project (www.yaml.org) was to provide a simple and human-readable
data storage format without sacrificing efficiency. Its data types also closely model those of the
various common scripting languages, making it rather easy to implement in Ruby, Python, and
Perl. Here’s a sample:

john:
 male: true
 age: 22.3
andre:
 logins: 5
 last-login: 2006-04-15 20:50:43.394148 +01:00

What I was most struck by when I saw a YAML document for the first time was its brevity. In
the same way that Ruby acts like executable metacode, YAML data feels like something I might
jot down in a text editor if I were making quick notes.

It is a testament to a great piece of language design that I don’t need to explain any of
what’s written in the sample for you to instantly see that it represents a hash of hashes or that
it contains strings, an integer, a floating-point number, a Boolean value, and a timestamp.

Indeed, I often feel that XML documents, when compared with equivalent YAML files,
demonstrate all the grace and calm reserve of a Pee-wee Herman chase scene (complete with
rope swing, speedboat, sleigh, and man in a Godzilla costume).

Storage and Retrieval

Since the syntax for using YAML is basically identical to that of Marshal (and purposely so), I need
only show the two relevant lines from our running example to demonstrate serialization:

File.open_safely("/tmp/users_groups") { |f| YAML.dump(ugt, f) }

and recovery:

Dir["reports/*"].map { |path| YAML.load(File.open(path)) }

The only real difference between YAML and Marshal with respect to these basic methods is
that YAML.dump does not accept a recursion limit parameter. It should be noted as well that an
alternate form for dumping objects exists. A quick look at ri Object will tell you that all objects
have a to_yaml method, which does exactly what you think it does.

Hamou_821-0 C06.fm Page 78 Wednesday, May 30, 2007 4:37 AM

http://www.yaml.org

CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L 79

Customized YAMLing

Just like Marshal, YAML can do a pretty good job of serializing your custom classes, including
collections (even coping with cyclic references). If you ask YAML to cope with a class for which
there is no corresponding native data type, it uses a cute little construction to name the class
for later recovery (i.e., just like Marshal, only with added cuteness). Imagine a User class like this:

class User
 def initialize(name, login)
 @name, @login = name, login
 end
end

If we were to instantiate one of these users and then ask YAML to dump it
(User.new("Andre Ben Hamou", "andre").to_yaml), the resulting data would look like this:

--- !ruby/object:User
login: andre
name: Andre Ben Hamou

The simplest bit of customization you can achieve with YAML is specifying exactly which
attributes are to be serialized/restored. This is accomplished by adding a to_yaml_properties
instance method to your class:

class User
 def to_yaml_properties
 ["@login"]
 end
end

This modification ensures that only login names survive the serialization process. More
substantial customization requires understanding of the YAML concept of domains together
with a more in-depth appreciation of the serialization and recovery processes. This is beyond
the scope of the chapter, so I encourage you to visit the YAML for Ruby site (http://yaml4r.
sourceforge.net) for more detail.

Pros and Cons

YAML provides easily one of the “friendliest” serialization mechanisms available in Ruby. The
output is eminently readable yet extremely flexible. It has enough built-in types that storing
common/simple objects leads to output that is instantly recognizable and unambiguous. It is
also supported in a wide range of languages (and has the extra bonus of being essentially a
superset of JSON, www.json.org).

YAML’s main disadvantage is that it is (currently) much slower than the other two approaches
discussed in this section. Thus I always tend to err on the side of using YAML except where vast
amounts of data are in play.

Hamou_821-0 C06.fm Page 79 Wednesday, May 30, 2007 4:37 AM

http://yaml4r.sourceforge.net
http://yaml4r.sourceforge.net
http://www.json.org

80 CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L

Benchmarking the Alternatives
We’ve seen pure Ruby, Marshal, and YAML all doing their thing. All of these methods offer (argu-
ably slight) advantages over each other depending on one’s emphasis. The one comparison we
haven’t yet made is that of performance.

In order to perform such a comparison, we need to be mindful of the restrictions placed
upon us by the pure Ruby approach. Thus we need an example dataset that is composed of
simple data types and is sufficiently large to give a meaningful sample time on modern hard-
ware. This dataset also needs to have some structure so that it doesn’t fall to a competition
between reading a couple of paragraphs of text.

Let’s benchmark the storage and retrieval of a hash where the keys are the first 25,000 words in
the system dictionary and the values are the integer lengths of the corresponding keys. Listing 6-1
shows a script to do just this.

Listing 6-1. Benchmarking the Storage Mechanisms

require "benchmark"
require "yaml"

data = {}
IO.readlines("/usr/share/dict/words")[0..25000].each do |line|
 line.chomp!
 data[line] = line.size
end

Benchmark.bmbm do |b|
 serialised_data = nil
 b.report("rb_write") { serialised_data = data.inspect }
 b.report("rb_read") { eval(serialised_data) }

 b.report("ms_write") { serialised_data = Marshal.dump(data) }
 b.report("ms_read") { Marshal.load(serialised_data) }

 b.report("ym_write") { serialised_data = YAML.dump(data) }
 b.report("ym_read") { YAML.load(serialised_data) }
end

In this listing we grab the words from the dictionary and build the hash (data). We then
invoke Benchmark.bmbm, which as you will remember from Chapter 3 performs the benchmark
twice (a rehearsal followed by the main run). We then perform serializations and restorations
for each storage strategy. The results, as shown in Listing 6-2, demonstrate the relative speeds
of the storage mechanisms. As discussed, pure Ruby and Marshal are pretty much on par, while
YAML is way behind (particularly for serialization).

Hamou_821-0 C06.fm Page 80 Wednesday, May 30, 2007 4:37 AM

CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L 81

Listing 6-2. Pure Ruby and Marshal Running Laps Around YAML

Rehearsal --
rb_write 0.110000 0.020000 0.130000 (0.138682)
rb_read 0.240000 0.020000 0.260000 (0.299074)
ms_write 0.110000 0.000000 0.110000 (0.133449)
ms_read 0.080000 0.010000 0.090000 (0.095195)
ym_write 5.740000 0.160000 5.900000 (6.493976)
ym_read 0.800000 0.040000 0.840000 (0.934086)
----------------------------------- total: 7.330000sec

 user system total real
rb_write 0.110000 0.000000 0.110000 (0.125638)
rb_read 0.120000 0.000000 0.120000 (0.137981)
ms_write 0.110000 0.000000 0.110000 (0.132280)
ms_read 0.090000 0.010000 0.100000 (0.100199)
ym_write 5.930000 0.090000 6.020000 (6.601733)
ym_read 0.400000 0.010000 0.410000 (0.459951)

Network-Aware Storage
As systems develop and their reach increases, so too must the data that is drawn upon by the
scripts that manage them. At some point there is a clear need to decouple this data from any
one host and instead present it across the network in a consistent and reliable manner. In prac-
tice, there are two main approaches to choose from. The central question governing this choice
concerns the lifetime of the data.

In the case of short-lived information (perhaps used to coordinate power consumption
or system shutdowns), we really just need a cloud of data. There is no permanent record to be
kept; no logs to keep safe. We simply have a large distributed process relying on a common
state recorded in the cloud. To provide such a service, we will look to memcached.

If our data is long-lived and (perhaps more important) needs to be in a highly consistent
state, then we need a network service providing fine-grained access to permanently stored
data. This means a database and, for the purposes of this chapter, specifically points to an
SQL database.

General Design Principals
I’m going to take a few lines to describe some of the things to be aware of when implementing
network storage. The reason it’s important to do so is that information stored in a remote/
distributed fashion is often accessed by many different systems created by lots of creative and
enthusiastic programmers who may never have even met.

Thus this subsection engages in a fairly high-level discussion of the considerations that
can be important when venturing into the world of network-aware storage. If you are already
familiar with concepts like system scaling, complexity, and basic database theory, then you
should feel free to skip ahead.

Hamou_821-0 C06.fm Page 81 Wednesday, May 30, 2007 4:37 AM

82 CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L

Know Your Audience

It may seem like an obvious point, but it is imperative to know who/what is going to be inter-
acting with your data, in what manner, and how often. Any nontrivial requirements are going
to involve distributed access. Connections will be coming at your system from every which
way, and it will be up to your chosen interface and storage mechanism to cope.

Get a sense for the range of complexity of operations. Any data store you use will allow you
to structure that data in some way. However, some structures are more suited to simple object-
style queries: “Give me the name and number of every person.” Other queries might force you
to read the data store completely multiple times and provide higher-order relationships: “Give
me the name of every person who has at least one friend who is a member of the clergy.” Consider
whether your operations will be mostly reads, writes, or a mixture of both: “Set the imprisoned
flag of every person who has at least one friend in the Communist party.”

Get clients to be honest about the number of such operations they’d expect per minute or
per hour. You will not be able to serve 20 million write queries a minute using YAML-marshaled
object files on a single Mac Mini (no matter how much your manager wishes you could). At the
same time, deploying a cluster of state-of-the-art servers with a massive distributed memory
architecture to power an online survey of the members of the over-50s peanut butter appreci-
ation society would be nothing short of the shock-and-awe approach to system deployment.

Not all of the third parties accessing your data may have been enlightened as to using
Ruby, so they may find it difficult to adapt to new protocols quickly. For example, if you are
planning to provide a CORBA interface, but none of the target programmers (being under 30 years
of age) have even heard of it let alone know what it is, it may be too much of an uphill struggle
to get them to adopt it.

To many businesses, availability is the number one concern. It doesn’t matter if the apoc-
alypse itself is going on three cubicles down, the data must remain accessible. It takes a lot of
effort to design such a service, and trying to roll one from scratch yourself might occupy a great
deal of the rest of your life. Thus it is important to choose technologies with well-understood
mechanisms for peering and backup in environments that require them.

Above all, remind your colleagues and overlords that open standards exist for a reason.
This is the same reason that train-track gauges and screw heads are standardized: to make our
lives easier and allow more people to take advantage of common interfaces to add useful func-
tionality (think screwdriver).

Databases

It’s amazing to think that one of the highest paid jobs in the IT sector is that of a database
administrator (DBA). As I understand it, their raison d’etre is to create a few database accounts
every so often and massively slow down deployment of new data stores by arguing endlessly
about relational schema design.

I must say that I have many good friends who are DBAs, and the ones who have ended up
filling this role of IT’s grouchy old men certainly didn’t start out meaning to. It is all because of
the pressure that comes with a centralized data-storage philosophy. If you hammer it into an
administrator that he holds the keys to the golden city and that the slightest misstep that occurs
within its walls is his ultimate responsibility, he is going to become understandably paranoid
about every change and fastidious about formal design processes to the point of lunacy.

As administrators, we yearn for rapid deployment followed by a fast iteration process. For
a lot of administrators, the moment they hit the word “database,” they can almost smell the

Hamou_821-0 C06.fm Page 82 Wednesday, May 30, 2007 4:37 AM

CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L 83

quagmire ahead. There seems to be this perception that databases are for people with nothing
better to do. It takes way too much time to learn how to use them properly, so we’ll just make
do with a few flat files here and there and hope for the best.

As you might anticipate, I’m going to argue that it is the interface’s fault. I don’t mean SQL,
which is brilliant (not to mention the only popular, mathematically complete programming
language on earth). It is the business of shoehorning database interaction, transactional
awareness, and multiuser logic into an existing script that seems so daunting. This process of
wrangling things back and forth between variables in your code and data in some DB tables
gets cumbersome very quickly. As you will see before this chapter is finished, when you have a
language like Ruby to play with, all of the gruesomeness of this kind of task melts away.

At a more technological level, when most people think of databases they almost always
picture something like MySQL, PostgreSQL, Oracle, and others. These are all relational data-
bases that accept and process queries written in SQL. They are not the only type of database.
There are a small number of object-oriented database management systems (DBMSs) avail-
able, of which a couple are open source. The community hasn’t really embraced OO databases
in a big way, preferring to rely on middleware for object-relational mapping. For this reason, I
will not provide specific examples of their use.

That said, relational databases are an extremely popular way (some might say the de facto
standard) for storing data in a canonical manner. Why is this? Modern databases provide
particular features that are essential for a data store you wish to rely on. These features are
summarized by the slightly worrying acronym ACID and have been pillars of database theory
for some time now:

• Atomicity: Each modification either succeeds or fails (there can be no partial writes).

• Consistency: Any modification that would lead to a breach of some internal rule (such as
a field value not exceeding 32) must fail in a manner that rolls back an entire transaction.

• Isolation: Each transaction should operate in a manner that means other transactions
see a consistent state (transaction A shouldn’t have to care that transaction B exists and
may even be trying to operate in parallel on some of the same data as A).

• Durability: Once a transaction is committed, there should be nothing on earth short of
complete annihilation that can cause it to be lost.

In addition to all of these, relational databases place an emphasis on both the relationship
of logical entities in the data cloud and the accessibility of every atom of data, both for retrieval
and query construction. This renders them a potent means for organizing huge volumes of
structured information. Combine this with the fact that two of the most popular DBMSs are
open source, provide tools for peering and backup, and offer bindings for myriad languages,
and you begin to see why they are so widely used.

memcached: A Great Big Hash in the Sky
Many of the data structures we create on an informal basis are pretty flat. A person could be
the collection of a name, an age, and a favorite color. When they aren’t flat, we like to be able to
use familiar programming conventions to model something belonging to something else. In
Chapter 4, we got used to the idea of using hashes in method signatures to provide an informal
data structure for passing in parameters. Hashes as structured buckets for data are something

Hamou_821-0 C06.fm Page 83 Wednesday, May 30, 2007 4:37 AM

84 CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L

that users of just about any scripting language should be familiar with. As the data becomes
more structured, it isn’t uncommon to find hashes of hashes, hashes of arrays, arrays of hashes,
and so forth. Listing 6-3 carries an example of this.

Listing 6-3. Mixing Collection Classes to Create Structure

zoo = { :tigers => ["Ralph", "Michael"],
 :lions => ["Missy", "Sherbert"],
 :donkeys => ["George", "Richard", "Tony", "John"] }

puts "There are #{zoo[:tigers].size} tigers in our zoo"
puts "The premier donkey is #{zoo[:donkeys].first}"

Of course, as our program grows in size, there comes a point where all this informality
starts to catch up and we should move to proper classes for managing the data. However, this
kind of construction will always be useful. Wouldn’t it be nice if there were some sort of tech-
nology that allowed us to bundle up our objects and shove them into memory such that we
could write the preceding sort of code but have the data reside in a network-aware cloud rather
than our own little corner of RAM? Please rise for memcached (www.danga.com/memcached).

Originally created to speed up LiveJournal.com (which it did—astronomically), memcached
implements a distributed object-caching system that is entirely memory based. It is not designed
to replace a database as the ultimate storage location for your data, but rather to generalize the
process of caching objects in memory. As you will see in the next section, once data comes out
of a database it exists as some kind of object in your program. If you don’t update that object
before you next try to retrieve it, you can simply grab it out of this object cloud without all of the
strain of re-executing SQL queries and performing relational-to-object mapping. This applies
even if you happen to be in a different thread running on a different machine from the one that
originally put the object in the cache.

Before we can use it, we need to get it running. I’m not going to provide detailed installa-
tion instructions, as the previously mentioned site does a far better job than I ever could and
these instructions will vary from platform to platform. Once memcached is installed, it can be run
as follows:

$ memcached -d -m 1024 -l 10.0.0.1 -p 11211

which starts memcached as a daemon using 1GB of available memory bound to 10.0.0.1:11211.
Currently, the speediest Ruby library for interoperating with memcached is memcache-client,

which is available as a gem. As ever, see Chapter 10 for gem installation instructions. A detailed
overview of this library (as well as several other rather cute ones) is available at http://dev.
robotcoop.com. Let’s have a play with it.

Connecting to the Service

Connecting to your running cache is achieved with MemCache.new. It takes a list of one or more
servers and a set of global options like this:

cache_object = MemCache.new("localhost:11211", :readonly => true)

The server specification is of the form hostname:port or hostname:port:weight (where the
weighting parameter allows your script to declare a greater affinity for one server or another).

Hamou_821-0 C06.fm Page 84 Wednesday, May 30, 2007 4:37 AM

http://www.danga.com/memcached
http://dev

CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L 85

The server(s) can also be specified with a list of MemCache::Server objects, about which you
should refer to the documentation for further discussion.

The options hash may contain any of the following three parameters:

• :namespace: A string to prepend to all keys used (nil by default).

• :readonly: A true value causes cache writes to raise an error (false by default).

• :multithread: Cache access becomes thread safe via a mutex (false by default).

There is also the ability to change the number of seconds the library will wait before timing
out via the request_timeout attribute. To set this timeout at ten seconds, for example, we
would write

cache_object.request_timeout = 10

As already implied, it is possible to run multiple memcache servers in a cloud for added
redundancy. Thus we might want to use a primary and some backup server at the same time,
specifying that the primary should be used as a matter of preference. We could do so like this:

cache_object = MemCache.new("mem1.example.com:11211:2", "mem2.example.com:11211")

Note that for mem2, we don’t bother to specify the weight explicitly as the default weight (1)
is exactly what we want in this situation.

Using the Cloud

The object returned by MemCache.new acts just like a hash with a couple of extra features. Imagine I
was storing a list of animals at our e-zoo. A simple round-trip of relevant data might look some-
thing like this:

zoo = MemCache.new("localhost:11211")
zoo[:donkeys] = ["George", "Richard", "Tony", "John"]
puts "The premier donkey is #{zoo[:donkeys].first}"

Do you notice how both the write and the read operations completely abstract the fact that
the storage is no longer local RAM? It looks like a hash and acts like a hash, therefore it is a duck
. . . erm . . . hash.

You may wonder how these objects are being stored (particularly after the discussion in
the first half of this chapter). It turns out that the memcache API really just associates keys with
buckets of data so that a flat representation of our objects is required. The memcache-client
library simply Marshals the objects committed to the cloud and then automatically un-Marshals
them on the way back. This behavior can be overridden, and I encourage you to read the docu-
mentation for more detail.

For efficiency (as well as partially satisfying the isolation and consistency portions of
ACID) it is possible to request multiple keys simultaneously as one giant transaction. This is
achieved via the suitably named get_multi method:

hash_of_values = zoo.get_multi(:donkeys, :antelope)

There is one other pair of methods that might be of occasional use. These methods allow
you to increment/decrement the value associated with a key by an integer amount. The key

Hamou_821-0 C06.fm Page 85 Wednesday, May 30, 2007 4:37 AM

86 CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L

must already exist, and its associated value will be treated as an integer irrespective of what it
actually is (taking the value of 0 in any ambiguous cases). Obviously, it is invalid to call for a
decrement to below a value of 0.

Using these methods, we could count the number of web page hits in a particular day.
Within our web page controller, we would have a method to be run before each page is
constructed:

def log_hit
 key = Date.today.strftime("hits-%Y%m%d")
 CACHE[key] = 0 unless CACHE[key]
 CACHE.incr(key, 1)
end

This method constructs a key based on today’s date, ensures that key exists within the
cloud, and then increments it to reflect the hit. This approach to monitoring web hits is useful
as it can provide administrators with interesting load statistics on a daily (or other timely
period) basis without leaving logs behind to be retrieved, processed, analyzed, and ignored.

(Auto)Removing Data

So far, we’ve used the hashlike getting and setting methods. If we were to use the more explicit
cache_object.set, we would be granted an extra piece of functionality. The memcache protocol
supports the notion that any particular key can be set to autoexpire after a given period of time.
Thus we might use this system to maintain temporary session data, which should always
disappear after an allotted amount of time:

sessions.set("andre", session_data, 3600)

With this code, after an hour my session would simply cease to be. Given that the whole
point of memcache is to provide a cache, it makes sense that we would want to be able to specify
the useful lifetimes of things that should (after all) be temporary in nature.

If you need to decouple the expiration process from the point of setting the key, but you
still need a fire-and-forget mechanism, the delete method is your friend. Ordinarily, deletion
operates immediately like this:

sessions.delete("andre")

However, delete accepts an extra parameter specifying a period of deferment before the
deletion should take place:

sessions.delete("andre", 3600)

Other Activities

The library provides a few metafunctions that allow you to perform some basic monitoring of
the general health of the data cloud. The most basic of these is a method called active?, which
runs a check to ensure that an object is present on at least one of its designated servers:

raise "our parrot has joined the bleedin' choir invisible" unless parrot.active?

Hamou_821-0 C06.fm Page 86 Wednesday, May 30, 2007 4:37 AM

CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L 87

A more comprehensive set of statistics is available using the stats method. This method
returns a hash containing an entry for every server associated with a given object. These statis-
tics include byte limits, process information, uptime, and a plethora of other information.

There isn’t much else to cover as, by its nature, the core memcache API is simple to under-
stand, yet its implications can be profound. If you need true enterprise-grade performance and
your data is largely throwaway, it is a real contender. However, a lot of your data will need to be
stored for a more serious amount of time and will simultaneously mandate more solid adher-
ence to the ACID principles. Yep—it’s time to look at databases.

Databases
In this subsection, we will be discussing something of great import to many administrators.
Databases (particularly the relational kind) are at the heart of so many back-end systems that
it is vital to be at ease with the path of least resistance where their use is concerned.

We will first cover the more traditional way to (ab)use a database—the DBI approach. This
will be eminently familiar to those with a Perl background, and it was where the Ruby commu-
nity was before Rails came along.

The arrival of Rails changed everything in the field of Ruby and databases. Thus the main
chunk of this subsection is devoted to the piece of Rails named ActiveRecord, which makes
database usage easy and just a little bit fun.

Old-School Database Access: Raw SQL Queries and DBI

Just the thought of having to remind myself of this style of database access gives me a queasy
feeling. I’m glad it doesn’t do the same to the thousands of PHP programmers who code like
this every day or we’d run out of vomit bags.

Back when relational databases were really starting to get popular, people had already
pretty much stopped writing CGI programs in C and switched to Perl and PHP. Hence, there
were bindings for both of these covering just about every SQL DBMS there was. Pretty soon, it
became obvious that a common interface was needed so that programmers could worry less
about which specific DBMS was being used. Thus the infamous Perl database independent
interface (DBI; http://dbi.perl.org) module was born.

The idea was to create an abstraction with methods, variables, and conventions that were
independent of the underlying database. You see, one DBMS might ship a language binding
whereby the method for executing an SQL query on the server would be called execute and
return some sort of structure. By contrast, another DBMS might call this method exec and
return a plain old hash. Changing the DBMS was close to unthinkable once a lot of code had
been written.

DBI was the answer to this problem in the Perl world. As for PHP, there was also a DBI
implementation, but most novice coders (very nearly the universal set where PHP is concerned)
seem to have settled upon the direct bindings from MySQL as a de facto standard. We’ll use the
abstraction that resulted from all of the hard work put in by the DBI team.

Ruby DBI is available from http://ruby-dbi.rubyforge.org, which also carries detailed
installation instructions. In particular, DBI has the concept of DBDs, or modular bits of code
that essentially map the abstracted method space of DBI to a given DBMS’s calls. Ensure you
enable the DBD appropriate to your current database setup. I’m going to assume this is MySQL.

As with most network libraries, we start by acquiring a handle—an object that gives us
access to the database:

Hamou_821-0 C06.fm Page 87 Wednesday, May 30, 2007 4:37 AM

http://dbi.perl.org
http://ruby-dbi.rubyforge.org

88 CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L

require "dbi"
dbh = DBI.connect("DBI:Mysql:test", "username", "password")

Perl users should feel quite at home at this point. The connect method specifies the DBMS
handler and the DB name all in one and takes the appropriate access credentials. Now let’s put
some data into a sweetmeats table with Listing 6-4.

Listing 6-4. Inserting Our Sweetmeats

["fudge" => 12, "praline" => 32, "crispy-frog" => 1542].each do |name, stock|
 dbh.do("INSERT INTO sweetmeats (name, stock) VALUES (?, ?)", name, stock)
end

Clearly, this executes the given SQL query and does some safe value substitution from
particular variables. This kind of substitution is essential in avoiding SQL injection attacks.
Given that this has run, our sweetmeats table should now look like Table 6-1.

Next we’ll retrieve and inspect some of this important data:

query = dbh.prepare("SELECT * FROM sweetmeats")
query.execute
p row while row=query.fetch
query.finish

Finally, we’ll close the database connection with a dbh.disconnect.
The funny thing is, being Ruby enthusiasts, the people who re-created this library for Ruby

quickly saw how to make it feel more easy-to-read and obvious than the approach it had been
forced to take by the limitations of the Perl language. Remember File’s approach to handles is
to encourage the use of blocks that only end up running if the handle is opened successfully?
Here’s what we can do with Ruby DBI:

DBI.connect("DBI:Mysql:test", "username", "password") do |dbh|
 # code from listing 6-4
 dbh.select_all("SELECT * FROM sweetmeats") { |row| p row }
end

With this more Rubylike approach, we don’t have to care about the structure of the result
of a query. We can merely treat it as a black box that implements an iterator.

Even though this is better from a readability perspective, it’s still pretty noisy. What we
actually want to do is say, “Here are three sweetmeats—shove them into the database, please”

Table 6-1. The Sweetmeats Table After the Initial INSERT Operation

Name Stock

fudge 12

praline 32

crispy-frog 1542

Hamou_821-0 C06.fm Page 88 Wednesday, May 30, 2007 4:37 AM

CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L 89

and “Give me all the sweetmeats.” Instead, the majority of code here is either SQL to perform
these very simple operations or the bookkeeping needed to support those queries—and this is
a painfully simple example.

Of course, all this code to grab the relevant data and then instantiate objects based on that
data belongs inside the objects themselves, encapsulated rather than saturation-bombed all
over our code. What we need is a system that automatically maps between relational records
on one hand and pure objects on the other.

Object-Relational Mapping with ActiveRecord
Rails is hugely popular and one of the main reasons for this is the suite of functionality provided by
the ActiveRecord module. Even though it is almost always seen as part of the Rails framework,
ActiveRecord is an entity unto itself and can be downloaded as a gem (see Chapter 10). Having
said that, I will assume you have installed Rails in its entirety. The reason for this is that Rails
projects are structured nicely in terms of configuration and convenience methods. Also, if
you get stuck, there is a raft of documentation out there to help you, but it is written with the
assumption that you are talking about a Rails project.

In order to explore the object-relational mapping (ORM) capabilities of ActiveRecord, I am
going to invent a pet project. This project is skewed toward not needing any of the other parts
of Rails so that we don’t get distracted. You will not be serving up a web page at any point in this
walkthrough.

The project brief is to design a system that will record changes in disk drive usage, taking
snapshots every 15 minutes and placing the results in a database for later analysis. It should
model the relationship between a host, its disks, and a timestamped disk space report.

Before we go any further, then, let’s create a Rails project folder called diskmon with the
following command (to be run in whatever directory is most appropriate to your setup):

$ rails diskmon

which will dump a flotilla of messages to the terminal confirming that various directories and
files have been created and stowed away in their proper places.

The next step is to configure your database access. I’m assuming that you have a DBMS of
some sort running, and this example is specifically geared toward MySQL. Within the config
directory of your newly created project folder is a file named database.yml. This is where the
access details for your DBMS are held. Assuming you have a database called diskmon and one
called diskmon_dev (for production and development, respectively), then your file would look
like Listing 6-5.

Listing 6-5. Configuration of Database Access Details for ActiveRecord

development:
 adapter: mysql
 database: diskmon_dev
 host: 10.20.30.40
 username: uname
 password: pwd

Hamou_821-0 C06.fm Page 89 Wednesday, May 30, 2007 4:37 AM

90 CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L

production:
 adapter: mysql
 database: diskmon
 host: 10.20.30.41
 username: uname
 password: pwd

Now that ActiveRecord knows what to connect to and how, it’s time to think about schema
design. In any database modeling, my first step is always to determine the various types of
objects involved and how they relate. Fortunately the design brief spells this out explicitly.
Hosts can have many disks and disks can have many reports (see Figure 6-1).

Figure 6-1. The system’s objects and their one-to-many relationships

ActiveRecord provides a Ruby way to specify the schema of your database tables rather
than keeping a collection of SQL files hanging around. This approach also allows for smooth
migration between different versions of the schema (see the documentation for more details).
Within the diskmon project we execute this:

$ script/generate migration InitialSchema

This creates a skeleton migration file located at db/migrate/001_initial_schema.rb. A
quick inspection of this file will show you that it is just a class definition with two class methods
(up and down). Unsurprisingly, these methods are meant to contain all the instructions for migrating
up to this revision of the database schema (i.e., to version 1) and the corresponding tasks for
rolling back down (i.e., to version 0, the empty schema). With that in mind, Listing 6-6 shows a
sample migration file for our database.

Listing 6-6. Initial Schema Definition for the Disk Monitoring Project

class InitialSchema < ActiveRecord::Migration
 def self.up
 create_table :hosts do |t|
 t.column :name, :string
 end

 create_table :disks do |t|
 t.column :host_id, :integer
 t.column :dev_name, :string
 t.column :mnt_point, :string
 t.column :mb_available, :integer
 end

Host Disk Report

Hamou_821-0 C06.fm Page 90 Wednesday, May 30, 2007 4:37 AM

CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L 91

 create_table :reports do |t|
 t.column :disk_id, :integer
 t.column :created_at, :datetime
 t.column :mb_used, :integer
 end
 end

 def self.down
 drop_table :hosts
 drop_table :disks
 drop_table :reports
 end
end

I’m certain you will be familiar enough with database schema to understand the code in
this listing without further comment, save for a quick note that since reports belong to a disk
and disks belong to a host, the corresponding tables have to have foreign keys (disk_id, host_id)
that point to records in the parent tables. On this basis, shouldn’t we specify the creation of
columns named id to give each record a table-unique number? Because this is the funda-
mental basis on which ORM is built, ActiveRecord automatically adds such a column to every
table created.

In addition, the created_at column is “magic.” That is to say that when a record is first
created in that table, its created_at value will be set automatically by ActiveRecord to the then-
current time. This is rather nice as it means we get timestamping for free.

Armed with this schema, we can create the database with a simple invocation of one of
Rails’ built-in tasks:

$ rake db:migrate

Remembering that the whole point of ORM is to make a relational database feel like a
cloud of objects, we come to defining our classes formally in Listing 6-7 (which contains the
code for three files named host.rb, disk.rb, and report.rb to be located in app/models).

Listing 6-7. Class Definitions for the Disk Monitoring Project

class Host < ActiveRecord::Base
 has_many :disks
end

class Disk < ActiveRecord::Base
 belongs_to :host
 has_many :reports
end

class Report < ActiveRecord::Base
 belongs_to :disk
end

Hamou_821-0 C06.fm Page 91 Wednesday, May 30, 2007 4:37 AM

92 CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L

There are three things to recognize about this code. First, all the classes inherit from the
base ActiveRecord class, which is an abstract class that does all the heavy lifting. Second, notice
the has_many and belongs_to directives, which are completely self-explanatory DSL macros
(see Chapter 4) that add various methods to the classes (more on this in a moment).

Third, sit down before I tell you that Listing 6-7 is the entire amount of object/class defini-
tion code we need to write for this project. Don’t believe me? In the project’s lib directory,
create the script (named demo.rb) as shown in Listing 6-8.

Listing 6-8. A Quick Demonstration of the Functionality Acquired for Free from ActiveRecord

host = Host.create(:name => "slarti")
disk = host.disks.create(:dev_name => "/dev/disk1s1",
 :mnt_point => "/",
 :mb_available => 80 * 1024)
disk.reports.create(:mb_used => 20 * 1024)
disk.reports.create(:mb_used => 25 * 1024)

This script creates a sample dataset (see Figure 6-2) and can be run with the following
command:

$ script/runner "require 'demo'"

Figure 6-2. Database contents after running the script from Listing 6-8

Notice how we never had to specify table names or write a single chunk of SQL? Instead,
we were able to write naturally readable code that concentrated on the data and structure
rather than the DBMS bookkeeping. This is just the beginning, of course. The data isn’t of
much use to us if we can’t get at it. Let’s assume that we want to generate a list of disks for each
host. Nothing could be simpler, as demonstrated in Listing 6-9.

hosts
id name
1 slarti

disks
id dev_name
1 /dev/disk1s

mnt_point mb_available
/ 81920

host_id
1

reports
id created_at
1 12:41:15

mb_used
20480

disk_id
1

2 12:41:25 256001

Hamou_821-0 C06.fm Page 92 Wednesday, May 30, 2007 4:37 AM

CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L 93

Listing 6-9. A Script to Produce a Report of Disk Deployment

Host.find(:all).each do |host|
 puts "***#{host.name}***"
 puts host.disks.map do |disk|
 [disk.mnt_point, disk.dev_name, disk.mb_available].join("\t")
 end.join("\n")
end

This chunk of code first grabs every Host out of the database and then iterates through
them. Notice how the subiteration through each host’s set of disks simply treats disks as an
array belonging to host. This is functionality provided by the has_many directive (as was the
disks.create construction in Listing 6-8).

ActiveRecord provides a whole host of convenience macros like these. For example, suppose
we decide that valid device names have to start with /dev/. We can add a regular expression
check to that particular field like this:

class Disk
 # previous code
 validates_format_of :dev_name, :with => /^\/dev\//
end

With that precaution in place, should anyone try to create a new Disk or update an existing
one with a nonconforming device name, such an operation would have no effect and the object
itself would track the associated errors. Adding an exclamation point to the create statement
as employed in Listing 6-8 will cause an exception to be raised in the event of validation problems.

ActiveRecord is way too fully featured to cover in detail in this section, but it has one more
style of method that I wish to discuss, as it is yet another good example of metaprogramming
in action. Imagine that we wish to calculate the average size of all the root hard disks in the
database. In other words, we need to filter out any entries that do not pertain to an mnt_point
of /. This would be easy enough in SQL, but ActiveRecord makes it even easier:

root_disks = Disk.find_all_by_mnt_point("/")
total_size = root_disks.inject { |sum, disk| sum + disk.mb_available }
puts "Average root disk size: #{total_size / root_disks.size}"

■Tip If you are performing numerical calculations, take a look at the ActiveRecord Calculations feature,
which can provide this sort of functionality with much greater efficiency than the rather academic approach
under discussion in this section.

Before diving into how that first line works, it’s worth pointing out the use of inject, which
is a really useful function that comes as part of the Enumerable module. Its most common use is for
keeping running totals and other calculations of that sort. I encourage you to look at ri inject as
you’ll wonder how you lived without it once you start using it.

Now, how on earth did ActiveRecord manage to run a method called find_all_by_mnt_point?
There is no way the Rails developers (smart though they are) were forward thinking enough to

Hamou_821-0 C06.fm Page 93 Wednesday, May 30, 2007 4:37 AM

94 CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L

include exactly that method in anticipation of the day that we would need it. If you recall, in
Chapter 4 we explored the use of Object.method_missing to create dynamic methods. Under-
neath, ActiveRecord implements the method_missing call and actually parses a command from
our method call, dispatching a dynamic SQL finder built according to our specifications.
Furthermore, this dynamic method is then stored for future use by the interpreter so that the
parsing hit happens only once. This is one of the single greatest examples of the flexibility and
customizability of Ruby providing a simpler and more intuitive way to interact with objects
than is found in almost any other language.

Thinking about our Disk class, we’re going to need some method that will extract the
current usage for a particular disk. Given the structure of our database, that figure is defined as
the mb_used value of the most recently created Report attached to a given Disk or nil if there are
no such Reports yet attached. This is a prime candidate for a judicious bit of SQL, as demon-
strated in Listing 6-10.

Listing 6-10. Extending the Disk Class to Include a Current Usage Method

class Disk
 # previous code

 def usage
 r = reports.find(:first, :order => "created_at DESC")
 r ? report.mb_used : nil
 end
end

In many ways, usage as defined in Listing 6-10 is a virtual field. Its value is calculated on
the fly, but to the outside world it is just another parameter associated with a Disk. This sparks
yet another idea. Let’s make it so that when we want to add a new usage report we can do
disk.usage = 15 * 1024 instead of disk.reports.create(:mb_used => 15 * 1024). I think you’ll
agree that the first form feels more natural and uncoupled from the details of the database
structure than the second. The code for this method is in Listing 6-11.

Listing 6-11. Adding a Setter to Complement the Getter Added in Listing 6-10

class Disk
 # previous code

 def usage=(value)
 reports.create(:mb_used => value)
 end
end

Now that we have a proper set of accessor methods for usage, it is apparent that this approach
will not scale particularly well. As discussed, to the outside world usage is just another field
belonging to a Disk. The problem is that programmers might start to treat it as such, even
though our implementation actually requires a separate SQL query every time it’s called. We
need to find a way to cache the value.

Hamou_821-0 C06.fm Page 94 Wednesday, May 30, 2007 4:37 AM

CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L 95

One alternative would be to create an instance variable that caches the value intelligently
based on when it’s updated/read. However, this would be available only to people using our library
and is quite a bit of effort for what is, in the end, a simple integer. In particular, ActiveRecord
already has intelligence for caching real field values and updating them in memory without
having to reload them from the database. It does the work so we don’t have to. Thus a better
approach in our hypothetical scenario might be to add a column to the disks table.

Just as the schema was defined using an initial migration, we will create yet another to add
our usage cache column. As before, we generate the skeleton migration with the following:

$ script/generate migration AddDiskUsageCache

As this is the second migration you’ve generated, you should end up with a file named
002_add_disk_usage_cache.rb. To this migration, we want to add a column to a particular
table; the mechanics of this are shown in Listing 6-12.

Listing 6-12. Migration for Adding a Disk Usage Cache

class AddDiskUsageCache < ActiveRecord::Migration
 def self.up
 add_column :disks, :usage, :integer, :default => 0
 Disk.update_all("usage = 0")
 end

 def self.down
 remove_column :disks, :integer
 end
end

There are two items of interest in this listing. First, note the :default directive on the
column definition. We could have used this in the original schema definition, but I thought I’d
save it until now. If the underlying DBMS supports default values for columns, this directive
will ensure that such values are set appropriately. Second, as setting this default doesn’t help
any existing records, we use another of ActiveRecord’s convenience methods, update_all, to
populate such entities. To execute this migration, once again run the command

$ rake db:migrate

As Orwell observed, the destruction of words is a beautiful thing, and in that vein it is now
time to undo our handiwork from Listing 6-10. From now on, usage is a first-class field—there
is nothing virtual about it. It will always contain the mb_used value of the most recent usage report.
Thus the whole of our usage method can be erased, as ActiveRecord will provide it for us. The
setter usage= is a different matter, however. This method needs to be modified as shown in
Listing 6-13 so that, in addition to creating a new Report, it updates the cached value.

Hamou_821-0 C06.fm Page 95 Wednesday, May 30, 2007 4:37 AM

96 CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L

Listing 6-13. Modifying the usage Setter to Support Caching

class Disk
 # previous code

 def usage=(value)
 Disk.transaction(self) do
 reports.create(:mb_used => value)
 self.update_attribute(:usage, value)
 end
 end
end

Notice that we’ve wrapped the two operations (adding the Report and updating the cache
field) in a transaction. This is for the obvious reason that we need to treat both operations as a
single atomic whole. If the database crashes in between creating the Report and updating the
cached value, it would be left in an inconsistent state. Thus the use of a transaction block forces
the database to do both operations or neither.

You may be wondering why we passed self to the transaction command. ActiveRecord’s
transaction system allows for nominating objects that will be changing within the transaction
so that the in-memory state of those objects can be rolled back in harmony with the database
in the event of some failure.

Doubtless you will be unsurprised to discover that ActiveRecord has convenience methods for
cached-value fields like usage, so we needn’t even have written the paltry amount of code in
Listing 6-13. Take a look at the documentation online for more details.

For completeness, we should probably finish the project so that it meets the design brief.
Listing 6-14 contains the complete script to be located in an appropriate subfolder of the
diskmon project folder (such as lib) and to be run by a cron job (or your platform’s equivalent)
every 15 minutes using the following:

$ script/runner "require 'collect_stats'"

Listing 6-14. Complete Disk-Monitoring Script to Be Run Every 15 Minutes

hostname = `/bin/hostname`
host = Host.find_or_create_by_name(hostname)

`/bin/df –lm`.each do |line|
 next unless line =~ /^(\/dev\/\S+)\s(.*?)$/

 dev_name = $1
 total, used, available, capacity, mnt_point = $2.split(" ")

 disk = host.disks.find_or_create_by_dev_name_and_mnt_point(dev_name, mnt_point)
 t = total.to_i
 disk.update_attribute(:mb_available, t) unless disk.mb_available == t

 disk.usage = used.to_i
each

Hamou_821-0 C06.fm Page 96 Wednesday, May 30, 2007 4:37 AM

CH AP T E R 6 ■ O B J E CT S TO R AG E AN D R E TR I E V A L 97

Stepping through, we derive the hostname from the command tool of the same name—
remember, the backticks mean “Run this command and give me the string of its standard out.”
Using the hostname, we try to match against an existing Host in the database or create a new
one if none exists using the sublime find_or_create_by_ construction.

Another in-place command grabs the disk data for the local machine (-l implies local
volumes only; -m requests values in 1MB blocks). String.each as just used will iterate through
the string, finding every substring separated by the default record separator, which is a UNIX
line feed. We only execute the block for a particular line if it starts with a device name of the
form /dev/blah.

From our regular expression match, the first bracketed term is the device name and the
second bracketed term is a whitespace-separated list of values in a given order (which may be
platform specific, so watch out). We split up the list of values and assign them to some appro-
priately named variables.

Just as we did when we found/created host, so too do we attempt to match against an
existing Disk by device name and mount point, creating a new one if none such exists. In addi-
tion, we have allowed for the total size of the volume to change and so update the database if
this is the case. Finally, we use our fantastic setter method to create a new usage report.

It’s important to recognize that we could go on for an entire book’s worth of chapters
growing this example as a way to explore the vast, guilty pleasures of ActiveRecord. We could
learn about how easy it is to adapt its idioms to match legacy databases or how to trap and
observe the various methods of an ActiveRecord object. We could see how expressive its DSLs
are for dealing with joins, sets, lists, and other tasty treats. We could even explore the wonders
of transactions, aggregates, and single-table inheritance. Alas, we must move on.

Playing with the Big Boys
The motivation of this chapter was to inspire and guide your thinking when looking to deploy
new solutions whereby decisions on data storage were yours to make. You’ve seen the possibil-
ities for rapid storage and retrieval of objects on disk, whether it be via pure Ruby, Marshal, or
YAML. As well, you played with a great big hash in the sky via memcached and saw how ActiveRecord
makes database-backed object storage a breeze.

Sadly, the corporate world is one where only infrequently do we as administrators get the
final say in choosing the way our objects will be stored. The enterprise is an immense informa-
tion monster, sucking data in and spitting it back out again with equal brutality and chaos.

Years of accumulated, often contradictory data policies and forgotten technology deploy-
ments lead to the inevitable task of trying to cram the useful bits back together and present
them in a decent manner. The following chapter will hopefully nudge you in the right direction
as you embark on your enterprise information safari.

Hamou_821-0 C06.fm Page 97 Wednesday, May 30, 2007 4:37 AM

Hamou_821-0 C06.fm Page 98 Wednesday, May 30, 2007 4:37 AM

99

■ ■ ■

C H A P T E R 7

Working with Enterprise Data

Ruby’s value in a corporate environment is not to be underestimated. In this chapter, we’ll
cover how to perform some of the most common parsing tasks found in daily enterprise life,
manipulating delimited values and XML documents with ease. The second half of the chapter
is devoted to the vital requirement of being able to interact with business information systems
over LDAP, XML-RPC, and SOAP, and using the increasingly popular REST principals.

RUBY’S ROLE IN THE ENTERPRISE

The Ruby community has had its share of flame wars about the readiness of Ruby for the enterprise. I have
said that I can think of no modern language that matches Ruby’s versatility and expediency. That means that
I’m always keen to see whether it can be applied to whatever I’m working on. However, the more intense
Ruby-philes have circulated the impression that something as general as a high-level programming language
can be deemed universally fit for every task of every business.

This kind of thinking is a natural by-product of the fervor that surrounds any engaged and enthusiastic
community. The problem is that it leads to entirely the wrong kind of argument. When dealing with big busi-
ness, touting a few days of productivity gains per development cycle is not enough. Corporations have long-
standing ties with existing vendors and technologies that provide certain processes and guarantee certain
standards are met (for better or worse).

Corporate culture often appears to have the unswerving momentum of a triceratops on a bobsled. The
bigger and more important the corporate system under review, the more Sisyphean the task of selling Ruby
as a viable alternative seems to be. Whatever the reason for this, poking big business with a stick because it
seems slow to try new things is utterly pointless. If you want to address managerial concerns about the risks
associated with a cool, new technology, then actions speak louder than words. It’s been my experience that
speeding up all those little jobs that never seem to get automated in the enterprise is a great place to get
Ruby in under the radar. Start a revolution the way it’s meant to start—from the bottom up.

Parsing Data
In the previous chapter, we discussed easy ways to commit and retrieve objects. There was
little or no work associated with the data storage mechanism, as it was being handled for us
transparently. Oftentimes in the enterprise, other people make choices about data formats so
that we are not given the luxury of choosing the one that would present us with the least work.

Hamou_821-0 C07.fm Page 99 Wednesday, May 30, 2007 4:42 AM

100 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

On many of the occasions that my role as an administrator has veered toward that of a
systems engineer, the projects concerned have invariably had some facet of data coercion at
their core. I suspect this is a hallmark of being a code monkey in even a modestly sized organi-
zation—you repeatedly get asked to glue disparate systems/processes together by creating
software that can intermediate between them. The obvious first step in such conversion oper-
ations is that of reading in the data.

There are a palpably obscene number of ways of formatting information out there, but
mercifully I’ve found that most of the files I’ve ever been asked to convert or otherwise process
have tended to be in the form of either delimited records (e.g., comma- or tab-separated
values) or markup-encoded tree structures (e.g., XML and friends). This section discusses the
parsing of both of these stalwarts.

Separation Is Such Sweet Sorrow: Delimited Values
Let’s start with a quick reminiscence from Chapter 2. We saw that the pervasive nature of record-
oriented processing as encountered by administrators lead Ruby to adopt Perl’s convention of
the -n and -p flags. Such records (and the fields they contain) tend to be separated by some
common character/string. This concept is systematized through the presence of the global
variables $/ and $;, which modify the default behavior of the pertinent string and file handling
methods.

In Chapter 2 we wrote a command that I promised to expand upon later. Here it is again:

ruby -a -ne 'open("/tmp/user_#{$.}", "w") { |f| f.puts $F }' user_info

To begin, we need to examine the structure of the file user_info. I indicated that this was
a classic whitespace-delimited, record-oriented file. Here’s a snippet of user_info with all
invisible characters explicitly marked:

Anthony [TAB] Burgess [TAB] ab152 [TAB] 500MB [LF]
Marcus [TAB] Aurelius [TAB] ma841 [TAB] 150MB [LF]
...

In parsing this data, we need know only three things:

• By what character/string records are separated ([LF] (ASCII: 10))

• Likewise for fields within those records ([TAB] (ASCII: 9))

• Whether it is safe to assume that these delimiters will not appear anywhere as actual
data (yes—for this simple example, a tab or a line feed within a field would be considered
illegal data)

The one-liner under discussion copes with these constraints with basically no direct spec-
ification of them. In fact it cheats a little. As stated in Chapter 2, -n wraps the to-be-executed
code in a while gets ... end block. So a call is being made to Kernel.gets in order to grab the
next line for processing until there are no lines left. Listing 7-1 explodes the one-liner into a
more readable form.

Hamou_821-0 C07.fm Page 100 Wednesday, May 30, 2007 4:42 AM

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 101

Listing 7-1. A More Digestible Yet No Less Magical Form of the One-Liner

while gets
 $F = split
 open("/tmp/user_#{$.}", "w") { |f| f.puts $F }
end

The first thing to say is that, now that we’re no longer in one-liner territory, there is way too
much magic going on here. For Ruby-ists, maintaining code with this level of implicit behavior
is akin to a man with a kumquat lodged in an unfortunate orifice—it does not sit well. It might
be useful to analyze the implicit bits quickly to get a feel for what’s going on. From there we can
deduce how to make this script more concrete.

Retrieving Each Record (Line)

Kernel.gets retrieves the next line from each file specified in ARGV (or from standard in if no
such files are specified). Thus this code has neither mention of the file to be opened nor logic
to determine it explicitly. On each loop, the next line including the newline character is placed
in a variable called $_.

You may wonder how gets knows that the record separator in user_info is a line feed. After all,
due to the impressively tedious history of teletypes and other such mechanical savagery, there
are at least three conventions for indicating a new line in a block of text. Without explicit spec-
ification, the default input record separator $/ is used, and Ruby defines this to be the UNIX-
style line ending: a line feed. Why, it’s almost as though my example was contrived to take
advantage of that fact.

This behavior is actually encoded using the default value of the only argument taken by
gets. Thus it can be overridden by explicitly writing something like gets("\r") for old Macintosh
text and gets("\r\n") for Windows text and things like HTTP headers. As to why the line feed
("\n") is the default, I would have to be considerably less sober than I currently am to want to
discuss that.

Retrieving Each Field

As discussed previously, the -a directive used in the one-liner autosplits each line of text into
an array called $F. We reproduce that behavior in Listing 7-1 with a call to split. The fact that
there is no indication of what is being split is another bit of magic. In this case, a quick check
with ri confirms that Kernel.split is absolutely equivalent to $_.split. This relies on $_ being
populated with the data of concern—something we’ve already covered with Kernel.gets.

As with the enclosing lines, it’s not obvious what criteria are being used to determine where
each field begins and ends. I briefly mentioned $; in the introduction to this section and, sure
enough, this global variable is to Kernel.split what $/ is to Kernel.gets. By default, $; has the
value nil, and when String.split is invoked with either nil or a single space as its argument it
will split on all whitespace, ignoring any leading or contiguous runs of whitespace characters.

I mentioned that the code was cheating slightly and now it should be clearer why I said
that. The definition of the format for user_info did not make space characters illegal in fields,
so technically this splitting-on-all-whitespace approach is overly voracious and could lead to
problems. These problems are almost guaranteed to be of the sort that don’t bite you where it
hurts until a year has passed and you’ve forgotten about everything you’ve written—which is

Hamou_821-0 C07.fm Page 101 Wednesday, May 30, 2007 4:42 AM

102 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

precisely why the kind of implicit variable handling and parsing decisions embodied by the
one-liner should not survive into production scripts.

Creating a Numbered File

The other thing that Kernel.gets accomplishes is the maintenance of a whole slew of state
information about its operation. One of the bits of data that can be accessed is the current line
number of the file being read. This variable is called $. and is used in Listing 7-1 to build the
name of the file to be written to.

The first thing I wonder when I think about this proposition is how the Ruby interpreter
will cope with input that isn’t from a file. Will it still autonumber the lines for me (is $. just a
counter incremented by gets)? Also, what happens when we move to a new file because more
than one was specified on the command line? Does $. get reset? It wouldn’t take much effort to
find out, but separation of concern between how input is retrieved and how it is processed
mandates that we shouldn’t be using a naming mechanism open to such questions.

The Output Behavior

If you run the code on the sample data, you’ll find that each numbered file in /tmp contains the
field values from a particular user split onto multiple lines so that

Anthony [TAB] Burgess [TAB] ab152 [TAB] 500MB [LF]

becomes

Anthony [LF]
Burgess [LF]
ab152 [LF]
500MB [LF]

Clearly, Kernel.puts is engaging in some implicit behavior. The code in Listing 7-1 asks for
the output of something that isn’t a string but rather an array ($F). We get a string anyway and
one that is separated in a manner that reflects its origins as an array. Kernel.puts is really just
$stdout.puts, which has some distinct behaviors. The one everyone knows is that if you give it
a single string argument, that string gets dumped to the console and will get a newline on the
end if it doesn’t already have one.

Additionally, if puts is passed multiple arguments, each of these get printed out with a
newline after it as though puts had been invoked once for each argument. This also applies to
arrays that are passed as arguments; thus puts([1, 2, 3], 4, [5, 6, 7]) yields each number
by itself on a separate line as though they’d all been passed as individual parameters. Suffice it
to say that this is handy in a one-liner but a little obscure when trying to deal with predictable
text-file formats on a systematic basis.

The Explicit Version

In considering all of the previous facets, we are now ready to construct a less magical version
of Listing 7-1 that doesn’t use ethereal variables or arduous-to-remember behavior. That less
magical version is Listing 7-2.

Hamou_821-0 C07.fm Page 102 Wednesday, May 30, 2007 4:42 AM

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 103

Listing 7-2. An Explicit Version of Listing 7-1

file_names = ARGV.select { |name| File.exist?(name) }
fail "no existing files were specified" if file_names.empty?

count = 0
files_names.each do |name|
 IO.readlines(name, "\n").each do |line|
 count += 1
 output = line.split("\t").join("\n")
 File.open("/tmp/user_#{count}", "w") { |f| f.puts output }
 end
end

The first thing to recognize is the addition of specific file-handling logic to support the
multiple-file specification allowed for by Listing 7-1. We’ve used a simple selection procedure
that tests for the presence of at least one file. Of course, more detailed checking could be
performed depending on the sanity requirements of the script.

Following on from this file presence detection, we define a variable, count, that will be
used to track the unique numbering of each file in /tmp. This gets around the problem we had
with $. whereby it might not have coped with multiple input files.

For each name in our list, we read in all the lines as an array, splitting explicitly on a line-
feed character. Note that reading all the lines into memory is usually (although not always) less
efficient than reading them one by one as gets did. I’m adopting this approach anyway on the
basis that the dataset is probably a few thousand rather than tens of thousands of lines, and the
greater code clarity is worth the likely tiny performance hit. We could use IO.gets but then
we’d have to open and deal with each file handle explicitly, leading to more code.

For each line of each file (which will include the line feed, remember), we increment the
counter and build an output line based on the splitting operation. In the case of Listing 7-2, our
split is now only based on the presence of the tab character as a delimiter. Note that the output
is a string due to the explicit join operation, which allows us to define precisely how the output
is to be built.

A reasonable criticism of this code might be that the split and join operations could be
accomplished in one step by using String.tr to replace each instance of "\t" with "\n". I tend
to resist such optimization because it belies the semantics (breaks the abstraction) of the job at
hand. We are splitting a line into fields and then joining them back together. This process occu-
pies one line only because the two operations are trivially simple. If we needed to update this
script in the future to split and recombine conditionally (e.g., omitting or altering individual fields),
it could be less obvious where and how to make such a change if we took the tr approach.

At the end, the output is dumped to a file in /tmp whose name is based on the current value
of count. Note that the fact that we haven’t chomped the line is not a problem because puts only
appends a line feed if one is not already present at the end of the string being dumped.

CSVs vs. TSVs

Two delimited formats represent some-made-up-number-over-95 percent of all the field/record
style files you’ll ever parse. These two formats are tab-delimited and comma-delimited. As
we’ve seen, a lot can be accomplished with IO.readlines and String.split in parsing delimited

Hamou_821-0 C07.fm Page 103 Wednesday, May 30, 2007 4:42 AM

104 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

files—especially with the use of regular expressions. Unfortunately, whereas tab-separated
values (TSVs) are values separated by tabs (a concept almost painfully elegant in its simplicity),
comma-separated values (CSVs) are a whole other ball game.

It all comes back to the third assumption made in parsing user_info. Namely, we took it as
read that no delimiters could appear in field values. Thus it was always safe to assume that
finding a tab meant that we’d found a field boundary. Somebody decided this was awfully
limiting, and so the proper CSV standard was born.

CSV provides an escaping mechanism so that not only can commas appear in fields but
also other things like newlines, which would break our line-reading logic as well as the naïve
splitting operation. Thank goodness somebody shipped a library for handling CSV with Ruby.
Listing 7-3 shows a simple example of its use.

Listing 7-3. Some Batch Processing Using the CSV Library

require "csv"

file_name = ARGV[0]
fail "no existing file specified" unless File.exist?(file_name)

records = []
CSV.open(file_name, "r") do |record|
 records << record.values_at(0, 1, 3)
 records << record.values_at(2, 4, 5)
end

some global data-checking here, perhaps

CSV.open("#{file_name}.new", "w") do |output|
 records.each { |record| output << record }
end

Briefly, this listing includes the CSV library, checks for a supplied filename, and reads in
each record from the file specified, breaking that record’s six fields into two groups (by index)
and shoving those groups onto the end of an array (records). The final operation is to write out
a second CSV file that encodes the structure of that array.

The operation described by Listing 7-3 is largely incidental. The important point is that the
CSV library abstracts away the nature of the data formatting and presents the records of fields
as an array of arrays, which is a much nicer representation.

The bundled library used in Listing 7-3 is formally correct; it should parse any valid CSV
file no matter how convoluted. However, it can be a little slow due to all the work it’s doing and
a fairly liberal approach to things likes row endings. A more recent alternative exists in the form
of the FasterCSV gem, which is faster and works with every file I’ve ever thrown at it. As usual,
more detail on gems can be found in Chapter 10.

XML
I refuse to open this section with the same old interminable regurgitation of the history of XML
you get almost everywhere. Nobody cares about SGML or the theory of marking something up.

Hamou_821-0 C07.fm Page 104 Wednesday, May 30, 2007 4:42 AM

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 105

You know exactly what XML is or you probably wouldn’t be reading this book. Additionally,
unlike in the delimited values section, we are not going to be writing an XML parser, as I am
fondly attached to the notion of having enough time left to do other things before I die.

XML is utterly ubiquitous. Somehow it has become the standard by which we are all supposed
to exchange data. Why it became so popular is an interesting debate in itself (and rather outside
the remit of this book). Suffice it to say that vast swaths of institutions now consider it the de
facto standard for data storage and communication. One need only examine the number of
business process–related patents that purely cover some tiny application of XML to convince
oneself of its importance to corporations and indeed government agencies.

Thus, being familiar with the Ruby tools that exist to parse XML is essential for enterprise
work. Now that we seem to have decided to be ruled, found, brought, and in-the-darkness-
bound by this one format, it is imperative that we know how to wrestle with it in Ruby and have
some chance of winning. Let’s start with what you get in the box.

REXML

As you might expect, Ruby ships with an XML library as standard. It has a few nice features:

• It’s implemented as pure Ruby so it is always as cross-platform as Ruby itself.

• It passes the Oasis nonvalidating XML test suite (a godsend in a world of malformed
XML documents).

• It has a simple-to-use API.

• It has full XPath support.

Most important, as the author himself describes (www.germane-software.com/software/
rexml), it was created in the spirit of good Ruby code everywhere in keeping the common cases
simple and the uncommon ones possible. Let’s dive right in with Listing 7-4, which grabs XML
from a file and shoves it in memory.

Listing 7-4. Parsing an XML Tree into Memory from a File

require "rexml/document"

filename = ARGV[0]
fail "specify an existing XML file" unless filename and File.exists?(filename)

file = File.open(filename)
doc = REXML::Document.new(file)
file.close
do something with doc

Listing 7-4 performs a complete tree parse of a valid XML file specified on the command
line and creates an object of type REXML::Document to hold that tree. We’ll see how to access the
elements of the document in a few moments. The REXML::Document constructor is kind of cute
in that it automatically does the right thing whether it is passed a file handle (as in Listing 7-4)
or a string (as in Listing 7-5).

Hamou_821-0 C07.fm Page 105 Wednesday, May 30, 2007 4:42 AM

http://www.germane-software.com/software/rexml
http://www.germane-software.com/software/rexml

106 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

Listing 7-5. As for Listing 7-4 But with a String As Input

require "rexml/document"
include REXML

string = <<EOF
 <enctext encoding="to_i_32">
 <word>14476545457114006</word>
 <word>604</word>
 <word>16155</word>
 <word>764273404</word>
 </enctext>
EOF

doc = Document.new(string)
do something with doc

Just as a reminder, the include directive places entities from the REXML namespace into
the global namespace. The consequence of this in Listing 7-5 is that we do not need to fuse the
somewhat ungainly REXML:: to the front of the various items we’ll be dealing with. Note also in
this listing is an example of the string block (heredoc) syntax, whereby a block delimiter (EOF) is
defined at the beginning and the consequent string deemed to be everything up to the point
where that delimiter appears by itself at the start of a line.

Having parsed the XML, we are left with a document object (doc) that has various methods
allowing for its exploration. The one you’ll likely use most often is an XPath-based iteration as
in the following snippet, which continues on from Listing 7-5:

doc.elements.each("*/word") { |element| puts element.text }

Rather unsurprisingly, this bit of code iterates through each word element and dumps the
text out to the console. What about determining the encoding mechanism for our document?

encoding = doc.root.attributes["encoding"]

Notice that we are able to specify the root node of the XML tree (in this case the enctext
node) as well as treat its attributes as an ordinary hash. If we wanted only the first word, we
could use this shortcut:

puts doc.elements["*/word"].text

which performs the same XPath search as before but returns only the first result. It is a fairly
obvious point but it is worth stressing that an unsuccessful search of this kind would return nil—
something to be aware of when writing code that might have to cope with such an eventuality:

first_word = doc.elements["*/word"]
puts first_word.text if first_word

Another subtlety to be aware of is the need for specifically invoking the text method of an
element. The standard to_s method of an element produces the XML necessary to encode it so
that the following cases are different:

Hamou_821-0 C07.fm Page 106 Wednesday, May 30, 2007 4:42 AM

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 107

puts doc.elements["*/word"] # gives: <word>14476545457114006</word>
puts doc.elements["*/word"].text # gives: 14476545457114006

Elements can also be accessed based on their absolute position relative to their siblings.
This approach has always seemed rather fragile to me so I’ve used it only when I’ve had no
other choice (i.e., depressingly often):

puts doc.root.elements[1].text

It’s important to note that such numbering starts from 1 rather than 0. The XPath standard
defines element relationships in this way, so REXML wisely keeps the numbering scheme
consistent whether searching or referencing.

There are lots of other features that are nice to have in certain cases, but I could fill the rest
of the chapter with them unless we move on now. You can explore these features more fully by
referring to the API documentation at the REXML website. Also, I will refrain from discussing
how to construct an XML document using REXML as this section is purely about parsing and,
in any case, the approach you’d almost always use is really very simple (basically element.
add_element(name, attribute_hash)).

The Streaming Approach

For improved performance (particularly in large and complex documents) it is possible to use
a more stream-oriented callback technique. This approach renders tools like XPath unavailable
for reasons that will become obvious.

Under such a scheme, we ask REXML to parse the document bit by bit and pass each item
to the relevant method of an object we supply. Listing 7-6 contains a simple example employing
this process.

Listing 7-6. A Simple Streaming Class in Action

require "rexml/document"
require "rexml/streamlistener"
include REXML

class Streamer
 include StreamListener

 def tag_start(name, attributes)
 puts "[start] #{name}: #{attributes.inspect}"
 end

 def tag_end(name)
 puts "[end] #{name}"
 end

 def text(string)
 p string
 end
end

Hamou_821-0 C07.fm Page 107 Wednesday, May 30, 2007 4:42 AM

108 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

assume the contents of 'string' are as for Listing 7-5
streamer = Streamer.new
Document.parse_stream(string, streamer)

The delegate object in this listing is one of a class we define called Streamer. It implements
two out of a number of possible callback methods that are invoked by REXML’s streaming API.
REXML::StreamListener, which we include in our class, is a template module containing every
method that could be called under these conditions. It basically provides do-nothing stubs for
our class so that we don’t get a method_missing error the first time the parser encounters some-
thing that isn’t either a start or an end tag (i.e., a text field or a document type definition). More
detail on all the other methods you might want to trap for can again be found in the REXML
documentation.

With the class defined, we then simply instantiate an object from it that is then passed to
REXML::Document.parse_stream along with the source XML. As before, this source can be a file
handle or a plain old string. Running Listing 7-6 (with the definition of string properly filled in)
gives output that looks like Listing 7-7.

Listing 7-7. Output from Running Listing 7-6

" "
[start] enctext: {"encoding"=>"to_i_32"}
"\n\t\t"
[start] word: {}
"14476545457114006"
[end] word
"\n\t\t"
[start] word: {}
"604"
[end] word
"\n\t\t"
[start] word: {}
"16155"
[end] word
"\n\t\t"
[start] word: {}
"764273404"
[end] word
"\n\t"
[end] enctext
"\n"

As you can see, the streaming parser is running the methods we defined in Listing 7-6 and
we’re getting output just as we specified. What should be immediately apparent is the fact that
text areas seem to be anything not inside a tag (that isn’t quite true, but it will hold for our
purposes). When parsing actual data, it’s important to be aware of all the useless whitespace
that can and does float around inside XML documents.

Hamou_821-0 C07.fm Page 108 Wednesday, May 30, 2007 4:42 AM

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 109

When parsing XML documents to create data structures in memory, using a streaming
approach necessitates maintaining some sort of state. Which objects are responsible for this is
entirely a matter of project-specific design. As a general rule, however, the principle of maximum
laziness should be ever present when making such decisions. As you’ll see in the next section,
built-in classes often have everything we need.

Taking the PList

We’re going to create a parser for a now very common XML format: the property list. Of course,
I say “common” because I happen upon them regularly as I skate happily through an Apple-
dominated working week. They can be found doing a number of jobs on quite a few platforms,
but overwhelmingly they flourish as the storage format for Apple’s system-managed prefer-
ence files.

The property list (PList) format is actually quite good for generalized storage of primitive
data types (integers, floating-point numbers, strings, arrays, hashes, dates, and Booleans). What’s
nice is that Ruby has every one of these data types accounted for as a class, which makes this
example reasonably simple to follow.

To start with, Listing 7-8 is a copy of something in my home folder called com.apple.
desktop.plist that I suspect is responsible for the nice picture of Saturn on my desktop.

Listing 7-8. A Copy of a PList File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"➥

 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Background</key>
 <dict>
 <key>default</key>
 <dict>
 <key>BackgroundColor</key>
 <array>
 <real>0.0</real>
 <real>0.0</real>
 <real>0.0</real>
 </array>
 <key>Change</key>
 <string>Never</string>
 <key>ChangePath</key>
 <string>/Users/andre/Pictures/Desktop Pictures</string>
 <key>ChooseFolderPath</key>
 <string>/Users/andre/Pictures/Desktop Pictures</string>
 <key>CollectionString</key>
 <string>Desktop Pictures</string>
 <key>ImageFileAlias</key>
 <data>
 AAAAAADiAAMAAAAAv1gJBQAASCsAAAAAAAgQjQBUBBcAAMG6p54A

Hamou_821-0 C07.fm Page 109 Wednesday, May 30, 2007 4:42 AM

http://www.apple.com/DTDs/PropertyList-1.0.dtd

110 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

 AAAACSD//lBOR2ZHS09O/////wABABAACBCNAAXU0gAF1JwAAGuF
 AA4AJgASAFMAYQB0AHUAcgBuAC0AQwBhAHMAcwBpAG4AaQAuAHAA
 bgBnAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAOFVz
 ZXJzL2FuZHJlL1BpY3R1cmVzL0Rlc2t0b3AgUGljdHVyZXMvU2F0
 dXJuLUNhc3NpbmkucG5nABMAAS8AABUAAgAM//8AAA==
 </data>
 <key>ImageFilePath</key>
 <string>/Users/andre/Pictures/Desktop Pictures/Saturn-Cassini.png</string>
 <key>Placement</key>
 <string>Centered</string>
 <key>TimerPopUpTag</key>
 <integer>6</integer>
 </dict>
 </dict>
</dict>
</plist>

What is evident from this listing is how the various data primitives are represented. The
global structure is that of a hash (more properly a dictionary). Each key-value pair within the
hash exists as a pair of tagged entities, where the first is always a key and the second is a simple
data type such as array. The array appears to be a simple ordered set of tagged objects (again
of primitive data types). That covers the structured data and every other type is flat in that it
cannot contain discrete child objects.

Taken together, this should be enough information to create a broadly correct parser that
will take in a PList and yield a hash full of the pertinent Ruby objects. We’ll use the streaming-
parser method as it’s much more efficient for this kind of parse-a-whole-file job. This does mean
that we need to consider how to maintain state as we go. Thinking about it, there are really only
three callback methods we need to implement, and these are exactly those we employed in
Listing 7-8: start tags, end tags, and the text they contain. Hence the skeleton class definition
will look like Listing 7-9.

Listing 7-9. A Skeleton PList Parser

require "rexml/document"
require "rexml/streamlistener"

class PListParser
 include REXML::StreamListener

 def initialize
 # declare initial state variables
 end

 def tag_start(name, attributes)
 # handle a start tag
 end

Hamou_821-0 C07.fm Page 110 Wednesday, May 30, 2007 4:42 AM

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 111

 def tag_end(name)
 # handle an end tag
 end

 def text(string)
 # handle some text
 end
end

The first thing to think about is that we’ll need to get some sort of output from this process—
implying that the parser object needs to maintain a variable holding the parsed tree. Since it
will be the root of the tree, we’ll call it @root. One important property of the object referred to
by @root is that it must be a collection (an array or a hash), as the preference file could never
contain more than one value otherwise. Enforcing this constraint will provide some useful,
basic sanity checking.

On my first mental pass through this exercise I supposed that all of the object creation was
going to occur in tag_start, and then it struck me that (apart from array and dict tags) the
contents of the object are not known until the subsequent text data is fed in. Hence, with the
exception of the collection classes, the process of instantiating flat objects like integers is a two-
stage aim-and-fire process. The aiming is done by tag_start, which somehow has to note the
type that’s coming up next. The firing is then done from within text, using the type informa-
tion collected in tag_start.

Note that, in theory, we could actually create the object in tag_start and give it a 0 value,
awaiting the text logic to fill that value in, but that just means extra work for the interpreter.
Hence, we will maintain a state variable that tracks the type of thing that is about to be read (or
is nil if we are not parsing a flat object). This variable will be called @to_read.

The only other piece of information that might have a bearing on how we react to each
callback would be the version number of the PList format. As you can see in Listing 7-8, this
version number is given as an attribute of the plist tag. Conceivably, future versions of the
format might introduce new data types or even modified structural semantics, so it is probably
worth keeping track of the version number. Our complete initialize function is shown in
Listing 7-10.

Listing 7-10. The Completed Initializer for the PListParser Class

def initialize
 @to_read = nil
 @root = nil
 @version = 1.0
end

We’ve taken the liberty of assuming that, absent any information to the contrary, the PList
being parsed is of version 1.0 (which is the prevalent current version). If we wanted to be
stricter, we could set @version to nil and then fail unless it had been set correctly by a plist tag
before any other tags or text were encountered.

It should be apparent that @root is useless if it remains forever stuck inside the parser
object with no means for its access. Thus we’ll also shove the following accessor macro into the
top level of the class definition:

Hamou_821-0 C07.fm Page 111 Wednesday, May 30, 2007 4:42 AM

112 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

class PListParser
 ...
 attr_reader :root
 ...
end

Looking at Listing 7-8, a well-formed PList will have plist tags at the top and bottom.
Aside from this, all other tags encode data and fall into the two camps previously discussed:
collections and flat data, or what might be referred to as vectors and scalars by Perl users.

In designing the code for the tag_start method, we can see that we will be doing one of
four things:

• Reading @version out of the plist tag

• Adding a hash or an array to the current parent object in response to a dict or array tag

• Priming the parser to read one of the flat data types in response to a data, integer, key,
real, or string tag (which are the only other tags we know about from Listing 7-8)

• Whining very loudly if we encounter any other tag

This leads to the implementation shown in Listing 7-11.

Listing 7-11. The Completed Open Tag Callback Method for PListParser

def tag_start(name, attributes)
 case name
 when "plist" then @version = attributes["version"]

 when "array" then add_object(PListArray.new)
 when "dict" then add_object(PListHash.new)

 when "data", "integer", "key", "real", "string" then @to_read = name

 else raise "unknown tag: #{name}"
 end
end

You probably spotted the sneaky deployment of add_object. We haven’t defined such a
method yet, but the need for it should be pretty obvious. We know, both in tag_start and in
whatever we end up writing for the text method, that there will be an eventual need to add a
new object to the tree. Given that this occurs in multiple places and will not be trivial, it needs
to be abstracted away.

This brings us to a discussion of how we will maintain context as the PList moves up and
down the tree. Adding something to an array is trivial, but what about determining the array’s
parent collection? We could try and maintain some list of parent-child relationships, but there
is an easier way: subclass Array and Hash. This is something you might have guessed at given
the presence of PListArray and PListHash in Listing 7-11.

Hamou_821-0 C07.fm Page 112 Wednesday, May 30, 2007 4:42 AM

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 113

By adding a @parent variable to these classes, they can keep track of what object (if any)
contains them. In turn, we will be able to use this variable to navigate back up the tree in an
obvious manner. We needn’t stop there, however.

The way to add an item to the end of an array is Array.push or its synonym Array.<<. The
method for adding an object to a hash is Hash.[]=. These are very different invocations for
obvious reasons. What’s interesting about the PList parsing process is that, within a dict, we
get the key a couple of steps before the value. In other words, the value is parsed in the context
of a previously read key.

We could modify our hash subclass to have some notion of the key to use when the next
object is added. With such an approach, the mechanism for adding an item to the hash would
become the equivalent of a simple push as long as the key had already been set. With this in
mind, we could standardize the API for adding objects to either collection.

With all this reasoning applied, our subclasses look like those in Listing 7-12.

Listing 7-12. Custom Array and Hash Classes to Standardize Tree-Parsing Operations

class PListArray < Array
 attr_accessor :parent

 alias :add_object :push
end

class PListHash < Hash
 attr_accessor :next_key, :parent

 def add_object(object)
 raise "no key set" unless @next_key
 self[@next_key] = object
 @next_key = nil
 end
end

Now that both classes have an add_object method, PListParser.add_object should be
simpler. Note the way that @next_key is handled. It guarantees that each specified key gets used
only once and that an exception will be raised if the whole key-value-key-value rhythm is broken
for some reason.

With theses subclasses in place, it is now possible to see our way through to the mecha-
nism by which current tree position is tracked. There are three possible motions within the tree:

• Move down into a new collection: tag_start("array") or tag_start("dict")

• Remain at the current level: tag_end(...) when @to_read is primed

• Move back up to the parent collection: tag_end(...) when @to_read is not primed

Put more succinctly, we only ever move down the tree when a new collection is specified.
We only ever move up when we reach an end tag and the state of @to_read indicates that we
weren’t just reading a flat value.

Hamou_821-0 C07.fm Page 113 Wednesday, May 30, 2007 4:42 AM

114 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

Because of the presence of @parent in our custom collection classes, we can use @root to
track the current tree position. Thus PListParser.add_object will override @root if the object
being added is a collection and tag_end will set @root to its own parent (if it has one). Hence
@root will end up pointing to the root collection if the PList is well formed. We’ll start with
tag_end in Listing 7-13.

Listing 7-13. The Completed Close Tag Callback Method for PListParser

def tag_end(name)
 if @to_read then @to_read = nil
 else @root = @root.parent || @root
 end
end

This method could explicitly check that the tag name was one of the flat data types in the
case of @to_read not being nil and vice versa. Such checks would make the method less terse
but equally more able to identify badly formed documents—increasing its usefulness in the
long term. It is with a sense of levity that I have opted for brevity over longevity.

Let’s jump straight from here to the implementation of PListParser.add_object in
Listing 7-14, which completes the tree manipulation logic.

Listing 7-14. The Abstracted Object-Adding Method for PListParser

private
def add_object(object)
 @root.add_object(object) if @root
 if object.is_a?(Array) or object.is_a?(Hash)
 object.parent = @root
 @root = object
 end
end

Since this add_object method is strictly for use during parsing and makes no sense outside
that particular occupation, we have made it private. Implemented like this, it has a couple of
interesting behavioral side effects. If a PList had a flat data value at the top level, it would be
ignored (something we discussed earlier). In addition, note how the collection classes are handled
in such a way that @root is able to track the current position in the tree for future objects (also
something we’ve already discussed).

You might wonder why I chose to write object.is_a?(Array) rather than object.is_a?
(PListArray) and similarly for hashes. Either would do (since is_a? returns true when handed
a superclass) but I wanted to emphasize that the outside world can treat these objects as though
they were the standard collection classes shipped with Ruby—an essential requirement of our
design.

All that remains is to implement the text method, which will be responsible for the actual
parsing of values. Remember that this method will add an object to the tree in all cases except
for that of a key. In this case, it instead assumes that the current collection is a hash and sets the
next_key value of that hash. Thus we are left with Listing 7-15.

Hamou_821-0 C07.fm Page 114 Wednesday, May 30, 2007 4:42 AM

mailto:@root.parent
mailto:@root.add_object

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 115

Listing 7-15. The Completed Text Value Callback Method for PListParser

def text(string)
 return unless @to_read

 if @to_read == "key"
 raise "cannot use key as not within hash" unless @root.is_a?(Hash)
 @root.next_key = string
 return
 end

 object = case @to_read
 when "data" then string.strip
 when "integer" then string.to_i
 when "real" then string.to_f
 when "string" then string
 end

 add_object(object)
end

The first thing to note in this listing is the immediate return from text when @to_read isn’t
primed with a type to be read. The motivation for such behavior is pure cynicism. We will assume
that any amount of junk/whitespace might creep into an XML document where it shouldn’t be
(e.g., outside a tag pair). Thus if such detritus exists, it is ignored completely.

As stated, the handler for key data insists that it can only operate if the current tree position
is within a hash. For all other known types, the string is coerced appropriately. Once again,
we’ve used the remarkably useful syntax of variable = some_block, making the code very easy
to follow.

Where the data type is concerned, it was important to decide how much work to do in the
parser. The text from Listing 7-8 would seem to imply that binary data streams are stored in
PLists as some sort of base-64 encoded string (doubtless to make them ASCII safe). That means
that leading and trailing whitespace are not significant and we can safely strip them.

The stripping is not particularly costly as operations go and it means that just the encoded
data ends up stored in our tree. However, we could go further. Why not perform the decode
operation in the parser so that clients using our library are saved the bother?

This is an issue of scale. We have no idea how many such streams will be in the PList being
parsed or their total size. We also have no clue which ones will be of interest to the client appli-
cation, if any. Thus we deploy the awesome power of laziness and let clients specifically decode
only the ones they care about.

Listing 7-15 completes the class with one minor quibble. We were very good in Listing 7-9
in not polluting the namespace of our client script through a global include REXML statement.
This is not just a question of good manners, however. The whole point of building this parser
class in the first place was to abstract away the XML nature of the PList so that client applica-
tions could concentrate on the data.

Hamou_821-0 C07.fm Page 115 Wednesday, May 30, 2007 4:42 AM

mailto:@root.is_a?
mailto:@root.next_key

116 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

As it stands, using this class would involve something like this:

parser = PListParser.new
REXML::Document.parse_stream(File.open("com.apple.desktop.plist"), parser)
root = parser.root

In the spirit of complete abstraction, let’s add a class method as Listing 7-16 that takes in
the XML string or file handle and does these three lines internally, returning the root.

Listing 7-16. A Convenience Class Method for One-Step Parsing

def self.parse(source)
 parser = new
 REXML::Document.parse_stream(source, parser)
 parser.root
end

Listing 7-16 leaves us able to parse a PList like this:

root = PListParser.parse(File.open("com.apple.desktop.plist"))

Alternative Parsing Libraries

In order to conclude this section on XML parsing, I just wanted to mention a couple of alternative
XML libraries that each improve on REXML in particular ways but are not bundled with Ruby
as standard (yet). They are both available as gems, so jump to Chapter 10 for a more in-depth
discussion.

Libxml-Ruby (http://libxml.rubyforge.org) addresses speed concerns that naturally
arise from not using a parser written in C. Its use requires the presence of the GNOME Libxml2
library (or something API compatible) on your system, and it still has a few outstanding bugs,
but the speed benefits it offers can be dramatic in the extreme. For example, an XPath query
from the project’s benchmarks enjoyed a speedup of nearly 200 times compared with the same
test run with REXML.

The other library is fairly recent and is actually focused on HTML parsing (but will do equally
well for well-formed XML). It’s called Hpricot (http://code.whytheluckystiff.net/hpricot),
and it provides a really succinct and rather cute API for common document operations.

Network Services
Just as there are a bewildering number of data formats swirling around the corporate vortex, so
too are there a frankly stupid number of different service mechanisms for vending data and
functionality across the network. We did SQL storage to death in the last chapter, so I won’t
reprise any of that. Instead, we will focus on a handful of the data-wrangling technologies/
approaches most commonly found in the enterprise: LDAP, XML-RPC, SOAP, and REST.

Lightweight Directory Access Protocol
According to what I’ve absorbed over the years, directories in the context of the enterprise are
basically special-purpose databases that are read from far more than written to. They track a

Hamou_821-0 C07.fm Page 116 Wednesday, May 30, 2007 4:42 AM

http://libxml.rubyforge.org
http://code.whytheluckystiff.net/hpricot

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 117

hierarchy of objects with some sort of standardized schema for what the categories should be
and what attributes each object should have.

Probably the most common directory service used by corporations is Microsoft’s Active
Directory, which tracks all of the network policy information you’d expect about users, groups,
printers, and others. In addition, many similar LDAP-based directory information services are
provided by other vendors (Novell’s eDirectory, Apple’s Open Directory, Oracle’s Internet
Directory, etc.).

Because administrators so often end up gluing systems together in such a way that they
particularly need to wrangle such network policy information, being able to interact with a
company’s canonical LDAP service is a frequent requirement.

In the last chapter, we saw the conceptual advantages to be gained by mapping SQL rela-
tions to Ruby objects with ActiveRecord. Given that LDAP is ostensibly a system for wrangling
objects anyway, shouldn’t there be an equivalent object-oriented library for Ruby? Enter
ActiveLDAP.

Available as a gem (ruby-activeldap), ActiveLDAP maps objects in a directory to Ruby
objects with dynamic accessor methods for LDAP attributes. As the name implies, this library
is written in pure Ruby, but it does depend on the Ruby/LDAP library, which binds to a number of
common low-level LDAP libraries. As usual, installation instructions can be found in Chapter 10.
Let’s walk through a potted example that should give you a feel for the style of the library.

Examining the Schema

First, we’ll look at the structure of our sample LDAP schema. Because of the hundreds of competing
schema designs, I’m going to keep this very generic rather than consciously basing it upon a
particular standard. Figure 7-1 shows the top of the schema for ImaginaryCorp.

Figure 7-1. LDAP schema section for ImaginaryCorp

As should be evident from this figure, we basically have a domain called imaginarycorp.com,
which contains user and group subdirectories. In turn, these subdirectories contain the
various objects appropriate to them, and so on.

dc=imaginarycorp ou=users uid=billydc=com possible sub-user

uid=jonny

ou=groups cn=admin

cn=gophers

possible sub-group

Hamou_821-0 C07.fm Page 117 Wednesday, May 30, 2007 4:42 AM

118 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

■Tip If you have to deal with LDAP a lot and find yourself permanently confused by what actually constitutes
an organizational unit (ou) versus a common name (cn) or a domain component (dc), then you are not alone.
LDAP terminology has acquired its near-artistic levels of mess from a history of legacy solutions and misun-
derstandings stretching back so far that the first specifications may have actually been brought ashore at
Mount Ararat. I recommend the following two-step plan, which I adhere to at all times:

1. Keep the LDAP Wikipedia entry bookmarked in your browser: http://en.wikipedia.org/wiki/
Lightweight_Directory_Access_Protocol.

2. Whenever anyone suggests continuing use/support/deployment of LDAP solutions, laugh in their face
with such explosive force that your response may be easily interpreted as an act of war.

Connecting to the Service

Just as all the database mapping classes were subclasses of ActiveRecord::Base in the previous
chapter, all of the relevant LDAP mapping classes will inherit from ActiveLdap::Base. This class
encapsulates all the basic functionality of the library. In particular, it handles the connection.

ActiveLDAP has an entire configuration subsystem that mirrors the features found in
ActiveRecord. This means that configuration can be held separately and connection to the
LDAP service established automatically when the first method call is made that requires one.
Since this is meant to be a reasonably quick and self-contained review of the library, I will
eschew this configuration approach in favor of establishing a connection explicitly as shown in
Listing 7-17.

Listing 7-17. Connecting to an LDAP Service

require "active_ldap"

ActiveLDAP::Base.connect(
 :host => "directory.imaginarycorp.com",
 :base => "dc=imaginarycorp,dc=com"
)

The code in this listing attempts to establish an anonymous connection to the indicated
host on the default LDAP port (389). As you might guess, connect accepts many more argu-
ments than those indicated in Listing 7-17. Table 7-1 has a summary of these arguments.

Table 7-1. Arguments Accepted by ActiveLDAP::Base.connect

Key Description Default Value

host Server’s hostname "127.0.0.1"

port Service’s port 389

method Connect using :tls, :ssl, or :plain :plain

base Domain’s base DN N/A

Hamou_821-0 C07.fm Page 118 Wednesday, May 30, 2007 4:42 AM

http://en.wikipedia.org/wiki

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 119

Also worth a mention is the try_sasl parameter (which is set to false by default) and asso-
ciated settings like sasl_quiet. With the appropriate extra software, this switch asks the library
to try Kerberos (GSSAPI)-based authentication—which is very handy for Active Directory and
others. The mechanics of the more advanced connection options such as SASL and retry/timeout
settings are beyond the scope of this section, so I encourage you to read the ActiveLDAP docu-
mentation for more detail.

Creating a Mapped Class

With the connection in place, we can now turn our attention to writing a class that encapsulates
one of the object types from our schema. Let’s say that we want to create a User class that maps
to the set of user entries. All we need to do is produce a small chunk of code like that shown in
Listing 7-18.

Listing 7-18. A Basic Mapped LDAP Class

class User < ActiveLdap::Base
 ldap_mapping :dn_attribute => "uid", :prefix => "ou=users",
 :classes => ["top", "posixAccount"],
 :scope => LDAP::LDAP_SCOPE_ONELEVEL
end

This listing instantly allows us to do things like this:

all_users = User.find(:all, "*")
billy = User.find("billy")
uid = bill.uid # and similarly for any other attributes

The ldap_mapping directive is the thing allowing ActiveLDAP to understand the particulars
of the relationship between LDAP items and Ruby objects. In Listing 7-18, we tell the library
that the distinguished name attribute of each user is uid. We also describe the fact that users
exist inside the users organizational unit.

bind_dn Server’s expected bind format "cn=admin,dc=localdomain"

logger A Log4r logging object A logger that prints fatal
messages to standard error

user Username to use in binding ENV["user"]

password Password to use in binding nil

password_block Proc that returns binding password nil

store_password Call password_block only once true

allow_anonymous Whether to try anonymous binding true

Table 7-1. Arguments Accepted by ActiveLDAP::Base.connect

Key Description Default Value

Hamou_821-0 C07.fm Page 119 Wednesday, May 30, 2007 4:42 AM

120 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

The classes parameter (which overrides the default value of ["top"]) lists the LDAP struc-
tural classes associated with an object of this type. This part of the picture is essential to object
creation. The list of classes determines the set of attributes an LDAP object may have.

The scoping parameter ensures that any searching is performed only one level deep (e.g.,
so that subusers couldn’t be found by a user query). In other words, only direct children of
ou=users,dc=imaginarycorp,dc=com would be found by a search. This behavior is the default,
but it is worth being explicit about it, particularly for complex schemas.

Establishing Relationships

Just like ActiveRecord, ActiveLDAP has the class macros belongs_to and has_many for indicating
interclass relationships. So in the case of our users and groups, we’d have code like that shown
in Listing 7-19.

Listing 7-19. Relationship Definitions Added to the User and Group Classes

class User < ActiveLdap::Base
 # ldap_mapping line
 belongs_to :groups, :class => "Group", :many => "memberUID"
end

class Group < ActiveLdap::Base
 # ldap_mapping line
 has_many :users, :class => "User", :wrap => "memberUID"
end

Starting with User, the belongs_to macro adds the User.groups method (named according
to the symbol passed as the first argument). The object returned by this method is a proxy
providing all sorts of related functionality. The :class specification obviously specifies the
class of objects returned as members of the groups proxy.

The :many parameter specifies the local attribute of each group to be matched against the
user to determine membership. The fact that it is called many is not an accident. The belongs_to
relationship can specify either a one-to-many or a many-to-many relationship (the latter being
described by our :many directive). This makes sense in our example, as a user can belong to
many groups and a group can have many users.

In fact, there is an extra parameter that belongs_to accepts and that is :foreign_key, which
identifies the key to use from a user entity to match against the respective key in the related
class. More specifically, in a many-to-many relation, foreign_key defaults to the dn_attribute
of the declaring class (uid in this case). In a one-to-many scenario, the default would be the
proxy name with _id tagged on the end (groups_id, were our example one-to-many).

In summary, then, our belongs_to declaration specifies that the proxy method for the
related class will

• Be called groups

• Be populated with objects of class Group

• Be a many-to-many relationship with the common key referred to as uid in a user and
memberUID in a group

Hamou_821-0 C07.fm Page 120 Wednesday, May 30, 2007 4:42 AM

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 121

With the semantics covered, you’re probably interested to know what methods you get
out of all this. To start with, this library is another good example of the practice of mixing-in
modules. The proxy object returned by groups is a collection class that implements the each
method. Hence, the author was able to include the Enumerable module with all of the methods
implied thereby. The following sorts of operations are available:

billy = User.find("billy")
billy.groups << Group.find("admin")
billy.groups.each { |group| p group }
group_names = billy.groups.map { |group| group.cn }
billy_is_admin = billy.groups.any? { |group| group.cn == "admin" }

Moving on to Group, the has_many declaration is extremely similar to the belongs_to decla-
ration we’ve just covered. We end up with a Group.users method returning a collection proxy
that’s very much the same as that returned by User.groups. The methods work just as you’d
expect (i.e., Group.find("admin") << billy).

The only real difference lies in the name of the :wrap parameter, which performs the same
duty as :many in the belongs_to declaration: identifying the attribute storing the user IDs within
a group. In addition, just as the :foreign_key could be specified but was automatically estab-
lished previously, the same entity is referred to as :primary_key in the has_many declaration. It
defaults to the dn_attribute of the related class (uid, once again).

CRUDding Objects

Just as with ActiveRecord objects, there are only a few core methods to learn in covering the
spectrum of creation, retrieval, update, and destruction (CRUD) operations. The easiest way to
introduce the creation methods is with a demonstration via Listing 7-20.

Listing 7-20. A Simple Use of the User Class to Create a New User Called “Fred”

fred = User.new("fred")
user.uid_number = 1014
user.gid_number = 550
user.home_directory = "/Network/Users/fred"
raise fred.errors.full_messages.join(", ") unless fred.save

User.save is clearly doing the heavy lifting in this listing. It triggers an attempt to create the
object on the server and returns true on success. Cases that might lead to failure include the
following:

• The object already exists.

• Strong authentication is required but not in use.

• Required attributes (as defined by the object’s LDAP classes) are missing.

We can also check to see whether an object exists with User.exist?("fred") or to see
whether it would fail a validation test with fred.valid?. Note that the way the validation errors
are recorded (in an errors proxy object) is an exact match for ActiveRecord. This is nice, as it
means there’s a much smaller barrier to entry when attempting to use ActiveLDAP objects in
Rails projects.

Hamou_821-0 C07.fm Page 121 Wednesday, May 30, 2007 4:42 AM

122 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

We’ve already seen how to retrieve an object (either via a find or a related retrieval through
has_many or belongs_to). Updating the objects we find couldn’t be simpler: just take Listing 7-20
and replace User.new with User.find. User.save automatically copes with whether the appro-
priate operation is a creation or an update (just like ActiveRecord). You can actually check for
this explicitly using User.new_entry?, which obviously returns true in the event that a save will
mean a creation and false otherwise.

All that’s left from out of the CRUD operations is the satisfaction that comes with an act of
pure destruction, and—that’s right—the method is called destroy. It exists in both class and
object forms: User.destroy("fred") and fred.destroy.

Beyond what we’ve covered, there are a number of exposed functions such as User.search
that allow you to override the behavior laid down by the ldap_mapping directive in each class.
Check the documentation for more examples of these. With that, let’s move on.

XML Remote Procedure Call
As the granddaddy of the “web services” protocols, XML-RPC enjoys a unique popularity,
which arises from two properties that it has in common with an amoeba: it’s been around for
ages and it’s really simple. Indeed in just the same way that XML has become so prevalent,
XML-RPC has proven to be a popular way to vend an API across the network, being used in a
number of popular blogging engines (probably including the ones used in your institution),
financial services, and other, more casual hookups like weather information. In short, it is an
easy approach to providing a remote interface to both data and processes.

Given that a fairly complete specification of XML-RPC could probably be written on a
single side of A4 paper, it will not surprise you to learn that this will be a rather short section.
Ruby comes with a built-in XML-RPC library, which has classes for both client and server oper-
ations. We’ll start with the client.

Client Functionality

In the spirit of simplicity, Listing 7-21 holds a complete client application in three lines. This
code creates an XML-RPC connection to a particular service and then makes a call to a method
vended by that service.

Listing 7-21. A Very Simple XML-RPC Client Script

require "xmlrpc/client"
server = XMLRPC::Client.new("www.cookcomputing.com", "/xmlrpcsamples/math.rem")
p server.call("math.Multiply", 23, 14)

The basic client object is of class XMLRPC::Client. It establishes a connection to the RPC
server at instantiation time and accepts a number of parameters to tune the nature of the
connection. There are three variants on the new method:

• new(host, path, port, proxy_host, proxy_port, user, password, use_ssl, timeout)

• new2(uri, proxy, timeout)

• new3(options_hash)

Hamou_821-0 C07.fm Page 122 Wednesday, May 30, 2007 4:42 AM

http://www.cookcomputing.com

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 123

Obviously, all three eventually lead to the same place. The first and third can be called with
zero or more arguments. The third method is simply a more modern version of the first in that
it provides a :key => value-style flexible method signature. The second takes an entire URI like
https://www.example.com:8081/xmlrpc/fish.feed and uses it to decide the host, path, port,
user, password, and use_ssl values. Every setting has a default value, as listed in Table 7-2.

With the connection established, the next step is to make the remote procedure call. The
call method exists in two variants: call (raises an exception or returns a result) and call2
(returns a success, result pair). Thus when writing code that deals with errors, we have two
approaches:

begin
 p server.call("math.Multiply", 23, 14)
rescue XMLRPC::FaultException => e
 STDERR.puts "XML-RPC error code #{e.faultCode}: #{e.faultString}"
end

or

success, result = server.call2("math.Multiply", 23, 14)
if success then p result
else STDERR.puts "XML-RPC error code #{result.faultCode}: #{result.faultString}"
end

In addition, the library provides a proxy object that dynamically dispatches any method
call as an RPC. This proxy object is created with either the proxy or proxy2 method, which
correspond to the first or second call styles from the preceding listing. Here’s a quick example
using proxy:

math = server.proxy("math")
p math.Multiply(23, 14)

Table 7-2. Default Instantiation Values As Used by the XMLRPC Library

Key Value

host "localhost"

path "/RPC2"

port 443

proxy_host "localhost" (if proxy_port is set)

proxy_port 8080 (if proxy_host is set)

user nil

password nil

use_ssl false

timeout 30

Hamou_821-0 C07.fm Page 123 Wednesday, May 30, 2007 4:42 AM

https://www.example.com:8081/xmlrpc/fish.feed

124 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

I think you’ll agree that this mechanism feels more Ruby-like. That said, we would probably
avoid this kind of dynamic dispatch if performing large numbers of calls, just to avoid the
overhead.

Server Functionality

It is particularly important to appreciate how an XML-RPC server could be of use for a humble
administrator. As seen throughout the book, one of the biggest systems-related tasks we engage
in is to glue disparate systems together—we unify interfaces. It is conceivable, for example,
that the power systems in a machine room are controlled via three separate protocols (due to
the differing ages of the equipment).

In such a scenario, it is useful to be able to create a single procedural interface on top of
those three so that we can issue high-level commands like “list your voltage statistics for the
last hour” or “shut down rack 2 in five minutes” without caring about the underlying imple-
mentation. An XML-RPC approach is ideal for rapid deployment of such a system.

In order to keep the example shown in Listing 7-21 going, we will implement a server in
Listing 7-22 that satisfies the interface seen (in just four lines of code).

Listing 7-22. A Very Simple XML-RPC Server Script

require "xmlrpc/server"
server = XMLRPC::Server.new
server.add_handler("math.Multiply") { |a, b| a * b }
server.serve

Here we create an instance of XMLRPC::Server, add a handler block for the method of interest,
and then instruct the server to start serving. As you might well anticipate, new accepts a number
of arguments. The ones of principal interest are the first four (with their defaults indicated):

new(port = 8080, bind_host = "127.0.0.1", max_connections = 4, stdlog = $stdout)

■Note All of these arguments to XMLRPC::Server are in fact being passed straight through to the under-
lying server—an instance of WEBrick::HTTPServer, which we first met in the previous chapter.

As the server gets more complicated, you may find that you prefer the handler methods
to be provided by actual objects. This approach scales better from a code-maintainability
perspective, as shown in Listing 7-23.

Listing 7-23. An Object Handler–Based XML-RPC Server

class MathHandler
 def multiply(a, b)
 a * b
 end
end

Hamou_821-0 C07.fm Page 124 Wednesday, May 30, 2007 4:42 AM

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 125

require "xmlrpc/server"
server = XMLRPC::Server.new
server.add_handler("math", MathHandler.new)
server.serve

This approach has one major problem. The add_handler statement makes every method
of MathHandler invokable over XML-RPC. This includes methods inherited from Kernel and
Object—a very bad thing indeed. Overcoming this flaw requires the use of an interface speci-
fication. The simplest of these is a convenience object that will only ever expose the directly
declared public methods of the handler class. This approach requires one minor change to the
previous listing:

server.add_handler(XML-RPC::iPIMethods("math"), MathHandler.new)

The last thing to cover with respect to server methods is how to raise an XML-RPC fault if
it becomes necessary to do so. What’s cool about trappable exception mechanisms is that they
allow the server code to raise the same exception the client will eventually receive:

raise XMLRPC::FaultException.new(15, "I don't like your shoes")

Topics that are outside the scope of this section but are covered in the library documenta-
tion include the following:

• The ability to swap out the underlying XML parser for a faster (non-pure-Ruby) one

• The availability of asynchronous calls

• More powerful service interface definition functionality

• Server classes for use in CGI and mod_ruby environments

Simple Object Access Protocol
SOAP arose as the horrific mutant offspring of XML-RPC. It is one of the least simple things ever
invented by the fiendish mind of man and doesn’t require object orientation at either end of
the communications channel—so quite where the name came from, I’m not sure. In addition, the
voluminous SOAP 1.1 specification contains one of the most brilliantly deranged sequences of
words ever constructed:

Using SOAP for RPC is orthogonal to the SOAP protocol binding (see section 6).1

Google deprecated its SOAP API in December 2006, giving me further hope that this stan-
dard will die a horrible death relatively soon. Nonetheless, parts of the corporate world are still
rather SOAPy. Just as with XML-RPC, SOAP-based interfaces have permeated networks throughout
the world, providing access to everything from corporate accounting data and employee event
information to hardware monitoring statistics and generalized sensor networks. Thus Ruby-
wielding administrators would do well to familiarize themselves with Ruby’s built-in SOAP
functionality.

1. See www.w3.org/TR/2000/NOTE-SOAP-20000508.

Hamou_821-0 C07.fm Page 125 Wednesday, May 30, 2007 4:42 AM

http://www.w3.org/TR/2000/NOTE-SOAP-20000508

126 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

It also follows that if we need to write SOAP clients as system administrators, then sooner
or later we will be asked to provide a SOAP interface to something we’re responsible for. Thus
this section contains details on writing both client and server applications in SOAP.

Client Functionality

To keep things easy to follow, we’ll start with an informal client and then move on to one that
uses a Web Services Description Language (WSDL) file. As with some of the other networking
libraries, operations are carried out using a proxy object, which is referred to in the Ruby SOAP
world as a driver. The specific class we’re interested in is called SOAP::RPC::Driver and is shown off
by Listing 7-24.

Listing 7-24. A Simple SOAP Client

require "soap/rpc/driver"

tiddles = SOAP::RPC::DRIVER.new("http://www.marthascattery.com:4761/tiddles",
 "http://cattery.example.com/ws")
tiddles.add_method("spay")
tiddles.add_method("feed", "flavour", "weight_kg")

p tiddles.spay
p tiddles.feed("asparagus_and_lentil", 55)

At creation time, SOAP::RPC::Driver.new is passed both the host URI and the namespace
of the web service. Once initialized, the available methods are defined individually using
add_method(method_name, first_parameter_name, second_parameter_name, ...). Once
defined, these methods can then be called from the proxy object.

Just as with the XML-RPC library, the return value of each method call is an unmarshaled
object derived from the SOAP response. Asserting that spay and feed both return report strings,
running Listing 7-24 would result in output of this form:

"Tiddles is decidedly vexed"
"Tiddles has exploded"

Most web services supply a WSDL file that specifies the endpoint URL, namespace, and
method information necessary to automate a client’s construction. To use such a file, we turn
to the SOAP::WSDLDriverFactory class, which will build our RPC driver for us. This is demon-
strated in Listing 7-25.

Hamou_821-0 C07.fm Page 126 Wednesday, May 30, 2007 4:42 AM

http://www.marthascattery.com:4761/tiddles
http://cattery.example.com/ws

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 127

Listing 7-25. A Simple SOAP Client Using a WSDL

require 'soap/wsdlDriver'

wsdl_url = "http://www.marthascattery.com/tiddles.wsdl"
driver_factory = SOAP::WSDLDriverFactory.new(wsdl_url)
tiddles = driver_factory.create_rpc_driver

p tiddles.stroke

Server Functionality

Now the real fun starts. A basic SOAP server can be constructed from scratch with two classes:
a server class derived from SOAP::RPC::StandaloneServer and a class containing the methods
the server will vend. Listing 7-26 has both of these goodies.

Listing 7-26. A SOAP Server Implementation Supporting the Previous Client Script

require "soap/rpc/standaloneServer"

class Cat
 FLAVOURS = ["crunchy_frog", "asparagus_and_lentil"]

 def initialize(name, weight_kg)
 @name, @weight_kg = name, weight_kg
 @last_stroked, @spayed = nil, false
 end

 def feed(flavour, weight_kg)
 return "#{@name} is confused" unless FLAVOURS.include?(flavour)
 @weight_kg += weight_kg
 if @weight_kg < 10.0 then "#{@name} now weighs #{@weight_kg} kilos"
 else "#{@name} has exploded"
 end
 end

 def spay
 @spayed = true
 "#{@name} is decidedly vexed"
 end

Hamou_821-0 C07.fm Page 127 Wednesday, May 30, 2007 4:42 AM

http://www.marthascattery.com/tiddles.wsdl

128 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

 def stroke
 @last_stroked = Time.now
 "#{@name} purrs contentedly"
 end
end

class TiddlesServer < SOAP::RPC:StandaloneServer
 def on_init
 tiddles = Cat.new("tiddles", 3.5)
 add_method(tiddles, "feed", "flavour", "weight_kg")
 add_method(tiddles, "spay")
 add_method(tiddles, "stroke")
 end
end

TiddlesServer.new("Tiddles", "http://cattery.example.com/ws").start

The server definition lives inside the on_init method, which is invoked at creation time
and allows for initialization of the relevant state objects and the vending of those objects’ methods.
Note that the server has a shutdown method, which could be tied to a signal handler with a
command like Signal.trap("INT") { server.shutdown }. This would obviously have to be run
before the server is started, as server.start blocks indefinitely inside the serving run loop.

One of the nice things about WSDL files is that they completely specify the interface you
would need to implement in constructing a compliant server for a particular web service. Hence
it would be really useful to be able to take a WSDL file and autogenerate a skeleton server with
stubs for all the relevant methods. The Ruby SOAP library currently ships with a utility called
wsdl2ruby.rb that performs exactly this task.

Depending on the version and/or build of Ruby you have installed, you may find that this
script is not present (e.g., it isn’t under Mac OS X 10.4). If you don’t want to download and build
an entirely new version of Ruby, then the SOAP library is available as the soap4r gem and will run
on any Ruby version in the 1.6 series or later. Once you have it, you can invoke wsdl2ruby.rb
like this:

$ wsdl2ruby.rb -wsdl cattery.wsdl -type server

This will leave you with a number of files including CatteryService.rb and
CatteryServant.rb. The first is the script of the executable server itself and should only need
to be modified to change things like the port or network interface(s) to bind to. The second
contains the class stub equivalent to our earlier Cat class. It is here that the real work is done in
implementing the behavior of the server.

Beyond these basics, just as with the XML-RPC library, there is a yawning chasm filled with
classes and methods to help you wrestle in SOAP. These include alternate server base classes
that facilitate running under CGI or mod_ruby, fault-handling primitives, and tools for manip-
ulating namespaces and encodings. As ever, check the documentation for more information.

Representational State Transfer
Representational State Transfer, or REST, is something of an odd one out as far as this section
goes. It isn’t a protocol but rather a design philosophy for action at a distance that makes the

Hamou_821-0 C07.fm Page 128 Wednesday, May 30, 2007 4:42 AM

http://cattery.example.com/ws

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 129

rather interesting assertion that the four CRUD verbs in combination with nouns identifying
resources uniquely is all you need to accomplish the vast majority of corporate data
operations.

Of course, when you think about it, this is pretty close to the proposition made by your
average relational database (ignoring the extra verbs that deal with data integrity). What’s nice
is that the four operations needed already exist in the HTTP standard. These are listed in Table 7-3.

This means that existing web frameworks that keep track of the HTTP command associated
with a request can be modified quite simply to respond conditionally based upon that command.
If we were using Rails, for example, a rudimentary approach might resemble Listing 7-27,
whose behavior depends on the nature of the HTTP command issued (note that we do nothing
if supplied with a PUT request).

Listing 7-27. A Skeleton Controller Implementation for a RESTful URL

class BooksController < ActionController::Base
 def unreleased
 if request.post?
 if params[:id]
 # since an ID was specified, this is an update
 else
 # no specified ID means this is a creation request
 end
 end

 if request.get?
 # render a representation of the resource
 end

 if request.delete?
 # delete the resource
 end
 end
end

Table 7-3. The CRUD Operations Available in the HTTP World

CRUD Operation HTTP Command

Create PUT

Retrieve GET

Update POST

Delete DELETE

Hamou_821-0 C07.fm Page 129 Wednesday, May 30, 2007 4:42 AM

130 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

So I could create a new unreleased book by posting HTML form data to www.beefybooks.com/
books/unreleased, or update one by adding a /15 to the end. This is a nice enough concept, but
having to write these conditional blocks in every RESTful method is distinctly inelegant. Also,
what about client support? Most browsers can only do POSTs and GETs from forms or links (due
in large part to the way the HTML specification is written).

Client Functionality

Because REST is pretty new (at the time of this writing), there are only the first stirrings of client
libraries for accessing RESTful resources. The one that’s had the most attention is ActiveResource,
which attempts to do for REST what ActiveLDAP and ActiveRecord did for LDAP and database
access, respectively. If you know how to use ActiveRecord (even if just from the last chapter),
then you know how to use ActiveResource. It can provide a whole bunch of implicit function-
ality simply through declaring an object that inherits from ActiveResource::Base. This is
demonstrated in Listing 7-28.

Listing 7-28. A Quick Overview of the Functionality Provided by ActiveResource

class Book < ActiveResource::Base
 self.site = "http://www.example.com"
end

new_book = Book.new(:name => "See Tops Ruin").save

other_book = Book.find(15)
other_book.name.reverse!
other_book.save!
other_book.destroy

It also has all the usual validation support you would expect from something in the
ActiveThingy family. The main problem is that ActiveResource is still in its infancy. It is part of
the main Rails development trunk but does not form part of the recent 1.2 release. You can grab
a copy by checking out edge Rails from its Subversion repository:

$ svn co http://dev.rubyonrails.org/svn/rails/trunk

As time progresses, client-side REST will become more widely used, and that usually
means a sudden influx of libraries in the Ruby community. Until then, don’t forget that all we
are actually talking about with REST is the moving about of HTTP traffic carrying form data and
various kinds of response. With any REST client library, the tricky bit is getting the various
resources’ object representations dealt with.

It could be said that much blogging/aggregation software is basically RESTful—it imple-
ments retrieval of hierarchies of URL-identified pages of XML and is able to POST entries back.
In this chapter we looked at parsing XML, and in the next chapter we will build a web robot.
Combining these two ideas with a bit of design would leave you with an HTTP client capable of
all four CRUD operations and a mechanism to parse retrieved data from a REST service. This
rather neatly brings us to the server side of the equation.

Hamou_821-0 C07.fm Page 130 Wednesday, May 30, 2007 4:42 AM

http://www.beefybooks.com
http://www.example.com
http://dev.rubyonrails.org/svn/rails/trunk

CH AP T E R 7 ■ W OR K I N G W IT H E N T E R P R I SE D A TA 131

Server Functionality

On the server side, I can guarantee that we’ll end up talking about Rails since that is the first
major Ruby web framework to introduce built-in REST support. Since a complete Rails tutorial
is well outside the purview of this chapter, I’m going to assume you are familiar with the following:

• How to create and serve a Rails project

• The functionality offered by ActionController

• The role of config/routes.rb in matching incoming requests to controller methods

If you are not confident in your understanding of these items, www.rubyonrails.com has all
the documentation, tutorials, screencasts, and discussions you’ll need to get up to speed. Once
again, the functionality we’re discussing is currently available in edge Rails only, but it provides
good conceptual grounding and will eventually be in general use.

In order to support RESTful server actions, Rails does two things: it introduces a new
resource mapping approach for the routes.rb file, and it uses some hidden-field trickery to
simulate the PUT and DELETE requests that you’d never otherwise be able to get from the current
browser crop. Here’s a resource map:

map.resources :books

From this one tiny statement in your routes.rb file, you get the set of mapped calls listed
in Table 7-4.

Thus without any reference to how the BooksController is actually implemented, one
simple map standardizes a whole set of CRUD calls for books as a resource—REST at its best.
The map.resources call can take a hash of options after the object class identifier to modify the
mapping behavior.

Use :controller => "books" to specify the name of the controller and :singular =>
"book" to describe the singular name used in member routes. :path_prefix => "/authors/

Table 7-4. The Set of Commands Available After a Simple Resource Mapping

Command URL params[:action] params[:id] params[:format]

GET /books "index" N/A N/A

GET /books.xml "index" N/A "xml"

GET /books;new "new" N/A N/A

GET /books/15 "show" 15 N/A

GET /books/15;rip "rip" 15 N/A

GET /books/15.xml "show" 15 "xml"

POST /books "create" N/A N/A

PUT /books/15 "update" 15 N/A

DELETE /books/15 "destroy" 15 N/A

Hamou_821-0 C07.fm Page 131 Wednesday, May 30, 2007 4:42 AM

http://www.rubyonrails.com

132 CH AP T E R 7 ■ W O R K I N G W I TH E N T E R P R I SE DA TA

:author_id" defines a prefix for the routes and may include variables to be derived from the
resource object. Another way to achieve this is through nesting:

map.resources :authors do |author|
 author.resources :books
end

which automatically constructs the appropriate prefix for any book paths.
If you will be constructing multiple routes for the same kind of resource, you can specify a

prefix for each route’s name with :name_prefix => "book_" for those times when you need to
refer to the route uniquely by name.

You can add extra methods to the collection path (/books) with :collection =>
{ :unreleased => :get }, which will map to BooksController.unreleased for an HTTP GET of
/books;unreleased. The hash is a list of controller-action-to-HTTP-method pairs. Similarly,
methods can be added to individual members using :member => { :award => :post }, which
would map to BooksController.award for an HTTP POST of /books/1;award. Note that the method
could also be :put, :delete, or :any.

Once a resource is defined, a number of helper methods become available for linking to it
that can take the place of url_for in your rendering code. So this

<%= link_to "edit", :controller => "books", :action => "edit", :id => @book.id %>

can become this

<%= link_to "edit", edit_book_url(@book) %>

With that, our tour of things to come (or maybe things just about here) is concluded. REST
is going to make agile web development even more nimble because it standardizes another
block of conventional coding. Remember that one of the Rails’ mantras is “convention over
configuration,” and the RESTful approach is yet another step toward the nirvana of rock solid
yet rapid web application development.

Back to Basics
This chapter dealt with common corporate data-parsing activities, whether that data is in
delimited or XML form. We put these skills into practice building a simple PList parser. We also
toured through some of the major enterprise data storage and handling protocols, and we
discussed the upcoming REST approach with an eye on future development.

Now it’s time to return to the roots of the network. The next chapter goes to the wire to
discuss basic socket operations and build simple network client libraries. We’ll build an SSH
remote control system and a web scraper for a terrifying device. In short, we’ll be networking
for fun and profit.

Hamou_821-0 C07.fm Page 132 Wednesday, May 30, 2007 4:42 AM

mailto:@book.id

133

■ ■ ■

C H A P T E R 8

Networking for Fun and Profit

Making systems talk to one another is a fundamental task for system administrators. Often,
we are called upon to provide abstraction, analysis, monitoring, and even translation of network
protocols and services. Thus a grasp of how Ruby augments our network toolkit is vitally
important.

In this chapter, we’ll cover basic socket operations and how to deal with some of the most
common problems. We’ll discuss a few of the higher-level protocols and operations that can be
employed quite easily from within Ruby, and we’ll build a web robot and a calculation server.
Finally, we’ll peruse some ideas for automating command and control with SSH and sample
the joys of the packet capture library.

Basic Network I/O
In this section, the focus is on raw, low-level network operations and how to achieve them with
Ruby. It is often the case that a library exists to abstract away much of this detail, but it is always
useful to get your hands dirty.

Almost all the network code I’ve ever written operates over a basic TCP/IP socket. Of course,
there are plenty of other ways to abuse a network, but this kind of operation is extremely
common and forms the basis for this section’s discussions.

Socket to Me
Let’s dive right in with a bit of Ruby to open a socket connection to a particularly fine server:

require "socket"
socket = TCPSocket.open("www.theonion.com", "80")

As you’re now quite familiar with the Ruby approach, you might guess that this open method
is somewhat akin to File.open in that it can accept a block, and you would be right on the money:

TCPSocket.open("www.theonion.com", 80) do |socket|
 socket.puts "GET / HTTP/1.0\n\n"
 puts socket.read
end

Hamou_821-0 C08.fm Page 133 Friday, June 1, 2007 4:18 AM

http://www.theonion.com
http://www.theonion.com

134 CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT

This snippet once again opens a connection to www.theonion.com on port 80 and then,
upon success in this regard, requests the root path and dumps out the response. Amazingly
enough, most programmers don’t want to write raw HTTP in their scripts for something as
common as grabbing a web page. Thus Ruby has a proper HTTP library, which we’ll play with
some more in the next section.

Note the double newline at the end of the request string. You may be thinking that puts
is supposed to do an implicit newline—that’s the whole point of using puts rather than print
after all. In fact, puts will append such a line ending only if the string doesn’t already have one.
This is one of those examples of Ruby choosing a convention that is less strict but more helpful.

In this light, also note that BasicSocket and its subclasses UNIXSocket, IPSocket, TCPSocket,
and so forth are all actually subclasses of IO. The basic concept of a thing-you-can-read-and-
write-bytes-from-and-to behaves consistently across all domains, be they files, local sockets,
or remote sockets. Hence the puts and read commands behave identically to the ones you met
in earlier chapters.

The Ruby socket classes exist to make the most common socket operations require as little
exertion as possible. Figure 8-1 shows these sets of classes and illustrates the sort of function-
ality they provide.

Figure 8-1. The Ruby socket classes with a sampling of their functionality

IO

BasicSocket
close_read
close_write
recv, send

getpeername

IPSocket
addr, peeraddr

recvfrom

Socket
accept, bind

connect, listen

UNIXSocket
addr, peeraddr
path, recvfrom

TCPSocket
gethostbyname

SOCKSSocket
TCPServer

accept

UNIXServer
accept

UDPSocket
bind, connect

recvfrom, send

Hamou_821-0 C08.fm Page 134 Friday, June 1, 2007 4:18 AM

http://www.theonion.com

CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT 135

Socket Errors and Exceptions
The rude practicality you quickly learn to accept when engaged in network programming is
that more can and does go wrong more often. Hostnames stop resolving, servers go down, links
become clogged, and the whole of the Internet starts to resemble a series of tubes. Fortunately,
the socket classes make enthusiastic use of Ruby’s exceptions mechanism, rendering it easy to
recover from such issues. Try this:

TCPSocket.open("www.thereisnowaythisdomainshouldexist.com", 80)

Unless someone has rushed out and registered this domain to spite me, you should find
your script exiting with a SocketError exception. Similarly, if you try this:

TCPSocket.open("slashdot.org", 90210)

you’ll be alerted to a refused connection, which is an exception of class Errno::ECONNREFUSED.
The set of possible exceptions raised by sockets is vast and covers every error you’d expect from
UNIX or Windows socket programming. I’ve found that it’s safest just to think of them all as
plain old Exceptions (remembering that all Ruby exceptions are subclasses of this), unless I
have very specific requirements to do otherwise.

Imagine we have a particularly annoying web site that is so busy it refuses connections two-
thirds of the time. That sounds like a job for a begin-rescue-end block, as shown in Listing 8-1.

Listing 8-1. A Dogged Connection Attempt

attempts = 0
begin
 attempts += 1
 TCPSocket.open("www.example.com", 80) { |socket| ... }
rescue
 if attempts < 3 then sleep 5 and retry
 else puts "I've had enough of this"
 end
end

Here we catch any problems that occur in relation to the socket connection and retry from
the beginning if such problems occur. Each retry carries a five-second wait before it commences.
After three unsuccessful attempts, we give up completely.

Clockwatching: Timing Out on Purpose
There comes a time in every script’s life when it just has to accept the reality that it is stuck in a
rut. Networking tends to increase the frequency of this occurrence. It is important therefore to
recognize assumptions in your code as to how quickly a network operation will complete and
how to react if this deadline has been missed. Ruby has a very useful library for this, as demon-
strated in Listing 8-2.

Hamou_821-0 C08.fm Page 135 Friday, June 1, 2007 4:18 AM

http://www.thereisnowaythisdomainshouldexist.com
http://www.example.com

136 CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT

Listing 8-2. Imposing an Upper Limit on the Duration of Socket Operations

require "timeout"

begin
 Timeout::timeout(5) do
 TCPSocket.open("www.example.com", 80) { |socket| ... }
 end
rescue
 puts "something untoward happened - how bothersome"
end

As should be obvious, the Timeout module has but one method (timeout), which takes a
block to run and a number of seconds to wait before stopping it dead. When such an interruption
occurs, a Timeout::Error is raised. I mention the specific class of the error as you might wish to
handle your self-imposed timeout differently from the other socket exceptions. As discussed
previously and shown in Listing 8-3, this can be accomplished by matching against the excep-
tion class.

Listing 8-3. Rescuing Conditionally Based on Exception Class

begin
 # socket code with timeout
rescue Timeout::Error
 # rescue code for our timeout
rescue
 # all other rescue code
end

Timeout::timeout takes an optional second argument that allows you to override the class
of the exception to be raised upon timing out. This should give you enough flexibility to apply
the Timeout module to a huge variety of situations. For more in-depth information on exactly
how this module works, take a look at the sidebar “Time Gentlemen Please.”

TIME GENTLEMEN PLEASE

The operation of the timeout method is actually a good example of how the application of some of the high-
level features of Ruby can create very useful behavior in very little code. I reproduce here the pertinent bits of
its definition as taken from /usr/lib/ruby/1.8/timeout.rb on my system:

Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan

module Timeout
 class Error<Interrupt
 end

Hamou_821-0 C08.fm Page 136 Friday, June 1, 2007 4:18 AM

http://www.example.com

CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT 137

 def timeout(sec, exception=Error)
 return yield if sec == nil or sec.zero?
 begin
 x = Thread.current
 y = Thread.start {
 sleep sec
 x.raise exception, "execution expired" if x.alive?
 }
 yield sec
 # line omitted as irrelevant
 ensure
 y.kill if y and y.alive?
 end
 end
 module_function :timeout
end

Starting at the top, we define everything that follows to be in the context of the Timeout module. Imme-
diately after this, we define Timeout::Error to be an in-name-only subclass of Interrupt (which inherits
from SignalException, which in turn inherits from Exception).

The timeout method itself is where the fun begins. As stated, we take two arguments: the number of
seconds to wait and an optional override of the exception class to be raised. Note that even in the argument
defaults, the current module namespace is applied so that Error is exactly the same thing here as
Timeout::Error. If we are passed nil or 0 as the number of seconds, we simply hand control to the passed
block and return its result when it’s done—there is no timeout.

A begin-ensure-end block is used to contain the meat of this function for reasons that will become
obvious in just a moment. The mechanism of this function is to spawn off a watcher thread, which will raise
the given exception in the currently running thread after the specified number of seconds. Thus we first make
a note of the current thread, calling it x. Then we create a new thread (y), which will sleep for sec seconds
and then call raise on x.

At this point, we have two concurrent threads: the main one and the watcher. The main thread hands off
to the passed block (passing it the number of seconds in the timeout) and one of two possibilities can then
ensue. Either the block in question will finish inside the time limit or it won’t. If it doesn’t and y raises its little
exception, execution of the block will stop immediately and jump to the ensure. If the block does finish before
y does the dirty deed, we still end up in the ensure but without an exception condition.

The ensure section makes certain that the watcher thread is stopped and cleaned up before returning
out of the timeout block. Because there is no rescue section, if an exception is present at the end of the
ensure, it will then be raised on to the code that called timeout, and voila!

The last little module_function directive takes the instance method we just defined and makes it private,
while creating a public class-style method as a copy. Simply put, this allows us to do Timeout.timeout and
would make the timeout method available as an instance method if it were ever included in a class. Take a
look at ri module_function for more details.

Hamou_821-0 C08.fm Page 137 Friday, June 1, 2007 4:18 AM

138 CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT

Socket-Based Monitoring
Armed with just the libraries discussed so far, it is possible to create a number of eminently
useful tools. Consider a database-driven DNS system that, for certain A records, carries the
notion of a backup IP address. Thus when the zone maintenance script runs, it not only checks
that all the A records are current, but also checks that, for those with backups defined, the primary
IP address is contactable in some way.

For such a system, we need to build a connectivity checker—something we can think of as
a kind of ping (in a very generic sense). In this case, it will check that it can make a TCP connec-
tion to a particular port on a given IP address. Listing 8-4 shows some code to add this method
to the TCPSocket class.

Listing 8-4. TCP Connectivity Checker

require "timeout"

class TCPSocket
 def self.can_connect?(ip, port, wait_secs = 5)
 Timeout::timeout(wait_secs) { open(ip, port) }
 return true
 rescue
 return false
 end
end

Note first how we’re able to treat the function definition itself as an implicit begin-end so
we only have to mention the rescue keyword. We perform our now familiar TCPSocket.open
(implicitly) inside a timeout block, the duration of which can be overridden but defaults to five
seconds. Quite simply, then, if any connection error occurs or the timeout is triggered, the
method returns false. Otherwise, it returns true.

Continuing our DNS example, we can imagine that some DNSRecord class might have a value
method for deriving the dynamic value of a web server’s A record based on the can_connect? func-
tionality. In order to do so, the DNSRecord object would need to have been initialized with an
ordered list of IP addresses to try, selecting the earliest member of that list for which can_connect?
returned true. Listing 8-5 shows a simple implementation of this specification.

Listing 8-5. DNS Failover Class Snippet

class DNSRecord
 def value
 return @ips.first unless @type == "A" and @ips.size > 1
 @ips.find { |ip| TCPSocket.can_connect?(ip, 80) } || @ips.first
 end
end

You shouldn’t have any trouble following this listing, but it’s worth clarifying a few points.
In particular, the assumptions made by this code include the following:

Hamou_821-0 C08.fm Page 138 Friday, June 1, 2007 4:18 AM

mailto:@ips.first
mailto:@ips.size
mailto:@ips.find
mailto:@ips.first

CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT 139

• The default IP for this record is always the first IP in the defined list.

• This default IP should be used when no connectivity can be achieved.

• We always want to test on port 80 (i.e., this is not for FTP, SSH, or other servers).

• The TTL and caching behavior of the DNS system in question is conducive to this style
of failover.

• The redundancy scenario is not better served by more robust IP failover methods (i.e.,
heartbeatd or something similar).

Even with all of these provisos in place, this sort of code can be very useful for the right
kind of situation. It also demonstrates the power of Ruby for general network monitoring.

Before we move on to the next section, you may have noticed the lack of a return keyword
at the end of the method in Listing 8-5. Usually I’ve included return for clarity (even though it
is completely unnecessary). Remember that the last evaluation in a method will be returned
implicitly. In this case, the line is plenty long enough already so I omitted it.

Higher-Level Network Services
Now that you have a feel for low-level socket operations, let’s turn to more refined pursuits. In
this section, we’ll take a look at what ships with the Ruby standard library for communicating
with (and providing) services over the network.

An Embarrassment of Protocols
I’m not sure whether “embarrassment” is the correct collective noun for protocols, but it feels
right. Like most other high-level languages, Ruby comes bundled with a nice collection of libraries
for speaking the language of common network service protocols. As you can likely predict, they
are built on top of the socket libraries discussed in the previous section and provide lots of
yummy convenience methods and data structures for speaking HTTP, FTP, SMTP, and more.

Once you’ve seen one library, you’ve pretty much seen them all, so I’m not going to describe
them in excruciating detail but instead encourage you to consult the documentation. Briefly,
these libraries are delivered as part of the Net module and are listed in Table 8-1.

Table 8-1. Network Service Libraries in the Ruby Net Module

Library SSL Version

net/ftp net/ftptls

net/http net/https

net/imap

net/pop

net/smtp

net/telnet net/telnets

Hamou_821-0 C08.fm Page 139 Friday, June 1, 2007 4:18 AM

140 CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT

As an example of using one of these, let’s build a quick web scraper. The chunk of code in
Listing 8-6 will retrieve a Futurama quote hidden in the headers of pages from Slashdot.

Listing 8-6. Retrieve a Futurama Quote from Slashdot

require "net/http"

Net::HTTP.new("slashdot.org").get("/").each_header do |key, value|
 next if key == "x-powered-by" or not key =~ /x-(.*)/
 puts "#{$1.capitalize} says #{value.inspect}"
 break
end

Building a Web Robot
In my job as a system administrator, I have come to realize that new bits of kit we bring through
the door might have an SSH interface or sometimes support SNMP but will almost always have
a web GUI. Very often, this is all they have. Having to click the same combination of buttons in
a web browser over and over again to configure a set of devices loses its novelty about 15 seconds
in. As a result, one of the most common bits of code I find myself writing is one to interact with
various combinations of forms on web-managed devices.

Frustratingly, the kinds of techniques described in Chapter 7 rarely apply to this problem.
DSL routers, bandwidth management boxes, and proprietary firewalls don’t tend to have a
well-defined XML-RPC or equivalent interface. Thus we have to fall back on simulating a button-
pushing monkey. More specifically, the Ruby way is to create a Net::HTTP (or SSL equivalent)-
based class for each model/make of device to be administered.

■Note In searching around for a good example to use here I had certain criteria. I wanted a well-defined
set of operations that I could codify. These operations needed to be orderly and well understood (with no edge
cases to worry about). Additionally, I needed HTML output that was reasonably easy to process so this example
didn’t turn into a treatise on parsing HTML.

The seven devices I tried failed these standards miserably (as—I suspect—do a broad range of commodity
network appliances). The only place where four of them came through was with HTML so vile that it was easy
to use typos in the output as anchors for parsing. I concluded that, in order to avoid embarrassing certain
manufacturers (and probably getting sued), I should invent an HTTP-administered device with all the proper-
ties of one of these appliances but with none of the baggage.

Let’s suppose a device exists called the MegaFishCannon that has the following capabilities:

• Load a fish into the hopper (specifying its name)

• Set a direction and a range

• Activate the incendiary

Hamou_821-0 C08.fm Page 140 Friday, June 1, 2007 4:18 AM

CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT 141

• Get the count of waiting fish in the hopper

• Get the current cannon status including last firing time

The actions that do something to change the state of the cannon (the first three) are all
accessed via form submission (POST). The status commands (the last two) are simple URL
retrievals (GET).

Before we can engage in any fish-launching fun, we need to establish a connection to the
web server on the cannon, which runs on port 5000. This particular device requires a username
and password to operate but doesn’t support HTTPS—a malady that is as common as it is
rebarbative. Also, a cookie will be returned that identifies our session to the server. This cookie
needs to be used in all of our commands and so should be kept safe.

Thinking a little more deeply, the session on the cannon is a specific example of a more
abstract HTTP session. Therefore, to make things easier later on, let’s start in Listing 8-7 by
designing a WebSession class.

Listing 8-7. An Abstract Class for Tracking HTTP Sessions

require "cgi"
require "net/http"

class WebSession
 def initialize(url, port = 80)
 @session = Net::HTTP.new(host, port)
 @cookies = {}
 end

 def get(path)
 response = @session.get(path, retrieve_cookies(path))
 collect_cookies(response)
 return response.body
 end

 def post(path, pairs)
 header = retrieve_cookies(path)
 header["content-type"] = "application/x-www-form-urlencoded"

 data = pairs.map { |k, v| "#{k}=#{CGI.escape(v.to_s)}") }.join("&")

 response = @session.post(path, data, header)
 collect_cookies(response)
 return response.body
 end

 private

Hamou_821-0 C08.fm Page 141 Friday, June 1, 2007 4:18 AM

mailto:@session.get
mailto:@session.post

142 CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT

 def collect_cookies(response)
 cookie = response["set-cookie"]
 return unless cookie

 fields, cookie_path = {}, nil
 cookie.split(";").each do |f|
 raise "Unable to parse cookie from #{path.inspect}" unless➥

 f =~ /^(.*?)=(.*?)$/
 if $1 == "path" then cookie_path = $2
 else fields[$1] = $2
 end
 end
 raise "Unable to parse cookie [no path]: #{cookie.inspect}" unless cookie_path
 @cookies[cookie_path] = fields
 end

 def retrieve_cookies(path)
 cookies = @cookies[path] || @cookies["/"]
 return {} unless cookies
 return {"cookie" => cookies.map { |k, v| "#{k}=#{v}" }.join(";")}
 end
end

Listing 8-7 achieves all the functionality required by our skeleton definition of a web session.
Most of the code is there to cope with the requirements and semantics of HTTP (storage and
retrieval of cookies in particular) and so shouldn’t require further comment except to point out
the employment of CGI.escape, which nicely formats values for URL-encoded forms. On to the
actual class for controlling the cannon, as shown in Listing 8-8.

Listing 8-8. Method to Create a Connection to the Cannon

class MegaFishCannon < WebSession
 def initialize(url, uname, pass)
 super(url, 5000)
 post("/", "login" => uname, "password" => pass)
 end
end

Note how we use the super keyword to perform the actual abstract connection (as provided
by the WebSession class) and then POST across that connection to populate the cookie jar with
a session cookie. Because of the ease of use of the post method, creating the convenience methods
for the first group of actions in Listing 8-9 is child’s play. As normal, I refrain from wrapping any
of the rest of the method definitions in the class declaration to save on space and indenting.

Hamou_821-0 C08.fm Page 142 Friday, June 1, 2007 4:18 AM

CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT 143

Listing 8-9. Methods to Affect State Changes of the Cannon

def load_fish(name)
 post("/loadfish.cgi", "name" => name)
end

def point_cannon(degrees, metres)
 post("/movebarrel.cgi", "degrees" => degrees, "metres" => metres)
end

def fire
 post("/fire.cgi")
end

Creating methods for the state accessors will prove a little more challenging. Ordinarily,
we might grab the returned HTML document, feed it into some sort of HTML parser library,
and perform a formal API-based lookup for the values we want. Unfortunately, the miscreant
who wrote the pages for the cannon couldn’t write standard HTML to save his life. There are
mistakes all over the place. Thus we will have to try and find some uniquely identifiable string
in the return that we can use as a signpost to the data of interest. Listing 8-10 contains a sample
of the hopper count page.

Listing 8-10. Extremely Stinky HTML Returned by the Cannon

<html>
<head>
 <title>CANNON</tiTLe>
</head>
<body>
 <!-- immense amounts of silliness here including tables -->
 <table>
 <tr> <td> 12 </td> <TH>
 </table>
</body>
</htl>

It turns out that the comically inept use of TH occurs only once in this document. That
means we can use it as an anchor. For those objecting to this strategy on the grounds that the
next release might break our script, I can only say welcome to the real world and Listing 8-11.

Listing 8-11. Method to Retrieve the Cannon’s Fish Count

def fish_count
 get("/countfish.cgi") =~ /(\d+) <\/td> <TH>/
 $1.to_i
end

Hamou_821-0 C08.fm Page 143 Friday, June 1, 2007 4:18 AM

144 CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT

The cannon’s generic status is less problematic. The status is stored as pairs in table rows,
and the CSS class of each row is cannon-status. Thus something like Listing 8-12 should do
the trick.

Listing 8-12. Method to Retrieve a Hash of the Cannon’s Generic Status Information

def status
 body, info = get("/status.cgi"), {}
 body.scan(/cannon-status"> <td> (\S*) <\/td> <td> (\S*) <\/td>/) do |k, v|
 info[k] = v
 end
 return info
end

Please bear in mind that the regular expressions were chosen for clarity rather than resilience.
In practice, you would be far more careful to avoid delicacy in such expressions and parsing
logic—especially when dealing with such badly formatted output. That said, the MegaFishCannon
class is hereby complete and we can move on to another example.

■Tip There has been a recent blessing upon the world of HTML parsing in Ruby. The Hpricot library (available
from http://code.whytheluckystiff.net/hpricot) provides a superb API for parsing documents. In
particular, it copes admirably with the kind of loose formatting seen in the preceding example. If you are doing
any serious amount of HTML parsing, this library is well worth a look.

Throwing Together a Server
When you originally examined Figure 8-1, the TCPServer class might have intrigued you. There
are lots of well-known patterns for writing servers, but at some fundamental level they accept
connections from clients, run given procedures possibly with supplied data, and return a result.
The world doesn’t have nearly enough servers, so let’s make one of our own just to see how
easy it is.

The TCPServer class does very little more than the TCPSocket class from which it inherits.
The main functionality it adds is via the perhaps familiar accept method, as illustrated in
Listing 8-13.

Listing 8-13. Very Basic TCP Socket-Based Server

require "socket"

server = TCPServer.new(34891)
while (session = server.accept)
 session.puts "Kindly leave me alone"
 session.close
end

Hamou_821-0 C08.fm Page 144 Friday, June 1, 2007 4:18 AM

http://code.whytheluckystiff.net/hpricot

CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT 145

If you run this code, it creates a new server instance bound to port 34891 on all local inter-
faces. The script merrily sits doing nothing until a TCP connection is made on this port, at which
point it dumps an antisocial message and shuts down the connection. You can test this from
another terminal with a quick telnet localhost 34891.

Let’s try and make this server a little more functional. In order to emphasize the processes
involved in creating a server, I’m going to use the rather trivial example of a simple arithmetic
solver. It is not difficult to imagine how you might apply these principles to creating something
like a log analysis or system diagnosis server, but the mechanics of those real-world examples
are a little beyond this section.

We’ll define a calculation as being composed of an operation and two numbers, the oper-
ations naturally being addition, subtraction, multiplication, and division. Thus we expect to be
able to telnet to this server, enter 3 / 5, and get an answer of 0.6. Listing 8-14 shows our first
attempt.

Listing 8-14. A Simple Arithmetic Server (First Try)

require "socket"

server = TCPServer.new(34891)
while (session = server.accept)
 command = session.readline.chomp
 if command =~ /^([\d\.]+) ([\+-\/*]) ([\d\.]+)$/
 x, y = $1.to_f, $3.to_f
 result = case $2
 when "+" then x + y
 when "-" then x - y
 when "*" then x * y
 when "/" then y == 0 ? "inf" : x / y
 end
 session.puts "= #{result}"
 end
 session.close
end

In this bit of code, the accepted session is read up to the first line break, chomping to get rid
of the break itself (remember that readline is actually a method of IO). The next line uses a
regular expression to match against only those expressions we have deemed to be valid. We
pull floating-point values out of the expression with a couple of judicious to_f calls and are
then ready to perform the operation itself.

This kind of construction, whereby actions are performed based on some string value
representing the operation, is a simple example of a dispatch table. This particular dispatch
table is built around a case statement for matching against the operation and performing the
calculation. Note that we have exercised care to never allow a divide by zero, which would be
the only mathematically naughty operation possible with such an expression.

We finish up by dumping the result and closing the session so that the next punter can use
the service, which raises an interesting point. Try connecting to the server from one terminal
and (before issuing a command) connect from another terminal. In this second terminal, issue

Hamou_821-0 C08.fm Page 145 Friday, June 1, 2007 4:18 AM

146 CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT

an expression and press Return. Now return to the first terminal and do the same. Notice what
happened?

Unfortunately, our design is so simplistic that the queue of users waiting to vent their
calculations upon the server can only gain access one at a time. There is no parallelism in our
code, and so it behaves like a server a few decades behind the current state-of-the-art. Not to
worry, though. We can fix it with the traditional select pattern as demonstrated in Listing 8-15.

Listing 8-15. A Simple Arithmetic Server (select Based)

require "socket"

server = TCPServer.new(34891)
sockets = [server]

loop do
 read_ready, write_ready, error_ready = IO.select(sockets)
 read_ready.each do |socket|
 if socket == server then sockets << server.accept
 else
 command = socket.readline.chomp
 if command =~ /^([\d\.]+) ([\+-\/*]) ([\d\.]+)$/
 # etc...
 end
 socket.close
 sockets.delete(socket)
 end
 end
end

The select call should be familiar to anyone who has done socket programming. It takes
up to three arrays of IO-like objects and an optional timeout, and then sits and waits for certain
conditions to occur. In the preceding example, we specify only the first array to select. This
array should contain one or more sockets on which we are waiting to be able to do a read-style
operation. In the context of the server, this means accepting a new connection. In the context
of such a connection, this means reading data.

The select function returns three arrays that are subsets of the provided socket arrays.
The first array contains only sockets on which a read-style operation (including accept) would
not block the execution of the script. Because we specified only that we were interested in
monitoring the sockets for read-readiness, the remaining two arrays will always be empty and
are only named for completeness.

If the read-ready socket is the server itself, then we accept a new connection and pop it
onto the stack of known sockets. Otherwise, we perform our normal operation. Once the calcu-
lation is complete and the result has been posted back to the user, the socket is closed as before
and removed from the array of known sockets.

Note that we have taken something of a liberty here in assuming that, because the socket
is ready to be read from, we will be able to read an entire line and then write one as well. In
serious server programming, these kinds of assumptions lead to blocked processes and worse.
The problem is that the select approach may be traditional and well understood, but it often

Hamou_821-0 C08.fm Page 146 Friday, June 1, 2007 4:18 AM

CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT 147

requires the construction of state machines so appalling in their complexity that attempts to
maintain such code can render one a gibbering wreck.

Threaded servers allow for the more natural convention of state being tracked by the posi-
tion in the code rather than a big data structure. Ruby provides us with a portable threading
implementation (itself select based), so let’s try that instead with Listing 8-16.

Listing 8-16. A Simple Arithmetic Server (Thread Based)

require "socket"

server = TCPServer.new(34891)
while (session = server.accept)
 Thread.new(session) do |s|
 command = s.readline.chomp
 if command =~ /^([\d\.]+) ([\+-\/*]) ([\d\.]+)$/
 x, y = $1.to_f, $3.to_f
 result = case $2
 when "+" then x + y
 when "-" then x - y
 when "*" then x * y
 when "/" then y == 0 ? "inf" : x / y
 end
 s.puts "= #{result}"
 end
 s.close
 end
end

Hopefully you will notice that this is almost exactly the code from Listing 8-14 except that
everything inside the accept has been wrapped in a spawned thread. This idea of wrapping
repetitious parallel tasks in threads is applied quite commonly, particularly for network-bound
operations. We might easily conceive of an operation that is very low bandwidth but takes a
comparatively long time to complete, such as a five-packet ping of a host. Now imagine needing
to get the ping status of each host in a list of 1,000. That operation will go much faster if we do
30–40 in parallel at any one time.

■Caution The Ruby threads implementation is quite good as far as completely portable user-land threading
goes, but it can tend to bottom out as the number of threads increases beyond a handful (20–30 depending
on the operation). In situations that require a great deal of threading, try to limit the number of threads system-
atically by spawning off a thread only if the number of active ones is below a certain number. Get into the habit
of doing operations like threads << Thread.new(foo) { |bar| ... } so that you can track your
threads inside a single array. Take a good look at the ri pages for Thread, as the methods it provides are
simple, easy to remember, and very useful.

Hamou_821-0 C08.fm Page 147 Friday, June 1, 2007 4:18 AM

148 CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT

As a final note, it is worth mentioning that the Ruby standard library ships with something
called Webrick, which provides a framework for building low/medium-complexity servers. If
you’ve used Rails, you probably already know it as the built-in web server that gets run when
you invoke scripts/server in a Rails project directory. Webrick can be used for more than HTTP,
though. For more information, take a look at the Webrick project’s homepage (www.webrick.org)
and particularly the DayTimeServer example.

Control and Monitoring
Now that we’ve had a chance to get up to speed on basic server/client operations, it’s time to
put them into practice. If any two things could be said to summarize a system administrator’s
job, it would be the control and monitoring of devices on a network. In this section, we’ll write
code to automate both processes while showing off a couple of Ruby libraries in detail.

Taking Command with SSH
A standard control mechanism available on many systems is SSH. In particular, *nix-style
machines are almost always administered at a distance with this tool. Since *nix platforms
power our web servers, file servers, mail servers, and Bluetooth-aware refrigerators, it could be
extremely useful to be able to automate their administration with some script-driven SSH
goodness.

Consider a maintenance script that is designed to periodically empty out the /tmp and /opt
directories on every host designated as a potential security risk. What if this designation is stored in
a database, the access credentials to which you do not want to put on individual machines?
This means that it is no good designing a script to run locally on each machine, as it will not be
able to tell whether to take action.

In despair, the lonely administrator might resign herself to the fact that she will have to log
in to each machine as root and perform the deletion manually. This would be very silly. Instead,
she needs to create a task server with appropriate credentials to operate as root on each machine.
Such a server might operate like this:

1. Examine the database of hosts and pick out those that are security risks.

2. Establish an SSH connection as root to each of these hosts.

3. Wipe the contents of /tmp and /opt.

The distinct air of panic that has set in with certain readers that we might now try to construct
an SSH client from scratch is decidedly undeserved. We will instead use the excellent net-ssh
pure Ruby SSH client library, which is available as a gem (as usual, see Chapter 10 for installa-
tion details). Let’s take a look at a quick example of its use in Listing 8-17.

Hamou_821-0 C08.fm Page 148 Friday, June 1, 2007 4:18 AM

http://www.webrick.org

CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT 149

Listing 8-17. Example of Net:SSH Usage

require "net/ssh"

Net::SSH.start(url, user, pass) do |ssh|
 shell = ssh.shell.sync
 puts shell.ruby("-v").stdout
end

This chunk of code will establish an SSH session on a host at a given URL with the specified
username and password, and then run one shell command (ruby -v) and dump the resulting
standard-out data. Interestingly, the shell knew about a ruby method not because of some
predefinition, but due to yet another example of the method_missing style of metaprogramming
covered in Chapter 4. Specifically, the shell.ruby invocation actually runs shell.
send_command("ruby -v"). This more formal method can take a second argument to be used as
the standard-in for the specified command.

One of the nice things about this SSH library is that it will automatically pick up on the
standard forms of cryptographic handshake available to SSH. Thus whenever I’m using it for
commanding remote servers, my task server has a public/private key pair, and the public key
is placed in ~root/.ssh/authorized_keys of each host to be controlled. This allows the task
server to log in as root without having to use or maintain any passwords. For more details on
this style of access, take a look at man ssh and man ssh-keygen.

To continue the miniproject, in Listing 8-18 we define a class called RemoteHost that encapsu-
lates the functionality we’re looking for.

Listing 8-18. Basic Class to Allow for Remote Directory Clearing

require "net/ssh"

class RemoteHost
 def initialize(url, user = root)
 @shell = Net::SSH.start(url, user).shell.sync
 end

 def clear_dirs(*dirs)
 dirs.each { |dir| @shell.send_command("rm -rf #{dir}/*") }
 end
end

This class creates an SSH shell session upon instantiation and then allows us to perform a
high-level clear operation on a specified set of directories, which can be passed as arguments
to the clear_dirs method courtesy of the * syntax. The actual task can be constructed as follows:

unsafe_hosts.each do |host|
 RemoteHost.new(host).clear_dirs("/tmp", "/opt")
end

Hamou_821-0 C08.fm Page 149 Friday, June 1, 2007 4:18 AM

mailto:@shell.send_command

150 CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT

Of course, this is only the snippet issuing the command. Deriving the set of unsafe hosts is
outside the scope of this example. Nevertheless, the preceding snippet would reside in a script
to be run periodically on the task server (via a cron job or something similar) and in so doing
would complete the specified design.

■Tip There are lots of tools in the Ruby world for assisting in remote deployment or execution based on
system policies. Particularly worthy of mention is the Capistrano project, which is used extensively in the Rails
community and can be explored at http://wiki.rubyonrails.org/rails/pages/Capistrano.

Packet Monitoring
An administrator probably exists somewhere who’s never used tcpdump or ethereal, but I’ll
probably never meet him. When all else fails, getting down and dirty with the raw packets that
fly across the network can be the only viable option. In addition, the ability to roll your own
tools based on raw packet data can lead to some novel applications. In this section, we’ll take a
look at packet capture in Ruby and use its features to build a simple bandwidth-monitoring
application.

At a fundamental level, all the systems I’ve ever needed to do packet capture have carried
the LBL Packet Capture Library (libpcap). The project in this section is based on this library,
and since widely used programs like tcpdump are also based on it, we can be fairly comfortable
that our monitoring application will work on a variety of platforms. This library provides a raw
interface to system network interfaces allowing for the (often promiscuous) extraction of raw
network frames.

A Ruby binding to this library exists, but not as a gem, so I will take a moment to walk through
its setup procedure. First, download the latest version of Ruby/Pcap from www.goto.info.
waseda.ac.jp/~fukusima/ruby/pcap-e.html. Following this, the standard build routine applies
for a Ruby extension:

$ tar -xzf ruby-pcap-0.6.tar.gz
$ cd pcap
$ ruby extconf.rb
$ make
$ make install

The last line may require a sudo or other permission-acquiring mechanism if the installa-
tion path is not somewhere your current user can write to.

With the installation complete, it’s time to flex some packets. The library we just installed
has a nice little class called Pcaplet, which allows you to quickly create programs that accept
the same sorts of flags that tcpdump does (for specifying which interface to listen on, among
other things). It is used as shown in Listing 8-19.

Hamou_821-0 C08.fm Page 150 Friday, June 1, 2007 4:18 AM

http://wiki.rubyonrails.org/rails/pages/Capistrano
http://www.goto.info

CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT 151

Listing 8-19. Example Pcaplet Usage

require "pcaplet"

sniffer = Pcap::Pcaplet.new
sniffer.each_packet { |pkt| p pkt }
sniffer.close

■Note Because this code relies on a given network interface being in promiscuous mode, any code like that
under discussion will need to be run with root (or equivalent) privileges.

The more eager among you can probably already see what the final code is going to look
like. Given that we have a simple iterator that presents us with each new packet, we will be able
to analyze the packet and determine where it was sent from, where it was going to, and how big
it was. In turn, this information will allow us to build up bandwidth usage statistics for each
host we care about. To track the bandwidth, we’ll first create a BWHost class with some pertinent
methods. Take a look at Listing 8-20.

Listing 8-20. Definition of a BWHost Class for Tracking Bandwidth Usage

class BWHost
 attr_reader :ip

 def initialize(ip)
 @ip = ip
 @received, @sent = [], []
 end

 def received(bytes, from, at = Time.now)
 @received << [bytes, from, at]
 end

 def sent(bytes, to, at = Time.now)
 @sent << [bytes, from, at]
 end

 def total_received(options = {})
 total(@received, options[:earliest], options[:latest])
 end

 def total_sent(options = {})
 total(@sent, options[:earliest], options[:latest])
 end

Hamou_821-0 C08.fm Page 151 Friday, June 1, 2007 4:18 AM

152 CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT

 private

 def total(events, earliest, latest)
 events.inject(0) do |sum, event|
 if ((earliest and event[2] >= earliest) or not earliest) and
 ((latest and event[2] <= latest) or not latest)
 sum + event
 else sum
 end
 end
 end
end

This class tracks the bandwidth usage of a particular host. It does so with two arrays (@received
and @sent) that store an ordered set of bandwidth events. It also provides some basic reporting
functions that allow a total to be derived both universally and with time constraints.

Note the construction of the totaling method. It uses Enumerable.inject on the array of
passed events to keep a running total of the number of bytes passed. In particular, the specified
time filtering is applied within the inject call, so only appropriate events are counted. The
complexity of the conditional used for totaling is an artifact of the feature that an earliest time
limit or a latest or both or neither can be specified.

With the benefit of this class, our bandwidth-monitoring script is easy enough to write, as
demonstrated by Listing 8-21.

Listing 8-21. Bandwidth-Monitoring Script

require "pcaplet"

hosts = {}

sniffer = Pcap::Pcaplet.new
sniffer.each_packet do |pkt|
 next unless pkt.ip?
 src, dst, = pkt.ip_src, pkt.ip_dst
 size, time = pkt.size, pkt.time
 (hosts[src] ||= BWHost.new(src)).sent(size, dst, time)
 (hosts[dst] ||= BWHost.new(dst)).received(size, src, time)
end
sniffer.close

hosts.each do |ip, data|
 puts "#{ip} sent #{data.total_sent}B and received #{data.total_received}B"
end

Here we run through each packet received, allocating it against its source and destination
hosts until we are interrupted or quit. Before exiting, we dump out a final summary of the data
collected. Note the use of the ||= construction to build up the hosts hash on the fly as new hosts
are defined.

Hamou_821-0 C08.fm Page 152 Friday, June 1, 2007 4:18 AM

CH AP T E R 8 ■ N E T W O R K I N G F OR FU N AN D P R O F IT 153

This example demonstrated how to implement a basic packet-capture script. Obviously, if
bandwidth statistics were needed on a real (busy) network, this approach wouldn’t scale very
well due to sheer volume. In practice, the approach employed in this section would be better
suited to the sort of individual host/protocol analysis that couldn’t be achieved with a system’s
generic packet counter.

End of Line
This chapter showed how Ruby makes it quick and easy to interact with network protocols and
services. The idioms of Ruby (such as co-routines and easy threading) allow for much less work
and confusion when writing both clients and servers. We launched some fish and sniffed some
network traffic, all in just a few lines of code.

If networking is the hidden glue that binds all of our systems together, then data presenta-
tion is the polish that convinces nonexperts of the importance and effectiveness of our work.
Creating graphs, figures, and tables in an automated fashion allows system administrators to
provide themselves and others with useful visual summaries of everything from network traffic
to server room temperature variations. The next chapter deals with this important subject.

Hamou_821-0 C08.fm Page 153 Friday, June 1, 2007 4:18 AM

Hamou_821-0 C08.fm Page 154 Friday, June 1, 2007 4:18 AM

155

■ ■ ■

C H A P T E R 9

Network Monitoring

Networks are full of metadata that is useful to techies and management alike. So often this
data sits and rots because nobody has the time or the inclination to bring it together and use it
effectively.

Processing the kinds of operational data found in a live network can most easily be broken
down into three modular stages: how to gather it, how to analyze it, and how to present it. This
chapter discusses all three.

In the first section, I cover how to use SNMP and SSH to pull data out of the network. In the
second section, I discuss some important real-world analysis concerns. The third and final
section addresses some relatively simple ways to present the data so that meaningful conclu-
sions might be drawn from it.

Gathering Data
Butterflies can taste with their feet, crickets can hear with their legs, and a scallop has about 100
eyes around the edge of its shell. If you’ve never given it much thought before, you may be
surprised at just how much functional data you can pull out of your network with the right data
collection tools. After all, the analyses we perform and the presentations we give are only as
good as the data we gather (although politicians demonstrate the flexibility of this rule on a
daily basis).

This section focuses on a couple of ways (with associated examples) to get operational
data out of your network. The model in both cases will be that of a centralized probe that does
the actual data gathering. This isn’t the only model you could employ.

So-called self-healing systems often employ a complex cloudlike structure, where each
facet reports its own status and consumers of that information act locally or globally to effect
repairs. The possibilities for such intricacy are beyond the scope of this book, but they are
worth mentioning to ensure that network monitoring strategies scale properly.

In the previous chapter, we implemented a simple network packet grabber. We will now
examine mechanisms for building more high-level monitoring systems based on two proto-
cols: Simple Network Management Protocol (SNMP) and Secure Shell (SSH).

Simple Network Management Protocol
Now at version 3, the SNMP specification describes an extremely simple protocol for retrieving
and updating bits of information in any device implementing an SNMP agent. Like its prede-

Hamou_821-0 C09.fm Page 155 Thursday, May 31, 2007 4:59 AM

156 CH AP T E R 9 ■ N E T W O R K M O N I T OR I N G

cessor, Simple Gateway Monitoring Protocol (SGMP), SNMP is built around the need to unify
the management of increasingly diverse network devices.

The designers recognized that it was completely infeasible to rely on a general command
language that would need to be updated every time a new device came out. Thus they factored
out all the different things you might want to do to a network device and came up with an infor-
mation-oriented protocol that implements three basic abilities:

• Retrieve some data (including a mechanism for handling tables of data)

• Write/update some data

• Send information asynchronously (allowing for a more efficient alternative to polling for
so-called trappable events)

Everything else device-specific is handled by a namespace approach that uniquely identi-
fies each value that can be read or updated. This means that if a new class of device is invented,
the creators need only release a Management Information Base (MIB) file pertinent to that
device and any SNMP client will be able to address the values defined therein.

If this protocol strategy of putting all the flexibility in the namespace rather than the
commands seems familiar, you may recall our discussion of REST in Chapter 7. It turns out that
REST is merely the latest expression of this kind of information-oriented protocol.

Modularity, flexibility, and ease of implementation are all traits that such protocols aim
for. Let’s see how SNMP fares in Ruby.

Connecting to an Agent

Ruby doesn’t yet have an SNMP library as part of the standard distributions, so we will be using
the snmp gem (installation instructions can be found in Chapter 10 as usual). One of the many
nice things about this library is that it ships with most of the IETF’s (Internet Engineering Task
Force) MIBs. Apart from being satisfying to acronym-aholics, this means that we will be able to
interact with many common network devices without further MIB work.

Connections to agents are handled by the SNMP::Manager class. Just like File, this class
implements both new and open methods (the latter taking a block). We’ll use open in Listing 9-1.

Listing 9-1. Opening a Connection to an SNMP Agent

require "snmp"
SNMP::Manager.open do |m|
 # do something with m
end

It may not be immediately obvious what the code in Listing 9-1 is connecting to or how.
The open method takes a hash of options, such as :Host, which are listed in Table 9-1 together
with their defaults and a brief explanation of their function. The way we have invoked open in
Listing 9-1 would give us a connection with all of the defaults in operation (as we would expect
from a flexible method signature).

In addition to these options, there are a couple of more obscure ones. Transport allows
you to select the class used to handle the underlying SNMP transport—UDPTransport being the
only one currently available. MaxReceiveBytes tunes the inbound data flow profile and is set to
8000 by default. You’ll almost certainly never need to fiddle with either of these.

Hamou_821-0 C09.fm Page 156 Thursday, May 31, 2007 4:59 AM

C HA P TE R 9 ■ N E TW O R K M O N IT O R IN G 157

Retrieving Scalar Data

With a connection in place, let’s grab some data from the server. There are two ways to identify
the particular MIB object you’d like returned. The first is the plain old MIB object ID such as
1.3.6.1.2.1.1.6, which corresponds to the iso.org.dod.internet.mgmt.mib-2.system.
sysLocation object.

If that gives you the kind of stomach cramps it gives me, you’ll likely prefer the more
symbolic approach. The library provides simple mapping syntax from the common names
(found at the end of the MIB object path) to their respective object IDs. Hence 1.3.6.1.2.1.1.6
can be referred to simply as sysLocation.0. In practice, this means that you end up with code
like that shown in Listing 9-2.

Listing 9-2. Retrieving and Printing Out a Couple of Chunks of Data from an SNMP Agent

SNMP::Manager.open(:Host => "switch1.example.org") do |m|
 response = m.get(["sysLocation.0", "sysUpTime.0"])
 response.each_varbind { |vb| puts "#{vb.name}: #{vb.value}" }
end

The two pertinent methods used in Listing 9-2 are get and each_varbind. The get method
belonging to the management session object retrieves the MIB objects listed in the array, auto-
matically converting them into integer notation before the request is sent. Note that get can
take a string if you have only one value to retrieve. For efficiency’s sake, always go for the array
if you have multiple values to collect.

The response that comes back from a get responds to one retrieval method and that is
each_varbind. A variable binding can be thought of as SNMP terminology for what a MIB looks
like in transit. From our perspective it’s just an object that has a name and a value. As an aside,
it also has a method, asn1_type, that will return its underlying type information.

Table 9-1. Parameters Accepted by SNMP::Manager.open

Key Description Default Value

Host Agent’s hostname "localhost"

Port Agent’s port 161

TrapPort Port used for notification events 162

Community Community used for read operations "public"

WriteCommunity Community used for write operations As for Community

Version SNMP version :SNMPv2c

Timeout Requested timeout in seconds 1

Retries Number of attempts before failure 5

MibDir Directory containing MIBs MIB::DEFAULT_MIB_PATH

MibModules MIBs to use in this session ["SNMPv2-SMI", "SNMPv2-MIB"
"IF-MIB", "IP-MIB"
"TCP-MIB", "UDP-MIB"]

Hamou_821-0 C09.fm Page 157 Thursday, May 31, 2007 4:59 AM

158 CH AP T E R 9 ■ N E T W O R K M O N I T OR I N G

Thus we are able to iterate through the list of objects we get back from the agent. Given
that these objects will be ordered in just the same way as we asked for them, simple clients
probably don’t need the extra functionality of a specific variable binding. Hence, we can also
do this:

values = m.get_value(["sysLocation.0", "sysUpTime.0"])

to retrieve only the values inside each MIB object returned.

Retrieving Tabular Data

The SNMP framework allows for the existence of tables of information to avoid the mess that
would occur if the global namespace contained items like ifDescr1 and ifDescr2 (for the
descriptions of network interfaces 1 and 2). Instead, such items can be addressed as subindices
of parent “columns.”

There are three ways to access such information using the Ruby SNMP library. We will
discuss only the first, as the other two provide the extra power and complexity to do things
that essentially sacrifice clarity for the sake of efficiency. The reason these other two methods
(get_next and get_bulk) are more powerful is that they expose the raw SNMP. You can see
examples of how to use these in the library documentation.

Concentrating on the approach we will discuss, how do we walk through a MIB table in
an easy and systematic manner? Using the walk method, of course—as shown in Listing 9-3,
which is adapted from the documentation.

Listing 9-3. Walking Through the Interface Table of an SNMP Agent and Printing Out the Rows

columns = ["ifIndex", "ifDescr", "ifInOctets", "ifOutOctets"]
SNMP::Manager.open(:Host => "switch1.example.org") do |m|
 m.walk(columns) { |row| puts row.join("\t") }
end

Updating Data

Updating data on the SNMP agent is accomplished with the set method. Unlike get, this method
requires a little more coddling in that it only accepts variable binding objects in specifying what
is to be set. Specifically, values must be specified in terms of their ASN.1 types. For example,
suppose we wanted to update the system name. Listing 9-4 shows how to achieve this.

Listing 9-4. Updating the System Name of an SNMP Agent

require "snmp"
include SNMP

Manager.open(:Host => "switch1.example.org") do |m|
 vb = Varbind.new("sysName.0", OctetString.new("slartibartfast"))
 m.set(vb)
end

Hamou_821-0 C09.fm Page 158 Thursday, May 31, 2007 4:59 AM

C HA P TE R 9 ■ N E TW O R K M O N IT O R IN G 159

Note the use of include in this listing (as discussed in previous chapters) to place all of the
SNMP library’s functionality in the global namespace so that the classes don’t have to be spec-
ified with SNMP:: in front of them.

That really is all there is to know functionally about updating MIB objects. Of course,
special attention has to be paid to object types, and more detail on this can be found in the
documentation.

Handling Traps

Traps are sent when values change or move across certain boundaries (depending on the defi-
nitions in the MIB). The SNMP library includes a simple listener class that can process such
events. Listing 9-5 contains a skeleton example of its use.

Listing 9-5. Skeleton SNMP Trap Handler

trap_thread = SNMP::TrapListener.new do |listener|
 listener.on_trap_default do |trap|
 # do something with trap
 end
end
trap_thread.join

Just as with the management class, SNMP::TrapListener.new can take a hash of configura-
tion parameters. These are :Host, :Port, :Community, and the two equivalent obscure ones:
:ServerTransport and :MaxReceiveBytes.

■Note If you stick to the default trap listening port (162), you will need to run your listening process as root
on any UNIX-like system, as this is within the reserved ports range.

We used on_trap_default to attach our handling block to the listener. Such blocks can also
be attached based on trap protocol version and even object ID using on_trap_v1, on_trap_v2,
and on_trap. This can be handy to separate out concerns as handling complexity increases.
Note that the listener executes one handler only for each trap event and that the handler choice
is made in order of descending priority:

1. The handler registered for the matching object ID

2. The handler for the particular trap version number

3. The default handler

Although this section is about handling traps, it’s worth mentioning that traps can also be
sent from within a management block like this:

m.trap_v2(uptime, oid, vb_list)

Hamou_821-0 C09.fm Page 159 Thursday, May 31, 2007 4:59 AM

160 CH AP T E R 9 ■ N E T W O R K M O N I T OR I N G

which takes the system uptime in hundredths of seconds, an object ID for the trap, and a list of
VarBind objects pertinent to the trap. For instructions on version 1 traps, see the
documentation.

Using Custom MIBs

Since the design of SNMP would be sort of pointless without the ability to use custom MIBs,
we’ll finish off this section with a quick look at how to plug custom MIBs into Ruby SNMP sessions.

The SNMP::MIB class has a method called import_module. This method takes the path to a
MIB file and processes it in order to make its definitions available to the library in future client
sessions. Under the surface, what it’s actually doing is storing a YAML hash that matches symbolic
names to MIB object IDs.

The library does not do its own MIB parsing. Instead it relies on a tool called smidump, which
you probably won’t have on your system by default. Instructions on how to acquire and install
it can be found at www.ibr.cs.tu-bs.de/projects/libsmi. Essentially, this tool can be made to
output a Ruby-compatible hash of MIB object definitions that import_module can then use to
build the simplified YAML file.

In summary, the three-stage process is as follows:

1. Ensure you have smidump on your system as part of the libsmi toolchain and that it is in
your executable path (i.e., you can execute it on the command line just by typing
smidump --version).

2. Write a quick script that executes SNMP::MIB.import_module(path_to_mib_file).

3. Remember to include your custom MIB in the :MibModules array passed to the
SNMP::Manager.open directive.

Secure Shell
We saw in the last chapter how we can use an SSH session to execute remote commands and
get data back from them. Since lots of devices implement SSH, this approach is ideally suited
to network monitoring. We’ll use the RemoteHost class that we started to define in Listing 8-18.
Listing 9-6 describes a bare-bones version of that class.

Listing 9-6. A Generic SSH Session Class Last Seen Lurking in Listing 8-18

require "net/ssh"
class RemoteHost
 def initialize(url, user = root)
 @shell = Net::SSH.start(url, user).shell.sync
 end
end

Choosing the Data Source

In order to give a flavor of what’s possible in collecting operational information over SSH, let’s
consider user logins. Imagine we were running a closed network of Linux and BSD boxes
wherein each user could open as many local consoles as she wanted and could SSH into other

Hamou_821-0 C09.fm Page 160 Thursday, May 31, 2007 4:59 AM

http://www.ibr.cs.tu-bs.de/projects/libsmi

C HA P TE R 9 ■ N E TW O R K M O N IT O R IN G 161

machines (perhaps for direct control of hardware or something). Each login would leave a trace
in the wtmp file on the relevant machine.

If we wanted to get a general idea of how much use the robotic arm control machine was
getting, we could periodically log into it and run last to get a listing of all previous logins (at
least since wtmp was last recycled). However, with an automated SSH tool at our disposal, we
could collect all of this data centrally for analysis.

I’m going to come back to this example in all three sections of this chapter, so this section
deals only with collecting the relevant data. The most important assumption we’ll make in this
respect is that none of the information we collect should be thrown away (that’s what analysis
is for). The output of last looks like this:

user1 console fishbrain.local Tue Jan 16 21:52 - 00:49 (02:56)
user2 ttyp4 10.0.0.10 Sun Jan 21 20:11 still logged in
user3 ttyp2 Fri Jan 19 17:09 - 19:43 (2+02:33)

The structure is very simple. It’s column aligned, which means we need to be a little careful
when parsing it, but that aside it’s really just five fields:

• The user who initiated the session

• The virtual device to which the session is attached

• The source of the session (which will likely be blank in the case of a local terminal)

• The session initiation time and date (note that there’s no year indicated)

• A summary indicating whether the session is still active or (if not) how long it lasted

Collecting the Data

We should be able to parse the output from last easily by adding the method specified in
Listing 9-7 to the RemoteHost class.

Listing 9-7. Method to Grab the Login Information from the “last” Command on a Remote Host

def last_logins
 logins = []
 @shell.send_command("last").stdout.each do |line|
 line.chomp!
 fields = [line[0,8], line[10,8], line[19,15], line[36..-1]]
 next if fields.include?(nil)
 logins << fields.map { |field| field.strip }
 end
 logins
end

The first thing to mention in the context of this listing is that we’ve finally found an excuse
to use both forms of the String.slice invocation: offset,count and start..finish. The latter
form is used to define the last field and employs a negative index, which counts backward from
the end of the line.

Hamou_821-0 C09.fm Page 161 Thursday, May 31, 2007 4:59 AM

mailto:@shell.send_command

162 CH AP T E R 9 ■ N E T W O R K M O N I T OR I N G

Also, we’ve amalgamated the contents of the last two fields into one since it’s just one big
field specifying a range. Each line of the output from last is chomped to remove the trailing
newline character and then split into an array of fields using the fixed column widths previ-
ously mentioned. If there are fewer fields than expected (as will happen with the final couple of
lines output by last), they are ignored. Otherwise, the fieldset is added to the array of logins.
For later convenience, each field has any extra whitespace stripped.

■Note The approach used in Listing 9-7 to derive the various field values takes advantage of the fact that
last’s output is column aligned. We needn’t have relied on this. We could have instead parsed the line with
a regular expression like /^(\w+)\s+(\w+)\s+([a-zA-Z\d\.-]+)(.+?)$/, which reads as “word,
space, word, space, alphanumeric sequence with period or hyphen characters, the rest of the line up to and
not including the newline character.”

RemoteHost.last_logins ends up returning an array of login lines:

[["user1", "console", "fishbrain.local", "Tue Jan 16 21:52 - 00:49 (02:56)"],
 ["user2", "ttyp4", "10.0.0.10", "Sun Jan 21 20:11 still logged in"],
 ["user3", "ttyp2", "", "Fri Jan 19 17:09 - 19:43 (2+02:33)"]]

Storing the Data

We will need to store the data for later analysis. Probably the simplest way to do this would
be to dump it out to a file that can maintain the structure of the arrays (i.e., a YAML file). This
might lead you to wonder why we would bother with all the splitting, chomping, and stripping
we’re doing in last_logins.

Apart from being a recipe for a great party, these three actions prepared the data in a
common way for our analysis. It is conceivable that different platforms might use different
column widths or field separation characters in the output of last. Maybe there are platforms
that use a completely different command for accessing this data. We can abstract these differ-
ences away for the benefit of our analysis by presenting a common output from last_logins.
The abstraction could go elsewhere but this placement feels right for now, as demonstrated in
Listing 9-8.

Listing 9-8. Storing the Array of Logins in a Timestamped File for Later Retrieval

require "fileutils"
require "remote_host"
require "yaml"

FileUtiles.mkdir_p("data")
Dir.chdir("data")
hosts_to_monitor = ["fishbrain.local", "fishwife.local"]
hosts_to_monitor.each do |host|

Hamou_821-0 C09.fm Page 162 Thursday, May 31, 2007 4:59 AM

C HA P TE R 9 ■ N E TW O R K M O N IT O R IN G 163

 logins = RemoteHost.new(host).last_logins
 dump_file = host + Time.now.strftime(".%Y%m%dT%H%M%S.yaml")
 File.open(dump_file, "w") { |f| YAML.dump(logins, f) }
end

In short, the code in Listing 9-8 iterates through a list of hosts and retrieves the array of
logins for each one, dumping it to a timestamped file. Note that it ensures a data directory is
present for holding all of these files via the mkdir_p method. This method is also known as
mkpath, but I use the first form to remind myself that it does the same thing as mkdir -p would
on the command line (i.e., it ensures that a directory exists, creating parent directories where
necessary). This script would be run periodically on the monitoring machine so that the files
would build up over time, hungrily awaiting the moment when they would be analyzed.

Analyzing Data
Attempting to present data without thought as to the analysis often gives rise to presentations
that are nothing more than stylish gloss on a stinky foundation. It is the act of putting lipstick
on a pig.

■Caution Under no circumstances should you put lipstick on a pig—it just isn’t as funny as you might
think. If you want guaranteed mirth, go for mascara on a crab every time.

It goes without saying that subjects like data mining and statistical analysis are sciences in
their own right because the subjects are vast. This isn’t a book on either, so we’re not going to
dwell on any deep theoretical background. Instead, this will be a quick section using the SSH
collection example to highlight some practical challenges I often find myself facing when
analyzing system data.

Marshalling the Data
In the previous section, we collected a load of login data. The way it was gathered would prob-
ably have lead to a great deal of overlap between datasets. This would have depended on how
frequently the wtmp files on each host got recycled, how often the data collection script ran, and
how many new login events occurred between runs.

Before any numerical or other structural analysis can occur, we have to sculpt the data we
need out of the gigantic granite slab we’ve been presented with. The first step will be to rid
ourselves of duplicate data. With the login example, each session is uniquely identified by a
combination of its username, device, source, and starting date. We can use this fact to weed
out duplicates, but there is a small wrinkle.

Recall that the dates do not have any year information. This could conceivably lead to
nonunique start dates. However, even over a number of years, the chances of having two logins
by the same user from the same source bound to the same device commencing at the same
time on the same date where that date has the same day of the week in both cases is likely small
enough that we don’t have to care about it.

Hamou_821-0 C09.fm Page 163 Thursday, May 31, 2007 4:59 AM

164 CH AP T E R 9 ■ N E T W O R K M O N I T OR I N G

The other obvious assumption we’re making has to do with data quality. We’re supposing
that usernames and system dates and times are synchronized across the entire network of
monitored hosts or it would render the data virtually meaningless in aggregate.

The data was collected in files on a per-host basis. The next question to answer is whether
such an approach is appropriate for our analysis data. This question is very difficult to answer
in general because it has an impact on how quickly or flexibly we can analyze the data. That
impact is only really quantifiable once data has been collected and analyzed for some time.

I have a default approach to answering the “How should I store that?” question, which
usually works well as a first approximation in situations where data is being collected continu-
ously. If data is time based (as it almost always is in systems analysis), split it into 24-hour chunks.
These chunks may end up being too large or too small, but you’ll find that out pretty quickly.

Parsing Events
That’s about as much background as I can provide. Let’s write some code, starting from the
inside out with a method that takes a login event as supplied by the collector and turns it into
a hash with more rigorous treatment of the dates. This code is shown in Listing 9-9.

Listing 9-9. Parsing Login Fields into an Event, Particularly to Coerce the Date Information

DAY_INDEX, NOW = {}, Time.now
["Mon", "Tue", "Wed", "Thu", "Fri", "Sat, "Sun"].each_with_index do |day, i|
 DAY_INDEX[day] = i + 1
end

def parse_event(login_fields, host)
 user, device, source, date_info = login_fields
 date_info =~ /^(...) (.){12}/
 wday, date = DAY_INDEX[$1], Time.parse($2)
 while wday != date.wday or date > NOW
 date = Time.local(date.year - 1, date.month, date.day, date.hour, date.min)
 end
 duration = nil
 if date_info =~ /\((\d+\+)?(\d+):(\d+)\)$/
 days, hours, mins = $1, $2, $3
 duration = mins + hours * 60 + days.to_i * 24 * 60
 end
 {:user => user, :device => device, :source => source,
 :date => date, :duration => duration, :host => host}
end

Starting at the top of this listing, we define two constants that will be used a great deal
in the parsing operation. One is simply the current time. The other provides a lookup that
matches short-form days of the week to their corresponding weekday index as defined by the
Time class. The need for this will become obvious in a moment.

The method parse_event accepts an array containing the login fields originally grabbed
from last. It assumes they are still in the same order in which they were collected and assigns
them proper variable names. It also takes the name of the host on which the event took place.

Hamou_821-0 C09.fm Page 164 Thursday, May 31, 2007 4:59 AM

C HA P TE R 9 ■ N E TW O R K M O N IT O R IN G 165

The next chunk of code is all about parsing the start date out of the date_info field. Remember
that this will look something like Fri Jan 19 17:09 - 19:43 (2+02:33). The initial part is a
short-form weekday followed by a space and then a 12-character date and time. We use the
regular expression to extract these into $1 and $2.

The problem that is (mostly) solved by this bit of code is that of ensuring the date is correct
given that we have no year information. First a date is parsed from $2. Because of how Time.parse
works, this will always be a date in the current year. It is impossible for the same dates in two
consecutive years to fall on the same day. Thus we know that if the numerical weekday of the
parsed date does not equal that of the day from the login date field, the date is at least a year
ahead of where it should be.

If that check somehow fails to detect the wrong year, we can always fall back on checking
that date is not in the future (the second check). The first check also comes in handy for giving
us a sporting chance of getting the right year if that turns out to have been more than a year
ago. Hence the while loop keeps moving date backward a year until both constraints are met.

With good confidence in our start date, we come to the problem of determining the dura-
tion of the session. The last command helpfully puts the duration of a completed session in
brackets at the end of the line. If the session isn’t yet finished, there will be no such entity. The
format of the duration is an optional number of days followed by a + and then an hh:mm string.

This format choice might help to explain that frankly vomit-worthy regular expression
we’ve had to use to parse the duration out. Aside from this expression, however, the logic is
clear enough. If there isn’t a bracketed section, the duration is nil. If there is, the duration is
recorded as a total number of minutes. Choosing to store it in minutes nicely sidesteps the
problem of using either a convoluted duration structure or some imprecise floating-point
number of days.

Finally, we are able to return the parsed event, which is a hash containing all the pertinent
data. This concludes the code necessary to parse an event for analysis.

Filtering and Assigning Events
Our next task is to decide what to do with each event. If it’s a duplicate, then we don’t need to
do anything. If it’s an update, then we need to overwrite the duration time in the original event.
If it’s a new event, then we just need to put it in the right storage bin (based on 24-hour periods).

Ideally, it should be possible to drive all three of these scenarios from the same code. As
stated, we don’t need to do anything if an event is a duplicate. That doesn’t mean we can’t. If
we were to overwrite an event with a duplicate, we’d end up with the same data, so the updated
information would still be valid. If we overwrote it with an update, then we would have correctly
updated an old durationless event. Both scenarios are fine as long as events are always
processed in chronological order.

As for the third scenario, if we store events in bins and update them in those bins, then the
solution for the first two problems will also work for the third. The collection of bins should be
a hash that is keyed based on a date of the form YYYYMMDD. Within each bin, the events could be
stored as an array, but we know we’re going to be doing a lot of searching for duplicate events.
Thus a better approach would be to use a hash as storage and then key based on the set of
event-unique data (user, device, source, date, and host). Listing 9-10 contains a method that
meets these requirements.

Hamou_821-0 C09.fm Page 165 Thursday, May 31, 2007 4:59 AM

166 CH AP T E R 9 ■ N E T W O R K M O N I T OR I N G

Listing 9-10. Assigning Events to a Unique 24-Hour Event Bin

def assign_event(event, bin_hash)
 date_key = event[:date].strftime("%Y%m%d")
 bin = (bin_hash[date_key] ||= {})
 event_key = event.values_at(:user, :device, :source, :date, :host).join(";")
 bin[event_key] = event
end

A date key is derived from the event’s date and the bin assignment is determined accord-
ingly. Note the use of the ||= construction to initialize a new bin as a hash if it doesn’t already
exist. The event is then placed in the bin under a key built from the various values it has.

Putting It All Together
New events need to be laid on top of those from previous runs. This can be achieved by first
running through the processes already described to build a global update hash. From this
hash, it will be clear which days have been updated. If files already exist on disk for those days,
they can be loaded into memory and have the updates merged before being written back to
disk. The code to accomplish this forms Listing 9-11.

Listing 9-11. The Final Event Processing Script

require "yaml"

data_dir = (ARGV[0] || "data")
fail "couldn't find directory #{data_dir}" unless File.directory?(data_dir)

Dir.chdir(data_dir)
Dir.mkdir("processed") unless File.directory?("processed")

code from Listings 9-9 and 9-10 would go here
data_files, periods = DIR["*.yaml"], {}
data_files.each do |file|
 host = File.basename(file).split(".").first
 logins = YAML.load_file(file)
 logins.each do |login|
 event = parse_event(login, host)
 assign_event(event, periods)
 end
end
periods.each do |date_string, events|
 event_file = File.join("processed", date_string + ".yaml")
 if File.exist?(event_file)
 old_events = YAML.load_file(event_file)
 events = old_events.merge(events)
 end

Hamou_821-0 C09.fm Page 166 Thursday, May 31, 2007 4:59 AM

C HA P TE R 9 ■ N E TW O R K M O N IT O R IN G 167

 File.open(event_file, "w") { |f| YAML.dump(events, f) }
end
File.delete(data_files)

We start with four lines that check for the existence of the data directory from which we
will be parsing the YAML files. This is either ./data or a directory passed on the command line.
Either way, we change directories so that we are sitting within the data folder for the rest of the
script. In addition, we ensure the existence of a processed directory within the data directory so
we have a place to keep our output.

The files of interest are defined to be any in the data directory matching the globbing
pattern *.yaml. For each of these files, the pertinent hostname is determined from the file-
name, and the events described within are processed by the methods we previously wrote in
Listings 9-9 and 9-10.

Coming out of the data_files.each block, we are left with a hash of 24-hour event bins full
of new events specified by the processed YAML files. Taking each of these periods, we write the
new events to disk, merging them with older events if they exist. Note the use of File.join to
create a platform-independent path string.

To conclude the script, we throw away the now processed YAML files that we should no
longer need. This raises an interesting point regarding concurrency. There is no systematic
protection here that would prevent the processing and subsequent deletion of a half-written
YAML data file. I chose not to include such measures to keep the code to a minimum.

In order to introduce better resilience in this respect, we could borrow the locked file class
from Chapter 5 and use it to serialize the writing section in the original collector and reading
section above.

On the subject of systematic design, it is already apparent that this script is becoming a
little unwieldy due to its monolithic nature. We could have written it with Event and StorageBin
classes to create greater abstraction, but it was just small and simple enough not to bother.

Aggregate Analysis
For a section on data analysis, we’ve talked surprisingly little about actual analysis of the data.
Everything so far has been about coercing the data so that it’s ready for further study. Although
it’s not certain, the chances are that most of the numerical or other results you might wish to
glean from the data are aggregates. They will somehow summarize trends, averages, sums,
frequencies, and so forth.

This is important not just for the upcoming presentation of data, but also for controlling
the underlying life cycle of the data. If you’re storing large volumes of data in the processed
folder and you really need to clear some out, the fact that you can just delete the files oldest-
first is one of the reasons I often choose periodic storage of this kind.

You don’t have to completely destroy the data, however. If you are creating summaries as
part of your analysis, they will by definition tend to take up less space than the data they summa-
rize. Keeping the summaries around after the original data is deleted means that information
doesn’t just disappear but in fact degrades. It’s worth remembering that this approach can
keep the most pertinent bits of data around for a very long time.

As part of our login session example, we need to choose some aggregate operation that we
can present later. A simple one would be a per-day analysis of the total amount of session time
spent by each user across the entire network.

Hamou_821-0 C09.fm Page 167 Thursday, May 31, 2007 4:59 AM

168 CH AP T E R 9 ■ N E T W O R K M O N I T OR I N G

Such a sum is complicated by the fact that one user can have many simultaneous logins on
many hosts. Integrating any session events that were coincident would be an obvious way to
compensate for this, but we’ll consider that a version 2 feature and proceed with the simpler
example in Listing 9-12.

Listing 9-12. Summarizing the Total Session Duration Amounts by User and Then by Date

require "yaml"

source_dir = ARGV[0]
fail "couldn't find directory #{source_dir}" unless File.directory?(source_dir)
users = {}
Dir[File.join(source_dir, "*")].each do |file|
 date_string = File.basename(file, ".yaml")
 events = YAML.load_file(file)
 events.each do |key, event|
 duration = event[:duration].to_i
 next unless duration > 0
 user = (users[event[:user]] ||= Hash.new(0))
 user[date_string] += duration
 end
end

This script requires that the user specify the directory containing the processed YAML
files. It builds a hash by username where each value is in turn a hash by date of total session
duration. The logic should require little explanation, although I would just draw your attention
to the use of Hash.new(0), which provides a hash whose return value is 0 rather than nil when
requesting an entry that doesn’t exist. This is a very handy convention that keeps subsequent
code clearer.

The script does not write anything back to disk, as we’ve seen that code a couple of times
already. This listing instead represents the first half of a script we’ll complete in the next section,
finally giving a script that performs analysis and then spits out some pretty charts.

Before moving on to the presentation section, I’d like to aggregate this data one other way.
It might be interesting to create a graph (in the mathematical sense) in which users are related
to the hosts they use by links that are weighted based on session duration totals. The script to
create such a summary would be nearly identical to the previous one except that the subhashes
under users would use hostnames for keys instead of dates. Basically, we wouldn’t need
the date_string line, and we would change the last line of the events.each block to read
user[event[:host]] += duration.

Presenting Data
I was recently in London and had to buy a ticket at one of the major train stations. As usual, the
queues for a teller were atrocious, so I lined up to use one of the automated ticket machines. As
ATMs go, the ones at this station are pretty mundane, but (unbeknownst to me) one of them
was about to do something decidedly odd.

Hamou_821-0 C09.fm Page 168 Thursday, May 31, 2007 4:59 AM

C HA P TE R 9 ■ N E TW O R K M O N IT O R IN G 169

I selected my destination and inserted my credit card. The onscreen display asked me to
punch in my PIN on the keypad provided. It was at this point that an uncomfortable reality
presented itself. There was no keypad and never had been. Thus I was forced to recognize that
I had just met my first ATM suffering from phantom limb syndrome.

My point should be evident: presentation may be key, but the key to good presentation lies
in the reality of the data. It didn’t matter that the ATM was very helpful in destination and ticket
selection or that each screen was a loving blend of postmodern shapes and gradients. It was
asking me to pretend that it had a keypad—insisting that I play along if I hoped to complete my
transaction.

The previous two sections have been leading to a point where we have good data that is
analyzed cogently and ready for presentation. This section covers two distinct ways to present
network data that I have consistently found useful as an administrator: charts and graphs.

Charts
We’ve all done it. Someone asks for a breakdown of bandwidth usage over time or average file
system use per user and we follow a simple three-step plan:

1. Gather the data.

2. Export it as a tab-separated values (TSV) file (or something similar).

3. Import the data into our favorite spreadsheet application and create a chart from it.

This approach is entirely germane for creating the odd chart here and there. However, it
isn’t really suitable for frequent production of charts. In particular, the instant understanding
of trends that comes from certain kinds of charts can be very useful in making near-real-time
decisions.

If the outbound bandwidth for SMTP for a given afternoon spikes in a way you’ve never
seen before, knowing about it while it’s still going on would be great. Thus we need to be able
to generate charts from data using Ruby directly, so that the process from data to chart is
entirely automated.

There is a question of what output format we should use. For example, we could use a script
to generate a specification file for gnuplot (www.gnuplot.info). As charting tools go, gnuplot is
immensely powerful and would be pertinent if this were a chapter on collecting data from a
particle physics experiment.

For the world of semicasual data we’re exploring, there is a simple criterion for choosing
the chart format. We should be able to display the chart (and any associated materials) in an
unaltered web browser on any reasonably modern system. For a busy system administrator
trying to get 15 things done in a single day, it is really useful to be able to center the entire world
on an e-mail client and a web browser.

In that spirit, I tend to use one of two libraries: scruffy for bar, line, and area charts, and
the CSS chart helper for Rails.

Scruffy Charts

I have to admit that I love the Scruffy Charts library. Once you get going, it is profoundly simple
to create charts that boast both prettiness and clarity. The only slightly convoluted process

Hamou_821-0 C09.fm Page 169 Thursday, May 31, 2007 4:59 AM

http://www.gnuplot.info

170 CH AP T E R 9 ■ N E T W O R K M O N I T OR I N G

associated with using it can be the installation (depending on your platform). Internally scruffy
uses the SVG format to represent the chart, which allows it to render the graph identically at
virtually any size. Unfortunately, we haven’t yet reached the point where all the common
browsers will render an SVG natively. Thus the chart needs to be rendered out to something
more palatable like a PNG.

For rendering a graph, scruffy relies upon the RMagick library (itself a Ruby interface to the
ImageMagick library). The challenge is to get this library installed and working before installing
scruffy. The easiest way to accomplish this is with the package installation process for open
source applications on your platform. In other words, install the RPM, DEB, or equivalent
package for ImageMagick (www.imagemagick.org). For example, as a Mac OS X user I employ
MacPorts (www.macports.org) so that I can simply invoke the following:

$ sudo port install ImageMagick

enter my administrative password, and have the entire installation with all dependencies
handled automatically. With ImageMagick installed, the remainder of the process is mercifully
simple, as both RMagick and scruffy are available as gems (as usual, more detail can be found
in Chapter 10).

■Caution As of version 1.15.0, RMagick has a number of issues on Mac OS X 10.4 when using the gem
installation process (or the ports one via the rb-rmagick package, for that matter). Download the sources
directly from http://rubyforge.org/projects/rmagick. Build and installation instructions can be
found within the source bundle. Alternatively, you might just decide you’d rather stick with the SVGs scruffy
can produce natively and rid yourself of these dependencies entirely.

Now that we are able to use the library, the first thing to do is initialize a chart. Note that
the library refers to charts as graphs, and we will stick with this convention in any source code.
We start with the code in Listing 9-13 to create a chart.

Listing 9-13. Creating a Blank Chart (with a Title)

require "scruffy"
include Scruffy

graph = Graph.new(:title => "Average Flatulence per Capita")

As previously, we use a trusty include statement to avoid the requirement of a Scruffy::
in front of various things. Creating an empty chart is as easy as initializing a new object. The new
method takes various parameters to tune the chart’s appearance, as listed in Table 9-2.

All of these values can also be set individually through assignment of the form graph.title =
"Average Rainfall". Take a look at the library documentation for more information on the
available themes and formatters as well as details on how to build your own.

Hamou_821-0 C09.fm Page 170 Thursday, May 31, 2007 4:59 AM

http://www.imagemagick.org
http://www.macports.org
http://rubyforge.org/projects/rmagick

C HA P TE R 9 ■ N E TW O R K M O N IT O R IN G 171

The next job is to add data layers to this chart (one layer per data sequence). Each layer
carries not only data but also a display type (such as :bar). This means that it is possible to mix
and match different display types on a single chart, which is rather spiffy and is demonstrated
in Listing 9-14.

Listing 9-14. Adding Data to the Chart (with Mixed Display Types)

graph.add(:line, "Cows", [150, 200, 250, 240])
graph.add(:area, "Sheep", [100, 110, 120, 140])
graph.add(:bar, "Man", [50, 65, 78, 66])

The add method is used to attach a new layer of data to the chart and accepts four argu-
ments. These are a symbol indicating the type (optional if a default_type was set), a string
specifying the title of the dataset, an array containing the data values, and finally an options
hash that is passed to the underlying constructor for the particular layer type.

The quickly reached final step is to render out the chart using Graph.render. This method
processes the SVG structure in memory and either returns it as a string or passes it out to
RMagick to render to some other format, returning a string of the resulting bytes. For conve-
nience, it can also be made to write the string in either case out to a file directly. Table 9-3 is a
list of the parameters Graph.render can be passed.

So an example for rendering our data might be as follows:

graph.render(:as => "PNG", :size => [500, 400], :to => "/tmp/flatulence.png")

Table 9-2. Parameters Accepted by Scruffy::Graph.new

Key Description Default Value

title Chart’s title None

theme Theme object used
in rendering

Scruffy::Themes::Keynote.new

layers Array of layers for
the chart to use

None

default_type Symbol indicating the
default type to use
for layers (i.e., :line,
:area, :bar)

None

value_formatter Formatting object
used in rendering

Scruffy::Formatters::Number.new

point_markers Array of x-axis
marker values

None

rasterizer Rasterizing object
used in rendering

Scruffy::Rasterizers::RMagickRasterizer.new

Hamou_821-0 C09.fm Page 171 Thursday, May 31, 2007 4:59 AM

172 CH AP T E R 9 ■ N E T W O R K M O N I T OR I N G

As described by the documentation, the library has plenty of options for playing with
themes and formats, or even adding chart types. We have all we need, however, to create a
chart from our login data, as shown in Listing 9-15.

Listing 9-15. Charting the Login Session Duration Data in a Simple Way

require "scruffy"
include Scruffy

code from Listing 9-12 would go here
exit if users.empty?

all_dates = users.map { |user, dates| dates.keys }.flatten.uniq.sort
graph = Graph.new(:point_markers => all_dates)
graph.title = "Total Login Minutes per User"
users.each do |user, dates|
 all_values = all_dates.map { |date| dates[date].to_i }
 graph.add(:line, user, all_values)
end
graph.render(:as => "PNG", :width => 1024, :to => "/tmp/user_accounting.png")

Here we first determine the unique ordered set of dates for labeling the x-axis and aligning
the data. From the way we constructed the users hash in Listing 9-12, date-duration pairs will
not appear for a user if that date had no logged session time. Hence the all_dates line grabs an
array of dates from every user, flattens these arrays into one big array, reduces it to a unique set,
and sorts the dates in ascending order.

We next create our chart object, set up the x-axis with these date values, and add an appro-
priate title. The values from the chart are in sets on a per-user basis. Thus for each user, we map
every point on the x-axis to a duration logged for that user. Among other things, this means that
the chart will display zero usage for any users on days when their usage data was not collected.

With the chart built, we finally render it out to a PNG. If this was inside a web application,
we might render the chart and insert an image link in a page. Alternatively, we could leave off

Table 9-3. Parameters Accepted by Scruffy::Graph.render

Key Description Default Value

size An array indicating [width, height] [600, 400]

width Width in pixels (height = 3/4 width) 600

theme Override default theme None

min_value Override calculated minimum y-value None

max_value Override calculated maximum y-value None

as Format to render to (PNG, JPG, etc.) nil (return an SVG)

to Save data to file instead of returning it None

Hamou_821-0 C09.fm Page 172 Thursday, May 31, 2007 4:59 AM

C HA P TE R 9 ■ N E TW O R K M O N IT O R IN G 173

the :to parameter and simply return the stream directly as previously discussed. For complete-
ness, Figure 9-1 shows a sample chart built this way.

Figure 9-1. A chart as generated by Listing 9-15

CSS Charts in Rails

The CSS chart helper for Rails is based on a simple idea. The CSS box model allows for doing
pretty basic rectangular drawing, including background, border, and alignment facilities. We
can use this to build charts.

Installing the helper couldn’t be easier. In the root directory of your chosen Rails applica-
tion, run the following:

$ script/plugin install http://topfunky.net/svn/plugins/css_graphs

This will retrieve the latest copy of the helper and place it in your vendor/plugins directory.
Included in this installation is a set of images helpful for basic chart display. These images can
be added to your public/images directory with the following command:

$ script/generate css_graphs

Once the helper is available to your application, a chart may be rendered inside one of
your rhtml templates using the following pattern:

<h2>Horizontal Bar Chart (Complex)</h2>
<%= complex_bar_graph(["Mail", 58], ["Web", 38], ["FTP", 29], ["P2P", 25],➥

 ["Other", 24]) %>

which will give you a bar chart like the one shown in Figure 9-2.

Hamou_821-0 C09.fm Page 173 Thursday, May 31, 2007 4:59 AM

http://topfunky.net/svn/plugins/css_graphs

174 CH AP T E R 9 ■ N E T W O R K M O N I T OR I N G

Figure 9-2. A complex horizontal bar chart as created by the CSS chart helper

This method populates the title field of each bar so that a rollover with the mouse will give
you the value associated with each bar. The CSS helper also implements two other methods:

• bar_graph: A simple vertical bar chart with the values on the bars

• horizontal_bar_graph: A simple horizontal bar chart with values as percentages printed
on the bars and bar titles available on rollover

Graphs
As previously indicated, when I refer to graphs in this chapter I do so in the mathematical sense.
Put simply, a graph is a network of nodes interconnected by edges, which can be assigned
weights or even directions. Think road maps.

Given how many things under the influence of the noble system administrator form networks
(not least of which is the network), having a tool that allows for the quick creation of graphs can
be really handy.

The Graphviz format is a well-established language for expressing networks. What we’d
like to do is build a Graphviz document out of our data and then get something to render it for
us. Starting with the second bit first, the Graphviz tools are available from www.graphviz.org
and include a command line tool called dot. This tool can take a Graphviz document and
render it out as a GIF, PNG, SVG, or PostScript file. Ensure you have the dot tool available
before proceeding.

As to generating the document, a Ruby library is available for just such a purpose:
ruby-graphviz. Just as scruffy used RMagick, so does ruby-graphviz sit on top of dot to do its
rendering for it. The library’s project page is located at http://raa.ruby-lang.org/project/
ruby-graphviz, which offers a downloadable gzipped tar bundle. Once you expand it, you’ll
find the library and some examples.

There is also a setup file that will check for the presence of dot and ready a make-style
installation for the library itself. Thus the installation process ended up looking like this for me:

$ tar -xzf ruby-graphviz_0.6.0.tar.gz
$ cd ruby-graphviz
$ ruby extconf.rb

checking for dot... yes
creating Makefile

Hamou_821-0 C09.fm Page 174 Thursday, May 31, 2007 4:59 AM

http://www.graphviz.org
http://raa.ruby-lang.org/project

C HA P TE R 9 ■ N E TW O R K M O N IT O R IN G 175

$ sudo make install

/usr/bin/install -c -m 644 ./lib/graphviz.rb /usr/lib/ruby/site_ruby/1.8
/usr/bin/install -c -m 644 ./lib/graphviz/attrs.rb➥

 /usr/lib/ruby/site_ruby/1.8/graphviz
/usr/bin/install -c -m 644 ./lib/graphviz/constants.rb➥

 /usr/lib/ruby/site_ruby/1.8/graphviz
/usr/bin/install -c -m 644 ./lib/graphviz/edge.rb➥

 /usr/lib/ruby/site_ruby/1.8/graphviz
/usr/bin/install -c -m 644 ./lib/graphviz/node.rb➥

 /usr/lib/ruby/site_ruby/1.8/graphviz
/usr/bin/install -c -m 644 ./lib/graphviz/xml.rb➥

 /usr/lib/ruby/site_ruby/1.8/graphviz

Remember that it is almost certain that the last command will need to be issued by a user
with root privileges, hence my use of sudo on Mac OS X. Once you’ve installed the Graphviz
tools, you’re ready to create a graph.

Unsurprisingly, there is a Graphviz object that holds the graph information:

require "graphviz"
graph = Graphviz.new("G")

and a way to add nodes and edges:

gas = graph.add_node("Atmospheric_CO2")
photo = graph.add_node("Photosynthesis", "shape" => "box")
graph.add_node("Combustion", "style" => "filled")

graph.add_edge(gas, photo, "weight" => 22)
graph.add_edge(photo, "Combustion")

and finally a way to produce the graph:

graph.output("output" => "png")

Note that the output method by default will dump the Graphviz file to standard out. This
can prove useful if you intend to use a Graphviz viewer with the ability to change formatting
and layout.

There isn’t a lot more to say about this library. It does offer the ability to add subgraphs to
graphs if the need should arise (via the astonishingly named add_graph method). On that subject,
naming the graph G may seem odd. It is purely a referential name and has nothing to do with a
title or other such human-facing concept. It exists so that we can add the graph to another by
reference.

This ability aside, we have all we need to complete the examples for this chapter with
Listing 9-16.

Hamou_821-0 C09.fm Page 175 Thursday, May 31, 2007 4:59 AM

176 CH AP T E R 9 ■ N E T W O R K M O N I T OR I N G

Listing 9-16. Creating a Graph from the User Login Data

require "graphviz"
code from Listing 9-12 modified as discussed (for indexing by host) would go here
exit if users.empty?
graph = Graphviz.new("G")
users.each do |user, hosts|
 graph.add_node(user)
 hosts.each do |host, usage|
 graph.add_node(host)
 graph.add_edge(user, host, "weight" => usage)
 end
end
graph.output("output" => "png", "file" => "/tmp/user_relationships.png")

This is very similar to the code used to create the chart. In this case, we have to add nodes
for every entity we might connect together (all users and hosts). We are able to cheat a little in
adding a host multiple times (should one host be used by more than one user), as the library’s
internal structure stops this from leading to multiple nodes.

All That Glitters
Over the course of this chapter, we examined possibilities for collecting data over networks
using both the traditional SNMP approach and a slightly more novel SSH technique. We looked
at some avenues of analysis for this data, paying particular attention to data structure and
retention. In the final section, we created some charts and a relationship graph in order to
present the data we collected.

In the next chapter, you will discover the glittering world of gems. By understanding how
to use and make them, a whole layer of modularity and abstraction will be made possible.

Hamou_821-0 C09.fm Page 176 Thursday, May 31, 2007 4:59 AM

177

■ ■ ■

C H A P T E R 1 0

Extending Ruby: A Fistful
of Gems

Perl has CPAN (www.cpan.org), JavaScript has JSAN (www.openjsan.org), and Python has a
darkened crypt (http://py.vaults.ca). Ruby also has a unified packaging system for supple-
menting the available cloud of libraries on a system: RubyGems. Each individual bundle of
functionality under this scheme is called a gem and contains, as you will see, all of the code and
metainformation pertinent to a given library.

In exploring the world of gems, this chapter is split into two sections. We begin with a
detailed run-through of how to search for, acquire, and install gems. This discussion includes
guidance on using these gems in scripts and how to access documentation for the various
classes and methods they define.

From here, the next logical step is to uncover the process by which we might create our
own gem. In particular, we’ll unpick the actual gem structure and get an understanding of how
the various bits interact. We’ll also look at the publishing process, both internal and global.

Managing and Using Gems
The obvious place to begin is at the RubyGems homepage (www.rubygems.org). This site is a
gold mine of useful information, and I urge you to have a wander through it to both reinforce
and expand upon the contents of this chapter. Of particular utility is the FAQ section, from
which we may condense a couple of definitions:

• A gem is essentially a packaged Ruby application or library that has a name (like rails)
and a variety of metainformation such as a version number (like 1.1.16).

• Based on the metainformation associated with each gem, the suite of tools provided by
the RubyGems project allows for easy querying, installation, dependency tracking, version
selection, testing, documentation, and creation of packages.

The gems system is much like any other reasonable package-management solution, providing
simple tools to bolt libraries onto your scripts and install entire Ruby applications. This should
be enough to whet your appetite, so let’s sprint to the first hurdle: installation.

Hamou_821-0 C10.fm Page 177 Friday, June 1, 2007 4:21 AM

http://www.cpan.org
http://www.openjsan.org
http://py.vaults.ca
http://www.rubygems.org

178 CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S

Installing RubyGems
RubyForge (http://rubyforge.org) is the de facto location for the hosting of gems. Accordingly, it
is only fitting that RubyGems itself can be downloaded from this site. Point your browser at
http://rubyforge.org/projects/rubygems and click the Download link to be taken to the list of
available source packages. RubyGems is provided as either a gzipped tarball (.tgz) or a ZIP
archive (.zip), and you should obviously choose whichever format is easiest for you.

■Note As befits the subject, RubyGems itself is available as a gem. We’ll get into more detail later about
how RubyGems is able to update itself on your system. For now, you can safely ignore the .gem download.

Once you’ve extracted the contents of the archive, you’ll be left with a directory named
something like rubygems-0.9.1. Once you’ve moved into this directory, it’s time to make a
choice. Do you want this installation to affect the entire system or be installed in your own
user-specific sandbox?

Systemwide Installation

A canonical installation couldn’t be simpler:

$ ruby setup.rb

Bear in mind that this command will attempt to install the RubyGems toolchain in a system-
restricted location, meaning that you will likely need to run it with escalated privileges (e.g.,
using sudo). From now on, I won’t make this point explicitly, so remember the issue of permis-
sions when attempting to perform gem operations.

You should also be mindful of the fact that RubyGems depends on the Ruby YAML and
GZip libraries. These ship as part of the standard distribution, but on certain platforms (princi-
pally Debian and derivatives) they are extras that will need to be added before attempting to
install RubyGems.

Localized Installation

Overriding the default location requires breaking the single setup step into three distinct steps
to allow for configuration. Assuming that you wish to install RubyGems in /home/gerald, you
will need to pass this path as the installation’s prefix. In addition, you’ll probably want to alter
where the gem repository itself will live. This has to be done with an environment variable
called GEM_HOME, for which a sensible setting might be /home/gerald/gems. Putting these steps
together gives the following:

$ export GEM_HOME=/home/gerald
$ ruby setup.rb config --prefix=/home/gerald
$ ruby setup.rb setup
$ ruby setup.rb install

Hamou_821-0 C10.fm Page 178 Friday, June 1, 2007 4:21 AM

http://rubyforge.org
http://rubyforge.org/projects/rubygems

CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S 179

Naturally, the export command is not necessarily how you might set an environment vari-
able on your platform of choice. Similarly, the convention of using a /home/user directory is
pretty Linux-specific. Adapt the procedure to your system as appropriate.

The installation will end up placing the appropriate scripts in <prefix>/bin, so remember
to add this bin directory to your path. Also ensure that, however you set the environment vari-
able, it remains in effect in future sessions (otherwise, RubyGems won’t have a clue where to
find the repository).

The gem Command
The tool that installs, tests, maintains, removes, and provides information on gems is called
gem. Before we go any further, let’s just try running it and see what happens in Listing 10-1.

Listing 10-1. The Output of the gem Command Invoked Without Arguments

$ gem

RubyGems is a sophisticated package manager for Ruby. This is a
basic help message containing pointers to more information.

 Usage:
 gem -h/--help
 gem -v/--version
 gem command [arguments...] [options...]

 Examples:
 gem install rake
 gem list --local
 gem build package.gemspec
 gem help install

 Further help:
 gem help commands list all 'gem' commands
 gem help examples show some examples of usage
 gem help <COMMAND> show help on COMMAND
 (e.g. 'gem help install')
 Further information:
 http://rubygems.rubyforge.org

The output in Listing 10-1 should give you a basic flavor for how gem operates. It takes a
command verb followed by appropriate arguments (nouns) and optional parameters that
tweak the action undertaken. The help built in to gem is really very good, so remember that it
exists and can be invoked as indicated in Listing 10-1.

Hamou_821-0 C10.fm Page 179 Friday, June 1, 2007 4:21 AM

http://rubygems.rubyforge.org

180 CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S

Updating RubyGems

The first order of business, given that the previous section dealt with installing RubyGems, is
to get a handle on maintaining the installation (i.e., keeping it up to date). You’ll recall that I
mentioned the availability of RubyGems as a gem—this is where that fact comes into play. The
update verb accepts a special parameter that will update the installation rather than a particular
gem under its care:

$ gem update --system

This command will either grab and install the latest version, providing a lot of detail in the
process, or simply confirm that your installation is cutting edge. We’ll look at update in more
detail later on.

Searching for Gems

With a nice fresh RubyGems installation, you’re ready to go shopping for gems. The key verb
here is search. It allows you to search for gems in the remote (or local) repositories that match
a string fragment. By default it will search only the local repository, so you’ll often find yourself
using the -r flag (or --remote if you prefer), as shown in Listing 10-2.

Listing 10-2. A Simple Search of the Remote Repository for Any Gem Containing “fish”

$ gem search -r fish

*** REMOTE GEMS ***

starfish (1.2.0, 1.1.3, 1.1.2, 1.1.1, 1.1.0, 1.0.0)
 Starfish is a utility to make distributed programming ridiculously
 easy.

Notice that there are multiple versions of the starfish gem listed here. One of the nice
things about the RubyGems system is that it makes it easy to maintain parallel installation of
different versions of the same gem. This can be rather handy if an API changes and you’d like
to update your scripts gradually.

If you’d like to search using a regular expression instead of a simple substring match, then
the query verb is for you. For example, gem query –n 'e[ds]$' will search for any gem whose
name ends in either ed or es.

Installing a Gem

Once you’ve found a gem that you like the look of, it’s time to install it. The only argument
needed here is the full name of the gem (starfish). There are several options that might prove
useful, however. You can set whether the local (-l/--local), remote (-r/--remote), or both
(-b/--both) repositories are to be searched for the gem (the default is both). You can run any
built-in tests (-t/--test) to check the gem’s validity (this is not done by default).

Hamou_821-0 C10.fm Page 180 Friday, June 1, 2007 4:21 AM

CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S 181

There is also a flag to install any as yet unfulfilled dependencies automatically (-y/
--include-dependencies) rather than the normal behavior of prompting the user for permis-
sion to do so. The version (-v/--version) required can also be specified if the latest one is not
what you are after. The installation of a gem looks something like Listing 10-3.

Listing 10-3. The Installation of a Specific Version of a Gem

$ gem install starfish –v 1.1.3

Successfully installed starfish-1.1.3
Installing ri documentation for starfish-1.1.3...
Installing RDoc documentation for starfish-1.1.3...

Note how the gem’s installer has automatically generated documentation that can be
accessed through the trusty ri command and RDoc-based documentation that can be accessed
via a web browser. Precisely how to access this second form of documentation is discussed in
the “Accessing Documentation via gem_server” section.

Listing the Installed Gems

It is easy to lose track of what’s installed, so we are fortunate to have the list verb. It works
exactly like search (particularly given that they both default to looking in the local repository
only). The only real difference is that, if a fragment is provided as an argument, list will match
it against the start of the gem names, whereas search will match it as a substring, as demon-
strated in Listing 10-4.

Listing 10-4. A Listing of Locally Installed Gems

$ gem list

*** LOCAL GEMS ***

fastercsv (1.0.0)
 FasterCSV is CSV, but faster, smaller, and cleaner.

log4r (1.0.5)
 Log4r is a comprehensive and flexible logging library for Ruby.

Updating Gems

You have already encountered the update verb. Without the --system option, it will download
and install the latest versions of any outdated gem. Alternatively, you can specify the particular
gem you’d like to have updated if you don’t want to perform this operation on all of them. It
takes a number of the same arguments as install, so the command shown in Listing 10-5 will
update starfish, running tests and installing any dependencies.

Hamou_821-0 C10.fm Page 181 Friday, June 1, 2007 4:21 AM

182 CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S

Listing 10-5. Updating a Gem with Additional Options

$ gem update starfish -t -y

Updating installed gems...
Attempting remote update of starfish
Successfully installed starfish-1.2.0
Installing ri documentation for starfish-1.2.0...
Installing RDoc documentation for starfish-1.2.0...
There are no unit tests to run for starfish-1.2.0

Remember that I mentioned the idea of being able to have multiple versions of the same
library installed at once. After the update we just performed, a quick list operation reveals the
following:

starfish (1.2.0, 1.1.3)

Assuming that we eventually reach the point where we no longer need the older version,
we will need to uninstall it somehow. This is the purview of the cleanup verb. Once again, this
command can be used on the entire repository or a specific gem, as illustrated by Listing 10-6.

Listing 10-6. Cleaning Up After an Update

$ gem cleanup starfish

Cleaning up installed gems...
Attempting uninstall on starfish-1.1.3
Successfully uninstalled starfish version 1.1.3
Clean Up Complete

Removing a Gem

We’ve searched, installed, updated, and cleaned up. All that remains of the obvious packaging
operations is removal. Since it’s the opposite of install, the removal verb is uninstall. The
most prominent option supported by this command is the specification of the version to be
removed (-v/--version).

During the uninstallation, you will be prompted to agree to the removal of any gems
that depend on the doomed gem. This behavior can be overridden by instructing gem to ignore
dependencies (-i/--ignore-dependencies). Listing 10-7 shows how we would remove the
starfish gem.

Hamou_821-0 C10.fm Page 182 Friday, June 1, 2007 4:21 AM

CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S 183

Listing 10-7. Uninstalling a Gem

$ gem uninstall starfish

Successfully uninstalled starfish version 1.2.0
Remove executables and scripts for 'starfish' in addition to the gem? [Yn] Y
Removing starfish

Notice that we were prompted to remove executables that depended on starfish. You can
instruct gem to perform this step without confirmation (-x/--executables).

Other Verbs of Interest

There are quite a number of other verbs that I don’t personally use nearly as often as those already
discussed. Awareness of them can be useful, but you can always get a reminder (as suggested
by Listing 10-1) using gem help commands. I’d like to give special mention to a few of these
remaining verbs:

• Metainformation about the RubyGems installation is yielded using environment.

• The dependencies for a particular gem can be retrieved using dependency.

• The set of files installed by a gem are revealed using contents.

• A list of gems that need an update can be derived with outdated.

Using Gems in Your Code
Now that we’ve covered all the important bits involved in getting gems onto and off of your
system, it’s time to actually use the things. Because the RubyGems system allows for multiple
concurrent versions of a gem to exist on your system, you can’t (quite) simply use the require
command as you might with the standard libraries.

Requirement of RubyGems

The first way to get gems going in your script is to require "rubygems". This overrides the default
functionality of require, allowing it to perform latest-version inclusion of gems:

require "rubygems"
require "starfish"

script here

Alternatively, it would be (slightly) easier to use a command flag to the Ruby interpreter:

$ ruby –rubygems script_using_starfish.rb

More commonly, we can encode this requirement in the environment variable Ruby reads
at startup:

$ export RUBYOPT=rubygems
$ ruby script_using_starfish.rb

Hamou_821-0 C10.fm Page 183 Friday, June 1, 2007 4:21 AM

184 CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S

Explicit Versioning

If your script relies on a specific version of a gem, you’ll need the gem command. Here’s a basic
example:

gem "starfish", "1.1.3"

Clearly, this isn’t particularly complicated. It merely adds a version parameter to the normal
require semantics. What’s interesting is that this versioning isn’t restricted to simple equality.
The following version strings are also valid:

• "= 1.1.3": Equal to 1.1.3 (implied when there is no qualifying symbol)

• "!= 1.1.3": Not equal to 1.1.3

• "> 1.1.3", ">= 1.1.3": Greater than, greater than or equal to 1.1.3

• "< 1.1.3", "<= 1.1.3": Less than, less than or equal to 1.1.3

• "~> 1.1.3": Approximately greater than 1.1.3

These (in)equality statements should all be fairly self-explanatory except for the last one,
which merits some small discussion. Conventional version numbering holds that at least one
of the numbers in the version (usually the leftmost) will only change in the event of a major
rewrite. It is entirely possible that such a rewrite could break existing code that relies on the
library.

The gem statement is not limited to two arguments. You are at liberty to specify any number of
constraints on the version used (at which point the version that is included in your script is the
youngest one whose version number matches every constraint). So, if we were pessimistic about
major version number changes, we might write this:

gem "starfish", ">= 1.1.0", "< 2"

This is cumbersome, so RubyGems provides the ~> syntax, which allows us to specify the
same constraint in the following manner:

gem "starfish", "~> 1.1"

The internal logic of this is quite straightforward. The minimum acceptable version is taken
at face value to be 1.1(.0) and above. RubyGems then strips the least significant number away
from the given version (leaving 1), adds 1 to it, and designates that the noninclusive upper
bound. This is just a convenience, and you are free to use the more specific syntax—especially
if these aren’t quite the semantics you’re looking for.

■Tip Although it’s probably not apparent, RubyGems uses this simple versioning syntax throughout the
toolset. This includes all those places you can specify a version number within a gem command operation.

Hamou_821-0 C10.fm Page 184 Friday, June 1, 2007 4:21 AM

CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S 185

Accessing Documentation via gem_server
Another useful tool supplied as part of RubyGems is a WEBrick-based server that will vend all
of the compiled documentation for the various gems in an easy-to-swallow manner. Enjoying
the benefits of this utility couldn’t be simpler:

$ gem_server

[2007-02-05 01:06:52] INFO WEBrick 1.3.1
[2007-02-05 01:06:52] INFO ruby 1.8.5 (2006-08-25) [powerpc-darwin8.8.0]
[2007-02-05 01:06:52] INFO WEBrick::HTTPServer#start: pid=1860 port=8808

Once the server is up and running, you just point a web browser at localhost:8808 and
voila—documentation abounds. The port to which the server binds (8808 by default) can be
altered with a -p <portnum>. I personally have gem_server running as a permanent service on
my laptop with a corresponding bookmark in my browser.

Creating Gems
There are at least three good reasons for rolling your own gems. Creating your own gems

• Forces you to think about your code in a more modular fashion

• Promotes reuse over reinvention within corporate code bases

• Enables you to give a little back to the community that makes Ruby so amazingly useful

Of these three, I would particularly emphasize the first point. There is nothing quite like
trying to divide some monolithic bit of code into bits you can name individually based on what
they do. For the purposes of this section, I’m going to imagine that such code division has already
been undertaken and that we’re ready to fashion a gem from one of the parts.

What Is a Gem, Anyway?
It’s time to take the plunge and examine the format of a gem. The actual structure involved is
not particularly intricate. When preparing the library and associated materials for packaging,
there are a few simple rules to follow:

• All Ruby source files belong in a directory called lib.

• All tests go in the tests directory.

• Executable scripts live in the bin directory.

• Source code for extensions (e.g., in C) should be placed in the ext directory.

• The project should always have a README file in its root directory.

• Any supplementary documentation not covered by the README or autogenerated from
your code should reside within the docs directory.

Hamou_821-0 C10.fm Page 185 Friday, June 1, 2007 4:21 AM

186 CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S

Once you have these entities squirreled away in their respective nests, the only thing missing
is a specification file (a gemspec), which defines all of the metainformation pertinent to the
package.

Digging deeper, a .gem is actually a tarball containing two gzipped files:

$ tar -tf starfish-1.2.0.gem

data.tar.gz
metadata.gz

The first (data.tar.gz) is a gzipped tarball of the directory in which the original resources
were assembled:

$ tar -xf starfish-1.2.0.gem
$ tar -tzf data.tar.gz

lib/map_reduce.rb
lib/starfish.rb
lib/map_reduce/active_record.rb
lib/map_reduce/array.rb
lib/map_reduce/file.rb
bin/starfish
LICENSE
Rakefile
README
...and so on...

The second component of a gem is its metadata file (metadata.gz). This is produced from
the specification file already mentioned. The fact that it is written in YAML makes it quite legible:

$ gzcat metadata.gz

--- !ruby/object:Gem::Specification
rubygems_version: 0.8.11
specification_version: 1
name: starfish
version: !ruby/object:Gem::Version
 version: 1.2.0
date: 2006-09-20 00:00:00 -07:00
summary: Starfish is a utility to make distributed programming ridiculously easy.
require_paths:
- lib
email: lucas@rufy.com
homepage: http://rubyforge.org/projects/starfish
...and so on...

Hamou_821-0 C10.fm Page 186 Friday, June 1, 2007 4:21 AM

mailto:lucas@rufy.com
http://rubyforge.org/projects/starfish

CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S 187

I hope you now have a reasonably firm grasp on the nature and structure of a .gem. With
that in mind, the rest of this section will take a brisk walk through creating one that packages a
simple library.

Gathering the Files
For our minimal example, we are going to use the WebSession class that we built back in Chapter 8
(Listing 8-7). It has no executables, source code, or dependencies outside the Ruby standard
library, so it is an ideal first gem.

Apart from the library file itself, the only other item that should really be included is a
README. As with other gem documentation, this file should employ RDoc-style markup so that
it can be compiled and deployed as part of a documentation tree when the gem is installed.

Documentation using the RDoc standard has a whole section devoted to it in the next
chapter. For now, I’m just going to present the README as a fait accompli. Having said that, even
without an introduction to RDoc, you probably won’t find it hard to follow along.

The important things to include in a gem’s README are copyright, contact, and licensing
information (actual usage information and code synopses are usually reserved for documenta-
tion generated from the individual class files). Listing 10-8 contains a minimal README.

Listing 10-8. A Minimal README for the WebSession Gem

== WebSession

WebSession is a class that makes it easier to build web robots.
It provides a convenient interface for...

* establishing an HTTP connection
* retrieving pages via GET
* uploading information via POST
* handling cookies without fuss

== Author

Copyright 2007 Andre Ben Hamou
mailto:imaginary@example.com
http://andre.example.com

== License

This library and all associated materials are release under the terms of version 2
of the GNU Public License (http://www.gnu.org/copyleft/gpl.html).

When gem parses this file, a nice HTML page will be spat out at the other end. This should
be the default page that a user is brought to when first selecting the documentation for the
WebSession project as vended by gem_server.

At this point, we have gathered the files we need together and our file hierarchy will look
like Figure 10-1. With these files in place, it is time to build the gem specification file.

Hamou_821-0 C10.fm Page 187 Friday, June 1, 2007 4:21 AM

mailto:imaginary@example.com
http://andre.example.com
http://www.gnu.org/copyleft/gpl.html

188 CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S

Figure 10-1. Hierarchy of the WebSession gem ready for packaging

Writing the Gemspec
As discussed, the gem specification file carries the metadata for the gem. In a packaged gem,
metadata.gz is a YAML file, but the gemspec that creates it can be YAML or Ruby. In practice,
you’ll likely use the Ruby approach almost exclusively, as it renders the gemspecs more legible
and allows for dynamically derived values in the metadata.

The rubygems library defines a class called Gem::Specification whose initializer takes a block
as an argument. Within this block, individual settings can be defined as shown in Listing 10-9.

Listing 10-9. The Smallest Possible Gemspec for WebSession

require "rubygems"

Gem::Specification.new do |s|
 s.name = "WebSession"
 s.summary = "Web automation convenience library"
 s.version = "1.0.0"
 s.files = ["README", "lib/websession.rb"]
end

The first three values specified in this listing are the only required settings that don’t have
default values. Thus this specification (which we’ll call websession.gemspec) is absolutely
minimal. We’ll get to actually building the gem in a few moments, but first let’s take a look at
the list of things we can specify using a gemspec in Table 10-1 (required settings are marked
with an asterisk).

The only piece of metainformation not yet covered is the list of other gems that our gem
might depend on. The only reason this setting is a little different is that it is specified function-
ally like this:

s.add_dependency("starfish", ">= 1.1.3")

Obviously, the first parameter is the name of the gem upon which our gem depends, and
the second parameter is a version constraint. Note that if the version specification is omitted,
the constraint defaults to "> 0.0.0".

websession README

lib websession.rb

Hamou_821-0 C10.fm Page 188 Friday, June 1, 2007 4:21 AM

CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S 189

Table 10-1. Specification Options Available in a Gemspec

Key Description Example Value Default Value

author Author’s name "Andre Ben Hamou" None

autorequire See note a "websession" None

bindir Directory with
executable files

"exec" "bin"

date* Date/time
of gem creation

File.mtime("foo") Time.now

default_executable See note b "bin/foo" See note b

description Detailed
description
of gem

"Very, very cool." None

email Author’s e-mail
address

"andre@example.com" None

executables See note b ["foo", "fighter"] None

extensions Files for building
C extensions

["ext/ps/extconf.rb"] None (see note d)

extra_rdoc_files Files to add to
RDoc pool

["README", "doc/foo"] None

files All files that make
up the gem

Dir["{bin,lib}/**/*"] None

has_rdoc Code uses RDoc
comments

true See note c

homepage Project/author’s
homepage

"http://example.org/" None

name* Gem’s name "WebSession" None

platform* Target deployment
platform

Gem::Platform::WIN32 Gem::Platform::RUBY

rdoc_options Options to be
passed to rdoc

["--main", "README"] None

require_paths* See note a ["lib", "ext"] ["lib"]

required_ruby_version Required Ruby version ">= 1.8.4" "> 0.0.0"

requirements Informal user
requirements

["get a Mac"] None

rubyforge_project RubyForge project
name

"websession" None

Hamou_821-0 C10.fm Page 189 Friday, June 1, 2007 4:21 AM

mailto:andre@example.com
http://example.org

190 CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S

a The two settings autorequire and require_paths govern what happens when the gem is required. The require_paths
array lists all of the gem-relative directories that should be added to the $LOAD_PATH of the interpreter. Specifying an
autorequirement then forces a particular file to be loaded (so that the user isn’t forced to use a redundant require
statement once the gem has been loaded).

b The concept of specific executables (and indeed a default_executable) exists to support the idea of being able to run
a Ruby application packaged in a gem in one step. The theory is that a user could download poker.gem and then run
the application it contains by simply invoking gem poker.gem. The default_executable is what would be run in this
case, and it gets set to the first item listed in executables as long as executables contains only that item. This inline
application feature of RubyGems is not in widespread use at the moment.

c By default, RDoc documentation is generated when installing a gem. Technically, the default value of has_rdoc is
false. However, this value is advisory only in that the gem command does not enforce it.

d I’m not going to cover adding C extensions to gem packages. There is an entire world of possibilities that exists based
on the flexibility of using C from within Ruby (and vice versa). However, it is my contention that this topic is some-
what outside the normal focus of system administration. This is why I haven’t discussed it anywhere in the book
(outside of the inline snippet in Chapter 3).

Building the Gem
With the hard work done, all that remains is to build the gem itself. To do so, we employ yet
another command verb available to gem: build, as demonstrated in Listing 10-10.

Listing 10-10. Building the WebSession Gem

$ gem build websession.gemspec

Successfully built RubyGem
Name: WebSession
Version: 1.0.0
File: websession-1.0.0.gem

That’s it. We now have a shiny new gem ready for action. Unlike most of the other command
verbs, build doesn’t take any optional arguments, so Listing 10-10 covers everything, really.

Many Ruby projects use the rake tool to coordinate building, testing, and other mainte-
nance tasks. Rake is covered in detail in the next chapter, but it’s worth mentioning here that
there is a Rake task builder for gem packaging. Take a look at the sidebar “Building Gems with
Rake” for a discussion of this.

summary* Brief description
of gem

"Cool" None

test_files All unit test files
for the gem

["test/test_all.rb"] None

version* Release version "1.0.0" None

Table 10-1. Specification Options Available in a Gemspec (Continued)

Key Description Example Value Default Value

Hamou_821-0 C10.fm Page 190 Friday, June 1, 2007 4:21 AM

CH AP T E R 1 0 ■ E X T E N D IN G R U B Y : A F IS T FU L O F G E M S 191

BUILDING GEMS WITH RAKE

As described in the next chapter, rake combines the task-driven approach of the perennial make tool with the
expressive power of Ruby. Just as make runs from a Makefile, so rake uses a Rakefile. When driving
gem production from rake, the Rakefile is normally kept in the project’s root directory (nestled up against
the README). The file’s contents end up looking like this:

require "rake/gempackagetask"

insert code from Listing 10-9
adding 'spec =' to the front of the Gem::Specification block

Rake::GemPackageTask.new(spec) do |pkg|
 pkg.need_tar = true
 pkg.need_zip = true
end

The extra code adds a Rake task to build a gem file in a directory called pkg, where the name of the gem
is project-version.gem. We can build our package from the preceding Rakefile as follows:

$ rake pkg/WebSession-1.0.0.gem

Publishing the Gem
For flexibility’s sake, it is important to remember that a gem is completely self-contained. We
can publish a gem simply by uploading it to a web site or FTP server. In addition, gem_server
actually makes all of the locally installed gems available over HTTP (just go to http://
localhost:8808/gems for a listing).

If we want the gem tool to be able to download and search for our package automatically,
we have two options. The easiest and most public way to publish the gem is at RubyForge
(http://rubyforge.org). Simply create a new account, register a new project, and upload the
relevant files.

It may not be appropriate to upload the gem to a public site. Hence the second option is to
publish it internally. We’ve already seen that gem_server basically does this for us. The only
missing piece is how we get the various gem command verbs to use our server rather than Ruby-
Forge’s. The answer is the --source flag:

$ gem install WebSession --source http://gemserver.example.org:8808

A Mouthful of Jewels
The RubyGems system vastly simplifies the modularization of code. In this chapter, we covered
how useful gems can be in managing an extended Ruby library. We used the gem command to
manipulate a glittering horde of code and the gem method to make that code available to our scripts.
We also saw how to create and publish our own gems, both internally and to the world at large.

Of course, publishing code is the last step in a development cycle. The next chapter deals
with the Ruby approach to two other important coding requisites: documentation and testing.

Hamou_821-0 C10.fm Page 191 Friday, June 1, 2007 4:21 AM

http://localhost:8808/gems
http://localhost:8808/gems
http://rubyforge.org
http://gemserver.example.org:8808

Hamou_821-0 C10.fm Page 192 Friday, June 1, 2007 4:21 AM

193

■ ■ ■

C H A P T E R 1 1

Testing and Documentation

In this brief chapter, we will take a look at the tools available and conventions employed in
the Ruby world for keeping one’s code in order. We’ll kick off with a section devoted to rake.
Understanding the mechanics of this task-oriented, make-like tool can really save you time in
the long run—especially where common housekeeping tasks are concerned. From here we’ll
move on to a section on unit testing, where we’ll look at some step-by-step examples and make
the case that such testing is about as simple as it can be in Ruby. Finally, we’ll cover the docu-
mentation idioms and the magic of rdoc.

The business of testing and documenting code is particularly important for system admin-
istration, not least because administrators spend much of their time creating new software for
use in production systems. The problem with this housekeeping is that there never appears to
be enough time left at the end of a development cycle to perform it all. There’s always some-
thing better to do, it seems.

In that vein, there is a particular reason that this chapter is the last major one in the book.
The topics enumerated in the chapter title are vital for keeping the rising tides of chaos at bay,
but that doesn’t stop me from loathing them. It would be disingenuous to imply otherwise.
Fortunately, as with so much else, the Ruby approach to these issues is about as painless as it gets.

Rake
As mentioned in the previous chapter, rake is a heady blend of the eponymous make tool and
the expressiveness of Ruby. From its roots as a simple policy-driven file creator, it has become
a popular mechanism for driving all of a Ruby project’s housekeeping tasks. Rails, for example,
uses rake extensively to bundle up common jobs like migrating a database schema and running
unit tests. As usual, rake is available as a gem (see Chapter 10 for more details).

The Basic Task
What rake will do in a given directory is defined by the contents of a file named Rakefile sitting
in that directory (the name is special and so should be reproduced exactly). Suppose we had a
project with a couple of tests we wanted to have run by default through rake. A simple Rakefile
that achieves this would look like that shown in Listing 11-1.

Hamou_821-0 C11.fm Page 193 Friday, June 1, 2007 4:23 AM

194 CH AP T E R 1 1 ■ T E ST I N G AN D DO CU M E N T AT IO N

Listing 11-1. A Very Simple Rakefile to Run Some Tests by Default

task :default => :test

task :test do
 ruby "tests/test1.rb"
 ruby "tests/test2.rb"
end

As should be apparent, rake has the concept of a named task (:default, :test). These tasks
contain code to be run upon invocation and can be made dependent upon other tasks. If we
were to run rake (with no arguments) on the directory containing the Rakefile in Listing 11-1,
it would start at the :default task, see the dependence on the :test task, and run that first.
Within the :test task, two Ruby scripts are run. Unsurprisingly, the ruby command within a
Rakefile runs a Ruby interpreter with the given arguments.

Way back in Chapter 4, I referred to the Rakefile syntax as a good example of a domain-
specific language, or DSL. The code in Listing 11-1 is pure Ruby, but it looks like a dedicated
task language (albeit one that resembles Ruby quite a bit). Again, this entire DSL approach
derives from Ruby’s syntactic flexibility (in allowing for unbracketed method arguments, auto-
constructed argument hashes, and other such niceties).

File Tasks
As stated, rake began life as a make-alike. This implies the existence of syntax for defining which
project files need to be generated and in what order. This is accomplished via the file method
as used in Listing 11-2.

Listing 11-2. A Rakefile to Rebuild an Index If Any Source Files Have Changed

file "index.yaml" => ["hosts.txt", "users.txt", "groups.txt"] do
 ruby "build_index.rb"
end

Listing 11-2 shows a basic rake file task. As with the named tasks from Listing 11-1, it has
dependencies and code to be run. In this case, the file to be built is named and the files upon
which it depends are specified. Notice that the dependency can be given as a single string/symbol
(as in Listing 11-1) or as an array (as in Listing 11-2).

The file task performs a basic timestamp comparison to decide whether index.yaml needs
to be updated. If so, the necessary steps are performed within the code block to achieve this.
This idea of tasks firing off depending on the outdatedness of files should be most familiar to
users of make.

If you were to invoke rake in the presence of the Rakefile from Listing 11-2, the following
error would occur:

$ rake
(in /tmp/project3)
rake aborted!
Don't know how to build task 'default'

Hamou_821-0 C11.fm Page 194 Friday, June 1, 2007 4:23 AM

CH A PT E R 1 1 ■ T E S T I N G A N D D OC U M E N T A T I ON 195

The reason for the error that you see here is that, absent any other specification, the :default
task is what is run . . . well . . . by default. The file task to create index.yaml needs to be specifi-
cally identified as to-be-done. There are two ways to achieve this:

• Specify index.yaml as a target on the command line: rake index.yaml.

• Create a default task with index.yaml as a dependency: task :default => "index. yaml".

Ensuring That Directories Exist
Often (particularly when building target file trees from scratch), we’d like to be able to ensure
that the directories exist to put them in. We could write something like Listing 11-3.

Listing 11-3. Ensuring the Presence of Directories the Hard Way

file "html" do
 mkdir "html"
end

file "html/images" do
 mkdir "html/images"
end

But rake provides a convenience method that makes the whole thing simpler, as shown in
Listing 11-4.

Listing 11-4. Listing 11-3 Made Easy

directory "html/images"

This not only expresses the need to ensure that the html/images directory exists, but also
implicitly ensures that all parent directories are in place, too.

Generalizing with Rules
The obvious next step is the ability to create file tasks that apply to entire sets of files. These are
general rules mapping collections of path-matched files to their targets. Perhaps the simplest
rules are those based on file extension. Consider the normal C compilation example as typified
by Listing 11-5.

Listing 11-5. A General Rule for Compiling C Files

rule ".o" => ".c" do |t|
 sh "gcc", "-Wall", "-o", t.name, "-c", t.source
end

This rule declaration is very similar to an ordinary file rule and will be run anytime rake
needs to build something.o and cannot find a specific rule pertaining to that file. Notice that we
use an object passed to the code block (t). This task-related object is available inside the blocks

Hamou_821-0 C11.fm Page 195 Friday, June 1, 2007 4:23 AM

196 CH AP T E R 1 1 ■ T E ST I N G AN D DO CU M E N T AT IO N

passed to any task building method, and I refer you to the documentation for greater detail on
what it can do. Also described therein is the fact that the simple extension matches in Listing 11-5
can be upgraded to full-blown regular expressions and even name-building procedures.

As discussed previously, the code in Listing 11-5 only defines what to do if something.o
is called for. It does not suggest that this file should be built by default. It is unlikely that you
would wish to specify every .o file you want built on the command line, so we need to explore
how to bulk-specify rules and dependencies.

Synthesizing Tasks
In order to deal with files in bulk, we turn to the extremely useful FileList class supplied as
part of rake. It’s important to understand the mechanics of FileList. Essentially, it acts like
an array of filenames. It uses normal shell globbing patterns to work out which files it should
include. It can accept multiple simultaneous patterns and deliver files that match any of them.
The simplest way to create one is with the class method FileList.[]:

files = FileList["html/**/*.html"]

The files object here would respond to all the usual array methods (each, map, etc.) but it
also boasts a few interesting additions. Principal among these is the ability to perform a regular
expression–driven substitution on each file path, either creating a copy of the list (files.sub)
or making the changes in situ (files.sub!).

As to the files returned, these are a complete set matching any globbing patterns but
excluding (by default) those that

• Contain "CVS" or ".svn"

• End in ".bak" or "~"

• Are named "core"

The documentation contains lots of detail on how to fine-tune this behavior, so let’s move
straight on to synthesizing a task using the magic of FileList. We begin with an example for
making one particular file dependent on lots of others:

file "chupacabra.history" => FileList["suck*.story"]

Here, the FileList object is created and contains any files that are named as specified by
the globbing pattern ("suck68.story", "suck69.story", etc.). Thus the entire line sets up the
history file’s dependency upon the story files. Note that we don’t specify a code block. It turns
out that you can make as many statements as you want about a given task and they all get mixed
together properly. This aspect of the Rakefile DSL allows for the specification of dependencies
outside the definition of the task to which they relate, which can be useful for complex build trees.

True synthesis should allow us to replicate the example from Listing 11-5. Listing 11-6
shows how we’d do it with FileList.

Hamou_821-0 C11.fm Page 196 Friday, June 1, 2007 4:23 AM

CH A PT E R 1 1 ■ T E S T I N G A N D D OC U M E N T A T I ON 197

Listing 11-6. A Synthetic Version of the Rule from Listing 11-5

FileList.["*.c"].each do |f|
 file f.sub(/c$/, "o") => f do |t|
 sh "gcc", "-Wall", t.source, "-c", "-o", t.name
 end
end

For each .c file, we create a rule for a corresponding .o that relies upon the .c. The rule
in Listing 11-5 was easier to read, leading one to question how useful the synthetic approach
might be. The point is that such synthesis becomes more and more useful as the complexity of
the rule increases. Indeed it is possible to create extremely advanced rules this way—rules that
would be impossible to build using a rule statement.

A better example like Listing 11-7 combines rules and file lists to create a traditional bit of
logic for a C project.

Listing 11-7. A Complete Rakefile for Building a C Project

task :default => "cool_app"

o_files = FileList["*.c"].exclude("main.c").sub(/c$/, "o")

file "cool_app" => o_files do |t|
 sh "gcc", "-Wall", "-o", t.name, *(t.sources)
end

rule ".o" => ".c" do |t|
 sh "gcc", "-Wall", "-o", t.name, "-c", t.source
end

We start by defining what rake should do by default: ensure that cool_app is built and up
to date. Next, we generate a list of object files that should exist given the set of C source files.
FileLists’s exclude method comes in handy here to cull the main.c file from the list as dictated
by the project’s source file naming conventions. Of notable interest is the use of FileList.sub,
which substitutes the c for an o at the end of all the files.

We are left with o_files, upon which the final compiled application relies. When rake comes
to analyze the cool_app task, it will realize that one or more object files either do not exist or are
out of date (based on the rule statement). In this event, each .o is created according to the code
in the second block. Once all these files are shipshape, the application itself may be compiled.

It is worth remembering that this is all just Ruby code. In Listing 11-7, the two shell commands
look remarkably similar, which breaks the Ruby idiom “Don’t repeat yourself.” We could define
a method anywhere in the Rakefile that would take the target name, source names, and any
additional flags as arguments:

def compile(target, sources, *flags)
 sh "gcc", "-Wall", "-Werror", "-O3", "-o", target, *(sources + flags)
end

Hamou_821-0 C11.fm Page 197 Friday, June 1, 2007 4:23 AM

198 CH AP T E R 1 1 ■ T E ST I N G AN D DO CU M E N T AT IO N

This would then shorten the shell commands to

compile(t.name, t.sources)
compile(t.name, [t.source], "-c")

■Caution This entire C project example is used to demonstrate a simple Rakefile-based project that
manages tasks that most readers will be familiar with. Actually, using rake for building a C application is
probably a bad idea, just for the sheer complexity of dependency calculation for such builds.

Documenting Tasks
To conclude our tour of rake, I should briefly mention that there is a method to make things
easier for your inheritors. Specifically, it is possible to make a Rakefile self-documenting on
the command line. In order to provide a list of tasks together with a description of what they do,
each task should be preceded by a desc directive, as shown in Listing 11-8.

Listing 11-8. Rendering a Task Documented

desc "Run all unit tests"
task :test do
 # run the tests
end

desc "Build a performance profile"
task :perf do
 # build the profile
end

With this step taken, a list of such documented tasks may be obtained by executing rake
with the –T option:

$ rake –T
rake test # Run all unit tests
rake perf # Build a performance profile

Testing
Midway through writing this book, my living room ceiling decided to go on its own little adventure
holiday, touring various other parts of the room traditionally off-limits to a respectable over-
head surface. Since the word “ceiling” derives from the Middle English word denoting the act
of lining the interior of a room, I have taken to referring to the rubble as my “un-ceiling.”

My domestic misadventure struck me as rather apt when I came to consider this section. In
theory, a program or library should be so modular that it is possible to concoct all-encompassing
tests for each minute facet of functionality (unit tests). I am almost sure that when the builders

Hamou_821-0 C11.fm Page 198 Friday, June 1, 2007 4:23 AM

CH A PT E R 1 1 ■ T E S T I N G A N D D OC U M E N T A T I ON 199

were originally installing my un-ceiling, all of the fixtures and fittings were subject to some sort
of testing before being used.

Whatever testing the builders did, however, did not prevent a complete structural collapse.
You see, the failure was caused by an unanticipated interaction between a handful of the indi-
vidual components. It is for this reason that I despair of the common reliance on unit testing.
Unit tests help to prevent the publishing of code that is downright embarrassing. They are
essential for minimizing ultrasilly bugs, like having a function that is supposed to add a load of
numbers but actually causes your showerhead to emit peanut butter.

Unfortunately, the really juicy, subtle, self-organizing bugs that materialize as if from
nowhere are inevitably the ones that you didn’t see coming and that could never have been
found without the system’s constant use in production. Such is life; we learn by doing. In this
light, I consider the most practical piece of advice I ever received about automated testing was
only to add a test each time a specific bug was found to ensure it never happened again. Beyond
that, when a code passes all of its unit tests, that is when the real testing should begin.

My point is that if we are to engage in automated testing and know that it should never
absorb 100% of our testing time, we need a process that makes building such tests nearly effort-
less. Ruby has just the thing.

Ruby’s Test Library
Testing in Ruby is founded upon the excellent Test::Unit module that ships as part of the stan-
dard distribution. It has a very simple idiom for use and conventions that are easy to follow
(and, more important, remember).

Tests are grouped into test cases. These cases will usually contain one or more individual
tests on a common theme or manipulating common data. To create a test case, we forge a
subclass of Test::Unit::TestCase in Listing 11-9 and populate it with methods whose names
begin with test_.

Listing 11-9. A Simple Test Case

require "test/unit"

class ArithmeticTest < Test::Unit::TestCase
 def test_addition
 assert 1 + 1 == 2
 end
end

Listing 11-9 contains everything we need to build a simple test case. Note the use of the
assert method. Assertions are the basic tools used in testing to describe expected outcomes.
The most basic assertion is this assert method, which is considered to have failed unless its
first argument is true.

A plethora of assertions are available in testing. These build upon the basic assert method
by performing specific comparisons and dumping out a pertinent message if a given test fails.
For example, the assertion used in Listing 11-9 would probably have been better written as follows:

assert_equal(2, 1 + 1)

Hamou_821-0 C11.fm Page 199 Friday, June 1, 2007 4:23 AM

200 CH AP T E R 1 1 ■ T E ST I N G AN D DO CU M E N T AT IO N

Other assertion methods include assert_nil(obj), assert_kind_of(klass, obj),
assert_respond_to(obj, message), assert_match(regexp, string), and flunk. Take a look at
ri Test::Unit::Assertions for more detail.

Performing Tests
Test::Unit has an almost magical mechanism for running the tests: you run the class file. That
is to say, if I save Listing 11-9 as a file called test_arithmetic.rb, I can run the tests like this:

$ ruby test_arithmetic.rb
Loaded suite test_arithmetic
Started
.
Finished in 0.002801 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Needless to say, I could also make the file executable and place a shebang line at the begin-
ning, and then run it as a self-contained application (./test_arithmetic.rb). The one test is
run and thankfully arithmetic still works the way I thought it did. Let’s see what happens when
there is a failure. We’ll add another test to the test case from Listing 11-9:

def test_subtraction
 assert_equal(1.8, 1.9 - 0.1)
end

Now we rerun the test case, and lo and behold:

$ ruby test_arithmetic.rb
Loaded suite test_arithmetic
Started
.F
Finished in 0.052447 seconds.

 1) Failure:
test_subtraction(ArithmeticTest) [test_arithmetic.rb:10]:
<1.8> expected but was
<1.8>.

2 tests, 2 assertions, 1 failures, 0 errors

First, the fact that test_subtraction failed may have surprised you (particularly given that
the failure message isn’t exactly brimming with insight). It turns out that 1.8 and 1.9 - 0.1
differ from each other under standard binary floating-point arithmetic in that one can be
represented exactly and the other cannot, leading to tiny rounding errors when performing the
test. Let this be a warning to those who use floating-point arithmetic with reckless confidence.

Hamou_821-0 C11.fm Page 200 Friday, June 1, 2007 4:23 AM

CH A PT E R 1 1 ■ T E S T I N G A N D D OC U M E N T A T I ON 201

We should have used a different assertion: assert_in_delta. This method takes three floats—
the expected value, the actual value, and a delta within which the two numbers will be considered
equal like this:

assert_in_delta(1.8, 1.9 - 0.1, 0.0001)

With this change made, rerunning the test case yields a final line confirming 2 tests, 2
assertions, 0 failures, 0 errors.

Fixtures
Aside from methods with the prefix test_, there are two other methods that can be included in
any subclass of Test::Unit::TestCase. These methods allow for preparation of shared data
structures and their eventual decommissioning and are called setup and teardown. We may
establish a connection, for example, that we will be running tests over and then close it explicitly
when we’re done. Code to achieve this procedure is shown in Listing 11-10.

Listing 11-10. A Test Case with a Fixture

require "test/unit"

class RemoteHostTest < Test::Unit::TestCase
 def setup
 @session = RemoteHost.new("testserver.example.org")
 end

 def teardown
 @session.close
 end

 def test_echo
 assert_equal("ping", @session.echo("ping").stdout)
 end
end

Rails uses fixture-based testing so that entire clouds of ActiveRecord objects can be instan-
tiated out of easily constructed YAML files. Such a facility is often referred to as a test harness,
although I must profess an aversion to this term as it puts me in mind of a rather indelicate
physical process.

■Tip Causing your test suites to be dependent on network resources can be handy initially but often scales
badly. Dependence on the presence of an external resource and predictable behavior thereof may sometimes
be reasonable but can lead to confusing problems with test results. There are a couple of projects that seek
to assist with mocking up such dependencies: Flex Mock (http://onestepback.org/software/
flexmock) and Mocha (http://mocha.rubyforge.org).

Hamou_821-0 C11.fm Page 201 Friday, June 1, 2007 4:23 AM

mailto:@session.close
mailto:@session.echo
http://onestepback.org/software/flexmock
http://onestepback.org/software/flexmock
http://mocha.rubyforge.org

202 CH AP T E R 1 1 ■ T E ST I N G AN D DO CU M E N T AT IO N

Test Suites
As your project grows, you will inevitably end up with more than one test case. A collection of
cases is referred to as a suite, and building such a thing is no more complicated than having a
file like Listing 11-11 that includes all the individual case files.

Listing 11-11. A Test Suite Built from Test Cases

require "test/unit"
require "tc_arithmetic"
require "tc_linalg"
require "tc_diophantine"

We build the suite by requiring all the pertinent test cases. You’ll have noticed a naming
convention that is frequently used. Files containing test cases have tc_ at the beginning of their
names and test suites—you guessed it—have ts_ affixed to theirs. There is no reason to stop at
simple test suites. You could build suites of suites (metasuites), supermetasuites, penthouse
suites, and so on. The appropriate tree structure is up to you; just try to keep it as simple as
possible.

Testing from Rake
There is a test task class included with rake. Listing 11-12 shows an example of its use (it would
sit in your project’s Rakefile).

Listing 11-12. Using Rake to Define a Test Task

Rake::TestTask.new do |t|
 t.test_files = FileList["test/tc_*.rb"]
end

This listing adds a task called test to the set of tasks available to rake. It will run a test on
every test case matching the globbing pattern passed to FileList. Other options that can be
tweaked via the task object t include the following:

• The directories to be added to the $LOAD_PATH (the default being "lib")

t.libs << "extralibs"
t.libs = ["libs", "otherlibs"]

• The name of the task (the default being :test)

t.name = "longtest"

• Whether or not to be verbose (the default being false)

t.verbose = true

Take a look at the Rake::TestTask documentation for a more complete picture.
One scenario that is made possible by driving tests from rake in this way is to make version-

controlled commits dependent on passing all the tests. This constraint may not be appropriate
for larger projects but, if implemented, it would force you to ensure that your code is in a fit

Hamou_821-0 C11.fm Page 202 Friday, June 1, 2007 4:23 AM

CH A PT E R 1 1 ■ T E S T I N G A N D D OC U M E N T A T I ON 203

state before committing it back to the repository. Listing 11-13 is for a task that would accom-
plish this feat for a Subversion (http://subversion.tigris.org)-managed project.

Listing 11-13. Rake Task for Committing to a Repository Only If All Tests Pass

desc "Commit the current working copy if all tests pass"
task :commit => :test do
 sh "svn", "commit"
end

Documentation
It is fair to say that of the big three bits of housekeeping, documenting code is the task I most
love to hate. There are a few things in computing (like using Windows or programming in Java)
that I might do if someone held a gun to my head. Where documentation is concerned, I could
not show enthusiasm for it even if I had a howitzer rammed up my nose.

Programmers long ago recognized that documenting code is the bane of all project work
and that a system able to take well-written source code and automatically create the corre-
sponding documentation is vital. Such systems exist for all the major programming languages
and Ruby is no exception.

Shipping as part of the standard distribution, rdoc interprets both code and specialized
comments in source files and creates nicely formatted documentation from them. It can produce
HTML pages like the ones you see when running a gem_server (see Chapter 10). It also produces
documentation for use by ri (rdoc prepares all of the content for the lookups you do on standard
library classes). For more information on producing ri documentation, see the sidebar
“Command Line Documentation.”

COMMAND LINE DOCUMENTATION

The only real decision when building ri documentation is where it should live. Everything else about the standard
is designed to work seamlessly, whether you choose HTML or ri output. There are three places to choose
from when using rdoc: the systemwide location, the sitewide location, and your home folder.

The first location is reserved for the actual Ruby distribution itself, so it’s pretty unlikely that you’d want
that one. The second basically provides the documentation to all the users of the system but in a way that is
separate from the canonical Ruby installation (it will still require system-level permissions). The final one should
be obvious. The rdoc commands you want are as follows (in reverse order):

rdoc --ri user.rb group.rb ...
rdoc --ri-site user.rb group.rb ...
rdoc --ri-system user.rb group.rb ...

Automatic Documentation
We’ll start with what you get for free. Listing 11-14 contains a skeleton class stored in a file
called user.rb.

Hamou_821-0 C11.fm Page 203 Friday, June 1, 2007 4:23 AM

http://subversion.tigris.org)-

204 CH AP T E R 1 1 ■ T E ST I N G AN D DO CU M E N T AT IO N

Listing 11-14. A Skeleton Class Itching to Be Documented

class User
 attr_accessor :accepts_messages
 attr_reader :age

 def User.authenticate(login, password)
 end

 def send_message(text)
 end
end

What the User class is for is unimportant at this stage. The main point is that it has a few of
the basic things a real-world class would have (a class method, an instance method, and some
attributes). In order to generate HTML documentation for this class, we would run this:

$ rdoc user.rb

which generates the documentation and spits out some statistics about it. The files are placed
(by default) in a directory called docs. If we open the newly minted docs/index.html, we are
presented with a basic documentation page for our class that looks like Figure 11-1.

Figure 11-1. A screenshot of the documentation generated from the skeleton class

Hamou_821-0 C11.fm Page 204 Friday, June 1, 2007 4:23 AM

CH A PT E R 1 1 ■ T E S T I N G A N D D OC U M E N T A T I ON 205

The rdoc command accepts lots of different command line parameters for modifying its
behavior, and you can obtain a complete list by doing an rdoc --help. Some flags I commonly
use include the following:

• -a (--all) to include information for all methods, not just public ones

• -d (--diagram) to generate DOT diagrams of classes and modules (see Chapter 9)

• -N (--line-numbers) to include line numbers in source code listings

• -o (--op) dir to specify the name of the output directory

• -s (--style) url to embed a particular stylesheet URL in the HTML

What is produced by rdoc is pretty much the most interactive, detailed documentation you
could reasonably expect to be inferred from no information other than the source code. To go
further, we need to add comments to our skeleton class.

Basic Comments
Adding comments to code is made ultrasimple by rdoc’s convention that comments pertinent
to a particular element should directly precede that element. Using this convention, we can
add comments to Listing 11-14 to give Listing 11-15.

Listing 11-15. A Commented Version of Listing 11-14

Models a user of our network filesystems
class User
 # A boolean determining whether the user can receive messages.
 attr_accessor :accepts_messages
 # The user's age in years.
 attr_reader :age

 # Find a User based on login.
 # Return the User if one was found and if the password matches.
 # Otherwise return nil.
 def User.authenticate(login, password)
 end

 # Send the user a message (if the accepts_messages attribute is set to true).
 def send_message(text)
 end
end

The resulting HTML page can be seen in Figure 11-2. As promised, each element now has
its own little comment. Notice that the two instances of the word User have been turned into
hyperlinks (which happen to link to the same page, but you get the idea). This is an example of
rdoc once again doing its best to turn minimal code and comments into rich documentation.

Hamou_821-0 C11.fm Page 205 Friday, June 1, 2007 4:23 AM

206 CH AP T E R 1 1 ■ T E ST I N G AN D DO CU M E N T AT IO N

Figure 11-2. The documentation page with comments

You can also see that the multiline comment for the User.authenticate method has become
one line. This is due to the way in which rdoc interprets a comment block. Specifically, a single
paragraph is deemed to be a sequential set of comment lines that are all right up against the left
margin. Anything not against this margin is rendered verbatim.

Listing 11-16 holds an example that demonstrates this difference and introduces some
basic markup abilities. Figure 11-3 shows the corresponding output.

Listing 11-16. A Quick Tour of Some of the Basic rdoc Markup Facilities

This is an ordinary paragraph.
It will end up on a single line.
There is a verbatim line here, which will end up by itself.
This paragraph has single words in *bold*, _italic_ and +typewriter+ styles.
It then has long stretches of each kind <tt>of style</tt>.
#--

Hamou_821-0 C11.fm Page 206 Friday, June 1, 2007 4:23 AM

CH A PT E R 1 1 ■ T E S T I N G A N D D OC U M E N T A T I ON 207

This text is for 007 only as the double-minus switches off comment processing.
A double-plus switches it back on.
#++
This last sentence appears as part of the second paragraph.

Figure 11-3. The output produced by Listing 11-16

Headings, Separators, and Links
A heading is signified by one or more equal signs at the start of the line. The number of equal
signs indicates the relative importance of the heading:

=== An extremely important heading
== A fairly important heading
= This heading is almost feeble

A horizontal section break (or line, as it is sometimes called) is encoded using three or
more dashes:

...and so the man says to him 'no - I asked for pop...corn'.

There was a young girl from Nantucket...

Hyperlinks are automatically created anytime rdoc recognizes the name of a class, a method
(containing an underscore or starting with a hash character), or a source file. These links will
obviously point to the relevant section of the generated documentation. In addition, any text
starting with link: will be evaluated relative to the document root.

As for external addresses, all URLs beginning with www:, http:, ftp:, or mailto: will be
turned into proper hyperlinks. As a bonus, any http:-style link that points to an image is auto-
matically turned into an tag, embedding the image in the page. If you want a link
to have a specific label (other than the URL itself), then use the label[url] or {multi-word
label}[url] syntax:

http://svn.example.com, ftp://ftp.example.com
{Send me an e-mail}[mailto:andre@example.com]
Here's a pretty picture...
http://www.example.com/puppy.png

Lists
A rather obvious syntax exists for specifying bulleted, numbered, and even alpha-enumerated
lists in rdoc. Simply indent the paragraph and attach either an asterisk or a dash (for bulleted
lists) or an alphanumeric character followed by a period (for enumerated lists) to the front like this:

Hamou_821-0 C11.fm Page 207 Friday, June 1, 2007 4:23 AM

http://svn.example.com
ftp://ftp.example.com
mailto:andre@example.com
http://www.example.com/puppy.png

208 CH AP T E R 1 1 ■ T E ST I N G AN D DO CU M E N T AT IO N

The hard disks are tracked using the following criteria...
- capacity
- rotation speed
- seek time
- mean time to failure

The assessment workflow is handled in three stages...
1. Bob builds the chassis
2. Anne installs it in the rack
3. Malcolm takes the credit (being in management)

The other kind of list that is supported is one that maps specific labels to their descriptions
either in heading-with-indented-paragraph form or as a table. The first form is achieved by
wrapping the label in square brackets like [this]. The second is encoded by placing a double-
colon on the end like this::. Both forms allow for multiline descriptions as long as they line up
with either the indent caused by the label or a point just in from the label’s indent starting on a
subsequent line:

[RAID 0] Simple data striping across entire disk pool.
[RAID 5] Striping with a parity drive so that the pool can
 withstand the failure of one drive.
GIG-E::
Short name for gigabit ethernet. This standard has been around
for some time and is found with increasing frequency to run
all the way to the desktop in the corporate environment.

Processing Commands
There are a whole slew of directives that can be issued within a document to alter the processing
behavior of rdoc. The documentation covers these in detail, but I want to mention a couple that
can be rather handy.

A :nodoc: comment on the same line as an element that would usually be processed by
rdoc will prevent that element from being documented. A modifier of all will cause this exclusion
to apply to all child modules and classes:

module User # :nodoc: all
 class Passwd
 end
end

The other directive I use a lot is :include: filename, which pulls in the contents of another
file. The search path for the file is either the current directory or any of those listed using the
--include flag to rdoc. This directive is most useful for placing the contents of a README at the
start of a class’s documentation.

Documenting from Rake
We already saw the rdoc options available when building gems back in Chapter 10. Hopefully
that process now makes a little more sense in the context of what we’ve covered in this section.

Hamou_821-0 C11.fm Page 208 Friday, June 1, 2007 4:23 AM

CH A PT E R 1 1 ■ T E S T I N G A N D D OC U M E N T A T I ON 209

Just as there is a rake task for unit testing, so too is there one for rdoc. A section of your
Rakefile concerned with generating the documentation for your project might look like
Listing 11-17.

Listing 11-17. Using Rake to Define an rdoc Task

Rake::RDocTask.new do |t|
 t.main = "README"
 t.rdoc_files.include("README.rdoc", "lib/**/*.rb")
 t.options << "--diagram"
end

This listing adds rake tasks called rdoc (builds the documentation), clobber_rdoc (deletes
all the documentation files), and rerdoc (rebuilds the documentation from scratch). Notice the
shorthand used in specifying the files. Instead of using rdoc_files = FileList.new.include(...),
we are able to treat the object returned by rdoc_files as a file list. Other settings that can be
altered via the task object t include the following:

• The directory in which to place the generated HTML files (the default being "html")

t.rdoc_dir = "html_docs"

• The name of the task (the default being :rdoc)

t.name = "doc"

• The title of the documentation (the default being nil)

t.title = "The Complete Works of Shakespeare"

Take a look at the Rake::RDocTask documentation for more detail.

Mission Accomplished
Testing and documentation are necessary steps in a complete development cycle. Through
some clever libraries and tools, Ruby makes these tasks simple to get right and easy to integrate
into your project workflow.

The dependency-tracking, task-oriented approach fostered by rake allows for straightfor-
ward management of all those little housekeeping jobs that accumulate like cellulite around
the thighs of your code. This is particularly effective when combined with Ruby’s built-in unit
testing framework.

In this chapter, you saw that rdoc facilitates the production of documentation in both
HTML and ri formats, leading to reference material that is presented with intelligence (although
intelligibility is still the purview of the author).

The next and final chapter explores some of the exciting technologies and concepts that lie
in Ruby’s future.

Hamou_821-0 C11.fm Page 209 Friday, June 1, 2007 4:23 AM

Hamou_821-0 C11.fm Page 210 Friday, June 1, 2007 4:23 AM

211

■ ■ ■

C H A P T E R 1 2

The Future of Ruby

As the last chapter of the book, this one’s going to be a little different. I will present a very
brief summary of some of the developments coming down the Ruby pipe. I feel this is impor-
tant because in order to make a wholesale leap to a new programming language (as you may
be), you have to be satisfied that the horse you’re backing “has legs”—that it isn’t a passing fad.
Alternatively, if you are already sold on Ruby’s credibility, I hope you will still find what is
discussed here of some general interest.

One indicator of a great future for a programming language is the vibrancy and flair of
the community that surrounds it. I am constantly impressed by the wit and creativity of Ruby
developers. One of the best places to experience this is on the mailing lists:

• ruby-talk for general Ruby discussions

• ruby-core for core language topics

• ruby-doc for all documentation-related discussions

Of these three I am never without ruby-core, which is positively lavished with smart people
discussing issues surrounding the language: standard library additions, best practices, meta-
programming, performance tweaks, and much more besides. This is one of the best places in
existence to get information on upcoming changes to Ruby. Subscription instructions along
with lots of other community information can be found at www.ruby-lang.org/en/community.

Execution Environments
It should go without saying that lots of work has been and continues to be done to improve and
expand upon the execution of Ruby scripts. Two projects in particular are making big strides
forward in this area: YARV and JRuby.

YARV
The most common criticism leveled at Ruby applications is that they are slow when compared
with equivalent scripts in other interpreted languages. As you saw in Chapter 3, performance
statements like this need to be made with care.

Nevertheless, nobody’s going to object to making the Ruby interpreter faster, and this is
precisely what the core team is doing. Chief among the efforts is an official migration to a new
Ruby bytecode interpreter at the end of 2007. This new interpreter is called Yet Another Ruby
VM (YARV).

Hamou_821-0 C12.fm Page 211 Saturday, June 2, 2007 3:54 AM

http://www.ruby-lang.org/en/community

212 CH AP T E R 1 2 ■ T HE FU T U R E O F R U B Y

This project (www.atdot.net/yarv) has but one stated aim: “to develop the fastest Virtual
Machine for Ruby in the world.” YARV is a simple, stack-based virtual machine (VM) with compile-
time and JIT optimization, native (POSIX or Windows) threading, inline method caching, and
tons of other notable additions. Compared with the current Ruby interpreter, YARV particularly
improves upon programs that suffer from classic VM bottlenecks or do a lot of number crunching
or symbolic processing. With typical benchmarks like the computation of an Ackermann number,
YARV has been known to complete the calculation at nearly 20 times the speed of the standard
Ruby interpreter. With more string-heavy tests like counting words, there is little or no difference
between the interpreters.

In its current state, YARV can successfully execute most Ruby programs and libraries. To
grab a copy from the Subversion repository, you need the following command:

$ svn co http://www.atdot.net/svn/yarv/trunk yarv

The build and install instructions are all on the YARV web site, together with details on
what to expect when running the built-in tests.

JRuby
Wouldn’t it be great if you could run a Ruby script on any platform that had Java support?
JRuby (http://jruby.codehaus.org) is a 1.8.4-compatible Ruby interpreter written entirely in
Java. Where the focus of YARV was extreme speed, the upshot of the JRuby project is extreme
portability. Indeed it is quite possible that the number of current platforms Ruby runs on is far
higher than for Java, especially if you omit mobile devices.

Beyond this, JRuby has added mechanisms for defining and interacting with pure Java
classes from within Ruby. The interpreter also provides support for the Bean Scripting Framework
(BSF; http://jakarta.apache.org/bsf), allowing Java application servers to use Ruby for
individual JSP pages. This feature alone could prove to be a lifesaver in a busy corporate
environment.

Current limitations of the JRuby implementation include the lack of continuation/binding
support, the unavailability of a fine-grained timer, and some missing file operations. None of
these issues should prove crippling to the average Ruby script, but they are worth being aware of.

A nice way to show off the increased portability that comes from the Java world is to try a
Java Web Start-able version of irb. Go to the JRuby site and click the JRuby Console link. This
will take you to a page with a webstart link, which you can click to automatically download and
run the application.

Language Changes
The Ruby 1.9 stream is currently a testing ground for all sorts of changes to the language, some
of which have been confirmed for Ruby 1.9.1 (the end-of-year 2007 release mentioned previ-
ously). In this section, I’ll run through a handful of these changes.

In choosing these items, I tried to focus on the ones that will have the biggest practical
impact for a system administrator. Rest assured that the complete list of changes is vastly longer
and contains some fiendishly subtle revisions in behavior and semantics. Note that some of
these changes might not make it into the 1.9.1 release—as ever, the future is an uncertain and
slightly fishy place.

Hamou_821-0 C12.fm Page 212 Saturday, June 2, 2007 3:54 AM

http://www.atdot.net/yarv
http://www.atdot.net/svn/yarv/trunk
http://jruby.codehaus.org
http://jakarta.apache.org/bsf

C HA P TE R 1 2 ■ T H E F U TU R E O F R U B Y 213

Arrays and Hashes
Throughout the book, you saw a lot of hashes that were constructed with symbols for keys.
There is a new syntax for this that makes it even easier to read:

{:green => "house", :red => "lorry"} == {green: "house", red: "lorry"}

This means that all those flexible method signatures that we know and love can now look
more like labeled argument lists:

User.create(name: "John", pass: "1234")

Array.pop and Array.shift will finally match the spirit of Array.push and Array.unshift in
allowing multiple items to be separated from the array at once:

items = ["pixel", "texel", "tex-mex"]
items.pop(2) # returns ["texel", "tex-mex"], leaving items as ["pixel"]

Both arrays and hashes now have their canonical string conversion method to_s do the same
thing as inspect, thus puts {users: 15, groups: 12} will now dump {:users=>15,:groups=>12}
rather than users15groups12. Much better.

Strings
Strings will no longer be enumerable. This means no more using String.each to iterate over
lines. Never fear, however—String.each_line will still be around. Additionally, there is the
new String.lines method that returns an enumerator. It behaves exactly like each_line if
passed a block. Otherwise, it is a kind of lazy-evaluated array of the lines in the string. As you
would expect, both each_line and lines accept the separation character to use as an optional
argument:

"forti \n nihil \n dificile".lines.sort # returns ["dificile", "forti", "nihil"]

Similarly, String.bytes returns an enumerator over the byte set for a given string that can
be iterated through or treated like any old array.

A fundamental change is also being made to the unary operator (?). Instead of returning
the integer character code of the character it is placed in front of (?a == 97), it will return a
single character string (?a == "a"). This is one to watch out for, as it completely alters the
semantics of this operator.

To complete the set, String.[] returns a single character string ("lucky"[3] == "k")
rather than its character code ("lucky"[3] == 107). To get the old behavior, use String.ord
("k".ord == 107). As a corollary to these changes, the list of printf format specifiers is gaining
an additional entry: %c will encode for a single character string.

I/O Operations
The various file classes have acquired a number of convenience methods, including the most
obvious one: Dir.exist? is now equivalent to File.directory?. Others include File.world_
readable? and File.world_writable?.

The big news from a network and file system perspective is an entire raft of nonblocking
operations:

Hamou_821-0 C12.fm Page 213 Saturday, June 2, 2007 3:54 AM

214 CH AP T E R 1 2 ■ T HE FU T U R E O F R U B Y

• IO.read_nonblock, IO.write_nonblock

• Socket.connect_nonblock, Socket.accept_nonblock, Socket.revcfrom_nonblock

• IPSocket.recvfrm_nonblock, TCPServer.accept_nonblock

• UNIXSocket.recvfrom_nonblock, UNIXServer.accept_nonblock

All of these new functions apply the appropriate flags (O_NONBLOCK, etc.) to the underlying
C operations being performed. It will be possible with these additions to write truly asynchro-
nous I/O code.

■Note These additional nonblocking operations are so useful that they have been merged into the current
stable 1.8 stream.

Block Argument Locality
One of those little mistakes that sometimes catch out Ruby programmers is naming something
in a block in a way that collides with a variable outside the block. In the future, the in-block
declaration will shadow the outer variable without messing with it:

domain = "example.com"
["fish.fake", "fingers.fake"].each { |domain| puts domain }
puts domain

In 1.8, the preceding code would end up printing this:

fish.fake
fingers.fake
fingers.fake

Contrast this with the new behavior, and note how the inner declaration of domain does
not clobber the outer one:

fish.fake
fingers.fake
example.com

Multisplatting
You’ve seen that it is possible to (in some sense) unpack an array and turn it into a list of argu-
ments to be provided to a method like this:

Hamou_821-0 C12.fm Page 214 Saturday, June 2, 2007 3:54 AM

C HA P TE R 1 2 ■ T H E F U TU R E O F R U B Y 215

def establish_connection(host, port, user, pass)
end

credentials = ["andre", "1234"]
establish_connection("www.example.com", "6969", *credentials)

It is not possible in 1.8 to use this splatting trick more than once in a given method call.
That’s going to change, making this sort of thing possible (continuing the example):

server = ["www.example.com", "6969"]
establish_connection(*server, *credentials)

Object Tapping
Many in-place (destructive) string functions return nil if they end up doing nothing, for example:

"line\n".chomp # returns a copy of the string with the newline removed
"line".chomp # returns a copy of the string unaltered
"line\n".chomp! # returns the original string with the newline removed
"line".chomp! # returns nil

This behavior exists for a reason, but it can make command chaining unexpectedly hard.
Consider the chomp operation combined with an attempt to retrieve the last character:

"line".chomp[-1] # returns a new string "e"
"line".chomp![-1] # raises an error complaining that nil has no such method as []

Thus the destructive version of this compound operation would need to be split onto three
lines (l = "line"; l.chomp!; l[-1]). This is manifestly ugly, so future versions of Ruby will
provide Object and its inheritors (i.e., every object) with a method named tap, which both
passes the object to a block and returns the self-same object. The three-liner becomes a one-
liner again:

"line".tap { |l| l.chomp! }[0] # returns a new string "e"

Read-Write Attributes
Whereas currently the attr keyword provides a module/class with both read and write acces-
sors for a given variable, it now only vends the reader method. The new syntax for a read-write
attribute involves an extra equal sign:

attr :name # provides name method
attr :age= # provides both age and age= methods
attr :age= :name # provides all three methods

Enumerable Upgrades
The perennial Enumerable module is being shifted from the standard library into the core and
so will no longer need to be specifically required by your libraries. In addition, a number of
new behaviors are being added.

Hamou_821-0 C12.fm Page 215 Saturday, June 2, 2007 3:54 AM

http://www.example.com
http://www.example.com

216 CH AP T E R 1 2 ■ T HE FU T U R E O F R U B Y

Enumerable.first(n) is being added and behaves just like Array.first(n) in that it retrieves
the first n objects from the collection:

[1, 2, "buckle", "my", "shoe"].first(2) # returns a new array [1, 2]
{tickets: 2, rides: 5}.first(1) # returns a new array [[:rides, 5]]

In the case of the second example, remember that the order of a hash is undefined. For
easy partitioning, Enumerable.group_by is really handy as it takes a block, which will generate a
key for each value and then place all the values in a hash of arrays accordingly. Thus the following:

["acorn", "apple", "orange", "starfruit"].group_by { |name| name[0] }

would return a new hash:

{"a" => ["acorn", "apple"], "o" => ["orange"], "s" => ["starfruit"]}

In the searching department, we have the new Enumerable.find_index method, which is
exactly like Enumerable.find save for the fact that it returns the index of the found item rather
than the item itself:

["users", "groups", "printers"].find_index { |item| item[0] == "p" } # returns 2

In a similar vein, Enumerable.count takes either an object as an argument or a matching
block and returns the number of items in the collection, either matching the object or causing
true to be returned by the block:

(1..10).count(5) # returns 1
(1..10).count { |i| i % 2 == 0 } # returns 5

Finally, Enumerable.max and Enumerable.min now have a couple of siblings: Enumerable.
max_by and Enumerable.min_by. These methods take a block that produces a value used to
assess the maximal/minimal nature of each item:

["52634", "22435", "4314", "22489"].max_by { |l| l.reverse.to_i } # returns "22489"

begin
TIOBE Software (www.tiobe.com) maintains an index of language popularity based on the
“world-wide availability of skilled engineers, courses and third party vendors.” It’s an inter-
esting way to measure such popularity, as it reflects service demand rather than lines of code
written or sleepless nights per point release. This index rated Ruby nineteenth in the world in
May 2006. One year later it’s at number 10 and has the strongest growth rating of any program-
ming language listed in the top 20.

From modest beginnings, Ruby has come to touch server farms and computer labs, desktops
and workshops, classrooms and boardrooms. In so doing, it has made a style of programming
possible that liberates the humble system administrator from the soul-sapping drudgery of
spaghetti code and endless development cycles.

Hamou_821-0 C12.fm Page 216 Saturday, June 2, 2007 3:54 AM

http://www.tiobe.com

C HA P TE R 1 2 ■ T H E F U TU R E O F R U B Y 217

Over the course of this book, you explored the nature of the language and the difference it
can make to those innumerable little chores that make up an administrator’s day, from consistent
file handling through unified data architectures to network systems analysis and administration.
Throughout, I have attempted to present Ruby as I find it: a treasure that can be relied upon
again and again to put a smile on my face and a spring in my step.

It is my sincere hope that you have been intrigued enough by what you’ve read to continue
your journey through the land of Ruby—strong in will to slice, to squeeze, to bind, and not
to yield.

Hamou_821-0 C12.fm Page 217 Saturday, June 2, 2007 3:54 AM

Hamou_821-0 C12.fm Page 218 Saturday, June 2, 2007 3:54 AM

219

■ ■ ■

A P P E N D I X

Ruby Execution

As promised in Chapter 2, this appendix takes time to introduce the general execution envi-
ronment of a Ruby script. It covers the various command line options available with the Ruby
interpreter as well as the many pertinent variables and constants that make very short scripts
possible.

Command Line Options
Perl users should feel right at home with many of the flags that can be passed to the Ruby inter-
preter, as the flags were modeled very much on those used by Perl. It is my opinion that Perl’s
biggest strength lies in its one-liners that, while often baffling to the newcomer, provide immense
power to construct unbelievably dense code. This facility stems from two things: command
line modes that do very common things for you and shorthand variables for accessing/setting
pertinent data and behavior.

The fact that Ruby respects the success of Perl’s approach in this area often leads to the
charge that Ruby is too Perl-like. This is roughly equivalent to saying a human is too much like
a turkey because they’ve both recognized the advantages of bipedal locomotion.

With that said, I can now present a list of command line options that is complete save for
four: --copyright, --version, --help (-h), and --yydebug (-y). I’m going to assume that the first
three hold no mystery. The fourth basically turns on a load of debugging for the interpreter
itself and is of no use unless you plan to debug Ruby.

Octal Record Separator Specification: -0[octal]
Consists of the digit 0 optionally followed by an octal value for the character to use as the default
global record separator $/, which is used by methods like IO.each. Without an explicit value,
NULL (000) is assumed. Passed a value of zero (-00), Ruby goes into paragraph mode, where each
record is considered to be separated by two default record separators (e.g., "\n\n"). Since 511
is not a valid character code, passing -0777 will guarantee that the entire input file is read in as
one record—a process somewhat indelicately referred to as slurping.

Auto Split Mode: -a
When used in conjunction with -n or -p, runs $F = $_.split at the beginning of each loop.

Hamou_821-0App.fm Page 219 Saturday, June 2, 2007 3:54 AM

220 AP P E N D I X ■ R U B Y E X E CU T IO N

Change Directory: -C path
Causes the present working directory to be set to the specified path before the script is run.

Check Syntax Only: -c
Does exactly what you think it does (without running the script). Remember that the more
sophisticated your scripts become, the less useful this flag will be, as it only invokes a simple
syntax check. If all is well, you will receive the message Syntax OK. Otherwise, you will see one
or more reports indicating a problem and the line it occurred on like this:

upload.rb:19: odd number list for Hash
upload.rb:28: syntax error

Debug Mode: -d, --debug
Sets $DEBUG to true, which is generally useful if you want a simple way to enable some extra
tracing or differing behaviors during development. This flag also implicitly sets $VERBOSE = true.

Execute Line: -e line
Takes a line of Ruby and executes it (as you’ve already seen). This can be specified multiple
times, in which case each instance is treated as a new separate line for bookkeeping purposes
(try ruby -e 'p __LINE__' -e 'p __LINE__').

Field Separator Specification: -F pattern
Sets the global field separator $;, which is used by methods like String.split. Note that this
can be a simple string delimiter or a full-blown regular expression.

Include from Additional Directory: -I path(s)
Adds to the array of search paths for the inclusion of code via the load or require statement.
This array is accessible in code as $: ($LOAD_PATH). Note that many paths can be specified per -I
and that many -Is can be used.

In-place Editing: -i[extension]
For each file path specified as an argument to the interpreter (in ARGV), anything written to
standard out while dealing with a particular file becomes the contents of that particular file.
The original file is preserved with a new extension if and only if this is specified. Obviously, this
flag is pretty meaningless without the use of -n or -p. Suppose I wanted to change all instances
of my name in a set of header files to my secret squirrel name. I would write something like ruby
-p -i.bak -e 'gsub(/Andre/, "Nutkin")' *.h.

KCode Encoding Choice: -K encoding
Specifies the encoding of the script to support character sets like SJIS as used by our Japanese
colleagues. This is equivalent to setting the $KCODE variable. An encoding of u specifies UTF-8.

Hamou_821-0App.fm Page 220 Saturday, June 2, 2007 3:54 AM

AP P E N DI X ■ R U B Y E X E CU T I ON 221

Line Ending Automated Handling: -l
Sets the output record separator ($\) to the same value as the input record separator ($/) and
automatically performs a chop! on each input record ($_). In simpler terms, this flag causes
each record to be presented to you without its line ending or other record separator, and then
adds it back once you’ve finished.

Nested Retrieval Loop: -n
Places an implicit while gets ... end block around your code. Note that this allows you to
read each line of not only a single file, but multiple files. It is well worth having a close look at
ri Kernel.gets for the rather cute behavior conventions it provides. In particular, it sets $_ to
the value of the retrieved record (e.g., the next line).

Printed Nested Retrieval Loop: -p
Does the same as -n, but with an extra print $_ at the end of each loop.

Require Library: -r library
Identical to having placed require library at the beginning of your code. This is particularly
useful in -n/-p situations where you don’t want to require the library through every loop
(although this wouldn’t be disastrous, as rerequiring a library involves only a single hash lookup).

Script Search: -S
Instead of assuming a given script is in the current directory, causes the interpreter to search in
the location specified in the PATH environment variable. This is mostly to allow platforms that
don’t support the shebang-style script header (silly as they are) to emulate it.

Smart Variables: -s
Magically removes every command flag after the script name but before any file arguments
from ARGV and turns them into global variables. So ruby -s test.rb -col=blue file.c would
run the test.rb script with a single argument (file.c) and give the script the global variable
$col = "blue".

Taint Level: -T[level]
Turns on taint checking at the given level (or 1 if none is specified) and sets $SAFE to this value.

Verbose Mode: -v, --verbose
Activates all kinds of extra messages and warnings, sets $VERBOSE = true, and causes the version
string to be printed before anything else is done (thus making a simple ruby -v do what you
would expect).

Hamou_821-0App.fm Page 221 Saturday, June 2, 2007 3:54 AM

222 AP P E N D I X ■ R U B Y E X E CU T IO N

Warnings Mode: -w
Does the same as -v, except that no version string is printed and the interpreter will expect
input on standard in if no other code/scripts are specified.

Ignore Garbage: -x[path]
The interpreter will ignore everything it encounters until it sees a shebang line containing the
string ruby, which it will interpret as the beginning of the script. It will then execute the script
until it encounters an end-of-file or the keyword __END__. If a path is specified, the present
working directory is changed to this path before execution commences.

Environment
Ruby provides access to its runtime environment through a set of variables that, again, should
be familiar to any Perl user. First, there are the set of arguments to the script whereby the invocation

$ ruby count.rb 1 2 3

would give us

ARGV = ["1", "2", "3"]

inside count.rb. ARGV is just an Array and so supports all the methods you have/will come to
love. Imagine we wanted our script to be able to take some command flags, one of which was a
-r to remove something or other. One quick and dirty way to determine whether this had been
passed is

remove_stuff = ARGV.include?("-r")

In practice, beyond the simplest command line options, a proper argument-parsing library
tends to be a better idea.

Next on the list of most-used variables would have to be the environment itself—that
dictionary of values you can see from the console by typing env (or something similar). Here’s
what part of mine looks like:

TERM_PROGRAM=Apple_Terminal
TERM=xterm-color
SHELL=/bin/bash
TERM_PROGRAM_VERSION=133
USER=andre

Perhaps unsurprisingly, this is accessed in Ruby using the ENV object (which acts like a Hash
but isn’t one). Values can be retrieved and set as you would expect:

terminal_type = ENV["TERM"]
ENV["USER"] = "Nutkin"

Beyond these two oft-used collections, a few global variables and a couple more constants
are of interest.

Hamou_821-0App.fm Page 222 Saturday, June 2, 2007 3:54 AM

AP P E N DI X ■ R U B Y E X E CU T I ON 223

Process Information
The following entities all relate to process-specific information such as the name of the command
used to run the script and global variables for each of the command flags:

• $0: The command that originally ran the Ruby script (what C users would think of as the
first argument of ARGV). On many platforms, this is writable so that how the process appears
in top/ps can be changed by assigning something new to $0.

• $$: The process ID (PID) of the currently executing program.

• $:: The array of directories to check when including code via the require or load command.
This array provides a programmatic alternative to using the -I flag on the command line
to include new search paths. Append your chosen directory/directories as you would
with any other array: $: << "/tmp/foo" or $: += ["/tmp/foo", "/tmp/bar"].

• $-<something>: Almost all of the command flags have a corresponding variable of this
form—for example, $-a, which corresponds to the value passed by the -a command flag,
or $-d, which is true in debug mode.

• __FILE__: The name of the currently executing file.

• __LINE__: The number of the line that is currently executing.

File Handles
These variables specify the input and output streams used by your program:

• STDIN, STDOUT, STDERR: The actual standard file handles (of class IO) for the program and
the initial values of $stdin, $stdout, and $stderr

• $stdin, $stdout, $stderr: The current IO objects for the standard file handles used by
methods like Kernel.puts

Magic Processing Variables
This subsection lists global variables controlling some of the more “magical” field, file, and
record processing behavior we unpacked in Chapter 7:

• $/: The input record separator used by methods like Kernel.gets.

• $\: The output record separator used by methods like Kernel.puts.

• $;: The input field separator (a simple string delimiter or a regular expression).

• $,: The output field separator used by methods like Array.join (defaults to nil).

• $<, ARGF: A special object that provides access to all of the lines of all of the files specified in
ARGV (or the data from $stdin when no such files are specified). For example, $<.file returns
an IO object for the current file being read, and $FILENAME is a synonym for $<.filename.

Hamou_821-0App.fm Page 223 Saturday, June 2, 2007 3:54 AM

224 AP P E N D I X ■ R U B Y E X E CU T IO N

• $_: The last line read by Kernel.gets or Kernel.readline. Indeed, a number of the string
manipulation functions in Kernel (such as gsub) operate on $_.

• $F: The array of fields as split under the -a command flag using $; to determine the field
separator.

Other Sundries
Finally, here are some other variables (and a constant) that you might find useful in day-to-day
scripting:

• DATA: The contents of the main program file past an __END__ directive (if such exists)

• $1 to $9: The up to nine matches from the last executed regular expression (local to the
current scope)

• $!: The last exception object raised in the current context

• $@: The last exception object’s backtrace

Improving Readability
Looking back over the preceding subsections, I see that I used to use a lot of these tersely named
global variables (or their equivalents) when I was a Perl monkey. I’m pretty sure I’ve never
employed most of these as a Ruby-holic, mostly because I found myself in a job where one-liners
were never one-offs. Even trivial bits of code ended up getting reused, and the ease with which
one can write things “properly” the first time in Ruby meant that beasts like $< never really had
a chance.

If you absolutely insist on using these global variables in scripts, then you’d be well advised to
check out the English library, which ships as part of the standard distribution. It maps many of
the symbols to more intelligible variable names and can be bolted on to your script with a quick
require "English". Mappings include $! to $ERROR_INFO, $; to $FIELD_SEPARATOR, and $/ to
$INPUT_RECORD_SEPARATOR.

Hamou_821-0App.fm Page 224 Saturday, June 2, 2007 3:54 AM

225

INDEX

■Numbers and Symbols
$$ command flag, 223

$@ variable, 224

$_ global variable, 224

$_.split array, 101

<< (double chevron) construction, 62

<< method, 11

$0 command flag, 223

002_add_disk_usage_cache.rb file, 95

$1 variable, 224

$9 variable, 224

■A
-a (auto split mode), 219

a flag, 205

abstracted locking, 61, 63

abstracting safe file operations, 64, 65, 66

abstraction, 3

accept method, 144

accessors, 8, 9

Ackermann number, 212

ActiveLDAP, 117, 121

ActiveLdap::Base class, 118

ActiveRecord module, 87, 89, 97

ActiveRecord object, 201

ActiveRecord subclass, 52

ActiveRecord::Base class, 118

ActiveResource::Base directory, 130

acts_as-style method, 54

acts_as_list macro, 54

add method, 171

add_graph method, 175

add_object method, 113, 114

aggregate analysis, 167, 168

algorithmic optimization, 32, 33

alias keyword, 62

allow_anonymous key, 119

analyzing data, 163–168

aggregate analysis, 167–168

filtering and assigning events, 165–166

marshalling data, 163–164

overview, 163

parsing events, 164–165

analyzing performance, 27–32

Benchmark library, 27–29

Profiler library, 30–32

UNIX time command, 27

append_features method, 50

ARGF global variable, 223

args variable, 61

ARGV code, 101

Array class, 10, 77

Array method, 11

Array subclass, 112

Array.inspect property, 74

Array.pop method, 213

Array.push array, 113

arrays, 213

Array.shift method, 213

Array.uniq, 33

as key, 172

asn1_type method, 157

assert method, 199

assert_in_delta statement, 201

assigning events, 165–166

atomicity, 83

attr keyword, 215

attr_accessor function, 9, 48

attr_reader function, 9

attr_writer function, 9

author key, 189

auto split mode (-a), 219

automatic documentation, 203–205

Hamou_821-0 INDEX.fm Page 225 Saturday, June 9, 2007 4:09 AM

226 ■IN D E X

autorequire key, 189

autorequire setting, 190

■B
bar_graph method, 174

base key, 118

BasicSocket class, 134

Bean Scripting Framework (BSF), 212

begin-end method, 138

begin-ensure-end block, 137

begin-rescue-end block, 135

begin.ensure.end block, 61

belongs_to macros, 120

Benchmark library, 27, 29

Benchmark module, 28

Benchmark.bmbm file, 80

Bignum class, 24

bin directory, 179, 185

bind_dn key, 119

bindir key, 189

block argument locality, 214

blocking locks, 59–60

blocks, 9–12

blogging/aggregation software, 130

bmbm method, 29

BooksController.award file, 132

BooksController.unreleased file, 132

Boolean value, 33

break keyword, 10

BSF (Bean Scripting Framework), 212

build verb, 190

Builder commands, 67

Builder library, 66, 71

BWHost class, 151

■C
C applications, integration with, 39, 41

C/C++ libraries, 41

-c (check syntax only), 220

.c file, 197

-C path (change directory), 220

cache_object.set file, 86

call variant, 123

call2 variant, 123

cannon-status class, 144

Cat class, 128

CatteryService.rb file, 128

CGI.escape class, 142

change directory (-C path), 220

charts, 169–174

CSS charts in Rails, 173–174

overview, 169–173

Scruffy Charts, 169–173

check syntax only (-c), 220

chmod u+x hello.rb command, 2

chomp operation, 215

chomping, 145

:class parameter, 120

cleanup verb, 182

clear_dirs method, 149

client functionality

Representational State Transfer (REST), 130

Simple Object Access Protocol (SOAP), 126

XML Remote Procedure Call (XML-RPC),
122–124

clobber_rdoc task, 209

cn (common name), 118

collecting data, Secure Shell (SSH), 161, 162

com.apple.desktop.plist folder, 109

$: command flag, 223

command line options, 219–222

comments, 16, 205–207

common name (cn), 118

Community key, 157

:Community parameter, 159

config directory, 89

connect method, 88

connection to agent, SNMP, 156

connection to service, 118, 119

consistency, 83

Contactable module, 50, 54

contacts file, 18

contents command, 183

control of devices, 148–153

packet monitoring, 150–153

SSH, 148–150

:controller => :books: directory, 131

cool_app statement, 197

copyright command line option, 219

Hamou_821-0 INDEX.fm Page 226 Saturday, June 9, 2007 4:09 AM

227■I N D E X

Find it faster at http://superindex.apress.com

coroutine support, 11

count variable, 103

create statement, 93

created_at column, 91

creation, retrieval, update, and destruction
(CRUD) objects, 121, 122

cron command, 96

cron method, 19

CRUD (creation, retrieval, update, and
destruction) objects, 121, 122

CSS charts in Rails, 173–174

current? statement, 45

customization

Marshal class, 77

YAML, 79

■D
d flag, 205

data directory, 163, 167

data structuring, 38–39

data type, 115

DATA variable, 224

database administrator (DBA), 82

database management systems (DBMSs), 83

databases, 87–89

DBI, 87–89

SQL queries, 87–89

database.yml file, 89

data_files.each block, 167

date key, 189

date_string line, 168

db/migrate/001_initial_schema.rb file, 90

DBA (database administrator), 82

dbh.disconnect method, 88

DBMSs (database management systems), 83

dc (domain component), 118

$DEBUG flag, 220

debug mode (-d, --debug), 220

:default directive, 95

$/ default global record separator, 219

:default task, 194

default_executable setting, 189, 190

default_type key, 171

#define statement, 43

delete method, 86

DELETE request, 131

delimited values, 100–104

comma-separated values (CSVs), 103–104

creating numbered files, 102

explicit versions, 102–103

output behavior, 102

overview, 100–101

retrieving fields, 101–102

retrieving records (lines), 101

tab-separated values (TSVs), 103–104

dependencies, 181

dependency command, 183

desc directive, 198

describe method, 13

description key, 189

destroy method, 122

/dev/blah file, 97

Dir class, 69

directory listings, 18–19

Dir.exist? file class, 213

Disk table, 94

diskmon directory, 89

diskmon project folder, 96

diskmon_dev file, 89

disks.create construction, 93

dn_attribute directive, 120, 121

DNSRecord class, 138

docs directory, 204

document object, 106

documentation, 203–209

accessing via gem_server, 185

automatic, 203–205

comments, 205–207

headings, 207

links, 207

lists, 207–208

overview, 203

processing commands, 208

from rake, 208–209

separators, 207

documenting tasks, 198

domain component (dc), 118

dot command line tool, 174

Find it faster at http://superindex.apress.com

Hamou_821-0 INDEX.fm Page 227 Saturday, June 9, 2007 4:09 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

228 ■IN D E X

double chevron (<<) construction, 62

Download link, 178

drive method, 5

duck typing, 12

_dump method, 77

durability, 83

■E
e flag, 1, 16, 20

-e line (execute line), 220

each method, 49, 121

each_line, 213

each_varbind method, 157

each_with_index method, 69

email key, 189

Embedded Ruby (ERb), 70

embezzle method, 37

embezzled_total variable, 37

Employee.initialize variable, 38

encapsulation, 4

English library, 224

ensure method, 137

enterprise data, 99–132

network services, 116–132

Lightweight Directory Access Protocol
(LDAP), 116–122

Representational State Transfer (REST),
128–132

Simple Object Access Protocol (SOAP),
125–128

XML Remote Procedure Call
(XML-RPC), 122–125

parsing data, 99–116

delimited values, 100–104

overview, 99–100

XML, 104–116

Enumerable module, 48, 69, 93, 121, 215–216

Enumerable.count method, 216

Enumerable.find method, 216

Enumerable.find_index method, 216

Enumerable.inject method, 152

Enumerable.max method, 216

Enumerable.min method, 216

ENV object, 222

environment command, 183

ERb (Embedded Ruby), 70

erb script, 71

Errno::ECONNREFUSED class, 135

errors proxy object, 121

/etc/motd configuration, 70

/etc/passwd directory, 65

/etc/rotate-logs file, 20

ethereal method, 150

Event class, 167

events

assigning, 165–166

filtering, 165–166

parsing, 164–165

events.each block, 168

exclude method, 197

exclusive lock, 59

executables, 190

executables key, 189

execute line (-e line), 220

expected_notice method, 70

explicit versions

delimited values, 102–103

RubyGems, 184

export command, 179

ext directory, 185

extend method, 50

extensions key, 189

extra_rdoc_files key, 189

■F
$F array, 17, 101

f file, 60

-F pattern (field separator specification), 220

$F variable, 24, 224

factorial method, 30

false expression, 8

FasterCSV gem, 104

field separator specification (-F pattern), 220

fields, retrieving, 101–102

File class, 71

__FILE__ command flag, 223

file handles, 223

$<.file variable, 16

File.directory? file class, 213

Hamou_821-0 INDEX.fm Page 228 Saturday, June 9, 2007 4:09 AM

229■I N D E X

Find it faster at http://superindex.apress.com

FileList class, 196, 202

File::LOCK_EX argument, 60

filename/.namedfork/rsrc address, 25

$<.filename variable, 16

File.open method, 60, 61

File.open_safely property, 75

files

creating, 57–72

overview, 57

program-driven file creation, 66–70

safety issues, 57–66

template-driven file creation, 70–71

locking, 59–63

abstracted locking, 61–63

blocking locks, 59–60

nonblocking locks, 60

overview, 59

process locking, 63

files key, 189

files object, 196

FileUtils library, 20

FileUtils module, 64, 65

FileUtils.move, 65

File.world_readable? file class, 213

File.world_writable? file class, 213

filtering events, 165–166

find command, 25

find_or_create_by_ construction, 97

fixtures, 201

flock method, 60

flocks, 63

/foot/ expression, 15

foreach directive, 10

:foreign_key parameter, 121

form submission, 141

fred.destroy object, 122

Futurama quote, 140

future developments, 211–217

execution environments, 211–212

language changes, 212–216

arrays, 213

block argument locality, 214

Enumerable module, 215–216

hashes, 213

I/O operations, 213–214

multisplatting, 214–215

object tapping, 215

read-write attributes, 215

strings, 213

overview, 211

■G
gathering data, 155–163

GD library, 67

gem command, 179, 183, 190

GEM_HOME environment variable, 178

gems, 177–191

accessing documentation, 185

accessing documentation via
gem_server, 185

creating, 185–191

format, 185–187

gathering files, 187

Gem::Specification class, 188

publishing, 191

gem command, 179

installing, 180–181

listing installed, 181

overview, 177

removing, 182–183

searching for, 180

updating, 181–182

updating RubyGems, 180

using in code, 183–184

gem_server directory, 187

gem_server setting, 191

gem_server statement, 185, 203

gemspec, 186

Gem::Specification class, 188

GET method, 130

get method, 157

get_multi method, 85

gets separator, 101

$; global field separator, 220

global variable, 221

$< global variable, 223

$, global variable, 223

$; global variable, 223

$/ global variable, 223

Hamou_821-0 INDEX.fm Page 229 Saturday, June 9, 2007 4:09 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

230 ■IN D E X

globbing patterns, 69, 167

gnuplot file, 169

Goat class, 39

Graph.render method, 171

graphs, 174–176

Graphviz format, 174

grep alternative, 15–16

Group method, 121

groups proxy, 120

Group.users method, 121

GSSAPI (Kerberos)-based authentication, 119

GZip library, 178

gzipped tarball, 186

■H
-h (help) command line option, 219

hash array, 64

Hash class, 38, 47, 112

hashes, 84, 213

Hash.new(0) directory, 168

Hash.values_at method, 65

has_many class macros, 120

has_many directive, 92, 121

has_rdoc setting, 189, 190

headings, 207

help (-h) command line option, 219

HFS+ file system, 25

hh:mm string, 165

/home/user directory, 179

homepage key, 189

horizontal_bar_graph method, 174

host key, 118, 157

:Host parameter, 159

hosts hash, 152

href method, 67

html/images directory, 195

HTTP command, 129

http:-style link, 207

hyperlinks, 207

■I
i flag, 16

I/O operations, 213–214

_id tag, 120

idioms, 153

IETF (Internet Engineering Task Force), 156

if-elsif-else-end block, 70

ignore garbage, 222

ImageMagick package, 170

images, building, 67

imaginarycorp.com domain, 117

 tag, 207

import_module method, 160

improving readability, 224

in-lining extension technique, 40

in-place editing, 220

include directive, 50, 54, 106

:include: filename comment, 208

include flag, 208

include from additional directory
(-I path(s)), 220

include? method, 49

include method, 159

include REXML statement, 115

include statement, 170

increment/decrement, 85

index.yaml file, 194

initialize method, 7, 36, 111

inject method, 93, 152

input record separator, 221

inspect property, 74, 75

inspection strings, 74–76

install verb, 182

installing

gems, 180–181

RubyGems, 178–179

instantiation, 36, 38

Integer class, 45

integration with C applications, 39–41

interclass relationships, 120–121

interface specification, 125

Internet Engineering Task Force (IETF), 156

IO-like objects, 146

IO.each method, 219

IO.readlines method, 69

IPSocket subclass, 134

irb shell, 3

isolation, 83

iso.org.dod.internet.mgmt.mib-2.system.sys
Location object, 157

Hamou_821-0 INDEX.fm Page 230 Saturday, June 9, 2007 4:09 AM

231■I N D E X

Find it faster at http://superindex.apress.com

■J
join operation, 103

JRuby, 212

JSAN, 177

■K
kcode encoding choice (-K encoding), 220

$KCODE variable, 220

Kerberos (GSSAPI)-based authentication, 119

Kernel module, 5, 6

Kernel.eval property, 75

Kernel.gets code, 101

Kernel.puts code, 102

Kernel.split code, 101

key data, 115

:key => value-style flexible method
signature, 123

■L
l flag, 20

l option, 18

label, 207

last command, 165

last_logins method, 162

layers key, 171

LDAP. See Lightweight Directory Access
Protocol (LDAP)

ldap_mapping directive, 119, 122

lib directory, 185

Libxml-Ruby, 116

Lightweight Directory Access Protocol
(LDAP), 116–122

connection to service, 118–119

creation, retrieval, update, and
destruction (CRUD) objects, 121–122

interclass relationships, 120–121

mapped classes, 119–120

schema, 117–118

line ending automated handling, 221

line numbers, 17

__LINE__command flag, 223

$<.lineno variable, 17

lines (records), retrieving, 101

linguistic optimization, 33–36

links, 207

list verb, 181

listener class, 159

listing installed gems, 181

lists, 207–208

_load method, 77

load statement, 220

$LOAD_PATH array, 190

local disk storage, 73–80

inspection strings, 74–76

overview, 74–75

pros and cons, 75–76

retrieval, 75

storage, 75

Marshal class

customization, 77

overview, 76

pros and cons, 77–78

retrieval, 77

storage, 76

overview, 73–74

performance comparison, 80

YAML, 78–79

locking, 59–63

abstracted, 61–63

blocking locks, 59–60

considerations, 63

nonblocking locks, 60

overview, 59

process, 63

logger key, 119

login_times data structure, 75

Logo, 67

■M
MacPorts package, 170

make tool, 191

Management Information Base (MIB)
file, 156

:many parameter, 120, 121

map! method, 11

mapped classes, 119, 120

map.resources file, 131

Hamou_821-0 INDEX.fm Page 231 Saturday, June 9, 2007 4:09 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

232 ■IN D E X

Marshal class, 76–78

Marshal library, 78

Marshal.dump method, 76

Marshal.dump(some_object) method, 76

marshalling data, 163, 164

Marshal.load method, 77

MathHandler method, 125

max_value key, 172

mb_used value, 94, 95

measure method, 28

MegaFishCannon class, 144

:member => :award => :post directory, 132

:member => directory, 132

memcache-client method, 84

memcache method, 86

memcacheclient library, 85

memcached, 83–87

connecting to service, 84–85

overview, 83–84

removing data, 86

MemCache.new method, 84

metadata file, 186

metadata.gz file, 188

method_missing method, 47, 67, 94

MIB (Management Information Base)
file, 156

MibDir key, 157

MibModules key, 157

min_value key, 172

mkdir_p method, 163

Module method, 48

module_function directive, 137

monitoring, 148–153

packet, 150–153

socket-based, 138–139

SSH, 148–150

multi-word label, 207

multisplatting, 214–215

:multithread parameter, 85

■N
n flag, 16, 20, 100

N flag, 205

n objects, 216

n wraps, 100

name key, 189

named task, 194

:name_prefix => :book_: directory, 132

:namespace parameter, 85

nested retrieval loop, 221

Net module, 139

net-ssh client library, 148

Net::HTTP-based class, 140

network, 174

network-aware storage, 81–97

ActiveRecord module, 89–97

databases, 87–89

DBI, 87–89

SQL queries, 87–89

general design principles, 81–83

memcached, 83–87

connecting to service, 84–85

overview, 83–84

removing data, 86

object-relational mapping (ORM), 89–97

overview, 81

network monitoring, 155–176

analyzing data, 163–168

aggregate analysis, 167–168

assigning events, 165–166

filtering events, 165–166

marshalling data, 163–164

overview, 163

parsing events, 164–165

gathering data, 155–163

overview, 155

Secure Shell (SSH), 160–163

Simple Network Management Protocol
(SNMP), 155–160

overview, 155

presenting data, 168–176

charts, 169–174

graphs, 174–176

overview, 168–169

Hamou_821-0 INDEX.fm Page 232 Saturday, June 9, 2007 4:09 AM

233■I N D E X

Find it faster at http://superindex.apress.com

network services, 116–132

Lightweight Directory Access Protocol
(LDAP), 116–122

connection to service, 118–119

creation, retrieval, update, and
destruction (CRUD) objects, 121–122

interclass relationships, 120–121

mapped classes, 119–120

schema, 117–118

Representational State Transfer (REST),
128–132

client functionality, 130

server functionality, 131–132

Simple Object Access Protocol (SOAP),
125–128

client functionality, 126

server functionality, 127–128

XML Remote Procedure Call (XML-RPC),
122–125

networking, 133–153

basic network services, 133–139

socket-based monitoring, 138–139

socket connections, 133–134

socket errors and exceptions, 135

timing out on purpose, 135–137

control/monitoring of devices, 148–153

packet monitoring, 150–153

SSH, 148–150

higher-level network services, 139–148

building web robots, 140–144

overview, 139

protocols, 139–140

writing servers, 144–148

overview, 133

new method, 5, 7, 122, 156

next keyword, 10

next_key value, 114

nil expression, 8

*nix-style machines, 148

:nodoc: comment, 208

nonblocking locks, 60

NULL (000) value, 219

numbered files, 102

numbers, 24–25

■O
.o file, 196

o flag, 205

Object class, 47

object method, 5

object orientation (OO), 3–14

accessors, 8–9

blocks, 9–12

Ruby view of, 5–8

theory, 3–5

object-relational mapping (ORM), 89–97

object storage, 73–97

local disk storage, 73–80

inspection strings, 74–76

Marshal class, 76–78

overview, 73–74

performance comparison, 80

YAML, 78–79

network-aware storage, 81–97

ActiveRecord module, 89–97

databases, 87–89

general design principles, 81–83

memcached, 83–87

object-relational mapping (ORM),
89–97

overview, 81

overview, 73

object tapping, 215

object.commit operation, 73

object.is_a?(Array) method, 114

Object.method_missing method, 94

object.retrieve operation, 73

octal record separator specification
-0[octal], 219

o_files statement, 197

on-init method, 128

one-line scripts, 15–19

comments, 16

directory listings, 18–19

fields, 17–18

grep alternative, 15–16

line numbers, 17

record-oriented files, 18

watch utility, 19

Hamou_821-0 INDEX.fm Page 233 Saturday, June 9, 2007 4:09 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

234 ■IN D E X

on_trap method, 159

on_trap_default method, 159

open command, 17, 21

open-like method, 62

open method, 133, 156

open_locked, 61

open_safely, 64

open_safely method, 66

/opt directory, 148

optimization, 32–41

algorithmic, 32–33

integration with C applications, 39–41

linguistic, 33–36

String operations, 35–36

symbols compared to strings, 34

minimizing extra operations, 36–39

data structuring, 38–39

instantiation, 36–38

or conditions, 33

OR operator, 60

organizational unit (ou), 118

ORM (object-relational mapping), 89–97

ou (organizational unit), 118

outdated command, 183

output behavior, 102

output method, 175

output record separator, 221

■P
p flag, 16, 100

p names property, 74

p <portnum> statement, 185

p scores property, 74

p some_object property, 74

packet monitoring, 150–153

page array, 67

parse_event method, 164

parsing

data, 99–116

events, 164–165

libraries

alternative, 116

REXML, 105–107

partial writes, 63

password key, 119

password_block Proc key, 119

path array, 64

PATH environment variable, 221

path method, 75

:path_prefix => :/authors/:author_id:
directory, 131

Pcaplet class, 150

performance, 23–41

analyzing, 27–32

Benchmark library, 27–29

Profiler library, 30–32

UNIX time command, 27

optimization, 32–41

algorithmic optimization, 32–33

integration with C applications, 39–41

linguistic optimization, 33–36

minimizing extra operations, 36–39

script speed, 23–26

numbers, 24–25

resource forks, 25–26

Perl, 1

PID (process ID), 223

pkg directory, 191

platform key, 189

PList (property list) format, 109–116

plist tag, 111

PListArray, 112

PListHash, 112

PListParser.add_object object, 113, 114

plug-in API: macros for adding macros, 54, 55

point_markers key, 171

policies, building/changing text files using,
68–70

polymorphism, 44

port key, 118, 157

:Port parameter, 159

POST method, 130

post method, 142

<prefix>/bin script, 179

prefix path, 178

presenting data, 168–176

:primary_key parameter, 121

print method, 134

Hamou_821-0 INDEX.fm Page 234 Saturday, June 9, 2007 4:09 AM

235■I N D E X

Find it faster at http://superindex.apress.com

print $_ variable, 16

printed nested retrieval loop, 221

printf format, 213

Proc object, 77

process ID (PID), 223

process locking, 63

processed directory, 167

processed folder, 167

Profiler library, 30–32

program-driven file creation, 66–70

property list (PList) format, 109–116

protocols, 139–140

proxy method, 123

proxy2 method, 123

public/images directory, 173

publishing gems, 191

PUT request, 131

puts command, 2, 134

■Q
query verb, 180

■R
r flag, 180

rails command, 181

rake, 193–198

documenting from, 208–209

documenting tasks, 198

ensuring existence of directories, 195

file tasks, 194–195

overview, 193–194

rules, 195–196

synthesizing tasks, 196–198

testing from, 202–203

rake index.yaml command line, 195

rake tool, 190

Rakefile file, 193

Rake::RDocTask documentation, 209

Rake::TestTask documentation, 202

rasterizer key, 171

RDoc-based documentation, 181

rdoc command, 203, 205

rdoc distribution, 203

rdoc --help command, 205

rdoc options, 208

rdoc_files task, 209

rdoc_options key, 189

read command, 134

read-write attributes, 215

readability, improving, 224

README file, 185, 187, 208

readonly parameter, 85

record-oriented files, 18

records (lines), retrieving, 101

RemoteHost class, 149, 160, 161

removing gems, 182–183

repetitive text files, 68

reporting object, 28

Representational State Transfer (REST),
128–132

request_timeout attribute, 85

require command, 183

require library, 221

require :rubygems: script, 183

require statement, 190, 220

required_ruby_version key, 189

requirements key, 189

require_paths key, 189

rerdoc task, 209

rescue keyword, 138

rescue method, 137

resource forks, 25–26

REST (Representational State Transfer),
128–132

Retries key, 157

retrieving

fields, 101–102

records (lines), 101

scalar data, SNMP, 157–158

return keyword, 139

REXML, 105, 107

REXML::Document constructor, 105

REXML::Document.parse_stream
constructor, 108

REXML::StreamListener, 108

ri attr_accessor method, 48

ri command, 181

ri File.join method, 75

ri inject method, 93

Hamou_821-0 INDEX.fm Page 235 Saturday, June 9, 2007 4:09 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

236 ■IN D E X

ri Marshal method, 78

ri module_function method, 137

ri Object method, 78

ri SomeClass.some_method, 2

ri String class, 2

ri Struct class, 39

ri Time.strftime method, 75

RMagick library, 170

routes.rb file, 131

rsrc flag, 26

Ruby, 1, 14

advantages, 1–3

basic example, 1

object orientation (OO), 3–14

accessors, 8–9

blocks, 9–12

Ruby view of, 5–8

theory, 3–5

types, 12–14

yield command, 9–12

ruby command, 194

ruby-core, 211

ruby-doc, 211

ruby-graphviz library, 174

Ruby/LDAP library, 117

ruby method, 149

Ruby scripts, 211

Ruby SNMP library, 158

Ruby SOAP library, 126, 128

ruby string, 222

ruby-talk, 211

RubyForge, 178

rubyforge_project key, 189

RubyGems

explicit versioning, 184

homepage, 177

installing, 178–179

requiring, 183

updating, 180

rubygems library, 188

RubyInline library, 40

rule statement, 197

runtime environment, 222–224

■S
s flag, 205

safe file operations, 63–66

sasl_quiet parameter, 119

Schedule.current? statement, 45

Schwarzian transform, 19

script search, 221

scripts

executable Ruby script generator, 20–21

log rotating, 19–20

one-liners, 15–19

comments, 16

directory listings, 18–19

fields, 17–18

grep alternative, 15–16

line numbers, 17

record-oriented files, 18

watch utility, 19

speed, 23–26

Scruffy Charts, 169–173

scruffy library, 169

search verb, 181

searching for gems, 180

Secure Shell (SSH), 140, 148, 150, 160–163

select function, 146

select pattern, 146

self command, 96

self method, 11

self.each method, 11

separators, 207

server functionality

Representational State Transfer (REST),
131–132

Simple Object Access Protocol (SOAP),
127–128

XML Remote Procedure Call (XML-RPC),
124–125

server method, 54

servers, writing, 144, 148

server.start block, 128

set method, 158

SGMP (Simple Gateway Monitoring
Protocol), 156

shared lock, 59

Hamou_821-0 INDEX.fm Page 236 Saturday, June 9, 2007 4:09 AM

237■I N D E X

Find it faster at http://superindex.apress.com

shares method, 54

shell command, 149

shell.ruby invocation, 149

shutdown method, 128

Signal.trap(:INT:) command, 128

signatures, flexible, 44–48

default values, 44–45

missing method dynamic dispatch, 47–48

Simple Gateway Monitoring Protocol
(SGMP), 156

Simple Network Management Protocol
(SNMP), 140, 155–160

connection to agent, 156

custom MIBs, 160

handling traps, 159–160

overview, 155–156

retrieving tabular data, 158

updating data, 158–159

Simple Object Access Protocol (SOAP),
125–128

:singular => :book: directory, 131

size key, 172

slurping, 219

smart variables, 221

smidump tool, 160

SNMP. See Simple Network Management
Protocol (SNMP)

snmp gem, 156

SNMP::Manager class, 156

SNMP::MIB class, 160

SNMP::TrapListener.new management
class, 159

SOAP (Simple Object Access Protocol),
125–128

soap4r gem, 128

SOAP::RPC::Driver class, 126

SOAP::RPC::StandaloneServer class, 127

SOAP::WSDLDriverFactory class, 126

socket-based monitoring, 138–139

socket connections, 133–134

socket errors, 135

socket exceptions, 135

Socket operations, 136

SomeClass::some_method, 2

SomeClass#some_method, 2

some_object.dump method, 76, 77

some_object.inspect property, 74

$-<something> command flag, 223

something.o file, 196

sort_by method, 19

source flag, 191

speak method, 13

splatting trick, 215

split command, 17

square brackets, 208

SSH (Secure Shell), 140, 148, 150, 160–163

starfish gem, 180

starfish verb, 183

stats method, 87

status commands, 141

$stderr variable, 223

STDERR variable, 223

$stdin variable, 223

STDIN variable, 223

$stdout variable, 223

STDOUT variable, 223

$stdout.puts code, 102

StorageBin class, 167

store_password key, 119

Streamer class, 108

streaming classes, 107–109

String class, 2, 6, 77

String function, 35, 36

String.bytes method, 213

String.each construction, 97

String.each method, 213

String.lines method, 213

strings, 34, 35–36, 213

String.slice invocation, 161

String.split code, 101

String.split format, 103

String.split method, 220

String.tr, 103

Struct class, 39

subversion, 203, 212

sudo mechanism, 150

suites, 202

summary key, 190

Hamou_821-0 INDEX.fm Page 237 Saturday, June 9, 2007 4:09 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

238 ■IN D E X

super keyword, 13, 142

symbols, compared to strings, 34

system method, 19

system option, 181

■T
T option, 198

tab-separated values (TSVs), 103, 104, 169

tabular data, retrieving, 158

tag_end object, 114

tag_start object, 111

taint level, 221

tap method, 215

tarball (.tgz), 178

tc_ statement, 202

tcpdump method, 150

TCPServer class, 144

TCPSocket class, 134, 138, 144

Tempfile class, 64

template-driven file creation, 70–71

templates, 70

ten-second script, 21

test harness, 201

test_ statement, 201

test task, 194, 202

test utility, 26

test_arithmetic.rb file, 200

test_files key, 190

testing, 198–203

fixtures, 201

overview, 198–199

performing, 200–201

from rake, 202–203

test suites, 202

Test::Unit module, 199–200

test.rb script, 221

tests directory, 185

test_subtraction statement, 200

Test::Unit module, 199–200

Test::Unit::TestCase module, 199, 201

text files, building/changing using policies,
68–70

text method, 106, 114

.tgz (tarball), 178

theme key, 171, 172

threads << Thread.new(foo) { |bar| ... }
operation, 147

Time class, 164

time command, 27

Time method, 76

Timeout key, 157

timeout method, 136

Timeout module, 136

Timeout::Error module, 136

Timeout::timeout module, 136

Time.parse invocation, 165

timing out, 135–137

title key, 171

/tmp directory, 103, 148

to_s method, 28, 45, 106

to_yaml method, 78, 79

transaction command, 96

TrapPort key, 157

try_sasl parameter, 119

ts_ statement, 202

TSVs (tab-separated values), 103, 104, 169

types, 9, 12, 14

■U
UDPTransport SNMP transport, 156

unary operator, 213

uninstall verb, 182

uniq method, 33

UNIX daemon, 63

UNIX-style systems, 63

UNIX time command, 27

UNIXSocket subclass, 134

update verb, 180

update_all method, 95

updating

gems, 181–182

RubyGems, 180

usage method, 95

usage value, 94

User class, 119, 204

user key, 119

User object, 52

User subclass, 52

Hamou_821-0 INDEX.fm Page 238 Saturday, June 9, 2007 4:09 AM

239■I N D E X

Find it faster at http://superindex.apress.com

User.authenticate method, 206

User.groups method, 120

user_info file, 17, 100

User.new method, 122

user.rb file, 203

users array, 65

users hash, 172

users organizational unit, 119

/usr/share/dict/words path, 16

■V
value_formatter key, 171

/var/run/myscript.pid file, 63

VarBind objects, 160

$< variable, 16

$. variable, 17

$; variable, 100

$/ variable, 100, 101

$ variable, 102

$! variable, 224

vendor/plugins directory, 173

verbose mode, 221

version command line option, 219

version key, 157, 190

virtual machine (VM), 212

■W
w flag, 2

warnings mode, 222

watch utility, 19

web robots, 140–144

Web Services Description Language (WSDL)
file, 126

Webrick, 148

WebSession class, 141, 187

width key, 172

word element, 106

:wrap parameter, 121

wrapper method, 28

WriteCommunity key, 157

writing servers, 144–148

WSDL (Web Services Description Language)
file, 126

wsdl2ruby.rb utility, 128

wtmp files, 161–163

■X
XML, 104–116

alternative parsing libraries, 116

building, 66–67

overview, 104–105

property list (PList) format, 109–116

REXML, 105–107

streaming classes, 107–109

XML Remote Procedure Call (XML-RPC),
122–125

client functionality, 122–124

server functionality, 124–125

XMLRPC::Client class, 122

XMLRPC::Server instance, 124

■Y
-y (yydebug) command line option, 219

YAML, 78–79, 178

*.yaml globbing pattern, 167

YAML.dump method, 78

Yet Another Ruby Virtual Machine (YARV),
211–212

yield command, 9, 11, 12

yydebug (-y) command line option, 219

■Z
ZIP archive (.zip), 178

Hamou_821-0 INDEX.fm Page 239 Saturday, June 9, 2007 4:09 AM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

	Practical Ruby for System Administration
	Contents
	Introduction
	CHAPTER 1 What Ruby Can Do for You
	CHAPTER 2 Common Tasks, Quick Solutions
	CHAPTER 3 A Practical Look at Performance
	CHAPTER 4 The Power of Metaprogramming
	CHAPTER 5 Building Files the Smart Way
	CHAPTER 6 Object Storage and Retrieval
	CHAPTER 7 Working with Enterprise Data
	CHAPTER 8 Networking for Fun and Profit
	CHAPTER 9 Network Monitoring
	CHAPTER 10 Extending Ruby: A Fistful of Gems
	CHAPTER 11 Testing and Documentation
	CHAPTER 12 The Future of Ruby
	APPENDIX Ruby Execution
	INDEX

